

Using NLP Techniques to Enhance Content

Discoverability and Reusability for Adaptive

Systems

A thesis submitted to the

University of Dublin, Trinity College

in fulfilment of the requirements of the degree of

Doctor of Philosophy

Mostafa Bayomi

Knowledge and Data Engineering Group (KDEG)

School of Computer Science and Statistics

Trinity College, Dublin

Ireland

Supervised by Prof. Séamus Lawless

2019

 ii

Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or any

other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or

allow the library to do so on my behalf, subject to Irish Copyright Legislation and Trin-

ity College Library conditions of use and acknowledgement.

Signature ___________________________ Date ___________________

 Mostafa Bayomi

 iii

Permission to lend or copy

I, the undersigned, agree that the Trinity College Library may lend or copy this thesis

upon request.

Signature ___________________________ Date ___________________

 Mostafa Bayomi

 iv

Dedication

To my mother’s soul

 v

Acknowledgements

First and foremost, all thanks and praise are due to God, who has granted me this great

success in my PhD, and has bestowed upon me all the necessary strength, health, wits,

patience, and perseverance to complete it.

I would like to express my gratitude to numerous people who have helped me to complete

my work over the last number of years. I would like to express my utmost gratitude to

my supervisor Prof. Séamus Lawless for all his guidance, patience, feedback, encourage-

ment, and for his great support personally and professionally throughout my PhD journey.

I could not have done it without him.

I would like to thank all my colleagues in KDEG and ADAPT who have directly and

indirectly supported me both personally and academically during the years of the PhD.

My utmost gratefulness and sincerest thanks to my father (Mohamed Bayomi), my broth-

ers (Ahmed and Amr) and my sister (Rasha) who have always believed in me and for all

their care, support and encouragement. To my lovely wife Alaa, for all her love, devotion,

never-ending support and encouragement. To my kids, Hamza and Omar who are the joy

of my life.

I would like to thank all my Egyptian friends in Dublin who have been a major part of

this journey. And a special thanks to two very special people, Ramy Shosha and Rami

Ghorab. Words of gratitude and thanks can never do them their rights.

And I’ve saved the best for last: My utmost gratefulness and sincerest thanks to my

mother (Boushra Shams), whom I wish that she is with me in this moment. She has been

and will always be the greatest supportive person in my life, especially in my PhD jour-

ney. You have left this world, but you will always be with me. Thanks mum for every-

thing, words will never express my feelings for you. May God bless your soul.

 vi

Abstract

The volume of digital content resources written as text documents is growing every day,

at an unprecedented rate. Because this content is generally not structured as easy-to-han-

dle units, it can be very difficult for users to find information they are interested in, or to

help them accomplish their tasks. This in turn has increased the need for producing tai-

lored content that can be adapted to the needs of individual users. A key challenge for

producing such tailored content lies in the ability to understand how this content is struc-

tured. Hence, the efficient analysis and understanding of unstructured text content has

become increasingly important. This has led to the increasing use of Natural Language

Processing (NLP) techniques to help with processing unstructured text documents.

Amongst the different NLP techniques, Text Segmentation is specifically used to under-

stand the structure of textual documents. However, current approaches to text segmenta-

tion are typically based upon using lexical and/or syntactic representation to build a struc-

ture from the unstructured text documents. However, the relationship between segments

may be semantic, rather than lexical or syntactic.

Furthermore, text segmentation research has primarily focused on techniques that can be

used to process text documents but not on how these techniques can be utilised to produce

tailored content that can be adapted to the needs of individual users. In contrast, the field

of Adaptive Systems has inherently focused on the challenges associated with dynami-

cally adapting and delivering content to individual users. However, adaptive systems have

primarily focused upon the techniques of adapting content, not on how to understand and

structure this content. Even systems that have focused on structuring content are limited

in that they rely upon the original structure of the content resource, which reflects the

perspective of its author. Therefore, these systems are limited in that they do not deeply

“understand” the structure of the content, which in turn, limits their capability to discover

and supply appropriate content for use in defined contexts, and limits the content’s ame-

nability for reuse within various independent adaptive systems.

In order to utilise the strength of NLP techniques to overcome the challenges of under-

standing unstructured text content, this thesis investigates how NLP techniques can be

utilised in order to enhance the supply of content to adaptive systems. Specifically, the

contribution of this thesis is concerned with addressing the challenges associated with

hierarchical text segmentation techniques, and with content discoverability and reusabil-

ity for adaptive systems.

vii

Firstly, this research proposes a novel hierarchical text segmentation approach, named C-

HTS, that builds a structure from text documents based on the semantic representation of

text. Semantic representation is a method that replaces keyword-based text representation

with concept-based features, where the meaning of a piece of text is represented as a

vector of knowledge concepts automatically extracted from massive human knowledge

repositories such as Wikipedia. Using this approach, C-HTS represents the content of a

document as a tree-like hierarchy. This way of structuring the document can be regarded

as a hierarchically coherent tree that is useful for supporting a variety of search methods

as it provides different levels of granularity for the underlying content. Secondly, this

research proposes a novel content-supply service named CROCC. The aim of CROCC is

to utilise the produced structure of C-HTS in order to overcome the limitations of the

state of the art content-supply approaches. Finally, this research conducts an evaluation

of the extent to which the CROCC service enhances content discoverability and reusabil-

ity for adaptive systems.

 viii

Table of Contents

Abstract .. vi

1. Introduction ... 1

1.1 Motivation ... 1

1.2 Research Question .. 5

1.2.1 Research Objectives .. 5

1.3 Research Contributions ... 6

1.4 Research Methodology ... 8

1.5 Thesis Overview ... 10

2. State of the Art .. 13

2.1 Introduction ... 13

2.2 Natural Language Processing ... 13

2.2.1 Overview ... 13

2.2.2 Low-level NLP Tasks ... 14

2.2.3 High-level NLP Tasks ... 16

2.2.4 Summary ... 18

2.3 Text Segmentation .. 18

2.3.1 Overview ... 18

2.3.2 Content-based and Discourse-based ... 19

2.3.3 Supervised and Unsupervised ... 20

2.3.4 Borderline sentences detection methods ... 20

2.3.5 Linear and Hierarchical ... 21

2.3.6 Hierarchical Text Segmentation Techniques .. 23

2.3.7 Summary ... 25

2.4 Adaptive Systems .. 26

2.4.1 Overview ... 26

2.4.2 Anatomy of Adaptive Systems ... 27

2.4.3 Models of Adaptive Systems .. 30

2.4.4 Content Models ... 32

2.4.5 Summary ... 38

2.5 Content Discoverability Techniques ... 39

2.5.1 External Content Discoverability Techniques .. 39

2.5.2 Content Indexing ... 41

2.5.3 Internal Content Discoverability Techniques ... 45

2.6 Content Reusability Techniques ... 47

2.6.1 Content Encapsulation .. 48

2.6.2 Shared publishing .. 50

2.6.3 Content Modification .. 51

2.7 Natural Language Processing in Adaptive Systems 52

2.8 Chapter Summary ... 55

ix

3. OntoSeg: A Novel Approach to Text Segmentation using Ontological Similarity 57

3.1 Introduction ... 57

3.2 OntoSeg Architecture .. 58

3.2.1 Semantic annotation .. 58

3.2.2 Similarity Computation ... 60

3.2.3 Hierarchical Agglomerative Clustering (HAC) .. 64

3.3 From Hierarchical into Linear Representation ... 66

3.4 Evaluation ... 67

3.4.1 Experimental Setup ... 67

3.4.2 Elementary Units for OntoSeg .. 69

3.4.3 Evaluation Metrics .. 70

3.4.4 Results ... 71

3.4.4.1 OntoSeg Performance Against Other Approaches.................................. 72

3.5 Chapter Summary ... 73

4. C-HTS: A Concept-based Hierarchical Text Segmentation approach 75

4.1 State of the Art Influences .. 76

4.2 Intuition behind C-HTS .. 78

4.3 Semantic Relatedness .. 79

4.3.1 How does Explicit Semantic Analysis work? ... 80

4.4 C-HTS Architecture .. 83

4.4.1 Morphological Analysis .. 83

4.4.2 Semantic Representation and Relatedness Measuring 84

4.4.3 Hierarchical Agglomerative Clustering .. 84

4.4.4 Word Sense Disambiguation ... 85

4.5 Evaluation ... 87

4.5.1 Datasets ... 87

4.5.2 Baselines ... 88

4.5.3 Results ... 89

4.6 Discussion ... 90

4.6.1 Elementary Units for C-HTS .. 90

4.6.2 Text Granularity .. 91

4.6.3 Multilingual C-HTS .. 92

4.7 C-HTS Validation ... 92

4.7.1 Semantic Similarity using WordNet ... 93

4.7.2 Lexical Representation .. 95

4.8 The Impact of Knowledge Breadth ... 96

4.8.1 Experiment and Results .. 97

4.9 Chapter Summary ... 98

5. CROCC: Customised Reuse of Open- and Closed-corpus Content 100

5.1 State of the Art Influences .. 100

5.1.1 Content Incorporation Techniques .. 101

5.1.2 Content Right-Fitting .. 101

5.1.3 Content Structuring ... 102

5.1.4 Content Representation ... 103

x

5.1.5 Content Indexing ... 103

5.1.6 Content Discoverability .. 104

5.1.7 Content Reusability ... 105

5.1.8 Summary ... 107

5.2 CROCC Architecture .. 107

5.2.1 Content Harvester ... 108

5.2.2 Content Pruner .. 109

5.2.3 Structure Builder ... 110

5.2.4 Slice Indexer ... 112

5.2.5 Content Repository ... 113

5.2.6 Slice Selector .. 117

5.3 Adhering to the Key Principles ... 120

5.4 CROCC Implementation ... 122

5.4.1 RESTful Web Service ... 122

5.4.2 Content Harvester ... 123

5.4.3 Content Pruner .. 124

5.4.4 Structure Builder ... 125

5.4.5 Slice Indexer ... 126

5.4.6 Content Repository ... 126

5.4.7 Slice Selector .. 126

5.4.8 Request Coordinator ... 126

5.5 Chapter Summary ... 127

6. Evaluation of the CROCC Service ... 128

6.1 Evaluation Methodology ... 128

6.2 Data and Content Sourcing ... 131

6.2.1 Closed Corpus Content Resources .. 131

6.2.2 Open Corpus Content Resources .. 132

6.3 Baseline System .. 133

6.3.1 Document Indexing ... 134

6.3.2 Slice Generation .. 134

6.4 Experimental Setup ... 135

6.4.1 Concept Vector Cut-off Parameter ... 135

6.4.2 Datasets Indexing and Slices Generation .. 136

6.4.3 Evaluation System .. 138

6.5 Results ... 140

6.5.1 General Performance .. 141

6.5.2 The Query Element of the Request ... 142

6.5.3 Number of Sentences Element of the Request .. 143

6.5.4 Discussion ... 144

6.6 Chapter Summary ... 145

7. Conclusion and future work .. 146

7.1 Research Question, Objectives and Achievements 146

7.1.1 Research Objective 1 .. 146

7.1.2 Research Objective 2 .. 147

7.1.3 Research Objective 3 .. 149

7.1.4 Research Objective 4 .. 150

xi

7.2 Contributions ... 152

7.3 Further Work ... 154

7.3.1 Multilingual Content-Supply .. 154

7.3.2 Domain-Specific Concept Space .. 155

7.3.3 Integrate Different Content Annotation Tools .. 155

7.4 Final Remarks ... 156

References ... 157

 xii

List of Figures

Figure 2.1 A dotplot of four concatenated Wall Street Journal (Reynar, 1994) 21
Figure 2.2 Paragraph dendrogram of the Stargazers article (Yaari, 1997) 24
Figure 2.3 Layers of the Dexter model (Halasz & Schwartz 1990) 28
Figure 2.4 A depiction of the three layers of the Dexter model as embedded in an actual

adaptive system. .. 29
Figure 2.5 AHAM model (De Bra et al., 1999) .. 30
Figure 2.6 An Adaptive System with a closed corpus content model (Aroyo et al., 2004)

 ... 35
Figure 2.7 The ArtEquAKT system .. 43
Figure 2.8 Slicepedia Architecture Pipeline ... 44
Figure 3.1 Example of three sentences annotated by DBpedia Spotlight 59
Figure 3.2 A vector representation of the three sentences after mapping entities to their

classes from DBpedia ontology .. 59
Figure 3.3 Example of ontology extract (Slimani et al.,2006) 62
Figure 3.4 OntoSeg Algorithm ... 65
Figure 3.5 Sentences dendrogram of a sample text .. 66
Figure 3.6 A tree representation for a text from 10 sentences .. 67
Figure 4.1 The process of generating an ESA model from Wikipedia articles (Egozi et

al., 2011). .. 81
Figure 4.2 Semantic interpretation of two text units using ESA (Gabrilovich and

Markovitch, 2007) ... 82
Figure 4.3 C-HTS output as a dendrogram of a sample text .. 85
Figure 5.1 The CROCC service architecture .. 108
Figure 5.2 Removing the unnecessary content fragments by the Content Pruner 110
Figure 5.3 A sample of the output of one iteration of the C-HTS algorithm in the

Structure Builder module .. 112
Figure 5.4 Illustration of how the Slice Indexer maps a concept to slice objects

associated with it ... 113
Figure 5.5 An example of the concept index in the Content Repository 115
Figure 5.6 Document sentences stored in the Text Index after the morphological

analysis phase in C-HTS ... 116
Figure 5.7 A sample of a document indexed in the Text Index 117
Figure 5.8 Illustration of how the Slice Selector module works 117
Figure 5.9 A sample of the centroid vector of three concepts with their relevance scores

to the query ... 118
Figure 5.10 Example of the returned lists of slices associated with the three concepts in

Figure 5.9 .. 119
Figure 6.1 A sample of the XML structure produced by the PDFX system 132
Figure 6.2 An illustration of how a document is indexed in Lucene 134
Figure 6.3 A flowchart of the slice generation process by the baseline system 135
Figure 6.4 Slices distribution over closed and open corpora .. 138
Figure 6.5 Evaluation System ... 140
Figure 6.6 Distribution of general user evaluations for each criteria 142

xiii

List of Tables

Table 3.1 Choi’s dataset statistics ... 68
Table 3.2 Ontological similarity error rates (WD) for different window sizes 71
Table 3.3 Hybrid approach error rates for different window sizes 72
Table 3.4 Pk values for various algorithms in the literature with provided segment

number .. 73
Table 4.1 Evaluation of C-HTS, HAPS, OntoSeg and iterative versions of MCSeg and

BSeg using windowDiff per level .. 90
Table 4.2 Comparison between different similarity measures using WordNet in C-HTS

 ... 94
Table 4.3 Comparison between different coherency measures used with C-HTS.......... 96
Table 4.4 Comparison of the three Wikipedia snapshots ... 97
Table 4.5 Comparison of the three Wikipedia snapshots ... 97
Table 6.1 A sample of slices generated by both systems .. 138
Table 6.2 Slice sizes for each topic in each group .. 139
Table 6.3 Mean scores of user evaluations for all slices produced by each system 141
Table 6.4 Mean scores of user evaluations for slices produced for each query by each

system ... 143
Table 6.5 Mean scores of user evaluations for slices with regards to number of

sentences ... 144

 xiv

Acronyms

AHS Adaptive Hypermedia System

APeLS Adaptive Personalized eLearning Service

AR Anaphora Resolution

DOM Document Object Model

ESA Explicit Semantic Analysis

HAPS Hierarchical Affinity Propagation for Segmentation

IR Information Retrieval

JSON JavaScript Object Notation

LO Learning Objects

LOM Learning Object Metadata

LSA Latent Semantic Analysis

MHTSS Multi-granularity Hierarchical Topic-Based Segmentation System

NER Named Entity Recognition

NLP Natural Language Processing

PMCC Personal Multilingual Customer Care

RDF Resource Description Framework

SCORM Sharable Content Object Reference Model

SME Subject-Matter Expert

TFIDF Term Frequencies - Inverse Document Frequency

UML Unified Modelling Language

WSD Word Sense Disambiguation

WWW World Wide Web

 1

1. Introduction

1.1 Motivation

A large proportion of digital content resources are written as text documents in the form

of web pages, product manuals, news articles, research papers, etc. The volume of this

content is growing at an unprecedented rate, making it very difficult for users to find

information they are interested in or to help them accomplish their tasks (Uchyigit, 2009).

The reason is that these resources are generally not properly structured into easy to handle

units. Hence, efficient analysis and understanding of unstructured text content is becom-

ing increasingly important (Alani et al., 2003). This has led to the increasing use of Nat-

ural Language Processing (NLP1) techniques to help with processing unstructured text

documents (Beck et al., 2014; Sathiyamurthy and Geetha, 2011). The fundamental objec-

tive of NLP research is to convert a piece of text into a data structure that unambiguously

and completely describes the meaning of the natural language text (Collobert et al., 2011).

In the real world, natural language text usually appears as sequential patterns without

explicitly defined boundaries to identify how the text is structured. Amongst the various

NLP techniques that have been developed, Text Segmentation is used to identify bound-

aries in natural language text, and hence understand the structure of textual documents

(Badjatiya et al., 2018; Wang et al., 2017; Eisenstein, 2009; Hearst, 1997). Current ap-

proaches to text segmentation are based upon using lexical and/or syntactic representation

to identify the coherent segments of text (Azzopardi et al., 2017; Kazantseva and

Szpakowicz, 2014). However, the relationship between segments may be semantic, rather

than lexical or syntactic. Furthermore, text segmentation research has mainly focused on

techniques that can be used to process text documents but not on how these techniques

can be utilised to produce tailored content that can be adapted to the needs of individual

users.

The field of content adaptation has aimed to assist users with the problem of information

overload, and focused on the challenges associated with the growing body of digital con-

tent and methods to dynamically adapt and deliver it to individual users (Janati et al.,

2018; Bunt et al., 2007). One area of content adaptation is Adaptive Systems2. One of the

1 NLP also refers to Neuro-Linguistic Programming. In this research, it refers to Natural Language Processing.
2 Adaptive Systems are also commonly referred to within the research community as Adaptive Web Systems or

Adaptive Hypermedia Systems (AHSs). In this thesis, “adaptive systems” means any system that tailors content to

user’s needs.

2

main services that adaptive systems offer to their users is the provision of content3 that is

tailored to individual users’ needs. In order to provide such content, adaptive systems

utilise different techniques to incorporate content that meets the requirements of their

users.

Early adaptive systems primarily focused on content adaptation techniques rather than

the processing and production of the content itself (Dieberger & Guzdial, 2003; Conlan

& Wade, 2004; De Bra et al., 2003; Brusilovsky, 2004). Such systems have traditionally

relied upon the manual processing and production of content (Dieberger & Guzdial,

2003). This manual processing makes the resources available in these systems highly cu-

rated, and easily discovered and adapted to the user’s preferences. However, the result,

typically, is the production of relatively low volumes of content at high cost which makes

these systems only able to satisfy a narrow range of content requests (Levacher, 2014).

Furthermore, the labour-intensive requirements imposed upon the manual processing of

content resources results in a limited capability of content reusability within different

systems.

As a result, various adaptive systems have been proposed to address these challenges by

employing automatic techniques to incorporate and process content. They have mainly

focused on leveraging and utilising open corpus resources available on the World Wide

Web (Heufemann et al., 2013; Sosnovsky et al., 2012; Lawless, 2009; Weal et al., 2007).

This in turn allowed these systems to incorporate a wider range of open corpus content

resources that cover a more diverse range of information needs (Smith & Blandford,

2003). However, since these approaches have prioritised the development of automatic

techniques to support the use of open corpus content, these techniques typically used the

content resources in the form they were created, as static one-size-fits-all content objects,

with limited control over content granularity. As pointed by (Bunt et al., 2007), presenting

the incorporated content resources in their native form allows more content to be “visible

to the user. However, the more content is shown, the higher the chance of generating

information overload and reducing attention to the most relevant information, defeating

one of the very reasons for having adaptive systems in the first place”.

Additionally, when content reuse has been achieved in these systems, it is traditionally

performed manually (Henze and Nejdl, 2001) or at best using automated approaches that

3 Content has different types such as: textual content, and multimedia content (image, video, audio, or animation)

among others. The focus of this research is on textual content. Hence, in this thesis, the term content refers to textual

content.

3

treat such resources as document level packages only. As pointed out by (Lawless, 2009),

“there is an inverse relationship between the potential reusability of [...] content and its

granularity”. The reuse of open web resources in their native form could be improved if

reused in different sizes.

As a result, other systems tried to overcome these problems and focused on performing

adaptation at a finer level of granularity (Levacher et al., 2012b). In these approaches, the

harvested resources are processed and structured into coherent fragments. ArtEquAKT

(Millard et al., 2003; Weal et al., 2007) for example, utilised information extraction and

knowledge management techniques to automatically extract parts of content resources

(paragraphs) to create dynamic biographies of artists from content available on the web.

Another example is the PMCC4 system (Steichen, 2012) that delivers personalised con-

tent to individual users using open corpus content as fragments of text. The harvested

content is fragmented based on its HTML structure using a wrapper-based content frag-

mentation approach (Bunt et al., 2007) to identify regions of pages in order to produce

individual fragments of content. Slicepedia (Levacher, 2014) was introduced as a web

service to process open corpus resources and extract content for reuse by right-fitting it

to the specific content requirements of individual content consuming applications.

Slicepedia fragments the harvested open corpus content into segments based on their

HTML structure.

Although these systems have demonstrated their ability to automatically process textual

content and hence enhance its discoverability and reusability, they are limited in that they

rely only upon the original structure of the content resource that reflects the needs and

perspective of its author. While each adaptive system has its own content requirements

(based on its users), relying upon such structure does not reflect these requirements. Fur-

thermore, content resources that do not possess any layout structure (e.g. plain text) or do

not make use of orthographic information (e.g. content is not structured as paragraphs),

cannot be effectively processed and reasoned about by these systems. Additionally, these

systems are limited in that they do not deeply “understand” the structure of the content,

which, in turn, limits their capability to supply appropriate content for use in defined

contexts. Understanding the structure of content requires a deep understanding of the

meaning of that content.

4 Personal Multilingual Customer Care

4

In order to utilise the strength of NLP techniques and to overcome the challenges of un-

derstanding unstructured text content, this thesis investigates how NLP techniques can be

utilised in order to enhance the supply of content to adaptive systems. Specifically, this

thesis focuses on the use of text segmentation, as a technique for structuring textual doc-

uments, to enhance content discoverability and reusability for adaptive systems.

In this thesis, two novel hierarchical text segmentation approaches are presented. The two

approaches are: OntoSeg (Bayomi et al., 2015) and C-HTS (Bayomi & Lawless, 2018).

Both approaches use the semantic representation of textual content in order to segment it

and produce a tree-like hierarchical structure. This way of building the document struc-

ture can be regarded as a hierarchically coherent tree that is useful to support a variety of

search methods as it provides different levels of granularity for the underlying content.

This tree is then traversed to obtain different levels of content granularity that facilitate

content discoverability and reusability. Each approach was evaluated independently to

explore its efficiency in performing its task. Additionally, a novel content-supply service

called CROCC (Customised Reuse of Open- and Closed-corpus Content) is presented.

The aim of CROCC is to utilise the produced structure of the segmentation algorithm (C-

HTS5) in order to overcome the limitations of the state of the art content-supply ap-

proaches. Furthermore, an evaluation of the extent to which the CROCC service enhances

content discoverability and reusability for adaptive systems is presented.

In this thesis, CROCC (using C-HTS) is designed and evaluated with reference to the

supply of content to adaptive systems. However, the work presented in this thesis can

potentially be used by a range of different applications that rely on structuring and under-

standing content such as Recommender Systems (Karimi et al., 2018) and Passage Re-

trieval systems (Cohen and Croft, 2018).

Adaptive systems rely on different models to produce adaptive content compositions ac-

cording to their users’ needs. It is not within the scope of this research to design and build

an adaptive system. Rather, the aim of this thesis is to propose novel approaches for struc-

turing textual content based on its semantic representation and to utilise the produced

structure in a content-supply service to enhance the discovery and reuse of content for

adaptive systems.

5 Evidence from experiments demonstrated that C-HTS is performing better than OntoSeg (Chapter 4). Hence, C-

HTS is employed in CROCC to build the structure for content resources (as will be discussed in Chapter 5).

5

1.2 Research Question

The question that this research seeks to answer is:

To what extent can the semantic representation of unstructured textual content be ex-

ploited by novel text segmentation approaches to build a document structure?

To assess whether the structure produced by the proposed approaches is of benefit to

content adaptation, a further question will be addressed:

Can the produced structure be used to enhance the discoverability and reusability of con-

tent for adaptive systems?

In light of these research questions, and the research objectives outlined in section 1.2.1

below, this research aims to propose novel approaches for producing a structure out of

textual content in order to improve content discoverability and reusability for adaptive

systems.

1.2.1 Research Objectives

In order to address the research questions outlined above, the following research objec-

tives were identified for this thesis:

RO 1: Perform a state of the art survey on NLP techniques, specifically text segmen-

tation as a technique for structuring textual content. The aim of this survey is to in-

vestigate how text segmentation is used to analyse and understand text to produce a

structure from unstructured textual documents. Additionally, perform a state of the

art survey on adaptive systems as content adaptation applications, to investigate how

they process content and the different techniques they utilise in order to facilitate the

discovery and reuse of this content. The survey should also review how state of the

art adaptive systems utilise NLP techniques in order to provide adaptive content.

RO 2: Examine the different methods and techniques that can be used to enhance the

performance of text segmentation using the semantic representation of text, and de-

velop a new text segmentation approach to enhance the understanding of unstructured

textual documents. This also involves the evaluation of the effectiveness of the pro-

posed approach in processing and structuring content.

RO 3: This PhD research takes adaptive systems as the target application scenario.

To enhance the content discoverability and reusability, it is important to understand

6

the structure of that content. The proposed hierarchical text segmentation approach

makes it possible to build a structure out of content resources based on the semantic

representation of text. In this context, a new content-supply service that utilises the

structure produced by the proposed segmentation approach needs to be built. The de-

sign of this service should be focused on exploiting the produced structure in order to

overcome the limitations of the state of the art content-supply approaches.

RO 4: Evaluate the extent to which the proposed content-supply service can enhance

the discovery and reuse of content for adaptive systems.

1.3 Research Contributions

This work makes notable contributions to the state of the art of unstructured textual con-

tent analysis and understanding, along with content adaptation. These contributions are

illustrated throughout this thesis. The major contribution of this research is the use of

NLP techniques, specifically text segmentation, to analyse and build a structure from text

documents based on the semantic representation of text. This structure is utilised by a

novel content-supply service in order to enhance content discoverability and reusability

for adaptive systems. To build a structure from text documents, this research proposes

two novel hierarchical text segmentation algorithms based on the semantic representation

of text, OntoSeg (Chapter 3) and C-HTS (Chapter 4).

OntoSeg (Ontological Segmentation) (Bayomi et al., 2015) is a novel approach to text

segmentation that uses the semantic similarity between text blocks based on an ontology,

and uses a Hierarchical Agglomerative Clustering (HAC) algorithm to represent the text

as a tree-like hierarchy that is semantically structured.

Evidence from experiments conducted as part of this research indicates that although On-

toSeg is able to produce a hierarchical structure out of text based on its semantic repre-

sentation, it did not perform well against the state of the art approaches and thus, its per-

formance needs to be enhanced through improved understandability of text by exploring

the semantic relatedness between text blocks rather than just using the semantic similar-

ity. As argued by (Budanitsky and Hirst, 2006), relatedness is more general than similar-

ity since dissimilar entities may also be semantically related by other relationships such

as meronymy, antonymy, functional relationship or frequent association.

7

As a result, another algorithm called C-HTS (Concept-based Hierarchical Text Segmen-

tation) (Bayomi and Lawless, 2018) is presented. C-HTS is a hierarchical text segmenta-

tion approach that uses the explicit semantic representation of text to measure the seman-

tic relatedness between text blocks. The semantic representation of text is a method that

replaces keyword-based text representation with concept-based features, automatically

extracted from massive human knowledge repositories such as Wikipedia. C-HTS repre-

sents the meaning of a piece of text as a weighted vector of knowledge concepts, in order

to reason about text. Similar to OntoSeg, C-HTS produces the content of a single docu-

ment as a tree-like hierarchy. This way of structuring the document can be regarded as a

hierarchically coherent tree that is useful to support a variety of search methods as it

provides different levels of granularity for the underlying content.

This thesis also proposes a novel content-supply service named CROCC (Customised

Reuse of Open- and Closed-corpus Content) that utilises the structure produced by C-

HTS in order to overcome the limitations of the state of the art content-supply approaches.

CROCC is a service which harvests content resources from open and closed corpus in

their native form and builds a structure out of each content resource without the reliance

upon its original structure. The service builds the structure of a content resource based on

its semantic representation (using C-HTS) and delivers content slices6 according to the

needs and requirements of individual adaptive systems. The thesis also presents a task-

based experiment to evaluate the extent to which the CROCC service can enhance the

discovery and reuse of content for adaptive systems.

A minor contribution of this research is a concept space that was built from a Wikipedia

snapshot (April 2017) to be used for the explicit semantic analysis of text within C-HTS.

This concept space is publicly available7. Another minor contribution is the implemen-

tations of the two hierarchical text segmentation algorithms proposed in this thesis, On-

toSeg and C-HTS. Implementations of both algorithms have been open-sourced and made

publicly available8,9.

To date, three research papers directly related to this research have been published:

6 A slice is a piece of content (one or more sentences) that originates from pre-existing content resource
7 https://goo.gl/JZhEvm
8 https://github.com/bayomim/OntoSeg
9 https://github.com/bayomim/C-HTS

8

1. Bayomi, M., Levacher K., Ghorab, M.R., and Lawless, S. "OntoSeg: A Novel Ap-

proach to Text Segmentation using Ontological Similarity”. In the proceedings of

the 5th ICDM Workshop on Sentiment Elicitation from Natural Text for Infor-

mation Retrieval and Extraction, ICDM SENTIRE. Held in conjunction with the

IEEE International Conference on Data Mining, ICDM 2015. Nov 14th, 2015. At-

lantic City, NJ, USA.

This publication describes the OntoSeg algorithm that uses the semantic similarity be-

tween text blocks. The publication also describes the experiments that have been carried

out in order to evaluate the performance of OntoSeg in comparison with state of the art

text segmentation approaches.

2. Bayomi, M. & Lawless, S. “C-HTS: A Concept-based Hierarchical Text Segmen-

tation approach”. In the Proceedings of the Eleventh International Conference on

Language Resources and Evaluation (LREC 2018). Miyazaki, Japan: European

Language Resources Association (ELRA).

This publication describes the C-HTS algorithm that uses the semantic relatedness be-

tween text blocks. The publication describes the approach used by C-HTS to apply hier-

archical text segmentation and the concept space that has been built from Wikipedia in

order to measure the semantic relatedness between text blocks. The publication also de-

scribes the experiments that have been carried out in order to evaluate the performance

of C-HTS against the state of the art hierarchical text segmentation approaches.

3. Bayomi, M. "A Framework to Provide Customized Reuse of Open Corpus Content

for Adaptive Systems." In the Proceedings of the 26th ACM Conference on Hyper-

text & Social Media. HT ’15. Northern Cyprus, pp 315–318. ACM, 2015.

This publication describes a preliminary version of the CROCC framework that has been

built to facilitate the use of text segmentation in a content adaptation scenario.

Another publication describing the CROCC service and its evaluation (detailed in Chap-

ter 5 and Chapter 6) is underway and will target the ACM Hypertext conference10.

1.4 Research Methodology

This research addressed the abovementioned research questions and objectives by fol-

lowing a number of iterative steps that involved theoretical investigation, experimental

10 https://human.iisys.de/ht2019/

9

design, technical implementation, and quantitative and qualitative evaluation. This sec-

tion provides an overview of the research methodology followed.

Initially, a state of the art survey on NLP techniques in general and a focused review on

text segmentation was undertaken. The review investigated the different text segmenta-

tion approaches used for analysing and structuring textual documents and identified

points of strength and weakness in these approaches and how they could be enhanced.

The survey then included a review of adaptive systems, their anatomy, models and the

different content models that adaptive systems rely on. The survey also investigated the

different approaches for content discoverability and reusability used within adaptive sys-

tems. The survey then investigated the different NLP techniques used in adaptive systems

in order to structure textual content (RO 1).

Based on the influences derived from this survey, two new text segmentation algorithms

that use the semantic representation of content were proposed. The two algorithms,

namely OntoSeg (Chapter 3) and C-HTS (Chapter 4), use the semantic representation of

content to reason about it. Both algorithms were proposed to enhance text understanda-

bility and hence build a semantic structure to change the static and inflexible nature of

textual content. Both algorithms were evaluated independently, using a set of experi-

ments, to assess their performance in text segmentation tasks (RO 2).

As discussed in section 1.1, text segmentation research has mainly focused on techniques

that can be used to process text documents but not on how these techniques can be utilised

to produce tailored content that can be adapted to the needs of individual users. Thus, in

order to utilise the C-HTS algorithm in content adaptation, a content-supply service

named CROCC was developed (Chapter 5). CROCC was offered as an intelligent con-

tent-supply framework designed based on the influences derived from the state of the art

review on adaptive systems. The fundamental objective of CROCC is to utilise the struc-

ture produced by C-HTS to enhance content discoverability and reusability for adaptive

systems (RO 3).

To evaluate the extent to which the CROCC service enhances the discovery and reuse of

content for adaptive systems, a task-based experiment was carried out (RO 4). Since de-

signing and building an adaptive system is not within the scope of this thesis, this exper-

iment did not focus on evaluating the process of content use within an actual adaptive

system. Rather, the experiment focused on evaluating the content-supply mechanism of

10

CROCC and the quality of the slices produced by the service, according to the specific

requirements of a set of content requests that could be sent by an adaptive system.

1.5 Thesis Overview

The remainder of this thesis is organised as follows:

Chapter 1 presents a state of the art survey of NLP and adaptive systems. The survey

begins with a comprehensive review of a number of different NLP techniques. The field

of text segmentation is reviewed, through an overview of the categories of text segmen-

tation proposed so far in the literature, along with different techniques for segmentation

and their strengths and limitations. The survey then focuses on hierarchical text segmen-

tation and investigates how hierarchical text segmentation is used to analyse text to pro-

duce a structure from unstructured textual documents. The chapter then provides an over-

view of adaptive systems and describes their anatomy. Their strengths and limitations are

also presented. Types of content such as closed and open corpus content are then outlined.

Following this is a review of how state of the art adaptive systems utilise the different

techniques in order to discover content that is suitable for their users’ needs. Reusability

techniques applied by adaptive systems are then reviewed. The chapter also comprises a

review of a range of NLP techniques utilised by adaptive systems in order to structure

textual content.

The following chapters outline the design of the various elements of research presented

in this thesis. They build on the influences from the state of the art survey and outline the

design of the theoretical approaches proposed to meet the research questions and objec-

tives of this thesis.

Chapter 3 presents the design of OntoSeg, a new algorithm for text segmentation that

hierarchically represents the conceptual structure of content based on the semantic repre-

sentation of text. The chapter also describes a set of experiments that have been carried

out in order to evaluate the performance of OntoSeg using well-known evaluation met-

rics. The OntoSeg evaluation comprises a set of experiments where each experiment eval-

uates OntoSeg from a different perspective. The performance of OntoSeg is also com-

pared against a set of state of the art approaches using a dataset widely used in the litera-

ture.

Chapter 4 presents the design of C-HTS, the hierarchical text segmentation approach

that focuses on the semantic relatedness between text constituents. The technical aspects

11

related to building a concept space from Wikipedia are presented. Wikipedia was selected

in this research as it is considered the largest and fastest growing knowledge base in ex-

istence as it is a collaborative effort that combines the knowledge of hundreds of thou-

sands of people. The chapter also describes a set of experiments that have been carried

out in order to evaluate the performance of C-HTS using two different datasets in the

hierarchical text segmentation literature. Also, to assess the efficiency of C-HTS, its per-

formance is compared against state of the art hierarchical text segmentation approaches.

The chapter then describes two sets of experiments that have been carried out in order to:

(1) validate the efficacy of using Wikipedia as the underlying knowledge base for the

semantic representation of text in C-HTS, and (2) validate the efficacy of using the se-

mantic representation of text rather than its lexical representation.

Since C-HTS uses Wikipedia as the underlying knowledge base to reason about text, and

since the amount of knowledge in Wikipedia is expanding, such expansion, and the

growth of information available in the knowledge base should impact the accuracy of the

segmentation process. Hence, this chapter presents an evaluation of how this knowledge

expansion impacts upon the segmentation accuracy of C-HTS.

Chapter 5 presents the CROCC service and describes the different modules in the ser-

vice. The chapter starts by presenting the influences derived from the state of the art re-

view and the key principles that impacted the core properties of the CROCC service. The

chapter then presents the design aspects of CROCC service along with an explanation of

how each component in the service influences the content provision process. After that,

the chapter discusses how the design of the service adheres to the key principals derived

from the state of the art influences. Details of a prototype implementation of the service

are then presented.

Chapter 6 describes the experiment that has been carried out in order to evaluate the

extent to which the CROCC service can enhance the discovery and reuse of content for

adaptive systems. The chapter starts by describing the methodology applied in this exper-

iment. After that, the chapter outlines how content resources from closed and open corpus

were acquired for the purpose of the experiment. A baseline system is then introduced,

which has been developed to compare its performance against the CROCC service. The

experimental setup and the evaluation system that has been built for this experiment are

12

then described. The chapter concludes by presenting the analyses carried out, along with

the findings derived from this analysis.

Chapter 7 concludes the thesis with a summary of the key contributions of this research,

a discussion of how well the objectives were met and how the research questions were

answered, and a discussion of future work that may be carried forward from this thesis.

13

2. State of the Art

2.1 Introduction

This chapter presents a state of the art survey of NLP techniques, specifically text seg-

mentation, and presents a review of adaptive systems. The aim is to provide the reader

with an overall context of the research area, so as to extract relevant limitations and in-

fluences from the state of the art. The aim is also to contribute to the first objective of this

thesis (RO 1) by reviewing the field of text segmentation to investigate how text segmen-

tation is used to analyse and understand unstructured textual documents. The survey re-

views a number of different approaches to text segmentation along with their limitations.

The survey also reviews adaptive systems, as content adaptation applications, to get an

insight into how they process content to adapt it to their users’ needs. Additionally, the

survey reviews content discovery and reuse techniques within adaptive systems. These

techniques and systems are reviewed in terms of their strengths and their limitations. The

survey also reviews a range of different NLP techniques utilised by adaptive systems.

2.2 Natural Language Processing

2.2.1 Overview

Natural Language Processing (NLP) is a phrase used to describe a range of computational

techniques, based upon linguistic theory, for the automatic analysis and representation of

natural language (Cambria & White, 2014). The fundamental objective sought by NLP

research is to convert a piece of text into a data structure that unambiguously and com-

pletely describes the meaning of the natural language text (Collobert et al., 2011). During

the last decades, scientific efforts and the increasing availability of computational re-

sources have made it possible to come closer to the goal of understanding textual content

(Riedl 2016). Existing NLP techniques have been applied successfully in a wide range of

areas such as Machine Translation (McCann et al., 2017), Information Extraction

(Stanovsky et al., 2018; Fader et al., 2011), and Information Retrieval (Masumura et al.,

2017; Mitra and Craswell, 2017) among others.

In 1950, Alan Turing presented the Turing Test (Turing, 1950). The test consists of a text

conversation between two participants. One participant is a human and the other is a com-

puter. The aim of this test is to see if machine can think. Hence, Turing proposed the test

14

as a game, in which a computer’s use of language would form the basis for determining

if the machine could think. Turing defined a machine as intelligent if the evaluator cannot

distinguish the machine from the human. Following that, in 1954, John Hutchins pro-

posed the Georgetown-IBM system that involved the translation of Russian sentences

into English (Hutchins, 2005). Similar to Turing system, (Weizenbaum, 1966) proposed

ELIZA program 1966. ELIZA was an early natural language processing system capable

of carrying on a limited form of conversation with a user by using pattern matching to

process the input and translate it into suitable outputs.

Over time, a vast amount of NLP approaches have been drawn from these systems

(Jurafsky, 2000). NLP systems usually split practical problems into a series of consecu-

tive tasks. Each of these tasks represent a research field of its own and attempts to solve

a particular problem in processing natural language. These tasks are usually subdivided

into two broad classes based upon whether they consist of low-level or high-level pro-

cessing tasks (Levacher, 2014).

2.2.2 Low-level NLP Tasks

Low-level NLP tasks are usually used as a pre-processing step for other NLP tasks. An

example of a low-level task is Tokenisation, which is also referred as word segmentation

(Mullen et al., 2018; Goldwater et al., 2006). This task aims at handling word structure

by separating a stream of text into a consecutive set of tokens which roughly correspond

to "words" (Chang & Manning, 2014). Tokenisation mainly depends on word boundaries,

such as space, to identify the different tokens in the given piece of text. Each token can

roughly be defined as a sequence of characters positioned between two white spaces,

while punctuation can easily distinguish between two separate sentences. However, Asian

languages such as Chinese and Japanese have no explicit word boundaries, which make

tokenisation a challenging task (Zhang et al., 2010). Even in western languages, valid

words are often not identical to space-separated tokens. For example, proper nouns such

as “United Kingdom” or idiomatic phrases such as “with respect to” actually function as

a single word (Mochihashi et al., 2009). Nevertheless, different approaches have been

proposed to tackle these problems (Manning et al., 2014).

On the other hand, the task of sentence splitting is concerned with segmenting text into

sentences (Xu et al., 2017; Mikheev, 2000). While tokenisation relies on the delimiters

between tokens, sentence splitting depends on the boundaries between sentences in raw

text. Many NLP tasks require their input to be divided into sentences. For instance, to

15

summarise text each sentence needs to be identified in order to measure how important

this sentence is to be included in the final summary (Bayomi et al., 2016; Mihalcea &

Tarau, 2004). In a text segmentation task, to identify coherent segments in the given text,

there is a need to split it into sentences and then measure how these sentences are similar

(or related) to each other (Bayomi & Lawless, 2018; Bayomi et al., 2015; Choi, 2000).

Both tokenisation and sentence splitting tasks are generally used as the first processing

tasks applied to a raw natural language text, which directly influence the results of the

subsequent tasks.

While some NLP tasks might only require text to be tokenised or segmented into sen-

tences, some other tasks require various tokens to be grouped together based upon their

common root in the language. For example, in a search engine (Information Retrieval

task), we want to find relevant results not only for the exact word we typed in the search

bar, but also for the other possible forms of the words we used. If the typed word is

“skirts”, for example, it is very likely we will want to see results containing the word

“skirt”. Hence, grounding words into their root is an essential task. This task is usually

referred to Lemmatisation (Chakrabarty et al., 2017; Joel et al., 2004) or Stemming

(Hajeer et al., 2017; Willett, 2006). Both tasks aim to reduce the inflectional forms of

each word into a common base or root. For example, words such as, play, plays, played,

playing all possess the same root of “play”. However, both tasks are different in the way

they work and therefore so is the result that each of them returns. Essentially, stemming

algorithms cut off the end or the beginning of the word based on a list of common prefixes

and suffixes that can be found in a word. This makes such algorithms limited in some

cases. For example, for the two words “Studies” and “Studying”, although their root form

is “Study”, a stemming algorithm would reduce the two words, based on their suffixes,

into “Studi” and “Study” respectively. On the other hand, lemmatisation algorithms usu-

ally use a vocabulary and morphological analysis of words to remove inflectional endings

only and to return the base or dictionary form of a word, which is known as the lemma.

For the previous example, a lemmatisation algorithm can use a detailed dictionary to look

through and link the two words back to their lemma, “Study”.

Another task that is typically used as a pre-processing task is the Part-Of-Speech (POS)

tagging (Farrah et al., 2018; Stratos et al., 2016). POS tagging explains how a word is

used in a sentence by labelling each token with a unique tag that indicates its syntactic

function, such as, noun, pronoun, verb, adverb, etc. (Santos & Zadrozny 2014). In a given

text, many words, especially common ones, can serve as multiple parts of speech. For

16

example, “Play” can be verb (I play football every week) or can be a noun (I watched the

play and it was wonderful). Different taggers have been proposed for the English lan-

guage. (Shen et al., 2007) for example, propose a sequence classification approach for the

English language that obtained an error rate of 2.67% on standard benchmarks. On the

other hand, different taggers have been proposed for other languages (Habash & Rambow

2005). (Stratos et al., 2016) proposed an unsupervised part-of-speech (POS) tagger by

learning Hidden Markov Models (HMMs), which they call anchor HMMs, where they

extend the non-negative matrix factorization framework proposed by (Arora et al., 2013).

Various POS taggers have been proposed for languages other than English. (Farrah et al.,

2018), for example, proposed a rule-based hybrid tagger for Arabic language that uses an

artificial neural network classifier to determine the appropriate tags of an Arabic text. The

first step in their approach is to use the affixes in text to understand the nature of the word

and its tags according to grammatical rules. The second step then is to apply a translit-

erated mechanism on text to convert it into Roman letters. This transliterated text is then

used as an input of the classifier based on the neural networks. After that, the output of

the two steps is used to identify the tag of each word.

2.2.3 High-level NLP Tasks

This category of tasks usually rely on the output from the pre-processing tasks presented

in the previous section. One of these tasks is Information Extraction (IE) that is con-

cerned with extracting semantic information from text (Li et al., 2018; Chang et al., 2006).

The aim of IE algorithms is to extract structured information from unstructured docu-

ments. As stated by (Cowie & Lehnert, 1996): “Information Extraction (IE) is the name

given to any process which selectively structures and combines data which is found, ex-

plicitly stated or implied, in one or more texts. The final output of the extraction process

varies; in every case, however, it can be transformed so as to populate some type of da-

tabase.” Hence, the field of Information Extraction essentially comprises different (sub)

tasks, among them, which are of particular relevance for this thesis, is Named Entity

Recognition (NER) (Gabbard et al., 2018).

Named Entity Recognition (NER) algorithms aim to detect entities within text and assign

a type for each found entity, such as person, location, organization, etc. NER is essential

to recognise information units like names, including person, organization and location

names, and numeric expressions including time, date, money and percent expressions

(Yadav and Bethard, 2018; Nadeau and Sekine, 2007). These unites are called named

17

entities which carry key information in a sentence and serve as important targets for most

language processing systems (Mohit, 2014). Early NER approaches relied upon

handcrafted rule-based algorithms and lexicons (Nadeau and Sekine, 2007). As the task

evolved into a statistical learning problem, modern approaches have moved towards the

use of machine learning techniques (Yadav and Bethard, 2018). (Agerri and Rigau, 2016)

for example, proposed a multilingual NER approach (called ixa-pipe-nerc1) which learns

supervised models via the Perceptron algorithm (Collins, 2002). (Habibi et al., 2017)

presented a NER approach for biomedical text using long short-term memory network-

conditional random field (LSTM-CRF). Their approach combines deep learning and

word embeddings techniques and evaluation results showed that their approach

outperformed other NER tools that do not use deep learning or use deep learning methods

Another high-level task in the NLP field consists of the Word Sense Disambiguation

(WSD). WSD is the task of identifying the meaning of a term, when the term has multiple

meanings, based upon the context of where it appears (Raganato et al., 2017; Agirre et

al., 2014). For example, “light” can mean “not heavy” or “illumination”, what identifies

its meaning is the context of where “light” is used. While most of the time humans do not

even think about the ambiguities of language, machines need to process unstructured tex-

tual content to understand it and reason about it. WSD algorithms mainly rely on external

knowledge resources to associate the most appropriate senses with words in context

(Agirre & Stevenson 2006). Examples of these knowledge resources are: Thesauri (Cañas

et al., 2003), Machine Readable Dictionaries (Basile et al., 2014; Lesk, 1986) and Ontol-

ogies (Philpot et al., 2005). For example, (Banerjee & Pedersen 2002) proposed an adap-

tation of the Lesk algorithm (Lesk 1986) for word sense disambiguation. While the Lesk

algorithm relies upon a standard dictionary in order to find overlaps between neighbour-

ing words, they extended the algorithm and used the lexical database WordNet (Miller

1995) as the source of glosses for their approach.

Another NLP task is Automatic Text Summarisation. Text summarisation is the process

of abstracting key content from information sources. The goal of automatic summarisa-

tion is to process the source text to produce a shorter version of the information contained

in it then present this version in a way that suits the needs of a particular user or applica-

tion (Bayomi et al., 2016). Various techniques have been proposed in the literature for

1 https://github.com/ixa-ehu/ixa-pipe-nerc

18

the automatic summarisation of text, some of which are supervised, while others are un-

supervised. Supervised techniques involve the need for an existing dataset of example

summaries (Cruz et al., 2006). In contrast, unsupervised techniques do not rely upon any

external knowledge sources, models or on linguistic processing and interpretation to sum-

marise text (Mihalcea & Tarau 2004). There are two primary approaches to automatic

summarisation. Extractive methods work by selecting a subset of existing words, phrases,

or sentences from the original text to form the summary (Vodolazova et al., 2013). In

contrast, Abstractive methods build an internal semantic representation and then use nat-

ural language generation techniques to create a summary that is closer to what a human

might generate (Fiszman & Rindflesch 2003). Such a summary may contain words that

are not included in the original text.

2.2.4 Summary

This section presented a general overview of NLP algorithms including the most common

low-level and high-level tasks typically involved in this area. However, NLP field has

many other tasks, each of these tasks represent a research field of its own and attempts to

solve a particular problem in processing natural language. Example of other NLP tasks,

among others, are: Machine Translation (Moussallem et al., 2018), Sentiment Analysis

(Verma and Thakur, 2018; Medhat et al., 2014), Relationship Extraction (Zeng et al.,

2015) and Speech recognition (Zhang et al., 2017; Povey et al., 2011).

It is worth mentioning that NLP tasks are not mutually exclusive. For example, for a

Relationship Extraction (RE) task, an NER system should be used to extract entities for

which the RE algorithm can identify the relationships among them (e.g. who is married

to whom). Additionally, these tasks are very closely intertwined.

2.3 Text Segmentation

2.3.1 Overview

A large proportion of digital content resources are written as text documents in the form

of web pages, product manuals, papers, etc. The volume of this content is growing at an

unprecedented rate, making it very difficult for users to find interesting information or

information which helps the user complete their task (Uchyigit, 2009). Several research

fields have emerged which focus on the challenges associated with this growing body of

content, and the methods used to understand it, in order to find information stored in

19

unstructured text documents. One of these research fields is Text Segmentation (Pak and

Teh, 2018; Tsunoo et al., 2017; Glavaš et al., 2016; Choi, 2000; Hearst, 1997).

Text segmentation is the process of placing boundaries within text to create segments

according to some task-dependent criterion. It aims to divide text into coherent segments

which reflect the sub-topic structure of the text. Text segmentation algorithms are widely

used as an essential step for Information Retrieval (Prince and Labadié, 2007; Llopis et

al., 2002) and several NLP tasks such as text summarisation (Bokaei et al., 2016;

Boguraev and Neff, 2000), Question Answering (Riahi et al., 2012) and automatic gen-

eration of eLearning Courses (Beck et al., 2014). In Information Retrieval, a document is

segmented into distinct topics and only the topical segments relevant to the user’s needs

are retrieved. Segmentation not only provides more accurate information to the user, but

also reduces the burden on the user of having to read the whole document. In document

summarisation, a document is segmented into topics and then each topic is summarized

independently. This process guarantees that the final summary covers all the key topics

in the document.

Various synonyms in the literature are used to refer to text segmentation such as: Linear

Text Segmentation (Badjatiya et al., 2018), Hierarchical Text Segmentation (Tsunoo et

al., 2017), Topic Segmentation (Wang et al., 2017), Text Boundaries or Boundary Deter-

mination (Jamil et al., 2015; Labadié and Prince, 2008), and Topic Boundaries (Kim and

Cho, 2014). Furthermore, text segmentation has been categorised from a number of dif-

ferent points of view. The following subsections present a number of these categorisations.

2.3.2 Content-based and Discourse-based

Content-based approaches focus on the story content and resolve the segmentation prob-

lem by relying on some measure of the difference in word usage on the two sides of a

potential boundary: the larger the difference, the more indicative of a boundary. A well-

known content-based approach is TextTiling, proposed by Hearst (Hearst, 1994). Text-

Tiling is a content-based text segmentation algorithm that uses a sliding window approach

to segment a text. The calculation is accomplished by two vectors containing the number

of occurring terms of each block. The similarities between adjacent blocks within the text

are computed to detect topic changes. The computed similarities are smoothed and used

to identify topic boundaries by a cut-off function.

20

On the other hand, discourse-based techniques focus on story structure or discourse.

These approaches make use of lexical features such as the presence of certain cue phrases

that tend to appear near the segment boundaries. An example of discourse-based ap-

proaches is the Hidden Markov Model (HMM) segmentation method (Allan et al., 1998)

that models “marker words”, or words which predict a topic change.

2.3.3 Supervised and Unsupervised

A supervised text segmentation approach called divSeg was introduced by (Song et al.,

2011), where they apply an iterative approach that splits text at its weakest point in terms

of the lexical connectivity strength between two adjacent parts. After they found the weak-

est point in the text, their approach produces a deep and narrow binary tree. The tree is

then flattened into a broad and shallow hierarchy through supervised learning of a docu-

ment set or explicit input of how a text should be segmented. (Hsueh et al., 2006) described

a supervised hierarchical topic segmentation approach that trains separate classifiers for

topic and sub-topic segmentation.

On the other hand, (Eisenstein and Barzilay, 2008) proposed a Bayesian approach to un-

supervised topic segmentation. They showed that lexical cohesion between text segments

can be placed in a Bayesian context by modelling the words in each topic segment.

(Malmasi et al., 2017) extended this model and segmented text based on the stylistically

expressed characteristics of text such as change of authorship or native language. Text-

Tiling (Hearst, 1994) and C99 (Choi, 2000) are also considered unsupervised linear topic

segmentation algorithms.

2.3.4 Borderline sentences detection methods

There are three main approaches to detect borderline sentences within text (i.e. sentences

that identify the end or the beginning of a segment) (Labadié and Prince, 2008):

1- Similarity based methods: Represent text blocks as vectors and then measure the prox-

imity by using (typically) the cosine of the angle between these vectors. The C99 algo-

rithm (Choi, 2000) for example uses a similarity matrix to generate a local classification

of sentences and isolate topical segments.

2- Graphical methods: Represent terms frequencies and use these representations to iden-

tify topical segments (which are dense dot clouds on the graphic). (Reynar, 1994) pro-

posed a segmentation approach for locating text boundaries based on lexical cohesion

21

and a graphical technique called DotPlotting (Church, 1993). The approach is based on

enumerating the lexical items in text and plotting points which correspond to word rep-

etitions. Figure 2.1 depicts a sample dotplot of four articles. Since the repetition of lex-

ical items occurs more frequently within regions of a text which are about the same

topic or group of topics, the visually apparent squares along the main diagonal of the

plot correspond to regions of the text.

Figure 2.1 A dotplot of four concatenated Wall Street Journal (Reynar, 1994)

3- Lexical chains based methods: The central idea of approaches based on lexical chains

is that if the text continues to use similar words, then it is probably still talking about

the same topic (Manning, 1998). The notion of lexical chains was first proposed by

(Morris & Hirst, 1991) to chain semantically related words together via a thesaurus. A

chain links multiple occurrences of a term in the document and is considered broken

when there are too many sentences between two occurrences of a term. (Wang et al.,

2017) proposed a multi-granularity hierarchical topic-based segmentation system

(MHTSS) that divides a digital library document into a document segmentation tree

based on the structure of the document (built by its author) and the lexical cohesion

between its paragraphs.

2.3.5 Linear and Hierarchical

If we look at the text segmentation from a text representation perspective, we can divide

it into linear and hierarchical approaches. Linear text segmentation deals with the sequen-

tial analysis of topical changes where segments are non-overlapping and sequential. Linear

text segmentation approaches focus on segmenting text into coherent segments where each

22

segment represents a specific topic (Badjatiya et al., 2018; Sakahara et al., 2014; Choi,

2000). It has been argued that this sequence model is sufficient for many purposes (Hearst

1994). An early linear text segmentation algorithm was the TextTiling approach intro-

duced by Hearst (Hearst, 1994; Hearst, 1997). TextTiling applies linear text segmentation

by measuring the lexical similarity between text blocks. Text blocks are the smallest units

that constitute the text. They range from one sentence (Ye et al., 2008) to multiple sen-

tences (paragraphs) (Kazantseva & Szpakowicz, 2014). TextTiling uses a sliding window

to segment text. The calculation is accomplished using two vectors containing terms oc-

curring in each block. The similarity between blocks is calculated by a cosine measure:

given two text blocks b1 and b2, each with k token-sequences,

𝑠𝑖𝑚(𝑏1, 𝑏2) =
∑ 𝑤𝑡,𝑏1

𝑤𝑡,𝑏2 𝑡

√∑ 𝑤𝑡,𝑏1

2
𝑡 ∑ 𝑤𝑡,𝑏2

2𝑛
𝑡=1

where 𝑡 ranges over all the terms in the block, and 𝑤𝑡,𝑏1
is the weight assigned to term 𝑡

in block 𝑏1.

(Galley et al., 2003) proposed LcSeg, a TextTiling-based algorithm that uses tf-idf term

weights, which improved the text segmentation results. Another well-known linear text

segmentation algorithm is C99 introduced by (Choi, 2000). C99 segments a text by com-

bining a rank matrix, transformed from the sentence-similarity matrix, and divisive clus-

tering. (Utiyama and Isahara, 2001) introduced a linear approach, U00 that is based on

language models, where they use Dynamic Programming (DP) and the probability distri-

bution of words to rank and select the best segments. DP can be used to efficiently find

paths of minimum cost in a graph. DP is used in text segmentation to represent each

possible segment (e.g. every sentence boundary) as an edge providing a cost function that

penalises common vocabulary across segment boundaries. (Misra et al., 2009) used La-

tent Dirichlet Allocation (LDA) topic model (Blei et al., 2003) to linearly segment a text

into semantically coherent segments. Another approach that relies on LDA called Top-

icTiling was proposed by (Riedl and Biemann, 2012b). TopicTiling is based on the Text-

Tiling algorithm, and segments documents using the LDA topic model. The algorithm

represents segments as dense vectors of dominant topics based on terms they contain.

(Eisenstein and Barzilay, 2008) proposed a Bayesian approach to unsupervised topic seg-

mentation. They showed that lexical cohesion between text segments can be placed in a

Bayesian context by modelling the words in each topic segment. (Naili et al., 2016) inte-

grated a domain ontology in the topic segmentation in order to add external semantic

23

knowledge to the segmentation process. They proposed two topic segmenters called TSS-

Ont and TSB-Ont based on C99 and TextTiling respectively. They used the same tech-

niques as C99 and TextTiling but replaced lexical similarity with concept similarity.

(Badjatiya et al., 2018) proposed a supervised neural network approach for text segmen-

tation where they model the text segmentation problem as a binary classification problem.

Given a document, they use the context of each sentence (i.e. sentences before and after

it) for learning distinctive features for sentences that mark the beginning of the segment.

Most linear segmentation approaches can only produce single-level segmentation of a

document. However, considering the structure of a document as a sequence of segments

is in certain discord with most theories of textual content structure, where it is more usual

to consider documents as trees (Grosz and Sidner, 1986; Mann and Thompson, 1988;

Feng and Hirst, 2012; Kazantseva and Szpakowicz, 2014; Wang et al., 2017). Hence,

hierarchical text segmentation is seen as a method that can represent a document as a tree-

like hierarchy structure (Wang et al., 2017; Kazantseva and Szpakowicz, 2014;

Eisenstein, 2009; Yaari, 1997).

Since one of the objectives of the research in this thesis is to understand unstructured text

and build a representative structure out of it (RO 2), the research in this thesis focuses on

the use of hierarchical text segmentation to perform this task. The following section re-

views state of the art approaches for hierarchical text segmentation.

2.3.6 Hierarchical Text Segmentation Techniques

While linear text segmentation methods are concerned with splitting text into chunks of

consecutive text fragments, hierarchical text segmentation methods attempt to iteratively

split text into finer grained topic segments. Although it is widely believed that most doc-

uments display a hierarchical structure (Grosz and Sidner, 1986), work on hierarchical

text segmentation is relatively sparse (Wang et al., 2017).

An early hierarchical text segmentation approach was proposed by (Yaari, 1997). Yaari

used paragraphs as the elementary units for his algorithm and measured the cohesion

between paragraphs using lexical similarity between them as the proximity test. An ag-

glomerative clustering approach is then applied to induce a dendrogram tree over para-

graphs where a segment corresponds to a subtree in the resulting dendrogram tree. The

dendrogram is subsequently transformed into a hierarchical segmentation. Figure 2.2

24

shows a dendrogram of the Stargazers article that Yaari used as the test bench for evalu-

ation.

Figure 2.2 Paragraph dendrogram of the Stargazers article (Yaari, 1997)

The approach proposed by Yaari had been shown to be brittle as it requires a number of

parameters that must be hand-tuned (Eisenstein, 2009). To overcome such limitation,

(Eisenstein, 2009) proposed a novel unsupervised hierarchical text segmentation ap-

proach in which a Bayesian probabilistic framework that is based on LDA (Blei et al.,

2003) was integrated. Eisenstein modelled each word token as a draw from a pyramid of

latent topic models to create topical trees. The result of such work yielded an accurate

and fast segmentation algorithm with a minimal set of tuneable parameters.

(Du et al., 2013) proposed an extension of the hierarchical Bayesian segmentation ap-

proach proposed by (Eisenstein, 2009) by considering more advanced topic models that

model dependencies between (sub-) sections in a document. Although they utilised a hi-

erarchical segmentation approach, they just used it to hierarchically model topics within

document to improve the performance of linear segmentation, rather than develop hier-

archical segmentation. (Slaney and Ponceleon, 2001) used an image segmentation algo-

rithm (Leung et al., 2000) for hierarchical text segmentation. They extended the image

segmentation approach by using Latent Semantic Indexing (LSI) (Landauer et al., 1998)

to describe the position of a portion of the document in a multi-dimensional semantic

space. (Angheluta et al., 2002) proposed a hierarchical text segmentation approach that

applies a linear segmentation algorithm recursively to partition each major segment into

a sequence of sub segments. However, they used the resulting segmentation in a summa-

risation system, and they evaluated the summarisation system but not the segmentation

itself.

25

(Chien and Chueh, 2012) measured the topic similarity between sentences to form a beta

distribution reflecting the prior knowledge of document boundaries in a text stream. The

distribution of segmentation variables is adaptively updated to achieve flexible segmen-

tation and is used to group coherent sentences into a topic-specific document.

(Kazantseva and Szpakowicz, 2014) proposed HAPS, a hierarchical text segmentation

approach that is based on a graphical model for hierarchical clustering called Hierarchical

Affinity Propagation (Givoni et al., 2011). The input for HAPS is a matrix of similarity

between text blocks (paragraphs in HAPS). HAPS requires the desired number of levels

to be in the produced topical tree and a preference value for each data point and each

level. HAPS also finds a centre for each segment at every level of the produced topical

tree, a data point which best describes the segment. Recently, (Wang et al., 2017) pro-

posed MHTSS, a multi-granularity hierarchical topic-based segmentation system which

integrates features from lexical cohesion with document access structures (i.e. structure

built by author) to build a composite framework. The system relies on the original struc-

ture of digital library resources (e.g. headings and subheadings) as the elementary units.

Paragraphs within these sections are further segmented into subtopic segmentations based

on lexical cohesion.

(Tsunoo et al., 2017) proposed a hierarchical text segmentation approach that captures

the story structure of a broadcast news stream. The approach is a hierarchical model based

on a word-level Recurrent Neural Network (RNN) sentence modelling layer and a sen-

tence-level bidirectional Long Short-Term Memory (LSTM) topic modelling layer. Using

the lexical tokens of each sentence, the approach starts to extract a vector embedding the

sentence information in the word-level RNN layer. The output of this step is then used as

the input for the bidirectional LSTM to model the sentence and topic transitions. After

that, for each sentence, a topic posterior is estimated and a HMM follows to decode the

story sequence and identify story boundaries.

2.3.7 Summary

This section reviewed a variety of approaches to text segmentation and highlighted the

different categorisation criteria of this task. The section also reviewed the linear and hier-

archical approaches to text segmentation.

However, regardless of the segmentation approach (linear or hierarchical), all the afore-

mentioned approaches are limited by the fact that they can process only the information

that they can ‘see’ (Cambria and White, 2014). In other words, they are based on the

26

lexical and/or syntactic representation of text, a method that relies mainly upon the tradi-

tional bag-of-words representation of text to measure similarity (or dissimilarity) between

text blocks. However, a representation based solely on the endogenous knowledge in the

documents themselves does not reveal much about the meaning of the text. Hence, the

research in this thesis investigates the utilisation of external knowledge resources in order

to enrich text and infer more information about text constituents.

2.4 Adaptive Systems

The previous sections reviewed a number of different NLP techniques, and focused on

text segmentation as a technique for structuring text documents. NLP research has mainly

focused on techniques that can be used to process text documents, but not, however, on

how these techniques can be utilised to produce tailored content, adapted to the needs of

individual users. Conversely, the field of content adaptation has primarily focused on

methods and techniques of delivering adaptive content to individual users (Bunt et al.,

2007). One area of content adaptation is Adaptive Systems. The aim of this section is to

review adaptive systems, as content adaptation applications, to investigate how they pro-

cess content to facilitate its discoverability and reusability.

2.4.1 Overview

There is an enormous increase in the amount of content available on the World Wide

Web2. The architecture of the WWW has enabled the ease of content publication by mil-

lions of authors. However, the drawback to this ease of publication is that there is no

organised method to catalogue or list the content contained in a collection of information

nodes. Furthermore, the one-size-fits-all nature of web content makes it “same content

for all people”. With this static nature of content, users of an online news service, for

instance, are provided with the same news regardless of their backgrounds or interests.

As the number of users grows3, their content needs become more diverse. This nature of

content, and the increasing number of users, raised the need to change the way content is

presented and delivered to individual users. Several research fields have emerged which

focus on the challenges associated with the growing body of global content and the meth-

ods of delivering it to individual users. These challenges include: how to identify and

2 There are over 51 billion web pages indexed by Google. Source: http://www.worldwidewebsize.com/ [Accessed

October 2017].
3 There are over 4 billion users on the internet. Source: http://www.internetlivestats.com/internet-users/ [Accessed

September 2018]

27

retrieve content from different sources (Lawless, 2009); how to search for information in

multiple languages (Ghorab, 2014); and how to deliver this content in a form that is most

suitable for a specific user’s or application’s needs (Levacher et al., 2014).

As a result, the notion of Adaptive Hypermedia Systems (AHSs) emerged. In 1996,

Brusilovsky introduced the first classification of Adaptive Hypermedia Systems

(Brusilovsky, 1996). Since then, the field of adaptive hypermedia research has grown

rapidly and many approaches and systems have been proposed (Brusilovsky and Pesin,

1998; Henze and Nejdl, 2001; Conlan and Wade, 2004; Brusilovsky and Henze, 2007;

Staikopoulos et al., 2012; Aghoutane et al., 2017). These systems have tried to address

the challenge of producing adaptive compositions from different information sources in

order to deliver content in a form that is most suitable to an individual user. They have

focused on providing such compositions based on a variety of user dimensions, such as

user interests, prior knowledge, preferences or context. AHSs have successfully been

used in a range of application areas from eLearning (Najar et al., 2016) to government

portals (Penadés et al., 2014). The evaluations of AHSs have demonstrated their ability

to allow users to achieve their goals faster (Steichen et al., 2011; Staikopoulos et al., 2012;

Levacher et al., 2012c). This section therefore does not intend to provide an exhaustive

list of adaptive systems or adaptation approaches, but instead to present the underlying

structure of these systems and examine how they process content in order to tailor it ac-

cording to the needs of individual users. A more detailed description of these systems,

can be found in reviews carried out by (Brusilovsky, 1998) and (Knutov et al., 2009).

2.4.2 Anatomy of Adaptive Systems

Adaptive Systems have traditionally attempted to deliver dynamically adapted content to

users through the sequencing of reconfigurable pieces of information. Many adaptive sys-

tems have been developed over the past 20 years. Since they were developed for different

application areas (Brusilovsky, 1998), their architectural designs have diverged and

hence, there is no consensus as to what the ideal architecture of such systems is (Knutov

et al., 2009).

An attempt by Halasz and Schwartz has been carried out to capture the important abstrac-

tions found in a wide range of hypertext4 systems (Halasz & Schwartz, 1990; Halasz &

4 Although hypertext and hypermedia are often differentiated, this distinction is not made in their paper. They used

the term hypertext generically to refer to both text-only and multimedia systems.

28

Schwartz, 1994). They proposed the Dexter model that provides a standard hypertext ter-

minology coupled with a formal model of the important abstractions commonly found in

a wide range of hypertext systems. Figure 2.3 shows the three layers and the two inter-

faces that the Dexter model consists of. The within component layer is concerned with

the contents and structure within the “components”, i.e. the links between content nodes

in a single component. Components in the Dexter model correspond to one or more piece

of content that can be in any form and from any source. A component could contain doc-

uments, chunks of text, graphics, images, animations, etc. The within component layer

builds the components from the content source (hypermedia network for example) and

builds the links between the contents within a single component. The interface that is

responsible for addressing (referring to) locations or items within the content of an indi-

vidual component is called the anchor interface.

 Figure 2.3 Layers of the Dexter model (Halasz & Schwartz 1990)

The produced components, from the within components layer, are then saved (indexed)

in the storage layer. This layer describes a ‘database’ that is composed of a hierarchy of

data containing components which are interconnected by relational links. The compo-

nents are treated in the storage layer as generic containers of content.

After the content components have been built and indexed, the adaptive systems are then

required to provide tools for the user to access, view, and manipulate the network struc-

ture. This functionality is captured by the runtime layer of the model. This layer is con-

cerned with how the content would be presented to the user of the adaptive system. The

presentation specifications interface is the mechanism that connects the storage layer with

the runtime layer. This interface contains the information about how a component is to

29

be presented to the end user. Figure 2.4 depicts the three layers of the Dexter model as

embedded in an actual adaptive system.

Although the Dexter model provides only a bare-bones model of the mechanism for pre-

senting content to the user for viewing and editing, it represents a good reference for the

most AHSs which came after it because it encompasses most of the components currently

encountered in modern AHSs.

Figure 2.4 A depiction of the three layers of the Dexter model as embedded in an actual adaptive system.

Another generic architecture for AHS called the AHAM model was proposed by De Bra

in 1999 (De Bra et al., 1999). AHAM (Adaptive Hypermedia Application Model) is based

on the Dexter model. As depicted in Figure 2.5, AHAM augments the storage layer in

Dexter by adding three (sub) models: user model, domain model and teaching model.

Each of these models contributes to the content adaption process. The user model keeps

track of evolving aspects of the user, such as preferences and domain knowledge.

Knowledge within a user model usually refers to concepts provided by the domain model

and can be updated by rules specified within the adaptive engine (Dimitrova, 2003). The

domain model describes how the content is structured and linked together while the teach-

ing model consists of pedagogical rules. These rules define how the other two models are

combined to provide ways to perform the actual adaptation.

Some approaches have tried to extend the AHAM model or provide a new one. For in-

stance, the Munich model (Koch and Wirsing, 2002) used the Unified Modelling Lan-

guage (UML) to capture all major parts of the adaptive system architecture.

30

Figure 2.5 AHAM model (De Bra et al., 1999)

Over time, the structure of AHSs has evolved and the main focus of AHSs was on how

to apply and improve separation of concerns between preeminent components of this

structure (Brusilovsky, 2001). APeLS (Adaptive Personalized eLearning Service)

(Conlan et al., 2002) for example, was developed as a service to deliver personalised

educational courses based on a multi-model, metadata driven approach. It proposed an

additional separation of concern regarding the pedagogical aspects of AHSs encapsulated

within a narrative model. A core module in APeLS is the adaptive engine that consoli-

dates selected narratives and content to facilitate the reuse of learning resources across

different pedagogical models.

As it can be seen, with the evolution of the AHSs and their models, separation of concerns

between preeminent components of adaptive systems has also evolved. More recent ap-

proaches has brought this separation of concern yet a step further (Steichen et al., 2011;

Keeffe et al., 2012; Staikopoulos et al., 2012; Bayomi, 2015). (Levacher et al., 2012b) for

instance, shows how even concerns related to content models can be delegated to an ex-

ternal web service.

2.4.3 Models of Adaptive Systems

As the second research question posed in this thesis focuses on the discoverability and

reusability of content for adaptive systems (section 1.2), it is important to understand how

content is handled by adaptive systems. Therefore, this section briefly reviews different

models that adaptive systems contain and focuses on the content model which describes

how content is organised within adaptive systems.

31

With their evolution over time, adaptive systems have incorporated and modified differ-

ent (sub) models in order to provide customised content that is tailored to their users’

interests, knowledge and goals (Kardan et al., 2015). As illustrated in the previous sec-

tion, different reference models have been proposed to provide a generic architecture for

adaptive systems. Although there is variation between models, there is a set of sub-mod-

els that they all have in common and are essential for any adaptive system (Knutov et al.,

2009; Wilson and Scott, 2017). These sub-models can be classified, based upon what they

are concerned with, into:

Domain Model: describes how domain knowledge is organised within an adaptive sys-

tem by defining all concepts relevant to the domain, as well as the relationships between

these concepts. It is a description of the application which contains facts about the do-

main, i.e. the objects, their attributes and the relationships between objects (Benyon &

Murray, 1993). Domain models usually represent knowledge in the form of a structured

or hierarchical set of topics (Fiqri & Nurjanah, 2017), in the form of a network or a graph,

that comprehensively organises concepts and all the relationships between them

(Sosnovsky and Brusilovsky, 2005; Gandara et al., 2014).

User Model: is an explicitly represented collection of data about the user which allows

the system to tailor its content to the user’s needs (Thaker et al., 2018; Vassileva, 1996).

It is used to represent information about, and the characteristics of, the user. These char-

acteristics are updated through the interaction of the user with the system (Brusilovsky

1998). Its main role is to keep track of evolving aspects of the user, such as preferences,

goals, knowledge, learning style and other relevant aspects (Brusilovsky and Millán,

2007). (Finin, 1989) stated that a user model is 'knowledge about the user, either explicitly

or implicitly encoded, which is used by the system to improve the interaction.' Knowledge

within a user model usually refers to keywords (Ahn et al., 2007) or concepts (Dimitrova,

2003; Dimitrova & Brna, 2016) defined by the domain model and can be updated by rules

specified within the adaptive engine. These rules guide the user towards interesting new

information and keep the user away from information that is considered not to be appro-

priate or relevant.

Adaptation Model: Content adaptation is the main task of any adaptive system. At the

heart of the adaptive system is the adaptive engine that is responsible for performing the

content adaptation according to the adaptation rules specified in the adaptation model

(Wu et al., 2000). These rules specify how the user’s knowledge (from the user model)

32

influences the content presentation from the domain model. (Wu et al., 2000) divided the

adaptation process in adaptive systems into two levels: 1) author level where an author (a

domain expert) writes the adaptation rules and 2) system level where the system designers

build an adaptation engine to apply these rules.

Content Model: describes how content is organised in the adaptive system. It represents

what resources are available to the system and how they are connected to each other.

Resource descriptions within this model enables the delivery of content based upon its

match with various combinations of requirements, provided by the adaptive system. A

content repository is used as a basis for the content model where content resources are

indexed to be addressed, later, through metadata annotations that describe the type and

properties of resources available within this content repository (Maycock and Keating,

2017).

This section highlighted the four models that are considered the main skeleton of any

adaptive system. However, other external models that exist can be integrated in the adap-

tive system to perform a specific task. Examples of such models are: knowledge models,

pedagogical models, usage models, etc. (Brusilovsky & Henze, 2007).

2.4.4 Content Models

As mentioned above, the content model describes how content is organised in order to

enable the delivery of resources which match various combinations of content require-

ments provided by an adaptive system (Levacher, 2014). These content requirements re-

sult from the personalisation experience intended to be produced for a given individual

user.

In order to supply a set of content resources in a form which is deliverable to an adaptive

system, this content is required to be available within a given content model. The role of

this model is to enable the delivery of content resources (available within a content re-

pository) which match the content requirements of an adaptive system. Furthermore, con-

tent resources within the content repository should be augmented with additional infor-

mation to support its discoverability. This additional information is referred to by

(Brusilovsky & Henze, 2007) as adaptation-specific information and is classified into

four subcategories:

33

1- Attribute information: consists of metadata that describes the type and properties of a

content resource. Such metadata information is used to identify and retrieve the con-

tent resources available within the content repository that are matching as close as

possible the content requirements requested by the adaptive system. (Henze & Nejdl,

2001) added a metadata layer to describe content in KBS-Hyperbook. The content in

KBS-Hyperbook is marked as "introductory", "quiz", "example", etc. The ARCHING

system (Adaptive Retrieval and Composition of Heterogenous INformation sources

for personalised hypertext Generation) (Steichen et al., 2011) also describes resources

based upon properties such as "language", "size" etc. (Maycock and Keating, 2017)

used a Content Analyser module in their adaptive system to automatically generate

metadata for content resources to describe the cognitive impact that the resource

would have on a learner.

2- Inter-document information: This type of information assigns relationships between

content resources in order to construct a hyperspace network of these resources. This

type of information is used in order to facilitate user navigation between the different

content resources available within the content repository (Steichen & Wade, 2010).

3- External model connection: Different external models can be added in order to aug-

ment the knowledge about the content in the content hyperspace. Examples of these

external models are conceptual, pedagogical or goal models (Brusilovsky & Henze,

2007). Connection to these external models supports different content presentation

techniques such as concept-based sequencing techniques (Staikopoulos et al., 2014).

Content resources in the InterBook adaptive system (Brusilovsky et al., 1998), for

example, are connected to a domain model with links that identify whether the domain

concepts assigned to them are outcomes or prerequisites to this resource.

4- Intra-document information: This provides information about the internal character-

istics of a content resource such as a topic that is covered by a content resource (a

document or a fragment). Such information allows the adaptive system to select a

content resource that is most relevant to the user’s goal, knowledge or preferences

(Weal et al., 2007). This technique helps individual users focus their attention upon

the most relevant information presented to them.

Content models can be classified based on the type of content they provide. Generally,

they can be classified into two main types: Closed corpus and Open corpus content mod-

els (Levacher, 2014).

34

2.4.4.1 Closed Corpus Content Models

The main objective of the early generation of adaptive systems is to overcome the prob-

lems associated with the inflexible and static nature of content, and to find techniques

that could be used to tailor this content according to users’ preferences (Chesnais et al.,

1995; Brusilovsky et al., 1996; De Bra & Calvi, 1998; da Silva et al., 1998). This objec-

tive meant that these systems primarily focused on content tailoring techniques, rather

than the production of the content itself. As a result, the content models of these systems

were based on content resources that were manually handcrafted in order to support the

adaptation techniques in each individual adaptive system (De Bra and Calvi, 1997;

Maycock and Keating, 2017). Such content models are referred to (in this thesis) as closed

corpus content models.

In a closed corpus content model, resources, their attributes and relations to other re-

sources are known at the design time of the adaptive system5 (Brusilovsky & Henze,

2007). Resources within this model are predictable and static in the sense that resources

and relationships between them possess pre-determined content as well as a common

structure, known at design time by systems consuming these resources. Figure 2.6 shows

the architecture of an adaptive system that operates on a closed corpus content model

where the content is available within the system (Aroyo et al., 2004). The Content model

(content layer) captures the content as it is stored in the content repository along with its

description then makes it available to the Application layer that provides the adaptive

content to the system’s users.

Systems that operate on a closed corpus of resources are only able to work within a lim-

ited set of documents that have been manually structured and indexed (Dieberger &

Guzdial, 2003; De Bra et al., 2003). Although closed corpus content models are limited

in the amount of resources they can provide, the content they do have is well formed and

curated. This is because the content resources within these models are usually collected

and curated manually by domain experts. This in turn enables the adaptive system to be

supplied with the ideal resources that are needed to deliver adaptive content.

5 Content resources are not necessary to be known at the design time of the adaptive system, it can be known at the

design time of a course or experience that the adaptive system can run.

35

Figure 2.6 An Adaptive System with a closed corpus content model (Aroyo et al., 2004)

However, although the benefits of closed corpus models have been demonstrated within

different adaptive systems (De Bra & Calvi, 1997; Dieberger & Guzdial, 2003; De Bra

et al., 2003), they have failed to overcome the problems associated with extending and

updating the content resources (Levacher et al., 2011). This is because the inherent nature

of content resources in these models are built manually. As a result, they do not scale and

are impractical for most real-world applications. Extending the resources in such models

is a labour-intensive task that needs much time and effort from a domain expert. Addi-

tionally, whenever a change in the structure or presentation of content resources needs to

be made, adaptation techniques and algorithms developed within the adaptive system

must be altered accordingly or replaced altogether, which can be quite labour intensive.

Such high time, effort and cost requirements associated with closed corpus models result

in a limited volume and diversity of resources, available for delivery to adaptive system

(Conlan et al., 2002).

Another limitation of closed corpus content models is that as they are mainly developed

for a specific system, according to its needs, their closed nature prevents their content

from being reused within different adaptive systems. A content resource that is created

and indexed in a content repository for a specific adaptive system is only applicable for

use within that system. It is indexed based on the characteristics, requirements and adap-

tation techniques developed for that system. Hence, reusing such a resource within an-

other system requires an inherent modification to that resource which is considered a

time-consuming and effort-intensive task.

36

Over time, and with adaptive systems serving a wider range of users with more personal

needs, the goals and preferences of the system’s users change. As a result, the content

resources supplied to the adaptive system need to be continuously maintained in order to

cope with these new information needs. Since closed content models are only able to

function over sets of content resources processed and prepared at design time, maintain-

ing such resources is a labour intensive task (Brusilovsky & Henze, 2007). Furthermore,

this creation of content resources a-priori of system deployment entails the need to pre-

dict the type and quantity of resources, which will be needed by the adaptive system

(Steichen et al., 2011).

2.4.4.2 Open Corpus Content Models

Various adaptive systems have tried to overcome the limitations encountered with the use

of closed corpus content models (Zhou et al., 2007; Henze & Nejdl, 2001; Conlan et al.,

2013). These systems utilise content models that can easily incorporate content from dif-

ferent sources in order to allow the adaptive system to serve a wider range of content to

different users. Such content models are referred to (within this thesis) as open corpus

content models.

In open corpus content models, resources, their attributes and relations to other resources

are unknown at the design time of the adaptive system and, moreover, can constantly

change and expand (Lawless, 2009; Steichen, 2012; Staikopoulos et al., 2014). As a

wealth of diverse information has now become accessible on the WWW, it becomes the

largest repository for open corpus content (Weal et al., 2007). The inherent nature of the

Web expanded the range of content adaptivity offered by adaptive systems as this content

comes in different languages, covers an unrestricted set of domains and is available in

different formats (Levacher et al., 2009). Furthermore, by exploiting the abundant content

resources available on the web, the content provided by the adaptive system can always

be kept up-to-date.

Recently, adaptive systems have moved towards exploiting content available on the Web

(Steichen et al., 2009; Steichen & Wade, 2010; Levacher et al., 2012c; Levacher et al.,

2014). These systems exploit Web technologies to retrieve content from the sources

reachable through the Web and deliver it to their users. This increased the volume of

content available to such systems and hence allowed them to serve a wider range of users.

This also significantly reduced the amount of manual labour involved in developing con-

tent.

37

The process of developing content within the closed corpus content supply models (sec-

tion 2.4.4.1) involves the addition of adaptation-specific information to content resources,

e.g. KBS-Hyperbook (Henze & Nejdl, 2001) and the adaptive system proposed by

(Maycock and Keating, 2017). However, open corpus content resources do not provide

any adaptation-specific information since they are harvested on-the-fly and are unknown

at design time (Steichen et al., 2011). Hence, adding such information can only be per-

formed at run-time (Knutov et al., 2009).

As a result, early research on harvesting open corpus content has focused on the tech-

niques and methods which support the addition of adaptation information to content re-

sources after the adaptive system have been deployed. This task is very challenging as

adding such information would require the system designer to anticipate all the potential

requests that would be submitted by the adaptive system. Such requests would be influ-

enced by the status of users who use the adaptive system. These influences, on a request,

are derived from the changes and the fluctuations in the users’ preferences and goals over

time.

Since the early research has primarily focused upon the elaboration of techniques which

support the addition of such information to content resources, techniques that have been

developed have tended to use content resources in the form they were created in. Such

techniques can be divided into three main categories:

1- User-Supported Incorporation Techniques: In these techniques, adding new content

resources from the open corpus can be achieved directly by individual system users

(Carmona et al., 2002; Henze & Nejdl, 2001). Adaptive systems that use these tech-

niques rely on a pre-existing set (a closed corpus) of content resources. These re-

sources are then augmented by providing the individual users of the system with the

tools needed to annotate and link external resources from the web (Smits & De Bra,

2011). Examples of such systems are: KBS Hyperbook (Fröhlich et al., 1998; Henze

& Nejdl, 2001), SIGUE (Carmona et al., 2002) and Knowledge Sea II (Brusilovsky et

al., 2004).

2- Keyword Incorporation Techniques: Since user-supported techniques are limited in

that they require a large amount of manual effort, some adaptive systems started to

incorporate different techniques that can automatically incorporate content resources

from the Web (Ahn et al., 2007; Zhou et al., 2007; Zhou et al., 2008). These systems

exploit the capabilities of classical Information Retrieval (IR) approaches in order to

38

find appropriate content resources available on the Web. Such systems rely on key-

word similarity algorithms to create links between content resources (Zhou et al.,

2008). An example of such systems is the ML-Tutor system (Smith & Blandford

2003).

3- Semantic Metadata Incorporation Techniques: These approaches relied upon extract-

ing metadata from open corpus content resources (such as difficulty, narrative cohe-

sion, interactivity type or interactivity level) in order to assign such metadata to each

resource incorporated within the adaptive system (Şah & Wade, 2010; Hargood et al.,

2011; Şah & Wade, 2012). In this approach, the metadata representation of a document

is a set of concepts (in contrast to keywords) that are part of a domain ontology

(Millard et al., 2003). These concepts represent the topics covered in each individual

document. This semantic representation of content means that this approach provides

improved structuring of the resulting hyperspace, when compared to keyword-based

techniques (Brusilovsky & Henze, 2007). This semantic representation of content re-

sources has also extended to the content indexing process (Brusilovsky et al., 1998;

Sosnovsky et al., 2012). This in turn enabled open corpus documents to be organised

into hierarchies, which further improves the concept-based sequencing navigation

along the structure of these ontologies. (Ye et al., 2010) presented an approach that

incorporates open corpus resources from the CiteSeerX6 website where they classify

each resource based on a predefined ontology.

2.4.5 Summary

This section presented an overview of adaptive systems, as an application for content

adaptation, and reviewed their anatomy, their models and in particular their content

model. Closed and open corpus content models were reviewed in order to better illustrate

how adaptive systems process the different types of content.

The third objective of this theses (RO 3) is to build a content-supply service to enhance

content discoverability and reusability for adaptive systems. In order for this service to

overcome the limitations of the state of the art content-supply approaches, there is a need

to understand how these approaches employ different techniques to discover and reuse

content. The following two sections therefore focus on reviewing content discoverability

and content reusability techniques.

6 http://citeseerx.ist.psu.edu

39

2.5 Content Discoverability Techniques

One of the main services that adaptive systems offer to their users is the provision of

content that is tailored to individual user’s needs. In order to provide this service, adaptive

systems utilise different techniques to incorporate content that meets the requirements of

their users (section 2.4.3). This requires these adaptive systems to have the ability to eas-

ily discover content that matches the goals and requirements of their users.

Section 2.4.2 of this chapter demonstrated how the anatomy of adaptive systems has

evolved over time. Through this evolution, different models were added to enhance the

content adaptability in these systems. From the different architectures that have been pro-

posed to capture the important abstractions found in adaptive systems, it can be seen that

content discoverability, in adaptive systems, typically relies upon two phases. The first

phase is called (in this thesis) external content discoverability. This phase involves find-

ing content resources that are deemed to be relevant to the domain of the adaptive system.

The discovered content in this phase is collected (typically) in its native form. This con-

tent is then indexed in a content repository (Storage Layer in Figure 2.3, Figure 2.4 and

Figure 2.5) inside (or outside) the adaptive system to be used later according to the adap-

tation techniques of the system.

The second phase thereafter matches individual requests submitted by the adaptive sys-

tem’s users with the most relevant content resource previously discovered and annotated

in the first phase. This second phase is called (in this thesis) internal content discovera-

bility.

This section highlights the different techniques used by adaptive systems in order to ex-

ternally (section 2.5.1) and internally (section 2.5.3) discover content resources that are

relevant to their users’ needs. The section also discusses the different indexing techniques

(section 2.5.2) used by adaptive systems in order to index their content in a manner that

facilitates its discoverability according to the user needs.

2.5.1 External Content Discoverability Techniques

As content incorporation is vital for adaptive systems, the process of discovering content

which is relevant to the needs of the adaptive system’s users is critical. As discussed in

section 2.4.4, there are two types of content models in adaptive systems: closed corpus

and open corpus content models.

40

For adaptive systems that operate on a closed corpus of content (section 2.4.4.1), the re-

sources, their attributes and the relations to other resources are known at design time.

Hence, they do not need to utilise approaches for discovering content (De Bra and Calvi,

1998; Maycock and Keating, 2017). Content discovery (and incorporation) in these sys-

tems is completed, in the majority of cases, by the content author or a domain expert at

design time. Despite the fact that incorporating content in these systems is straightforward

and does not require effort to externally discover (as it is prepared by content author), the

manual work involved in the incorporation process is quite labour intensive. Furthermore,

these systems are only able to work with a limited set of documents that have been man-

ually structured and indexed (Dieberger & Guzdial, 2003; De Bra et al., 2003).

In adaptive systems that operate on an open corpus of content (section 2.4.4.2), the re-

sources, their attributes and the relations to other resources are unknown at design time

and can constantly change and expand (Lawless, 2009; Steichen, 2012; Staikopoulos et

al., 2014). As a result, these systems must utilise external content discovery approaches

in order to cope with the inherent diversity of open corpus content.

Incorporating a wide range of open corpus resources is pointless if these resources are of

no relevance to the needs of the adaptive system. As the discoverability of web resources

is a vast field of its own and extensively studied7 (Manning et al., 2008; Steichen et al.,

2012; Ghorab et al., 2013; Onal et al., 2018), this section aims to focus on the techniques

used by open corpus adaptive systems in order to find content which is relevant to their

needs and domain. Additionally, since the focus of this thesis is on how adaptive system

process content and index it in a manner that makes it amenable for discovery and reuse,

this section intends to present the reader with a brief overview of the fundamental ap-

proaches for external content discoverability.

External content discoverability techniques can be classified into two main approaches:

1- Standard Content Discoverability Techniques: Adaptive systems have mostly re-

lied upon either the manual incorporation of open corpus resources (Henze and

Nejdl, 2002), or the use of standard IR mechanisms to do so (Aroyo et al., 2004).

While manual incorporation of open corpus content is usually carried out by in-

dividual users of the system, IR techniques are considered the most efficient

method of largescale content discovery. The ArtEquAKT system (Millard et al.,

7 In general, the field that is concerned with techniques and methods of finding (discovering) resources on the open

web according to a user query is called Information Retrieval (IR).

41

2003; Weal et al., 2007) utilises a traditional search engine to discover open con-

tent resources that comprise biographical information about artists. The Personal

Reader (Dolog et al., 2004) uses Lixto (Baumgartner et al., 2001) for standard

web crawling and Edutella (Nejdl et al., 2002) a peer to peer search system, to

discover and incorporate open corpus resources. (Meng et al., 2017) use results

obtained from a search engine (Google search) to retrieve websites that present

detailed content regarding a specific course.

2- Focused Discoverability Techniques (Focused Crawlers): Although the integra-

tion of standard IR techniques within adaptive systems is relatively easy, these

techniques are considered general purpose discoverability mechanisms and do not

specialise in specific areas of interest. As a result, some adaptive systems started

to utilise focused crawlers to extend these techniques by enabling the discovery

of content, which meets pre-determined classifications (Steichen et al., 2009;

Levacher et al., 2012a). The goal of the focused crawler (also referred to as topical

crawler) is to selectively seek out pages that are relevant to a predefined set of

topics (Lawless, 2009). (Steichen et al., 2009) proposed an educational adaptive

system which is built on top of the APeLS system (Conlan et al., 2002) and uses

the autonomous Open Corpus Content Service (OCCS) focused crawler (Lawless,

2009) to incorporate open educational material available on the WWW. Another

example of a system that use focused crawler is Slicepedia (Levacher, 2014) that

uses the 80Legs8 web crawler as the harvester module.

2.5.2 Content Indexing

The indexing mechanism is a critical component of any IR-based system, which provides

a formalised, simplified and machine usable representation of content contained within

each resource (Salton, 1989). In adaptive systems, the indexing mechanism varies de-

pending upon the nature of the content resources being incorporated in each individual

system9. In adaptive systems that rely on a closed corpus of content, the content is struc-

tured and annotated by the content author (or a domain expert), therefore indexing this

content is relatively straightforward, as it does not require an automatic approach for this

task (Aroyo et al., 2004). However, manual indexing of content resources is a labour-

8 http://80legs.coms
9 In e-learning domain, indexes for learning resources are usually called learning object repositories (LOR)

42

intensive task. On the other hand, adaptive systems that rely on open corpus content re-

quire an automatic approach to index the harvested content.

Content indexing, in adaptive systems, can be classified into two main approaches: doc-

ument-level (De Bra & Calvi, 1998) and fragment-level (Weal et al., 2007; Levacher

2014).

2.5.2.1 Document-level Indexing

In document-level approaches, the harvested resources are indexed in their native form

(usually as HTML web pages) as one-size-fits-all document level granularity resources.

For example, within the KBS Hyperbook (Fröhlich et al., 1998; Henze and Nejdl, 2001),

once identified by system users, open corpus resources are indexed in a content reposi-

tory. Each resource is assigned to a knowledge concept of the application domain such as

the "if" or "while" concepts in a programming language ontology. These assigned con-

cepts are used for indexing the content resources in the storage module. After that, links

between existing (closed corpus) resources and the newly indexed (open corpus) re-

sources are generated automatically based upon the concept that each new resource was

assigned. The indexed documents are then adapted and presented based on concepts that

represent the user’s goals. Another example is the ML-Tutor system (Smith and

Blandford, 2003). ML-Tutor utilises an IR mechanism to collect content resources from

the open web. The harvested documents are then indexed along with the prominent key-

words in each document. A document is then presented, in its native form, to the user

based on the similarity between the document’s keyword vector and the keyword vector

in the user’s model.

2.5.2.2 Fragment-level Indexing

On the other hand, fragment-level approaches focus primarily on content where the ad-

aptation is performed at a finer level of granularity (Bunt et al., 2007). In these ap-

proaches, the harvested resources are processed and segmented into coherent fragments.

These fragments are then indexed in the content repository. ArtEquAKT (Millard et al.,

2003; Weal et al., 2007) for example, utilises information extraction and knowledge man-

agement techniques to create dynamic biographies of artists from content available on the

web. The system relies on a traditional search engine to harvest content resources that

comprise biographical information about artists. The harvested resources are then frag-

mented into paragraphs (and sentences) that are analysed syntactically to identify whether

43

it contains any relevant information about the artist requested by individual users. These

fragments are then associated with the relevant instances in a Knowledge Base (KB) and

indexed in a MYSQL database to be used later in generating biography pages. Figure 2.7

shows how ArtEquAKT extracts the different fragments from webpages to create dy-

namic biographies.

Figure 2.7 The ArtEquAKT system

Another example is PMCC (Steichen, 2012), that delivers a personalised content to indi-

vidual users using open corpus content as fragments of text. The system utilises an auto-

matic metadata extraction technique to enrich the harvested content. This enriched con-

tent is then fragmented using a wrapper-based content fragmentation approach (Bunt,

Carenini and Conati, 2007) to identify regions of pages in order to produce individual

fragments of content. These fragments are then presented to the users based on their

knowledge in user models.

Slicepedia (Levacher et al., 2014) applies the Densitometric Content Fragmentation ap-

proach (Kohlschütter & Nejdl, 2008) to fragment the harvested open corpus content into

segments based on their HTML structure. The fragments (called slices) are then indexed

in a content repository along with concepts that represent the topics covered in each frag-

ment. The indexed fragments can then be retrieved based on a request from an arbitrary

adaptive system. The architecture of Slicepedia is depicted in Figure 2.8.

Both approaches (document-level and fragment-level) are limited in their ability to pro-

vide different levels of granularity for the indexed content. Document-level indexing ap-

proaches limit the extent to which these resources can be modified or recomposed to-

gether. This in turn hinders the indexed content from being reused in multiple systems.

Furthermore, as pointed by (Bunt et al., 2007), presenting the incorporated open corpus

resources in their native form allows more content to be “visible to the user. However,

44

the more content is shown, the higher the chance of generating information overload and

reducing attention to the most relevant information, defeating one of the very reasons for

having adaptive systems in the first place”.

Figure 2.8 Slicepedia Architecture Pipeline

For fragment-level indexing approaches, relying upon the original structure of the content

resource (HTML structure or paragraphs structure) to produce fragments and hence index

them, does not reflect the needs or preferences of individual users or applications. This is

because the structure posed by each resource reflects the needs and the point of view of

its author. While each adaptive system has its own content requirements (based on its

users), relying upon such structure does not reflect these requirements. Furthermore, in

these approaches, the indexing process means that the final structure of each content item

is already built. This limits the capability of these approaches to change the structure

according to the individual user or application needs.

Another limitation of both approaches is the conceptual coverage associated with each

indexed content item (weather a full document or a fragment). In other words, these ap-

proaches annotate individual content items with a small number of concepts (or some-

times one concept) that represent the topic(s) covered by that content item. However, a

content item could be associated with many different concepts with different relevancy

levels that represent to what extent each concept is covered by that content item. By only

considering a few concepts that are deemed most relevant and ignoring the less relevant

concepts, these approaches ignore a range of possible interpretations of that content item.

This in turn hinders this content item from being properly discovered and presented to

users according to their needs, and from being reused in other systems.

45

Hence, there is a need to index content in its smallest granularity, without only consider-

ing the original structure that has been built by the author of the content resource. Ideally,

content should be indexed at a range of granularity levels and associated with all relevant

concepts at each of these levels. The research in this thesis hence tries to overcome the

limitations of these aforementioned approaches and tries to build a structural hierarchy

out of text documents without relying on their original structure. After building such a

structure, the documents are indexed in a manner that facilitates ease of discovery and

reuse.

2.5.3 Internal Content Discoverability Techniques

Adaptive systems have traditionally attempted to deliver dynamically adapted content to

their users through the sequencing of reconfigurable content items. As mentioned previ-

ously, these content items can be a full document (the whole content resource), or a frag-

ment extracted from a content resource. Once the most relevant content items are har-

vested and indexed, they need to be effectively discovered from within the repository of

resources maintained by the adaptive system, or the repository of resources maintained

by content-supply service that provides content to the adaptive system (Levacher et al.,

2014). Discovery of this indexed content involves deciding what content is most relevant

to the needs or goals of current user (Bunt et al., 2007). Generally, strategies for content

discovery compute a measure of relevance for each content item (e.g. fragment) to the

target user’s model (Steichen et al., 2011; Sosnovsky et al., 2012; Şah & Hall, 2013).

The ArtEquAKT system (Millard et al., 2003; Weal et al., 2007) provides human authored

story (biography) templates that are written in the Fundamental Open Hypermedia Model

(FOHM) (Millard et al., 2000). Templates are structured in XML format and saved in the

contextual structure server, Auld Linky (Michaelides et al., 2002). Each leaf of the struc-

ture is a query which resolves into either a statement from the extracted information

(stored in the Knowledge Base) or a reference to an original text fragment (stored in the

database). Each query uses the vocabulary of the ArtEquAKT ontology to discover frag-

ments of text concerned with a particular aspect of the biography.

KBS Hyperbook (Fröhlich et al., 1998; Henze & Nejdl, 2001) presented an ontology-

based user and content modelling approach. This system structures a domain into a set of

concepts and their relationships. A concept is assigned to each content item (page) in the

system from that structure and the user model is constructed from the same structure

based on the knowledge that the user has. By classifying the pages into these concepts,

46

navigation links are inferred automatically from the relationships amongst concepts.

Based on a concept in the user’s learning goals (according to the user's knowledge), the

adaptation module in the system queries the storage module (content repository) for con-

tent items that match this concept. If a text unit should be presented to the user, dynami-

cally generated relations to examples and other information, e.g. to the Sun Java tutorial,

are returned.

(Ghauth and Abdullah, 2011) used collaborative filtering and content-based approaches

in their proposed e-learning recommender system. Before the recommendation process

begins, the learning materials are uploaded by the instructors along with keywords that

describe each item. Once the material is indexed, the recommender system uses the man-

ually entered keywords to query the content repository for other learning materials. The

keywords attached to each item are then used to calculate the items’ similarity.

(Farrell et al., 2004) proposed an eLearning system that automatically generates individ-

ualised learning paths from a repository of web resources. They proposed the notion of

Dynamic Assembly that is based on connecting relevant search results and sequencing

the selected learning objects on a learning path. The process is based upon the learner’s

keyword query, desired level of detail, and optional desired course duration. The system

utilises a search engine that uses the set of keywords entered by the user to discover the

relevant resources that have been previously indexed in a content repository. The system

also provides users with the capability of identifying the Search Scope. A Search Scope

of “overview” explores related topics, while a Search Scope of “indepth” focuses primar-

ily on a single topic. Advanced query options allow users to restrict the search for learning

objects to particular resource types, levels of difficulty, and other preferences.

In Slicepedia (Levacher et al., 2014), after analysing the harvested open corpus resources

and indexing them as fragments in the content repository, the system employs a slice

searcher module that allows slice consumers (content consumption applications) to spec-

ify a list of keywords and/or DBpedia concepts to be sent as part of a SliceQuery object.

This object is used to query the content repository in order to discover fragments that

match the different criteria specified in that object. Fragments discovered through both a

conceptual and keyword search are then subsequently merged into slices, depending upon

the granularity requirements in the request.

47

All these approaches, however, are limited in that they rely on the bag-of-words repre-

sentation of content in measuring similarity between a content item and the user (or ap-

plication) query. Even systems that use concepts in this task (e.g. Slicepedia), mainly rely

upon a limited conceptual representation of content items (i.e. using one or very few con-

cepts). Furthermore, as mentioned earlier (section 2.5.2), such limited conceptual repre-

sentations in turn hinder content items from being properly discovered and presented to

the users according to their needs, and from being reused in other systems.

2.6 Content Reusability Techniques

Section 2.5 presented different techniques used by adaptive systems in order to support

the external and internal discoverability of content. The section also discussed the differ-

ent techniques used for indexing that content. This section, on the other hand, explores

more general aspects of content reusability. In particular, it examines the various forms

of content reuse which have been used to maximise the value of existing resources.

The production and delivery of content has traditionally been a very linear process

(Lawless, 2009) that requires the painstaking authoring of content by a domain expert for

a specific purpose and needs of an individual application (Meyer et al., 2011). This in

turn limited the use of such content within an individual application and hindered its re-

usability within other applications. Thus, the repurposing and reuse of content resources

became, and remain, major challenges. To reduce the content production overhead on the

content author it is imperative to facilitate the maximum reuse of content resources

(Dagger et al., 2002). As stated by (Levacher et al., 2014) “The diversity of ways in which

a piece of content can be described or presented to users, can seriously reduce the num-

ber of consumers capable of reusing this resource down to only those who strictly adhere

to both similar content descriptions and formatting requirements selected by individual

authors.” As a result, the notion of content reusability has emerged which tried to go

beyond traditional content production and delivery methods by improving its discovera-

bility and reusability between potential content consumers (Lawless, 2009). Content re-

usability techniques can be broadly classified into three main forms; namely reuse

through encapsulation, shared publishing and modification (Levacher, 2014).

48

2.6.1 Content Encapsulation

Content encapsulation involves the production of resources according to standard content

models and formats. Fundamental objectives of content encapsulation are the easy port-

ability of content items from one application to another as well as the reusability of this

content (Bohl et al., 2002). This technique aims to make content resources available in

large resource repositories to improve their interoperability across content consumers.

The field of eLearning provides a good example of content encapsulation techniques

(Mödritscher et al., 2004). This field utilised content encapsulation to improve the reuse

and interoperability of learning resources produced across educational institutions where

related content resources are grouped together and modelled into aggregates called Learn-

ing Objects (LOs). LOs are digital, self-contained ‘chunks’ of learning content (Wiley,

2000) that aim to enable content reuse outside the context in which it was created and

dynamic, ‘on the fly’ sequencing of resources (Tasso et al., 2014). Examples of modelling

standards, among others, are: IEEE Learning Object Metadata (LOM)10, Dublin Core11,

IMS Learning Resource Metadata12, Sharable Content Object Reference Model

(SCORM)13 and Grid Learning Object Repository (G-LOREP) (Pallottelli et al., 2010).

These modelling standards have been introduced to support the creation of precise defi-

nitions of individual resources with information regarding how these resources can be

reused within different educational institutions (Tasso et al., 2018).

Different eLearning systems have relied upon using such modelling standards as a

metadata standard for their content model. (Conlan et al., 2002) proposed the APeLS

system that separated the learning content from the adaptive linking logic or narrative,

which improved the possibilities of reusing a piece of learning content. They use the IMS

Learning Resource Metadata as the basis for the content model schema in APeLS in order

to describe both technical and pedagogical aspects of the LO. This descriptive metadata

information in APeLS allows course designers to easily discover learning content in the

content repository by providing appropriate descriptive metadata. Furthermore, it can be

used by an adaptive engine to select appropriate content where there may be many can-

didate LOs available to fulfil a learning or technical requirement.

10 https://standards.ieee.org/ [Accessed: March 18, 2018]
11 http://dublincore.org/ [Accessed: March 18, 2018]
12 https://www.imsglobal.org/metadata/index.html/ [Accessed: March 18, 2018]
13 https://scorm.com/ [Accessed: March 18, 2018]

49

(Farrell et al., 2004) proposed an eLearning system that uses three modelling standards

as the basis for content interoperability with other applications, namely: IEEE LOM, IMS

Content Packaging14, and W3C Resource Description Framework (RDF)15. LOM pro-

vides an information model that defines the structure of a metadata instance for a learning

object. A metadata instance describes relevant characteristics of the learning objects

grouped into categories such as16: general (e.g. identifier, title), educational (e.g. instruc-

tional role, typical learning time) and classification (e.g. topic). The IMS Content Pack-

aging Specification provides the functionality to describe and package learning materials,

into interoperable, distributable packages and addresses the description, structure, and

location of online learning materials. Learning objects are connected into coherent paths

based on their LOM topic classifications and the proximity of these topics in a RDF graph.

This graph includes nodes for topics and edges for topic relationships that are encoded as

RDF entities and properties, respectively. Using these modelling standards, along with

an instructional sequencing policy makes the system capable of arranging the learning

objects on a path that suits a particular learning sequence.

(Savić et al., 2018) proposed a course management system which stores a course model

represented as distinct machine-readable components containing domain knowledge of

different course aspects. In their system, they have built their own ontology of learning

objectives that relies on Bloom’s revised taxonomy (Anderson et al., 2001) where a learn-

ing objective refers to the representation of domain knowledge that should be mastered

during a specific course. Each learning objective is mapped (using the ontology) to one

or more learning resources where a learning resource is any digital content that can be

used for the achievement or evaluation of a learning objective in a course. They use the

IMS Content Package specification for describing learning resources using metadata.

This metadata information is stored in their model using a separate component in the

system which maps learning resources to the ontology of learning objectives. Using this

information (about learning objectives and learning resources), the system can export

courses based on the formats required by a Learning Management System (LMS). These

systems show that content encapsulation standards allow a common structure and de-

scriptive vocabulary to be used across resource consumers, which supports the discovery

14 https://www.imsglobal.org/content/packaging/index.html/ [Accessed: March 18, 2018]
15 https://www.w3.org/RDF/ [Accessed: March 18, 2018]
16 A metadata instance in IEEE LOM standard describes relevant characteristics of the learning objects grouped into

general, life cycle, meta-metadata, technical, educational, annotation, relation, rights, and classification categories.

However, their system depends only upon the General, Educational, and Classification metadata.

50

and reuse of content resources from various origins by each individual application. How-

ever, as the volume of resources produced by an institution grows, the amount of manual

labour required to describe and structure these resources also increases (Bailey et al.,

2006). Furthermore, repositories produced by content encapsulation techniques can still

be seen as “closed pools” of interoperable resources, since the resource publication and

delivery mechanisms are specific to each repository.

2.6.2 Shared publishing

Approaches to reuse that use standard shared publishing have attempted to overcome the

limitations encountered by encapsulation techniques. They did so by providing a common

publishing mechanism across resource repositories. The Semantic Web initiative

(Berners-Lee et al., 2001) is the most successful example of this type of content reuse.

The semantic web is an extension of the WWW that was proposed by the World Wide

Web Consortium (W3C) through standards that promote common data formats and ex-

change protocols on the Web. The main objective of the semantic web is to provide a

common framework that allows data to be shared and reused across application, enter-

prise, and community boundaries. The Linking Open Data project17 became one of the

main showcases for successful community-driven adoption of semantic web technologies

(Feigenbaum et al., 2007).

While the architecture of the WWW enabled the ease of content publication by millions

of authors, linked open data focuses upon improving the reuse of such content by describ-

ing it with machine readable data. It is mainly based upon three core open standard tech-

nologies, namely: i) Resource Description Framework (RDF) to encapsulate data rela-

tionships; ii) URIs to identify individual content resources; and iii) a standard transfer

protocol (mainly HTTP) to retrieve RDF data associated with each single resource. RDF

is a metadata model that allows content resources to be described by a statement about

each individual resource in the form of subject-predicate-object declarations called tri-

ples, where URIs are used to represent each subject, predicate or object. The triples are

saved in so-called triple stores, repositories such as: Mimir from GATE18, Openlink’s

Virtuoso19 and AllegroGraph20. These triples enable each individual resource or relation

to be shared between machines, and hence enables relationships between resources to be

17 https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData [Accessed: March 18, 2018]
18 https://gate.ac.uk/mimir/ [Accessed: March 18, 2018]
19 https://virtuoso.openlinksw.com/ [Accessed: March 18, 2018]
20 https://franz.com/agraph/allegrograph/ [Accessed: March 18, 2018]

51

reused across repositories (Zouaq et al., 2017). Moreover, ontologies can be used as the

controlled vocabulary and semantic backbone between repositories for publishing data.

(Kobilarov et al., 2009), for example, used Linked Data21, MusicBrainz22 and DBpedia23

to integrate data and link documents across the different content repositories of BBC24

domains, e.g. food, music, news etc.

In essence, content reuse through shared publishing removes the need for individual ap-

plications to modify its content consumption mechanism to each individual repository.

Furthermore, it improves the accessibility of content resources from the different reposi-

tories as if they are from a single unique repository. However, both encapsulation and

shared publishing reuse mechanisms do not involve the modification of the original re-

sources themselves. Although reusing a content resource without modifying it can poten-

tially include reusing it for purposes not originally planned by its author, the inability to

modify a content resource limits the range of purposes for which it could be reused.

2.6.3 Content Modification

Due to limitations encountered in both encapsulation and shared publishing reuse mech-

anisms, other approaches were developed which modify the original resources in order to

increase their amenability for reuse (Meyer et al., 2011). (Gonzalez-Barahona et al., 2006)

proposed the Edukalibre platform to support the creation of collaboratively constructed

educational materials. It is a collaborative system that provides version control manage-

ment and conversion tools to produce several formats for each document in the system.

Edukalibre takes inspiration from lessons learned in the open software development com-

munity.

Although Edukalibre facilitates collaboration between both educational practitioners and

students to create and distribute open educational content, the modification of a content

resource is performed manually using word processor software (e.g. OpenOffice25). Alt-

hough this approach used the manual modification of content resources, automated alter-

natives have also been proposed. The Artequakt26 system (Millard et al., 2003), for ex-

ample, automatically extracts parts of content resources to create dynamic biographies of

21 http://linkeddata.org/ [Accessed: March 18, 2018]
22 https://musicbrainz.org/ [Accessed: March 18, 2018]
23 http://wiki.dbpedia.org/ [Accessed: March 18, 2018]
24 http://www.bbc.com/ [Accessed: March 18, 2018]
25 http://www.openoffice.org/ [Accessed: March 19, 2018]
26 Initially it was written as “Artequakt” in (Millard et al., 2003) and then written as “ArtEquAKT” in (Weal et al.,

2007)

52

artists from content available on the web. In this example, all of the content presented to

users originates from various fragments extracted from separately authored standalone

documents.

(Ahmadi and Kong, 2008) followed the same technique to automatically adapt the desk-

top presentation of a content resource (web page) to a mobile presentation. Their ap-

proach relies on the DOM structure and the visual layout to divide the original Web page

into several subpages, where each subpage includes closely related content and is suitable

for display on the small screen. (Levacher et al., 2014) applies a web page fragmentation

approach to automatically identify content fragments (slices) in web resources to repur-

pose them according to a request sent by an arbitrary content consuming application.

Although the reuse of a resource through modification can potentially include reusing it

for purposes not originally planned by its author, relying only on the original structure of

the content resource (DOM structure or paragraphs) to modify it however, certainly limits

the range of purposes which it could be reused for. In other words, the structure of a

content resource reflects the needs and point of view of the content author, which in turn

does not reflect the needs and goals of individual applications. Furthermore, since these

approaches modify content resources and produce segments before a request is done, the

produced segments are considered static content items which in turn restricts the potential

scenarios where such content items can be reused in. This in turn makes such approaches

limited in responding to the different potential forms of requests.

Hence, there is a need for an approach that can modify the content resource in a manner

that produces content fragments at the lowest level of granularity, regardless of the orig-

inal structure of such resource. Furthermore, such an approach should allow the creation

of a content fragment on-the-fly according to the characteristics of an arbitrary request.

The approach should also provide a generic content publication and delivery mechanism

to allow content consumers to easily acquire content items without the need to adjust their

content acquisition mechanism. In order to build such approach, content needs to be more

understandable. Hence, the research in this thesis uses NLP techniques to understand con-

tent and thus enhance its discoverability and reusability.

2.7 Natural Language Processing in Adaptive Systems

The main objective sought by adaptive systems is to address the challenge of producing

adaptive compositions from different information sources in order to deliver content in a

53

form that is most suitable to an individual user. As outlined in the preceding sections of

this chapter, adaptive systems which attempt to repurpose and reuse open corpus content

are limited by a reliance only upon the original structure of the content that reflects the

needs and the perspective of the author of the resource. While each individual application

has its own requirements (based on its users), relying on this structure does not necessarily

reflect these requirements. Furthermore, these systems are limited in that they do not

deeply “understand” the content, which in turn limits their capabilities to supply appro-

priate content for use in defined contexts.

As a result, a number of studies have applied Natural Language Processing (NLP) tech-

niques to understand content and enhance its discoverability and reusability (Alfonseca

et al., 2007; Leoncini et al., 2012). The field of NLP aims to gather knowledge on how

human beings understand and use language so that appropriate tools and techniques can

be developed to make computer systems “understand” and manipulate natural languages

to perform a range of desired tasks (Chowdhury, 2003).

ArtEquAKT (Millard et al., 2003; Weal et al., 2007) utilises an Information Extraction

(IE) (section 2.2.3) approach that automatically extracts factual information items to-

gether with sentences and paragraphs from unstructured web documents to create dy-

namic biographies of artists. The authors proposed a Relation Extraction approach (e.g.

(Aitken, 2002)) to extract pre-defined relation types between two identified entities.

(Sathiyamurthy & Geetha, 2011) used a text segmentation algorithm to segment technical

documents in the computer science domain for the purpose of eLearning. They use the

TextTiling (Hearst, 1994) (section 2.3.5) algorithm along with domain and pedagogical

ontologies to apply block level text segmentation for eLearning material. In the segmen-

tation process, a topic from the domain ontology is assigned to each block in a given

document. If consecutive blocks have the same topic all blocks are combined together to

form a single segment. If adjacent blocks differ, with different topics or with different

cue-words from the pedagogical vocabulary, then they are separated into disparate seg-

ment. The segments produced are then used as content items for building eLearning

courses.

(Beck et al., 2014) also investigated how text segmentation algorithms can be applied to

automatically transform unstructured text into coherent pieces appropriate for generating

eLearning courses. The main objective of using text segmentation is to provide eLearning

course designers with a tool to efficiently organize existing textual content for new

54

eLearning courses. Their approach uses Wikipedia as the source for eLearning material

and produces two levels of content items, macro and micro levels. The macro level cor-

responds to sections from different articles in Wikipedia, and the corresponding micro

structure consists of subsequent paragraphs from these sections. They used two different

text segmentation algorithms: the linear segmenter TopicTiling (Riedl & Biemann, 2012)

for the macro level and the hierarchical segmenter BayesSeg (Eisenstein & Barzilay,

2008) (section 2.3) for the micro level. Their intuition behind using a hierarchical seg-

menter in the micro level is that the length of the produced Knowledge Objects (KO) in

that level should be adapted to the intended skill and background of the learners. This

assumption, in fact, aligns with the research in this thesis. The intuition behind using

hierarchical text segmentation in processing content in this thesis, is that it enables the

production of different levels of content granularity. This in turn makes content more

flexible and enables the production of different compositions of content items to meet the

adaptation requirements of individual users or applications.

(Alfonseca et al., 2007) proposed the WELKIN system that relies on various NLP tech-

niques to build adaptive web sites. The system comprises two processing steps, off-line

and on-line. The off-line processing step analyses the source text before the user interacts

with the system. During this step, the domain-specific texts provided by the user are pro-

cessed and analysed with some linguistic tools. These tools include: a tokenizer, a sen-

tence splitter, a stemmer, a part-of-speech tagger, several partial parsers for Noun Phrases

and Verb Phrases, and a module that identifies text sections and chapters. After this lin-

guistic processing, a term extraction approach is used to locate the different entities in

text such as dates, scientific names, etc. On the other hand, the on-line processing step is

performed whenever a user interacts with the system. In this step, the system starts to

compose and generate a website from the processed content in the off-line step. This

content is presented based on the amount of information the user is willing to read where

the user can indicate this preference in different ways, such as the total number of words

that the generated website must contain; a fixed compression rate to be performed to all

the web pages; or the amount of time that they want to spend reading the whole site.

Based on one of these preferences, the system uses a sentence extraction procedure based

on genetic algorithms (Alfonseca & Rodríguez, 2003) to summarise the generated pages

according to the user’s preference.

(Leoncini et al., 2012) proposed a semantic-based framework for summarisation and page

segmentation. The framework uses text summarisation to extract a concise summary from

55

a web resource, which outlines the relevant topics addressed by the textual data, thus

discarding uninformative, irrelevant contents. It also applies web page segmentation to

generate segments that point out the relevant text parts of the resource. The first step in

the framework is processing the raw text to identify individual words and sentences. Con-

cepts are subsequently assigned to each word, using EuroWordNet synsets27 (Vossen,

1998) and then grouped into domains. After identifying the set of domains addressed in

the web page, text summarisation is then obtained by detecting in the original textual

source the sentences that are most highly correlated to the domains included in the iden-

tified set. These sentences are then ranked according to the single terms they involve.

This ranking is further used to select the portions of the web page that deal with the main

topic addressed by the user. The summarisation approach used in this framework can

produce two types of summaries: 1) a summary that describes the overall content of the

web page, and therefore does not distinguish the various domains included in that page

and 2) multiplicity of summaries, one for each domain addressed in the page.

These systems have tried to utilise NLP techniques to structure content and then use this

structure to support the use of this content in adaptive systems. However, except for

(Alfonseca et al., 2007), they did not provide new methods to enhance these NLP tech-

niques. Furthermore, it appeared to the author’s knowledge that there has not been a sig-

nificant volume of work carried out in this area. Hence, the key motivation of this research

is to examine different methods to enhance NLP techniques in order to use them to mine

textual content for content adaptation. The research in this thesis mainly focuses on the

use of text segmentation to enhance content discoverability and reusability for content

consuming applications.

2.8 Chapter Summary

This chapter presented an overview of Natural Language Processing (NLP) techniques

and presented a state of the art review of the existing approaches for text segmentation as

a technique for structuring textual content. It first reviewed the different criteria that the

text segmentation task is categorised according to. From a text representation perspective,

text segmentation approaches were categorised into linear and hierarchical approaches.

Reviewing linear segmentation approaches identified that they can only produce a single-

level segmentation of a document. However, considering the structure of a document as

27 http://projects.illc.uva.nl/EuroWordNet/

56

a sequence of segments is in certain discord with most theories of textual content struc-

ture, where it is more usual to consider documents as trees. Thus, hierarchical text seg-

mentation is seen as a method that can effectively represent a document as a tree-like

hierarchy structure.

The chapter presented a focused review of hierarchical text segmentation approaches and

how they process text. The review showed that these approaches are limited by the fact

that they can only process the information that they can ‘see’. In other words, they are

based on the lexical and/or syntactic representation of text, a method that relies mainly

upon the traditional bag-of-words representation of text to measure similarity (or dissim-

ilarity) between text blocks. However, a representation based solely on the endogenous

knowledge in the documents themselves does not reveal much about the meaning of the

text.

Building on the review and analysis of the state of the art approaches to text segmentation,

the next chapters (Chapter 3 and Chapter 4) present two novel approaches to hierarchical

text segmentation that utilise external knowledge resources in order to enrich text and

infer more information about text constituents.

The chapter also presented an overview of adaptive systems, as an application for content

adaptation, and reviewed their anatomy, their models and in particular their content

model. Closed and open corpus content models were reviewed in order to better illustrate

how adaptive systems process different types of content. The chapter then presented a

review on different approaches utilised by adaptive systems to discover content according

to their users’ needs. Content reusability techniques were also reviewed along with their

limitations. Furthermore, a review of current NLP techniques utilised by adaptive systems

was undertaken. The aim of this review is to investigate how adaptive systems use NLP

techniques in processing content resources and how these techniques contribute to the

provision of adaptive experiences to adaptive systems’ users.

Building on the review and analysis of adaptive systems and content discoverability and

reusability techniques, Chapter 5 presents a content-supply service (named CROCC) that

facilitates the use of the new segmentation approach (Chapter 4) for content discovera-

bility and reusability for adaptive systems. Additionally, Chapter 6 presents a user-based

evaluation of the effectiveness of the proposed service in content discoverability and re-

usability.

57

3. OntoSeg: A Novel Approach to Text Segmentation using Onto-

logical Similarity

3.1 Introduction

As outlined in Chapter 2, many adaptive systems have relied upon the original structure

of content resources (HTML structure or paragraph structure) to produce content frag-

ments and hence use them in content adaptation. Since this structure does not necessarily

reflect the needs or preferences of individual users or applications, more recent systems

have tried to employ text segmentation techniques in order to build a structure out of

content resources based on the text itself, rather than the structure provided by the content

author (section 2.7).

Text segmentation is the process of placing boundaries within text to create segments

according to some task-dependent criterion. It is considered an essential task for various

NLP tasks (Beck et al., 2014; Bokaei et al., 2016). Text segmentation aims to divide text

into coherent segments which reflect the sub-topic structure of the text. As outlined in

Chapter 2, current approaches to text segmentation are similar in they all use the tradi-

tional word-frequency metrics to measure the similarity between two regions of text, so

that a document is segmented based on the lexical cohesion between its words (sec-

tion 2.3.6). However, the relationship between segments may be semantic, rather than

lexical or syntactic.

Various NLP tasks are now moving towards the semantic web and the use of ontologies.

In Information Retrieval, for example, systems that are based on keywords provide lim-

ited capabilities to capture the topical interests of users and topics contained within con-

tent. In order to solve these limitations, the idea of semantic search, based on the semantic

meaning of text, has been the focus of a wide body of research and many ontology-based

IR systems have been developed (Fernández et al., 2011; Meštrović and Calì, 2017;

Selvalakshmi and Subramaniam, 2018). Hence, a need for segmenting and representing

text based on the semantic (ontological) similarity between its constituents arises.

This chapter proposes OntoSeg (Bayomi et al., 2015), a novel approach to hierarchical

text segmentation based on the semantic similarity between text blocks. In contrast to

traditional text segmentation approaches that rely upon bag-of-words representation of

content, OntoSeg uses semantic similarity to explore conceptual relations between text

58

segments and a Hierarchical Agglomerative Clustering (HAC) algorithm to represent the

text as a tree-like hierarchy that is conceptually structured. The output is a hierarchical

structure of the underlying content that is constructed based on how conceptually similar

text blocks (one or more sentences) are to each other.

The aim of this chapter is to answer the first research question posed by this thesis (sec-

tion 1.2):

To what extent can the semantic representation of unstructured textual content be

exploited by novel text segmentation approaches to build a document structure?

and to contribute to its second objective (RO 2). The architecture of OntoSeg is presented

and a set of experiments are described, which have been carried out in order to evaluate

the performance of OntoSeg using a well-known evaluation metrics. The evaluation com-

prises different experiments where each experiment evaluates OntoSeg from a different

perspective. Experiments demonstrate that segmenting text based on the semantic simi-

larity is applicable with a low error rate. The performance of OntoSeg is also compared

against a set of state of the art approaches using a dataset widely used in the literature.

3.2 OntoSeg Architecture

The architecture of OntoSeg consists of three phases:

1- Semantic annotation.

2- Calculating similarity between text blocks (sentences or paragraphs).

3- Hierarchical Agglomerative Clustering (HAC).

3.2.1 Semantic annotation

In this phase, the text is semantically annotated using a named entity recognition algo-

rithm (section 2.2.3) and text entities are extracted. Each entity is then mapped to its class

or classes in an ontology and the text is represented as a sentence-based vector of classes.

This vector is then used as an input to the following phase.

A large number of ontologies now exist, some of which are domain-specific (such as the

MeSH1 ontology of medical and biomedical terms), while others are cross-domain such

as DBpedia2 (Auer et al., 2007). As the research in this thesis is not focusing on a specific

domain, the DBpedia ontology is used as the underlying knowledge base, as opposed to

1 http://www.nlm.nih.gov/mesh
2 http://dbpedia.org/

59

a domain-specific alternative. DBpedia Spotlight3 (Daiber et al., 2013; Mendes et al.,

2011) is used as the named entity recognition system to extract entities from the targeted

text. DBpedia Spotlight is a tool for automatically annotating mentions of DBpedia re-

sources in text, providing a solution for linking unstructured information sources to the

Linked Open Data cloud4 through DBpedia. DBpedia Spotlight recognises entities that

have been mentioned in text and subsequently matches these entities to their classes in

the DBpedia ontology. For each annotated entity in the text, the classes that match this

entity are extracted. For example, BARACK OBAMA, as an entity, matches with the DBpe-

dia classes: [“Politician”, “Person”, “Agent”]. Since the elementary blocks for the pro-

posed approach are sentences (see section 3.4.2), each sentence in the text is represented

as a vector of entities, and each entity is represented by a set of classes that match the

entity from DBpedia. A sentence-based vector is built and a similarity between its adja-

cent vectors is measured as discussed in the following subsection.

An example of three sentences annotated by DBpedia Spotlight is depicted in Figure 3.1.

The underlined words in this figure represent the extracted entities in each sentence5.

Each entity is then mapped to its class or classes in the DBpedia ontology. After that each

sentence is represented as a vector of entities where each element in that vector is repre-

sented as a set of classes. Figure 3.2 depicts how the three sentences in Figure 3.1 are

represented as vectors of sets of classes.

Figure 3.1 Example of three sentences annotated by DBpedia Spotlight

Figure 3.2 A vector representation of the three sentences after mapping entities to their classes from DBpedia ontology

3 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
4 http://lod-cloud.net/
5 DBpedia Spotlight requires a disambiguation confidence parameter that can be set from 0 to 1. The value of the

confidence parameter in the example shown in Figure 3.1 (and in all work in this chapter) was set to 0.5.

60

3.2.2 Similarity Computation

The key idea proposed in OntoSeg is to use the semantic similarity between text blocks

in the segmentation of text. A text block is the elementary unit considered by the segmen-

tation algorithm, which could be one sentence or multiple sentences (a paragraph).

The similarity between text units is calculated based on two similarity measures: (1) On-

tological6 (semantic) similarity and (2) Lexical similarity.

3.2.2.1 Ontological Similarity

Ontological similarity relates to identifying conceptually similar, but not necessarily lex-

ically similar, terms. For example, in Figure 3.1, Donald Trump and Barack Obama are

not lexically similar. However, if we consider the classes that both names belong to (i.e.

[“Politician”, “Person” “Agent”] in Figure 3.2), it is reasonable to say that the two en-

tities are conceptually similar to each other. This is the main idea behind OntoSeg; in

contrast to a lexical interpretation of text, OntoSeg interprets text based on its semantic

meaning and uses ontological similarity as a means of measuring how similar two adja-

cent sentences are to each other.

Ontological similarity has been widely used in many research fields such as: (1) Infor-

mation Retrieval, to improve accuracy of current retrieval techniques and for semantic

indexing (Meštrović and Calì, 2017); (2) NLP tasks, such as word sense disambiguation

(Prokofyev et al., 2013), synonym detection (Chaves-González and Martínez-Gil, 2013)

and sentiment analysis (Cambria et al., 2015); (3) Knowledge management tasks such as

thesauri generation (Curran, 2002), information extraction (Shah and Jain, 2014), seman-

tic annotation (Sánchez et al., 2011) and ontology merging and learning (Priya and Ku-

mar, 2015), in which new concepts should be discovered or acquired from text in order

to relate them to already existing concepts.

Ontology-based similarity can be classified into three main approaches (Elavarasi et al.,

2014):

1- Edge-counting approaches: where the minimum path length connecting two cor-

responding ontological nodes via is-a links is used as a straightforward method to

calculate the similarity between the concepts represented by those nodes (Wu and

Palmer, 1994; Gao et al., 2015). In ontology structure, the is-a relations group the

6 Ontological similarity refers to the Semantic similarity based on an ontology. Both phrases are used interchangeably

in this chapter.

61

classes according to how they are conceptually related to each other. Given a pair

of classes, c1 and c2, a well-known method with intuitive explicitness for as-

sessing their similarity is to calculate the distance between these classes in an

ontology hierarchy; the shorter the distance, the higher the similarity. In the case

that multiple paths between the nodes exist, the shortest distance of all paths is

used.

2- Feature-based approaches: contrary to edge-counting approaches, feature-based

approaches assess the similarity between concepts as a function of their properties

(Jiang et al., 2015). They take into account common and noncommon features of

the compared concepts.

3- Information Content (IC) based approaches: these approaches are associated with

the probability of appearance of each concept in the taxonomy, computed from

their occurrences in a given corpus (Jiang et al., 2017). IC of a term is computed

according to the negative log of its probability of occurrence. In this manner, in-

frequent words are considered more informative than common ones.

In this research, the Edge-counting approach proposed by Wu and Palmer (Wu and

Palmer, 1994) is used as its performance has been shown to be better than the other meth-

ods (Lin, 1998; Hill et al., 2015). The principle behind this approach is that the similarity

of two concepts is defined by how closely they are related in the hierarchy, i.e., their

structural relations. Given two concepts 𝑐1 and 𝑐2 the conceptual similarity 𝐶𝑜𝑛𝑆𝑖𝑚 be-

tween them is:

𝐶𝑜𝑛𝑆𝑖𝑚(𝑐1, 𝑐2) = 2 ∗
𝑁

𝑁1 + 𝑁2

3.1

where 𝑁 is the distance between the closest common ancestor (CS) of 𝑐1 and 𝑐2 and the

ontology root, and 𝑁1 and 𝑁2 are the distances between the ontology root on one hand

and 𝐶1 and 𝐶2 on the other hand respectively. Figure 3.3 shows how the similarity be-

tween two concepts in an ontology is measured.

62

Figure 3.3 Example of ontology extract (Slimani et al.,2006)

Accordingly, the similarity between two entities can be defined as a summation of

weighted similarities between pairs of classes in each of the entities. Given two entities

E1 and E2, the similarity 𝐸𝑛𝑡𝑆𝑖𝑚 between them is:

𝑬𝒏𝒕𝑺𝒊𝒎(𝑬𝟏, 𝑬𝟐) =

∑ ∑ 𝑪𝒐𝒏𝑺𝒊𝒎(𝒄𝒊, 𝒄𝒋)
𝒏

𝒋=𝟏

𝒎

𝒊=𝟏

𝒎 × 𝒏

3.2

where m and n are the two sets of classes that E1 and E2 have respectively.

Equation (3.2) calculates the similarity between two entities, where each entity belongs

to one or more classes. For example, BARACK OBAMA as an entity is mapped to three

DBpedia classes: [“Politician”, “Person” “Agent”], and DONALD TRUMP is mapped to

four DBpedia classes: [“President”, “Politician”, “Person” “Agent”]. Hence, although

the two entities are not lexically similar, they are deemed ontologically similar. This is

the idea behind ontological similarity: it measures the similarity between entities accord-

ing to the conceptual characteristics which they share. As another example of how onto-

logical similarity differentiates between entities, consider MICHAEL JACKSON as an entity

that is mapped to four DBpedia classes: [“Person”, “MusicalArtist”, “Artist”]

(Figure 3.2). Intuitively, the two entities BARACK OBAMA and DONALD TRUMP are more

ontologically similar to each other than either of them is to MICHAEL JACKSON.

On a text-block level (a sentence for example), the similarity between two blocks can be

defined as the summation of weighted similarities between pairs of entities in each of the

units. Given two text blocks B1 and B2, which have a set of entities a and b respectively,

the similarity BlockSim between B1 and B2 is:

63

𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑚(𝐵1, 𝐵2) =

∑ ∑ 𝐸𝑛𝑡𝑆𝑖𝑚(𝐸𝑖, 𝐸𝑗)
𝑏

𝑗=1

𝑎

𝑖=1

𝑎 × 𝑏

3.3

where a and b are the two sets of entities that B1 and B1 have respectively.

3.2.2.2 Lexical similarity

Lexical similarity has been widely used in the literature in text segmentation (Hearst,

1994; Choi, 2000; Tsunoo et al., 2017; Wang et al., 2017), and as its name suggests, it

splits text into segments that are lexically coherent. Lexical cohesion refers to the con-

nectivity between two portions of text in terms of word relationships. Although text

blocks might share ontological similarities between each other, it may be the case that

ontological similarity alone is not sufficient to measure how text blocks are coherent with

each other. The reasons for this include:

1- Text blocks may not contain any entities.

2- The entity extraction algorithm may not discover some entities in the text block.

3- The extracted entities from a text block may not be sufficient to reflect the simi-

larity between text blocks.

4- The ontology being used may not cover all the text mentions.

Thus, the lexical overlap between text blocks should be part of the overall similarity

measure. As a result, the similarity measure is enriched by obtaining the lexical similarity

between text blocks and combining it with the ontological similarity. To measure the

lexical similarity between text blocks, first, stop words are removed from the text as they

are generally assumed to be of little, or no, informational value. Then the remaining words

are stemmed (section 2.2.2) using Porter stemmer (Porter, 1980) and each block is repre-

sented by a lexical frequency vector. For each adjacent text blocks, a lexical vector cosine

similarity is calculated. It is defined as the cosine of the angle between two vectors v and

w such that:

𝑐𝑜𝑠(𝑣, 𝑤) =
𝑣⃗. 𝑤⃗⃗⃗

‖𝑣⃗‖. ‖𝑤⃗⃗⃗‖

3.4

64

3.2.3 Hierarchical Agglomerative Clustering (HAC)

Hierarchical clustering algorithms have been studied extensively in the clustering litera-

ture (Jain and Dubes, 1988). The general concept of agglomerative clustering is to suc-

cessively merge documents into clusters based on their similarity with one another. The

agglomerative clustering technique could be transferred from document level into text

level, where the clustering process is done between text blocks, within a document (as

opposed to across whole documents) (Yaari, 1997; Wang et al., 2017). When applying

Hierarchical Agglomerative Clustering on text blocks the algorithm successively agglom-

erates blocks that are coherent to each other, thus forming a text structure.

The idea behind using HAC in text segmentation is that it is a bottom-up clustering ap-

proach, which means that it starts from the smallest chunks (one sentence in OntoSeg)

and then builds the text hierarchy by merging text blocks (clusters) based on how near or

similar they are to each other. In contrast, the top-down (divisive) clustering approach

starts from the full document and then divides the text into smaller blocks based on how

far (i.e. how different) they are from each other. Hence, the output of the bottom-up ap-

proach can be regarded as hierarchically coherent tree. Thus, the method of Hierarchical

Agglomerative Clustering for text is useful to support a variety of search methods because

it naturally converts text into a tree-like hierarchy and provides different levels of granu-

larity for the underlying content; this can then easily be leveraged for the content discov-

erability process.

Unlike general HAC for clustering documents, where at each stage the proximity of the

newly merged object to all other available objects is computed, at the text level we com-

pute only the similarity of the text block to its two neighbours. This is because the linear

order in the text is required to be preserved in the structure. The implication on complex-

ity is that while the general HAC algorithm for documents takes an order of O(N2) steps,

it takes only O(N) when used at the text level.

The algorithm successively clusters “coherent” segments based on the accumulation be-

tween the ontological and lexical similarity scores between text blocks, which guarantees

the ontological and lexical cohesion between agglomerated segments. The HAC algo-

rithm for text segmentation, based on blocks as the elementary segments, is shown in

Figure 3.4.

65

Figure 3.4 OntoSeg Algorithm

Conceptually, the process of agglomerating blocks into successively higher levels of clus-

ters creates a cluster hierarchy (dendrogram) for which the leaf nodes correspond to indi-

vidual blocks (sentences in OntoSeg), and the internal nodes correspond to the merged

groups of clusters. When two groups are merged, a new node is created in this tree cor-

responding to this larger merged group. The two children of this node correspond to the

two groups of blocks which have been merged to it. Figure 3.5 shows the resulted den-

drogram from the algorithm for a sample text with one sentence as block size.

66

Figure 3.5 Sentences dendrogram of a sample text

3.3 From Hierarchical into Linear Representation

OntoSeg produces a tree that can be used as a visual illustration of the underlying hierar-

chical structure of a document. Figure 3.6 depicts a tree representation of a sample text

of 10 sentences. The benefit of this tree is that it represents different levels of granularity

of the document, which in turn means that the document can be segmented into different

segmentation levels. This is a powerful criterion in the hierarchical representation of text.

In contrast to linear representation, in each level of the structure (tree), segmentation with

different levels of details can be obtained and can be usefully applied to many other tasks’

needs.

In order to convert a hierarchical representation into a linear representation a threshold

corresponding to the number of the segments needed is set and the level that contains the

corresponding number of nodes in the tree is extracted. For example, in Figure 3.6, if the

specified threshold is 2, the level under the root is selected as it has two segments.

67

Figure 3.6 A tree representation for a text from 10 sentences

If this threshold number is not represented in one of the tree levels, a flattening process

is applied to the largest nodes. For example, suppose that the specified number is four

segments, and in one of the tree levels the number of nodes (segments) is three nodes. As

now we need one more segment, the largest node (largest in terms of child nodes) is

flattened by obtaining the two subsequent nodes that constitute this large node, i.e. we go

down a level in the tree for this large segment. This method of flattening the tree guaran-

tees that the coherency between the obtained segments is preserved.

3.4 Evaluation

3.4.1 Experimental Setup

The output from OntoSeg is a tree that represents the text hierarchy. As depicted in Fig-

ure 3.6 each level in the tree represents a level of granularity for the text where each node,

in that level, represents a segment that contains coherent blocks. As mentioned before, a

linear representation of text can be obtained from such a tree, which means that OntoSeg

can be evaluated as a linear text segmentation approach7.

7 It is worth mentioning that at the time of evaluating OntoSeg there was no hierarchical text segmentation dataset

publicly available. However, in the evaluation of C-HTS (Chapter 4), two hierarchical text segmentation datasets are

used where the performance of both OntoSeg and C-HTS is assessed.

68

In this experiment, the efficiency of OntoSeg is evaluated on Choi’s dataset8 (Choi,

2000). This dataset has been widely used in linear text segmentation evaluation (Riedl &

Biemann, 2012a; Du et al., 2013; John et al., 2017). The dataset consists of documents

made up of ten concatenated text segments. Each segment consists of the first n sentences

of a randomly selected document from the Brown Corpus (Francis, 1964). The dataset is

divided into four subsets and are listed in Table 3.1. There is a total of 700 text documents

in the dataset.

Table 3.1 Choi’s dataset statistics

Range of n 3-11 3-5 6-8 9-11

samples 400 100 100 100

Each document in the dataset is processed and two vectors are generated: the ontological

and the lexical. Since the elementary text blocks in OntoSeg consist of sentences, each

sentence in the ontological vector is represented as a vector of sets of DBpedia classes

where each set represents an entity that is extracted from the sentence. These sets of clas-

ses are used to measure the ontological similarity between sentence vectors according to

equations (3.1), (3.2) and (3.3). To build the lexical vector, first the stopwords9 are re-

moved from the text and then the remaining terms are stemmed (using Porter stemmer);

after this, each sentence is subsequently represented as a term-frequency vector. The lex-

ical similarity between vectors of adjacent sentences is then determined by calculating

the cosine similarity between them as in equation (3.4).

A HAC algorithm is then applied on the obtained vectors. For the ontological vector, the

ontological similarity score is calculated between each vector and its two neighbours

(section 3.2.2.1). A lexical similarity score is also obtained for the lexical vectors (section

3.2.2.2). The final similarity score between two adjacent sentences is the combination of

their ontological similarity and lexical similarity scores. For each set of three neighbour-

ing sentences, the middle sentence is merged with the one that is most similar to it. For

example, if the three sentences are denoted as A, B and C. Sentence B is merged with C

if the similarity score between B and C is higher than the score between A and B.

When the two neighbours are merged together they form a new text block (cluster) and

two new vectors (ontological and lexical) are defined based on the new block to be used

in the next iteration of the algorithm. Iteratively, the algorithm applies the same process

8 Choi’s C99 release and the dataset are available here: https://github.com/logological/C99 [Accessed: May 03, 2018]
9 Since Choi’s dataset is not focused on a specific domain, a general domain stopwords list for English was used.

69

between adjacent blocks until it merges all text blocks into one single cluster and a tree

representation of the text is produced. A linear segmentation is then produced as de-

scribed in section 3.3 where the threshold is set to 10 as each document in Choi’s dataset

consists of 10 segments.

3.4.2 Elementary Units for OntoSeg

The size of the elementary text blocks is considered a critical step in the segmentation

process. (Yaari, 1997) used paragraphs as the elementary blocks for his segmentation

algorithm and affirms that the size of a paragraph, as opposed to a sentence, contains

sufficient lexical information for the proximity test. Also (Hearst, 1994) measured the

cosine similarity between text blocks where text blocks consist of a fixed number of sen-

tences (window). As a result, the quality of the produced segments, using the ontological

similarity only, or the combination between the ontological and lexical similarity, is ex-

amined using varying window sizes: from one to four sentences.

Since the main contribution of OntoSeg is to segment text based on the ontological sim-

ilarity between its blocks, the quality of the produced segments is evaluated first based

on ontological similarity only. After that, the impact of adding lexical similarity to the

ontological similarity using different weights for the two similarity measures is examined.

According to these considerations, four experimental runs were conducted (in each run,

varying window sizes are used (1 to 4)):

Experiment 1: in this run, ontological similarity only is used.

Experiment 2: in this run, the combination between ontological and lexical similarity

scores is used with α = 0.3, where α is used to specify the weight of each of the two

similarity measures. Let 𝑂𝑠𝑖𝑚 and 𝐿𝑠𝑖𝑚 denote the ontological and the lexical similarity

scores respectively; the final hybrid similarity score (𝐻𝑠𝑖𝑚) between two text blocks B1

and B2 is:

𝑯𝒔𝒊𝒎(𝑩𝟏, 𝑩𝟐) = 𝜶 𝑳𝒔𝒊𝒎 + (𝟏 − 𝜶) 𝑶𝒔𝒊𝒎 3.5

Hence, α = 0.3 means that the lexical score weight is 0.3 and the ontological similarity

score weight is 0.7.

Experiment 3: in this run, both similarity scores are treated equally, i.e. α = 0.5.

Experiment 4: in this run, lexical similarity is given a higher weight by setting α =0.7.

70

3.4.3 Evaluation Metrics

It is common to evaluate text segmentation systems in terms of the two commonly-used

evaluation metrics, Pk (Beeferman et al., 1999) and windowDiff (WD) (Pevzner & Hearst,

2002). Both metrics are penalty measurement metrics, which means that lower scores

indicate higher segmentation accuracy. Pk was proposed as a measure that expresses a

probability of segmentation error. To calculate Pk, we take a window of fixed width k,

which is usually set to half of the average segment length in the reference partition, and

move it across the segmented text, at each step examining whether the hypothesized seg-

mentation is correct about the separation (or not) of the two ends of the window. Pk metric

is defined as:

𝑷𝒌 = ∑ 𝑫𝒌(𝒊, 𝒋)

𝟏≤𝒊≤𝒋≤𝒌

(𝜹𝒓𝒆𝒇 (𝒊, 𝒋) ⊕ 𝜹𝒉𝒚𝒑 (𝒊, 𝒋))

 3.6

where 𝛿𝑟𝑒𝑓 (𝑖, 𝑗) is an indicator function whose value is 1 if sentences i and j belong to

the same reference segment and 0 otherwise. Similarly, 𝛿ℎ𝑦𝑝 (𝑖, 𝑗) is 1 if the two sentences

are hypothesized as belonging to the same segment and 0 otherwise. The ⊕ operator is

the XOR operator. The function 𝐷𝑘 is the distance probability distribution that uniformly

concentrates all its mass on the sentences which have a distance of k.

windowDiff is stricter as it not only decides whether there is a mismatch between the

hypothesized segment and the reference segment, it also counts the difference of the num-

ber of segment boundaries in the given window between the two segments. Thus, the

results of windowDiff are generally higher than those of Pk. windowDiff is defined as:

𝑤𝑖𝑛𝑑𝑜𝑤𝐷𝑖𝑓𝑓 (𝑟𝑒𝑓 , ℎ𝑦𝑝)

=
1

𝐾 − 𝑘
 ∑(|𝑏(𝑟𝑒𝑓𝑖, 𝑟𝑒𝑓𝑖+𝑘) − 𝑏(ℎ𝑦𝑝𝑖, ℎ𝑦𝑝𝑖+𝑘)| > 0)

𝐾−𝑘

𝑖=1

3.7

where 𝑟𝑒𝑓 is the correct segmentation for reference, ℎ𝑦𝑝 is the segmentation produced

by the model, K is the number of sentences in the text, k is the size of the sliding window

and b(i, j) is the number of boundaries between sentences i and j.

Since it has been argued in (Pevzner & Hearst, 2002) that Pk has some weaknesses, win-

dowDiff is used as the evaluation metric in all experiments. However, the Pk metric is

71

used to evaluate the performance of OntoSeg against the state of the art approaches, as

these approaches were evaluated based on the Pk metric in the relevant publications.

3.4.4 Results

Table 3.2 shows the results of experiment 1 (using ontological similarity only) while ap-

plying different window sizes, from 1 to 4 sentences per text block. From the results we

can see that the error rates are not high for all the subsets (range from 0.15 to 0.32), which

means that generating text segments based on the ontological similarity between its con-

stituents is feasible, with low error rates. It can also be seen that varying the window size

does not increase the quality of the segmentation; in contrast, it decreases the quality for

some subsets.

Table 3.3 shows the results of experiments 2, 3, and 4 where the hybrid approach that

combines the ontological and lexical similarities using different weights is evaluated.

Table 3.2 Ontological similarity error rates (WD) for different window sizes

 Range of n

Window

3-11

3-5

6-8

9-11

W = 1 0.21 0.32 0.20 0.15

W = 2 0.21 0.32 0.21 0.15

W = 3 0.21 0.34 0.21 0.15

W = 4 0.22 0.34 0.21 0.15

The results of experiment 2 indicate that when α = 0.3, the error rates of the segmentation

in all the subsets are less than the error rates using ontological similarity only (Table 3.2).

In experiments 3 and 4, it can be noticed that as α increases (0.5 and 0.7 respectively),

the error rates decrease. According to equation 3.5, when α increases, the lexical similar-

ity weight is more than the ontological similarity weight. This means that, although gen-

erating text segments based on the ontological similarity is feasible, using it alone is not

sufficient. In other words, using lexical similarity only (𝜶 = 1 in equation 3.5) is better

than using the semantic similarity in OntoSeg.

It is also noticed that, as in experiment 1, when the window size increases, the error rate

also increases which means that the segmentation quality decreases.

72

Table 3.3 Hybrid approach error rates for different window sizes

 Range of n

Window size

3-11

3-5

6-8

9-11

Experiment 2: α = 0.3

W = 1 0.17 0.22 0.17 0.13

W = 2 0.19 0.29 0.18 0.14

W = 3 0.19 0.34 0.20 0.14

W = 4 0.20 0.33 0.20 0.15

Experiment 3: α = 0.5

W = 1 0.16 0.21 0.16 0.12

W = 2 0.18 0.27 0.17 0.12

W = 3 0.19 0.33 0.19 0.13

W = 4 0.20 0.33 0.19 0.14

Experiment 4: α = 0.7

W = 1 0.15 0.19 0.15 0.11

W = 2 0.17 0.25 0.16 0.12

W = 3 0.18 0.33 0.19 0.13

W = 4 0.20 0.33 0.20 0.14

3.4.4.1 OntoSeg Performance Against Other Approaches

To evaluate the quality of segmentations produced by OntoSeg, there is a need to compare

its performance against the state of the art approaches based on the segmentation quality.

An experiment was carried out where five different approaches were selected for this

comparison. The five approaches are: TextTiling (Hearst, 1994), C99 (Choi, 2000), Seg-

menter (Kan et al., 1998), U00 (Utiyama and Isahara, 2001) and an approach proposed

by (John et al., 2017) that segments text based on two similarity measures: lexical and

semantic. For the lexical similarity, a vector is built from topics covered in each sentence.

For the semantic similarity, a vector of verbs, nouns and the adjectives is built using a

Part-of-Speech (POS) tagger where the similarity between two vectors is measured using

the WordNet concept hierarchy. Both vectors (lexical and semantic) are combined to

identify segment boundaries within the given text.

The intuition behind choosing these approaches is that they were evaluated on the same

dataset used in this chapter (Choi, 2000). However, these approaches were evaluated us-

ing the Pk evaluation metric. Hence, in this experiment, OntoSeg is also evaluated with

73

the same metric. Table 3.4 presents a comparison of the performance of OntoSeg com-

pared to these approaches where number of segments needed (10 segments) is provided10.

Table 3.4 Pk values for various algorithms in the literature with provided segment number

Approach 3-11 3-5 6-8 9-11

(John et al., 2017) 0.09 0.11 0.005 0.007

U00 0.11 0.13 0.06 0.06

C99 0.13 0.18 0.10 0.10

OntoSeg 0.30 0.19 0.30 0.30

Segmenter 0.36 0.23 0.33 0.43

TextTiling 0.46 0.44 0.43 0.48

The results show that the performance of OntoSeg is not better than most of the state of

the art approaches. These results, and the results presented in the previous section con-

clude that relying on an ontology to semantically represent the text is not sufficient to

reveal the meaning behind it and thus, is not practically adequate for the segmentation

task. Even with combining the lexical similarity with the ontological similarity, although

the performance of OntoSeg was enhanced, it is still not comparative to the state of the

art approaches. In order to enhance the understandability of the meaning behind text, there

is a need to consider all relations between text blocks.

As argued by (Budanitsky and Hirst, 2006), relatedness is more general than similarity

since dissimilar entities may also be semantically related by other relationships such as

meronymy, antonymy, functional relationship or frequent association. Therefore, the per-

formance of OntoSeg needs to be enhanced through improved understandability of text

by exploring the semantic relatedness between text blocks rather than using the semantic

similarity.

3.5 Chapter Summary

This chapter introduced the OntoSeg algorithm for hierarchical text segmentation. The

aim of OntoSeg is to understand the semantic meaning behind text in order to build a

conceptual structure out of it. In contrast to traditional text segmentation approaches that

rely upon bag-of-words representation of content, OntoSeg uses the semantic interpreta-

tion of content to reason about it. OntoSeg uses a Hierarchical Agglomerative Clustering

10 The results were obtained from (Choi, 2000), (Utiyama and Isahara, 2001) and (John et al., 2017)

74

(HAC) approach to iteratively cluster text segments that are deemed to be ontologically

similar to each other. The output is a tree-like hierarchy of the text. The chapter showed

that the produced hierarchy is beneficial in producing hierarchical text segments with

different levels of granularity, and also in producing linear text segments by flattening

the obtained tree. Experimental results showed that using ontological similarity performs

successful segmentation with low error rates. However, comparing its performance

against state of the art approaches showed that, although the combination between the

lexical and the ontological similarities enhanced the performance of OntoSeg, its perfor-

mance is not comparative to the state of the art approaches. The results also showed that

using lexical similarity only (𝛼 = 1 in equation 3.5) is better than using the semantic

similarity only in OntoSeg. These results concluded that the performance of OntoSeg

needs to be enhanced through improved understandability of text by exploring the seman-

tic relatedness between text blocks rather than using the semantic similarity.

Finally, it is noteworthy to point out that the implementation of the OntoSeg algorithm is

publicly available:

- https://github.com/bayomim/OntoSeg

and the OntoSeg algorithm along with the experimental work described in this chapter is

published in the following paper:

Bayomi, M., Levacher K., Ghorab, M.R., and Lawless, S. "OntoSeg: A Novel Approach

to Text Segmentation using Ontological Similarity”. In the proceedings of the 5th ICDM

Workshop on Sentiment Elicitation from Natural Text for Information Retrieval and Ex-

traction, ICDM SENTIRE. Held in conjunction with the IEEE International Conference

on Data Mining, ICDM 2015. Nov 14th, 2015. Atlantic City, NJ, USA.

75

4. C-HTS: A Concept-based Hierarchical Text Segmentation ap-

proach

Chapter 3 presented OntoSeg, a new approach for hierarchical text segmentation using

ontological (semantic) similarity between text constituents. As outlined in the chapter,

although OntoSeg was capable of performing successful segmentation with low error

rates, it did not produce the best scores compared to the state of the art approaches. Fur-

thermore, as outlined in section 2.3.6, since the work on hierarchical text segmentation is

sparse (Wang et al., 2017), there was no publicly available dataset for evaluating hierar-

chical text segmentation at the time of evaluating OntoSeg. As a result, OntoSeg perfor-

mance was evaluated on a linear text segmentation dataset. Evaluating a hierarchical text

segmentation algorithm using a linear dataset does not give a realistic picture of the per-

formance of the hierarchical algorithm. The reason is that the output of a hierarchical

algorithm is a tree structure, while a linear dataset has consequently segmented chunks of

text. This means that using consequently segmented text chunks is not adequate to eval-

uate the quality of the produced hierarchy.

Hence, this chapter proposes C-HTS, a new Concept-based Hierarchical Text Segmenta-

tion approach that relies on the semantic relatedness between text constituents rather than

the semantic similarity used in OntoSeg. The core idea of C-HTS is the use of external

knowledge to enhance the text representation by adding a semantic layer of concepts that

represents the text in a high dimensional semantic space where the relatedness between

the atomic units of text (text blocks) is measured using this semantic representation. C-

HTS relies on the explicit semantic representation of text, a method that replaces key-

word-based text representation with concept-based features, automatically extracted from

massive human knowledge repositories such as Wikipedia. C-HTS represents the mean-

ing of a piece of text as a weighted vector of knowledge concepts, in order to reason about

text.

The performance of C-HTS is evaluated on two datasets that are designed specifically for

the evaluation of hierarchical text segmentation approaches. Furthermore, the perfor-

mance of C-HTS is compared against the state of the art hierarchical text segmentation

approaches. The results showed that C-HTS performed favourably against these ap-

proaches and also outperformed OntoSeg.

76

Additionally, different lexical similarity measures were used with C-HTS to assess the

effectiveness of using the semantic relatedness approach in C-HTS. Experimental results

showed that using semantic relatedness outperforms other similarity measures.

Furthermore, to asses the effictiveness of using Wikipedia as the underlying knowledge

source, an experiment was carried out where WordNet (Miller, 1995) is used as the

knowledge source for C-HTS. Experimental results showed that relying on lexical

resources such as WordNet offers little information about the different word

representations and hence, deteriorates the performance of C-HTS.

Since C-HTS relies on a knowledge space built from Wikipedia, and since Wikipedia is

continuously growing, the impact of its growth on segmentation performance is meas-

ured. Three different snapshots of Wikipedia from different years are used in order to

achieve this. The experimental results show that an increase in the size of the knowledge

base leads, on average, to greater improvements in hierarchical text segmentation.

4.1 State of the Art Influences

This section discusses how the limitations of the state of the art approaches influenced

the design aspects of C-HTS as a segmentation approach that uses the semantic represen-

tation of text.

Semantic representation of text helps in understanding the underlying meaning of its con-

stituents. As already outlined in Chapter 2, most existing text segmentation approaches

depend primarily on traditional bag-of-words representations of text in order to build a

hierarchical structure (Yaari, 1997; Angheluta et al., 2002; Eisenstein, 2009; Du et al.,

2013; Kazantseva & Szpakowicz, 2014). They mainly rely upon the exact matches be-

tween words to measure the coherence between two segments in text. Such approaches,

however, fail to recognise relevant segments that do not share words with each other. One

reason for this is that these approaches treat words in text segments as if they are inde-

pendent, although it is clear that they are not (Vinokourov et al., 2003). As a result, some

approaches began to enrich the text representation by exploiting its semantic meaning.

(Choi et al., 2001), for example, enriched their linear segmentation approach, C99 (Choi,

2000), by using Latent Semantic Analysis (LSA) (Deerwester et al., 1990). They applied

latent concept modelling to the similarity metric of C99, and showed that using LSA

improved the quality of their segmenter. However, LSA-based approaches require a very

large corpus, and consequently the pre-processing effort required is significant.

77

Some other approaches started, on the other hand, to use external resources to enrich text

(John et al., 2017). (Stokes et al., 2004) proposed SeLeCT, a news story segmentation

approach that uses the WordNet thesaurus (Miller, 1995) as an external lexical resource

to add semantic links between words to create lexical chains from these links with respect

to a set of chain membership rules. However, the use of such lexical resources offers little

information about the different word representations. Furthermore, such resources cover

only a small fragment of the language lexicon.

With the advent of the Semantic Web (Berners-Lee et al., 2001), ontologies have been

widely used in different tasks to give a conceptual representation of entities (Bayomi &

Lawless, 2016). Recently, some approaches have emerged that segment text by exploiting

the conceptual representation of its constituent terms. For example, the OntoSeg approach

(Bayomi et al., 2015), which was introduced in Chapter 3 of this thesis, relies on the

DBpedia ontology to measure the semantic similarity between text blocks. Another

approach that relies on ontologies for linear text segmentation was proposed by (Naili et

al., 2016). They integrated a domain ontology in the topic segmentation in order to add

external semantic knowledge to the segmentation process. They proposed two topic

segmenters called TSS-Ont and TSB-Ont based on C99 (Choi, 2000) and TextTiling

(Hearst, 1994) algorithms respectively. They used the same techniques as C99 and

TextTiling but replaced lexical similarity with concept (semantic) similarity and

evaluated their approach against different state of the art apporaches including OntoSeg.

Although these approaches relied on an external resource and used an ontology to add a

semantic layer to the segmentation process, they suffer from some drawbacks, such as:

they solely extract named entities from text. For a text with few entities or with poor

performance from the named entity extraction algorithm, measuring the similarity

between text blocks is not feasible. Furthermore, these approaches measure the semantic

similarity between entities rather than the semantic relatedness. As argued by (Budanitsky

& Hirst, 2006), relatedness is more general than similarity as dissimilar entities may be

semantically related by other relationships such as meronymy (car–wheel), antonymy

(hot–cold), or just by any kind of functional relationship or frequent association (pencil–

paper, penguin–Antarctica, rain–flood). Another drawback of these approaches is that

considering only entities in text does not necessarily reveal much knowledge about the

meaning beyond it. (Buchanan & Feigenbaum, 1982) stated that: “The power of an

78

intelligent program to perform its task well depends primarily on the quantity and quality

of knowledge it has about that task.”

Hence, this chapter proposes C-HTS, a hierarchical model of text segmentation that uses

the semantic relatedness between text blocks. C-HTS uses the explicit semantic

representation of text to measure how text blocks are semantically related based on

concepts from a knowledge base. C-HTS uses the exogenous knowledge (externally

supplied), rather than the endogenous knowledge extracted from the documents

themselves. The approach uses Wikipedia as an external knowledge base to enrich the

text representation in a very high-dimensional space of concepts.

4.2 Intuition behind C-HTS

When a person reads a text, the eyes read the words (the lexical representation of text)

and send these words to the human’s cognitive system, the brain. The brain starts to make

sense of these words based on the knowledge of the reader. For example, the name “Albert

Einstein” in a text document is read by the eyes and then sent to the brain, which starts to

map the name to the different concepts that the person knows about Einstein such as:

“Theory of Relativity”, “Physics”, “Nobel Prize”, etc. The information that the brain maps

the name to, is dependent upon how much knowledge this person has. If the individual

does not know about Einstein, the brain would make no sense of that name. The individual

could potentially ask other people who have different collections of knowledge for assis-

tance, creating an intellectual representation through collaboration. In this research, the

C-HTS algorithm is trying to recreate this methodology in a segmentation algorithm. This

research contention that using this approach to understand text is a more effective method

for text segmentation and for building a reasonable hierarchical structure from docu-

ments.

The essential task in any text segmentation algorithm is to measure the coherence between

two adjacent text blocks. Being inherently limited to lexical representation, current ap-

proaches cannot reveal much about the coherence between text blocks. Consider the fol-

lowing two sentences for example:

 Albert Einstein is a German scientist who was born on the 14th of March 1879.

 Mileva Marić was born on December 19, 1875 into a wealthy family in Titel, Serbia.

Lexically, the two sentences are not similar because they mention different names, cities

and dates. For a segmentation approach that solely relies upon a lexical representation of

79

text, the two sentences are not similar to each other. Even for an approach that uses a

learning model to learn text representation, if it has not seen the entities mentioned in

sentences together in a training set, it will be difficult for it to infer any relation between

the two sentences. In fact, Mileva Marić is Einstein’s ex-wife, they both worked in phys-

ics, she was the only woman among Albert Einstein's fellow students at Zürich's Poly-

technic, and they had three children. Hence, an ideal approach to reveal such information

about the two sentences, and to measure their relatedness, would use the explicit semantic

representation of text based on a knowledge base. Such a knowledge base should be based

on human cognition and be intuitive to use and reason over, with no limits on domain

coverage or conceptual granularity. Creating and maintaining such a knowledge base re-

quires enormous effort on the part of many people. Luckily, such a collection already

exists in the form of Wikipedia, which is one of the largest knowledge repositories on the

Web. Hence, relying on such human-organised intensive knowledge reveals more mean-

ing of the text that we want to segment regardless of the approach (linear or hierarchical)

or the algorithm that is used for segmentation.

4.3 Semantic Relatedness

The core idea of C-HTS is the use of an external knowledge base to enrich text

representations in order to measure the semantic relatedness between terms, and thus

sentences, and to utilise this in hierarchical text segmentation. The purpose of measuring

semantic relatedness is to allow computers to reason about text. Various approaches have

been proposed in the literature to measure the semantic relatedness between terms using

an external knowledge source. Explicit Semantic Analysis (ESA) (Gabrilovich and

Markovitch, 2007) is a method that represents meaning in a high-dimensional space of

concepts, automatically driven from human-built knowledge repositories such as

Wikipedia. ESA defines concepts from Wikipedia articles e.g., ALBERT EINSTEIN and

COMPUTER SCIENCE. A target term is essentially represented as a vector of concepts in

Wikipedia based on how this term is mentioned in the concept’s article. Relatedness is

then calculated as the cosine similarity between the two vectors of the target terms (see

next section for more details).

Another approach that uses the link structure of Wikipedia to measure semantic

relatedness is the Wikipedia Link-based Measure (WLM) (Witten and Milne, 2008).

WLM measures the relatedness between two terms using the links found within their

corresponding Wikipedia articles rather than using the articles’ textual content.

80

The notion behind using explicit semantic relatedness is that it relies on a knowledge base

that is built and continuously maintained by humans. The knowledge base used in this

research is Wikipedia, the largest and fastest growing encyclopaedia in existence. This

knowledge base is a collaborative effort that combines the knowledge of hundreds of

thousands of people. In this research, ESA is used as the approach for measuring the

semantic relatedness between text segments. ESA has been widely used in a variety of

tasks such as semantic relatedness calculation (Gurevych et al., 2007), concept-based

information retrieval (Egozi et al., 2011; Jungwirth & Hanbury, 2018) and text

classification (Chang et al., 2008) among other tasks. The efficacy of ESA has been

proven compared to other approaches that do not rely on explicit knowledge bases.

4.3.1 How does Explicit Semantic Analysis work?

As mentioned above, ESA relies on a concept space built from a knowledge base, such

as Wikipedia, to measure the semantic relatedness between two terms (or text blocks). In

Wikipedia-based ESA, a given word is described by a vector which stores the word’s

association strengths to Wikipedia-derived concepts. A concept is a Wikipedia article

(e.g. ALBERT EINSTEIN). This concept is represented as a vector of the terms which occur

in that article. Each term, in that vector, is assigned a weight using the tf-idf scheme

(Salton & McGill, 1986). These weights quantify the strength of association between

terms and concepts. After generating terms from the concept article, an inverted index is

created that maps each term to a list of concepts in which this term appears. Thus, each

word appearing in the Wikipedia corpus can be seen as triggering each of the concepts it

points to in the inverted index, with the attached weight representing the degree of asso-

ciation between that word and the concept. The name, Explicit Semantic Analysis, stems

from the way vectors are comprised of concepts that are manually defined, as opposed to

the mathematically derived contexts used by Latent Semantic Analysis. The processing

of Wikipedia articles and building of the concept space is depicted in Figure 4.1. In this

example, terms are extracted from the Wikipedia article (Economy). Terms such as:

“market”, “trade”, “property”, etc. Each of these terms is indexed in a database and

mapped to a list of concepts (articles) in which this term appears along with the tf-idf

score of the term in that article. For example, one of the concepts that the term “market”

is mapped to is “Bazaar” with 0.72 score. This means that the word “market” appears in

the “Bazaar” article and its tf-idf score in that article is 0.72.

81

Figure 4.1 The process of generating an ESA model from Wikipedia articles (Egozi et al., 2011).

After building such a concept space, each input term in a text processing task (e.g. seg-

mentation) can be represented as a vector of concepts that the term is associated with,

accompanied by the degree of association between the term and each concept. The se-

mantic relatedness between two given terms is measured by computing the cosine simi-

larity between the concept vectors of the two terms. For larger text fragments (a sentence

or a paragraph), a concept vector is retrieved for each term in the fragment, then the se-

mantic relatedness between two text fragments is measured by computing the cosine sim-

ilarity between the centroid of the vectors representing the two fragments. The centroid

vector of a text fragment is built based on ranking all the Wikipedia concepts by their

relevance to the fragment (Han and Karypis, 2000). Figure 4.2 illustrates the semantic

interpretation of two given texts and how the semantic relatedness between their centroid

vectors is measured. Given a text fragment (sentence or paragraph), the fragment is rep-

resented as a vector using tf-idf. For each term in this text fragment, a vector of corre-

sponding entries from the inverted index (the concept space) is retrieved. The retrieved

vectors are merged into a weighted vector of concepts that represents the given text. Let

𝑆 be the set of terms in the input text fragment after removing stop words. Let 𝑡 be the

vector of weights for concepts associated with term 𝑡 in the concept space. The centroid

vector 𝐶 ⃗⃗⃗⃗ is defined as:

𝐶 ⃗⃗⃗⃗ =
1

|𝑆|
 ∑ 𝑡

𝑡∈𝑆

4.1

82

where |𝑆| is the length of vector 𝑆 that is used for normalisation in order to account for

text units of different lengths. The relatedness between two centroid vectors 𝐶𝑖 and 𝐶𝑗 of

two text fragments is computed using the cosine measure:

cos(𝐶𝑖 ⃗⃗⃗⃗⃗, 𝐶𝑗
⃗⃗⃗⃗) =

𝐶𝑖 ⃗⃗⃗⃗⃗. 𝐶𝑗 ⃗⃗⃗⃗⃗

‖𝐶𝑖 ⃗⃗⃗⃗⃗‖ ‖𝐶𝑗 ⃗⃗⃗⃗⃗‖

4.2

Figure 4.2 Semantic interpretation of two text units using ESA (Gabrilovich and Markovitch, 2007)

To elaborate on the notion of semantic relatedness using ESA, consider the two sentences

in the example mentioned earlier in section 4.2:

 Albert Einstein is a German scientist who was born on the 14th of March 1879.

 Mileva Marić was born on December 19, 1875 into a wealthy family in Titel, Serbia.

After applying morphological analyses (see section 4.4.1) on the two sentences, each re-

maining term in each sentence is mapped to a vector of concepts from the vector space.

Each sentence is then represented as the centroid of the vectors of the sentence’s terms

(Han & Karypis, 2000). For the first sentence, the centroid of the vectors contains the

following concepts (among other concepts):

83

 ALBERT EINSTEIN AWARD

 THE EVOLUTION OF PHYSICS

 HANS ALBERT EINSTEIN  (second child and first son of Albert Einstein and Mileva

Marić)

 ELSA EINSTEIN  (the second wife of Einstein)

And the centroid of the vectors of the second sentence contains the following concepts

(among other concepts):

 MILEVA MARIĆ

 HANS ALBERT EINSTEIN

 ELSA EINSTEIN

 EINSTEIN FAMILY

From these vectors, we can see that the concept vectors of the two sentences have con-

cepts in common and measuring the cosine similarity between them (Equation 4.2) can

show that although the two sentences are not lexically similar, they are semantically re-

lated to each other.

4.4 C-HTS Architecture

The architecture of C-HTS consists of three phases:

1- Morphological Analysis

2- Semantic Representation and Relatedness Measuring

3- Hierarchical Agglomerative Clustering

4.4.1 Morphological Analysis

In this phase, the target text is processed to be split into sentences and to have stopwords1

removed, as they are generally assumed to be of less, or no, informational value. The

remaining words are then stemmed and converted into their root using the Porter stemmer

(Porter, 1980). This morphological analysis technique has been used in processing the

Wikipedia terms and concepts while building the concept space from Wikipedia

(section 4.3.1). The remaining terms are then used as input for the next phase.

1 Since the research in this thesis is not focused on a specific domain, a general domain stopwords list for English is

used with C-HTS.

84

4.4.2 Semantic Representation and Relatedness Measuring

The key idea in C-HTS consists of treating the segmentation of text as an examination of

the semantic relatedness between text blocks rather than traditional lexical similarity. A

text block is the elementary unit of the segmentation algorithm, which is one sentence in

C-HTS. For each sentence, and for each term in that sentence, the term is mapped to a

vector of concepts from the concept space that was created from Wikipedia. The semantic

relatedness between two (adjacent) sentences is calculated as the cosine similarity

between the centroid of the vectors representing the individual terms in each sentence

using Equation 4.2.

4.4.3 Hierarchical Agglomerative Clustering

As in OntoSeg (Chapter 3), C-HTS transfers the agglomerative clustering technique from

document level to text level (section 3.2.3). The difference between the two approaches

is that while OntoSeg measures coherency between two adjacent clusters (text blocks)

based on their semantic similarity, C-HTS measures the coherency based on their

semantic relatedness. The main topic for research in HAC algorithms is the proximity

test. In C-HTS, the semantic relatedness between text blocks is applied as the proximity

test. By applying hierarchical agglomerative clustering on text blocks the algorithm

successively agglomerates blocks that are deemed to be semantically related to each

other, thus forming a text structure. C-HTS uses HAC because it is a bottom-up clustering

approach. The idea behind using a bottom-up approach in text segmentation is that it

starts from the smallest clusters (sentences), that are considered the seeds of the text, and

then builds the text structure by successively merging the semantically coherent clusters.

This way of building the document structure can be regarded as a hierarchically coherent

tree that is useful to support a variety of content discoverability methods as it provides

different levels of granularity for the underlying content.

In the dendrogram depicted in Figure 4.3, we can see that in each iteration of C-HTS a

new level (horizontal dotted lines) is constructed from the agglomeration process on the

previous level. Each level is considered a different representation of the document

granularity. The level of granularity increases as we move from the root to the bottom of

the tree (the leaves). For example, in level 5 in the dendrogram, we can see that the

document at that level of granularity can be segmented into two segments with boundaries

19 & 25, i.e. the document can be segmented at sentence 19 and sentence 25. Hence, for

85

an adaptive system that requires a specific number of sentences based on its user needs

(such as reading speed), traversing such a tree would allow us to easily extract such

segment based on the relevance of the segment to the adaptive system’s query and the

required length. This segment was constructed not based on the HTML or paragraphs

structure of the document, rather, it was constructed based on the semantic relation

between its constituents.

Figure 4.3 C-HTS output as a dendrogram of a sample text

4.4.4 Word Sense Disambiguation

Word Sense Disambiguation (WSD) (section 2.2.3) is the task of identifying the meaning

of a term, when the term has multiple meanings, based upon the context of where it ap-

pears (Navigli, 2009). For example, “light” can mean “not heavy” or “illumination”,

what identifies its meaning is the context of where “light” is used. For a natural language

processing task like text segmentation, disambiguating such words would allow the task

to better understand the meaning of the sentence and to reason about it and thus enhance

the quality of the segmentation. For lexical segmenters, being inherently limited to lexical

representation of text, these approaches require an extra level of sophistication to disam-

biguate words.

In C-HTS, the relatedness between sentences is measured as the cosine similarity between

the centroid of the vectors representing the two sentences. This representation of text is

considered an implicit disambiguation of terms. For example, consider a sentence that

has the term “Apple” amongst other computer related terms. Taking the centroid of the

86

vectors will boost the computer-related concepts and will disambiguate the term effec-

tively.

To illustrate how words are disambiguated in C-HTS, consider the following sentence:

- “I love fruit, particularly a nice apple”.

In this sentence, after applying morphological analysis (section 4.4.1), the remaining

prominent terms are love, fruit, particularli, nice and appl2. Among these terms, the term

“appl” (apple after stemming) has different interpretations. From the underlying concept

space that have been created from Wikipedia, the top concepts generated for the term

appl (among other concepts) are:

 APPLE DAY  (related to apple fruit)

 APPLE SPECIALIST  (related to Apple Inc.)

 APPLE EXTENDED KEYBOARD  (related to Apple Inc.)

 EMPIRE (APPLE)  (related to apple fruit)

 APPLE STORE (ONLINE)  (related to Apple Inc.)

The majority of the top concepts are related to the company, Apple Inc. However, when

considering the centroid of the vectors representing the whole sentence, the top generated

concepts are (among other concepts):

 FRUIT PICKING

 ROME APPLE  (a kind of apple originating near Rome Township, Ohio)

 LIST OF APPLE CULTIVARS

 EMPIRE (APPLE)  (a kind of apple derived from a seed grown in 1945)

From these concepts, we can see that they all are related to the fruit apple. This illustrates

that considering the centroid of the vectors of a sentence disambiguates the terms without

adding extra sophisticated text processing layers. This vector can also be seen as a repre-

sentation of the context of that sentence. This in turn enhances the understandability of

text and enhances the segmentation quality.

2 These terms are the stemmed version of the original ones. For example, the word Apple is stemmed to appl using

Porter stemmer

87

4.5 Evaluation

Research on hierarchical text segmentation has been scarce and most state of the art re-

search has evaluated their hierarchical approaches on linear text segmentation datasets.

For example, (Yaari, 1997) evaluated his approach on the Stargazers article. He com-

pared his approach against a linear text segmentation approach, TextTiling. OntoSeg

(Bayomi et al., 2015) (Chapter 3) was evaluated using the linear text segmentation dataset

proposed by (Choi, 2000). This is due to the lack of available datasets which are suitable

for hierarchical text segmentation evaluation. Evaluating a hierarchical text segmentation

algorithm using a linear dataset does not give a realistic picture of the performance of the

hierarchical algorithm. The reason is that the output of a hierarchical algorithm is a tree

structure, while a linear dataset has consequently segmented chunks of text. Hence, se-

lecting an appropriate dataset is a critical step in the evaluation process.

4.5.1 Datasets

In this thesis, we argue that C-HTS is applying hierarchical text segmentation as if a hu-

man would perform the task (section 4.2). To prove this assumption, a gold standard da-

taset that is created by humans is needed. Furthermore, the dataset needs to be suitable

for a hierarchical text segmentation task. Luckily, (Kazantseva and Szpakowicz, 2014)

proposed two datasets that are suitable for evaluating hierarchical text segmentation and

both were annotated by humans. The authors evaluated their approach, Hierarchical Af-

finity Propagation for Segmentation (HAPS), against two well-defined datasets: the

Moonstone dataset and the Wikipedia dataset compiled by (Carroll, 2010).

1- Moonstone dataset: This dataset consists of nine chapters of the Moonstone

novel. (Kazantseva and Szpakowicz, 2014) employed human annotators to anno-

tate the dataset and to identify the hierarchical structure of each text document (in

this case, each chapter). The annotators were asked to read a chapter and split it

into top-level segments according to where they can see a shift in topic. Each

chapter was annotated by 3-6 people (4.8 on average).

2- Wikipedia dataset: This dataset was compiled by (Carroll, 2010). The dataset con-

sists of 66 Wikipedia articles on various topics. The HTML pages were converted

to flat text, and unneeded content such as navigation boxes, and image captions

were removed. The hierarchical structure for each article is created automatically

from the structure of the Wikipedia page, i.e. heading text was replaced with a

88

boundary marker, indicating the heading depth. This depth represents the level in

the text’s hierarchical structure. While the levels in the Wikipedia dataset were

created using automatic techniques (e.g. Wikipedia VisualEditor3), the original

structure of the documents is identified by the human authors who contribute to

Wikipedia4. Thus, it is considered a human annotated dataset.

Since C-HTS is based on using an external knowledge base to enrich text representation,

evaluating its performance using these two datasets will give us a realistic picture of the

performance of C-HTS as a concept-based approach. This is due to the inherent human

involvement in the construction process of the two datasets.

4.5.2 Baselines

To evaluate the quality of the hierarchical structure produced by C-HTS, there is a need

to compare its performance against hierarchical text segmentation approaches. As

mentioned before, work on hierarchical text segmentation has been scarce. To the best of

the authors’ knowledge, and at the time of evaluating C-HTS, the only publicly available

hierarchical segmenter (along with a dataset) is HAPS that was proposed by (Kazantseva

and Szpakowicz, 2014). HAPS is a hierarchical text segmentation approach that is based

on a graphical model for hierarchical clustering called Hierarchical Affinity Propagation

(Givoni et al., 2011). The input for HAPS is a matrix of similarity between text blocks.

HAPS requires the desired number of levels to be in the produced topical tree and a

preference value for each data point and each level. HAPS also finds a centre for each

segment at every level of the produced topical tree, a data point (a sentence) which best

describes the segment.

HAPS was compared against two linear segmenters where a hierarchical segmentation

was obtained from each approach. The two approaches are MCSeg (Minimum Cut

Segmenter) (Malioutov and Barzilay, 2006) and BSeg (Bayesian based Segmenter)

(Eisenstein, 2009). These two systems were chosen because they are representative of the

existing text segmentation methods, and their implementations are freely available on the

internet. MCSeg casts text segmentation in a graph-theoretic framework. In this approach,

text is abstracted into a weighted undirected graph, where the nodes of the graph

correspond to text blocks and edge weights represent the pairwise block similarity. Text

segmentation in MCSeg corresponds to a graph partitioning that optimises the

3 https://en.wikipedia.org/wiki/Wikipedia:VisualEditor [Accessed: April 08, 2018]
4 https://en.wikipedia.org/wiki/Wikipedia:Who_writes_Wikipedia [Accessed: April 08, 2018]

89

normalised-cut criterion. In BSeg, the lexical cohesion between segments is placed in a

Bayesian context. The words are modelled in each topic segment as drawn from a

multinomial language model associated with the segment.

To obtain hierarchical segmentation from these two linear segmentation systems, both

systems were run first to produce top-level segmentations (sequential segments). Each

segment thus computed was a new input document for segmentation. The procedure was

repeated twice to obtain a three level structure of the text. In addition to these baselines,

we also use OntoSeg as another baseline.

In this research, C-HTS is compared to these three systems as baselines (HAPS, MSSeg

and BSeg). For evaluation consistency, we use their experimental settings by evaluating

the top three levels (excluding the root) of the document structure produced by each

system. Furthermore, windowDiff (section 3.4.3) is used as the evaluation metric.

windowDiff is designed to evaluate linear text segmentation not hierarchical trees. Hence,

in this experiment, and for the sake of comparability we follow the same technique as

(Kazantseva and Szpakowicz, 2014). Each level of the text hierarchy is treated as a

separate segmentation and each hypothetical level is compared against a corresponding

level in the reference segmentation.

4.5.3 Results

The Moonstone dataset has on average 4.8 annotations per chapter. To obtain a realistic

picture of the results across the different annotators per file, each hypothetical

segmentation is separately compared against each available gold standard. After that, the

averages across all annotators are taken as the final score. For the two datasets

(Moonstone and Wikipeida), Table 4.1 shows the results of the comparison between C-

HTS and the other four baselines using the windowDiff evaluation metric. Since C-HTS,

OntoSeg and HAPS are inherent hierarchical text segmentation approaches, they were

run without knowing the number of segments in each level. Neverthless, HAPS requires

the number of levels to be known in advance, which was set to three. BSeg was able to

run with and without knowing the number of segments. In the results, the BSeg run

without this parameter is reported. MCSeg, on the other hand, required that the exact

number of segments be specified. This makes it considerably more informed than others.

The results show that C-HTS performs well on both datasets compared to the baselines,

even when compared to more informed baseline (MCSeg). For the Wikipedia dataset, C-

90

HTS performs better than the baselines on all three levels. This proves that using the

explicit semantic representation of text gives more understanding of the meaning of the

text, and thus enhances the process of hierarchical text segmentation. This also proves

that using semantic relatedness between text constituents produces better segmentation

than using the semantic (ontological) similarity as in OntoSeg.

For the Moonstone dataset, C-HTS performs favourably on the top and bottom levels but

it is noticed that its performance on the middle level is not better than HAPS and BSeg.

We argue that this is because in the Moonstone dataset the boundary for each level, in

each document, was placed by very few number of annotators (on average 4.8 annotations

per chapter), hence, there can be mixed agreement between those annotators on the

correct placement of the level boundary. On the other hand, in Wikipedia dataset, the

original article hierarchy (where levels are obtained from) was created and updated with

the agreement of the Wikipedia article contributors.

Table 4.1 Evaluation of C-HTS, HAPS, OntoSeg and iterative versions of MCSeg and

BSeg using windowDiff per level

4.6 Discussion

4.6.1 Elementary Units for C-HTS

Bottom-up hierarchical text segmentation algorithms start with atomic text pieces as their

elementary units and then successively grow areas of coherence. The elementary units

can be of a fixed size, such as a specific number of sentences, or can be of a mutable size

such as paragraphs. For example, (Yaari, 1997) and HAPS (Kazantseva & Szpakowicz,

 Level Moonstone Wikipedia

C-HTS

3 (top)

2 (middle)

1 (bottom)

0.320

0.507

0.488

0.330

0.397

0.402

HAPS

3 (top)

2 (middle)

1 (bottom)

0.337

0.422

0.556

0.421

0.447

0.617

OntoSeg

3 (top)

2 (middle)

1 (bottom)

0.366

0.523

0.544

0.350

0.401

0.411

MCSeg

3 (top)

2 (middle)

1 (bottom)

0.375

0.541

0.601

0.440

0.424

0.471

BSeg

3 (top)

2 (middle)

1 (bottom)

0.600

0.447

0.545

0.637

0.877

0.952

91

2014) used paragraphs as the elementary units for their segmenters, while in C-HTS we

use one sentence as the elementary unit.

The size of the elementary units is an influential parameter for the segmentation algorithm

and it has implications on the segmentation accuracy. Previously, in Chapter 3 (sec-

tion 3.4.2), we experimented with the influence of different elementary unit sizes on the

hierarchical segmentation task. We experimented with sizes ranging from one to four

sentences per unit. The best run reported in the experiments was when we used one

sentence as the elementary unit. The results also concluded that the higher the size of the

elementary unit, the lower the accuracy of the segmentation5.

This also adds to the understanding of the inconsistency of C-HTS performance on the

Moonstone dataset. Besides the disagreement between the few number of human

annotators about the correct placement of level boundary, the elementary units presented

to the annotators, to build the gold standard, were paragraphs. As a result, and for

evaluation consistency, we had to set the elementary units for C-HITS to be paragraphs

which impacted the performance of the algorithm. This can be seen in the results of the

first experiment (and the following experiments) where the performance of C-HTS on the

Wikipedia dataset, where we use one sentence as the elementary unit, gives, on average,

lower error rates than its performance on the Moonstone dataset.

4.6.2 Text Granularity

Hierarchical text segmentation approaches produce a structural representation of text that

represents different levels of granularity. In HAPS, the desired number of levels needs to

be passed as a parameter to the algorithm. In contrast, in C-HTS, it does not need to know

number of levels that are needed in the output structure because the structure produced

by C-HTS depends on the coherence between the atomic units of the text. This way of

building the structure makes the output more granular and facilitates its use in different

tasks like content discoverability and reusability. Identifying the number of levels of the

output limits the usage of the produced hierarchy, as each adaptive system requires a

different level of content granularity. Hence, from this point of view, HAPS is considered

a system-dependent approach, as its parameters need to be set depending on the system

in question. On the other hand, C-HTS is considered a system-independent approach as

5 We also tried different sizes for the elementary units for C-HTS and the results aligned with the results of OntoSeg,

the higher the size of the elementary unit, the lower the accuracy of the segmentation

92

it produces all the available levels of granularity in the processed document, hence it can

produce content that is amenable for reuse in different systems.

4.6.3 Multilingual C-HTS

C-HTS is based on the concept space built from Wikipedia. Wikipedia is the largest ency-

clopaedia in existence that is available in dozens of languages. As of April 2018, there are

298 Wikipedias of which 288 are active and 10 are not6. Building a concept space for these

languages would help an ESA-based task to be used with texts in different languages.

(Gurevych et al., 2007) applied ESA to the German-language Wikipedia7 and used it for

semantic relatedness and information retrieval tasks. Their experiments showed that using

ESA was superior compared to a system based on the German version of WordNet, Ger-

maNet (Hamp and Feldweg, 1997).

The core of C-HTS is the process of measuring the semantic relatedness between clusters

using the explicit semantic interpretation of text. This process is essentially based on the

underlying concept space that has been built from Wikipedia. Moving C-HTS from one

language to another can be done easily. Changing the language of the underlying concept

space would make no difference in the running of C-HTS. The only step which must be

changed is the morphological analysis (section 4.4.1) to filter out and stem the prominent

terms in text. This step is relatively easy to implement as there has been a large volume

of work completed on morphological analysis for languages other than English (Manning

et al., 2014). Hence, C-HTS can be seen as a multilingual hierarchical text segmentation

approach that can semantically represent text and reason about it regardless the language

of the text.

Although C-HTS can be applied on multilingual documents to produce a hierarchical

structure, the research in this thesis focuses solely upon content resources available in

English as a first step and reserves multilingual content processing for future work (sec-

tion 7.3.1).

4.7 C-HTS Validation

The key idea proposed in C-HTS is to perform the segmentation of text based on the

semantic relatedness between its blocks. As discussed in section 4.3, C-HTS uses explicit

6 https://en.wikipedia.org/wiki/List_of_Wikipedias [Accessed: April 08, 2018]
7 https://en.wikipedia.org/wiki/German_Wikipedia [Accessed: April 08, 2018]

93

semantic analysis (ESA) to measure the semantic relatedness between text blocks using

Wikipedia as its knowledge base. In this research, the experimantal results reported in

section 4.5.3 demonstrated the efficiancy of C-HTS in building a hierarchical structure

out of textual documents and its competitive performance against the state of the art

approaches.

To validate the efficacy of using Wikipedia as the underlying knowledge base for

conceptual representation of text in C-HTS, an experiment was carried out where the

WordNet thesaurus (Miller, 1995) is used as the underlying knowledge base to add

semantic representation of text (phase 2 in C-HTS, section 4.4.2).

Additionally, to validate the efficacy of using the explicit semantic representation of text

rather than its lexical representation, another experiment was carried out where the lexical

similarity, in contrast to semantic relatedness, between text constituents is measured in

C-HTS.

4.7.1 Semantic Similarity using WordNet

WordNet8 (Miller, 1995) is a broad coverage lexical network of English words. Nouns,

verbs, adjectives, and adverbs are each organised into networks of synonym sets (called

synsets) that each represent one underlying lexical concept and are interlinked with a

variety of relations (Budanitsky and Hirst, 2006). Over time, different versions of Word-

Net have been proposed that cover languages other than English, such as EuroWordNet9

(Vossen, 1998) which covers several European languages (Italian, Spanish, etc.) and Ger-

maNet10 (Hamp and Feldweg, 1997) which covers the German Language. Different NLP

approaches relied on WordNet as their source for semantic representation of text (Stokes,

Carthy and Smeaton, 2004; Lu et al., 2015). However, as discussed earlier (section 4.1),

the use of lexical resources (e.g. WordNet) offers limited information about the different

word representations. Furthermore, such resources cover only a small fragment of the

language lexicon.

To assess this assumption, an experiment was carried out where WordNet is used as the

underlying knowledge base for C-HTS. Additionally, different concept similarity metrics

are used in this experiment:

8 https://wordnet.princeton.edu/ [Accessed: March 28, 2018]
9 http://projects.illc.uva.nl/EuroWordNet/ [Accessed: April 08, 2018]
10 http://www.sfs.uni-tuebingen.de/GermaNet/ [Accessed: April 08, 2018]

94

1- Path similarity (Rada et al., 1989): computes shortest number of edges from one

word sense to another in WordNet hierarchical structure. Using edge counting

(section 3.2.2.1), the distance between two disjunctive sets of concepts is defined

as the minimum path length from any element of the first set to any element of

the second.

2- Leacock-Chodorow Similarity (LCH) (Leacock and Chodorow, 1998): the same

as the Path similarity except that it uses the negative logarithm of the result of

Path similarity.

3- Wu-Palmer similarity (WUP) (Wu and Palmer, 1994): similar to LCH, except it

weights the edges based on distance in the hierarchy (section 3.2.2.1).

4- The Lesk similarity (Lesk, 1986): it defines the similarity between two concepts

as a function of the overlap between the corresponding definitions, as provided

by a dictionary such as WordNet.

The WS4J Library11 (Shima, 2014) is used in this experiment.

Table 4.2 shows that the performance of C-HTS using Wikipedia as its knowledge base

outperforms its performance using WordNet even with different relatedness measures

used with WordNet. This proves that using Wikipedia as a large knowledge base that is

built from the collaborative work of hundreds of thousands of people is better than relying

on a limited knowledge base such as WordNet.

Table 4.2 Comparison between different similarity measures using WordNet in C-HTS

11 https://github.com/Sciss/ws4j/ [Accessed: January 22, 2018]

 Level Moonstone Wikipedia

Wikipedia ESA

3 (top)

2 (middle)

1 (bottom)

0.320

0.507

0.488

0.330

0.397

0.402

WordNet Path

3 (top)

2 (middle)

1 (bottom)

0.393

0.523

0.523

0.385

0.412

0.421

WordNet LCH

3 (top)

2 (middle)

1 (bottom)

0.393

0.525

0.520

0.385

0.410

0.422

WordNet WUP

3 (top)

2 (middle)

1 (bottom)

0.397

0.523

0.522

0.378

0.412

0.424

WordNet Lesk

3 (top)

2 (middle)

1 (bottom)

0.375

0.508

0.536

0.377

0.411

0.420

95

4.7.2 Lexical Representation

Lexical representation has been widely used in the literature in text segmentation (Hearst,

1994; Choi, 2000). As its name suggests, it splits text into segments based on words that

these segments share with each other. Lexical cohesion refers to the connectivity between

two portions of text in terms of word relationships. It relies mainly upon the endogenous

knowledge extracted from the documents themselves. Text segmentation approaches that

rely upon lexical similarity between text blocks, however, fail to recognise relevant seg-

ments that do not share words with each other. Hence, in C-HTS, the semantic relatedness

between text blocks is employed to reveal much knowledge about the meaning beyond

text.

In order to assess the efficacy of using the semantic representation of text in C-HTS, an

experiment was carried out where the lexical representation of text is used to measure the

lexical similarity rather than using the semantic relatedness between text blocks (second

phase in C-HTS, section 4.4.2). Additionally, different lexical similarity measures are

used in this experiment:

1- Cosine Similarity (Singhal, 2001): a basic measure often used in information

retrieval, weights words according to their term frequencies scores, and computes

the cosine between two text vectors.

2- A string distance metric such as Levenshtein distance (Levenshtein, 1966): it

measures the similarity between two given strings based on the distance between

them. The distance is the number of deletions, insertions, or substitutions required

to transform the first string into the second.

3- Monge-Elkan measure (Monge and Elkan, 1996): is a simple but effective method

for measuring the similarity between two strings containing multiple tokens, using

an internal similarity between tokens. It measures the average of the similarity

values between pairs of more similar tokens within two given strings.

4- Longest Common Subsequence (LCS) (Allison and Dix, 1986): refers to the

longest string two texts have in common, when gaps between the series in

characters are allowed.

The Dkpro Similarity Framework12 (Bär et al., 2013) is used in this experiment.

12 https://dkpro.github.io/dkpro-similarity/ [Accessed: January 22, 2018]

96

Table 4.3 shows that the explicit semantic representation of text (ESA) outperforms the

lexical representation approach in all similarity measures, segmentation levels and in both

datasets. This in fact is not surprising as lexical representation approaches can process

only the information that they can ‘see’. While, on the other hand, explicit semantic rep-

resentation of text allows a NLP task (e.g. segmentation) to reason about text using

knowledge extracted from a massive knowledge base such as Wikipeida.

Table 4.3 Comparison between different coherency measures used with C-HTS

4.8 The Impact of Knowledge Breadth

In this research, C-HTS uses a concept space that is built from the text of a knowledge

base articles (Wikipedia). (Anderka and Stein, 2009) showed that the size of the text col-

lection used to build the concept space has much more impact on the explicit semantic

analysis performance than its nature (how its written or organised). Wikipedia is being

constantly expanded and updated by different contributors who add new articles and ex-

tend the existing ones. Consequently, the amount of knowledge in Wikipedia is expand-

ing. We conjecture that such expansion, and the growth of information available in the

knowledge base should impact the accuracy of the segmentation process. To test this as-

sumption, different snapshots of the entire Wikipedia knowledge base were acquired from

three different years: 2006, 2013 and 2017. The snapshots from 2006 and 2013 were pro-

cessed by (Carvalho et al., 2014) and ready for use. For the 2017 snapshot, we processed

 Level Moonstone Wikipedia

ESA

3 (top)

2 (middle)

1 (bottom)

0.320

0.507

0.488

0.330

0.397

0.402

Cosine

3 (top)

2 (middle)

1 (bottom)

0.352

0.510

0.499

0.362

0.401

0.407

Monge-Elkan

3 (top)

2 (middle)

1 (bottom)

0.406

0.528

0.517

0.430

0.410

0.418

LCS

3 (top)

2 (middle)

1 (bottom)

0.399

0.541

0.522

0.427

0.420

0.429

Levenshtein

3 (top)

2 (middle)

1 (bottom)

0.428

0.523

0.537

0.451

0.420

0.431

97

it ourselves13 following the instructions in (Gabrilovich and Markovitch, 2009) and

(Carvalho et al., 2014)14.

4.8.1 Experiment and Results

Table 4.4 presents a comparison of the amount of information contained in the three used

Wikipedia snapshots. In this experiment, C-HTS was run on the two aforementioned

datasets but using different concept spaces built from the three different Wikipedia

snapshots. The purpose of this experiment is to examine the effect of the expansion of the

underlying knowledge base has on C-HTS.

Table 4.5 shows the results of the experiment. As can be observed, increasing the amount

of knowledge in the knowledge base leads, on average, to improvements in hierarchical

text segmentation. Although the difference in performance of the three versions is

admittedly small, it is consistent across the datasets.

Table 4.4 Comparison of the three Wikipedia snapshots

Snapshot’s Year 2006 2013 2017

Articles 895,000 4,133,000 5,373,241

Concepts used 369,767 1,270,521 1,446,243

Distinct terms 598,391 1,615,525 1,825,353

Concept space size 11 Gb 21 Gb 12.5 Gb15

Table 4.5 Comparison of the three Wikipedia snapshots

 Level Moonstone Wikipedia

2006 Snapshot

3 (top)

2 (middle)

1 (bottom)

Average

0.347

0.545

0.504

0.465

0.365

0.404

0.411

0.3933

2013 Snapshot

3 (top)

2 (middle)

1 (bottom)

Average

0.346

0.539

0.509

0.464

0.366

0.397

0.405

0.390

2017 Snapshot

3 (top)

2 (middle)

1 (bottom)

Average

0.320

0.507

0.488

0.438

0.330

0.397

0.402

0.3823

13 Wikipedia 2017 snapshot processed for ESA is available here: https://goo.gl/JZhEvm
14 The technical instructions and snapshots can be found here: https://github.com/dscarvalho/easyesa/ [Accessed: De-

cember 3, 2018]
15 We indexed the 2017 snapshot in MongoDB v3 that uses the WiredTiger storage engine which applies more com-

pression than the old mmapv1 engine in MongoDB version used in indexing both 2006 and 2013 snapshots.

98

4.9 Chapter Summary

This chapter introduced C-HTS, a new Concept-based Hierarchical Text Segmentation

approach. The core idea of C-HTS is the use of an external knowledge to enhance the text

representation by adding a semantic layer of concepts that represents the text in a high

dimensional semantic space. Relatedness (in contrast to similarity) between the atomic

units of text is measured using this semantic representation. A Hierarchical

Agglomerative Clustering (HAC) algorithm is then used to grow coherent segments of

the text. The output of C-HTS is a tree-like structure of the input text. C-HTS was

compared against a set of state of the art approaches across two different datasets. The

results showed that C-HTS performed favourably against other approaches. Additionally,

to asses the effictiveness of using Wikipedia as the underlying knowledge source, an

experiment was carried out where WordNet is used as the knowledge source for C-HTS.

Experimental results showed that relying on resources such as WordNet offers little

information about the different word representations and hence, deteriorates the

performance of C-HTS. Furthermore, different lexical similarity measures were used with

C-HTS to assess the effectiveness of using the semantic representation of text in C-HTS.

Experimental results showed that using semantic relatedness outperforms other similarity

measures.

Another experimrnt was carried out to evaluate the influence of the size of the knowledge

base that C-HTS uses to reason about text. Since C-HTS uses Wikipedia as the underlying

knowledge base, its performance was measured when using different concept spaces built

from different snapshots of Wikipedia over different years: 2006, 2013 and 2017. The

results showed that there is a measurable impact upon segmentation performance, and

while the difference is small, it is consistent across the two datasets.

The concept space that was built from the 2017 Wikipedia snapshot is publicly available:

- https://goo.gl/JZhEvm

and the implementation of the C-HTS algorithm is also publicly available:

- https://github.com/bayomim/C-HTS

Finally, it is noteworthy to point out the C-HTS algorithm along with the experimental

work16 described in this chapter was published in the following paper:

16 Except for experiments 2 and 3 in section 4.7

99

Bayomi, M. & Lawless, S. “C-HTS: A Concept-based Hierarchical Text Segmentation

approach”. In the Proceedings of the Eleventh International Conference on Language

Resources and Evaluation (LREC 2018). Miyazaki, Japan: European Language Re-

sources Association (ELRA).

100

5. CROCC: Customised Reuse of Open- and Closed-corpus Con-

tent

The previous two chapters presented different hierarchical text segmentation approaches

that use semantic text representation to build a structure out of unstructured textual con-

tent. Evidence from the experiments discussed in the previous chapters showed that C-

HTS (Chapter 4) outperformed OntoSeg (Chapter 3) in the task of building a hierarchical

structure of text (section 4.5.3).

The second research question posed by this thesis is:

Can the produced structure be used to enhance the discoverability and reusability of con-

tent for adaptive systems?

In order to study the benefit of the produced structure in a content adaptation scenario,

this chapter describes a novel content-supply service named CROCC (Customised Reuse

of Open- and Closed-corpus Content). CROCC is a service which harvests content

resources from open and closed corpora1 in their native form, builds a structure out of

each content resource based on its conceptual representation, and delivers content slices2

which meet the requirements of individual adaptive systems. This service is focused upon

contributing the third objective of this thesis (RO 3) (section 1.2).

5.1 State of the Art Influences

The analysis conducted in the state of the art chapter (Chapter 2), influenced various de-

sign aspects of the content-supply service which is described in this thesis. The aim of

this section is to present a summary of these influences and how they affect the core

properties of the content-supply service developed by this research.

Influences derived from the state of the art review are presented and grouped within seven

different categories, each highlighting individual perspectives with respect to the limita-

tions and opportunities identified as part of the analysis performed. These categories are:

1. Content Incorporation

2. Content Right-Fitting

3. Content Structuring

1 This thesis recognises that there are key challenges regarding IP and copyright when attempting to reuse open corpus

content, even for educational use. Initiatives such as creative commons can potentially have a very positive impact on

clarifying the copyright permissions for educational use. However, in this thesis, copyright and IP issues are deemed

to be out-of-scope.
2 A slice is a piece of content (one or more sentences) that originates from a pre-existing content resource.

101

4. Content Representation

5. Content Indexing

6. Content Discoverability

7. Content Reusability

These categories are detailed in the following subsections.

5.1.1 Content Incorporation Techniques

- Many adaptive systems have mainly relied upon the manual incorporation of con-

tent resources (section 2.4.4.1).

- However, these systems have failed to overcome the problems associated with

extending and updating the content they can provide to their users. Hence, they

do not scale well and are deemed impractical for a variety of real-world applica-

tions.

- Extending resources in such systems is a manual and labour-intensive task that

needs much time and effort from a domain expert.

- This in turn makes content very tightly coupled to these systems and, as a result,

strongly impedes the reusability of this content in different systems.

- Additionally, whenever a change in the structure or presentation of content re-

sources needs to be made, adaptation techniques and algorithms developed within

the adaptive system must be altered accordingly or replaced altogether, which can

be quite labour intensive.

Key Principle 1.a: Content should be incorporated automatically and should be made

available to adaptive systems through a service that can deliver resources as content pack-

ages3 that are amenable for reuse within various independent adaptive systems.

Key Principle 1.b: The service should be designed using a flexible architecture that

allows plugging-in, removing, enabling, or disabling alternative components or algo-

rithms based on the content being processed by the service.

5.1.2 Content Right-Fitting

- Adaptive systems started to employ web technologies to automatically retrieve

and incorporate content from the sources reachable through the web and deliver

them to their users (section 2.4.4.2).

3 Content package is a piece of content extracted from a document, as opposed to a whole document in its entirety.

102

- While web resources are often freely available, they are generally not properly

structured into easy-to-handle units. The one-size-fits-all nature of web content

makes it “same content for all people”.

- For this reason, the incorporation and delivery of open corpus content resources

in their native form is inadequate for adaptive systems (section 2.5.2.1).

Key Principle 2: Resources should be structured into fine grained content packages

to support the creation of content slices to meet the adaptation requirements of individual

users or applications. This would give much more control to the adaptive system over the

provided content.

5.1.3 Content Structuring

- Several approaches started to overcome the limitations associated with the one-

size-fits-all nature of content resources by focusing upon extracting content frag-

ments from harvested resources (section 2.5.2.2).

- They have typically relied upon the original structure of the content resources (e.g.

the HTML structure of web pages). This means that these approaches do not con-

sider the content itself, rather, they consider the structure with which the content

is built; this reflects the needs and the perspective of the content author.

- While each adaptive system has its own content requirements (based on its users),

relying upon the author-imposed structure hinders these approaches from under-

standing the content itself and, as a result, they cannot satisfy these content re-

quirements.

- Furthermore, for content resources that do not possess any layout structure, ex-

tracting relevant content fragments is not then feasible.

- Additionally, as these approaches can only process content resources that have a

layout structure, they are limited with regard to the diversity and the volume of

content resources which they can leverage and provide to adaptive systems.

Key Principle 3: The proposed service should employ novel approaches to structure

content resources without the reliance upon their original structure. This would al-

low the service to incorporate a wider range of content resources regardless of its origin

(closed or open) and the method used to incorporate it (user incorporation or automatic

incorporation – section 2.4.4.2).

103

5.1.4 Content Representation

- State of the art approaches are limited in that they rely upon the traditional bag-

of-words representation of content in measuring similarity between a content item

(a document or a fragment) and the request (query) sent by individual users or

applications (section 2.5.2).

- Even systems that use concepts in this task primarily rely upon a limited concep-

tual representation of content items (i.e. using one or very few concepts) (sec-

tion 2.5).

- Such limited conceptual representation hinders content items from being effec-

tively discovered and presented to the users (or applications) according to their

needs and from being reused in other systems (section 2.5.2).

Key Principle 4: The service should apply a conceptual representation of the incor-

porated content to overcome the limitations of the lexical representation paradigm. Fur-

thermore, this conceptual representation should be rich enough to cover all the possible

interpretations of content.

5.1.5 Content Indexing

- Content indexing provides a formalised, simplified and machine usable represen-

tation of content contained within each resource.

- For adaptive systems that rely on closed corpus content resources, since content

is structured and annotated by the content author (or a domain expert), the index-

ing of this content is typically manual, which is a labour-intensive task (sec-

tion 2.5.2).

- For adaptive systems that rely on open corpus content resources and use docu-

ment-level indexing approaches, the harvested resources are indexed in their na-

tive form as one-size-fits-all, document-level-granularity resources (sec-

tion 2.5.2.1).

- This in turn limits the extent to which these resources can be modified or recom-

posed together.

- For fragment-level indexing approaches, the harvested resources are processed

and segmented into coherent fragments based on their layout structure. The pro-

duced fragments are then indexed in a content repository (section 2.5.2.2).

104

- However, in these approaches, the indexing process means that the final structure

of each content fragment is already built. This limits the capability of these ap-

proaches from changing such structure according to the needs of individual users

or applications and makes these approaches limited in their ability to provide dif-

ferent levels of granularity for the indexed content.

- Additionally, both approaches (document-level and fragment-level) are limited in

that they index content items (documents or fragments) based on the keywords or

few concepts (usually one concept) found in each individual item.

- As mentioned in the previous section (section 5.1.4), this prevents content items

from being effectively discovered and presented according to the users’ needs and

hinders their reusability in other systems.

Key Principle 5.a: Content needs to be automatically indexed at various levels of gran-

ularity regardless of the original structure that has been embedded by the author of the

content resource.

Key Principle 5.b: Such indexing mechanism should index each level of content gran-

ularity along with a rich conceptual representation for each content item (i.e. content

slices) in each level.

5.1.6 Content Discoverability

- Discovery of the indexed content involves deciding what content is most relevant

to the needs or goals of current user or application. Generally, strategies for con-

tent discovery compute a measure of relevance for each content item (e.g. frag-

ment) to the target user’s model (section 2.5.3).

- In keyword-based approaches, the user model is represented as a set of keywords

that describe the user’s preferences or goals and a keyword-based similarity meas-

ure is computed between this user model and content items.

- However, the quality of simple keyword-level similarity techniques is not reliable

as it can often retrieve content items that are not semantically related to the user

model (section 2.4.4.2).

- In concept-based approaches, the user model is represented as a set of concepts

that characterise the user’s preferences or goals and a concept-based similarity

measure is computed between this user model and the concepts covered in content

items (section 2.4.4.2).

105

- However, as discussed in section 5.1.4, these systems mainly rely upon a limited

conceptual representation of content items (i.e. using one or very few concepts).

Such limited conceptual representation hinders content items from being effec-

tively discovered and presented to the users according to their preferences or goals

(section 2.5.3).

Key Principle 6.a: The process of discovering (and providing) content items should

be performed by the service using the conceptual representation of the indexed con-

tent. The similarity between a request (sent by the adaptive system based on the user

model) and a content item (a slice) should be measured based upon the conceptual repre-

sentation of the request and the content item.

- Another limitation of the current state of the art approaches is that, since they rely

upon the original structure of the incorporated content, they have limited control

over the granularity level of content and can only provide very coarse-grained

content fragments (e.g. fragmenting a document down to paragraphs, but not to

sentences or phrases for example).

Key Principle 6.b: The proposed service should be able to discover content items ac-

cording to any level of granularity specified by the adaptive system that suits its re-

quirements.

5.1.7 Content Reusability

- Different content reusability techniques have been proposed in the literature

where each technique has its own strengths and limitations (section 2.6).

- Encapsulation techniques showed that content encapsulation standards allow a

common structure and descriptive metadata to be used across resource consumers,

which supports the discovery and reuse of content resources from various origins

by each individual application (section 2.6.1).

- However, with the increase in volume of content resources, the amount of manual

labour required to annotate and structure these resources also increases. Further-

more, repositories produced by content encapsulation techniques can still be seen

as “closed pools” of reusable content resources, since the resource publication and

delivery mechanisms are specific to each repository.

106

- Shared Publishing techniques removed the need for adaptive systems to modify

its content consumption mechanism to each individual repository and improved

the accessibility of content resources from the different repositories as if they are

from a single unique repository (section 2.6.2).

- However, both encapsulation and shared publishing reuse mechanisms do not in-

volve the modification of the original resources themselves. Although reusing a

content resource without modifying it can potentially include reusing it for pur-

poses not originally planned by its author, the inability to modify a content re-

source limits the range of purposes for which it could be reused.

- Content Modification techniques started to apply modification to the original re-

sources to increase the reuse capabilities of a content resource (section 2.6.3).

- However, relying on the original structure of the content resource (HTML struc-

ture or paragraphs) to modify it, limits the range of purposes for which it could be

reused.

- Additionally, since these approaches modify content resources and produce con-

tent fragments before a request is done, the produced fragments are considered

static content items which restricts the potential scenarios in which such content

items can be reused. This, in turn, makes these approaches limited in responding

to the different potential forms of requests.

Key Principle 7.a: The proposed service should automatically modify the incorporated

content resources to produce content slices at all possible levels of granularity of each

individual content resource. This would allow the creation of a slice on-the-fly according

to the characteristics of an arbitrary request by individual adaptive systems.

- A common characteristic of all the aforementioned approaches is that the reusa-

bility of a content item within different adaptive systems depends primarily upon

the descriptive metadata they attach to content items which represents the content

publication and delivery mechanism of each approach. This descriptive metadata

is used to select appropriate content where there may be many candidate content

items available to fulfil a user or system requirements.

- However, as mentioned in section 5.1.4, these techniques provide limited capabil-

ities to capture the conceptualisations associated with content resources and hence

they offer limited metadata information about content items. This, in turn, limits

the scenarios in which each individual content item can be reused.

107

Key Principle 7.b: To increase the potential scenarios in which content items can be

reused, the proposed service should provide a generic content publication and deliv-

ery mechanism to allow adaptive systems to easily acquire content items without the

need to adjust their content acquisition mechanism. This means that a rich descriptive

metadata information should be attached to each content item. This metadata information

should have all possible conceptual representations of the content item.

5.1.8 Summary

This section discussed the influences derived from the analysis conducted in the state of

the art review (Chapter 2). The analysis revealed the limitations with respect to the un-

derlying content production approaches currently used to supply content to adaptive sys-

tems. The analysis also revealed the potential enhancement that can be applied to the

content production (and supply) process to enhance the discoverability of the appropriate

content items as well as the reusability of content for different adaptive systems. This

section summarised these influences and key principles made with respect to the proto-

type service to be developed for this research. The next section provides a description of

design requirements, derived from the key principles enunciated in this section, of a ser-

vice which enables the automated harvesting, structuring, customisation and reuse of

open and closed corpus content resources for consumption within adaptive systems based

on content’s conceptual representation.

5.2 CROCC Architecture

The main purpose of the CROCC service is to provide adaptive systems with textual

content slices that are tailored to the needs and requirements of each individual system.

The CROCC service is designed using a flexible architecture that allows for plugging-in,

removing, enabling, or disabling alternative components or algorithms at runtime as well

as design time of the service (Key Principle 1.b). The CROCC service is offered as an

intelligent content-supply framework, which consists of the following modules:

1- Content Harvester

2- Content Pruner

3- Structure Builder

4- Slice Indexer

5- Content Repository

6- Slice Selector

108

Figure 5.1 depicts the architecture of the CROCC service. This architecture is designed

as a pipeline where the components can be run successively, in the numerical order spec-

ified in the figure.

Figure 5.1 The CROCC service architecture

5.2.1 Content Harvester

The first module in the CROCC service is the content harvester. The purpose of this mod-

ule is to automatically acquire content resources based on the content requirements of the

adaptive system (Key Principle 1.a). These requirements include: domain area (e.g.

health, computer science, finance, etc.), a set of URLs the adaptive system needs content

to be harvested from and/or set of closed corpus content resources (e.g. a book in an

educational adaptive system). Since CROCC can operate on both closed and open corpus

content resources, the harvester mainly provides two different content harvesting modes:

closed corpus harvesting and open corpus harvesting. For closed corpus harvesting,

and as discussed in section 2.5.1, since content resources are known to the adaptive sys-

tem (e.g. specified by a domain expert or incorporated by its users), the Content Harvester

provides an interface for the adaptive systems to allow them to transfer (upload) these

content resources to the CROCC service to be processed and indexed as content slices.

As for open corpus harvesting mode, since content resources are not known to the adap-

tive system, they need to be discovered and retrieved to be processed by the CROCC

service; hence, the main purpose of the open corpus harvesting mode is to automatically

identify and incorporate relevant resources from the web which relate to a topic from the

109

specified domain area. This technique mainly focuses on identifying web resources rele-

vant to a particular topic and harvesting them in their native form (HTML pages). Since

the challenge of identifying web resources relevant to a particular topic is a very well

documented and established field of research of its own (see section 2.5.1), the process

of correctly identifying relevant web pages is considered out-of-scope of this thesis. Thus,

existing third-party IR systems or focused crawling techniques can be utilised instead as

a callable service in this module. Examples of such systems are: Bing Custom Search4,

Openwebspider5, Heritrix6, 80Legs7 and WebSphinx8. These systems enable the commu-

nity to perform a variety of crawling tasks (from classic crawling to focused crawling).

5.2.2 Content Pruner

As discussed in section 5.1.3, the CROCC service should employ novel approaches to

build a structure out of textual content resources regardless of the original structure of

these resources (Key Principle 3). However, content resources usually come in a range of

different formats, where each format type has its own structure. For example, open corpus

resources available on the web are usually formatted as HTML pages with deep nested

structures that contain auxiliary content fragments, such as: headers with navigation

menus, footers with contact and corporate information, or sidebars with advertisements

(Viveros-Jiménez et al., 2018; Vogels et al., 2018). In order to build a structure out of a

content resource, such content fragments are unwanted or not useful (Levacher et al.,

2009). Hence, these content fragments must commonly be discarded before building the

structure for the content resource.

Content Pruner hence refers to the ability to identify such unnecessary fragments within

a content resource to remove them and convert the content resource into a plain text file.

Figure 5.2 depicts the process of pruning content resources and removing the unwanted

content fragments.

In contrast to state of the art content-supply approaches, the CROCC service does not rely

upon the original structure of the content resource, rather, it prunes the resource and con-

verts it into a plain text in order to build a structure out of it based on the conceptual

coherency between its constituents.

4 https://azure.microsoft.com/en-gb/services/cognitive-services/bing-custom-search/[Accessed May 2, 2018]
5 http://www.openwebspider.org [Accessed May 2, 2018]
6 https://webarchive.jira.com/wiki/display/Heritrix/Heritrix [Accessed May 2, 2018]
7 http://www.80legs.com/ [Accessed May 2, 2018]
8 https://webarchive.jira.com/wiki/spaces/Heritrix [Accessed May 2, 2018]

110

The task of pruning a web page is called content fragmentation9. This task is a very well

documented and established field of its own where different approaches have attempted

to identify structurally coherent fragments of a web page based on its HTML layout struc-

ture (Fang et al., 2018; Zeleny et al., 2017). Content fragmentation techniques are in-

creasingly used as preliminary processing step for different tasks such as web mining

(Alassi and Alhajj, 2013), web search (Moura et al., 2010) and web page classification

(Bing et al., 2014).

As CROCC can operate on closed and open corpus content resources (Key Principle 3),

designing it using a flexible pipeline architecture enables the content pruner (and other

modules) to be easily replaced based on the format of the desired content resources.

Figure 5.2 Removing the unnecessary content fragments by the Content Pruner

5.2.3 Structure Builder

After pruning the harvested content resources and converting them into plain text docu-

ments, a hierarchical structure is built for each resource (Key Principle 2 & Key Principle

3) based on its conceptual representation (Key Principle 4). To achieve this task, the

Structure Builder module utilises the C-HTS algorithm proposed in Chapter 4 of this the-

sis. In this module, and for each resource, text is processed to be split into sentences and

to remove stopwords as they are generally assumed to be of less, or no, informational

value. The remaining terms are then stemmed and converted to their linguistic root form

(section 4.4.1). A Hierarchical Agglomerative Clustering (HAC) approach is then applied

9 In the literature, content fragmentation is also referred to as structural fragmentation, region extractors, and page

segmentation.

111

on text blocks to successively agglomerate blocks that are semantically coherent and

build a text structure (section 4.4.3). As discussed in section 4.6.1, the size of the

elementary units for C-HTS is one sentence.

In each iteration of C-HTS, for each text block (one or more sentences), and for each term

in that text block, the term is mapped to a vector of concepts from the underlying concept

space (section 4.3). The semantic relatedness between two (adjacent) blocks is calculated

as the cosine similarity between the centroid of the vectors representing the individual

terms in each block using Equation 4.2 (section 4.3.1). The algorithm successively

agglomerates text blocks that are deemed to be semantically related to each other, thus

forming a text structure. C-HTS uses HAC because it is a bottom-up clustering approach.

The idea behind using a bottom-up approach in building the structure of content is that it

starts from the smallest clusters (sentences), that are considered the lowest granularity

level of content, and then builds the content structure by successively merging the

semantically coherent clusters. This way of building the content structure allows the

production of fine grained content slices that are useful to support a variety of content

discoverability and reusability methods as it provides different levels of granularity for

the underlying content (Key Principle 2).

Figure 5.3 shows a sample of the output of one iteration (first iteration) of the Structure

Builder. In this iteraton, the Structure Builder generates slice objects of the target content

resource. Each slice object contains a set of concepts (the weighted centroid vector of

concepts, section 4.3.1) along with the relevancy score of each concept with this slice.

This score quantifies the strength of association between the concept and the slice.

Additionally, a descriptive metadata information is attached to each slice object. This

metadata describes what textual content (i.e. sentences) in the target document is covered

by this slice, the document id and the size of the slice.

The metadata layer attached to each slice can include a variety of metadata information

that gives more description to each slice. This is due to the flexibility of building the

structure of a content resource using C-HTS. With each iteration in the algorithm and in

each level, additional annotations can be easily attached to each generated slice using the

approperiate annotation tool. For example, for each generated slice (one or more

sentences), a reading difficulty score can be measured and attached to the slice. This score

identifies the difficulty level associated with comprehending a piece of content by

analysing its text. This would help, for example, in response to a request sent by an

112

educational adaptive system when it requires a slice of text with a specific reading

dificulty according to its user’s level.

Figure 5.3 A sample of the output of one iteration of the C-HTS algorithm in the Structure Builder module

Another metadata element that could be added to the metadata layer of the slice is the

pedagogical annotations of an eLearning course to provide pedagogically meaningful

learning experiences. For each slice produced by the Structure Builder, automatic peda-

gogical annotation algorithms could be applied to categorise slices into introduction, de-

scription, quiz, explanation, example and other pedagogically meaningful concepts

(Labutov et al., 2017; Sathiyamurthy and Geetha, 2011; Wang, 2008). Such metadata

information could be used to identify and retrieve the content slices available from the

Content Repository (see section 5.2.5) that match as closely as possible the content

requirements requested by an adaptive system.

5.2.4 Slice Indexer

The main task of the Slice Indexer is to index content slices produced by the Structure

Builder. These slices represent content items produced at all levels of granularity of a

content resource (Key Principle 5.a). This process includes the indexing of the slice ob-

jects produced at each level of the hierarchical tree by the Structure Builder (Key Princi-

ple 5.b).

In the Structure Builder module and for each iteration of C-HTS, the Slice Indexer

recieves the produced slice objects in each level. The Slice Indexer starts to index each

113

slice object in an inverted index in the Content Repository (see next section). In this in-

dexing process, each concept in each slice object, is mapped to a list of other slice objects

in which this concept appears, along with the descriptive metadata information attached

to the slice. Thus, each concept appearing in documents of the harvested corpus can be

seen as triggering each of the slice objects it points to in the inverted index. Figure 5.5

shows how the Slice Indexer maps each concept to slice objects associated with it.

It is worth mentioning that the Slice Indexer does not index the textual data of each

produced slice. Rather, it indexes the slice object that describes the content of the slices.

Thus, a slice object is not, in fact a slice, but is just a metadata description of a slice.

Indexing the textual data of each harvested resource is described in section 5.2.5.2.

Figure 5.4 Illustration of how the Slice Indexer maps a concept to slice objects associated with it

5.2.5 Content Repository

As discussed in the previous section, for a given document, in each iteration of C-HTS in

the Structure Builder, the Slice Indexer maps each concept in each slice object to the set

of slice objects associated with this concept. In order to facilitate the discoverability of

content slices, the Slice Indexer sends these slices to the Content Repository to be in-

dexed. The Content Repository consists of two indices: Concept Index and Text Index.

Both are standard IR inverted indexes that store data in a key-value indexing fashion.

114

5.2.5.1 Concept Index

The main task of this index is to store concepts and their relevant slice objects produced

by the Slice Indexer. It is a standard IR inverted index that stores data in a key-value

indexing fashion where the key is the id of the concept as it appears in the underlying

concept space and the value is the set of slice objects associated with that concept. Each

slice object contains metadata that describes the slice. Figure 5.5 shows an example of a

concept index in the Content Repository. In this example, a concept with id 50549 is

mapped to a set of slice objects from the harvested corpus that this concept is associated

with. Each slice object contains the following metadata information:

- Document ID: the id of the document (in the harvested corpus) where this slice

comes from.

- Slice Range: the range of sentences (textual content) that this slice covers in the

document. The slice range indicates the start index and the end index of the sen-

tences that it covers in the document. For example, in Figure 5.5, slice with Slice

Range = 1 means that this slice consists of one sentence with index = 1 (first

sentence in the document). Also, the slice with Slice Range = 5-8 means that this

slice consists of 4 sentences starting from sentence 5 and ending at sentence 8 in

the document. This content identification mechanism saves space and allows the

Slice Selector (see section 5.2.6) to easily discover and retrieve relevant slices

according to the requirements of different individual adaptive systems. What this

means is that CROCC is space-efficient in that it does not store the extracted frag-

ments as a chunk of text, but rather stores fragment metadata that acts as pointers

to various parts of the text.

- Score: the relevance score of the concept for this slice. This score identifies the

order of each slice in the list of slice objects associated with the concept. In other

words, slice objects in this list are ranked in descending order based on their rel-

evance for this concept (this score is calculated as described in section 4.3.1).

- Size: the number of sentences in the slice. Although the number of sentences can

be inferred from the Slice Range, this number is stored in the index in order to

speed up the search process when we want to retrieve slices of specific size (e.g.

we only want slices that contain five sentences). This size can be mapped to the

adaptation requirements of an adaptive system. For example, it can be mapped to

the reading time of the user in the request (Lawless et al., 2015).

115

As discussed in section 4.4.1, C-HTS splits text into sentences. Consequently, the

slice size is represented as the number of sentences in that slice. However, since

the morphological analysis process in C-HTS walks through each term in each

sentence (removing stopwords and stemming), a slice size can also be represented

in terms of the number of tokens that the slice covers. This in turn gives more

control over content granularity and gives the CROCC service the ability to pro-

duce different compositions of slices to meet the adaptation requirements of indi-

vidual adaptive systems.

- Other metadata annotations: as discussed in section 5.2.3, the flexibility of the C-

HTS algorithm while building the document structure allows the integration of

different annotation tools that can annotate each slice with different information.

Such metadata annotations can be easily added to the metadata information of the

slice. Examples of such metadata annotations are reading difficulty and pedagog-

ical concepts.

Figure 5.5 An example of the concept index in the Content Repository

This index, hence, provides a concept-based content publication and delivery mechanism

that allows adaptive systems to easily acquire content slices. All it needs is that the adap-

tive system employs the proper technology to call the CROCC service or make some

minimal adjustments to their content acquisition mechanism. This in turn increases the

potential scenarios for which the incorporated content resource could be reused (Key

Principle 7.b).

116

5.2.5.2 Text Index

The second index in the Content Repository is the Text Index. The main task of this index

is to store the textual content of the harvested resources. When a content resource (from

closed or open corpus) is harvested by the CROCC service using the Content Harvester,

the Content Pruner removes the unnecessary content fragments and converts it into plain

text. This plain text is then processed by the morphological analysis phase of the C-HTS

algorithm in the Structure Builder module. The first step in this phase is to split text into

sentences. Since the final output of the CROCC service is a slice of textual content, the

produced sentences from the morphological analysis phase are sent to the Text Index to

be indexed as a list of sentences. This list is used later to generate the textual content of

the selected slice. Note that, stopwords removal and stemming are not performed on the

text in this index as it will be used to reassemble the sentences in the slice (see next

section). Figure 5.6 illustrates how the document sentences are stored in the Text Index

after the morphological analysis phase in C-HTS.

Similar to the Concept Index, the Text Index is a traditional IR inverted index that stores

data in the key-value fashion where the key is the document id and the value is a list of

sentences that this document contains. Figure 5.7 depicts a sample of a document indexed

in the Text Index.

Figure 5.6 Document sentences stored in the Text Index after the morphological analysis phase in C-HTS

117

Figure 5.7 A sample of a document indexed in the Text Index

5.2.6 Slice Selector

Once slice objects and textual content have been indexed, the CROCC service becomes

ready to provide content slices in response to requests sent by adaptive systems. The Slice

Selector is considered the interface of the CROCC service with the adaptive systems. Its

main task is to receive the request, process it, and retrieve the slice that best matches the

request. Figure 5.8 depicts how the Slice Selector module works.

Figure 5.8 Illustration of how the Slice Selector module works

118

The Slice Selector consists of four main sub-modules:

a) Request Analyser: upon receiving a request, the request analyser starts to convert the

query (the textual content) in the request into an ESA concept vector (section 4.3.1). The

representation method of the query is identical to the one by which slices are represented

at index time. First, it starts to apply the morphological analysis to the query to remove

stopwords and then stem the remaining terms (section 4.4.1). Each term is then mapped

to a vector of concepts from the underlying concept space used in the indexing process.

The query is then represented as the centroid vector of all concepts associated with the

query terms. Concepts in this centroid vector are ranked by their relevance to the query

(using Equation 4.1). Figure 5.9 depicts a sample of the centroid vector of three concepts

with their relevance scores to the query.

Figure 5.9 A sample of the centroid vector of three concepts with their relevance scores to the query

As discussed earlier in section 5.1.6, a common limitation of the state of the art ap-

proaches is that they have limited control over content granularity and they can only pro-

vide very coarse-grained content fragments. This is due to their reliance upon the original

structure of the content resource. Since the Structure Builder module structures content

in different levels of granularity, the CROCC service allows the adaptive system to spec-

ify its desired level of granularity for the requested slice; this is of course based on the

user’s needs (Key Principle 6.b). The level of granularity can be specified in terms of

number of sentences or number of tokens. This in turn gives the adaptive system more

control over content granularity and hence overcomes the limitations of the state of the

art approaches.

119

In addition to the level of granularity of the requested slice, the CROCC service allows

the adaptive system to specify different adaptation specifications that suit its needs (sec-

tion 2.4.4). For example, a reading difficulty specification can be attached to the request

to specify the difficulty level associated with comprehending the textual content of the

slice. Additionally, a specification of pedagogical concept can be attached to the request

to specify the category to which the requested slice should belong (e.g. Introduction, Ex-

planation, etc.).

b) Slice Retriever: after building the centroid vector of concepts from the query and iden-

tifying the level of granularity, along with the adaptation specifications attached to the

request, the slice retriever starts to query the Concept Index using this information. In this

process, for each concept in the query centroid vector, a list of slice objects associated

with that concept is retrieved such that: (1) they adhere to the specified level of granular-

ity; and (2) they match the adaptation specifications of the request. Figure 5.10 shows an

example of the returned lists of slice objects10 associated with the three concepts depicted

in Figure 5.9. Note that, as mentioned in section 5.2.5.1, in each list, the slice objects are

sorted in descending order of their relevance score with the concept.

Figure 5.10 Example of the returned lists of slices associated with the three concepts in Figure 5.9

10 Other metadata information (e.g. size, document id, etc.) were omitted from this figure for simplicity.

120

c) Slice Ranker: the ranker takes input in the form of multiple lists of slice objects (as

produced by the previous step). In order to select the slice that best matches the request,

the slice ranker starts to assign a weight to each slice based on two main scores

(Figure 5.10):

1- Slice Score: the relevance score between the slice object and the concept.

2- Concept Score: the relevance score between the concept and the query.

Using both scores, the final weight of a slice object is calculated as follows::

𝑆𝑤𝑒𝑖𝑔ℎ𝑡
𝑖 = ∑ 𝑆𝑐𝑗

𝑖 ∗ 𝐶𝑞
𝑗

𝑗∈𝑚⃗⃗⃗⃗

 5.1

where 𝑆𝑐𝑗
𝑖 is the slice score of slice object 𝑖 with concept 𝑐𝑗, 𝐶𝑞

𝑗
 is the concept score of

concept 𝑗 with query 𝑞, and 𝑚⃗⃗⃗ is the centroid vector of all concepts associated with the

query terms.

This score is the accumulation of the concept weight in the centroid vector and the weight

of the slice object in the list associated with that concept. Slice objects are then ranked by

their final score and the top ranked slice object is selected.

d) Text Retriever: since the final output of the CROCC service is a slice of textual content,

the metadata information associated with the top ranked slice object is used to select the

slice’s text from the Text Index. Using the “Document ID” and the “Slice Range” param-

eters of the metadata information attached to the slice, the text retriever queries the Text

Index to retrieve the textual content of the slice. This textual content is then returned as

the response to the request sent by the adaptive system.

This process of automatically identifying and generating a content slice demonstrates how

the CROCC service is capable of producing a slice on-the-fly according to the character-

istics of a request from an adaptive system (Key Principle 7.a). This in turn enhances

content reusability by increasing the potential scenarios in which the incorporated content

resource could be reused (Key Principle 7.b).

5.3 Adhering to the Key Principles

The previous section (section 5.2) described the design aspects of the CROCC service.

This section discusses how the proposed design of the CROCC service adheres to the key

121

principles derived from the state of the art influences. With respect to these key principles,

the way that CROCC is designed has demonstrated the following:

1- CROCC is provided as a service that:

a. Allows the automatic harvesting and incorporation of content resources

using the Content Harvester (Key Principle 1.a)

b. Has a usefully flexible architecture (Key Principle 1.b)

2- Using the Structure Builder, the service structures the harvested content resources

and converts them into fine grained content packages (slices) (Key Principle 2)

3- The service prunes the incorporated resources using the Content Pruner and struc-

tures each individual content resource without relying on the original structure.

Thus, the service allows the incorporation of any relevant content resource re-

gardless of its source (closed or open) and regardless of the method used to incor-

porate that resource (user incorporation or automatic incorporation) (Key Princi-

ple 3).

4- The service builds the structure of a resource based on the conceptual representa-

tion of its content using a concept space built from a massive knowledge base.

Such a knowledge base is based on human cognition and has no limits on domain

coverage and conceptual granularity. This in turn allows the service to represent

the textual content of resources with a rich conceptual representation that covers

all possible interpretations of the content (Key Principle 4).

5- Using this rich conceptual representation of content resources:

a. The service automatically indexes slices in all levels of granularity of a

content resource using the Slice Indexer (Key Principle 5.a)

b. Each level of content granularity is indexed in the Concept Index along

with all possible concepts associated with each individual content slice in

that level (Key Principle 5.b).

6- The Slice Selector module of the service processes the adaptive system request

to:

a. Build a conceptual representation for the query of the request in order to

discover content slices based on that representation (Key Principle 6.a)

122

b. Identify the required level of granularity and other adaptation specifica-

tions required by the adaptive system (Key Principle 6.b)

7- All the aforementioned characteristics of the CROCC service demonstrate that:

a. As the service automatically processes content resources in a manner that

allows the production of content slices at any level of granularity, the pro-

duced slices are considered dynamic content items. This, therefore, allows

the production of content slices on-the-fly based on the adaptive system

requirements (Key Principle 7.a).

b. As the service enriches each content slice with descriptive metadata infor-

mation that has all the conceptual representations of the slice, it provides

a generic content publication and delivery mechanism that allows adaptive

systems to easily acquire content items without the need to adjust their

core implementation (e.g. their adaptation mechanism). This in turn in-

creases the potential scenarios where the incorporated content resource

could be reused (Key Principle 7.b).

5.4 CROCC Implementation

This section describes a prototype implementation of the CROCC service proposed in

this chapter. This implementation provides a system for evaluating the collective effec-

tiveness of the various components that make up the CROCC service. The implementa-

tion served as the basis for the evaluation reported in Chapter 6.

The CROCC prototype is fully implemented in the Java Programming language. As dis-

cussed in section 5.2, CROCC is designed as a flexible architecture in order to accom-

modate future improvements in the state of the art of relevant dependent fields of re-

search. Hence, the implemented prototype allows for plugging-in, removing, enabling, or

disabling alternative components or algorithms at runtime as well as design time. The

following subsections describe the technical implementation of each component of the

prototype.

5.4.1 RESTful Web Service

In order to make CROCC accessible by any adaptive system, the CROCC prototype was

incorporated as part of a RESTful web service using the Java Spring framework11

11 https://spring.io/

123

(Nguyen, 2018). The prototype was incorporated as a service, so it can accept HTTP GET

or POST requests from any adaptive system and respond with a JSON12 representation of

a content slice; thus, confirming to standard and common RESTful web services found

on the web.

As CROCC is a RESTful web service it is easy to access and does not require extra de-

velopment effort in order to be integrated with. All it needs is that the adaptive system

employs the proper technology to call the service or make some minimal adjustments to

their content acquisition mechanism. This, therefore, allows the adaptive systems to eas-

ily acquire content slices without the need to change their core implementation (e.g. their

adaptation mechanism).

5.4.2 Content Harvester

As discussed in section 5.2.1, the Content Harvester provides two different harvesting

techniques: closed corpus harvesting and open corpus harvesting. For closed corpus har-

vesting, since the CROCC prototype is implemented as a RESTful webservice, the ser-

vice allows the adaptive system to send its content resources (e.g. PDF documents, Word

files, etc.) using an HTTP POST requests through the Request Coordinator component

(see section 5.4.8).

For the open corpus harvesting technique, since the process of correctly identifying rele-

vant resources is not within the scope of this thesis, a third-party IR system is employed

to carry out this task. Among the various available systems, Microsoft's Bing Custom

Search13 was chosen for this implementation due to its availability, scalability, ease of

configuration and good performance14. Bing Custom Search is a search solution that lev-

erages the powerful capabilities of the Bing search engine15,16 while allowing users to

customise their search experience through an easy-to-use API. The API allows users to

specify which domains, subsites, or webpages to surface results from. This enables users

to build a tailored search experience for different topics.

Therefore, the open corpus harvesting technique simply consists of a Java wrapper com-

ponent around the Bing Custom Search API. This wrapper calls the API and specifies:

12 JavaScript Object Notation
13 https://azure.microsoft.com/en-gb/services/cognitive-services/bing-custom-search/
14 We have tried the Bing Custom Search previously in (Lawless et al., 2015) and its performance was

very reliable.
15 https://www.bing.com/
16 Formerly known as MSN Search until September 2006, and as (Microsoft) Live Search until May 28,

2009

124

(1) the search topic; (2) the domain to focus on (e.g. health, finance, computer science,

etc.); and (3) if required by the adaptive system, the desired subset of target webpages

(e.g. Wikipedia pages only). The response from the API is a JSON object that contains

URLs of pages that are retrieved from the search process. These pages are then down-

loaded in their native form as HTML documents and sent to the Content Pruner module

of the service.

5.4.3 Content Pruner

As discussed in section 5.2.2, the main purpose the Content Pruner is to remove the un-

necessary content fragments from the incorporated content resources and convert them

into plain text files. Developing a new approach to content pruning is not within the scope

of this thesis, therefore, a third-party system is employed to carry out this task.

Since the CROCC service can operate on closed and open corpus content resources, two

different content pruners were employed: HTML pruner and Non-HTML pruner. The

HTML pruner is mainly used for the harvested HTML web pages from the web. Its main

task is to remove the unnecessary fragments of a web page (e.g. headers with navigation

menus, footers, etc.) using its layout structure. Among the wide variety of systems that

can be used to do this task, and for the purpose of the experiment conducted to evaluate

the performance of the developed prototype (Chapter 6), the Java Wikipedia Library

(JWPL)17 (Ferschke et al., 2011) was used. The library contains a mark-up parser that

can be used to analyse the contents of a Wikipedia page, identify the deferent regions of

the page (e.g. sections, infobox, references, etc.) and extract textual content from each

page.

The Non-HTML pruner, on the other hand, is used to prune content resources that are not

in HTML format. These content resources can be from closed or open corpus content and

can be in different formats, e.g. PDF, Text, Word, etc. Since the CROCC service is de-

signed using a flexible pipeline architecture, this flexibility enables different implemen-

tations of the Non-HTML pruner to be switched in and out depending on the format of

the desired content. In this research, and for the purpose of the experiment conducted to

evaluate the performance of the developed prototype (Chapter 6), the PDFX18 (Constantin

et al., 2013) was employed for this task. PDFX is a role-based system that extracts the

logical structure of documents in PDF form.

17 https://dkpro.github.io/dkpro-jwpl/ [Accessed May, 2018]
18 http://pdfx.cs.man.ac.uk/

125

5.4.4 Structure Builder

This module utilises the C-HTS algorithm proposed in Chapter 4 of this thesis. In order

to comply with the CROCC service prototype implementation, the C-HTS algorithm was

entirely implemented in the Java programming language19. C-HTS uses a concept space

to semantically represent the pruned content resource. This concept space was built from

Wikipedia as discussed in section 4.3.1. In this thesis, a Wikipedia snapshot from April

2017 was processed in order to build the concept space. To process the snapshot, we used

the EasyESA tool (Carvalho et al., 2014). EasyESA is a Java open source tool that pro-

vides an Explicit Semantic Analysis (ESA) infrastructure. The tool processes each article

in the Wikipedia dump and indexes terms and their associated concepts in a MongoDB20

database (see section 4.3.1 for more details on how this process is done). This database

is then used as the concept space for C-HTS.

In the morphological analysis phase of C-HTS (section 4.4.1), the Apache OpenNLP li-

brary21 was adopted to implement the three components: sentence splitter, stopwords re-

moval and Porter stemmer. This library is used to do the same tasks in the EasyESA tool

while building the concept space from Wikipedia. For the semantic representation and

relatedness phase in C-HTS (section 4.4.2), we used the EasyESA tool. The tool provides

an interface that calculates the semantic relatedness measure between two terms (or two

sentences) using the underlying concept space. For the HAC algorithm (section 4.4.3), a

java implementation of the algorithm was carried (within C-HTS implementation) for the

purpose of this research.

As discussed in section 5.2.5.1, different annotation tools can be integrated with the Struc-

ture Builder in order to add extra metadata information to the produced slices. The type

of information required depends primarily upon the adaptive system making the request.

In other words, the annotation tool used and metadata generated is adaptive system de-

pendant. Since designing and building an adaptive system is out-of-scope of this thesis

(section 1.1), incorporating such metadata information and evaluating their influences on

the CROCC service is reserved for future work (section 7.3.3).

19 https://github.com/bayomim/C-HTS
20 https://www.mongodb.com/
21 https://opennlp.apache.org/

126

5.4.5 Slice Indexer

The main task of this module is to index the produced slice objects obtained in each level

of the structure produced by C-HTS and index them in the Content Repository. Since this

module is specifically designed to work with C-HTS, a Java implementation of this mod-

ule was carried out for the purpose of this research.

5.4.6 Content Repository

As discussed in section 5.2.5, the Content Repository consists of two standard IR inverted

indices (concept index and text index) that store data in a key-value indexing fashion.

Since the concept space built for this thesis was indexed in a MongoDB database, and for

system compatibility and performance, both indices were also built as standard collec-

tions22 in a MongoDB database.

5.4.7 Slice Selector

This module comprises four sub-modules, namely: Request Analyser, Slice Retriever,

Slice Ranker and Text Retriever. In the Request Analyser and as mentioned in sec-

tion 5.2.6, the representation method of the query in the request is identical to the one by

which slices are represented at index time. Since the indexed slices are produced by the

Structure Builder, the morphological analysis and the semantic representation phases of

the Request Analyser are the same as in the Structure Builder. Regarding the other three

sub-modules, a Java implementation was carried out for the purpose of this research ac-

cording to the design specifications of each module enunciated in section 5.2.6.

5.4.8 Request Coordinator

As mentioned in section 5.2.1, the Content Harvester allows adaptive systems to specify

the domain that they want content in and/or a of URLs they want content to be harvested

from. Additionally, the harvester provides the capability of uploading content resources

provided by the adaptive system. This means that there are two different types of requests

that the CROCC service can accept from the adaptive system: content preparation re-

quest and slice retrieval request. The content preparation request is responsible for calling

the Content Harvester and passes to it the content requirements sent by the adaptive sys-

tems to start harvesting (or uploading) the appropriate content resources. On the other

22 Documents in MongoDB are stored in collections. Collections are analogous to tables in relational databases.

127

hand, the slice retrieval request is responsible for calling the Slice Selector in order to

retrieve a content slice according to the characteristics of the request sent by the adaptive

system.

In order to organise the different types of requests received by the service, an additional

component, named Request Coordinator was implemented. This component is responsi-

ble for identifying the type of the request and passing it to the relevant component. Ad-

ditionally, the Request Coordinator is responsible for blocking any slice retrieval request

before the CROCC service completes processing and indexing the incorporated content

resources. The notion behind this blocking is that the coordinator prevents content slices

from being retrieved for the adaptive system before all the potential slices that can meet

the requirements of a request have been processed. This will make sure that the provided

slice is the best match slice of the incorporated content resources.

5.5 Chapter Summary

This chapter presented a novel content provisioning service named CROCC. CROCC is

a service which harvests content resources from closed and open corpora in their native

form, builds a structure from each content resource based on its conceptual

representation, and delivers content slices according to the requirements of individual

adaptive systems. The chapter started by stating the influences derived from the state of

the art review and how they impacted the core properties of the proposed service. The

chapter then presented the design aspects of the CROCC service along with an

explanation of how each component in the service influences the content provision

process. The chapter also discussed how the service adheres to the key principles derived

from the state of the art influences. After that, the chapter presented a prototype imple-

mentation of the service that has been carried out for the purpose of this research.

Finally, it is noteworthy to point out that a description of a preliminary version of the

CROCC service was published in the following paper:

Bayomi, M. "A Framework to Provide Customized Reuse of Open Corpus Content for

Adaptive Systems." In the Proceedings of the 26th ACM Conference on Hypertext & So-

cial Media. HT ’15. Northern Cyprus, pp 315–318. ACM, 2015.

128

6. Evaluation of the CROCC Service

The previous chapter proposed a content-supply service named CROCC that aims to uti-

lise the structure produced by the hierarchical text segmentation process in order to over-

come the limitations of state of the art content-supply approaches. CROCC uses the C-

HTS algorithm for text segmentation. Chapter 4 presented four experiments to evaluate

different aspects of C-HTS. The first experiment was carried out in order to evaluate the

performance of C-HTS in the hierarchical text segmentation task using two different da-

tasets (section 4.5). The results showed that the performance of C-HTS is superior to the

state of the art approaches. The second experiment was carried out in order to validate

the efficacy of using Wikipedia as the underlying knowledge base for the semantic rep-

resentation of text in C-HTS (section 4.7.1). The results showed that using Wikipedia as

the knowledge base for C-HTS delivers better performance than using WordNet, even

when using different relatedness measures with WordNet. The third experiment was car-

ried out in order to validate the efficacy of using the semantic representation of text rather

than its lexical representation (section 4.7.2). The results showed that using semantic rep-

resentation in C-HTS outperforms lexical representation, even when using different sim-

ilarity measures. The fourth experiment was carried out in order to evaluate the influence

of the size of the knowledge base that C-HTS uses for semantic representation (sec-

tion 4.8). The results showed that increasing the amount of knowledge in the knowledge

base leads, on average, to improvements in C-HTS performance. While these experiments

demonstrated the segmentation performance of C-HTS, this chapter aims to evaluate the

extent to which the CROCC service, through the use of C-HTS, can enhance the discov-

ery and reuse of content for adaptive systems.

As discussed in Chapter 5, CROCC is designed to supply content slices to adaptive sys-

tems according to their needs. In order to assess the performance of CROCC with regard

to the supply of content slices, this chapter proposes a task-based experiment carried out

in order to evaluate the quality of slices produced by CROCC. The chapter aims to ad-

dress the fourth objective of this thesis (RO 4) (section 1.2).

6.1 Evaluation Methodology

The CROCC service is designed to provide content slices to adaptive systems according

to their requirements. As mentioned in section 1.1, designing and building an adaptive

system is not within the scope of this research. Therefore, the experiment presented in

129

this chapter did not focus on evaluating the process of content use within an actual adap-

tive system. Rather, the experiment focused on evaluating the content-supply mechanism

of CROCC and the quality of the slices produced by the service, according to the specific

requirements of a set of content requests that could be sent by an adaptive system.

The assumption is that, in order for content resources (from open and closed corpora) to

be properly discovered and reused within different adaptive systems, the quality of the

individual slices delivered must be guaranteed to adaptive system users. As a result, the

approach chosen for this evaluation was to present a group of users with content slices

produced by CROCC, where each slice was generated according to the specific require-

ments of a content request. Additionally, for each content request used in this experiment,

another slice was generated by a baseline system to compare its quality against the slice

generated by CROCC for the same request. The intention of this evaluation methodology

is to focus on the evaluation of the content-supply mechanism proposed by CROCC in

isolation from the adaptive functionality (models, authoring, etc.) of a specific adaptive

system, as this could influence user perception of content quality.

As discussed in Chapter 5, CROCC is a content and adaptive system agnostic supply

service. This means that the service can operate on any type of content regardless of its

domain or structure and can supply content slices to any adaptive system regardless of its

application area (e.g. Educational Adaptive System, Adaptive News System, etc.). In the

evaluation carried out in this chapter, the application area of educational systems was

chosen. Additionally, Computer Science was chosen as the domain. Amongst the differ-

ent subjects in the computer science domain, Information Retrieval (IR) was selected as

the focus. This decision was taken for a number of reasons. Firstly, an appropriate post-

graduate course1 in the field of Information Retrieval is taught in Trinity College Dublin

by a Subject-Matter Expert (SME) who is working in the research group of which I am a

member. Hence, the process of choosing the (closed corpus) content resources and the

topics used in this experiment was guided by this SME. Secondly, there were a number

of computer science researchers available within the ADAPT Centre2 who could evaluate

the quality of slices produced by CROCC and the baseline.

1 https://www.scss.tcd.ie/modules/?m=CS7IS3
2 https://www.adaptcentre.ie/

130

Content resources were acquired from closed and open corpora in the area of Information

Retrieval, and were indexed by both CROCC and the baseline system. A total of 24 re-

quests were submitted to each system, where each request has two main elements: a query

and the number of sentences desired in the generated slice. The query element represents

a simulation of an adaptive system’s query. This query can include a specific topic or a

short sentence. This query could be defined by the user of the adaptive system and for-

warded to the content-supply system, or defined by the adaptive system based on the

target user’s model. The number of sentences element of the request represents a simula-

tion of the level of granularity of the content slice required by the adaptive system. This

level of granularity could be based on the preferences of the target user (e.g. reading speed

or available time). After producing the slices, the two elements of each request, along

with the two corresponding slices (one for each system) were presented to users to eval-

uate through a web application that was built for this experiment. Users were asked to

evaluate the quality of each slice with regard to fulfilling the requirements of the request

the slice was generated for. Evaluations submitted by users were then analysed, and re-

sults were derived.

This approach provides an evaluation of how CROCC enhances content discoverability

and reusability for adaptive systems. For content discoverability, the assumption is that,

if a slice generated by CROCC is highly preferred by the participant users, this means

that the slice fulfils the requirements of the request and, hence, is properly discovered.

Content reusability is assessed through this approach in two ways. First, the content used

in this evaluation was generated from open and closed resources, neither of which were

authored or designed specifically for this experiment. The content is also used in a range

of different granularities. Thus, the original content, and newly sliced resources are being

reused in a scenario that was not intended by the author of each individual content re-

source. Second, since content slices supplied to adaptive systems are ultimately presented

to people, evaluating their quality using human assessors would best assess the effective-

ness of the CROCC service in generating resources which are amenable for reuse. Each

assessor can be seen as a user of an independent adaptive system. If a slice is highly

preferred by multiple users, this means that it is a resource which is suitable for reuse by

adaptive systems in the context specified by the information request.

131

6.2 Data and Content Sourcing

As discussed in Chapter 5, CROCC is designed to operate on content resources from

closed and open corpus. This section discusses how the two datasets used in the experi-

ment were acquired from open and closed corpora with regards to the Information Re-

trieval subject area. It is noteworthy to point out that this research focuses solely upon

content resources available in English, as a first step and reserves multilingual content-

supply for future work (section 7.3.1).

6.2.1 Closed Corpus Content Resources

The first dataset used in the experiment was built from a closed corpus of content re-

sources. As mentioned in section 2.4.4.1, closed corpus content is (usually) provided by

a domain expert. Hence, a book on the subject of Information Retrieval was provided by

the course SME in PDF format. The book is “Introduction to information retrieval”3

(Manning et al., 2008). This book is used by the SME in outlining the topics included in

the course and is one of the recommended readings advised by the SME. The PDF file of

the book consists of 21 chapters and has 581 pages.

In order to extract content from the PDF file of the book, the file was processed by the

PDFX system (section 5.4.3) and an XML file was produced. The XML file contains the

logical structure of the file where each section is encapsulated in a “section” XML tag

and each content item (e.g. text segment, table, equation, figure, etc.) within each section

is encapsulated in its corresponding XML tag. Figure 6.1 shows a sample of the XML

structure produced by the PDFX system. Since the CROCC service is targeting text con-

tent only, the tags in the XML structure were used to remove the unneeded content items,

such as tables and figures. Additionally, as the PDF file of the book contains sections that

are not suitable for the content provision process (e.g. book preface, table of contents,

exercises4, bibliography, etc.), the XML tags corresponding to these sections were used

to discard them. After that, the remaining content in each “section” tag was extracted and

saved as a plain text file. The total number of content resources in this dataset after the

pruning phase is 161 resources5.

3 http://informationretrieval.org
4 As discussed in section 5.2.3, automatic pedagogical annotation algorithms could be applied to annotate content in

these sections to use them in the content-supply process. However, such annotation information are reserved for the

future work (section 7.3.3)
5 Note that, a section can span over two or more pages. Hence, the final number of the extracted plain text files is not

a portion of the total number of pages in the book (581 pages).

132

Figure 6.1 A sample of the XML structure produced by the PDFX system

6.2.2 Open Corpus Content Resources

The second dataset used in the experiment was built from content resources harvested

from open corpus. In order to harvest content resources from open corpus sources, the

Content Harvester module implemented for this research is used. As mentioned in sec-

tion 5.4.2, the open corpus content harvester is a wrapper component around the Bing

Custom Search API. Therefore, a list of 20 queries was submitted to the Bing API through

this wrapper. This list of queries was provided by the SME and each query represents a

topic covered in the course. Examples of queries are: “Boolean Retrieval”, “Stemming”

and “Link Analysis, Hubs and Authorities”. Each query was submitted to the search API

along with the content repository where the data should be harvested from. The English

Wikipedia encyclopaedia was selected as the target repository for the harvesting process.

The reason for this is that Wikipedia is the largest encyclopaedia in existence which con-

tains articles that cover a wide range of topics6. Additionally, Wikipedia is a collaborative

effort that combines the knowledge of hundreds of thousands of people. Hence, articles

in Wikipedia would be a convenient source for rich content resources.

For each submitted query, the top 10 results returned form the search API were

downloaded as HTML files. Each document was then pruned by the open corpus Content

6 https://en.wikipedia.org/wiki/Wikipedia:Size_comparisons

133

Pruner implemented for this experiment (section 5.4.3) and was saved as a plain text file.

The total number of unique7 content resources in this dataset is 147 resources.

6.3 Baseline System

In order to evaluate the efficiency of the CROCC service, it was necessary to compare its

performance against other content-supply systems. However, as mentioned in sec-

tion 2.5.2.2, state of the art approaches mainly rely upon the structure posed by a content

resource and they can only produce coarse-grained content slices. To the best of the au-

thor’s knowledge, and at the time of writing, there was no available content-supply sys-

tem that can accept the number of sentences as a parameter to specify the granularity level

of the produced content. Therefore, the existing state of the art content-supply systems

would provide an artificially weak baseline against which to compare CROCC.

For this reason, a baseline system was developed to compare its performance against the

CROCC service. The baseline system is based upon the Apache Lucene information re-

trieval software8 (Białecki et al., 2012). Lucene is an open source full-text search library

written in Java. Lucene provides an API that supports the performance of common search

and search related tasks like indexing, querying, highlighting, language analysis and

many others. There are two main reasons that Lucene was selected as the baseline system.

Firstly, Lucene is a well-known, fast open source searching framework that utilises pow-

erful, accurate and efficient search algorithms and is widely used in many projects

(Mathew, 2018; Azzopardi et al., 2017; Hassen and Amel, 2017). Secondly, Lucene in-

dexes content, in an inverted index, based upon the lexical representation of each docu-

ment (terms in the document). Therefore, using it as a baseline in this experiment would

implicitly provide an evaluation of the conceptual representation of content resources

(proposed by its opponent, CROCC) versus lexical representation.

Lucene provides search over a collection of documents; where a document is essentially

a collection of fields (e.g. title, body, date etc.). Documents are the unit of indexing and

search in Lucene. Each field in each document can only store one kind of data, either

binary, numeric, or text data. Lucene does not have a restriction over the structure of the

fields to be indexed. It allows the indexing of any number of different fields that may

vary from document to another. Lucene provides a search API that takes a search query

7 Any duplicate document that results from the harvestin process was deleted
8 http://lucene.apache.org/

134

and a set of fields to search within and returns a set of documents ranked by their rele-

vance score to the query. However, as discussed in section 6.1, the experiment conducted

in this chapter required the participant systems to accept, along with the query, the num-

ber of sentences as a parameter and retrieve a text slice according to that number. For this

reason, a wrapper component around the Lucene framework was developed in order to

conform with these experimental requirements. The following subsections describe how

this wrapper component is employed to index content resources and to retrieve content

slices.

6.3.1 Document Indexing

In order to index content resources within Lucene in a manner that allows the generation

of content slices according to granularity level (number of sentences), the wrapper com-

ponent started by dividing each content resource (the plain text files produced as de-

scribed in section 6.2) into sentences. After that, each sentence was indexed as an inde-

pendent Document object in Lucene along with the id of the document the sentence be-

longs to. The text of each sentence was analysed using the English Analyser of Lucene.

The analyser started by breaking each sentence into small indexing elements – tokens.

Stopwords9 were then removed and the remaining tokens were stemmed (using Porter

stemmer) and indexed in the inverted index created by Lucene. Figure 6.2 illustrates how

a document is indexed in Lucene.

Figure 6.2 An illustration of how a document is indexed in Lucene

6.3.2 Slice Generation

To generate a slice based on the elements of the request (query and number of sen-

tences), the wrapper component works as follows:

 When a request is received, the wrapper starts to search the Lucene index using

the text of the query. It utilises the Lucene retrieval mechanism that matches the

9 This analyser uses the default stopwords list that is bundled with Lucene.

135

query terms with the terms in the inverted index. After that, sentences that match

the query are returned along with their relevance score.

 For sentences that do not match the query, their relevance score is set to zero.

 Using the number of sentences element of the request, say x, the wrapper iterates

over all the returned sentences and calculates the accumulated score of every x

adjacent sentences that belong to the same document.

 After that, sentences that have the best accumulated score are returned as a text

slice.

This mechanism guarantees that the returned slice: (1) consists of sentences that best

match the query and (2) conforms with the “number of sentences” parameter of the re-

quest. The flowchart presented in Figure 6.3 illustrates the process of generating a text

slice by the baseline system according to the request elements.

Figure 6.3 A flowchart of the slice generation process by the baseline system

6.4 Experimental Setup

6.4.1 Concept Vector Cut-off Parameter

As discussed in section 5.2.4, CROCC indexes content slices based on the concepts

assoicated with each slice. As mentioned in section 4.3.1, each slice is mapped to a

weighted centroid vector of concepts that is built based on ranking all Wikipedia concepts

by their relevance weight to the slice. With concept weights being zero for most of the

Wikipedia concepts (as no term in the slice is associated with these concepts), this cen-

troid vector is very sparse. Nevertheless, given that each term in the slice to be indexed

136

may still be related to a large number of concepts (> one thousand concepts), indexing

the entire list of related concepts for every slice would incur significant storage and com-

putation costs, and is therefore not feasible. Therefore, only the concepts with the highest

relevance weights should be considered. Hence, a vector cut-off parameter is set in order

to reduce index size.

We ran the experiment presented in section 4.5 using different sizes of the centroid vector

to evaluate the impact of its size on C-HTS performance. We ran the experiment using

all concepts in the centroid vector of each text block, the top 50 concepts and the top 100

concepts. The results showed that there is no significant difference in C-HTS performance

and thus, using the top 50 concepts that have the highest relevance weights produces the

same structure but with less computation cost. Additionally, in (Egozi et al., 2011), the

authors proposed a concept-based indexing and retrieval approach based on Explicit Se-

mantic Analysis (ESA) where documents were indexed based upon their conceptual rep-

resentation from a concept space built from Wikipedia. In this work, in the indexing pro-

cess, setting the cut-off parameter to 50 gave the best results in their retrieval task10. Thus,

based on these findings, in experiment conducted in this chapter, the cut-off parameter

for the concept vector was set to 50 concepts.

As discussed in section 5.2.6, the request analyser maps the query sent by the adaptive

system to a weighted centroid vector of concepts. Since the query is derived from a much

shorter text fragment and contains few terms, the value for the cut-off parameter is not

necessary to be the same as that used in the indexing process. Hence, in this experiment,

the cut-off parameter was not set for the centroid vector of the received query and all

concepts in that vector were used by the slice retriever sub-module of the Slice Selector.

6.4.2 Datasets Indexing and Slices Generation

The two datasets built for this experiment were indexed in both systems. For the CROCC

service, a hierarchical structure was built for each content resource using the Structure

Builder (section 5.4.4). After that, the cut-off parameter was set for the Slice Indexer

(section 5.2.4), as discussed in the previous section, and the produced slices were then

indexed in the Content Repository (section 5.2.5). For the baseline system, the content

resources of both datasets were indexed in a Lucene index as described in section 6.3.1.

10 They have also experimented with indexing the 100 most relevant concepts instead of top 50, and found no signifi-

cant impact on the performance.

137

It is noteworthy to mention that both datasets were indexed in a single index in each

system. The reason for this is to assess the assumption that CROCC is a content agnostic

service.

After indexing the two datasets, the systems were ready to receive content requests. To

build content requests, there was a need to specify the two main elements of each request:

the query and number of sentences. Six topics in the IR subject area were selected to be

used as the query element of each submitted request. The queries generated from these

topics are:

- Query 1: Boolean Retrieval

- Query 2: Inverted Index

- Query 3: Stemming and Lemmatisation

- Query 4: TF-IDF

- Query 5: Relevance feedback

- Query 6: Precision, Recall and F-score

These topics were provided by the course SME in which they were intended to be typical

of a student’s information needs based on the topics covered in the course. For each of

these topics, four different requests were built where each request had a different value

for its “number of sentences” element. The values defined for this element were: 4, 5, 6

and 7 sentences. Thus, a total of 24 content requests were built (4 different sizes for each

of the 6 topics) and were submitted to both system.

For the CROCC service, requests were received by the Slice Selector module of the ser-

vice (section 5.2.6). As discussed in section 6.4.1, the cut-off parameter was not set for

the request analyser module while building the centroid vector of concepts from the

query. Using this concepts vector and the number of sentences, slices that best match each

individual request were generated and returned. For the baseline system, the requests

were received by the wrapper component and slices that best match each individual re-

quest were generated and returned as described in section 6.3.2. A total of 48 slices were

returned (2 for each request) and saved in a database to be provided to participants for

evaluation (see next section). The slices returned by both systems were generated from

the closed and open corpus content resources harvested for this experiment (section 6.2).

Figure 6.4 depicts the distribution of slices returned by each system. Table 6.1 shows a

sample of slices generated by both systems.

138

Figure 6.4 Slices distribution over closed and open corpora

Table 6.1 A sample of slices generated by both systems

Query

and Size

CROCC

Baseline

Boolean

Retrieval

4 sen-

tences

1. A general problem with Boolean search

is that using AND operators tends to pro-

duce high precision but low recall

searches, while using OR operators gives

low precision but high recall searches,

and it is difficult or impossible to find a

satisfactory middle ground

2. In this chapter, we have looked at the

structure and construction of a basic in-

verted index, comprising a dictionary and

postings lists

3. We introduced the Boolean retrieval

model, and examined how to do efficient

retrieval via linear time merges and sim-

ple query optimization

4. In Chapters 2–7 we will consider in detail

richer query models and the sort of aug-

mented index structures that are needed

to handle them efficiently

1. Worked example Commercial

Boolean searching:

Westlaw.westlaw

2. Westlaw

(http://www.westlaw.com/) is the

largest commercial legal search ser-

vice (in terms of the number of pay-

ing subscribers), with over half a

million subscribers performing mil-

lions of searches a day over tens of

terabytes of text data

3. The service was started in 1975

4. In 2005, Boolean search (called

``Terms and Connectors'' by

Westlaw) was still the default, and

used by a large percentage of users,

although ranked free text querying

(called ``Natural Language'' by

Westlaw) was added in 1992

6.4.3 Evaluation System

To conduct the comparative evaluation between the two systems, a web application was

built. The slices produced from both systems were divided into four groups; each group

had six pairs of slices (a slice generated from each system) corresponding to each of the

search topics and to one of the defined sizes (4, 5, 6 or 7). To make sure that all slices get

the same amount of evaluations, slices were distributed throughout the groups according

to their sizes as listed in Table 6.2.

139

Table 6.2 Slice sizes for each topic in each group

 Group 1 Group 2 Group 3 Group 4

Boolean Retrieval 4 5 6 7

Inverted Index 5 6 7 4

Stemming and Lemmatisation 6 7 4 5

TF-IDF 7 4 5 6

Relevance feedback 4 5 6 7

Precision, Recall and F-score 5 6 7 4

To make sure that all groups get assigned the same amount of participants, when the first

user logged in to the evaluation system, s/he was randomly assigned a group. The next

user was then randomly assigned a group from the remaining unassigned groups. This

continued until all the groups were assigned users. The process was then repeated for the

next set of users who logged in to the system. This ensured an even spread of assessment.

For each query in the group, the query and the size of the slice were presented to the user

at the top of the evaluation page followed by the two generated slices from both systems

side-by-side. In order to guarantee that there is no incentive for users to be biased towards

either of the systems, the users were not aware of which slice was produced using which

system.

Each user in the experiment was asked to evaluate each slice according to the following

characteristics:

1- Relevance: if the slice is relevant to the query.

2- Informativeness: if the slice contains all the necessary information compared to

its size (e.g. 5 sentences).

3- Cohesion & Readability: if the slice is easy to read and the flow of reading is not

broken.

4- Overall: the overall quality of the slice.

The users were asked to evaluate each characteristic on a six-point Likert scale (ranging

from one to six, where one is the lowest quality and six is the highest). For the sake of

data completeness, each user was asked to fill in answers for all the evaluation character-

istics. A text box was provided in case the user had any comments regarding the quality

of the slices or regarding the difference between them. The users were allowed to leave

this box empty if they did not have any comments. After each slice was evaluated indi-

vidually, the user was asked to indicate which slice they preferred. In most cases this

140

characteristic was automatically set by the system based upon the user’s individual eval-

uation of the two slices, while still allowing for manual adjustment if the user so wished.

However, if the user evaluated the two slices equally, then neither slice was preselected,

and they had to manually make a selection. Figure 6.5 shows the evaluation screen of the

system.

Figure 6.5 Evaluation System

6.5 Results

An open call for participation11 in the experiment was made on the ADAPT Centre mail-

ing lists and on the mailing lists of research groups whose members are interested in the

IR field. Forty-eight users participated in the experiment where each slice was evaluated

by more than ten users12. The final results were analysed with the following aspects in

mind:

1- The general performance of each system.

2- The query element of the request.

3- The “number of sentences” element of the request.

11 This experiment conforms to ethical research conduct and was approved by the Research Ethics Committee of the

School of Computer Science and Statistics, Trinity College Dublin.
12 Some users did not complete the experiment and exited before evaluating all six requests assigned to them. These

users were removed from the system. As a result, a number of completed evaluations were randomly removed in order

to balance the number of participants per slice. The final number of evaluations considered in the analysis presented

here is 10 participants per slice.

141

6.5.1 General Performance

In this analysis, the performance is assessed based on the quality of the 24 slices generated

by each system. Table 6.3 reports the mean scores of user evaluations for each character-

istic13. As can be observed, the quality of slices generated by CROCC is, on average,

higher than the quality of slices generated by the baseline system in all criteria. Figure 6.6

depicts the distribution of user evaluations for each criteria for both systems. Moreover,

the statistical results from a paired t-test have revealed that the difference between the

quality of slices is significant with p-values less than 0.05 across all criteria14.

Table 6.3 Mean scores of user evaluations for all slices produced by each system

System

Criteria
CROCC Baseline

Relevance 5.104* 4.158

Informativeness 4.529* 3.596

Cohesion & Readability 4.412* 3.846

Overall 4.521* 3.671

Preference 1.688* 0.698

 Relevance

Informativeness

Cohesion & Redability

13 Since writing a comment by the users was optional, there was no enough comments that can be reliable in the re-

sults analysis.
14 In the tables, the asterisk symbol * denotes that the difference between the quality of slices is statistically

significant with p < 0.05

142

Overall

Preference

Figure 6.6 Distribution of general user evaluations for each criteria

6.5.2 The Query Element of the Request

In order to gain more insight into the performance of each system, the results were ana-

lysed based on the quality of slices produced by each system in accordance with the query

element of the requests. Table 6.4 reports the mean scores of the user evaluations for

slices produced for each query. As can be observed, the quality of slices generated by

CROCC is, on average, higher than slices generated by the baseline system for each

query. These results provide a positive indication of the performance of CROCC in rela-

tion to the discovery of content slices that best match the query of the request. Addition-

ally, since CROCC uses the semantic representation of content (section 5.2.3) and the

query (section 5.2.6), the results demonstrate that such semantic representation is better

than the traditional lexical representation utilised by the baseline system.

143

Table 6.4 Mean scores of user evaluations for slices produced for each query by each system

Criteria

Query
Relevance

Informa-

tiveness

Cohesion &

Readability
Overall Preference

Query 1:

Boolean Retrieval

CROCC 5* 4.375* 4.125* 4.4* 2.3*

Baseline 3.225 2.725 3.175 2.75 0.3

Query 2:

Inverted Index

CROCC 5.15 4.625 4.45 4.55 1.425

Baseline 4.8 4.35 4.125 4.225 0.875

Query 3:

Stemming and

Lemmatisation

CROCC 5.275 4.65 4.775 4.625 1.35

Baseline 5 4.275 4.725 4.45 1.025

Query 4:

TF-IDF

CROCC 5.325* 4.675* 4.35* 4.6* 2.45*

Baseline 3.65 2.9 3.025 3.075 0.075

Query 5:

Relevance

feedback

CROCC 5.303 4.636 4.758 4.758 0.758

Baseline 5.090 4.515 4.667 4.636 0.545

Query 6:

Precision, Recall

and F-score

CROCC 4.825* 4.275* 4.275* 4.375* 1.975*

Baseline 3.275 2.8 3.35 2.9 0.3

6.5.3 Number of Sentences Element of the Request

The purpose of this analysis is to investigate how each system is able to generate a content

slice, from the incorporated content resources, according to the “number of sentences”

(level of granularity) element of each individual request. Table 6.5 reports the mean

scores of the user evaluations for slices produced by each system. As can be observed,

the quality of slices generated by CROCC is, on average, higher than the quality of slices

generated by the baseline system with regards to all sizes in all criteria.

The results, hence, prove that the structure built for each individual content resource by

CROCC enables the service to generate slices that best match the different levels of gran-

ularity in each individual request. This in turn proves that content resources processed by

CROCC are amenable for reuse in different adaptive systems.

144

Table 6.5 Mean scores of user evaluations for slices with regards to number of sentences

Criteria

Slice Size
Relevance

Informa-

tiveness

Cohesion &

Readability
Overall Preference

Size = 4

CROCC 4.933* 4.133* 4.117 4.267* 1.667*

Baseline 3.95 3.45 3.8 3.533 0.833

Size = 5

CROCC 4.983* 4.5* 4.567* 4.433* 1.567*

Baseline 4.233 3.7 3.95 3.767 0.517

Size = 6

CROCC 5.1* 4.583* 4.233* 4.5* 1.55*

Baseline 4.183 3.633 3.817 3.733 0.6

Size = 7

CROCC 5.4* 4.9* 4.733* 4.883* 1.967*

Baseline 4.267 3.6 3.817 3.65 0.483

6.5.4 Discussion

This experiment proposed an evaluation for the performance of the CROCC service as a

content-supply service. The experiment focused on evaluating the quality of the slices

produced by CROCC according to the elements of each individual request. Comparing

the quality of slices produced by CROCC against slices produced by the baseline system

demonstrated that CROCC outperformed the baseline system in all characteristics speci-

fied in the experiment.

According to the assumption posed in section 6.1, which is: in order for content resources

(from open and closed corpus) to be properly discovered and reused within different

adaptive systems, the quality of individual slices delivered must be guaranteed to adap-

tive system users, these results, therefore, clearly prove that CROCC is capable of pro-

ducing content slices from open and closed corpus resources that fulfil the requirements

of the content requests. This in turn means that the slices produced by CROCC are

properly discovered. Additionally, as slices produced by CROCC are highly preferred

by the participant users, this means that CROCC is capable of producing content slices

which are suitable for reuse by adaptive systems in the context specified by individual

content requests.

145

6.6 Chapter Summary

This chapter presented a task-based experiment that aimed to address the fourth objective

of this thesis; namely to evaluate the extent to which the CROCC service can enhance the

discovery and reuse of content for adaptive systems. In particular, the experiment aimed

to evaluate the quality of the content slices produced by CROCC. The chapter described

the methodology that has been followed in the evaluation process and the baseline system

that has been developed to compare against the CROCC service. The chapter described

how content resources from closed and open corpora were acquired along with a descrip-

tion of how these resources were processed and indexed in each system used in the ex-

periment. The evaluation system was also described along with the steps that participants

have followed to complete the experiment. Finally, the chapter presented the analyses

carried out on the evaluation results, along with the findings derived from this analysis.

146

7. Conclusion and future work

This chapter presents the final conclusions for the research presented in this thesis. The

chapter reviews the research questions and objectives presented in Chapter 1 of this thesis

and discusses the extent to which these objectives have been achieved, and the research

question answered. It also revisits the overall contributions of this thesis. Finally, the

chapter outlines possible future research directions on the basis of the research outcomes

achieved in this thesis.

7.1 Research Question, Objectives and Achievements

The research question which this thesis initially sought to answer was:

To what extent can the semantic representation of unstructured textual content be ex-

ploited by novel text segmentation approaches to build a document structure?

Also, to assess whether the structure produced by the proposed approaches is of benefit

for adaptive systems, a further question was posed:

Can the produced structure be used to enhance the discoverability and reusability of con-

tent for adaptive systems?

In order to address these research questions, four research objectives were outlined (sec-

tion 1.2.1). The following sub-sections discuss each objective and how each objective

was achieved in this thesis.

7.1.1 Research Objective 1

The first research objective is: “Perform a state of the art survey on NLP techniques,

specifically text segmentation as a technique for structuring textual content. The aim of

this survey is to investigate how text segmentation is used to analyse and understand text

to produce a structure from unstructured textual documents. Additionally, perform a state

of the art survey on adaptive systems as content adaptation applications, to investigate

how they process content and the different techniques they utilise in order to facilitate the

discovery and reuse of this content. The survey should also review how state of the art

adaptive systems utilise NLP techniques in order to provide adaptive content”.

To achieve this objective, an integral part of this thesis involved conducting a state of the

art review of NLP techniques and a focused review on text segmentation. The review

147

classified different approaches to text segmentation and highlighted different categorisa-

tion criteria of this task. The review also focused on hierarchical text segmentation and

investigated how hierarchical text segmentation is used to analyse text to produce a struc-

ture from unstructured textual documents. The review showed that state of the art ap-

proaches are limited by the fact that they can only process the information that they can

‘see’. In other words, they are based on the lexical and/or syntactic representation of text.

However, a representation based solely on the endogenous knowledge in the documents

themselves does not reveal much about the meaning of the text. Building on the influences

derived from this review, two novel approaches to hierarchical text segmentation were

presented in Chapter 3 and Chapter 4. Both approaches utilise external knowledge re-

sources in order to enrich text and infer more information about text constituents.

The field of NLP and specifically hierarchical text segmentation has mainly focused on

techniques that can be used to process text documents, but not, however, on how these

techniques can be utilised to produce tailored content, adapted to the needs of individual

users. Conversely, research in the field of Adaptive Systems has primarily focused on

methods and techniques of delivering adaptive content to individual users. Hence, a com-

prehensive review on adaptive systems has been conducted. The purpose of this review

was to investigate how adaptive systems process content to facilitate its discoverability

and reusability. The review discussed the anatomy of adaptive systems, their models and

in particular their content model. In order to better illustrate how adaptive systems process

different types of content, closed and open corpus content models were reviewed. The

review also presented the different techniques utilised by adaptive systems to discover

content resources that best match their users’ needs. Furthermore, current NLP techniques

used by adaptive systems were reviewed to gain more insight into how adaptive systems

utilise these techniques in processing content resources and how these techniques con-

tribute to the provision of adaptive experiences to users. Building on the influences de-

rived from this review, a new content-supply service was designed, which is presented in

Chapter 5.

7.1.2 Research Objective 2

The second research objective is: “Examine the different methods and techniques that can

be used to enhance the performance of text segmentation using the semantic representa-

tion of text, and develop a new text segmentation approach to enhance the understanding

148

of unstructured textual documents. This also involves the evaluation of the effectiveness

of the proposed approach in processing and structuring content”.

To achieve this objective, a new hierarchical text segmentation approach named OntoSeg

(Ontological Segmentation) was proposed (Chapter 3). The aim of OntoSeg was to un-

derstand the semantic meaning behind text in order to build a conceptual structure. In

contrast to state of the art approaches, OntoSeg replaces the traditional lexical represen-

tation of text with concepts extracted from an ontology. OntoSeg starts by extracting

named entities from the target text. Each entity is then mapped to its class or classes in

the DBpedia ontology. After that each sentence is represented as a vector of entities where

each element in that vector is represented as a set of classes. To identify how each sen-

tence is similar to its adjacent sentences, two different similarity measures were calcu-

lated, semantic similarity and lexical similarity. Using these similarity measures, On-

toSeg applies a Hierarchical Agglomerative Clustering (HAC) approach to iteratively

cluster text segments that are deemed to be similar to each other and produce a tree-like

hierarchy of the text.

To evaluate the effectiveness of OntoSeg in processing and structuring content, a set of

experiments have been conducted. Experimental results showed that, although OntoSeg

is able to produce a hierarchical structure out of text based on its semantic representation,

it did not perform well against the state of the art approaches.

As a result, a new hierarchical text segmentation approach, named C-HTS, was proposed

(Chapter 4). C-HTS (Concept-based Hierarchical Text Segmentation) relies on the se-

mantic relatedness between text constituents rather than the semantic similarity used in

OntoSeg. C-HTS relies on the explicit semantic representation of text, a method that re-

places keyword-based text representation with concept-based features, automatically ex-

tracted from massive human knowledge repositories such as Wikipedia. C-HTS repre-

sents the meaning of a piece of text as a weighted vector of knowledge concepts, in order

to reason about text. Relatedness between the atomic units of text is measured using this

semantic representation and a Hierarchical Agglomerative Clustering algorithm is then

applied to grow coherent segments of the text and a tree-like hierarchy of the text is

produced.

The performance of C-HTS was compared against the state of the art hierarchical text

segmentation approaches, using two datasets that are designed specifically for the evalu-

ation of such systems. The results showed that C-HTS outperformed the state of the art

149

and also outperformed OntoSeg. Additionally, in order to validate the efficacy of using

Wikipedia as the underlying knowledge base for conceptual representation of text in C-

HTS, an experiment was carried out where WordNet was used as the underlying

knowledge base for C-HTS. The results demonstrated that using Wikipedia as the

knowledge base for C-HTS delivers better performance than using WordNet, even when

using different relatedness measures with WordNet. Another experiment was also carried

out in order to validate the efficacy of using the semantic representation of text rather

than its lexical representation. The results showed that using semantic representation of

text in C-HTS outperforms the lexical representation approach even when using different

lexical similarity measures. In order to evaluate the influence of the size of the knowledge

base that C-HTS uses for semantic representation, an experiment was carried out where

three different snapshots of Wikipedia over different years were used with C-HTS. The

results showed that increasing the amount of knowledge in the knowledge base leads, on

average, to improvements in C-HTS performance.

7.1.3 Research Objective 3

The third research objective is: “This PhD research takes adaptive systems as the target

application scenario. To enhance the content discoverability and reusability, it is im-

portant to understand the structure of that content. The proposed hierarchical text seg-

mentation approach makes it possible to build a structure out of content resources based

on the semantic representation of text. In this context, a new content-supply service that

utilises the structure produced by the proposed segmentation approach needs to be built.

The design of this service should be focused on exploiting the produced structure in order

to overcome the limitations of the state of the art content-supply approaches”.

To achieve this objective, a novel content-supply service named CROCC (Customised

Reuse of Open- and Closed-corpus Content) was proposed (Chapter 5). CROCC was

built based on the influences derived from the state of the art review presented in Chap-

ter 2. The aim of CROCC is to utilise the structure produced by the C-HTS algorithm in

order to overcome the limitations of the state of the art content-supply approaches.

CROCC is a service which harvests content resources from open and closed corpus in

their native form and builds a structure out of each content resource without the reliance

upon its original structure. The service builds the structure of a content resource based on

its conceptual representation and delivers content slices according to the needs and

requirements of individual adaptive systems.

150

CROCC was designed using a flexible architecture that allows for plugging-in, removing,

enabling, or disabling alternative components or algorithms at runtime as well as design

time of the service. The CROCC service was offered as an intelligent content provision

framework, which comprises six modules. The first module is the Content Harvester

which is responsible for the automatic acquisition of content resources based on the con-

tent requirements of the adaptive system. The second module is the Content Pruner. Be-

cause CROCC does not rely upon the original structure posed by each harvested content

resource, the main task of the Content Pruner is to identify and remove the unnecessary

fragments within content resources and convert each individual content resource into a

plain text file. The third module is the Structure Builder. The main task of this module is

to build a structure out of the harvested and pruned content resources based on their con-

ceptual representation. This module utilises the C-HTS algorithm in order to complete

this task. Recall from Chapter 4 that the output of C-HTS is a tree-like hierarchy for each

individual content resource. Using this hierarchy, the fourth module in CROCC, called

Slice Indexer, starts to index slice objects produced in each level of the hierarchy pro-

duced by the Structure Builder where each slice object contains a metadata description

for each slice. These slice objects are indexed in the Concept Index of the Content Re-

pository module (fifth module in CROCC). Besides the concept index, the Content Re-

pository module contains the Text Index. This index is used to store the textual content

of the harvested resources. This textual content is indexed as a list of sentences that is

used later to generate the textual content of the selected slice. The last module in CROCC

is the Slice Selector. This module is considered the interface of the CROCC service with

the adaptive systems. The main task of this module is to receive the request sent by an

adaptive system, process it, and retrieve the slice that best matches this request.

This design of the CROCC service has successfully demonstrated that the service adheres

to the different key principles derived from the state of the art influences presented in

section 5.3. In addition to this design, a prototype implementation of the CROCC service

has been carried out in order to be used in the evaluation conducted in Chapter 6.

7.1.4 Research Objective 4

The fourth research objective is: “Evaluate the extent to which the proposed content-

supply service can enhance the discovery and reuse of content for adaptive systems”.

To achieve this objective, a task-based experiment has been carried out. The main purpose

of this experiment was to evaluate the quality of the content slices produced by CROCC.

151

The experiment did not focus on evaluating the process of content use within an actual

adaptive system. Rather, the experiment focused on evaluating the content-supply mech-

anism of CROCC and the quality of the slices produced by the service, according to the

specific requirements of a set of content requests that could be sent by an adaptive system.

The assumption is that, in order for content resources (from open and closed corpora) to

be properly discovered and reused within different adaptive systems, the quality of the

individual slices delivered must be guaranteed to adaptive system users. As a result, the

approach chosen for this evaluation was therefore to present a group of users with content

slices produced by CROCC where each slice was generated according to the specific

requirements of a content request.

The application area chosen for this experiment was Educational Systems. Additionally,

the field of Information Retrieval was selected as the subject area of the experiment. A

baseline system was developed in order to compare its performance against the CROCC

service. Content resources from closed and open corpora related to IR were harvested,

processed and indexed by CROCC and the baseline system. A total of 24 content requests

were constructed and for each request a slice was generated by each system. The produced

slices (48 slices) were then segmented into four groups and an evaluation system was

built in order to present these groups to participants for evaluation. An open call for par-

ticipation in the experiment was made on a number of mailing lists and a total of forty-

eight users participated in the experiment where each slice was evaluated by more than

ten users.

In this experiment, each user was asked to evaluate each slice according to four different

characteristics: Readability, Informativeness, Cohesion & Readability and Overall. Ad-

ditionally, the user was asked to indicate which slice they preferred. The evaluation sys-

tem also had a text box in case the participant had any comments regarding the quality of

the slices or regarding the difference between them.

The evaluations submitted by participants were analysed and the results demonstrated

that the quality of slices generated by CROCC is, on average, higher than the quality of

slices generated by the baseline system in all criteria. This in turn demonstrated that slices

produced by CROCC (from closed and open corpus resources) fulfil the requirements of

the content requests and, hence, are properly discovered. Additionally, as slices produced

152

by CROCC are highly preferred by the participant users, this means that CROCC is ca-

pable of producing content slices which are suitable for reuse by adaptive systems in the

context specified by individual content requests.

7.2 Contributions

This section revisits the contributions from the research of this thesis, which were pre-

sented in section 1.3. The research of this thesis has made three notable contributions:

one major contribution and two minor contributions.

The major contribution of this thesis is the use on NLP techniques, particularly text seg-

mentation, to produce a hierarchical structure from text documents and the use of this

structure by a content-supply service to enhance content discoverability and reusability

for adaptive systems. To build a structure from text documents, this thesis proposed two

novel hierarchical text segmentation algorithms based on the semantic representation of

content, OntoSeg and C-HTS. OntoSeg used the semantic similarity between text seg-

ments based on an ontology and uses a Hierarchical Agglomerative Clustering algorithm

to build a hierarchical structure of text based on its semantic representation. Evaluation

results demonstrated that although OntoSeg is able to produce a hierarchical structure of

text based on its semantic representation, it did not perform well against the state of the

art approaches. These findings indicated that the performance of OntoSeg can be im-

proved through improved understandability of text, by exploring the semantic relatedness

between text blocks rather than using the semantic similarity. As a result, the C-HTS

algorithm was proposed. C-HTS used the explicit semantic representation of text to meas-

ure the semantic relatedness between text blocks. It represented the meaning of a piece

of text as a weighted vector of knowledge concepts automatically extracted from the mas-

sive human knowledge repository, Wikipedia. Similar to OntoSeg, C-HTS produced the

content of a single document as a tree-like hierarchy. Evaluation results have shown that

C-HTS outperformed the state of the art approaches on two datasets that are designed

specifically for the evaluation of hierarchical text segmentation. The results also demon-

strated that using the semantic relatedness in C-HTS yielded a better hierarchical structure

of text than using the semantic similarity employed by OntoSeg.

This thesis also presented a novel content-supply service named CROCC. CROCC is a

service which harvests content resources from open and closed corpus in their native form

and builds a structure out of each content resource without the reliance upon its original

structure. CROCC utilises the C-HTS algorithm to build a structure of the harvested

153

content resources based on their semantic representation. Using this structure, the service

delivers content slices that best match the needs and requirements of individual adaptive

systems. The aim of CROCC is to enhace content discoverability and reusability for

adaptive systems. This thesis also presented a task-based experiment to evaluate the ex-

tent to which the CROCC service can enhance the discovery and reuse of content for

adaptive systems. The main focus of this experiment is to evaluate the quality of content

slices produced by the CROCC service according to the specific requirements of a content

request that might be sent by an adaptive system. The experiment focused on a specific

application are and specific subject area. Content resources were collected from closed

and open corpus in the specified subject area. A baseline system was developed in order

to compare its performance against CROCC. Evaluation system was built to present con-

tent slices produced by each system to the participant users for evaluation. Experimental

results demonstrated that the quality of slices produced by CROCC are highly preferred

by users than slices produced by the baseline system.

A minor contribution of this thesis is the concept space that was built from Wikipedia for

the purpose of this research. The concept space was built from a Wikipedia snapshot

(April 2017) to be used for the explicit semantic analysis of text within C-HTS. This

concept space is publicly available15 and can be used by researchers who work on tasks

related to explicit semantic analysis. Another minor contribution is the implementations

of the two hierarchical text segmentation algorithms proposed in this thesis, OntoSeg and

C-HTS. Implementations of both algorithms have been open-sourced and made publicly

available16,17.

The contributions of this research have also resulted in the following academic publica-

tions:

 Bayomi, M., Levacher K., Ghorab, M.R., and Lawless, S. "OntoSeg: a Novel Ap-

proach to Text Segmentation using Ontological Similarity”. In the proceedings of

the 5th ICDM Workshop on Sentiment Elicitation from Natural Text for Infor-

mation Retrieval and Extraction, ICDM SENTIRE. Held in conjunction with the

15 https://goo.gl/JZhEvm
16 https://github.com/bayomim/OntoSeg
17 https://github.com/bayomim/C-HTS

154

IEEE International Conference on Data Mining, ICDM 2015. Nov 14th, 2015.

Atlantic City, NJ, USA.

 Bayomi, M. & Lawless, S. “C-HTS: A Concept-based Hierarchical Text Seg-

mentation approach”. In the Proceedings of the Eleventh International Confer-

ence on Language Resources and Evaluation (LREC 2018). Miyazaki, Japan:

European Language Resources Association (ELRA).

 Bayomi, M. "A Framework to Provide Customized Reuse of Open Corpus Con-

tent for Adaptive Systems." In the Proceedings of the 26th ACM Conference on

Hypertext & Social Media. HT ’15. Northern Cyprus, pp 315–318. ACM, 2015.

Additionally, a publication describing the CROCC service and its evaluation (detailed in

Chapter 5 and Chapter 6) is underway and will target the ACM Hypertext conference.

7.3 Further Work

This section discusses potential further work that could be undertaken for the research in

this thesis.

7.3.1 Multilingual Content-Supply

CROCC has primarily focused on harvesting and processing content resources that are

written in English. The main module that processes the textual content of the harvested

resources is the Structure Builder module (section 5.2.3) that utilises the C-HTS algo-

rithm presented in Chapter 4. As discussed in section 4.6.3, the core of C-HTS is the

process of measuring the semantic relatedness between text clusters using the explicit se-

mantic representation of text. Additionally, as discussed in section 5.2.6, the same tech-

nique is used by the Slice Selector module to semantically represent the query of the adap-

tive system’s request. This process of text representation is essentially based on the un-

derlying concept space that has been built from Wikipedia. Since Wikipedia is available

in many languages18, building concept spaces for other languages can be done as described

in section 4.2. Thus, moving C-HTS from one language to another can be done easily. The

only step that needs to be changed is the morphological analysis (section 4.4.1) to filter

out and stem the prominent terms in text. This step is relatively easy to implement as there

has been a large volume of work completed on morphological analysis for languages other

18 As of April 2018, there are 298 Wikipedias of which 288 are active and 10 are not: https://en.wikipe-

dia.org/wiki/List_of_Wikipedias [Accessed: April 08, 2018]

155

than English (Manning et al., 2014).

Moreover, because CROCC is designed using a flexible architecture, it allows for plug-

ging-in, removing, enabling, or disabling alternative components or algorithms used by

the service. Thus, other components of the service (Content Harvester, Content Pruner,

etc.) can be replaced, if required, based on the language of the target content resources.

Hence, the initial extension of this research would consist of extending CROCC to provide

multilingual content-supply services. This in turn would allow CROCC to incorporate and

supply a wider range of content resources.

7.3.2 Domain-Specific Concept Space

This research proposed a novel approach for structuring content resources based on their

semantic representation. This semantic structure is further used by a novel content-supply

service named CROCC. As discussed in section 4.3, the concept space used in this re-

search is built from Wikipedia. Since Wikipedia contains millions of documents in dif-

ferent domains19, this means that the concept space built from it is generic and does not

focus on a specific domain. Thus, a potential piece of future work could involve the cre-

ation of a concept space using a domain-specific knowledge repository. This would in-

volve research into the characteristics of the knowledge repository that the concept space

would be built from. The task of building a concept space from a knowledge repository

other than Wikipedia has already been studied (Gottron et al., 2011), and it has been

shown experimentally that instead of the conceptually orthogonal Wikipedia articles, us-

ing documents from the Reuters corpus lead to a comparable performance (Anderka and

Stein, 2009). To build further on this line of future work, evaluating the impact of such a

concept space on the segmentation task (C-HTS) and the content-supply (CROCC) would

be undertaken.

7.3.3 Integrate Different Content Annotation Tools

The implementation of the CROCC service (section 5.4) and the experiment described in

Chapter 6 have primarily focused on two main elements of the request that might be sent

by an adaptive system: the query and the level of granularity (number of sentences).

However, as discussed in section 5.2.3, the flexibility of building the structure of a content

resource using C-HTS, allows for including a variety of metadata information that gives

19 https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

156

more description to each slice produced in the structure. Additionally, the flexibility of

the CROCC structure allows for plugging-in different components or algorithms as re-

quired. Thus, a potential piece of future work may involve integrating different annotation

tools that can annotate slices with additional metadata information. Examples of such

metadata in the education domain are, reading difficulty and pedagogical annotations.

This line of future work would also include the evaluation of the newly added information

in a full content adaptation scenario that would involve using an actual adaptive system.

7.4 Final Remarks

It is hoped by the author of this thesis that the proposed hierarchical text segmentation

approach will be of benefit to both the research community and commercial applications.

The proposed C-HTS algorithm will be useful for researchers who wish to build a

structure from textual documents based on the semantic representation of text. This

structure can be utilised, for example, in a semantic retrieval task where the indexing

process, and the retrieval process, will be based on the semantic representation of the

structure of the document not on the traditional keyword-based indexing mechanism. C-

HTS would also be of benefit for content mining companies that focus on techniques for

understanding the meaning of the text.

It is also hoped that the proposed content-supply service CROCC, will be of benefit to

researchers who wish to build adaptive systems and/or content-supply services.

Researchers could continue to contribute to new/advanced features of the service in the

future, with a target of the exploitation of various other content processing and adaptation

approaches. The experiment in this thesis has shown the benefits that CROCC can bring

to content discoverability and reusability for adaptive systems. As a result, adaptive

systems designers can employ the service to facilitate the delivery of content to their

users.

157

References

Agerri, R., & Rigau, G. (2016). Robust multilingual Named Entity Recognition with shal-

low semi-supervised features. Artificial Intelligence, 238, 63–82.

Aghoutane, B., El Fazazy, K., El Bannay, O., & El Makhfi, N. (2017). Integration Strat-

egy for the Realization of an Adaptive Hypermedia System of Natural Dyes. Interna-

tional Journal of Systems Engineering, 1(1), 10-16.

Agirre, E., de Lacalle, O., & Soroa, A. (2014). Random walks for knowledge-based word

sense disambiguation. Computational Linguistics, 40(1), 57–84.

Agirre, E., & Stevenson, M. (2006). Knowledge Sources for WSD. In E. Agirre & P.

Edmonds (Eds.), Word Sense Disambiguation: Algorithms and Applications (pp.

217–251).

Ahmadi, H., & Kong, J. (2008). Efficient Web Browsing on Small Screens. In Proceed-

ings of the Working Conference on Advanced Visual Interfaces (pp. 23–30). New

York, NY, USA: ACM.

Ahn, J., Brusilovsky, P., Grady, J., He, D., & Syn, S. Y. (2007). Open User Profiles for

Adaptive News Systems: Help or Harm? In Proceedings of the 16th International

Conference on World Wide Web (pp. 11–20). New York, NY, USA: ACM.

Aitken, J. S. (2002). Learning information extraction rules: An inductive logic program-

ming approach. In ECAI (pp. 355–359).

Alani, H., Kim, S., Millard, D. E., Weal, M. J., Lewis, P. H., Hall, W., & Shadbolt, N. R.

(2003). Automatic extraction of knowledge from web documents. In Workshop on

Human Language Technology for the Semantic Web and Web Services, 2nd interna-

tional Semantic Web Conference. Sanibel Island, Florida, USA.

Alassi, D., & Alhajj, R. (2013). Effectiveness of template detection on noise reduction

and websites summarization. Information Sciences, 219, 41–72.

Alfonseca, E., & Rodríguez, P. (2003). Generating Extracts with Genetic Algorithms. In

F. Sebastiani (Ed.), Advances in Information Retrieval (pp. 511–519).

Alfonseca, E., Rodríguez, P., & Pérez, D. (2007). An approach for automatic generation

of adaptive hypermedia in education with multilingual knowledge discovery tech-

niques. Computers & Education, 49(2), 495–513.

Allan, J., Carbonell, J., Doddington, G., Yamron, J., & Yang, Y. (1998). Topic Detection

and Tracking Pilot Study: Final Report. In Proceedings of the DARPA Broadcast

News Transcription and Understanding Worksho (pp. 194–218).

Allison, L., & Dix, T. I. (1986). A bit-string longest-common-subsequence algorithm.

Information Processing Letters, 23(5), 305–310.

Anderka, M., & Stein, B. (2009). The ESA Retrieval Model Revisited. In Proceedings of

the 32Nd International ACM SIGIR Conference on Research and Development in

Information Retrieval (pp. 670–671). New York, NY, USA: ACM.

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E.,

Pintrich, P. R., Wittrock, M. C. (2001). A taxonomy for learning, teaching, and as-

sessing: A revision of Bloom’s taxonomy of educational objectives, abridged edition.

White Plains, NY: Longman.

158

Angheluta, R., De Busser, R., & Moens, M.-F. (2002). The use of topic segmentation for

automatic summarization. Proceedings of the ACL-2002 Workshop on Automatic

Summarization (pp. 11-12).

Arora, S., Ge, R., Halpern, Y., Mimno, D., Moitra, A., Sontag, D., Zhu, M. (2013). A

practical algorithm for topic modeling with provable guarantees. In International Con-

ference on Machine Learning (pp. 280–288).

Aroyo, L., Bra, P. De, Houben, G.-J., & Vdovjak, R. (2004). Embedding information

retrieval in adaptive hypermedia: IR meets AHA! New Review of Hypermedia and

Multimedia, 10(1), 53–76.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007). DBpe-

dia: A Nucleus for a Web of Open Data. The Semantic Web (pp. 722–735).

Azzopardi, L., Moshfeghi, Y., Halvey, M., Alkhawaldeh, R. S., Balog, K., Di Buccio, E.,

Palchowdhury, S. (2017). Lucene4IR: Developing Information Retrieval Evaluation

Resources Using Lucene. SIGIR Forum, 50(2), 58–75.

Badjatiya, P., Kurisinkel, L. J., Gupta, M., & Varma, V. (2018). Attention-Based Neural

Text Segmentation. Advances in Information Retrieval. Springer International Pub-

lishing, 180–193.

Bailey, C., Zalfan, M. T., Davis, H. C., Fill, K., & Conole, G. (2006). Panning for gold:

designing pedagogically-inspired learning nuggets. Journal of Educational Technol-

ogy & Society, 9(1), 113-122.

Bär, D., Zesch, T., & Gurevych, I. (2013). Dkpro similarity: An open source framework

for text similarity. In Proceedings of the 51st Annual Meeting of the Association for

Computational Linguistics: System Demonstrations (pp. 121–126).

Basile, P., Caputo, A., & Semeraro, G. (2014). An enhanced lesk word sense disambigu-

ation algorithm through a distributional semantic model. In Proceedings of COLING

2014, the 25th International Conference on Computational Linguistics: Technical Pa-

pers (pp. 1591–1600).

Baumgartner, R., Flesca, S., & Gottlob, G. (2001). Declarative Information Extraction,

Web Crawling, and Recursive Wrapping with Lixto. Logic Programming and

Nonmotonic Reasoning. Springer Berlin Heidelberg, 21–41.

Bayomi, M. (2015). A Framework to Provide Customized Reuse of Open Corpus Content

for Adaptive Systems. In Proceedings of the 26th ACM Conference on Hypertext &

Social Media (pp. 315–318). New York, NY, USA: ACM.

Bayomi, M., & Lawless, S. (2016). ADAPT_TCD: An Ontology-Based Context Aware

Approach for Contextual Suggestion. In E. M. Voorhees (Ed.), NIST Special Publi-

cation: The Twenty-Fifth Text REtrieval Conference Proceedings (TREC 2016),

Contextual Suggestion Track. Gaithersburg, Maryland, USA: National Institute for

Standards and Technology, NIST Special Publication 500-321.

Bayomi, M., & Lawless, S. (2018). C-HTS: A Concept-based Hierarchical Text Segmen-

tation approach. In Proceedings of the Eleventh International Conference on Lan-

guage Resources and Evaluation (LREC 2018). Miyazaki, Japan: European Language

Resources Association (ELRA).

Bayomi, M., Levacher, K., Ghorab, M. R., Lavin, P., O’Connor, A., & Lawless, S. (2016).

Towards Evaluating the Impact of Anaphora Resolution on Text Summarisation from

a Human Perspective. Natural Language Processing and Information Systems: 21st

159

International Conference on Applications of Natural Language to Information Sys-

tems, NLDB 2016, Salford, UK. Springer International Publishing, 187–199.

Bayomi, M., Levacher, K., Ghorab, M. R., & Lawless, S. (2015). OntoSeg: A Novel Ap-

proach to Text Segmentation Using Ontological Similarity. In 2015 IEEE Interna-

tional Conference on Data Mining Workshop (ICDMW) (pp. 1274–1283).

Beck, C., Streicher, A., & Zielinski, A. (2014). Using Text Segmentation Algorithms for

the Automatic Generation of E-Learning Courses. Lexical and Computational Seman-

tics (* SEM 2014), 132-140.

Beeferman, D., Berger, A., & Lafferty, J. (1999). Statistical Models for Text Segmenta-

tion. Machine Learning, 34(1–3), 177–210.

Benyon, D., & Murray, D. (1993). Applying user modeling to human-computer interac-

tion design. Artificial Intelligence Review, 7(3), 199–225.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific Ameri-

can, 284(5), 34–43.

Białecki, A., Muir, R., & Ingersoll, G. (2012). Apache lucene 4. In SIGIR 2012 work-

shop on open source information retrieval (p. 17).

Bing, L., Guo, R., Lam, W., Niu, Z.-Y., & Wang, H. (2014). Web Page Segmentation

with Structured Prediction and Its Application in Web Page Classification. In Pro-

ceedings of the 37th International ACM SIGIR Conference on Research & Devel-

opment in Information Retrieval (pp. 767–776). New York, NY, USA: ACM.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of

Machine Learning Research, 3(Jan), 993–1022.

Boguraev, B. K., & Neff, M. S. (2000). Discourse segmentation in aid of document

summarization. System Sciences, 2000. Proceedings of the 33rd Annual Hawaii In-

ternational Conference, IEEE.

Bohl, O., Scheuhase, J., Sengler, R., & Winand, U. (2002). The sharable content object

reference model (SCORM) - a critical review. In International Conference on Com-

puters in Education, 950–951.

Bokaei, M. H., Sameti, H., & Liu, Y. (2016). Extractive summarization of multi-party

meetings through discourse segmentation. Natural Language Engineering, 22(1),

41–72.

Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Model-

ing and User-Adapted Interaction, 6(2), 87–129.

Brusilovsky, P. (1998). Methods and Techniques of Adaptive Hypermedia. Adaptive

Hypertext and Hypermedia. Springer Netherlands, 1–43.

Brusilovsky, P. (2001). Adaptive Hypermedia. User Modeling and User-Adapted Inter-

action, 11(1–2), 87–110.

Brusilovsky, P. (2004). KnowledgeTree: A Distributed Architecture for Adaptive e-

Learning. In Proceedings of the 13th International World Wide Web Conference on

Alternate Track Papers &Amp; Posters (pp. 104–113). New York, NY, USA:

ACM.

Brusilovsky, P., Chavan, G., & Farzan, R. (2004). Social Adaptive Navigation Support

for Open Corpus Electronic Textbooks. Adaptive Hypermedia and Adaptive Web-

Based Systems SE - 6 (Vol. 3137). Springer Berlin Heidelberg, 24–33.

160

Brusilovsky, P., Eklund, J., & Schwarz, E. (1998). Web-based education for all: a tool

for development adaptive courseware. Computer Networks and ISDN Systems,

30(1), 291–300.

Brusilovsky, P., & Henze, N. (2007). Open Corpus Adaptive Educational Hypermedia.

The Adaptive Web SE - 22 (Vol. 4321). Springer Berlin Heidelberg, 671–696.

Brusilovsky, P., & Millán, E. (2007). User Models for Adaptive Hypermedia and Adap-

tive Educational Systems. The Adaptive Web: Methods and Strategies of Web Per-

sonalization. Springer Berlin Heidelberg, 3–53.

Brusilovsky, P., & Pesin, L. (1998). Adaptive navigation support in educational hyper-

media: An evaluation of the ISIS-Tutor. Journal of Computing and Information

Technology, 6(1), 27–38.

Brusilovsky, P., Schwarz, E., & Weber, G. (1996). ELM-ART: An intelligent tutoring

system on world wide web. Intelligent Tutoring Systems: Third International Con-

ference, ITS ’96 Montréal, Canada. Springer Berlin Heidelberg, 261–269.

Buchanan, B. G., & Feigenbaum, E. (1982). Forward. In Davis, R., and Lenat, D. B.,

eds., Knowledge-Based Systems in Artificial Intelligence. McGraw-Hill.

Budanitsky, A., & Hirst, G. (2006). Evaluating WordNet-based Measures of Lexical Se-

mantic Relatedness. Comput. Linguist., 32(1), 13–47.

Bunt, A., Carenini, G., & Conati, C. (2007). Adaptive Content Presentation for the

Web. The Adaptive Web: Methods and Strategies of Web Personalization. Springer

Berlin Heidelberg, 409–432.

Cambria, E., Fu, J., Bisio, F., & Poria, S. (2015). AffectiveSpace 2: Enabling affective

intuition for concept-level sentiment analysis. In Twenty-Ninth AAAI Conference

on Artificial Intelligence (pp. 508–514).

Cambria, E., & White, B. (2014). Jumping NLP Curves: A Review of Natural Language

Processing Research [Review Article]. IEEE Computational Intelligence Magazine,

9(2), 48–57.

Cañas, A. J., Valerio, A., Lalinde-Pulido, J., Carvalho, M., & Arguedas, M. (2003). Us-

ing WordNet for Word Sense Disambiguation to Support Concept Map Construc-

tion. String Processing and Information Retrieval. Springer Berlin Heidelberg, 350–

359.

Carmona, C., Bueno, D., Guzman, E., & Conejo, R. (2002). SIGUE: Making Web

Courses Adaptive. In P. De Bra, P. Brusilovsky, & R. Conejo (Eds.), Adaptive Hy-

permedia and Adaptive Web-Based Systems: Second International Conference, AH

2002 Málaga, Spain. Springer Berlin Heidelberg, 376–379.

Carroll, L. (2010). Evaluating Hierarchical Discourse Segmentation. In Human Lan-

guage Technologies: The 2010 Annual Conference of the North American Chapter

of the ACL (pp. 993–1001).

Carvalho, D., Çalli, Ç., Freitas, A., & Curry, E. (2014). EasyESA: A Low-effort Infra-

structure for Explicit Semantic Analysis. In Proceedings of the 2014 International

Conference on Posters & Demonstrations Track - Volume 1272 (pp. 177–180).

Chakrabarty, A., Pandit, O. A., & Garain, U. (2017). Context sensitive lemmatization

using two successive bidirectional gated recurrent networks. In Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics (Vol. 1, pp.

1481–1491).

161

Chang, A. X., & Manning, C. D. (2014). TokensRegex: Defining cascaded regular ex-

pressions over tokens. Tech. Rep. CSTR (2014).

Chang, C.-H., Kayed, M., Girgis, M. R., & Shaalan, K. F. (2006). A Survey of Web In-

formation Extraction Systems. IEEE Transactions on Knowledge and Data Engi-

neering, 18(10), 1411–1428.

Chang, M.-W., Ratinov, L.-A., Roth, D., & Srikumar, V. (2008). Importance of Seman-

tic Representation Dataless Classification. In AAAI (Vol. 2, pp. 830–835).

Chaves-González, J. M., & Martínez-Gil, J. (2013). Evolutionary algorithm based on

different semantic similarity functions for synonym recognition in the biomedical

domain. Knowledge-Based Systems, 37, 62–69.

Chesnais, P. R., Mucklo, M. J., & Sheena, J. A. (1995). The Fishwrap personalized

news system. In Community Networking, 1995. Proceedings of the Second Interna-

tional Workshop on Integrated Multimedia Services to the Home, 275–282.

Chien, J. T., & Chueh, C. H. (2012). Topic-Based Hierarchical Segmentation. IEEE

Transactions on Audio, Speech, and Language Processing, 20(1), 55–66.

Choi, F. Y. Y. (2000). Advances in Domain Independent Linear Text Segmentation. In

Proceedings of the 1st North American Chapter of the Association for Computa-

tional Linguistics Conference (pp. 26–33). Association for Computational Linguis-

tics.

Choi, F. Y. Y., Wiemer-Hastings, P., & Moore, J. (2001). Latent Semantic Analysis for

Text Segmentation. In Proceedings of EMNLP (pp. 109–117).

Chowdhury, G. G. (2003). Natural language processing. Annual Review of Information

Science and Technology, 37(1), 51–89.

Church, K. W. (1993). Char_Align: A Program for Aligning Parallel Texts at the Char-

acter Level. In Proceedings of the 31st Annual Meeting on Association for Compu-

tational Linguistics (pp. 1–8).

Cohen, D., & Croft, W. B. (2018). A Hybrid Embedding Approach to Noisy Answer

Passage Retrieval. Advances in Information Retrieval. Springer International Pub-

lishing, 127–140.

Collins, M. (2002). Discriminative Training Methods for Hidden Markov Models: The-

ory and Experiments with Perceptron Algorithms. In Proceedings of the ACL-02

Conference on Empirical Methods in Natural Language Processing (pp. 1–8).

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011).

Natural language processing (almost) from scratch. Journal of Machine Learning

Research, 2493–2537.

Conlan, O., Staikopoulos, A., Hampson, C., Lawless, S., & O’keeffe, I. (2013). The nar-

rative approach to personalisation. New Review of Hypermedia and Multimedia,

19(2), 132–157.

Conlan, O., & Wade, V. (2004). Evaluation of APeLS - An Adaptive eLearning Service

based on the Multi-model, Metadata-driven Approach. International Conference on

Adaptive Hypermedia and Adaptive Web-Based Systems. Springer, Berlin, Heidel-

berg, 291 – 295.

Conlan, O., Wade, V., Bruen, C., & Gargan, M. (2002). Multi-model, metadata driven

approach to adaptive hypermedia services for personalized elearning. International

162

Conference on Adaptive Hypermedia and Adaptive Web-Based Systems. Springer,

Berlin, Heidelberg, 100–111.

Constantin, A., Pettifer, S., & Voronkov, A. (2013). PDFX: Fully-automated PDF-to-

XML Conversion of Scientific Literature. In Proceedings of the 2013 ACM Sym-

posium on Document Engineering (pp. 177–180). New York, NY, USA: ACM.

Corra, E. A., Lopes, A. A., & Amancio, D. R. (2018). Word Sense Disambiguation. In-

formation Sciences: an International Journal 442.C (2018): 103-113.

Cowie, J., & Lehnert, W. (1996). Information Extraction. Communications of the ACM,

39(1), 80–91.

Cruz, F., Troyano, J., & Enríquez, F. (2006). Supervised TextRank. Advances in Natu-

ral Language Processing SE . Springer Berlin Heidelberg, 632–639.

Curran, J. R. (2002). Ensemble Methods for Automatic Thesaurus Extraction. In Pro-

ceedings of the ACL-02 Conference on Empirical Methods in Natural Language

Processing , 222–229).

da Silva, D. P., Van Durm, R., Duval, E., & Olivié, H. (1998). Concepts and documents

for adaptive educational hypermedia: a model and a prototype. In Second workshop

on Adaptive Hypertext and Hypermedia, Ninth ACM Conference on Hypertext and

Hypermedia, Pittsburgh, USA (pp. 35–43).

Dagger, D., Wade, V., & Conlan, O. (2002). Towards a Standards-based Approach to e-

Learning Personalization using Reusable Learning Objects. World Conference on

E-Learning in Corporate, Government, Healthcare, and Higher Education 2002.

AACE, 210–217.

Daiber, J., Jakob, M., Hokamp, C., & Mendes, P. N. (2013). Improving Efficiency and

Accuracy in Multilingual Entity Extraction. In Proceedings of the 9th ACM Inter-

national Conference on Semantic Systems (I-Semantics).

De Bra, P., Aerts, A., Berden, B., de Lange, B., Rousseau, B., Santic, T., Stash, N.

(2003). AHA! The Adaptive Hypermedia Architecture. In Proceedings of the Four-

teenth ACM Conference on Hypertext and Hypermedia (pp. 81–84). New York,

NY, USA: ACM.

De Bra, P., & Calvi, L. (1997). Creating Adaptive Hyperdocuments for and on the Web.

In WebNet 1997.

De Bra, P., & Calvi, L. (1998). AHA: a generic adaptive hypermedia system. In Pro-

ceedings of the 2nd Workshop on Adaptive Hypertext and Hypermedia (pp. 5–12).

De Bra, P., Houben, G.-J., & Wu, H. (1999). AHAM: A Dexter-based Reference Model

for Adaptive Hypermedia. In Proceedings of the Tenth ACM Conference on Hyper-

text and Hypermedia (pp. 147–156). New York, NY, USA: ACM.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990).

Indexing by latent semantic analysis. Journal of the American Society for Infor-

mation Science, 41(6), 391– 407.

Dieberger, A., & Guzdial, M. (2003). CoWeb — Experiences with Collaborative Web

Spaces. From Usenet to CoWebs. Springer London, 155–166.

Dimitrova, V. (2003). STyLE-OLM: Interactive open learner modelling. International

Journal of Artificial Intelligence in Education, 13(1), 35–78.

163

Dimitrova, V., & Brna, P. (2016). From Interactive Open Learner Modelling to Intelli-

gent Mentoring: STyLE-OLM and Beyond. International Journal of Artificial Intel-

ligence in Education, 26(1), 332–349.

Dolog, P., Henze, N., Nejdl, W., & Sintek, M. (2004). The Personal Reader: Personaliz-

ing and Enriching Learning Resources Using Semantic Web Technologies. Adap-

tive Hypermedia and Adaptive Web-Based Systems. Springer Berlin Heidelberg,

85–94.

Du, L., Buntine, W. L., & Johnson, M. (2013). Topic Segmentation with a Structured

Topic Model. In Proceedings of the North American Chapter of the Association for

Computational Linguistics Conference. 2013 (pp. 190 –200).

Egozi, O., Markovitch, S., & Gabrilovich, E. (2011). Concept-Based Information Re-

trieval Using Explicit Semantic Analysis. ACM Transactions of Information Sys-

tems, 29(2), 8.

Eisenstein, J. (2009). Hierarchical Text Segmentation from Multi-Scale Lexical Cohe-

sion. Proceedings of Human Language Technologies: The 2009 Annual Conference

of the North American Chapter of the Association for Computational Linguistics.

Association for Computational Linguistics, 353–361.

Eisenstein, J., & Barzilay, R. (2008). Bayesian Unsupervised Topic Segmentation. In

Proceedings of the Conference on Empirical Methods in Natural Language Pro-

cessing (pp. 334–343). Stroudsburg, PA, USA: Association for Computational Lin-

guistics.

Elavarasi, S. A., Akilandeswari, J., & Menaga, K. (2014). A survey on semantic simi-

larity measure. International Journal of Research in Advent Technology, 2(3), 389–

398.

Fader, A., Soderland, S., & Etzioni, O. (2011). Identifying Relations for Open Infor-

mation Extraction. In Proceedings of the Conference on Empirical Methods in Nat-

ural Language Processing (pp. 1535–1545). Stroudsburg, PA, USA: Association for

Computational Linguistics.

Fang, Y., Xie, X., Zhang, X., Cheng, R., & Zhang, Z. (2018). STEM: a suffix tree-based

method for web data records extraction. Knowledge and Information Systems,

55(2), 305–331.

Farrah, S., Manssouri, H. El, Ziyati, E. H., & Ouzzif, M. (2018). An hybrid approach to

improve part of speech tagging system. In 2018 International Conference on Intelli-

gent Systems and Computer Vision (ISCV) (pp. 1–6).

Farrell, R. G., Liburd, S. D., & Thomas, J. C. (2004). Dynamic Assembly of Learning

Objects. In Proceedings of the 13th International World Wide Web Conference on

Alternate Track Papers &Amp; Posters (pp. 162–169). New York, NY, USA:

ACM.

Feigenbaum, L., Herman, I., Hongsermeier, T., Neumann, E., & Stephens, S. (2007).

The semantic web in action. Scientific American, 297(6), 90–97.

Feng, V. W., & Hirst, G. (2012). Text-level Discourse Parsing with Rich Linguistic

Features. In Proceedings of the 50th Annual Meeting of the Association for Com-

putational Linguistics: (pp. 60–68).

Fernández, M., Cantador, I., López, V., Vallet, D., Castells, P., & Motta, E. (2011). Se-

mantically enhanced Information Retrieval: An ontology-based approach. Web Se-

mantics: Science, Services and Agents on the World Wide Web, 434–452.

164

Ferschke, O., Zesch, T., & Gurevych, I. (2011). Wikipedia Revision Toolkit: Efficiently

Accessing Wikipedia’s Edit History. In Proceedings of the ACL-HLT 2011 System

Demonstrations (pp. 97–102).

Finin, T. W. (1989). GUMS - A General User Modeling Shell. User Models in Dialog

Systems. Springer Berlin Heidelberg, 411–430.

Fiqri, M., & Nurjanah, D. (2017). Graph-based domain model for adaptive learning path

recommendation. In 2017 IEEE Global Engineering Education Conference

(EDUCON) (pp. 375–380).

Fiszman, M., & Rindflesch, T. C. (2003). Abstraction Summarization for Managing the

Biomedical Research Literature. Proceedings of the HLT-NAACL workshop on

computational lexical semantics. Association for Computational Linguistics, 76-83.

Francis, W. N. (1964). A Standard Sample of Present-Day English for Use With Digital

Computers. Report to the U.S Office of Education on Cooperative Research Project

No. E-007. Brown University.

Fröhlich, P., Nejdl, W., & Wolpers, M. (1998). KBS-Hyperbook-An Open Hyperbook

System for Education. In Proceedings of the ED-MEDIA World Conference on Ed-

ucational Multimedia and Hypermedia.

Gabbard, R., DeYoung, J., Lignos, C., Freedman, M., & Weischedel, R. (2018). Com-

bining rule-based and statistical mechanisms for low-resource named entity recog-

nition. Machine Translation, 32(1), 31–43.

Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using wik-

ipedia-based explicit semantic analysis. In IJcAI (Vol. 7, pp. 1606–1611).

Gabrilovich, E., & Markovitch, S. (2009). Wikipedia-based semantic interpretation for

natural language processing. Journal of Artificial Intelligence Research, 34, 443–

498.

Galley, M., McKeown, K., Fosler-Lussier, E., & Jing, H. (2003). Discourse Segmenta-

tion of Multi-party Conversation. In Proceedings of the 41st Annual Meeting on

Association for Computational Linguistics (pp. 562–569).

Gandara, R. A., Nurjanah, D., & Ciptasari, R. W. (2014). Integrating cognitively-ori-

ented and pedagogically-oriented methods in adaptive educational hypermedia. In

2014 International Conference on Data and Software Engineering (ICODSE) (pp.

1–6).

Gao, J. B., Zhang, B. W., & Chen, X. H. (2015). A simplified edge-counting method for

measuring semantic similarity of concepts. In 2015 International Conference on

Machine Learning and Cybernetics (ICMLC) (pp. 176–181).

Ghauth, K. I., & Abdullah, N. A. (2011). The Effect of Incorporating Good Learners’

Ratings in e-Learning Content-based Recommender System. Journal of Educational

Technology & Society, 14(2), 248–257.

Ghorab, M. R. (2014). A Framework for the Delivery and Evaluation of Personalised

Multilingual Information Retrieval. PhD thesis, Trinity College Dublin.

Ghorab, M. R., Zhou, D., O’Connor, A., & Wade, V. (2013). Personalised Information

Retrieval: survey and classification. User Modeling and User-Adapted Interaction,

23(4), 381–443.

Givoni, I. E., Chung, C., & Frey, B. J. (2011). Hierarchical Affinity Propagation. In Un-

certainty in AI, Proceedings of the Twenty-Seventh Conference (pp. 238–246).

165

Glavaš, G., Nanni, F., & Ponzetto, S. P. (2016). Unsupervised text segmentation using

semantic relatedness graphs. In *SEM 2016: The Fifth Joint Conference on Lexical

and Computational Semantics. Association for Computational Linguistics, 125–

130.

Goldwater, S., Griffiths, T. L., & Johnson, M. (2006). Contextual Dependencies in Un-

supervised Word Segmentation. In Proceedings of the 21st International Confer-

ence on Computational Linguistics and the 44th Annual Meeting of the Association

for Computational Linguistics (pp. 673–680).

Gonzalez-Barahona, J. M., Dimitrova, V., Chaparro, D., Tebb, C., Romera, T., Canas,

L., Kleanthous, S. (2006). Towards Community-Driven Development of Educa-

tional Materials: The Edukalibre Approach. Innovative Approaches for Learning

and Knowledge Sharing. Springer Berlin Heidelberg, 125–139.

Gottron, T., Anderka, M., & Stein, B. (2011). Insights into Explicit Semantic Analysis.

In Proceedings of the 20th ACM International Conference on Information and

Knowledge Management (pp. 1961–1964). New York, NY, USA: ACM.

Grosz, B. J., & Sidner, C. L. (1986). Attention, Intentions, and the Structure of Dis-

course. Computational linguistics., 12(3), 175–204.

Gurevych, I., Müller, C., & Zesch, T. (2007). What to be?-electronic career guidance

based on semantic relatedness. In Annual Meeting-Association for Computational

Linguistics (Vol. 45, pp. 1032–1039).

Habash, N., & Rambow, O. (2005). Arabic Tokenization, Part-of-speech Tagging and

Morphological Disambiguation in One Fell Swoop. In Proceedings of the 43rd An-

nual Meeting on Association for Computational Linguistics (pp. 573–580).

Habibi, M., Weber, L., Neves, M., Wiegandt, D. L., & Leser, U. (2017). Deep learning

with word embeddings improves biomedical named entity recognition. Bioinfor-

matics, 33(14), i37–i48.

Hajeer, S. I., Ismail, R. M., Badr, N. L., & Tolba, M. F. (2017). A New Stemming Al-

gorithm for Efficient Information Retrieval Systems and Web Search Engines.

Multimedia Forensics and Security: Foundations, Innovations, and Applications.

Springer International Publishing, 117–135.

Halasz, F., & Schwartz, M. (1990). The Dexter Reference Model. In NIST Hypertext

Standardization Workshop (pp. 95–133).

Halasz, F., & Schwartz, M. (1994). The Dexter Hypertext Reference Model. Communi-

cations of the ACM, 37(2), 30–39.

Hamp, B., & Feldweg, H. (1997). GermaNet- a Lexical-Semantic Net for German. Au-

tomatic Information Extraction and Building of Lexical Semantic Resources for

NLP Applications.

Han, E.-H. (Sam), & Karypis, G. (2000). Centroid-Based Document Classification:

Analysis and Experimental Results. Principles of Data Mining and Knowledge Dis-

covery. Springer Berlin Heidelberg, 424–431.

Hargood, C., Millard, D., & Weal, M. (2011). Measuring Narrative Cohesion: A Five

Variables Approach. Narrative and Hypertext Workshop at Hypertext 11.

Hassen, F., & Amel, G. T. (2017). An efficient synchronous indexing technique for full-

text retrieval in distributed databases. Procedia Computer Science, 112, 811–821.

166

Hearst, M. A. (1994). Multi-paragraph Segmentation of Expository Text. In Proceed-

ings of the 32Nd Annual Meeting on Association for Computational Linguistics

(pp. 9–16).

Hearst, M. A. (1997). TextTiling: Segmenting Text into Multi-paragraph Subtopic Pas-

sages. Computational linguistics, 23(1), 33–64.

Henze, N., & Nejdl, W. (2001). Adaptation in open corpus hypermedia. International

Journal of Artificial Intelligence in Education, 12(4), 325–350.

Henze, N., & Nejdl, W. (2002). Knowledge modeling for open adaptive hypermedia.

International Conference on Adaptive Hypermedia and Adaptive Web-Based Sys-

tems. Springer, Berlin, Heidelberg,174–183.

Hill, F., Reichart, R., & Korhonen, A. (2015). SimLex-999: Evaluating Semantic Mod-

els With (Genuine) Similarity Estimation. Computational Linguistics, 41(4), 665–

695.

Hsueh, P.-Y., D. Moore, J., & Renals, S. (2006). Automatic segmentation of multiparty

dialogue. 11th Conference of the European Chapter of the Association for Compu-

tational Linguistics.

Hutchins, J. (2005). The first public demonstration of machine translation: the

Georgetown-IBM system, 7th January 1954. In AMTA Conference.

Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice hall Eng-

lewood Cliffs.

Jamil, N., Ramli, M. I., & Seman, N. (2015). Sentence boundary detection without

speech recognition: A case of an under-resourced language. Journal of Electrical

Systems, 11(3).

Janati, S. El, Maach, A., & Ghanami, D. El. (2018). SMART Education Framework for

Adaptation Content Presentation. Procedia Computer Science, 127, 436–443.

Jiang, Y., Bai, W., Zhang, X., & Hu, J. (2017). Wikipedia-based information content

and semantic similarity computation. Information Processing & Management,

53(1), 248–265.

Jiang, Y., Zhang, X., Tang, Y., & Nie, R. (2015). Feature-based approaches to semantic

similarity assessment of concepts using Wikipedia. Information Processing & Man-

agement, 51(3), 215–234.

Joel, P., Nada, L., & Dunja, M. (2004). A rule based approach to word lemmatization.

In Proceedings of the 7th International Multi-Conference Information Society IS.

John, A. K., Di Caro, L., & Boella, G. (2017). Text Segmentation with Topic Modeling

and Entity Coherence. Proceedings of the 16th International Conference on Hybrid

Intelligent Systems (HIS 2016). Springer International Publishing, 175–185.

Jungwirth, M., & Hanbury, A. (2018). Replicating an experiment in cross-lingual infor-

mation retrieval with explicit semantic analysis. In CLEF (pp. 73–1613).

Jurafsky, D. (2000). Speech and language processing: An introduction to natural lan-

guage processing. Computational Linguistics, and Speech Recognition.

Kan, M.-Y., Klavans, J. L., & McKeown, K. (1998). Linear Segmentation and Segment

Significance. In 6th international Workshop of Very Large Corpora (WVLC-6) (pp.

197–205).

167

Kardan, A. A., Aziz, M., & Shahpasand, M. (2015). Adaptive systems: a content analy-

sis on technical side for e-learning environments. Artificial Intelligence Review,

44(3), 365–391.

Karimi, M., Jannach, D., & Jugovac, M. (2018). News recommender systems – Survey

and roads ahead. Information Processing & Management, 54(6), 1203–1227.

Kazantseva, A., & Szpakowicz, S. (2014). Hierarchical Topical Segmentation with Af-

finity Propagation. Proceedings of COLING 2014, the 25th International Confer-

ence on Computational Linguistics (pp. 37–47).

Keeffe, I. O., Connor, A. O., Cass, P., Lawless, S., Wade, V., Okeeffe, I., Lawless, S.

(2012). Linked Open Corpus Models , Leveraging the Semantic Web for Adaptive

Hypermedia. Proceedings of the 23rd ACM conference on Hypertext and social

media, 321–322.

Kim, J. W., & Cho, S.-H. (2014). Effectively detecting topic boundaries in a news video

by using wikipedia. International Journal of Software Engineering and Its Applica-

tions, 8(6), 229–240.

Knutov, E., Bra, P. De, & Pechenizkiy, M. (2009). AH 12 years later: a comprehensive

survey of adaptive hypermedia methods and techniques. New Review of Hyperme-

dia and Multimedia, 15(1), 5–38.

Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M. Lee, R.

(2009). Media Meets Semantic Web -- How the BBC Uses DBpedia and Linked

Data to Make Connections. The Semantic Web: Research and Applications.

Springer Berlin Heidelberg, 723–737.

Koch, N., & Wirsing, M. (2002). The Munich reference model for adaptive hypermedia

applications. International Conference on Adaptive Hypermedia and Adaptive

Web-Based Systems. Springer Berlin Heidelberg, 213–222.

Kohlschütter, C., & Nejdl, W. (2008). A Densitometric Approach to Web Page Seg-

mentation. In Proceedings of the 17th ACM Conference on Information and

Knowledge Management (pp. 1173–1182). New York, NY, USA: ACM.

Labadié, A., & Prince, V. (2008). Finding Text Boundaries and Finding Topic Bounda-

ries: Two Different Tasks? Advances in Natural Language Processing. Springer

Berlin Heidelberg, 260–271.

Labutov, I., Huang, Y., Brusilovsky, P., & He, D. (2017). Semi-Supervised Techniques

for Mining Learning Outcomes and Prerequisites. In Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (pp.

907–915). New York, NY, USA: ACM.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic

analysis. Discourse Processes, 25(2–3), 259–284.

Lawless, S. (2009). Leveraging Content from Open Corpus Sources for Technology En-

hanced Learning. PhD thesis, Trinity College Dublin.

Lawless, S., Lavin, P., Bayomi, M., Cabral, J. P., & Ghorab, M. R. (2015). Text Sum-

marization and Speech Synthesis for the Automated Generation of Personalized

Audio Presentations. Natural Language Processing and Information Systems.

Springer International Publishing, 307–320.

Leacock, C., & Chodorow, M. (1998). Combining local context and WordNet similarity

for word sense identification. MIT Press, Cambridge, MA, 49(2), 265–283.

168

Leoncini, A., Sangiacomo, F., Gastaldo, P., & Zunino, R. (2012). A Semantic-Based

Framework for Summarization and Page Segmentation in Web Mining. Theory and

Applications for Advanced Text Mining. InTech 2012.

Lesk, M. (1986). Automatic Sense Disambiguation Using Machine Readable Dictionar-

ies: How to Tell a Pine Cone from an Ice Cream Cone. In Proceedings of the 5th

Annual International Conference on Systems Documentation (pp. 24–26). New

York, NY, USA: ACM.

Leung, Y., Zhang, J.-S., & Xu, Z.-B. (2000). Clustering by scale-space filtering. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(12), 1396–1410.

Levacher, K. (2014). Slicepedia Open Corpus Slicing for Adaptive Web Systems. PhD

thesis, Trinity College Dublin.

Levacher, K., Hynes, É., Lawless, S., O’Connor, A., & Wade, V. (2009). A framework

for content preparation to support open-corpus adaptive hypermedia. In Interna-

tional Workshop on Dynamic and Adaptive Hypertext: generic Frameworks, ap-

proaches and Techniques (pp. 1–11).

Levacher, K., Lawless, S., & Wade, V. (2011). A Proposal for the Evaluation of Adap-

tive Content Retrieval, Modification and Delivery. In Proceedings of the First

Workshop on Personalised Multilingual Hypertext Retrieval (pp. 18–25). New

York, NY, USA: ACM.

Levacher, K., Lawless, S., & Wade, V. (2012a). Slicepedia: Automating the Production

of Educational Resources from Open Corpus Content. 21st Century Learning for

21st Century Skills: 7th European Conference of Technology Enhanced Learning,

EC-TEL. Springer Berlin Heidelberg, 407–412.

Levacher, K., Lawless, S., & Wade, V. (2012b). Slicepedia: Providing Customized Re-

use of Open-web Resources for Adaptive Hypermedia. In Proceedings of the 23rd

ACM Conference on Hypertext and Social Media (pp. 23–32). New York, NY,

USA: ACM.

Levacher, K., Lawless, S., & Wade, V. (2012c). Slicepedia: towards long tail resource

production through open corpus reuse. In Advances in Web-Based Learning-ICWL

2012. Springer Berlin Heidelberg, 109–119.

Levacher, K., Lawless, S., & Wade, V. (2014). Slicepedia: Content-agnostic slicing re-

source production for adaptive hypermedia. Computer Science and Information

Systems, 11(1), 393–417.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and

reversals. In Soviet physics doklady (Vol. 10, pp. 707–710).

Li, P., Wang, H., Li, H., & Wu, X. (2018). Employing Semantic Context for Sparse In-

formation Extraction Assessment. ACM Transactions on Knowledge Discovery

from Data (TKDD) 12(5), 54:1--54:36.

Liang, M. E., Guerra, J., & Brusilovsky, P. (2012). Building multi-layer social

knowledge maps with google maps API. In CEUR Workshop Proceedings (Vol.

872), University of Pittsburgh.

Lin, D. (1998). An information-theoretic definition of similarity. In ICML (Vol. 98, pp.

296–304).

169

Llopis, F., Ferrández, A., & Vicedo, J. (2002). Text Segmentation for Efficient Infor-

mation Retrieval. Computational Linguistics and Intelligent Text Processing.

Springer Berlin Heidelberg, 373–380.

Lu, M., Sun, X., Wang, S., Lo, D., & Duan, Y. (2015). Query expansion via WordNet

for effective code search. In 2015 IEEE 22nd International Conference on Software

Analysis, Evolution, and Reengineering (SANER) (pp. 545–549).

Malioutov, I., & Barzilay, R. (2006). Minimum Cut Model for Spoken Lecture Segmen-

tation. Proceedings of the 21st International Conference on Computational Linguis-

tics and the 44th annual meeting of the Association for Computational Linguistics.

Association for Computational Linguistics, (pp. 25–32).

Malmasi, S., Dras, M., Johnson, M., Du, L., & Wolska, M. (2017). Unsupervised Text

Segmentation Based on Native Language Characteristics. In Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics (Vol. 1, pp.

1457–1469).

Mann, W. C., & Thompson, S. A. (1988). Rhetorical structure theory: Toward a func-

tional theory of text organization. Text-Interdisciplinary Journal for the Study of

Discourse, 8(3), 243–281.

Manning, C. D. (1998). Rethinking Text Segmentation Models: An Information Extrac-

tion Case Study. Technical Report SULTRY-98-07-01, University of Sydney.

Manning, C. D., Raghavan, P., Schütze, H., & others. (2008). Introduction to infor-

mation retrieval (Vol. 1). Cambridge university press.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014).

The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd

annual meeting of the association for computational linguistics: system demonstra-

tions (pp. 55–60).

Masumura, R., Asami, T., Masataki, H., Sadamitsu, K., Nishida, K., & Higashinaka, R.

(2017). Hyperspherical Query Likelihood Models with Word Embeddings. In Pro-

ceedings of the Eighth International Joint Conference on Natural Language Pro-

cessing (Vol. 2, pp. 210–216).

Mathew, A. B. (2018). Data allocation optimization for query processing in graph data-

bases using Lucene. Computers & Electrical Engineering.

Maycock, K. W., & Keating, J. G. (2017). The impact of an automated learning compo-

nent against a traditional lecturing environment. Journal of Computer Assisted

Learning, 33(6), 597–605.

McCann, B., Bradbury, J., Xiong, C., & Socher, R. (2017). Learned in Translation:

Contextualized Word Vectors. Advances in Neural Information Processing Systems

30 (pp. 6294–6305).

Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and ap-

plications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113.

Mendes, P. N., Jakob, M., García-Silva, A., & Bizer, C. (2011). DBpedia Spotlight:

Shedding Light on the Web of Documents. In Proceedings of the 7th International

Conference on Semantic Systems (pp. 1–8). New York, NY, USA: ACM.

Meng, R., Zhao, Z., Chi, Y., & He, D. (2017). Automatic Course Website Discovery

from Search Engine Results. IConference 2017 Proceedings Vol. 2.

170

Meštrović, A., & Calì, A. (2017). An Ontology-Based Approach to Information Re-

trieval. Semantic Keyword-Based Search on Structured Data Sources. Springer In-

ternational Publishing, 150–156.

Meyer, M., Rensing, C., & Steinmetz, R. (2011). Multigranularity Reuse of Learning

Resources. ACM Transactions on Multimedia Computing, Communications, and

Applications (TOMM) 7(1), 1:1--1:23.

Michaelides, D. T., Millard, D. E., Weal, M. J., & DeRoure, D. (2002). Auld Leaky: A

Contextual Open Hypermedia Link Server. Hypermedia: Openness, Structural

Awareness, and Adaptivity. Springer Berlin Heidelberg, 59–70.

Mihalcea, R., & Tarau, P. (2004). TextRank: Bringing Order into Texts. Proceedings of

the 2004 conference on empirical methods in natural language processing (pp. 404–

411). Association for Computational Linguistics.

Mikheev, A. (2000). Tagging Sentence Boundaries. In Proceedings of the 1st North

American Chapter of the Association for Computational Linguistics Conference

(pp. 264–271).

Millard, D. E., Alani, H., Kim, S., Weal, M. J., Lewis, P., Hall, W., Shadbolt, N. (2003).

Generating adaptive hypertext content from the semantic web. 1st International

Workshop on Hypermedia and the Semantic Web, 1–9.

Millard, D. E., Moreau, L., Davis, H. C., & Reich, S. (2000). FOHM: A Fundamental

Open Hypertext Model for Investigating Interoperability Between Hypertext Do-

mains. In Proceedings of the Eleventh ACM on Hypertext and Hypermedia (pp.

93–102). New York, NY, USA: ACM.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the

ACM, 38(11), 39–41.

Misra, H., Yvon, F., Jose, J. M., & Cappe, O. (2009). Text Segmentation via Topic

Modeling: An Analytical Study. In Proceedings of the 18th ACM Conference on

Information and Knowledge Management (pp. 1553–1556).

Mitra, B., & Craswell, N. (2017). Neural Text Embeddings for Information Retrieval. In

Proceedings of the Tenth ACM International Conference on Web Search and Data

Mining (pp. 813–814).

Mladenic, D. (2002). Learning Word Normalization Using Word Suffix and Context

from Unlabeled Data. In Proceedings of the Nineteenth International Conference on

Machine Learning (pp. 427–434).

Mochihashi, D., Yamada, T., & Ueda, N. (2009). Bayesian Unsupervised Word Seg-

mentation with Nested Pitman-Yor Language Modeling. In Proceedings of the Joint

Conference of the 47th Annual Meeting of the ACL and the 4th International Joint

Conference on Natural Language Processing of the AFNLP, 100–108.

Mödritscher, F., Barrios, V. M. G., & Gütl, C. (2004). Enhancement of SCORM to sup-

port adaptive E-Learning within the Scope of the Research Project AdeLE. Pro-

ceedings of E-Learn: World Conference on E-Learning in Corporate, Government,

Healthcare, and Higher Education 2004, 2499–2505.

Mohit, B. (2014). Named Entity Recognition. In I. Zitouni (Ed.), Natural Language Pro-

cessing of Semitic Languages. Springer Berlin Heidelberg, 221–245.

Monge, A. E., & Elkan, C. (1996). The Field Matching Problem Algorithms and Appli-

cations. In KDD (pp. 267–270).

171

Morris, J., & Hirst, G. (1991). Lexical Cohesion Computed by Thesaural Relations As

an Indicator of the Structure of Text. Computational linguistics, 21–48.

Moura, E. S., David, F., Berthier, R., da Silva Altigran S., & André, G. M. (2010). Us-

ing structural information to improve search in Web collections. Journal of the

American Society for Information Science and Technology, 61(12), 2503–2513.

Moussallem, D., Wauer, M., & Ngomo, A.-C. N. (2018). Machine Translation using Se-

mantic Web Technologies: A Survey. Journal of Web Semantics, 51, 1–19.

Mullen, L. A., Benoit, K., Keyes, O., Selivanov, D., & Arnold, J. (2018). Fast, Con-

sistent Tokenization of Natural Language Text. Journal of Open Source Software,

3(23), 655.

Nadeau, D., & Sekine, S. (2007). A survey of named entity recognition and classifica-

tion. Lingvisticæ Investigationes, 30(1), 3–26.

Naili, M., Habacha Chaibi, A., & Hajjami Ben Ghezala, H. (2016). Exogenous ap-

proach to improve topic segmentation. International Journal of Intelligent Compu-

ting and Cybernetics, 9(2), 165–178.

Najar, A. S., Mitrovic, A., & McLaren, B. M. (2016). Learning with intelligent tutors

and worked examples: selecting learning activities adaptively leads to better learn-

ing outcomes than a fixed curriculum. User Modeling and User-Adapted Interac-

tion, 26(5), 459–491.

Navigli, R. (2009). Word Sense Disambiguation: A Survey. ACM computing surveys

(CSUR), 41(2), 10:1--10:69.

Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Risch, T. (2002).

EDUTELLA: A P2P Networking Infrastructure Based on RDF. In Proceedings of

the 11th International Conference on World Wide Web (pp. 604–615).

Nguyen, T. (2018). Java Spring Framework in developing the Knowledge Article Man-

agement application: A brief guide to use Spring Framework. PhD Thesis.

Onal, K. D., Zhang, Y., Altingovde, I. S., Rahman, M. M., Karagoz, P., Braylan, A.,

Lease, M. (2018). Neural information retrieval: at the end of the early years. Infor-

mation Retrieval Journal, 21(2), 111–182.

Pak, I., & Teh, P. L. (2018). Text Segmentation Techniques: A Critical Review. Innova-

tive Computing, Optimization and Its Applications: Modelling and Simulations

Springer International Publishing, 167–181.

Pallottelli, S., Tasso, S., Pannacci, N., Costantini, A., & Lago, N. F. (2010). Distributed

and Collaborative Learning Objects Repositories on Grid Networks., Computa-

tional Science and Its Applications -- ICCSA 2010. Springer Berlin Heidelberg,

29–40.

Penadés, M. C., Martí, P., Canós, J. H., & Gómez, A. (2014). Product Line-based cus-

tomization of e-Government documents. PEGOV 2014: Personalization in e-Gov-

ernment Services, Data and Applications (Vol. 1181).

Pevzner, L., & Hearst, M. A. (2002). A Critique and Improvement of an Evaluation

Metric for Text Segmentation. Computational Linguistics, 28(1), 19–36.

Philpot, A., Hovy, E., & Pantel, P. (2005). The omega ontology. Proceedings of Onto-

Lex 2005-Ontologies and Lexical Resources.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130–137.

172

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Vesely, K.

(2011). The Kaldi Speech Recognition Toolkit.

Prince, V., & Labadié, A. (2007). Text Segmentation Based on Document Understand-

ing for Information Retrieval. Natural Language Processing and Information Sys-

tems. Springer Berlin Heidelberg, 295–304.

Priya, M., & Kumar, C. A. (2015). A survey of state of the art of Ontology construction

and merging using formal concept analysis. Indian Journal of Science and Technol-

ogy, 8(24).

Prokofyev, R., Demartini, G., Boyarsky, A., Ruchayskiy, O., & Cudré-Mauroux, P.

(2013). Ontology-Based Word Sense Disambiguation for Scientific Literature. Ad-

vances in Information Retrieval. Springer Berlin Heidelberg, 594–605.

Rada, R., Mili, H., Bicknell, E., & Blettner, M. (1989). Development and application of

a metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics,

19(1), 17–30.

Rafferty, A. N., & Manning, C. D. (2008). Parsing three German treebanks: Lexicalized

and unlexicalized baselines. In Proceedings of the Workshop on Parsing German.

Association for Computational Linguistics, 2008. (pp. 40–46).

Raganato, A., Bovi, C. D., & Navigli, R. (2017). Neural sequence learning models for

word sense disambiguation. In Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing (pp. 1156–1167).

Reynar, J. C. (1994). An Automatic Method of Finding Topic Boundaries. In Proceed-

ings of the 32Nd Annual Meeting on Association for Computational Linguistics

(pp. 331–333).

Reynar, J. C., & Ratnaparkhi, A. (1997). A Maximum Entropy Approach to Identifying

Sentence Boundaries. In Proceedings of the Fifth Conference on Applied Natural

Language Processing (pp. 16–19).

Riahi, F., Zolaktaf, Z., Shafiei, M., & Milios, E. (2012). Finding Expert Users in Com-

munity Question Answering. In Proceedings of the 21st International Conference

on World Wide Web (pp. 791–798).

Riedl, M. (2016). Unsupervised Methods for Learning and Using Semantics of Natural

Language, PhD thesis. Technische Universität.

Riedl, M., & Biemann, C. (2012a). Text segmentation with topic models. Journal for

Language Technology and Computational Linguistics, 27(1), 47–69.

Riedl, M., & Biemann, C. (2012b). TopicTiling: A Text Segmentation Algorithm Based

on LDA. In Proceedings of ACL 2012 Student Research Workshop (pp. 37–42).

Şah, M., & Hall, W. (2013). A personalized semantic portal for enhanced user support.

New Review of Hypermedia and Multimedia, 19(1), 25–60.

Şah, M., & Wade, V. (2010). Automatic Metadata Extraction from Multilingual Enter-

prise Content. In Proceedings of the 19th ACM International Conference on Infor-

mation and Knowledge Management (pp. 1665–1668).

Şah, M., & Wade, V. (2012). Automatic metadata mining from multilingual enterprise

content. Web Semantics: Science, Services and Agents on the World Wide Web,

11, 41–62.

173

Sakahara, M., Okada, S., & Nitta, K. (2014). Domain-Independent Unsupervised Text

Segmentation for Data Management. In 2014 IEEE International Conference on

Data Mining Workshop (pp. 481–487).

Salton, G. (1989). Automatic text processing: The transformation, analysis, and re-

trieval of Information by Computer. Addison-Wesley.

Salton, G., & McGill, M. J. (1986). Introduction to Modern Information Retrieval. New

York, NY, USA: McGraw-Hill, Inc.

Sánchez, D., Isern, D., & Millan, M. (2011). Content annotation for the semantic web:

an automatic web-based approach. Knowledge and Information Systems, 27(3),

393–418.

Santos, C. D., & Zadrozny, B. (2014). Learning character-level representations for part-

of-speech tagging. In Proceedings of the 31st International Conference on Machine

Learning (ICML-14) (pp. 1818–1826).

Sathiyamurthy, K., & Geetha, T. V. (2011). Topic Segmentation and Evaluation

Measures for E-learning based on Domain and Pedagogical Ontology. International

Journal of Computer Applications, 26(6), 5–10.

Savić, G., Segedinac, M., Milenković, D., Hrin, T., & Segedinac, M. (2018). A model-

driven approach to e-course management. Australasian Journal of Educational

Technology, 34(1).

Selvalakshmi, B., & Subramaniam, M. (2018). Intelligent ontology based semantic in-

formation retrieval using feature selection and classification. Cluster Computing.

Shah, R., & Jain, S. (2014). Ontology-based information extraction: An overview and a

study of different approaches. International Journal of Computer Applications,

87(4).

Shen, L., Satta, G., & Joshi, A. (2007). Guided learning for bidirectional sequence clas-

sification. In Proceedings of the 45th annual meeting of the association of computa-

tional linguistics (pp. 760–767).

Shima, H. (2014). WS4J WordNet Similarity for Java. Retrieved from

https://code.google.com/archive/p/ws4j/ [Accessed: January 22, 2018]

Singhal, A. (2001). Modern information retrieval: A brief overview. IEEE Data Eng.

Bull., 24(4), 35–43.

Slaney, M., & Ponceleon, D. (2001). Hierarchical segmentation finding changes in a

text signal. In Proc. of the SIAM Text Mining 2001 Workshop, 6–13.

Sleiman, H. A., & Corchuelo, R. (2013). A Survey on Region Extractors from Web

Documents. IEEE Transactions on Knowledge and Data Engineering, 25(9), 1960–

1981.

Slimani, T., Yaghlane, B. Ben, & Mellouli, K. (2006). A new similarity measure based

on edge counting. Proceedings of the World Academy of Science, Engineering and

Technology, 17, 3.

Smith, A., & Blandford, A. (2003). MLTutor: An application of machine learning algo-

rithms for an adaptive web-based information system. International Journal of Arti-

ficial Intelligence in Education, 13(2–4), 235–261.

174

Smits, D., & De Bra, P. (2011). GALE: A Highly Extensible Adaptive Hypermedia En-

gine. In Proceedings of the 22Nd ACM Conference on Hypertext and Hypermedia

(pp. 63–72).

Song, F., Darling, W., Duric, A., & Kroon, F. (2011). An Iterative Approach to Text

Segmentation. In P. Clough, C. Foley, C. Gurrin, G. F. Jones, W. Kraaij, H. Lee, &

V. Mudoch (Eds.), Advances in Information Retrieval. Springer Berlin Heidelberg,

. 629–640.

Sosnovsky, S., & Brusilovsky, P. (2005). Layered evaluation of topic-based adaptation

to student knowledge. In Proceedings of Fourth Workshop on the Evaluation of

Adaptive Systems at 10th International User Modeling Conference, UM (pp. 47–

56).

Sosnovsky, S., Hsiao, I.-H., & Brusilovsky, P. (2012). Adaptation ``in the Wild’’: On-

tology-Based Personalization of Open-Corpus Learning Material. 21st Century

Learning for 21st Century Skills: 7th European Conference of Technology En-

hanced Learning, EC-TEL 2012. Springer Berlin Heidelberg, 425–431.

Staikopoulos, A., O’Keeffe, I., Rafter, R., Walsh, E., Yousuf, B., Conlan, O., & Wade,

V. (2012). AMASE: A framework for composing adaptive and Personalised Learn-

ing Activities on the Web. In Advances in Web-Based Learning-ICWL 2012 (pp.

190–199).

Staikopoulos, A., O’Keeffe, I., Rafter, R., Walsh, E., Yousuf, B., Conlan, O., & Wade,

V. (2014). AMASE: A framework for supporting personalised activity-based learn-

ing on the web. Computer Science and Information Systems, 343–367.

Stanovsky, G., Michael, J., Zettlemoyer, L., & Dagan, I. (2018). Supervised Open Infor-

mation Extraction. In Proceedings of The 16th Annual Conference of the North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies (NAACL HLT), 885–895.

Steichen, B. (2012). Adaptive Retrieval, Composition & Presentation of Closed-Corpus

and Open-Corpus Information. PhD thesis.Trinity College Dublin.

Steichen, B., Ashman, H., & Wade, V. (2012). A comparative survey of Personalised

Information Retrieval and Adaptive Hypermedia techniques. Information Pro-

cessing & Management, 48(4), 698–724.

Steichen, B., Lawless, S., O’Connor, A., & Wade, V. (2009). Dynamic Hypertext Gen-

eration for Reusing Open Corpus Content. In Proceedings of the 20th ACM Con-

ference on Hypertext and Hypermedia (pp. 119–128).

Steichen, B., O’Connor, A., & Wade, V. (2011). Personalisation in the Wild: Providing

Personalisation Across Semantic, Social and Open-web Resources. In Proceedings

of the 22Nd ACM Conference on Hypertext and Hypermedia (pp.73–82).

Steichen, B., & Wade, V. (2010). Adaptive retrieval and composition of socio-semantic

content for personalised customer care. In International Workshop on Adaptation in

Social and Semantic Web (pp. 1–10).

Stokes, N., Carthy, J., & Smeaton, A. F. (2004). SeLeCT: a lexical cohesion based news

story segmentation system. AI Communications, 17(1), 3–12.

Stratos, K., Collins, M., & Hsu, D. (2016). Unsupervised part-of-speech tagging with

anchor hidden markov models. Transactions of the Association for Computational

Linguistics, 4, 245–257.

175

Tasso, S., Pallottelli, S., Gervasi, O., Rui, M., & Laganà, A. (2018). Sharing Learning

Objects Between Learning Platforms and Repositories. Computational Science and

Its Applications. Springer International Publishing, 804–816.

Tasso, S., Pallottelli, S., Rui, M., & Laganá, A. (2014). Learning Objects Efficient Han-

dling in a Federation of Science Distributed Repositories. Computational Science

and Its Applications -- ICCSA. Springer International Publishing, 615–626.

Thaker, K., Huang, Y., Brusilovsky, P., & Daqing, H. (2018). Dynamic Knowledge

Modeling with Heterogeneous Activities for Adaptive Textbooks. In The 11th In-

ternational Conference on Educational Data Mining (pp. 592–595).

Tsunoo, E., Bell, P., & Renals, S. (2017). Hierarchical recurrent neural network for

story segmentation. In Proc. of Interspeech.

Turing, A. M. (1950). Computing Machinery and Intelligence. In Mind, Oxford Univer-

sity Press, Mind Association (pp. 433–460).

Uchyigit, G. (2009). Semantically Enhanced Web Personalization. Web Mining Appli-

cations in E-commerce and E-services. Springer Berlin Heidelberg, 25–44.

Utiyama, M., & Isahara, H. (2001). A Statistical Model for Domain-independent Text

Segmentation. In Proceedings of the 39th Annual Meeting on Association for Com-

putational Linguistics (pp. 499–506).

Vassileva, J. (1996). A task-centered approach for user modeling in a hypermedia office

documentation system. User Modeling and User-Adapted Interaction, 6(2), 185–

223.

Verma, B., & Thakur, R. S. (2018). Sentiment Analysis Using Lexicon and Machine

Learning-Based Approaches: A Survey. Proceedings of International Conference

on Recent Advancement on Computer and Communication. Springer Singapore,

441–447.

Vinokourov, A., Cristianini, N., & Shawe-Taylor, J. (2003). Inferring a semantic repre-

sentation of text via cross-language correlation analysis. In Advances in neural in-

formation processing systems (NIPS 2003) (pp. 1497–1504).

Viveros-Jiménez, F., Sánchez-Pereza, M. A., Gómez-Adorno, H., Posadas-Durán, J. P.,

Sidorov, G., & Gelbukh, A. (2018). Improving the Boilerpipe Algorithm for Boiler-

plate Removal in News Articles Using HTML Tree Structure. Computación y

Sistemas, 22(2).

Vodolazova, T., Lloret, E., Mu, R., & Palomar, M. (2013). Extractive Text Summariza-

tion : Can We Use the Same Techniques for Any Text ? International Conference

on Application of Natural Language to Information Systems. Springer Berlin Hei-

delberg, 164–175.

Vogels, T., Ganea, O.-E., & Eickhoff, C. (2018). Web2Text: Deep Structured Boiler-

plate Removal. Advances in Information Retrieval. Springer International Publish-

ing, 167–179.

Vossen, P. (1998). A multilingual database with lexical semantic networks. Kluwer Ac-

ademic Publishers.

Wang, L., Li, S., Lv, Y., & Houfeng, W. (2017). Learning to rank semantic coherence

for topic segmentation. In Proceedings of the 2017 Conference on Empirical Meth-

ods in Natural Language Processing (pp. 1340–1344).

176

Wang, S. (2008). Ontology of learning objects repository for pedagogical knowledge

sharing. Interdisciplinary Journal of E-Learning and Learning Objects, 4(1), 1–12.

Wang, Z., Zhang, J., & Huang, J. (2017). Multi-granularity hierarchical topic-based seg-

mentation of structured, digital library resources. The Electronic Library, 35(1),

99–120.

Weal, M. J., Alani, H., Kim, S., Lewis, P. H., Millard, D. E., Sinclair, P. A. S., Shad-

bolt, N. R. (2007). Ontologies as facilitators for repurposing web documents. Inter-

national Journal of Human-Computer Studies, 65(6), 537–562.

Weizenbaum, J. (1966). ELIZA–a computer program for the study of natural language

communication between man and machine. Communications of the ACM, 9(1),

36–45.

Wiley, D. A. (2000). Learning Object Design and Sequencing Theory. PhD Thesis.

Brigham Young University.

Willett, P. (2006). The Porter stemming algorithm then and now. Program, 40(3)

Wilson, C., & Scott, B. (2017). Adaptive systems in education: a review and conceptual

unification. International Journal of Information and Learning Technology, 34(1),

2–19.

Witten, I., & Milne, D. (2008). An effective, low-cost measure of semantic relatedness

obtained from Wikipedia links. In Proceeding of AAAI Workshop on Wikipedia

and Artificial Intelligence: an Evolving Synergy, AAAI Press, Chicago, USA (pp.

25–30).

Wu, H., De Bra, P., Aerts, A., & Houben, G.-J. (2000). Adaptation control in adaptive

hypermedia systems. In Adaptive Hypermedia and Adaptive Web-Based Systems

(pp. 250–259).

Wu, Z., & Palmer, M. (1994). Verbs Semantics and Lexical Selection. In Proceedings

of the 32Nd Annual Meeting on Association for Computational Linguistics (pp.

133–138).

Xu, C., Xie, L., & Xiao, X. (2017). A Bidirectional LSTM Approach with Word Em-

beddings for Sentence Boundary Detection. Journal of Signal Processing Systems,

1–13.

Xu, J., Gao, J., Toutanova, K., & Ney, H. (2008). Bayesian Semi-supervised Chinese

Word Segmentation for Statistical Machine Translation. In Proceedings of the

22Nd International Conference on Computational Linguistics (pp. 1017–1024).

Yaari, Y. (1997). Segmentation of Expository Texts by Hierarchical Agglomerative

Clustering. In Recent Advances in NLP (RANLP’97).

Yadav, V., & Bethard, S. (2018). A Survey on Recent Advances in Named Entity

Recognition from Deep Learning models. In Proceedings of the 27th International

Conference on Computational Linguistics (pp. 2145–2158).

Ye, N., Gauch, S., Wang, Q., & Luong, H. (2010). An Adaptive Ontology Based Hier-

archical Browsing System for CiteSeerx. In 2010 Second International Conference

on Knowledge and Systems Engineering (pp. 203–208).

Ye, N., Zhu, J., Zheng, Y., Ma, M., Wang, H., & Zhang, B. (2008). A Dynamic Pro-

gramming Model for Text Segmentation Based on Min-Max Similarity. Infor-

mation Retrieval Technology. Springer Berlin Heidelberg, 141–152.

177

Zeleny, J., Burget, R., & Zendulka, J. (2017). Box clustering segmentation: A new

method for vision-based web page preprocessing. Information Processing & Man-

agement, 53(3), 735–750.

Zeng, D., Liu, K., Chen, Y., & Zhao, J. (2015). Distant supervision for relation extrac-

tion via piecewise convolutional neural networks. In Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Language Processing (pp. 1753–1762).

Zhang, K., Sun, M., & Xue, P. (2010). A Local Generative Model for Chinese Word

Segmentation. Information Retrieval Technology. Springer Berlin Heidelberg, 420–

431.

Zhang, Y., Chan, W., & Jaitly, N. (2017). Very deep convolutional networks for end-to-

end speech recognition. In 2017 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP) (pp. 4845–4849).

Zhou, D., Goulding, J., Truran, M., & Brailsford, T. (2007). LLAMA: Automatic Hy-

pertext Generation Utilizing Language Models. In Proceedings of the Eighteenth

Conference on Hypertext and Hypermedia (pp. 77–80).

Zhou, D., Truran, M., Brailsford, T., Ashman, H., & Pourabdollah, A. (2008). Llama-b:

Automatic Hyperlink Authoring in the Blogosphere. In Proceedings of the Nine-

teenth ACM Conference on Hypertext and Hypermedia (pp. 133–138).

Zouaq, A., Jovanovic, J., Joksimovic, S., & Gasevic, D. (2017). Linked Data for Learn-

ing Analytics: Potentials and Challenges. Handbok of Learning Analytics, 347–

355.

	Abstract
	1. Introduction
	1.1 Motivation
	1.2 Research Question
	1.2.1 Research Objectives

	1.3 Research Contributions
	1.4 Research Methodology
	1.5 Thesis Overview

	2. State of the Art
	2.1 Introduction
	2.2 Natural Language Processing
	2.2.1 Overview
	2.2.2 Low-level NLP Tasks
	2.2.3 High-level NLP Tasks
	2.2.4 Summary

	2.3 Text Segmentation
	2.3.1 Overview
	2.3.2 Content-based and Discourse-based
	2.3.3 Supervised and Unsupervised
	2.3.4 Borderline sentences detection methods
	2.3.5 Linear and Hierarchical
	2.3.6 Hierarchical Text Segmentation Techniques
	2.3.7 Summary

	2.4 Adaptive Systems
	2.4.1 Overview
	2.4.2 Anatomy of Adaptive Systems
	2.4.3 Models of Adaptive Systems
	2.4.4 Content Models
	2.4.4.1 Closed Corpus Content Models
	2.4.4.2 Open Corpus Content Models

	2.4.5 Summary

	2.5 Content Discoverability Techniques
	2.5.1 External Content Discoverability Techniques
	2.5.2 Content Indexing
	2.5.2.1 Document-level Indexing
	2.5.2.2 Fragment-level Indexing

	2.5.3 Internal Content Discoverability Techniques

	2.6 Content Reusability Techniques
	2.6.1 Content Encapsulation
	2.6.2 Shared publishing
	2.6.3 Content Modification

	2.7 Natural Language Processing in Adaptive Systems
	2.8 Chapter Summary

	3. OntoSeg: A Novel Approach to Text Segmentation using Ontological Similarity
	3.1 Introduction
	3.2 OntoSeg Architecture
	3.2.1 Semantic annotation
	3.2.2 Similarity Computation
	3.2.2.1 Ontological Similarity
	3.2.2.2 Lexical similarity

	3.2.3 Hierarchical Agglomerative Clustering (HAC)

	3.3 From Hierarchical into Linear Representation
	3.4 Evaluation
	3.4.1 Experimental Setup
	3.4.2 Elementary Units for OntoSeg
	3.4.3 Evaluation Metrics
	3.4.4 Results
	3.4.4.1 OntoSeg Performance Against Other Approaches

	3.5 Chapter Summary

	4. C-HTS: A Concept-based Hierarchical Text Segmentation approach
	4.1 State of the Art Influences
	4.2 Intuition behind C-HTS
	4.3 Semantic Relatedness
	4.3.1 How does Explicit Semantic Analysis work?

	4.4 C-HTS Architecture
	4.4.1 Morphological Analysis
	4.4.2 Semantic Representation and Relatedness Measuring
	4.4.3 Hierarchical Agglomerative Clustering
	4.4.4 Word Sense Disambiguation

	4.5 Evaluation
	4.5.1 Datasets
	4.5.2 Baselines
	4.5.3 Results

	4.6 Discussion
	4.6.1 Elementary Units for C-HTS
	4.6.2 Text Granularity
	4.6.3 Multilingual C-HTS

	4.7 C-HTS Validation
	4.7.1 Semantic Similarity using WordNet
	4.7.2 Lexical Representation

	4.8 The Impact of Knowledge Breadth
	4.8.1 Experiment and Results

	4.9 Chapter Summary

	5. CROCC: Customised Reuse of Open- and Closed-corpus Content
	5.1 State of the Art Influences
	5.1.1 Content Incorporation Techniques
	5.1.2 Content Right-Fitting
	5.1.3 Content Structuring
	5.1.4 Content Representation
	5.1.5 Content Indexing
	5.1.6 Content Discoverability
	5.1.7 Content Reusability
	5.1.8 Summary

	5.2 CROCC Architecture
	5.2.1 Content Harvester
	5.2.2 Content Pruner
	5.2.3 Structure Builder
	5.2.4 Slice Indexer
	5.2.5 Content Repository
	5.2.5.1 Concept Index
	5.2.5.2 Text Index

	5.2.6 Slice Selector

	5.3 Adhering to the Key Principles
	5.4 CROCC Implementation
	5.4.1 RESTful Web Service
	5.4.2 Content Harvester
	5.4.3 Content Pruner
	5.4.4 Structure Builder
	5.4.5 Slice Indexer
	5.4.6 Content Repository
	5.4.7 Slice Selector
	5.4.8 Request Coordinator

	5.5 Chapter Summary

	6. Evaluation of the CROCC Service
	6.1 Evaluation Methodology
	6.2 Data and Content Sourcing
	6.2.1 Closed Corpus Content Resources
	6.2.2 Open Corpus Content Resources

	6.3 Baseline System
	6.3.1 Document Indexing
	6.3.2 Slice Generation

	6.4 Experimental Setup
	6.4.1 Concept Vector Cut-off Parameter
	6.4.2 Datasets Indexing and Slices Generation
	6.4.3 Evaluation System

	6.5 Results
	6.5.1 General Performance
	6.5.2 The Query Element of the Request
	6.5.3 Number of Sentences Element of the Request
	6.5.4 Discussion

	6.6 Chapter Summary

	7. Conclusion and future work
	7.1 Research Question, Objectives and Achievements
	7.1.1 Research Objective 1
	7.1.2 Research Objective 2
	7.1.3 Research Objective 3
	7.1.4 Research Objective 4

	7.2 Contributions
	7.3 Further Work
	7.3.1 Multilingual Content-Supply
	7.3.2 Domain-Specific Concept Space
	7.3.3 Integrate Different Content Annotation Tools

	7.4 Final Remarks

	References

