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Abstract 

The volume of digital content resources written as text documents is growing every day, 

at an unprecedented rate. Because this content is generally not structured as easy-to-han-

dle units, it can be very difficult for users to find information they are interested in, or to 

help them accomplish their tasks. This in turn has increased the need for producing tai-

lored content that can be adapted to the needs of individual users. A key challenge for 

producing such tailored content lies in the ability to understand how this content is struc-

tured. Hence, the efficient analysis and understanding of unstructured text content has 

become increasingly important. This has led to the increasing use of Natural Language 

Processing (NLP) techniques to help with processing unstructured text documents. 

Amongst the different NLP techniques, Text Segmentation is specifically used to under-

stand the structure of textual documents. However, current approaches to text segmenta-

tion are typically based upon using lexical and/or syntactic representation to build a struc-

ture from the unstructured text documents. However, the relationship between segments 

may be semantic, rather than lexical or syntactic.  

Furthermore, text segmentation research has primarily focused on techniques that can be 

used to process text documents but not on how these techniques can be utilised to produce 

tailored content that can be adapted to the needs of individual users. In contrast, the field 

of Adaptive Systems has inherently focused on the challenges associated with dynami-

cally adapting and delivering content to individual users. However, adaptive systems have 

primarily focused upon the techniques of adapting content, not on how to understand and 

structure this content. Even systems that have focused on structuring content are limited 

in that they rely upon the original structure of the content resource, which reflects the 

perspective of its author. Therefore, these systems are limited in that they do not deeply 

“understand” the structure of the content, which in turn, limits their capability to discover 

and supply appropriate content for use in defined contexts, and limits the content’s ame-

nability for reuse within various independent adaptive systems. 

In order to utilise the strength of NLP techniques to overcome the challenges of under-

standing unstructured text content, this thesis investigates how NLP techniques can be 

utilised in order to enhance the supply of content to adaptive systems. Specifically, the 

contribution of this thesis is concerned with addressing the challenges associated with 

hierarchical text segmentation techniques, and with content discoverability and reusabil-

ity for adaptive systems.  



 

 

vii 

Firstly, this research proposes a novel hierarchical text segmentation approach, named C-

HTS, that builds a structure from text documents based on the semantic representation of 

text. Semantic representation is a method that replaces keyword-based text representation 

with concept-based features, where the meaning of a piece of text is represented as a 

vector of knowledge concepts automatically extracted from massive human knowledge 

repositories such as Wikipedia. Using this approach, C-HTS represents the content of a 

document as a tree-like hierarchy. This way of structuring the document can be regarded 

as a hierarchically coherent tree that is useful for supporting a variety of search methods 

as it provides different levels of granularity for the underlying content. Secondly, this 

research proposes a novel content-supply service named CROCC. The aim of CROCC is 

to utilise the produced structure of C-HTS in order to overcome the limitations of the 

state of the art content-supply approaches. Finally, this research conducts an evaluation 

of the extent to which the CROCC service enhances content discoverability and reusabil-

ity for adaptive systems. 



 viii 

 

Table of Contents 
 

Abstract ............................................................................................................................ vi 

1. Introduction ............................................................................................................... 1 

1.1 Motivation ......................................................................................................... 1 

1.2 Research Question ............................................................................................ 5 

1.2.1 Research Objectives ...................................................................................... 5 

1.3 Research Contributions ..................................................................................... 6 

1.4 Research Methodology ..................................................................................... 8 

1.5 Thesis Overview ............................................................................................. 10 

2. State of the Art ........................................................................................................ 13 

2.1 Introduction ..................................................................................................... 13 

2.2 Natural Language Processing ......................................................................... 13 

2.2.1 Overview ..................................................................................................... 13 

2.2.2 Low-level NLP Tasks ................................................................................. 14 

2.2.3 High-level NLP Tasks ................................................................................. 16 

2.2.4 Summary ..................................................................................................... 18 

2.3 Text Segmentation .......................................................................................... 18 

2.3.1 Overview ..................................................................................................... 18 

2.3.2 Content-based and Discourse-based ........................................................... 19 

2.3.3 Supervised and Unsupervised ..................................................................... 20 

2.3.4 Borderline sentences detection methods ..................................................... 20 

2.3.5 Linear and Hierarchical ............................................................................... 21 

2.3.6 Hierarchical Text Segmentation Techniques .............................................. 23 

2.3.7 Summary ..................................................................................................... 25 

2.4 Adaptive Systems ............................................................................................ 26 

2.4.1 Overview ..................................................................................................... 26 

2.4.2 Anatomy of Adaptive Systems ................................................................... 27 

2.4.3 Models of Adaptive Systems ...................................................................... 30 

2.4.4 Content Models ........................................................................................... 32 

2.4.5 Summary ..................................................................................................... 38 

2.5 Content Discoverability Techniques ............................................................... 39 

2.5.1 External Content Discoverability Techniques ............................................ 39 

2.5.2 Content Indexing ......................................................................................... 41 

2.5.3 Internal Content Discoverability Techniques ............................................. 45 

2.6 Content Reusability Techniques ..................................................................... 47 

2.6.1 Content Encapsulation ................................................................................ 48 

2.6.2 Shared publishing ........................................................................................ 50 

2.6.3 Content Modification .................................................................................. 51 

2.7 Natural Language Processing in Adaptive Systems ....................................... 52 

2.8 Chapter Summary ........................................................................................... 55 



 

 

ix 

3. OntoSeg: A Novel Approach to Text Segmentation using Ontological Similarity 57 

3.1 Introduction ..................................................................................................... 57 

3.2 OntoSeg Architecture ...................................................................................... 58 

3.2.1 Semantic annotation .................................................................................... 58 

3.2.2 Similarity Computation ............................................................................... 60 

3.2.3 Hierarchical Agglomerative Clustering (HAC) .......................................... 64 

3.3 From Hierarchical into Linear Representation ............................................... 66 

3.4 Evaluation ....................................................................................................... 67 

3.4.1 Experimental Setup ..................................................................................... 67 

3.4.2 Elementary Units for OntoSeg .................................................................... 69 

3.4.3 Evaluation Metrics ...................................................................................... 70 

3.4.4 Results ......................................................................................................... 71 

3.4.4.1 OntoSeg Performance Against Other Approaches.................................. 72 

3.5 Chapter Summary ........................................................................................... 73 

4. C-HTS: A Concept-based Hierarchical Text Segmentation approach .................... 75 

4.1 State of the Art Influences .............................................................................. 76 

4.2 Intuition behind C-HTS .................................................................................. 78 

4.3 Semantic Relatedness ...................................................................................... 79 

4.3.1 How does Explicit Semantic Analysis work? ............................................. 80 

4.4 C-HTS Architecture ........................................................................................ 83 

4.4.1 Morphological Analysis .............................................................................. 83 

4.4.2 Semantic Representation and Relatedness Measuring ................................ 84 

4.4.3 Hierarchical Agglomerative Clustering ...................................................... 84 

4.4.4 Word Sense Disambiguation ....................................................................... 85 

4.5 Evaluation ....................................................................................................... 87 

4.5.1 Datasets ....................................................................................................... 87 

4.5.2 Baselines ..................................................................................................... 88 

4.5.3 Results ......................................................................................................... 89 

4.6 Discussion ....................................................................................................... 90 

4.6.1 Elementary Units for C-HTS ...................................................................... 90 

4.6.2 Text Granularity .......................................................................................... 91 

4.6.3 Multilingual C-HTS .................................................................................... 92 

4.7 C-HTS Validation ........................................................................................... 92 

4.7.1 Semantic Similarity using WordNet ........................................................... 93 

4.7.2 Lexical Representation ................................................................................ 95 

4.8 The Impact of Knowledge Breadth ................................................................. 96 

4.8.1 Experiment and Results .............................................................................. 97 

4.9 Chapter Summary ........................................................................................... 98 

5. CROCC: Customised Reuse of Open- and Closed-corpus Content ..................... 100 

5.1 State of the Art Influences ............................................................................ 100 

5.1.1 Content Incorporation Techniques ............................................................ 101 

5.1.2 Content Right-Fitting ................................................................................ 101 

5.1.3 Content Structuring ................................................................................... 102 

5.1.4 Content Representation ............................................................................. 103 



 

 

x 

5.1.5 Content Indexing ....................................................................................... 103 

5.1.6 Content Discoverability ............................................................................ 104 

5.1.7 Content Reusability ................................................................................... 105 

5.1.8 Summary ................................................................................................... 107 

5.2 CROCC Architecture .................................................................................... 107 

5.2.1 Content Harvester ..................................................................................... 108 

5.2.2 Content Pruner .......................................................................................... 109 

5.2.3 Structure Builder ....................................................................................... 110 

5.2.4 Slice Indexer ............................................................................................. 112 

5.2.5 Content Repository ................................................................................... 113 

5.2.6 Slice Selector ............................................................................................ 117 

5.3 Adhering to the Key Principles ..................................................................... 120 

5.4 CROCC Implementation ............................................................................... 122 

5.4.1 RESTful Web Service ............................................................................... 122 

5.4.2 Content Harvester ..................................................................................... 123 

5.4.3 Content Pruner .......................................................................................... 124 

5.4.4 Structure Builder ....................................................................................... 125 

5.4.5 Slice Indexer ............................................................................................. 126 

5.4.6 Content Repository ................................................................................... 126 

5.4.7 Slice Selector ............................................................................................ 126 

5.4.8 Request Coordinator ................................................................................. 126 

5.5 Chapter Summary ......................................................................................... 127 

6. Evaluation of the CROCC Service ....................................................................... 128 

6.1 Evaluation Methodology ............................................................................... 128 

6.2 Data and Content Sourcing ........................................................................... 131 

6.2.1 Closed Corpus Content Resources ............................................................ 131 

6.2.2 Open Corpus Content Resources .............................................................. 132 

6.3 Baseline System ............................................................................................ 133 

6.3.1 Document Indexing ................................................................................... 134 

6.3.2 Slice Generation ........................................................................................ 134 

6.4 Experimental Setup ....................................................................................... 135 

6.4.1 Concept Vector Cut-off Parameter ........................................................... 135 

6.4.2 Datasets Indexing and Slices Generation .................................................. 136 

6.4.3 Evaluation System .................................................................................... 138 

6.5 Results ........................................................................................................... 140 

6.5.1 General Performance ................................................................................ 141 

6.5.2 The Query Element of the Request ........................................................... 142 

6.5.3 Number of Sentences Element of the Request .......................................... 143 

6.5.4 Discussion ................................................................................................. 144 

6.6 Chapter Summary ......................................................................................... 145 

7. Conclusion and future work .................................................................................. 146 

7.1 Research Question, Objectives and Achievements ....................................... 146 

7.1.1 Research Objective 1 ................................................................................ 146 

7.1.2 Research Objective 2 ................................................................................ 147 

7.1.3 Research Objective 3 ................................................................................ 149 

7.1.4 Research Objective 4 ................................................................................ 150 



 

 

xi 

7.2 Contributions ................................................................................................. 152 

7.3 Further Work ................................................................................................. 154 

7.3.1 Multilingual Content-Supply .................................................................... 154 

7.3.2 Domain-Specific Concept Space .............................................................. 155 

7.3.3 Integrate Different Content Annotation Tools .......................................... 155 

7.4 Final Remarks ............................................................................................... 156 

References ..................................................................................................................... 157 

 



 xii 

List of Figures  

Figure 2.1  A dotplot of four concatenated Wall Street Journal (Reynar, 1994) ........... 21 
Figure 2.2 Paragraph dendrogram of the Stargazers article (Yaari, 1997) ..................... 24 
Figure 2.3 Layers of the Dexter model (Halasz & Schwartz 1990) ................................ 28 
Figure 2.4 A depiction of the three layers of the Dexter model as embedded in an actual 

adaptive system. .............................................................................................................. 29 
Figure 2.5 AHAM model (De Bra et al., 1999) .............................................................. 30 
Figure 2.6 An Adaptive System with a closed corpus content model (Aroyo et al., 2004)

 ......................................................................................................................................... 35 
Figure 2.7 The ArtEquAKT system ................................................................................ 43 
Figure 2.8 Slicepedia Architecture Pipeline ................................................................... 44 
Figure 3.1 Example of three sentences annotated by DBpedia Spotlight ....................... 59 
Figure 3.2 A vector representation of the three sentences after mapping entities to their 

classes from DBpedia ontology ...................................................................................... 59 
Figure 3.3  Example of ontology extract (Slimani et al.,2006) ....................................... 62 
Figure 3.4 OntoSeg Algorithm ....................................................................................... 65 
Figure 3.5 Sentences dendrogram of a sample text ........................................................ 66 
Figure 3.6 A tree representation for a text from 10 sentences ........................................ 67 
Figure 4.1 The process of generating an ESA model from Wikipedia articles (Egozi et 

al., 2011). ........................................................................................................................ 81 
Figure 4.2 Semantic interpretation of two text units using ESA (Gabrilovich and 

Markovitch, 2007) ........................................................................................................... 82 
Figure 4.3 C-HTS output as a dendrogram of a sample text .......................................... 85 
Figure 5.1 The CROCC service architecture ................................................................ 108 
Figure 5.2 Removing the unnecessary content fragments by the Content Pruner ........ 110 
Figure 5.3 A sample of the output of one iteration of the C-HTS algorithm in the 

Structure Builder module .............................................................................................. 112 
Figure 5.4 Illustration of how the Slice Indexer maps a concept to slice objects 

associated with it ........................................................................................................... 113 
Figure 5.5 An example of the concept index in the Content Repository ...................... 115 
Figure 5.6 Document sentences stored in the Text Index after the morphological 

analysis phase in C-HTS ............................................................................................... 116 
Figure 5.7 A sample of a document indexed in the Text Index .................................... 117 
Figure 5.8 Illustration of how the Slice Selector module works ................................... 117 
Figure 5.9 A sample of the centroid vector of three concepts with their relevance scores 

to the query ................................................................................................................... 118 
Figure 5.10 Example of the returned lists of slices associated with the three concepts in 

Figure 5.9 ...................................................................................................................... 119 
Figure 6.1 A sample of the XML structure produced by the PDFX system ................. 132 
Figure 6.2 An illustration of how a document is indexed in Lucene ............................ 134 
Figure 6.3 A flowchart of the slice generation process by the baseline system ........... 135 
Figure 6.4 Slices distribution over closed and open corpora ........................................ 138 
Figure 6.5 Evaluation System ....................................................................................... 140 
Figure 6.6 Distribution of general user evaluations for each criteria ........................... 142 



 

 

xiii 

List of Tables  

Table 3.1 Choi’s dataset statistics ................................................................................... 68 
Table 3.2 Ontological similarity error rates (WD) for different window sizes ............... 71 
Table 3.3 Hybrid approach error rates for different window sizes ................................. 72 
Table 3.4 Pk values for various algorithms in the literature with provided segment 

number ............................................................................................................................ 73 
Table 4.1 Evaluation of C-HTS, HAPS, OntoSeg and iterative versions of MCSeg and 

BSeg using windowDiff per level .................................................................................... 90 
Table 4.2 Comparison between different similarity measures using WordNet in C-HTS

 ......................................................................................................................................... 94 
Table 4.3 Comparison between different coherency measures used with C-HTS.......... 96 
Table 4.4 Comparison of the three Wikipedia snapshots ............................................... 97 
Table 4.5 Comparison of the three Wikipedia snapshots ............................................... 97 
Table 6.1 A sample of slices generated by both systems .............................................. 138 
Table 6.2 Slice sizes for each topic in each group ........................................................ 139 
Table 6.3 Mean scores of user evaluations for all slices produced by each system ..... 141 
Table 6.4 Mean scores of user evaluations for slices produced for each query by each 

system ........................................................................................................................... 143 
Table 6.5 Mean scores of user evaluations for slices with regards to number of 

sentences ....................................................................................................................... 144 

 



 xiv 

Acronyms 

AHS  Adaptive Hypermedia System 

APeLS   Adaptive Personalized eLearning Service 

AR Anaphora Resolution  

DOM Document Object Model 

ESA Explicit Semantic Analysis 

HAPS Hierarchical Affinity Propagation for Segmentation 

IR Information Retrieval 

JSON JavaScript Object Notation 

LO Learning Objects  

LOM Learning Object Metadata  

LSA Latent Semantic Analysis 

MHTSS Multi-granularity Hierarchical Topic-Based Segmentation System 

NER Named Entity Recognition 

NLP  Natural Language Processing 

PMCC Personal Multilingual Customer Care 

RDF Resource Description Framework 

SCORM Sharable Content Object Reference Model  

SME Subject-Matter Expert  

TFIDF Term Frequencies - Inverse Document Frequency 

UML Unified Modelling Language  

WSD Word Sense Disambiguation 

WWW World Wide Web 



 1 

1. Introduction 

1.1 Motivation 

A large proportion of digital content resources are written as text documents in the form 

of web pages, product manuals, news articles, research papers, etc. The volume of this 

content is growing at an unprecedented rate, making it very difficult for users to find 

information they are interested in or to help them accomplish their tasks (Uchyigit, 2009). 

The reason is that these resources are generally not properly structured into easy to handle 

units.  Hence, efficient analysis and understanding of unstructured text content is becom-

ing increasingly important (Alani et al., 2003). This has led to the increasing use of Nat-

ural Language Processing (NLP1) techniques to help with processing unstructured text 

documents (Beck et al., 2014; Sathiyamurthy and Geetha, 2011). The fundamental objec-

tive of NLP research is to convert a piece of text into a data structure that unambiguously 

and completely describes the meaning of the natural language text (Collobert et al., 2011). 

In the real world, natural language text usually appears as sequential patterns without 

explicitly defined boundaries to identify how the text is structured. Amongst the various 

NLP techniques that have been developed, Text Segmentation is used to identify bound-

aries in natural language text, and hence understand the structure of textual documents 

(Badjatiya et al., 2018; Wang et al., 2017; Eisenstein, 2009; Hearst, 1997). Current ap-

proaches to text segmentation are based upon using lexical and/or syntactic representation 

to identify the coherent segments of text (Azzopardi et al., 2017; Kazantseva and 

Szpakowicz, 2014). However, the relationship between segments may be semantic, rather 

than lexical or syntactic. Furthermore, text segmentation research has mainly focused on 

techniques that can be used to process text documents but not on how these techniques 

can be utilised to produce tailored content that can be adapted to the needs of individual 

users.  

The field of content adaptation has aimed to assist users with the problem of information 

overload, and focused on the challenges associated with the growing body of digital con-

tent and methods to dynamically adapt and deliver it to individual users (Janati et al., 

2018; Bunt et al., 2007). One area of content adaptation is Adaptive Systems2. One of the 

                                                 
1 NLP also refers to Neuro-Linguistic Programming. In this research, it refers to Natural Language Processing. 
2 Adaptive Systems are also commonly referred to within the research community as Adaptive Web Systems or 

Adaptive Hypermedia Systems (AHSs). In this thesis, “adaptive systems” means any system that tailors content to 

user’s needs. 



 

 

2 

main services that adaptive systems offer to their users is the provision of content3 that is 

tailored to individual users’ needs. In order to provide such content, adaptive systems 

utilise different techniques to incorporate content that meets the requirements of their 

users.  

Early adaptive systems primarily focused on content adaptation techniques rather than 

the processing and production of the content itself (Dieberger & Guzdial, 2003; Conlan 

& Wade, 2004; De Bra et al., 2003; Brusilovsky, 2004). Such systems have traditionally 

relied upon the manual processing and production of content (Dieberger & Guzdial, 

2003). This manual processing makes the resources available in these systems highly cu-

rated, and easily discovered and adapted to the user’s preferences. However, the result, 

typically, is the production of relatively low volumes of content at high cost which makes 

these systems only able to satisfy a narrow range of content requests (Levacher, 2014). 

Furthermore, the labour-intensive requirements imposed upon the manual processing of 

content resources results in a limited capability of content reusability within different 

systems. 

As a result, various adaptive systems have been proposed to address these challenges by 

employing automatic techniques to incorporate and process content. They have mainly 

focused on leveraging and utilising open corpus resources available on the World Wide 

Web (Heufemann et al., 2013; Sosnovsky et al., 2012; Lawless, 2009; Weal et al., 2007). 

This in turn allowed these systems to incorporate a wider range of open corpus content 

resources that cover a more diverse range of information needs (Smith & Blandford, 

2003). However, since these approaches have prioritised the development of automatic 

techniques to support the use of open corpus content, these techniques typically used the 

content resources in the form they were created, as static one-size-fits-all content objects, 

with limited control over content granularity. As pointed by (Bunt et al., 2007), presenting 

the incorporated content resources in their native form allows more content to be “visible 

to the user. However, the more content is shown, the higher the chance of generating 

information overload and reducing attention to the most relevant information, defeating 

one of the very reasons for having adaptive systems in the first place”. 

Additionally, when content reuse has been achieved in these systems, it is traditionally 

performed manually (Henze and Nejdl, 2001) or at best using automated approaches that 

                                                 
3 Content has different types such as: textual content, and multimedia content (image, video, audio, or animation) 

among others. The focus of this research is on textual content. Hence, in this thesis, the term content refers to textual 

content. 
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treat such resources as document level packages only. As pointed out by (Lawless, 2009), 

“there is an inverse relationship between the potential reusability of [...] content and its 

granularity”. The reuse of open web resources in their native form could be improved if 

reused in different sizes. 

As a result, other systems tried to overcome these problems and focused on performing 

adaptation at a finer level of granularity (Levacher et al., 2012b). In these approaches, the 

harvested resources are processed and structured into coherent fragments. ArtEquAKT 

(Millard et al., 2003; Weal et al., 2007) for example, utilised information extraction and 

knowledge management techniques to automatically extract parts of content resources 

(paragraphs) to create dynamic biographies of artists from content available on the web. 

Another example is the PMCC4 system (Steichen, 2012) that delivers personalised con-

tent to individual users using open corpus content as fragments of text. The harvested 

content is fragmented based on its HTML structure using a wrapper-based content frag-

mentation approach (Bunt et al., 2007) to identify regions of pages in order to produce 

individual fragments of content. Slicepedia (Levacher, 2014) was introduced as a web 

service to process open corpus resources and extract content for reuse by right-fitting it 

to the specific content requirements of individual content consuming applications. 

Slicepedia fragments the harvested open corpus content into segments based on their 

HTML structure.  

Although these systems have demonstrated their ability to automatically process textual 

content and hence enhance its discoverability and reusability, they are limited in that they 

rely only upon the original structure of the content resource that reflects the needs and 

perspective of its author. While each adaptive system has its own content requirements 

(based on its users), relying upon such structure does not reflect these requirements. Fur-

thermore, content resources that do not possess any layout structure (e.g. plain text) or do 

not make use of orthographic information (e.g. content is not structured as paragraphs), 

cannot be effectively processed and reasoned about by these systems. Additionally, these 

systems are limited in that they do not deeply “understand” the structure of the content, 

which, in turn, limits their capability to supply appropriate content for use in defined 

contexts. Understanding the structure of content requires a deep understanding of the 

meaning of that content.  

                                                 
4 Personal Multilingual Customer Care 
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In order to utilise the strength of NLP techniques and to overcome the challenges of un-

derstanding unstructured text content, this thesis investigates how NLP techniques can be 

utilised in order to enhance the supply of content to adaptive systems. Specifically, this 

thesis focuses on the use of text segmentation, as a technique for structuring textual doc-

uments, to enhance content discoverability and reusability for adaptive systems.  

In this thesis, two novel hierarchical text segmentation approaches are presented. The two 

approaches are: OntoSeg (Bayomi et al., 2015) and C-HTS (Bayomi & Lawless, 2018). 

Both approaches use the semantic representation of textual content in order to segment it 

and produce a tree-like hierarchical structure. This way of building the document struc-

ture can be regarded as a hierarchically coherent tree that is useful to support a variety of 

search methods as it provides different levels of granularity for the underlying content. 

This tree is then traversed to obtain different levels of content granularity that facilitate 

content discoverability and reusability. Each approach was evaluated independently to 

explore its efficiency in performing its task. Additionally, a novel content-supply service 

called CROCC (Customised Reuse of Open- and Closed-corpus Content) is presented. 

The aim of CROCC is to utilise the produced structure of the segmentation algorithm (C-

HTS5) in order to overcome the limitations of the state of the art content-supply ap-

proaches. Furthermore, an evaluation of the extent to which the CROCC service enhances 

content discoverability and reusability for adaptive systems is presented. 

In this thesis, CROCC (using C-HTS) is designed and evaluated with reference to the 

supply of content to adaptive systems. However, the work presented in this thesis can 

potentially be used by a range of different applications that rely on structuring and under-

standing content such as Recommender Systems (Karimi et al., 2018) and Passage Re-

trieval systems (Cohen and Croft, 2018).  

Adaptive systems rely on different models to produce adaptive content compositions ac-

cording to their users’ needs. It is not within the scope of this research to design and build 

an adaptive system. Rather, the aim of this thesis is to propose novel approaches for struc-

turing textual content based on its semantic representation and to utilise the produced 

structure in a content-supply service to enhance the discovery and reuse of content for 

adaptive systems.  

                                                 
5 Evidence from experiments demonstrated that C-HTS is performing better than OntoSeg (Chapter 4). Hence, C-

HTS is employed in CROCC to build the structure for content resources (as will be discussed in Chapter 5). 
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1.2 Research Question 

The question that this research seeks to answer is: 

To what extent can the semantic representation of unstructured textual content be ex-

ploited by novel text segmentation approaches to build a document structure? 

To assess whether the structure produced by the proposed approaches is of benefit to 

content adaptation, a further question will be addressed: 

Can the produced structure be used to enhance the discoverability and reusability of con-

tent for adaptive systems? 

In light of these research questions, and the research objectives outlined in section 1.2.1 

below, this research aims to propose novel approaches for producing a structure out of 

textual content in order to improve content discoverability and reusability for adaptive 

systems.  

1.2.1 Research Objectives 

In order to address the research questions outlined above, the following research objec-

tives were identified for this thesis: 

RO 1: Perform a state of the art survey on NLP techniques, specifically text segmen-

tation as a technique for structuring textual content. The aim of this survey is to in-

vestigate how text segmentation is used to analyse and understand text to produce a 

structure from unstructured textual documents. Additionally, perform a state of the 

art survey on adaptive systems as content adaptation applications, to investigate how 

they process content and the different techniques they utilise in order to facilitate the 

discovery and reuse of this content. The survey should also review how state of the 

art adaptive systems utilise NLP techniques in order to provide adaptive content.  

RO 2: Examine the different methods and techniques that can be used to enhance the 

performance of text segmentation using the semantic representation of text, and de-

velop a new text segmentation approach to enhance the understanding of unstructured 

textual documents. This also involves the evaluation of the effectiveness of the pro-

posed approach in processing and structuring content.  

RO 3: This PhD research takes adaptive systems as the target application scenario. 

To enhance the content discoverability and reusability, it is important to understand 
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the structure of that content. The proposed hierarchical text segmentation approach 

makes it possible to build a structure out of content resources based on the semantic 

representation of text. In this context, a new content-supply service that utilises the 

structure produced by the proposed segmentation approach needs to be built. The de-

sign of this service should be focused on exploiting the produced structure in order to 

overcome the limitations of the state of the art content-supply approaches. 

RO 4: Evaluate the extent to which the proposed content-supply service can enhance 

the discovery and reuse of content for adaptive systems.  

1.3 Research Contributions 

This work makes notable contributions to the state of the art of unstructured textual con-

tent analysis and understanding, along with content adaptation. These contributions are 

illustrated throughout this thesis. The major contribution of this research is the use of 

NLP techniques, specifically text segmentation, to analyse and build a structure from text 

documents based on the semantic representation of text. This structure is utilised by a 

novel content-supply service in order to enhance content discoverability and reusability 

for adaptive systems. To build a structure from text documents, this research proposes 

two novel hierarchical text segmentation algorithms based on the semantic representation 

of text, OntoSeg (Chapter 3) and C-HTS (Chapter 4). 

OntoSeg (Ontological Segmentation) (Bayomi et al., 2015) is a novel approach to text 

segmentation that uses the semantic similarity between text blocks based on an ontology, 

and uses a Hierarchical Agglomerative Clustering (HAC) algorithm to represent the text 

as a tree-like hierarchy that is semantically structured.  

Evidence from experiments conducted as part of this research indicates that although On-

toSeg is able to produce a hierarchical structure out of text based on its semantic repre-

sentation, it did not perform well against the state of the art approaches and thus, its per-

formance needs to be enhanced through improved understandability of text by exploring 

the semantic relatedness between text blocks rather than just using the semantic similar-

ity. As argued by (Budanitsky and Hirst, 2006), relatedness is more general than similar-

ity since dissimilar entities may also be semantically related by other relationships such 

as meronymy, antonymy, functional relationship or frequent association.   
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As a result, another algorithm called C-HTS (Concept-based Hierarchical Text Segmen-

tation) (Bayomi and Lawless, 2018) is presented. C-HTS is a hierarchical text segmenta-

tion approach that uses the explicit semantic representation of text to measure the seman-

tic relatedness between text blocks. The semantic representation of text is a method that 

replaces keyword-based text representation with concept-based features, automatically 

extracted from massive human knowledge repositories such as Wikipedia. C-HTS repre-

sents the meaning of a piece of text as a weighted vector of knowledge concepts, in order 

to reason about text. Similar to OntoSeg, C-HTS produces the content of a single docu-

ment as a tree-like hierarchy. This way of structuring the document can be regarded as a 

hierarchically coherent tree that is useful to support a variety of search methods as it 

provides different levels of granularity for the underlying content. 

This thesis also proposes a novel content-supply service named CROCC (Customised 

Reuse of Open- and Closed-corpus Content) that utilises the structure produced by C-

HTS in order to overcome the limitations of the state of the art content-supply approaches. 

CROCC is a service which harvests content resources from open and closed corpus in 

their native form and builds a structure out of each content resource without the reliance 

upon its original structure. The service builds the structure of a content resource based on 

its semantic representation (using C-HTS) and delivers content slices6 according to the 

needs and requirements of individual adaptive systems. The thesis also presents a task-

based experiment to evaluate the extent to which the CROCC service can enhance the 

discovery and reuse of content for adaptive systems. 

A minor contribution of this research is a concept space that was built from a Wikipedia 

snapshot (April 2017) to be used for the explicit semantic analysis of text within C-HTS. 

This concept space is publicly available7. Another minor contribution is the implemen-

tations of the two hierarchical text segmentation algorithms proposed in this thesis, On-

toSeg and C-HTS. Implementations of both algorithms have been open-sourced and made 

publicly available8,9.  

To date, three research papers directly related to this research have been published: 

 

                                                 
6 A slice is a piece of content (one or more sentences) that originates from pre-existing content resource 
7 https://goo.gl/JZhEvm 
8 https://github.com/bayomim/OntoSeg 
9 https://github.com/bayomim/C-HTS 
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1. Bayomi, M., Levacher K., Ghorab, M.R., and Lawless, S. "OntoSeg: A Novel Ap-

proach to Text Segmentation using Ontological Similarity”. In the proceedings of 

the 5th ICDM Workshop on Sentiment Elicitation from Natural Text for Infor-

mation Retrieval and Extraction, ICDM SENTIRE. Held in conjunction with the 

IEEE International Conference on Data Mining, ICDM 2015. Nov 14th, 2015. At-

lantic City, NJ, USA. 

This publication describes the OntoSeg algorithm that uses the semantic similarity be-

tween text blocks. The publication also describes the experiments that have been carried 

out in order to evaluate the performance of OntoSeg in comparison with state of the art 

text segmentation approaches. 

2. Bayomi, M. & Lawless, S. “C-HTS: A Concept-based Hierarchical Text Segmen-

tation approach”. In the Proceedings of the Eleventh International Conference on 

Language Resources and Evaluation (LREC 2018). Miyazaki, Japan: European 

Language Resources Association (ELRA). 

This publication describes the C-HTS algorithm that uses the semantic relatedness be-

tween text blocks. The publication describes the approach used by C-HTS to apply hier-

archical text segmentation and the concept space that has been built from Wikipedia in 

order to measure the semantic relatedness between text blocks. The publication also de-

scribes the experiments that have been carried out in order to evaluate the performance 

of C-HTS against the state of the art hierarchical text segmentation approaches. 

3. Bayomi, M. "A Framework to Provide Customized Reuse of Open Corpus Content 

for Adaptive Systems." In the Proceedings of the 26th ACM Conference on Hyper-

text & Social Media. HT ’15. Northern Cyprus, pp 315–318. ACM, 2015. 

This publication describes a preliminary version of the CROCC framework that has been 

built to facilitate the use of text segmentation in a content adaptation scenario.  

Another publication describing the CROCC service and its evaluation (detailed in Chap-

ter 5 and Chapter 6) is underway and will target the ACM Hypertext conference10.  

1.4 Research Methodology 

This research addressed the abovementioned research questions and objectives by fol-

lowing a number of iterative steps that involved theoretical investigation, experimental 

                                                 
10 https://human.iisys.de/ht2019/ 
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design, technical implementation, and quantitative and qualitative evaluation. This sec-

tion provides an overview of the research methodology followed. 

Initially, a state of the art survey on NLP techniques in general and a focused review on 

text segmentation was undertaken. The review investigated the different text segmenta-

tion approaches used for analysing and structuring textual documents and identified 

points of strength and weakness in these approaches and how they could be enhanced. 

The survey then included a review of adaptive systems, their anatomy, models and the 

different content models that adaptive systems rely on. The survey also investigated the 

different approaches for content discoverability and reusability used within adaptive sys-

tems. The survey then investigated the different NLP techniques used in adaptive systems 

in order to structure textual content (RO 1). 

Based on the influences derived from this survey, two new text segmentation algorithms 

that use the semantic representation of content were proposed. The two algorithms, 

namely OntoSeg (Chapter 3) and C-HTS (Chapter 4), use the semantic representation of 

content to reason about it. Both algorithms were proposed to enhance text understanda-

bility and hence build a semantic structure to change the static and inflexible nature of 

textual content. Both algorithms were evaluated independently, using a set of experi-

ments, to assess their performance in text segmentation tasks (RO 2). 

As discussed in section 1.1, text segmentation research has mainly focused on techniques 

that can be used to process text documents but not on how these techniques can be utilised 

to produce tailored content that can be adapted to the needs of individual users. Thus, in 

order to utilise the C-HTS algorithm in content adaptation, a content-supply service 

named CROCC was developed (Chapter 5). CROCC was offered as an intelligent con-

tent-supply framework designed based on the influences derived from the state of the art 

review on adaptive systems. The fundamental objective of CROCC is to utilise the struc-

ture produced by C-HTS to enhance content discoverability and reusability for adaptive 

systems (RO 3).   

To evaluate the extent to which the CROCC service enhances the discovery and reuse of 

content for adaptive systems, a task-based experiment was carried out (RO 4). Since de-

signing and building an adaptive system is not within the scope of this thesis, this exper-

iment did not focus on evaluating the process of content use within an actual adaptive 

system. Rather, the experiment focused on evaluating the content-supply mechanism of 
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CROCC and the quality of the slices produced by the service, according to the specific 

requirements of a set of content requests that could be sent by an adaptive system. 

1.5 Thesis Overview 

The remainder of this thesis is organised as follows:  

Chapter 1 presents a state of the art survey of NLP and adaptive systems. The survey 

begins with a comprehensive review of a number of different NLP techniques. The field 

of text segmentation is reviewed, through an overview of the categories of text segmen-

tation proposed so far in the literature, along with different techniques for segmentation 

and their strengths and limitations. The survey then focuses on hierarchical text segmen-

tation and investigates how hierarchical text segmentation is used to analyse text to pro-

duce a structure from unstructured textual documents. The chapter then provides an over-

view of adaptive systems and describes their anatomy. Their strengths and limitations are 

also presented. Types of content such as closed and open corpus content are then outlined. 

Following this is a review of how state of the art adaptive systems utilise the different 

techniques in order to discover content that is suitable for their users’ needs. Reusability 

techniques applied by adaptive systems are then reviewed. The chapter also comprises a 

review of a range of NLP techniques utilised by adaptive systems in order to structure 

textual content. 

The following chapters outline the design of the various elements of research presented 

in this thesis. They build on the influences from the state of the art survey and outline the 

design of the theoretical approaches proposed to meet the research questions and objec-

tives of this thesis. 

Chapter 3 presents the design of OntoSeg, a new algorithm for text segmentation that 

hierarchically represents the conceptual structure of content based on the semantic repre-

sentation of text. The chapter also describes a set of experiments that have been carried 

out in order to evaluate the performance of OntoSeg using well-known evaluation met-

rics. The OntoSeg evaluation comprises a set of experiments where each experiment eval-

uates OntoSeg from a different perspective. The performance of OntoSeg is also com-

pared against a set of state of the art approaches using a dataset widely used in the litera-

ture. 

Chapter 4 presents the design of C-HTS, the hierarchical text segmentation approach 

that focuses on the semantic relatedness between text constituents. The technical aspects 
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related to building a concept space from Wikipedia are presented. Wikipedia was selected 

in this research as it is considered the largest and fastest growing knowledge base in ex-

istence as it is a collaborative effort that combines the knowledge of hundreds of thou-

sands of people. The chapter also describes a set of experiments that have been carried 

out in order to evaluate the performance of C-HTS using two different datasets in the 

hierarchical text segmentation literature. Also, to assess the efficiency of C-HTS, its per-

formance is compared against state of the art hierarchical text segmentation approaches. 

The chapter then describes two sets of experiments that have been carried out in order to: 

(1) validate the efficacy of using Wikipedia as the underlying knowledge base for the 

semantic representation of text in C-HTS, and (2) validate the efficacy of using the se-

mantic representation of text rather than its lexical representation. 

Since C-HTS uses Wikipedia as the underlying knowledge base to reason about text, and 

since the amount of knowledge in Wikipedia is expanding, such expansion, and the 

growth of information available in the knowledge base should impact the accuracy of the 

segmentation process. Hence, this chapter presents an evaluation of how this knowledge 

expansion impacts upon the segmentation accuracy of C-HTS. 

Chapter 5 presents the CROCC service and describes the different modules in the ser-

vice. The chapter starts by presenting the influences derived from the state of the art re-

view and the key principles that impacted the core properties of the CROCC service. The 

chapter then presents the design aspects of CROCC service along with an explanation of 

how each component in the service influences the content provision process. After that, 

the chapter discusses how the design of the service adheres to the key principals derived 

from the state of the art influences. Details of a prototype implementation of the service 

are then presented. 

Chapter 6 describes the experiment that has been carried out in order to evaluate the 

extent to which the CROCC service can enhance the discovery and reuse of content for 

adaptive systems. The chapter starts by describing the methodology applied in this exper-

iment. After that, the chapter outlines how content resources from closed and open corpus 

were acquired for the purpose of the experiment. A baseline system is then introduced, 

which has been developed to compare its performance against the CROCC service. The 

experimental setup and the evaluation system that has been built for this experiment are 
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then described. The chapter concludes by presenting the analyses carried out, along with 

the findings derived from this analysis. 

Chapter 7 concludes the thesis with a summary of the key contributions of this research, 

a discussion of how well the objectives were met and how the research questions were 

answered, and a discussion of future work that may be carried forward from this thesis. 

  



 

 

13 

2. State of the Art 

2.1 Introduction 

This chapter presents a state of the art survey of NLP techniques, specifically text seg-

mentation, and presents a review of adaptive systems. The aim is to provide the reader 

with an overall context of the research area, so as to extract relevant limitations and in-

fluences from the state of the art. The aim is also to contribute to the first objective of this 

thesis (RO 1) by reviewing the field of text segmentation to investigate how text segmen-

tation is used to analyse and understand unstructured textual documents. The survey re-

views a number of different approaches to text segmentation along with their limitations. 

The survey also reviews adaptive systems, as content adaptation applications, to get an 

insight into how they process content to adapt it to their users’ needs. Additionally, the 

survey reviews content discovery and reuse techniques within adaptive systems. These 

techniques and systems are reviewed in terms of their strengths and their limitations. The 

survey also reviews a range of different NLP techniques utilised by adaptive systems. 

2.2 Natural Language Processing 

2.2.1 Overview 

Natural Language Processing (NLP) is a phrase used to describe a range of computational 

techniques, based upon linguistic theory, for the automatic analysis and representation of 

natural language (Cambria & White, 2014).  The fundamental objective sought by NLP 

research is to convert a piece of text into a data structure that unambiguously and com-

pletely describes the meaning of the natural language text (Collobert et al., 2011). During 

the last decades, scientific efforts and the increasing availability of computational re-

sources have made it possible to come closer to the goal of understanding textual content 

(Riedl 2016). Existing NLP techniques have been applied successfully in a wide range of 

areas such as Machine Translation (McCann et al., 2017), Information Extraction 

(Stanovsky et al., 2018; Fader et al., 2011), and Information Retrieval (Masumura et al., 

2017; Mitra and Craswell, 2017) among others.  

In 1950, Alan Turing presented the Turing Test (Turing, 1950). The test consists of a text 

conversation between two participants. One participant is a human and the other is a com-

puter. The aim of this test is to see if machine can think. Hence, Turing proposed the test 
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as a game, in which a computer’s use of language would form the basis for determining 

if the machine could think. Turing defined a machine as intelligent if the evaluator cannot 

distinguish the machine from the human. Following that, in 1954, John Hutchins pro-

posed the Georgetown-IBM system that involved the translation of Russian sentences 

into English (Hutchins, 2005). Similar to Turing system, (Weizenbaum, 1966) proposed 

ELIZA program 1966. ELIZA was an early natural language processing system capable 

of carrying on a limited form of conversation with a user by using pattern matching to 

process the input and translate it into suitable outputs.  

Over time, a vast amount of NLP approaches have been drawn from these systems 

(Jurafsky, 2000).  NLP systems usually split practical problems into a series of consecu-

tive tasks. Each of these tasks represent a research field of its own and attempts to solve 

a particular problem in processing natural language. These tasks are usually subdivided 

into two broad classes based upon whether they consist of low-level or high-level pro-

cessing tasks (Levacher, 2014).  

2.2.2 Low-level NLP Tasks 

Low-level NLP tasks are usually used as a pre-processing step for other NLP tasks. An 

example of a low-level task is Tokenisation, which is also referred as word segmentation 

(Mullen et al., 2018; Goldwater et al., 2006). This task aims at handling word structure 

by separating a stream of text into a consecutive set of tokens which roughly correspond 

to "words" (Chang & Manning, 2014). Tokenisation mainly depends on word boundaries, 

such as space, to identify the different tokens in the given piece of text. Each token can 

roughly be defined as a sequence of characters positioned between two white spaces, 

while punctuation can easily distinguish between two separate sentences. However, Asian 

languages such as Chinese and Japanese have no explicit word boundaries, which make 

tokenisation a challenging task (Zhang et al., 2010). Even in western languages, valid 

words are often not identical to space-separated tokens. For example, proper nouns such 

as “United Kingdom” or idiomatic phrases such as “with respect to” actually function as 

a single word (Mochihashi et al., 2009). Nevertheless, different approaches have been 

proposed to tackle these problems (Manning et al., 2014).  

On the other hand, the task of sentence splitting is concerned with segmenting text into 

sentences (Xu et al., 2017; Mikheev, 2000). While tokenisation relies on the delimiters 

between tokens, sentence splitting depends on the boundaries between sentences in raw 

text. Many NLP tasks require their input to be divided into sentences. For instance, to 
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summarise text each sentence needs to be identified in order to measure how important 

this sentence is to be included in the final summary (Bayomi et al., 2016; Mihalcea & 

Tarau, 2004). In a text segmentation task, to identify coherent segments in the given text, 

there is a need to split it into sentences and then measure how these sentences are similar 

(or related) to each other (Bayomi & Lawless, 2018; Bayomi et al., 2015; Choi, 2000). 

Both tokenisation and sentence splitting tasks are generally used as the first processing 

tasks applied to a raw natural language text, which directly influence the results of the 

subsequent tasks.  

While some NLP tasks might only require text to be tokenised or segmented into sen-

tences, some other tasks require various tokens to be grouped together based upon their 

common root in the language. For example, in a search engine (Information Retrieval 

task), we want to find relevant results not only for the exact word we typed in the search 

bar, but also for the other possible forms of the words we used. If the typed word is 

“skirts”, for example, it is very likely we will want to see results containing the word 

“skirt”. Hence, grounding words into their root is an essential task. This task is usually 

referred to Lemmatisation (Chakrabarty et al., 2017; Joel et al.,  2004) or Stemming 

(Hajeer et al., 2017; Willett, 2006). Both tasks aim to reduce the inflectional forms of 

each word into a common base or root. For example, words such as, play, plays, played, 

playing all possess the same root of “play”. However, both tasks are different in the way 

they work and therefore so is the result that each of them returns. Essentially, stemming 

algorithms cut off the end or the beginning of the word based on a list of common prefixes 

and suffixes that can be found in a word. This makes such algorithms limited in some 

cases. For example, for the two words “Studies” and “Studying”, although their root form 

is “Study”, a stemming algorithm would reduce the two words, based on their suffixes, 

into “Studi” and “Study” respectively. On the other hand, lemmatisation algorithms usu-

ally use a vocabulary and morphological analysis of words to remove inflectional endings 

only and to return the base or dictionary form of a word, which is known as the lemma.  

For the previous example, a lemmatisation algorithm can use a detailed dictionary to look 

through and link the two words back to their lemma, “Study”.  

Another task that is typically used as a pre-processing task is the Part-Of-Speech (POS) 

tagging (Farrah et al., 2018; Stratos et al., 2016). POS tagging explains how a word is 

used in a sentence by labelling each token with a unique tag that indicates its syntactic 

function, such as, noun, pronoun, verb, adverb, etc. (Santos & Zadrozny 2014). In a given 

text, many words, especially common ones, can serve as multiple parts of speech. For 
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example, “Play” can be verb (I play football every week) or can be a noun (I watched the 

play and it was wonderful). Different taggers have been proposed for the English lan-

guage. (Shen et al., 2007) for example, propose a sequence classification approach for the 

English language that obtained an error rate of 2.67% on standard benchmarks. On the 

other hand, different taggers have been proposed for other languages (Habash & Rambow 

2005). (Stratos et al., 2016) proposed an unsupervised part-of-speech (POS) tagger by 

learning Hidden Markov Models (HMMs), which they call anchor HMMs, where they 

extend the non-negative matrix factorization framework proposed by (Arora et al., 2013). 

Various POS taggers have been proposed for languages other than English. (Farrah et al., 

2018), for example, proposed a rule-based hybrid tagger for Arabic language that uses an 

artificial neural network classifier to determine the appropriate tags of an Arabic text. The 

first step in their approach is to use the affixes in text to understand the nature of the word 

and its tags according to grammatical rules. The second step then is to apply a translit-

erated mechanism on text to convert it into Roman letters. This transliterated text is then 

used as an input of the classifier based on the neural networks. After that, the output of 

the two steps is used to identify the tag of each word.  

2.2.3 High-level NLP Tasks 

This category of tasks usually rely on the output from the pre-processing tasks presented 

in the previous section. One of these tasks is Information Extraction (IE) that is con-

cerned with extracting semantic information from text (Li et al., 2018; Chang et al., 2006). 

The aim of IE algorithms is to extract structured information from unstructured docu-

ments. As stated by (Cowie & Lehnert, 1996): “Information Extraction (IE) is the name 

given to any process which selectively structures and combines data which is found, ex-

plicitly stated or implied, in one or more texts. The final output of the extraction process 

varies; in every case, however, it can be transformed so as to populate some type of da-

tabase.” Hence, the field of Information Extraction essentially comprises different (sub) 

tasks, among them, which are of particular relevance for this thesis, is Named Entity 

Recognition (NER) (Gabbard et al., 2018). 

Named Entity Recognition (NER) algorithms aim to detect entities within text and assign 

a type for each found entity, such as person, location, organization, etc. NER is essential 

to recognise information units like names, including person, organization and location 

names, and numeric expressions including time, date, money and percent expressions 

(Yadav and Bethard, 2018; Nadeau and Sekine, 2007). These unites are called named 
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entities which carry key information in a sentence and serve as important targets for most 

language processing systems (Mohit, 2014). Early NER approaches relied upon 

handcrafted rule-based algorithms and lexicons (Nadeau and Sekine, 2007).  As the task 

evolved into a statistical learning problem, modern approaches have moved towards the 

use of machine learning techniques (Yadav and Bethard, 2018). (Agerri and Rigau, 2016) 

for example, proposed a multilingual NER approach (called ixa-pipe-nerc1) which learns 

supervised models via the Perceptron algorithm (Collins, 2002). (Habibi et al., 2017) 

presented a NER approach for biomedical text using long short-term memory network-

conditional random field (LSTM-CRF). Their approach combines deep learning and 

word embeddings techniques and evaluation results showed that their approach 

outperformed other NER tools that do not use deep learning or use deep learning methods  

Another high-level task in the NLP field consists of the Word Sense Disambiguation 

(WSD). WSD is the task of identifying the meaning of a term, when the term has multiple 

meanings, based upon the context of where it appears (Raganato et al., 2017; Agirre et 

al., 2014).  For example, “light” can mean “not heavy” or “illumination”, what identifies 

its meaning is the context of where “light” is used. While most of the time humans do not 

even think about the ambiguities of language, machines need to process unstructured tex-

tual content to understand it and reason about it. WSD algorithms mainly rely on external 

knowledge resources to associate the most appropriate senses with words in context 

(Agirre & Stevenson 2006). Examples of these knowledge resources are: Thesauri (Cañas 

et al., 2003), Machine Readable Dictionaries (Basile et al., 2014; Lesk, 1986) and Ontol-

ogies (Philpot et al., 2005). For example, (Banerjee & Pedersen 2002) proposed an adap-

tation of the Lesk algorithm (Lesk 1986) for word sense disambiguation. While the Lesk 

algorithm relies upon a standard dictionary in order to find overlaps between neighbour-

ing words, they extended the algorithm and used the lexical database WordNet  (Miller 

1995) as the source of glosses for their approach.  

Another NLP task is Automatic Text Summarisation. Text summarisation is the process 

of abstracting key content from information sources. The goal of automatic summarisa-

tion is to process the source text to produce a shorter version of the information contained 

in it then present this version in a way that suits the needs of a particular user or applica-

tion (Bayomi et al., 2016). Various techniques have been proposed in the literature for 

                                                 
1 https://github.com/ixa-ehu/ixa-pipe-nerc 
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the automatic summarisation of text, some of which are supervised, while others are un-

supervised. Supervised techniques involve the need for an existing dataset of example 

summaries (Cruz et al., 2006). In contrast, unsupervised techniques do not rely upon any 

external knowledge sources, models or on linguistic processing and interpretation to sum-

marise text (Mihalcea & Tarau 2004). There are two primary approaches to automatic 

summarisation. Extractive methods work by selecting a subset of existing words, phrases, 

or sentences from the original text to form the summary (Vodolazova et al., 2013). In 

contrast, Abstractive methods build an internal semantic representation and then use nat-

ural language generation techniques to create a summary that is closer to what a human 

might generate (Fiszman & Rindflesch 2003). Such a summary may contain words that 

are not included in the original text.  

2.2.4 Summary 

This section presented a general overview of NLP algorithms including the most common 

low-level and high-level tasks typically involved in this area. However, NLP field has 

many other tasks, each of these tasks represent a research field of its own and attempts to 

solve a particular problem in processing natural language. Example of other NLP tasks, 

among others, are: Machine Translation (Moussallem et al., 2018), Sentiment Analysis 

(Verma and Thakur, 2018; Medhat et al., 2014), Relationship Extraction (Zeng et al., 

2015) and Speech recognition (Zhang et al., 2017; Povey et al., 2011).  

It is worth mentioning that NLP tasks are not mutually exclusive. For example, for a 

Relationship Extraction (RE) task, an NER system should be used to extract entities for 

which the RE algorithm can identify the relationships among them (e.g. who is married 

to whom). Additionally, these tasks are very closely intertwined. 

2.3 Text Segmentation 

2.3.1 Overview 

A large proportion of digital content resources are written as text documents in the form 

of web pages, product manuals, papers, etc. The volume of this content is growing at an 

unprecedented rate, making it very difficult for users to find interesting information or 

information which helps the user complete their task (Uchyigit, 2009). Several research 

fields have emerged which focus on the challenges associated with this growing body of 

content, and the methods used to understand it, in order to find information stored in 
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unstructured text documents. One of these research fields is Text Segmentation (Pak and 

Teh, 2018; Tsunoo et al., 2017; Glavaš et al., 2016; Choi, 2000; Hearst, 1997). 

Text segmentation is the process of placing boundaries within text to create segments 

according to some task-dependent criterion. It aims to divide text into coherent segments 

which reflect the sub-topic structure of the text. Text segmentation algorithms are widely 

used as an essential step for Information Retrieval (Prince and Labadié, 2007; Llopis et 

al., 2002) and several NLP tasks such as text summarisation (Bokaei et al., 2016; 

Boguraev and Neff, 2000), Question Answering (Riahi et al., 2012) and automatic gen-

eration of eLearning Courses (Beck et al., 2014). In Information Retrieval, a document is 

segmented into distinct topics and only the topical segments relevant to the user’s needs 

are retrieved. Segmentation not only provides more accurate information to the user, but 

also reduces the burden on the user of having to read the whole document. In document 

summarisation, a document is segmented into topics and then each topic is summarized 

independently. This process guarantees that the final summary covers all the key topics 

in the document. 

Various synonyms in the literature are used to refer to text segmentation such as: Linear 

Text Segmentation (Badjatiya et al., 2018), Hierarchical Text Segmentation (Tsunoo et 

al., 2017), Topic Segmentation (Wang et al., 2017), Text Boundaries or Boundary Deter-

mination (Jamil et al., 2015; Labadié and Prince, 2008), and Topic Boundaries (Kim and 

Cho, 2014). Furthermore, text segmentation has been categorised from a number of dif-

ferent points of view. The following subsections present a number of these categorisations. 

2.3.2 Content-based and Discourse-based 

Content-based approaches focus on the story content and resolve the segmentation prob-

lem by relying on some measure of the difference in word usage on the two sides of a 

potential boundary: the larger the difference, the more indicative of a boundary. A well-

known content-based approach is TextTiling, proposed by Hearst (Hearst, 1994). Text-

Tiling is a content-based text segmentation algorithm that uses a sliding window approach 

to segment a text. The calculation is accomplished by two vectors containing the number 

of occurring terms of each block. The similarities between adjacent blocks within the text 

are computed to detect topic changes. The computed similarities are smoothed and used 

to identify topic boundaries by a cut-off function. 



 

 

20 

On the other hand, discourse-based techniques focus on story structure or discourse. 

These approaches make use of lexical features such as the presence of certain cue phrases 

that tend to appear near the segment boundaries. An example of discourse-based ap-

proaches is the Hidden Markov Model (HMM) segmentation method (Allan et al., 1998) 

that models “marker words”, or words which predict a topic change.  

2.3.3 Supervised and Unsupervised 

A supervised text segmentation approach called divSeg was introduced by (Song et al., 

2011), where they apply an iterative approach that splits text at its weakest point in terms 

of the lexical connectivity strength between two adjacent parts. After they found the weak-

est point in the text, their approach produces a deep and narrow binary tree. The tree is 

then flattened into a broad and shallow hierarchy through supervised learning of a docu-

ment set or explicit input of how a text should be segmented. (Hsueh et al., 2006) described 

a supervised hierarchical topic segmentation approach that trains separate classifiers for 

topic and sub-topic segmentation.  

On the other hand, (Eisenstein and Barzilay, 2008) proposed a Bayesian approach to un-

supervised topic segmentation. They showed that lexical cohesion between text segments 

can be placed in a Bayesian context by modelling the words in each topic segment. 

(Malmasi et al., 2017) extended this model and segmented text based on the stylistically 

expressed characteristics of text such as change of authorship or native language. Text-

Tiling (Hearst, 1994) and C99 (Choi, 2000) are also considered unsupervised linear topic 

segmentation algorithms. 

2.3.4 Borderline sentences detection methods 

There are three main approaches to detect borderline sentences within text (i.e. sentences 

that identify the end or the beginning of a segment) (Labadié and Prince, 2008): 

1- Similarity based methods: Represent text blocks as vectors and then measure the prox-

imity by using (typically) the cosine of the angle between these vectors. The C99 algo-

rithm (Choi, 2000) for example uses a similarity matrix to generate a local classification 

of sentences and isolate topical segments. 

2-  Graphical methods: Represent terms frequencies and use these representations to iden-

tify topical segments (which are dense dot clouds on the graphic). (Reynar, 1994) pro-

posed a segmentation approach for locating text boundaries based on lexical cohesion 
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and a graphical technique called DotPlotting (Church, 1993). The approach is based on 

enumerating the lexical items in text and plotting points which correspond to word rep-

etitions. Figure 2.1 depicts a sample dotplot of four articles. Since the repetition of lex-

ical items occurs more frequently within regions of a text which are about the same 

topic or group of topics, the visually apparent squares along the main diagonal of the 

plot correspond to regions of the text. 

 

Figure 2.1  A dotplot of four concatenated Wall Street Journal (Reynar, 1994) 

3- Lexical chains based methods: The central idea of approaches based on lexical chains  

is that if the text continues to use similar words, then it is probably still talking about 

the same topic (Manning, 1998). The notion of lexical chains was first proposed by 

(Morris & Hirst, 1991) to chain semantically related words together via a thesaurus. A 

chain links multiple occurrences of a term in the document and is considered broken 

when there are too many sentences between two occurrences of a term. (Wang et al., 

2017) proposed a multi-granularity hierarchical topic-based segmentation system 

(MHTSS) that divides a digital library document into a document segmentation tree 

based on the structure of the document (built by its author) and the lexical cohesion 

between its paragraphs.  

2.3.5 Linear and Hierarchical 

If we look at the text segmentation from a text representation perspective, we can divide 

it into linear and hierarchical approaches. Linear text segmentation deals with the sequen-

tial analysis of topical changes where segments are non-overlapping and sequential. Linear 

text segmentation approaches focus on segmenting text into coherent segments where each 



 

 

22 

segment represents a specific topic (Badjatiya et al., 2018; Sakahara et al., 2014; Choi, 

2000). It has been argued that this sequence model is sufficient for many purposes (Hearst 

1994). An early linear text segmentation algorithm was the TextTiling approach intro-

duced by Hearst (Hearst, 1994; Hearst, 1997). TextTiling applies linear text segmentation 

by measuring the lexical similarity between text blocks. Text blocks are the smallest units 

that constitute the text. They range from one sentence (Ye et al., 2008) to multiple sen-

tences (paragraphs) (Kazantseva & Szpakowicz, 2014). TextTiling uses a sliding window 

to segment text. The calculation is accomplished using two vectors containing terms oc-

curring in each block. The similarity between blocks is calculated by a cosine measure: 

given two text blocks b1 and b2, each with k token-sequences, 

𝑠𝑖𝑚(𝑏1, 𝑏2) =  
∑ 𝑤𝑡,𝑏1 

𝑤𝑡,𝑏2 𝑡

√∑ 𝑤𝑡,𝑏1

2
𝑡 ∑ 𝑤𝑡,𝑏2

2𝑛
𝑡=1

 

where 𝑡 ranges over all the terms in the block, and 𝑤𝑡,𝑏1 
is the weight assigned to term  𝑡 

in block 𝑏1. 

(Galley et al., 2003) proposed LcSeg, a TextTiling-based algorithm that uses tf-idf term 

weights, which improved the text segmentation results. Another well-known linear text 

segmentation algorithm is C99 introduced by (Choi, 2000). C99 segments a text by com-

bining a rank matrix, transformed from the sentence-similarity matrix, and divisive clus-

tering. (Utiyama and Isahara, 2001) introduced a linear approach, U00 that is based on 

language models, where they use Dynamic Programming (DP) and the probability distri-

bution of words to rank and select the best segments. DP can be used to efficiently find 

paths of minimum cost in a graph. DP is used in text segmentation to represent each 

possible segment (e.g. every sentence boundary) as an edge providing a cost function that 

penalises common vocabulary across segment boundaries. (Misra et al., 2009) used La-

tent Dirichlet Allocation (LDA) topic model (Blei et al., 2003) to linearly segment a text 

into semantically coherent segments. Another approach that relies on LDA called Top-

icTiling was proposed by (Riedl and Biemann, 2012b). TopicTiling is based on the Text-

Tiling algorithm, and segments documents using the LDA topic model. The algorithm 

represents segments as dense vectors of dominant topics based on terms they contain. 

(Eisenstein and Barzilay, 2008) proposed a Bayesian approach to unsupervised topic seg-

mentation. They showed that lexical cohesion between text segments can be placed in a 

Bayesian context by modelling the words in each topic segment. (Naili et al., 2016) inte-

grated a domain ontology in the topic segmentation in order to add external semantic 
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knowledge to the segmentation process. They proposed two topic segmenters called TSS-

Ont and TSB-Ont based on C99 and TextTiling respectively. They used the same tech-

niques as C99 and TextTiling but replaced lexical similarity with concept similarity. 

(Badjatiya et al., 2018) proposed a supervised neural network approach for text segmen-

tation where they model the text segmentation problem as a binary classification problem. 

Given a document, they use the context of each sentence (i.e. sentences before and after 

it) for learning distinctive features for sentences that mark the beginning of the segment. 

Most linear segmentation approaches can only produce single-level segmentation of a 

document. However, considering the structure of a document as a sequence of segments 

is in certain discord with most theories of textual content structure, where it is more usual 

to consider documents as trees (Grosz and Sidner, 1986; Mann and Thompson, 1988; 

Feng and Hirst, 2012; Kazantseva and Szpakowicz, 2014; Wang et al., 2017). Hence, 

hierarchical text segmentation is seen as a method that can represent a document as a tree-

like hierarchy structure (Wang et al., 2017; Kazantseva and Szpakowicz, 2014; 

Eisenstein, 2009; Yaari, 1997).  

Since one of the objectives of the research in this thesis is to understand unstructured text 

and build a representative structure out of it (RO 2), the research in this thesis focuses on 

the use of hierarchical text segmentation to perform this task. The following section re-

views state of the art approaches for hierarchical text segmentation.  

2.3.6 Hierarchical Text Segmentation Techniques 

While linear text segmentation methods are concerned with splitting text into chunks of 

consecutive text fragments, hierarchical text segmentation methods attempt to iteratively 

split text into finer grained topic segments. Although it is widely believed that most doc-

uments display a hierarchical structure (Grosz and Sidner, 1986), work on hierarchical 

text segmentation is relatively sparse (Wang et al., 2017).  

An early hierarchical text segmentation approach was proposed by (Yaari, 1997). Yaari 

used paragraphs as the elementary units for his algorithm and measured the cohesion 

between paragraphs using lexical similarity between them as the proximity test. An ag-

glomerative clustering approach is then applied to induce a dendrogram tree over para-

graphs where a segment corresponds to a subtree in the resulting dendrogram tree. The 

dendrogram is subsequently transformed into a hierarchical segmentation. Figure 2.2 
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shows a dendrogram of the Stargazers article that Yaari used as the test bench for evalu-

ation.  

 

Figure 2.2 Paragraph dendrogram of the Stargazers article (Yaari, 1997) 

The approach proposed by Yaari had been shown to be brittle as it requires a number of 

parameters that must be hand-tuned (Eisenstein, 2009). To overcome such limitation, 

(Eisenstein, 2009) proposed a novel unsupervised hierarchical text segmentation ap-

proach in which a Bayesian probabilistic framework that is based on LDA (Blei et al., 

2003) was integrated. Eisenstein modelled each word token as a draw from a pyramid of 

latent topic models to create topical trees. The result of such work yielded an accurate 

and fast segmentation algorithm with a minimal set of tuneable parameters.  

(Du et al., 2013) proposed an extension of the hierarchical Bayesian segmentation ap-

proach proposed by (Eisenstein, 2009) by considering more advanced topic models that 

model dependencies between (sub-) sections in a document. Although they utilised a hi-

erarchical segmentation approach, they just used it to hierarchically model topics within 

document to improve the performance of linear segmentation, rather than develop hier-

archical segmentation. (Slaney and Ponceleon, 2001) used an image segmentation algo-

rithm (Leung et al., 2000) for hierarchical text segmentation. They extended the image 

segmentation approach by using Latent Semantic Indexing (LSI) (Landauer et al., 1998) 

to describe the position of a portion of the document in a multi-dimensional semantic 

space. (Angheluta et al., 2002) proposed a hierarchical text segmentation approach that 

applies a linear segmentation algorithm recursively to partition each major segment into 

a sequence of sub segments. However, they used the resulting segmentation in a summa-

risation system, and they evaluated the summarisation system but not the segmentation 

itself.  
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(Chien and Chueh, 2012) measured the topic similarity between sentences to form a beta 

distribution reflecting the prior knowledge of document boundaries in a text stream. The 

distribution of segmentation variables is adaptively updated to achieve flexible segmen-

tation and is used to group coherent sentences into a topic-specific document. 

(Kazantseva and Szpakowicz, 2014) proposed HAPS, a hierarchical text segmentation 

approach that is based on a graphical model for hierarchical clustering called Hierarchical 

Affinity Propagation (Givoni et al., 2011). The input for HAPS is a matrix of similarity 

between text blocks (paragraphs in HAPS). HAPS requires the desired number of levels 

to be in the produced topical tree and a preference value for each data point and each 

level. HAPS also finds a centre for each segment at every level of the produced topical 

tree, a data point which best describes the segment. Recently, (Wang et al., 2017) pro-

posed MHTSS, a multi-granularity hierarchical topic-based segmentation system which 

integrates features from lexical cohesion with document access structures (i.e. structure 

built by author) to build a composite framework. The system relies on the original struc-

ture of digital library resources (e.g. headings and subheadings) as the elementary units. 

Paragraphs within these sections are further segmented into subtopic segmentations based 

on lexical cohesion.   

(Tsunoo et al., 2017) proposed a hierarchical text segmentation approach that captures 

the story structure of a broadcast news stream. The approach is a hierarchical model based 

on a word-level Recurrent Neural Network (RNN) sentence modelling layer and a sen-

tence-level bidirectional Long Short-Term Memory (LSTM) topic modelling layer. Using 

the lexical tokens of each sentence, the approach starts to extract a vector embedding the 

sentence information in the word-level RNN layer. The output of this step is then used as 

the input for the bidirectional LSTM to model the sentence and topic transitions. After 

that, for each sentence, a topic posterior is estimated and a HMM follows to decode the 

story sequence and identify story boundaries. 

2.3.7 Summary 

This section reviewed a variety of approaches to text segmentation and highlighted the 

different categorisation criteria of this task. The section also reviewed the linear and hier-

archical approaches to text segmentation.  

However, regardless of the segmentation approach (linear or hierarchical), all the afore-

mentioned approaches are limited by the fact that they can process only the information 

that they can ‘see’ (Cambria and White, 2014). In other words, they are based on the 
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lexical and/or syntactic representation of text, a method that relies mainly upon the tradi-

tional bag-of-words representation of text to measure similarity (or dissimilarity) between 

text blocks. However, a representation based solely on the endogenous knowledge in the 

documents themselves does not reveal much about the meaning of the text. Hence, the 

research in this thesis investigates the utilisation of external knowledge resources in order 

to enrich text and infer more information about text constituents.  

2.4 Adaptive Systems  

The previous sections reviewed a number of different NLP techniques, and focused on 

text segmentation as a technique for structuring text documents. NLP research has mainly 

focused on techniques that can be used to process text documents, but not, however, on 

how these techniques can be utilised to produce tailored content, adapted to the needs of 

individual users. Conversely, the field of content adaptation has primarily focused on 

methods and techniques of delivering adaptive content to individual users (Bunt et al., 

2007). One area of content adaptation is Adaptive Systems. The aim of this section is to 

review adaptive systems, as content adaptation applications, to investigate how they pro-

cess content to facilitate its discoverability and reusability. 

2.4.1 Overview 

There is an enormous increase in the amount of content available on the World Wide 

Web2. The architecture of the WWW has enabled the ease of content publication by mil-

lions of authors. However, the drawback to this ease of publication is that there is no 

organised method to catalogue or list the content contained in a collection of information 

nodes. Furthermore, the one-size-fits-all nature of web content makes it “same content 

for all people”. With this static nature of content, users of an online news service, for 

instance, are provided with the same news regardless of their backgrounds or interests. 

As the number of users grows3, their content needs become more diverse. This nature of 

content, and the increasing number of users, raised the need to change the way content is 

presented and delivered to individual users. Several research fields have emerged which 

focus on the challenges associated with the growing body of global content and the meth-

ods of delivering it to individual users. These challenges include: how to identify and 

                                                 
2 There are over 51 billion web pages indexed by Google. Source: http://www.worldwidewebsize.com/ [Accessed 

October 2017]. 
3 There are over 4 billion users on the internet. Source: http://www.internetlivestats.com/internet-users/ [Accessed 

September 2018] 
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retrieve content from different sources (Lawless, 2009); how to search for information in 

multiple languages (Ghorab, 2014); and how to deliver this content in a form that is most 

suitable for a specific user’s or application’s needs (Levacher et al., 2014). 

As a result, the notion of Adaptive Hypermedia Systems (AHSs) emerged. In 1996, 

Brusilovsky introduced the first classification of Adaptive Hypermedia Systems 

(Brusilovsky, 1996). Since then, the field of adaptive hypermedia research has grown 

rapidly and many approaches and systems have been proposed (Brusilovsky and Pesin, 

1998; Henze and Nejdl, 2001; Conlan and Wade, 2004; Brusilovsky and Henze, 2007; 

Staikopoulos et al., 2012; Aghoutane et al., 2017). These systems have tried to address 

the challenge of producing adaptive compositions from different information sources in 

order to deliver content in a form that is most suitable to an individual user. They have 

focused on providing such compositions based on a variety of user dimensions, such as 

user interests, prior knowledge, preferences or context. AHSs have successfully been 

used in a range of application areas from eLearning (Najar et al., 2016) to government 

portals (Penadés et al., 2014). The evaluations of AHSs have demonstrated their ability 

to allow users to achieve their goals faster (Steichen et al., 2011; Staikopoulos et al., 2012; 

Levacher et al., 2012c). This section therefore does not intend to provide an exhaustive 

list of adaptive systems or adaptation approaches, but instead to present the underlying 

structure of these systems and examine how they process content in order to tailor it ac-

cording to the needs of individual users. A more detailed description of these systems, 

can be found in reviews carried out by (Brusilovsky, 1998) and (Knutov et al., 2009). 

2.4.2 Anatomy of Adaptive Systems 

Adaptive Systems have traditionally attempted to deliver dynamically adapted content to 

users through the sequencing of reconfigurable pieces of information. Many adaptive sys-

tems have been developed over the past 20 years. Since they were developed for different 

application areas (Brusilovsky, 1998), their architectural designs have diverged and 

hence, there is no consensus as to what the ideal architecture of such systems is (Knutov 

et al., 2009).  

An attempt by Halasz and Schwartz has been carried out to capture the important abstrac-

tions found in a wide range of hypertext4 systems (Halasz & Schwartz, 1990; Halasz & 

                                                 
4 Although hypertext and hypermedia are often differentiated, this distinction is not made in their paper. They used 

the term hypertext generically to refer to both text-only and multimedia systems. 
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Schwartz, 1994). They proposed the Dexter model that provides a standard hypertext ter-

minology coupled with a formal model of the important abstractions commonly found in 

a wide range of hypertext systems.  Figure 2.3 shows the three layers and the two inter-

faces that the Dexter model consists of. The within component layer is concerned with 

the contents and structure within the “components”, i.e. the links between content nodes 

in a single component. Components in the Dexter model correspond to one or more piece 

of content that can be in any form and from any source. A component could contain doc-

uments, chunks of text, graphics, images, animations, etc. The within component layer 

builds the components from the content source (hypermedia network for example) and 

builds the links between the contents within a single component. The interface that is 

responsible for addressing (referring to) locations or items within the content of an indi-

vidual component is called the anchor interface.  

 

             Figure 2.3 Layers of the Dexter model (Halasz & Schwartz 1990) 

The produced components, from the within components layer, are then saved (indexed) 

in the storage layer. This layer describes a ‘database’ that is composed of a hierarchy of 

data containing components which are interconnected by relational links. The compo-

nents are treated in the storage layer as generic containers of content.  

After the content components have been built and indexed, the adaptive systems are then 

required to provide tools for the user to access, view, and manipulate the network struc-

ture. This functionality is captured by the runtime layer of the model. This layer is con-

cerned with how the content would be presented to the user of the adaptive system. The 

presentation specifications interface is the mechanism that connects the storage layer with 

the runtime layer. This interface contains the information about how a component is to 
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be presented to the end user. Figure 2.4 depicts the three layers of the Dexter model as 

embedded in an actual adaptive system.  

Although the Dexter model provides only a bare-bones model of the mechanism for pre-

senting content to the user for viewing and editing, it represents a good reference for the 

most AHSs which came after it because it encompasses most of the components currently 

encountered in modern AHSs.  

 

Figure 2.4 A depiction of the three layers of the Dexter model as embedded in an actual adaptive system. 

Another generic architecture for AHS called the AHAM model was proposed by De Bra 

in 1999 (De Bra et al., 1999). AHAM (Adaptive Hypermedia Application Model) is based 

on the Dexter model. As depicted in Figure 2.5, AHAM augments the storage layer in 

Dexter by adding three (sub) models: user model, domain model and teaching model. 

Each of these models contributes to the content adaption process. The user model keeps 

track of evolving aspects of the user, such as preferences and domain knowledge. 

Knowledge within a user model usually refers to concepts provided by the domain model 

and can be updated by rules specified within the adaptive engine (Dimitrova, 2003). The 

domain model describes how the content is structured and linked together while the teach-

ing model consists of pedagogical rules. These rules define how the other two models are 

combined to provide ways to perform the actual adaptation.  

Some approaches have tried to extend the AHAM model or provide a new one.  For in-

stance, the Munich model (Koch and Wirsing, 2002) used the Unified Modelling Lan-

guage (UML) to capture all major parts of the adaptive system architecture. 
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Figure 2.5 AHAM model (De Bra et al., 1999) 

Over time, the structure of AHSs has evolved and the main focus of AHSs was on how 

to apply and improve separation of concerns between preeminent components of this 

structure (Brusilovsky, 2001). APeLS (Adaptive Personalized eLearning Service) 

(Conlan et al., 2002) for example, was developed as a service to deliver personalised 

educational courses based on a multi-model, metadata driven approach. It proposed an 

additional separation of concern regarding the pedagogical aspects of AHSs encapsulated 

within a narrative model. A core module in APeLS is the adaptive engine that consoli-

dates selected narratives and content to facilitate the reuse of learning resources across 

different pedagogical models.  

As it can be seen, with the evolution of the AHSs and their models, separation of concerns 

between preeminent components of adaptive systems has also evolved. More recent ap-

proaches has brought this separation of concern yet a step further (Steichen et al., 2011; 

Keeffe et al., 2012; Staikopoulos et al., 2012; Bayomi, 2015). (Levacher et al., 2012b) for 

instance, shows how even concerns related to content models can be delegated to an ex-

ternal web service.       

2.4.3 Models of Adaptive Systems  

As the second research question posed in this thesis focuses on the discoverability and 

reusability of content for adaptive systems (section 1.2), it is important to understand how 

content is handled by adaptive systems. Therefore, this section briefly reviews different 

models that adaptive systems contain and focuses on the content model which describes 

how content is organised within adaptive systems.  
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With their evolution over time, adaptive systems have incorporated and modified differ-

ent (sub) models in order to provide customised content that is tailored to their users’ 

interests, knowledge and goals (Kardan et al., 2015). As illustrated in the previous sec-

tion, different reference models have been proposed to provide a generic architecture for 

adaptive systems. Although there is variation between models, there is a set of sub-mod-

els that they all have in common and are essential for any adaptive system (Knutov et al., 

2009; Wilson and Scott, 2017). These sub-models can be classified, based upon what they 

are concerned with, into:  

Domain Model: describes how domain knowledge is organised within an adaptive sys-

tem by defining all concepts relevant to the domain, as well as the relationships between 

these concepts. It is a description of the application which contains facts about the do-

main, i.e. the objects, their attributes and the relationships between objects (Benyon & 

Murray, 1993). Domain models usually represent knowledge in the form of a structured 

or hierarchical set of topics (Fiqri & Nurjanah, 2017), in the form of a network or a graph, 

that comprehensively organises concepts and all the relationships between them 

(Sosnovsky and Brusilovsky, 2005; Gandara et al., 2014).  

User Model: is an explicitly represented collection of data about the user which allows 

the system to tailor its content to the user’s needs (Thaker et al., 2018; Vassileva, 1996). 

It is used to represent information about, and the characteristics of, the user. These char-

acteristics are updated through the interaction of the user with the system (Brusilovsky 

1998). Its main role is to keep track of evolving aspects of the user, such as preferences, 

goals, knowledge, learning style and other relevant aspects (Brusilovsky and Millán, 

2007). (Finin, 1989) stated that a user model is 'knowledge about the user, either explicitly 

or implicitly encoded, which is used by the system to improve the interaction.' Knowledge 

within a user model usually refers to keywords (Ahn et al., 2007) or concepts (Dimitrova, 

2003; Dimitrova & Brna, 2016) defined by the domain model and can be updated by rules 

specified within the adaptive engine. These rules guide the user towards interesting new 

information and keep the user away from information that is considered not to be appro-

priate or relevant.  

Adaptation Model: Content adaptation is the main task of any adaptive system. At the 

heart of the adaptive system is the adaptive engine that is responsible for performing the 

content adaptation according to the adaptation rules specified in the adaptation model 

(Wu et al., 2000). These rules specify how the user’s knowledge (from the user model) 
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influences the content presentation from the domain model. (Wu et al., 2000) divided the 

adaptation process in adaptive systems into two levels: 1) author level where an author (a 

domain expert) writes the adaptation rules and 2) system level where the system designers 

build an adaptation engine to apply these rules.  

Content Model: describes how content is organised in the adaptive system. It represents 

what resources are available to the system and how they are connected to each other. 

Resource descriptions within this model enables the delivery of content based upon its 

match with various combinations of requirements, provided by the adaptive system. A 

content repository is used as a basis for the content model where content resources are 

indexed to be addressed, later, through metadata annotations that describe the type and 

properties of resources available within this content repository (Maycock and Keating, 

2017).  

This section highlighted the four models that are considered the main skeleton of any 

adaptive system. However, other external models that exist can be integrated in the adap-

tive system to perform a specific task. Examples of such models are: knowledge models, 

pedagogical models, usage models, etc. (Brusilovsky & Henze, 2007). 

2.4.4 Content Models  

As mentioned above, the content model describes how content is organised in order to 

enable the delivery of resources which match various combinations of content require-

ments provided by an adaptive system (Levacher, 2014). These content requirements re-

sult from the personalisation experience intended to be produced for a given individual 

user.  

In order to supply a set of content resources in a form which is deliverable to an adaptive 

system, this content is required to be available within a given content model. The role of 

this model is to enable the delivery of content resources (available within a content re-

pository) which match the content requirements of an adaptive system. Furthermore, con-

tent resources within the content repository should be augmented with additional infor-

mation to support its discoverability. This additional information is referred to by 

(Brusilovsky & Henze, 2007) as adaptation-specific information and is classified into 

four subcategories:  
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1- Attribute information: consists of metadata that describes the type and properties of a 

content resource. Such metadata information is used to identify and retrieve the con-

tent resources available within the content repository that are matching as close as 

possible the content requirements requested by the adaptive system. (Henze & Nejdl, 

2001) added a metadata layer to describe content in KBS-Hyperbook. The content in 

KBS-Hyperbook is marked as "introductory", "quiz", "example", etc. The ARCHING 

system (Adaptive Retrieval and Composition of Heterogenous INformation sources 

for personalised hypertext Generation) (Steichen et al., 2011) also describes resources 

based upon properties such as "language", "size" etc. (Maycock and Keating, 2017) 

used a Content Analyser module in their adaptive system to automatically generate 

metadata for content resources to describe the cognitive impact that the resource 

would have on a learner. 

2- Inter-document information: This type of information assigns relationships between 

content resources in order to construct a hyperspace network of these resources. This 

type of information is used in order to facilitate user navigation between the different 

content resources available within the content repository (Steichen & Wade, 2010).   

3- External model connection: Different external models can be added in order to aug-

ment the knowledge about the content in the content hyperspace. Examples of these 

external models are conceptual, pedagogical or goal models (Brusilovsky & Henze, 

2007). Connection to these external models supports different content presentation 

techniques such as concept-based sequencing techniques (Staikopoulos et al., 2014). 

Content resources in the InterBook adaptive system (Brusilovsky et al., 1998), for 

example, are connected to a domain model with links that identify whether the domain 

concepts assigned to them are outcomes or prerequisites to this resource. 

4- Intra-document information: This provides information about the internal character-

istics of a content resource such as a topic that is covered by a content resource (a 

document or a fragment). Such information allows the adaptive system to select a 

content resource that is most relevant to the user’s goal, knowledge or preferences 

(Weal et al., 2007). This technique helps individual users focus their attention upon 

the most relevant information presented to them. 

Content models can be classified based on the type of content they provide. Generally, 

they can be classified into two main types: Closed corpus and Open corpus content mod-

els (Levacher, 2014).  
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2.4.4.1 Closed Corpus Content Models 

The main objective of the early generation of adaptive systems is to overcome the prob-

lems associated with the inflexible and static nature of content, and to find techniques 

that could be used to tailor this content according to users’ preferences (Chesnais et al., 

1995; Brusilovsky et al., 1996; De Bra & Calvi, 1998; da Silva et al., 1998). This objec-

tive meant that these systems primarily focused on content tailoring techniques, rather 

than the production of the content itself. As a result, the content models of these systems 

were based on content resources that were manually handcrafted in order to support the 

adaptation techniques in each individual adaptive system (De Bra and Calvi, 1997; 

Maycock and Keating, 2017). Such content models are referred to (in this thesis) as closed 

corpus content models.  

In a closed corpus content model, resources, their attributes and relations to other re-

sources are known at the design time of the adaptive system5 (Brusilovsky & Henze, 

2007). Resources within this model are predictable and static in the sense that resources 

and relationships between them possess pre-determined content as well as a common 

structure, known at design time by systems consuming these resources. Figure 2.6 shows 

the architecture of an adaptive system that operates on a closed corpus content model 

where the content is available within the system (Aroyo et al., 2004). The Content model 

(content layer) captures the content as it is stored in the content repository along with its 

description then makes it available to the Application layer that provides the adaptive 

content to the system’s users. 

Systems that operate on a closed corpus of resources are only able to work within a lim-

ited set of documents that have been manually structured and indexed (Dieberger & 

Guzdial, 2003; De Bra et al., 2003). Although closed corpus content models are limited 

in the amount of resources they can provide, the content they do have is well formed and 

curated. This is because the content resources within these models are usually collected 

and curated manually by domain experts. This in turn enables the adaptive system to be 

supplied with the ideal resources that are needed to deliver adaptive content.  

                                                 
5 Content resources are not necessary to be known at the design time of the adaptive system, it can be known at the 

design time of a course or experience that the adaptive system can run. 
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Figure 2.6 An Adaptive System with a closed corpus content model (Aroyo et al., 2004) 

However, although the benefits of closed corpus models have been demonstrated within 

different adaptive systems  (De Bra & Calvi, 1997; Dieberger & Guzdial, 2003; De Bra 

et al., 2003), they have failed to overcome the problems associated with extending and 

updating the content resources (Levacher et al., 2011). This is because the inherent nature 

of content resources in these models are built manually. As a result, they do not scale and 

are impractical for most real-world applications. Extending the resources in such models 

is a labour-intensive task that needs much time and effort from a domain expert. Addi-

tionally, whenever a change in the structure or presentation of content resources needs to 

be made, adaptation techniques and algorithms developed within the adaptive system 

must be altered accordingly or replaced altogether, which can be quite labour intensive. 

Such high time, effort and cost requirements associated with closed corpus models result 

in a limited volume and diversity of resources, available for delivery to adaptive system 

(Conlan et al., 2002). 

Another limitation of closed corpus content models is that as they are mainly developed 

for a specific system, according to its needs, their closed nature prevents their content 

from being reused within different adaptive systems. A content resource that is created 

and indexed in a content repository for a specific adaptive system is only applicable for 

use within that system. It is indexed based on the characteristics, requirements and adap-

tation techniques developed for that system. Hence, reusing such a resource within an-

other system requires an inherent modification to that resource which is considered a 

time-consuming and effort-intensive task.  
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Over time, and with adaptive systems serving a wider range of users with more personal 

needs, the goals and preferences of the system’s users change. As a result, the content 

resources supplied to the adaptive system need to be continuously maintained in order to 

cope with these new information needs. Since closed content models are only able to 

function over sets of content resources processed and prepared at design time, maintain-

ing such resources is a labour intensive task (Brusilovsky & Henze, 2007). Furthermore, 

this creation of content resources a-priori of system deployment entails the need to pre-

dict the type and quantity of resources, which will be needed by the adaptive system 

(Steichen et al., 2011). 

2.4.4.2 Open Corpus Content Models 

Various adaptive systems have tried to overcome the limitations encountered with the use 

of closed corpus content models (Zhou et al., 2007; Henze & Nejdl, 2001; Conlan et al., 

2013). These systems utilise content models that can easily incorporate content from dif-

ferent sources in order to allow the adaptive system to serve a wider range of content to 

different users. Such content models are referred to (within this thesis) as open corpus 

content models.  

In open corpus content models, resources, their attributes and relations to other resources 

are unknown at the design time of the adaptive system and, moreover, can constantly 

change and expand (Lawless, 2009; Steichen, 2012; Staikopoulos et al., 2014). As a 

wealth of diverse information has now become accessible on the WWW, it becomes the 

largest repository for open corpus content (Weal et al., 2007). The inherent nature of the 

Web expanded the range of content adaptivity offered by adaptive systems as this content 

comes in different languages, covers an unrestricted set of domains and is available in 

different formats (Levacher et al., 2009). Furthermore, by exploiting the abundant content 

resources available on the web, the content provided by the adaptive system can always 

be kept up-to-date. 

Recently, adaptive systems have moved towards exploiting content available on the Web 

(Steichen et al., 2009; Steichen & Wade, 2010; Levacher et al., 2012c; Levacher et al., 

2014). These systems exploit Web technologies to retrieve content from the sources 

reachable through the Web and deliver it to their users. This increased the volume of 

content available to such systems and hence allowed them to serve a wider range of users. 

This also significantly reduced the amount of manual labour involved in developing con-

tent. 



 

 

37 

The process of developing content within the closed corpus content supply models (sec-

tion 2.4.4.1) involves the addition of adaptation-specific information to content resources, 

e.g. KBS-Hyperbook (Henze & Nejdl, 2001) and the adaptive system proposed by 

(Maycock and Keating, 2017). However, open corpus content resources do not provide 

any adaptation-specific information since they are harvested on-the-fly and are unknown 

at design time (Steichen et al., 2011). Hence, adding such information can only be per-

formed at run-time (Knutov et al., 2009).  

As a result, early research on harvesting open corpus content has focused on the tech-

niques and methods which support the addition of adaptation information to content re-

sources after the adaptive system have been deployed. This task is very challenging as 

adding such information would require the system designer to anticipate all the potential 

requests that would be submitted by the adaptive system. Such requests would be influ-

enced by the status of users who use the adaptive system. These influences, on a request, 

are derived from the changes and the fluctuations in the users’ preferences and goals over 

time.  

Since the early research has primarily focused upon the elaboration of techniques which 

support the addition of such information to content resources, techniques that have been 

developed have tended to use content resources in the form they were created in. Such 

techniques can be divided into three main categories: 

1- User-Supported Incorporation Techniques: In these techniques, adding new content 

resources from the open corpus can be achieved directly by individual system users 

(Carmona et al., 2002; Henze & Nejdl, 2001). Adaptive systems that use these tech-

niques rely on a pre-existing set (a closed corpus) of content resources. These re-

sources are then augmented by providing the individual users of the system with the 

tools needed to annotate and link external resources from the web (Smits & De Bra, 

2011). Examples of such systems are: KBS Hyperbook (Fröhlich et al., 1998; Henze 

& Nejdl, 2001), SIGUE (Carmona et al., 2002) and Knowledge Sea II (Brusilovsky et 

al., 2004). 

2- Keyword Incorporation Techniques: Since user-supported techniques are limited in 

that they require a large amount of manual effort, some adaptive systems started to 

incorporate different techniques that can automatically incorporate content resources 

from the Web (Ahn et al., 2007; Zhou et al., 2007; Zhou et al., 2008). These systems 

exploit the capabilities of classical Information Retrieval (IR) approaches in order to 
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find appropriate content resources available on the Web. Such systems rely on key-

word similarity algorithms to create links between content resources (Zhou et al., 

2008). An example of such systems is the  ML-Tutor system (Smith & Blandford 

2003). 

3- Semantic Metadata Incorporation Techniques: These approaches relied upon extract-

ing metadata from open corpus content resources (such as difficulty, narrative cohe-

sion, interactivity type or interactivity level) in order to assign such metadata to each 

resource incorporated within the adaptive system (Şah & Wade, 2010; Hargood et al., 

2011; Şah & Wade, 2012). In this approach, the metadata representation of a document 

is a set of concepts (in contrast to keywords) that are part of a domain ontology 

(Millard et al., 2003). These concepts represent the topics covered in each individual 

document. This semantic representation of content means that this approach provides 

improved structuring of the resulting hyperspace, when compared to keyword-based 

techniques (Brusilovsky & Henze, 2007). This semantic representation of content re-

sources has also extended to the content indexing process (Brusilovsky et al., 1998; 

Sosnovsky et al., 2012). This in turn enabled open corpus documents to be organised 

into hierarchies, which further improves the concept-based sequencing navigation 

along the structure of these ontologies. (Ye et al., 2010) presented an approach that 

incorporates open corpus resources from the CiteSeerX6 website where they classify 

each resource based on a predefined ontology. 

2.4.5 Summary  

This section presented an overview of adaptive systems, as an application for content 

adaptation, and reviewed their anatomy, their models and in particular their content 

model. Closed and open corpus content models were reviewed in order to better illustrate 

how adaptive systems process the different types of content.  

The third objective of this theses (RO 3) is to build a content-supply service to enhance 

content discoverability and reusability for adaptive systems. In order for this service to 

overcome the limitations of the state of the art content-supply approaches, there is a need 

to understand how these approaches employ different techniques to discover and reuse 

content. The following two sections therefore focus on reviewing content discoverability 

and content reusability techniques. 

                                                 
6 http://citeseerx.ist.psu.edu 
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2.5 Content Discoverability Techniques 

One of the main services that adaptive systems offer to their users is the provision of 

content that is tailored to individual user’s needs. In order to provide this service, adaptive 

systems utilise different techniques to incorporate content that meets the requirements of 

their users (section 2.4.3). This requires these adaptive systems to have the ability to eas-

ily discover content that matches the goals and requirements of their users.  

Section 2.4.2 of this chapter demonstrated how the anatomy of adaptive systems has 

evolved over time.  Through this evolution, different models were added to enhance the 

content adaptability in these systems. From the different architectures that have been pro-

posed to capture the important abstractions found in adaptive systems, it can be seen that 

content discoverability, in adaptive systems, typically relies upon two phases. The first 

phase is called (in this thesis) external content discoverability. This phase involves find-

ing content resources that are deemed to be relevant to the domain of the adaptive system. 

The discovered content in this phase is collected (typically) in its native form.  This con-

tent is then indexed in a content repository (Storage Layer in Figure 2.3, Figure 2.4 and 

Figure 2.5) inside (or outside) the adaptive system to be used later according to the adap-

tation techniques of the system.  

The second phase thereafter matches individual requests submitted by the adaptive sys-

tem’s users with the most relevant content resource previously discovered and annotated 

in the first phase. This second phase is called (in this thesis) internal content discovera-

bility. 

This section highlights the different techniques used by adaptive systems in order to ex-

ternally (section 2.5.1) and internally (section 2.5.3) discover content resources that are 

relevant to their users’ needs. The section also discusses the different indexing techniques 

(section 2.5.2) used by adaptive systems in order to index their content in a manner that 

facilitates its discoverability according to the user needs. 

2.5.1 External Content Discoverability Techniques 

As content incorporation is vital for adaptive systems, the process of discovering content 

which is relevant to the needs of the adaptive system’s users is critical. As discussed in 

section 2.4.4, there are two types of content models in adaptive systems: closed corpus 

and open corpus content models.  



 

 

40 

For adaptive systems that operate on a closed corpus of content (section 2.4.4.1), the re-

sources, their attributes and the relations to other resources are known at design time. 

Hence,  they do not need to utilise approaches for discovering content (De Bra and Calvi, 

1998; Maycock and Keating, 2017). Content discovery (and incorporation) in these sys-

tems is completed, in the majority of cases, by the content author or a domain expert at 

design time. Despite the fact that incorporating content in these systems is straightforward 

and does not require effort to externally discover (as it is prepared by content author), the 

manual work involved in the incorporation process is quite labour intensive. Furthermore, 

these systems are only able to work with a limited set of documents that have been man-

ually structured and indexed (Dieberger & Guzdial, 2003; De Bra et al., 2003). 

In adaptive systems that operate on an open corpus of content (section 2.4.4.2), the re-

sources, their attributes and the relations to other resources are unknown at design time 

and can constantly change and expand (Lawless, 2009; Steichen, 2012; Staikopoulos et 

al., 2014). As a result, these systems must utilise external content discovery approaches 

in order to cope with the inherent diversity of open corpus content. 

Incorporating a wide range of open corpus resources is pointless if these resources are of 

no relevance to the needs of the adaptive system. As the discoverability of web resources 

is a vast field of its own and extensively studied7 (Manning et al., 2008; Steichen et al., 

2012; Ghorab et al., 2013; Onal et al., 2018), this section aims to focus on the techniques 

used by open corpus adaptive systems in order to find content which is relevant to their 

needs and domain. Additionally, since the focus of this thesis is on how adaptive system 

process content and index it in a manner that makes it amenable for discovery and reuse, 

this section intends to present the reader with a brief overview of the fundamental ap-

proaches for external content discoverability.  

External content discoverability techniques can be classified into two main approaches:  

1- Standard Content Discoverability Techniques: Adaptive systems have mostly re-

lied upon either the manual incorporation of open corpus resources (Henze and 

Nejdl, 2002), or the use of standard IR mechanisms to do so (Aroyo et al., 2004). 

While manual incorporation of open corpus content is usually carried out by in-

dividual users of the system, IR techniques are considered the most efficient 

method of largescale content discovery. The ArtEquAKT system (Millard et al., 

                                                 
7 In general, the field that is concerned with techniques and methods of finding (discovering) resources on the open 

web according to a user query is called Information Retrieval (IR). 
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2003; Weal et al., 2007) utilises a traditional search engine to discover open con-

tent resources that comprise biographical information about artists. The Personal 

Reader (Dolog et al., 2004) uses Lixto (Baumgartner et al., 2001) for standard 

web crawling and Edutella (Nejdl et al., 2002) a peer to peer search system, to 

discover and incorporate open corpus resources. (Meng et al., 2017) use results 

obtained from a search engine (Google search) to retrieve websites that present 

detailed content regarding a specific course.  

2- Focused Discoverability Techniques (Focused Crawlers): Although the integra-

tion of standard IR techniques within adaptive systems is relatively easy, these 

techniques are considered general purpose discoverability mechanisms and do not 

specialise in specific areas of interest. As a result, some adaptive systems started 

to utilise focused crawlers to extend these techniques by enabling the discovery 

of content, which meets pre-determined classifications (Steichen et al., 2009; 

Levacher et al., 2012a). The goal of the focused crawler (also referred to as topical 

crawler) is to selectively seek out pages that are relevant to a predefined set of 

topics (Lawless, 2009). (Steichen et al., 2009) proposed an educational adaptive 

system which is built on top of the APeLS system (Conlan et al., 2002) and uses 

the autonomous Open Corpus Content Service (OCCS) focused crawler (Lawless, 

2009) to incorporate open educational material available on the WWW. Another 

example of a system that use focused crawler is Slicepedia (Levacher, 2014) that 

uses the 80Legs8 web crawler as the harvester module. 

2.5.2 Content Indexing 

The indexing mechanism is a critical component of any IR-based system, which provides 

a formalised, simplified and machine usable representation of content contained within 

each resource (Salton, 1989). In adaptive systems, the indexing mechanism varies de-

pending upon the nature of the content resources being incorporated in each individual 

system9. In adaptive systems that rely on a closed corpus of content, the content is struc-

tured and annotated by the content author (or a domain expert), therefore indexing this 

content is relatively straightforward, as it does not require an automatic approach for this 

task (Aroyo et al., 2004). However, manual indexing of content resources is a labour-

                                                 
8 http://80legs.coms 
9 In e-learning domain, indexes for learning resources are usually called learning object repositories (LOR) 
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intensive task. On the other hand, adaptive systems that rely on open corpus content re-

quire an automatic approach to index the harvested content.  

Content indexing, in adaptive systems, can be classified into two main approaches: doc-

ument-level (De Bra & Calvi, 1998) and fragment-level (Weal et al., 2007; Levacher 

2014).  

2.5.2.1 Document-level Indexing 

In document-level approaches, the harvested resources are indexed in their native form 

(usually as HTML web pages) as one-size-fits-all document level granularity resources. 

For example, within the KBS Hyperbook (Fröhlich et al., 1998; Henze and Nejdl, 2001), 

once identified by system users, open corpus resources are indexed in a content reposi-

tory. Each resource is assigned to a knowledge concept of the application domain such as 

the "if" or "while" concepts in a programming language ontology. These assigned con-

cepts are used for indexing the content resources in the storage module. After that, links 

between existing (closed corpus) resources and the newly indexed (open corpus) re-

sources are generated automatically based upon the concept that each new resource was 

assigned. The indexed documents are then adapted and presented based on concepts that 

represent the user’s goals. Another example is the ML-Tutor system (Smith and 

Blandford, 2003). ML-Tutor utilises an IR mechanism to collect content resources from 

the open web. The harvested documents are then indexed along with the prominent key-

words in each document. A document is then presented, in its native form, to the user 

based on the similarity between the document’s keyword vector and the keyword vector 

in the user’s model.  

2.5.2.2 Fragment-level Indexing 

On the other hand, fragment-level approaches focus primarily on content where the ad-

aptation is performed at a finer level of granularity (Bunt et al., 2007). In these ap-

proaches, the harvested resources are processed and segmented into coherent fragments. 

These fragments are then indexed in the content repository. ArtEquAKT (Millard et al., 

2003; Weal et al., 2007) for example, utilises information extraction and knowledge man-

agement techniques to create dynamic biographies of artists from content available on the 

web. The system relies on a traditional search engine to harvest content resources that 

comprise biographical information about artists. The harvested resources are then frag-

mented into paragraphs (and sentences) that are analysed syntactically to identify whether 
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it contains any relevant information about the artist requested by individual users. These 

fragments are then associated with the relevant instances in a Knowledge Base (KB) and 

indexed in a MYSQL database to be used later in generating biography pages. Figure 2.7 

shows how ArtEquAKT extracts the different fragments from webpages to create dy-

namic biographies. 

 

Figure 2.7 The ArtEquAKT system 

Another example is PMCC (Steichen, 2012), that delivers a personalised content to indi-

vidual users using open corpus content as fragments of text. The system utilises an auto-

matic metadata extraction technique to enrich the harvested content. This enriched con-

tent is then fragmented using a wrapper-based content fragmentation approach (Bunt, 

Carenini and Conati, 2007) to identify regions of pages in order to produce individual 

fragments of content. These fragments are then presented to the users based on their 

knowledge in user models.  

Slicepedia (Levacher et al., 2014) applies the Densitometric Content Fragmentation ap-

proach (Kohlschütter & Nejdl, 2008) to fragment the harvested open corpus content into 

segments based on their HTML structure. The fragments (called slices) are then indexed 

in a content repository along with concepts that represent the topics covered in each frag-

ment. The indexed fragments can then be retrieved based on a request from an arbitrary 

adaptive system. The architecture of Slicepedia is depicted in Figure 2.8.  

Both approaches (document-level and fragment-level) are limited in their ability to pro-

vide different levels of granularity for the indexed content. Document-level indexing ap-

proaches limit the extent to which these resources can be modified or recomposed to-

gether. This in turn hinders the indexed content from being reused in multiple systems. 

Furthermore, as pointed by (Bunt et al., 2007), presenting the incorporated open corpus 

resources in their native form allows more content to be “visible to the user. However, 
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the more content is shown, the higher the chance of generating information overload and 

reducing attention to the most relevant information, defeating one of the very reasons for 

having adaptive systems in the first place”. 

 

Figure 2.8 Slicepedia Architecture Pipeline 

For fragment-level indexing approaches, relying upon the original structure of the content 

resource (HTML structure or paragraphs structure) to produce fragments and hence index 

them, does not reflect the needs or preferences of individual users or applications. This is 

because the structure posed by each resource reflects the needs and the point of view of 

its author. While each adaptive system has its own content requirements (based on its 

users), relying upon such structure does not reflect these requirements. Furthermore, in 

these approaches, the indexing process means that the final structure of each content item 

is already built. This limits the capability of these approaches to change the structure 

according to the individual user or application needs. 

Another limitation of both approaches is the conceptual coverage associated with each 

indexed content item (weather a full document or a fragment). In other words, these ap-

proaches annotate individual content items with a small number of concepts (or some-

times one concept) that represent the topic(s) covered by that content item. However, a 

content item could be associated with many different concepts with different relevancy 

levels that represent to what extent each concept is covered by that content item. By only 

considering a few concepts that are deemed most relevant and ignoring the less relevant 

concepts, these approaches ignore a range of possible interpretations of that content item. 

This in turn hinders this content item from being properly discovered and presented to 

users according to their needs, and from being reused in other systems.  
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Hence, there is a need to index content in its smallest granularity, without only consider-

ing the original structure that has been built by the author of the content resource. Ideally, 

content should be indexed at a range of granularity levels and associated with all relevant 

concepts at each of these levels. The research in this thesis hence tries to overcome the 

limitations of these aforementioned approaches and tries to build a structural hierarchy 

out of text documents without relying on their original structure. After building such a 

structure, the documents are indexed in a manner that facilitates ease of discovery and 

reuse. 

2.5.3 Internal Content Discoverability Techniques 

Adaptive systems have traditionally attempted to deliver dynamically adapted content to 

their users through the sequencing of reconfigurable content items.  As mentioned previ-

ously, these content items can be a full document (the whole content resource), or a frag-

ment extracted from a content resource. Once the most relevant content items are har-

vested and indexed, they need to be effectively discovered from within the repository of 

resources maintained by the adaptive system, or the repository of resources maintained 

by content-supply service that provides content to the adaptive system (Levacher et al., 

2014). Discovery of this indexed content involves deciding what content is most relevant 

to the needs or goals of current user (Bunt et al., 2007). Generally, strategies for content 

discovery compute a measure of relevance for each content item (e.g. fragment) to the 

target user’s model (Steichen et al., 2011; Sosnovsky et al., 2012; Şah & Hall, 2013).  

The ArtEquAKT system (Millard et al., 2003; Weal et al., 2007) provides human authored 

story (biography) templates that are written in the Fundamental Open Hypermedia Model 

(FOHM) (Millard et al., 2000). Templates are structured in XML format and saved in the 

contextual structure server, Auld Linky (Michaelides et al., 2002). Each leaf of the struc-

ture is a query which resolves into either a statement from the extracted information 

(stored in the Knowledge Base) or a reference to an original text fragment (stored in the 

database). Each query uses the vocabulary of the ArtEquAKT ontology to discover frag-

ments of text concerned with a particular aspect of the biography. 

KBS Hyperbook (Fröhlich et al., 1998; Henze & Nejdl, 2001) presented an ontology-

based user and content modelling approach. This system structures a domain into a set of 

concepts and their relationships. A concept is assigned to each content item (page) in the 

system from that structure and the user model is constructed from the same structure 

based on the knowledge that the user has. By classifying the pages into these concepts, 
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navigation links are inferred automatically from the relationships amongst concepts. 

Based on a concept in the user’s learning goals (according to the user's knowledge), the 

adaptation module in the system queries the storage module (content repository) for con-

tent items that match this concept. If a text unit should be presented to the user, dynami-

cally generated relations to examples and other information, e.g. to the Sun Java tutorial, 

are returned. 

(Ghauth and Abdullah, 2011) used collaborative filtering and content-based approaches 

in their proposed e-learning recommender system. Before the recommendation process 

begins, the learning materials are uploaded by the instructors along with keywords that 

describe each item. Once the material is indexed, the recommender system uses the man-

ually entered keywords to query the content repository for other learning materials. The 

keywords attached to each item are then used to calculate the items’ similarity.  

(Farrell et al., 2004) proposed an eLearning system that automatically generates individ-

ualised learning paths from a repository of web resources. They proposed the notion of 

Dynamic Assembly that is based on connecting relevant search results and sequencing 

the selected learning objects on a learning path. The process is based upon the learner’s 

keyword query, desired level of detail, and optional desired course duration. The system 

utilises a search engine that uses the set of keywords entered by the user to discover the 

relevant resources that have been previously indexed in a content repository. The system 

also provides users with the capability of identifying the Search Scope.  A Search Scope 

of “overview” explores related topics, while a Search Scope of “indepth” focuses primar-

ily on a single topic. Advanced query options allow users to restrict the search for learning 

objects to particular resource types, levels of difficulty, and other preferences. 

In Slicepedia (Levacher et al., 2014), after analysing the harvested open corpus resources 

and indexing them as fragments in the content repository, the system employs a slice 

searcher module that allows slice consumers (content consumption applications) to spec-

ify a list of keywords and/or DBpedia concepts to be sent as part of a SliceQuery object. 

This object is used to query the content repository in order to discover fragments that 

match the different criteria specified in that object. Fragments discovered through both a 

conceptual and keyword search are then subsequently merged into slices, depending upon 

the granularity requirements in the request.  
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All these approaches, however, are limited in that they rely on the bag-of-words repre-

sentation of content in measuring similarity between a content item and the user (or ap-

plication) query. Even systems that use concepts in this task (e.g. Slicepedia), mainly rely 

upon a limited conceptual representation of content items (i.e. using one or very few con-

cepts). Furthermore, as mentioned earlier (section 2.5.2), such limited conceptual repre-

sentations in turn hinder content items from being properly discovered and presented to 

the users according to their needs, and from being reused in other systems. 

2.6 Content Reusability Techniques 

Section 2.5 presented different techniques used by adaptive systems in order to support 

the external and internal discoverability of content. The section also discussed the differ-

ent techniques used for indexing that content. This section, on the other hand, explores 

more general aspects of content reusability. In particular, it examines the various forms 

of content reuse which have been used to maximise the value of existing resources. 

The production and delivery of content has traditionally been a very linear process 

(Lawless, 2009) that requires the painstaking authoring of content by a domain expert for 

a specific purpose and needs of an individual application (Meyer et al., 2011). This in 

turn limited the use of such content within an individual application and hindered its re-

usability within other applications. Thus, the repurposing and reuse of content resources 

became, and remain, major challenges. To reduce the content production overhead on the 

content author it is imperative to facilitate the maximum reuse of content resources 

(Dagger et al., 2002). As stated by (Levacher et al., 2014) “The diversity of ways in which 

a piece of content can be described or presented to users, can seriously reduce the num-

ber of consumers capable of reusing this resource down to only those who strictly adhere 

to both similar content descriptions and formatting requirements selected by individual 

authors.” As a result, the notion of content reusability has emerged which tried to go 

beyond traditional content production and delivery methods by improving its discovera-

bility and reusability between potential content consumers (Lawless, 2009). Content re-

usability techniques can be broadly classified into three main forms; namely reuse 

through encapsulation, shared publishing and modification (Levacher, 2014). 
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2.6.1 Content Encapsulation  

Content encapsulation involves the production of resources according to standard content 

models and formats. Fundamental objectives of content encapsulation are the easy port-

ability of content items from one application to another as well as the reusability of this 

content (Bohl et al., 2002). This technique aims to make content resources available in 

large resource repositories to improve their interoperability across content consumers. 

The field of eLearning provides a good example of content encapsulation techniques 

(Mödritscher et al., 2004). This field utilised content encapsulation to improve the reuse 

and interoperability of learning resources produced across educational institutions where 

related content resources are grouped together and modelled into aggregates called Learn-

ing Objects (LOs). LOs are digital, self-contained ‘chunks’ of learning content (Wiley, 

2000) that aim to enable content reuse outside the context in which it was created and 

dynamic, ‘on the fly’ sequencing of resources (Tasso et al., 2014). Examples of modelling 

standards, among others, are: IEEE Learning Object Metadata (LOM)10, Dublin Core11, 

IMS Learning Resource Metadata12, Sharable Content Object Reference Model 

(SCORM)13 and Grid Learning Object Repository (G-LOREP) (Pallottelli et al., 2010). 

These modelling standards have been introduced to support the creation of precise defi-

nitions of individual resources with information regarding how these resources can be 

reused within different educational institutions (Tasso et al., 2018).  

Different eLearning systems have relied upon using such modelling standards as a 

metadata standard for their content model. (Conlan et al., 2002) proposed the APeLS 

system that separated the learning content from the adaptive linking logic or narrative, 

which improved the possibilities of reusing a piece of learning content. They use the IMS 

Learning Resource Metadata as the basis for the content model schema in APeLS in order 

to describe both technical and pedagogical aspects of the LO. This descriptive metadata 

information in APeLS allows course designers to easily discover learning content in the 

content repository by providing appropriate descriptive metadata. Furthermore, it can be 

used by an adaptive engine to select appropriate content where there may be many can-

didate LOs available to fulfil a learning or technical requirement.   

                                                 
10 https://standards.ieee.org/ [Accessed: March 18, 2018] 
11 http://dublincore.org/ [Accessed: March 18, 2018] 
12 https://www.imsglobal.org/metadata/index.html/ [Accessed: March 18, 2018] 
13 https://scorm.com/ [Accessed: March 18, 2018] 
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(Farrell et al., 2004) proposed an eLearning system that uses three modelling standards 

as the basis for content interoperability with other applications, namely: IEEE LOM, IMS 

Content Packaging14, and W3C Resource Description Framework (RDF)15. LOM pro-

vides an information model that defines the structure of a metadata instance for a learning 

object. A metadata instance describes relevant characteristics of the learning objects 

grouped into categories such as16: general (e.g. identifier, title), educational (e.g. instruc-

tional role, typical learning time) and classification (e.g. topic). The IMS Content Pack-

aging Specification provides the functionality to describe and package learning materials, 

into interoperable, distributable packages and addresses the description, structure, and 

location of online learning materials. Learning objects are connected into coherent paths 

based on their LOM topic classifications and the proximity of these topics in a RDF graph. 

This graph includes nodes for topics and edges for topic relationships that are encoded as 

RDF entities and properties, respectively. Using these modelling standards, along with 

an instructional sequencing policy makes the system capable of arranging the learning 

objects on a path that suits a particular learning sequence.  

(Savić et al., 2018) proposed a course management system which stores a course model 

represented as distinct machine-readable components containing domain knowledge of 

different course aspects. In their system, they have built their own ontology of learning 

objectives that relies on Bloom’s revised taxonomy (Anderson et al., 2001) where a learn-

ing objective refers to the representation of domain knowledge that should be mastered 

during a specific course. Each learning objective is mapped (using the ontology) to one 

or more learning resources where a learning resource is any digital content that can be 

used for the achievement or evaluation of a learning objective in a course. They use the 

IMS Content Package specification for describing learning resources using metadata. 

This metadata information is stored in their model using a separate component in the 

system which maps learning resources to the ontology of learning objectives. Using this 

information (about learning objectives and learning resources), the system can export 

courses based on the formats required by a Learning Management System (LMS).  These 

systems show that content encapsulation standards allow a common structure and de-

scriptive vocabulary to be used across resource consumers, which supports the discovery 

                                                 
14 https://www.imsglobal.org/content/packaging/index.html/ [Accessed: March 18, 2018] 
15 https://www.w3.org/RDF/ [Accessed: March 18, 2018] 
16 A metadata instance in IEEE LOM standard describes relevant characteristics of the learning objects grouped into 

general, life cycle, meta-metadata, technical, educational, annotation, relation, rights, and classification categories. 

However, their system depends only upon the General, Educational, and Classification metadata. 
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and reuse of content resources from various origins by each individual application. How-

ever, as the volume of resources produced by an institution grows, the amount of manual 

labour required to describe and structure these resources also increases (Bailey et al., 

2006). Furthermore, repositories produced by content encapsulation techniques can still 

be seen as “closed pools” of interoperable resources, since the resource publication and 

delivery mechanisms are specific to each repository.  

2.6.2 Shared publishing  

Approaches to reuse that use standard shared publishing have attempted to overcome the 

limitations encountered by encapsulation techniques. They did so by providing a common 

publishing mechanism across resource repositories. The Semantic Web initiative 

(Berners-Lee et al., 2001) is the most successful example of this type of content reuse. 

The semantic web is an extension of the WWW that was proposed by the World Wide 

Web Consortium (W3C) through standards that promote common data formats and ex-

change protocols on the Web.  The main objective of the semantic web is to provide a 

common framework that allows data to be shared and reused across application, enter-

prise, and community boundaries. The Linking Open Data project17 became one of the 

main showcases for successful community-driven adoption of semantic web technologies 

(Feigenbaum et al., 2007). 

While the architecture of the WWW enabled the ease of content publication by millions 

of authors, linked open data focuses upon improving the reuse of such content by describ-

ing it with machine readable data. It is mainly based upon three core open standard tech-

nologies, namely: i) Resource Description Framework (RDF) to encapsulate data rela-

tionships; ii) URIs to identify individual content resources; and iii) a standard transfer 

protocol (mainly HTTP) to retrieve RDF data associated with each single resource. RDF 

is a metadata model that allows content resources to be described by a statement about 

each individual resource in the form of subject-predicate-object declarations called tri-

ples, where URIs are used to represent each subject, predicate or object. The triples are 

saved in so-called triple stores, repositories such as: Mimir from GATE18, Openlink’s 

Virtuoso19 and AllegroGraph20. These triples enable each individual resource or relation 

to be shared between machines, and hence enables relationships between resources to be 

                                                 
17 https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData [Accessed: March 18, 2018]  
18 https://gate.ac.uk/mimir/ [Accessed: March 18, 2018] 
19 https://virtuoso.openlinksw.com/ [Accessed: March 18, 2018] 
20 https://franz.com/agraph/allegrograph/ [Accessed: March 18, 2018] 
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reused across repositories (Zouaq et al., 2017).  Moreover, ontologies can be used as the 

controlled vocabulary and semantic backbone between repositories for publishing data. 

(Kobilarov et al., 2009), for example, used Linked Data21, MusicBrainz22 and DBpedia23 

to integrate data and link documents across the different content repositories of BBC24 

domains, e.g. food, music, news etc.  

In essence, content reuse through shared publishing removes the need for individual ap-

plications to modify its content consumption mechanism to each individual repository. 

Furthermore, it improves the accessibility of content resources from the different reposi-

tories as if they are from a single unique repository. However, both encapsulation and 

shared publishing reuse mechanisms do not involve the modification of the original re-

sources themselves. Although reusing a content resource without modifying it can poten-

tially include reusing it for purposes not originally planned by its author, the inability to 

modify a content resource limits the range of purposes for which it could be reused. 

2.6.3 Content Modification 

Due to limitations encountered in both encapsulation and shared publishing reuse mech-

anisms, other approaches were developed which modify the original resources in order to 

increase their amenability for reuse (Meyer et al., 2011). (Gonzalez-Barahona et al., 2006) 

proposed the Edukalibre platform to support the creation of collaboratively constructed 

educational materials. It is a collaborative system that provides version control manage-

ment and conversion tools to produce several formats for each document in the system. 

Edukalibre takes inspiration from lessons learned in the open software development com-

munity.  

Although Edukalibre facilitates collaboration between both educational practitioners and 

students to create and distribute open educational content, the modification of a content 

resource is performed manually using word processor software (e.g. OpenOffice25). Alt-

hough this approach used the manual modification of content resources, automated alter-

natives have also been proposed. The Artequakt26 system (Millard et al., 2003), for ex-

ample, automatically extracts parts of content resources to create dynamic biographies of 

                                                 
21 http://linkeddata.org/ [Accessed: March 18, 2018] 
22 https://musicbrainz.org/ [Accessed: March 18, 2018] 
23 http://wiki.dbpedia.org/ [Accessed: March 18, 2018] 
24 http://www.bbc.com/ [Accessed: March 18, 2018] 
25 http://www.openoffice.org/ [Accessed: March 19, 2018] 
26 Initially it was written as “Artequakt” in (Millard et al., 2003) and then written as “ArtEquAKT” in (Weal et al., 

2007) 
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artists from content available on the web. In this example, all of the content presented to 

users originates from various fragments extracted from separately authored standalone 

documents.  

(Ahmadi and Kong, 2008) followed the same technique to automatically adapt the desk-

top presentation of a content resource (web page) to a mobile presentation. Their ap-

proach relies on the DOM structure and the visual layout to divide the original Web page 

into several subpages, where each subpage includes closely related content and is suitable 

for display on the small screen. (Levacher et al., 2014) applies a web page fragmentation 

approach to automatically identify content fragments (slices) in web resources to repur-

pose them according to a request sent by an arbitrary content consuming application.  

Although the reuse of a resource through modification can potentially include reusing it 

for purposes not originally planned by its author, relying only on the original structure of 

the content resource (DOM structure or paragraphs) to modify it however, certainly limits 

the range of purposes which it could be reused for. In other words, the structure of a 

content resource reflects the needs and point of view of the content author, which in turn 

does not reflect the needs and goals of individual applications. Furthermore, since these 

approaches modify content resources and produce segments before a request is done, the 

produced segments are considered static content items which in turn restricts the potential 

scenarios where such content items can be reused in. This in turn makes such approaches 

limited in responding to the different potential forms of requests. 

Hence, there is a need for an approach that can modify the content resource in a manner 

that produces content fragments at the lowest level of granularity, regardless of the orig-

inal structure of such resource. Furthermore, such an approach should allow the creation 

of a content fragment on-the-fly according to the characteristics of an arbitrary request. 

The approach should also provide a generic content publication and delivery mechanism 

to allow content consumers to easily acquire content items without the need to adjust their 

content acquisition mechanism. In order to build such approach, content needs to be more 

understandable. Hence, the research in this thesis uses NLP techniques to understand con-

tent and thus enhance its discoverability and reusability. 

2.7 Natural Language Processing in Adaptive Systems 

The main objective sought by adaptive systems is to address the challenge of producing 

adaptive compositions from different information sources in order to deliver content in a 
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form that is most suitable to an individual user. As outlined in the preceding sections of 

this chapter, adaptive systems which attempt to repurpose and reuse open corpus content 

are limited by a reliance only upon the original structure of the content that reflects the 

needs and the perspective of the author of the resource. While each individual application 

has its own requirements (based on its users), relying on this structure does not necessarily 

reflect these requirements. Furthermore, these systems are limited in that they do not 

deeply “understand” the content, which in turn limits their capabilities to supply appro-

priate content for use in defined contexts. 

As a result, a number of studies have applied Natural Language Processing (NLP) tech-

niques to understand content and enhance its discoverability and reusability (Alfonseca 

et al., 2007; Leoncini et al., 2012). The field of NLP aims to gather knowledge on how 

human beings understand and use language so that appropriate tools and techniques can 

be developed to make computer systems “understand” and manipulate natural languages 

to perform a range of desired tasks (Chowdhury, 2003). 

ArtEquAKT (Millard et al., 2003; Weal et al., 2007) utilises an Information Extraction 

(IE) (section 2.2.3) approach that automatically extracts factual information items to-

gether with sentences and paragraphs from unstructured web documents to create dy-

namic biographies of artists. The authors proposed a Relation Extraction approach (e.g. 

(Aitken, 2002)) to extract pre-defined relation types between two identified entities.  

(Sathiyamurthy & Geetha, 2011) used a text segmentation algorithm to segment technical 

documents in the computer science domain for the purpose of eLearning. They use the 

TextTiling (Hearst, 1994) (section 2.3.5) algorithm along with domain and pedagogical 

ontologies to apply block level text segmentation for eLearning material. In the segmen-

tation process, a topic from the domain ontology is assigned to each block in a given 

document. If consecutive blocks have the same topic all blocks are combined together to 

form a single segment. If adjacent blocks differ, with different topics or with different 

cue-words from the pedagogical vocabulary, then they are separated into disparate seg-

ment. The segments produced are then used as content items for building eLearning 

courses. 

(Beck et al., 2014) also investigated how text segmentation algorithms can be applied to 

automatically transform unstructured text into coherent pieces appropriate for generating 

eLearning courses. The main objective of using text segmentation is to provide eLearning 

course designers with a tool to efficiently organize existing textual content for new 
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eLearning courses. Their approach uses Wikipedia as the source for eLearning material 

and produces two levels of content items, macro and micro levels. The macro level cor-

responds to sections from different articles in Wikipedia, and the corresponding micro 

structure consists of subsequent paragraphs from these sections. They used two different 

text segmentation algorithms: the linear segmenter TopicTiling (Riedl & Biemann, 2012) 

for the macro level and the hierarchical segmenter BayesSeg (Eisenstein & Barzilay, 

2008) (section 2.3) for the micro level. Their intuition behind using a hierarchical seg-

menter in the micro level is that the length of the produced Knowledge Objects (KO) in 

that level should be adapted to the intended skill and background of the learners. This 

assumption, in fact, aligns with the research in this thesis. The intuition behind using 

hierarchical text segmentation in processing content in this thesis, is that it enables the 

production of different levels of content granularity. This in turn makes content more 

flexible and enables the production of different compositions of content items to meet the 

adaptation requirements of individual users or applications.  

(Alfonseca et al., 2007) proposed the WELKIN system that relies on various NLP tech-

niques to build adaptive web sites. The system comprises two processing steps, off-line 

and on-line. The off-line processing step analyses the source text before the user interacts 

with the system. During this step, the domain-specific texts provided by the user are pro-

cessed and analysed with some linguistic tools. These tools include: a tokenizer, a sen-

tence splitter, a stemmer, a part-of-speech tagger, several partial parsers for Noun Phrases 

and Verb Phrases, and a module that identifies text sections and chapters. After this lin-

guistic processing, a term extraction approach is used to locate the different entities in 

text such as dates, scientific names, etc. On the other hand, the on-line processing step is 

performed whenever a user interacts with the system. In this step, the system starts to 

compose and generate a website from the processed content in the off-line step. This 

content is presented based on the amount of information the user is willing to read where 

the user can indicate this preference in different ways, such as the total number of words 

that the generated website must contain; a fixed compression rate to be performed to all 

the web pages; or the amount of time that they want to spend reading the whole site. 

Based on one of these preferences, the system uses a sentence extraction procedure based 

on genetic algorithms (Alfonseca & Rodríguez, 2003) to summarise the generated pages 

according to the user’s preference.   

(Leoncini et al., 2012) proposed a semantic-based framework for summarisation and page 

segmentation. The framework uses text summarisation to extract a concise summary from 
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a web resource, which outlines the relevant topics addressed by the textual data, thus 

discarding uninformative, irrelevant contents. It also applies web page segmentation to 

generate segments that point out the relevant text parts of the resource. The first step in 

the framework is processing the raw text to identify individual words and sentences. Con-

cepts are subsequently assigned to each word, using EuroWordNet synsets27 (Vossen, 

1998) and then grouped into domains. After identifying the set of domains addressed in 

the web page, text summarisation is then obtained by detecting in the original textual 

source the sentences that are most highly correlated to the domains included in the iden-

tified set. These sentences are then ranked according to the single terms they involve. 

This ranking is further used to select the portions of the web page that deal with the main 

topic addressed by the user. The summarisation approach used in this framework can 

produce two types of summaries: 1) a summary that describes the overall content of the 

web page, and therefore does not distinguish the various domains included in that page 

and 2) multiplicity of summaries, one for each domain addressed in the page.  

These systems have tried to utilise NLP techniques to structure content and then use this 

structure to support the use of this content in adaptive systems. However, except for 

(Alfonseca et al., 2007), they did not provide new methods to enhance these NLP tech-

niques. Furthermore, it appeared to the author’s knowledge that there has not been a sig-

nificant volume of work carried out in this area. Hence, the key motivation of this research 

is to examine different methods to enhance NLP techniques in order to use them to mine 

textual content for content adaptation. The research in this thesis mainly focuses on the 

use of text segmentation to enhance content discoverability and reusability for content 

consuming applications.  

2.8 Chapter Summary 

This chapter presented an overview of Natural Language Processing (NLP) techniques 

and presented a state of the art review of the existing approaches for text segmentation as 

a technique for structuring textual content. It first reviewed the different criteria that the 

text segmentation task is categorised according to. From a text representation perspective, 

text segmentation approaches were categorised into linear and hierarchical approaches. 

Reviewing linear segmentation approaches identified that they can only produce a single-

level segmentation of a document. However, considering the structure of a document as 

                                                 
27 http://projects.illc.uva.nl/EuroWordNet/ 
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a sequence of segments is in certain discord with most theories of textual content struc-

ture, where it is more usual to consider documents as trees. Thus, hierarchical text seg-

mentation is seen as a method that can effectively represent a document as a tree-like 

hierarchy structure.  

The chapter presented a focused review of hierarchical text segmentation approaches and 

how they process text. The review showed that these approaches are limited by the fact 

that they can only process the information that they can ‘see’. In other words, they are 

based on the lexical and/or syntactic representation of text, a method that relies mainly 

upon the traditional bag-of-words representation of text to measure similarity (or dissim-

ilarity) between text blocks. However, a representation based solely on the endogenous 

knowledge in the documents themselves does not reveal much about the meaning of the 

text.  

Building on the review and analysis of the state of the art approaches to text segmentation, 

the next chapters (Chapter 3 and Chapter 4) present two novel approaches to hierarchical 

text segmentation that utilise external knowledge resources in order to enrich text and 

infer more information about text constituents. 

The chapter also presented an overview of adaptive systems, as an application for content 

adaptation, and reviewed their anatomy, their models and in particular their content 

model. Closed and open corpus content models were reviewed in order to better illustrate 

how adaptive systems process different types of content. The chapter then presented a 

review on different approaches utilised by adaptive systems to discover content according 

to their users’ needs. Content reusability techniques were also reviewed along with their 

limitations. Furthermore, a review of current NLP techniques utilised by adaptive systems 

was undertaken. The aim of this review is to investigate how adaptive systems use NLP 

techniques in processing content resources and how these techniques contribute to the 

provision of adaptive experiences to adaptive systems’ users.  

Building on the review and analysis of adaptive systems and content discoverability and 

reusability techniques, Chapter 5 presents a content-supply service (named CROCC) that 

facilitates the use of the new segmentation approach (Chapter 4) for content discovera-

bility and reusability for adaptive systems. Additionally, Chapter 6 presents a user-based 

evaluation of the effectiveness of the proposed service in content discoverability and re-

usability.  
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3. OntoSeg: A Novel Approach to Text Segmentation using Onto-

logical Similarity 

3.1 Introduction 

As outlined in Chapter 2, many adaptive systems have relied upon the original structure 

of content resources (HTML structure or paragraph structure) to produce content frag-

ments and hence use them in content adaptation. Since this structure does not necessarily 

reflect the needs or preferences of individual users or applications, more recent systems 

have tried to employ text segmentation techniques in order to build a structure out of 

content resources based on the text itself, rather than the structure provided by the content 

author (section 2.7).  

Text segmentation is the process of placing boundaries within text to create segments 

according to some task-dependent criterion. It is considered an essential task for various 

NLP tasks (Beck et al., 2014; Bokaei et al., 2016). Text segmentation aims to divide text 

into coherent segments which reflect the sub-topic structure of the text. As outlined in 

Chapter 2, current approaches to text segmentation are similar in they all use the tradi-

tional word-frequency metrics to measure the similarity between two regions of text, so 

that a document is segmented based on the lexical cohesion between its words (sec-

tion 2.3.6). However, the relationship between segments may be semantic, rather than 

lexical or syntactic. 

Various NLP tasks are now moving towards the semantic web and the use of ontologies. 

In Information Retrieval, for example, systems that are based on keywords provide lim-

ited capabilities to capture the topical interests of users and topics contained within con-

tent. In order to solve these limitations, the idea of semantic search, based on the semantic 

meaning of text, has been the focus of a wide body of research and many ontology-based 

IR systems have been developed (Fernández et al., 2011; Meštrović and Calì, 2017; 

Selvalakshmi and Subramaniam, 2018). Hence, a need for segmenting and representing 

text based on the semantic (ontological) similarity between its constituents arises. 

This chapter proposes OntoSeg (Bayomi et al., 2015), a novel approach to hierarchical 

text segmentation based on the semantic similarity between text blocks. In contrast to 

traditional text segmentation approaches that rely upon bag-of-words representation of 

content, OntoSeg uses semantic similarity to explore conceptual relations between text 
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segments and a Hierarchical Agglomerative Clustering (HAC) algorithm to represent the 

text as a tree-like hierarchy that is conceptually structured. The output is a hierarchical 

structure of the underlying content that is constructed based on how conceptually similar 

text blocks (one or more sentences) are to each other. 

The aim of this chapter is to answer the first research question posed by this thesis (sec-

tion 1.2): 

To what extent can the semantic representation of unstructured textual content be 

exploited by novel text segmentation approaches to build a document structure?  

and to contribute to its second objective (RO 2). The architecture of OntoSeg is presented 

and a set of experiments are described, which have been carried out in order to evaluate 

the performance of OntoSeg using a well-known evaluation metrics. The evaluation com-

prises different experiments where each experiment evaluates OntoSeg from a different 

perspective. Experiments demonstrate that segmenting text based on the semantic simi-

larity is applicable with a low error rate. The performance of OntoSeg is also compared 

against a set of state of the art approaches using a dataset widely used in the literature. 

3.2 OntoSeg Architecture 

The architecture of OntoSeg consists of three phases: 

1- Semantic annotation. 

2- Calculating similarity between text blocks (sentences or paragraphs). 

3- Hierarchical Agglomerative Clustering (HAC). 

3.2.1 Semantic annotation 

In this phase, the text is semantically annotated using a named entity recognition algo-

rithm (section 2.2.3) and text entities are extracted. Each entity is then mapped to its class 

or classes in an ontology and the text is represented as a sentence-based vector of classes. 

This vector is then used as an input to the following phase.  

A large number of ontologies now exist, some of which are domain-specific (such as the 

MeSH1 ontology of medical and biomedical terms), while others are cross-domain such 

as DBpedia2 (Auer et al., 2007). As the research in this thesis is not focusing on a specific 

domain, the DBpedia ontology is used as the underlying knowledge base, as opposed to 

                                                 
1 http://www.nlm.nih.gov/mesh  
2 http://dbpedia.org/ 
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a domain-specific alternative. DBpedia Spotlight3 (Daiber et al., 2013; Mendes et al., 

2011) is used as the named entity recognition system to extract entities from the targeted 

text. DBpedia Spotlight is a tool for automatically annotating mentions of DBpedia re-

sources in text, providing a solution for linking unstructured information sources to the 

Linked Open Data cloud4 through DBpedia. DBpedia Spotlight recognises entities that 

have been mentioned in text and subsequently matches these entities to their classes in 

the DBpedia ontology.  For each annotated entity in the text, the classes that match this 

entity are extracted. For example, BARACK OBAMA, as an entity, matches with the DBpe-

dia classes: [“Politician”, “Person”, “Agent”]. Since the elementary blocks for the pro-

posed approach are sentences (see section 3.4.2), each sentence in the text is represented 

as a vector of entities, and each entity is represented by a set of classes that match the 

entity from DBpedia. A sentence-based vector is built and a similarity between its adja-

cent vectors is measured as discussed in the following subsection.  

An example of three sentences annotated by DBpedia Spotlight is depicted in Figure 3.1. 

The underlined words in this figure represent the extracted entities in each sentence5. 

Each entity is then mapped to its class or classes in the DBpedia ontology. After that each 

sentence is represented as a vector of entities where each element in that vector is repre-

sented as a set of classes. Figure 3.2 depicts how the three sentences in Figure 3.1 are 

represented as vectors of sets of classes. 

 

Figure 3.1 Example of three sentences annotated by DBpedia Spotlight 

 

Figure 3.2 A vector representation of the three sentences after mapping entities to their classes from DBpedia ontology  

                                                 
3 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki 
4 http://lod-cloud.net/ 
5 DBpedia Spotlight requires a disambiguation confidence parameter that can be set from 0 to 1. The value of the 

confidence parameter in the example shown in Figure 3.1 (and in all work in this chapter) was set to 0.5. 
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3.2.2 Similarity Computation 

The key idea proposed in OntoSeg is to use the semantic similarity between text blocks 

in the segmentation of text. A text block is the elementary unit considered by the segmen-

tation algorithm, which could be one sentence or multiple sentences (a paragraph).  

The similarity between text units is calculated based on two similarity measures: (1) On-

tological6 (semantic) similarity and (2) Lexical similarity. 

3.2.2.1 Ontological Similarity 

Ontological similarity relates to identifying conceptually similar, but not necessarily lex-

ically similar, terms. For example, in Figure 3.1, Donald Trump and Barack Obama are 

not lexically similar. However, if we consider the classes that both names belong to (i.e. 

[“Politician”, “Person” “Agent”] in Figure 3.2), it is reasonable to say that the two en-

tities are conceptually similar to each other. This is the main idea behind OntoSeg; in 

contrast to a lexical interpretation of text, OntoSeg interprets text based on its semantic 

meaning and uses ontological similarity as a means of measuring how similar two adja-

cent sentences are to each other.  

Ontological similarity has been widely used in many research fields such as: (1) Infor-

mation Retrieval, to improve accuracy of current retrieval techniques and for semantic 

indexing (Meštrović and Calì, 2017); (2) NLP tasks, such as word sense disambiguation 

(Prokofyev et al., 2013), synonym detection (Chaves-González and Martínez-Gil, 2013) 

and sentiment analysis (Cambria et al., 2015); (3) Knowledge management tasks such as 

thesauri generation (Curran, 2002), information extraction (Shah and Jain, 2014), seman-

tic annotation (Sánchez et al., 2011) and ontology merging and learning (Priya and Ku-

mar, 2015), in which new concepts should be discovered or acquired from text in order 

to relate them to already existing concepts. 

Ontology-based similarity can be classified into three main approaches (Elavarasi et al., 

2014):  

1- Edge-counting approaches: where the minimum path length connecting two cor-

responding ontological nodes via is-a links is used as a straightforward method to 

calculate the similarity between the concepts represented by those nodes (Wu and 

Palmer, 1994; Gao et al., 2015). In ontology structure, the is-a relations group the 

                                                 
6 Ontological similarity refers to the Semantic similarity based on an ontology. Both phrases are used interchangeably 

in this chapter. 
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classes according to how they are conceptually related to each other. Given a pair 

of classes, c1 and c2, a well-known method with intuitive explicitness for as-

sessing their similarity is to calculate the distance between these classes in an 

ontology hierarchy; the shorter the distance, the higher the similarity. In the case 

that multiple paths between the nodes exist, the shortest distance of all paths is 

used. 

2- Feature-based approaches: contrary to edge-counting approaches, feature-based 

approaches assess the similarity between concepts as a function of their properties 

(Jiang et al., 2015). They take into account common and noncommon features of 

the compared concepts. 

3- Information Content (IC) based approaches: these approaches are associated with 

the probability of appearance of each concept in the taxonomy, computed from 

their occurrences in a given corpus (Jiang et al., 2017). IC of a term is computed 

according to the negative log of its probability of occurrence. In this manner, in-

frequent words are considered more informative than common ones. 

In this research, the Edge-counting approach proposed by Wu and Palmer (Wu and 

Palmer, 1994) is used as its performance has been shown to be better than the other meth-

ods (Lin, 1998; Hill et al., 2015). The principle behind this approach is that the similarity 

of two concepts is defined by how closely they are related in the hierarchy, i.e., their 

structural relations. Given two concepts 𝑐1 and 𝑐2 the conceptual similarity 𝐶𝑜𝑛𝑆𝑖𝑚 be-

tween them is: 

𝐶𝑜𝑛𝑆𝑖𝑚(𝑐1, 𝑐2) = 2 ∗
𝑁

𝑁1 + 𝑁2
 

3.1 

where 𝑁 is the distance between the closest common ancestor (CS) of 𝑐1 and 𝑐2 and the 

ontology root, and 𝑁1 and 𝑁2 are the distances between the ontology root on one hand 

and 𝐶1 and 𝐶2 on the other hand respectively. Figure 3.3 shows how the similarity be-

tween two concepts in an ontology is measured.  
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Figure 3.3  Example of ontology extract (Slimani et al.,2006) 

Accordingly, the similarity between two entities can be defined as a summation of 

weighted similarities between pairs of classes in each of the entities. Given two entities 

E1 and E2, the similarity 𝐸𝑛𝑡𝑆𝑖𝑚 between them is: 

𝑬𝒏𝒕𝑺𝒊𝒎(𝑬𝟏, 𝑬𝟐) =  

∑ ∑ 𝑪𝒐𝒏𝑺𝒊𝒎(𝒄𝒊, 𝒄𝒋)
𝒏

𝒋=𝟏

𝒎

𝒊=𝟏 

𝒎 ×  𝒏
 

3.2 

where m and n are the two sets of classes that E1 and E2 have respectively. 

Equation (3.2) calculates the similarity between two entities, where each entity belongs 

to one or more classes. For example, BARACK OBAMA as an entity is mapped to three 

DBpedia classes: [“Politician”, “Person” “Agent”], and DONALD TRUMP is mapped to 

four DBpedia classes: [“President”, “Politician”, “Person” “Agent”]. Hence, although 

the two entities are not lexically similar, they are deemed ontologically similar. This is 

the idea behind ontological similarity: it measures the similarity between entities accord-

ing to the conceptual characteristics which they share. As another example of how onto-

logical similarity differentiates between entities, consider MICHAEL JACKSON as an entity 

that is mapped to four DBpedia classes: [“Person”, “MusicalArtist”, “Artist”] 

(Figure 3.2). Intuitively, the two entities BARACK OBAMA and DONALD TRUMP are more 

ontologically similar to each other than either of them is to MICHAEL JACKSON. 

On a text-block level (a sentence for example), the similarity between two blocks can be 

defined as the summation of weighted similarities between pairs of entities in each of the 

units. Given two text blocks B1 and B2, which have a set of entities a and b respectively, 

the similarity BlockSim between B1 and B2 is: 
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𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑚(𝐵1, 𝐵2) =  

∑ ∑ 𝐸𝑛𝑡𝑆𝑖𝑚(𝐸𝑖, 𝐸𝑗)
𝑏

𝑗=1

𝑎

𝑖=1 

𝑎 ×  𝑏
 

 

 

3.3 

where a and b are the two sets of entities that B1 and B1 have respectively. 

3.2.2.2 Lexical similarity 

Lexical similarity has been widely used in the literature in text segmentation (Hearst, 

1994; Choi, 2000; Tsunoo et al., 2017; Wang et al., 2017), and as its name suggests, it 

splits text into segments that are lexically coherent. Lexical cohesion refers to the con-

nectivity between two portions of text in terms of word relationships. Although text 

blocks might share ontological similarities between each other, it may be the case that 

ontological similarity alone is not sufficient to measure how text blocks are coherent with 

each other. The reasons for this include: 

1- Text blocks may not contain any entities. 

2- The entity extraction algorithm may not discover some entities in the text block. 

3- The extracted entities from a text block may not be sufficient to reflect the simi-

larity between text blocks. 

4- The ontology being used may not cover all the text mentions. 

Thus, the lexical overlap between text blocks should be part of the overall similarity 

measure. As a result, the similarity measure is enriched by obtaining the lexical similarity 

between text blocks and combining it with the ontological similarity. To measure the 

lexical similarity between text blocks, first, stop words are removed from the text as they 

are generally assumed to be of little, or no, informational value. Then the remaining words 

are stemmed (section 2.2.2) using Porter stemmer (Porter, 1980) and each block is repre-

sented by a lexical frequency vector. For each adjacent text blocks, a lexical vector cosine 

similarity is calculated. It is defined as the cosine of the angle between two vectors v and 

w such that: 

𝑐𝑜𝑠(𝑣, 𝑤) =  
𝑣⃗. 𝑤⃗⃗⃗

‖𝑣⃗‖. ‖𝑤⃗⃗⃗‖
  

 

3.4 
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3.2.3 Hierarchical Agglomerative Clustering (HAC) 

Hierarchical clustering algorithms have been studied extensively in the clustering litera-

ture (Jain and Dubes, 1988). The general concept of agglomerative clustering is to suc-

cessively merge documents into clusters based on their similarity with one another. The 

agglomerative clustering technique could be transferred from document level into text 

level, where the clustering process is done between text blocks, within a document (as 

opposed to across whole documents) (Yaari, 1997; Wang et al., 2017). When applying 

Hierarchical Agglomerative Clustering on text blocks the algorithm successively agglom-

erates blocks that are coherent to each other, thus forming a text structure.  

The idea behind using HAC in text segmentation is that it is a bottom-up clustering ap-

proach, which means that it starts from the smallest chunks (one sentence in OntoSeg) 

and then builds the text hierarchy by merging text blocks (clusters) based on how near or 

similar they are to each other. In contrast, the top-down (divisive) clustering approach 

starts from the full document and then divides the text into smaller blocks based on how 

far (i.e. how different) they are from each other. Hence, the output of the bottom-up ap-

proach can be regarded as hierarchically coherent tree. Thus, the method of Hierarchical 

Agglomerative Clustering for text is useful to support a variety of search methods because 

it naturally converts text into a tree-like hierarchy and provides different levels of granu-

larity for the underlying content; this can then easily be leveraged for the content discov-

erability process. 

Unlike general HAC for clustering documents, where at each stage the proximity of the 

newly merged object to all other available objects is computed, at the text level we com-

pute only the similarity of the text block to its two neighbours. This is because the linear 

order in the text is required to be preserved in the structure. The implication on complex-

ity is that while the general HAC algorithm for documents takes an order of O(N2) steps, 

it takes only O(N) when used at the text level. 

The algorithm successively clusters “coherent” segments based on the accumulation be-

tween the ontological and lexical similarity scores between text blocks, which guarantees 

the ontological and lexical cohesion between agglomerated segments. The HAC algo-

rithm for text segmentation, based on blocks as the elementary segments, is shown in 

Figure 3.4. 
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Figure 3.4 OntoSeg Algorithm 

Conceptually, the process of agglomerating blocks into successively higher levels of clus-

ters creates a cluster hierarchy (dendrogram) for which the leaf nodes correspond to indi-

vidual blocks (sentences in OntoSeg), and the internal nodes correspond to the merged 

groups of clusters. When two groups are merged, a new node is created in this tree cor-

responding to this larger merged group. The two children of this node correspond to the 

two groups of blocks which have been merged to it. Figure 3.5 shows the resulted den-

drogram from the algorithm for a sample text with one sentence as block size. 
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Figure 3.5 Sentences dendrogram of a sample text 

3.3 From Hierarchical into Linear Representation 

OntoSeg produces a tree that can be used as a visual illustration of the underlying hierar-

chical structure of a document. Figure 3.6 depicts a tree representation of a sample text 

of 10 sentences. The benefit of this tree is that it represents different levels of granularity 

of the document, which in turn means that the document can be segmented into different 

segmentation levels. This is a powerful criterion in the hierarchical representation of text. 

In contrast to linear representation, in each level of the structure (tree), segmentation with 

different levels of details can be obtained and can be usefully applied to many other tasks’ 

needs.  

In order to convert a hierarchical representation into a linear representation a threshold 

corresponding to the number of the segments needed is set and the level that contains the 

corresponding number of nodes in the tree is extracted. For example, in Figure 3.6, if the 

specified threshold is 2, the level under the root is selected as it has two segments.  
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Figure 3.6 A tree representation for a text from 10 sentences 

If this threshold number is not represented in one of the tree levels, a flattening process 

is applied to the largest nodes. For example, suppose that the specified number is four 

segments, and in one of the tree levels the number of nodes (segments) is three nodes.  As 

now we need one more segment, the largest node (largest in terms of child nodes) is 

flattened by obtaining the two subsequent nodes that constitute this large node, i.e. we go 

down a level in the tree for this large segment. This method of flattening the tree guaran-

tees that the coherency between the obtained segments is preserved.  

3.4 Evaluation  

3.4.1 Experimental Setup 

The output from OntoSeg is a tree that represents the text hierarchy. As depicted in Fig-

ure 3.6 each level in the tree represents a level of granularity for the text where each node, 

in that level, represents a segment that contains coherent blocks. As mentioned before, a 

linear representation of text can be obtained from such a tree, which means that OntoSeg 

can be evaluated as a linear text segmentation approach7. 

                                                 
7 It is worth mentioning that at the time of evaluating OntoSeg there was no hierarchical text segmentation dataset 

publicly available. However, in the evaluation of C-HTS (Chapter 4), two hierarchical text segmentation datasets are 

used where the performance of both OntoSeg and C-HTS is assessed. 
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In this experiment, the efficiency of OntoSeg is evaluated on Choi’s dataset8 (Choi, 

2000). This dataset has been widely used in linear text segmentation evaluation (Riedl & 

Biemann, 2012a; Du et al., 2013; John et al., 2017). The dataset consists of documents 

made up of ten concatenated text segments. Each segment consists of the first n sentences 

of a randomly selected document from the Brown Corpus (Francis, 1964). The dataset is 

divided into four subsets and are listed in Table 3.1. There is a total of 700 text documents 

in the dataset. 

Table 3.1 Choi’s dataset statistics 

Range of n 3-11 3-5 6-8 9-11 

# samples 400 100 100 100 

Each document in the dataset is processed and two vectors are generated: the ontological 

and the lexical. Since the elementary text blocks in OntoSeg consist of sentences, each 

sentence in the ontological vector is represented as a vector of sets of DBpedia classes 

where each set represents an entity that is extracted from the sentence. These sets of clas-

ses are used to measure the ontological similarity between sentence vectors according to 

equations (3.1), (3.2) and (3.3). To build the lexical vector, first the stopwords9 are re-

moved from the text and then the remaining terms are stemmed (using Porter stemmer); 

after this, each sentence is subsequently represented as a term-frequency vector. The lex-

ical similarity between vectors of adjacent sentences is then determined by calculating 

the cosine similarity between them as in equation (3.4). 

A HAC algorithm is then applied on the obtained vectors. For the ontological vector, the 

ontological similarity score is calculated between each vector and its two neighbours 

(section 3.2.2.1). A lexical similarity score is also obtained for the lexical vectors (section 

3.2.2.2). The final similarity score between two adjacent sentences is the combination of 

their ontological similarity and lexical similarity scores. For each set of three neighbour-

ing sentences, the middle sentence is merged with the one that is most similar to it. For 

example, if the three sentences are denoted as A, B and C. Sentence B is merged with C 

if the similarity score between B and C is higher than the score between A and B.  

When the two neighbours are merged together they form a new text block (cluster) and 

two new vectors (ontological and lexical) are defined based on the new block to be used 

in the next iteration of the algorithm. Iteratively, the algorithm applies the same process 

                                                 
8 Choi’s C99 release and the dataset are available here: https://github.com/logological/C99 [Accessed: May 03, 2018] 
9 Since Choi’s dataset is not focused on a specific domain, a general domain stopwords list for English was used. 
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between adjacent blocks until it merges all text blocks into one single cluster and a tree 

representation of the text is produced. A linear segmentation is then produced as de-

scribed in section 3.3 where the threshold is set to 10 as each document in Choi’s dataset 

consists of 10 segments. 

3.4.2 Elementary Units for OntoSeg 

The size of the elementary text blocks is considered a critical step in the segmentation 

process. (Yaari, 1997) used paragraphs as the elementary blocks for his segmentation 

algorithm and affirms that the size of a paragraph, as opposed to a sentence, contains 

sufficient lexical information for the proximity test. Also (Hearst, 1994) measured the 

cosine similarity between text blocks where text blocks consist of a fixed number of sen-

tences (window). As a result, the quality of the produced segments, using the ontological 

similarity only, or the combination between the ontological and lexical similarity, is ex-

amined using varying window sizes: from one to four sentences. 

Since the main contribution of OntoSeg is to segment text based on the ontological sim-

ilarity between its blocks, the quality of the produced segments is evaluated first based 

on ontological similarity only. After that, the impact of adding lexical similarity to the 

ontological similarity using different weights for the two similarity measures is examined. 

According to these considerations, four experimental runs were conducted (in each run, 

varying window sizes are used (1 to 4)): 

Experiment 1: in this run, ontological similarity only is used. 

Experiment 2: in this run, the combination between ontological and lexical similarity 

scores is used with α = 0.3, where α is used to specify the weight of each of the two 

similarity measures. Let 𝑂𝑠𝑖𝑚 and 𝐿𝑠𝑖𝑚 denote the ontological and the lexical similarity 

scores respectively; the final hybrid similarity score (𝐻𝑠𝑖𝑚) between two text blocks B1 

and B2 is:  

𝑯𝒔𝒊𝒎(𝑩𝟏, 𝑩𝟐) =  𝜶 𝑳𝒔𝒊𝒎 + (𝟏 − 𝜶) 𝑶𝒔𝒊𝒎  3.5 

Hence, α = 0.3 means that the lexical score weight is 0.3 and the ontological similarity 

score weight is 0.7. 

Experiment 3: in this run, both similarity scores are treated equally, i.e.  α = 0.5. 

Experiment 4: in this run, lexical similarity is given a higher weight by setting α =0.7. 
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3.4.3 Evaluation Metrics 

It is common to evaluate text segmentation systems in terms of the two commonly-used 

evaluation metrics, Pk (Beeferman et al., 1999) and windowDiff  (WD) (Pevzner & Hearst, 

2002). Both metrics are penalty measurement metrics, which means that lower scores 

indicate higher segmentation accuracy. Pk was proposed as a measure that expresses a 

probability of segmentation error. To calculate Pk, we take a window of fixed width k, 

which is usually set to half of the average segment length in the reference partition, and 

move it across the segmented text, at each step examining whether the hypothesized seg-

mentation is correct about the separation (or not) of the two ends of the window. Pk metric 

is defined as: 

𝑷𝒌 =  ∑ 𝑫𝒌(𝒊, 𝒋)

𝟏≤𝒊≤𝒋≤𝒌

(𝜹𝒓𝒆𝒇 (𝒊, 𝒋)  ⊕ 𝜹𝒉𝒚𝒑 (𝒊, 𝒋)) 

 

 3.6 

where 𝛿𝑟𝑒𝑓 (𝑖, 𝑗) is an indicator function whose value is 1 if sentences i and j belong to 

the same reference segment and 0 otherwise. Similarly, 𝛿ℎ𝑦𝑝 (𝑖, 𝑗) is 1 if the two sentences 

are hypothesized as belonging to the same segment and 0 otherwise. The ⊕ operator is 

the XOR operator. The function 𝐷𝑘 is the distance probability distribution that uniformly 

concentrates all its mass on the sentences which have a distance of k. 

windowDiff is stricter as it not only decides whether there is a mismatch between the 

hypothesized segment and the reference segment, it also counts the difference of the num-

ber of segment boundaries in the given window between the two segments. Thus, the 

results of windowDiff are generally higher than those of Pk. windowDiff is defined as:  

𝑤𝑖𝑛𝑑𝑜𝑤𝐷𝑖𝑓𝑓 (𝑟𝑒𝑓 , ℎ𝑦𝑝)

=  
1

𝐾 − 𝑘
 ∑(|𝑏(𝑟𝑒𝑓𝑖, 𝑟𝑒𝑓𝑖+𝑘) − 𝑏(ℎ𝑦𝑝𝑖, ℎ𝑦𝑝𝑖+𝑘)| > 0)

𝐾−𝑘

𝑖=1

 

 

3.7 

where 𝑟𝑒𝑓 is the correct segmentation for reference, ℎ𝑦𝑝 is the segmentation produced 

by the model, K is the number of sentences in the text, k is the size of the sliding window 

and b(i, j) is the number of boundaries between sentences i and j. 

Since it has been argued in (Pevzner & Hearst, 2002) that Pk has some weaknesses, win-

dowDiff is used as the evaluation metric in all experiments. However, the Pk metric is 
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used to evaluate the performance of OntoSeg against the state of the art approaches, as 

these approaches were evaluated based on the Pk metric in the relevant publications. 

3.4.4 Results  

Table 3.2 shows the results of experiment 1 (using ontological similarity only) while ap-

plying different window sizes, from 1 to 4 sentences per text block. From the results we 

can see that the error rates are not high for all the subsets (range from 0.15 to 0.32), which 

means that generating text segments based on the ontological similarity between its con-

stituents is feasible, with low error rates. It can also be seen that varying the window size 

does not increase the quality of the segmentation; in contrast, it decreases the quality for 

some subsets. 

Table 3.3 shows the results of experiments 2, 3, and 4 where the hybrid approach that 

combines the ontological and lexical similarities using different weights is evaluated. 

Table 3.2 Ontological similarity error rates (WD) for different window sizes 

         Range of n 

Window 

 

3-11 

 

3-5 

 

6-8 

 

9-11 

W = 1 0.21 0.32 0.20 0.15 

W = 2 0.21 0.32 0.21 0.15 

W = 3 0.21 0.34 0.21 0.15 

W = 4 0.22 0.34 0.21 0.15 

The results of experiment 2 indicate that when α = 0.3, the error rates of the segmentation 

in all the subsets are less than the error rates using ontological similarity only (Table 3.2). 

In experiments 3 and 4, it can be noticed that as α increases (0.5 and 0.7 respectively), 

the error rates decrease. According to equation 3.5, when α increases, the lexical similar-

ity weight is more than the ontological similarity weight. This means that, although gen-

erating text segments based on the ontological similarity is feasible, using it alone is not 

sufficient. In other words, using lexical similarity only (𝜶 = 1 in equation 3.5) is better 

than using the semantic similarity in OntoSeg. 

It is also noticed that, as in experiment 1, when the window size increases, the error rate 

also increases which means that the segmentation quality decreases. 
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Table 3.3 Hybrid approach error rates for different window sizes 

            Range of n 

Window size 

 

3-11 

 

3-5 

 

6-8 

 

9-11 

Experiment 2:  α = 0.3 

W = 1 0.17 0.22 0.17 0.13 

W = 2 0.19 0.29 0.18 0.14 

W = 3 0.19 0.34 0.20 0.14 

W = 4 0.20 0.33 0.20 0.15 

Experiment 3:  α = 0.5 

W = 1 0.16 0.21 0.16 0.12 

W = 2 0.18 0.27 0.17 0.12 

W = 3 0.19 0.33 0.19 0.13 

W = 4 0.20 0.33 0.19 0.14 

Experiment 4:  α = 0.7 

W = 1 0.15 0.19 0.15 0.11 

W = 2 0.17 0.25 0.16 0.12 

W = 3 0.18 0.33 0.19 0.13 

W = 4 0.20 0.33 0.20 0.14 

3.4.4.1 OntoSeg Performance Against Other Approaches 

To evaluate the quality of segmentations produced by OntoSeg, there is a need to compare 

its performance against the state of the art approaches based on the segmentation quality. 

An experiment was carried out where five different approaches were selected for this 

comparison. The five approaches are: TextTiling (Hearst, 1994), C99 (Choi, 2000), Seg-

menter (Kan et al., 1998), U00 (Utiyama and Isahara, 2001) and an approach proposed 

by (John et al., 2017) that segments text based on two similarity measures: lexical and 

semantic. For the lexical similarity, a vector is built from topics covered in each sentence. 

For the semantic similarity, a vector of verbs, nouns and the adjectives is built using a 

Part-of-Speech (POS) tagger where the similarity between two vectors is measured using 

the WordNet concept hierarchy. Both vectors (lexical and semantic) are combined to 

identify segment boundaries within the given text. 

The intuition behind choosing these approaches is that they were evaluated on the same 

dataset used in this chapter (Choi, 2000). However, these approaches were evaluated us-

ing the Pk evaluation metric. Hence, in this experiment, OntoSeg is also evaluated with 



 

 

73 

the same metric. Table 3.4 presents a comparison of the performance of OntoSeg com-

pared to these approaches where number of segments needed (10 segments) is provided10. 

Table 3.4 Pk values for various algorithms in the literature with provided segment number 

Approach 3-11 3-5 6-8 9-11 

(John et al., 2017) 0.09 0.11 0.005 0.007 

U00 0.11 0.13 0.06 0.06 

C99 0.13 0.18 0.10 0.10 

OntoSeg 0.30 0.19 0.30 0.30 

Segmenter 0.36 0.23 0.33 0.43 

TextTiling 0.46 0.44 0.43 0.48 

The results show that the performance of OntoSeg is not better than most of the state of 

the art approaches. These results, and the results presented in the previous section con-

clude that relying on an ontology to semantically represent the text is not sufficient to 

reveal the meaning behind it and thus, is not practically adequate for the segmentation 

task. Even with combining the lexical similarity with the ontological similarity, although 

the performance of OntoSeg was enhanced, it is still not comparative to the state of the 

art approaches. In order to enhance the understandability of the meaning behind text, there 

is a need to consider all relations between text blocks.  

As argued by (Budanitsky and Hirst, 2006), relatedness is more general than similarity 

since dissimilar entities may also be semantically related by other relationships such as 

meronymy, antonymy, functional relationship or frequent association. Therefore, the per-

formance of OntoSeg needs to be enhanced through improved understandability of text 

by exploring the semantic relatedness between text blocks rather than using the semantic 

similarity. 

3.5 Chapter Summary 

This chapter introduced the OntoSeg algorithm for hierarchical text segmentation. The 

aim of OntoSeg is to understand the semantic meaning behind text in order to build a 

conceptual structure out of it. In contrast to traditional text segmentation approaches that 

rely upon bag-of-words representation of content, OntoSeg uses the semantic interpreta-

tion of content to reason about it. OntoSeg uses a Hierarchical Agglomerative Clustering 

                                                 
10 The results were obtained from (Choi, 2000), (Utiyama and Isahara, 2001) and (John et al., 2017) 
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(HAC) approach to iteratively cluster text segments that are deemed to be ontologically 

similar to each other. The output is a tree-like hierarchy of the text. The chapter showed 

that the produced hierarchy is beneficial in producing hierarchical text segments with 

different levels of granularity, and also in producing linear text segments by flattening 

the obtained tree. Experimental results showed that using ontological similarity performs 

successful segmentation with low error rates. However, comparing its performance 

against state of the art approaches showed that, although the combination between the 

lexical and the ontological similarities enhanced the performance of OntoSeg, its perfor-

mance is not comparative to the state of the art approaches. The results also showed that 

using lexical similarity only (𝛼 = 1 in equation 3.5) is better than using the semantic 

similarity only in OntoSeg. These results concluded that the performance of OntoSeg 

needs to be enhanced through improved understandability of text by exploring the seman-

tic relatedness between text blocks rather than using the semantic similarity. 

Finally, it is noteworthy to point out that the implementation of the OntoSeg algorithm is 

publicly available:  

- https://github.com/bayomim/OntoSeg  

and the OntoSeg algorithm along with the experimental work described in this chapter is 

published in the following paper: 

Bayomi, M., Levacher K., Ghorab, M.R., and Lawless, S. "OntoSeg: A Novel Approach 

to Text Segmentation using Ontological Similarity”. In the proceedings of the 5th ICDM 

Workshop on Sentiment Elicitation from Natural Text for Information Retrieval and Ex-

traction, ICDM SENTIRE. Held in conjunction with the IEEE International Conference 

on Data Mining, ICDM 2015. Nov 14th, 2015. Atlantic City, NJ, USA.  
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4. C-HTS: A Concept-based Hierarchical Text Segmentation ap-

proach 

Chapter 3 presented OntoSeg, a new approach for hierarchical text segmentation using 

ontological (semantic) similarity between text constituents. As outlined in the chapter, 

although OntoSeg was capable of performing successful segmentation with low error 

rates, it did not produce the best scores compared to the state of the art approaches. Fur-

thermore, as outlined in section 2.3.6, since the work on hierarchical text segmentation is 

sparse (Wang et al., 2017), there was no publicly available dataset for evaluating hierar-

chical text segmentation at the time of evaluating OntoSeg. As a result, OntoSeg perfor-

mance was evaluated on a linear text segmentation dataset. Evaluating a hierarchical text 

segmentation algorithm using a linear dataset does not give a realistic picture of the per-

formance of the hierarchical algorithm. The reason is that the output of a hierarchical 

algorithm is a tree structure, while a linear dataset has consequently segmented chunks of 

text. This means that using consequently segmented text chunks is not adequate to eval-

uate the quality of the produced hierarchy.  

Hence, this chapter proposes C-HTS, a new Concept-based Hierarchical Text Segmenta-

tion approach that relies on the semantic relatedness between text constituents rather than 

the semantic similarity used in OntoSeg. The core idea of C-HTS is the use of external 

knowledge to enhance the text representation by adding a semantic layer of concepts that 

represents the text in a high dimensional semantic space where the relatedness between 

the atomic units of text (text blocks) is measured using this semantic representation. C-

HTS relies on the explicit semantic representation of text, a method that replaces key-

word-based text representation with concept-based features, automatically extracted from 

massive human knowledge repositories such as Wikipedia. C-HTS represents the mean-

ing of a piece of text as a weighted vector of knowledge concepts, in order to reason about 

text.  

The performance of C-HTS is evaluated on two datasets that are designed specifically for 

the evaluation of hierarchical text segmentation approaches. Furthermore, the perfor-

mance of C-HTS is compared against the state of the art hierarchical text segmentation 

approaches. The results showed that C-HTS performed favourably against these ap-

proaches and also outperformed OntoSeg.  
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Additionally, different lexical similarity measures were used with C-HTS to assess the 

effectiveness of using the semantic relatedness approach in C-HTS. Experimental results 

showed that using semantic relatedness outperforms other similarity measures. 

Furthermore, to asses the effictiveness of using Wikipedia as the underlying knowledge 

source, an experiment was carried out where WordNet (Miller, 1995) is used as the 

knowledge source for C-HTS. Experimental results showed that relying on lexical 

resources such as WordNet offers little information about the different word 

representations and hence, deteriorates the performance of C-HTS. 

Since C-HTS relies on a knowledge space built from Wikipedia, and since Wikipedia is 

continuously growing, the impact of its growth on segmentation performance is meas-

ured. Three different snapshots of Wikipedia from different years are used in order to 

achieve this. The experimental results show that an increase in the size of the knowledge 

base leads, on average, to greater improvements in hierarchical text segmentation. 

4.1 State of the Art Influences 

This section discusses how the limitations of the state of the art approaches influenced 

the design aspects of C-HTS as a segmentation approach that uses the semantic represen-

tation of text. 

Semantic representation of text helps in understanding the underlying meaning of its con-

stituents. As already outlined in Chapter 2, most existing text segmentation approaches 

depend primarily on traditional bag-of-words representations of text in order to build a 

hierarchical structure (Yaari, 1997; Angheluta et al., 2002; Eisenstein, 2009; Du et al., 

2013; Kazantseva & Szpakowicz, 2014). They mainly rely upon the exact matches be-

tween words to measure the coherence between two segments in text. Such approaches, 

however, fail to recognise relevant segments that do not share words with each other. One 

reason for this is that these approaches treat words in text segments as if they are inde-

pendent, although it is clear that they are not (Vinokourov et al., 2003). As a result, some 

approaches began to enrich the text representation by exploiting its semantic meaning. 

(Choi et al., 2001), for example, enriched their linear segmentation approach, C99 (Choi, 

2000), by using Latent Semantic Analysis (LSA) (Deerwester et al., 1990). They applied 

latent concept modelling to the similarity metric of C99, and showed that using LSA 

improved the quality of their segmenter. However, LSA-based approaches require a very 

large corpus, and consequently the pre-processing effort required is significant. 
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Some other approaches started, on the other hand, to use external resources to enrich text 

(John et al., 2017). (Stokes et al., 2004) proposed SeLeCT, a news story segmentation 

approach that uses the WordNet thesaurus (Miller, 1995) as an external lexical resource 

to add semantic links between words to create lexical chains from these links with respect 

to a set of chain membership rules. However, the use of such lexical resources offers little 

information about the different word representations. Furthermore, such resources cover 

only a small fragment of the language lexicon. 

With the advent of the Semantic Web (Berners-Lee et al., 2001), ontologies have been 

widely used in different tasks to give a conceptual representation of entities (Bayomi & 

Lawless, 2016). Recently, some approaches have emerged that segment text by exploiting 

the conceptual representation of its constituent terms. For example, the OntoSeg approach 

(Bayomi et al., 2015), which was introduced in Chapter 3 of this thesis, relies on the 

DBpedia ontology to measure the semantic similarity between text blocks. Another 

approach that relies on ontologies for linear text segmentation was proposed by (Naili et 

al., 2016). They integrated a domain ontology in the topic segmentation in order to add 

external semantic knowledge to the segmentation process. They proposed two topic 

segmenters called TSS-Ont and TSB-Ont based on C99 (Choi, 2000) and TextTiling 

(Hearst, 1994) algorithms respectively. They used the same techniques as C99 and 

TextTiling but replaced lexical similarity with concept (semantic) similarity and 

evaluated their approach against different state of the art apporaches including OntoSeg.  

Although these approaches relied on an external resource and used an ontology to add a 

semantic layer to the segmentation process, they suffer from some drawbacks, such as: 

they solely extract named entities from text. For a text with few entities or with poor 

performance from the named entity extraction algorithm, measuring the similarity 

between text blocks is not feasible. Furthermore, these approaches measure the semantic 

similarity between entities rather than the semantic relatedness. As argued by (Budanitsky 

& Hirst, 2006), relatedness is more general than similarity as dissimilar entities may be 

semantically related by other relationships such as meronymy (car–wheel), antonymy 

(hot–cold), or just by any kind of functional relationship or frequent association (pencil–

paper, penguin–Antarctica, rain–flood). Another drawback of these approaches is that 

considering only entities in text does not necessarily reveal much knowledge about the 

meaning beyond it. (Buchanan & Feigenbaum, 1982) stated that: “The power of an 
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intelligent program to perform its task well depends primarily on the quantity and quality 

of knowledge it has about that task.” 

Hence, this chapter proposes C-HTS, a hierarchical model of text segmentation that uses 

the semantic relatedness between text blocks. C-HTS uses the explicit semantic 

representation of text to measure how text blocks are semantically related based on 

concepts from a knowledge base. C-HTS uses the exogenous knowledge (externally 

supplied), rather than the endogenous knowledge extracted from the documents 

themselves. The approach uses Wikipedia as an external knowledge base to enrich the 

text representation in a very high-dimensional space of concepts. 

4.2 Intuition behind C-HTS  

When a person reads a text, the eyes read the words (the lexical representation of text) 

and send these words to the human’s cognitive system, the brain. The brain starts to make 

sense of these words based on the knowledge of the reader. For example, the name “Albert 

Einstein” in a text document is read by the eyes and then sent to the brain, which starts to 

map the name to the different concepts that the person knows about Einstein such as: 

“Theory of Relativity”, “Physics”, “Nobel Prize”, etc. The information that the brain maps 

the name to, is dependent upon how much knowledge this person has. If the individual 

does not know about Einstein, the brain would make no sense of that name. The individual 

could potentially ask other people who have different collections of knowledge for assis-

tance, creating an intellectual representation through collaboration. In this research, the 

C-HTS algorithm is trying to recreate this methodology in a segmentation algorithm. This 

research contention that using this approach to understand text is a more effective method 

for text segmentation and for building a reasonable hierarchical structure from docu-

ments. 

The essential task in any text segmentation algorithm is to measure the coherence between 

two adjacent text blocks. Being inherently limited to lexical representation, current ap-

proaches cannot reveal much about the coherence between text blocks. Consider the fol-

lowing two sentences for example: 

 Albert Einstein is a German scientist who was born on the 14th of March 1879. 

 Mileva Marić was born on December 19, 1875 into a wealthy family in Titel, Serbia. 

Lexically, the two sentences are not similar because they mention different names, cities 

and dates. For a segmentation approach that solely relies upon a lexical representation of 
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text, the two sentences are not similar to each other. Even for an approach that uses a 

learning model to learn text representation, if it has not seen the entities mentioned in 

sentences together in a training set, it will be difficult for it to infer any relation between 

the two sentences. In fact, Mileva Marić is Einstein’s ex-wife, they both worked in phys-

ics, she was the only woman among Albert Einstein's fellow students at Zürich's Poly-

technic, and they had three children. Hence, an ideal approach to reveal such information 

about the two sentences, and to measure their relatedness, would use the explicit semantic 

representation of text based on a knowledge base. Such a knowledge base should be based 

on human cognition and be intuitive to use and reason over, with no limits on domain 

coverage or conceptual granularity. Creating and maintaining such a knowledge base re-

quires enormous effort on the part of many people. Luckily, such a collection already 

exists in the form of Wikipedia, which is one of the largest knowledge repositories on the 

Web. Hence, relying on such human-organised intensive knowledge reveals more mean-

ing of the text that we want to segment regardless of the approach (linear or hierarchical) 

or the algorithm that is used for segmentation.  

4.3 Semantic Relatedness  

The core idea of C-HTS is the use of an external knowledge base to enrich text 

representations in order to measure the semantic relatedness between terms, and thus 

sentences, and to utilise this in hierarchical text segmentation. The purpose of measuring 

semantic relatedness is to allow computers to reason about text. Various approaches have 

been proposed in the literature to measure the semantic relatedness between terms using 

an external knowledge source. Explicit Semantic Analysis (ESA) (Gabrilovich and 

Markovitch, 2007) is a method that represents meaning in a high-dimensional space of 

concepts, automatically driven from human-built knowledge repositories such as 

Wikipedia. ESA defines concepts from Wikipedia articles e.g., ALBERT EINSTEIN and 

COMPUTER SCIENCE. A target term is essentially represented as a vector of concepts in 

Wikipedia based on how this term is mentioned in the concept’s article. Relatedness is 

then calculated as the cosine similarity between the two vectors of the target terms (see 

next section for more details).  

Another approach that uses the link structure of Wikipedia to measure semantic 

relatedness is the Wikipedia Link-based Measure (WLM) (Witten and Milne, 2008). 

WLM measures the relatedness between two terms using the links found within their 

corresponding Wikipedia articles rather than using the articles’ textual content.  
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The notion behind using explicit semantic relatedness is that it relies on a knowledge base 

that is built and continuously maintained by humans. The knowledge base used in this 

research is Wikipedia, the largest and fastest growing encyclopaedia in existence. This 

knowledge base is a collaborative effort that combines the knowledge of hundreds of 

thousands of people. In this research, ESA is used as the approach for measuring the 

semantic relatedness between text segments. ESA has been widely used in a variety of 

tasks such as semantic relatedness calculation (Gurevych et al., 2007), concept-based 

information retrieval (Egozi et al., 2011; Jungwirth & Hanbury, 2018) and text 

classification (Chang et al., 2008) among other tasks. The efficacy of ESA has been 

proven compared to other approaches that do not rely on explicit knowledge bases. 

4.3.1 How does Explicit Semantic Analysis work?  

As mentioned above, ESA relies on a concept space built from a knowledge base, such 

as Wikipedia, to measure the semantic relatedness between two terms (or text blocks). In 

Wikipedia-based ESA, a given word is described by a vector which stores the word’s 

association strengths to Wikipedia-derived concepts. A concept is a Wikipedia article 

(e.g. ALBERT EINSTEIN). This concept is represented as a vector of the terms which occur 

in that article. Each term, in that vector, is assigned a weight using the tf-idf scheme 

(Salton & McGill, 1986). These weights quantify the strength of association between 

terms and concepts. After generating terms from the concept article, an inverted index is 

created that maps each term to a list of concepts in which this term appears. Thus, each 

word appearing in the Wikipedia corpus can be seen as triggering each of the concepts it 

points to in the inverted index, with the attached weight representing the degree of asso-

ciation between that word and the concept. The name, Explicit Semantic Analysis, stems 

from the way vectors are comprised of concepts that are manually defined, as opposed to 

the mathematically derived contexts used by Latent Semantic Analysis. The processing 

of Wikipedia articles and building of the concept space is depicted in Figure 4.1. In this 

example, terms are extracted from the Wikipedia article (Economy). Terms such as: 

“market”, “trade”, “property”, etc. Each of these terms is indexed in a database and 

mapped to a list of concepts (articles) in which this term appears along with the tf-idf 

score of the term in that article. For example, one of the concepts that the term “market” 

is mapped to is “Bazaar” with 0.72 score. This means that the word “market” appears in 

the “Bazaar” article and its tf-idf score in that article is 0.72. 
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Figure 4.1 The process of generating an ESA model from Wikipedia articles (Egozi et al., 2011). 

After building such a concept space, each input term in a text processing task (e.g. seg-

mentation) can be represented as a vector of concepts that the term is associated with, 

accompanied by the degree of association between the term and each concept.  The se-

mantic relatedness between two given terms is measured by computing the cosine simi-

larity between the concept vectors of the two terms. For larger text fragments (a sentence 

or a paragraph), a concept vector is retrieved for each term in the fragment, then the se-

mantic relatedness between two text fragments is measured by computing the cosine sim-

ilarity between the centroid of the vectors representing the two fragments. The centroid 

vector of a text fragment is built based on ranking all the Wikipedia concepts by their 

relevance to the fragment (Han and Karypis, 2000). Figure 4.2 illustrates the semantic 

interpretation of two given texts and how the semantic relatedness between their centroid 

vectors is measured. Given a text fragment (sentence or paragraph), the fragment is rep-

resented as a vector using tf-idf. For each term in this text fragment, a vector of corre-

sponding entries from the inverted index (the concept space) is retrieved. The retrieved 

vectors are merged into a weighted vector of concepts that represents the given text. Let 

𝑆 be the set of terms in the input text fragment after removing stop words. Let 𝑡 be the 

vector of weights for concepts associated with term 𝑡 in the concept space.  The centroid 

vector 𝐶 ⃗⃗⃗⃗ is defined as: 

𝐶 ⃗⃗⃗⃗ =
1

|𝑆|
 ∑ 𝑡

𝑡∈𝑆

 
4.1 
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where |𝑆| is the length of vector 𝑆 that is used for normalisation in order to account for 

text units of different lengths. The relatedness between two centroid vectors 𝐶𝑖 and 𝐶𝑗 of 

two text fragments is computed using the cosine measure: 

cos(𝐶𝑖 ⃗⃗⃗⃗⃗, 𝐶𝑗
⃗⃗⃗⃗ ) =  

𝐶𝑖 ⃗⃗⃗⃗⃗. 𝐶𝑗 ⃗⃗⃗⃗⃗

‖𝐶𝑖 ⃗⃗⃗⃗⃗‖ ‖𝐶𝑗 ⃗⃗⃗⃗⃗‖
 

4.2 

 

Figure 4.2 Semantic interpretation of two text units using ESA (Gabrilovich and Markovitch, 2007) 

To elaborate on the notion of semantic relatedness using ESA, consider the two sentences 

in the example mentioned earlier in section 4.2: 

 Albert Einstein is a German scientist who was born on the 14th of March 1879. 

 Mileva Marić was born on December 19, 1875 into a wealthy family in Titel, Serbia. 

After applying morphological analyses (see section 4.4.1) on the two sentences, each re-

maining term in each sentence is mapped to a vector of concepts from the vector space. 

Each sentence is then represented as the centroid of the vectors of the sentence’s terms 

(Han & Karypis, 2000).  For the first sentence, the centroid of the vectors contains the 

following concepts (among other concepts): 



 

 

83 

 ALBERT EINSTEIN AWARD 

 THE EVOLUTION OF PHYSICS 

 HANS ALBERT EINSTEIN    (second child and first son of Albert Einstein and Mileva 

Marić) 

 ELSA EINSTEIN   (the second wife of Einstein) 

And the centroid of the vectors of the second sentence contains the following concepts 

(among other concepts):  

 MILEVA MARIĆ 

 HANS ALBERT EINSTEIN 

 ELSA EINSTEIN 

 EINSTEIN FAMILY 

From these vectors, we can see that the concept vectors of the two sentences have con-

cepts in common and measuring the cosine similarity between them (Equation 4.2) can 

show that although the two sentences are not lexically similar, they are semantically re-

lated to each other.  

4.4 C-HTS Architecture 

The architecture of C-HTS consists of three phases: 

1- Morphological Analysis 

2- Semantic Representation and Relatedness Measuring 

3- Hierarchical Agglomerative Clustering 

4.4.1 Morphological Analysis 

In this phase, the target text is processed to be split into sentences and to have stopwords1 

removed, as they are generally assumed to be of less, or no, informational value. The 

remaining words are then stemmed and converted into their root using the Porter stemmer 

(Porter, 1980). This morphological analysis technique has been used in processing the 

Wikipedia terms and concepts while building the concept space from Wikipedia 

(section 4.3.1). The remaining terms are then used as input for the next phase. 

                                                 
1 Since the research in this thesis is not focused on a specific domain, a general domain stopwords list for English is 

used with C-HTS. 
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4.4.2 Semantic Representation and Relatedness Measuring  

The key idea in C-HTS consists of treating the segmentation of text as an examination of 

the semantic relatedness between text blocks rather than traditional lexical similarity. A 

text block is the elementary unit of the segmentation algorithm, which is one sentence in 

C-HTS.  For each sentence, and for each term in that sentence, the term is mapped to a 

vector of concepts from the concept space that was created from Wikipedia. The semantic 

relatedness between two (adjacent) sentences is calculated as the cosine similarity 

between the centroid of the vectors representing the individual terms in each sentence 

using Equation 4.2. 

4.4.3 Hierarchical Agglomerative Clustering  

As in OntoSeg (Chapter 3), C-HTS transfers the agglomerative clustering technique from 

document level to text level (section 3.2.3). The difference between the two approaches 

is that while OntoSeg measures coherency between two adjacent clusters (text blocks) 

based on their semantic similarity, C-HTS measures the coherency based on their 

semantic relatedness. The main topic for research in HAC algorithms is the proximity 

test. In C-HTS, the semantic relatedness between text blocks is applied as the proximity 

test. By applying hierarchical agglomerative clustering on text blocks the algorithm 

successively agglomerates blocks that are deemed to be semantically related to each 

other, thus forming a text structure. C-HTS uses HAC because it is a bottom-up clustering 

approach. The idea behind using a bottom-up approach in text segmentation is that it 

starts from the smallest clusters (sentences), that are considered the seeds of the text, and 

then builds the text structure by successively merging the semantically coherent clusters. 

This way of building the document structure can be regarded as a hierarchically coherent 

tree that is useful to support a variety of content discoverability methods as it provides 

different levels of granularity for the underlying content.  

In the dendrogram depicted in Figure 4.3, we can see that in each iteration of C-HTS a 

new level (horizontal dotted lines) is constructed from the agglomeration process on the 

previous level. Each level is considered a different representation of the document 

granularity. The level of granularity increases as we move from the root to the bottom of 

the tree (the leaves). For example, in level 5 in the dendrogram, we can see that the 

document at that level of granularity can be segmented into two segments with boundaries 

19 & 25, i.e. the document can be segmented at sentence 19 and sentence 25. Hence, for 
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an adaptive system that requires a specific number of sentences based on its user needs 

(such as reading speed), traversing such a tree would allow us to easily extract such 

segment based on the relevance of the segment to the adaptive system’s query and the 

required length. This segment was constructed not based on the HTML or paragraphs 

structure of the document, rather, it was constructed based on the semantic relation 

between its constituents.  

 

Figure 4.3 C-HTS output as a dendrogram of a sample text 

4.4.4 Word Sense Disambiguation 

Word Sense Disambiguation (WSD) (section 2.2.3) is the task of identifying the meaning 

of a term, when the term has multiple meanings, based upon the context of where it ap-

pears (Navigli, 2009).  For example, “light” can mean “not heavy” or “illumination”, 

what identifies its meaning is the context of where “light” is used. For a natural language 

processing task like text segmentation, disambiguating such words would allow the task 

to better understand the meaning of the sentence and to reason about it and thus enhance 

the quality of the segmentation. For lexical segmenters, being inherently limited to lexical 

representation of text, these approaches require an extra level of sophistication to disam-

biguate words.  

In C-HTS, the relatedness between sentences is measured as the cosine similarity between 

the centroid of the vectors representing the two sentences. This representation of text is 

considered an implicit disambiguation of terms. For example, consider a sentence that 

has the term “Apple” amongst other computer related terms. Taking the centroid of the 
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vectors will boost the computer-related concepts and will disambiguate the term effec-

tively. 

To illustrate how words are disambiguated in C-HTS, consider the following sentence:  

- “I love fruit, particularly a nice apple”. 

In this sentence, after applying morphological analysis (section 4.4.1), the remaining 

prominent terms are love, fruit, particularli, nice and appl2. Among these terms, the term 

“appl” (apple after stemming) has different interpretations. From the underlying concept 

space that have been created from Wikipedia, the top concepts generated for the term 

appl (among other concepts) are:  

 APPLE DAY   (related to apple fruit) 

 APPLE SPECIALIST   (related to Apple Inc.) 

 APPLE EXTENDED KEYBOARD   (related to Apple Inc.) 

 EMPIRE (APPLE)   (related to apple fruit) 

 APPLE STORE (ONLINE)   (related to Apple Inc.) 

The majority of the top concepts are related to the company, Apple Inc. However, when 

considering the centroid of the vectors representing the whole sentence, the top generated 

concepts are (among other concepts):  

 FRUIT PICKING 

 ROME APPLE  (a kind of apple originating near Rome Township, Ohio) 

 LIST OF APPLE CULTIVARS 

 EMPIRE (APPLE)  (a kind of apple derived from a seed grown in 1945) 

From these concepts, we can see that they all are related to the fruit apple. This illustrates 

that considering the centroid of the vectors of a sentence disambiguates the terms without 

adding extra sophisticated text processing layers. This vector can also be seen as a repre-

sentation of the context of that sentence. This in turn enhances the understandability of 

text and enhances the segmentation quality. 

                                                 
2 These terms are the stemmed version of the original ones. For example, the word Apple is stemmed to appl using 

Porter stemmer 
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4.5 Evaluation 

Research on hierarchical text segmentation has been scarce and most state of the art re-

search has evaluated their hierarchical approaches on linear text segmentation datasets. 

For example, (Yaari, 1997) evaluated his approach on the Stargazers article. He com-

pared his approach against a linear text segmentation approach, TextTiling. OntoSeg 

(Bayomi et al., 2015) (Chapter 3) was evaluated using the linear text segmentation dataset 

proposed by (Choi, 2000). This is due to the lack of available datasets which are suitable 

for hierarchical text segmentation evaluation. Evaluating a hierarchical text segmentation 

algorithm using a linear dataset does not give a realistic picture of the performance of the 

hierarchical algorithm. The reason is that the output of a hierarchical algorithm is a tree 

structure, while a linear dataset has consequently segmented chunks of text.  Hence, se-

lecting an appropriate dataset is a critical step in the evaluation process. 

4.5.1 Datasets 

In this thesis, we argue that C-HTS is applying hierarchical text segmentation as if a hu-

man would perform the task (section 4.2). To prove this assumption, a gold standard da-

taset that is created by humans is needed. Furthermore, the dataset needs to be suitable 

for a hierarchical text segmentation task. Luckily, (Kazantseva and Szpakowicz, 2014) 

proposed two datasets that are suitable for evaluating hierarchical text segmentation and 

both were annotated by humans. The authors evaluated their approach, Hierarchical Af-

finity Propagation for Segmentation (HAPS), against two well-defined datasets: the 

Moonstone dataset and the Wikipedia dataset compiled by (Carroll, 2010).    

1- Moonstone dataset: This dataset consists of nine chapters of the Moonstone 

novel. (Kazantseva and Szpakowicz, 2014) employed human annotators to anno-

tate the dataset and to identify the hierarchical structure of each text document (in 

this case, each chapter). The annotators were asked to read a chapter and split it 

into top-level segments according to where they can see a shift in topic. Each 

chapter was annotated by 3-6 people (4.8 on average). 

2- Wikipedia dataset: This dataset was compiled by (Carroll, 2010). The dataset con-

sists of 66 Wikipedia articles on various topics. The HTML pages were converted 

to flat text, and unneeded content such as navigation boxes, and image captions 

were removed. The hierarchical structure for each article is created automatically 

from the structure of the Wikipedia page, i.e. heading text was replaced with a 



 

 

88 

boundary marker, indicating the heading depth. This depth represents the level in 

the text’s hierarchical structure. While the levels in the Wikipedia dataset were 

created using automatic techniques (e.g. Wikipedia VisualEditor3), the original 

structure of the documents is identified by the human authors who contribute to 

Wikipedia4. Thus, it is considered a human annotated dataset. 

Since C-HTS is based on using an external knowledge base to enrich text representation, 

evaluating its performance using these two datasets will give us a realistic picture of the 

performance of C-HTS as a concept-based approach. This is due to the inherent human 

involvement in the construction process of the two datasets. 

4.5.2 Baselines 

To evaluate the quality of the hierarchical structure produced by C-HTS, there is a need 

to compare its performance against hierarchical text segmentation approaches. As 

mentioned before, work on hierarchical text segmentation has been scarce. To the best of 

the authors’ knowledge, and at the time of evaluating C-HTS, the only publicly available 

hierarchical segmenter (along with a dataset) is HAPS that was proposed by (Kazantseva 

and Szpakowicz, 2014). HAPS is a hierarchical text segmentation approach that is based 

on a graphical model for hierarchical clustering called Hierarchical Affinity Propagation 

(Givoni et al., 2011). The input for HAPS is a matrix of similarity between text blocks. 

HAPS requires the desired number of levels to be in the produced topical tree and a 

preference value for each data point and each level. HAPS also finds a centre for each 

segment at every level of the produced topical tree, a data point (a sentence) which best 

describes the segment. 

HAPS was compared against two linear segmenters where a hierarchical segmentation 

was obtained from each approach. The two approaches are MCSeg (Minimum Cut 

Segmenter) (Malioutov and Barzilay, 2006) and BSeg (Bayesian based Segmenter) 

(Eisenstein, 2009). These two systems were chosen because they are representative of the 

existing text segmentation methods, and their implementations are freely available on the 

internet. MCSeg casts text segmentation in a graph-theoretic framework. In this approach, 

text is abstracted into a weighted undirected graph, where the nodes of the graph 

correspond to text blocks and edge weights represent the pairwise block similarity. Text 

segmentation in MCSeg corresponds to a graph partitioning that optimises the 

                                                 
3 https://en.wikipedia.org/wiki/Wikipedia:VisualEditor [Accessed: April 08, 2018] 
4 https://en.wikipedia.org/wiki/Wikipedia:Who_writes_Wikipedia [Accessed: April 08, 2018] 
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normalised-cut criterion. In BSeg, the lexical cohesion between segments is placed in a 

Bayesian context. The words are modelled in each topic segment as drawn from a 

multinomial language model associated with the segment.  

To obtain hierarchical segmentation from these two linear segmentation systems, both 

systems were run first to produce top-level segmentations (sequential segments). Each 

segment thus computed was a new input document for segmentation. The procedure was 

repeated twice to obtain a three level structure of the text. In addition to these baselines, 

we also use OntoSeg as another baseline. 

In this research, C-HTS is compared to these three systems as baselines (HAPS, MSSeg 

and BSeg). For evaluation consistency, we use their experimental settings by evaluating 

the top three levels (excluding the root) of the document structure produced by each 

system. Furthermore, windowDiff (section 3.4.3) is used as the evaluation metric. 

windowDiff is designed to evaluate linear text segmentation not hierarchical trees. Hence, 

in this experiment, and for the sake of comparability we follow the same technique as 

(Kazantseva and Szpakowicz, 2014). Each level of the text hierarchy is treated as a 

separate segmentation and each hypothetical level is compared against a corresponding 

level in the reference segmentation.  

4.5.3 Results 

The Moonstone dataset has on average 4.8 annotations per chapter. To obtain a realistic 

picture of the results across the different annotators per file, each hypothetical 

segmentation is separately compared against each available gold standard. After that, the 

averages across all annotators are taken as the final score.  For the two datasets 

(Moonstone and Wikipeida), Table 4.1 shows the results of the comparison between C-

HTS and the other four baselines using the windowDiff evaluation metric. Since C-HTS, 

OntoSeg and HAPS are inherent hierarchical text segmentation approaches, they were 

run without knowing the number of segments in each level. Neverthless, HAPS requires 

the number of levels to be known in advance, which was set to three. BSeg was able to 

run with and without knowing the number of segments. In the results, the BSeg run 

without this parameter is reported. MCSeg, on the other hand, required that the exact 

number of segments be specified. This makes it considerably more informed than others. 

The results show that C-HTS performs well on both datasets compared to the baselines, 

even when compared to more informed baseline (MCSeg). For the Wikipedia dataset, C-
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HTS performs better than the baselines on all three levels. This proves that using the 

explicit semantic representation of text gives more understanding of the meaning of the 

text, and thus enhances the process of hierarchical text segmentation. This also proves 

that using semantic relatedness between text constituents produces better segmentation 

than using the semantic (ontological) similarity as in OntoSeg.  

For the Moonstone dataset, C-HTS performs favourably on the top and bottom levels but 

it is noticed that its performance on the middle level is not better than HAPS and BSeg. 

We argue that this is because in the Moonstone dataset the boundary for each level, in 

each document, was placed by very few number of annotators (on average 4.8 annotations 

per chapter), hence, there can be mixed agreement between those annotators on the 

correct placement of the level boundary. On the other hand, in Wikipedia dataset, the 

original article hierarchy (where levels are obtained from) was created and updated with 

the agreement of the Wikipedia article contributors. 

Table 4.1 Evaluation of C-HTS, HAPS, OntoSeg and iterative versions of MCSeg and 

BSeg using windowDiff per level 

4.6 Discussion   

4.6.1 Elementary Units for C-HTS 

Bottom-up hierarchical text segmentation algorithms start with atomic text pieces as their 

elementary units and then successively grow areas of coherence. The elementary units 

can be of a fixed size, such as a specific number of sentences, or can be of a mutable size 

such as paragraphs. For example, (Yaari, 1997) and HAPS (Kazantseva & Szpakowicz, 

 Level Moonstone Wikipedia 

 

C-HTS 

 

3 (top) 

2 (middle) 

1 (bottom) 

0.320 

0.507 

0.488 

0.330 

0.397 

0.402 

 

HAPS 

 

3 (top) 

2 (middle) 

1 (bottom) 

0.337 

0.422 

0.556 

0.421 

0.447 

0.617 

OntoSeg 

3 (top) 

2 (middle) 

1 (bottom) 

0.366 

0.523 

0.544 

0.350 

0.401 

0.411 

 

MCSeg  

 

3 (top) 

2 (middle) 

1 (bottom) 

0.375 

0.541 

0.601 

0.440 

0.424 

0.471 

 

BSeg 

 

3 (top) 

2 (middle) 

1 (bottom) 

0.600 

0.447 

0.545 

0.637 

0.877 

0.952 
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2014) used paragraphs as the elementary units for their segmenters, while in C-HTS we 

use one sentence as the elementary unit. 

The size of the elementary units is an influential parameter for the segmentation algorithm 

and it has implications on the segmentation accuracy. Previously, in Chapter 3 (sec-

tion 3.4.2), we experimented with the influence of different elementary unit sizes on the 

hierarchical segmentation task. We experimented with sizes ranging from one to four 

sentences per unit. The best run reported in the experiments was when we used one 

sentence as the elementary unit. The results also concluded that the higher the size of the 

elementary unit, the lower the accuracy of the segmentation5.  

This also adds to the understanding of the inconsistency of C-HTS performance on the 

Moonstone dataset. Besides the disagreement between the few number of human 

annotators about the correct placement of level boundary, the elementary units presented 

to the annotators, to build the gold standard, were paragraphs. As a result, and for 

evaluation consistency, we had to set the elementary units for C-HITS to be paragraphs 

which impacted the performance of the algorithm. This can be seen in the results of the 

first experiment (and the following experiments) where the performance of C-HTS on the 

Wikipedia dataset, where we use one sentence as the elementary unit, gives, on average, 

lower error rates than its performance on the Moonstone dataset. 

4.6.2 Text Granularity 

Hierarchical text segmentation approaches produce a structural representation of text that 

represents different levels of granularity. In HAPS, the desired number of levels needs to 

be passed as a parameter to the algorithm. In contrast, in C-HTS, it does not need to know 

number of levels that are needed in the output structure because the structure produced 

by C-HTS depends on the coherence between the atomic units of the text. This way of 

building the structure makes the output more granular and facilitates its use in different 

tasks like content discoverability and reusability. Identifying the number of levels of the 

output limits the usage of the produced hierarchy, as each adaptive system requires a 

different level of content granularity. Hence, from this point of view, HAPS is considered 

a system-dependent approach, as its parameters need to be set depending on the system 

in question. On the other hand, C-HTS is considered a system-independent approach as 

                                                 
5 We also tried different sizes for the elementary units for C-HTS and the results aligned with the results of OntoSeg, 

the higher the size of the elementary unit, the lower the accuracy of the segmentation 
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it produces all the available levels of granularity in the processed document, hence it can 

produce content that is amenable for reuse in different systems. 

4.6.3 Multilingual C-HTS 

C-HTS is based on the concept space built from Wikipedia. Wikipedia is the largest ency-

clopaedia in existence that is available in dozens of languages. As of April 2018, there are 

298 Wikipedias of which 288 are active and 10 are not6. Building a concept space for these 

languages would help an ESA-based task to be used with texts in different languages. 

(Gurevych et al., 2007) applied ESA to the German-language Wikipedia7 and used it for 

semantic relatedness and information retrieval tasks. Their experiments showed that using 

ESA was superior compared to a system based on the German version of WordNet, Ger-

maNet (Hamp and Feldweg, 1997). 

The core of C-HTS is the process of measuring the semantic relatedness between clusters 

using the explicit semantic interpretation of text. This process is essentially based on the 

underlying concept space that has been built from Wikipedia. Moving C-HTS from one 

language to another can be done easily. Changing the language of the underlying concept 

space would make no difference in the running of C-HTS. The only step which must be 

changed is the morphological analysis (section 4.4.1) to filter out and stem the prominent 

terms in text.  This step is relatively easy to implement as there has been a large volume 

of work completed on morphological analysis for languages other than English (Manning 

et al., 2014). Hence, C-HTS can be seen as a multilingual hierarchical text segmentation 

approach that can semantically represent text and reason about it regardless the language 

of the text.  

Although C-HTS can be applied on multilingual documents to produce a hierarchical 

structure, the research in this thesis focuses solely upon content resources available in 

English as a first step and reserves multilingual content processing for future work (sec-

tion 7.3.1).  

4.7 C-HTS Validation 

The key idea proposed in C-HTS is to perform the segmentation of text based on the 

semantic relatedness between its blocks. As discussed in section 4.3, C-HTS uses explicit 

                                                 
6 https://en.wikipedia.org/wiki/List_of_Wikipedias [Accessed: April 08, 2018] 
7 https://en.wikipedia.org/wiki/German_Wikipedia [Accessed: April 08, 2018] 
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semantic analysis (ESA) to measure the semantic relatedness between text blocks using 

Wikipedia as its knowledge base. In this research, the experimantal results reported in 

section 4.5.3 demonstrated the efficiancy of C-HTS in building a hierarchical structure 

out of textual documents and its competitive performance against the state of the art 

approaches.  

To validate the efficacy of using Wikipedia as the underlying knowledge base for 

conceptual representation of text in C-HTS, an experiment was carried out where the 

WordNet thesaurus (Miller, 1995) is used as the underlying knowledge base to add 

semantic representation of text (phase 2 in C-HTS, section 4.4.2).  

Additionally, to validate the efficacy of using the explicit semantic representation of text 

rather than its lexical representation, another experiment was carried out where the lexical 

similarity, in contrast to semantic relatedness, between text constituents is measured in 

C-HTS. 

4.7.1 Semantic Similarity using WordNet 

WordNet8 (Miller, 1995) is a broad coverage lexical network of English words. Nouns, 

verbs, adjectives, and adverbs are each organised into networks of synonym sets (called 

synsets) that each represent one underlying lexical concept and are interlinked with a 

variety of relations (Budanitsky and Hirst, 2006). Over time, different versions of Word-

Net have been proposed that cover languages other than English, such as EuroWordNet9 

(Vossen, 1998) which covers several European languages (Italian, Spanish, etc.) and Ger-

maNet10 (Hamp and Feldweg, 1997) which covers the German Language. Different NLP 

approaches relied on WordNet as their source for semantic representation of text (Stokes, 

Carthy and Smeaton, 2004; Lu et al., 2015). However, as discussed earlier (section 4.1), 

the use of lexical resources (e.g. WordNet) offers limited information about the different 

word representations. Furthermore, such resources cover only a small fragment of the 

language lexicon.  

To assess this assumption, an experiment was carried out where WordNet is used as the 

underlying knowledge base for C-HTS. Additionally, different concept similarity metrics 

are used in this experiment: 

                                                 
8 https://wordnet.princeton.edu/ [Accessed: March 28, 2018] 
9 http://projects.illc.uva.nl/EuroWordNet/ [Accessed: April 08, 2018] 
10 http://www.sfs.uni-tuebingen.de/GermaNet/ [Accessed: April 08, 2018] 
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1- Path similarity (Rada et al., 1989): computes shortest number of edges from one 

word sense to another in WordNet hierarchical structure. Using edge counting 

(section 3.2.2.1), the distance between two disjunctive sets of concepts is defined 

as the minimum path length from any element of the first set to any element of 

the second. 

2- Leacock-Chodorow Similarity (LCH) (Leacock and Chodorow, 1998): the same 

as the Path similarity except that it uses the negative logarithm of the result of 

Path similarity. 

3- Wu-Palmer similarity (WUP) (Wu and Palmer, 1994): similar to LCH, except it 

weights the edges based on distance in the hierarchy (section 3.2.2.1). 

4- The Lesk similarity (Lesk, 1986): it defines the similarity between two concepts 

as a function of the overlap between the corresponding definitions, as provided 

by a dictionary such as WordNet. 

The WS4J Library11 (Shima, 2014) is used in this experiment.  

Table 4.2 shows that the performance of C-HTS using Wikipedia as its knowledge base 

outperforms its performance using WordNet even with different relatedness measures 

used with WordNet. This proves that using Wikipedia as a large knowledge base that is 

built from the collaborative work of hundreds of thousands of people is better than relying 

on a limited knowledge base such as WordNet. 

Table 4.2 Comparison between different similarity measures using WordNet in C-HTS 

                                                 
11 https://github.com/Sciss/ws4j/ [Accessed: January 22, 2018] 

 Level Moonstone Wikipedia 

 

Wikipedia ESA 

 

3 (top) 

2 (middle) 

1 (bottom) 

0.320 

0.507 

0.488 

0.330 

0.397 

0.402 

 

WordNet Path 

 

3 (top) 

2 (middle) 

1 (bottom) 

0.393 

0.523 

0.523 

0.385 

0.412 

0.421 

 

WordNet LCH 

 

3 (top) 

2 (middle) 

1 (bottom) 

0.393 

0.525 

0.520 

0.385 

0.410 

0.422 

WordNet WUP 

3 (top) 

2 (middle) 

1 (bottom) 

0.397 

0.523 

0.522 

0.378 

0.412 

0.424 

WordNet Lesk 

3 (top) 

2 (middle) 

1 (bottom) 

0.375 

0.508 

0.536 

0.377 

0.411 

0.420 
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4.7.2 Lexical Representation 

Lexical representation has been widely used in the literature in text segmentation (Hearst, 

1994; Choi, 2000). As its name suggests, it splits text into segments based on words that 

these segments share with each other. Lexical cohesion refers to the connectivity between 

two portions of text in terms of word relationships. It relies mainly upon the endogenous 

knowledge extracted from the documents themselves. Text segmentation approaches that 

rely upon lexical similarity between text blocks, however, fail to recognise relevant seg-

ments that do not share words with each other. Hence, in C-HTS, the semantic relatedness 

between text blocks is employed to reveal much knowledge about the meaning beyond 

text.  

In order to assess the efficacy of using the semantic representation of text in C-HTS, an 

experiment was carried out where the lexical representation of text is used to measure the 

lexical similarity rather than using the semantic relatedness between text blocks (second 

phase in C-HTS, section 4.4.2). Additionally, different lexical similarity measures are 

used in this experiment: 

1- Cosine Similarity (Singhal, 2001): a basic measure often used in information 

retrieval, weights words according to their term frequencies scores, and computes 

the cosine between two text vectors. 

2- A string distance metric such as Levenshtein distance (Levenshtein, 1966): it 

measures the similarity between two given strings based on the distance between 

them. The distance is the number of deletions, insertions, or substitutions required 

to transform the first string into the second.  

3- Monge-Elkan measure (Monge and Elkan, 1996): is a simple but effective method 

for measuring the similarity between two strings containing multiple tokens, using 

an internal similarity between tokens. It measures the average of the similarity 

values between pairs of more similar tokens within two given strings. 

4- Longest Common Subsequence (LCS) (Allison and Dix, 1986): refers to the 

longest string two texts have in common, when gaps between the series in 

characters are allowed. 

The Dkpro Similarity Framework12 (Bär et al., 2013) is used in this experiment. 

                                                 
12 https://dkpro.github.io/dkpro-similarity/ [Accessed: January 22, 2018] 
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Table 4.3 shows that the explicit semantic representation of text (ESA) outperforms the 

lexical representation approach in all similarity measures, segmentation levels and in both 

datasets. This in fact is not surprising as lexical representation approaches can process 

only the information that they can ‘see’. While, on the other hand, explicit semantic rep-

resentation of text allows a NLP task (e.g. segmentation) to reason about text using 

knowledge extracted from a massive knowledge base such as Wikipeida. 

Table 4.3 Comparison between different coherency measures used with C-HTS 

 

4.8 The Impact of Knowledge Breadth 

In this research, C-HTS uses a concept space that is built from the text of a knowledge 

base articles (Wikipedia). (Anderka and Stein, 2009) showed that the size of the text col-

lection used to build the concept space has much more impact on the explicit semantic 

analysis performance than its nature (how its written or organised). Wikipedia is being 

constantly expanded and updated by different contributors who add new articles and ex-

tend the existing ones. Consequently, the amount of knowledge in Wikipedia is expand-

ing. We conjecture that such expansion, and the growth of information available in the 

knowledge base should impact the accuracy of the segmentation process. To test this as-

sumption, different snapshots of the entire Wikipedia knowledge base were acquired from 

three different years: 2006, 2013 and 2017. The snapshots from 2006 and 2013 were pro-

cessed by (Carvalho et al., 2014) and ready for use. For the 2017 snapshot, we processed 

 Level Moonstone Wikipedia 

 

ESA 

 

3 (top) 

2 (middle) 

1 (bottom) 

0.320 

0.507 

0.488 

0.330 

0.397 

0.402 

 

Cosine 

 

3 (top) 

2 (middle) 

1 (bottom) 

0.352 

0.510 

0.499 

0.362 

0.401 

0.407 

Monge-Elkan  

3 (top) 

2 (middle) 

1 (bottom) 

0.406 

0.528 

0.517 

0.430 

0.410 

0.418 

LCS 

3 (top) 

2 (middle) 

1 (bottom) 

0.399 

0.541 

0.522 

0.427 

0.420 

0.429 

Levenshtein  

3 (top) 

2 (middle) 

1 (bottom) 

0.428 

0.523 

0.537 

0.451 

0.420 

0.431 



 

 

97 

it ourselves13 following the instructions in (Gabrilovich and Markovitch, 2009) and 

(Carvalho et al., 2014)14. 

4.8.1 Experiment and Results 

Table 4.4 presents a comparison of the amount of information contained in the three used 

Wikipedia snapshots. In this experiment, C-HTS was run on the two aforementioned 

datasets but using different concept spaces built from the three different Wikipedia 

snapshots. The purpose of this experiment is to examine the effect of the expansion of the 

underlying knowledge base has on C-HTS.  

Table 4.5 shows the results of the experiment. As can be observed, increasing the amount 

of knowledge in the knowledge base leads, on average, to improvements in hierarchical 

text segmentation. Although the difference in performance of the three versions is 

admittedly small, it is consistent across the datasets. 

Table 4.4 Comparison of the three Wikipedia snapshots 

Snapshot’s Year 2006 2013 2017 

# Articles 895,000 4,133,000 5,373,241 

# Concepts used 369,767 1,270,521 1,446,243 

# Distinct terms 598,391 1,615,525 1,825,353 

Concept space size  11 Gb 21 Gb 12.5 Gb15 

Table 4.5 Comparison of the three Wikipedia snapshots 

  Level Moonstone Wikipedia 

2006 Snapshot  

3 (top) 

2 (middle) 

1 (bottom) 

Average 

0.347 

0.545 

0.504 

0.465 

0.365 

0.404 

0.411 

0.3933 

2013 Snapshot 

3 (top) 

2 (middle) 

1 (bottom)  

Average 

0.346 

0.539 

0.509 

0.464 

0.366 

0.397 

0.405 

0.390 

2017 Snapshot 

3 (top) 

2 (middle) 

1 (bottom)  

Average 

0.320 

0.507 

0.488 

0.438 

0.330 

0.397 

0.402 

0.3823 

                                                 
13 Wikipedia 2017 snapshot processed for ESA is available here: https://goo.gl/JZhEvm 
14 The technical instructions and snapshots can be found here: https://github.com/dscarvalho/easyesa/ [Accessed: De-

cember 3, 2018] 
15 We indexed the 2017 snapshot in MongoDB v3 that uses the WiredTiger storage engine which applies more com-

pression than the old mmapv1 engine in MongoDB version used in indexing both 2006 and 2013 snapshots. 
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4.9 Chapter Summary 

This chapter introduced C-HTS, a new Concept-based Hierarchical Text Segmentation 

approach. The core idea of C-HTS is the use of an external knowledge to enhance the text 

representation by adding a semantic layer of concepts that represents the text in a high 

dimensional semantic space. Relatedness (in contrast to similarity) between the atomic 

units of text is measured using this semantic representation. A Hierarchical 

Agglomerative Clustering (HAC) algorithm is then used to grow coherent segments of 

the text. The output of C-HTS is a tree-like structure of the input text. C-HTS was 

compared against a set of state of the art approaches across two different datasets. The 

results showed that C-HTS performed favourably against other approaches. Additionally, 

to asses the effictiveness of using Wikipedia as the underlying knowledge source, an 

experiment was carried out where WordNet is used as the knowledge source for C-HTS. 

Experimental results showed that relying on resources such as WordNet offers little 

information about the different word representations and hence, deteriorates the 

performance of C-HTS. Furthermore, different lexical similarity measures were used with 

C-HTS to assess the effectiveness of using the semantic representation of text in C-HTS. 

Experimental results showed that using semantic relatedness outperforms other similarity 

measures.  

Another experimrnt was carried out to evaluate the influence of the size of the knowledge 

base that C-HTS uses to reason about text. Since C-HTS uses Wikipedia as the underlying 

knowledge base, its performance was measured when using different concept spaces built 

from different snapshots of Wikipedia over different years: 2006, 2013 and 2017. The 

results showed that there is a measurable impact upon segmentation performance, and 

while the difference is small, it is consistent across the two datasets.  

The concept space that was built from the 2017 Wikipedia snapshot is publicly available: 

- https://goo.gl/JZhEvm 

and the implementation of the C-HTS algorithm is also publicly available:  

- https://github.com/bayomim/C-HTS 

Finally, it is noteworthy to point out the C-HTS algorithm along with the experimental 

work16 described in this chapter was published in the following paper: 

                                                 
16 Except for experiments 2 and 3 in section 4.7 
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Bayomi, M. & Lawless, S. “C-HTS: A Concept-based Hierarchical Text Segmentation 

approach”. In the Proceedings of the Eleventh International Conference on Language 

Resources and Evaluation (LREC 2018). Miyazaki, Japan: European Language Re-

sources Association (ELRA). 



 

 

100 

5. CROCC: Customised Reuse of Open- and Closed-corpus Con-

tent  

The previous two chapters presented different hierarchical text segmentation approaches 

that use semantic text representation to build a structure out of unstructured textual con-

tent. Evidence from the experiments discussed in the previous chapters showed that C-

HTS (Chapter 4) outperformed OntoSeg (Chapter 3) in the task of building a hierarchical 

structure of text (section 4.5.3).  

The second research question posed by this thesis is: 

Can the produced structure be used to enhance the discoverability and reusability of con-

tent for adaptive systems? 

In order to study the benefit of the produced structure in a content adaptation scenario, 

this chapter describes a novel content-supply service named CROCC (Customised Reuse 

of Open- and Closed-corpus Content). CROCC is a service which harvests content 

resources from open and closed corpora1 in their native form, builds a structure out of 

each content resource based on its conceptual representation, and delivers content slices2 

which meet the requirements of individual adaptive systems. This service is focused upon 

contributing the third objective of this thesis (RO 3) (section 1.2). 

5.1 State of the Art Influences 

The analysis conducted in the state of the art chapter (Chapter 2), influenced various de-

sign aspects of the content-supply service which is described in this thesis. The aim of 

this section is to present a summary of these influences and how they affect the core 

properties of the content-supply service developed by this research.  

Influences derived from the state of the art review are presented and grouped within seven 

different categories, each highlighting individual perspectives with respect to the limita-

tions and opportunities identified as part of the analysis performed. These categories are: 

1. Content Incorporation 

2. Content Right-Fitting 

3. Content Structuring 

                                                 
1 This thesis recognises that there are key challenges regarding IP and copyright when attempting to reuse open corpus 

content, even for educational use. Initiatives such as creative commons can potentially have a very positive impact on 

clarifying the copyright permissions for educational use. However, in this thesis, copyright and IP issues are deemed 

to be out-of-scope. 
2 A slice is a piece of content (one or more sentences) that originates from a pre-existing content resource. 
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4. Content Representation 

5. Content Indexing 

6. Content Discoverability 

7. Content Reusability 

These categories are detailed in the following subsections. 

5.1.1 Content Incorporation Techniques 

- Many adaptive systems have mainly relied upon the manual incorporation of con-

tent resources (section 2.4.4.1).  

- However, these systems have failed to overcome the problems associated with 

extending and updating the content they can provide to their users. Hence, they 

do not scale well and are deemed impractical for a variety of real-world applica-

tions.  

- Extending resources in such systems is a manual and labour-intensive task that 

needs much time and effort from a domain expert.  

- This in turn makes content very tightly coupled to these systems and, as a result, 

strongly impedes the reusability of this content in different systems.  

- Additionally, whenever a change in the structure or presentation of content re-

sources needs to be made, adaptation techniques and algorithms developed within 

the adaptive system must be altered accordingly or replaced altogether, which can 

be quite labour intensive.  

Key Principle 1.a: Content should be incorporated automatically and should be made 

available to adaptive systems through a service that can deliver resources as content pack-

ages3 that are amenable for reuse within various independent adaptive systems. 

Key Principle 1.b: The service should be designed using a flexible architecture that 

allows plugging-in, removing, enabling, or disabling alternative components or algo-

rithms based on the content being processed by the service. 

5.1.2 Content Right-Fitting 

- Adaptive systems started to employ web technologies to automatically retrieve 

and incorporate content from the sources reachable through the web and deliver 

them to their users (section 2.4.4.2).  

                                                 
3 Content package is a piece of content extracted from a document, as opposed to a whole document in its entirety. 
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- While web resources are often freely available, they are generally not properly 

structured into easy-to-handle units. The one-size-fits-all nature of web content 

makes it “same content for all people”. 

- For this reason, the incorporation and delivery of open corpus content resources 

in their native form is inadequate for adaptive systems (section 2.5.2.1). 

Key Principle 2: Resources should be structured into fine grained content packages 

to support the creation of content slices to meet the adaptation requirements of individual 

users or applications. This would give much more control to the adaptive system over the 

provided content. 

5.1.3 Content Structuring 

- Several approaches started to overcome the limitations associated with the one-

size-fits-all nature of content resources by focusing upon extracting content frag-

ments from harvested resources (section 2.5.2.2). 

- They have typically relied upon the original structure of the content resources (e.g. 

the HTML structure of web pages). This means that these approaches do not con-

sider the content itself, rather, they consider the structure with which the content 

is built; this reflects the needs and the perspective of the content author. 

- While each adaptive system has its own content requirements (based on its users), 

relying upon the author-imposed structure hinders these approaches from under-

standing the content itself and, as a result, they cannot satisfy these content re-

quirements.  

- Furthermore, for content resources that do not possess any layout structure, ex-

tracting relevant content fragments is not then feasible.  

- Additionally, as these approaches can only process content resources that have a 

layout structure, they are limited with regard to the diversity and the volume of 

content resources which they can leverage and provide to adaptive systems. 

Key Principle 3: The proposed service should employ novel approaches to structure 

content resources without the reliance upon their original structure. This would al-

low the service to incorporate a wider range of content resources regardless of its origin 

(closed or open) and the method used to incorporate it (user incorporation or automatic 

incorporation – section 2.4.4.2).  
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5.1.4 Content Representation 

- State of the art approaches are limited in that they rely upon the traditional bag-

of-words representation of content in measuring similarity between a content item 

(a document or a fragment) and the request (query) sent by individual users or 

applications (section 2.5.2).  

- Even systems that use concepts in this task primarily rely upon a limited concep-

tual representation of content items (i.e. using one or very few concepts) (sec-

tion 2.5).  

- Such limited conceptual representation hinders content items from being effec-

tively discovered and presented to the users (or applications) according to their 

needs and from being reused in other systems (section 2.5.2). 

Key Principle 4: The service should apply a conceptual representation of the incor-

porated content to overcome the limitations of the lexical representation paradigm. Fur-

thermore, this conceptual representation should be rich enough to cover all the possible 

interpretations of content. 

5.1.5 Content Indexing 

- Content indexing provides a formalised, simplified and machine usable represen-

tation of content contained within each resource.  

- For adaptive systems that rely on closed corpus content resources, since content 

is structured and annotated by the content author (or a domain expert), the index-

ing of this content is typically manual, which is a labour-intensive task (sec-

tion 2.5.2). 

- For adaptive systems that rely on open corpus content resources and use docu-

ment-level indexing approaches, the harvested resources are indexed in their na-

tive form as one-size-fits-all, document-level-granularity resources (sec-

tion 2.5.2.1).  

- This in turn limits the extent to which these resources can be modified or recom-

posed together. 

- For fragment-level indexing approaches, the harvested resources are processed 

and segmented into coherent fragments based on their layout structure. The pro-

duced fragments are then indexed in a content repository (section 2.5.2.2). 
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- However, in these approaches, the indexing process means that the final structure 

of each content fragment is already built. This limits the capability of these ap-

proaches from changing such structure according to the needs of individual users 

or applications and makes these approaches limited in their ability to provide dif-

ferent levels of granularity for the indexed content. 

- Additionally, both approaches (document-level and fragment-level) are limited in 

that they index content items (documents or fragments) based on the keywords or 

few concepts (usually one concept) found in each individual item.  

- As mentioned in the previous section (section 5.1.4), this prevents content items 

from being effectively discovered and presented according to the users’ needs and 

hinders their reusability in other systems. 

Key Principle 5.a: Content needs to be automatically indexed at various levels of gran-

ularity regardless of the original structure that has been embedded by the author of the 

content resource.  

Key Principle 5.b: Such indexing mechanism should index each level of content gran-

ularity along with a rich conceptual representation for each content item (i.e. content 

slices) in each level. 

5.1.6 Content Discoverability 

- Discovery of the indexed content involves deciding what content is most relevant 

to the needs or goals of current user or application. Generally, strategies for con-

tent discovery compute a measure of relevance for each content item (e.g. frag-

ment) to the target user’s model (section 2.5.3).  

- In keyword-based approaches, the user model is represented as a set of keywords 

that describe the user’s preferences or goals and a keyword-based similarity meas-

ure is computed between this user model and content items. 

- However, the quality of simple keyword-level similarity techniques is not reliable 

as it can often retrieve content items that are not semantically related to the user 

model (section 2.4.4.2). 

- In concept-based approaches, the user model is represented as a set of concepts 

that characterise the user’s preferences or goals and a concept-based similarity 

measure is computed between this user model and the concepts covered in content 

items (section 2.4.4.2). 
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- However, as discussed in section 5.1.4, these systems mainly rely upon a limited 

conceptual representation of content items (i.e. using one or very few concepts). 

Such limited conceptual representation hinders content items from being effec-

tively discovered and presented to the users according to their preferences or goals 

(section 2.5.3).  

Key Principle 6.a: The process of discovering (and providing) content items should 

be performed by the service using the conceptual representation of the indexed con-

tent. The similarity between a request (sent by the adaptive system based on the user 

model) and a content item (a slice) should be measured based upon the conceptual repre-

sentation of the request and the content item. 

- Another limitation of the current state of the art approaches is that, since they rely 

upon the original structure of the incorporated content, they have limited control 

over the granularity level of content and can only provide very coarse-grained 

content fragments (e.g. fragmenting a document down to paragraphs, but not to 

sentences or phrases for example).   

Key Principle 6.b: The proposed service should be able to discover content items ac-

cording to any level of granularity specified by the adaptive system that suits its re-

quirements.  

5.1.7 Content Reusability 

- Different content reusability techniques have been proposed in the literature 

where each technique has its own strengths and limitations (section 2.6). 

- Encapsulation techniques showed that content encapsulation standards allow a 

common structure and descriptive metadata to be used across resource consumers, 

which supports the discovery and reuse of content resources from various origins 

by each individual application (section 2.6.1).  

- However, with the increase in volume of content resources, the amount of manual 

labour required to annotate and structure these resources also increases. Further-

more, repositories produced by content encapsulation techniques can still be seen 

as “closed pools” of reusable content resources, since the resource publication and 

delivery mechanisms are specific to each repository.  
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- Shared Publishing techniques removed the need for adaptive systems to modify 

its content consumption mechanism to each individual repository and improved 

the accessibility of content resources from the different repositories as if they are 

from a single unique repository (section 2.6.2).  

- However, both encapsulation and shared publishing reuse mechanisms do not in-

volve the modification of the original resources themselves. Although reusing a 

content resource without modifying it can potentially include reusing it for pur-

poses not originally planned by its author, the inability to modify a content re-

source limits the range of purposes for which it could be reused. 

- Content Modification techniques started to apply modification to the original re-

sources to increase the reuse capabilities of a content resource (section 2.6.3). 

- However, relying on the original structure of the content resource (HTML struc-

ture or paragraphs) to modify it, limits the range of purposes for which it could be 

reused. 

- Additionally, since these approaches modify content resources and produce con-

tent fragments before a request is done, the produced fragments are considered 

static content items which restricts the potential scenarios in which such content 

items can be reused. This, in turn, makes these approaches limited in responding 

to the different potential forms of requests. 

Key Principle 7.a: The proposed service should automatically modify the incorporated 

content resources to produce content slices at all possible levels of granularity of each 

individual content resource. This would allow the creation of a slice on-the-fly according 

to the characteristics of an arbitrary request by individual adaptive systems. 

- A common characteristic of all the aforementioned approaches is that the reusa-

bility of a content item within different adaptive systems depends primarily upon 

the descriptive metadata they attach to content items which represents the content 

publication and delivery mechanism of each approach. This descriptive metadata 

is used to select appropriate content where there may be many candidate content 

items available to fulfil a user or system requirements.  

- However, as mentioned in section 5.1.4, these techniques provide limited capabil-

ities to capture the conceptualisations associated with content resources and hence 

they offer limited metadata information about content items. This, in turn, limits 

the scenarios in which each individual content item can be reused. 
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Key Principle 7.b: To increase the potential scenarios in which content items can be 

reused, the proposed service should provide a generic content publication and deliv-

ery mechanism to allow adaptive systems to easily acquire content items without the 

need to adjust their content acquisition mechanism. This means that a rich descriptive 

metadata information should be attached to each content item. This metadata information 

should have all possible conceptual representations of the content item. 

5.1.8 Summary 

This section discussed the influences derived from the analysis conducted in the state of 

the art review (Chapter 2). The analysis revealed the limitations with respect to the un-

derlying content production approaches currently used to supply content to adaptive sys-

tems. The analysis also revealed the potential enhancement that can be applied to the 

content production (and supply) process to enhance the discoverability of the appropriate 

content items as well as the reusability of content for different adaptive systems. This 

section summarised these influences and key principles made with respect to the proto-

type service to be developed for this research. The next section provides a description of 

design requirements, derived from the key principles enunciated in this section, of a ser-

vice which enables the automated harvesting, structuring, customisation and reuse of 

open and closed corpus content resources for consumption within adaptive systems based 

on content’s conceptual representation.  

5.2 CROCC Architecture 

The main purpose of the CROCC service is to provide adaptive systems with textual 

content slices that are tailored to the needs and requirements of each individual system. 

The CROCC service is designed using a flexible architecture that allows for plugging-in, 

removing, enabling, or disabling alternative components or algorithms at runtime as well 

as design time of the service (Key Principle 1.b). The CROCC service is offered as an 

intelligent content-supply framework, which consists of the following modules: 

1- Content Harvester 

2- Content Pruner 

3- Structure Builder 

4- Slice Indexer 

5- Content Repository 

6- Slice Selector 
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Figure 5.1 depicts the architecture of the CROCC service. This architecture is designed 

as a pipeline where the components can be run successively, in the numerical order spec-

ified in the figure. 

      
Figure 5.1 The CROCC service architecture 

5.2.1 Content Harvester 

The first module in the CROCC service is the content harvester. The purpose of this mod-

ule is to automatically acquire content resources based on the content requirements of the 

adaptive system (Key Principle 1.a). These requirements include: domain area (e.g. 

health, computer science, finance, etc.), a set of URLs the adaptive system needs content 

to be harvested from and/or set of closed corpus content resources (e.g. a book in an 

educational adaptive system). Since CROCC can operate on both closed and open corpus 

content resources, the harvester mainly provides two different content harvesting modes: 

closed corpus harvesting and open corpus harvesting. For closed corpus harvesting, 

and as discussed in section 2.5.1, since content resources are known to the adaptive sys-

tem (e.g. specified by a domain expert or incorporated by its users), the Content Harvester 

provides an interface for the adaptive systems to allow them to transfer (upload) these 

content resources to the CROCC service to be processed and indexed as content slices. 

As for open corpus harvesting mode, since content resources are not known to the adap-

tive system, they need to be discovered and retrieved to be processed by the CROCC 

service; hence, the main purpose of the open corpus harvesting mode is to automatically 

identify and incorporate relevant resources from the web which relate to a topic from the 
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specified domain area. This technique mainly focuses on identifying web resources rele-

vant to a particular topic and harvesting them in their native form (HTML pages).  Since 

the challenge of identifying web resources relevant to a particular topic is a very well 

documented and established field of research of its own (see section 2.5.1), the process 

of correctly identifying relevant web pages is considered out-of-scope of this thesis. Thus, 

existing third-party IR systems or focused crawling techniques can be utilised instead as 

a callable service in this module. Examples of such systems are: Bing Custom Search4, 

Openwebspider5, Heritrix6, 80Legs7 and WebSphinx8. These systems enable the commu-

nity to perform a variety of crawling tasks (from classic crawling to focused crawling). 

5.2.2 Content Pruner  

As discussed in section 5.1.3, the CROCC service should employ novel approaches to 

build a structure out of textual content resources regardless of the original structure of 

these resources (Key Principle 3). However, content resources usually come in a range of 

different formats, where each format type has its own structure. For example, open corpus 

resources available on the web are usually formatted as HTML pages with deep nested 

structures that contain auxiliary content fragments, such as: headers with navigation 

menus, footers with contact and corporate information, or sidebars with advertisements 

(Viveros-Jiménez et al., 2018; Vogels et al., 2018). In order to build a structure out of a 

content resource, such content fragments are unwanted or not useful (Levacher et al., 

2009). Hence, these content fragments must commonly be discarded before building the 

structure for the content resource.  

Content Pruner hence refers to the ability to identify such unnecessary fragments within 

a content resource to remove them and convert the content resource into a plain text file. 

Figure 5.2 depicts the process of pruning content resources and removing the unwanted 

content fragments. 

In contrast to state of the art content-supply approaches, the CROCC service does not rely 

upon the original structure of the content resource, rather, it prunes the resource and con-

verts it into a plain text in order to build a structure out of it based on the conceptual 

coherency between its constituents.  

                                                 
4 https://azure.microsoft.com/en-gb/services/cognitive-services/bing-custom-search/[Accessed May 2, 2018] 
5 http://www.openwebspider.org [Accessed May 2, 2018] 
6 https://webarchive.jira.com/wiki/display/Heritrix/Heritrix [Accessed May 2, 2018] 
7 http://www.80legs.com/ [Accessed May 2, 2018] 
8 https://webarchive.jira.com/wiki/spaces/Heritrix [Accessed May 2, 2018] 



 

 

110 

The task of pruning a web page is called content fragmentation9. This task is a very well 

documented and established field of its own where different approaches have attempted 

to identify structurally coherent fragments of a web page based on its HTML layout struc-

ture (Fang et al., 2018; Zeleny et al., 2017). Content fragmentation techniques are in-

creasingly used as preliminary processing step for different tasks such as web mining 

(Alassi and Alhajj, 2013), web search (Moura et al., 2010) and web page classification 

(Bing et al., 2014). 

As CROCC can operate on closed and open corpus content resources (Key Principle 3), 

designing it using a flexible pipeline architecture enables the content pruner (and other 

modules) to be easily replaced based on the format of the desired content resources. 

 

Figure 5.2 Removing the unnecessary content fragments by the Content Pruner   

5.2.3 Structure Builder 

After pruning the harvested content resources and converting them into plain text docu-

ments, a hierarchical structure is built for each resource (Key Principle 2 & Key Principle 

3) based on its conceptual representation (Key Principle 4). To achieve this task, the 

Structure Builder module utilises the C-HTS algorithm proposed in Chapter 4 of this the-

sis. In this module, and for each resource, text is processed to be split into sentences and 

to remove stopwords as they are generally assumed to be of less, or no, informational 

value. The remaining terms are then stemmed and converted to their linguistic root form 

(section 4.4.1). A Hierarchical Agglomerative Clustering (HAC) approach is then applied 

                                                 
9 In the literature, content fragmentation is also referred to as structural fragmentation, region extractors, and page 

segmentation. 
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on text blocks to successively agglomerate blocks that are semantically coherent and 

build a text structure (section 4.4.3). As discussed in section 4.6.1, the size of the 

elementary units for C-HTS is one sentence.  

In each iteration of C-HTS, for each text block (one or more sentences), and for each term 

in that text block, the term is mapped to a vector of concepts from the underlying concept 

space (section 4.3). The semantic relatedness between two (adjacent) blocks is calculated 

as the cosine similarity between the centroid of the vectors representing the individual 

terms in each block using Equation 4.2 (section 4.3.1). The algorithm successively 

agglomerates text blocks that are deemed to be semantically related to each other, thus 

forming a text structure. C-HTS uses HAC because it is a bottom-up clustering approach. 

The idea behind using a bottom-up approach in building the structure of content is that it 

starts from the smallest clusters (sentences), that are considered the lowest granularity 

level of content, and then builds the content structure by successively merging the 

semantically coherent clusters. This way of building the content structure allows the 

production of fine grained content slices that are useful to support a variety of content 

discoverability and reusability methods as it provides different levels of granularity for 

the underlying content (Key Principle 2).  

Figure 5.3 shows a sample of the output of one iteration (first iteration) of the Structure 

Builder. In this iteraton, the Structure Builder generates slice objects of the target content 

resource. Each slice object contains a set of concepts (the weighted centroid vector of 

concepts, section 4.3.1) along with the relevancy score of each concept with this slice. 

This score quantifies the strength of association between the concept and the slice. 

Additionally, a descriptive metadata information is attached to each slice object. This 

metadata describes what textual content (i.e. sentences) in the target document is covered 

by this slice, the document id and the size of the slice.  

The metadata layer attached to each slice can include a variety of metadata information 

that gives more description to each slice. This is due to the flexibility of building the 

structure of a content resource using C-HTS. With each iteration in the algorithm and in 

each level, additional annotations can be easily attached to each generated slice using the 

approperiate annotation tool. For example, for each generated slice (one or more 

sentences), a reading difficulty score can be measured and attached to the slice. This score 

identifies the difficulty level associated with comprehending a piece of content by 

analysing its text. This would help, for example, in response to a request sent by an 
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educational adaptive system when it requires a slice of text with a specific reading 

dificulty according to its user’s level.  

    

Figure 5.3 A sample of the output of one iteration of the C-HTS algorithm in the Structure Builder module 

Another metadata element that could be added to the metadata layer of the slice is the 

pedagogical annotations of an eLearning course to provide pedagogically meaningful 

learning experiences. For each slice produced by the Structure Builder, automatic peda-

gogical annotation algorithms could be applied to categorise slices into introduction, de-

scription, quiz, explanation, example and other pedagogically meaningful concepts 

(Labutov et al., 2017; Sathiyamurthy and Geetha, 2011; Wang, 2008). Such metadata 

information could be used to identify and retrieve the content slices available from the 

Content Repository (see section 5.2.5) that match as closely as possible the content 

requirements requested by an adaptive system.  

5.2.4 Slice Indexer 

The main task of the Slice Indexer is to index content slices produced by the Structure 

Builder. These slices represent content items produced at all levels of granularity of a 

content resource (Key Principle 5.a). This process includes the indexing of the slice ob-

jects produced at each level of the hierarchical tree by the Structure Builder (Key Princi-

ple 5.b).  

In the Structure Builder module and for each iteration of C-HTS, the Slice Indexer 

recieves the produced slice objects in each level. The Slice Indexer starts to index each 
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slice object in an inverted index in the Content Repository (see next section). In this in-

dexing process, each concept in each slice object, is mapped to a list of other slice objects 

in which this concept appears, along with the descriptive metadata information attached 

to the slice. Thus, each concept appearing in documents of the harvested corpus can be 

seen as triggering each of the slice objects it points to in the inverted index. Figure 5.5 

shows how the Slice Indexer maps each concept to slice objects associated with it.  

It is worth mentioning that the Slice Indexer does not index the textual data of each 

produced slice. Rather, it indexes the slice object that describes the content of the slices. 

Thus, a slice object is not, in fact a slice, but is just a metadata description of a slice. 

Indexing the textual data of each harvested resource is described in section 5.2.5.2. 

  

Figure 5.4 Illustration of how the Slice Indexer maps a concept to slice objects associated with it 

5.2.5 Content Repository 

As discussed in the previous section, for a given document, in each iteration of C-HTS in 

the Structure Builder, the Slice Indexer maps each concept in each slice object to the set 

of slice objects associated with this concept. In order to facilitate the discoverability of 

content slices, the Slice Indexer sends these slices to the Content Repository to be in-

dexed. The Content Repository consists of two indices: Concept Index and Text Index. 

Both are standard IR inverted indexes that store data in a key-value indexing fashion. 
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5.2.5.1 Concept Index 

The main task of this index is to store concepts and their relevant slice objects produced 

by the Slice Indexer. It is a standard IR inverted index that stores data in a key-value 

indexing fashion where the key is the id of the concept as it appears in the underlying 

concept space and the value is the set of slice objects associated with that concept. Each 

slice object contains metadata that describes the slice. Figure 5.5 shows an example of a 

concept index in the Content Repository. In this example, a concept with id 50549 is 

mapped to a set of slice objects from the harvested corpus that this concept is associated 

with. Each slice object contains the following metadata information: 

- Document ID: the id of the document (in the harvested corpus) where this slice 

comes from. 

- Slice Range: the range of sentences (textual content) that this slice covers in the 

document. The slice range indicates the start index and the end index of the sen-

tences that it covers in the document. For example, in Figure 5.5, slice with Slice 

Range = 1 means that this slice consists of one sentence with index = 1 (first 

sentence in the document). Also, the slice with Slice Range = 5-8 means that this 

slice consists of 4 sentences starting from sentence 5 and ending at sentence 8 in 

the document. This content identification mechanism saves space and allows the 

Slice Selector (see section 5.2.6) to easily discover and retrieve relevant slices 

according to the requirements of different individual adaptive systems. What this 

means is that CROCC is space-efficient in that it does not store the extracted frag-

ments as a chunk of text, but rather stores fragment metadata that acts as pointers 

to various parts of the text. 

- Score: the relevance score of the concept for this slice. This score identifies the 

order of each slice in the list of slice objects associated with the concept. In other 

words, slice objects in this list are ranked in descending order based on their rel-

evance for this concept (this score is calculated as described in section 4.3.1). 

- Size: the number of sentences in the slice. Although the number of sentences can 

be inferred from the Slice Range, this number is stored in the index in order to 

speed up the search process when we want to retrieve slices of specific size (e.g. 

we only want slices that contain five sentences). This size can be mapped to the 

adaptation requirements of an adaptive system. For example, it can be mapped to 

the reading time of the user in the request (Lawless et al., 2015). 
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As discussed in section 4.4.1, C-HTS splits text into sentences. Consequently, the 

slice size is represented as the number of sentences in that slice. However, since 

the morphological analysis process in C-HTS walks through each term in each 

sentence (removing stopwords and stemming), a slice size can also be represented 

in terms of the number of tokens that the slice covers. This in turn gives more 

control over content granularity and gives the CROCC service the ability to pro-

duce different compositions of slices to meet the adaptation requirements of indi-

vidual adaptive systems. 

- Other metadata annotations: as discussed in section 5.2.3, the flexibility of the C-

HTS algorithm while building the document structure allows the integration of 

different annotation tools that can annotate each slice with different information. 

Such metadata annotations can be easily added to the metadata information of the 

slice. Examples of such metadata annotations are reading difficulty and pedagog-

ical concepts.   

 

Figure 5.5 An example of the concept index in the Content Repository  

This index, hence, provides a concept-based content publication and delivery mechanism 

that allows adaptive systems to easily acquire content slices. All it needs is that the adap-

tive system employs the proper technology to call the CROCC service or make some 

minimal adjustments to their content acquisition mechanism. This in turn increases the 

potential scenarios for which the incorporated content resource could be reused (Key 

Principle 7.b). 
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5.2.5.2 Text Index 

The second index in the Content Repository is the Text Index. The main task of this index 

is to store the textual content of the harvested resources. When a content resource (from 

closed or open corpus) is harvested by the CROCC service using the Content Harvester, 

the Content Pruner removes the unnecessary content fragments and converts it into plain 

text. This plain text is then processed by the morphological analysis phase of the C-HTS 

algorithm in the Structure Builder module. The first step in this phase is to split text into 

sentences. Since the final output of the CROCC service is a slice of textual content, the 

produced sentences from the morphological analysis phase are sent to the Text Index to 

be indexed as a list of sentences. This list is used later to generate the textual content of 

the selected slice. Note that, stopwords removal and stemming are not performed on the 

text in this index as it will be used to reassemble the sentences in the slice (see next 

section). Figure 5.6 illustrates how the document sentences are stored in the Text Index 

after the morphological analysis phase in C-HTS. 

Similar to the Concept Index, the Text Index is a traditional IR inverted index that stores 

data in the key-value fashion where the key is the document id and the value is a list of 

sentences that this document contains. Figure 5.7 depicts a sample of a document indexed 

in the Text Index. 

 

Figure 5.6 Document sentences stored in the Text Index after the morphological analysis phase in C-HTS 
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Figure 5.7 A sample of a document indexed in the Text Index 

5.2.6 Slice Selector 

Once slice objects and textual content have been indexed, the CROCC service becomes 

ready to provide content slices in response to requests sent by adaptive systems. The Slice 

Selector is considered the interface of the CROCC service with the adaptive systems. Its 

main task is to receive the request, process it, and retrieve the slice that best matches the 

request. Figure 5.8 depicts how the Slice Selector module works. 

   

Figure 5.8 Illustration of how the Slice Selector module works 
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The Slice Selector consists of four main sub-modules: 

a) Request Analyser: upon receiving a request, the request analyser starts to convert the 

query (the textual content) in the request into an ESA concept vector (section 4.3.1). The 

representation method of the query is identical to the one by which slices are represented 

at index time. First, it starts to apply the morphological analysis to the query to remove 

stopwords and then stem the remaining terms (section 4.4.1). Each term is then mapped 

to a vector of concepts from the underlying concept space used in the indexing process. 

The query is then represented as the centroid vector of all concepts associated with the 

query terms. Concepts in this centroid vector are ranked by their relevance to the query 

(using Equation 4.1). Figure 5.9 depicts a sample of the centroid vector of three concepts 

with their relevance scores to the query. 

   

Figure 5.9 A sample of the centroid vector of three concepts with their relevance scores to the query 

As discussed earlier in section 5.1.6, a common limitation of the state of the art ap-

proaches is that they have limited control over content granularity and they can only pro-

vide very coarse-grained content fragments. This is due to their reliance upon the original 

structure of the content resource. Since the Structure Builder module structures content 

in different levels of granularity, the CROCC service allows the adaptive system to spec-

ify its desired level of granularity for the requested slice; this is of course based on the 

user’s needs (Key Principle 6.b). The level of granularity can be specified in terms of 

number of sentences or number of tokens. This in turn gives the adaptive system more 

control over content granularity and hence overcomes the limitations of the state of the 

art approaches. 
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In addition to the level of granularity of the requested slice, the CROCC service allows 

the adaptive system to specify different adaptation specifications that suit its needs (sec-

tion 2.4.4). For example, a reading difficulty specification can be attached to the request 

to specify the difficulty level associated with comprehending the textual content of the 

slice. Additionally, a specification of pedagogical concept can be attached to the request 

to specify the category to which the requested slice should belong (e.g. Introduction, Ex-

planation, etc.). 

b) Slice Retriever: after building the centroid vector of concepts from the query and iden-

tifying the level of granularity, along with the adaptation specifications attached to the 

request, the slice retriever starts to query the Concept Index using this information. In this 

process, for each concept in the query centroid vector, a list of slice objects associated 

with that concept is retrieved such that: (1) they adhere to the specified level of granular-

ity; and (2) they match the adaptation specifications of the request.  Figure 5.10 shows an 

example of the returned lists of slice objects10 associated with the three concepts depicted 

in Figure 5.9. Note that, as mentioned in section 5.2.5.1, in each list, the slice objects are 

sorted in descending order of their relevance score with the concept.  

  

Figure 5.10 Example of the returned lists of slices associated with the three concepts in Figure 5.9 

                                                 
10 Other metadata information (e.g. size, document id, etc.) were omitted from this figure for simplicity. 
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c) Slice Ranker: the ranker takes input in the form of multiple lists of slice objects (as 

produced by the previous step). In order to select the slice that best matches the request, 

the slice ranker starts to assign a weight to each slice based on two main scores 

(Figure 5.10): 

1- Slice Score: the relevance score between the slice object and the concept. 

2- Concept Score: the relevance score between the concept and the query. 

Using both scores, the final weight of a slice object is calculated as follows:: 

𝑆𝑤𝑒𝑖𝑔ℎ𝑡
𝑖 =  ∑ 𝑆𝑐𝑗

𝑖 ∗  𝐶𝑞
𝑗
 

𝑗∈𝑚⃗⃗⃗⃗

 

 

 5.1 

where 𝑆𝑐𝑗
𝑖  is the slice score of slice object 𝑖 with concept 𝑐𝑗, 𝐶𝑞

𝑗
 is the concept score of 

concept 𝑗 with query 𝑞, and 𝑚⃗⃗⃗ is the centroid vector of all concepts associated with the 

query terms.  

This score is the accumulation of the concept weight in the centroid vector and the weight 

of the slice object in the list associated with that concept. Slice objects are then ranked by 

their final score and the top ranked slice object is selected. 

d) Text Retriever: since the final output of the CROCC service is a slice of textual content, 

the metadata information associated with the top ranked slice object is used to select the 

slice’s text from the Text Index. Using the “Document ID” and the “Slice Range” param-

eters of the metadata information attached to the slice,  the text retriever queries the Text 

Index to retrieve the textual content of the slice. This textual content is then returned as 

the response to the request sent by the adaptive system.  

This process of automatically identifying and generating a content slice demonstrates how 

the CROCC service is capable of producing a slice on-the-fly according to the character-

istics of a request from an adaptive system (Key Principle 7.a). This in turn enhances 

content reusability by increasing the potential scenarios in which the incorporated content 

resource could be reused (Key Principle 7.b). 

5.3 Adhering to the Key Principles  

The previous section (section 5.2) described the design aspects of the CROCC service. 

This section discusses how the proposed design of the CROCC service adheres to the key 
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principles derived from the state of the art influences. With respect to these key principles, 

the way that CROCC is designed has demonstrated the following: 

1- CROCC is provided as a service that: 

a. Allows the automatic harvesting and incorporation of content resources 

using the Content Harvester (Key Principle 1.a) 

b. Has a usefully flexible architecture (Key Principle 1.b) 

2- Using the Structure Builder, the service structures the harvested content resources 

and converts them into fine grained content packages (slices) (Key Principle 2) 

3- The service prunes the incorporated resources using the Content Pruner and struc-

tures each individual content resource without relying on the original structure. 

Thus, the service allows the incorporation of any relevant content resource re-

gardless of its source (closed or open) and regardless of the method used to incor-

porate that resource (user incorporation or automatic incorporation) (Key Princi-

ple 3). 

4- The service builds the structure of a resource based on the conceptual representa-

tion of its content using a concept space built from a massive knowledge base. 

Such a knowledge base is based on human cognition and has no limits on domain 

coverage and conceptual granularity. This in turn allows the service to represent 

the textual content of resources with a rich conceptual representation that covers 

all possible interpretations of the content (Key Principle 4). 

5- Using this rich conceptual representation of content resources: 

a. The service automatically indexes slices in all levels of granularity of a 

content resource using the Slice Indexer (Key Principle 5.a) 

b. Each level of content granularity is indexed in the Concept Index along 

with all possible concepts associated with each individual content slice in 

that level (Key Principle 5.b). 

6- The Slice Selector module of the service processes the adaptive system request 

to: 

a. Build a conceptual representation for the query of the request in order to 

discover content slices based on that representation (Key Principle 6.a)  
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b. Identify the required level of granularity and other adaptation specifica-

tions required by the adaptive system (Key Principle 6.b) 

7- All the aforementioned characteristics of the CROCC service demonstrate that: 

a. As the service automatically processes content resources in a manner that 

allows the production of content slices at any level of granularity, the pro-

duced slices are considered dynamic content items. This, therefore, allows 

the production of content slices on-the-fly based on the adaptive system 

requirements (Key Principle 7.a).  

b. As the service enriches each content slice with descriptive metadata infor-

mation that has all the conceptual representations of the slice, it provides 

a generic content publication and delivery mechanism that allows adaptive 

systems to easily acquire content items without the need to adjust their 

core implementation (e.g. their adaptation mechanism). This in turn in-

creases the potential scenarios where the incorporated content resource 

could be reused (Key Principle 7.b). 

5.4 CROCC Implementation 

This section describes a prototype implementation of the CROCC service proposed in 

this chapter. This implementation provides a system for evaluating the collective effec-

tiveness of the various components that make up the CROCC service. The implementa-

tion served as the basis for the evaluation reported in Chapter 6.  

The CROCC prototype is fully implemented in the Java Programming language. As dis-

cussed in section 5.2, CROCC is designed as a flexible architecture in order to accom-

modate future improvements in the state of the art of relevant dependent fields of re-

search. Hence, the implemented prototype allows for plugging-in, removing, enabling, or 

disabling alternative components or algorithms at runtime as well as design time. The 

following subsections describe the technical implementation of each component of the 

prototype. 

5.4.1 RESTful Web Service  

In order to make CROCC accessible by any adaptive system, the CROCC prototype was 

incorporated as part of a RESTful web service using the Java Spring framework11 

                                                 
11 https://spring.io/ 
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(Nguyen, 2018). The prototype was incorporated as a service, so it can accept HTTP GET 

or POST requests from any adaptive system and respond with a JSON12 representation of 

a content slice; thus, confirming to standard and common RESTful web services found 

on the web.  

As CROCC is a RESTful web service it is easy to access and does not require extra de-

velopment effort in order to be integrated with. All it needs is that the adaptive system 

employs the proper technology to call the service or make some minimal adjustments to 

their content acquisition mechanism. This, therefore, allows the adaptive systems to eas-

ily acquire content slices without the need to change their core implementation (e.g. their 

adaptation mechanism). 

5.4.2 Content Harvester  

As discussed in section 5.2.1, the Content Harvester provides two different harvesting 

techniques: closed corpus harvesting and open corpus harvesting. For closed corpus har-

vesting, since the CROCC prototype is implemented as a RESTful webservice, the ser-

vice allows the adaptive system to send its content resources (e.g. PDF documents, Word 

files, etc.) using an HTTP POST requests through the Request Coordinator component 

(see section 5.4.8). 

For the open corpus harvesting technique, since the process of correctly identifying rele-

vant resources is not within the scope of this thesis, a third-party IR system is employed 

to carry out this task. Among the various available systems, Microsoft's Bing Custom 

Search13 was chosen for this implementation due to its availability, scalability, ease of 

configuration and good performance14. Bing Custom Search is a search solution that lev-

erages the powerful capabilities of the Bing search engine15,16 while allowing users to 

customise their search experience through an easy-to-use API. The API allows users to 

specify which domains, subsites, or webpages to surface results from. This enables users 

to build a tailored search experience for different topics.  

Therefore, the open corpus harvesting technique simply consists of a Java wrapper com-

ponent around the Bing Custom Search API. This wrapper calls the API and specifies: 

                                                 
12 JavaScript Object Notation 
13 https://azure.microsoft.com/en-gb/services/cognitive-services/bing-custom-search/ 
14 We have tried the Bing Custom Search previously in (Lawless et al., 2015) and its performance was 

very reliable. 
15 https://www.bing.com/ 
16 Formerly known as MSN Search until September 2006, and as (Microsoft) Live Search until May 28, 

2009 
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(1) the search topic; (2) the domain to focus on (e.g. health, finance, computer science, 

etc.); and (3) if required by the adaptive system, the desired subset of target webpages 

(e.g. Wikipedia pages only). The response from the API is a JSON object that contains 

URLs of pages that are retrieved from the search process. These pages are then down-

loaded in their native form as HTML documents and sent to the Content Pruner module 

of the service.  

5.4.3 Content Pruner 

As discussed in section 5.2.2, the main purpose the Content Pruner is to remove the un-

necessary content fragments from the incorporated content resources and convert them 

into plain text files. Developing a new approach to content pruning is not within the scope 

of this thesis, therefore, a third-party system is employed to carry out this task.  

Since the CROCC service can operate on closed and open corpus content resources, two 

different content pruners were employed: HTML pruner and Non-HTML pruner. The 

HTML pruner is mainly used for the harvested HTML web pages from the web. Its main 

task is to remove the unnecessary fragments of a web page (e.g. headers with navigation 

menus, footers, etc.) using its layout structure. Among the wide variety of systems that 

can be used to do this task, and for the purpose of the experiment conducted to evaluate 

the performance of the developed prototype (Chapter 6), the Java Wikipedia Library 

(JWPL)17 (Ferschke et al.,  2011) was used. The library contains a mark-up parser that 

can be used to analyse the contents of a Wikipedia page, identify the deferent regions of 

the page (e.g. sections, infobox, references, etc.) and extract textual content from each 

page.  

The Non-HTML pruner, on the other hand, is used to prune content resources that are not 

in HTML format. These content resources can be from closed or open corpus content and 

can be in different formats, e.g. PDF, Text, Word, etc. Since the CROCC service is de-

signed using a flexible pipeline architecture, this flexibility enables different implemen-

tations of the Non-HTML pruner to be switched in and out depending on the format of 

the desired content. In this research, and for the purpose of the experiment conducted to 

evaluate the performance of the developed prototype (Chapter 6), the PDFX18 (Constantin 

et al., 2013) was employed for this task. PDFX is a role-based system that extracts the 

logical structure of documents in PDF form.  

                                                 
17 https://dkpro.github.io/dkpro-jwpl/ [Accessed May, 2018] 
18 http://pdfx.cs.man.ac.uk/ 
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5.4.4 Structure Builder 

This module utilises the C-HTS algorithm proposed in Chapter 4 of this thesis. In order 

to comply with the CROCC service prototype implementation, the C-HTS algorithm was 

entirely implemented in the Java programming language19. C-HTS uses a concept space 

to semantically represent the pruned content resource. This concept space was built from 

Wikipedia as discussed in section 4.3.1. In this thesis, a Wikipedia snapshot from April 

2017 was processed in order to build the concept space. To process the snapshot, we used 

the EasyESA tool (Carvalho et al., 2014). EasyESA is a Java open source tool that pro-

vides an Explicit Semantic Analysis (ESA) infrastructure. The tool processes each article 

in the Wikipedia dump and indexes terms and their associated concepts in a MongoDB20 

database (see section 4.3.1 for more details on how this process is done). This database 

is then used as the concept space for C-HTS. 

In the morphological analysis phase of C-HTS (section 4.4.1), the Apache OpenNLP li-

brary21 was adopted to implement the three components: sentence splitter, stopwords re-

moval and Porter stemmer. This library is used to do the same tasks in the EasyESA tool 

while building the concept space from Wikipedia. For the semantic representation and 

relatedness phase in C-HTS (section 4.4.2), we used the EasyESA tool. The tool provides 

an interface that calculates the semantic relatedness measure between two terms (or two 

sentences) using the underlying concept space. For the HAC algorithm (section 4.4.3), a 

java implementation of the algorithm was carried (within C-HTS implementation) for the 

purpose of this research. 

As discussed in section 5.2.5.1, different annotation tools can be integrated with the Struc-

ture Builder in order to add extra metadata information to the produced slices. The type 

of information required depends primarily upon the adaptive system making the request. 

In other words, the annotation tool used and metadata generated is adaptive system de-

pendant. Since designing and building an adaptive system is out-of-scope of this thesis 

(section 1.1), incorporating such metadata information and evaluating their influences on 

the CROCC service is reserved for future work (section 7.3.3). 

                                                 
19 https://github.com/bayomim/C-HTS 
20 https://www.mongodb.com/ 
21 https://opennlp.apache.org/ 
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5.4.5 Slice Indexer 

The main task of this module is to index the produced slice objects obtained in each level 

of the structure produced by C-HTS and index them in the Content Repository. Since this 

module is specifically designed to work with C-HTS, a Java implementation of this mod-

ule was carried out for the purpose of this research.  

5.4.6 Content Repository 

As discussed in section 5.2.5, the Content Repository consists of two standard IR inverted 

indices (concept index and text index) that store data in a key-value indexing fashion. 

Since the concept space built for this thesis was indexed in a MongoDB database, and for 

system compatibility and performance, both indices were also built as standard collec-

tions22 in a MongoDB database. 

5.4.7 Slice Selector 

This module comprises four sub-modules, namely: Request Analyser, Slice Retriever, 

Slice Ranker and Text Retriever. In the Request Analyser and as mentioned in sec-

tion 5.2.6,  the representation method of the query in the request is identical to the one by 

which slices are represented at index time. Since the indexed slices are produced by the 

Structure Builder, the morphological analysis and the semantic representation phases of 

the Request Analyser are the same as in the Structure Builder. Regarding the other three 

sub-modules, a Java implementation was carried out for the purpose of this research ac-

cording to the design specifications of each module enunciated in section 5.2.6. 

5.4.8 Request Coordinator 

As mentioned in section 5.2.1, the Content Harvester allows adaptive systems to specify 

the domain that they want content in and/or a of URLs they want content to be harvested 

from. Additionally, the harvester provides the capability of uploading content resources 

provided by the adaptive system. This means that there are two different types of requests 

that the CROCC service can accept from the adaptive system: content preparation re-

quest and slice retrieval request. The content preparation request is responsible for calling 

the Content Harvester and passes to it the content requirements sent by the adaptive sys-

tems to start harvesting (or uploading) the appropriate content resources.  On the other 

                                                 
22 Documents in MongoDB are stored in collections. Collections are analogous to tables in relational databases. 
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hand, the slice retrieval request is responsible for calling the Slice Selector in order to 

retrieve a content slice according to the characteristics of the request sent by the adaptive 

system. 

In order to organise the different types of requests received by the service, an additional 

component, named Request Coordinator was implemented. This component is responsi-

ble for identifying the type of the request and passing it to the relevant component. Ad-

ditionally, the Request Coordinator is responsible for blocking any slice retrieval request 

before the CROCC service completes processing and indexing the incorporated content 

resources. The notion behind this blocking is that the coordinator prevents content slices 

from being retrieved for the adaptive system before all the potential slices that can meet 

the requirements of a request have been processed. This will make sure that the provided 

slice is the best match slice of the incorporated content resources.  

5.5 Chapter Summary 

This chapter presented a novel content provisioning service named CROCC. CROCC is 

a service which harvests content resources from closed and open corpora in their native 

form, builds a structure from each content resource based on its conceptual 

representation, and delivers content slices according to the requirements of individual 

adaptive systems. The chapter started by stating the influences derived from the state of 

the art review and how they impacted the core properties of the proposed service. The 

chapter then presented the design aspects of the CROCC service along with an 

explanation of how each component in the service influences the content provision 

process. The chapter also discussed how the service adheres to the key principles derived 

from the state of the art influences. After that, the chapter presented a prototype imple-

mentation of the service that has been carried out for the purpose of this research.  

Finally, it is noteworthy to point out that a description of a preliminary version of the 

CROCC service was published in the following paper: 

Bayomi, M. "A Framework to Provide Customized Reuse of Open Corpus Content for 

Adaptive Systems." In the Proceedings of the 26th ACM Conference on Hypertext & So-

cial Media. HT ’15. Northern Cyprus, pp 315–318. ACM, 2015. 
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6. Evaluation of the CROCC Service  

The previous chapter proposed a content-supply service named CROCC that aims to uti-

lise the structure produced by the hierarchical text segmentation process in order to over-

come the limitations of state of the art content-supply approaches. CROCC uses the C-

HTS algorithm for text segmentation. Chapter 4 presented four experiments to evaluate 

different aspects of C-HTS. The first experiment was carried out in order to evaluate the 

performance of C-HTS in the hierarchical text segmentation task using two different da-

tasets (section 4.5). The results showed that the performance of C-HTS is superior to the 

state of the art approaches. The second experiment was carried out in order to validate 

the efficacy of using Wikipedia as the underlying knowledge base for the semantic rep-

resentation of text in C-HTS (section 4.7.1). The results showed that using Wikipedia as 

the knowledge base for C-HTS delivers better performance than using WordNet, even 

when using different relatedness measures with WordNet. The third experiment was car-

ried out in order to validate the efficacy of using the semantic representation of text rather 

than its lexical representation (section 4.7.2). The results showed that using semantic rep-

resentation in C-HTS outperforms lexical representation, even when using different sim-

ilarity measures. The fourth experiment was carried out in order to evaluate the influence 

of the size of the knowledge base that C-HTS uses for semantic representation (sec-

tion 4.8). The results showed that increasing the amount of knowledge in the knowledge 

base leads, on average, to improvements in C-HTS performance. While these experiments 

demonstrated the segmentation performance of C-HTS, this chapter aims to evaluate the 

extent to which the CROCC service, through the use of C-HTS, can enhance the discov-

ery and reuse of content for adaptive systems.  

As discussed in Chapter 5, CROCC is designed to supply content slices to adaptive sys-

tems according to their needs. In order to assess the performance of CROCC with regard 

to the supply of content slices, this chapter proposes a task-based experiment carried out 

in order to evaluate the quality of slices produced by CROCC. The chapter aims to ad-

dress the fourth objective of this thesis (RO 4) (section 1.2).  

6.1 Evaluation Methodology 

The CROCC service is designed to provide content slices to adaptive systems according 

to their requirements. As mentioned in section 1.1, designing and building an adaptive 

system is not within the scope of this research. Therefore, the experiment presented in 
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this chapter did not focus on evaluating the process of content use within an actual adap-

tive system. Rather, the experiment focused on evaluating the content-supply mechanism 

of CROCC and the quality of the slices produced by the service, according to the specific 

requirements of a set of content requests that could be sent by an adaptive system.  

The assumption is that, in order for content resources (from open and closed corpora) to 

be properly discovered and reused within different adaptive systems, the quality of the 

individual slices delivered must be guaranteed to adaptive system users. As a result, the 

approach chosen for this evaluation was to present a group of users with content slices 

produced by CROCC, where each slice was generated according to the specific require-

ments of a content request. Additionally, for each content request used in this experiment, 

another slice was generated by a baseline system to compare its quality against the slice 

generated by CROCC for the same request. The intention of this evaluation methodology 

is to focus on the evaluation of the content-supply mechanism proposed by CROCC in 

isolation from the adaptive functionality (models, authoring, etc.) of a specific adaptive 

system, as this could influence user perception of content quality. 

As discussed in Chapter 5, CROCC is a content and adaptive system agnostic supply 

service. This means that the service can operate on any type of content regardless of its 

domain or structure and can supply content slices to any adaptive system regardless of its 

application area (e.g. Educational Adaptive System, Adaptive News System, etc.). In the 

evaluation carried out in this chapter, the application area of educational systems was 

chosen. Additionally, Computer Science was chosen as the domain. Amongst the differ-

ent subjects in the computer science domain, Information Retrieval (IR) was selected as 

the focus. This decision was taken for a number of reasons. Firstly, an appropriate post-

graduate course1 in the field of Information Retrieval is taught in Trinity College Dublin 

by a Subject-Matter Expert (SME) who is working in the research group of which I am a 

member. Hence, the process of choosing the (closed corpus) content resources and the 

topics used in this experiment was guided by this SME. Secondly, there were a number 

of computer science researchers available within the ADAPT Centre2 who could evaluate 

the quality of slices produced by CROCC and the baseline. 

                                                 
1 https://www.scss.tcd.ie/modules/?m=CS7IS3 
2 https://www.adaptcentre.ie/ 
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Content resources were acquired from closed and open corpora in the area of Information 

Retrieval, and were indexed by both CROCC and the baseline system. A total of 24 re-

quests were submitted to each system, where each request has two main elements: a query 

and the number of sentences desired in the generated slice. The query element represents 

a simulation of an adaptive system’s query. This query can include a specific topic or a 

short sentence. This query could be defined by the user of the adaptive system and for-

warded to the content-supply system, or defined by the adaptive system based on the 

target user’s model. The number of sentences element of the request represents a simula-

tion of the level of granularity of the content slice required by the adaptive system. This  

level of granularity could be based on the preferences of the target user (e.g. reading speed 

or available time). After producing the slices, the two elements of each request, along 

with the two corresponding slices (one for each system) were presented to users to eval-

uate through a web application that was built for this experiment. Users were asked to 

evaluate the quality of each slice with regard to fulfilling the requirements of the request 

the slice was generated for. Evaluations submitted by users were then analysed, and re-

sults were derived.  

This approach provides an evaluation of how CROCC enhances content discoverability 

and reusability for adaptive systems. For content discoverability, the assumption is that, 

if a slice generated by CROCC is highly preferred by the participant users, this means 

that the slice fulfils the requirements of the request and, hence, is properly discovered. 

Content reusability is assessed through this approach in two ways. First, the content used 

in this evaluation was generated from open and closed resources, neither of which were 

authored or designed specifically for this experiment. The content is also used in a range 

of different granularities. Thus, the original content, and newly sliced resources are being 

reused in a scenario that was not intended by the author of each individual content re-

source. Second, since content slices supplied to adaptive systems are ultimately presented 

to people, evaluating their quality using human assessors would best assess the effective-

ness of the CROCC service in generating resources which are amenable for reuse. Each 

assessor can be seen as a user of an independent adaptive system. If a slice is highly 

preferred by multiple users, this means that it is a resource which is suitable for reuse by 

adaptive systems in the context specified by the information request.  
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6.2 Data and Content Sourcing 

As discussed in Chapter 5, CROCC is designed to operate on content resources from 

closed and open corpus. This section discusses how the two datasets used in the experi-

ment were acquired from open and closed corpora with regards to the Information Re-

trieval subject area. It is noteworthy to point out that this research focuses solely upon 

content resources available in English, as a first step and reserves multilingual content-

supply for future work (section 7.3.1). 

6.2.1 Closed Corpus Content Resources 

The first dataset used in the experiment was built from a closed corpus of content re-

sources. As mentioned in section 2.4.4.1, closed corpus content is (usually) provided by 

a domain expert. Hence, a book on the subject of Information Retrieval was provided by 

the course SME in PDF format. The book is “Introduction to information retrieval”3 

(Manning et al., 2008). This book is used by the SME in outlining the topics included in 

the course and is one of the recommended readings advised by the SME. The PDF file of 

the book consists of 21 chapters and has 581 pages. 

In order to extract content from the PDF file of the book, the file was processed by the 

PDFX system (section 5.4.3) and an XML file was produced. The XML file contains the 

logical structure of the file where each section is encapsulated in a “section” XML tag 

and each content item (e.g. text segment, table, equation, figure, etc.) within each section 

is encapsulated in its corresponding XML tag. Figure 6.1 shows a sample of the XML 

structure produced by the PDFX system. Since the CROCC service is targeting text con-

tent only, the tags in the XML structure were used to remove the unneeded content items, 

such as tables and figures. Additionally, as the PDF file of the book contains sections that 

are not suitable for the content provision process (e.g. book preface, table of contents, 

exercises4, bibliography, etc.), the XML tags corresponding to these sections were used 

to discard them. After that, the remaining content in each “section” tag was extracted and 

saved as a plain text file. The total number of content resources in this dataset after the 

pruning phase is 161 resources5.  

                                                 
3 http://informationretrieval.org 
4 As discussed in section 5.2.3, automatic pedagogical annotation algorithms could be applied to annotate content in 

these sections to use them in the content-supply process. However, such annotation information are reserved for the 

future work (section 7.3.3) 
5 Note that, a section can span over two or more pages. Hence, the final number of the extracted plain text files is not 

a portion of the total number of pages in the book (581 pages). 
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Figure 6.1 A sample of the XML structure produced by the PDFX system 

6.2.2 Open Corpus Content Resources 

The second dataset used in the experiment was built from content resources harvested 

from open corpus. In order to harvest content resources from open corpus sources, the 

Content Harvester module implemented for this research is used. As mentioned in sec-

tion 5.4.2, the open corpus content harvester is a wrapper component around the Bing 

Custom Search API. Therefore, a list of 20 queries was submitted to the Bing API through 

this wrapper. This list of queries was provided by the SME and each query represents a 

topic covered in the course. Examples of queries are: “Boolean Retrieval”, “Stemming” 

and “Link Analysis, Hubs and Authorities”. Each query was submitted to the search API 

along with the content repository where the data should be harvested from. The English 

Wikipedia encyclopaedia was selected as the target repository for the harvesting process. 

The reason for this is that Wikipedia is the largest encyclopaedia in existence which con-

tains articles that cover a wide range of topics6. Additionally, Wikipedia is a collaborative 

effort that combines the knowledge of hundreds of thousands of people. Hence, articles 

in Wikipedia would be a convenient source for rich content resources.  

For each submitted query, the top 10 results returned form the search API were 

downloaded as HTML files. Each document was then pruned by the open corpus Content 

                                                 
6 https://en.wikipedia.org/wiki/Wikipedia:Size_comparisons 
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Pruner implemented for this experiment (section 5.4.3) and was saved as a plain text file. 

The total number of unique7 content resources in this dataset is 147 resources. 

6.3 Baseline System 

In order to evaluate the efficiency of the CROCC service, it was necessary to compare its 

performance against other content-supply systems. However, as mentioned in sec-

tion 2.5.2.2, state of the art approaches mainly rely upon the structure posed by a content 

resource and they can only produce coarse-grained content slices. To the best of the au-

thor’s knowledge, and at the time of writing, there was no available content-supply sys-

tem that can accept the number of sentences as a parameter to specify the granularity level 

of the produced content. Therefore, the existing state of the art content-supply systems 

would provide an artificially weak baseline against which to compare CROCC.  

For this reason, a baseline system was developed to compare its performance against the 

CROCC service. The baseline system is based upon the Apache Lucene information re-

trieval software8 (Białecki et al., 2012). Lucene is an open source full-text search library 

written in Java. Lucene provides an API that supports the performance of common search 

and search related tasks like indexing, querying, highlighting, language analysis and 

many others. There are two main reasons that Lucene was selected as the baseline system. 

Firstly, Lucene is a well-known, fast open source searching framework that utilises pow-

erful, accurate and efficient search algorithms and is widely used in many projects 

(Mathew, 2018; Azzopardi et al., 2017; Hassen and Amel, 2017). Secondly, Lucene in-

dexes content, in an inverted index, based upon the lexical representation of each docu-

ment (terms in the document). Therefore, using it as a baseline in this experiment would 

implicitly provide an evaluation of the conceptual representation of content resources 

(proposed by its opponent, CROCC) versus lexical representation. 

Lucene provides search over a collection of documents; where a document is essentially 

a collection of fields (e.g. title, body, date etc.). Documents are the unit of indexing and 

search in Lucene. Each field in each document can only store one kind of data, either 

binary, numeric, or text data. Lucene does not have a restriction over the structure of the 

fields to be indexed. It allows the indexing of any number of different fields that may 

vary from document to another. Lucene provides a search API that takes a search query 

                                                 
7 Any duplicate document that results from the harvestin process was deleted 
8 http://lucene.apache.org/ 
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and a set of fields to search within and returns a set of documents ranked by their rele-

vance score to the query. However, as discussed in section 6.1, the experiment conducted 

in this chapter required the participant systems to accept, along with the query, the num-

ber of sentences as a parameter and retrieve a text slice according to that number. For this 

reason, a wrapper component around the Lucene framework was developed in order to 

conform with these experimental requirements. The following subsections describe how 

this wrapper component is employed to index content resources and to retrieve content 

slices. 

6.3.1 Document Indexing 

In order to index content resources within Lucene in a manner that allows the generation 

of content slices according to granularity level (number of sentences), the wrapper com-

ponent started by dividing each content resource (the plain text files produced as de-

scribed in section 6.2) into sentences. After that, each sentence was indexed as an inde-

pendent Document object in Lucene along with the id of the document the sentence be-

longs to. The text of each sentence was analysed using the English Analyser of Lucene. 

The analyser started by breaking each sentence into small indexing elements – tokens. 

Stopwords9 were then removed and the remaining tokens were stemmed (using Porter 

stemmer) and indexed in the inverted index created by Lucene. Figure 6.2 illustrates how 

a document is indexed in Lucene. 

 

Figure 6.2 An illustration of how a document is indexed in Lucene  

6.3.2 Slice Generation 

To generate a slice based on the elements of the request (query and number of sen-

tences), the wrapper component works as follows: 

 When a request is received, the wrapper starts to search the Lucene index using 

the text of the query. It utilises the Lucene retrieval mechanism that matches the 

                                                 
9 This analyser uses the default stopwords list that is bundled with Lucene. 
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query terms with the terms in the inverted index. After that, sentences that match 

the query are returned along with their relevance score. 

 For sentences that do not match the query, their relevance score is set to zero.  

 Using the number of sentences element of the request, say x, the wrapper iterates 

over all the returned sentences and calculates the accumulated score of every x 

adjacent sentences that belong to the same document. 

 After that, sentences that have the best accumulated score are returned as a text 

slice.  

This mechanism guarantees that the returned slice: (1) consists of sentences that best 

match the query and (2) conforms with the “number of sentences” parameter of the re-

quest. The flowchart presented in Figure 6.3 illustrates the process of generating a text 

slice by the baseline system according to the request elements. 

 

Figure 6.3 A flowchart of the slice generation process by the baseline system 

6.4 Experimental Setup 

6.4.1 Concept Vector Cut-off Parameter  

As discussed in section 5.2.4, CROCC indexes content slices based on the concepts 

assoicated with each slice. As mentioned in section 4.3.1, each slice is mapped to a 

weighted centroid vector of concepts that is built based on ranking all Wikipedia concepts 

by their relevance weight to the slice. With concept weights being zero for most of the 

Wikipedia concepts (as no term in the slice is associated with these concepts), this cen-

troid vector is very sparse. Nevertheless, given that each term in the slice to be indexed 
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may still be related to a large number of concepts (> one thousand concepts), indexing 

the entire list of related concepts for every slice would incur significant storage and com-

putation costs, and is therefore not feasible. Therefore, only the concepts with the highest 

relevance weights should be considered. Hence, a vector cut-off parameter is set in order 

to reduce index size.  

We ran the experiment presented in section 4.5 using different sizes of the centroid vector 

to evaluate the impact of its size on C-HTS performance. We ran the experiment using 

all concepts in the centroid vector of each text block, the top 50 concepts and the top 100 

concepts. The results showed that there is no significant difference in C-HTS performance 

and thus, using the top 50 concepts that have the highest relevance weights produces the 

same structure but with less computation cost. Additionally, in (Egozi et al., 2011), the 

authors proposed a concept-based indexing and retrieval approach based on Explicit Se-

mantic Analysis (ESA) where documents were indexed based upon their conceptual rep-

resentation from a concept space built from Wikipedia. In this work, in the indexing pro-

cess, setting the cut-off parameter to 50 gave the best results in their retrieval task10. Thus, 

based on these findings, in experiment conducted in this chapter, the cut-off parameter 

for the concept vector was set to 50 concepts. 

As discussed in section 5.2.6, the request analyser maps the query sent by the adaptive 

system to a weighted centroid vector of concepts. Since the query is derived from a much 

shorter text fragment and contains few terms, the value for the cut-off parameter is not 

necessary to be the same as that used in the indexing process. Hence, in this experiment, 

the cut-off parameter was not set for the centroid vector of the received query and all 

concepts in that vector were used by the slice retriever sub-module of the Slice Selector. 

6.4.2 Datasets Indexing and Slices Generation 

The two datasets built for this experiment were indexed in both systems. For the CROCC 

service, a hierarchical structure was built for each content resource using the Structure 

Builder (section 5.4.4). After that, the cut-off parameter was set for the Slice Indexer 

(section 5.2.4), as discussed in the previous section, and the produced slices were then 

indexed in the Content Repository (section 5.2.5). For the baseline system, the content 

resources of both datasets were indexed in a Lucene index as described in section 6.3.1. 

                                                 
10 They have also experimented with indexing the 100 most relevant concepts instead of top 50, and found no signifi-

cant impact on the performance. 
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It is noteworthy to mention that both datasets were indexed in a single index in each 

system. The reason for this is to assess the assumption that CROCC is a content agnostic 

service.  

After indexing the two datasets, the systems were ready to receive content requests. To 

build content requests, there was a need to specify the two main elements of each request: 

the query and number of sentences. Six topics in the IR subject area were selected to be 

used as the query element of each submitted request. The queries generated from these 

topics are:  

- Query 1: Boolean Retrieval 

- Query 2: Inverted Index 

- Query 3: Stemming and Lemmatisation 

- Query 4: TF-IDF 

- Query 5: Relevance feedback 

- Query 6: Precision, Recall and F-score  

These topics were provided by the course SME in which they were intended to be typical 

of a student’s information needs based on the topics covered in the course. For each of 

these topics, four different requests were built where each request had a different value 

for its “number of sentences” element. The values defined for this element were: 4, 5, 6 

and 7 sentences. Thus, a total of 24 content requests were built (4 different sizes for each 

of the 6 topics) and were submitted to both system.  

For the CROCC service, requests were received by the Slice Selector module of the ser-

vice (section 5.2.6). As discussed in section 6.4.1, the cut-off parameter was not set for 

the request analyser module while building the centroid vector of concepts from the 

query. Using this concepts vector and the number of sentences, slices that best match each 

individual request were generated and returned. For the baseline system, the requests 

were received by the wrapper component and slices that best match each individual re-

quest were generated and returned as described in section 6.3.2. A total of 48 slices  were 

returned (2 for each request) and saved in a database to be provided to participants for 

evaluation (see next section). The slices returned by both systems were generated from 

the closed and open corpus content resources harvested for this experiment (section 6.2). 

Figure 6.4 depicts the distribution of slices returned by each system. Table 6.1 shows a 

sample of slices generated by both systems.  
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Figure 6.4 Slices distribution over closed and open corpora 

 

Table 6.1 A sample of slices generated by both systems 

Query 

and Size 

 

CROCC 

 

Baseline 

Boolean 

Retrieval 

 

4 sen-

tences 

1. A general problem with Boolean search 

is that using AND operators tends to pro-

duce high precision but low recall 

searches, while using OR operators gives 

low precision but high recall searches, 

and it is difficult or impossible to find a 

satisfactory middle ground 

2. In this chapter, we have looked at the 

structure and construction of a basic in-

verted index, comprising a dictionary and 

postings lists 

3. We introduced the Boolean retrieval 

model, and examined how to do efficient 

retrieval via linear time merges and sim-

ple query optimization 

4. In Chapters 2–7 we will consider in detail 

richer query models and the sort of aug-

mented index structures that are needed 

to handle them efficiently 

1. Worked example Commercial 

Boolean searching: 

Westlaw.westlaw 

2. Westlaw 

(http://www.westlaw.com/) is the 

largest commercial legal search ser-

vice (in terms of the number of pay-

ing subscribers), with over half a 

million subscribers performing mil-

lions of searches a day over tens of 

terabytes of text data 

3. The service was started in 1975 

4. In 2005, Boolean search (called 

``Terms and Connectors'' by 

Westlaw) was still the default, and 

used by a large percentage of users, 

although ranked free text querying 

(called ``Natural Language'' by 

Westlaw) was added in 1992 

6.4.3 Evaluation System 

To conduct the comparative evaluation between the two systems, a web application was 

built. The slices produced from both systems were divided into four groups; each group 

had six pairs of slices (a slice generated from each system) corresponding to each of the 

search topics and to one of the defined sizes (4, 5, 6 or 7). To make sure that all slices get 

the same amount of evaluations, slices were distributed throughout the groups according 

to their sizes as listed in Table 6.2. 



 

 

139 

Table 6.2 Slice sizes for each topic in each group 

 Group 1 Group 2 Group 3 Group 4 

Boolean Retrieval 4 5 6 7 

Inverted Index 5 6 7 4 

Stemming and Lemmatisation 6 7 4 5 

TF-IDF 7 4 5 6 

Relevance feedback 4 5 6 7 

Precision, Recall and F-score 5 6 7 4 

To make sure that all groups get assigned the same amount of participants, when the first 

user logged in to the evaluation system, s/he was randomly assigned a group. The next 

user was then randomly assigned a group from the remaining unassigned groups. This 

continued until all the groups were assigned users. The process was then repeated for the 

next set of users who logged in to the system. This ensured an even spread of assessment. 

For each query in the group, the query and the size of the slice were presented to the user 

at the top of the evaluation page followed by the two generated slices from both systems 

side-by-side. In order to guarantee that there is no incentive for users to be biased towards 

either of the systems, the users were not aware of which slice was produced using which 

system.  

Each user in the experiment was asked to evaluate each slice according to the following 

characteristics: 

1- Relevance: if the slice is relevant to the query. 

2- Informativeness: if the slice contains all the necessary information compared to 

its size (e.g. 5 sentences). 

3- Cohesion & Readability: if the slice is easy to read and the flow of reading is not 

broken. 

4- Overall: the overall quality of the slice. 

The users were asked to evaluate each characteristic on a six-point Likert scale (ranging 

from one to six, where one is the lowest quality and six is the highest). For the sake of 

data completeness, each user was asked to fill in answers for all the evaluation character-

istics. A text box was provided in case the user had any comments regarding the quality 

of the slices or regarding the difference between them. The users were allowed to leave 

this box empty if they did not have any comments. After each slice was evaluated indi-

vidually, the user was asked to indicate which slice they preferred. In most cases this 
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characteristic was automatically set by the system based upon the user’s individual eval-

uation of the two slices, while still allowing for manual adjustment if the user so wished. 

However, if the user evaluated the two slices equally, then neither slice was preselected, 

and they had to manually make a selection. Figure 6.5 shows the evaluation screen of the 

system. 

 

Figure 6.5 Evaluation System 

6.5 Results 

An open call for participation11 in the experiment was made on the ADAPT Centre mail-

ing lists and on the mailing lists of research groups whose members are interested in the 

IR field. Forty-eight users participated in the experiment where each slice was evaluated 

by more than ten users12.  The final results were analysed with the following aspects in 

mind: 

1- The general performance of each system. 

2- The query element of the request. 

3- The “number of sentences” element of the request.  

                                                 
11 This experiment conforms to ethical research conduct and was approved by the Research Ethics Committee of the 

School of Computer Science and Statistics, Trinity College Dublin. 
12 Some users did not complete the experiment and exited before evaluating all six requests assigned to them. These 

users were removed from the system. As a result, a number of completed evaluations were randomly removed in order 

to balance the number of participants per slice. The final number of evaluations considered in the analysis presented 

here is 10 participants per slice. 
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6.5.1 General Performance 

In this analysis, the performance is assessed based on the quality of the 24 slices generated 

by each system. Table 6.3 reports the mean scores of user evaluations for each character-

istic13. As can be observed, the quality of slices generated by CROCC is, on average, 

higher than the quality of slices generated by the baseline system in all criteria. Figure 6.6 

depicts the distribution of user evaluations for each criteria for both systems. Moreover, 

the statistical results from a paired t-test have revealed that the difference between the 

quality of slices is significant with p-values less than 0.05 across all criteria14.  

Table 6.3 Mean scores of user evaluations for all slices produced by each system 

System  

Criteria 
CROCC Baseline 

Relevance 5.104* 4.158 

Informativeness 4.529* 3.596 

Cohesion & Readability 4.412* 3.846 

Overall 4.521* 3.671 

Preference 1.688* 0.698 

                                                         Relevance 

 

Informativeness 

 

Cohesion & Redability 

                                                 
13 Since writing a comment by the users was optional, there was no enough comments that can be reliable in the re-

sults analysis. 
14 In the tables, the asterisk symbol * denotes that the difference between the quality of slices is statistically 

significant with p < 0.05 
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Overall 

 

Preference 

 

Figure 6.6 Distribution of general user evaluations for each criteria 

6.5.2 The Query Element of the Request 

In order to gain more insight into the performance of each system, the results were ana-

lysed based on the quality of slices produced by each system in accordance with the query 

element of the requests. Table 6.4 reports the mean scores of the user evaluations for 

slices produced for each query. As can be observed, the quality of slices generated by 

CROCC is, on average, higher than slices generated by the baseline system for each 

query. These results provide a positive indication of the performance of CROCC in rela-

tion to the discovery of content slices that best match the query of the request. Addition-

ally, since CROCC uses the semantic representation of content (section 5.2.3) and the 

query (section 5.2.6), the results demonstrate that such semantic representation is better 

than the traditional lexical representation utilised by the baseline system. 
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Table 6.4 Mean scores of user evaluations for slices produced for each query by each system 

Criteria 

Query 
Relevance 

Informa-

tiveness 

Cohesion & 

Readability 
Overall Preference 

Query 1: 

 

Boolean Retrieval 

CROCC 5* 4.375* 4.125* 4.4* 2.3* 

Baseline 3.225 2.725 3.175 2.75 0.3 

Query 2: 

 

Inverted Index 

CROCC 5.15 4.625 4.45 4.55 1.425 

Baseline 4.8 4.35 4.125 4.225 0.875 

Query 3: 

 

Stemming and 

Lemmatisation 

CROCC 5.275 4.65 4.775 4.625 1.35 

Baseline 5 4.275 4.725 4.45 1.025 

Query 4: 

 

TF-IDF 

CROCC 5.325* 4.675* 4.35* 4.6* 2.45* 

Baseline 3.65 2.9 3.025 3.075 0.075 

Query 5: 

 

Relevance 

feedback 

CROCC 5.303 4.636 4.758 4.758 0.758 

Baseline 5.090 4.515 4.667 4.636 0.545 

Query 6: 

 

Precision, Recall 

and F-score 

CROCC 4.825* 4.275* 4.275* 4.375* 1.975* 

Baseline 3.275 2.8 3.35 2.9 0.3 

6.5.3 Number of Sentences Element of the Request 

The purpose of this analysis is to investigate how each system is able to generate a content 

slice, from the incorporated content resources, according to the “number of sentences” 

(level of granularity) element of each individual request. Table 6.5 reports the mean 

scores of the user evaluations for slices produced by each system. As can be observed, 

the quality of slices generated by CROCC is, on average, higher than the quality of slices 

generated by the baseline system with regards to all sizes in all criteria. 

The results, hence, prove that the structure built for each individual content resource by 

CROCC enables the service to generate slices that best match the different levels of gran-

ularity in each individual request. This in turn proves that content resources processed by 

CROCC are amenable for reuse in different adaptive systems. 
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Table 6.5 Mean scores of user evaluations for slices with regards to number of sentences 

Criteria 

Slice Size 
Relevance 

Informa-

tiveness 

Cohesion & 

Readability 
Overall Preference 

Size = 4 

CROCC 4.933* 4.133* 4.117 4.267* 1.667* 

Baseline 3.95 3.45 3.8 3.533 0.833 

 

Size = 5 

CROCC 4.983* 4.5* 4.567* 4.433* 1.567* 

Baseline 4.233 3.7 3.95 3.767 0.517 

 

Size = 6 

CROCC 5.1* 4.583* 4.233* 4.5* 1.55* 

Baseline 4.183 3.633 3.817 3.733 0.6 

Size = 7 

CROCC 5.4* 4.9* 4.733* 4.883* 1.967* 

Baseline 4.267 3.6 3.817 3.65 0.483 

6.5.4 Discussion 

This experiment proposed an evaluation for the performance of the CROCC service as a 

content-supply service. The experiment focused on evaluating the quality of the slices 

produced by CROCC according to the elements of each individual request. Comparing 

the quality of slices produced by CROCC against slices produced by the baseline system 

demonstrated that CROCC outperformed the baseline system in all characteristics speci-

fied in the experiment.  

According to the assumption posed in section 6.1, which is: in order for content resources 

(from open and closed corpus) to be properly discovered and reused within different 

adaptive systems, the quality of individual slices delivered must be guaranteed to adap-

tive system users, these results, therefore, clearly prove that CROCC is capable of pro-

ducing content slices from open and closed corpus resources that fulfil the requirements 

of the content requests. This in turn means that the slices produced by CROCC are 

properly discovered. Additionally, as slices produced by CROCC are highly preferred 

by the participant users, this means that CROCC is capable of producing content slices 

which are suitable for reuse by adaptive systems in the context specified by individual 

content requests. 
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6.6 Chapter Summary 

This chapter presented a task-based experiment that aimed to address the fourth objective 

of this thesis; namely to evaluate the extent to which the CROCC service can enhance the 

discovery and reuse of content for adaptive systems. In particular, the experiment aimed 

to evaluate the quality of the content slices produced by CROCC. The chapter described 

the methodology that has been followed in the evaluation process and the baseline system 

that has been developed to compare against the CROCC service. The chapter described 

how content resources from closed and open corpora were acquired along with a descrip-

tion of how these resources were processed and indexed in each system used in the ex-

periment. The evaluation system was also described along with the steps that participants 

have followed to complete the experiment. Finally, the chapter presented the analyses 

carried out on the evaluation results, along with the findings derived from this analysis.  
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7. Conclusion and future work 

This chapter presents the final conclusions for the research presented in this thesis. The 

chapter reviews the research questions and objectives presented in Chapter 1 of this thesis 

and discusses the extent to which these objectives have been achieved, and the research 

question answered. It also revisits the overall contributions of this thesis. Finally, the 

chapter outlines possible future research directions on the basis of the research outcomes 

achieved in this thesis. 

7.1 Research Question, Objectives and Achievements  

The research question which this thesis initially sought to answer was:  

To what extent can the semantic representation of unstructured textual content be ex-

ploited by novel text segmentation approaches to build a document structure? 

Also, to assess whether the structure produced by the proposed approaches is of benefit 

for adaptive systems, a further question was posed: 

Can the produced structure be used to enhance the discoverability and reusability of con-

tent for adaptive systems? 

In order to address these research questions, four research objectives were outlined (sec-

tion 1.2.1). The following sub-sections discuss each objective and how each objective 

was achieved in this thesis.   

7.1.1 Research Objective 1 

The first research objective is: “Perform a state of the art survey on NLP techniques, 

specifically text segmentation as a technique for structuring textual content. The aim of 

this survey is to investigate how text segmentation is used to analyse and understand text 

to produce a structure from unstructured textual documents. Additionally, perform a state 

of the art survey on adaptive systems as content adaptation applications, to investigate 

how they process content and the different techniques they utilise in order to facilitate the 

discovery and reuse of this content. The survey should also review how state of the art 

adaptive systems utilise NLP techniques in order to provide adaptive content”. 

To achieve this objective, an integral part of this thesis involved conducting a state of the 

art review of NLP techniques and a focused review on text segmentation. The review 
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classified different approaches to text segmentation and highlighted different categorisa-

tion criteria of this task. The review also focused on hierarchical text segmentation and 

investigated how hierarchical text segmentation is used to analyse text to produce a struc-

ture from unstructured textual documents. The review showed that state of the art ap-

proaches are limited by the fact that they can only process the information that they can 

‘see’. In other words, they are based on the lexical and/or syntactic representation of text. 

However, a representation based solely on the endogenous knowledge in the documents 

themselves does not reveal much about the meaning of the text. Building on the influences 

derived from this review, two novel approaches to hierarchical text segmentation were 

presented in Chapter 3 and Chapter 4. Both approaches utilise external knowledge re-

sources in order to enrich text and infer more information about text constituents. 

The field of NLP and specifically hierarchical text segmentation has mainly focused on 

techniques that can be used to process text documents, but not, however, on how these 

techniques can be utilised to produce tailored content, adapted to the needs of individual 

users. Conversely, research in the field of Adaptive Systems has primarily focused on 

methods and techniques of delivering adaptive content to individual users. Hence, a com-

prehensive review on adaptive systems has been conducted.  The purpose of this review 

was to investigate how adaptive systems process content to facilitate its discoverability 

and reusability. The review discussed the anatomy of adaptive systems, their models and 

in particular their content model. In order to better illustrate how adaptive systems process 

different types of content, closed and open corpus content models were reviewed. The 

review also presented the different techniques utilised by adaptive systems to discover 

content resources that best match their users’ needs. Furthermore, current NLP techniques 

used by adaptive systems were reviewed to gain more insight into how adaptive systems 

utilise these techniques in processing content resources and how these techniques con-

tribute to the provision of adaptive experiences to users. Building on the influences de-

rived from this review, a new content-supply service was designed, which is presented in 

Chapter 5. 

7.1.2 Research Objective 2 

The second research objective is: “Examine the different methods and techniques that can 

be used to enhance the performance of text segmentation using the semantic representa-

tion of text, and develop a new text segmentation approach to enhance the understanding 
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of unstructured textual documents. This also involves the evaluation of the effectiveness 

of the proposed approach in processing and structuring content”. 

To achieve this objective, a new hierarchical text segmentation approach named OntoSeg 

(Ontological Segmentation) was proposed (Chapter 3). The aim of OntoSeg was to un-

derstand the semantic meaning behind text in order to build a conceptual structure. In 

contrast to state of the art approaches, OntoSeg replaces the traditional lexical represen-

tation of text with concepts extracted from an ontology. OntoSeg starts by extracting 

named entities from the target text. Each entity is then mapped to its class or classes in 

the DBpedia ontology. After that each sentence is represented as a vector of entities where 

each element in that vector is represented as a set of classes. To identify how each sen-

tence is similar to its adjacent sentences, two different similarity measures were calcu-

lated, semantic similarity and lexical similarity. Using these similarity measures, On-

toSeg applies a Hierarchical Agglomerative Clustering (HAC) approach to iteratively 

cluster text segments that are deemed to be similar to each other and produce a tree-like 

hierarchy of the text.  

To evaluate the effectiveness of OntoSeg in processing and structuring content, a set of 

experiments have been conducted. Experimental results showed that, although OntoSeg 

is able to produce a hierarchical structure out of text based on its semantic representation, 

it did not perform well against the state of the art approaches.  

As a result, a new hierarchical text segmentation approach, named C-HTS, was proposed 

(Chapter 4). C-HTS (Concept-based Hierarchical Text Segmentation) relies on the se-

mantic relatedness between text constituents rather than the semantic similarity used in 

OntoSeg. C-HTS relies on the explicit semantic representation of text, a method that re-

places keyword-based text representation with concept-based features, automatically ex-

tracted from massive human knowledge repositories such as Wikipedia. C-HTS repre-

sents the meaning of a piece of text as a weighted vector of knowledge concepts, in order 

to reason about text. Relatedness between the atomic units of text is measured using this 

semantic representation and a Hierarchical Agglomerative Clustering algorithm is then 

applied to grow coherent segments of the text and a tree-like hierarchy of the text is 

produced.  

The performance of C-HTS was compared against the state of the art hierarchical text 

segmentation approaches, using two datasets that are designed specifically for the evalu-

ation of such systems. The results showed that C-HTS outperformed the state of the art 
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and also outperformed OntoSeg. Additionally, in order to validate the efficacy of using 

Wikipedia as the underlying knowledge base for conceptual representation of text in C-

HTS, an experiment was carried out where WordNet was used as the underlying 

knowledge base for C-HTS. The results demonstrated that using Wikipedia as the 

knowledge base for C-HTS delivers better performance than using WordNet, even when 

using different relatedness measures with WordNet. Another experiment was also carried 

out in order to validate the efficacy of using the semantic representation of text rather 

than its lexical representation. The results showed that using semantic representation of 

text in C-HTS outperforms the lexical representation approach even when using different 

lexical similarity measures. In order to evaluate the influence of the size of the knowledge 

base that C-HTS uses for semantic representation, an experiment was carried out where 

three different snapshots of Wikipedia over different years were used with C-HTS. The 

results showed that increasing the amount of knowledge in the knowledge base leads, on 

average, to improvements in C-HTS performance. 

7.1.3 Research Objective 3 

The third research objective is: “This PhD research takes adaptive systems as the target 

application scenario. To enhance the content discoverability and reusability, it is im-

portant to understand the structure of that content. The proposed hierarchical text seg-

mentation approach makes it possible to build a structure out of content resources based 

on the semantic representation of text. In this context, a new content-supply service that 

utilises the structure produced by the proposed segmentation approach needs to be built. 

The design of this service should be focused on exploiting the produced structure in order 

to overcome the limitations of the state of the art content-supply approaches”. 

To achieve this objective, a novel content-supply service named CROCC (Customised 

Reuse of Open- and Closed-corpus Content) was proposed (Chapter 5). CROCC was 

built based on the influences derived from the state of the art review presented in Chap-

ter 2. The aim of CROCC is to utilise the structure produced by the C-HTS algorithm in 

order to overcome the limitations of the state of the art content-supply approaches. 

CROCC is a service which harvests content resources from open and closed corpus in 

their native form and builds a structure out of each content resource without the reliance 

upon its original structure. The service builds the structure of a content resource based on 

its conceptual representation and delivers content slices according to the needs and 

requirements of individual adaptive systems.  
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CROCC was designed using a flexible architecture that allows for plugging-in, removing, 

enabling, or disabling alternative components or algorithms at runtime as well as design 

time of the service. The CROCC service was offered as an intelligent content provision 

framework, which comprises six modules. The first module is the Content Harvester 

which is responsible for the automatic acquisition of content resources based on the con-

tent requirements of the adaptive system. The second module is the Content Pruner. Be-

cause CROCC does not rely upon the original structure posed by each harvested content 

resource, the main task of the Content Pruner is to identify and remove the unnecessary 

fragments within content resources and convert each individual content resource into a 

plain text file. The third module is the Structure Builder. The main task of this module is 

to build a structure out of the harvested and pruned content resources based on their con-

ceptual representation. This module utilises the C-HTS algorithm in order to complete 

this task. Recall from Chapter 4 that the output of C-HTS is a tree-like hierarchy for each 

individual content resource. Using this hierarchy, the fourth module in CROCC, called 

Slice Indexer, starts to index slice objects produced in each level of the hierarchy pro-

duced by the Structure Builder where each slice object contains a metadata description 

for each slice. These slice objects are indexed in the Concept Index of the Content Re-

pository module (fifth module in CROCC). Besides the concept index, the Content Re-

pository module contains the Text Index. This index is used to store the textual content 

of the harvested resources. This textual content is indexed as a list of sentences that is 

used later to generate the textual content of the selected slice. The last module in CROCC 

is the Slice Selector. This module is considered the interface of the CROCC service with 

the adaptive systems. The main task of this module is to receive the request sent by an 

adaptive system, process it, and retrieve the slice that best matches this request.  

This design of the CROCC service has successfully demonstrated that the service adheres 

to the different key principles derived from the state of the art influences presented in 

section 5.3. In addition to this design, a prototype implementation of the CROCC service 

has been carried out in order to be used in the evaluation conducted in Chapter 6. 

7.1.4 Research Objective 4 

The fourth research objective is: “Evaluate the extent to which the proposed content-

supply service can enhance the discovery and reuse of content for adaptive systems”. 

To achieve this objective, a task-based experiment has been carried out. The main purpose 

of this experiment was to evaluate the quality of the content slices produced by CROCC. 
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The experiment did not focus on evaluating the process of content use within an actual 

adaptive system. Rather, the experiment focused on evaluating the content-supply mech-

anism of CROCC and the quality of the slices produced by the service, according to the 

specific requirements of a set of content requests that could be sent by an adaptive system. 

The assumption is that, in order for content resources (from open and closed corpora) to 

be properly discovered and reused within different adaptive systems, the quality of the 

individual slices delivered must be guaranteed to adaptive system users. As a result, the 

approach chosen for this evaluation was therefore to present a group of users with content 

slices produced by CROCC where each slice was generated according to the specific 

requirements of a content request.  

The application area chosen for this experiment was Educational Systems. Additionally, 

the field of Information Retrieval was selected as the subject area of the experiment. A 

baseline system was developed in order to compare its performance against the CROCC 

service. Content resources from closed and open corpora related to IR were harvested, 

processed and indexed by CROCC and the baseline system. A total of 24 content requests 

were constructed and for each request a slice was generated by each system. The produced 

slices (48 slices) were then segmented into four groups and an evaluation system was 

built in order to present these groups to participants for evaluation. An open call for par-

ticipation in the experiment was made on a number of mailing lists and a total of forty-

eight users participated in the experiment where each slice was evaluated by more than 

ten users. 

In this experiment, each user was asked to evaluate each slice according to four different 

characteristics: Readability, Informativeness, Cohesion & Readability and Overall. Ad-

ditionally, the user was asked to indicate which slice they preferred. The evaluation sys-

tem also had a text box in case the participant had any comments regarding the quality of 

the slices or regarding the difference between them.  

The evaluations submitted by participants were analysed and the results demonstrated 

that the quality of slices generated by CROCC is, on average, higher than the quality of 

slices generated by the baseline system in all criteria. This in turn demonstrated that slices 

produced by CROCC (from closed and open corpus resources) fulfil the requirements of 

the content requests and, hence, are properly discovered. Additionally, as slices produced 



 

 

152 

by CROCC are highly preferred by the participant users, this means that CROCC is ca-

pable of producing content slices which are suitable for reuse by adaptive systems in the 

context specified by individual content requests. 

7.2 Contributions 

This section revisits the contributions from the research of this thesis, which were pre-

sented in section 1.3. The research of this thesis has made three notable contributions: 

one major contribution and two minor contributions. 

The major contribution of this thesis is the use on NLP techniques, particularly text seg-

mentation, to produce a hierarchical structure from text documents and the use of this 

structure by a content-supply service to enhance content discoverability and reusability 

for adaptive systems. To build a structure from text documents, this thesis proposed two 

novel hierarchical text segmentation algorithms based on the semantic representation of 

content, OntoSeg and C-HTS. OntoSeg used the semantic similarity between text seg-

ments based on an ontology and uses a Hierarchical Agglomerative Clustering algorithm 

to build a hierarchical structure of text based on its semantic representation. Evaluation 

results demonstrated that although OntoSeg is able to produce a hierarchical structure of 

text based on its semantic representation, it did not perform well against the state of the 

art approaches. These findings indicated that the performance of OntoSeg can be im-

proved through improved understandability of text, by exploring the semantic relatedness 

between text blocks rather than using the semantic similarity. As a result, the C-HTS 

algorithm was proposed. C-HTS used the explicit semantic representation of text to meas-

ure the semantic relatedness between text blocks. It represented the meaning of a piece 

of text as a weighted vector of knowledge concepts automatically extracted from the mas-

sive human knowledge repository, Wikipedia. Similar to OntoSeg, C-HTS produced the 

content of a single document as a tree-like hierarchy. Evaluation results have shown that 

C-HTS outperformed the state of the art approaches on two datasets that are designed 

specifically for the evaluation of hierarchical text segmentation. The results also demon-

strated that using the semantic relatedness in C-HTS yielded a better hierarchical structure 

of text than using the semantic similarity employed by OntoSeg.  

This thesis also presented a novel content-supply service named CROCC. CROCC is a 

service which harvests content resources from open and closed corpus in their native form 

and builds a structure out of each content resource without the reliance upon its original 

structure. CROCC utilises the C-HTS algorithm to build a structure of the harvested 



 

 

153 

content resources based on their semantic representation. Using this structure, the service 

delivers content slices that best match the needs and requirements of individual adaptive 

systems. The aim of CROCC is to enhace content discoverability and reusability for 

adaptive systems. This thesis also presented a task-based experiment to evaluate the ex-

tent to which the CROCC service can enhance the discovery and reuse of content for 

adaptive systems. The main focus of this experiment is to evaluate the quality of content 

slices produced by the CROCC service according to the specific requirements of a content 

request that might be sent by an adaptive system. The experiment focused on a specific 

application are and specific subject area. Content resources were collected from closed 

and open corpus in the specified subject area. A baseline system was developed in order 

to compare its performance against CROCC.  Evaluation system was built to present con-

tent slices produced by each system to the participant users for evaluation. Experimental 

results demonstrated that the quality of slices produced by CROCC are highly preferred 

by users than slices produced by the baseline system. 

A minor contribution of this thesis is the concept space that was built from Wikipedia for 

the purpose of this research. The concept space was built from a Wikipedia snapshot 

(April 2017) to be used for the explicit semantic analysis of text within C-HTS. This 

concept space is publicly available15 and can be used by researchers who work on tasks 

related to explicit semantic analysis. Another minor contribution is the implementations 

of the two hierarchical text segmentation algorithms proposed in this thesis, OntoSeg and 

C-HTS. Implementations of both algorithms have been open-sourced and made publicly 

available16,17. 

The contributions of this research have also resulted in the following academic publica-

tions: 

 Bayomi, M., Levacher K., Ghorab, M.R., and Lawless, S. "OntoSeg: a Novel Ap-

proach to Text Segmentation using Ontological Similarity”. In the proceedings of 

the 5th ICDM Workshop on Sentiment Elicitation from Natural Text for Infor-

mation Retrieval and Extraction, ICDM SENTIRE. Held in conjunction with the 

                                                 
15 https://goo.gl/JZhEvm 
16 https://github.com/bayomim/OntoSeg 
17 https://github.com/bayomim/C-HTS 
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IEEE International Conference on Data Mining, ICDM 2015. Nov 14th, 2015. 

Atlantic City, NJ, USA. 

 Bayomi, M. & Lawless, S. “C-HTS: A Concept-based Hierarchical Text Seg-

mentation approach”. In the Proceedings of the Eleventh International Confer-

ence on Language Resources and Evaluation (LREC 2018). Miyazaki, Japan: 

European Language Resources Association (ELRA). 

 Bayomi, M. "A Framework to Provide Customized Reuse of Open Corpus Con-

tent for Adaptive Systems." In the Proceedings of the 26th ACM Conference on 

Hypertext & Social Media. HT ’15. Northern Cyprus, pp 315–318. ACM, 2015.  

Additionally, a publication describing the CROCC service and its evaluation (detailed in 

Chapter 5 and Chapter 6) is underway and will target the ACM Hypertext conference.  

7.3 Further Work 

This section discusses potential further work that could be undertaken for the research in 

this thesis. 

7.3.1 Multilingual Content-Supply 

CROCC has primarily focused on harvesting and processing content resources that are 

written in English. The main module that processes the textual content of the harvested 

resources is the Structure Builder module (section 5.2.3) that utilises the C-HTS algo-

rithm presented in Chapter 4. As discussed in section 4.6.3, the core of C-HTS is the 

process of measuring the semantic relatedness between text clusters using the explicit se-

mantic representation of text. Additionally, as discussed in section 5.2.6, the same tech-

nique is used by the Slice Selector module to semantically represent the query of the adap-

tive system’s request.  This process of text representation is essentially based on the un-

derlying concept space that has been built from Wikipedia. Since Wikipedia is available 

in many languages18, building concept spaces for other languages can be done as described 

in section 4.2. Thus, moving C-HTS from one language to another can be done easily. The 

only step that needs to be changed is the morphological analysis (section 4.4.1) to filter 

out and stem the prominent terms in text. This step is relatively easy to implement as there 

has been a large volume of work completed on morphological analysis for languages other 

                                                 
18 As of April 2018, there are 298 Wikipedias of which 288 are active and 10 are not: https://en.wikipe-

dia.org/wiki/List_of_Wikipedias [Accessed: April 08, 2018] 
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than English (Manning et al., 2014). 

Moreover, because CROCC is designed using a flexible architecture, it allows for plug-

ging-in, removing, enabling, or disabling alternative components or algorithms used by 

the service. Thus, other components of the service (Content Harvester, Content Pruner, 

etc.) can be replaced, if required, based on the language of the target content resources. 

Hence, the initial extension of this research would consist of extending CROCC to provide 

multilingual content-supply services. This in turn would allow CROCC to incorporate and 

supply a wider range of content resources. 

7.3.2 Domain-Specific Concept Space 

This research proposed a novel approach for structuring content resources based on their 

semantic representation. This semantic structure is further used by a novel content-supply 

service named CROCC. As discussed in section 4.3, the concept space used in this re-

search is built from Wikipedia. Since Wikipedia contains millions of documents in dif-

ferent domains19, this means that the concept space built from it is generic and does not 

focus on a specific domain. Thus, a potential piece of future work could involve the cre-

ation of a concept space using a domain-specific knowledge repository. This would in-

volve research into the characteristics of the knowledge repository that the concept space 

would be built from. The task of building a concept space from a knowledge repository 

other than Wikipedia has already been studied (Gottron et al., 2011), and it has been 

shown experimentally that instead of the conceptually orthogonal Wikipedia articles, us-

ing documents from the Reuters corpus lead to a comparable performance (Anderka and 

Stein, 2009). To build further on this line of future work, evaluating the impact of such a 

concept space on the segmentation task (C-HTS) and the content-supply (CROCC) would 

be undertaken.  

7.3.3 Integrate Different Content Annotation Tools 

The implementation of the CROCC service (section 5.4) and the experiment described in 

Chapter 6 have primarily focused on two main elements of the request that might be sent 

by an adaptive system: the query and the level of granularity (number of sentences). 

However, as discussed in section 5.2.3, the flexibility of building the structure of a content 

resource using C-HTS, allows for including a variety of metadata information that gives 

                                                 
19 https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia 
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more description to each slice produced in the structure. Additionally, the flexibility of 

the CROCC structure allows for plugging-in different components or algorithms as re-

quired. Thus, a potential piece of future work may involve integrating different annotation 

tools that can annotate slices with additional metadata information. Examples of such 

metadata in the education domain are, reading difficulty and pedagogical annotations. 

This line of future work would also include the evaluation of the newly added information 

in a full content adaptation scenario that would involve using an actual adaptive system. 

7.4 Final Remarks 

It is hoped by the author of this thesis that the proposed hierarchical text segmentation 

approach will be of benefit to both the research community and commercial applications. 

The proposed C-HTS algorithm will be useful for researchers who wish to build a 

structure from textual documents based on the semantic representation of text. This 

structure can be utilised, for example, in a semantic retrieval task where the indexing 

process, and the retrieval process, will be based on the semantic representation of the 

structure of the document not on the traditional keyword-based indexing mechanism. C-

HTS would also be of benefit for content mining companies that focus on techniques for 

understanding the meaning of the text. 

It is also hoped that the proposed content-supply service CROCC, will be of benefit to 

researchers who wish to build adaptive systems and/or content-supply services. 

Researchers could continue to contribute to new/advanced features of the service in the 

future, with a target of the exploitation of various other content processing and adaptation 

approaches. The experiment in this thesis has shown the benefits that CROCC can bring 

to content discoverability and reusability for adaptive systems. As a result, adaptive 

systems designers can employ the service to facilitate the delivery of content to their 

users.
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