
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin 

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and 
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing 
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property 
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR 
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources 
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in 
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal 
conventions. Where specific permission to use material is required, this is identified and such 
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the 
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity 
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising 
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific 
use constraints, details of which may not be explicitly described. It is the responsibility of potential and 
actual users to be aware of such constraints and to abide by them. By making use of material from a 
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the 
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the 
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & 
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from 
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or 
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for 
your research use or for educational purposes in electronic or print form providing the copyright owners 
are acknowledged using the normal conventions. You must obtain permission for any other use. 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has 
been supplied on the understanding that it is copyright material and that no quotation from the thesis 
may be published without proper acknowledgement.



Applications of Statistical Physics to
economics: distributions of wealth  
and correlations of financial data

by

Ricardo Coelho

A Thesis Submitted to 

The University of Dubhn 

for the Degree of

Doctor of Philosophy

School of Physics 

Trinity College 

University of Dublin

A ugust 2008



TRIS41TY COLLEGE

1 0 ALiu 20C3_ 

LI8RARV DUBLIN



D eclaration

This thesis haa not been subniitted as an exercise for a degree a t any other University. Except 

where otherwise stated , the work described lierein has been carried out by the author alone. This 

thesis may be borrowed or copied upon request with the permission of the Librarian, lYinity 

College, University of Dublin. The copyright belongs jointly to the University of Dublin and 

Ricardo Coelho.

Signature of Author (̂ o>/

Ricardo Coelho 

August 2008



Summary

Ovor the last dccade the study of ocononiic and financial problems by the physics com m unity has 

become very popular. Econophysics describes the application of tools from statistica l physics 

to the study of problems in economics, such as correlations in stock prices or the d istribution  of 

wealth in society.

In this thesis ŵ e have considered two separate topics. F irst, the distribution of wealth in 

societies where the emphasis is on examining the power laws th a t characterise the distribution 

of wealth and income. And second, the correlations in stock prices, which is linked to asset and 

portfolio risk management.

Since Vilfredo Pareto in 1896, it is well known th a t the distributions of wealth and income 

in societies are described by a power law. Nowadays, the analysis is refined. Power laws apply 

only for the rich end of the distribution and other kind of distributions such as the log-normal, 

the exponential or Ganmia distribution explain the lower and middle parts of the distribution 

of wealth and income.

The power-law distribution of wealth is reproduced by various physical models, based on 

the analogy w ith collisions of particles or Langevin type equations. We review some models 

and empirical results foimd in the past and point to the existence of double power laws in 

the distribution of wealth. These double power laws have two different exponents, one for the 

millionaires of society and another one for the billionaires. A model of money exchange between 

agents where agents are divided in two groups, one with a higher saving propensity than  the 

other, is presented and it reproduces the double power law characteristic. Also some analytical 

tools about double power laws are introduced and compared with our numerical results.

For the study of correlations in stock prices, which are of extrem e im portance in the construc­

tion of optim al portfolios by investors, we present an analysis of financial d a ta  from stocks th a t 

belong to some of the main indices around the world, the London Stock Exchange, FTSEIOO, 

the Dow Jones Industrial Average index, DJIA, the Cotation Assistee en Continu, CAC40, 

the Belgium index, BEL20 and the Am sterdam  Exchange Index, AEX. Using the concept of 

random m atrix  theory, which is a theory developed for applications in Nuclear Physics, and



minimal spanning trees, which help us in the visualisation of the affinities between stocks, show­

ing stocks w ith higher correlations next to each other, we study different characteristics of our 

portfolios of stocks from different indices. Our studies reveal a division of the stocks in industrial 

sub-sectors, m ostly in good agreement with empirically derived groupings, b u t also indicating 

possil)le refinements, im portant for the use in portfolio optimisation.

A similar analysis of m arket indices of different comitries shows th a t despite globalisation 

strong regional geographical correlations still exist.

A study of cross-correlations of stocks from different indices also show th a t depending on the 

location of the m arkets there are different behaviours for tlie correlcitions between stocks. For a 

study of cross-correlations between stocks from FTSEIOO and D.TIA indices we see a segregation 

between stocks from each m arket. B ut for a study of cross-correlations between Eui'opean stocks, 

most of the stocks cluster in groups of the same industrial sector.
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C hapter 1

Introduction

“I  think the next century will be the century o f complexity. ” (Stephen Hawking)

For the past few decades, many physicists have been exploring many different fields, th a t 

have in common one characteristic, complexity. There are many complex systems in nature, 

from grains of sand in an avalanche to the return  price of a stock in a m arket [1].

A field of study in complex systems th a t has received a lot of atten tion  and which has a 

large number of works published, is the applications of physics to finance and economics, also 

baptised as Econophysics by Eugene Stanley [2],

The introduction of physics to  the economical science has a historical backgroimd. For 

example, most of the people know Copernicus as the founder of m odern astronomy, bu t he 

achieved a great reputation  as an adviser on economic m atters to  the King of Poland. On 

his duties as adviser, Copernicus became aware of the economic and social distress caused by 

wartime inflation and wrote a report on the subject in 1522. During the next few years he 

revised it into a short treatise on the economic evils of a debased currency and made specific 

proposals for m onetary reform [3].

Before Copernicus, most of the writings on the subject of money were passages in A ristotle’s 

Politics as interpreted and applied by churchmen. They were very theological and were concerned 

more with w hat ought to happen than  with what actually did happen. Copernicus’ report was 

purely empirical and pragm atic, in place of appealing to a priori principles, he appeals to the 

observed facts and he supports each step to specific factual evidence [3].

Isaac Newton, most known as the father of classical mechanics, was also a W arden of the 

Mint and M aster of the Royal M int for 31 years in the Royal Mint in London, which is the body 

perm itted to m anufacture coins in the United Kingdom [4].

The m athem atician Louis Bachelier, who’s PhD  supervisor was Henri Poincare, was the first 

to publish a formalisation of a random  walk in his PhD  thesis, Theorie de la speculation [5],

1
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where he discussed the use of Brownian motion to evahiate stock options. In Figure 1.1 we 

represent the evolution of the price of a stock and a random walk.
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Figure 1.1: Evolution of the price of a stock (left figure) compared with the evolution of a 

random walk (right figure).

Benoit M andelbrot, a mathematician famous for his achievements in fractal theory, found 

tha t price changes in financial markets did not follow a Gaussian distribution. For the high end 

of the distribution of price changes, Mandelbrot stated tha t they are fatter than a Gaussian 

distribution and are better explained by another distribution, the Levy stable distribution [6, 7].

In the last 20 years the number of physicists that applied some of their techniques and 

knowledge to the fields of economic and finance has significantly increased. This can be observed 

in the amount of articles uploaded to the Los Alamos arxiv [8] related with the econophysics 

field and also in tfie number of books published about this topic. In the main physics literature: 

Physical Review Letters [9], Physical Review E [10] and The European Physical Journal B [11] 

there are plenty of publications in each volume about this field. Most of the publications are in 

Physica A [12].

The first books in the field were published by Rosario M antegna and Eugene Stanley [2] and 

Jean-Philippe Bouchaud and Marc Potters [13], both in 2000. Next we give reference to 5 books 

tha t also laid out and reviewed the field. In 2001, Johannes Voit published his The Statistical 

Mechanics of Financial Markets [14], Two years later Didier Sornette published Why Stock 

Markets Crash: Critical Events in Complex Financial Systems [15]. In 2004 there appeared 

Dynamics of Markets: Econophysics and Finance by Joe McCauley [16] and the Kolkata group 

of Bikas Chakrabarti published some reviews about econophysics in Econophysics of Wealth 

Distributions [17] in 2005 and Econophysics and Sociophysics of Wealth Distributions: Trends 

and Perspectives [18] in 2006. A review of these books and some articles can be found in the 

main econophysics website, the Econophysics Forum [19].

The number of conferences exclusive to the topic of econophysics has also increased in the
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last decade. The m ain conferences are: Apphcations of Physics in Financial Analysis (APFA), 

the Econophysics Collociuium, the Nikkei Econophysics Symposium and the Econophys-Kolkata 

Workshop.

In summary, while individual physicists were interested in problems in economy for a long 

time, the field of econophysics only properly emerged in the last decade when physicists started  

to look at open problems in economics and with the large am ount of financial d ata  available 

s tarted  to see many differences between the economic theory and empirical results.

The area of econophysics has many sub-areas bu t in this thesis we ju s t focus on two of them, 

the study of wealth distributions and the correlations between tim e series of stock price returns.

1.1 W ealth

The area of study of wealth distributions is not only related with the study of wealth or income 

distributions in societies [17], bu t also with the size of companies in a country [20], or the GDP 

(Gross Domestic P roduct) of countries [21], The study of wealth distributions has attracted  

great interest since tlie work of the socio-economist Vilfredo Pareto, who wrote a book about 

economical politics 100 years ago [22], studying a large am ount of economical data. Pareto 

suggested th a t the distribution of wealth from different cities and countries follow a power law 

distribution with similar exponents a  (between 1 and 2), known nowadays as P are to ’s index:

p{w) ~  for large w. (1-1)

In Figure 1.2 we show the cuuuilative distribution of income in Japan  for 1998 presented by 

Souma [23].

A part from the study of the empirical data, physicists are very interested in modelling wealth 

distributions [17, 18]. A detailed review of some models and open problems in the study of wealth 

distribution [24] was published by us in a chapter of one of the econophysics books [18] and it 

is summarised in C hapter 2.

Models used in biological systems, such as Lotka-Volterra models, were used by physicists to 

explain the economic trade relations in connnunities [25, 26, 27]. Gas models of collisions were 

transform ed into economic models where agents substitu te molecules, money substitu tes energy 

and trade svibstitutes collisions [28, 29, 30, 31, 32, 33, 34]. A model of dynamical network of 

families [35], where each node is one family and links between nodes indicates family relations, 

was used to implement money exchange between different families due to  paym ents of new links 

(like weddings), paym ents to  the society (to rear a child) and distributions of money from nodes 

th a t will disappear (inheritance).
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Figure 1.2: Cum ulative distribution of income in Japan  for 1998 presented by Sounia [23]. This 

d a ta  is related with more than  50 million individuals, about 80% of all workers in Japan. The 

income-tax d a ta  is available from a list of the 84515 individuals who paid income tax  of 10 

million yen or more.

The appeal in using such models is th a t they are simple, with analytical solutions w ith few 

parametei'« th a t describe the empirical da ta  of wealth distributions cjuite well. However, issues 

remain. For example, the power law distribution of wealth just appears for the richer p a rt of 

society (5-10% of the population). The wealth of the other part of society is normally defined to 

have a log-normal or Gibbs distribution. But even the power law in the end of the d istribution  

seems to  have more th an  one Pareto  exponent. A model able to explain an  exponent for the 

millionaires and other exponent for the billionaires tha t normally appear on the list of World 

Top Richest (like Forbes [36]) is presented in C hapter 3.
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1,2 Correlations betw een tim e series of stock price returns

The area of study of correlations between time series tries to understand the nature of these 

time series, how they evolve in time, and if it is possible to predicted movements of the market. 

It is also very popular to study the price returns and their distribution. For a long time, the 

distributions of price returns were treated as Gaussian distributions, but this model is known 

to provide only a first approximation of what is observed in the empirical data. To explain 

the empirical evidence of fatter tails of the measured distributions, the proposed Levy stable 

distributions for the price changes has had much success among the physics community.

A better knowledge of market movements and the correlations of stock returns is essential 

for investors in terms of construction of portfolios. A matrix of correlations tell us about the 

affinity between different stocks. This affinity is measure in terms of how two different time 

series move in relation to each other. Studying the matrix of correlations between time series 

and its properties became very popular among the physicist working in economics problems.

The two main techniques to analyse the correlation matrix are through the random matrix 

theory and the visualisation of the minimal spanning tree.

Random Matrix Theory was previously used in Nuclear Physics to study the statistical 

behaviour of energy levels of nuclear reactions [37]. According to quantum mechanics, the 

energy levels are given by the eigenvalues of a Hermitian operator, the Hamiltonian which was 

postulated to have independent random elements. However, analysis of the eigenvalues of real 

data showed deviations from the spectra of fully random matrices, thus indicating non-random 

properties, useful for an understanding of the interactions between nuclei. This approach is 

nowadays applied to the study of correlations of time series of returns in the stock market, 

where physicists try to find the non-random properties of the matrix of correlations [38, 39, 40]. 

With the prediction of the eigensystem of a random matrix, compared with the eigensystem of 

the matrix of empirical data of stocks, we can see eigenvalues far from the prediction spectrum, 

that have a lot of information about the market [41, 42], the index of the market, or the clustering 

in industrial sectors in markets. The index of the market can be calculated as the simple mean 

of the prices of all the stocks that belong to the market, or the weighted mean, where some 

stocks contribute more to the index, related with the size of the company. The industrial sectors 

can be different for different classifications, but normally the industrial sector indicates which 

kind of business the company is engaging in.

l b  visualise the hierarchical structure of financial markets, Mantegna dofined a distance met­

ric between stocks, using the correlations between them [43]. Using this distance, he constructed 

a network of stocks (Minimal Spanning Tree), where nodes are stocks and links are the distances 

between them. An example of a network of companies is represented in Figure 1.3.
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Figure 1.3: Minimal spanning tree connecting the 30 stocks used to compute the Dow Jones 

Industrial Average presented by Mantegna in his article [43].

The relations between companies show the formation of clusters of sectors. Properties of the 

trees, like topology for different time scalcs [44, 45], degree distribution of the nodes [46, 47, 48, 

49, 50], time evolution of moments of the distances of the trees [48, 49, 51, 52, 53, 54, 55], spread 

of nodes in the tree [48, 52, 53], robustness of the tree [48, 49, 50, 52, 53, 54, 56], topology before 

and after financial crashes [54] and others are presented in Chapters 4, 5, 6, 7 and 8.
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W ealth D istributions

2.1 In trod u ction

The statem ent th a t wealth is not distributed uniformly in society appears obvious. However, this 

im mediately leads to  several non-trivial questions. How is wealth distributed? W hat is the form 

of the distribution function? Is this distribution universal or does it depend on the individual 

coimtry? Does it depend on time or history? These questions were first studied by Vilfredo 

Pareto in 1896/97 who noticed th a t the rich end of the distribution was well described by a 

power law. Ever since these early studies of Pareto, economists, and more recently physicists, 

have tried to first of all infer the exact shape of the entire distribution from economic data , and 

secondly, to design theoretical models th a t can reproduce such distributions.

In this chapter we review both  historical and current concepts and d a ta  which support the 

thesis th a t certain features of the wealth distribution are indeed universal and also review some 

models th a t try  to explain this universality. In chapter 3 we set out to  explain a feature of such 

distributions which is often neglected, namely double power laws..

Progress has been made, bu t questions remain. How can wealth be measured? Gross salary 

income may be a good indicator for low-to-medium income earners, bu t how do the super-rich, 

many of whom are not employees, fit into this picture. The wealth calculated for the super-rich 

in lists of top  individuals seems to  be calculated from the value of assets th a t each billionaire 

owns a t each year, plus some of their possessions and income.

The definitions of wealth and income show the difference between these two quantities. The 

wealth is the am ount of money and possessions th a t an agent has a t a specific time. The income 

is the money th a t an agent receives regularly from paym ents or investments. So from the 

definition.s we see th a t agents trade money in the sense of income, bu t don’t exchange wealth. 

In most of the models studied, the exchanges between agents are given by a term  which is 

proportional to their wealth, bu t i t ’s not the wealth itself.

7
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In our disciission of diflferent models we shall restrict onrselves to income, which is what 

more often we use in the daily basis to trade with other agents. We shall only concern ourselves 

with the question of wealth when we calculate the linal amount th a t belongs to each agent.

We begin this chapter by giving some background on the thinking of Pareto, a researcher who 

was ahead of his tim e w ith regards to  scientific research, but who also m irrored the Zeitgeist of 

his period. We then summarise early work by Gibrat, Champernowne, Lydall and M andelbrot. 

Before reporting more recent approaches, we present some empirical results and com pare with 

the probability distribution functions more often used to explain the distribution of wealth in 

societies. In particular we featiu'e a number of different agent based models: the Family Net­

work model, the Generahsed Lotka Volterra model, the Slanina Model and other models where 

agents exchange money by pairwise transactions by analogy with the exchange of momentum 

by colliding molecules in a gas. These collision models which are conceptually extrem ely simple, 

are also accessible to analytical theory and thus currently en vogue.

2.2 P areto  and early m odels o f w ealth d istr ib u tion  

2.2.1 Pareto law

The distribution of wealth in society has proved to be of great interest for m any years. Based 

on the numerical analysis of an impre.ssive am ount of economic data , Italian economist Vilfredo 

Pareto [22] was the first to suggest tha t it followed a natural law now often simply term ed Pareto 

law. A sketch of an income distribution as seen in Pareto’s Manual of Political Economy  [57] is 

shown in Fig. 2.1. However there are a number of different forms of Pareto  law quoted in the 

literature. M andelbrot [6] distinguishes bntwoen two different versions:

• the strong Pareto  law;

• the weak Pareto  law.

If P{u)  is the percentage of individuals with an income U greater th an  u  (cumulative d istribu­

tion), the strong Pareto  law states that:

{(w/uo)~“ for u  >  uo\ / u; ^2.1)

1 for u < u q

The density p{u) = —dP{u ) /d u  is thus given by:

. Q {uqT  f o r u > u o  . .
p{u) = <( (2.2)
0 tor u < uo
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Here uq is a scale factor and the value of the exponent a  is not determ ined. In the strongest 

form of the Pareto law, a  = 3 /2 , which is the average value of a  in P are to ’s original d a ta  (see 

Table 2.1). Because the strong Pareto  law doesn’t apply to the em pirical d a ta  in the whole 

range of income, but ju st for large values of u, the weak Pareto  law states th a t the power law 

only holds in the limit u —> oo:

1, as u ^  oo (2.3)
(u/uo)

wliere the value of a  remains unspecified. In the remainder of this chapter we shall mean this 

form of the law when we write Pareto  law.

P ( u )

U

Figure 2.1: Sketch of the distribution of income as seen in P are to ’s M anual [57]. For large values 

of income this follows a power law.

Today, P are to ’s law is usually cpoted in term s of the distribution density function p{u),  

ra ther th an  the cum ulative distribution function, P{u) = p(u')du' ,  viz:

p(u)  ~  for large u. (2-4)

In Figure 2.2 we represent this distribution density function p{u),  for a Pareto  exponent a  equal 

to 1.5.

2.2.2 P a reto ’s v iew  o f society

It is interesting to read the original writings of Pareto  from 1906, since these reveal more about 

the process by which he arrived a t his conclusions. He opens the chapter on Population in his
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Table 2.1: Table, taken from P are to ’s book [22], showing the exponent a  for a num ber of different 

da ta  sets. Note th a t this is only a small extract of all the d ata  th a t Pareto analysed.
Country Year a Country Year a

England 1843 1.50 Perouse, village 1,69

1879-80 1.35 Perouse, campagne 1.37

Prussia 1852 1.89 Italian cities 1.32

1876 1.72 Italian villages 1,45

1881 1.73 Basle 1887 1.24

1886 1.68 Paris 1.57

1890 1.60 Augsburg 1471 1,43

1894 1.60 1498 1.47

Saxony 1880 1.58 1512 1.26

1886 1.51 1526 1,13

Florence 1,41 Peru end of 18''‘ century 1.79

1 . x  10“ '^
P(u)

1 . x  10“ '^

1 .x  10”^'
l . x l O ^  l . x l O ^  l . x l O ^  l . x l O ^

u

Figure 2.2: Representation of the weak Pareto law (eq. 2.4) for a  =  1.5, in a log —log scale. 

The straight line is the characteristic of this power law distribution.

Manual of Political Economy [57], which summarises his findings and thoughts in a mainly non- 

m athem atical fashion, by stating th a t “society is not homogeneous” ([57], p. 281). T he existing
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'‘economic and social inecjualities” correspond to the “inecjuahties of hum an beings per se” with 

respect to  “physical, moral, and intellectual viewpoints” ([57], p. 281). Thus an excellent 

indicator of non-homogeneity in society is, according to  Pareto, the distribution of income in 

society, as sketched in Fig. 2.1.

P are to ’s main achievement, as seen from the perspective of today ’s econophysicists and 

economists, is the observation th a t this distribution is universal, i.e. th a t it “varies very little 

in space and time; different peoples and different eras yield very similar curves. There is a 

remarkable stability of form in this curve.” ([57], p. 285). Furtherm ore Pareto discovered th a t 

the form of the curve “does not correspond at all to the curve of errors, th a t is, to the form the 

curve would have if the acquisition and conservation of wealth depended only on chance” .

This non-Gaussian character of the curve is obvious from its lack of sym m etry about its peak 

and the pronounced tail a t the rich end of the distribution, although Pareto does not dwell on 

the concept of power laws in his Manual [57].

Pareto  notes th a t the poor end of the wealth distribution cannot be fully characterised, due 

to a lack of data. He stresses, however tlie existence of a “minimum income... below which men 

cannot fall w ithout perishing of poverty and hunger” ([57], p. 286).

Finally he notes the stability of the distribution: “If, for example, the wealthiest citizens 

were deprived of all their income [...] sooner or later [the curve] would reestablish itself in a 

form similar to the initial curv'e. In the same way, if a famine [...] were to  wipe out the lower 

parts of the population [...] the ftgure [...] would return to a form resembling the original one.” 

([57], p. 292).

For Pareto  the wealth distribution of Fig. 2.1 “gives a picture of society” ([57], p. 286) and 

thus forms the basis of his theory of society. In using argum ents based on Darwin’s ideas of 

social selection, in common with many of his contemporaries, and calhng feminism a malady 

and referring to  women as “objects of luxury who consume b u t do not produce” ([57], p. 297), 

he also paints a picture of society at his time.

In P are to ’s view people are in principle free to  move along the wealth axis in the course of 

their lifetime, in bo th  directions, bu t this movement is determ ined by “whether they are or are 

not well fitted for the struggle of life” ([57], p. 287). If they drop below the minimum income 

they “disappear” ([57], p. 286) or are “elim inated” ([57], p. 287). In the region of low incomes 

“people cannot subsist, whether they are good or bad; in this region selection operates only to 

a very small extent because extrem e poverty debases and destroys the good elements as well as 

the bad .” ([57], p. 287). Pareto views the process of selection to  be most im portant in the area 

around the peak of the distribution. Here the incomes are “not low enough to dishearten the 

best elem ents” . He continues with the following statem ent th a t reflects views th a t were probably 

widely held at th a t time: “In this region, child m ortality  is considerable, and this m ortality is
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probably a powerful means of seiection” ([57], p. 287-8). In P are to ’s ideology this region forms 

a future aristocracy w'hich will eventually rise to the rich end of the distribution and form the 

leadership of the country. Since selection does not apply to the rich, this will, however, lead to 

degeneration in this “social s tra tu m ”. If this is paired with an “accunm latiou in the lower s tra ta  

of superior elements which are prevented from rising” ([57], p. 288), a revolution is unavoidable.

P are to ’s ideas for changes in society, based on social Darwinism, are today no longer accept­

able to  the m ajority of people. However, Pareto’s idea th a t a static distribution of wealth does 

not imply a static society holds true. People are able to move along the wealth axis in both 

directions, although in some societies, this movement appears not to be too prevalent. Indeed, 

it is often found th a t being born to  parents at the poor end of the wealth distribution greatly 

reduces the chances of obtaining a university education, which may form the basis for a high 

income in later life.

Since the distribution of wealth appears fixed, the main indicator for the degree of develop­

ment of a society, according to l^areto, is the amount of wealth per person. If this increases, 

as in P areto ’s example of England in th<̂  century, it provides “individuals with good op­

portunities to grow rich and ris(; to  higher levels of society” ([57], p. 296). O thers, who are 

often in close contact with those at tlxe lower readies of society, such as the homeless, dispute 

this argument and point to other studies that suggest some forms of intervention are required 

in order to  provide social justice across socit>ty.

The kind of thinking and explanation based on opinion is not one followed by those physicists 

who have begun to examine income distribution data. Physicists are basically driven by em­

piricism, an approach exemplified by Kej)ler who as a result of ra ther painstaking observations 

of the motion of planets, proposed his law of planetary motion. In similar vein, physicists and 

some economists have begim to construct models based on some underlying mechanisms th a t 

allow money to flow throughout a system and, in so doing, link these microscopic mechanisms 

to the overall distribution of income. Some of the models may be criticised as naive by the 

economics community, however, as we shall see, at least the models th a t do emerge seem capa­

ble of predicting distributions of money that are observed to a greater or lesser degree. These 

advances allow for a rational debate, and through further research, advances in prediction to  be 

made.

2.2.3 R obert G ibrat and rules of proportionate grow th

The French economist, R obert G ibrat realised th a t the power law distribution did not fit all the 

d ata  and proposed a law of proportionate effect, la loi de I’effet. proportionnel [58]. This states 

th a t a small change in a quantity  is independent of the quantity itself. The quantity  dz =  d x / x
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should therefore be Gaussian distributed. Hence x  should be d istributed according to a log 

norm al distribution. As a result of studying the empirical d a ta  he generalises the statem ent and 

concludes th a t z = a \ i \{x  ~ zq) +  b. This leads him to the Gaussian distribution:

,2

which gives from the relation f { z )d z  =  p{x)dx:

p(x) =
TTXa

■ exp
(a In (a; — x q ) +  b y

G ibra t’s distribution can be represented as sketched in Figure 2.3.

(2.5)

(2 .6 )

4 6
X

0.6

0.5

0.4

P(x)
0.3

0.2

10

Figure 2.3: Representation of the G ib ra t’s d istribu tion  (eq. 2.6).

Since his argum ent was based on the statistics of Gauss, G ibrat felt it was a be tte r approach 

than  th a t of Pareto. G ibrat defined 100/a to be an inecjuality index. The param eter a is today 

related to the G ibrat index.

Recently, Fujiwara [59] has shown, using very detailed Japanese d a ta  where the variation of 

individual incomes can be identified over tinre, how in the power law region, G ib ra t’s law and the 

condition of detailed balance, i.e, P\2 {xi-,x2 ) =  both  hold. The probability P\2 {x, y)

represents the joint distribution of an agent to have a ciuantity x  a t tim e 1 and a quantity  y at
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tim e 2. The condition of detailed balance shows th a t the probability of changing from x  to y

balance, G ib ra t’s law implies Pareto-Zipf law, but not vice versa.

2.2.4 The stochastic model of Champernowne

An early stochastic model which reproduces Pareto law is due to Cham pernowne [60]. Cham ­

pernowne studied different functions to fit the empirical income d ata  such as the distribution of 

incomes of USA in 1929 [Cl]. The cumulative function used in th a t work was:

where t denotes the income and N,  a. to and 6 are fitted param eters. For high income this 

formula approxim ates to the P are to ’s law:

The purpose of the stochastic model of Champeruowne was to seek theoretical reasons for the 

Pareto  behaviour in the high end of income distributions.

The basic idea is th a t an individuals’ income in one year “may depend on w hat it was in 

the previous year and on a chance process” ([60], p. 319). Based on the definition of certain 

ranges of income, Champernowne specifies the probability for the income of an individual to 

change with time from one income range to  another. M athem atically such a process may be 

expressed in term s of a vector Xr{t ) ,  specifying the number of income receivers in the income 

range r a t time t, and a set of stochastic transition m atrices Pr.s(0 th a t represent the proportion 

of individuals in income range r  a t time t which move to income range s in tim e i +  1:

r = 0

Champernowne was able to show th a t provided “the stochastic m atrix  is assum ed to  remain 

constant throughout tim e [...] the distribution will tend towards a unique equilibrium  distribu-

income. These equilibrium distributions are described by a Pareto law. Obviously, the details 

of the transition m atrix p'rsif) are crucial. In the simplest case considered by Cham pernowne, 

income increases are allowed only by one range each year whereas decreases may occur over n  in­

come ranges. Furtherm ore, the transition probabilities are treated  as independent of the present 

income. W ith  these assumptions and empirical da ta  Champernowne determ ined a transition  

m atrix and deduced th a t his model exhibited an equilibrium solution. The form was given by

is the same as th a t for its reverse process. He then shows th a t under the condition of detailed

sm 9
(2.7)

F[t)  ~  C t~ ‘\ ( 2 .8 )

OC

(2.9)

tion depending on the stochastic m atrix but not on the initial d istribu tion” ([CO], p. 318) of
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the Pareto  law for the whole range of incomes. Because this is not even approxim ately obeyed for 

low incomes Cham pernow ne introduce two generalisations of the model to  achieve the weak form 

of the Pareto  law (Pareto law as the asym ptotic result of the d istribution for high incomes). 

F irst he allowed annual income increases over more th an  one range, and secondly he linked 

the possible range of jum ps to the income before the jum p, except for high incomes. Further 

modifications by Cham pernowne th a t took account of the age of an individual, and occupation 

dependent prospects did not change the result. Champernowne concludes his paper with the 

observation th a t his models “do not throw much light on the mechanism th a t deternunes the 

actual observed values for P are to ’s alpha” ([60], p. 349). This makes it impossible to draw “any 

simple conclusions about the effect on P areto ’s alpha of various redistribution policies” ([60], p. 

851). This rem ark is interesting in the sense th a t it is clear th a t Cham pernow ne was already 

thinking how to engineer specific; income distributions within society.

2.2.5 T he m odel for d istribution  o f incom es w ith in  an enterprise by Lydall

After the work of Chcvmpernowne [60], H. F. Lydall introduced some criticism to the previous 

stochastic model [62], arguing th a t different sources of income showed different distributions. 

Lydall explained th a t the hypothesis of Cham pernowne’s stochastic model is acceptable in the 

case of income from capital, because gains and losses of investment are dependent on quantity 

of money invested, bu t the au thor cannot see any explanation for the income from employment 

to change from one year to  the next with the mechanism introduced by Cham pernowne [60]. So, 

Lydall introduce a model for the distribution of incomes within an enterprise. One observation 

of the empirical d a ta  for income from employment is th a t the slope, of the distribution  of income, 

of the high end is steeper th an  the slope for to ta l income. The m ain reason is th a t this type of 

income is more ecjually d istribu ted  than  income from capital. Lydall suggested th a t  the structure 

of employees in a company is arranged in the form of a pyram id w ith a m anaging director on 

the top and a large group of employees a t the bottom . The basic hypothesis of this model [62] 

are the notation yi for the num ber of employees in the gi'ade i (where i = 1 is the lowest) and 

assum ption th a t the ratio  between the number of supervisors (yi+i) and the num ber of persons 

supervised (y.;) is hxed:

—  = n  (2.10)
Vi+i

where n  is constant, Also, representing the income of each grade as Xi, Lydall assume th a t the 

income of a supervisor is related to the aggregate income of the employees on the gi’ade below
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where p is constant. W ith this simple model, Lydall is able to com pute a distribution of incomes 

within an enterprise as a Pareto law, with a Pareto exponent th a t only depends on the constants 

n  and p. The cumulative distribution of incomes is then given by:

Y  ^{jX^osp/ lognp (2 .12)

where Y  is the number of incomes exceeding any level of income x  and 5 is a constant. From 

empirical Pareto  exponents for different countries, Lydall was able to find the relation between 

np  and n  for each country as for example. United Kingdom and Poland [62], and from here 

conclude abou t the degree of inequality and the structured of the pyram id of incomes for each 

example.

2.2.6 B en o it M andelbrot’s w eighted m ixtures and m axim um  choice

While Champernowne presents a particular model with some variations th a t reproduces an 

income distribution which follows Pareto law, Benoit M andelbrot comes to  a more general 

conclusion in his 1960 article The Pareto-Levy Law and the Distribution of Income [6) and 

his informal and non-m athem atical paper New Methods in Statistical Economics [7]. According 

to M andelbrot: “random  variables with an infinite population variance are indispensable for 

a workable description of price changes, the distribution of income, and firm sizes etc.” ([7], 

p. 421). This statem ent is based on M andelbrot’s observation th a t “essentially the same law 

continues to be followed by the distribution of income, despite changes in the definition of this 

term .” ([6], p. 85)

To understand the relevance of the statem ent one needs to consider the  so-called stability  of a 

probability distribution. In the case of a Gaussian distribution it is known th a t num bers made up 

from the sum of independent Gaussian variables are again Gaussian distributed. This stability 

under sunm iation (or inv'ariance under aggregation) is, however, not restricted to  Gaussian. It 

also holds for Parcto-Levy distributions with index n  between 1 and 2 (M andelbrot introduces the 

term  Pareto-Levy in honour of his former supervisor Levy, who studied the properties of stable 

distributions). Such distributions had generally not been considered in the economical literature. 

The fact th a t their moments may be infinite led the scientific com nm nity to  ignore them  for many 

years, partly  on the grounds th a t they did not seem to correspond to physical reality. However, 

M andelbrot dedicates a long section [7] to scale invariance of such distributions. Specifically he 

considers the stability  of the Pareto-Levy distribution under three different transform ations:

• Linear aggregation or simple addition of various quantities in their common natural scale;

• Weighted mixtm-e;
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• M aximising choice, the selection of the largest quantity  in a set.

Invariance under aggregation may be met by using Gaussian as well as Pareto-Levy distributions. 

The example used is the one of various kinds of income separately or the aggregates of all the 

sources of income. M andelbrot notes th a t the common belief th a t only the Gaussian is invariant 

under aggregation is correct only if one excludes random  variables w ith infinite moments. The 

idea behind his concept of so-called weighted mixtures covers the case where the origin of an 

income d a ta  set is not known. If this is the case, one may consider th a t it was picked a t random  

from a num ber of possible basic distributions. The distribution of observed incomes would then 

be a m ixture of the basic distributions. W ith companies or firms “the very notion of a firm is 

to  some extent indeterm inate, as one can see in the case of almost wholly owned, bu t legally 

distinct subsidiaries” ([7], p. 424). The third property, th a t M andelbrot term ed maximising 

choice, is related with the extrem e events th a t happen in a tim e series of stock m arket, or in the 

\ \b r ld  history: “it may be th a t all we know about a set of cjuantities is the size of the one chosen 

by a profit maximiser. Similarly, if one uses historical data, one m ust often expect to  find th a t 

the only fully reported events are the exceptional ones, such as droughts or floods, fami'^es, [...]” 

([7], p .424). M andelbrot also refer th a t many d a ta  are ju st a m ixture of these extrem e cases 

with the full report.

Such tran.sfornuitions need not be the only ones of interest, however, they are so im portant 

th a t they should characterise the laws they leave invariant. In this sense, the observation th a t 

income distributions are the same whatever the definition of income, is used by M andelbrot to 

support the claim th a t they are Paretian. M andelbrot summarises: “It is true  th a t incomes 

(or firm sizes) follow the law of Pareto; it is not true th a t the distributions of income are very 

sensitive to  the m ethods of reporting and of observation.” ([7], p. 425).

2.3 E m pirical stu d ies

Numerous recent empirical studies have all shown th a t the power law tail is an ubiquitous feature 

of income distributions. The value of the exponent may vary with tim e and depends on the source 

of the data. However, over 100 years after P are to ’s observation, a complete understanding of the 

shape and dynam ics of wealth distribution is still evasive. This is partly  due to incom plete data, 

but may also reflect the fact th a t there might indeed be two distributions, one for the super rich, 

one for the low to medium rich, with some interm ediate region in-between. For example, for 

U.S.A. only the top three percent of the population follow P are to ’s weak law, the vast m ajority 

of people appear to be governed by a completely different law. T he distribution  function for 

the m ajority  of the population seems to fit a different curve. The m ain functions used in the 

literature for fitting the income or wealth distributions are:
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the log-normal distribution function:

PLn {x )
xa\/2T\

exp

P l n {x ) =  - 1 -  e r f

( I n x  —

In X  —  f i  

cry/2

(2.13)

(2.14)

where and a  are parameters for the mean exp (^ +  cr^/2) and the variance 

(exp (ct^) — l) exp (2/i +  cr^). The function Erf(a:) =  (2 /y ^ )  e~^^dt is the error func­

tion. The log-normal distribiition becomes G ibrat’s distribution (equation 2.6) for // =  0 

and (7 =  1.

• the Gannua distribution f\mction:

pr(.Tj = exp

Pv(x) =

T{a)0'

r [a,x/e]
r(rv)

(2.15)

(2.16)

where a  and 6 are parameters for the mean aO and variance a9‘̂. The function F[a, x] =  

is known as the upper iucunipleLe Gamma function. The Gamma distribution 

becomes the Boltzmann-Gibb.s distribution for a =  1.

the generalised Lotka-Volterra distribution function:

( q  -  1 )'» 1
PGLv{x) exp

a  — 1

P g l v [ x )  = 1

r(a) ,t‘+«
r [a, (O' -  l ) /x]

r{cy)

(2.17)

(2.18)

where a  is a parameter for the variance l / ( a  — 2) and the mean is equal 1. The parameter 

a  is also present in the exponent of the power law distribution for x oc.

Sketches of these distributions are shown in Figure 2.4 for some parameters, where we can see 

the difference between all of them for different plot scales. The only distribution that will allow 

the presence of a strong power law in the limit of high values is the generalised Lotka-Volterra.

Another distribution presented by Reed [63] is the double Pareto log-normal distribution 

(dPlN) which is characterised by a power law for high and low values of the distribution and a 

log-normal behaviour in the middle range of the distribution. The probability in each case can 

be represented by:

P (X  > x) ~  X “ for X oo 

P {X  < x) ~  x̂  ̂ for a; —> 0 (2.19)
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Figure 2.4: Representation of the probabiHty distribution functions (top figure) (Eq. 2.13, 2.15 

and 2.17) for log-normal (red), gamma (green) and generalised Lotka-Volterra (blue), respec­

tively. Representation of the cumulative distribution functions (centre and bottom  figures) (Eq. 

2.14, 2.16 and 2.18) for log-normal (red), gamma (green) and generalised Lotka-Volterra (blue), 

respectively. The sketches are for values of the parameters th a t allow the three distributions to 

have similar mean and variance. The centre figure is in a log-linear plot and the bottom  figure 

in a log-log plot.
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where the probabilities represent cumulative distributions and the exponents a  and (3 are the 

Pareto  exponents for the upper and lower limits of the distribution, respectively.

Tables 2.2 and 2.3 summarises recent empirical studies according to the type of data , the 

distribution function used to fit the data and the value of Pareto exponent in the case of fitting 

to a power law distribution. W hile in the empirical studies made by Pareto, a  is around 1.5 

(Table 2.1), in the later studies exponents less than  1.5 almost only feature for the studies of 

wealth statistics from top wealthiest in the society and are generally obtained from lists of super 

rich people, published in magazines (Table 2.3). For all the other studies, which are mainly 

obtained from income distributions, the exponent is bigger than  this.

Table 2.2: Table of empirical d a ta  for income distributions. In colunm Source, Tax means da ta  

from income tax  statistics. In column Distributions: Par. - Pareto tail; LN - Log-normal; Exp.

- Exponential; dPlN. - Double Pareto Log-normal; G. - Gamma.
Country Source Distributions Pareto Exponents Ref.

Japan Tax (1992) Par. o  =  2.057 a: 0.005 [23, 64, 65]
(1998) Par. a =  1.98
Tax (1998) Par, a =  2.05
Tax (1998) LN /  Par. =  2.0()
(1887-2000) LN /  Par. Q ~  2.U"

U.S.A. (1992) Exp. [66, 67, 68, 69, 70]
(1996) Exp.
Tax (1997) Exp. /  Par.
(1998) Exp. /  Par. a =  1.7 ±  0.1
(1983-2001) Exp. /  Par. a  -  1.4 -  1.8

U.K. (1994-98) Exp. /  Par. a ~  2.0 -  2.3
Australia (1989-2000) Exp. /  LN /  Par.

U.S.A. (1997) dPlN. «  =  22.43 /  = 1.43 [63]
Sri-Lanka (1981) dPlN. Q =  2.09 1 0  = 3.09
Australia (1993-97) Par. a ~  2.2 -  2.6 [71]

U.S.A. (1980) G. /  Par. Q =  2.2 [72]
(1989) G. /  Par. a = 1.63
(2001) G.

U.K. (1998-99) G. /  Par. a =  1.85
Portugal Tax (1998-2000) Par. Q ~  2.30 -  2.46 [73]

Italy (1977-2002) LN /  Par. (1 ~  2.09 -  3.45 [74, 75]
U.S.A. (1980-2001) LN /  Par. a  ~  1.1 -  3.34
U.K. (1991-2001) LN /  Par. Q ~  3.47 -  5.76

Germany (1990-2002) LN /  Par. a ~  2.42 -  3.96
India (2003) Par. a =  1.51 [76]
U.K. (1992-2002) Par. a ~  2.68 -  3.34 [24]

“This value is an average Pareto exponent.

In Figure 2.5 we show the cumulative distribution of wealth for the top richest in the world, 

for two different years, 2003 and 2006. The data was downloaded from the list of super rich
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Table 2.3: Table of empirical d a ta  from wealth lists. A 1 the distributions are Pareto  like.
Country Source Pareto Exponents Ref.

U.S.A. 1996'^ Q =  1.36 [77, 78, 79]

1997^ a  =  1.35 ± 0 .005

U.K. 1970

1997= rt =  1.06 ±  0.004

Sweden 1965 a =  1.66

France 1994'^ Q =  1.83 ± 0 .030

U.K 1996" Q =  1.9 [67]

Egypt S.H. (14‘'‘B.C.)^ Q =  1.59 ± 0 .1 9 [80]

U.K. 1996 Q =  1.85 [72]

U.K. 2001« Q =  1.78 [35, 81]

India 2002-2004'* Q ~  0.81 -  0.92 [76]

World 2003/2006' Q ~  1 .3 7 -  1.38 [24]

Hungary 1550' Q =  0.92 [81, 82]

India 1991/2002*^ Q ~  1.8 -  2.4 [83]

"400 w ealth iest people, by Forbes.
*’T op w ealth iest people, by Forbes.
''T op w ealth iest people, by Sunday  Tim es.
'^French a lm an ac  Q uid  list.
'^Inheritance tax
■^Related to  th e  size of houses found in an archaeological study.
“In h eritan ce  ta x
‘̂125 w ealth iest ind iv iduals in In d ia  by Business S ta n d ard  m agazine an d  40 richest Ind ian s by Forbes. 
‘T op w ealth iest people, by Forbes.
^N um ber of se rf fam ilies living on a  no b lem an ’s land.
*.411 Ind ia  D ebt and  Investm ent Survey.

people in Forbes magazine [36].

2.4 Current theoretical studies

From the work of Pareto, G ibrat, Champernowne and M andelbrot until few years ago, there 

was not many improvements in the study of wealth and income distributions, ap a rt from some 

different versions of the same models presented in the previous sections. Most of these versions 

were based on adding more and more param eters to the simple models to  fit a fmiction to the 

overall empirical distribution of incomes. So we had to wait alm ost one century from the first 

work of Pare to  to welcome an impressive am ount of empirical and analytical studies from the 

Physics connnunity. The m ain reason for this could be th a t a huge am ount of d a ta  became 

available by the govermnent authorities, which need a statistical approach based on the kind of
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Figure 2.5: Cumulative distribution of wealth for tlie top richest people in the World. The data 

was taken from Forbes Magazine for the years 2003 (47G individuals) and 200G (793 individuals). 

The wealth is in billions of dollars.

one used in Physics. A nother reason is th a t Physics is the science which tries to  explain the 

mechanisms of Nature, so what better science to explain the mechanisms of exchange of money 

than  Physics?

In this section we discuss some recent models for w'ealth distributions in greater detail. 

2 .4 .1  G e n e r a l i s e d  L o tk a - V o l te r r a  M o d e l

The Generalised Lotka-Volterra model, based on an ecological model w ith the same name, 

brought new ideas of the meaning of the trading term s in a model of exchange of money [84]. If 

all agents in a system are characterised by a term  w th a t changes in tim e (e.g. income, wealth) 

and one agent, i, is chosen at random  at time t to exchange some money with all the others, 

then the term  Wi of this agent will be updated. The governing equation is given by:

( 2 .20)

( 2 .21 )
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where Wi{t) is the system  component i a t tim e t. This system com ponent can be analysed 

as wealth of agent i. The average value w{t),  which is not constant in tim e because there is 

non-conservation of money, is represented as:

and can be interpreted as investments return. T he second term  describes the same autocatalysis 

c'flbct but for all the agents. One interpretation of this is th a t it simulates in a simplistic way 

the effect of a tax or social security policy. The th ird  term  describes com petition foi limited 

resomces and it repre.sents external limiting factors: finite am ount of resources and money iu 

the economy, technological inventions, wars, disasters, etc. W ith proper values for the constants 

a and b a power law is produced in the high end of the distribution of w:

with an exponent rv in agreement with empirical values found by Pareto. The power law is 

show'n from numerical analysis [84].

An analytical solution of the complete model was achieved [25, 26, 85, 86], by reformulating 

eciuation 2.20 as a Langevin equation. This is done rewriting the ecjuation 2.20 as:

limit, assuming a stationary  state, can be w ritten  as =  A +  a — 1. Considering a normalised 

wealth, Wi{t) wi{t ) /w{t ) ,  and writing the difference between wealth as first derivatives gives 

the following Langevin equation:

u) —» oo with an exponent 2 + a / D  th a t does not depend on the constant 6, so the com petition for

i=l

The first term  on the rhs of equation 2.20 describes the effect of autocatalysis for individual i

(2.23)

Wi{t +  1) -  Wi{t) = \{t)w^{t) -  bw{t)wi{t) +  aw{t) -  Wi(t) (2.24)

and summing both  sides of equation over i:

w{t  +  1) -  w{t)  =  ^  X{t)wi{t) + [-bw{t)  +  a -  1] w{t) (2.25)

it can be shown th a t the first term  of the rhs is represented by Xw{t),  so in the long time

dw;
(2.26)

The solution for the probability distribution P{w)  is given as:

o ■ 
Dvj.

(2.27)

where Z  is a norm alisation factor. This solution represents a distribution with a power law for
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lim ited resources doesn’t have a direct effect on the power law distribution of w.  This solution 

is correct for an infinite system  of agents. For finite systems the following corrections can be 

derived for the probability distribution:

1
P{w)

w 1+ a

and the exponent:

exp

a  =  1 +

a ' a
. Dw.

exp
D { l - w / N ) _

a / D -  K  
1 + K

(2.28)

(2.29)

where K  =  ~  pj  jg to tal number of agents.

The generalised Lotkx-Volterra model was studied by Bouchaud and M ezard [27] witfi a 

different analytical approach, but with the same kind of result for the distribution of w:

{ a - I fP{w) 1 ■. exp
Q  —  1

w
(2.30)

with n =  1 +  a/ D.  The authors also show th a t there is a phiise transition between a system 

where the wealth is evenly d istributed between agents and a system w'here ju st a few agents have 

almost all the wealth. This phase transition is around a  =  1, where this wealth condensation 

appear for a < 1. O ther features of this model are studied, as for example: the inclusion of 

taxation term s - an income tax, over the change of the wealth ^  and a capital tax, over the to tal 

wealth w.  the incorporation of a network, where instead of treating the model in a mean field 

approach (all agents trade with all the others), each agent as a  specified num ber of neighbours 

with who it is able to interact. In Figure 2.6 a representation of this distribution of equation 

2.30 is shown.

2.4.2 Collision M odels

In 1960, M andelbrot wrote ‘'There is a great tem ptation to consider the exchanges of money 

which occur in economic interaction as analogous to the exchanges of energy which occur in 

physical shocks between gas molecules. In the loosest possible terms, bo th  kinds of interactions 

should lead to sim ilar s ta tes of equilibrium. T hat is, one should be able to  explain the law 

of income distribution by a model similar to th a t used in statistical therm odynam ics: many 

authors have done so explicitly, and all the others of whom we know have done so implicitly.” 

([6], pg. 83). U nfortunately M andelbrot does not provide any references to  th a t specific body 

of work.

In analogy to  tw'o-particle collisions with a resulting change in their individual momenta, 

income exchange models may be based on two-agent interactions. Here two random ly picked 

agents exchange money by some pre-defined mechanism. Assuming the exchange process does
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]- îgure 2.G: Representation of probability density distribution (eq. 2.30), in a log-log scale, with 

])aranieters a = 0.00023 and D = 0.00083 as used in [26]. The straight line is a power law

distribution with exponent —1 — a, where a has the value 1 +  a / D  ~  1,277.

not depend on previous exchanges, the dynamics follows a Markovian process as follow:

rn A t  +  1) \ (  rriiii)  \
^  M  ^  M  ^  M  (2.31)

m j { t  + 1) y y r n j { t )  j

where m i { t )  is the income of agent i at time t and the collision matrix M defines the exchange

mechanism.

The first model of that kind appears to be that of Angle [87] who proposed that exchange 

occvu's by one agent getting a percentage of the money of another agent, which means that what 

one party gains, the other loses. The model is explained as two agents that come together and 

put a percentage of their money, 1 — A, in a bag and one randomly chosen agent takes everything. 

In the formulation of equation 2.31 this gives:

m i ( t + l ) \  /  1 -  (1 -  e)  (1 -  A ( 0 )  e ( l - A ( < ) )  W  m ; ( i )  \
r r i j { t + l )  j  (1 -  e) (1 -  A ( t ) )  1 -  e (1 -  A ( i ) )  ]  m j ( i )  j

where X( t )  is a random variable, from a uniform distribution between [0,1], related with the 

percentage of money that agents save before the exchange and £ is a variable with two possible
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values, zero or one, taken from a specific probability distribution. T he am ount exchanged in 

each trade is:

A m {t )  =  (e — 1) (1 — X{t))rrii{t) +  t (1 — A(i)) rnj{t) (2.33)

which takes the vahie A m  =  (1 -  A(<)) mj{t )  if e =  1 and Arn. =  -  (1 — X{t)) mi{t)  if e =  0. So 

depending on the value of e each agent has the possibility of taking some money from the other. 

In this exchange process the money is conserved, because:

rrii{t +  1) -  m.i{t) =  -  [rrij{t +  1) -  =  A m { t )  (2-34)

Numerical simulations of this model showed th a t the distribution of incomes, p{m)  can be fitted 

by a Gam m a probability density function:

-,a~l rn
' J

(2.35)

with ht param eters a  and ,3.

Another study of models of asset exchange was presented by Ispolatov et al. [88] where 

the authors study both  additive and multiplicative as.set exchange num erically and analytically. 

Comparisons are drawn with the model of an ideal gas, where exchanges of mom enta between 

collisions are substitu ted  by exchanges of money.

Combining the model of Angle [87] with the idea of a closed economic system where money 

is conserved at each trade, Yakovenko et al. [89] performed sim ulations and found th a t the 

equilibrium  probability distribution of money p(m) should follow a Boltzm ann-G ibbs law:

1

T
m
T

p{m) — — exp — — (2.36)

where T  is the tem perature of the system, which in this case is the  m ean value of money 

T  =  M / N ,  where Al  is the to ta l money and N  is the number of agents in the system. The 

Boltzmann-Gibbs law is equal to the Gamma probability density function (ec]. 2.35) for a  =  1 

as can be seen in Figure 2.7.

Chakraborti et al. [28, 29, 30, 31] considered the same kind of pairwise exchange models but 

included a constant saving propensity term  for all agents, A and changed the possibility of one 

of the agents to win everything. The governing ecjuation for the evolution of money of agents i 

and j  is:

A +  e ( i ) ( l - A )  e(^)(l -  A) m i(t) \  ^

m j { t + l )  j  (1 -  e(t))(l -  A) A + (1 -  e(t))(l -  A) j  rrij{t) j
where e{t) is a random  number between [0,1] and A is the saving param eter (same for all agents). 

So, when two agents meet, they will save some percentage of their money Amj(i) and Xmj{t),
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Figure 2.7: Representation of probability density distribution (eq. 2.35), with param eters (3 = 

1.0 and a  equals 1.0 (red), 2.0 (green) and 3.0 (blue), respectively. The case of a  =  1.0 is the 

Boltzmann-Gibbs distribution (for T  =  1 in this case).

respectively, and throw the rest to, what we will call, a bag. The total amount of money in 

the bag is then (1 — +  rrij{t)) and will be split between the two agents in percentages

defined by the value of the random variable t{t). If t{i) > 0.5, agent i will get more percentage 

than agent j  and vice-versa. If A is equal to zero we return to the model of Yakovenko [89]. This 

model is the same as the one considered by Angle with different features for the param eters, A 

and t. The distribution of money, p{m)  is no longer a Boltzmann-Gibbs distribution for A 7̂  0, 

but was found to be well described by the function [30]:

where r(n) is the Gamma function of n, T  is the money per agent in the system and n is defined 

as:
Q \

n W  =  1 +  ^  (2.39)

Chatterjee et al. [32, 33] improved the previous model including an inhomogeneous param eter 

A, because in a society the interest of saving may vary from individual to individual, so is the
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saving p a ram e te r for agen t i and th e  equation for the  evolution of m oney of agents i an d  j ,  m-i 

an d  rrij is th en  given by:

mi { t  +  l )  / Aj +  e(t)( l  -  Aj) e{t ){l  -  Xj)

r r i j { t + l )  j  i (1 -  f ( i ) ) ( l  -  Ai) Aj +  (1 -  s ( i ) ) ( l  -  Â )
(2.40)

w here th e  am ount exchanged is given by:

A m  =  (e(i) -  1)(1 -  Xi)rrii{t) +  e(<)(l -  \ j ) n i j { t ) .  (2-41)

T he saving p rop en sity  p a ram ete rs  A j  are fixed over tim e and are d is trib u ted  independen tly  from 

a ran d o m  d is trib u tio n  betw een [0,1]. T his new dynam ics also gives a  different d is trib u tio n  of 

m oney in  th e  stead y  s ta te . In p a rticu la r it was found th a t the high end of d is trib u tio n  of m oney 

follows a  P a re to  law w ith  exponen t a  around 1.

I ’he problem  for th e  s itu a tio n  w here all agents save the same fixed percen tage  of th e ir  m oney 

was solved analy tica lly  by R epetow icz et al. [34], who using the  B o ltzm ann  ecjuation, o b ta ined  

a re la tion  betw een th e  p robab ility  d istribu tion  of wealth of one agent and  th e  jo in t p robab ility  

d is trib u tio n  of the  w ealth  of two agents. Invoking a mean field app rox im ation  th is  approach  

allowed th e  solu tion to  be solved via a  m om ent expansion of tlie one agent d is trib u tio n  function . 

I t was d em o n stra ted  th a t  to  th ird  order, the  m om ents agreed w ith the  so lu tion  proposed as a 

resu lt of num erical calcu lations (eq, 2.38). For the case when the  savings are no t equal b u t 

determ ined  by som e d is trib u tio n , p{ \ ) ,  analytic calculations perform ed by R epetow icz et al. 

[34] d em o n stra ted  clearly  th a t  th e  P are to  exponent for this m odel is exac tly  one. T h is resu lt 

appeared  to  hold regardless of th e  form of the  savings d istribu tion  function , p ( A ) .

A nother an a ly tica l so lu tion  was found by C hatterjee  et al. [90] also using th e  B o ltzm ann  

equation , b u t in th is  case, ju s t  restric ted  to  the value of £ =  1 /2. T he resu lts  are in agreem ent 

w ith the  num erical resu lts  of C h atte rjee  et al. [32, 33] and the ones found by R epetow icz et al. 

[34].

A fu rth e r varian t of th e  collision m odel has been proposed by S lan ina [91]. S lan ina’s m odel 

involves th e  pairw ise in te rac tio n  of agents, which a t every exchange process also receive som e 

m oney from  outside. T h e  tim e evolution of trades is represented as:

m.i{t + l )  \  ^  (  ^^-0 +  ̂ 13 W mi(t) \
r r i j i t +1)  j  p  1 - P  +  e j  ^ rnj(<) j

T hus agent i gives a  frac tion  P of its m oney to  agent j  and vice versa. In  a d d itio n  it is assum ed 

th a t  add itional money, e{rni{t) + m.j{t)),  is created  in the  exchange via som e so rt o f w ealth  

creating  process. In  th e  sim plest case, th e  values of (3 and e are kept c o n s tan t for all trades. 

Since m oney is no t conserved in th is  m odel, there  is no s ta tionary  so lu tion  for th e  d is trib u tio n
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of money, p{m).  However, as with tlie generaUsed Lotka-Volterra model, there is a stationary  

d istribution function for the relative value: mi{t)  —> mi{ t ) / {m{t)) . The solution is then  obtained 

l)y solving the associated Boltzm ann equation within a mean field approxim ation. Taking the 

limits f j —̂ 0  and e —> 0“̂  whilst keeping the assumed power law a  constant, yields:

a  — 1

m
(2.43)

where q  — 1 «  ‘2.151 It is interesting to see th a t this result is identical in form to th a t given 

by the geiieralised Lotka-Volterra model (ecj. 2.30).

To check the accuracy of this approximation, we performed some sim ulations of S lanina’s 

model [92] for 10“* agents trading 10^ x N  times and averaged over 10^ realisations. The percent­

age of wealth exchanged [d) was set to 0.005 and the percentage of wealth injected in the system 

(e) to 0.1. A fit of the cum ulative distribution of equation 2.43, w ith a power law exponent of 

2.0. to  the results of the numerical simulation for the steady s ta te  is shown in Figure 2.8. This 

exponent of 2.0 is in excellent agreement with the value of 2.0 of equation q  — 1 w  2/3/e^.

0.01

g  0.0001

0.0001 0.01 100

nonnalised wealth, x = m / m

Figure 2.8: Cum ulative distribution of wealth in a simple Slanina model, for 10^ agents trading 

10^ X N  times and averaged over 10'̂  realisations. The percentage of wealth exchanged (/?) is 

equal to 0.005 and the percentage of wealth injected in the system  (e) is 0.1. The numerical 

sinuilations are represented by black dots and the cumulative distribution  of the analytical 

solution (eq. 2.43) by the black line. The Pareto  exponent for the higher end is ~  2.0.

A review of collision models can be found in Refs. [93, 94].
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2.4.3 W ealth m odels on networks

C oelho et al. [35, 81] have recently  in troduced  the  so-called fam ily netw ork m odel, which 

no t only yields realistic  w ealth  d istribu tions, b u t also a topology of w ealth. T h is is a model 

of cisset exchange w here th e  m ain  m echanism s of w ealth  transfer are  inheritance  and  social 

costs associated  w ith  raising  a  new family. T he s tru c tu re  of the  netw ork of social (economic) 

in terac tions is not predefined b u t em erges from  the  asset dynam ics. T hese evolve in discrete 

tim e  steps in the  following m anner. For each tim e step:

•  From  th e  in itia l configuration (step  I in Fig. 2.0), th e  oldest fam ily (node) is taken  away, 

and  its assets are uniform ly d is trib u ted  betw een the  families linked to  it (neighbours) (step  

II in Fig. 2.9);

• A new fam ily (node) is added to  the  system  and  linked to  two ex isting  fam ilies (nodes), 

th a t  have w ealth g rea te r th a n  a m inim um  value q (step  III in Fig. 2.9);

•  T h e  sn^all am ount q, is su b trac ted  from th e  w ealth  of the  selected families (nodes) and 

red is trib u ted  in a preferen tial m anner in the  society. T his process ainrs to  m odel the  

w ealth  needed to  raise a  child. T he preferential red istribu tion  is justified  by th e  fact th a t  

w ealth ier families control m ore business and  benefit m ore from  th e  living costs of a  child;

• A po rtion  p  of th e  rem ain ing  w ealth of each of the  two fam ilies is d o n a ted  to  th e  new 

fanrily as s ta r t-u p  m oney (step  IV in Fig. 2.9).

T h e  to ta l w ealth  and th e  num ber of families are  conserved after each tim e-step . N um erical 

calculations yield th e  cum ulative w ealth  d is trib u tio n  in line w ith em pirical d a ta . For reasonable 

values of p  and q we observe, for th e  upper 10% of the  society, the  scale-free P a re to  d is trib u tio n  

w ith P a re to  exponents th a t  he betw een 1.8 and  2.7 (Fig. 2.10). T he P a re to  ta il form s relatively  

ciuickly, usually  after less th a n  two generations. T he degree-d istribu tion  of th e  fam ily-netw ork 

converges also rap id ly  to  an  exponentia l form. In te resting  correla tions betw een w ealth , connec­

tivity, an d  w ealth  of the  first neighbours are  revealed. W ealth iest fam ilies are linked together 

and  have a higher num ber of links com pared w ith  the poorest families. T hese co rrelations yield 

new insights into th e  way th e  P a re to  d is trib u tio n  arises in society.

2.5 C onclusions

A renew ed in terest in s tudy ing  th e  d is trib u tio n  of incom e in society has em erged over th e  last 10 

years, driven principally  by th e  new in terest of physicists in the  areas of econom y and sociology. 

T his has resu lted  in th e  developm ent of a num ber of theore tica l m odels, based  on concepts of
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Figure 2.9: Schematic representation of a time-step in the Family Network Model. Circles 

represent families, edges represent the link between families and arrows the direction of transfer 

of money.

0.01

A

0.0001

100 1000w

Figure 2.10: Cumulative wealth distribution function obtained from the Family Network Model 

(p = 0.3, q =  0.7, N  = 10000 and results after 10 MCS). The tail is approximated by a power- 

law with exponent a — 1.80, and the initial part of the curve follows an exponential. The inset 

shows this initial trend on a log-linear scale.
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statistical physics. It now seems clear that some of these models, despite their simplicity, can 

reproduce key features of income distribution data.

There is still some discussion about the expressions that explain more satisfatory the low- 

middle end behavior of the wealth or income distributions. The more connnon distributions 

in the literature tha t try to explain this low end are the log-normal, the exponential and the 

Gamma distributions. For the higher end of the distribution of wealth or income there is an 

agreement about the power law behavior.

In our study we go a bit further and we try to explain the higher end of the wealth distribution 

with two power laws, because we saw from Tables 2.2 and 2.3 that there are two regimes of power 

law exponents. In next chapter we introduce a theory of double power laws and some mechanisms 

able to reproduce the double power law in a simple model of money exchange.



C hapter 3

D ouble  pow er law in w ealth  

d is tr ib u tio n s

3.1 Introduction

M otivated by our review of empirical d ata  in C hapter 2, we introduce a model of wealth exchange 

tlia t produces double power laws and then we try  to explain it with a theory of double power 

laws.

w 8 
c
S 70
Q- cX 6 o>
2 5 0)1 4

1 3 
o

2

'5 1u>
5  0

0

Figure 3.1: D istribution of Pareto expouents from two different sources: distributions of nor­

mal incom e/w ealth (black) and distributions of wealth from top wealthiest lists (gray). The 

exponents used in this figure were taken from Tables 2.2 and 2.3.

•Normal income/wealth top wealth iest |

1 1.5 2 2.5 3.530.5
Pareto exponents
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We believe that the studies of income/wealth that are based on tax/income generally do not 

include the very rich people, as we can see from the study of the tables of the previous chapter 

and from Figure 3.1. From Figure 3.1 it seems that there is a power law exponent for millionaires 

that have high income/wealth but also another power law exponent for the top billionaires as 

found by studies from the top lists in magazines. This second exponent will be called Q2 and it is 

normally lower than the first one that we call q i. A further indication of two power law regimes 

is the study of Souma [23] for the income in Japan. In Figure 1 of his paper [23], Sounia found 

a Pareto exponent of 2.06 in the high end of the distribution of incomes for 1998. However, we 

see an indication of a second power law for the top richest (higher than 3000 million yen) which 

we estimate as an exponent below 1.0 based on his figure. Scarfone [95] also analysed this set 

of data but with a different point of view. Scarfone “claims to see” three power law regimes in 

this Figure from Souma. For Scarfone there are also other income distributions with two power 

law exponents, ai; the case of Japan in 1975 and U.S.A. in 2000.

In his study, the distribution is said to have an ankle when a 2 < Qi and a knee otherwise. 

In Figure 3.2, we show a sketch of an ankle and a knee.

P(x)

X X

Figure 3.2: Sketch of a knee (left figure) and an ankle (right figure). The distribution of in­

come/wealth has a knee when a 2 > ai  where Q’2 is the power law exponent of the top billionaires 

and Q'l is the power law exponent for the millionaires. An ankle occur when q'2 < t̂ 'i-

With the purpose of describe these distributions with only one simple analytical function, 

Scarfone used the concepts of generalised exponential and logarithmic functions which we will 

introduce in section 3.3.

The existence of two power law regimes has been observed in other fields such as dielectric 

relaxation [96], protein folding [97], returns of S&P500 index [98, 99], linguistics [100], cosmic- 

rays [101] and the value of land in Japan [102].

In the next section we introduce the expansion of Slanina model that produces double power
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laws.

3.2 E xpansion  o f Slan ina M odel

T he Slanina model [91] is a very simple model from the family of the Collision models presented 

in section 2.4.2. In this model the agents are chosen at random  and exchange some p art of their 

money. At every exchange process they also receive some money from outside.

The distribution of money in the stationary  sta te  gives a power law distribution for the high 

end of the distribution and the solution can be treated  analytically. In this section we expand 

the Slanina model. The purpose of this is to try  to create a simple collision model th a t will 

reproduce a distribution of wealth with a double power law. A dopting the Slanina theory for the 

case of a singular power law (section 2.4.2), we expand it allowing the presence of two regimes 

th a t will have two different values for the fraction of money th a t agents transfer.

Our expansion of Slanina’s model is given changing the rules of equation 2.42 by making the 

fraction of money exchanged by each agent, /3, a function of the money th a t the agent has at 

th a t time, rn {0(m)).  The main conclusion th a t we can take from this wealth dynam ic is th a t 

a double power law arises from the difference between the percentage of money th a t agents put 

into tho sorioty for trade. This difference can bo related with different levels of fear to  risk or 

from some economical issues related with taxation. This results in the following update  rule:

(3.1)
rrii{t + 1 )  j _  / 1 +  e -  /5("ij)

mj { t  + l) j  y Pirrii) l + e

Here we consider the simplest case, i.e.:

{ /3i, rn < Tifh(t)
, A > ^ 2  (3.2)

P2 , fn > nm[t)

If an agent has wealth higher than  a threshold {n times the average wealth, fh{t)),  the second 

param eter (02) will be used. The threshold adopted in these sim ulations is lO'm(i).

For example, to  sim ulate a society like the U.K., where two P areto  exponents exist, one for

the top earners around 3.0 and another one for the super-rich around 1.5 [92], we choose the

param eters for the percentage of money exchange, 0,  and for the percentage of money injected 

in the system, e, according to  ecjuation q  -  1 «  20fe^,  i.e. 0\ — 0.01, 02 =  0.00125 and e =  0.1. 

Figure 3.3 shows the result of our simulations.

Two distinct power laws are visible, one in the regime between m (i) and I0fh{t) and another 

one for wealth larger than  lOm(i). The Pareto  exponents are 2.51 and 1.29, respectively, and thus 

differ froni the prediction of equation a — 1 «  2/?/e^ where we expected 3.0 and 1.25, respectively.
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Figure 3.3: Cum ulative distribution of the wealth in exj)anded Slanina model. The values for 

number of agents, tim e steps, realisations and percentage of wealth injected in the system (e) are 

the same as used in the simulations shown in Figure 2.8. The percentage of wealth exchanged 

{0) if the agent has wealth smaller than  Wrn{t) is 0.01 and if the agent has wealth higher or 

equal to 10fh{t) is 0.00125. Two different Pareto t'xponents appear in different parts of the 

distribution. One for what w'e call rich people is around ~  2.5 and a second one for the top 

richest is around ~  1.3. The vertical dashed line shows the threshold th a t we choose for different 

p  values.

However in our case, this prediction should only be taken as a first order approxim ation, since 

we are essentially dealing with two societies (each specified by its respective (3 values) which 

are interacting. Agents switch between their interaction param eters according to  their relative 

wealth.

3.3 D ouble power law from generalised functions

An analytical analysis of the double power law is necessary to  explain the nature of exponents. 

Following Scarfone [95], in this section we introduce a theory of double power laws.

The generalised functions arise naturally  from the study of non-extensive statistical m edian-
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ics [103] where the systems are described by power law features. I f  the d is tr ib u tio n  o f a q ua n tity  

X ,  p (x)  is o f the exponentia l type:

^  =  -A .p ( x )  (3.3)
ax

then the so lu tion is p {x)  =  e x p ( -A ix ) .  I f  some fra c ta lity  is involved in  the d is trib u tio n  of 

quan tity  x:

\p{x)]‘’ for {Xq >  0 and (? >  1) (3.4)

then the so lu tion is shown to  be:

p (x )  =  [1 -  (1 -  (3.5)

which is also known as Tsallis d is trib u tio n  function  or g-exponentia l func tion  (expq( —A^a;)). 

This generalised exponentia l function  recovers the normal exponentia l func tion  when q 1 and 

behaves as a power law for x  —+ +cx). In  order to  allow a second power law behaviour in  th is  

function Tsallis  et al. [97] included another term  in  eq. 3.4:

=  - P r  b (2 ;)]'’ -  (A,, -  Mr) \p[x)\'‘ fo r ( r  <  q) (3.6)

'I'h is function  w ith  two power law exponents was t lie  one fitte d  to  the  d ifferent data sets refered 

il l tlie  end o f the in tro du c tion  o f th is  chapter. B u t th is  func tion  cannot be used in  the analysis 

o f many income d is tribu tions  th a t have an ankle (q 2 <  c ti) as i t  is on ly  va lid  when we have a 

knee (a '2 >  Q i) [104].

Scarfone et al. [95, 105] obtained a class o f tw o-param eter deformed logarithm s and expo­

nentials, and constructed a function  fea turing  two or more power law  regimes.

A deformed logarithm  or (fc, r)- lo g a rith m  can be represented as:

=  (3.7)

which recovers the standard logarithm  in  the l im it  { k , r )  —> (0 ,0 ). The inverse function  o f th is 

logarithm  is the deformed exponentia l function  exp r}(a;). The asym pto tic  behaviours o f bo th  

deformed functions are:

•  log {fc ,.}(2'') ^  for X  +oo;

• log{fc,r}(2'') ^  - x ’'- \^ \/ \2k \  for a: ^  0;

• exp{/^. r } ( x )  —> for x  ±oc;

• e x p [k. r } {x)  ^  1 +  X for x  —+ 0.



38

W ith  th e  deform ed logarithm  and th e  deformed exponential functions, Scarfone [95] intro­

duced a quan tity  able to  reproduce a double-pow er law effect:

where o \  d en otes the set of param eters (fc i,7 'i,a i). U sing this quantity Scarfoue [95] creates a 

function w ith  the following construction:

•  if [ k i , r i )  =  (/C2 , r 2 ) then f [ x )  =  exp^^j { - ( i i x ) .

T aking into account the asyni{)totic behaviour of the deform ed functions, we can conclude  

the follow ing about th e asym ptotic  behaviour of / ( x ) :

•  J{ x)  ^  1 -  ( i\x  for a \ x  <C 1;

•  f ( x )  —> for X <?C 1 <C a ix ;

•  f [ x )  —> x~''̂  ̂ for a i x  :»  1.

T h e slop es s i  and S2 are equal to  1 /  {\ki  \ -  r i)  and 1 /  {\k.2 \ -  T2 ), respectively.

So th is function  has the double power law behaviour in the m iddle region, x  ^  1 -C a ix  and  

th e  far region, a \ x  ^  1. T h e con stant a \  gives approxim ately the w idth  of th e m iddle region.

Scarfone [95] sim plified  equation  3.9, se ttin g  the values of r \  and T2 equal to  zero. In th is  

case, th e generalised logarithm  is given by:

and th e generalised exponential:

(3.8)

fix) = (-a:)) = ê P{fci,r,} («i log{fci.n} (-^))) ( -̂9)

T h is function  reduces to  sim ple form s for som e choice o f parameters:

•  if  a i =  1 then  / ( x )  =  expjfc^.rs} ( - 2;);

•  if i k i , r i )  (0 ,0 )  then f { x )  =  (^expi^j^r^j ( - x ) )  ;

(3 .11)

so, th e function  f { x )  is given by:

2 2
- I -  k'̂ x̂  -  k2X̂

-  k \ j k 2

+

~ k \ / k 2 l  ^
\ / k i

1 +  — /C2X (3.12)
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Srarfoiie also showed [95] some fits of this function to empirical d a ta  of w ealth distributions. 

We use this function to fit the results of the sinuilations of the expanded Slanina model from 

section 3.2.

Using the same results of Figure 3.3 we performed a fit of this d istribution using a function 

of the form of equation 3.9 presented by Scarfone [95]:

P{x)  = f i - P \ x n  (3.13)

where /3 and fi are fitting param eters. Using the fitting tool from GNU PLO T software [106] we 

plot the results in Figure 3.4. We find th a t the cumulative d istribution function is indeed well 

described by the proposed functional form of Scarfone.
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Figure 3.4: The same cumulative distribution of wealth as in Figure 3.3, bu t with a fit to the 

double power law equation 3.9. The values of the fitting param eters are shown inside the figure.

Future work should thus include the derivation of an analytical solution for our modified 

Slanina model. It could profit from a trial solution as given by ecjuation 3.9.
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3.4 Conclusions

The main success of the modified Slanina model is thus the reproduction of two power laws 

regimes. We have sought to modify the Lotka Volterra approach in an attem pt to  model this 

double power law however thus far our efforts have been unsuccessful.

As was discussed in [18], progress in understanding the details of wealth d istribution is 

invariably linked to obtaining d a ta  sets tha t encompass the entire population of a country. It 

appears th a t a t present, this inform ation is only available for a few countries, for example Japan  

(Souma [23]). Generally, the super-rich are not included in income data. Published wealth lists 

are estim ates, bu t for the moment might well remain the only public source for the inform ation 

on these top earners. We hope th a t analyses of the kind we have made in this section encovu’age 

the release of more detailed income d a ta  over the entire income range. Only with more complete 

datasets we would be able to  properly understand these complex economic systems.



Chapter 4

Correlations of Financial data

4.1 Introduction

111 this chapter we introduce the toolkits recently developed by statistical physicists, for the 

analysis of financial data, including correlations. We will make use of these tools in the pro­

ceeding chapters. To illustrate the theoretical concepts we have analysed daily da ta  from the 

Thomson D atastream  [107]. We created a MySQL database [108] where we upload it and we 

wrote a C program to analyse different characteristics of the data.

An example of these characteristics is the nature of the returns of the price of a stock market. 

For m any years, economists have treated  the price changes of a stock as a norm al distribution, 

which was the original proposal of Bachelier [5], but around the 1950s this theory was replaced 

by a model in which the stock prices perforin a geometric Brownian motion, i.e. the stock 

prices are log-normal distributed [2]. B ut for a geometric Brownian motion the differences of 

the logarithm s of the prices, which we call logarithm  return, are Gaussian distributed. And this 

distribution is not able to explain the whole range of the distribution of returns, for jxauiple, 

for the higher values of returns the distribution has fa tter tails th an  the Gaussian distribution, 

as we show in the next section when we try  to ftt different probability distribution functions to 

the distribution of logarithm  returns of a stock.

The study of correlations between stocks is very im portant for portfolio analysis. Even for 

the common sense is known th a t we cannot pu t all the eggs in one basket, so if we are investing in 

the stock m arket, w'e need to have a diversification of our portfolio to  avoid higher risk of losses. 

The correlations between the stocks included in our portfolio will give the weight, according 

to M arkovitz theory [130], of each stock for a portfolio optimisation. A nother im portant topic 

related with the correlation between stocks is the industrial classification of sectors in a m arket, 

and the update of these lists of industrial classification in order to  help the investors.

In section 4.2 we introduce the definition of returns of the price of a stock and some probabil-
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ity distribution functions thatt are used 1o f t  these retm'ns. After this, we explain the im portance 

of the correlations in financial d a ta  (section 4.3) and introduce different mechanisms to study 

these correlations (sections 4.4 and 4.5).

4.2 A nalysing returns

Calling the value of a tim e series i at time t as Pi{t). where for a financial time series this value 

is the price of a stock i a t tim e t, th e  lo^-returu of a time series is defined as the difference 

between the logarithms of tw'o consecutive values:

R,{t )  = h . P , [ t ) - I n  (4.1)

The definition of logarithmic re tu rn  has tvo purposes: firstly there is a common belief th a t the 

price of stocks, Pi{t) increases exponfjntially in time on average; secondly the difference between 

two consecutive values is verv  small, so:

Ri{t) = In P^[t) 
m - l ) \

= In Pj{t) -  Pijt -  1)
Pit -  1)  ̂ ^P,(t -  1)

i.e. the log-return has approxim ately the same value as the (juotieat return [2].

Figure 4.1 shows the evolution of the value of a time series, Pi(t) in time. In th is example 

the value of the tim e series is the daily closing price of the stock of The Hongkong and Shanghai 

Banking Corporation L im ited (HSBC), in pounds. This company belongs to the m ain index in 

the London Stock Exchange m arket, the FTSEIOO. The closing price is shown for the period 

July 9̂ *̂ 1992 until M arch 24'̂ '̂ 2008 (4098 market days). Figure 4.2 shows the evolution of the 

logarithm ic returns, Ri{t)  of the  stock HSBC, in time.

4.2.1 Gaussian d istr ibution

The distribution  of the logar ithm ic returns of the price of a stock generally does not follow a 

Gaussian distribution [98, 10'9, 110], as assumed by some economists, but as we can see from 

Figvu'e 4.3 the tails of the diistribution are more enhanced than a Gaussian distribution. The 

strength  of the tails depends on the tim e scale at which returns are evaluated and scales with 

tim e [2].

A Gaussian distribution is a distribution with two parameters, the mean (̂ u) and the standard  

deviation (a). To ht this function to any distribution we will need to calculate these two 

param eters of the d istribu tion  and plot the probability distribution function:

{x -  ^ )2 ‘
crv27r 2cj2

(4.3)
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Figure 4.1: Price of the company HSBC (Bank with the tick symbol HSBA) in tim e from 

1992-07-09 to 2008-03-24 (4098 m arket days).
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Figure 4.2: Daily return  of price of company HSBC (Bank with the tick symbol HSBA) in time 

from 1992-07-10 to 2008-03-24 (4097 market returns).

4.2.2 T - s tu d e n t  d is t r ib u t io n

More appropriate distributions th a t will feature the fat tails are for example the T -student or 

Tsallis distributions [111]. The probability distribution  function of a T -studen t distribution is
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Figure 4.3: D istribu tion  of re tu rn s  of price of conipany HSBC (Bank w ith the  tick  sym bol HSBA) 

represen ted  as black circles. T he solid, broken an d  d o tted  lines represent fits to  G aussian, T- 

stu d en t and  Levy d istribu tions, respectively. Note tlu; log-normal scale of th e  p lo t.

given by:

Pk{x) = Nk 

w here Ni^ is a norm alisation  factor:

■Inal

T { k )

Tfcr [k  -  i )

(4.4)

(4.5)

and  r(A;) is th e  G am m a fim ction. T he factor dfc =  a \ J { k  — 3/2)/fc is re la ted  to  th e  s tan d a rd  

dev iation  of th e  d is trib u tio n  [a) and w ith the degr'ce of d istribu tion  (fc). T h e  fim ction e \  is an 

approx im ation  of the  exponential function called k-exponential,

—  k
expi,W =  ( l - | ) (4 .6 )

which in th e  lim it k  oo reduces to  th e  ordinary exponentia l function. T he p ro b ab ility  d is tri­

bu tion  function m ay be w ritten  as:

Pkix)  =
r(fc) 1

1 +
o-2(2fc -  3)_

(4.7)
r  (fc — 2) a ^ n { 2 k  — 3)

T he p a ram ete r k  is re la ted  to  the  Tsallis param eteir q by k — l / {q  -  1).

To com pute th e  p aram eters  of a T -studen t d is trib u tio n  it is necessary to  tak e  in to  account 

th e  fact th a t  som e m om ents of th e  d istribu tion  m ight not exist, i.e. diverge. U sing fractional



4. Analysing returns and Correlations for Financial data 45

moments we can avoid these kind of problems. Considering the fractional moment for the 

empirical distribution, my of retm'ns,

1 io '+ 'T ’ — 1

where /  is a fractional number, less than  the m om ent for which the sum  diverges and R{t )  is

the return. The ra te of the moments

ry =  ^  (4.9)
0 1 /+ 1

can be com puted and compared with the ra te  of moments for the analytical distribution of 

returns,

^  (4.10)M f + i

which is given bj' (see Appendix A for the derivation):

' 2 { k - l )
R f  = {2k -  3)ff2 (2k -  3)c

(4.11)/
So, it can be seen th a t the ra te of the moments, R f  is inversely proportional to  the fractional 

numl:)er. / .  Calculating the ra te  of the moments for the empirical d istribution  for different 

fi actional exponents, / ,  a plot of r j  versus 1 / /  can be used to  calculate the param eters, a and 

k of the T -student distribution (Fig. 4.4):

Vf = a j + b  (4.12)

Using different values of the fractional num ber, / :  |  <  /  <  1, the values of the param eters a 

and k are calculated by linear regression:

a '  ̂ (4.13)
a + b

k = ^  (4.14)

For all the stocks of the London Stock Exchange th a t we studied, the minimum value of k  is 

1.7 and the maxinmm 9.0, bu t most of the values are between 2.0 and 4.0, which means values 

off/ in the interval between 1.25 and 1.5, which is around the values found by Tsalhs [112] (1.40, 

1.37 and 1.38) for one, two and three minutes return, respectively, for the NYSE in 2001. For 

example the value of k found for the HSBC d a ta  of Figure 4.3 is approxim ately ~  2.90.

4.2 .3  L ev y  d is tr ib u t io n

Another type of d istributions with fat tails th a t is very popular am ongst the physics com nm nity 

is the Levy stable distribution. Like the Gaustiian distribution it is stable, i.e. when we sum
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F igure 4.4: R atio  of frac tional m om ents ( r j )  versus th e  inverse of the  exponen t /  for th e  com pany 

HSBC (B ank w ith  th e  tick  sym bol HSBA) represen ted  as black circles. T he inset iigure shows 

th e  ra tio  for a large range of exponents /  and it can be seen th a t  th e  linear p a r t is around 

1 / /  ~  0.5 — 2.0. In the  m ain  hguro, wo used values of /  betw een 0.7 and  1.0. C alcu la ting  the 

linear regression in th is  region we get values a and  h for the  line equation , r j  =  a { l / f )  + b. 

W ith  these values we com puted  the  p aram eters  of th e  T -s tu d en t d istrib u tio n , a  ~  0.0177 and 

k  ~  3.03.

variables from  two independen t stab le  d is tribu tions w ith  the  sam e exponent a,  th e  resu lting  

variables will also be d is tr ib u te d  according to  a stab le  d is trib u tio n  w ith  th e  sam e exponent 

[6 ]. If u'  an d  u ” are d is tr ib u ted  according to  the  sam e stab le  d is trib u tio n  and  u  is a linear 

com bination  of u'  and  u ”:

U =  C j u ' + C 2 U "  + C3 (4.15)

thei’e exist values of C4  and  C5  such th a t  C4U +  C5  is also d is trib u ted  according to  the  sam e stab le  

d istribu tion .

T here  is no analj^tical expression for th e  probab ility  density  function  of th e  Levy d istribu tion . 

However, th e  Fourier tran sfo rm  of its characteristic  function  [2] is given by:

1 / ’+ ° °
L{x- a, (3,7 , m) =  ^  J  f{(l) exp {~qx)dq 

and  th e  general expression for th e  characteristic  functions is:

exp Ufiq - 1  -  z/3||i ta n  ( f  a ) j  |  [a ^  1]

(4.16)

¥’((?) =
exp  i îl îq - 'r\q\ l  +  z ,5 ||ln |Q | | =  1]

(4.17)
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where q is the exponent of the distribution, 7  is a norm ahsation factor, /i is related to the mean 

of the distribution and is related to  its asymmetry. For the case a  = 2 this distribution  reduces 

to the Gaussian distribution.

Assuming a symmetric distribution (/? =  0) centred a t the origin (/j = 0) we are left with 

onl>̂  two param eters, a  and 7  and then the characteristic function is given by:

V?(g) =  e x p ( - 7 |g |“ ) (4.18)

As happen for the T -student distribution, some moments of the Levy distribution  do not 

exist, for example the second-order moment diverges for 0 < a  < 2 , bu t all the moments of 

order less than  a  do exist and are called the fractional lower-order moments (FLOM) [113]. The 

FLOjNI of a Levy random  variable can be found from the param eters a  and 7  [113]:

E  (|AT]P) =  C{p,a)' ) a for 0 < p < cv (4-19)

where
2P+ir ( r (-2)

d p ,  a) = ----------------------   (4.20)a0F r (-f)
So. computing the FLOM of the distribution of returns give us the values for the param eters 

n and P for each tim e series. For a practical com putation of these param eters we proceed as 

follows.

The log-price can be assumed to be composed of two term s, a drift term  D  and a fluctuation 

term th a t follows a Levy distribution [114],

hi Pi{t) = Dt  + -fL{t) (4.21)

where 7  is the dispersion of the fluctuations and L{t) is a random  variable from a stable d istribu­

tion with dispersion t and exponent a. In Fig. 4.5 we represent the log-price of the stock HSBC 

in time with the correspondent drift calculated from a linear regression. The drift adjusted 

prices, Pi{t) are calculated as:

In A(0 = InPi(i) - D t -  l n P , ( 0 ) = -  ln P ,(0 ) ,  (4.22)

where Pi{Q) is the price at < =  0 .

Using the fact th a t a Levy process is homogeneous in tim e [114] the log-return of the drift 

adjusted price can be represented by stable variables as:

In =  hi P,{t + 6t) -  hi P^{t) = 7  [L{t + St) -  L{t)] =  jL {6 t )  (4.23)
(0
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Figure 4.5: Log-price of th e  com pany HSBC (B ank w ith  the  tick sym bol HSBA) in tim e from 

1992-07-09 to  2008-03-24 (4098 m arket days) in solid line and  the  respective drift, calculated  

from  th e  linear regxession. in broken line.

C alcu la ting  the  FL O M  for th e  log -re tu rn  of the  d rift ad justed  price for a  co n stan t value oi  p < a  

and  for variable values of 5t we can e stim a te  the  m om ents of the  d istribu tion :

t=\
In

Pi{t  +  6t)

m) = E{\yL{6t)\> (4.24)

w here £ ’(•■•) th e  expected  vahie of th e  fractional m om ent and  from  equa tion  4.19 is given by 

[113]:

E { \ ' f L { 6 t ) f )  = ' ' f ^E{ \ L{6t ) f )  = ' yPCi p, a)Sl ^  (4.25)

From  th is ec^uation we can see th a t  th e  logarithm  of £ '( ...)  is p ro p o rtio n a l to  th e  logarithm  of

St:
PIn [E ( |7 L(dt)|^)] =  p l u 7  +  In C  H—  In St (4.26)

an d  so if we plo t the  m om ents of th e  re tu rns, rnp{St) versus 6t  we o b ta in  an  estim ation  of the  

values of a  and  7  (F igure 4.6). T h e  linear equation  for th e  m om ents is given by:

In \m.p{St)\ — a l n S t  + b

w here a is the  slope o f th e  curve an d  b th e  in tercep tion  w ith  th e  y-axis.

Pa  —

-y — C  ’’ exp
' b'

P.

(4.27)

(4.28)

(4.29)
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In Fig. 4.6, we represen t the  m om ents, rrip{5t) versus 5t and  th e  hnear regression th a t  give the  

e s tim a ted  values of a  and  7  p a ram ete rs  of the  Levy d is trib u tio n  for th e  re tu rn s  of H SBC. For a 

value of p  equal to  1 . 1  th e  value estim a ted  for n  is around  1.97 and  for 7  it is a ro u n d  0.01. If we 

increase th e  value of p  the  values es tim ated  for a. and  7  also increase, som etim es even reaching 

values of a- th a t  are not expected  for a Levy stab le  d istrib u tio n . T h is value of a  is in agreem ent

- 2 .5

to

In [m ( 6 t )] = -4.79 + 0.56 In 6t
- 4 .5

In 5t

Figure 4.6: F rac tional m om ents of th e  retiu 'iis of com pany H SBC (B ank w ith  th e  tick  sym bol 

HSBA) versus bt represen ted  as black circles and th e  respective linear regression rep resen ted  as 

a solid line.

w ith th e  values expected  for a  Levy stab le  d is trib u tio n  (cv <  2.0). T h e  values of a  an d  7  were 

used to  p roduce th e  Levy fit to  th e  d is trib u tio n  of re tu rn s  of H SBC in Fig. 4.3. For th e  re tu rn s  

of H SBC th e  fit of a Levy d is trib u tio n  appears very sim ilar to  th e  fit of a G aussian  d is trib u tio n , 

p robab ly  because th e  a  p a ram ete r is alm ost ecjual to  2 .0 , so we can conclude th a t  th e  b est fit for 

th is p a rticu la r  set of d a ta  is th e  one perform ed w ith  a T -s tu d en t d is trib u tio n . For o th e r stocks 

th is is no t th e  case, perform ing th e  sam e m ethod  to  e s tim a te  th e  values of th e  p a ram e te rs  for 

o ther stocks we can see th a t  som e values of q  are ou tside th e  p e rm itted  region of a  <  2 and  the  

sm allest value of q  is equal to  1.74. In Table 4.1 we show all th e  values used to  fit th e  th ree  

probab ility  d is trib u tio n  functions p resen ted  before.
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Table 4.1: Nam e, sym bol and  values used to  fit the  th ree  p robability  d is trib u tio n  functions to  

the  d is trib u tio n  of logarithm  re tu rns: hq  and a c  for G aussian; k r  and a r  for T -S tu d en t; a i  

and  for Levy. T h e  stocks presen ted  here belong to  a portfolio  of 85 stocks from  th e  FTSEIOO 

index w ith  tim e series leng th  of 2146 days._________________________________
N a m e S y m b o l Mg <̂ G k r (7’J ' 7l

31 G R O U P III.L 0.000 0.02 2.90 0.02 2.08 0.01

.-ALLIANCE & L E IC E ST E R AL.L 0.000 0.02 2.07 0.02 2.20 0.01

.•\LLIANCE T R U ST ATST.L 0.000 0.01 3.22 0.01 2.12 0.01

AM EC AM EC.L 0.000 0.02 3.00 0.02 1.74 0.01

ANGLO A M ERICA N AAL.L 0.000 0.02 5.45 0.02 2.27 0.02

A NTOFAGASTA A N TO .L 0.001 0.02 3.18 0.02 2.14 0.02

A SSO CIA TED  B R IT .FO O D S A BF.L 0.000 0.02 2.71 0.02 2.21 0.01

A STRA ZEN ECA AZN.L 0.000 0.02 3.08 0.02 2.11 0.01

.WIVA AV.L 0.000 0.02 2.97 0.02 2.37 0.02

BAE SY STEM S BA.L 0.000 0.02 2.64 0.02 1.90 0.01

BARCLAYS BARC.L 0.000 0.02 3.30 0.02 2.42 0.02

BG G R O U P BG.L 0.001 0.02 6.38 0.02 2.51 0.02

BMP BILLITO N BLT.L 0.001 0.02 5.92 0.02 2.25 0.02

BP BP.L 0.000 0.02 7.21 0.02 2.66 0.02

BRITISH  AIRWAYS BAY.L 0.000 0.03 3.59 0.03 1.86 0.02

B R ITISH  A M ERICA N  T O B A C C O BATS.L 0.001 0.02 2.67 0.02 2.86 0.02
BRITISH  LAND BLND.L 0.000 0.02 3.«0 0.02 2.05 0.01

BR ITISH  SKY B C A ST.G R O U P BSY.L 0.000 0.02 2 .:» 0.02 2.19 0.02
BT G R O U P BT-A.L -0.001 0.02 2.97 0.02 2.24 0.02
BUNZL BNZL.L 0.000 0.01 3.92 0.01 2.09 0.01
CA BLE &!, W IRELESS CW'.L -0.001 0.03 2.10 0.03 1.75 0.01

CADBURY CBRY.L 0.000 0.02 3.78 0.02 2.19 0.01

CAIRN EN ER G Y CNE.L 0.001 0.02 2.28 0.03 1.90 0.01
CA PITA  G R O U P C PI.L 0.000 0.02 2.50 0.03 2.42 0.02

C E N T R IC A CNA.L 0.000 0.02 4.35 0.02 2.36 0.01
COBHAM COB.L 0.000 0.01 3.68 0.02 2.57 0.02

DIAGEO D G E.L 0.000 0.02 2.76 0.02 2.49 0.01

E N T E R P R IS E  INNS E T l.L 0.001 0.02 3.15 0.02 1.83 0.01
FIR ST  G R O U P FG P.L 0.000 0.02 2.45 0.02 1.94 0.01
G4S G FS.L 0.000 0.02 3.11 0.02 2.15 0.02

Continue on next page
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N a m e S ym bol /<C <^a k r (T'f 1L

GLAXOSMITHKLINE GSK.L 0.000 0.02 1 5.10 0.02 2.63 0.02

HAMMERSON HMSO.L 0.000 0.02 3.55 0.02 2.13 0.01

HBOS HBOS.L 0.000 0.02 2.69 0.02 2.46 0.02

HOME RETAIL GROUP HOME.L 0.000 0.02 3.02 0.02 2.20 0.01
HSBC HDG. (ORD $0,50) HSBA.L 0.000 0.01 2.74 0.02 2.16 0.01
ICAP lAP.L 0.001 0.02 2.75 0.02 1.98 0.01
IMPERIAL TOBACCO GP. IMT.L 0.001 0.02 3.14 0.02 2.66 0.02
INTERNATIONAL POW ER IPR.L 0.000 0.02 4.18 0.02 1.79 0.01

ITV ITV.L -0.001 0.03 5.47 0.03 2.15 0.02
JOHNSON MATTHEY JMAT.L 0.000 0.02 3.37 0.02 2.34 0.01
KINGFISHER KGF.L -0.001 0.02 3.08 0.02 2.15 0.02
LAND SECURITIES GROUP LAND.L 0.000 0.01 4.21 0.01 2.05 0.01
LEGAL &: GENERAL LGEN.L 0.000 0.02 15.77 0.02 2.31 0.02
LIBERTY INTL. LII.L 0.000 0.01 2.84 0.01 2.08 0.01
LLOYDS TSB GROUP LLOY.L 0.000 0.02 2 77 0.02 2.55 0.02
LONMIN LMI.L 0.001 0.02 3.49 0.02 2.05 0.02
MAN GROUP EMG.L 0.001 0.02 3.65 0.02 2.04 0.01
MARKS & SPENCER GROUP MKS.L 0.000 0.02 2.63 0.02 1.90 0.01
MORRISON(WM)SPMKTS. MRW.L 0.000 0.02 3.71 0.02 2.15 0.01
NATIONAL GRID NG.L 0.000 0.01 3.93 0.01 2.32 0.01
NEXT NXT.L 0.000 0.02 2.67 0.02 1.99 0.01
OLD MUTUAL OML.L 0.000 0.02 4.66 0.02 2.14 0.02
PEARSON PSON.L 0.000 0.02 2.46 0.02 2.35 0.02
PERSIMMON PSN.L 0.000 0.02 4.49 0.02 2.01 0.01
PRUDENTIAL PRU.L 0.000 0.02 2.96 0.02 2.35 0.02
RECKITT BENCKISER RB.L 0.001 0.02 2.79 0.02 2.85 0.02
REED ELSEVIER REL.L 0.000 0.02 2.88 0.02 2.83 0.02
REXAM REX.L 0.000 0.02 2.74 0.02 2.35 0.01
RIO TINTO RIO.L 0.001 0.02 5.43 0.02 2.29 0.02
ROLLS-ROYCE GROUP RR.L 0.000 0.02 2.99 0.02 1.89 0.01
ROYAL k  SUN ALL.IN. RSA.L -0.001 0.03 2.96 0.03 1.81 0.01
ROYAL BANK OF SCTL.GP. RBS.L 0.000 0.02 2.61 0.02 2.28 0.02
ROYAL DUTCH SHELL B RDSB.L 0.000 0.02 4.37 0.02 2.70 0.02
SABMILLER SAB.L 0.000 0.02 3.57 0.02 2.07 0.01
SAGE GROUP SGE.L -0.001 0.03 2.72 0.03 2.23 0.02
SAINSBURY (J) SBRY.L 0.000 0.02 2.48 0.02 2.09 0.01
SCHRODERS SDR.L 0.000 0.03 3.06 0.03 1.89 0.01
SCHRODERS NV SDRC.L 0.000 0.03 2.69 0.03 1.99 0.01

Continue on next page
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N am e Sym bol kr ax a t 7L

SCOT.& SOUTHERN ENERGY SSE.L 0.000 0.01 4.48 0.01 2.84 0.01
SEVERN TREN T SVT.L 0.000 0.01 3.50 0.02 2.80 0.02
SHIRE SHP.L 0.000 0.03 2.16 0.03 2.00 0.02
SMITH & NEPHEW SN.L 0.001 0.02 3.34 0.02 2.15 0.01
SMITHS GROUP SMIN.L 0.000 0.02 2.87 0.02 2.11 0.01
STANDARD CHARTERED STAN.L 0.000 0.02 3.38 0.02 2.59 0.02
TATE & LYLE TATE.L 0.000 0.02 2.22 0.02 1.75 0.01
TESCO TSCO.L 0.000 0.02 G.51 0.02 2.25 0.01
THOMSON REUTERS TRIL.L 0.000 0.03 2.44 0.03 1.83 0.01
TUI TRAVEL TT.L 0.000 0.02 3.43 0.02 2.09 0.02
TULLOW  OIL TLW.L 0.001 0.02 4.56 0.03 2.09 0.02
UNILEVER (UK) ULVR.L 0.000 0.02 3.06 0.02 2.52 0.02
UNITED UTILITIES UU.L 0.000 0.01 3.55 0.01 2.79 0.01
VODAFONE GROUP VOD.L 0.000 0.02 4.43 0.02 2.10 0.02
W HITBREAD WTB.L 0.000 0.02 3.23 0.02 1.95 0.01
WOLSELEY WOS.L 0.000 0.02 3.27 0.02 1.94 0.01
W PP GROUP WPP.L 0.000 0.02 3.22 0.02 2.35 0.02

In Figure 4.7 we plot the distribution of the vahies of a [)arameter from the Levy distribution. 

We can see that most of the vahies are higher than 2.0 vvliich contradicts the Levy theory. This 

fact helps us in our conclusion that the T-student distribution is a better fit for this portfolio of 
stocks.
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Figure 4.7: Distribution of a values from the Levy distribution for a portfolio of 85 different 

stocks of the FTSEIOO. This values ŵ ere taken from table 4.L Most of the values are higher 

than 2.0 which contradicts the Levy theory.
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4.3 T he correlation  o f tim e series

D uring th e  f)ast decade, m any physicists have used techniques of s ta tis tic a l physics and com plex­

ity  to  s tu d y  financial problem s. In p a rticu la r the  concept of netw orks proved valuable, w hereby 

th e  netw orks are set up to  represen t co rrela tions betw een stocks. S tudy ing  th e  characteristics 

of these netw orks can prove very valuable for portfolio  o p tim isa tion  [48, 115].

A challenging problem  is the  n a tu re  of a stock tim e series and, in p a rticu la r, th e  n a tu re  of 

the ir random ness [45, 47, 48]. R ecently  th e  th eo ry  of random  m atrices has proved helpful to  

characterise  th e  tim e series [38, 39]. In th is  section we in troduce  the  concepts of a m inim al 

spanning  tree  (M ST) proposed by M antegna [43] and  som e issues of random  m atrix  theory  

(R.MT) stud ied  by M ehta [37] to  exam ine the  correlations betw een tim e series.

Im p o rtan t inform ation al)out hnancial d a ta  is ob ta ined  by s tudy ing  th e  eigensystem  of the  

correlation  m atrix . In  pa rticu la r th e  spec trum  of eigenvalues differs m arkedly  from  the  one for 

random  m atrices [41, 42],

To analyse th e  correlations betw een tim e series, we com puted  the  co rrelation  coefficient, pij 

for the  tim e series of log-returns Ri  and  B j  (see ecjuation 4,1):

(4.30)

where:
. i o + T - l  

(=to+l

(R,} =  ^  E  (4,31)
t=to+l

and to and  T  are  the  first tim e and  length  of the  tim e series, respectively. Since the  first value 

of the  tim e series of log-returns is +  1), which m eans th a t  has one less value th a n  th e  tim e 

series of values, th e  sum  is divided by T  — 1, E ach tim e series of log-re tu rns can be norm alised

by su b trac tin g  the  m ean, (Ri)  and  dividing by th e  s tan d a rd  dev iation , y

R^(t) =  (4.32)

for every tim e t = to I . . . .  T  — 1. T h e  correlation  coefficient can  th en  be w ritten  as:

^  {R ,R j )  =  E  M t ) R j W  (4.33)

T his coefficient can vary betw een — 1 < pij < 1, w here —1 corresponds to  a  com pletely  a n ti­

correlated  tim e series and  + 1  to  a com pletely corre la ted  tim e series. If pij =  0, th e  tim e series i
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and j  are uncorrelated. The coefficients for all the pairs of time series form a sym m etric m atrix 

with diagonal elements equal to unity. The correlation m atrix with elements pij can then be 

represented in m atrix  form as:

where G represents the m atrix  with elements Ri{t).  The size of this m atrix depends on the 

number. N  and length, T  of the time series. So, it will be an N  x  {T — I) m atrix. The m atrix 

G'̂ '" denotes the transpose of G.

The distribution of correlation coefficients is an im portant aspect of our study because one 

can show how the changes in time of the moments of this distribution are related w ith each other. 

Following Onnela et al. [48, 53], vve analysed the moments of the distribution of correlations 

coefficients in time. The first moment is the mean correlation:

Just the elements of the upper triangle of the m atrix are used to  com pute the m atrix , because 

it is a synnnetric m atrix with diagonal elements ecjual to unity. If we divide our time series 

in small windows and we move these windows in small steps, we create different correlation 

matrices. If we com pute the moments of each of these matrices, we can study these moments

time series. The higher m oments explain how the variance of correlation coefficients increase or 

decrea^ie and how the skewness and kurtosis of the distribution chcinges.

The decomposition of the m atrix C in term s of eigenvalues and eigenvectors can be repre­

sented as:

(4.34)

(4.35)

O ther moments are similarly defined, the variance:

(4.36)

the skewness:

(4.37)

and the kintosis:

(4.38)

in time. Evaluation of these moments for tim e windows of width T  reveals the dynam ics of the

C -  UDU“ ^ (4.39)
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where D is a diagonal matrix with the eigenvalues, A; as elements:

D =

Ai 0

0 A2 

0 0

The matrix U is a matrix of the eigenvectors, u^’:

U -

U\ Uj

U<~) l / o

u\, ux

0

0

Aiv

. . N

(4.40)

''TV “ jV ■ ■ ■ “ at J

where uf  is the element of the eigenvector k. The matrix is the inverse of U.

N

(4.41)

4.4 R andom  M atrix  T heory

If we study the eigensystem of a matrix we can search some conclusions about the origins of 

that matrix. In our case, if we analyse the correlation matrix we can obtain further information 

in the time series from which it originated. Is known that the distribution of eigenvalues of a 

random matrix is well characterised [116]. If the random matrix is defined as:

C'=^G 'G '^'- (4.42)

where G' represents a N  x T '  matrix with independent and identically distributed elements, the 

distribution of eigenvalues can be calculated analytically. In the limit N  oo and T' oo, 

where Q =  T ' / N  is fixed and bigger than 1, the probability density function of the N  eigenvalues, 

A of the random matrix is:

P^^,(A) =  £  ~  (4.43)

where ^

A™- =  ( l  ±  (4.44)

limits the interval where the probability density function is different from zero.

We define the spectrum of eigenvalues as all the values of eigenvalues from a matrix and the 

distribution of eigenvalues as the distribution of these spectrum. The spectrum of eigenvalues, 

will be confine to same limits.

One characteristic eigenvalue is the one with the highest value. For the study of correlations 

between stock prices, the eigenvector related with the highest eigenvalue has all his elements
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with the same sign and is interpreted as the influence of the entire m arket th a t is common for 

all stocks [41]. This value depends on the portfolio studied, this can be related w ith the size of 

the portfolio and also with the mean correlation. More correlated portfolios will have a higher 

value for the highest eigenvalue.

4.4.1 Inverse P articipation  R atio

The inform ation contained in the eigenvalues is retrieved by looking at the corresponding eigen­

vectors. A cnumtitative factor calculated from the eigenvectors is the Inverse Participation Ratio 

(IPR) [42]. The IPR  of an eigenvector is given by:

=  (4.45)
i = \

where is the element of the eigenvector k. This cjuantity has two limits, one when all 

the elements of the eigenvector have the same value (/*■’ —+ 1 / \ /N )  and another one when one 

element has value one and all other elements are zero (/^  1).

4 .4 .2  M ean Value o f E igenvectors

Studying the elements of each eigenvector, we can determ ine which stocks contribute more to

each eigenvector and also if there is a common m arket or industrial sector in these eigenvectors

th a t contributes more. To study the influence of groujis of stocks in each eigenvector, we group 

our stocks in m arkets and industrial sectors. We com pute the mean value and variance for each 

m arket/industrial sector. The mean value of eigenvector k, for a group of stocks of m arket m 

and sector s is given by:

where is again the element of the eigenvector k, M,n represents the m arket rn, 5., represents 

the sector s and is the num ber of stocks th a t belong to sector s of m arket m  . T he symbol 

(■ • )rri.s represents the mean over the elements th a t belong to  m arket m  and sector s. The 

respective variance of elements of m arket rn and sector s is given by:

"‘f  ‘ ih  T. (“■«)/ m , . S ’ ^ r n , s  \  ^ /  r n , s J
/■

4.5 M in im um  Spanning Trees

A nother way to study the correlation of time series is to create a m atrix  of distances between time 

series from the correlation coefficients. W ith this m atrix of distances we can create a network
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where each node represents a time series and hnks between nodes represent the distances between 

pairs of the time series. If two time series are highly correlated, the distance between them  is 

small. The network th a t we use to study these properties is the M inimum Spanning Tree (MST).

4.5.1 D istances

The m etric distance, introduced by M antegna [43], is determ ined from a function of the Euclidean 

distance between vectors, dij =  |R,; — R_,|, where R,; represents a vector for tim e series i

with r  — 1 elements Ri{t)  for t from to +  1 to ^  — 1- Taking in consideration th a t the vector 

R , is normalised, b u t it is not un itary  |R ;| =  \ / T  — 1 it follows that:

4  =  7 ^ 1 ^ '  -  • R ,  =  2 -  2p,, (4.48)

This relates the distance between two time series to  their correlation coefficient;

d,, =  (4.49)

This distance varies between 0 <  djj <  2, where small values imply strong correlations between 

time series. A distance m atrix  D with elements dij is formed. Following the procedure of 

M antegna [43], this distance m atrix  can be used to construct a network with the essential 

information of the tim e series.

The M iniinmn Spanning Tree is a sub-network of a m ajor network. If we consider the 

network as all the N { N  —1)12 links possible between all time series, a Minimum Spanning Tree 

is a sub-network of this network with only N  -  \ links from the N { N  — l ) /2 .  T he 1 links are 

chosen to minimise the to tal length of the network taking in consideration th a t all the N  nodes 

will be connected to the network and th a t no loops will occur during the construction of the 

network. If the distances, dij are unique, there is only one M inimum Spanning Tree. To chose 

tlie — 1 links for the MST many algorithms can be used, one of them  is the P rim ’s algorithm  

[117]. The P rim ’s algorithm  is given by the following steps:

1. Choose the minimum distance of the m atrix D, d]?V'- and connect the nodes i' and j '  with
J

a link;

2. Choose the next minimum distance of the m atrix  (for example dk'i')\

•  If one of the nodes k' or I' has a link and the other not, co n n ect th e  n o d es  k' and 

I' w ith a link and continue to 2);

• If k' and I' both  have a link, d o n ’t co n n ect them  and continue to  2);

• If k' and I' both  don’t have a link, d o n ’t co n n ect them  and continue to  2);
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3. After choosing N  — 1 pairs and connecting all of them , a M inimum Spanning Tree is 

created.

& ■

,0 .1 ' /  \  ''0 .4

---/^0.5-V------
,, 0/3 1\0

Figure 4.8; Schem atic representation of the P rim ’s algorithm . A simple network with 5 nodes 

and 10 possible links. T he num ber in each link represents the distance between pairs of nodes. 

S tarting  by choosing the m inim um  distance (0.1), we add a  link to  the nodes related w ith this 

distance. Choosing the next m inim um  distance (0.2), and checking the conditions of the  pair, 

we can see th a t bo th  nodes d on’t have a link, so we continue to  the next m inim um  distance. 

And so on, until we choose 4 links and we have a fully connected network w ithout loops, th a t 

we call M inimum  Spanning Tree.

To visualise the  M inimum Spanning Tree we used the  Pajek  software [118]. This software 

uses the  K am ada-K aw ai algorithm  [119] to  display the links and nodes. The algorithm  introduces 

a dynam ic system  in which every two nodes are connected by a “spring” w ith the respective 

d istance between two tim e series. T he optim al layout of vertices is when the to ta l spring energy 

is m inim al.

W ith  the  distances from the M inimum  Spaim ing Tree, we studied the d istribu tion  of distances 

in the  network and the m ain m om ents (sections 5.5, 5.7 and 6.3), as the mean or norm alised 

tree length:

 ̂= jv^ E
dijee

where 0  represents the set of distances th a t belong to  the M ininmm Spanning Tree. The other
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moments are the variance:

(4.51)

the skewness:

t 's  = (4.52)

and the kurtosis:

(4.53)

Again we can divide our tim e series in small windows and move those windows in small steps, 

f-roating different Mininmm Spanning Trees. If we compute the moments of each MST, we can 

study these moments in time.

4.5 .2  M ean O ccupation Layer

Changes in the density, or spread, of the Minimum Spanning Tree can be examined through 

calculation of the mean occupation layer, as defined by Onnela et al. [48]:

is dohnod as zero. The level of one node is the minimum number of links th a t separate th a t 

node with the central node.

with the highest sum of correlations of its links. Both criteria produce similar results. W hen we 

perform a time analysis, the mean occupation layer can then be calculated using either a fixed 

c(;ntral node for all windows, or with a continuously updated node.

4.5.3 Single and M ulti Step  Survival R ates

The robustness of links over time can be examined by calculating survival ratios of links, or 

edges in successive MST. The single-step survival ratio is the fraction of links found in two 

consecutive MST in common at times t — 1 and t and is defined by Onnela et al. [48] as:

where E{t)  is the set of edges of the MST at tim e t, n  is the intersection operator, and | |

i=l

where L{vl) denotes the level of a node, or vertex, vj in relation to the central node, whose level

The central node can be defined as the node w ith the highest nmnber of links or as the node

(4.55)

gives the number of elements in the set. A m ulti-step survival ratio  can be used to  study the 

longer-term evolution [48]:

a{t, k) = j ^ ^ \ E { t )  n  E {t  -  1) ■ ■ ■ E{t -  k + I) n  E{t -  k)\ (4.56)
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in which only the connections that continiie for the entire period without any interruption are 

counted.

4.6 O utline of Chapters 5, 6, 7 and 8

In this chapter we saw how difficult is to conclude which probability distribution function better 

represents the distribution of returns, but the best fit seems to be given by the T-student 

distribution. One of the reasons for our conclusion is the amount of values higher tlian 2.0 for 

the a parameter of the Levy distribiition.

We also introduced some techniques used to better understand some properties of the port­

folios studied. In the next chapters we will show the results for different portfolios. In Table 4.2 

we represent each portfolio of stocks that we study further.

Table 4.2: Index, number of time series (A^), date period, time series lengtli (T) and chapter 

where those portfolios are studied.
In dex N d a te  p e rio d r C h a p te r

FTSEIOO 67 August 2"'  ̂ 1996 - June 27"* 2005 2322 days 5

85 January 3^'' 2000 - March 24"* 2008 2146 days 5, 7 and 8

MSCI indices 44 Jarmary 8"' 1997 - February 1'̂ '̂  2006 475 weeks 6

Stock market indices 9 January 8"‘ 1997 - February l'**̂ 2006 475 weeks 6

56 Jaiuiary 3' '̂  2000 - March 24"* 2008 2146 days 6

DJIA 30 January 3''^ 2000 - March 24*̂ * 2008 2146 days 7 and 8

CAC40 34 January 3'’'̂  2000 - March 24̂ *̂ 2008 2146 days 8

BEL20 17 January 3'’'̂  2000 - March 24"* 2008 2146 days 8

AEX 21 January 3^  ̂ 2000 - March 24*'* 2008 2146 days 8

We start with the analysis of a portfolio of stocks from only one market. The first study is 

of 67 stocks from the FTSEIOO, in Chapter 5, and then in the same chapter we also study a 

bigger portfolio of 85 stocks from the FTSEIOO. We conclude that the stocks group in terms of 

industrial sectors for both portfolios. The same conclusion is given for a portfolio of 30 stocks of 

DJIA index in Chapter 7. In Chapter 6 we analyse two portfolios of indices, first a portfolio of 53 

indices, 44 MSCI indices and 9 stock market indices, and second a portfolio of 56 stock market 

indices. For both portfolios we concluded that the indices grouped in terms of geographical 

location. The next step was to analyse how the stocks from different stock market will group, if 

in terms of industrial sectors of in terms of geographical location. First we analyse a portfolio of 

stocks from the two best known indices in the world, FTSEIOO and DJIA, in Chapter 7, then.
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in C hapter 8, we analyse a portfoho of stocks from three different indices, FTSEIOO, D JIA  and 

CAC40. We choose these indices, because two of them  come from the previous study in C hapter 

7 and the third one is the central index of the study of C hapter 6. Because these study of these 

three indices main have some tim e-m ism atch we also study a portfolio of three different indices 

with tiie same geographical location, CAC40, BEL20 and AEX, in C hapter 8.
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C hapter 5

FTSE Analysis

5.1 Introduction

Our inaiii goal is to detect any uiiderlyiiig structure of a portfolio, such as clustering, or identi- 

lication of key stocks. We sta rt by com puting the correlation coefficient between the tim e series 

of log-returns of pairs of stocks. From these correlations we can com pute a distance, for each 

piiir, which is used for the construction of a network with links between stocks. This network 

is called the minimal spanning tree (MST). For some portfolios, th is M ST shows clustering of 

stocks in term s of industrial sector. In this chapter, we will show th a t the stocks from the main 

index of the FTSEIOO follow this behaviour and cluster in term s of industrial sector with the 

sto(-ks from the financial sector to be the backbone of the tree.

The distribution of the coefficients of the correlation m atrix  and the moments of this distri­

bution are studied in this chapter. The main achieve here is the evolution of these values in time 

and some insights about how the correlations between stocks change for different tim e periods.

We also analyse the eigensystem of the correlation m atrix. T he higher values of the eigenval­

ues. and their corresponding eigenvectors show information about the portfolio th a t we studied. 

For example, the eigenvector related with the highest eigenvalue shows all the elements with 

the same sign. This eigenvalue is known to be related with the index of the m arket. T he other 

eigenvectors related with highest eigenvalues show some segregation between stocks from dif­

ferent industrial sectors. For example, for some eigenvectors there is elements of one industrial 

sector with one sign and all the other elements with the opposite sign or also there is a bid 

discrepancy of the m agnitudes of some elements th a t belong to the same industrial sector.

In this chaj)ter we introduce a random  model to sim ulate tim e series of stocks and compare 

the results of this random  model with the ones from the real data.

We choose the stocks from the FTSEIOO index, because this is one of the most popular indices 

among investors and it is the main index in U.K. The 100 most highly capitalised companies

63
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in the U.K. th a t comprise the London Stock Exchange main index, the FTSEIOO, represent 

approxim ately 80% of the U.K. market [f20]. The first portfolio found to s ta rt our study of 

hnancial d a ta  [51] comprise the daily closing j)rice of 67 stocks over a period of alm ost 9 years, 

starting  in August 2"'^ f996 until June 27^  ̂ 2005, which equals 2322 trading days per stock (list 

of stocks in Appendix B).

5.2 A nalysis of a global portfolio of 67 stocks from FTSEIOO

Starting w ith the analysis of the correlations of the 67 stocks, pij (eq. 4.30) has Vcilues between 

— 1 and + f  for the 67 x 67 entries of the correlation m atrix. The values of the elements in the 

diagonal of the m atrix are one, and the elements in the upper triangle of the m atrix mirror the 

ones in the lower triangle. So taking into account ju st the elements of one of these triangles 

(67 X 66/2 different elements), we can compute the distribution of coefficients of the correlation 

m atrix (Figure 5.1). The distribution of these coefhcionts is not symmetric, has a m ean different 

from zero and changes according to the size of the tim e series chosen as we show in section 5.4.

If we slmffie a time series of stocks, where we change the value of the price of stock i a t time 

t with the value at tim e t' for all times, we create a new time series with the same probability 

distribution of returns but with a different evolution in time. The shuffling algorithm  is done as 

follows:

• For a tim e series i we pick two random  times t and t' where the values of the price are 

Pi{t) and Pi{t'), respectively;

• We give the value Pi(t') to  the new value of the price a t tim e t and vice-versa;

• We perform  this change for many pairs of times (10“*) for all the tim e series.

Shuffling the time series of the stocks, the correlation over time is destroyed and the value of 

the correlation coefficient between different time series decreases, as seen in Figure 5.1, where the 

dashed line shows a sym m etric distribution w ith mean zero for the coefficients of the correlation 

matrix.

The eigensystem of the correlation m atrix, C (eq. 4.34) is com puted and the distribution of 

the 67 eigenvalues, PreaiW is shown in Figure 5.2.

The analytical spectrum  of eigenvalues of a  random  m atrix, Ph m {^) can be calculated using 

equation 4.43. For 67 stocks w ith 2322 days each, the value of Q in equation 4.43 is equal to 

34.6, where N  is the number of stocks and T'  the size of the time series minus one (taking into 

account the rmmber of returns and not the num ber of prices of the stocks). In Figure 5.2 we
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Figure 5.1: The sohd hue shows the distribution of coefficients of correlations pij between 67 

stocks of the FTSEIOO for the overall tim e series of 2322 days. T he dashed line shows the 

dintribution of coefficients of correlations between the same 67 stocks of the FTSEIOO, but after 

shuffling the time series. The correlations have now been destroyed, resulting in a synunetric 

distribution with mean zero.

sec th a t some of the eigenvalues of m atrix  C stay outside the region predicted by the random 

m atrix theory.

Studying the eigensystem of the correlation m atrix constructed after shuffling the time series, 

C.s/i we can also compare the spectrum  of eigenvalues, Psh{^) w ith the analytical spectrum  of the 

eigenvalues of a random  m atrix, Pr m {\)  as shown in Figure 5.3. All the eigenvalues from the 

m atrix constructed after shuffling the time series stay inside the  region predicted by the random 

m atrix theory, showing th a t by m aintaining the distribution of re tu rns for the tim e series, but 

breaking the correlations between stocks, the financial inform ation th a t  is supposed to appear 

in the higher eigenvalues is gone.

The eigenvalues can be sorted by value from the smallest, Ai, to  the highest one, Ag?- There 

are five eigenvalues tfiat stay outside the region predicted by random  m atrix, Agg, Ags, Ag4 

and Ag3 . The respective value of each one of these eigenvalues is: 14.58, 3,40, 1.62, 1.54 and 

1.47. These eigenvalues can be studied by looking a t the respective eigenvectors. For example,
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Figure 5.2: Spectrum  of the 67 eigenvalues of correlation m atrix of FTSEIOO portfolio, Preaii^) 

comjjared with the analytical spectrum  of eigenvalues of a random  m atrix  in bold, P«m(A).

the eigenvector th a t corresponds to the largest eigenvalue, Ac?, is shown in Figure 5.4 and it can 

be seen th a t all 67 elements have positive sign. In accordance with the Industry Classification 

Benchmark [121] as listed in table B .l of Appentlix B the elements are divided into different 

industrial sectors, each sector represented by a different colour.

The largest eigenvalue, Aq? can be interpreted as the collective response of the m arket to  any 

external factors. Some authors [41, 42] link it to the m arket index. Comparing the actual index 

of the m arket with the projection of the time series in the eigenvector related to the largest 

eigenvalue can be helpful to understand how similar these two cjuantities are. The projection of 

the time series in the largest eigenvector, is given by:

G7

= (5.1)
i=l

where the elements of the eigenvector are identified as and Ri{t) is the return  of stock i 

a t time t. This quantity  is a weighted average of the returns of each stocks and we call it the 

market mode.

Com puting the correlation between the actual index of the m arket and the market mode, it
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Figure 5.3; Spectrum  of the 67 eigenvalues of correlation m atrix of FTSEIOO portfolio calculated 

afti'r shuffling the tim e scries, P,/i(A) compared w ith the analytical spectrum  of eigenvalues of a 

random  m atrix in bold, P r m {\).  Note th a t some eigenvalues of the correlation m atrix  are much 

larger than predicted by random  m atrix theory.

can be seen in Figure 5.5 th a t these two quantities are strongly related w ith each other with a 

high value for correlation of 0.95.

The 67 elements of the eigenvector, belonging to  the second highest eigenvalue. Age, are 

shown in Figure 5.6. For this case not all the stocks follow the same trend  (sign), some stocks 

have positive values and others negative ones, b u t it can be seen th a t most stocks from the 

same industrial sector follow the same trend. For example, for the second highest eigenvalue, 

Aee, all the stocks from the Consumer goods sector have the same positive sign as the ones 

from Oil and Gas and Utilities. The stocks from Telecommunications have all negative sign. 

For the third highest eigenvalue, Aes, all the stocks from Oil and Gas and Telecommunications 

have positive sign and all the stocks from Basic m aterials and Consumer services have negative 

sign. For the fourth highest eigenvalue, Ae4 , all the stocks from Basic m aterials have positive 

sign and all the stocks from Oil and Gas, Telecommunications and Utilities have negacive sign. 

There are some cases where stocks from the sam e industrial sector follow different trends, but 

it can be easily seen th a t they belong to different supersectors according to  ICB [121], and so
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Figure 5.4: The 67 elements for i =  1, . . .  ,67, of the eigenvector related with the highest 

eigenvalue, Agy of the correlation matrix C.

the segregation is made at the level of supersectors and not sectors. For example, for the second 

highest eigenvalue, Age there are 9 stocks from the Consumer services sector with positive sign 

and 9 with negative sign. All the stocks with negative sign belong to the supersectors Media 

and Travel and Leisure, apart from one tha t belongs to the Retail supersector which is the main 

supersector of the stocks with positive sign. The only exception for the stocks with positive sign 

is a stock from the Travel and Leisure supersector.

5.3 M inim al Spanning Trees

For a topological view of the market we plot the MST with all the nodes (stocks) and links 

between them (distances). We have studied two different classifications. First we consider the 

old classification for the London Exchange FTSEIOO, the FTSE Global Classification System 

[120], tha t was in use from 2003 until the end of 2005. This classification groups the stocks into 

102 Subsectors, 36 Sectors and 10 Economic Groups.
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Figure 5.5: Returns of the market mode (equation 5.1) plotted against the actual index of 

FTSEIOO. Each point represents the value of the two quantities at the same day. The straight 

line shows a linear regression, where the value of the slope, computed as 0.95, represents the 

correlation between the indices.

Companies are divided into Economic Groups if follow a general economic theme, into Sectors 

if follow a general industrial theme and into Subsectors, which describe the nature of the company 

business. This nature is determined by the proportion of proht arising from each business areas.

Our portfolio of 67 stocks is composed of 9 economic groups and 27 sectors as shown in tiible

5.1.

The second classification studied is the new classification adopted by the FTSE since the 

beginning of 2U0G, the Industry Classihcation Benchmark [121] created by the Dow Jones Indexes 

and the FTSE. This classification is divided into 10 Industries, 18 Supersectors, 39 Sectors and 

104 Subsectors.

The Industries can be compared with the definition of Economic Groups in the previous 

classification, companies from the same general economic theme. The Supersectors follow a 

more generic economic theme than Industries. The Sectors have the same definition from the 

previous classification and the Subsectors describe the nature of the company business. A 

company will be allocated to a Subsector whose definition most closely fits the business that
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Table 5.1: Economic groups and sectors presented in the portfolio of 67 stocks in accordance 

with GCS [120],_______________________________________________________

Economic Groups Sectors

Resources Mining 

Oil and Gas

Basic Industries Chemicals

Construction and Building M aterials

General Industrials Aerospace and Defense

Non-cyclical Consumer Goods Beverages

Food Producers and Processors 

Health

Personal Care and Household Products 

Pharm aceuticals and Biotechnology 

Tobacco

Cyclical Services General Retailers 

Leisure and Hotels 

Media and Entertainm ent 

Support Services 

Transport

Non-cyclical Services Food and Drug Retailers 

Telecommunications Services

Utilities Electricity

Utilities-others

Financials Banks 

Insurance 

Life Assurance 

Investment Companies 

Real Estate

Speciality and O ther Finance

Information Technology Software and Computer Services
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Figure 5.6: The 67 elements uf^,  for z =  1, . . .  ,67, of the eigenvector related with the second 

highest eigenvalue, Aee of the correlation matrix C. Most elements of the same sector have the 

same sign.

accounts for the primary source of the company’s revenue.

Our portfolio of 67 stocks is composed of 10 industries and 30 sectors as shown in table 5.2.

For each classification we analyse the cluster formation of different economic groups (FTSE 

Global Classification System) or industries (ICB).

Starting with the analysis according to the old classification we represent each economic 

group by a different symbol: Resources (■), Basic Industries ( a ) .  General Industrials (♦), Non- 

cyclical Consumer Goods (□), Cyclical Services (a) ,  Non-cyclical Services (0 ), Utilities (•), 

Financials (•) and Information Technology (o).

Figure 5.7 shows tha t the constructed MST features clusters of specific economic groups. 

Stocks from the Financial group are the backbone of this tree to which it seems tha t all other 

groups are connected to. The Financials, Resources, Utilities and General Industrials groups 

have all their stocks connected together. However for other groups divisions of stocks in sectors 

are apparent. For example, in the Non-cyclical Services, the Food & Drug Retailers are com-
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Table 5.2: Industries and sectors presented in the portfolio of 67 stocks in accordance with ICB 

[ 1 2 1 ].______________________________________________________________________________________

Industries Sectors

Oil and Gas Oil and Gas Producers

Basic M aterials Chemicals

Mining

Industrials Construction and M aterials 

Aerospace and Defense 

General Industrials 

Industrial lYansportation 

Support Services

Consumer Goods Beverages 

Food Producers 

Household Goods 

Tobacco

Health Care Health Care Equipm ent and Services 

Pharm aceuticals and Biotechnology

Consumer Services Food and Drug Retailers 

General Retailers 

Media

Travel and Leisure

Teleconmiunications Fixed Line Telecommunications 

Mobile Telecommunications

Utilities Electricity

Gas, W ater and M ultiutilities

Financials Banks

Nonlife Insurance

Life Insurance

Real E state

General Financial

Equity Investm ent Instrum ents

Nonequity Investm ent Instrum ents

Technology Software and Com puter Services
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pletely separated from the Telecommunication Services. Within Cyclical Services, the General 

Retailers, Media & Entertainment and Transports are three different clusters and the Support 

Services are isolated stocks connected to the Financial branch. In Non-cyclical Consumer Goods, 

the Health and Pharmaceuticals & Biotechnology form one cluster whereas Beverages, Tobacco, 

Food Producers & Processors and Personal Care & Household Products form another.
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Figure 5.7: Minimal Spanning Tree for 67 stocks of the FTSEIOO. The time series of each 

stock are composed by 2322 daily closing prices. Each symbol correspond to a specific economic 

group from the FTSE Global Classification System: Resources (■), Basic Industries (a). General 

Industrials (♦), Non-cyclical Consumer Goods (□), Cyclical Services ( A ) ,  Non-cyclical Services 

(0), Utilities (•), Financials (•) and Information Technology (o).

For the new classification in place since January 2006, we represent each industry by the 

following symbol: Oil & Gas (■), Basic Materials (A), Industrials (♦), Consumer Goods (■), 

Health Care (□), Consumer Services ( A) ,  Telecommunications (0), Utilities (•), Financials (•) 

and Technology (o). The MST is shown in Figure 5.8. The Financial industry has the same 

stocks as the one in the old classification, so it still works as the backbone of the tree. Financials,
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Oil & Gas, Utilities, Telecommunications and Consumer Goods have all their stocks connected 

together. In the Consumer Services, the supersectors Retail and Media are two big clusters but 

they are not connected together. The other supersector from this industry, the Travel & Leisure 

is disperse in the tree. Health Care industry is almost one cluster, but the stock SHP is not 

connected to the others. In the Industrials industry all stocks from the Support Services sector 

are connected to the Financial industry. The other stocks in this sector are located in isolation 

at other points within the tree.
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Figure 5.8: Minimal Spanning Tree for 67 stocks of the FTSEIOO. The time series of each stock 

are composed by 2322 daily closing prices. Each symbol correspond to a specific industry from 

the ICB: Oil & Gas (■), Basic Materials ( a ). Industrials (♦), Consumer Goods (■), Health 

Care (□), Consmner Services (a). Telecommunications (0), Utilities (•), Financials (•) and 
Technology (o).

The new classification adopted by the FTSE in January 2006 clearly mimics much more 

closely the MST results as we can see from Figures 5.7 and 5.8. The implementation of the 

new supersector groups ensures that apart from some notable exceptions stocks from the same
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supersector are now connected. It is possible th a t the few stocks separated from their main 

cluster are isolated by chance and over time they will join the appropriate clusters. However 

there could be other more fundam ental reasons for their separation. Nevertheless it seems clear 

from this analysis th a t the MST approach is one th a t should complement current approaches to 

the development of stock taxonomy.

Coronuello et al. [122] have studied the topology of a portfolio of stocks from the London 

Stock Exchange using daily and intra-day d a ta  for 92 stocks, from year 2002. T he M ST for 

daily da ta  looks quite different from the one shown in Figure 5.7. Using our d a ta  and studying 

the MST for each year, we can see th a t for 2002, the main hubs of the M ST are the  stocks from 

Barclays, Royal Bank of Scotland and Shell, each of them  with 11, 8 and 7 links, respectively. 

The simple inclusion of the stock from Barclays in our study (not included in the portfolio of 

[122]) gives a quite different network. But the main clusters are the same in both  studies.

5.4 D eterm in ation  o f tim e param eters

Apart from studying the correlations of the stocks for the overall time, we also divide the 

time series in small tim e windows for an analysis of the tim e dependence of correlations and 

distances. These time windows have a width T  and overlap each other. T he to ta l num ber of 

windows depends on the window step length param eter, 6 T . A sketch of different tim e windows 

with width T  from the same tim e series is shown in Figure 5.9.

T
Figure 5.9: Sketch of different time windows with w idth T  from the same tim e series. The tim e 

windows are moved over tim e by a step length ST.

Depending on the length of the tim e series, the correlation coefficient between two stocks 

changes. Thus the distance between the two stocks will be different and the M ST constructed 

will have different characteristics. In order to  select appropriate values for the  size of tim e 

windows {T) and window step length param eter {ST) wo looked at earlier studies in this field. 

As shown ])reviously [48], the first and second m om ent of the correlations (mean correlation and 

variance) are strongly correlated. We thus com puted the value of this correlation as a function 

of T  and ST  (Figure 5.10).
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Figure 5.10: Correlation between the first two moments of the correlation coefficients, mean ~p 

(eq. 4.35) and variance A2 (eq. 4.36) as a function of T  and 6T. The left figure shows the 

correlation for different T  as a function of 6T. The right figure shows the correlation for <5T =  1 

(•), 6T =  30 (□), 6T — 60 (0) and 6T =  90 (a), as function of T.

Clearly, for all T, the correlation between the two moments is not only positi\'e but strong, 

above 0.9 for T  = 750, T  =  1000 and T  =  1250. Apart from T  = 250 and T  =  1750 there are 

only v(;ry small fluctuations for the corrc'lation vahu', wlu'u we vary ST. Since when we increase 

ST, we are essentially removing points from our data, we decided to vise the smallest value of 

5T (1 day) in all of the following. At this stage it is not easy to understand the non-monotonic 

behaviour observed in Figure 5.10. It could be associated with the reduction in data but it 

requires further study.

5,5 A n alysis o f G lobal P ortfo lio  o f th e  FTSEIOO index

Some events such as wars or crashes occurred during the period of study and are noted in Figure 

5.11 that shows the absolute return of the FTSEIOO index. After these occurrences, which have a 

negative effect on stock values, all the stocks seems to follow each other, and both the correlation 

between them and mean correlation increase [54].
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Figure 5.11: Absolute re turn  of the FTSEIOO index. Higher values indicate special days like 

beginning of wars or crashes. 1) Russian crash; 2) NASDAQ crash; 3) Beginning of US recession; 

4) September 11̂ *̂ 2001; 5) Stock M arket dow nturn of 2002; 6) Beginning of Iraq War.

Tlie time dependence of the mean correlation, the normalised tree length and the higher 

moments associated with these two quantities were studied for a tim e window of 500 days and 

window step length of 1 day. Figure 5.12 shows th a t the m ean and variance of the correlation 

coelficients are highly correlated (0.779), the skewness and kurtosis are also highly correlated 

and the mean and skewness are anti-correlated. This implies th a t when the mean correlation 

increases, usually after some negative event in the m arket, the  variance increases. Thus the 

dispersion of values of the correlation coefficient is higher. The skewness is almost always 

different from zero, which means th a t the d istribution is asym m etric, b u t after a negative event 

the skewness moves towards zero, and the d istribution of the correlation coefficients becomes 

more symmetric.

From Figure 5.13, we see how the normalised tree length changes w ith time. As expected 

from equation 4.49, when the mean correlation increases, the norm alised tree length decreases 

and vice versa. Here, the mean and the variance of the norm alised length of the tree are anti­

correlated but the skewness and the mean contirme to  be anti-correlated. This means th a t after 

some negative event im pacts the m arket, the tree shrinks, so the mean distance decreases [54], the

p6)

03-1997 07-1998 12-1999 04-2001 08-2002 01-2004 05-2005
tim e (m onth - year)
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Figure 5.12: Mean (eq. 4.35), variance (eq. 4.36), skewness (eq. 4.37) and kurtosis (eq. 4.38) 

of the correlation coefficients. Tim e windows of length 500 days are moved with a window step 

length j)aranieter of 1 day. The vertical lines show the external events th a t affect the market. 

1) fhissian crash; 2) NASDAQ crash; 3) US recession; 4) Septem ber 11^  ̂ 2001; 5) Stock M arket 

Downturn of 2002; 6) Iraq War.

variance increases implying a higher dispersion of the values of distance and the skewness, th a t 

is almost always negative, increases towards zero showing th a t the distribution of the distances 

of the M ST gets more symmetric.

From Figures 5.12 and 5.13 we can see th a t the external events correspond to dates different 

from the ones indicated in Figure 5.11, because in these figures we are using time windows of 

500 days, and the changes in the Vcilues of the moments occur when these external events are 

introduced in the time window, norm ally when they are in the last day of the tim e window. So 

if we sum the size of the time windows to  the dates in Figures 5.12 and 5.13 we will get the 

dates for external events of Figure 5.11.
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Figure 5.13: Mean (eq. 4.50), variance (eq. 4.51), skewness (eq. 4.52) and kurtosis (eq. 4.53) 

of tlie normalised tree length. Time windows of length 500 days are moved w ith a window step 

length param eter of 1 day. The vertical lines show the external events th a t affect the markeit. 

1) Russian crash; 2) NASDAQ crash; 3) US recession; 4) Septem ber 11̂ '̂ 2001; 5) Stock M arket 

Downturn of 2002; 6) Iraq War.

5,6 Num erical Sim ulations of M ST  

5.6.1 R andom  m arket and one-factor m odel

In order to examine further the underlying nature of the time series we now use random  tim e 

series com puted from two different models. Modelling the log-returns as random  num bers from 

a specific distribution, we can com pute the correlations, distances and trees for this random  

series. As in [45, 47], our first approach was to consider the returns as random  variables derived 

from a Gaussian distribution. So, using the real mean value, //-* of each real tim e .series of 2322 

days and the specific real variance, (jj we com pute random  series for our random market:

ri{t) = iJ.i + ei(t) (5.2)

where e,;(t) is the stochastic variable from a Gaussian distribution  with variance tJi. The M ST 

for this random  time series is represented in Figure 5.14.
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Figure 5.14: Minimal Spanning Tree for 67 random  time series using random  variables from a 

Gaussian distribution. Each symbol correspond to a specific industry from the ICB: Oil & Gas 

(■ ), Basic M aterials (a ) , Industrials (♦), Consumer Goods (■), H ealth Care (□), Consumer 

Services ( a ),  Teleconnnunications (0), Utilities (•), Financials (•) and Technology (o).

This MST shows no clustering according to  the fact th a t there is no grouping of stocks 

of the same industrial sector, the stocks are distributed randomly in the network. To create 

random  time series with more real characteristics we introduce a control term  (the return  of the 

FTSEIOO index) and we com pute one-factor model [45, 47], also known as a market model:

n i t )  =  Qj +  P i R m i t )  +  f ,(0  (5.3)

where and Pi  are param eters estim ated by the least square m ethod from our da ta  as shown 

below, R,n{t) is the  m arket factor (return  of the FTSEIOO index) and is the stochastic 

variable from a Gaussian distribution with variance tr'. The value of cr- in equation 5.3 is 

different from the value of a i  in equation 5.2. The variance a'- is calculated from the tim e series 

Ri{t) — ai  — PiR„i{t) where Ri{t) is the real tim e series of returns of stock i. The two factors
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and 6i are calculated as:

Qj =  (Ri(t)) -  Pi{Rrn{t)) 
^ _  cov{Ri{t) ,Rm{t))
Pi —  or r ^

(5.4)

where cov{ . i s  the covariance:

cov{Ri{t),  R , n ( t ) )  = <  R i { t ) R , n { t )  >  -  <  R i { t )  > <  R m { t )  > (5.5)

(7% is the variance of the returns of the FTSEIOO index:
i ' m

^R,n >  — <  R m { t )  > (5.6)

and Ri{t)  is the retvu’ns of real tim e series of returns of stock i. The M ST for random  time series

available (2322 days).

This network is c:onipletcly diiierent from the previous random  network, ap art from the 

random distribution of stocks from the same sector along the network, we can see th a t the 

number of links of some stocks is much higher than  in the MST of Figure 5.14. However, the 

prc.seuce of (i nodes with up to 13 links differs from the topology of real data. M ST ’s com puted 

using 5-minute d a ta  [122] have a greater similarity to the trees based on the one-factor model 

than trees com puted using daily data. Coronnello et al. [122] concluded th a t the MSTs are more 

hierarchically structured when they used daily returns confirming th a t the networks com puted 

using 5-niinute d a ta  are not as fully formed as they are with daily data. The M STs for 5-minute 

data  show th a t the clustering is less pronounced than  in the MSTs constructed from daily d ata  

and the stocks are organised around two main hubs with a large am ount of links, 29 and 17 

links, respectively.

But as we showed in chapter 4, the time series of stock returns are b e tte r fitted by a T- 

student distribution then by a Gaussian distribution. So we created random  tim e series where 

instead of using stochastic variables from a Gaussian distribution we used random  variables from 

T-student distributions.

To create the T -student stochastic variables we used a numerical routine from the GNU 

Scic'utific Library [123] th a t generates T -student variables from the distribution:

which is different from the distribution previous presented in C hapter 4 (eq. 4.7). B ut consid­

ering k — {v + l ) /2  and the assumption:

created using this model is shown in Figure 5.15. Again we use d a ta  from the whole tim e series

dw (5.7)

(5.8)
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Figure 5.15: Minimal Spanning Tree for 67 random time series using the one-factor model 

with stochastic variables from a Gaussian distribution. Each symbol correspond to a specific 

industry from the ICB: Oil & Gas (■), Basic M aterials (a ), Industrials (♦), Consumer Goods 

(■ ), Health Care (□ ), Consumer Services ( a ) ,  Telecommunications (0), Utilities (•), Financials 

(•) and Technology (o).

we can transform  the variables from one distribution into variables from the other.

So, if we generate a stochastic variable w with a = 2k — I from the distribution of eciuation 

5.7, we can transform  this variable into a variable x  from the d istribution  of equation 4.7, using 

the transform ation presented in equation 5.8.

In Figures 5.16 and 5.18 we represent the MST for the random  m arket and m arket model, 

respectively.

The M ST of random  tim e series created using the random m arket with T -student random  

Vcuiables shows some similarities with the real MST in Figures 5.7 and 5.8. The structu re  of the 

M ST or the degree distribution, which is the distribution of number of links of a node in a tree, 

shows th a t the maximum rmniber of links in the M ST created using the random  m arket with
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Figure 5.16; Mininial Spanning Tree for 67 random  time series vising random  variables from a 

T -student distribution. Each symbol correspond to a specific industry from tlie ICB: Oil Sz Gas 

(■). Basic M aterials (A), Industrials (♦), Consumer Goods (■ ), Health Care (□ ), Consumer 

Services (a ) , Teleconnnunications (0), Utilities (•), Financials (•) and Technology (o).

Gaussian variables is 5, where for the real case and random  m arket with T -student variables is 

8 (Figure 5.17).

The MST created using the market model with T-student random  variables is like the one for 

Gaussian random  variables very different from the real MST in Figures 5.7 and 5.8. Again this 

MST is more similar w ith the topology of real MST com puted using high frequency d a ta  [122]. 

Tlie one-factor model a very simple model th a t cannot mimic all the features and correlations 

th a t exist in the stock m arket. Even when we introduce random  variables from T-student 

distribution th a t fit be tte r the data  of the return  of the pi’ice, the one-factor model does not 

solve our problem.
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Figure 5.17: Degree distribution for tlie case of real MST (black circle), raiidoiii M ST from a 

m arket model with Gaussian variables (white diamond) tuid random  M ST from a m arket model 

with T -student variables (grey square).

5.6.2 Evolution w ith  tim e

After creating the random  time series using the m arket model, we can com pute their behaviour 

in tim e tui we did for the real ca^se in Figure 5.12, where we compiite the main moments of the 

distribution of correlation coefficients over time, in  Figure 5.19 we com pare these m oments for 

the real case (black lines) and for the random  case (grey lines) using stochastic variables from 

T-student distributions.

From Figure 5.19, we can see th a t using the m arket model with stochastic variables from T- 

student distributions, we can mimic the evolution of the mean and the skewness of the correlation 

coefficients, in time. The variance of the correlaticju coefficients from the random case follow 

the same trend bu t the values are not the same as in the real case. From the evolution of 

the m oments of the random  case we can also see the correlations and anti-correlations between 

different m oments as we sta ted  previous, in section 5.5, for the real case.

Studying the evolution of the moments of distances presented in each MST, we can see if the 

m arket model can a t least be trusted  as a model to mimic the distances of the MST, because 

we already saw th a t we cannot use it as a good model for the structu re of the MST.

In Figure 5.20, we compare the moments of the distances in the tree for the real case (black 

lines) w ith those from the random  ctise (grey lines) using stochastic variables from T -student
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Figure 5.18: Minimal Spanning Tree for 67 random time series using the one-factor model 

with stochastic variables from a T-stndent distribution. Each symbol correspond to  a specific 

industry from the ICB: Oil & Gas (■ ), Basic M aterials (a ) , Industrials (♦), Consumer Goods 

(■), Health Care (□ ), Consumer Services ( a ),  Teleconununications (0), Utilities (•), Financials 

(•) and Technology (o).

distributions.

From Figure 5.20, we can see th a t apart from the similar tren d  in the evolution of the mean 

distance of the tree for the random  case, the other moments are very different for the real and 

random  cases. So again we see the shortcoming of our simple models in describing the data.

5.7 S tudy  o f  portfolio  o f  85 stocks of FTSEIOO

A portfolio of stocks from the FTSEIOO index (as it is in A pril I** 2008) was also studied. 

Tlie main reason for this new study was the facility of new d a ta  from the Thom son Database 

D atastream . The main index of the London Stock Exchange has 102 stocks quoted as shown in
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Figure 5.19: Mean (eq. 4.35), variance (eq. 4.36), skewness (eq. 4.37) and kurtosis (eq. 4.38) 

of the c:orrelation cocfiicients. Time windows of Ic'uglh 500 days are moved with a window 

step length param eter of 1 day. The black lines represent the results from the real FTSE data  

and the grey lines the results from the random data using stochastic variables from T-student 

distribution.

table C .l of Appendix C. But not all of these stocks are listed in the database from the same 

date, so we decided to choose a part of these stocks tha t have non-zero d a ta  from January  3’’'̂  

2000 until March 24*  ̂ 2008, which gives us more than 8 years of data. The to tal number of 

stocks in our portfolio is 85.

5.7.1 M in im a l  S p an n in g  Tree

The minimal spanning tree of this portfolio constructed as laid out in section 4.5, is shown in 

Figure 5.21.

In the MST of Figure 5.21 the clustering is very similar to the M ST of Figures 5.7 and 5.8. 

As the backbone of the MST we have some of the m ajor Banks th a t belong to the Financial 

industrial sector. One characteristic of this portfolio is the inclusion of Alliance Trust (ATST), 

an Equity Investm ent Instrum ents company. This stock is the m ain hub of the MST with 21 

links to other stocks from a variety of different sectors. A part from this fact, the M ST continues
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Figure 5.20: Mean (eq. 4.35), variance (eq. 4.36), skewness (eq. 4.37) and kurtosis (eq. 4.38) 

of tlie normalised tree length. Time windows of length 500 days are moved with a window step 

length parameter of 1 day. The black lines represent the results from the real case and the grey 

lines the results from the random case using stochastic variables from T-student distribution.

to have different clusters such as Basic Materials, the Media (part of Consumer Services), the 

Health and Care, the Retail (part of Consumer Services), the Oil and Gas, the Utilities, the 

Teleconmiunications. the Consumer Goods and also a Real Estate cluster inside the Financial 

cluster. Again all the stocks that belong to the Financial sector are linked together.

5.7 .2  E ig e n s y s te m  analysis

Analysing the eigenspectrum of the correlation matrix of this portfolio of 85 stocks we can 

see which eigenvalues correspond to different industrial sectors. In Figure 5.22 we can see the 

spectrum and distribution of eigenvalues (section 4.4). There are 6 eigenvalues with values 

higher than Xmax which is the maximum value predicted by the RMT for a random matrix. 

The study of the structure of the eigenvectors that correspond to these eigenvalues gives more 

insights about the clustering in sectoi's of this portfolio.

In Figure 5.23 we show the eigenvectors that correspond to the 6 eigenvalues with values
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Figure 5.21: M inim al Spanning Ti'ee for 85 stocks of th e  FTSEIOO index. T he tim e series s ta r t  

a t  Ja n u a ry  3''^ 2000 and  run  until M arch 24'^ 2008 for 2146 days. Each sym bol correspond to  a 

specific in d u stry  from  the  ICB: Oil & G as (■ ), Basic M ateria ls ( a ) ,  Indu stria ls  (♦ ), C onsum er 

G oods (■ ), H ealth  C are (□ ), C onsum er Services ( a ) ,  T elecom m unications (0 ), U tilities (•) , 

F inancials (•) and  Technology (o).

higher th a n  Xmax- For each eigenvector we grouped th e  stocks in te rm s of industria l sectors: 

a) Telecom m unications; b) Basic M ateria ls; c) U tilities; d) C onsum er G oods; e) Oil and  Gas; 

f) C onsum er Services; g) F inancials; h) Industria ls; i) H ealth  Care; j) Technology. We also 

included e rro r bars th a t  represen t th e  variance of each in d ustria l sector (section 4.4.2).

f o r  th e  eigenvector belonging to  th e  h ighest eigenvalue, Ags we can see th a t  all the  elem ents 

have a positive sign as shown in F igu re  5.4.

For th e  eigenvector of the  second highest eigenvalue, Ag4 , th e  stocks from  th e  Telecom m uni­

cations in d u stria l sector all have a negative sign and all th e  stocks from  U tilities and C onsum er 

G oods secto rs have positive sign. T h is  behaviour waa already  show n in section 5.2 also for th e  

second h ighest eigenvalue and in F ig u re  5.6.
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FTSEIOO index. T h e  th ick  vortical lines in th e  n p p er figure show th e  lim its (eq. 4.44).

Ju s t 40% of th e  eigenvalues are  inside the  region pred ic ted  by th e  R M T .

For th e  eigenvector re la ted  w ith  th e  th ird  h ighest eigenvalue, Ags, th e  stocks from  Telecom- 

nuuiications and  H ealth  C are all have a positive sign and  all th e  stocks from  Basic M ateria ls luive 

a negative sign. For th e  th ird  eigenvalue of th e  previous portfo lio  of section  5.2 th e  Telecom m u­

nications and  Basic M ateria ls also follow th is  trend .

For th e  eigenvector re la ted  w ith  th e  fourth  highest eigenvalue, Ag2 , th e  stocks from  Basic 

M aterials and  Oil and  G as have a negative sign, only th e  stocks from  Oil and  G as follow the  

sam e tren d  shown for th e  portfo lio  of section 5.2.

For th e  eigenvector re la ted  w ith  the  fifth h ighest eigenvalue, Agi, th e  m ain  sectors are 

T elecom m unications and  U tilities w ith  positive sign and  for th e  eigenvector re la ted  w ith the 

six th  h ighest eigenvalue. Ago th e  m ain  sectors are C onsum er Services and  In d u stria ls  w ith  posi­

tive sign and  U tilities an d  Oil and  G as w ith negative sign.
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Figure 5 .23: Mean value of eigenvector elements, for each industrial sector, of the six highest 

eigenvalues. Ass, -̂ 84> ^83> -̂ 82; Asi and Ago for a portfolio of 85 stocks from the FTSEIOO index. In 

the X axis we have the industrial sector: a) Teleconnnunications; b) Basic M aterials; c) Utilities; 

d) Consumer Goods; e) Oil and Gas; f) Consumer Services; g) Financials; h) Industrials; i) 

Health Care; j) Technology. The error bars represent the variance of each industrial sector.
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5.7.3 T im e analysis

We also performed a study in time for the correlations, MST and values of the eigenvalues. 

There are very surprising results for the curve of the mean correlation in time and the curve of 

the value of the highest eigenvalue also in time. We choose to perform the temporal analysis for 

different time windows length, T.

In Figure 5.24 we show the four moments of the coefficients of correlation matrix.
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Figure 5.24: Mean (eq. 4.35), variance (eq. 4.36), skewness (eq. 4.37) and kurtosis (eq. 4.38) 

of the correlation coefficients. Time windows of length from 250 to 1250 days are moved with a 

window step length param eter of 1 day.

For each moment we can see the evolution in time for different sizes of the time window, 

T  from 250 to 1250 days. For the mean correlation, the values are low around January 2000 

and are high around the beginning of the year 2002. The same behaviour was stated for the 

analysis of the previous portfolio, where the mean correlation in time was shown in Figure 5.12. 

The variance of the correlation coefficients shows the same feature as the mean, showing some 

correlation in time between these two moments. The third moment, the skewness, shows the 

opposite behaviour of the mean correlation with high values in January 2000 and low values 

around the beginning of year 2002. Here we can see some anti-correlation between the first and 

the third moments. The same happen with the fourth moment, the kurtosis. The evolution of



92

this inoineiit in time sliows high values in the beginning of 2000 and low values around year 

2002. The same behaviour was shown in Figure 5.12 for these four moments.

In Figure 5.25 we present the four moments of the distribution of distances in the MST.

Mean Tree Length Vanance of distances in the nefworit

i
Skewness d  distances m the network Kurioeis of distances in the network

I
2001-01
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Figure 5.25: Mean (eq. 4.50), variance (eq. 4.51), skewness (eq. 4.52) and kurtosis (eq. 4.53) 

of the normalised tree length. Time windows of length from 250 to 1250 days are moved with a 

window step length param eter of 1 day.

For the mean tree length, the values are high around January 2000 and low around the 

beginning of year 2002, the opposite of what we saw for the mean correlations but the same 

behaviour that we saw for the previous portfolio in Figure 5.13. The variance of distances in the 

MST shows the same behaviour as the variance of the correlation coefficients of Figure 5.24. The 

third moment of this distribution, the skewness, shows low values for the beginning of January 

2000 and high values around the year 2002, this is the same pattern shown for the variance of the 

distribution but it is the opposite of the skewness of the distribution of correlation coefficients. 

About the fourth moment, the kurtosis, there are not many conclusions that we can take from 

Figure 5.25.

Another im portant property of the MST is how this network changes its structure with 

time. Computing the mean occupation layer (MOL) in time (section 4.5.2) we can see if the 

MST shrinks or extends. Decreasing values of the MOL correspond to a shrinking of the MST,
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the stocks will be closer together. In Figure 5.26 we show the MOL in time for three different 

ways of calculating the centre of the MST (section 4.5.2). In a dynamic way we can choose the 

centre vertex as the one with maximum correlation value (top left picture of Figure 5.26) or the 

one with the maximum number of hnks (top right picture of Figure 5.26). We can also choose 

a static central vertex, for this case we choose the company Alliance Trust because it is the one 

with most hnks.

M«an Occupabon Layer map for a dynamic vertex with maximum correlation value M«an Occupation Layer map for a  dynamic vertex wiUi higher vertex degree

1000

2000^1 2001^1 2002-01 2003-01 2000-01 2001-01 2002-01 2003-01

time (Year) time (Year)

Mean Occupalion Layer map for a static vertex

2000-01 2001-01 2002-01 2003-01

time (Year)

Figure 5.26; Contour map of the mean occupation layer as a function of time for three different 

methods of choosing the centre vertex: a dynamic central vertex based on maxinmm correlation 

value (top left), a dynamic central vertex based on maximum number of links (top right) and a 

static central vertex (bottom ). Time windows of length from 250 to 1250 days are moved with 

a window step length param eter of 1 day.

For the three cases we can see that a very low value of the mean occupation layer occurs 

when the length of the time windows is small and around the year 2002.

Another im portant property of the MST is how the structure of the MST and the number of 

links survive from time step to time step (section 4.5.3). The single step survival ratio (SSSR) 

shows the percentage of links that are maintained from one step to the other. The nmlti step 

survival ratio (MSSR) shows the number of links tha t are maintained from the first MST until 

the last one. In Figure 5.27 we present the single and nmlti step survival ratio.
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Mull) Step Survival Ratio

Simple Step Survival Ratio

2000-01 2001-01 2003-01

Figure 5.27: Single and multi step survival ratio as a function of time. The SSSR is represented 

in a contour map graphic. The MSSR is represented on the right. Time windows of length from 

250 to 1250 days are moved with a window step length parameter of 1 day.

For the SSSR we can see tha t there are not many changes from time step to time step in the 

MST, but for the MSSR there are some changes. For the MSSR, in the first steps there are a 

lot of links that are missed, but after some time the links that remain will be there almost until 

the end. These are the strongest links in the MST.

We can also study the evolution of the value of the highest eigenvalue of the correlation 

matrix. In Figure 5.28 we plot the time analysis of the highest eigenvalue, and we can see that 

low values appear in the beginning of January 2000 and the high values appear around the year 

2002. This is the same feature observed for the variation of mean correlation in Figure 5.24.

Comparing the contour map of the evolution of both quantities, the mean correlation and 

the highest eigenvalue, we can see tha t the two values have the same evolution over time. They 

are completely correlated with each other, as we can see in Figure 5.29.

5.8 C onclusions

In summary, we have studied the correlations between time series of log-returns of stocks from 

two FTSEIOO portfolios and examined how these change with both the size of the time series 

and time. The mean correlation increases after external crises, and different moments feature 

correlations or anti-correlations as a result.

From the MST we can see that some stocks from the same industrial sector cluster together. 

This does not happen with all stocks from specific economic groups or industries. It would seem 

from the MST analysis th a t the new FTSE classification (ICB) introduced in January 2006 offers 

a more logical clustering of the different stocks as opposed to the previous classification scheme 

(GCS). However from the MST it is clear that anomalies are still present that could affect the
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Maximum Eigenvalue

2002-01
time (Year)

Figure 5.28: Highest eigenvahie of the correlation m atrix in time. Time windows of length from 

250 to 1250 days are moved with a window step length param eter of 1 day.

Mean Correlation Maxknum EiQerrvalue

1000

2000-01 2001-01 2002-01 2003^1 2000-01 2001-01 2002-01 2003-01

Figure 5.29: Contour map of the mean correlation (left) and highest eigenvalue (right) over time. 

Time windows of length from 250 to 1250 days are moved with a window step length param eter 

of 1 day.

t:)uilding of optimum portfolios.

Studying the mean occupation layer and the single and multi step survival ratios, we conclude 

that there are some causal changes in the MST, but in the overall the MST maintained their 

structure in time.

The structure of trees generated from random time series differs significantly from real mar­

kets. Furthermore there appears to be no obvious hub node. On the other hand the one-factor 

model produces a MST where we can see hubs with many links. This kind of structure is close to
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that obtained using intra-day data. The MST created with random time series with T-s',udent 

stochastic variables are more similar with the MST of real data than the ones created with 

Gaussian stochastic variables.

The eigensystem analysis shows that the eigenvector related with the highest eigenvahe ,ias 

all its elements positive. Some eigenvectors related with other highest eigenvalues shov t.iat 

a segregation between stocks from different industrial sectors occur. This fact is in agreenant 

with the conclusions from the MST analysis.

The conclusions from this chapter, about the segregation of stocks in terms of indist;ial 

sectors, can help investors in the optimisation of portfolios taking in consideration the di’’ersity 

of stocks from different industrial sectors.



Chapter 6

Indices o f m arkets around th e world

6.1 Introduction

This chapter examines the extent and evolution of interdependence between world equity markets 

[52] over a 10-year period using the Minimum Spanning Tree (M ST) approach of M antegna [43] 

tha t we detailed in C hapter 4.

To otir knowledge only one study has been published to date  applying the M ST approach to 

groups of national equity m arkets [124]. There is one other earlier study [125], based on numeri­

cal taxonomy analysis of weekly stock m arket index returns, for a  period between 1962 and 1973, 

of 12 m ajor international equity markets: Australia, A ustria, Belgium, Canada, France, Italy, 

Japan, Netherlands, Switzerland, U.K., West Germany and U.S.A. Using hierarchical clustering 

techniques, similar with the MST approach, but where they used dendogram s instead of rep­

resenting the similarities of time series in a network they conclude th a t a core of international 

markets have higher degrees of similarity than  others: U.S.A., Canada, N etherlands, Switzer­

land, West Germany and Belgium, i.e. these indices have higher correlation coefficients between 

them.

The study th a t applied the MST approach [124] is a simple dynam ic analysis based on 

partially overlapping windows of indices for 20 countries for the years 1988-1996 and finds tha t 

markets group according to  a geographical principle, as is also the case for an overall average 

examination of 51 world indices for the years 1996-1999 in the same study [124]. The tem poral 

evolution showed the stability  of the North-Am erica cluster and the increase in the size of the 

European and Asian-Pacific clusters, in time. Our research significantly extends this work by 

applying dynairnc MST m ethods to examine the time-varying behaviour of global equity m arket 

co-movements for a group of 53 developed, emerging and developing countries over the years 

1997-2006. This period includes m ajor m arket events such as the Asian and Russian economic 

crises, the introduction of the euro, and the enlargement of the European Union (EU). In addition

97
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to confirming the earher evidence of a geographical organising principle we docum ent a tendency 

of the M ST toward higher density over time, indicating an increasing degree of integration of 

international equity markets. Such a finding is of interest to  portfolio managers and investors, as 

the implication is of docreasod potential for diversification benefits and thus perhaps decreased 

re turns for international investors.

After the conclusions in the previous C hapter 5, th a t the stocks from the FTSEIOO index 

grouped in term s of industrial sector, the main rea.son for the study presented in this Chapter is 

to get an insight in how the indices cluster in a MST. After this study we will analyse portfolios 

of stocks from the indices study here and we will try  to understand the behaviour behind the 

interdependence in stocks from different markets.

6,2 D a ta

We analyse the returns of the equity m arkets of 53 comitries. The d a ta  consists of Morgan 

Stanley C apital International (MSCI) daily closing price indices for 44 countries, for the period 

January  1997 to February 2006. An additional nine countries, which da ta  is not available 

from the MSCI indices, are also included in the sample, resulting in a to tal of 53 indices. 

These covuitries and indices are: C roatia (Nomura), the Czech Republic (PX 50), Hungary 

(BUX), Iceland (ICEX 15 Cap), L ithuania (Nomura), M alta (HSBC Bank), Rom ania (Nomura), 

Slovakia (SAX) and Slovenia (HSBC Bank). We included these indices to have a b etter view 

about the correlations between indices of the East European m arkets and the relation of these 

indices with other indices around the world. All series are expressed in US dollar terms as 

the reference cuurency, thus reflecting the perspective of an international investor. All data  are 

sourced from D ataStream , Thom son Financial [107]. One issue th a t needs to be addressed is the 

non-synchronous nature of the data, i.e. the fact th a t equity m arkets open at cUfferent times. 

Recent research suggests th a t the use of daily data  may lead to significant underestim ation of 

equity m arket integration [126] because the tim e-niism atch have to  be handle carefully. Tlie 

use of weekly returns can help with the problem of time-m ism atch but it leads to significant 

loss of information. As a consequence, to minimise the problem of non-synchronous trading the 

daily index level d a ta  were converted to weekly (Wednesday) re turns for this portfolio and we 

m aintained the daily re turns for a second portfoho th a t we will present further. The resulting 

number of weekly observations is 475. The 53 countries in our study and the respective symbols 

are given in Table 6.1.

The reliance for the most p art on MSCI indices allows for significant confidence in the 

findings, as these indices are designed explicitly to allow for cross m arket consideration of returns 

by investors. By contrast, studies th a t rely on indices from the individual equity m arkets, indices
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Table 6.1: Countries and respective symbol.
S y m b o l C o u n t r y S y m b o l C o u n t r y S y m b o l C o u n t r y

A R G A r g e n t i n a H U N H u n g a r y PHI Ph i l i p p in es

AU S Au s t ra l i a ICE Iceland P O L P o l a n d

A U T Au s t r i a I DO Indones i a P R T P o r t u g a l

BEL B e lg iu m IND India R O M R o m a n i a

B R Z Brazi l IRE I reland R U S Russ i a

CAN C a n a d a ISR Israel S A F S o u t h  Af r ica

C H F S w i t z e r l a n d ITA Italy S G P S i n g a p o r e

CHL Chi le J A P J a p a n S O K S o u t h  K o re a

C O L C o l o m b i a J O R J o r d a n S VK Sl ovak i a

C R T C r o a t i a LTU L i t hua n i a S VN Sl oveni a

C Z K C z e c h  R ep u bl i c MA L Malays i a S W E S w e d e n

D N K D e n m a r k M E X Me xi co TH I T h a i l a n d

E S P Sp a i n M T A M a l ta T U K T u r k e y

FIN F i n l an d N E Z N e w  Z e a l a n d T W A T a i wa n

F RA F r a n c e N L D N e t h e r l a n d s UK U n i t e d  K i n g d o m

G ER G e r m a n y N O R N o r wa y USA U n i t e d  S t a t e s

G R C G r ee c e P AK P a k i s t a n V E Z V e n e z u e l a

HK H o n g  K o n g P E R Peru

such as the NIKKEI225, the DJIA or the FTSEIOO. run the risk of non-comparability due to 

flitt'croncoR in construction, covorago and complotonoss. Wo will illustrate this difforonco in the 

results in section 6.4 when we use the indices for each country constructed a t each national stock 

exchange, instead of an index constructed by MSCI and also we use daily returns instead of the 

weekly re turns in this case.

The differences in construction of an index can be related with the weighted given to each 

stock th a t belongs to it. For example, if the index is constructed w ith an arithm etic mean of 

the values of the price of the stocks, it will be given as follow:

N
=  ( 6 . 1 )

i=l

but if instead of an arithm etic mean, the construction is made with a weighted arithm etic mean,

we have to take into account for example the volume of transitions of each stock;

N

=  ( 6 .2 )

i=l

Most of the indices follow these two ways of construction.



100

6.3 Results

We present the findings of our MST analysis in two sub-sections. We first show the overall 

average MST, derived from an analysis of the entire sample of data. Following that, a number 

of dynam ic approaches are applied.

6.3.1 A nalysis o f  M ST  constructed  from averaging data from 1997-2006

Shown in Figure 6.1 is the average jMST for the 1997-2006 period. The clusters which we 

observe appear to be organised principally according to a geographical criterion (possibly also 

rcficcting political and trade criteria). This is similar to the results in [124]. To analyse the 

graph we identify a “central” node, the m arket most strongly connected to its nearest neighbours 

in the tree. W itii the highest number of linkages. France can be considered the central node. 

Suri)risingly, the U.S.A., whose equity m arket is globally dom inant in term s of market value, 

exhibits a som ewhat looser linkage to the other markets. Closely connected to France are a 

number of the more developed European countries in the European M onetary Union (EMU) 

and in the EU. This European grouping forms a set of m arkets th a t are highly correlated with 

each other, w ith France a t its centre. We can also identify several “branches” which form the 

m ajor subsets of the M ST and these can then be broken down into “clusters” th a t may or not be 

completely iiomogeneous. The Netherlands heads a branch th a t includes clusters of additional 

European countries (along with Jordan, anomalously). The U.S.A. links a cluster of North 

and South American countries, except for Peru, to France via Germany. Not surprisingly, the 

three members of the N orth American Free Trade Association (NAFTA) - the U.S.A., C anada 

and Mexico - are directly connected, with Mexico forming the link to the South American 

countries. A ustralia heads a branch with several groupings: all the Asian-Pacific countries 

form two clusters, one of more developed and the other of less advanced countries; most of the 

Central and East European (CEE) countries, th a t joined the EU in 2004, form an incomplete 

link to A ustralia through South Africa, along with Turkey and Peru. Jordan, which appears 

in a Em opean clustering, is an apparent anomaly. This is likely due to  the fact tha t Jordan is 

the last node connected to  the network and has correlations with o ther countries close to zero, 

which means a relatively high distance. We can conclude th a t Jordan  is an outlier of our study 

th a t does not have any close relation to  any of the other countries represented here. The reason 

why Jordan is connected with Norway and not another country may reflect the fact th a t many 

companies in Norway belong to  the Oil and Gas industrial sector.
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Figure 6.1: Average minimum spanning tree for 1997-2006 for 53 country equity markets. Coding 

is: Em'ope (•), Northern America (0), Southern America (■), Asian-Pacific (a ) and “other” - 

Israi?!, Jordan, Turkey, South Africa (□).

6.3.2 Tem poral evolu tion  o f th e M ST  in the period 1997-2006

The MST of Figure 6.1 presents a static analysis of the relationships between the markets for the 

time period as a whole. It is possible, however, also to examine the time-dependent properties 

of the tree to provide insights on the changing relationships between the equity markets over 

time. To this end several techniques are used. First, we construct what we call a rolling and 

recursive MST. Second, we show the evolution of the four moments of the mean correlations 

and mean tree lengths of the MST (sections 4.3 and 4.5.1). Third, calculation of the mean 

occupation layer (section 4.5.2) reveals changes in the compactness of the MST over time, the 

degree of compactness being interpretable as the extent of overall equity market integration. 

Finally,'the single-step and multi-step survival ratios (section 4.5.3) for market linkages provide 

an indication of tlie stability of linktiges between markets over time.
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Rolling MST

The dynamic evolution of the M ST can be examined by looking at a series of MSTs created from 

non-overlapping rolling windows, each with w idth 1 year, or 52 (53) weeks. The MST shewn in 

Figure 6.2 are those for 1997. 2002. and 2005.
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Figure 6.2: Rolling one-year window M ST for 1997, 2002 and 2005. Coding is: Europe (•), 

Northern America (0), Southern America (■ ), Asian-Pacific ( A )  and “other” - Israel, Jordan, 

Turkey, South Africa (□).

We detect several consistent relationships as well as a number of less stable arrangements. 

One clear consistency is th a t the developed European countries form the central structure of the 

MST. Initially, Germ any is the central node; however, in more recent years France has taken 

over this role. The CEE countries do not form a single cluster bu t tend to  fragment into several 

subgroups, with changing composition year by year. However, perhaps reflecting the growing 

economic and political ties with the developed EU members, they tend to move slightly closer
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to those countries over tim e in term s of levels away from the central node.

W ith respect to  the Asian m arkets there is usually a link between A ustralia and New Zealand, 

which often head a branch connecting most of the remaining Asian m arkets to Europe. The 

coherence of the Asian countries is particularly evident in 1998, possibly reflecting increased 

correlations in the region in the afterm ath  of the Asian crisis. This particular clustering does 

not continue as strongly in subseciuent years. The main exception in this group is Japan, which 

does not fit into the Asian cluster bu t is generally linked directly to W estern markets.

For the N orth American m arkets the U.S.A., Canada, and Mexico are usually closely linked, 

reflecting most likely the ongoing effects of both geography and NAFTA trade ties. An apparent 

exception is the year 2005. An explanation of the disconnect in this cluster lies in examining 

the construction of the MST. In 2005 relatively higher correlations between European countries 

almost completely dom inated the formation of the MST as a cluster first formed around France, 

followed by a group of CEE countries (the Czech Republic, Hungary, and Poland).

The South American m arkets have not formed a complete cluster in any of the years under 

examination; however, a sub-cluster of Argentina, Brazil, and Chile, the largest, most developed 

and most liquid Latin American m arkets, can occasionally be observed. This cluster is usually 

directly linked to the European grouping via Mexico.

R e c u r s iv e  M S T

To further examine the stability of the relationships we constructed recursive M ST by forming 

the MST for the first year and then successively adding one year’s d a ta  at a time. These are 

shown in Figure 6.3 cumulatively through 1998, cumulatively through 2001 and cumulatively 

through 2005.

I'he first issue th a t emerge fron^ this analysis is th a t the MST appears to  have become 

somewhat more compact in comparison to the rolling window M ST for 1997 in Figure 6.2. In 

the 1997 rolling window, the maximum number of levels was twelve (central node Germany to 

Iceland), while it is consistently smaller in the recursive MST beginning w ith 1998. For the 

period 1997-2005, it is seven (central node France to  Jordan).

Not surprisingly, given the results from the rolling MST, the recursive graphs also reflect the 

dominance of the developed European grouping and the shift of central node to  France from 

Germany, w ith Australia, the Netherlands, and the U.S.A. a t the head of the branches. The 

German-U.S.A. link persists, even as the centre of the European cluster shifts to  France. The 

CEE countries continue to reflect some tendency to  split into different clusters, although by 

2002 six of them  have settled into one group, leaving out only Russia, Slovenia, and Romania. 

Hungary and Poland, among the more developed CEE equity markets, a lternate  the role of node
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Figure C.3: Recursive M ST for cum ulative through 1998, cum ulative through 2001 and cur;iu- 

lative through 2005. Coding is: Europe (•), Northern America (0), Southern America (■), 

Asian-Pacific ( A)  and “o ther” - Israel, Jordan, Turkey, South Africa (□).

linking the CEE countries to the developed EU members. This cluster also gradually moves to 

a closer attachm ent to France as th a t country becomes the central node.

The clustering of the Latin American markets, except for Peru, becomes more consistent 

as the time period is increased in the recursive graphs, with Mexico generally the link to :he 

European core. Similarly, as the tim e period increases a more consistent pattern  is estal^lished for 

the Asian markets. Pakistan  and India join the other Asian countries in 2001, and A ustralia and 

New Zealand in 2002. Japan , whose behaviour year by year appeared to be largely disconnected 

from the other Asian m arkets, is now seen as tied into the Asian cluster via Hong Kong or South 

Korea consistently since 2001. Finally, a Turkey-Russia-South Africa cluster emerges in 2000 

and stays reasonably stable.
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C orrela tion  and  m ean  tree  len g th  analysis

The tem poral analysis of changes in the first four moments of the m ean correlations, pij (eq. 

4.30) and of the distances in the MST, dij (eq. 4.49) are presented in Figures 6.4 and 6.5, where 

the window length is 52 weeks and the window step length is 1 week.

0.4 
0.35 

S 0.3 
SO.25 
S 0.2

0.15 
0.1

0 O.O6  

I  0.05 
5 0.04

Sg 0.6 
g 0.4

 ̂ 0.2
D  p.

“ ’ - 0.2
4

'2

■4

12-199803-1997
I_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ L

09-2000 07-2002 04-2004 01-2006
time (month - year)

Figure 6.4: M ean (eq. 4.35), variance (eq. 4.36), skewness (eq. 4.37) and kurtosis (eq. 4.38) 

of the correlation coefficients. Time windows of length 52 weeks are moved with a window step 

length param eter of 1 week. Results are plotted according to s ta rt date of window.

The mean correlation and its variance increase over the initial period covered by the data, 

roughly corresponding to the era of the Asian and Russian crises. In times of m arket uncertainty 

and downturns these measures tend to  increase [48, 51, 127]. The tendency of these measures 

to increase together has significant im plications for standard  econometric m ethodology [128],

i.e. these cases show th a t dram atic movements in one m arket can have strong implications 

in other m arkets with different sizes and structures around the world. We also note th a t the 

skewness decreases toward zero, implying th a t the distribution of the correlations becomes more 

normal. A similar pattern  has been observed for London stocks in the FT SE  index [51] (Figure 

5.12 of section 5.5). This initial period is followed by declining correlations as global m arkets 

move past the 1997-1998 crisis events. Correlations rise again, however, possibly reflectiiig the
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Figure 6.5: Mean (eq. 4.35), variance (eq. 4.36), skewness (eq. 4.37) and kurtosis (eq. 4.38) of 

the normalised tree length. Time windows of length 52 weeks are moved with a window step 

length param eter of 1 week. Results are plotted according to s ta rt date of window.

broad m arket declines th a t begin in 2000. An upward spike occurs in the fall of 2001, which 

corresponds to  the entry into the rolling window of the steepest downturns of global markets as 

measured by the MSCI world index. Recovery is accompanied, once again, by declining mean 

correlations. A second, larger, upward spike is observed as the window begins to include the 

early 2004 period, which occurs in the context of a broader trend toward higher correlations. 

The mean correlation, for the year ending May 13̂ ‘̂ 2004, is 0.24223 while tha t for the year 

ending May 20*̂ * 2004, is 0.30222. Subsequent correlations remain relatively high. Interestingly, 

this spike coincides with the entry of new members into the European Union (EU) on May 

2004. A breakdown of rolling correlations shows a strong, abrupt increase in correlations for 

the European group of countries at this point, as well as a consistent tendency over the entire 

time period for their correlations to be higher th an  for the set of 53 markets as a whole. This 

event has introduced a new element of uncertainty as well as the prospects for closer economic 

ties, both  of which could tend to  increase correlations. In contrast to  these larger movements 

the introduction of the euro on January  P* 1999, was not accompanied by major changes in 

correlation structure.
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Essentially the same information provided by the correlation matrix can be obtained also 

from the moments of the normalised tree length, as shown in Figure 6.5. The mean distance is 

negatively correlated with the mean correlations, tending to fall, for example, in times of market 

crisis. This underlines the ability of the MST as a strongly reduced representative of the entire 

correlation matrix to convey relevant market information. Overall, the mean distance shows a 

tendency to decrease over the ten years, indicating a “tighter” composition of the MST.

M ean  o ccu p a tio n  layer

The structure of the MST can also be analysed by the distance of the nodes to the central node, 

the mean occupation layer (equation 4.54). Using the two definitions of a central node (sub­

section 4.5.2), we identify the central node for our rolling MST. The two criteria produce similar 

results. Germany is the central node in the early years, but France takes its place for most of 

the subsequent periods. Using the highest rmmber of links criterion, France is the central node 

41.5% of the time and Germany 27.3%. The highest correlation sum criterion identifies France 

as the central node 53.8% of the time and Germany 30.2%. Other countries occasionally assume 
the position of central node.

T'he mean occupation layer can then be calculated using either a fixed central node for all 

windows, i.e., France, or a continuously updated node. In Figure 6.6 the results are shown for 

France as the fixed central node (black line), the dynamic maxinmm vertex degree node (dotted 

line) and the dynamic highest correlation vertex (grey line). The three sets of calculations are 

roughly consistent. The mean occupation layer fluct^iates over time as changes in MST occur 

due to market forces. There is, however, a broad downward trend in the mean occupation layer, 

indicating that the MST over time is becoming more compact.

S ingle and M u lti S tep  Survival R a tes

The robustness of links over time is the final analysis that we did for our MST (sub-section 

4.5.3). Figure 6.7 presents the single-step survival ratios for the MST (ecjuation 4.55). The 

average is about 0.85, indicating that a large majority of links between markets survives from 

one window to the next. As might be expected, the ratio increases with increases in window 

length.

Figure 6.8 shows the multi-step survival ratio. In both cases the length of time series was 

52 weeks and the window step length 1 week. Here, as might be expected, the connections 

disappear quite rapidly, but a small proportion of links remains intact, creating a stable base 

for construction of the MST. Again the evidence here is of importance for the construction of 

portfolios, indicating that while most linkages disappear in the relatively short to medium term
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Figure 6.G: Plot of mean occupation layer as a function of time for time windows of length 52 

weeks and window step length of 4 weeks). The black line is for a static  central vertex (France), 

the dotted line uses dynam ic central vertex based on maximum number of links, while the grey 

line shows dynamic central vertex based on maximum correlation value.

there are islands of stability  where the dynamics are consistent.

The behaviour of these two measures is similar to w hat has been observed for individual 

stocks within a single equity m arket [48]. These results may m iderstate the stability of the 

global system of m arkets since some of the linkage shifts appear to take place within relatively 

coherent geographical groups.

6.4 Stock  E xchange Indices for different countries

As stated  before there is differences between the study of correlations between the indices con­

structed from MSCI d a ta  and the indices constructed from individual stock market data. F irst 

the indices constructed from MSCI d a ta  as explained in their website [129] are weighted in­

dices designed to  measure the equity market performance of developed and emerging markets. 

The other indices from individual stock markets have a different m ethod of construction for 

each stock m arket, some times they are calculated as weighted indices, other times they are an
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Figure 6.7: Single-step survival ratio as a function of time. Tim e windows of length 52 weeks 

are moved with a window stej:) length param eter of 1 week.

average of the prices of each stock th a t belongs to  the index.

In this section we use the main indices of some countries around the world. The whole 

portfoho is composed of 71 different countries with one index each. In A ppendix D, the tables 

show the structure of this portfolio of indices and how we divided them  in different groups. This 

data  was downloaded from the D atastream  server [107].

All the prices of the indices are changed to  dollars according to the currency exchange at 

specific day and we choose tim e series of daily closing price from January  3'"'̂  2000 until March 

24̂ '̂ 2008. In this period the to tal number of indices with non-zero values is equal to  56. In 

Figure 6.9 we show the MST for this portfolio of indices.

As in Figure 6.1 the main hub of the MST is the index of France (CAC40). Around this 

main hub there are 9 links, seven of them  to another European index and two of them  to an 

American index (IGPA from Chile) and to a Middle East index (MAOF25 from Israel). The 

North American cluster of Canada and U.S.A. is linked through Germ any to  this m ain hub.

In this MST of Figure 6.9 there is also a second main hub represented by the A ustrian index 

(ATX Prime) w ith 8 links to  other European indices. This hub is of extrem e im portance to 

the East European indices because it links m any of the E ast European indices to  the main hub
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Figure 6.8: M ulti-step survival ratio  as a function of the number of weeks in a log-log scale. 

Time windows of length 52 weeks are moved with a window step length param eter of 1 week.

of France. The inclusion of some Middle East indices shows a small cluster of these countries 

with the indices of Egypt, Kuwait, Jordan and Oman linked together. The Asian-Pacific cluster 

m aintain the same structu re  shown in Figure 6.1.

From these results we can conclude th a t the use of MSCI indices or indices from each stock 

m arket have similar results in term s of the correlations between the indices. Also when we use 

daily retvu'ns instead of weekly returns the correlations between indices m aintain their structure 

and there seems to be no problem related with tinie-niismatch. The second portfolio of indices 

can be more useful for further work because we know each of the stocks th a t belong to the 

indices, so when we study the correlations of stocks from different indices in C hapters 7 and 8 

we should com pare with the MST of the second portfolio (Figure 6.9) and not to  the MST of 

the first one (Figure 6.1).

6.5 Conclusions

The use of the MST provides a way to  extract a manageable am ount of inform ation from a Itrge 

correlation m atrix  of global stock re turns to reveal patterns of links between different markets.
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Plgure 6.9: Miniimiin spanning tree for 56 different indices of different countries. Tlie tim e series 

are from January 3'''  ̂ 2000 until M arch 24̂ *̂ 2008, which means 2146 days. Coding is: European 

indices (•), American indices (0 ), Asian-Pacific indices (a )  and African and Middle East indices 

(□) .

ft provides an insight into m arket behaviour th a t is not as easily obtained from the correlation 

m atrix as a whole. Applied dynamically, the analysis lets us observe consistencies as well as 

evolutions in patterns of m arket interactions over time. As would be expected, there is a strong 

tendency for m arkets to organise by geographical location, although other, related factors such 

as economic ties, may also play im portan t roles. Developed European countries, w ith France and 

Germany at their centre, have consistently constituted the most tightly  linked m arkets within 

the MST. There has also been a limited tendency of the CEE accession countries to link more 

closely with the more developed EU countries.

The study of 56 different indices around the world showed similar results w ith the study for 

the 53 A'ISCI indices. The introduction of some Middle E ast indices showed a cluster of indices 

with Jordan included, which was a kind of an outlier in the previous study. The A ustrian index.
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ATX Prim e is the second hub of the MST with a strong linkage with the Eastern European 

indices.

We have seen th a t the m ean correlations show a tendency to  increase over the period as a 

whole, while mean distances in the MST and the mean occupation layers have been trending 

downward. These dynamic measures point to a compression of the MST over time, meaning a 

tighter degree of interaction, or integration, between markets. These findings have implications 

for the international investor. International diversihcation under standard  Markowitz portfolio 

construction relies on the existence of a set of assets which display consistent and persistent 

differences in correlations. These correlations form the basis of the MST. From a Markowitz 

portfolio perspective [130], or any portfolio perspective which relies on a spread of (relatively low) 

correlations, the compression which we have observed implies reduced diversification benefits 

over the tim e period we have examined. Finally, the nm lti-step survival ratio also indicates th a t 

while clusters of any given period may be homogeneous, the likelihood of these remaining stable 

over a reasonable portfolio period is small. This points to a need for frequent restructuring to 

make m axinnnn use of diversification benefits.



Chapter 7

Cross correlations between stocks 
from DJIA and FTSEIOO indices

7.1 Introduction

While C hapter 5 addressed the issue of correlations in stock prices in the same m arket, in the 

current chapter we analyse correlations of stocks traded in two different m arkets. In particular 

wc will find th a t the clustering of stocks in a combined MST is prim arily by market.

We com puted correlations between the main stocks on the London Stock Exchange m ain in­

dex (the FTSEIOO) and the main stocks on the Dow Jones Industrial Average index (the DJIA). 

We selected these sets of stocks because they belong to the main indices used by investors and 

are also classified by tlie same industrial classification, namely Industry  Classification Bench­

mark (ICB) [121]. The DJIA is the oldest continuing U.S. m arket index and comprises 30 of 

the largest companies in U.S. [131] The companies are chosen by the editors of The Wall S treet 

Journal [132]. It is called an average because it originally was com puted by adding up stock 

prices and dividing by the to ta l number of stocks [131].

From our previous study of C hapter 6, we concluded th a t the indices grouped in term s of 

geographical location. In Figure 6.9 we could see th a t these two main indices (FTSEIOO and 

DJIA) are not linked together. One reason for this can be the time-m ism atch. In this chapter we 

study the correlation when we use the same day for bo th  m arkets and also with one day delay 

for the stocks th a t belong to  one of the m arkets, and we conclude th a t this artificial feature 

doesn’t change anything in the results of bo th  Random  M atrix analysis and Minimal Sparmirig 

Tree which show th a t stocks from the DJIA and the FTSEIOO remain separated.

The results for the portfolio of 30 stocks from the DJIA are shown in section 7.3. Section 7.4 

shows the results for the cross-correlations between stocks from the DJIA and FTSEIOG indices.

113
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Finally the conclusions are presented in section 7.5.

7.2 D a ta

In this portfolio combined of stocks from DJIA and FTSEIOO, all the companies listed in one 

index are different fron:i the companies listed in the other. This may be a cause for the segregation 

of stocks. In the next chapter 8 we will study portfolios with the same company listed in different 

indices.

The to tal number of stocks in this portfolio is 115 (the to ta l 30 stocks from DJIA and 85 

stocks from the 102 stocks of the FTSEIOO index) starting  from January  3'’'̂  2000 until March 

24*̂ ‘ 2008. The stocks from FTSEIOO and DJIA indices used in this study are shown in tables 

C .l and C.2 of Appendix C, respectively.

The to tal number of days is 2146. The set of stocks chosen are the stocks th a t belong to 

these indices a t April 1®̂ 2008. The d a ta  from the 17 stocks th a t we excluded from the FTSEIOO 

index did not have non-zero closing prices for the entire period of our study. The main reason 

for this is probably th a t the companies enter the stock m arket after Jarmary 3’’'̂  2000.

7.3 A nalysis  o f correlations of stocks in th e  D JIA  index

The distributions of the eigenvalues of the correlation m atrix for the 30 stocks of the DJIA index 

is shown in Figm'e 7.1 and can be compared with the results for 85 stocks from the FTSEIOO 

index in Figure 5.22 (C hapter 5). T he value of the largest eigenvalue for each m arket seems to 

depend on the size of the portfolio or probably in the correlation of the stocks in the portfolio.

Figure 7.1 shows th a t most of the eigenvalues are located outside the region predicted by 

Random M atrix Theory (eci. 4.44). Ju s t one sixth of the eigenvalues are inside this predicted 

region. The main cause for this can be the small am ount of stocks (30) th a t comprise the DJIA 

index. The theory of Random  m atrices should ju st work in the case of a large number of stocks 

and the large length of tim e series. There are four eigenvalues with values higher than the 

maximum predicted by the RM T, Xmax but there are many more with values lower than the 

minimum value predicted, Again, this might be related to  the fact th a t the portfolio is

very small.

The eigenvalues th a t have higher values are the ones th a t we believe contain non-random 

inform ation about the m arket (38, 39]. The mean value of the eigenvector elements, for each 

industrial sector, for the eigenvalues th a t have values higher than  Xmax are represented in Figure 

7.2.

Each eigenvector shows different industrial sectors th a t drive it. For example, as shown
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Figure 7.1: Spectrum  and distribution of eigenvalues for a portfolio of 30 stocks from the DJIA. 

TIk- vertical lines, in the upper hgure, show the limits (eq. 4.44). Only of the

eigenvalues are inside the region predicted by the RMT.

by otiier authors [38, 39, 133], for the eigenvector related with the highest eigenvalue, A3 0 , all 

elements have the same sign, which means th a t all stocks contribute almost the same. This is 

known as the m arket mode and can be compared with the re tu rn  index of the m arket th a t we 

are studying. For the eigenvector related with the 2"̂  ̂ highest eigenvalue, A2 9 , the stocks from 

different industrial sectors have different behaviours, but we can see th a t some industrial sectors 

are positive and other are negative. For example, Oil and Gas and H ealth Care are positive and 

Technology is negative for all the stocks th a t belong to  these industrial sectors. The o ther two 

eigenvalues, A28 and A27 have different sectors driving them. For the eigenvector related with 

the 3'"'̂  highest eigenvalue, A2 8 , the m ain sector is Telecommunications and for the eigenvector 

related with the 4̂ *̂ highest eigenvalue, A2 7 , the main sector is Oil and Gas.

The eigenvectors related with th ird  and fourth highest eigenvalues can be com pared with 

the same eigenvectors from the FTSEIOO portfolio in Figure 5.23 (C hapter 5), where the main 

industrial sectors th a t drive the eigenvalues are the same.

Some of these strong sectorial correlations can be seen in Figure 7.3, which shows the visu­

alisation of the correlations between stocks using the M ST for the portfolio of stocks from the
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Figure 7.2: M ean value of eigenvector elem ents, for each in d ustria l sector, of th e  four highest 

eigenvalues, Asn, A2 9 , A28 an d  A27 for a  portfolio of 30 stocks from  th e  D JIA  index. In th e  x 

axis we have th e  in d u stria l sector: a) Teleconnnunications; b) Basic M aterials; c) Utilities; d) 

C onsum er G oods; e) Oil and Gas; f) C onsum er Services; g) F inancials; h) Industrials; i) H ealth  

Care; j)  Technology. T h e  erro r bars represent the variance of each industria l sector.

D JIA  index. T h e  sym bol used for each stock is the  sam e used before in C hap te r 5 correspond­

ing to  a specific in d u stria l sector from  the  ICB classification [121] as: Oil and G as (■ ), Basic 

M ateria ls (A), In d u stria ls  (♦ ), C onsum er G oods (■ ), H ealth  C are (□ ), C onsum er Services ( a ) ,  

T elecom nm nications (0), U tilities (•) , F inancials (•) and  Technology (o).

A lm ost all th e  stocks from  th e  D JIA  index, th a t belong to  th e  sam e industria l sector are 

linked toge ther, th u s illu s tra tin g  th e  correlations betw een stocks of th e  m ain  U.S.A. index. A 

sim ilar behaviour was found in C h ap te r 5 (Figures 5.7, 5.8 and 5.21) for th e  M ST of the  FTSEIOO 

portfolios.
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Figui'e 7.3: Minimal Spanning Tree for 30 stocks of the DJIA index. The time series of each stock 

are composed by 2146 daily closing prices. Each symbol correspond to a specific industry from 

the ICB: Oil & Gas (■), Basic Materials (a ), Industrials (♦), Consumer Goods (■), Health 

Care (□), Consumer Services (a ), Teleconmimiications (0), Utilities (•), Financials (•) and 
Technology (o).

7.4 Cross correlations between stocks of the D JIA  and the FTSEIOO 

indices

Next step in our analysis is the study of cross correlations between both sets of stocks. Taking 

into account the fact that the data we use is the daily closing price of stocks, and knowing that 

the two stock markets close at different times, we also studied the cross correlations when the 

return of one set is one day ahead of the return of the other (Figure 7.4).

From Figure 7.4 we can see that for values of correlations, pij higher than 0.3 the distribution 

is almost the same for the three different cases studied. This correlations are the same because 

they are the correlations between stocks of the same market, and that does not change from case
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Figure 7.4: D istrib u tio n  of tlic  coefRcients of th e  correlation  m a trix  p i j  for the case of stocks 

from  th e  D JIA  and  the  FTSEIOO a t th e  sam e day  (black solid line), th e  FTSEIOO one day ahead  

of th e  D JIA  (grey solid line) and the  D JIA  one day ahead  of th e  FTSEIOO (black do tted  line).

to  case. T h e  difference is in th e  lower correlations, re la ted  w ith  th e  cross correlations betw een 

stocks of different m arkets. W hen correlations are  calcu lated  w ith  th e  stocks of the  D JIA  one 

day ahead  of th e  ones from  th e  FTSEIOO there  are  m any coefficients next to  zero, showing a 

break  in th e  correla tions betw een b o th  m arkets. T h is happens because the  closing price of th e  

D JIA  is 4 : 30 hours la te r th a n  th e  closing i)rice of F T S E , so w hen we used the  closing price 

of th e  stocks of D JIA  one day  ahead  of th e  closing price of th e  stocks from FTSEIOO, th e re  

is a  difl'erence of 28 : 30 hours. For the  case w hen correlations are  calcu lated  w ith th e  stocks 

of th e  FTSEIOO one day ahead  of those from  the  D JIA  there  is also a  sm all break around 0.2. 

T he difference in th is case is of 19 : 30 hoi.irs. F rom  these resu lts we concluded th a t  the  b e s t 

approach  is w hen th e  co rrelations are  calcu lated  for all th e  stocks a t  the  sam e tim e, t .

T h e  d is trib u tio n  of eigenvalues of the  cross correlations can be seen in F igure 7.5. Ju s t 41% 

of th e  eigenvalues s tay  inside th e  region p red icted  by th e  RM T. T h ere  are  8 eigenvalues higher 

th a n  X m a x -  T hese eigenvalues seem s to  be a  mix betw een the  higher eigenvalues of the portfolio  

of 30 stocks of th e  D JIA  index in F igure 7.1 and th e  portfolio  of 85 stocks of the  FTSEIOO index 

in F igure 5.22 (C h ap te r 5).
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F'igui'e 7.5: Spectrum  and distribution of eigenvalues for a portfolio of 115 stocks from the DJIA 

and the FTSEIOO indices. The vertical lines, in the upper hgure, show the limits (eq.

4.44). Less than half (41%) of the values of the eigenvalues are inside the region predicted by 

the RMT.

The highest eigenvalue has almost the same value as the highest eigenvalue of the FTSEIOO 

portfolio. The second highest can be com pared with the highest from the D JIA  portfolio. The 

third, fourth and fifth highest can be compared with the second, th ird  and fourth highest, 

respectively, for the FTSEIOO portfolio. The sixth highest can be compared with the second 

highest of the DJIA portfolio and the seventh and eighth highest with the fifth and sixth highest 

of the FTSEIOO portfolio.

The infornration contained in these eigenvalues show us how stocks from different markets 

are related to each other. Figure 7.6 shows the eigenvectors of the four highest eigenvalues, Aug, 

Aii4, Aii3 and A u2 .

The mean value of eigenvector elements in Figure 7.6 shows th a t for the eigenvector related 

with the highest eigenvalue, Aug, all the elements have the same sign, as we saw for the individual 

markets. The eigenvector related with the second highest eigenvalue, A u4 , shows a segregation 

between the stocks of the two different markets, where all the elements of the D JIA  index have 

a positive sign and all the elements of the FTSEIOO index have a negative sign, apai’t  from the
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Figure 7.6: M ean value of eigenvector elem ents, for each in d u stria l sector, of th e  four liig.iest 

eigenvalues, A us, A j^ , A ns and A u 2 for a  portfolio  of 115 stocks from  the  D JIA  and  th e  

FTSEIOO indices. In th e  x axis we have the  industria l sector: a) T elecom m unications b) 

Basic M aterials; c) U tilities; d) C onsum er G oods; e) Oil and  G as; f) C onsum er Services g) 

F inancials; h) Industria ls; i) H ealth  Care; j)  Technology. T h e  e rro r bars  rep resen t th e  varitnce 

of each in d u stria l sector. T h e  colum ns in grey are respected  to  th e  FTSEIOO stocks and  the  

colunm s in black to  th e  D JIA  stocks.

FTSEIOO stock th a t  belong to  the  Technology industria l sector, th a t  also has a positive sign like 

th e  stocks from  th e  D JIA  index.

T he eigenvector re la ted  w ith  th e  th ird  highest eigenvalue, A n 3 shows sim ilarities w ith  the  

second highest eigenvalue for b o th  th e  D JIA  and th e  FTSEIOO indices and  th e  eigenvector re ltted  

w ith  the  fou rth  h ighest eigenvalue, An^ shows sim ilarities w ith  th e  th ird  h ighest eigenvalue for 

b o th  the  D JIA  and  th e  FTSEIOO indices.

We have also perform ed an  eigenvector analysis for th e  cases w here the  values of stocks of
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one m arket are one day ahead of the others. W hen the stocks of the FTSEIOO index are one day 

ahead of the stocks of the D JIA  index, the results are the same as in Figure 7.6 bu t when the 

stocks of the D JIA  index are one day ahead of the stocks of the FTSEIOO index, the eigenvector 

clonionts show very different results as wo can see from Figure 7.7.
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Figure 7.7: M ean value of eigenvector elements, for each industrial sector, of the four highest 

eigenvalues, Ans, A n 4 , An3  and A n 2 for a portfolio of 115 stocks from the D JIA  and the 

FTSEIOO indices when the correlations are calculated for the stocks of the D JIA  index one 

day ahead of the stocks of the FTSEIOO index. In the x axis we have the  industrial sector: 

a) Telecommunications; b) Basic M aterials; c) Utilities; d) Consumer Goods; e) Oil and Gas; 

f) Consumer Services; g) Financials; h) Industrials; i) Health Care; j) Technology. T he error 

bars represent the variance of each industrial sector. The columns in grey are respected to the 

FTSEIOO stocks and the columns in black to the DJIA stocks.

The mean value of eigenvector elements in Figure 7.7 shows th a t the eigenvector related to 

the highest eigenvalue, Ans no longer has all its elements positive. It seems th a t this eigenvalue
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ju s t shows th e  influence of the  stocks of the  FTSEIOO index in the  portfoHo. On the o ther 

hand , th e  eigenvector re la ted  w ith  th e  second highest eigenvalue, A1 1 4  shows ju s t  the influence 

of th e  stocks from  th e  D JIA  index. T h e  eigenvector re la ted  w ith  th e  th ird  and  fourth highest 

eigenvalues m im ic th e  com position of th e  eigenvectors re la ted  w ith  the  second an d  th ird  highest 

eigenvalues of the  individual stocks of th e  FTSEIOO index.

T h e  segregation  betw een the stocks of th e  FTSEIOO and th e  D JIA  indices can be seen w hen 

we analyse th e  M ST of th e  portfo lio  of 115 stocks. In Figui’e 7.8 we can see th a t on the  top  

righ t of th e  M ST all th e  stocks of th e  FTSEIOO are linked to g e th er w ith  th e  sam e industrial 

secto r c lu ster th a t  we saw previously when we stud ied  the  M ST  for the  individual portfolio of 

stocks of th e  FTSEIOO in F igure 5.21 (C h ap te r 5). A t the  b o tto m  left of th e  M ST all the  stocks 

of th e  D JIA  index are also linked toge ther w ith  the  sam e configin-ation as in F igure 7.3. T he 

link is betw een B P  from the  FTSEIOO index and C hevron from  th e  D JIA  index bo th  from th e  

in d u stria l sector Oil and  Gas.

For the  o ther two cases where th e  stocks of one m arket are calcu lated  one day ahead of th e  

o ther, th e  s tru c tu re  of th e  M ST does no t change. T here  is always a c luster of stocks from th e  

FTSEIOO index on one side and  an o th e r c luster of stocks from the  D JIA  index on the other side. 

T he only fea tu re  th a t  changes is the  link betw een bo th  m arkets. If th e  correlations are calculated 

for th e  stocks of th e  FTSEIOO one day ahead  of the  D JIA , the link is betw een G laxoSm ithK line 

from  th e  FTSEIOO and  A T& T from  th e  D JIA . If the  correlations are  calcu lated  for the stocks of 

th e  D JIA  one day ahead  of th e  FTSEIOO, the  link is betw een A lliance T ru st from the FTSEIOO 

and  J P  M organ C hase from the  D JIA .

7.5 C onclusions

We have used two different m ethods to  stu d y  correlations betw een stocks of the  FTSEIOO and th e  

D JIA . O ur resu lts  using R andom  M atrix  T heory  show th a t  th e  m arkets rem ain  largely separa te  

even w hen cross-correlations betw een  stocks across th e  two m arkets  are included. T he results 

for th e  M inim al Spanning Trees b road ly  reflect th e  results from  th e  R andom  M atrix  Theory. 

B u t it is no t as easy to  see th e  d e ta il provided by th e  R andom  M atrix  analysis. T his of course 

is no t too  su rp rising  since th e  M inim al Spanning Trees approach  only uses p a rtia l inform ation 

from th e  co rre la tion  m atrix .

M uch research in finance has addressed  th e  issue of w hether or no t stocks u ltim ately  cluster 

by m arket or by industry . T here  is no consensus on this. Some [134] suggest th a t  the clustering 

is p rim arily  indu stria l, while o thers [135] contend th a t  the  sp lit is p rim arily  geographical. T he 

evidence here is th a t  geographical (m ore correctly, m arket) location  is th e  m ost im portan t ele­

m ent in de term in ing  th e  c luster in to  w hich a stock falls. T he im plication  for portfolio  m anagers
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Figure 7.8: Minimal Spanning Tree for 115 stocks of the FTSEIOO and the DJIA indices. The 

tim e series of each stock is composed of 2146 daily closing prices. Each symbol corresponds to 

a specific industry from the ICB classification. All the stocks from the FTSEIOO index have a 

.L after the code. Each symbol correspond to a specific industry from the ICB: Oil & Gas (■ ), 

Basic M aterials (a ) , Industrials (♦), Consumer Goods (■ ), Health Care (□ ), Consumer Services 

( A ) ,  Telecommunications (0), U tilities (•), Financials (•) and Technology (o).

is th a t, a t least at a first level, they should consider diversification along market lines, and only 

subsequently along industrial or sectoral lines.

It is an im portant consideration th a t we are studying stocks from two m arkets th a t operate 

at different time. I^u'thor investigation with stocks from m arkets th a t operate a t the same time 

is essential as we show further in C hapter 8. If we want to upgrade our study of stocks from the 

FTSEIOO and tlie DJIA indices we should use intraday d ata  from both  m arkets and study the 

correlation at the same minute, but only for m inutes when both  m arkets are in operation.
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C hapter 8

Cross correlations betw een portfolios 

of stocks from different geographical 

locations

8.1 Introduction

111 this chapter we use Random  M atrix Theory to examine the correlation between stocks traded 

on m arkets of different countries and compare with the results obtained from a simple market 

model as done before in section 5.6.1. Based on the study of correlations of indices from different 

countries in C hapter 6 [52] where we analysed the M inimum Spanning Trees of 56 m arket indices 

around the world, we want to  study the cross-correlations between stocks th a t are cjuoted in 

different stock markets. In this previous study, the indices cluster in term s of geographical 

location and they were localised in a central cluster of West and Central Europe m arkets and 

three other clusters around: American indices; Asia-Pacific indices; E astern European indices.

Studying the correlations between stocks th a t belong to different m arkets give us a better 

understand of the correlation between the indices. For example, if the stocks of DJIA segregate 

from the stocks of FTSEIOO, as we saw in C hapter 7, this show us why the two main indices in 

the study of C hapter 6 were so separate from each other.

A prelim inary extension of this work was shown in C hapter 7 where we analysed the cross 

correlation between stocks listed in the FTSEIOO and DJIA indices, two of the most common 

indices for investors. But as we saw from Figure 6.9, these two indices are not the main hubs of 

the MST of the indices around the world. The central index is France.

For our study  of stocks from different indices we chose three main world indices from three 

different countries: France, U.K. and U.S.A. (U.K. and U.S.A. are separated from France by one
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cind three links, respectively in the MST of Figure 6.9). The three indices th a t we study here 

are the CAC40, the FTSEIOO and the D.IIA and the stocks from each index are represented 

in tables C.3, C .l and C.2, respectively. As shown in C hapter 7 the stocks from the FTSEIOO 

segregate from the stocks from the DJIA. W ith the inclusion of the stocks from the CAC40 

index, we want to test if these stocks also segregate from the previous two groups, or if they 

cluster with some group of stocks.

To test the time-niism atch problem between stocks th a t are listed in indices from different 

markets, we also present a second study with European stocks from three indices with close 

geographical locations, namely France, Netherlands and Belgium (France and Belgium are sep­

arated  from Netherlands by only one link in the MST of Figure 6.9). W ith  this second portfolio, 

we want to check the differences between markets tha t have geographical and trade affinity and 

markets th a t don’t. The three indices study here are the CAC40, the BEL20 and the AEX and 

the stocks from each index are represented in tables C.3, C.4 and C.5. Im portant differences 

between this second portfolio and the first one is tha t for the European portfoho all the stocks 

are quoted witli the same currency and all the markets also work a t the same time. In this 

second portfolio there are some companies listed in different indices.

In the next .section we present the d a ta  analysed here and then our results for the Minimal 

Spanning Tree analysis. In section 8.4 we present a factor model for random  time series and the 

results of the eigensystem analysis of both  correlation m atrices of real and random  data.

8.2 Data

Our da ta  is the daily closing price for 2146 days, from January  3'''  ̂ 2000 until March 24̂ ‘̂ 2008. 

Our first portfolio contains 149 stocks from the CAC40, the FTSEIOO and the DJIA indices, 

with 34, 85 and 30 stocks, respectively. We changed all the currencies of these stocks to the 

same, US dollars, using the currency exchange for each specific day.

The second portfolio is composed of the closing price in Euros, as it is the currency established 

by these three countries. The portfolio contains 72 stocks from the CAC40. the BEL20 and the 

AEX indices, with 34, 17 and 21 stocks, respectively.

We divided the stocks in groups of industrial sectors using the ICB classification [121] and 

use all the stocks th a t belong to  each index th a t we have da ta  available for the period January  

3'’'' 2000 until M arch 24^'‘ 2008.
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8.3 M inim al Spanning Trees

8 .3 .1  A n a ly s is  o f  d a ta  f ro m  C A C 40, FTSEIOO a n d  D J I A  in d ic e s

We haVe computed the correlation matrix, and analysed the eigensystem of this matrix for 

the portfolio consisting of stocks from the CAC40, the FTSEIOO and the DJIA indices called 

portfolio A. The Minimal Spanning Tree constructed from the matrix of distances is i^hown in 

Figure 8.1.
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Figure 8.1: Minimal Spanning Tree for 149 stocks of the CAC40, the FTSEIOO and the DJIA 

indices. The time series of each stock is composed of 2146 daily closing prices. The stocks from 

the CAC40 have a .PA  after the code and the ones from the FTSEIOO have a .L. Each symbol 

correspond to a specific industry from the ICB: Oil Gas (■), Basic Materials (a), Industrials 

(♦), Consumer Goods (■), Health Care (□), Consumer Services ( a ),  Telecommunications (0), 

Utilities (•), Financials (•) and Technology (o).

From the MST we can see that there is a segregation from the stocks of the DJIA index 

in the bottom left corner of the MST. All 30 stocks from the DJIA are linked together and
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maintained the structure shown in Figure 7.3 for these stocks when studied alone. The hnk to 

this cluster with the rest of the portfolio is made through Chevron from the DJIA index and 

BP from the FTSEIOO index as in Figure 7.8. These stocks form an Oil and Gas cluster that 

consist of 6 stocks from the throe different markets.

As shown in previous figures the main hub of the MST is the stock Alliance Trust from 

the FTSEIOO index. There is also interdependence between some stocks of the CAC40 and the 

FTSEIOO indices. All stocks from Telecommunications are linked together, with France Telecom 

joining the previous cluster of the FTSEIOO. The Technology stocks also form another cluster 

with stocks from the CAC40 and the FTSEIOO indices. The same also happen with the stocks 

from Consumer Goods, Health and Care and Real Estate (sub-sector of Financials). Another 

curious result is the link between British Airways and Air-France as part of the Consvimer 

Services industrial sector.

8.3.2 A nalysis  o f  data from CACIO, BEL20 and A E X  indices

The MST of the second portfolio, which we call portfolio B, consisting of stocks from CAC40, 

BEL20 and AEX indices, is shown in Figure 8.2.

From this MST we can see many clusters with stocks from different markets. For example, 

the Telecommunications cluster has one stock from each market. The same happens with the 

industrial sectors Technology and Oil and Gas. The sub-sector Real Estate from the industrial 

sector Financials is also composed of three stocks, one from each market. Another cluster of 

stocks from different markets is formed from stocks of the super-sector Food and Beverage, part 

of the Consumer Goods industrial sector.

The main hubs of this MST are AXA (with symbol CS.PA)  from the CAC40 index, an 

insurtmce company with 13 links, one of these links is to the other hub of the MST, INC Groep 

(with symbol I N G A .A S )  from the AEX index, another insurance company with 13 links. We 

can see that part of the stocks from the BEL20 index cluster together, or are directly linked 

to the same company that is also quoted in a different market. This is the case of Fortis, a 

bank that is cjuoted in the BEL20 index with the symbol FO R D .D R  and is quoted in the the 

AEX index with the symbol FO RA.A S .  The same also happens for two other companies, Suez, 

an utilities stock quoted in the BEL20 and the CAC40 indices with symbols S Z E B . B R  and 

S Z E .F A ,  respectively and Dexia, a bank rjuoted in the BEL20 and the CAC40 indices with 

symbols D E X D . D R  and D X .F A ,  respectively.
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Figure 8.2: Minimal Spanning Ti’ee for 72 stocks of the CAC40, the BEL20 and the AEX 

indices. T he time series of each stock is composed of 2146 daily closing prices. The stocks from 

the CAC40 have a .P A  after the code, the stocks from the BEL20 have a .D R  after the code and 

the ones from the AEX have a .^45. Each symbol correspond to a speciftc industry from the ICB: 

Oil & Gaii (■), Basic M aterials (a ), Industrials (♦), Consumer Goods (■ ), Health Care (□ ), 

Consumer Services ( a ),  Telecommunications (0), Utilities (•), Financials (•) and Technology 

( ° ) .

8.4 S im ple M arket M odel

To try to mimic the tim e series of returns for each stock we need to create a m arket model. So 

we use the one-factor model already presented in section 5.6.1:

r,{t) ^  ai + PiRrr,j{t) + €i{t) (8 . 1)



130

where R„i. is the to ta l re turn  of the stocks of tlie m arket j  {rrij, j  =  1,2,3) and £;(<) is a 

Gaussian distributed  random  number. The total re tu rn  is calculated as:

i& rr ij

where /?/(<) is the re tu rn  of stock i a t tim e t and we will call this to tal return the index of 

market j .

The param eters Qj and Pi are estim ated by the least square m ethod between the real returns 

and the index of the m arket to which the stock belongs:

=  (/?,) (8.3)

Pi =

- {R,n,?
After creating the random  time series we compute the correlation m atrix and then we perform 

an eigensystem analysis. We also create a MST from the random  nicirket.

The M ST for bo th  portfolio A and B are represented in Figures 8.3 and 8-4, respectively.

The M ST of Figure 8.3 is not similar with the real M ST from Figure 8.1. because there are 

some hubs with a huge am ount of links, which is not norm al in the MST of real data. This 

behaviour wtis already sta ted  in C hapter 5 for Figure 5.15 where w'e also used a market model 

to create some random  tim e series.

The main feature of M ST of Figure 8.3 is tha t there are three cluster of stocks. The cluster 

in the bo ttom  left of M ST has all the stocks from the DJIA index, the middle cluster has all the 

stocks from the CAC40 index and the cluster on the top right of MST has all the stocks from 

the FTSEIOO index.

The fact th a t all the stocks th a t belong to the DJIA index are linked with each other and 

form a cluster is a mimic of the behaviour of the real M ST in Figure 8.1, but the absence of 

interdependence between the stocks of the CAC40 and the FTSEIOO shows tha t the simple 

model cannot mimic the whole figure of the MST.

The main hubs in the Figure 8.3 are some of the stocks from the Financials industrial sector, 

between them  there are the two main hubs from the M ST of real da ta  (Figure 8.1), AXA and 

Alliance Trust, which are also the main hubs for their two m arket indices, the CAC40 and the 

FTSEIOO, respectively.

T he M ST of Figure 8.4 also shows a division in three main clusters. The bottom  right cluster 

has all the stocks from the BEL20 index, the middle cluster has all the stocks from the AEX 

index and the cluster in the top left of M ST has all the stocks from the CAC40 index.

The m ain hubs of the MST continue to  be the stocks from Financials industrial sector with 

the insurance companies AXA and ING Groep as two of these main hubs like it was for the MST
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Figure 8.3: Minimal Spanning Tree for 149 stocks of the CAC40, the FTSEIOO and tiie DJIA 

indices created using a random market model. The time series of each stock is composed of 2146 

daily closing prices. The stocks from the CAC40 have a .PA  after the code and the ones from 

the FTSEIOO have a .L. Each symbol correspond to a specific industry from the ICB: Oil & Gas 

(■), Basic Materials (a), Industrials (♦), Consumer Goods (■), Health Care (□), Consumer 

Services ( A ) ,  Teleconnnunications (0), Utilities (•), Financials (•) and Technology (o).

of real data in Figure 8.2. The absence of interdependency between stocks of different market 

indices shows that a simple market model is not enough to mimic the structure of a MST.

8.5 Market indices

The index for each market calculated from the random time series {r„ij{t) = Yliemj J — 
1,2,3) is compared with the index calculated from the real time series eq. 8.2). The

correlation between two indices is computed from eq. 4.30, where we use the return of each 

index, instead of the return of stocks. Tables 8.1 and 8.2 show the values for these correlations.
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Figure 8.4: Minimal Spanning Tree for 72 stocks of the CAC40, BEL20 and AEX indices created 
using a random market model. The time series of each stock is composed of 2146 daily closing 
prices. The stocks from the CAC40 have a .PA after the code, the stocks from the BEL20 .lave 
a .BR  after the code and the ones from the AEX have a .AS. Each symbol correspond to a 
specific industry from the ICE: Oil & Gas (■), Basic Materials (A), Industrials (♦), ConsLmer 
Goods (■), Health Care (□), Consirmer Services (a),  Telecommunications (0), Utilities (•), 
Financials (•) and Technology (o).

Table 8.1 shows that the higher correlation is between the CAC40 and the FTSEIOO indices, 
as it is expected since the markets are on the same geographical cluster and are also two of the 
main indices in the world. The correlations between the DJIA returns and any other inde>: are 
very low. These results are in agreement with what we have shown for the MST in Figure 8.1 
with the stocks from the DJIA separated from the rest and in MST of Figure 6.9 where the 
DJIA is 3 links away from the CAC40 but the FTSEIOO and the CAC40 are directly linked.

Table 8.2 shows that the higher correlation is between the CAC40 and the AEX indices and 
the second highest correlation is betw’een the CAC40 and the BEL20 indices. This last resi.lt is
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Table 8.1: Correlations between m arket returns for portfolio A: the CAC40, the FTSEIOO and 

the D.IIA indices. The cells in light grey represent the correlation between the re turn  of real 

m arket i ,  and the re tu rn  of real m arket j ,  The cells in dark grey rej^resent the

correlation between the re tu rn  of random  m arket i ,  r m i { t )  and the re tu rn  of random  m arket j ,  

Vjrij i t ) .  The cells in white represent the correlation between the re tu rn  of real m arket i ,  R m i i t )  

and the return  of random  m arket i ,  r „ n { t )  and those deviate from 1.

CAC40 FTSEIOO DJIA

CAC40 0.97 0.81 0.43

FTSEIOO

DJIA

Table 8.2: Correlations between m arket returns for portfolio B: the CA.C40, the BEL20 and 

the AEX indices. The cells in light grey represent the correlation between the re tu rn  of real 

market z, R m , { t )  and the re tu rn  of real m arket j ,  R , n . { t ) .  The cells in dark grey represent the 

correlation between the re turn  of random  m arket i ,  r m ^ ( < )  and the return  of random  m arket j ,  

r , n j i t ) -  The cells in white represent the correlation between the re tu rn  of real rricirket i ,  R m . i { i )  

and the return  of random  m arket i ,  and those deviate from 1.

CAC40 BEL20 AEX

CAC40 0.97 0.79 0.89

BEL20 0.93 0.78

AEX 0.95

in disagreement w ith the results of M ST of Figure 6.9 where the CAC40 and the BEL20 indices 

are directly linked with the AEX index but are separated by two links, so we should expect a 

higher value of correlation between the BEL20 and the AEX indices th an  between the CAC40 

and the BEL20 indices. If we look at the correlation m atrix  th a t produces the M ST of Figure 

6.9 we can see th a t the value of correlation between the BEL20 and the AEX indices is 0.81 and 

it is higher than  the correlation between the CAC40 and the BEL20 indices which is 0.77. The 

difference of values with our table 8.2 is related with the fact th a t when we calculate the returns 

R ihj { t ) ,  we com pute an arithm etic m ean with the  values of re turns of stocks th a t we have in our 

portfolio which is not always the to tal number of stocks th a t compose the index. It can also be 

the case th a t some indices are calculated with a  weighted arithm etic mean.

The higher value of correlation between the CAC40 and the AEX indices is also in agreem ent 

with the results of M ST of Figure 8.2 where m any stocks of the CAC40 and the AEX indices 

cluster together.
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8.6 E igensystem  analysis 

8.6.1 D istr ib u tion  o f eigenvalues

T he d is trib u tio n  of eigenvalues for th e  random  correla tion  m atrix  and  the  real correlation m atrix  

for portfo lio  A is show n in Figm 'e 8.5.
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Figure 8.5: D istrib u tio n  of eigenvalues of th e  co rrela tion  m atrix  com puted from th e  random 

tim e series (top) and  from  th e  real tim e series (bo ttom ) for the  portfolio  A. In b o th  caset th e  

h ighest eigenvalue has a lm ost th e  sam e value. T he vertical lines, in the  inset figures, ind.cate 

the  region p red ic ted  by random  m a trix  theory,

We can see th a t  th e re  is a  high num ber of eigenvalues th a t  s tay  outside th e  region predicted 

for a  ran d o m  m atrix , T h e  percen tage  of eigenvalues th a t  s tay  inside th is region is 45% for

th e  real case and  6 6 % for th e  random  case. T h e  random  tim e series leads to  th ree eigenvalues 

ou tside th e  p red ic ted  region as show n by F. Lillo et al. for m ultifacto r models [136], whi.e there 

are m ore th a n  th ree  eigenvalues o u tside  th is  region for the  real d a ta . For the  real case there are 

9 eigenvalues higher th a n  X m a x -

T h e  tw o highest eigenvalues for th e  random  case (A1 4 9  =  38.02 and  A1 4 8  =  8.89) have almost 

the  sam e value as th e  two h ighest for th e  real d a ta  (A1 4 9  =  37.55 and  A1 4 8  =  8 .6 8 ).

In F igu re  8 . 6  we show th e  d is tr ib u tio n  of eigenvalues for th e  random  and  real correlation
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matrices for portfolio B.
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Figure 8 .6 : D istribution of eigenvalues of the correlation m atrix  com puted from the random  time 

series (top) and from the real time series (bottom ) for the portfolio B. In both  cases the two 

highest eigenvalue have almost the same value. The vertical lines, in the inset figxires, indicate 

the region predicted by random  m atrix  theory. A"V m ax  
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Also for portfolio B there are m any eigenvalues th a t  stay outside the region predicted for a 

random m atrix, The percentage of eigenvalues th a t stay inside this region is 40% for the

real case and 43% for the random  case. As in Figure 8.5 for the random  case there are only 3 

eigenvalues with values higher than  X,nax [136]. For the real case there are 5 eigenvalues higher 

than this value.

The highest eigenvalue for the random  case (A7 2  =  22.70) has alm ost the same value as the 

highest one for the real d ata  ( A 7 2  =  22.69).

8.6.2 Inverse P articipation  ratio

Looking at the eigenvectors th a t correspond to  each eigenvalue we can get some inform ation 

about the natm 'e of time series th a t we are studying. Com paring the  Inverse Partic ipation  ratio 

(subsection 4.4.1) for the real and random  cases we can alm ost see which eigenvalues from the
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raridoni case correspond to  eigenvalues for the real case. In Figure 8.7 we present the IPR for 

portfolio A.

(30

C u  0.01

0.001
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Values o f Eigenvalues,

Figure 8 .7: Inverse Participation  Ratio from random  time series (grey circles) and real tim e 

series (black circles) for the portfolio A on a log — log scale. The vertical lines indicate the 

region predicted by random  m atrix  theory,

From Figure 8.7 we can see th a t the highest eigenvalue from the random  case, A149 has alnost 

the same vahie of IPR  as the highest eigenvalue for the real case, A149. The same beha'dour 

can be seen with the second highest eigenvalue, bu t the th ird  highest eigenvalue of the rardom  

case, Ai47 seems to be very similar with the fourth highest eigenvalue of the real case, Aî g- A 

be tte r comparison can be made when we study each element of the eigenvectors related with 

these eigenvalues.

T he comparison of the Inverse Participation ratio  between the real and random  cases for 

portfolio B is presented in Figure 8.8.

For the case of portfolio B, the correspondence between an eigenvalue for the random case 

and another from the real case is not so evident than  for portfolio A. The only evident case is 

for the highest eigenvalue of random  case, A72 which has almost the same value of IP I. as the 

highest eigenvalue for the real case, A72.

For bo th  portfolios, the IP R  of the highest eigenvector is low (Figures 8.7 and 8.8), which
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Figure 8.8: Inverse Participation Ratio from random time series (grey circles) and real time 

series (black circles) for the portfolio B on a log -  log scale. The vertical lines indicate the 

region predicted by random matrix theory,

means that the stocks contribute in the same way. We can see this behaviour when we analyse 

each eigenvector and its elements in the Figures 8.9 and 8.11 where all elements are positive. 

This corresponds to the general trend of all stocks and it also specifies how each stock contributes 

to the overall index.

8.6.3 E igenvector elem ents o f the h ighest eigenvalues

To check if these aparent correspondences of the IPR  between eigenvalues of the random case 

and eigenvalues of the real case are real we compute the mean value of the eigenvector elements 

(subsection 4.4.2) for the real and random cases.

In the following Figures, we will show the comparison between the eigenvectors from the real 

and random cases, for portfolios A and B. All the elements of the eigenvector that corresponds 

to the highest eigenvalue have the same positive sign. This is shown for both portfolios and for 

the real and random cases. Other correspondence is between the real and random elements of 

the eigenvector related with the second highest eigenvalue for portfolio A. In both cases, the
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elem ents re la ted  w ith  th e  D JIA  index segregate from th e  o ther elem ents.

In  F igure 8.9 we p resen t these elem ents, for each industria l secto r and index, o f th e  two 

highest eigenvalues, A1 4 9  and  Aj4 8 , for th e  s tu d y  of portfolio  A.
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Figure 8.9: M ean value of eigenvector elem ents, for each industria l sector, of the  two highest 

eigenvalues, and  A1 4 8 , for th e  s tu d y  of portfolio  A. T he loft figures correspond to  th e  real 

tim e series and  th e  right figures to  th e  random  tim e series. In th e  x axis we have th e  industria l 

sector: a) Telecom m unications; b) Basic M aterials; c) U tilities; d) C onsum er Goods; e) Oil and  

Gas; f) C onsum er Services; g) F inancials; h) Industria ls; i) H ealth  Care; j) Technology. T he 

error bars  represen t the  variance of each in d ustria l sector. Each colour colum n represen t one 

index: dark  grey for th e  CA C40 index, light grey for the  FTSEIOO index and black for th e  D JIA  

index.

For portfoho  A, the  eigenvector corresponding  to  the  h ighest eigenvalue, A1 4 9  (top  left p ic tu re  

of F igure 8.9) shows all th e  elem ents of different sector an d  different indices w ith  th e  sam e 

positive sign, showing th a t  all th e  elem ents of th is  eigenvector con tribu te  positively to  the
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liighest eigenvalue. T h e  sam e behaviour is m im ic by th e  random  case w iiere th e  eigenvector 

corresponding  to  th e  h ighest eigenvalue, A1 4 9  (top  righ t p ic tu re  of F igu re  8.9) shows all the  

stocks from different sectors and  indices w ith  a positive sign.

T h e  eigenvector corresponding  to  th e  second highest eigenvalue, Ai4 g (b o tto m  left p ic tu re  

of F igure 8.9 shows a segregation between th e  stocks from  th e  D JIA  index (all negative) and 

th e  stocks from  th e  CAC40 and the  FTSEIOO (alm ost all of th em  positive). T h e  eigenvector 

corresponding to  th e  second highest eigenvalue of th e  random  case, Ai4 g (b o tto m  righ t p ic tu re  

of F igure 8.9) m im ic th e  behaviour of the  real case, w ith  all th e  stocks from  th e  D JIA  index 

w ith a negative sign and  alm ost all th e  stocks from  th e  CAC40 an d  th e  FTSEIOO indices w ith 

a positive sign. T h is segregation betw een the  stocks of th e  D JIA  index an d  th e  stocks left from 

the o ther two indices was a lready  sp o tted  in th e  M ST of F igures 8.1 an d  8.3 for th e  real and 

random  cases, respectively.

In F igure 8.10 we p resen t the  eigenvector elem ents, for each in d u stria l secto r and  index, of 

the  th ird  and  fou rth  highest eigenvalues, A1 4 7  and  A1 4 6 , for th e  s tu d y  of portfo lio  A.

For portfolio  A, the  eigenvector corresponding to  th e  th ird  h ighest eigenvalue, A1 4 7  (top  left 

p ic tu re  of F igure 8.10) shows alm ost all the  stocks from  th e  D JIA  index w ith  positive sign, 

again show ing som e kind of clustering betw een th e  stocks of th is index. For th e  random  case, 

the eigenvector re la ted  w ith  the  th ird  h ighest eigenvalue, A1 4 7  (top  righ t p ic tu re  of F igure 8.10) 

is v'ery different from  th a t  of the  real case. T h is one shows an o th e r segregation  betw een stocks 

of one index and  th e  stocks of th e  o ther two, w here in th is  case, th e  stocks th a t  segregate 

correspond to  stocs from  th e  CAC40 index, all of th em  w ith  a positive sign, w here alm ost all the  

stocks from  the  FTSEIOO and  th e  D JIA  indices show a  negative sign. T h is  behaviour has been 

shown in th e  M ST for th e  random  case (F igure 8.3) w here th e  stocks from  th e  th ree  different 

indiccs were d iv ided in th ree  different groups, each one re la ted  w ith  one different index. B ut 

th is  behaviour is no t a t all w hat we see in the  real case.

For th e  eigenvector th a t  corresponds to  th e  fou rth  h ighest eigenvalue, A1 4 6  (b o tto m  left 

p ic tu re  of F igure 8.10) alm ost all stocks from th e  CAC40 index are  positive. T h is  behaviour is 

very sim ilar w ith  th a t  of th e  eigenvector re la ted  w'ith th e  th ird  h ighest eigenvalue for th e  random  

case, A] 4 7  (top  righ t p ic tu re  of F igure 8.10). T h is resu lt is in agreem ent w ith  w hat we s ta ted  

after looking a t the  com parison betw een th e  IP R , for real and  random  cases, for the  portfo lio  

A.

T he eigenvector corresponding to  th e  fou rth  h ighest eigenvalue, for th e  random  case, Ai4 g 

(bo ttom  righ t p ic tu re  of F igure 8.10) shows a random  d is trib u tio n  of th e  values of each stock. 

T here  is no p a tte rn  for a specific sector or index.

In F igure 8.11 ŵ e p resen t the  eigenvector elem ents, for each in d u stria l secto r and  index, of 

the  two highest eigenvalues, A7 2  and  A7 1  of b o th  real and  random  cases, for portfo lio  B.
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H g u re  8.10: M ean value of eigenvector elem ents, for each in d u stria l sector, of the  th ird  and  

fou rth  h ighest eigenvalues, A1 4 7  and  Aj4 6 , for the stu d y  of portfolio  A. T h e  left figures correspond 

to  th e  real tim e series an d  th e  righ t figures to  the  random  tim e series. In the  x  axis we have 

th e  industria l sector: a) Telecom nnm ications; b) Basic M aterials; c) U tilities; d) C onsum er 

G oods: e) Oil and  Gas; f) C onsum er Services; g) F inancials; h) Industria ls; i) H ealth  Care; j) 

Technology. T h e  erro r bars rep resen t th e  variance of each in d u stria l sector. Each colour colum n 

represen t one index: dark  grey for th e  CAC40 index, light grey for th e  FTSEIOO index and  black 

for th e  D JIA  index.

For the  eigenvector re la ted  w ith  th e  h ighest eigenvalue, A7 2  (top  righ t p ictu re  of Figure 8.11) 

all the  elem ents of cUfferent sectors an d  indices have th e  sam e positive sign as shown before 

for o ther portfolios. T h e  sam e behaviour is also p resen ted  for th e  random  case, where the  

eigenvector re la ted  w ith  th e  h ighest eigenvalue, A7 2  (top  righ t p ic tu re  of F igure 8.11) has all th e  

elem ents w ith  a positive sign.

For portfo lio  B, the  eigenvector corresponding  to  th e  second h ighest eigenvalue, A7 1  (bo ttom
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Figure 8.11: Mean value of eigenvector elements, for each industrial sector, of the two highest 

eigenvalues, A7 2  and Ayi, for the study of portfolio B. The left figures correspond to the real 

time sc'ries and the right figures to the random  tim e series. In the x axis we have the industrial 

sector: a) Telecommunications; b) Basic M aterials; c) Utilities; d) Consumer Goods; e) Oil and 

Gas; f) Consumer Services; g) Financials; h) Industrials; i) Health Care; j) Technology. The 

error bars represent the variance of each industrial sector. Each colour column represents one 

index: dark grey for the CAC40 index, light grey for the BEL20 index and black for the AEX 

index.

left picture of Figure 8.11) does not show any kind of segregation in term s of index, as shown 

for portfolio A, bu t it shows some patterns in term s of industrial sectors. For different indices, 

almost all the elements for the same industrial sector follow the same sign. For the random  

case, th e  eigenvector corresponding to the second highest eigenvalue, A7 1 (bottom  right picture 

of Figiu’e 8.11) shows the same behaviour as the second highest eigenvalue of the portfolio A, 

where all the elements of one index segregate from the elements of the o ther two indices. In this
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case, th e  stocks th a t  segregate are those th a t  belong to  the  B EL20 index. All these stocks have 

a negative sign, and  alm ost all the  stocks from the  CAC40 and  th e  A EX  indices have a positive 

sign. T h is segregation  was a lready  sp o tted  in the  M ST of F igures 8.2 and  8.4 where th e  stocks 

from  th e  B EL20 index usually  cluster together.

In F igure  8.12 we p resen t th e  eigenvector elem ents, for each in d u stria l sector and index, of 

the  th ird  an d  fou rth  h ighest eigenvalues, A7 0  and Agg, for th e  s tu d y  of portfolio  B.

M
a b e d f g  h I I

rriitFr
a b c d e f g h i  j

IIl

a b e d f  g  h  i j b  c  d  e  f g h  I j

Figure 8 . 1 2 : M ean value of eigenvector elem ents, for each in d u stria l sector, of the  th ird  and  

fou rth  h ighest eigenvalues, A7 0  and  Agg, for the  s tu d y  of portfo lio  B. T h e  left figures correspond 

to  th e  real tim e series an d  the  righ t figures to  th e  random  tim e  series. In the x axis we have 

the  in d u stria l sector: a) Telecom nm nications; b) Basic M ateria ls; c) U tilities; d) C onsum er 

G oods; e) Oil and  Gas; f) C onsum er Services; g) F inancials; h) Industria ls; i) H ealth  Care; j) 

Technology. T h e  erro r bars represen t th e  variance of each in d u stria l sector. Each colour column 

represen ts one index: dark  grey for th e  CAC40 index, light grey for th e  BEL20 index and  black 

for th e  A E X  index.

J
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For the eigenvectors related w ith the third and fourth highest eigenvalues, A7 0  (top left 

picture of Figure 8.12) and Agg (bottom  left picture of Figure 8.12), respectively, there seems to 

be no segregation or clustering in indices or industrial sectors.

T he eigenvector corresponding to the th ird  highest eigenvalue, for the random  case, A70 (top 

right picture of Figure 8.12) has the same behaviour shown for portfolio A with the stocks from 

the AEX index segregating from the stocks of the CAC40 and the BEL20 indices. All the stocks 

from the AEX index have a positive sign and almost all the stocks from the CAC40 and the 

BEL20 indices have a negative sign.

The eigenvector related w ith the fourth highest eigenvalue, for the random  case Agg (bottom  

right picture of Figure 8.12) shows a random  distribution of the values of each stock. There is 

no pattern  for a specific sector or index.

For portfolio B, the only eigenvector corresponding to an eigenvalue th a t is higher than  Xmax 

and th a t we haven't presented yet is the one related w ith the fifth highest eigenvalue. In Figure 

8.13, we show the elements of this eigenvector and can see th a t all the stocks from the BEL20 

index have the same feature, a negative sign.

8.7 M ultifactor m odel

A realistic m arket model needs to  incorporate correlations between stocks as shown by J. D. 

Noh [137]. We use a nm ltifactor m arket model with term s for each market:

= OlQ. +  ai.Rrnj {t) + a2^Rm2{i) +  (8-5)

where Rmj is the re tu rn  of index of market nij and ej(<) is a Gaussian distributed  random  

number. The param eters a  are estim ated by the least square m ethod for m ultivariate d ata  

analysis [138] between the real re turns Ri and the indices of each m arket Rmj-

^̂ 0 ~  ^ 2^ ^ 112) ^3 (.^7713)
axi -  Q2<^12 -  Q 3 (7 i3  a i = -----------------------------

crn
O'A '20'll -  <yxi(̂ l2 + « 3  (0 ’120'13 ~  0’230’n )

(12 =   2--------------------------
0'110'22 -  0-12

(O’IIO ’A'3  -  O-.YlCTls) (o-nCT22 -  CTl2^) +  (o 'A '2 0 'l l  “  C T X lO 'u ) ( o 'l 2<7' l 3 -  a '230’l l )
(V3 =   2----------------------

( o' 11CT33 -  CTia^) (c rn O '2 2  -  0 '1 2 ^ ) -  (0 '120 '13  ~

where cr,:j is the covariance between indices of two markets:

CTjj =  {Rm.Rrnj) ~  {R,n, ) (R,nj) (8-6)

and a \ j  is the covariance between re tu rn  of stock i and index of m arket j:

a x j  =  { R . R n , )  -  {R^){R,n,) (8.7)
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Figure 8.13: Mean value of eigenvector elements, for each industrial sector, of the fifth highest 

eigenvalues, Aeg for the study of portfolio B. In the x axis we have the industrial sectcr: a) 

Teleconnnunications; b) Basic Materials; c) Utilities; d) Consumer Goods; e) Oil and Gis; f) 

Consumer Services; g) Financials; h) Industrials; i) Health Care; j) Technology. The error bars 

represent the variance of each industrial sector. Each colour column represents one index: dark 

grey for the CAC40 index, light grey for the BEL20 index and black for the AEX index.

We found that the values of ao are around zero as expected by the zero mean of stock returns. 

The values of as are shown in Tables E .l and E.2. If the indices of each market were orthogonal 

each value of a should represent the covariance between tlie stock and that index of the m&rket. 

For each stock, depending on which market it belongs to, the highest value of a is the ot.e for 

the market to which the stock belongs, there are just a few cases for portfolio B where this rule 

does not apply. The cases are for companies Dexia (DX.PA)  quoted in the CAC40 inde?: and 

Corio (COBA.AS),  Fortis (FORA.AS),  KPN {KPN.AS)  and Royal Dutch Shell (RDSA.AS)  
quoted in the AEX index. Probably there are many reasons why these examples don’t fallow 

the rule. For example, Dexia is a French-Belgian financial company that results from a merge 

of two other financial companies, one from Belgium and the other from France. Fortis is also a 

financial company listed in both the BEL20 and the AEX indices with a strong market in the 

Benelux region.

Because the exceptions to the rule are few, that is the reason why we decided to use a simple

i  ILi

I
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m arket model th a t gives the same results as the multifactor model.

8.8 C onclusions

To the best of our knowledge, this is the first tim e correlations between stocks from three different 

countries have been studied and com pared with the outcome of a m arket model where the main 

factor is the mean re tu rn  of each of the three markets.

The study of the eigensystem of correlations between stocks shows some particular behaviour 

for each eigenvalue outside the region predicted by the Random M atrix  theory. The highest 

eigenvalue shows the general trend of the m arket, because all the elements of the eigenvector 

corresponding to this eigenvalue have positive sign. O ther eigenvalues outside the region pre­

dicted by Random  M atrix theory show some kind of segregation between sectors of different 

markets. But we see from two different portfolios tha t there is not a rule about which eigen­

value should represent which m arket. For the case of a portfolio of stocks from the CAC40, the 

BEL20 and the AEX indices the segregation between stocks of different m arkets is very weak. 

But for a portfolio of stocks from the CAC40, the FTSEIOO and the DJIA indices there is a 

strong segregation between the stocks of the DJIA index and the stocks of the CAC40 and the 

FTSEIOO indices. This same segregation is reproduced in our simple m arket model. Our market 

model is also able to  reproduce some values of the Inverse Participation Ratio, th a t serves to 

(luantify the distribution of elements of an eigenvector. For the case of stocks from the CAC40, 

the FTSEIOO and the DJIA indices a good agreement between real and random  cases for the 

values of the first two eigenvalues and the values of the IPR  of these eigenvalues is achieved. 

This might be one of the reasons why the segregation is not so visible for portfolio B, as the 

IPR for the real and random  cases only looks identical for the highest eigenvalue.

Most of the conclusions about the segregation of stocks taken from the analysis of the eigeu- 

system of the correlation m atrix was also achieved by the visualisation of the MST and the 

clusters formed in the MST.

A model with more correlations b(^tween stocks of different m arkets will be necessary to 

achieve the behaviour th a t some eigenvalues showed in our study.





Outlook

From C hapters 2 and 3, we saw th a t the distributions of wealth for the rich people in the society 

has a different power law exponent than  for the billionaires. This conclusion conies from the 

analysis of different sets of data, but should be im portant to  have access to  a d a ta  set of the 

d istribution of wealth th a t includes these two groups of the society.

In C hapter 3 we introduced a model able to  recreate a double power law for the wealth 

distributions. This double power law regime is due to  the exchange rules adopted in this model 

where the richest agents exchange a less percentage of their money com pared w ith the poorest 

agents. Using an analytical solution derived from a generahsed function we fitted the distribution 

of wealth from the sinmlations of our model successfully. A b etter understanding of the relation 

between the values of param eters chosen in the model and the exponents of the power laws 

■should be a goal for the future. In addition, the search for an analytical solution of this model 

should form the basis for further research.

In C hapters 5, 6. 7 and 8 we conclude th a t companies from the same stock m arket cluster 

in terms of industrial sectors. The correlation between stocks from the same industrial sectors 

is very high. Studying various portfolios of stocks we concluded th a t, depending on the market, 

the stocks cluster first in terms of m arket and then in term s of industrial sector. For example, 

in the study of the cross-correlations between stocks from the FTSEIOO and D JIA  indices, the 

stocks from one market segregated from the stocks of the other m arket, bu t in each one of these 

clusters, the stocks cluster in term s of industrial sectors. For a portfolio of stocks from European 

markets, the segregation of stocks in term s of m arket is not so clear. There are some stocks from 

tlifferent m arkets with higher correlation with stocks from other m arkets than  w ith stocks from 

the same m arket. From a portfolio of stocks from CAC40, BEL20 and AEX indices we saw tha t 

many stocks from different m arkets cluster together in the same industrial sector. A further 

study should include intraday data, to  explain b etter the tim e-m ism atch problem  of stocks from 

markets with different closing times, as for example, FTSEIOO and DJIA.

The results are qualified based on the measures used in this thesis. Based on correlation 

map further information can be obtained from complex network theory.
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A ppendix A

C om putation  of param eters of  

T -student distribution

The fractional mom ent of a T -student distribution is given as:

roo
AIj = 2 I  Pk[x)dx  

Jo
where Pk{^) is the T -student probability distribution function of equation 4.4. We can 

the equation of moments as:

M j  =
2 N ^  

2nal fJo
n- f

2fT̂ A:
k

2cr|fc

1 +  ^ [  x 2  J
Using a changing of variables where:

dx

z =

X

-

2a?k-

dx  =

the fractional mom ents can be w ritten as: 

Mj  = [2gfcfc] ^  [  z ^ ^ \ l - z )  
^2^al Jo

k -  I2 dz

w'here the integral can be solved using the B eta function:

IN r n / ,  x n  , r(m + l ) r ( n - f  1)D{m, -I- l , n  -I- 1) =  /  u (1 -  u) du =  =  ——---------- —— ̂ Jq (7n-hn-hl)! r(m-Hn-f2)
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111 the case of the ra te  of moments (equation 4.10), dividing the fractional moments, Mf_i  by 

Mj+\  we now obtain:

R f  =
A/,_/ - I
M / + i

1 B k -  i-]2 , ft. 2 1 \ 2 { k - l )

2alkB 2 + l , f c ~ 2 ~ ^ 2a^k [ f
-  1 (A-8)



A ppend ix  B

Stocks th a t  belong to  FTSEIOO index 

a t Ju n e  30^̂  2005

Tatile B .l: Name, code and sector classification for the Industry  Classification Benchmark (ICB) 

and the' Glot>al Classification System (GCS) for 102 stocks th a t belonged to FTSEIOO index at 

June 30"* 2005._________________________________________________________________
N a m e c o d e I C B  s e c to r G C S  s e c to r

Anglo A m erican AAL Basic m ateria ls Resources

A ssociated B ritish  Foods A BF C onsum er goods N on-cyclical consum er goods

A lliance Leicester AL. F inancials F inancials

Allied Doinecq ALLD C onsum er goods N on-cyclical consum er goods

A ntofagasta A N TO Basic m ateria ls Resources

Alliance Unichem AUN C onsum er services N on-cyclical consum er goods

Aviva AV. F inancials F inancials

Aiiivescap AVZ F inancials F inancials

A straZ eneca AZN H ealth  care Non-cyclical consum er goods

BA E System s BA. Industria ls G eneral in d ustria ls

BAA BAA In d u stria ls Cyclical services

Barclays BARC F inancials F inancials

B ritish  A m erican Tobacco BATS C onsum er goods Non-cyclical consum er goods

B ritish  Airways BAY C onsum er services Cyclical services

BG G roup BG. Oil and  gas Resources

B ritish  Land Co BLND Financials F inancials

B H P Billiton BLT Basic m ate ria ls Resources

Bunzl BNZL In d u stria ls Cyclical services

C ontinue on nex t page
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-  continue from the  previous page

N a m e c o d e IC B  s e c to r G C S  s e c to r

BOC G roup BOC Basic m aterials Basic industries

Boots G roup B O O T C onsum er services Cyclical services

BP BP. Oil and  gas Resources

B ritish  Sky B roadcasting  G roup BSY C onsum er services Cyclical services

B T  G roup B T.A Telecom m unications Non-cyclical services

C adbury CBRY C onsum er goods Non-cyclical consum er goods

C arnival CCL C onsum er services Cyclical services

C entrica CNA U tilities U tilities

C airn  Energy CN E Oil and gas Resources

C om pass G roup C PG C onsum er services Cyclical services

C ai)ita  G roup C P I Industria ls Cyclical services

C orus G roup CS. Basic m aterials Basic industries

C able W ireless CW . Telecom m unications Non-cyclical services

Diageo D G E C onsum er goods Non-cyclical consum er goods

Daily Mail G eneral Ti'ust D M G T C onsum er services Cyclical services

Dixons G roup DXNS C onsum er services Cyclical services

EM A P EMA Consum er services Cyclical services

Man G roup EMG Financials F inancials

E nterprise  Inns ETI C onsum er services Cyclical services

Exel EXL Industria ls Cyclical services

Friends Prov iden t FP. I'inancials F inancials

G allagher G roup GLH C onsum er goods Non-cyclical consum er goods

G IcLxoSm it li Kline GSK H ealth care Non-cyclical consum er goods

GUS GUS C onsum er services Cyclical services

Hays HAS Industria ls Cyclical services

HBOS HBOS Financials F inancials

Hilton G roup HG. Consum er services Cyclical services

Hanson HNS Industria ls Basic industries

H SBC Hldgs HSBA Financials Financials

In terC on tinen ta l H otels G roup IHG C onsum er services Cyclical services

3i G roup III F inancials F’inancials

Im perial Tobacco G roup IM T C onsum er goods Non-cyclical consum er goods

In ternational Power IPR U tilities U tilities

ITV ITV C onsum er services Cyclical services

Johnson  M atth ey JM A T Basic m aterials Basic industries

Kingfisher K G F C onsum er services Cyclical services

Land Securities G roup LAND Financials F inancials

Legal G eneral G roup LGEN Financials F inancials

C ontinue on next page



Appendix B

-  c o n tin u e  from  th e  p re v io u s  p age

N a m e c o d e I C B  s e c t o r C C S  s e c t o r

L ib e r ty  In te rn a tio n a l LII F in a n c ia ls F in a n c ia ls

L loyds T S B  G ro u p L L O Y F in a n c ia ls F in a n c ia ls

M ark s  k , S p e n c er G ro u p M K S C o n su m e r serv ices C y c lica l se rv ices

M o rriso n  (VVm) S u p e rm a rk e ts M R W C o n su m e r serv ices N o n -cy c lica l se rv ices

N a tio n a l G rid  T ra n sc o N G T U tilitie s U tilitie s

N o rtlie rn  R ock N R K F in a n c ia ls F in a n c ia ls

N e x t N X T C o n su m e r serv ices C y c lica l se rv ice s

O ld  M u tu a l O M L F in a n c ia ls F in a n c ia ls

0 2 O O M T e le c o m m u n ic a tio n s N o n -cy c lica l serv ices

P ru d e n tia l P R U F in a n c ia ls F in a n c ia ls

P e a rso n P S O N C o n su m e r serv ices C y c lica l se rv ice s

R e c k itt  B en ck ise r G ro u p R B . C o n su m e r g o o d s N o n -cy c lica l c o n su m e r g o o d s

R oyal B an k  o f S c o tla n d  G ro u p R B S F in a n c ia ls F in a n c ia ls

R eed  E lsev ier R E L C o n su m e r serv ices C y clica l se rv ices

R ex am R E X In d u s tr ia ls C y clica l serv ice s

R io T in to R IO B asic  m a te r ia ls R eso u rces

R o lls-R oyce  G ro u p R R . In d u s tr ia ls G e n e ra l in d u s tr ia ls

R oyal ^  S un  A llian ce  In s u ra n c e  G ro u p R SA F in a n c ia ls F in a n c ia ls

R en to k il In it ia l R T O In d u s tr ia ls C y c lica l se rv ice s

R eu te rs  G ro u p R T R C o n su m e r serv ices C y c lica l se rv ice s

SA B M ille r SA B C o n su m e r g o o d s N o n -cy c lica l c o n su m e r g o o d s

S a in sb u ry  (J ) SB R Y C o n su m e r serv ices N o n -cy c lica l se rv ices

S c o ttish  N ew castle S C T N C o n su m e r g o o d s N o n -cy c lica l c o n su m e r g o o d s

S ch ro d ers SD R F in a n c ia ls F in a n c ia ls

S ch ro d e rs  N /V S D R C F in a n c ia ls F in a n c ia ls

S age G ro u p S G E T echno logy In fo rm a tio n  T echno logy

Shell T ia n s p o r t  Sz T ra d in g  C o SH E L O il a n d  gas R eso u rces

S hire S H P H e a lth  c a re N o n -cy c lica l c o n su m e r g o o d s

S m ith s  G ro u p SM IN In d u s tr ia ls G e n e ra l in d u s tr ia ls

S m ith  &: N ephew SN. H e a lth  c a re N o n -cy c lica l c o n su m e r g o o d s

S c o ttish  Pow er S P W U tilitie s U tilitie s

S c o ttish  S o u th e rn  E n e rg y SSE U tilitie s U tilitie s

S ta n d a rd  C h a r te re d ST A N F in a n c ia ls F in a n c ia ls

S evern  T re n t S V T U tilitie s U tilitie s

T a te  Lyle T A T E C o n su m e r g o o d s N o n -cy c lica l c o n su m e r g o o d s

Tesco T S C O C o n su m e r serv ices N o n -cy c lica l serv ices

U nilever U LV R C o n su m e r g o o d s N o n -cy c lica l c o n su m e r g o o d s

U n ited  U tilitie s uu. U tilitie s U tilitie s

C o n tin u e  on  n e x t p ag e



-  concluded from previous page

N a m e c o d e IC B  s e c to r G C S  s e c to r

U nited  U tilities A Shares UU.A U tilities U tilities

Vodafone G roup VOD Telecom m unications Non-cyclical services

W illiam  Hill W M II Consum er services Cyclical services

Wolseley W OS Industrials Basic industries

W P P  G roup W P P Consum er services Cyclical services

W hitb read W T B Consum er services Cyclical services

X s tra ta XTA Basic m aterials Resources

Yell G roup YELL Consum er services Cyclical services



A p p en d ix  C

Stocks that belong to  the FTSEIOO, 
the D ow  Jones Industrial Average  

(D JIA ), the  Cotation Assistee en 

Continu (CAC) 40, the BEL20 and the  

A m sterdam  Exchange Index (AEX) 

indices at April 2008

Table CM: Name, code and ICB sector classification for 102 stocks th a t belonged to the FTSEIOO 

index a t April 1*' 2008^_______________________________________________
N am e code IC B  se c to r

31 GROUP lll.L Financials
ADMIRAL GROUP ADM.L Financials
ALLIANCE & LEICESTER AL.L Financials
ALLIANCE TRUST ATST.L Financials
AMEC AMEC.L Oil and Gas

ANGLO AMERICAN AAL.L Basic Materials

ANTOFAGASTA ANTO.L Basic Materials
ASSOCIATED BRIT.FOODS ABF.L Consumer Goods

Continue on next page
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ASTRAZENECA AZN.L Health Care

AVIVA AV.L Financials

BAE SYSTEMS BA.L Industrials

BARCLAYS BARC.L Financials

BG GROUP BG.L Oil and Gas

BHP BILLITON BLT.L Basic Materials

BP BP.L Oil and Gas

BRITISH AIRWAYS BAY.L Consumer Services

BRITISH AMERICAN TOBACCO BATS.L Consumer Goods
BRITISH ENERGY GROUP BGY.L Utilities
BRITISH LAND BLND.L Financials

BRITISH SKY BCAST.GROUP BSY.L Consumer Services

BT GROUP BT-A.L Telecommunications
BUNZL BNZL.L Industrials

CABLE & WIRELESS CW.L Telecomnumications
CADBURY CBRY.L Consumer Goods

CAIRN ENERGY CNE.L Oil and Gas
CAPITA GROUP CPI.L Industrials
CARNIVAL CCL.L Consumer Services
CARPHONE WHSE.GP. CPW .L Consumer Services
CENTRICA CNA.L Utilities
COBHAM COB.L Industrials
COMPASS GROUP CPG.L Consumer Services
DIAGEO DGE.L Consumer Goods
ENTERPRISE INNS ETI.L Consumer Services
E U n A S I A N  NATRES.CORP. ENRC.L Basic Materials
EXPERIAN GROUP EXPN.L Industrials
FIRST GROUP FGP.L Consumer Services
FRIENDS PROVIDENT F P L Financials
G4S GFS.L Industrials
GLAXOSMITHKLINE GSK.L Health Care
HAMMERSON HMSO.L Financials
HBOS HBOS.L Financials
HOME RETAIL GROUP HOME.L Consumer Services
HSBC HDG. (ORD $0.50) HSBA.L Financials
ICAP lAP.L Financials
i c t l .h t l s .g r IHG.L Consumer Services
IM PERIAL TOBACCO GP. IMT.L Consumer Goods

Continue on next page
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N a m e code IC B  se c to r

INTERNATIONAL POW ER IPR.L Utilities

ITV ITV.L Consumer Services

JOHNSON MATTHEY JMAT.L Basic Materials

KAZAKHMYS KAZ.L Basic Materials

KINGFISHER KGF.L Consumer Services

LAND SECURITIES GROUP LAND.L Financials

LEGAL & GENERAL LGEN.L Financials

LIBERTY INTL. LII.L Financials

LLOYDS TSB GROUP LLOY.L Financials
LONDON STOCK EX.GROUP LSE.L Financials
LONMIN LMI.L Basic Materials
MAN GROUP EMG.L Financials

MARKS & SPENCER GROUP MKS.L Consumer Services
MORRISON(WM )SPMKTS. MRW.L Consumer Services
NATIONAL GRID NG L Utilities
NEXT NXT.L Consumer Services
OLD MUTUAL OML.L Financials
PEARSON PSON.L Consumer Services
PERSIMMON PSN.L Consumer Goods
PRUDENTIAL PRU.L Financials
RECK ITT BENCKISER RB.L Consumer Goods
REED ELSEVIER REL.L Consumer Services
REXAM REX.L Industrials
RIO TINTO RIO.L Basic Materials
ROLLS-ROYCE GROUP R.R.L Industrials

ROYAL & SUN ALL.IN. RSA.L Financials
ROYAL BANK OF SCTL.GP. RBS.L Financials
ROYAL DUTCH SHELL A(LON) RDSA.L Oil and Gas
ROYAL DUTCH SHELL B RDSB.L Oil and Gas
SABMILLER SAB.L Consumer Goods
SAGE GROUP SGE.L Technology
SAINSBURY (J) SBRY.L Consumer Services
SCHRODERS SDR.L Financials
SCHRODERS NV SDRC.L Financials
SCOT.& SOUTHERN ENERGY SSE.L Utilities
SEVERN TREN T SVT.L Utilities
SHIRE SHP.L Health Care
SMITHS GROUP SMIN.L Industrials

Continue on next page
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N am e code IC B  sec to r

SMITH k  NEPHEW SN.L Health Care
STANDARD CHARTERED STAN.L F'inancials
STANDARD LIFE SL.L Financials
TATE & LYLE TATE.L Consumer Goods
TESCO TSCO.L Consumer Services
THOMAS COOK GROUP TCG.L Consumer Services
THOMSON REUTERS TRIL.L Consumer Services
TUI TRAVEL TT.L Consumer Services
TULLOW OIL TLW'.L Oil and Gas
UNILEVER (UK) ULVR.L Consumer Goods
UNITED UTILITIES UU.L Utilities
VEDANTA RESOURCES VED.L Basic Materials
VODAFONE GROUP VOD.L Telecommunications
WHITBREAD WTB.L Consumer Services
WOLSELEY WOS.L Industrials
WOOD GROUP (JOHN) WG.L Oil and Gas
W’PP GROUP WPP.L Consumer Services
XSTRATA XTA.L Basic Materials

Table C.2: Name, code and ICB sector classification for 30 stocks th a t belonged to  the DJIA 

index at April 1®' 2008^________________________________________________
N am e code IC B  sec to r

3M MMM Industrials
ALCOA AA Basic Materials
AMERICAN EXPRESS AXP Financials
AMERICAN INTL.GP. AIG Financials
AT&T T Telecomnmnications
BANK OF AMERICA BAG Financials
BOEING BA Industrials
CATERPILLAR CAT Industrials
CHEVRON CVX Oil and Gas
CITIGROUP C Financials
COCA COLA KO Consumer Goods
E I DU PONT DE NEMOURS DD Basic Materials
EXXON MOBIL XOM Oil and Gas
GENERAL ELECTRIC GE Industrials
GENERAL MOTORS CM Consumer Goods
HEWLETT-PACKARD HPQ Technology
HOME DEPOT HD Consumer Services
INTEL INTC Technology

Continue on next page
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-  concluded from previous page

N a m e co d e IC B  se c to r

INTERNATIONAL BUS.MACH. IBM Technology

JOHNSON & JOHNSON JN J Health Care

JP  MORGAN CHASE & CO. JPM Financials

MCDONALDS MCD Consumer Services
MERCK & CO. MRK Health Care

M ICROSOFT MSFT Technology

PFIZER FFE Health Care

PR O C TER  & GAMBLE PG Consumer Goods

UNITED TECHNOLOGIES UTX Industrials

VERIZON COMMS. VZ Telecommunications

WAL MART STORES W MT Consumer Services
WALT DISNEY DIS Consumer Services

Table C.3: Name, code and ICB sector classification for 40 stocks th a t belonged to  the CAC40 

index at April P ' 2008;________________________________________________
N a m e co d e IC B  se c to r

ACCOR AC. PA Consumer Services
AIR FRANCE-KLM AF.PA Consumer Services
AIR LIQUIDS AI.PA Basic Materials

ALCATEL-LUCENT ALU.PA Technology
ALSTOM ALO.PA Industrials
ARCELORMITTAL (PAR) MTP.PA Basic Materials
AXA CS.PA Financials
BNP PARIBAS BNP.PA Financials
BOUYGUES EN.PA Industrials
CAP GEMINI CAP. PA Technology
CARREFOUR CA.PA Consumer Services
CREDIT AGRICOLE AC A. PA Financials

DANONE BN.PA Consumer Goods
DEXIA (PAR) DX.PA Financials

EADS (PAR) EAD.PA Industrials
EDF EDF.PA Utilities

ESSILOR. INTL. EF.PA Health Care
FRANCE TELECOM FTE.PA Telecommunications
GAZ DE FRANCE GAZ.PA Utilities
L’OREAL OR.PA Consumer Goods
LAFARGE LG.PA Industrials
LAGARDERE CROUPE MMB.PA Consumer Services
LVMH MC.PA Consumer Goods

Continue on next page
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N am e co d e IC B  se c to r

MICHELIN ML. PA Consumer Goods

PERNOD-HICAR.D RI.PA Consumer Goods
PEUGEOT UG.PA Consumer Goods
PFR PP. PA Consumer Services

RENAULT RNO.PA Consumer Goods

SAINT GOBAIN SGO.PA Industrials

SANOFl-AVENTIS SAN.PA Health Care

SCHNEIDER ELECTRIC SU.PA Industrials

SOCIETE GENERALE GLE.PA Financials
STMICROELECTRONICS (PAR) STM. PA Technology
SUEZ SZE.PA Utilities
TOTAL PP. PA Oil and Gas

UNIBAIL-RODAMCO UL.PA Financials

VALLOUREC VK.PA Industrials
VEOLIA ENVIRONNEMENT VIE.PA Utilities
VINCI (EX SGE) DG.PA Industrials

VIVENDI VIV.PA Consumer Services

Table C.4; Name, code and ICB sector classification for 20 stocks th a t belonged to the BEL20 

index at April 1^' 2008. ______________________________________________
N am e co d e IC B  se c to r

ACKERMANS ACKB.BR Industrials
AGFA-GEVAERT AGFB.BR Industrials
BEKAERT BEKB.BR Industrials
BELGACOM BELG.BR Telecommunications
COFINIMMO COFB.BR Financials
COLRUYT COL.BR Consumer Services
DELHAIZE DELB.BR Consumer Services
DEXIA DEXB.BR Financials
FORTIS (BRU) FORB.BR p'inancials
GBL NEW GBL.BR Financials
INBEV INB.BR Consumer Goods
KBC GROUPE KBC.BR Financials
MOBISTAR MOBB.BR Telecommunications

NPM -GIE.NAT.PORTEFEUILLE NAT.BR Financials

NYRSTAR (WI) NYR.BR Basic Materials

OMEGA PHARMA OME.BR Health Care

SOLVAY SOLB.BR Basic Materials

SU EZ(BRU ) SZEB.BR Utilities

UCB UCB.BR Health Care
Continue on next page
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concluded from previous page
N a m e  co d e  IC B  se c to r

Tahk' C.5: Name, code and ICB sector classification for 24 stocks th a t belonged to the AEX 

index at April 2008. ________
N a m e co d e IC B  se c to r

AEGON AGN.AS Financials
AHOLD KON. AH.AS Consumer Services

AKZO NOBEL AKZA.AS Basic Materials
ARCELORMITTAL MT.AS Basic Materials

ASML HOLDING ASML.AS Technology
CORIO CORA.AS Financials
CORPORATE EXPRESS CXP.AS Industrials
DSM KONINKLIJKE DSM.AS Basic Materials

FORTIS FORA. AS Financials
HEINEKEN HEIA.AS Consumer Goods
ING GROEP INGA.AS Financials
KPN KON KPN.AS Telecommunications
PHILIPS ELTN.KONINKLIJKE PHIA..AS Consumer Goods
RANDSTAD HOLDING RAND.AS Industrials
REED ELSEVIER (AMS) REN.AS Consumer Services
ROYAL DUTCH SHELL A RDSA.AS Oil and Gas
SBM OFFSHORE SBMO.AS Oil and Gas
TELE ATLAS TA.AS Consumer Services
TN T TNT.AS Industrials
TOM TOM T0M 2.AS Technology
UNIBAIL-RODAMCO (AMS) ULA.AS Financials
UNILEVER CERTS. UNA.AS Consumer Goods
VEDIOR VDOR.AS Industrials
WOLTERS KLUW ER WKL.AS Consumer Services
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Indices from around th e world

Table D .l: Country, index and symbol from european indices.
Country Index Symbol Country Index Symbol

PORTUGAL PSI20 PRT GREECE ASE20 GRC
U.K. FTSEIOO UK POLAND WIG 20 POL

GERMANY DAX30 GER CZECH REPUBLIC PX50 CZK
FRANCE CAC40 FRA RUSSIA RSMTIND RUS

SPAIN IBEX35 ESP HUNGARY BUX HUN
SWITZERLAND SWISSMI CHF ROMANIA BET ROM

ITALY MIB30 ITA UKR.AINE KPDRAG UKR
IRELAND ISEQ20 IRE SLOVAKIA SAX16 SVK
ICELAND ICEX15 ICE CROATIA CROBEX CRT

NETHERLANDS AEX NLD SLOVENIA SBI20 SVN
BELGIUM BEL20 BEL ESTONIA OMXT EST

LUXEMBOURG LUXX LUX LATVIA OMXR LAT
DENMARK OMXC20 DNK LITHUANIA OMXV LTU
FINLAND OMXH25 FIN BULGARIA SOfFIX BUL
NORWAY OBX25 NOR TURKEY NAT30 TUK
SWEDEN OMXS30 SWE MALTA MALTAIX MTA
AUSTRIA ATX AUT

Table D.2: Country, index and symbol from middle east and african inc
Country Index Symbol Country Index Symbol

SOUTH AFRICA JSE40 SAP KUWAIT KIC KUW

EGYPT EFG EGY ISRAEL MAOF25 ISR

MOROCCO CFG25 M OR LEBANON BLOM LEB
TUNISIA TUNIN TUN BAHRAIN BHSE BAH

NIGERIA NIGALSH NIG JORDAN AMMAN JO R

KENYA NSE20 KEN OMAN OMANMSM OMA

ices.
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Table D.3: Country, index and symbol from arnerican indices.
Country Index Symbol Country Index Symbol

U.S.A. DJIA USA CHILE IGPAGEN CHL
CANADA TSESP60 CAN VENEZUELA VENGENL VEZ

MEXICO IMC30 MEX PERU ISP15 PER
ARGENTINA ARGSIBI ARG COLOMBIA IGBC COL

BRAZIL BOVESPA BRZ

Table D.4: Country, index and symbol from asian-pacific indices.
Country Index Symbol Country Index Symbol

JAPAN NIKKEI225 JAP THAILAND SET THI
HONG KONG HANGSENG HK INDONESIA LQ45 IDO

CHINA SH180 CM INDIA BSE200 IND
TAIWAN TSEC50 TWA SINGAPORE STI SGR

SOUTH KOREA KRXlOO SOK MALAYSIA KLPCOMP MAL
AUSTRALIA S&PASXIOO AUS PHILIPPINES PSEi PHI

NEW ZEALAND NZ50 NEZ VIETNAM FTSEVI VIE
PAKISTAN PKSEinn PAK BANGLADESH DSE20 BAN

SRI LANKA MILANKA SRL



A p p e n d ix  E

Tables o f param eters a o f th e  least 

square m ethod  for m ultivariate  

analysis betw een th e real returns 

and the indices o f each m arket

Table E .l:  Sym bol, m arket th e  stock belongs to  (rn.j), p a ram ete rs  a  o f th e  least square  m ethod  

for m ultivaria te  analysis and  m arket th e  stock has th e  h ighest co rre la tion  w ith  ( t t i j ) ,  for a 

portfolio  of stocks from  th e  CAC40, FTSEIOO and  D JIA  indices.
S y m b o l rr ij «o «1 (12 a s m '

AC.PA CAC40 0.00 0.98 0.05 -0.05 CA C 40

A F.PA CAC40 0.00 1.06 0.12 0.05 CA C 40

AI.PA CAC40 0.00 0.78 0.11 0.02 CA C 40

ALU .PA CAC40 0.00 2.03 -0.54 0.12 CA C 40

ALO .PA CAC40 0.00 1.72 -0.26 -0.18 CA C 40

C S.PA CAC40 0.00 1.32 0.11 0.11 CA C 40

BN P. PA CAC40 0.00 0.97 0.14 0.11 CA C 40

EN .PA CAC40 0.00 1.25 -0.23 -0.06 CA C 40

CA P. PA CAC40 0.00 1.71 -0.29 -0.04 CA C 40

CA .PA CAC40 0.00 0.84 0.03 0.06 CA C 40

BN.PA CAC40 0.00 0.54 0.05 -0.01 CA C 40

DX.PA CAC40 0.00 0.74 0.20 0.19 CA C 40

E F.PA CAC40 0.00 0.45 0.17 -0.15 C A C 40

C ontinue on nex t page
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S y m b o l m j QO Q l «2 a-3

FTE.PA CAC40 0.00 L61 -0.46 0.06 CAC40

OR.PA CAC40 0.00 0.83 -0.01 0.02 CAC40
LG. PA CAC40 0.00 0.85 0.15 -0.03 CAC40

MMB.PA CAC40 0.00 1.08 -0.15 -0.07 CAC40
MC.PA CAC40 0.00 1.06 0.06 0.05 CAC40
ML.PA CAC40 0.00 0.73 0.22 0.05 CAC40

RLPA CAC40 0.00 0.52 0.03 -0.18 CAC40
UG.PA CAC40 0.00 0.79 0.10 0.05 CAC40

PP. PA CAC40 0.00 1.07 -0.02 0.01 CAC40
RNO.PA CAC40 0.00 0.88 0.12 0.13 CAC40
SCO.PA CAC40 0.00 1.10 -0.01 -0.03 CAC40
SAN.PA CAC40 0.00 0.76 -0.01 0.04 CAC40
SU.PA CAC40 0.00 0.83 0.12 -0.02 CAC40
GLE.PA CAC40 0.00 1.05 0.13 0.15 CAC40
STM.PA CAC40 0.00 1.53 -0.40 0.19 CAC40
SZE.PA CAC40 0.00 1.18 -0.09 -0.05 CAC40
PP. PA CAC40 0.00 0.59 0.22 0.01 CAC40
UL.PA CAC40 0.00 0.35 0.31 -0.12 CAC40
VK.PA CAC40 0.00 0.79 0.09 -0.17 CAC40
DG.PA CAC40 0.00 0.52 0.19 -0.15 CAC40
VIV.PA CAC40 0.00 1.49 -0.24 -0.12 CAC40
AL.L FTSEIOO 0.00 -0.11 1.25 0.07 FTSEIOO
ATST.L FTSEIOO 0.00 0.06 0.73 -0.02 FTSEIOO
AMEC.L FTSEIOO 0.00 -0.09 0.91 -0.04 FTSEIOO
AAL.L FTSEIOO 0.00 0.13 1.30 0.08 FTSEIOO
ANTO.L FTSEIOO 0.00 -0.13 1.16 -0.11 FTSEIOO
ABF.L FTSEIOO 0.00 -0.15 0.87 -0.03 FTSEIOO
AZN.L FTSEIOO 0.00 0.02 0.85 0.03 FTSEIOO
AV.L FTSEIOO 0.00 0.14 1.22 0.10 FTSEIOO
BA.L FTSEIOO 0.00 -0.10 1.04 0.06 FTSEIOO
BARC.L FTSEIOO 0.00 0.07 1.22 0.12 FTSEIOO
BG.L FTSEIOO 0.00 -0.14 1.09 -0.06 FTSEIOO
BLT.L FTSEIOO 0.00 0.09 1.26 0.01 FTSEIOO
BP.L FTSEIOO 0.00 0.06 0.76 0.04 FTSEIOO
BAY.L FTSEIOO 0.00 0.41 1.02 0.16 FTSEIOO
BATS.L FTSEIOO 0.00 -0.26 0.87 -0.01 FTSEIOO
BLND.L FTSEIOO 0.00 -0.20 1.09 0.09 FTSEIOO
BSY.L FTSEIOO 0.00 0.38 0.80 -0.04 FTSEIOO

Continue on next page
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S ym bol rrij QO Ql 0 2 0 3 m '

BT-A.L FTSEIOO 0.00 0.26 0.78 0.07 FTSEIOO

BNZL.L FTSEIOO 0.00 -0.08 0.81 -0.01 FTSEIOO

CW.L FTSEIOO 0.00 0.37 0.95 -0.05 FTSEIOO

CBRY.L FTSEIOO 0.00 -0.14 0.92 -0.05 FTSEIOO

CNE.L FTSEIOO 0.00 -0.24 1.09 -0.15 FTSEIOO

CPI.L FTSEIOO 0.00 0.34 0.79 -0.02 FTSEIOO

CNA.L FTSEIOO 0.00 -0.20 1.08 -0.06 FTSEIOO

COB.L FTSEIOO 0.00 -0.10 0.82 -0.05 FTSEIOO

DGE.L FTSEIOO 0.00 -0.11 0.80 0.01 FTSEIOO

ETl.L FTSEIOO 0.00 -0.15 0.86 -0.12 FTSEIOO

FGP.L FTSEIOO 0.00 -0.28 1.14 -0.11 FTSEIOO

GFS.L FTSEIOO 0.00 -0.16 1.01 -0.04 FTSEIOO
GSK.L FTSEIOO 0.00 -0.02 0.72 0.11 FTSEIOO
HMSO.L FTSEIOO 0.00 -0.23 1.02 -0.03 FTSEIOO
HBOS.L FTSEIOO 0.00 -0.06 1.36 0.02 FTSEIOO
HOME.L FTSEIOO 0.00 -0.15 1.17 0.13 FTSEIOO
HSBA.L FTSEIOO 0.00 0.11 0.72 0.11 FTSEIOO
lAP.L FTSEIOO 0.00 -0.09 1.02 -0.07 FTSEIOO
IMT.L FTSEIOO 0.00 -0.28 0.89 -0.05 FTSEIOO
IPR.L FTSEIOO 0.00 -0.17 1.10 -0.02 FTSEIOO
ITV.L FTSEIOO 0.00 0.36 0.87 0.01 FTSEIOO
JMAT.L FTSEIOO 0.00 0.05 0.97 -0.08 FTSEIOO
KGF.L FTSEIOO 0.00 0.09 1.04 -0.03 FTSEIOO
LAND.L FTSEIOO 0.00 -0.18 1.04 0.01 FTSEIOO
LGEN.L FTSEIOO 0.00 0.05 1.24 0.07 FTSEIOO
LII.L FTSEIOO 0.00 -0.15 0.92 -0.06 FTSEIOO
LLOY.L FTSEIOO 0.00 0.05 1.16 0.05 FTSEIOO
LMI.L FTSEIOO 0.00 -0.03 1.18 -0.06 FTSEIOO
EMG.L FTSEIOO 0.00 -0.06 1.03 -0.02 FTSEIOO
MKS.L FTSEIOO 0.00 -0.13 1.07 0.00 FTSEIOO
MRW.L FTSEIOO 0.00 -0.21 1.07 -0.12 FTSEIOO
NG.L FTSEIOO 0.00 -0.07 0.77 -0.10 FTSEIOO
NXT.L FTSEIOO 0.00 -0.06 0.98 -0.07 FTSEIOO
OML.L FTSEIOO 0.00 0.12 1.21 0.04 FTSEIOO
PSON.L FTSEIOO 0.00 0.29 0.97 -0.08 FTSEIOO
PSN.L FTSEIOO 0.00 -0.14 1.09 -0.04 FTSEIOO
PRU.L FTSEIOO 0.00 0.23 1.27 0.18 FTSEIOO
RB.L FTSEIOO 0.00 -0.26 0.93 0.00 FTSEIOO
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S ym bol rnj au Ol 02 «3 s
REL.L FTSEIOO 0.00 0.24 0.78 -0.01 FTSEIOO

REX.L FTSEIOO 0.00 -0.18 1.06 0.00 FTSEIOO

RIO.L FTSEIOO 0.00 0.13 1.19 0.02 FTSEIOO

RR.L FTSEIOO 0.00 0.21 0.96 0.03 FTSEIOO

RSA.L FTSEIOO 0.00 0.28 1.26 0.06 FTSEIOO

RBS.L FTSEIOO 0.00 0.15 1.11 0.07 FTSEIOO

RDSB.L FTSEIOO 0.00 0.14 0.70 0.08 FTSEIOO

SAB.L FTSEIOO 0.00 -0.02 0.93 0.04 FTSEIOO

SGE.L FTSEIOO 0.00 0.57 0.77 0.09 FTSEIOO

SBRY.L FTSEIOO 0.00 -0.14 1.08 -0.06 FTSEIOO

SDR.L FTSEIOO 0.00 0.08 1.40 0.12 FTSEIOO

SDRC.L FTSEIOO 0.00 0.13 1.51 0.07 FTSEIOO

SSE.L FTSEIOO 0.00 -0.25 0.96 -0.10 FTSEIOO

SVT.L FTSEIOO 0.00 -0.25 0.87 -0.02 FTSEIOO

SHP.L P’TSEIOO 0.00 -0.07 1.08 -0.10 FTSEIOO

SN.L FTSEIOO 0.00 -0.07 0.87 -0.07 FTSEIOO

SMIN.L FTSEIOO 0.00 0.00 0.83 0.02 FTSEIOO

STAN.L FTSEIOO 0.00 0.03 1.19 0.02 FTSEIOO

TATE.L FTSEIOO 0.00 -0.20 0.64 0.03 FTSEIOO
TSCO.L FTSEIOO 0.00 -0.27 1.11 -0.02 FTSEIOO
TRIL.L FTSEIOO 0.00 0.35 1.08 0.02 FTSEIOO
TT.L FTSEIOO 0.00 -0.14 1.07 -0.03 FTSEIOO
TLW.L FTSEIOO 0.00 -0.14 0.92 -0.20 FTSEIOO
ULVR.L FTSEIOO 0.00 0.05 0.71 0.00 FTSEIOO
UU.L FTSEIOO 0.00 -0.28 0.98 -0.02 FTSEIOO

VOD.L FTSEIOO 0.00 0.55 0.61 0.04 FTSEIOO

WTB.L FTSEIOO 0.00 -0.14 0.92 -0.02 FTSEIOO
VVOS.L FTSEIOO 0.00 -0.05 1.12 -0.03 FTSEIOO

W PRL FTSEIOO 0.00 0.34 0.90 0.10 FTSEIOO
III.L FTSEIOO 0.00 0.19 1.09 0.09 FTSEIOO

MMM DJIA 0.00 -0.11 0.12 0.85 DJIA
T DJIA 0.00 0.00 -0.01 0.90 DJIA

AA DJIA 0.00 0.08 0.20 1.16 DJIA
AXP DJIA 0.00 0.01 -0.01 1.36 DJIA

AIG DJIA 0.00 0.00 0.04 1.09 DJIA

BAG DJIA 0.00 -0.06 0.03 1.03 DJIA

BA DJIA 0.00 -0.04 0.07 0.94 DJIA
CAT DJIA 0.00 0.00 0.06 1.07 DJIA

Continue on next page
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-  concluded from previous page

S y m b o l rrij oo Ql 02 Q3 r „ '

CVX D JIA 0.00 -0.05 0.16 0.58 D JIA

C D JIA 0.00 0.05 0.02 1.32 D JIA

KO D JIA 0.00 -0.10 0.03 0.59 D JIA

DD D JIA 0.00 -0.05 0.09 0.98 D JIA

XOM D JIA 0.00 -0.06 0.13 0.73 D JIA

G E D JIA 0.00 0.02 -0.09 1.21 D JIA

GM D JIA 0.00 0.03 0.07 1.18 D JIA

H PQ D JIA 0.00 0.19 -0.23 1.26 D JIA

HD D JIA 0.00 -0.05 -0.04 1.30 D JIA

IN TO D JIA 0.00 0.02 -0.10 1.53 D JIA

IBM D JIA 0.00 0.15 -0.16 0.96 D JIA

JP M D JIA 0.00 0.16 -0.15 1.41 D JIA

JN J D JIA 0.00 0.01 -0.09 0.55 D JIA

M CD D JIA 0.00 -0.09 0.14 0.66 D JIA

M RK D JIA 0.00 0.02 -0.06 0.73 D JIA

M SFT D JIA 0.00 -0.04 -0.08 1.12 D JIA

P F E D JIA 0.00 -0.01 0.03 0.76 D JIA

PG D JIA 0.00 -0.07 -0.04 0.58 D JIA

UTX D JIA 0.00 0.02 0.00 1.09 D JIA

VZ D JIA 0.00 0.06 -0.02 0.84 D JIA

W M T D JIA 0.00 -0.09 -0.03 0.98 D JIA

DIS D JIA 0.00 0.09 -0.04 1.05 D JIA

Table E.2: Symbol, market the stock belongs to {rnj), parameters a  of the least square method 

for multivariate analysis and market the stock has the highest correlation with (m' ), for a 

portfolio of stocks from the CAC40, BEL20 and AEX indices.
S y m b o l m j c»o a i Q2 0 3

AC.PA CAC40 0.00 0.94 -0,08 0.11 CA C 40

A F.PA CAC40 0.00 1.10 0.05 0.04 CA C 40

AI.PA CAC40 0.00 0.83 0.14 -0.08 CAC40

ALU.PA CAC40 0.00 2.22 -0.72 0.01 CAC40

ALO.PA CAC40 0.00 2.17 -0.60 -0.43 CAC40

CS.PA CAC40 0.00 1.06 0.23 0.34 CA C 40

BN P.PA CAC40 0.00 0.98 0.18 0.03 CA C 40

EN.PA CAC40 0.00 1.25 -0.15 -0.08 CA C 40

C A P.PA CAC40 0.00 1.82 -0.63 0.15 CAC40

CA .PA CAC40 0.00 0.81 0.09 0.03 CAC40

BN.PA CAC40 0.00 0.52 0.17 -0.10 CA C 40

DX.PA CAC40 0.00 0.39 0.72 0.14 B EL20

EF.PA CAC40 0.00 0.46 0.08 -0.05 CA C 40

C ontim je on next page
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S y m b o l rrij QO Q l Q 2 a-i m '

F T E .P A CAC40 0.00 1.70 -0.54 -0.01 CAC40

O R .PA CAC40 0.00 0.87 0.03 -0.06 CAC40

LG. PA CAC40 0.00 0.82 0.15 0.01 CAC40

M M B.PA CAC40 0.00 L03 -0.32 0.16 CAC40

M C.PA CAC40 0.00 1.12 0.02 0.01 CAC40

M L.PA CAC40 0.00 0.71 0.27 0.02 CAC40

RLPA CAC40 0.00 0.39 0.16 -0.14 CAC40

UG.PA CAC40 0.00 0.83 0.07 -0.02 CAC40

PP. PA CAC40 0.00 1.02 0.02 0.05 CAC40

RN O .PA CAC40 0.00 1.05 0.10 -0.11 CAC40

SC O . PA CAC40 0.00 1.14 -0.04 -0.08 CAC40

SAN.PA CAC40 0.00 0.74 0.16 -0.08 CAC40

SU.PA CAC40 0.00 0.97 0.04 -0.16 CAC40

G LE.PA CAC40 0.00 1.02 0.19 0.10 CAC40

STM . PA CAC40 0.00 1.56 -0.77 0.40 CAC40

SZE.PA CAC40 0.00 0.90 0.53 -0.08 CAC40

FP.PA CAC40 0.00 0.58 0.17 0.08 CAC40

UL.PA CAC40 0.00 0.40 0.23 -0.14 CAC40

VK.PA CAC40 0.00 0 .6 6 0.22 -0.07 CAC40

DC .PA CAC40 0.00 0.51 0.14 -0.09 CAC40

V IV.PA CAC40 0.00 1.44 -0.28 0.10 CAC40

A C K B .B R BEL20 0.00 -0.12 0.90 0.03 BEL20

A G F B .B R BEL20 0.00 -0.19 1.24 -0.03 BEL20

B E K B .B R BEL20 0.00 -0.16 1.30 -0.01 BEL20

C O F B .B R BEL20 0.00 -0.04 0.30 -0.07 BEL20

C O L .B R BEL20 0.00 -0.24 1.17 -0.14 BEL20

D ELB .B R BEL20 0.00 -0.20 1.30 0.07 BEL20

D EX B .B R BEL20 0.00 0.30 0.81 0.14 BEL20

F O R B .B R BEL20 0.00 0.27 0.91 0.38 BEL20

G B L .B R BEL20 0.00 0.17 0.83 0.02 BEL20

K B C .B R BEL20 0.00 0.06 1.15 0.04 BEL20

M O B B .B R BEL20 0.00 0.02 0.99 -0.11 BEL20

N A T.B R BEL20 0.00 -0.06 0.65 0.07 BEL20

O M E .B R BEL20 0.00 -0.35 1.69 -0.21 BEL20

SO LB .B R BEL20 0 .0 0 0.02 0.92 -0.07 BEL20

SZEB.B R BEL20 0.00 0 .6 8 0.71 -0.09 BEL20

U C B .B R BEL20 0.00 -0.11 1.07 -0.07 BEL20

UM LBR BEL20 0.00 -0.06 1.00 0.03 BEL20

C ontinue on next page
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S y m b o l m ,j Qo Q l Q2 Q .J m '

AGN.AS AEX 0.00 0.38 0.34 0.94 AEX

AH.AS AEX 0.00 -0.18 0.26 1.26 AEX

AKZA.AS AEX 0.00 0.03 0.15 0.70 AEX

M T.A S AEX 0.00 -0.68 0.03 1.45 AEX

ASM L.AS AEX 0.00 1.24 -1.10 1.28 AEX

C O R A . AS AEX 0.00 -0.09 0.30 0.24 BEL20

CX P.A S AEX 0.00 -0.68 0.05 1.99 AEX

DSM .AS AEX 0.00 0.06 0.17 0.50 AEX

FO R A .A S AEX 0.00 0.29 0.80 0.46 BEL20

HEIA.AS AEX 0.00 0.01 0.17 0.30 AEX

IN G A .A S AEX 0.00 0.47 0.36 0.76 AEX

K PN .A S AEX 0.00 0.53 -0.55 0.91 AEX

PH IA .A S AEX 0.00 1.08 -0.55 0.90 CAC40

RAN D.AS AEX 0.00 -0.20 -0.06 1.25 AEX

REN .A S AEX 0.00 0.17 -0.05 0.72 AEX

RDSA.AS AEX 0.00 0.34 0.10 0.33 CAC40

SBM O.AS AEX 0.00 -0.27 0.30 0.61 AEX

T N T .A S AEX 0.00 -0.09 0.23 0.59 AEX

UNA.AS AEX 0.00 0.16 0.20 0.26 AEX

V D O R .A S AEX 0.00 -0.25 -0.24 1.60 AEX

W K L.A S AEX 0.00 -0.11 -0.03 0.83 AEX
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