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Summary

Over the last decade the study of economic and financial problems by the physics community has
become very popular. Econophysics describes the application of tools from statistical physics
to the study of problems in economics, such as correlations in stock prices or the distribution of
wealth in society.

In this thesis we have considered two separate topics. First, the distribution of wealth in
societies where the emphasis is on examining the power laws that characterise the distribution
of wealth and income. And second, the correlations in stock prices, which is linked to asset and
portfolio risk management.

Since Vilfredo Pareto in 1896, it is well known that the distributions of wealth and income
in societies are described by a power law. Nowadays, the analysis is refined. Power laws apply
only for the rich end of the distribution and other kind of distributions such as the log-normal,
the exponential or Gamma distribution explain the lower and middle parts of the distribution

of wealth and income.

The power-law distribution of wealth is reproduced by various physical models, based on
the analogy with collisions of particles or Langevin type equations. We review some models
and empirical results found in the past and point to the existence of double power laws in
the distribution of wealth. These double power laws have two different exponents, one for the
millionaires of society and another one for the billionaires. A model of money exchange between
agents where agents are divided in two groups, one with a higher saving propensity than the
other, is presented and it reproduces the double power law characteristic. Also some analytical

tools about double power laws are introduced and compared with our numerical results.

For the study of correlations in stock prices, which are of extreme importance in the construc-
tion of optimal portfolios by investors, we present an analysis of financial data from stocks that
belong to some of the main indices around the world, the London Stock Exchange, FTSE100,
the Dow Jones Industrial Average index, DJIA, the Cotation Assistée en Continu, CACA40,
the Belgium index, BEL20 and the Amsterdam Exchange Index, AEX. Using the concept of

random matrix theory, which is a theory developed for applications in Nuclear Physics, and




minimal spanning trees, which help us in the visualisation of the affinities between stocks, show-
ing stocks with higher correlations next to each other, we study different characteristics of our
portfolios of stocks from different indices. Our studies reveal a division of the stocks in industrial
sub-sectors, mostly in good agreement with empirically derived groupings, but also indicating
possible refinements, important for the use in portfolio optimisation.

A similar analysis of market indices of different countries shows that despite globalisation
strong regional geographical correlations still exist.

A study of cross-correlations of stocks from different indices also show that depending on the
location of the markets there are different behaviours for the correlations between stocks. For a
study of cross-correlations between stocks from FTSE100 and DJIA indices we see a segregation
between stocks from each market. But for a study of cross-correlations between European stocks,

most of the stocks cluster in groups of the same industrial sector.
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Chapter 1

Introduction

“I think the next century will be the century of complexity.” (Stephen Hawking)

For the past few decades, many physicists have been exploring many different fields, that
have in common one characteristic, complexity. There are many complex systems in nature,
from grains of sand in an avalanche to the return price of a stock in a market [1].

A field of study in complex systems that has received a lot of attention and which has a
large number of works published, is the applications of physics to finance and economics, also
baptised as Econophysics by Eugene Stanley [2].

The introduction of physics to the economical science has a historical background. For
example, most of the people know Copernicus as the founder of modern astronomy, but he
achieved a great reputation as an adviser on economic matters to the King of Poland. On
his duties as adviser, Copernicus became aware of the economic and social distress caused by
wartime inflation and wrote a report on the subject in 1522. During the next few years he
revised it into a short treatise on the economic evils of a debased currency and made specific
proposals for monetary reform [3].

Before Copernicus, most of the writings on the subject of money were passages in Aristotle’s
Politics as interpreted and applied by churchmen. They were very theological and were concerned
more with what ought to happen than with what actually did happen. Copernicus’ report was
purely empirical and pragmatic, in place of appealing to a priori principles, he appeals to the
observed facts and he supports each step to specific factual evidence [3].

Isaac Newton, most known as the father of classical mechanics, was also a Warden of the
Mint and Master of the Royal Mint for 31 years in the Royal Mint in London, which is the body
permitted to manufacture coins in the United Kingdom [4].

The mathematician Louis Bachelier, who’s PhD supervisor was Henri Poincaré, was the first

to publish a formalisation of a random walk in his PhD thesis, Théorie de la spéculation [5],




where he discussed the use of Brownian motion to evaluate stock options. In Figure 1.1 we

represent the evolution of the price of a stock and a random walk.
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Figure 1.1: Evolution of the price of a stock (left figure) compared with the evolution of a

random walk (right figure).

Benoit Mandelbrot, a mathematician famous for his achievements in fractal theory, found
that price changes in financial markets did not follow a Gaussian distribution. For the high end
of the distribution of price changes, Mandelbrot stated that they are fatter than a Gaussian
distribution and are better explained by another distribution, the Lévy stable distribution [6, 7].

In the last 20 years the number of physicists that applied some of their techniques and
knowledge to the fields of economic and finance has significantly increased. This can be observed
in the amount of articles uploaded to the Los Alamos arxiv [8] related with the econophysics
field and also in the number of books published about this topic. In the main physics literature:
Physical Review Letters [9], Physical Review E [10] and The European Physical Journal B [11]
there are plenty of publications in each volume about this field. Most of the publications are in
Physica A [12].

The first books in the field were published by Rosario Mantegna and Eugene Stanley [2] and
Jean-Philippe Bouchaud and Marc Potters [13], both in 2000. Next we give reference to 5 books
that also laid out and reviewed the field. In 2001, Johannes Voit published his The Statistical
Mechanics of Financial Markets [14]. Two years later Didier Sornette published Why Stock
Markets Crash: Critical Events in Complex Financial Systems [15]. In 2004 there appeared
Dynamics of Markets: Econophysics and Finance by Joe McCauley [16] and the Kolkata group
of Bikas Chakrabarti published some reviews about econophysics in Econophysics of Wealth
Distributions [17] in 2005 and Econophysics and Sociophysics of Wealth Distributions: Trends
and Perspectives [18] in 2006. A review of these books and some articles can be found in the
main econophysics website, the Econophysics Forum [19].

The number of conferences exclusive to the topic of econophysics has also increased in the
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1. Introduction

last decade. The main conferences are: Applications of Physics in Financial Analysis (APFA),
the Econophysics Colloquium, the Nikkei Econophysics Symposium and the Econophys-Kolkata
Workshop.

In summary, while individual physicists were interested in problems in economy for a long
time, the field of econophysics only properly emerged in the last decade when physicists started
to look at open problems in economics and with the large amount of financial data available
started to see many differences between the economic theory and empirical results.

The area of econophysics has many sub-areas but in this thesis we just focus on two of them,

the study of wealth distributions and the correlations between time series of stock price returns.

1.1 Wealth

The area of study of wealth distributions is not only related with the study of wealth or income
distributions in societies [17], but also with the size of companies in a country [20], or the GDP
(Gross Domestic Product) of countries [21]. The study of wealth distributions has attracted
great interest since the work of the socio-economist Vilfredo Pareto, who wrote a book about
economical politics 100 years ago [22], studying a large amount of economical data. Pareto
suggested that the distribution of wealth from different cities and countries follow a power law

distribution with similar exponents « (between 1 and 2), known nowadays as Pareto’s index:

p(w) ~w 1% for large w. (1.1)

In Figure 1.2 we show the cumulative distribution of income in Japan for 1998 presented by
Souma [23].

Apart from the study of the empirical data, physicists are very interested in modelling wealth
distributions [17, 18]. A detailed review of some models and open problems in the study of wealth
distribution [24] was published by us in a chapter of one of the econophysics books [18] and it
is summarised in Chapter 2.

Models used in biological systems, such as Lotka-Volterra models, were used by physicists to
explain the economic trade relations in communities [25, 26, 27]. Gas models of collisions were
transformed into economic models where agents substitute molecules, money substitutes energy
and trade substitutes collisions [28, 29, 30, 31, 32, 33, 34]. A model of dynamical network of
families [35], where each node is one family and links between nodes indicates family relations,
was used to implement money exchange between different families due to payments of new links
(like weddings), payments to the society (to rear a child) and distributions of money from nodes

that will disappear (inheritance).
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Figure 1.2: Cumulative distribution of income in Japan for 1998 presented by Souma [23]. This
data is related with more than 50 million individuals, about 80% of all workers in Japan. The
income-tax data is available from a list of the 84515 individuals who paid income tax of 10

million yen or more.

The appeal in using such models is that they are simple, with analytical solutions with few
parameters that describe the empirical data of wealth distributions quite well. However, issues
remain. For example, the power law distribution of wealth just appears for the richer part of
society (5-10% of the population). The wealth of the other part of society is normally defined to
have a log-normal or Gibbs distribution. But even the power law in the end of the distribution
seems to have more than one Pareto exponent. A model able to explain an exponent for the
millionaires and other exponent for the billionaires that normally appear on the list of World

Top Richest (like Forbes [36]) is presented in Chapter 3.
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1.2 Correlations between time series of stock price returns

The area of study of correlations between time series tries to understand the nature of these
time series, how they evolve in time, and if it is possible to predicted movements of the market.
It is also very popular to study the price returns and their distribution. For a long time, the
distributions of price returns were treated as Gaussian distributions, but this model is known
to provide only a first approximation of what is observed in the empirical data. To explain
the empirical evidence of fatter tails of the measured distributions, the proposed Lévy stable
distributions for the price changes has had much success among the physics community.

A better knowledge of market movements and the correlations of stock returns is essential
for investors in terms of construction of portfolios. A matrix of correlations tell us about the
aflinity between different stocks. This affinity is measure in terms of how two different time
series move in relation to each other. Studying the matrix of correlations between time series
and its properties became very popular among the physicist working in economics problems.

The two main techniques to analyse the correlation matrix are through the random matrix
theory and the visualisation of the minimal spanning tree.

Random Matrix Theory was previously used in Nuclear Physics to study the statistical
behaviour of energy levels of nuclear reactions [37]. According to quantum mechanics, the
energy levels are given by the eigenvalues of a Hermitian operator, the Hamiltonian which was
postulated to have independent random elements. However, analysis of the eigenvalues of real
data showed deviations from the spectra of fully random matrices, thus indicating non-random
properties, useful for an understanding of the interactions between nuclei. This approach is
nowadays applied to the study of correlations of time series of returns in the stock market,
where physicists try to find the non-random properties of the matrix of correlations [38, 39, 40].
With the prediction of the eigensystem of a random matrix, compared with the eigensystem of
the matrix of empirical data of stocks, we can see eigenvalues far from the prediction spectrum,
that have a lot of information about the market [41, 42], the index of the market, or the clustering
in industrial sectors in markets. The index of the market can be calculated as the simple mean
of the prices of all the stocks that belong to the market, or the weighted mean, where some
stocks contribute more to the index, related with the size of the company. The industrisal sectors
can be different for different classifications, but normally the industrial sector indicates which
kind of business the company is engaging in.

To visualise the hierarchical structure of financial markets, Mantegna defined a distance met-
ric between stocks, using the correlations between them [43]. Using this distance, he constructed
a network of stocks (Minimal Spanning Tree), where nodes are stocks and links are the distances

between them. An example of a network of companies is represented in Figure 1.3.
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Figure 1.3: Minimal spanning tree connecting the 30 stocks used to compute the Dow Jones

Industrial Average presented by Mantegna in his article [43].

The relations between companies show the formation of clusters of sectors. Properties of the
trees, like topology for different time scales [44, 45], degree distribution of the nodes [46, 47, 48,
49, 50], time evolution of moments of the distances of the trees [48, 49, 51, 52, 53, 54, 55|, spread
of nodes in the tree [48, 52, 53|, robustness of the tree [48, 49, 50, 52, 53, 54, 56], topology before

and after financial crashes [54] and others are presented in Chapters 4, 5, 6, 7 and 8.



Chapter 2

Wealth Distributions

2.1 Introduction

The statement that wealth is not distributed uniformly in society appears obvious. However, this
immediately leads to several non-trivial questions. How is wealth distributed? What is the form
of the distribution function? Is this distribution universal or does it depend on the individual
country? Does it depend on time or history? These questions were first studied by Vilfredo
Pareto in 1896/97 who noticed that the rich end of the distribution was well described by a
power law. Ever since these early studies of Pareto, economists, and more recently physicists,
have tried to first of all infer the exact shape of the entire distribution from economic data, and
secondly, to design theoretical models that can reproduce such distributions.

In this chapter we review both historical and current concepts and data which support the
thesis that certain features of the wealth distribution are indeed universal and also review some
models that try to explain this universality. In chapter 3 we set out to explain a feature of such
distributions which is often neglected, namely double power laws..

Progress has been made, but questions remain. How can wealth be measured? Gross salary
income may be a good indicator for low-to-medium income earners, but how do the super-rich,
many of whom are not employees, fit into this picture. The wealth calculated for the super-rich
in lists of top individuals seems to be calculated from the value of assets that each billionaire
owns at each year, plus some of their possessions and income.

The definitions of wealth and income show the difference between these two quantities. The
wealth is the amount of money and possessions that an agent has at a specific time. The income
is the money that an agent receives regularly from payments or investments. So from the
definitions we see that agents trade money in the sense of income, but don’t exchange wealth.
In most of the models studied, the exchanges between agents are given by a term which is

proportional to their wealth, but it’s not the wealth itself.
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In our discussion of different models we shall restrict ourselves to income, which is what
more often we use in the daily basis to trade with other agents. We shall only concern ourselves
with the question of wealth when we calculate the final amount that belongs to each agent.

We begin this chapter by giving some background on the thinking of Pareto, a researcher who
was ahead of his time with regards to scientific research, but who also mirrored the zeitgeist of
his period. We then summarise early work by Gibrat, Champernowne, Lydall and Mandelbrot.
Before reporting more recent approaches, we present some empirical results and compare with
the probability distribution functions more often used to explain the distribution of wealth in
societies. In particular we feature a number of different agent based models: the Family Net-
work model, the Generalised Lotka Volterra model, the Slanina Model and other models where
agents exchange money by pairwise transactions by analogy with the exchange of momentum
by colliding molecules in a gas. These collision models which are conceptually extremely simple,

are also accessible to analytical theory and thus currently en vogue.

2.2 Pareto and early models of wealth distribution

2.2.1 Pareto law

The distribution of wealth in society has proved to be of great interest for many years. Based
on the numerical analysis of an impressive amount of economic data, Italian economist Vilfredo
Pareto [22] was the first to suggest that it followed a natural law now often simply termed Pareto
law. A sketch of an income distribution as seen in Pareto’s Manual of Political Economy [57] is
shown in Fig. 2.1. However there are a number of different forms of Pareto law quoted in the

literature. Mandelbrot [6] distinguishes between two different versions:
e the strong Pareto law;
e the weak Pareto law.

If P(u) is the percentage of individuals with an income U greater than u (cumulative distribu-
tion), the strong Pareto law states that:
(u/ug)~® for u > ug

P(u) = (2.1)

| for u < ug
The density p(u) = —dP(u)/du is thus given by:

a (ug)*u= @D for u > ug
p(u) = , (2.2)
0 for u < ug
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Here ug is a scale factor and the value of the exponent « is not determined. In the strongest
form of the Pareto law, a = 3/2, which is the average value of a in Pareto’s original data (see
Table 2.1). Because the strong Pareto law doesn’t apply to the empirical data in the whole
range of income, but just for large values of u, the weak Pareto law states that the power law

only holds in the limit © — oo:

P(u)

s =y B U —ee (2.3)
(u/uo)

where the value of a remains unspecified. In the remainder of this chapter we shall mean this

form of the law when we write Pareto law.

p (u) s

u

Figure 2.1: Sketch of the distribution of income as seen in Pareto’s Manual [57]. For large values

of income this follows a power law.

Today, Pareto’s law is usually quoted in terms of the distribution density function p(u),

rather than the cumulative distribution function, P(u) = [ p(u')du/, viz:

p(u) ~ w0+ for large u. (2.4)

In Figure 2.2 we represent this distribution density function p(u), for a Pareto exponent a equal

1o 1.5

2.2.2 Pareto’s view of society

It is interesting to read the original writings of Pareto from 1906, since these reveal moere about

the process by which he arrived at his conclusions. He opens the chapter on Population in his
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Table 2.1: Table, taken from Pareto’s book [22], showing the exponent « for a number of different

data sets. Note that this is only a small extract of all the data that Pareto analysed.

} Country l Year ’ el H Country ’ Year ’7 a—‘
England 1843 1.50 Perouse, village 1.69
1879-80 | 1.35 || Perouse, campagne 1.37
Prussia 1852 1.89 [talian cities 1:32
1876 1.72 Italian villages 1.45
1881 1.73 Basle 1887 1.24
1886 1.68 Paris 1.57
1890 1.60 Augsburg 1471 1.43
1894 1.60 1498 1.47
Saxony 1880 1.58 1512 1.26
1886 1.51 1526 1.13
Florence 1.41 Peru —‘*Nend of 18" century | 1.79
1.x107"° N
\\
\\\
\\
43 3 S
p(u)
1107
1.)(10_21 s B o : B e o
1.x 10° 1.x 10 1.x 10 1.x10°
u

Figure 2.2: Representation of the weak Pareto law (eq. 2.4) for a = 1.5, in a log — log scale.

The straight line is the characteristic of this power law distribution.

Manual of Political Economy [57], which summmarises his findings and thoughts in a mainly non-

mathematical fashion, by stating that “society is not homogeneous” ([57], p. 281). The existing
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“economic and social inequalities” correspond to the “inequalities of human beings per se” with
respect to “physical, moral, and intellectual viewpoints” ([57], p. 281). Thus an excellent
indicator of non-homogeneity in society is, according to Pareto, the distribution of income in
society, as sketched in Fig. 2.1.

Pareto’s main achievement, as seen from the perspective of today’s econophysicists and
economists, is the observation that this distribution is universal, i.e. that it “varies very little
in space and time; different peoples and different eras yield very similar curves. There is a
remarkable stability of form in this curve.” ([57], p. 285). Furthermore Pareto discovered that
the form of the curve “does not correspond at all to the curve of errors, that is, to the form the
curve would have if the acquisition and conservation of wealth depended only on chance”.

This non-Gaussian character of the curve is obvious from its lack of symmetry about its peak
and the pronounced tail at the rich end of the distribution, although Pareto does not dwell on
the concept of power laws in his Manual [57].

Pareto notes that the poor end of the wealth distribution cannot be fully characterised, due
to a lack of data. He stresses, however the existence of a “minimum income... below which men
cannot fall without perishing of poverty and hunger” ([57], p. 286).

Finally he notes the stability of the distribution: “If, for example, the wealthiest citizens
were deprived of all their income [...] sooner or later [the curve] would reestablish itself in a
form similar to the initial curve. In the same way, if a famine [...] were to wipe out the lower
parts of the population [...] the figure [...] would return to a form resembling the original one.”
([57], p- 292).

For Pareto the wealth distribution of Fig. 2.1 “gives a picture of society” ([57], p. 286) and
thus forms the basis of his theory of society. In using arguments based on Darwin’s ideas of
social selection, in common with many of his contemporaries, and calling feminism a malady
and referring to women as “objects of luxury who consume but do not produce” ([57], p. 297),
he also paints a picture of society at his time.

In Pareto’s view people are in principle free to move along the wealth axis in the course of
their lifetime, in both directions, but this movement is determined by “whether they are or are
not well fitted for the struggle of life” ([57], p. 287). If they drop below the minimum income
they “disappear” ([57], p. 286) or are “eliminated” ([57], p. 287). In the region of low incomes
“people cannot subsist, whether they are good or bad; in this region selection operates only to
a very small extent because extreme poverty debases and destroys the good elements as well as
the bad.” ([57], p. 287). Pareto views the process of selection to be most important in the area
around the peak of the distribution. Here the incomes are “not low enough to dishearten the
best elements”. He continues with the following statement that reflects views that were probably

widely held at that time: “In this region, child mortality is considerable, and this mortality is
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probably a powerful means of selection” ([57], p. 287-8). In Pareto’s ideology this region forms
a future aristocracy which will eventually rise to the rich end of the distribution and form the
leadership of the country. Since selection does not apply to the rich, this will, however, lead to
degeneration in this “social stratum™. If this is paired with an “accumulation in the lower strata
of superior elements which are prevented from rising” ([57], p. 288), a revolution is unavoidable.

Pareto’s ideas for changes in society, based on social Darwinism, are today no longer accept-
able to the majority of people. However, Pareto’s idea that a static distribution of wealth does
not imply a static society holds true. People are able to move along the wealth axis in both
directions, although in some societies, this movement appears not to be too prevalent. Indeed,
it is often found that being born to parents at the poor end of the wealth distribution greatly
reduces the chances of obtaining a university education, which may form the basis for a high
income in later life.

Since the distribution of wealth appears fixed, the main indicator for the degree of develop-
ment of a society, according to Pareto, is the amount of wealth per person. If this increases,
as in Pareto’s example of England in the 19 century, it provides “individuals with good op-
portunities to grow rich and rise to higher levels of society” ([57], p. 296). Others, who are
often in close contact with those at the lower reaches of society, such as the homeless, dispute
this argument and point to other studies that suggest some forms of intervention are required
in order to provide social justice across society.

The kind of thinking and explanation based on opinion is not one followed by those physicists
who have begun to examine income distribution data. Physicists are basically driven by em-
piricism, an approach exemplified by Kepler who as a result of rather painstaking observations
of the motion of planets, proposed his law of planetary motion. In similar vein, physicists and
some economists have begun to construct models based on some underlying mechanisms that
allow money to flow throughout a system and, in so doing, link these microscopic mechanisms
to the overall distribution of income. Some of the models may be criticised as naive by the
economics community, however, as we shall see, at least the models that do emerge seem capa-
ble of predicting distributions of money that are observed to a greater or lesser degree. These
advances allow for a rational debate, and through further research, advances in prediction to be

made.

2.2.3 Robert Gibrat and rules of proportionate growth

The French economist, Robert Gibrat realised that the power law distribution did not fit all the
data and proposed a law of proportionate effect, la loi de l’effet proportionnel [58]. This states

that a small change in a quantity is independent of the quantity itself. The quantity dz = dz/z
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should therefore be Gaussian distributed. Hence z should be distributed according to a log
normal distribution. As a result of studying the empirical data he generalises the statement and

concludes that z = aln (z — 29) + b. This leads him to the Gaussian distribution:

Fla)m iy (~2%) (2.5)

2mo

which gives from the relation f(z)dz = p(z)dz:

(2.6)

1 (aln(z—wo)ﬁ-b)?

z) = exp |— 4
pla) = —=— p{ -

Gibrat’s distribution can be represented as sketched in Figure 2.3.

in

0.5

0.4

(x)
2 0.3
0.2

0.1

Figure 2.3: Representation of the Gibrat’s distribution (eq. 2.6).

Since his argument was based on the statistics of Gauss, Gibrat felt it was a better approach
than that of Pareto. Gibrat defined 100/a to be an inequality index. The parameter a is today
related to the Gibrat index.

Recently, Fujiwara [59] has shown, using very detailed Japanese data where the variation of
individual incomes can be identified over time, how in the power law region, Gibrat’s law and the
condition of detailed balance, i.e, Pia(z1,22) = Pia(x2, 1), both hold. The probability Pjs(z,y)

represents the joint distribution of an agent to have a quantity x at time 1 and a quantity y at
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time 2. The condition of detailed balance shows that the probability of changing from z to y
is the same as that for its reverse process. He then shows that under the condition of detailed

balance, Gibrat’s law implies Pareto-Zipf law, but not vice versa.

2.2.4 The stochastic model of Champernowne

An early stochastic model which reproduces Pareto law is due to Champernowne [60]. Cham-
pernowne studied different functions to fit the empirical income data such as the distribution of

incomes of USA in 1929 [61]. The cumulative function used in that work was:

- sin f

9 ' cos ) + (é)a =

where t denotes the income and N, a, ty and 6 are fitted parameters. For high income this

formula approximates to the Pareto’s law:
F(t) ~ Ct™“. (2.8)

The purpose of the stochastic model of Champernowne was to seek theoretical reasons for the
Pareto behaviour in the high end of income distributions.

The basic idea is that an individuals’ income in one year “may depend on what it was in
the previous year and on a chance process” ([60], p. 319). Based on the definition of certain
ranges of income, Champernowne specifies the probability for the income of an individual to
change with time from one income range to another. Mathematically such a process may be
expressed in terms of a vector X, (t), specifying the number of income receivers in the income
range r at time ¢, and a set of stochastic transition matrices pl.(¢) that represent the proportion

of individuals in income range r at time ¢ which move to income range s in time ¢ + 1:

Xs(t+1) =) Xr(t)p}s(t) (2.9)
r=0

Champernowne was able to show that provided “the stochastic matrix is assumed to remain
constant throughout time [...] the distribution will tend towards a unique equilibrium distribu-
tion depending on the stochastic matrix but not on the initial distribution” ([60], p. 318) of
income. These equilibrium distributions are described by a Pareto law. Obviously, the details
of the transition matrix pl,(t) are crucial. In the simplest case considered by Champernowne,
income increases are allowed only by one range each year whereas decreases may occur over n in-
come ranges. Furthermore, the transition probabilities are treated as independent of the present
income. With these assumptions and empirical data Champernowne determined a transition

matrix and deduced that his model exhibited an equilibrium solution. The form was given by
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the Pareto law for the whole range of incomes. Because this is not even approximately obeyed for
low incomes Champernowne introduce two generalisations of the model to achieve the weak form
of the Pareto law (Pareto law as the asymptotic result of the distribution for high incomes).
First he allowed annual income increases over more than one range, and secondly he linked
the possible range of jumps to the income before the jump, except for high incomes. Further
modifications by Champernowne that took account of the age of an individual, and occupation
dependent prospects did not change the result. Champernowne concludes his paper with the
observation that his models “do not throw much light on the mechanism that determines the
actual observed values for Pareto’s alpha” ([60], p. 349). This makes it impossible to draw “any
simple conclusions about the effect on Pareto’s alpha of various redistribution policies” ([60], p.
351). This remark is interesting in the sense that it is clear that Champernowne was already

thinking how to engineer specific income distributions within society.

2.2.5 The model for distribution of incomes within an enterprise by Lydall

After the work of Champernowne [60], H. F. Lydall introduced some criticism to the previous
stochastic model [62], arguing that different sources of income showed different distributions.
Lydall explained that the hypothesis of Champernowne’s stochastic model is acceptable in the
case of income from capital, because gains and losses of investment are dependent on quantity
of money invested, but the author cannot see any explanation for the income from employment
to change from one year to the next with the mechanism introduced by Champernowne [60]. So,
Lydall introduce a model for the distribution of incomes within an enterprise. One observation
of the empirical data for income from employment is that the slope, of the distribution of income,
of the high end is steeper than the slope for total income. The main reason is that this type of
income is more equally distributed than income from capital. Lydall suggested that the structure
of employees in a company is arranged in the form of a pyramid with a managing director on
the top and a large group of employees at the bottom. The basic hypothesis of this model [62]
are the notation y; for the number of employees in the grade ¢ (where i = 1 is the lowest) and
assumption that the ratio between the number of supervisors (y;+1) and the number of persons
supervised (y;) is fixed:

iy (2.10)
Yi+1

where n is constant. Also, representing the income of each grade as z;, Lydall assume that the
income of a supervisor is related to the aggregate income of the employees on the grade below
him in this simple way:

s 2 PO (2.11)
nT;
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where p is constant. With this simple model, Lydall is able to compute a distribution of incomes
within an enterprise as a Pareto law, with a Pareto exponent that only depends on the constants

n and p. The cumulative distribution of incomes is then given by:

Y = bglosr/ lognp (2.12)

where Y is the number of incomes exceeding any level of income z and b is a constant. From
empirical Pareto exponents for different countries, Lydall was able to find the relation between
np and n for each country as for example, United Kingdom and Poland [62], and from here
conclude about the degree of inequality and the structured of the pyramid of incomes for each

example.

2.2.6 Benoit Mandelbrot’s weighted mixtures and maximum choice

While Champernowne presents a particular model with some variations that reproduces an
income distribution which follows Pareto law, Benoit Mandelbrot comes to a more general
conclusion in his 1960 article The Pareto-Lévy Law and the Distribution of Income [6] and
his informal and non-mathematical paper New Methods in Statistical Economics [7]. According
to Mandelbrot: “random variables with an infinite population variance are indispensable for
a workable description of price changes, the distribution of income, and firm sizes etc.” ([7],
p. 421). This statement is based on Mandelbrot’s observation that “essentially the same law
continues to be followed by the distribution of income, despite changes in the definition of this
term.” ([6], p. 85)

To understand the relevance of the statement one needs to consider the so-called stability of a
probability distribution. In the case of a Gaussian distribution it is known that numbers made up
from the sum of independent Gaussian variables are again Gaussian distributed. This stability
under summation (or invariance under aggregation) is, however, not restricted to Gaussian. It
also holds for Parcto-Lévy distributions with index o between 1 and 2 (Mandelbrot introduces the
term Pareto-Lévy in honour of his former supervisor Lévy, who studied the properties of stable
distributions). Such distributions had generally not been considered in the economical literature.
The fact that their moments may be infinite led the scientific community to ignore them for many
years, partly on the grounds that they did not seem to correspond to physical reality. However,
Mandelbrot dedicates a long section [7] to scale invariance of such distributions. Specifically he

considers the stability of the Pareto-Lévy distribution under three different transformations:
e Linear aggregation or simple addition of various quantities in their common natural scale;

e Weighted mixture;
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e Maximising choice, the selection of the largest quantity in a set.

Invariance under aggregation may be met by using Gaussian as well as Pareto-Lévy distributions.
The example used is the one of various kinds of income separately or the aggregates of all the
sources of income. Mandelbrot notes that the common belief that only the Gaussian is invariant
under aggregation is correct only if one excludes random variables with infinite moments. The
idea behind his concept of so-called weighted mixtures covers the case where the origin of an
income data set is not known. If this is the case, one may consider that it was picked at random
from a number of possible basic distributions. The distribution of observed incomes would then
be a mixture of the basic distributions. With companies or firms “the very notion of a firm is
to some extent indeterminate, as one can sce in the case of almost wholly owned, but legally
distinct subsidiaries” ([7], p. 424). The third property, that Mandelbrot termed maximising
choice, is related with the extreme events that happen in a time series of stock market, or in the
World history: “it may be that all we know about a set of quantities is the size of the one chosen
by a profit maximiser. Similarly, if one uses historical data, one must often expect to find that
the only fully reported events are the exceptional ones, such as droughts or floods, fami.es, [...]”
([7], p.424). Mandelbrot also refer that many data are just a mixture of these extreme cases
with the full report.

Such transformations need not be the only ones of interest, however, they are so important
that they should characterise the laws they leave invariant. In this sense, the observation that
income distributions are the same whatever the definition of income, is used by Mandelbrot to
support the claim that they are Paretian. Mandelbrot summarises: “It is true that incomes
(or firm sizes) follow the law of Pareto; it is not true that the distributions of income are very

sensitive to the methods of reporting and of observation.” ([7], p. 425).

2.3 Empirical studies

Numerous recent empirical studies have all shown that the power law tail is an ubiquitous feature
of income distributions. The value of the exponent may vary with time and depends on the source
of the data. However, over 100 years after Pareto’s observation, a complete understanding of the
shape and dynamics of wealth distribution is still evasive. This is partly due to incomplete data,
but may also reflect the fact that there might indeed be two distributions, one for the super rich,
one for the low to medium rich, with some intermediate region in-between. For example, for
U.S.A. only the top three percent of the population follow Pareto’s weak law, the vast majority
of people appear to be governed by a completely different law. The distribution function for
the majority of the population seems to fit a different curve. The main functions used in the

literature for fitting the income or wealth distributions are:
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e the log-normal distribution function:

1 (Inz — p)zJ
e ) e xp | = P 2.13
Py () ToV2m e [ 202 ( )

Pry(z) = % [1 —erf (1“;7_2“” (2.14)
where p and o are parameters for the mean exp (u + o2/ 2) and the variance

(exp (¢2) — 1) exp (21 + 0?). The function Erf(z) = (2/y/7) i e~t*dt is the error func-
tion. The log-normal distribution becomes Gibrat’s distribution (equation 2.6) for p = 0

and o = 1.

e the Gamma distribution function:

a—1

pr(z) = f(ﬁ)an exp {—'5] (2.15)
Pr(z) = r_[l%%e_] (2.16)

where a and 6 are parameters for the mean af and variance af?. The function I'[a, z] =
o0 = — . . . . . .
[1 t*~le~!dt is known as the upper incomplete Gamma function. The Gamma distribution

becomes the Boltzmann-Gibbs distribution for a = 1.

e the generalised Lotka-Volterra distribution function:

parv(z) = LGF%H—))Z% exp {“ = 1_ 1} (2.17)
Porv(z)=1- F_[“’(“__l_)_/_ﬂ (2.18)

')
where a is a parameter for the variance 1/(a — 2) and the mean is equal 1. The parameter

« is also present in the exponent of the power law distribution for z — oo.

Sketches of these distributions are shown in Figure 2.4 for some parameters, where we can see
the difference between all of them for different plot scales. The only distribution that will allow
the presence of a strong power law in the limit of high values is the generalised Lotka-Volterra.

Another distribution presented by Reed [63] is the double Pareto log-normal distribution
(dPIN) which is characterised by a power law for high and low values of the distribution and a
log-normal behaviour in the middle range of the distribution. The probability in each case can

be represented by:

PX>z)~ 7% forz— o0

PX<z)~ 27 forz—0 (2.19)
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Figure 2.4: Representation of the probability distribution functions (top figure) (Eq. 2.13, 2.15
and 2.17) for log-normal (red), gamma (green) and generalised Lotka-Volterra (blue), respec-
tively. Representation of the cumulative distribution functions (centre and bottom figures) (Eq.
2.14, 2.16 and 2.18) for log-normal (red), gamma (green) and generalised Lotka-Volterra (blue),
respectively. The sketches are for values of the parameters that allow the three distributions to
have similar mean and variance. The centre figure is in a log-linear plot and the bottom figure

in a log-log plot.
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where the probabilities represent cumulative distributions and the exponents o and [ are the
Pareto exponents for the upper and lower limits of the distribution, respectively.

Tables 2.2 and 2.3 summarises recent empirical studies according to the type of data, the
distribution function used to fit the data and the value of Pareto exponent in the case of fitting
to a power law distribution. While in the empirical studies made by Pareto, « is around 1.5
(Table 2.1), in the later studies exponents less than 1.5 almost only feature for the studies of
wealth statistics from top wealthiest in the society and are generally obtained from lists of super

rich people, published in magazines (Table 2.3). For all the other studies, which are mainly

obtained from income distributions, the exponent is bigger than this.

Table 2.2: Table of empirical data for income distributions. In column Source, Tax means data

from income tax statistics. In column Distributions: Par. - Pareto tail; LN - Log-normal; Exp.

- Exponential; dPIN. - Double Pareto Log-normal; G. - Gamma.

| Country “ Source l Distributions F’areto Exponents LRef.
Japan Tax (1992) Par. a = 2.057 = 0.005 [23, 64, 65]
(1998) Par. a =198
Tax (1998) Par. a = 2.05
Tax (1998) LN / Par. a = 2.06
(1887-2000) LN / Par. a~ 2.0
US.A. || (1992) Exp. |66, 67, 68, 69, 70]
(1996) Exp.
Tax (1997) Exp. / Par.
(1998) Exp. / Par. a=17+0.1
(1983-2001) Exp. / Par. an~14-18
UK (1994-98) Exp. / Par. a~20-23
Australia (1989-2000) Exp. / LN / Par.
U.S.A. (1997) dPIN. a=2243 / 3 =143 | [63]
Sri-Lanka || (1981) dPIN. a=2.09/p8=3.09
Australia || (1993-97) Par. an~22-26 [71]
U.S.A. (1980) G. '/ Par. =22 [72]
(1989) G S/aPar: o=1.63
(2001) ek
Uk (1998-99) G /i Bar. a=1.85
Portugal Tax (1998-2000) | Par. a~ 230 - 2.46 [73]
Italy (1977-2002) LN / Par. o ~ 2.09 — 3.45 74, 75)
(U (1980-2001) LN / Par. aprol.1— 3:34
U.K. (1991-2001) LN / Par. a ~ 3.47 - 5.76
Germany (1990-2002) LN / Par. a~242-396
India (2003) Par. a=1.51 [76]
UK. (1992-2002) Par. o ~ 2.68 — 3.34 [24]

“This value is an average Pareto exponent.

In Figure 2.5 we show the cumulative distribution of wealth for the top richest in the world,

for two different years, 2003 and 2006. The data was downloaded from the list of super rich
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Table 2.3: Table of empirical data from wealth lists. All the distributions are Pareto like.

{ Country [LSource LPareto Exponents I Ref. J
US.A. 1996“ a=1.36 [77, 78, 79]
1997° @ = 1.35 £ 0.005
U.K. 1970
1997¢ a = 1.06 + 0.004
Sweden || 1965 a = 1.66
France 19944 a = 1.83 :0:030
UK. | 1996° a=19 (67]
Egypt || S.H. (14**B.C.)} | @ =1.59+0.19 | [80]
U.K. 1996 a=1.85 [72]
U.K. 20019 a=1.78 [35, 81]
India 2002-2004" a~ 0.81 —-0.92 [76]
World 2003/2006* a~1.37-1.38 [24]
Hungary || 1550/ a = 0.92 (81, 82]
India 1991/2002% a~18-24 [83]

“400 wealthiest people, by Forbes.

*Top wealthiest people, by Forbes.

“Top wealthiest people, by Sunday Times.

“French almanac Quid list.

“Inheritance tax

/Related to the size of houses found in an archaeological study.
YInheritance tax

7125 wealthiest individuals in India by Business Standard magazine and 40 richest Indians by Forbes.
“Top wealthiest people, by Forbes.

Number of serf families living on a nobleman’s land.

*All India Debt and Investment Survey.

people in Forbes magazine [36].

2.4 Current theoretical studies

From the work of Pareto, Gibrat, Champernowne and Mandelbrot until few years ago, there
was not many improvements in the study of wealth and income distributions, apart from some
different versions of the same models presented in the previous sections. Most of these versions
were based on adding more and more parameters to the simple models to fit a function to the
overall empirical distribution of incomes. So we had to wait almost one century from the first
work of Pareto to welcome an impressive amount of empirical and analytical studies from the
Physics community. The main reason for this could be that a huge amount of data became

available by the government authorities, which need a statistical approach based on the kind of
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Figure 2.5: Cumulative distribution of wealth for the top richest people in the World. The data
was taken from Forbes Magazine for the years 2003 (476 individuals) and 2006 (793 individuals).

The wealth is in billions of dollars.

one used in Physics. Another reason is that Physics is the science which tries to explain the
mechanisms of Nature, so what better science to explain the mechanisms of exchange of money
than Physics?

In this section we discuss some recent models for wealth distributions in greater detail.

2.4.1 Generalised Lotka-Volterra Model

The Generalised Lotka-Volterra model, based on an ecological model with the same name,
brought new ideas of the meaning of the trading terms in a model of exchange of money [84]. If
all agents in a system are characterised by a term w that changes in time (e.g. income, wealth)
and one agent, 4, is chosen at random at time ¢ to exchange some money with all the others,

then the term w; of this agent will be updated. The governing equation is given by:

wi(t+1) = AbH)w;(t) + aw(t) — bw;(t)w(t) (2.20)

wi(t+1) = wj(t), forj#4 (2.21)
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where w;(t) is the system component ¢ at time ¢. This system component can be analysed
as wealth of agent ¢. The average value w(t), which is not constant in time because there is

non-conservation of money, is represented as:

1 N
o(t) = + > wilt) (2.22)
i

The first term on the rhs of equation 2.20 describes the effect of autocatalysis for individual i
and can be interpreted as investments return. The second term describes the same autocatalysis
effect but for all the agents. One interpretation of this is that it simulates in a simplistic way
the effect of a tax or social security policy. The third term describes competition for limited
resources and it represents external limiting factors: finite amount of resources and money in
the economy, technological inventions, wars, disasters, etc. With proper values for the constants

a and b a power law is produced in the high end of the distribution of w:
P(w) ~w™17® (2.23)

with an exponent « in agreement with empirical values found by Pareto. The power law is
shown from numerical analysis [84].
An analytical solution of the complete model was achieved [25, 26, 85, 86], by reformulating

equation 2.20 as a Langevin equation. This is done rewriting the equation 2.20 as:
wi(t+ 1) —w;i(t) = AMt)w;(t) — bw(t)w;(t) + aw(t) — w;i(t) (2.24)
and summing both sides of equation over i:

Dt +1) — o(t) = Z A®)wi(t) + [-bD(t) + a — 1] ©(¢) (2.25)

It can be shown that the first term of the rhs is represented by A@(t), so in the long time
limit, assuming a stationary state, can be written as b = A + a — 1. Considering a normalised
wealth, w;(t) — w;(t)/w(t), and writing the difference between wealth as first derivatives gives

the following Langevin equation:

d;‘: =\t)-A-a]wi+a (2.26)

The solution for the probability distribution P(w) is given as:

P(w) (2.27)

a7 [ 5]
Zw2ta/D p Duw
where Z is a normalisation factor. This solution represents a distribution with a power law for

w — oo with an exponent 2+a/D that does not depend on the constant b, so the competition for
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limited resources doesn’t have a direct effect on the power law distribution of w. This solution
is correct for an infinite system of agents. For finite systems the following corrections can be

derived for the probability distribution:

i a a
Pw) = gz P [~ g | e [‘ m} S
and the exponent:
a/D - K
Bz kg e (2.29)

where K = N~2+2/« o N~(2a/D(1+a/D)) and N is the total number of agents.
The generalised Lotka-Volterra model was studied by Bouchaud and Mézard [27] with a
different analytical approach, but with the same kind of result for the distribution of w:

(a— 1)
')

il a=1
Plu) = —T¥a oXP {— - } (2.30)

with a = 14 a/D. The authors also show that there is a phase transition between a system
where the wealth is evenly distributed between agents and a system where just a few agents have
almost all the wealth. This phase transition is around a = 1, where this wealth condensation
appear for a < 1. Other features of this model are studied, as for example: the inclusion of
taxation terms - an income tax, over the change of the wealth (—Id‘T‘ and a capital tax, over the total
wealth w; the incorporation of a network, where instead of treating the model in a mean field
approach (all agents trade with all the others), each agent as a specified number of neighbours

with who it is able to interact. In Figure 2.6 a representation of this distribution of equation

2.30 is shown.

2.4.2 Collision Models

In 1960, Mandelbrot wrote “There is a great temptation to consider the exchanges of money
which occur in economic interaction as analogous to the exchanges of energy which occur in
physical shocks between gas molecules. In the loosest possible terms, both kinds of interactions
should lead to similar states of equilibrium. That is, one should be able to explain the law
of income distribution by a model similar to that used in statistical thermodynamics: many
authors have done so explicitly, and all the others of whom we know have done so implicitly.”
([6], pg. 83). Unfortunately Mandelbrot does not provide any references to that specific body
of work.

In analogy to two-particle collisions with a resulting change in their individual momenta,
income exchange models may be based on two-agent interactions. Here two randomly picked

agents exchange money by some pre-defined mechanism. Assuming the exchange process does
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Figure 2.6: Representation of probability density distribution (eq. 2.30), in a log-log scale, with
parameters a = 0.00023 and D = 0.00083 as used in [26]. The straight line is a power law

distribution with exponent —1 — a, where « has the value 1+ a/D ~ 1.277.

not depend on previous exchanges, the dynamics follows a Markovian process as follow:

m;(t +1) M m;(t) (2.31)
m;(t +1) m;(t)
where m;(t) is the income of agent i at time ¢ and the collision matrix M defines the exchange
mechanism.
The first model of that kind appears to be that of Angle [87] who proposed that exchange
occurs by one agent getting a percentage of the money of another agent, which means that what
one party gains, the other loses. The model is explained as two agents that come together and

put a percentage of their money, 1— A, in a bag and one randomly chosen agent takes everything.

In the formulation of equation 2.31 this gives:

mi(t + 1) S (L=¢)(1-A@1) €e(1-A®) ) (2.32)

m;(t+ 1) (1—€)(1-=A()) L—e(1-=A(®) m;(t)

where A(t) is a random variable, from a uniform distribution between [0, 1], related with the

percentage of money that agents save before the exchange and € is a variable with two possible




26

values, zero or one, taken from a specific probability distribution. The amount exchanged in
each trade is:

Am(t) = (e — 1) (1 — A(t)) mi(t) + € (1 — A(t)) m;(t) (2.33)
which takes the value Am = (1 — A(¢)) m;(t) if e = 1 and Am = — (1 — A(t)) m;(t) if e = 0. So
depending on the value of € each agent has the possibility of taking some money from the other.

In this exchange process the money is conserved, because:
m;(t + 1) — m;(t) = — [m;(t + 1) — m;(t)] = Am(t) (2.34)

Numerical simulations of this model showed that the distribution of incomes, p(m) can be fitted

by a Gamma probability density function:

e m
- Xp | —— 2
p(m) 3oL (a) exp { 6’} (2.35)

with fit parameters o and 3.

Another study of models of asset exchange was presented by Ispolatov et al. [88] where
the authors study both additive and multiplicative asset exchange numerically and analytically.
Comparisons are drawn with the model of an ideal gas, where exchanges of momenta between
collisions are substituted by exchanges of money.

Combining the model of Angle [87] with the idea of a closed economic system where money
is conserved at each trade, Yakovenko et al. [89] performed simulations and found that the
equilibrium probability distribution of money p(m) should follow a Boltzmann-Gibbs law:

p(m) = %exp [—?] (2.36)
where 7" is the temperature of the system, which in this case is the mean value of money
T = M/N, where M is the total money and N is the number of agents in the system. The
Boltzmann-Gibbs law is equal to the Gamma probability density function (eq. 2.35) for a =1
as can be seen in Figure 2.7.

Chakraborti et al. [28, 29, 30, 31] considered the same kind of pairwise exchange models but
included a constant saving propensity term for all agents, A and changed the possibility of one
of the agents to win everything. The governing equation for the evolution of money of agents ¢
and j is:

mit+1) \ _ [ Ate@-x)  en- 2 il (2.37)

m;(t + 1) (T—€e®)(1=A) A+ (L—e€(t)(1-A) m;(t)

where €(t) is a random number between [0, 1] and A is the saving parameter (same for all agents).

So, when two agents meet, they will save some percentage of their money Am;(t) and Am;(t),
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Figure 2.7: Representation of probability density distribution (eq. 2.35), with parameters 3 =
1.0 and « equals 1.0 (red), 2.0 (green) and 3.0 (blue), respectively. The case of & = 1.0 is the

Boltzmann-Gibbs distribution (for 77 =1 in this case).

respectively, and throw the rest to, what we will call, a bag. The total amount of money in
the bag is then (1 — X)(m;(t) +m;(t)) and will be split between the two agents in percentages
defined by the value of the random variable €(t). If €(t) > 0.5, agent ¢ will get more percentage
than agent j and vice-versa. If A is equal to zero we return to the model of Yakovenko [89]. This
model is the same as the one considered by Angle with different features for the parameters, A
and €. The distribution of money, p(m) is no longer a Boltzmann-Gibbs distribution for A # 0,
but was found to be well described by the function [30]:

o) = g () e (<17) 29

where I'(n) is the Gamma function of n, T is the money per agent in the system and n is defined

as:

Al et (2.39)

Chatterjee et al. [32, 33] improved the previous model including an inhomogeneous parameter

A, because in a society the interest of saving may vary from individual to individual, so A; is the
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saving parameter for agent 7 and the equation for the evolution of money of agents i and j, m;

and m; is then given by:

m(t+1) | _ [ A+e®1-X)  0-) mi(t) -
m;(t +1) (1 —e(@))(1=X) Aj+(L-e()(1-A) m;(t)
where the amount exchanged is given by:
Am = (e(t) — 1)(1 — A)ms(t) + e(t)(1 — A;)m;(t). (2.41)

The saving propensity parameters \; arc fixed over time and are distributed independently from
a random distribution between [0,1]. This new dynamics also gives a different distribution of
money in the steady state. In particular it was found that the high end of distribution of money
follows a Pareto law with exponent a around 1.

The problem for the situation where all agents save the same fixed percentage of their money
was solved analytically by Repetowicz et al. [34], who using the Boltzmann equation, obtained
a relation between the probability distribution of wealth of one agent and the joint probability
distribution of the wealth of two agents. Invoking a mean field approximation this approach
allowed the solution to be solved via a moment expansion of the one agent distribution function.
It was demonstrated that to third order, the moments agreed with the solution proposed as a
result of numerical calculations (eq. 2.38). For the case when the savings are not equal but
determined by some distribution, p()), analytic calculations performed by Repetowicz et al.
[34] demonstrated clearly that the Pareto exponent for this model is exactly one. This result
appeared to hold regardless of the form of the savings distribution function, p(\).

Another analytical solution was found by Chatterjee et al. [90] also using the Boltzmann
equation, but in this case, just restricted to the value of ¢ = 1/2. The results are in agreement
with the numerical results of Chatterjee et al. [32, 33] and the ones found by Repetowicz et al.
(34].

A further variant of the collision model has been proposed by Slanina [91]. Slanina’s model
involves the pairwise interaction of agents, which at every exchange process also receive some
money from outside. The time evolution of trades is represented as:

mi(t + 1) it~ B+e B mi(t) (2.42)
mi;(t+1) Jé) 13 +e m;(t)
Thus agent ¢ gives a fraction J of its money to agent j and vice versa. In addition it is assumed
that additional money, e(m;(t) + m;(t)), is created in the exchange via some sort of wealth
creating process. In the simplest case, the values of J and e are kept constant for all trades.

Since money is not conserved in this model, there is no stationary solution for the distribution
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of money, p(m). However, as with the generalised Lotka-Volterra model, there is a stationary
distribution function for the relative value: m;(t) — m;(t)/(m(t)). The solution is then obtained
by solving the associated Boltzmann equation within a mean field approximation. Taking the
limits 4 — 0 and € — 07 whilst keeping the assumed power law « constant, yields:

I (=1

plm) =g “Ta)

exp {— %‘1] (2.43)

where o — 1 &~ 23/€2. It is interesting to see that this result is identical in form to that given
by the generalised Lotka-Volterra model (eq. 2.30).

To check the accuracy of this approximation, we performed some simulations of Slanina’s
model [92] for 10* agents trading 103 x N times and averaged over 163 realisations. The percent-
age of wealth exchanged () was set to 0.005 and the percentage of wealth injected in the system
(¢) to 0.1. A fit of the cumulative distribution of equation 2.43, with a power law exponent of
2.0, to the results of the numerical simulation for the steady state is shown in Figure 2.8. This

exponent of 2.0 is in excellent agreement with the value of 2.0 of equation a — 1 =~ 2/3/¢€>.
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Figure 2.8: Cumulative distribution of wealth in a simple Slanina model, for 10* agents trading
10 x N times and averaged over 10 realisations. The percentage of wealth exchanged () is
equal to 0.005 and the percentage of wealth injected in the system (€) is 0.1. The numerical
simulations are represented by black dots and the cumulative distribution of the analytical

solution (eq. 2.43) by the black line. The Pareto exponent for the higher end is ~ 2.0.

A review of collision models can be found in Refs. [93, 94].
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2.4.3 Wealth models on networks

Coelho et al. [35, 81] have recently introduced the so-called family network model, which
not only yields realistic wealth distributions, but also a topology of wealth. This is a model
of asset exchange where the main mechanisms of wealth transfer are inheritance and social
costs associated with raising a new family. The structure of the network of social (economic)
interactions is not predefined but emerges from the asset dynamics. These evolve in discrete

time steps in the following manner. For each time step:

e From the initial configuration (step I in Fig. 2.9), the oldest family (node) is taken away,
and its assets are uniformly distributed between the families linked to it (neighbours) (step

IT in Fig. 2.9);

e A new family (node) is added to the system and linked to two existing families (nodes),

that have wealth greater than a minimum value ¢ (step III in Fig. 2.9);

e The small amount g, is subtracted from the wealth of the selected families (nodes) and
redistributed in a preferential manner in the society. This process aims to model the
wealth needed to raise a child. The preferential redistribution is justified by the fact that

wealthier families control more business and benefit more from the living costs of a child;

e A portion p of the remaining wealth of each of the two families is donated to the new

family as start-up money (step IV in Fig. 2.9).

The total wealth and the number of families are conserved after each time-step. Numerical
calculations yield the cumulative wealth distribution in line with empirical data. For reasonable
values of p and ¢ we observe, for the upper 10% of the society, the scale-free Pareto distribution
with Pareto exponents that lie between 1.8 and 2.7 (Fig. 2.10). The Pareto tail forms relatively
quickly, usually after less than two generations. The degree-distribution of the family-network
converges also rapidly to an exponential form. Interesting correlations between wealth, connec-
tivity, and wealth of the first neighbours are revealed. Wealthiest families are linked together
and have a higher number of links compared with the poorest families. These correlations yield

new insights into the way the Pareto distribution arises in society.

2.5 Conclusions

A renewed interest in studying the distribution of income in society has emerged over the last 10
years, driven principally by the new interest of physicists in the areas of economy and sociology.

This has resulted in the development of a number of theoretical models, based on concepts of
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Figure 2.9: Schematic representation of a time-step in the Family Network Model. Circles
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Figure 2.10: Cumulative wealth distribution function obtained from the Family Network Model
(p=20.3,¢=0.7, N = 10000 and results after 10 MCS). The tail is approximated by a power-

law with exponent o = 1.80, and the initial part of the curve follows an exponential. The inset

shows this initial trend on a log-linear scale.
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statistical physics. It now seems clear that some of these models, despite their simplicity, can
reproduce key features of income distribution data.

There is still some discussion about the expressions that explain more satisfatory the low-
middle end behavior of the wealth or income distributions. The more common distributions
in the literature that try to explain this low end are the log-normal, the exponential and the
Gamma distributions. For the higher end of the distribution of wealth or income there is an
agreement about the power law behavior.

In our study we go a bit further and we try to explain the higher end of the wealth distribution
with two power laws, because we saw from Tables 2.2 and 2.3 that there are two regimes of power
law exponents. In next chapter we introduce a theory of double power laws and some mechanisms

able to reproduce the double power law in a simple model of money exchange.



Chapter 3

Double power law in wealth

distributions

3.1 Introduction

Motivated by our review of empirical data in Chapter 2, we introduce a model of wealth exchange
that produces double power laws and then we try to explain it with a theory of double power

laws.

== Normal income/wealth -# top wealthiest

Distribution of Pareto exponents
O P N W & O O N @

0 0:5 1 1.5 2 2.5 3 3.5 4
Pareto exponents

Figure 3.1: Distribution of Pareto exponents from two different sources: distributions of nor-
mal income/wealth (black) and distributions of wealth from top wealthiest lists (gray). The

exponents used in this figure were taken from Tables 2.2 and 2.3.
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We believe that the studies of income/wealth that are based on tax/income generally do not
include the very rich people, as we can see from the study of the tables of the previous chapter
and from Figure 3.1. From Figure 3.1 it seems that there is a power law exponent for millionaires
that have high income/wealth but also another power law exponent for the top billionaires as
found by studies from the top lists in magazines. This second exponent will be called ap and it is
normally lower than the first one that we call a1. A further indication of two power law regimes
is the study of Souma [23] for the income in Japan. In Figure 1 of his paper [23], Souma found
a Pareto exponent of 2.06 in the high end of the distribution of incomes for 1998. However, we
see an indication of a second power law for the top richest (higher than 3000 million yen) which
we estimate as an exponent below 1.0 based on his figure. Scarfone [95] also analysed this set
of data but with a different point of view. Scarfone “claims to see” three power law regimes in
this Figure from Souma. For Scarfone there are also other income distributions with two power
law exponents, as the case of Japan in 1975 and U.S.A. in 2000.

In his study, the distribution is said to have an ankle when oo < «a; and a knee otherwise.

In Figure 3.2, we show a sketch of an ankle and a knee.

P(x) 0z = 04 P(x) 0 <0y

X X

Figure 3.2: Sketch of a knee (left figure) and an ankle (right figure). The distribution of in-
come/wealth has a knee when as > «; where as is the power law exponent of the top billionaires

and «q is the power law exponent for the millionaires. An ankle occur when as < aj.

With the purpose of describe these distributions with only one simple analytical function,
Scarfone used the concepts of generalised exponential and logarithmic functions which we will
introduce in section 3.3.

The existence of two power law regimes has been observed in other fields such as dielectric
relaxation [96], protein folding [97], returns of S&P500 index [98, 99], linguistics [100], cosmic-
rays [101] and the value of land in Japan [102].

In the next section we introduce the expansion of Slanina model that produces double power
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laws.

3.2 Expansion of Slanina Model

The Slanina model [91] is a very simple model from the family of the Collision models presented
in section 2.4.2. In this model the agents are chosen at random and exchange some part of their
money. At every exchange process they also receive some money from outside.

The distribution of money in the stationary state gives a power law distribution for the high
end of the distribution and the solution can be treated analytically. In this sectior we expand
the Slanina model. The purpose of this is to try to create a simple collision model that will
reproduce a distribution of wealth with a double power law. Adopting the Slanina theory for the
case of a singular power law (section 2.4.2), we expand it allowing the presence of two regimes
that will have two different values for the fraction of money that agents transfer.

Our expansion of Slanina’s model is given changing the rules of equation 2.42 by making the
fraction of money exchanged by each agent, /3, a function of the money that the agent has at
that time, m (8(m)). The main conclusion that we can take from this wealth dynamic is that
a double power law arises from the difference between the percentage of money that agents put
into the society for trade. This difference can be related with different levels of fear to risk or
from some economical issues related with taxation. This results in the following update rule:

m;(t +1) _ 1+¢e—fp(m;) B(m;) mi(t) . (3.1)

m(t + 1) B(m;) 1+ €— B(m;) m;(t)
Here we consider the simplest case, i.e.:

Bm) = 81, m< n'r_n(t) B> By (3.2)
B2, m > nm(t)
If an agent has wealth higher than a threshold (n times the average wealth, m(t)), the second
parameter () will be used. The threshold adopted in these simulations is 10m(t).

For example, to simulate a society like the U.K., where two Pareto exponents exist, one for
the top earners around 3.0 and another one for the super-rich around 1.5 [92], we choose the
parameters for the percentage of money exchange, 3, and for the percentage of money injected
in the system, ¢, according to equation oo — 1 = 2ﬁ/62, i.e. f1 =0.01, B2 = 0.00125 and € = 0.1.
Figure 3.3 shows the result of our simulations.

Two distinct power laws are visible, one in the regime between m(t) and 10m(t) and another
one for wealth larger than 10m(t). The Pareto exponents are 2.51 and 1.29, respectively, and thus

differ from the prediction of equation or— 1 &~ 23/e? where we expected 3.0 and 1.25, respectively.
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Figure 3.3: Cumulative distribution of the wealth in expanded Slanina model. The values for
number of agents, time steps, realisations and percentage of wealth injected in the system (¢) are
the same as used in the simulations shown in Figure 2.8. The percentage of wealth exchanged
() if the agent has wealth smaller than 10m(t) is 0.01 and if the agent has wealth higher or
equal to 10m(t) is 0.00125. Two different Pareto exponents appear in different parts of the
distribution. One for what we call rich people is around ~ 2.5 and a second one for the top
richest is around ~ 1.3. The vertical dashed line shows the threshold that we choose for different

3 values.

However in our case, this prediction should only be taken as a first order approximation, since
we are essentially dealing with two societies (each specified by its respective 3 values) which
are interacting. Agents switch between their interaction parameters according to their relative

wealth.

3.3 Double power law from generalised functions

An analytical analysis of the double power law is necessary to explain the nature of exponents.
Following Scarfone [95], in this section we introduce a theory of double power laws.

The generalised functions arise naturally from the study of non-extensive statistical mechan-
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ics [103] where the systems are described by power law features. If the distribution of a quantity

z, p(x) is of the exponential type:
dp(z)

3wl =Aip(z) (3.3)

then the solution is p(z) = exp (—A1z). If some fractality is involved in the distribution of

quantity z:

dv
1;(;) = — )\ [p(2))? for (\; > 0 and g > 1) (3.4)
then the solution is shown to be:
p(z) = [1 = (1 = g)Aga]/( 79 (3.5)

which is also known as Tsallis distribution function or g-exponential function (exp 4(—A,z)).
This generalised exponential function recovers the normal exponential function when ¢ — 1 and
behaves as a power law for ¢ — +o00. In order to allow a second power law behaviour in this
function Tsallis et al. [97] included another term in eq. 3.4:

dp(z)
dx

= —pr [p(2)]" = (Ag = pir) [p(2)]? for (r < q) (3.6)

This function with two power law exponents was the one fitted to the different data sets refered
in the end of the introduction of this chapter. But this function cannot be used in the analysis
of many income distributions that have an ankle (a2 < aj) as it is only valid when we have a
knee (a2 > ay) [104].

Scarfone et al. [95, 105] obtained a class of two-parameter deformed logarithms and expo-
nentials, and constructed a function featuring two or more power law regimes.

A deformed logarithm or (k,r)-logarithm can be represented as:

B = ;
log {k,r} (J,) =T ———Qk (37)

which recovers the standard logarithm in the limit (k,7) — (0,0). The inverse function of this
logarithm is the deformed exponential function exp 4 »1(z). The asymptotic behaviours of both

deformed functions are:
o log (k) (z) — z"Hkl /| 2k| for £ — +o0;
o log 4, (z) — —z" Ikl /|12k| for  — 0;

1/(r£lk) for £ — +o0;

o exp (s(2) — [2ha

* &XPirslE) = L+z forz—0
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With the deformed logarithm and the deformed exponential functions, Scarfone [95] intro-

duced a quantity able to reproduce a double-power law effect:

Iy, (2) = expyr, ,r} ((11 logk, 1} (1‘)> (3-8)

where o1 denotes the set of parameters (k1,71,a;). Using this quantity Scarfone [95] creates a

function with the following construction:
f(z) =1l (exP{kg,;-z} (—-T)> = €XP(k, r1} (“1 log s} (exp{kz,m} (—33))) (3.9)

This function reduces to simple forms for some choice of parameters:

e if a; =1 then f(z) = expy, ,,} (—2);

ap @)

o if (k1,71) — (0,0) then f(z) = (exp{k,z,,.g} (—.l‘)) :

o if (ky1,71) = (ko,r2) then f(z) = €XP(k,,r} (—017).

Taking into account the asymptotic behaviour of the deformed functions, we can conclude
the following about the asymptotic behaviour of f(z):

o f(z) = 1—ayx for ayz <« 1;

o f(z) mz " forz k1<K az;

o f(z) — 7% for ayz > 1.
The slopes s; and sy are equal to 1/ (|k1| — r1) and 1/ (k2| — r2), respectively.

So this function has the double power law behaviour in the middle region, 2 < 1 < a1z and
the far region, ajz > 1. The constant a; gives approximately the width of the middle region.

Scarfone [95] simplified equation 3.9, setting the values of 71 and ra equal to zero. In this
case, the generalised logarithm is given by:

- —k

T~ = &
log (x} () =

N 310
2k ( )

and the generalised exponential:
_\ 1/k
expyyy (z) = <k,l' + v1+ A'21'2> (3.11)

so, the function f(z) is given by:

flz) = exp{kl}(al 10g{k1}(e"p{kz}(“"’))):

kv/k2 —k1/k2
[% <\/1+k‘%:1,‘2—k251)> —%<\/1+k%l‘2—k223> -
k1 /ks —k1/k27?
<\/1 + k2z2 - k'g:l:) - (Ml + k3z? — kg:v> } (3.12)

—

Il

+ W1+

~ |8,
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Scarfone also showed [95] some fits of this function to empirical data of wealth distributions.
We use this function to fit the results of the simulations of the expanded Slanina model from

section 3.2.

Using the same results of Figure 3.3 we performed a fit of this distribution using a function

of the form of equation 3.9 presented by Scarfone [95]:

P(z) = f(-Bl=[*) (3.13)

where 8 and pu are fitting parameters. Using the fitting tool from GNUPLOT software [106] we
plot the results in Figure 3.4. We find that the cumulative distribution function is indeed well

described by the proposed functional form of Scarfone.
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Figure 3.4: The same cumulative distribution of wealth as in Figure 3.3, but with a fit to the

double power law equation 3.9. The values of the fitting parameters are shown inside tie figure.

Future work should thus include the derivation of an analytical solution for our modified

Slanina model. It could profit from a trial solution as given by equation 3.9.
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3.4 Conclusions

The main success of the modified Slanina model is thus the reproduction of two power laws
regimes. We have sought to modify the Lotka Volterra approach in an attempt to model this
double power law however thus far our efforts have been unsuccessful.

As was discussed in [18], progress in understanding the details of wealth distribution is
invariably linked to obtaining data sets that encompass the entire population of a country. It
appears that at present, this information is only available for a few countries, for example Japan
(Souma [23]). Generally, the super-rich are not included in income data. Published wealth lists
are estimates, but for the moment might well remain the only public source for the information
on these top earners. We hope that analyses of the kind we have made in this section encourage
the release of more detailed income data over the entire income range. Only with more complete

datasets we would be able to properly understand these complex economic systems.



Chapter 4

Correlations of Financial data

4.1 Introduction

In this chapter we introduce the toolkits recently developed by statistical physicists, for the
analysis of financial data, including correlations. We will make use of these tools in the pro-
ceeding chapters. To illustrate the theoretical concepts we have analysed daily data from the
Thomson Datastream [107]. We created a MySQL database [108] where we upload it and we
wrote a C program to analyse different characteristics of the data.

An example of these characteristics is the nature of the returns of the price of a stock market.
For many years, economists have treated the price changes of a stock as a normal distribution,
which was the original proposal of Bachelier [5], but around the 1950s this theory was replaced
by a model in which the stock prices perform a geometric Brownian motion, i.e. the stock
prices are log-normal distributed [2]. But for a geometric Brownian motion the differences of
the logarithms of the prices, which we call logarithm return, are Gaussian distributed. And this
distribution is not able to explain the whole range of the distribution of returns, for cxample,
for the higher values of returns the distribution has fatter tails than the Gaussian distribution,
as we show in the next section when we try to fit different probability distribution functions to
the distribution of logarithm returns of a stock.

The study of correlations between stocks is very important for portfolio analysis. Even for
the common sense is known that we cannot put all the eggs in one basket, so if we are investing in
the stock market, we need to have a diversification of our portfolio to avoid higher risk of losses.
The correlations between the stocks included in our portfolio will give the weight, according
to Markovitz theory [130], of each stock for a portfolio optimisation. Another important topic
related with the correlation between stocks is the industrial classification of sectors in a market,
and the update of these lists of industrial classification in order to help the investors.

In section 4.2 we introduce the definition of returns of the price of a stock and some probabil-
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ity distribution functions that are used to ft these returns. After this, we explain the importance
of the correlations in financial data (sectim 4.3) and introduce different mechanisms to study

these correlations (sections 4.4 and 4.5).

4.2 Analysing returns

Calling the value of a time series i at time ¢ as P;(t), where for a financial time series this value
is the price of a stock ¢ at time ¢, the loz-return of a time series is defined as the difference

between the logarithms of two consecutive values:
Ri(t) =W P(t) —In Pt —1). (4.1)

The definition of logarithmic return has two purposes: firstly there is a common belief that the
price of stocks, P;(t) increases exponentially in time on average; secondly the difference between
two consecutive values is very small, so:

P(t) 1_ {1 Filt] - Bli—1)]  Et)— B - 1)

Bt — 1)J i o ) SRS S

Ri(t) = In [

i.e. the log-return has approximately the same value as the quotient return [2].

Figure 4.1 shows the evolution of the value of a time series, P;(t) in time. In this example
the value of the time series is the daily closing price of the stock of The Hongkong and Shanghai
Banking Corporation Limited (HSBC), in pounds. This company belongs to the main index in
the London Stock Exchange market, the FTSE100. The closing price is shown for the period
July 9" 1992 until March 24" 2008 (4098 market days). Figure 4.2 shows the evolution of the
logarithmic returns, R;(t) of the stock HSBC, in time.

4.2.1 Gaussian distribution

The distribution of the logarithmic returns of the price of a stock generally does not follow a
Gaussian distribution [98, 109, 110], as assumed by some economists, but as we can see from
Figure 4.3 the tails of the distribution are more enhanced than a Gaussian distribution. The
strength of the tails depends on the time scale at which returns are evaluated and scales with
time [2].

A Gaussian distribution is a distribution with two parameters, the mean (x) and the standard
deviation (). To fit this function to any distribution we will need to calculate these two
parameters of the distribution and plot the probability distribution function:

(& —p)*

1
el 4.3
——ex { - (4.3)

Plz) =
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Figure 4.1: Price of the company HSBC (Bank with the tick symbol HSBA) in time from
1992-07-09 to 2008-03-24 (4098 market days).
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Figure 4.2: Daily return of price of company HSBC (Bank with the tick symbol HSBA) in time
from 1992-07-10 to 2008-03-24 (4097 market returns).

4.2.2 T-student distribution

More appropriate distributions that will feature the fat tails are for example the T-student or

Tsallis distributions [111]. The probability distribution function of a T-student distribution is
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Figure 4.3: Distribution of returns of price of company HSBC (Bank with the tick symbol HSBA)
represented as black circles. The solid, broken and dotted lines represent fits to Gaussian, T-

student and Levy distributions, respectively. Note the log-normal scale of the plot.

given by:

- 1 —z2 /202
PA-(.T) = ‘V\,k,f:_‘_(,k k (411)
\/‘27rc7f,
where Ny is a normalisation factor:
I'(k)

N = (45)

VkD (k" — %)
and I'(k) is the Gamma function. The factor oy = o+/(k — 3/2)/k is related to the standard
deviation of the distribution (¢) and with the degree of distribution (k). The function ej is an

approximation of the exponential function called k-ezponential,

exp(z) = (1 - £>_k (4.6)

which in the limit £ — oo reduces to the ordinary exponential function. The probability distri-
bution function may be written as:

T ! oo
Py(z) = T -1 s o) {1+ Uz(gk—:})} (4.7)

The parameter k is related to the Tsallis parameter ¢ by k= 1/(q — 1).
To compute the parameters of a T-student distribution it is necessary to take into account

the fact that some moments of the distribution might not exist, i.e. diverge. Using fractional
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moments we can avoid these kind of problems. Considering the fractional moment for the
empirical distribution, my of returns,

to+7T-1
1 0

mi== S RO (48)
t=to+1

where f is a fractional number, less than the moment for which the sum diverges and R(t) is

the return. The rate of the moments
mye_
e (4.9)
myf41

can be computed and compared with the rate of moments for the analytical distribution of

returns,
M,

R = 4.10
T M A0

which is given by (see Appendix A for the derivation):

1 2(k-1) 1

Fpi= - ‘ 4.11
I~ (2k - 3)02 [ f } (2k — 3)02 St

So, it can be seen that the rate of the moments, Ry is inversely proportional to the fractional
number, f. Calculating the rate of the moments for the empirical distribution for different
fractional exponents, f, a plot of 77 versus 1/f can be used to calculate the parameters, o and

k of the T-student distribution (Fig. 4.4):

Tf :u% +b (4.12)

Using different values of the fractional number, f: % < f < 1, the values of the parameters o

and & are calculated by linear regression:

: 1
2
= 4.13
7 a+b ( )
2b—a
k = 4.14
5 (4.14)

For all the stocks of the London Stock Exchange that we studied, the minimum value of k is
1.7 and the maximum 9.0, but most of the values are between 2.0 and 4.0, which means values
of ¢ in the interval between 1.25 and 1.5, which is around the values found by Tsallis [112] (1.40,
1.37 and 1.38) for one, two and three minutes return, respectively, for the NYSE in 2001. For
example the value of k found for the HSBC data of Figure 4.3 is approximately ~ 2.90.

4.2.3 Levy distribution

Another type of distributions with fat tails that is very popular amongst the physics community

is the Levy stable distribution. Like the Gaussian distribution it is stable, i.e. when we sum
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Figure 4.4: Ratio of fractional moments () versus the inverse of the exponent f for the company
HSBC (Bank with the tick symbol HSBA) represented as black circles. The inset figure shows
the ratio for a large range of exponents f and it can be seen that the linear part is around
1/f ~ 0.5 - 2.0. In the main figure, we used values of f between 0.7 and 1.0. Calculating the
linear regression in this region we get values a and b for the line equation, ry = a(1/f) + b.
With these values we computed the parameters of the T-student distribution, o ~ 0.0177 and

k ~ 3.03.

variables from two independent stable distributions with the same exponent «, the resulting
variables will also be distributed according to a stable distribution with the same exponent
[6]. If ' and u” are distributed according to the same stable distribution and u is a linear
combination of «’ and u”:

u=cu +cou” + c3 (4.15)

there exist values of ¢4 and c5 such that cyu + ¢5 is also distributed according to the same stable
distribution.
There is no analytical expression for the probability density function of the Levy distribution.
However, the Fourier transform of its characteristic function [2] is given by:
1 +00
Liwsa,frm) = 5= [ ela)exp(~an)dg (4.16)
T J—00

and the general expression for the characteristic functions is:

exp { 11q — v|q|* {1 - '1,,'31—:5-' tan (%a)}} [ # 1]
p(q) = ; (4.17)
exp { g — v|q| [1 +107 In |q|} } [ = 1]
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where a is the exponent of the distribution, v is a normalisation factor, u is related to the mean
of the distribution and ( is related to its asymmetry. For the case a = 2 this distribution reduces
to the Gaussian distribution.

Assuming a symmetric distribution (8 = 0) centred at the origin (u = 0) we are left with

only two parameters, a and v and then the characteristic function is given by:

v(q) = exp (—7lq|”) (4.18)

As happen for the T-student distribution, some moments of the Levy distribution do not
exist, for example the second-order moment diverges for 0 < « < 2, but all the moments of
order less than o do exist and are called the fractional lower-order moments (FLOM) [113]. The

FLOM of a Levy random variable can be found from the parameters o and ~ [113]:

E(|X|P) = C(p,a)ys for 0< p < (4.19)
where
e (e5)r
C(p,a) = (4.20)

oAl (-3)
So, computing the FLOM of the distribution of returns give us the values for the parameters
a and 3 for each time series. For a practical computation of these parameters we proceed as
follows.

The log-price can be assumed to be composed of two terms, a drift term D and a fluctuation

term that follows a Levy distribution [114],
In P;(t) = Dt + ~L(t) (4.21)

where v is the dispersion of the fluctuations and L(t) is a random variable from a stable distribu-
tion with dispersion t and exponent «. In Fig. 4.5 we represent the log-price of the stock HSBC
in time with the correspondent drift calculated from a linear regression. The drift adjusted

prices, Pi(t) are calculated as:
In P;(t) = In P,(t) — Dt — In P;(0) = yL(t) — In P;(0), (4.22)

where P;(0) is the price at t = 0.
Using the fact that a Levy process is homogeneous in time [114] the log-return of the drift
adjusted price can be represented by stable variables as:
Py(t + 6t)
Pi(t)

In = In P;(t + 6t) — In P;(t) = v [L(t + &t) — L(t)] = vL(6t) (4.23)
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Figure 4.5: Log-price of the company HSBC (Bank with the tick symbol HSBA) in time from
1992-07-09 to 2008-03-24 (4098 market days) in solid line and the respective drift, calculated

from the linear regression, in broken line.

Calculating the FLOM for the log-return of the drift adjusted price for a constant value of p < «

and for variable values of §¢ we can estimate the moments of the distribution:
T p

myp(8t) = %Z In = E (JvL(6t)|P) (4.24)
=1

By(t + 6t)
Pi(t)

where EY(...) is the expected value of the fractional moment and from equation 4.19 is given by
[113]:

E (IyL(8t)]") = +7E (IL(61)[") = v*C(p, )6t = (4.25)

From this equation we can see that the logarithm of E(...) is proportional to the logarithm of
ot:
In[E (|[yL(6t)|P)] = plny+InC + P Inst (4.26)
o

and so if we plot the moments of the returns, m,(dt) versus 0t we obtain an estimation of the

values of a and v (Figure 4.6). The linear equation for the moments is given by:
In [m,(dt)] = alndt +b (4.27)
where a is the slope of the curve and b the interception with the y-axis.

@ = L (4.28)
a

y = Crexp [g] (4.29)
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In Fig. 4.6, we represent the moments, m,(dt) versus ot and the linear regression that give the
estimated values of a and vy parameters of the Levy distribution for the returns of HSBC. For a
value of p equal to 1.1 the value estimated for a is around 1.97 and for + it is around 0.01. If we
increase the value of p the values estimated for « and + also increase, sometimes even reaching

values of « that are not expected for a Levy stable distribution. This value of « is in agreement

(8t)]

a, -3.

In [m

In &t

Figure 4.6: Fractional moments of the returns of company HSBC (Bank with the tick symbol
HSBA) versus dt represented as black circles and the respective linear regression represented as

a solid line.

with the values expected for a Levy stable distribution (a < 2.0). The values of a and v were
used to produce the Levy fit to the distribution of returns of HSBC in Fig. 4.3. For the returns
of HSBC the fit of a Levy distribution appears very similar to the fit of a Gaussian distribution,
probably because the o parameter is almost equal to 2.0, so we can conclude that the best fit for
this particular set of data is the one performed with a T-student distribution. For other stocks
this is not the case, performing the same method to estimate the values of the parameters for
other stocks we can see that some values of a are outside the permitted region of a < 2 and the
smallest value of a is equal to 1.74. In Table 4.1 we show all the values used to fit the three

probability distribution functions presented before.
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Table 4.1: Name, symbol and values used to fit the three probability distribution functions to
the distribution of logarithm returns: pg and og for Gaussian; kp and op for T-Student; af,
and vy, for Levy. The stocks presented here belong to a portfolio of 85 stocks from the FTSE100

index with time series length of 2146 days.

[ Name | Symbol I [%e} I oG I kr I or l ag, [ 'yL—‘
31 GROUP II1.L 0.000 0.02 | 2.90 | 0.02 | 2.08 | 0.01
ALLIANCE & LEICESTER AL.L 0.000 0.02 | 2.07 | 0.02 | 2.20 | 0.01
ALLIANCE TRUST ATST.L 0.000 0.01 | 3.22 | 0.01 | 2.12 | 0.01
AMEC AMEC.L | 0.000 0.02 | 3.00 | 0.02 | 1.74 | 0.01
ANGLO AMERICAN AAL.L 0.000 0.02 | 5.45 | 0.02 | 2.27 | 0.02
ANTOFAGASTA ANTO.L | 0.001 0.02 | 3.18 | 0.02 | 2.14 | 0.02
ASSOCIATED BRIT.FOODS ABF.L 0.000 0.02 [ 271 [.0.02 | 221 | 0.01
ASTRAZENECA AZN.L 0.000 0.02 | 3.08 | 0.02 | 2.11 | 0.01
AVIVA AV.L 0.000 0.02 | 297 | 10.02 | 2.37 | 0.02
BAE SYSTEMS BA.L 0.000 0.02 | 2.64 | 0.02 | 1.90 | 0.01
BARCLAYS BARC.L | 0.000 0.02 | 3.30 | 0.02 | 2.42 | 0.02
BG GROUP BG.L 0.001 0.02 | 6.38 | 0.02 | 2.51 | 0.02
BHP BILLITON BLT.L 0.001 0.02 | 592 | 0.02 | 2.25 | 0.02
BP BP.L 0.000 0.02 | 7.21 | 0.02 | 2.66 | 0.02
BRITISH AIRWAYS BAY.L 0.000 0.03 | 3.59 | 0.03 | 1.86 | 0.02
BRITISH AMERICAN TOBACCO | BATS.L 0.001 0.02 | 2.67 | 0.02 | 2.86 | 0.02
BRITISH LAND BLND.L | 0.000 0.02 | 3.80 | 0.02 | 2.05 | 0.01
BRITISH SKY BCAST.GROUP BSY.L 0.000 0.02 | 2.39 | 0.02 | 2.19 | 0.02
BT GROUP BT-A.L -0.001 | 0.02 | 2.97 | 0.02 | 2.24 | 0.02
BUNZL BNZL.L 0.000 0.01 | 3.92 | 0.01 | 2.09 | 0.01
CABLE & WIRELESS CW.L -0.001 | 0.03 | 2.10 | 0.03 | 1.75 | 0.01
CADBURY CBRY.L | 0.000 0.02 | 3.78 | 0.02 | 2.19 | 0.01
CAIRN ENERGY CNE.L 0.001 0.02 | 2.28 | 0.03 | 1.90 | 0.01
CAPITA GROUP CPI.L 0.000 0.02 | 2.50 | 0.03 | 2.42 | 0.02
CENTRICA CNA.L 0.000 0.02 | 435 { 0.02 | 2.36 | 0.01
COBHAM COB.L 0.000 0.01 | 3.68 | 0.02 | 2.57 | 0.02
DIAGEO DGE.L 0.000 0.02 | 2.76 | 0.02 | 2.49 | 0.01
ENTERPRISE INNS ETIL 0.001 0.02 | 3.15 | 0.02 | 1.83 | 0.01
FIRST GROUP FGP.L 0.000 0.02 | 245 | 0.02 | 1.94 | 0.01
G4S GFS.L 0.000 0.02 | 3.11 | 0.02 | 2.15 | 0.02

Continue on next page
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— continue from the previous page

F Name I Symbol I nG I oG I kT | or [ ap, I YL J
GLAXOSMITHKLINE GSK.L 0.000 0.02 | 5.10 0.02 | 2.63 | 0.02
HAMMERSON HMSO.L | 0.000 0.02 | 3.55 0.02 | 2.13 | 0.01
HBOS HBOS.L 0.000 0.02 | 2.69 0.02 | 2.46 | 0.02
HOME RETAIL GROUP HOME.L | 0.000 0.02 | 3.02 0.02 | 2.20 | 0.01
HSBC HDG. (ORD $0.50) HSBA.L 0.000 0.01 | 2.74 0.02 | 2.16 | 0.01
ICAP IAP.L 0.001 0:.02 | 2.756 0.02 | 1.98 | 0.01
IMPERIAL TOBACCO GP. IMT.L 0.001 0.02 | 3.14 0.02 | 2.66 | 0.02
INTERNATIONAL POWER IPR.L 0.000 0.02 | 4.18 0.02 | 1.79 | 0.01
ITV ITV.L -0.001 | 0.03 | 5.47 0.03 | 2.15 | 0.02
JOHNSON MATTHEY JMAT.L 0.000 0.02 | 3.37 0.02 | 2.34 | 0.01
KINGFISHER KGF.L -0.001 | 0.02 | 3.08 0.02 | 2.15 | 0.02
LAND SECURITIES GROUP LAND.L 0.000 0.01 | 4.21 0.01 | 2.05 | 0.01
LEGAL & GENERAL LGEN.L 0.000 0.02 | 15.77 | 0.02 | 2.31 | 0.02
LIBERTY INTL. LII.L 0.000 0.01 | 2.84 0.01 | 2.08 | 0.01
LLOYDS TSB GROUP LLOY.L 0.000 0.02; | 2.77 0.02 | 2.55 | 0.02
LONMIN LMI.L 0.001 0.02 | 3.49 0.02 | 2.05 | 0.02
MAN GROUP EMG.L 0.001 0.02 | 3.65 0.02 | 2.04 | 0.01
MARKS & SPENCER GROUP | MKS.L 0.000 0.02 | 2.63 0:02-| 1.90 | 0.01
MORRISON(WM)SPMKTS. MRW.L 0.000 0.02 | 3.71 0.02 | 2.15 | 0.01
NATIONAL GRID NG.L 0.000 0.01 | 3.93 0.01 | 2.32 | 0.01
NEXT NXT.L 0.000 0.02 | 2.67 0.02 | 1.99 | 0.01

- OLD MUTUAL OML.L 0.000 0.02 | 4.66 0.02 | 2.14 | 0.02

_PEARS()N PSON.L 0.000 0.02 | 2.46 0.02 | 2.35 | 0.02

_-PERSII\'IMON PSN.L 0.000 0.02 | 4.49 0.02 | 2.01 | 0.01
PRUDENTIAL PRU.L 0.000 0.02 | 2.96 0.02 | 2.35 | 0.02

| RECKITT BENCKISER RB.L 0.001 0.02 | 2.79 0.02 | 2.85 | 0.02
REED ELSEVIER REL.L 0.000 0.02 | 2.88 0.02 | 2.83 | 0.02
REXAM REX.L 0.000 0.02 | 2.74 0.02 | 2.35 | 0.01
RIO TINTO RIO.L 0.001 0.02 | 5.43 0.02 | 2.29 | 0.02
ROLLS-ROYCE GROUP RR.L 0.000 0.02 | 2.99 0.02 | 1.89 | 0.01
ROYAL & SUN ALL.IN. RSA.L -0.001 | 0.03 | 2.96 0.03 | 1.81 | 0.01
ROYAL BANK OF SCTL.GP. RBS.L 0.000 0.02 | 2.61 0.02 | 2.28 | 0.02
ROYAL DUTCH SHELL B RDSB.L 0.000 0.02 | 4.37 0.02 | 2.70 | 0.02
SABMILLER SAB.L 0.000 0.02 | 3.57 0.02 | 2.07 | 0.01
SAGE GROUP SGE.L -0.001 | 0.03 | 2.72 0.03 | 2.23 | 0.02
SAINSBURY (J) SBRY.L 0.000 0.02 | 2.48 0.02 | 2.09 | 0.01
SCHRODERS SDR.L 0.000 0.03 | 3.06 0.03 | 1.89 | 0.01
SCHRODERS NV SDRC.L 0.000 0.03 | 2.69 0.03 | 1.99 | 0.01

Continue on next page
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| Name Symbol I nG l oG I kr I or I ap, I YL, |
SCOT.& SOUTHERN ENERGY | SSE.L 0.000 | 0.01 4.48 | 0.01 2.84 0.01
SEVERN TRENT SVT.L 0.000 | 0.01 3.50 | 0.02 | 2.80 | 0.02
SHIRE SHP.L 0.000 | 0.03 | 2.16 | 0.03 | 2.00 | 0.02
SMITH & NEPHEW SN.L 0.001 | 0.02 | 3.34 | 0.02 | 2.15 | 0.01
SMITHS GROUP SMIN.L 0.000 | 0.02 | 2.87 | 0.02 | 2.11 | 0.01
STANDARD CHARTERED STAN.L | 0.000 | 0.02 | 3.38 | 0.02 | 2.59 | 0.02
TATE & LYLE TATE.L | 0.000 | 0.02 | 2.22 | 0.02 | 1.75 | 0.01
TESCO TSCO.L | 0.000 | 0.02 | 6.51 | 0.02 | 2.25 | 0.01
THOMSON REUTERS TRIL.L 0.000 | 0.03 | 2.44 | 0.03 1.83 | 0.01
TUI TRAVEL PTL 0.000 | 0.02 | 3.43 | 0.02 | 2.09 | 0.02
TULLOW OIL TLW.L 0.001 0.02 | 4.56 | 0.03 | 2.09 | 0.02
UNILEVER (UK) ULVR.L | 0.000 | 0.02 | 3.06 | 0.02 | 2.52 | 0.02
UNITED UTILITIES UU.L 0.000 | 0.01 | 3.55 | 0.01 | 2.79 | 0.01
VODAFONE GROUP VOD.L 0.000 | 0.02 | 4.43 | 0.02 | 2.16 | 0.02
WHITBREAD WTB.L 0.000 [ 0.02 | 3.23 | 0.02 1.95 | 0.01
WOLSELEY WOS.L 0.000 | 0.02 | 3.27 | 0.02 1.94 0.01
WPP GROUP WPP.L 0.000 | 0.02 | 3.22 | 0.02 | 2.35 | 0.02

In Figure 4.7 we plot the distribution of the values of a parameter from the Lévy distribution.
We can see that most of the values are higher than 2.0 which contradicts the Lévy theory. This
fact helps us in our conclusion that the T-student distribution is a better fit for this portfolio of

stocks.
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Figure 4.7: Distribution of a values from the Lévy distribution for a portfolio of 85 different
stocks of the FTSE100. This values were taken from table 4.1. Most of the values are higher

than 2.0 which contradicts the Lévy theory.
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4.3 The correlation of time series

During the past decade, many physicists have used techniques of statistical physics and complex-
ity to study financial problems. In particular the concept of networks proved valuable, whereby
the networks are set up to represent correlations between stocks. Studying the characteristics
of these networks can prove very valuable for portfolio optimisation [48, 115].

A challenging problem is the nature of a stock time series and, in particular, the ature of
their randomness [45, 47, 48]. Recently the theory of random matrices has proved helpful to
characterise the time series [38, 39]. In this section we introduce the concepts of a minimal
spanning tree (MST) proposed by Mantegna [43] and some issues of random matrix theory
(RMT) studied by Mehta [37] to examine the correlations between time series.

Important information about financial data is obtained by studying the eigensystem of the
correlation matrix. In particular the spectrum of eigenvalues differs markedly from the one for
random matrices [41, 42].

To analyse the correlations between time series, we computed the correlation coefficient, p;;
for the time series of log-returns R; and R; (see equation 4.1):

= (R~ (RI(R)
R - (R2) () - (R12)

(4.30)

where:
1 to+T-1

(RRj) = > RO
t=to+1
to+7T-1

(R) = == > Rilt (431)

t=to+1

and tg and 7" are the first time and length of the time series, respectively. Since the first value
of the time series of log-returns is R;(tp+ 1), which means that has one less value than the time
series of values, the sum is divided by 7' — 1. Each time series of log-returns can be normalised

by subtracting the mean, (R;) and dividing by the standard deviation, y/(R?) — (R;)?:

~ R;(t) — (R;)

Ri(t) = (4.32)
(R2) — (Ry)?
for every time t =tg+1,...,t9p + 717 — 1. The correlation coeflicient can then be written as:
g T 1 to+7T-1 - )
pij = (RiRj) = T-1 Z Ri(t)R;(2) (4.33)
t=to+1

This coefficient can vary between —1 < p;; < 1, where —1 corresponds to a completely anti-

correlated time series and +1 to a completely correlated time series. If p;; = 0, the time series 4




and j are uncorrelated. The coefficients for all the pairs of time series form a symmetric matrix
with diagonal elements equal to unity. The correlation matrix with elements p;; can then be

represented in matrix form as:

C= %GG” (4.34)

where G represents the matrix with elements R;(t). The size of this matrix depends on the
number, N and length, 7" of the time series. So, it will be an N x (7" — 1) matrix. The matrix
GT™ denotes the transpose of G.

The distribution of correlation coefficients is an important aspect of our study because one
can show how the changes in time of the moments of this distribution are related with each other.
Following Onnela et al. [48, 53], we analysed the moments of the distribution of correlations

coefficients in time. The first moment is the mean correlation:

2

7= W_—I)Zp;j (4.35)
1<)
Other moments are similarly defined, the variance:
A £ p)? (4.36)
/Q—WZ(/)U—/’)~ .
1<)
the skewness:
2 i i
Ag = ————n Z(/)j,j ~ 7P, (4.37)

NN ~-1)X" iz

and the kurtosis:

M=o 3 (o~ ) (4.38)

N(N —1)A3 o

Just the elements of the upper triangle of the matrix are used to compute the matrix, because
it is a symmetric matrix with diagonal elements equal to unity. If we divide our time series
in small windows and we move these windows in small steps, we create different correlation
matrices. If we compute the moments of each of these matrices, we can study these moments
in time. Evaluation of these moments for time windows of width 7" reveals the dynamics of the
time series. The higher moments explain how the variance of correlation coefficients increase or
decrease and how the skewness and kurtosis of the distribution changes.

The decomposition of the matrix C in terms of eigenvalues and eigenvectors can be repre-

sented as:

C=upu-! (4.39)
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where D is a diagonal matrix with the eigenvalues, \; as elements:

A 0 - 0
0 X --- 0
D= e . (4.40)
I | R
The matrix U is a matrix of the eigenvectors, u*:
up up!
1 2 N
u; U5 o u
D Il (4.41)
uke W v uy

A.

where u is the i** element of the eigenvector k. The matrix U~! is the inverse of U.

4.4 Random Matrix Theory

If we study the eigensystem of a matrix we can search some conclusions about the origins of
that matrix. In our case, if we analyse the correlation matrix we can obtain further information
in the time series from which it originated. Is known that the distribution of eigenvalues of a

random matrix is well characterised [116]. If the random matrix is defined as:

1 r
C = FG’G’T (4.42)

where G’ represents a N x 7" matrix with independent and identically distributed elements, the
distribution of eigenvalues can be calculated analytically. In the limit N — oo and 7" — oo,
where @Q = T'/N is fixed and bigger than 1, the probability density function of the N eigenvalues,

A of the random matrix is:

)\n T A)(A - /\7 i
Prag(3) = 2 Y Phmaz = N0~ A (4.43)
2w A
where
1 \2
=11+ — 4.44)
L ( 7) (

limits the interval where the probability density function is different from zero.

We define the spectrum of eigenvalues as all the values of eigenvalues from a matrix and the
distribution of eigenvalues as the distribution of these spectrum. The spectrum of eigenvalues,
will be confine to same limits.

One characteristic eigenvalue is the one with the highest value. For the study of correlations

between stock prices, the eigenvector related with the highest eigenvalue has all his elements




with the same sign and is interpreted as the influence of the entire market that is common for
all stocks [41]. This value depends on the portfolio studied, this can be related with the size of
the portfolio and also with the mean correlation. More correlated portfolios will have a higher

value for the highest eigenvalue.

4.4.1 Inverse Participation Ratio

The information contained in the eigenvalues is retrieved by looking at the corresponding eigen-
vectors. A quantitative factor calculated from the eigenvectors is the Inverse Participation Ratio
(IPR) [42]. The IPR of an eigenvector u* is given by:

N

4
k — k =
e — Z {u,-] (4.45)
1=1
where uf-" is the i"" element of the eigenvector k. This quantity has two limits, one when all

the elements of the eigenvector have the same value (I* — 1/v/N) and another one when one

element has value one and all other elements are zero (I¥ — 1).

4.4.2 Mean Value of Eigenvectors

Studying the elements of each eigenvector, we can determine which stocks contribute more to
each eigenvector and also if there is a common market or industrial sector in these eigenvectors
that contributes more. To study the influence of groups of stocks in each eigenvector, we group
our stocks in markets and industrial sectors. We compute the mean value and variance for each
market/industrial sector. The mean value of eigenvector k, for a group of stocks of market m

and sector s is given by:

i
k k
A Yl 4.46
<” >n N —
¥ {EMm €S

where 'u,f’ is again the i!" element of the eigenvector k, M,, represents the market m, Sg represents
the sector s and V,, s is the number of stocks that belong to sector s of market m. The symbol
() represents the mean over the elements that belong to market m and sector s. The

respective variance of elements of market m and sector s is given by:

<[“kr>m,s R <“A>2 - ]Vl >, <“" - <M’“>W>2 (4.47)

1€EMm i€Ss

4.5 Minimum Spanning Trees

Another way to study the correlation of time series is to create a matrix of distances between time

series from the correlation coefficients. With this matrix of distances we can create a network
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where each node represents a time series and links between nodes represent the distances between
pairs of the time series. If two time series are highly correlated, the distance between them is

small. The network that we use to study these properties is the Minimum Spanning Tree (MST).

4.5.1 Distances

The metric distance, introduced by Mantegna [43], is determined from a function of the kuclidean

5 el e s R . B . S S i
distance between vectors, d;; = ﬁHL — R;|, where R; represents a vector for time series i
with 7' — 1 elements R;(t) for ¢ from ty+1 to to+ 7 — 1. Taking in consideration that the vector
R, is normalised, but it is not unitary |R;| = VT — 1 it follows that:

1
T-1

Rt - G et i (4.48)

1
d* = !
H T—1| 4 T-1

! e Ul o
R, - R;*= ——|Ri|*+
This relates the distance between two time series to their correlation coefficient:

dij = \/2(1 — piz) (4.49)

This distance varies between 0 < d;; < 2, where small values imply strong correlations between
time series. A distance matrix D with elements d;; is formed. Following the procedure of
Mantegna [43], this distance matrix can be used to construct a network with the essential
information of the time series.

The Minimum Spanning Tree is a sub-network of a major network. If we consider the
network as all the V(N — 1)/2 links possible between all time series, a Minimum Spanning Tree
is a sub-network of this network with only N — 1 links from the N(N —1)/2. The N —1 links are
chosen to minimise the total length of the network taking in consideration that all the N nodes
will be connected to the network and that no loops will occur during the construction of the
network. If the distances, d;; are unique, there is only one Minimum Spanning Tree. To chose
the N — 1 links for the MST many algorithms can be used, one of them is the Prim’s algorithm

[117]. The Prim’s algorithm is given by the following steps:

1. Choose the minimum distance of the matrix D, dg;.i,” and connect the nodes i’ and j' with

a link;
2. Choose the next minimum distance of the matrix (for example dg/);

e If one of the nodes k' or I’ has a link and the other not, connect the nodes k' and
" with a link and continue to 2);

o If k" and I’ both have a link, don’t connect them and continue to 2);

e If k' and !’ both don’t have a link, don’t connect them and continue to 2);




o8

3. After choosing N — 1 pairs and connecting all of them, a Minimum Spanning Tree is

created.

Figure 4.8: Schematic representation of the Prim’s algorithm. A simple network with 5 nodes
and 10 possible links. The number in each link represents the distance between pairs of nodes.
Starting by choosing the minimum distance (0.1), we add a link to the nodes related with this
distance. Choosing the next minimum distance (0.2), and checking the conditions of the pair,
we can see that both nodes don’t have a link, so we continue to the next minimum distance.
And so on, until we choose 4 links and we have a fully connected network without loops, that

we call Minimum Spanning Tree.

To visualise the Minimum Spanning Tree we used the Pajek software [118]. This software
uses the Kamada-Kawai algorithm [119] to display the links and nodes. The algorithm introduces
a dynamic system in which every two nodes are connected by a “spring” with the respective
distance between two time series. The optimal layout of vertices is when the total spring energy
is minimal.

With the distances from the Minimum Spanning Tree, we studied the distribution of distances
in the network and the main moments (sections 5.5, 5.7 and 6.3), as the mean or normalised
tree length:

L= ﬁ ge:e dij (4.50)

where © represents the set of distances that belong to the Minimum Spanning Tree. The other
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moments are the variance:

PR Y (dij — L), (4.51)

the skewness:
Gy Z i — L), (4.52)

and the kurtosis:

1 4
- § i — . 4.53
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Again we can divide our time series in small windows and move those windows in small steps,
creating different Minimum Spanning Trees. If we compute the moments of each MST, we can

study these moments in time.

4.5.2 Mean Occupation Layer

Changes in the density, or spread, of the Minimum Spanning Tree can be examined through

calculation of the mean occupation layer, as defined by Onnela et al. [48]:

(t, v, )— ZL v; (4.54)
1:1

where L(v!) denotes the level of a node, or vertex, v

in relation to the central node, whose level
is defined as zero. The level of one node is the minimum number of links that separate that
node with the central node.

The central node can be defined as the node with the highest number of links or as the node
with the highest sum of correlations of its links. Both criteria produce similar results. When we

perform a time analysis, the mean occupation layer can then be calculated using either a fixed

central node for all windows, or with a continuously updated node.

4.5.3 Single and Multi Step Survival Rates

The robustness of links over time can be examined by calculating survival ratios of links, or
edges in successive MST. The single-step survival ratio is the fraction of links found in two

consecutive MST in common at times ¢ — 1 and ¢ and is defined by Onnela et al. [48] as:
1
o(t) = ——IIE(t)ﬂE(tf 1)] (4.55)

where E(t) is the set of edges of the MST at time ¢, N is the intersection operator, and |- - - |
gives the number of elements in the set. A multi-step survival ratio can be used to study the

longer-term evolution [48]:

oy —1_I|E(t) NE(#-1)---Et—k+1)NE(t k)| (4.56)
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in which only the connections that continue for the entire period without any interruption are

counted.

4.6 Outline of Chapters 5, 6, 7 and 8

In this chapter we saw how difficult is to conclude which probability distribution function better
represents the distribution of returns, but the best fit seems to be given by the T-student
distribution. One of the reasons for our conclusion is the amount of values higher than 2.0 for
the a parameter of the Lévy distribution.

We also introduced some techniques used to better understand some properties of the port-
folios studied. In the next chapters we will show the results for different portfolios. In Table 4.2

we represent each portfolio of stocks that we study further.

Table 4.2: Index, number of time series (INV), date period, time series length (7') and chapter

where those portfolios are studied.

| Index | N| date period | T | Chapter |
FTSE100 67 | August 2@ 1996 - June 27" 2005 2322 days | 5
85 | January 37¢ 2000 - March 24" 2008 | 2146 days | 5, 7 and 8
MSCI indices 44 | January 8" 1997 - February 1% 2006 | 475 weeks | 6
Stock market indices | 9 | January 8" 1997 - February 1% 2006 | 475 weeks | 6
56 | January 3" 2000 - March 24" 2008 | 2146 days | 6
DJIA 30 | January 37 2000 - March 24" 2008 | 2146 days | 7 and 8
CAC40 34 | January 3"¢ 2000 - March 24" 2008 | 2146 days | 8
BEL20 17 | January 3" 2000 - March 24" 2008 | 2146 days | 8
AEX 21 | January 37¢ 2000 - March 24** 2008 | 2146 days | 8

We start with the analysis of a portfolio of stocks from only one market. The first study is
of 67 stocks from the FTSE100, in Chapter 5, and then in the same chapter we also study a
bigger portfolio of 85 stocks from the FTSE100. We conclude that the stocks group in terms of
industrial sectors for both portfolios. The same conclusion is given for a portfolio of 30 stocks of
DJIA index in Chapter 7. In Chapter 6 we analyse two portfolios of indices, first a portfolio of 53
indices, 44 MSCI indices and 9 stock market indices, and second a portfolio of 56 stock market
indices. For both portfolios we concluded that the indices grouped in terms of geographical
location. The next step was to analyse how the stocks from different stock market will group, if
in terms of industrial sectors of in terms of geographical location. First we analyse a portfolio of

stocks from the two best known indices in the world, FTSE100 and DJIA, in Chapter 7, then,
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in Chapter 8, we analyse a portfolio of stocks from three different indices, FTSE100, DJIA and
CAC40. We choose these indices, because two of them come from the previous study in Chapter
7 and the third one is the central index of the study of Chapter 6. Because these study of these
three indices main have some time-mismatch we also study a portfolio of three different indices

with the same geographical location, CAC40, BEL20 and AEX, in Chapter 8.
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Chapter 5

FTSE Analysis

5.1 Introduction

Our main goal is to detect any underlying structure of a portfolio, such as clustering, or identi-
fication of key stocks. We start by computing the correlation coefficient between the time series
of log-returns of pairs of stocks. From these correlations we can compute a distance, for each
pair, which is used for the construction of a network with links between stocks. This network
is called the minimal spanning tree (MST). For some portfolios, this MST shows clustering of
stocks in terms of industrial sector. In this chapter, we will show that the stocks from the main
index of the FTSE100 follow this behaviour and cluster in terms of industrial sector with the
stocks from the financial sector to be the backbone of the tree.

The distribution of the coefficients of the correlation matrix and the moments of this distri-
bution are studied in this chapter. The main achieve here is the evolution of these values in time
and some insights about how the correlations between stocks change for different time periods.

We also analyse the eigensystem of the correlation matrix. The higher values of the eigenval-
ues, and their corresponding eigenvectors show information about the portfolio that we studied.
For example, the eigenvector related with the highest eigenvalue shows all the elements with
the same sign. This eigenvalue is known to be related with the index of the market. The other
eigenvectors related with highest eigenvalues show some segregation between stocks from dif-
ferent industrial sectors. For example, for some eigenvectors there is elements of one industrial
sector with one sign and all the other elements with the opposite sign or also there is a bid
discrepancy of the magnitudes of some elements that belong to the same industrial sector.

In this chapter we introduce a random model to simulate time series of stocks and compare
the results of this random model with the ones from the real data.

We choose the stocks from the FTSE100 index, because this is one of the most popular indices

among investors and it is the main index in U.K. The 100 most highly capitalised companies
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in the U.K. that comprise the London Stock Exchange main index, the FTSE100, represent
approximately 80% of the U.K. market [120]. The first portfolio found to start our study of
financial data [51] comprise the daily closing price of 67 stocks over a period of almost 9 years,
starting in August 27¢ 1996 until June 27" 2005, which equals 2322 trading days per stock (list

of stocks in Appendix B).

5.2 Analysis of a global portfolio of 67 stocks from FTSE100

Starting with the analysis of the correlations of the 67 stocks, p;; (eq. 4.30) has values between
—1 and +1 for the 67 x 67 entries of the correlation matrix. The values of the elements in the
diagonal of the matrix are one, and the elements in the upper triangle of the matrix mirror the
ones in the lower triangle. So taking into account just the elements of one of these triangles
(67 x 66/2 different elements), we can compute the distribution of coefficients of the correlation
matrix (Figure 5.1). The distribution of these coeflicients is not symmetric, has a mean different
from zero and changes according to the size of the time series chosen as we show in secticn 5.4.
If we shuffle a time series of stocks, where we change the value of the price of stock 7 at time
t with the value at time ¢’ for all times, we create a new time series with the same probability
distribution of returns but with a different evolution in time. The shuffling algorithm is done as

follows:

e For a time series ¢ we pick two random times ¢ and ¢’ where the values of the price are

Pi(t) and P;(t'), respectively;
e We give the value P;(t') to the new value of the price at time t and vice-versa;
e We perform this change for many pairs of times (10%) for all the time series.

Shuflling the time series of the stocks, the correlation over time is destroyed and the value of
the correlation coefficient between different time series decreases, as seen in Figure 5.1, where the
dashed line shows a symmetric distribution with mean zero for the coefficients of the correlation
matrix.

The eigensystem of the correlation matrix, C (eq. 4.34) is computed and the distribution of
the 67 eigenvalues, Prqq(A) is shown in Figure 5.2.

The analytical spectrum of eigenvalues of a random matrix, Pras(A) can be calculated using
equation 4.43. For 67 stocks with 2322 days each, the value of @) in equation 4.43 is equal to
34.6, where N is the number of stocks and 7" the size of the time series minus one (taking into

account the number of returns and not the number of prices of the stocks). In Figure 5.2 we
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Figure 5.1: The solid line shows the distribution of coefficients of correlations p;; between 67
stocks of the FTSE100 for the overall time series of 2322 days. The dashed line shows the
distribution of coefficients of correlations between the same 67 stocks of the FTSE100, but after
shuffling the time series. The correlations have now been destroyed, resulting in a symmetric

distribution with mean zero.

see that some of the eigenvalues of matrix C stay outside the region predicted by the random
matrix theory.

Studying the eigensystem of the correlation matrix constructed after shuffling the time series,
Cqp we can also compare the spectrum of eigenvalues, Ps,(A) with the analytical spectrum of the
eigenvalues of a random matrix, Pras(A) as shown in Figure 5.3. All the eigenvalues from the
matrix constructed after shuffling the time series stay inside the region predicted by the random
matrix theory, showing that by maintaining the distribution of returns for the time series, but
breaking the correlations between stocks, the financial information that is supposed to appear
in the higher eigenvalues is gone.

The eigenvalues can be sorted by value from the smallest, A1, to the highest one, Ag7. There
are five eigenvalues that stay outside the region predicted by random matrix, Ag7, Aes, A65, 64
and Ag3. The respective value of each one of these eigenvalues is: 14.58, 3,40, 1.62, 1.54 and

1.47. These eigenvalues can be studied by looking at the respective eigenvectors. For example,
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Figure 5.2: Spectrum of the 67 eigenvalues of correlation matrix of FTSE100 portfolio, Preqi())

compared with the analytical spectrum of eigenvalues of a random matrix in bold, Prps(\).

the eigenvector that corresponds to the largest eigenvalue, Ag7, is shown in Figure 5.4 and it can
be seen that all 67 elements have positive sign. In accordance with the Industry Classification
Benchmark [121] as listed in table B.1 of Appendix B the elements are divided into different
industrial sectors, each sector represented by a different colour.

The largest eigenvalue, A\g7 can be interpreted as the collective response of the market to any
external factors. Some authors [41, 42] link it to the market index. Comparing the actual index
of the market with the projection of the time series in the eigenvector related to the largest
eigenvalue can be helpful to understand how similar these two quantities are. The projection of
the time series in the largest eigenvector, u%7 is given by:

67
R(t) = ) ufTRi(t) (5.1)
i=1
where the elements of the eigenvector are identified as u$” and R;(t) is the return of stock i
at time t. This quantity is a weighted average of the returns of each stocks and we call it the
market mode.

Computing the correlation between the actual index of the market and the market mode, it
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Figure 5.3: Spectrum of the 67 eigenvalues of correlation matrix of FTSE100 portfolio calculated
after shuffling the time series, Py, () compared with the analytical spectrum of eigenvalues of a
random matrix in bold, Pgras(A). Note that some eigenvalues of the correlation matrix are much

larger than predicted by random matrix theory.

can be seen in Figure 5.5 that these two quantities are strongly related with each other with a
high value for correlation of 0.95.

The 67 elements of the eigenvector, u%® belonging to the second highest eigenvalue, Ags, are
shown in Figure 5.6. For this case not all the stocks follow the same trend (sign), some stocks
have positive values and others negative ones, but it can be seen that most stocks from the
same industrial sector follow the same trend. For example, for the second highest eigenvalue,
Aes, all the stocks from the Consumer goods sector have the same positive sign as the ones
from Oil and Gas and Utilities. The stocks from Telecommunications have all negative sign.
For the third highest eigenvalue, Ags, all the stocks from Oil and Gas and Telecommunications
have positive sign and all the stocks from Basic materials and Consumer services have negative
sign. For the fourth highest eigenvalue, \gq, all the stocks from Basic materials have positive
sign and all the stocks from Oil and Gas, Telecommunications and Utilities have negacive sign.
There are some cases where stocks from the same industrial sector follow different trends, but

it can be easily seen that they belong to different supersectors according to ICB [121], and so
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Figure 5.4: The 67 elements u®7, for i = 1,...,67, of the eigenvector related with the highest

i

eigenvalue, \g7 of the correlation matrix C.

the segregation is made at the level of supersectors and not sectors. For example, for the second
highest eigenvalue, Agg there are 9 stocks from the Consumer services sector with positive sign
and 9 with negative sign. All the stocks with negative sign belong to the supersectors Media
and Travel and Leisure, apart from one that belongs to the Retail supersector which is the main
supersector of the stocks with positive sign. The only exception for the stocks with positive sign

is a stock from the Travel and Leisure supersector.

5.3 Minimal Spanning Trees

For a topological view of the market we plot the MST with all the nodes (stocks) and links
between them (distances). We have studied two different classifications. First we consider the
old classification for the London Exchange FTSE100, the FTSE Global Classification System
[120], that was in use from 2003 until the end of 2005. This classification groups the stocks into
102 Subsectors, 36 Sectors and 10 Economic Groups.
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Figure 5.5: Returns of the market mode (equation 5.1) plotted against the actual index of
FTSE100. Each point represents the value of the two quantities at the same day. The straight
line shows a linear regression, where the value of the slope, computed as 0.95, represents the

correlation between the indices.

Companies are divided into Economic Groups if follow a general economic theme, into Sectors
if follow a general industrial theme and into Subsectors, which describe the nature of the company
business. This nature is determined by the proportion of profit arising from each business arcas.

Our portfolio of 67 stocks is composed of 9 economic groups and 27 sectors as shown in table
5.

The second classification studied is the new classification adopted by the FTSE since the
beginning of 2006, the Industry Classification Benchmark [121] created by the Dow Jones Indexes
and the FTSE. This classification is divided into 10 Industries, 18 Supersectors, 39 Sectors and
104 Subsectors.

The Industries can be compared with the definition of Economic Groups in the previous
classification, companies from the same general economic theme. The Supersectors follow a
more generic economic theme than Industries. The Sectors have the same definition from the
previous classification and the Subsectors describe the nature of the company business. A

company will be allocated to a Subsector whose definition most closely fits the business that
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Table 5.1: Economic groups and sectors presented in the portfolio of 67 stocks in accordance

with GCS [120].

Economic Groups

Sectors

Resources

Mining
Oil and Gas

Basic Industries

Chemicals

Construction and Building Materials

General Industrials

Aerospace and Defense

Non-cyclical Consumer Goods

Beverages

Food Producers and Processors

Health

Personal Care and Household Products
Pharmaceuticals and Biotechnology

Tobacco

Cyclical Services

General Retailers

Leisure and Hotels

Media and Entertainment
Support Services

Transport

Non-cyclical Services

Food and Drug Retailers

Telecommunications Services

Utilities Electricity
Utilities-others

Financials Banks
Insurance

Life Assurance

Investment Companies

Real Estate

Speciality and Other Finance

Information Technology

Software and Computer Services
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Figure 5.6: The 67 elements u?ﬁ, for i = 1,...,67, of the eigenvector related with the second
highest eigenvalue, Agg of the correlation matrix C. Most elements of the same sector have the

same sign.

accounts for the primary source of the company’s revenue.

Our portfolio of 67 stocks is composed of 10 industries and 30 sectors as shown in table 5.2.

For each classification we analyse the cluster formation of different economic groups (FTSE
Global Classification System) or industries (ICB).

Starting with the analysis according to the old classification we represent each economic
group by a different symbol: Resources (M), Basic Industries (A), General Industrials (), Non-
cyclical Consumer Goods (0J), Cyclical Services (A), Non-cyclical Services (¢), Utilities (e),
Financials (¢) and Information Technology (o).

Figure 5.7 shows that the constructed MST features clusters of specific economic groups.
Stocks from the Financial group are the backbone of this tree to which it seems that all other
groups are connected to. The Financials, Resources, Utilities and General Industrials groups
have all their stocks connected together. However for other groups divisions of stocks in sectors

are apparent. For example, in the Non-cyclical Services, the Food & Drug Retailers are com-
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Table 5.2: Industries and sectors presented in the portfolio of 67 stocks in accordance with ICB

[121].

Industries Sectors

Oil and Gas Oil and Gas Producers

Basic Materials Chemicals
Mining

Industrials Construction and Materials
Aerospace and Defense
General Industrials
Industrial Transportation
Support Services

Consumer Goods Beverages
Food Producers
Household Goods
Tobacco

Health Care Health Care Equipment and Scrvic—cs‘

Pharmaceuticals and Biotechnology

Consumer Services Food and Drug Retailers
General Retailers
Media

Travel and Leisure

Telecommunications | Fixed Line Telecommunications

Mobile Telecommunications

Utilities Electricity
Gas, Water and Multiutilities

Financials Banks

Nonlife Insurance

Life Insurance

Real Estate

General Financial

Equity Investment Instruments

Nonequity Investment Instruments

Technology Software and Computer Services
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pletely separated from the Telecommunication Services. Within Cyclical Services, the General
Retailers, Media & Entertainment and Transports are three different clusters and the Support
Services are isolated stocks connected to the Financial branch. In Non-cyclical Consumer Goods,
the Health and Pharmaceuticals & Biotechnology form one cluster whereas Beverages, Tobacco,

Food Producers & Processors and Personal Care & Household Products form another.
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Figure 5.7: Minimal Spanning Tree for 67 stocks of the FTSE100. The time series of each
stock are composed by 2322 daily closing prices. Each symbol correspond to a specific economic
group from the FTSE Global Classification System: Resources (B), Basic Industries (4), General
Industrials (4), Non-cyclical Consumer Goods ([J), Cyclical Services (A), Non-cyclical Services

(0), Utilities (o), Financials (¢) and Information Technology (o).

For the new classification in place since January 2006, we represent each industry by the
following symbol: Oil & Gas (M), Basic Materials (A), Industrials (#), Consumer Goods (M),
Health Care ([J), Consumer Services (A), Telecommunications (), Utilities (o), Financials (e)
and Technology (o). The MST is shown in Figure 5.8. The Financial industry has the same

stocks as the one in the old classification, so it still works as the backbone of the tree. Financials,
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Oil & Gas, Utilities, Telecommunications and Consumer Goods have all their stocks connected
together. In the Consumer Services, the supersectors Retail and Media are two big clusters but
they are not connected together. The other supersector from this industry, the Travel & Leisure
is disperse in the tree. Health Care industry is almost one cluster, but the stock SHP is not
connected to the others. In the Industrials industry all stocks from the Support Services sector
are connected to the Financial industry. The other stocks in this sector are located in isolation

at other points within the tree.

Figure 5.8: Minimal Spanning Tree for 67 stocks of the FTSE100. The time series of each stock
are composed by 2322 daily closing prices. Each symbol correspond to a specific industry from
the ICB: Oil & Gas (W), Basic Materials (4), Industrials (), Consumer Goods (M), Health
Care (0J), Consumer Services (A), Telecommunications (0), Utilities (), Financials (e) and

Technology (o).

The new classification adopted by the FTSE in January 2006 clearly mimics much more
closely the MST results as we can see from Figures 5.7 and 5.8. The implementation of the

new supersector groups ensures that apart from some notable exceptions stocks from the same
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supersector are now connected. It is possible that the few stocks separated from their main
cluster are isolated by chance and over time they will join the appropriate clusters. However
there could be other more fundamental reasons for their separation. Nevertheless it seems clear
from this analysis that the MST approach is one that should complement current approaches to
the development of stock taxonomy.

Coronnello et al. [122] have studied the topology of a portfolio of stocks from the London
Stock Exchange using daily and intra-day data for 92 stocks, from year 2002. The MST for
daily data looks quite different from the one shown in Figure 5.7. Using our data and studying
the MST for each year, we can see that for 2002, the main hubs of the MST are the stocks from
Barclays, Royal Bank of Scotland and Shell, each of them with 11, 8 and 7 links, respectively.
The simple inclusion of the stock from Barclays in our study (not included in the portfolio of

[122]) gives a quite different network. But the main clusters are the same in both studies.

5.4 Determination of time parameters

Apart from studying the correlations of the stocks for the overall time, we also divide the
time series in small time windows for an analysis of the time dependence of correlations and
distances. These time windows have a width 7" and overlap each other. The total number of
windows depends on the window step length parameter, 7. A sketch of different time windows

with width 7" from the same time series is shown in Figure 5.9.

ST S W

8T

Figure 5.9: Sketch of different time windows with width 7" from the same time series. The time

windows are moved over time by a step length §7°.

Depending on the length of the time series, the correlation coefficient between two stocks
changes. Thus the distance between the two stocks will be different and the MST constructed
will have different characteristics. In order to select appropriate values for the size of time
windows (7") and window step length parameter (07") we looked at earlier studies in this field.
As shown previously [48], the first and second moment of the correlations (mean correlation and
variance) are strongly correlated. We thus computed the value of this correlation as a function

of T"and 4T (Figure 5.10).




76
1 e ] S i T F ) A 1 L T T I ! T '
._.._“\,,___.\..\.-\".«.'4-.;‘."..4’.“..«-.1
T=1250 : i |
09 :—-~.'¢\"I'\A—va,ﬂ’:l’:\.\\"\//\\,—\

I

T=750 i 0.9

I

0.6

" | ! | ! | N | " ! | ! | L | '
04075040 60 80 100 %0 500 1000 1500 2000

oT T

Figure 5.10: Correlation between the first two moments of the correlation coefficients, mean p
(eq. 4.35) and variance A2 (eq. 4.36) as a function of T" and 67". The left figure shows the
correlation for different 7" as a function of 67". The right figure shows the correlation for 67 =1

(), 07" =30 (O), 6T =60 (¢) and 67" = 90 (A), as function of 7'

Clearly, for all T, the correlation between the two moments is not only positive but strong,
above 0.9 for 7' = 750, T' = 1000 and 7" = 1250. Apart from 7' = 250 and T" = 1750 there are
only very small fluctuations for the correlation value, when we vary 67 Since when we increase
0T, we are essentially removing points from our data, we decided to use the smallest value of
0T (1 day) in all of the following. At this stage it is not easy to understand the non-monotonic
behaviour observed in Figure 5.10. It could be associated with the reduction in data but it

requires further study.

5.5 Analysis of Global Portfolio of the FTSE100 index

Some events such as wars or crashes occurred during the period of study and are noted in Figure
5.11 that shows the absolute return of the FTSE100 index. After these occurrences, which have a
negative effect on stock values, all the stocks seems to follow each other, and both the correlation

between them and mean correlation increase [54].
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Figure 5.11: Absolute return of the FTSE100 index. Higher values indicate special days like
beginning of wars or crashes. 1) Russian crash; 2) NASDAQ crash; 3) Beginning of US recession;

4) September 11%" 2001; 5) Stock Market downturn of 2002; 6) Beginning of Iraq War.

The time dependence of the mean correlation, the normalised tree length and the higher
moments associated with these two quantities were studied for a time window of 500 days and
window step length of 1 day. Figure 5.12 shows that the mean and variance of the correlation
coefficients are highly correlated (0.779), the skewness and kurtosis are also highly correlated
and the mean and skewness are anti-correlated. This implies that when the mean correlation
increases, usually after some negative event in the market, the variance increases. Thus the
dispersion of values of the correlation coefficient is higher. The skewness is almost always
different from zero, which means that the distribution is asymmetric, but after a negative event
the skewness moves towards zero, and the distribution of the correlation coefficients becomes
more symmetric.

From Figure 5.13, we see how the normalised tree length changes with time. As expected
from equation 4.49, when the mean correlation increases, the normalised tree length decreases
and vice versa. Here, the mean and the variance of the normalised length of the tree are anti-
correlated but the skewness and the mean continue to be anti-correlated. This means that after

some negative event impacts the market, the tree shrinks, so the mean distance decreases [54], the
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Figure 5.12: Mean (eq. 4.35), variance (eq. 4.36), skewness (eq. 4.37) and kurtosis (eq. 4.38)
of the correlation coefficients. Time windows of length 500 days are moved with a window step
length parameter of 1 day. The vertical lines show the external events that affect the market.
1) Russian crash; 2) NASDAQ crash; 3) US recession; 4) September 11" 2001; 5) Stock Market
Downturn of 2002; 6) Iraq War.

variance increases implying a higher dispersion of the values of distance and the skewness, that
is almost always negative, increases towards zero showing that the distribution of the distances

of the MST gets more symmetric.

From Figures 5.12 and 5.13 we can see that the external events correspond to dates different
from the ones indicated in Figure 5.11, because in these figures we are using time windows of
500 days, and the changes in the values of the moments occur when these external events are
introduced in the time window, normally when they are in the last day of the time window. So
if we sum the size of the time windows to the dates in Figures 5.12 and 5.13 we will get the

dates for external events of Figure 5.11.
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Figure 5.13: Mean (eq. 4.50), variance (eq. 4.51), skewness (eq. 4.52) and kurtosis (eq. 4.53)
of the normalised tree length. Time windows of length 500 days are moved with a window step
length parameter of 1 day. The vertical lines show the external events that affect the market.
1) Russian crash; 2) NASDAQ crash; 3) US recession; 4) September 11t 2001; 5) Stock Market
Downturn of 2002; 6) Iraq War.

5.6 Numerical Simulations of MST

5.6.1 Random market and one-factor model

In order to examine further the underlying nature of the time series we now use random time
series computed from two different models. Modelling the log-returns as random numbers from
a specific distribution, we can compute the correlations, distances and trees for this random
series. As in [45, 47|, our first approach was to consider the returns as random variables derived
from a Gaussian distribution. So, using the real mean value, ji; of each real time series of 2322

days and the specific real variance, o; we compute random series for our random market:
ri(t) = pi + () (5.2)

where €;(t) is the stochastic variable from a Gaussian distribution with variance o;. The MST

for this random time series is represented in Figure 5.14.
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Figure 5.14: Minimal Spanning Tree for 67 random time series using random variables from a
Gaussian distribution. Each symbol correspond to a specific industry from the ICB: Oil & Gas
(M), Basic Materials (4), Industrials (¢), Consumer Goods (M), Health Care ((J), Consumer

Services (A), Telecommunications (¢), Utilities (o), Financials (¢) and Technology (o).

This MST shows no clustering according to the fact that there is no grouping of stocks
of the same industrial sector, the stocks are distributed randomly in the network. To create
random time series with more real characteristics we introduce a control term (the return of the

FTSE100 index) and we compute one-factor model [45, 47], also known as a market model:
ri(t) = a; + Bi R (t) + €;(t) (5.3}

where «; and [3; are parameters estimated by the least square method from our data as shown
below, R,,(t) is the market factor (return of the FTSE100 index) and €(t) is the stochastic
variable from a Gaussian distribution with variance o;. The value of ¢/ in equation 5.3 is
different from the value of ¢; in equation 5.2. The variance o/ is calculated from the time series

Ri(t) — o; — Bi Ry (t) where R;(t) is the real time series of returns of stock ¢. The two factors «;
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and G; are calculated as:

ai = (Ri(t)) — Bi(BRm(t))
cov(R;(t), Rn(t))

/3i = e (54)
Rm.
where cov(...,...) is the covariance:
cov(R;i(t), Rm(t)) =< Ri(t)Rm(t) > — < Ri(t) >< Rn(t) > (5.5)
o} s the variance of the returns of the FTSE100 index:

0% =< (Rm(t))* > — < Ra(t) >2 (5.6)

and R;(t) is the returns of real time series of returns of stock i. The MST for random time series
created using this model is shown in Figure 5.15. Again we use data from the whole time series
available (2322 days).

This network is completely different from the previous random network, apart from the
random distribution of stocks from the same sector along the network, we can see that the
number of links of some stocks is much higher than in the MST of Figure 5.14. However, the
presence of 6 nodes with up to 13 links differs from the topology of real data. MST’s computed
using 5-minute data [122] have a greater similarity to the trees based on the one-factor model
than trees computed using daily data. Coronnello et al. [122] concluded that the MSTs are more
hierarchically structured when they used daily returns confirming that the networks computed
using 5-minute data are not as fully formed as they are with daily data. The MSTs for 5-minute
data show that the clustering is less pronounced than in the MSTs constructed from daily data
and the stocks are organised around two main hubs with a large amount of links, 29 and 17
links, respectively.

But as we showed in chapter 4, the time series of stock returns are better fitted by a T-
student distribution then by a Gaussian distribution. So we created random time series where
instead of using stochastic variables from a Gaussian distribution we used random variables from
T-student distributions.

To create the T-student stochastic variables we used a numerical routine from the GNU
Scientific Library [123] that generates T-student variables from the distribution:

v+1

pu(w)dw = EF(—’(E—}) \/;_1/ {1 + %—?] el dw (5.7)
2

which is different from the distribution previous presented in Chapter 4 (eq. 4.7). But consid-

ering k = (v + 1)/2 and the assumption:

2k -3

5,
%1 &8

r=a0
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Figure 5.15: Minimal Spanning Tree for 67 random time series using the one-factor model
with stochastic variables from a Gaussian distribution. Each symbol correspond to a specific
industry from the ICB: Oil & Gas (W), Basic Materials (A), Industrials (¢), Consumer Goods
(M), Health Care (OJ), Consumer Services (A), Telecommunications (¢), Utilities (o), Financials

(¢) and Technology (o).

we can transform the variables from one distribution into variables from the other.

So, if we generate a stochastic variable w with ¢ = 2k — 1 from the distribution of equation
5.7, we can transform this variable into a variable z from the distribution of equation 4.7, using
the transformation presented in equation 5.8.

In Figures 5.16 and 5.18 we represent the MST for the random market and market model,
respectively.

The MST of random time series created using the random market with T-student random
variables shows some similarities with the real MST in Figures 5.7 and 5.8. The structure of the
MST or the degree distribution, which is the distribution of number of links of a node in a tree,

shows that the maximum number of links in the MST created using the random market with
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Figure 5.16: Minimal Spanning Tree for 67 random time series using random variables from a
T-student distribution. Each symbol correspond to a specific industry from the ICB: Oil & Gas
(M), Basic Materials (A), Industrials (¢#), Consumer Goods (H), Health Care ((J), Consumer

Services (A), Telecommunications (¢), Utilities (o), Financials (¢) and Technology (o).

Gaussian variables is 5, where for the real case and random market with T-student variables is

8 (Figure 5.17).

The MST created using the market model with T-student random variables is like the one for
Gaussian random variables very different from the real MST in Figures 5.7 and 5.8. Again this
MST is more similar with the topology of real MST computed using high frequency data [122].
The one-factor model a very simple model that cannot mimic all the features and correlations
that exist in the stock market. Even when we introduce random variables from T-student
distribution that fit better the data of the return of the price, the one-factor model does not

solve our problem.
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Figure 5.17: Degree distribution for the case of real MST (black circle), random MST from a
market model with Gaussian variables (white diamond) and random MST from a market model

with T-student variables (grey square).

5.6.2 Evolution with time

After creating the random time series using the market model, we can compute their behaviour
in time as we did for the real case in Figure 5.12, where we compute the main moments of the
distribution of correlation coefficients over time. In Figure 5.19 we compare these moments for
the real case (black lines) and for the random case (grey lines) using stochastic variables from
T-student distributions.

From Figure 5.19, we can see that using the market model with stochastic variables from T-
student distributions, we can mimic the evolution of the mean and the skewness of the correlation
cocfhicients, in time. The variance of the correlation coeflicients from the random case follow
the same trend but the values are not the same as in the real case. From the evolution of
the moments of the random case we can also see the correlations and anti-correlations between
different moments as we stated previous, in section 5.5, for the real case.

Studying the evolution of the moments of distances presented in each MST, we can see if the
market model can at least be trusted as a model to mimic the distances of the MST, because
we already saw that we cannot use it as a good model for the structure of the MST.

In Figure 5.20, we compare the moments of the distances in the tree for the real case (black

lines) with those from the random case (grey lines) using stochastic variables from T-student
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Figure 5.18: Minimal Spanning Tree for 67 random time series using the one-factor model
with stochastic variables from a T-student distribution. Each symbol correspond to a specific
industry from the ICB: Oil & Gas (M), Basic Materials (A), Industrials (¢), Consumer Goods
(#@), Health Care (OJ), Consumer Services (A ), Telecommunications (0), Utilities (o), Financials

(¢) and Technology (o).

distributions.
From Figure 5.20, we can see that apart from the similar trend in the evolution of the mean
distance of the tree for the random case, the other moments are very different for the real and

random cases. So again we see the shortcoming of our simple models in describing the data.

5.7 Study of portfolio of 85 stocks of FTSE100

A portfolio of stocks from the FTSE100 index (as it is in April 1%¢ 2008) was also studied.
The main reason for this new study was the facility of new data from the Thomson Database

Datastream. The main index of the London Stock Exchange has 102 stocks quoted as shown in
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Figure 5.19: Mean (eq. 4.35), variance (eq. 4.36), skewness (eq. 4.37) and kurtosis (eq. 4.38)
of the correlation coefficients. Time windows of length 500 days are moved with a window
step length parameter of 1 day. The black lines represent the results from the real FTSE data
and the grey lines the results from the random data using stochastic variables from T-student

distribution.

table C.1 of Appendix C. But not all of these stocks are listed in the database from the same
date, so we decided to choose a part of these stocks that have non-zero data from January 37
2000 until March 24" 2008, which gives us more than 8 years of data. The total number of

stocks in our portfolio is 85.

5.7.1 Minimal Spanning Tree

The minimal spanning tree of this portfolio constructed as laid out in section 4.5, is shown in
Figure 5.21.

In the MST of Figure 5.21 the clustering is very similar to the MST of Figures 5.7 and 5.8.
As the backbone of the MST we have some of the major Banks that belong to the Financial
industrial sector. One characteristic of this portfolio is the inclusion of Alliance Trust (ATST),
an Equity Investment Instruments company. This stock is the main hub of the MST with 21

links to other stocks from a variety of different sectors. Apart from this fact, the MST continues
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Figure 5.20: Mean (eq. 4.35), variance (eq. 4.36), skewness (eq. 4.37) and kurtosis (eq. 4.38)
of the normalised tree length. Time windows of length 500 days are moved with a window step
length parameter of 1 day. The black lines represent the results from the real case and the grey

lines the results from the random case using stochastic variables from T-student distribution.

to have different clusters such as Basic Materials, the Media (part of Consumer Services), the
Health and Care, the Retail (part of Consumer Services), the Oil and Gas, the Utilities, the
Telecommunications, the Consumer Goods and also a Real Estate cluster inside the Financial

cluster. Again all the stocks that belong to the Financial sector are linked together.

5.7.2 Eigensystem analysis

Analysing the eigenspectrum of the correlation matrix of this portfolio of 85 stocks we can
see which eigenvalues correspond to different industrial sectors. In Figure 5.22 we can see the
spectrum and distribution of eigenvalues (section 4.4). There are 6 eigenvalues with values
higher than A4, which is the maximum value predicted by the RMT for a random matrix.
The study of the structure of the eigenvectors that correspond to these eigenvalues gives more
insights about the clustering in sectors of this portfolio.

In Figure 5.23 we show the eigenvectors that correspond to the 6 eigenvalues with values
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Figure 5.21: Minimal Spanning Tree for 85 stocks of the FTSE100 index. The time series start
at January 3"¢ 2000 and run until March 24" 2008 for 2146 days. Each symbol correspond to a
specific industry from the ICB: Oil & Gas (W), Basic Materials (A), Industrials (¢), Consumer
Goods (M), Health Care (), Consumer Services (A), Telecommunications (), Utilities (e),

Financials (¢) and Technology (o).

higher than A,,q,. For each eigenvector we grouped the stocks in terms of industrial sectors:
a) Telecommunications; b) Basic Materials; c¢) Utilities; d) Consumer Goods; e) Oil and Gas;
f) Consumer Services; g) Financials; h) Industrials; i) Health Care; j) Technology. We also
included error bars that represent the variance of each industrial sector (section 4.4.2).

For the eigenvector belonging to the highest eigenvalue, Ags we can see that all the elements
have a positive sign as shown in Figure 5.4.

For the eigenvector of the second highest eigenvalue, Agq, the stocks from the Telecommuni-
cations industrial sector all have a negative sign and all the stocks from Utilities and Consumer
Goods sectors have positive sign. This behaviour was already shown in section 5.2 also for the

second highest eigenvalue and in Figure 5.6.
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Figure 5.22: Spectrum and distribution of eigenvalues for a portfolio of 85 stocks from the
FTSEL00 index. The thick vertical lines in the upper figure show the limits A" (eq. 4.44).

Just 40% of the eigenvalues are inside the region predicted by the RMT.

For the eigenvector related with the third highest eigenvalue, g3, the stocks from Telecom-
munications and Health Care all have a positive sign and all the stocks from Basic Materials have
a negative sign. For the third eigenvalue of the previous portfolio of section 5.2 the Telecommu-

nications and Basic Materials also follow this trend.

For the eigenvector related with the fourth highest eigenvalue, Ags, the stocks from Basic
Materials and Oil and Gas have a negative sign, only the stocks from Oil and Gas follow the

same trend shown for the portfolio of section 5.2.

For the eigenvector related with the fifth highest eigenvalue, Agj, the main sectors are
Telecommunications and Utilities with positive sign and for the eigenvector related with the
sixth highest eigenvalue, Agg the main sectors are Consumer Services and Industrials with posi-

tive sign and Utilities and Oil and Gas with negative sign.
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Figure 5.23: Mean value of eigenvector elements, for each industrial sector, of the six highest
eigenvalues, Ags, A4, As3, Ag2, Ag1 and Agg for a portfolio of 85 stocks from the FTSE100 index. In
the x axis we have the industrial sector: a) Telecommunications; b) Basic Materials; ¢) Utilities;
d) Consumer Goods; e) Oil and Gas; f) Consumer Services; g) Financials; h) Industrials; i)

Health Care; j) Technology. The error bars represent the variance of each industrial sector.
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5.7.3 Time analysis

We also performed a study in time for the correlations, MST and values of the eigenvalues.
There are very surprising results for the curve of the mean correlation in time and the curve of
the value of the highest eigenvalue also in time. We choose to perform the temporal analysis for
different time windows length, 7'

In Figure 5.24 we show the four moments of the coefficients of correlation matrix.
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Figure 5.24: Mean (eq. 4.35), variance (eq. 4.36), skewness (eq. 4.37) and kurtosis (eq. 4.38)
of the correlation coefficients. Time windows of length from 250 to 1250 days are moved with a

window step length parameter of 1 day.

For each moment we can see the evolution in time for different sizes of the time window,
T from 250 to 1250 days. For the mean correlation, the values are low around January 2000
and are high around the beginning of the year 2002. The same behaviour was stated for the
analysis of the previous portfolio, where the mean correlation in time was shown in Figure 5.12.
The variance of the correlation coefficients shows the same feature as the mean, showing some
correlation in time between these two moments. The third moment, the skewness, shows the
opposite behaviour of the mean correlation with high values in January 2000 and low values
around the beginning of year 2002. Here we can see some anti-correlation between the first and

the third moments. The same happen with the fourth moment, the kurtosis. The evolution of
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this moment in time shows high values in the beginning of 2000 and low values around year
2002. The same behaviour was shown in Figure 5.12 for these four moments.

In Figure 5.25 we present the four moments of the distribution of distances in the MST.

Mean Tree Length Variance of distances in the network
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Figure 5.25: Mean (eq. 4.50), variance (eq. 4.51), skewness (eq. 4.52) and kurtosis (eq. 4.53)
of the normalised tree length. Time windows of length from 250 to 1250 days are moved with a

window step length parameter of 1 day.

For the mean tree length, the values are high around January 2000 and low around the
beginning of year 2002, the opposite of what we saw for the mean correlations but the same
behaviour that we saw for the previous portfolio in Figure 5.13. The variance of distances in the
MST shows the same behaviour as the variance of the correlation coefficients of Figure 5.24. The
third moment of this distribution, the skewness, shows low values for the beginning of January
2000 and high values around the year 2002, this is the same pattern shown for the variance of the
distribution but it is the opposite of the skewness of the distribution of correlation coefficients.
About the fourth moment, the kurtosis, there are not many conclusions that we can take from
Figure 5.25.

Another important property of the MST is how this network changes its structure with

time. Computing the mean occupation layer (MOL) in time (section 4.5.2) we can see if the

MST shrinks or extends. Decreasing values of the MOL correspond to a shrinking of the MST,
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the stocks will be closer together. In Figure 5.26 we show the MOL in time for three different
ways of calculating the centre of the MST (section 4.5.2). In a dynamic way we can choose the
centre vertex as the one with maximum correlation value (top left picture of Figure 5.26) or the
one with the maximum number of links (top right picture of Figure 5.26). We can also choose
a static central vertex, for this case we choose the company Alliance Trust because it is the one

with most links.

Mean Occupation Layer map for a dynamic vertex with maximum correlation value Mean Occupation Layer map for a dynamic vertex with higher vertex degree
8 1250

1000

2000-01 2001-01 2002-01 2003-01 2000-01 2001-01 2002-01 2003-01

time (Year time (Year)

Mean Occupation Layer map for a static vertex

2000-01 2001-01 2002-01 2003-01

time (Year)

Figure 5.26: Contour map of the mean occupation layer as a function of time for three different
methods of choosing the centre vertex: a dynamic central vertex based on maximum correlation
value (top left), a dynamic central vertex based on maximum number of links (top right) and a
static central vertex (bottom). Time windows of length from 250 to 1250 days are moved with

a window step length parameter of 1 day.

For the three cases we can see that a very low value of the mean occupation layer occurs
when the length of the time windows is small and around the year 2002.

Another important property of the MST is how the structure of the MST and the number of
links survive from time step to time step (section 4.5.3). The single step survival ratio (SSSR)
shows the percentage of links that are maintained from one step to the other. The multi step
survival ratio (MSSR) shows the number of links that are maintained from the first MST until

the last one. In Figure 5.27 we present the single and multi step survival ratio.
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Figure 5.27: Single and multi step survival ratio as a function of time. The SSSR is represented
in a contour map graphic. The MSSR is represented on the right. Time windows of length from

250 to 1250 days are moved with a window step length parameter of 1 day.

For the SSSR we can see that there are not many changes from time step to time step in the
MST, but for the MSSR there are some changes. For the MSSR, in the first steps there are a
lot of links that are missed, but after some time the links that remain will be there almost until
the end. These are the strongest links in the MST.

We can also study the evolution of the value of the highest eigenvalue of the correlation
matrix. In Figure 5.28 we plot the time analysis of the highest eigenvalue, and we can see that
low values appear in the beginning of January 2000 and the high values appear around the year
2002. This is the same feature observed for the variation of mean correlation in Figure 5.24.

Comparing the contour map of the evolution of both quantities, the mean correlation and
the highest eigenvalue, we can see that the two values have the same evolution over time. They

are completely correlated with each other, as we can see in Figure 5.29.

5.8 Conclusions

In summary, we have studied the correlations between time series of log-returns of stocks from
two FTSE100 portfolios and examined how these change with both the size of the time series
and time. The mean correlation increases after external crises, and different moments feature
correlations or anti-correlations as a result.

From the MST we can see that some stocks from the same industrial sector cluster together.
This does not happen with all stocks from specific economic groups or industries. It would seem
from the MST analysis that the new FTSE classification (ICB) introduced in January 2006 offers
a more logical clustering of the different stocks as opposed to the previous classification scheme

(GCS). However from the MST it is clear that anomalies are still present that could affect the
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Figure 5.28: Highest eigenvalue of the correlation matrix in time. Time windows of length from

250 to 1250 days are moved with a window step length parameter of 1 day.
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Figure 5.29: Contour map of the mean correlation (left) and highest eigenvalue (right) over time.
Time windows of length from 250 to 1250 days are moved with a window step length parameter

of 1 day.

building of optimum portfolios.

Studying the mean occupation layer and the single and multi step survival ratios, we conclude
that there are some causal changes in the MST, but in the overall the MST maintained their

structure in time.
The structure of trees generated from random time series differs significantly from real mar-
kets. Furthermore there appears to be no obvious hub node. On the other hand the one-factor

model produces a MST where we can see hubs with many links. This kind of structure is close to
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that obtained using intra-day data. The MST created with random time series with T-siudent
stochastic variables are more similar with the MST of real data than the ones created with
Gaussian stochastic variables.

The eigensystem analysis shows that the eigenvector related with the highest eigenvalue has
all its elements positive. Some eigenvectors related with other highest eigenvalues show taat
a segregation between stocks from different industrial sectors occur. This fact is in agreement
with the conclusions from the MST analysis.

The conclusions from this chapter, about the segregation of stocks in terms of indist-ial
sectors, can help investors in the optimisation of portfolios taking in consideration the diversity

of stocks from different industrial sectors.



Chapter 6

Indices of markets around the woild

6.1 Introduction

This chapter examines the extent and evolution of interdependence between world equity markets
[52] over a 10-year period using the Minimum Spanning Tree (MST) approach of Mantegna [43]
that we detailed in Chapter 4.

To our knowledge only one study has been published to date applying the MST approach to
groups of national equity markets [124]. There is one other earlier study [125], based on numeri-
cal taxonomy analysis of weekly stock market index returns, for a period between 1962 and 1973,
of 12 major international equity markets: Australia, Austria, Belgium, Canada, France, Italy,
Japan, Netherlands, Switzerland, U.K., West Germany and U.S.A. Using hierarchical clustering
techniques, similar with the MST approach, but where they used dendograms instead of rep-
resenting the similarities of time series in a network they conclude that a core of international
markets have higher degrees of similarity than others: U.S.A., Canada, Netherlands, Switzer-
land, West Germany and Belgium, i.e. these indices have higher correlation coeflicients between
them.

The study that applied the MST approach [124] is a simple dynamic analysis based on
partially overlapping windows of indices for 20 countries for the years 1988-1996 and finds that
markets group according to a geographical principle, as is also the case for an overall average
examination of 51 world indices for the years 1996-1999 in the same study [124]. The temporal
evolution showed the stability of the North-America cluster and the increase in the size of the
European and Asian-Pacific clusters, in time. Our research significantly extends this work by
applying dynamic MST methods to examine the time-varying behaviour of global equity market
co-movements for a group of 53 developed, emerging and developing countries over the years
1997-2006. This period includes major market events such as the Asian and Russian economic

crises, the introduction of the euro, and the enlargement of the European Union (EU). In addition
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to confirming the earlier evidence of a geographical organising principle we document a tendency
of the MST toward higher density over time, indicating an increasing degree of integration of
international equity markets. Such a finding is of interest to portfolio managers and investors, as
the implication is of decreased potential for diversification benefits and thus perhaps decreased
returns for international investors.

After the conclusions in the previous Chapter 5, that the stocks from the FTSE100 index
grouped in terms of industrial sector, the main reason for the study presented in this Chapter is
to get an insight in how the indices cluster in a MST. After this study we will analyse portfolios
of stocks from the indices study here and we will try to understand the behaviour behind the

interdependence in stocks from different markets.

6.2 Data

We analyse the returns of the equity markets of 53 countries. The data consists of Morgan
Stanley Capital International (MSCI) daily closing price indices for 44 countries, for the period
January 8" 1997 to February 1 2006. An additional nine countries, which data is not available
from the MSCI indices, are also included in the sample, resulting in a total of 53 indices.
These countries and indices are: Croatia (Nomura), the Czech Republic (PX 50), Hungary
(BUX), Iceland (ICEX 15 Cap), Lithuania (Nomura), Malta (HSBC Bank), Romania (Nomura),
Slovakia (SAX) and Slovenia (HSBC Bank). We included these indices to have a better view
about the correlations between indices of the East European markets and the relation of these
indices with other indices around the world. All series are expressed in US dollar terms as
the reference currency, thus reflecting the perspective of an international investor. All data are
sourced from DataStream, Thomson Financial [107]. One issue that needs to be addressed is the
non-synchronous nature of the data, i.e. the fact that equity markets open at different times.
Recent research suggests that the use of daily data may lead to significant underestimztion of
equity market integration [126] because the time-mismatch have to be handle carefully. The
use of weekly returns can help with the problem of time-mismatch but it leads to significant
loss of information. As a consequence, to minimise the problem of non-synchronous trading the
daily index level data were converted to weekly (Wednesday) returns for this portfolio and we
maintained the daily returns for a second portfolio that we will present further. The resulting
number of weekly observations is 475. The 53 countries in our study and the respective symbols
are given in Table 6.1.

The reliance for the most part on MSCI indices allows for significant confidence in the
findings, as these indices are designed explicitly to allow for cross market consideration of returns

by investors. By contrast, studies that rely on indices from the individual equity markets, indices
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Table 6.1: Countries and respective symbol.

1 Symbol ‘ Country “ Symbol I Country H Symbol ‘ Country
ARG Argentina HUN Hungary PHI Philippines
AUS Australia ICE Iceland POL Poland
AUT Austria IDO Indonesia PR Portugal
BEL Belgium IND India ROM Romania
BRZ Brazil IRE Ireland RUS Russia
CAN Canada ISR Israel SAF South Africa
CHF Switzerland ITA Italy SGP Singapore
CHL Chile JAP Japan SOK South Korea
coL Colombia JOR Jordan SVK Slovakia

| CRT Croatia LTU Lithuania SVN Slovenia
CzZK Czech Republic MAL Malaysia SWE Sweden
DNK Denmark MEX _Mexico_—u _ﬁl Thailand
ESP Spain MTA Malta TUK Turkey
FIN Finland NEZ New Zealand TWA Taiwan
FRA France NLD Netherlands UK United Kingdom
GER Germany NOR Norway USA United States

TI?C Greece PAK Pakistan VEZ Venezuela

¥_HK Hong Kong PER Peru

such as the NIKKEI225, the DJIA or the FTSE100, run the risk of non-comparability due to
differences in construction, coverage and completeness. We will illustrate this difference in the
results in section 6.4 when we use the indices for each country constructed at each national stock
exchange, instead of an index constructed by MSCI and also we use daily returns instead of the
weekly returns in this case.

The differences in construction of an index can be related with the weighted given to each
stock that belongs to it. For example, if the index is constructed with an arithmetic mean of

the values of the price of the stocks, it will be given as follow:

M=me (6.1)

but if instead of an arithmetic mean, the construction is made with a weighted arithmetic mean,

we have to take into account for example the volume of transitions of each stock:
N
I(t) =) wiPi(t) (6:2)
i=1

Most of the indices follow these two ways of construction.
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6.3 Results

We present the findings of our MST analysis in two sub-sections. We first show the overall
average MST, derived from an analysis of the entire sample of data. Following that, a number

of dynamic approaches are applied.

6.3.1 Analysis of MST constructed from averaging data from 1997-2006

Shown in Figure 6.1 is the average MST for the 1997-2006 period. The clusters which we
observe appear to be organised principally according to a geographical criterion (possibly also
reflecting political and trade criteria). This is similar to the results in [124]. To analyse the
graph we identify a “central” node, the market most strongly connected to its nearest neighbours
in the tree. With the highest number of linkages, France can be considered the central node.
Surprisingly, the U.S.A., whose equity market is globally dominant in terms of market value,
exhibits a somewhat looser linkage to the other markets. Closely connected to France are a
number of the more developed European countries in the European Monetary Union (EMU)
and in the EU. This European grouping forms a set of markets that are highly correlated with
each other, with France at its centre. We can also identify several “branches” which form the
major subsets of the MST and these can then be broken down into “clusters” that may or not be
completely homogeneous. The Netherlands heads a branch that includes clusters of additional
European countries (along with Jordan, anomalously). The U.S.A. links a cluster of North
and South American countries, except for Peru, to France via Germany. Not surprisingly, the
three members of the North American Free Trade Association (NAFTA) - the U.S.A., Canada
and Mexico - are directly connected, with Mexico forming the link to the South American
countries. Australia heads a branch with several groupings: all the Asian-Pacific countries
form two clusters, one of more developed and the other of less advanced countries; most of the
Central and East European (CEE) countries, that joined the EU in 2004, form an incomplete
link to Australia through South Africa, along with Turkey and Peru. Jordan, which appears
in a European clustering, is an apparent anomaly. This is likely due to the fact that Jordan is
the last node connected to the network and has correlations with other countries close to zero,
which means a relatively high distance. We can conclude that Jordan is an outlier of our study
that does not have any close relation to any of the other countries represented here. The reason
why Jordan is connected with Norway and not another country may reflect the fact that many

companies in Norway belong to the Oil and Gas industrial sector.
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Figure 6.1: Average minimum spanning tree for 1997-2006 for 53 country equity markets. Coding
is: Europe (e), Northern America (), Southern America (M), Asian-Pacific (A) and “other” -
Israel, Jordan, Turkey, South Africa (O).

6.3.2 Temporal evolution of the MST in the period 1997-2006

The MST of Figure 6.1 presents a static analysis of the relationships between the markets for the
time period as a whole. It is possible, however, also to examine the time-dependent properties
of the tree to provide insights on the changing relationships between the equity markets over
time. To this end several techniques are used. First, we construct what we call a rolling and
recursive MST. Second, we show the evolution of the four moments of the mean correlations
and mean tree lengths of the MST (sections 4.3 and 4.5.1). Third, calculation of the mean
occupation layer (section 4.5.2) reveals changes in the compactness of the MST over time, the
degree of compactness being interpretable as the extent of overall equity market integration.
Finally, the single-step and multi-step survival ratios (section 4.5.3) for market linkages provide

an indication of the stability of linkages between markets over time.
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Rolling MST

The dynamic evolution of the MST can be examined by looking at a series of MSTs created from
non-overlapping rolling windows, each with width 1 year, or 52 (53) weeks. The MST shown in

Figure 6.2 are those for 1997, 2002, and 2005.
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Figure 6.2: Rolling one-year window MST for 1997, 2002 and 2005. Coding is: Europe (e),
Northern America (), Southern America (M), Asian-Pacific (A) and “other” - Israel, Jordan,

Turkey, South Africa (0O).

We detect several consistent relationships as well as a number of less stable arrangements.
One clear consistency is that the developed European countries form the central structure of the
MST. Initially, Germany is the central node; however, in more recent years France has taken
over this role. The CEE countries do not form a single cluster but tend to fragment into several
subgroups, with changing composition year by year. However, perhaps reflecting the growing

economic and political ties with the developed EU members, they tend to move slightly closer
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to those countries over time in terms of levels away from the central node.

With respect to the Asian markets there is usually a link between Australia and New Zealand,
which often head a branch connecting most of the remaining Asian markets to Europe. The
coherence of the Asian countries is particularly evident in 1998, possibly reflecting increased
correlations in the region in the aftermath of the Asian crisis. This particular clustering does
not continue as strongly in subsequent years. The main exception in this group is Japan, which
does not fit into the Asian cluster but is generally linked directly to Western markets.

For the North American markets the U.S.A., Canada, and Mexico are usually closely linked,
reflecting most likely the ongoing effects of both geography and NAFTA trade ties. An apparent
exception is the year 2005. An explanation of the disconnect in this cluster lies in examining
the construction of the MST. In 2005 relatively higher correlations between European countries
almost completely dominated the formation of the MST as a cluster first formed around France,
followed by a group of CEE countries (the Czech Republic, Hungary, and Poland).

The South American markets have not formed a complete cluster in any of the years under
examination; however, a sub-cluster of Argentina, Brazil, and Chile, the largest, most developed
and most liquid Latin American markets, can occasionally be observed. This cluster is usually

directly linked to the European grouping via Mexico.

Recursive MST

To further examine the stability of the relationships we constructed recursive MST by forming
the MST for the first year and then successively adding one year’s data at a time. These are
shown in Figure 6.3 cumulatively through 1998, cumulatively through 2001 and cumulatively
through 2005.

The first issue that emerge from this analysis is that the MST appears to have become
somewhat more compact in comparison to the rolling window MST for 1997 in Figure 6.2. In
the 1997 rolling window, the maximum number of levels was twelve (central node Germany to
Iceland), while it is consistently smaller in the recursive MST beginning with 1998. For the
period 1997-2005, it is seven (central node France to Jordan).

Not surprisingly, given the results from the rolling MST, the recursive graphs also reflect the
dominance of the developed European grouping and the shift of central node to France from
Germany, with Australia, the Netherlands, and the U.S.A. at the head of the branches. The
German-U.S.A. link persists, even as the centre of the European cluster shifts to France. The
CEE countries continue to reflect some tendency to split into different clusters, although by
2002 six of them have settled into one group, leaving out only Russia, Slovenia, and Romania.

Hungary and Poland, among the more developed CEE equity markets, alternate the role of node
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Figure 6.3: Recursive MST for cumulative through 1998, cumulative through 2001 and curu-
lative through 2005. Coding is: Europe (e), Northern America (0), Southern America (M),
Asian-Pacific (A) and “other” - Israel, Jordan, Turkey, South Africa (OJ).

linking the CEE countries to the developed EU members. This cluster also gradually moves to

a closer attachment to France as that country becomes the central node.

The clustering of the Latin American markets, except for Peru, becomes more consistent
as the time period is increased in the recursive graphs, with Mexico generally the link to the
European core. Similarly, as the time period increases a more consistent pattern is established for
the Asian markets. Pakistan and India join the other Asian countries in 2001, and Australia and
New Zealand in 2002. Japan, whose behaviour year by year appeared to be largely disconnected
from the other Asian markets, is now seen as tied into the Asian cluster via Hong Kong or South
Korea consistently since 2001. Finally, a Turkey-Russia-South Africa cluster emerges in 2000

and stays reasonably stable.




6. Indices of markets around the world 105

Correlation and mean tree length analysis

The temporal analysis of changes in the first four moments of the mean correlations, p;; (eq.
4.30) and of the distances in the MST, d;; (eq. 4.49) are presented in Figures 6.4 and 6.5, where

the window length is 52 weeks and the window step length is 1 week.
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Figure 6.4: Mean (eq. 4.35), variance (eq. 4.36), skewness (eq. 4.37) and kurtosis (eq. 4.38)
of the correlation coefficients. Time windows of length 52 weeks are moved with a window step

length parameter of 1 week. Results are plotted according to start date of window.

The mean correlation and its variance increase over the initial period covered by the data,
roughly corresponding to the era of the Asian and Russian crises. In times of market uncertainty
and downturns these measures tend to increase [48, 51, 127]. The tendency of these measures
to increase together has significant implications for standard econometric methodology [128],
l.e. these cases show that dramatic movements in one market can have strong implications
in other markets with different sizes and structures around the world. We also note that the
skewness decreases toward zero, implying that the distribution of the correlations becomes more
normal. A similar pattern has been observed for London stocks in the FTSE index [51] (Figure
5.12 of section 5.5). This initial period is followed by declining correlations as global markets

move past the 1997-1998 crisis events. Correlations rise again, however, possibly reflecting the
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Figure 6.5: Mean (eq. 4.35), variance (eq. 4.36), skewness (eq. 4.37) and kurtosis (eq. 4.38) of
the normalised tree length. Time windows of length 52 weeks are moved with a window step

length parameter of 1 week. Results are plotted according to start date of window.

broad market declines that begin in 2000. An upward spike occurs in the fall of 2001, which
corresponds to the entry into the rolling window of the steepest downturns of global markets as
measured by the MSCI world index. Recovery is accompanied, once again, by declining mean
correlations. A second, larger, upward spike is observed as the window begins to include the
early 2004 period, which occurs in the context of a broader trend toward higher correlations.
The mean correlation, for the year ending May 13" 2004, is 0.24223 while that for the year
ending May 20" 2004, is 0.30222. Subsequent correlations remain relatively high. Interestingly,
this spike coincides with the entry of new members into the European Union (EU) on May 1%
2004. A breakdown of rolling correlations shows a strong, abrupt increase in correlations for
the European group of countries at this point, as well as a consistent tendency over the entire
time period for their correlations to be higher than for the set of 53 markets as a whole. This
event has introduced a new element of uncertainty as well as the prospects for closer economic
ties, both of which could tend to increase correlations. In contrast to these larger movements
the introduction of the euro on January 1% 1999, was not accompanied by major changes in

correlation structure.
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Essentially the same information provided by the correlation matrix can be obtained also
from the moments of the normalised tree length, as shown in Figure 6.5. The mean distance is
negatively correlated with the mean correlations, tending to fall, for example, in times of market
crisis. This underlines the ability of the MST as a strongly reduced representative of the entire
correlation matrix to convey relevant market information. Overall, the mean distance shows a

tendency to decrease over the ten years, indicating a “tighter” composition of the MST.

Mean occupation layer

The structure of the MST can also be analysed by the distance of the nodes to the central node,
the mean occupation layer (equation 4.54). Using the two definitions of a central node (sub-
section 4.5.2), we identify the central node for our rolling MST. The two criteria produce similar
results. Germany is the central node in the early years, but France takes its place for most of
the subsequent periods. Using the highest number of links criterion, France is the central node
41.5% of the time and Germany 27.3%. The highest correlation sum criterion identifies France
as the central node 53.8% of the time and Germany 30.2%. Other countries occasionally assume
the position of central node.

The mean occupation layer can then be calculated using either a fixed central node for all
windows, i.e., France, or a continuously updated node. In Figure 6.6 the results are shown for
France as the fixed central node (black line), the dynamic maximum vertex degree node (dotted
line) and the dynamic highest correlation vertex (grey line). The three sets of calculations are
roughly consistent. The mean occupation layer fluctuates over time as changes in MST occur
due to market forces. There is, however, a broad downward trend in the mean occupation layer,

indicating that the MST over time is becoming more compact.

Single and Multi Step Survival Rates

The robustness of links over time is the final analysis that we did for our MST (sub-section
4.5.3). Figure 6.7 presents the single-step survival ratios for the MST (equation 4.55). The
average is about 0.85, indicating that a large majority of links between markets survives from
one window to the next. As might be expected, the ratio increases with increases in window
length.

Figure 6.8 shows the multi-step survival ratio. In both cases the length of time series was
52 weeks and the window step length 1 week. Here, as might be expected, the connections
disappear quite rapidly, but a small proportion of links remains intact, creating a stable base
for construction of the MST. Again the evidence here is of importance for the construction of

portfolios, indicating that while most linkages disappear in the relatively short to medium term
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Figure 6.6: Plot of mean occupation layer as a function of time for time windows of length 52
weeks and window step length of 4 weeks). The black line is for a static central vertex (France),
the dotted line uses dynamic central vertex based on maximum number of links, while the grey

line shows dynamic central vertex based on maximum correlation value.

there are islands of stability where the dynamics are consistent.

The behaviour of these two measures is similar to what has been observed for individual
stocks within a single equity market [48]. These results may understate the stability of the
global system of markets since some of the linkage shifts appear to take place within relatively

coherent geographical groups.

6.4 Stock Exchange Indices for different countries

As stated before there is differences between the study of correlations between the indices con-
structed from MSCI data and the indices constructed from individual stock market data. First
the indices constructed from MSCI data as explained in their website [129] are weighted in-
dices designed to measure the equity market performance of developed and emerging markets.
The other indices from individual stock markets have a different method of construction for

each stock market, some times they are calculated as weighted indices, other times they are an
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Figure 6.7: Single-step survival ratio as a function of time. Time windows of length 52 weeks

are moved with a window step length parameter of 1 week.

average of the prices of each stock that belongs to the index.

In this section we use the main indices of some countries around the world. The whole
portfolio is composed of 71 different countries with one index each. In Appendix D, the tables
show the structure of this portfolio of indices and how we divided them in different groups. This
data was downloaded from the Datastream server [107].

All the prices of the indices are changed to dollars according to the currency exchange at
specific day and we choose time series of daily closing price from January 3"¢ 2000 unt:l March
24" 2008. In this period the total number of indices with non-zero values is equal to 56. In
Figure 6.9 we show the MST for this portfolio of indices.

As in Figure 6.1 the main hub of the MST is the index of France (CAC40). Around this
main hub there are 9 links, seven of them to another European index and two of them to an
American index (IGPA from Chile) and to a Middle East index (MAOF25 from Israel). The
North American cluster of Canada and U.S.A. is linked through Germany to this main hub.

In this MST of Figure 6.9 there is also a second main hub represented by the Austrian index
(ATX Prime) with 8 links to other European indices. This hub is of extreme importance to

the East European indices because it links many of the East European indices to the main hub
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Figure 6.8: Multi-step survival ratio as a function of the number of weeks in a log-log scale.

Time windows of length 52 weeks are moved with a window step length parameter of 1 week.

of France. The inclusion of some Middle East indices shows a small cluster of these countries
with the indices of Egypt, Kuwait, Jordan and Oman linked together. The Asian-Pacific cluster
maintain the same structure shown in Figure 6.1.

From these results we can conclude that the use of MSCI indices or indices from each stock
market have similar results in terms of the correlations between the indices. Also when we use
daily returns instead of weekly returns the correlations between indices maintain their structure
and there seems to be no problem related with time-mismatch. The second portfolio of indices
can be more useful for further work because we know each of the stocks that belong to the
indices, so when we study the correlations of stocks from different indices in Chapters 7 and 8
we should compare with the MST of the second portfolio (Figure 6.9) and not to the MST of
the first one (Figure 6.1).

6.5 Conclusions

The use of the MST provides a way to extract a manageable amount of information from a large

correlation matrix of global stock returns to reveal patterns of links between different markets.
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are from January 3"¢ 2000 until March 24" 2008, which means 2146 days. Coding is: European
indices (e), American indices (), Asian-Pacific indices (A) and African and Middle East indices
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It provides an insight into market behaviour that is not as easily obtained from the correlation
matrix as a whole. Applied dynamically, the analysis lets us observe consistencies as well as
evolutions in patterns of market interactions over time. As would be expected, there is a strong
tendency for markets to organise by geographical location, although other, related factors such
as economic ties, may also play important roles. Developed European countries, with France and
Germany at their centre, have consistently constituted the most tightly linked markets within
the MST. There has also been a limited tendency of the CEE accession countries to link more
closely with the more developed EU countries.

The study of 56 different indices around the world showed similar results with the study for
the 53 MSCI indices. The introduction of some Middle East indices showed a cluster of indices

with Jordan included, which was a kind of an outlier in the previous study. The Austrian index,
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ATX Prime is the second hub of the MST with a strong linkage with the Eastern European
indices.

We have seen that the mean correlations show a tendency to increase over the period as a
whole, while mean distances in the MST and the mean occupation layers have been trending
downward. These dynamic measures point to a compression of the MST over time, meaning a
tighter degree of interaction, or integration, between markets. These findings have implications
for the international investor. International diversification under standard Markowitz portfolio
construction relies on the existence of a set of assets which display consistent and persistent
differences in correlations. These correlations form the basis of the MST. From a Markowitz
portfolio perspective [130], or any portfolio perspective which relies on a spread of (relatively low)
correlations, the compression which we have observed implies reduced diversification benefits
over the time period we have examined. Finally, the multi-step survival ratio also indicates that
while clusters of any given period may be homogeneous, the likelihood of these remaining stable
over a reasonable portfolio period is small. This points to a need for frequent restructuring to

make maximum use of diversification benefits.



Chapter 7

Cross correlations between stocks
from DJIA and FTSE100 indices

7.1 Introduction

While Chapter 5 addressed the issue of correlations in stock prices in the same market, in the
current chapter we analyse correlations of stocks traded in two different markets. In particular
we will find that the clustering of stocks in a combined MST is primarily by market.

We computed correlations between the main stocks on the London Stock Exchange main in-
dex (the FTSE100) and the main stocks on the Dow Jones Industrial Average index (the DJIA).
We selected these sets of stocks because they belong to the main indices used by investors and
are also classified by the same industrial classification, namely Industry Classification Bench-
mark (ICB) [121]. The DJIA is the oldest continuing U.S. market index and comprises 30 of
the largest companies in U.S. [131] The companies are chosen by the editors of The Wall Street
Journal [132]. It is called an average because it originally was computed by adding up stock
prices and dividing by the total number of stocks [131].

From our previous study of Chapter 6, we concluded that the indices grouped in terms of
geographical location. In Figure 6.9 we could see that these two main indices (FTSE100 and
DJIA) are not linked together. One reason for this can be the time-mismatch. In this chapter we
study the correlation when we use the same day for both markets and also with one day delay
for the stocks that belong to one of the markets, and we conclude that this artificial feature
doesn’t change anything in the results of both Random Matrix analysis and Minimal Spanning
Tree which show that stocks from the DJIA and the FTSE100 remain separated.

The results for the portfolio of 30 stocks from the DJIA are shown in section 7.3. Section 7.4

shows the results for the cross-correlations between stocks from the DJIA and FTSE100 indices.
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Finally the conclusions are presented in section 7.5.

7.2 Data

In this portfolio combined of stocks from DJIA and FTSE100, all the companies listed in one
index are different from the companies listed in the other. This may be a cause for the segregation
of stocks. In the next chapter 8 we will study portfolios with the same company listed in different
indices.

The total number of stocks in this portfolio is 115 (the total 30 stocks from DJIA and 85
stocks from the 102 stocks of the FTSE100 index) starting from January 3"¢ 2000 until March
24" 2008. The stocks from FTSE100 and DJIA indices used in this study are shown in tables
C.1 and C.2 of Appendix C, respectively.

The total number of days is 2146. The set of stocks chosen are the stocks that belong to
these indices at April 1% 2008. The data from the 17 stocks that we excluded from the FTSE100
index did not have non-zero closing prices for the entire period of our study. The main reason

for this is probably that the companies enter the stock market after January 37¢ 2000.

7.3 Analysis of correlations of stocks in the DJIA index

The distributions of the eigenvalues of the correlation matrix for the 30 stocks of the DJIA index
is shown in Figure 7.1 and can be compared with the results for 85 stocks from the FTSE100
index in Figure 5.22 (Chapter 5). The value of the largest eigenvalue for each market seems to
depend on the size of the portfolio or probably in the correlation of the stocks in the portfolio.

Figure 7.1 shows that most of the eigenvalues are located outside the region predicted by
Random Matrix Theory (eq. 4.44). Just one sixth of the eigenvalues are inside this predicted
region. The main cause for this can be the small amount of stocks (30) that comprise the DJIA
index. The theory of Random matrices should just work in the case of a large number of stocks
and the large length of time series. There are four eigenvalues with values higher than the
maximum predicted by the RMT, A4, but there are many more with values lower than the
minimum value predicted, Apin. Again, this might be related to the fact that the portfolio is
very small.

The eigenvalues that have higher values are the ones that we believe contain non-random
information about the market [38, 39]. The mean value of the eigenvector elements, for each
industrial sector, for the eigenvalues that have values higher than A4, are represented in Figure
7.2

Each eigenvector shows different industrial sectors that drive it. For example, as shown
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Figure 7.1: Spectrum and distribution of eigenvalues for a portfolio of 30 stocks from the DJIA.
The vertical lines, in the upper figure, show the limits A9 (eq. 4.44). Only 1/6% of the

man

eigenvalues are inside the region predicted by the RMT.

by other authors [38, 39, 133], for the eigenvector related with the highest eigenvalue, Az, all
clements have the same sign, which means that all stocks contribute almost the same. This is
known as the market mode and can be compared with the return index of the market that we
are studying. For the eigenvector related with the 2"? highest eigenvalue, Aag, the stocks from
different industrial sectors have different behaviours, but we can see that some industrial sectors
are positive and other are negative. For example, Oil and Gas and Health Care are positive and
Technology is negative for all the stocks that belong to these industrial sectors. The other two
eigenvalues, Agg and Ag7 have different sectors driving them. For the eigenvector related with
the 3¢ highest eigenvalue, \og, the main sector is Telecommunications and for the eigenvector
related with the 4" highest eigenvalue, Ao7, the main sector is Oil and Gas.

The eigenvectors related with third and fourth highest eigenvalues can be compared with
the same eigenvectors from the FTSE100 portfolio in Figure 5.23 (Chapter 5), where the main
industrial sectors that drive the eigenvalues are the same.

Some of these strong sectorial correlations can be seen in Figure 7.3, which shows the visu-

alisation of the correlations between stocks using the MST for the portfolio of stocks from the
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Figure 7.2: Mean value of eigenvector elements, for each industrial sector, of the four highest
eigenvalues, A3, A2g, A2g and g7 for a portfolio of 30 stocks from the DJIA index. In the x
axis we have the industrial sector: a) Telecommunications; b) Basic Materials; c¢) Utilities; d)
Consumer Goods; e) Oil and Gas; f) Consumer Services; g) Financials; h) Industrials; i) Health

Care; j) Technology. The error bars represent the variance of each industrial sector.

DJIA index. The symbol used for each stock is the same used before in Chapter 5 correspond-
ing to a specific industrial sector from the ICB classification [121] as: Oil and Gas (W), Basic
Materials (A), Industrials (), Consumer Goods (M), Health Care (), Consumer Services (A),

Telecommunications (), Utilities (o), Financials (e) and Technology (o).

Almost all the stocks from the DJIA index, that belong to the same industrial sector are
linked together, thus illustrating the correlations between stocks of the main U.S.A. index. A
similar behaviour was found in Chapter 5 (Figures 5.7, 5.8 and 5.21) for the MST of the FTSE100

portfolios.
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Figure 7.3: Minimal Spanning Tree for 30 stocks of the DJIA index. The time series of each stock
are composed by 2146 daily closing prices. Each symbol correspond to a specific industry from
the ICB: Oil & Gas (W), Basic Materials (4), Industrials (¢), Consumer Goods (M), Health
Care (), Consumer Services (A), Telecommunications (¢), Utilities (o), Financials (e) and

Technology (o).

7.4 Cross correlations between stocks of the DJIA and the FTSE100
indices

Next step in our analysis is the study of cross correlations between both sets of stocks. Taking
into account the fact that the data we use is the daily closing price of stocks, and knowing that
the two stock markets close at different times, we also studied the cross correlations when the
return of one set is one day ahead of the return of the other (Figure 7.4).

From Figure 7.4 we can see that for values of correlations, p;; higher than 0.3 the distribution
is almost the same for the three different cases studied. This correlations are the same because

they are the correlations between stocks of the same market, and that does not change from case
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Figure 7.4: Distribution of the coefficients of the correlation matrix p;; for the case of stocks
from the DJIA and the FTSE100 at the same day (black solid line), the FTSE100 one day ahead
of the DJIA (grey solid line) and the DJIA one day ahead of the FTSE100 (black dotted line).

to case. The difference is in the lower correlations, related with the cross correlations between
stocks of different markets. When correlations are calculated with the stocks of the DJIA one
day ahead of the ones from the FTSE100 there are many coeflicients next to zero, showing a
break in the correlations between both markets. This happens because the closing price of the
DJIA is 4 : 30 hours later than the closing price of FTSE, so when we used the closing price
of the stocks of DJIA one day ahead of the closing price of the stocks from FTSE100, there
is a difference of 28 : 30 hours. For the case when correlations are calculated with the stocks
of the FTSE100 one day ahead of those from the DJIA there is also a small break around 0.2.
The difference in this case is of 19 : 30 hours. From these results we concluded that the best
approach is when the correlations are calculated for all the stocks at the same time, ¢.

The distribution of eigenvalues of the cross correlations can be seen in Figure 7.5. Just 41%
of the eigenvalues stay inside the region predicted by the RMT. There are 8 eigenvalues higher
than A,,... These eigenvalues seems to be a mix between the higher eigenvalues of the portfolio
of 30 stocks of the DJIA index in Figure 7.1 and the portfolio of 85 stocks of the FTSE100 index
in Figure 5.22 (Chapter 5).
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Figure 7.5: Spectrum and distribution of eigenvalues for a portfolio of 115 stocks from the DJIA
and the FTSEL00 indices. The vertical lines, in the upper figure, show the limits A% (eq.
4.44). Less than half (41%) of the values of the eigenvalues are inside the region predicted by

the RMT.

The highest eigenvalue has almost the same value as the highest eigenvalue of the FTSE100
portfolio. The second highest can be compared with the highest from the DJIA portfolio. The
third, fourth and fifth highest can be compared with the second, third and fourth highest,
respectively, for the FTSE100 portfolio. The sixth highest can be compared with the second
highest of the DJIA portfolio and the seventh and eighth highest with the fifth and sixth highest
of the FTSE100 portfolio.

The information contained in these eigenvalues show us how stocks from different markets
are related to each other. Figure 7.6 shows the eigenvectors of the four highest eigenvalues, A1s,
Al14, A113 and Aqpa.

The mean value of eigenvector elements in Figure 7.6 shows that for the eigenvector related
with the highest eigenvalue, A\1;5, all the elements have the same sign, as we saw for the individual
markets. The eigenvector related with the second highest eigenvalue, A114, shows a segregation
between the stocks of the two different markets, where all the elements of the DJIA index have

a positive sign and all the elements of the FTSE100 index have a negative sign, apart from the
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Figure 7.6: Mean value of eigenvector elements, for each industrial sector, of the four higaest
eigenvalues, Ajj5, A114, A113 and Ao for a portfolio of 115 stocks from the DJIA and the
FTSE100 indices. In the x axis we have the industrial sector: a) Telecommunications: b)
Basic Materials; c) Utilities; d) Consumer Goods; e) Oil and Gas; f) Consumer Services g)
Financials; h) Industrials; i) Health Care; j) Technology. The error bars represent the varience
of each industrial sector. The columns in grey are respected to the FTSE100 stocks and the

columns in black to the DJIA stocks.

FTSE100 stock that belong to the Technology industrial sector, that also has a positive sign like
the stocks from the DJTA index.

The eigenvector related with the third highest eigenvalue, A113 shows similarities with the
second highest eigenvalue for both the DJIA and the FTSE100 indices and the eigenvector related
with the fourth highest eigenvalue, A115 shows similarities with the third highest eigenvalue for

both the DJIA and the FTSE100 indices.

We have also performed an eigenvector analysis for the cases where the values of stocks of
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one market are one day ahead of the others. When the stocks of the FTSE100 index are one day
ahead of the stocks of the DJIA index, the results are the same as in Figure 7.6 but when the
stocks of the DJIA index are one day ahead of the stocks of the FTSE100 index, the eigenvector

clements show very different results as we can see from Figure 7.7.

v 8 = T I " T
1_ a] 1 ‘W g ‘BT } ! A =
- I 1 2
s'm B | + 0 B g B '
. | o
. ; s
11 | | | []
gl | | | ' | o
° | & ‘ 1 1 b '
5 I I ! = ) | I
. { : ! ; =
o @ | | i : ' :
S m - L‘. Tm g m “m : |
a b ¢ d 6" T @ -h"'i i a b ¢ d e f g h i |
(,“rl]s>m.s </1114>NLS
o~
5 m s I
ol B S B LT B 2 o . e ol B =
# 3
T |
s o
d S
a b c d e f g h i j a b c d e f g h i ]
</1/“3>m“s' </1112>m.s

Figure 7.7: Mean value of eigenvector elements, for each industrial sector, of the four highest
eigenvalues, A115, A114, A113 and Ajjo for a portfolio of 115 stocks from the DJIA and the
FTSEL00 indices when the correlations are calculated for the stocks of the DJIA index one
day ahead of the stocks of the FTSE100 index. In the x axis we have the industrial sector:
a) Telecommunications; b) Basic Materials; c¢) Utilities; d) Consumer Goods; e) Oil and Gas;
f) Consumer Services; g) Financials; h) Industrials; i) Health Care; j) Technology. The error
bars represent the variance of each industrial sector. The columns in grey are respected to the

FTSE1L00 stocks and the columns in black to the DJIA stocks.

The mean value of eigenvector elements in Figure 7.7 shows that the eigenvector related to

the highest eigenvalue, A\115 no longer has all its elements positive. It seems that this eigenvalue
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just shows the influence of the stocks of the FTSE100 index in the portfolio. On the other
hand, the eigenvector related with the second highest eigenvalue, \j14 shows just the influence
of the stocks from the DJIA index. The eigenvector related with the third and fourth highest
eigenvalues mimic the composition of the eigenvectors related with the second and third highest
eigenvalues of the individual stocks of the FTSE100 index.

The segregation between the stocks of the FTSE100 and the DJIA indices can be seen when
we analyse the MST of the portfolio of 115 stocks. In Figure 7.8 we can see that on the top
right of the MST all the stocks of the FTSE100 are linked together with the same industrial
sector cluster that we saw previously when we studied the MST for the individual portfolio of
stocks of the FTSE100 in Figure 5.21 (Chapter 5). At the bottom left of the MST all the stocks
of the DJIA index are also linked together with the same configuration as in Figure 7.3. The
link is between BP from the FTSE100 index and Chevron from the DJIA index both from the
industrial sector Oil and Gas.

For the other two cases where the stocks of one market are calculated one day ahead of the
other, the structure of the MST does not change. There is always a cluster of stocks from the
FTSE100 index on one side and another cluster of stocks from the DJIA index on the other side.
The only feature that changes is the link between both markets. If the correlations are calculated
for the stocks of the FTSE100 one day ahead of the DJIA, the link is between GlaxoSmithKline
from the FTSE100 and AT&T from the DJIA. If the correlations are calculated for the stocks of
the DJIA one day ahead of the FTSE100, the link is between Alliance Trust from the FTSE100
and JP Morgan Chase from the DJIA.

7.5 Conclusions

We have used two different methods to study correlations between stocks of the FTSE100 and the
DJIA. Our results using Random Matrix Theory show that the markets remain largely separate
even when cross-correlations between stocks across the two markets are included. The results
for the Minimal Spanning Trees broadly reflect the results from the Random Matrix Theory.
But it is not as easy to see the detail provided by the Random Matrix analysis. This of course
is not too surprising since the Minimal Spanning Trees approach only uses partial information
from the correlation matrix.

Much research in finance has addressed the issue of whether or not stocks ultimately cluster
by market or by industry. There is no consensus on this. Some [134] suggest that the clustering
is primarily industrial, while others [135] contend that the split is primarily geographical. The
evidence here is that geographical (more correctly, market) location is the most important ele-

ment in determining the cluster into which a stock falls. The implication for portfolio managers
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Figure 7.8: Minimal Spanning Tree for 115 stocks of the FTSE100 and the DJIA indices. The
time series of each stock is composed of 2146 daily closing prices. Each symbol corresponds to
a specific industry from the ICB classification. All the stocks from the FTSE100 index have a
.L after the code. Each symbol correspond to a specific industry from the ICB: Oil & Gas (W),
Basic Materials (A), Industrials (), Consumer Goods (M), Health Care (), Consumer Services

(A), Telecommunications (Q), Utilities (o), Financials (e) and Technology (o).

is that, at least at a first level, they should consider diversification along market lines, and only
subsequently along industrial or sectoral lines. i

It is an important consideration that we are studying stocks from two markets that operate
at different time. Further investigation with stocks from markets that operate at the same time
is essential as we show further in Chapter 8. If we want to upgrade our study of stocks from the
FTSE100 and the DJIA indices we should use intraday data from both markets and study the

correlation at the same minute, but only for minutes when both markets are in operation.







Chapter 8

Cross correlations between portfolios
of stocks from different geographical

locations

8.1 Introduction

In this chapter we use Random Matrix Theory to examine the correlation between stocks traded
on markets of different countries and compare with the results obtained from a simple market
model as done before in section 5.6.1. Based on the study of correlations of indices from different
countries in Chapter 6 [52] where we analysed the Minimum Spanning Trees of 56 market indices
around the world, we want to study the cross-correlations between stocks that are quoted in
different stock markets. In this previous study, the indices cluster in terms of geographical
location and they were localised in a central cluster of West and Central Europe markets and
three other clusters around: American indices; Asia-Pacific indices; Eastern European indices.

Studying the correlations between stocks that belong to different markets give us a better
understand of the correlation between the indices. For example, if the stocks of DJIA segregate
from the stocks of FTSE100, as we saw in Chapter 7, this show us why the two main indices in
the study of Chapter 6 were so separate from each other.

A preliminary extension of this work was shown in Chapter 7 where we analysed the cross
correlation between stocks listed in the FTSE100 and DJIA indices, two of the most common
indices for investors. But as we saw from Figure 6.9, these two indices are not the main hubs of
the MST of the indices around the world. The central index is France.

For our study of stocks from different indices we chose three main world indices from three

different countries: France, U.K. and U.S.A. (U.K. and U.S.A. are separated from France by one
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and three links, respectively in the MST of Figure 6.9). The three indices that we study here
are the CAC40, the FTSE100 and the DJIA and the stocks from each index are represented
in tables C.3, C.1 and C.2, respectively. As shown in Chapter 7 the stocks from the FTSE100
segregate from the stocks from the DJIA. With the inclusion of the stocks from the CTAC40
index, we want to test if these stocks also segregate from the previous two groups, or if they

cluster with some group of stocks.

To test the time-mismatch problem between stocks that are listed in indices from different
markets, we also present a second study with European stocks from three indices with close
geographical locations, namely France, Netherlands and Belgium (France and Belgium are sep-
arated from Netherlands by only one link in the MST of Figure 6.9). With this second portfolio,
we want to check the differences between markets that have geographical and trade affinity and
markets that don’t. The three indices study here are the CAC40, the BEL20 and the AEX and
the stocks from each index are represented in tables C.3, C.4 and C.5. Important differences
between this second portfolio and the first one is that for the European portfolio all the stocks
are quoted with the same currency and all the markets also work at the same time. In this

second portfolio there are some companies listed in different indices.

In the next section we present the data analysed here and then our results for the Minimal
Spanning Tree analysis. In section 8.4 we present a factor model for random time series and the

results of the eigensystem analysis of both correlation matrices of real and random data.

8.2 Data

Our data is the daily closing price for 2146 days, from January 3¢ 2000 until March 24" 2008.
Our first portfolio contains 149 stocks from the CAC40, the FTSE100 and the DJIA indices,
with 34, 85 and 30 stocks, respectively. We changed all the currencies of these stocks to the

same, US dollars, using the currency exchange for each specific day.

The second portfolio is composed of the closing price in Euros, as it is the currency established
by these three countries. The portfolio contains 72 stocks from the CAC40, the BEL20 and the
AEX indices, with 34, 17 and 21 stocks, respectively.

We divided the stocks in groups of industrial sectors using the ICB classification [121] and
use all the stocks that belong to each index that we have data available for the period January

374 2000 until March 24" 2008.



8. Cross correlations between portfolios of stocks from different geographical locations 127

8.3 Minimal Spanning Trees

8.3.1 Analysis of data from CAC40, FTSE100 and DJIA indices

We have computed the correlation matrix, and analysed the eigensystem of this matrix for
the portfolio consisting of stocks from the CAC40, the FTSE100 and the DJIA indices called
portfolio A. The Minimal Spanning Tree constructed from the matrix of distances is chown in

Figure 8.1.
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Figure 8.1: Minimal Spanning Tree for 149 stocks of the CAC40, the FTSE100 and the DJIA
indices. The time series of each stock is composed of 2146 daily closing prices. The stocks from
the CAC40 have a .PA after the code and the ones from the FTSE100 have a .L. Each symbol
correspond to a specific industry from the ICB: Oil & Gas (B), Basic Materials (A), Industrials
(#), Consumer Goods (M), Health Care ([J), Consumer Services (A), Telecommunications (Q),

Utilities (o), Financials (e) and Technology (o).

From the MST we can see that there is a segregation from the stocks of the DJIA index

in the bottom left corner of the MST. All 30 stocks from the DJIA are linked together and
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maintained the structure shown in Figure 7.3 for these stocks when studied alone. The link to
this cluster with the rest of the portfolio is made through Chevron from the DJIA index and
BP from the FTSE100 index as in Figure 7.8. These stocks form an Oil and Gas cluster that

consist of 6 stocks from the three different markets.

As shown in previous figures the main hub of the MST is the stock Alliance Trust from
the FTSE100 index. There is also interdependence between some stocks of the CAC40 and the
FTSE100 indices. All stocks from Telecommunications are linked together, with France Telecom
joining the previous cluster of the FTSE100. The Technology stocks also form another cluster
with stocks from the CAC40 and the FTSE100 indices. The same also happen with the stocks
from Consumer Goods, Health and Care and Real Estate (sub-sector of Financials). Another
curious result is the link between British Airways and Air-France as part of the Consumer

Services industrial sector.

8.3.2 Analysis of data from CAC40, BEL20 and AEX indices

The MST of the second portfolio, which we call portfolio B, consisting of stocks from CAC40,

BEL20 and AEX indices, is shown in Figure 8.2.

From this MST we can see many clusters with stocks from different markets. For example,
the Telecommunications cluster has one stock from each market. The same happens with the
industrial sectors Technology and Oil and Gas. The sub-sector Real Estate from the industrial
sector Financials is also composed of three stocks, one from each market. Another cluster of
stocks from different markets is formed from stocks of the super-sector Food and Beverage, part

of the Consumer Goods industrial sector.

The main hubs of this MST are AXA (with symbol CS.PA) from the CAC40 index, an
insurance company with 13 links, one of these links is to the other hub of the MST, ING Groep
(with symbol INGA.AS) from the AEX index, another insurance company with 13 links. We
can see that part of the stocks from the BEL20 index cluster together, or are directly linked
to the same company that is also quoted in a different market. This is the case of Fortis, a
bank that is quoted in the BEL20 index with the symbol FORB.BR and is quoted in the the
AEX index with the symbol FORA.AS. The same also happens for two other companies, Suez,
an utilities stock quoted in the BEL20 and the CAC40 indices with symbols SZEB.BR and
SZE.PA, respectively and Dexia, a bank quoted in the BEL20 and the CAC40 indices with
symbols DEX B.BR and DX.PA, respectively.
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Figure 8.2: Minimal Spanning Tree for 72 stocks of the CAC40, the BEL20 and the AEX
indices. The time series of each stock is composed of 2146 daily closing prices. The stocks from
the CAC40 have a .PA after the code, the stocks from the BEL20 have a .BR after the code and
the ones from the AEX have a .AS. Each symbol correspond to a specific industry from the ICB:
Oil & Gas (W), Basic Materials (4), Industrials (#), Consumer Goods (M), Health Care (OJ),
Consumer Services (A), Telecommunications (), Utilities (o), Financials (e) and Technology

().

8.4 Simple Market Model

To try to mimic the time series of returns for each stock we need to create a market model. So

we use the one-factor model already presented in section 5.6.1:

T'i(t) =i ﬁij] (t) + G.i(t) (81)
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where Ry, is the total return of the stocks of the market j (mj, 3 = 1,2,3) and ¢(t) is a

Gaussian distributed random number. The total return is calculated as:

Boelt) = Y Bif (8.2)

IS

where R;(t) is the return of stock i at time ¢t and we will call this total return the index of
market j.
The parameters a; and [3; are estimated by the least square method between the real returns

and the index of the market to which the stock belongs:

R;) — Bi(Rum,) (8.3)
,31_ - Rz ’”1 : (Rz> . (Rm]-> (84)
<(Rm,_,) ) - <ij>2

After creating the random time series we compute the correlation matrix and then we perform

; =

(
{

an eigensystem analysis. We also create a MST from the random market.

The MST for both portfolio A and B are represented in Figures 8.3 and 8.4, respectively.

The MST of Figure 8.3 is not similar with the real MST from Figure 8.1, because there are
some hubs with a huge amount of links, which is not normal in the MST of real data. This
behaviour was already stated in Chapter 5 for Figure 5.15 where we also used a market model
to create some random time series.

The main feature of MST of Figure 8.3 is that there are three cluster of stocks. The cluster
in the bottom left of MST has all the stocks from the DJIA index, the middle cluster has all the
stocks from the CAC40 index and the cluster on the top right of MST has all the stocks from
the FTSE100 index.

The fact that all the stocks that belong to the DJIA index are linked with each other and
form a cluster is a mimic of the behaviour of the real MST in Figure 8.1, but the absence of
interdependence between the stocks of the CAC40 and the FTSE100 shows that the simple
model cannot mimic the whole figure of the MST.

The main hubs in the Figure 8.3 are some of the stocks from the Financials industrial sector,
between them there are the two main hubs from the MST of real data (Figure 8.1), AXA and
Alliance Trust, which are also the main hubs for their two market indices, the CAC40 and the
FTSE100, respectively.

The MST of Figure 8.4 also shows a division in three main clusters. The bottom right cluster
has all the stocks from the BEL20 index, the middle cluster has all the stocks from the AEX
index and the cluster in the top left of MST has all the stocks from the CAC40 index.

The main hubs of the MST continue to be the stocks from Financials industrial sector with

the insurance companies AXA and ING Groep as two of these main hubs like it was for the MST
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Figure 8.3: Minimal Spanning Tree for 149 stocks of the CAC40, the FTSE100 and the DJIA
indices created using a random market model. The time series of each stock is composed of 2146
daily closing prices. The stocks from the CAC40 have a .PA after the code and the ones from
the FTSE100 have a .L. Each symbol correspond to a specific industry from the ICB: Oil & Gas
(M), Basic Materials (A), Industrials (¢), Consumer Goods (M), Health Care (), Consumer

Services (A), Telecommunications (¢), Utilities (o), Financials (¢) and Technology (o).

of real data in Figure 8.2. The absence of interdependency between stocks of different market

indices shows that a simple market model is not enough to mimic the structure of a MST.

8.5 Market indices

The index for each market calculated from the random time series (ry,,(t) = Ziemj ri(t), § =
1,2,3) is compared with the index calculated from the real time series (R, (t), eq. 8.2). The
correlation between two indices is computed from eq. 4.30, where we use the return of each

index, instead of the return of stocks. Tables 8.1 and 8.2 show the values for these correlations.
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Figure 8.4: Minimal Spanning Tree for 72 stocks of the CAC40, BEL20 and AEX indices created
using a random market model. The time series of each stock is composed of 2146 daily clesing
prices. The stocks from the CAC40 have a .PA after the code, the stocks from the BEL20 have
a .BR after the code and the ones from the AEX have a .AS. Each symbol correspond to a
specific industry from the ICB: Oil & Gas (W), Basic Materials (A), Industrials (¢), Consumer
Goods (M), Health Care (OJ), Consumer Services (A), Telecommunications (¢), Utilities (o),

Financials (¢) and Technology (o).

Table 8.1 shows that the higher correlation is between the CAC40 and the FTSE100 indices,
as it is expected since the markets are on the same geographical cluster and are also two of the
main indices in the world. The correlations between the DJIA returns and any other index are
very low. These results are in agreement with what we have shown for the MST in Figure 8.1
with the stocks from the DJIA separated from the rest and in MST of Figure 6.9 where the
DJIA is 3 links away from the CAC40 but the FTSE100 and the CAC40 are directly linked.

Table 8.2 shows that the higher correlation is between the CAC40 and the AEX indices and
the second highest correlation is between the CAC40 and the BEL20 indices. This last result is




8. Cross correlations between portfolios of stocks from different geographical locations 133

Table 8.1: Correlations between market returns for portfolio A: the CAC40, the FTSE100 and
the DJIA indices. The cells in light grey represent the correlation between the return of real
market i, Ry, (t) and the return of real market j, Ry, (). The cells in dark grey represent the
correlation between the return of random market i, 7, (t) and the return of random market j,
T'm, (t). The cells in white represent the correlation between the return of real market %, R,ml(t)
and the return of random market 4, r,,,(¢) and those deviate from 1.
| CAC40 | FTSE100| DJIA
CAC40
 FTSEL00
. DJIA

0.97

Table 8.2: Correlations between market returns for portfolio B: the CAC40, the BEL20 and
the AEX indices. The cells in light grey represent the correlation between the return of real
market i, Ry, (t) and the return of real market j, Ry, (t). The cells in dark grey represent the
correlation between the return of random market i, 7,,,(¢) and the return of random market j,
rm, (t). The cells in white represent the correlation between the return of real market i, Rl

and the return of random market ¢, r,,,, (¢) and those deviate from 1.

| | cacao | BEL20 | AEX |

CAC40 0.97
BEL20

AEX

in disagreement with the results of MST of Figure 6.9 where the CAC40 and the BEL20 indices
are directly linked with the AEX index but are separated by two links, so we should expect a
higher value of correlation between the BEL20 and the AEX indices than between the CAC40
and the BEL20 indices. If we look at the correlation matrix that produces the MST of Figure
6.9 we can see that the value of correlation between the BEL20 and the AEX indices is 0.81 and
it is higher than the correlation between the CAC40 and the BEL20 indices which is 0.77. The
difference of values with our table 8.2 is related with the fact that when we calculate the returns
R, (t), we compute an arithmetic mean with the values of returns of stocks that we have in our
portfolio which is not always the total number of stocks that compose the index. It can also be
the case that some indices are calculated with a weighted arithmetic mean.

The higher value of correlation between the CAC40 and the AEX indices is also in agreement
with the results of MST of Figure 8.2 where many stocks of the CAC40 and the AEX indices

cluster together.
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8.6 Eigensystem analysis

8.6.1 Distribution of eigenvalues

The distribution of eigenvalues for the random correlation matrix and the real correlation matrix

for portfolio A is shown in Figure 8.5.
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Figure 8.5: Distribution of eigenvalues of the correlation matrix computed from the random
time series (top) and from the real time series (bottom) for the portfolio A. In both ceses the

highest eigenvalue has almost the same value. The vertical lines, in the inset figures, indicate

max
man *

the region predicted by random matrix theory,

We can see that there is a high number of eigenvalues that stay outside the region predicted
for a random matrix, A™%*. The percentage of eigenvalues that stay inside this region is 45% for
the real case and 66% for the random case. The random time series leads to three eigenvelues
outside the predicted region as shown by F. Lillo et al. for multifactor models [136], whie there
are more than three eigenvalues outside this region for the real data. For the real case there are
9 eigenvalues higher than \qz.

The two highest eigenvalues for the random case (5\149 = 38.02 and ;\148 = 8.89) have almost
the same value as the two highest for the real data (A149 = 37.55 and Aj45 = 8.68).

In Figure 8.6 we show the distribution of eigenvalues for the random and real correlation
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matrices for portfolio B.
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Figure 8.6: Distribution of eigenvalues of the correlation matrix computed from the random time
series (top) and from the real time series (bottom) for the portfolio B. In both cases the two

highest eigenvalue have almost the same value. The vertical lines, in the inset figures, indicate

max

the region predicted by random matrix theory, A7

Also for portfolio B there are many eigenvalues that stay outside the region predicted for a
random matrix, A", The percentage of eigenvalues that stay inside this region is 40% for the
real case and 43% for the random case. As in Figure 8.5 for the random case there are only 3
eigenvalues with values higher than A,,,, [136]. For the real case there are 5 eigenvalues higher
than this value.

The highest eigenvalue for the random case (:\72 = 22.70) has almost the same value as the

highest one for the real data (A7 = 22.69).

8.6.2 Inverse Participation ratio

Looking at the eigenvectors that correspond to each eigenvalue we can get some information
about the nature of time series that we are studying. Comparing the Inverse Participation ratio

(subsection 4.4.1) for the real and random cases we can almost see which eigenvalues from the
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random case correspond to eigenvalues for the real case. In Figure 8.7 we present the IPR for

portfolio A.

1 T T T B e T T S R T T T \ G R FR P

S

0.01

G A |

T

i R
Inverse Participation Ratio, I

lll)i 1 1 1 llLlLi e 1 L | R . -

10 100

Values of Eigenvalues, A,

0.001 3 =

Figure 8.7: Inverse Participation Ratio from random time series (grey circles) and real time

series (black circles) for the portfolio A on a log — log scale. The vertical lines indicate the
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From Figure 8.7 we can see that the highest eigenvalue from the random case, A149 has almost
the same value of IPR as the highest eigenvalue for the real case, Aj49. The same behariour
can be seen with the second highest eigenvalue, but the third highest eigenvalue of the rardom
case, A 147 seems to be very similar with the fourth highest eigenvalue of the real case, A\j5. A
better comparison can be made when we study each element of the eigenvectors relatzd with
these eigenvalues.

The comparison of the Inverse Participation ratio between the real and random cases for
portfolio B is presented in Figure 8.8.

For the case of portfolioc B, the correspondence between an eigenvalue for the random case
and another from the real case is not so evident than for portfolio A. The only evident case is
for the highest eigenvalue of random case, ;\72 which has almost the same value of IPL as the
highest eigenvalue for the real case, A7s.

For both portfolios, the IPR of the highest eigenvector is low (Figures 8.7 and 8.8), which

R ———
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Figure 8.8: Inverse Participation Ratio from random time series (grey circles) and real time
series (black circles) for the portfolio B on a log — log scale. The vertical lines indicate the
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means that the stocks contribute in the same way. We can see this behaviour when we analyse
each eigenvector and its elements in the Figures 8.9 and 8.11 where all elements are positive.
This corresponds to the general trend of all stocks and it also specifies how each stock contributes

to the overall index.

8.6.3 Eigenvector elements of the highest eigenvalues

To check if these aparent correspondences of the IPR between eigenvalues of the random case
and eigenvalues of the real case are real we compute the mean value of the eigenvector elements
(subsection 4.4.2) for the real and random cases.

In the following Figures, we will show the comparison between the eigenvectors from the real
and random cases, for portfolios A and B. All the elements of the eigenvector that corresponds
to the highest eigenvalue have the same positive sign. This is shown for both portfolios and for
the real and random cases. Other correspondence is between the real and random elements of

the eigenvector related with the second highest eigenvalue for portfolio A. In both cases, the
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elements related with the DJIA index segregate from the other elements.
In Figure 8.9 we present these elements, for each industrial sector and index, of the two

highest eigenvalues, Aj49 and M43, for the study of portfolio A.
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Figure 8.9: Mean value of eigenvector elements, for each industrial sector, of the two highest
eigenvalues, A\j49 and A4, for the study of portfolio A. The left figures correspond to the real
time series and the right figures to the random time series. In the x axis we have the industrial
sector: a) Telecommunications; b) Basic Materials; ¢) Utilities; d) Consumer Goods; e) Oil and
Gas; f) Consumer Services; g) Financials; h) Industrials; i) Health Care; j) Technology. The
error bars represent the variance of each industrial sector. Each colour column represent one
index: dark grey for the CAC40 index, light grey for the FTSE100 index and black for the DJIA

index.

For portfolio A, the eigenvector corresponding to the highest eigenvalue, A149 (top left picture
of Figure 8.9) shows all the elements of different sector and different indices with the same

positive sign, showing that all the elements of this eigenvector contribute positively to the
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highest eigenvalue. The same behaviour is mimic by the random case where the eigenvector
corresponding to the highest eigenvalue, A149 (top right picture of Figure 8.9) shows all the
stocks from different sectors and indices with a positive sign.

The eigenvector corresponding to the second highest eigenvalue, A48 (bottom left picture
of Figure 8.9 shows a segregation between the stocks from the DJIA index (all negative) and
the stocks from the CAC40 and the FTSE100 (almost all of them positive). The eigenvector
corresponding to the second highest eigenvalue of the random case, A14s (bottom right picture
of Figure 8.9) mimic the behaviour of the real case, with all the stocks from the DJIA index
with a negative sign and almost all the stocks from the CAC40 and the FTSE100 indices with
a positive sign. This segregation between the stocks of the DJIA index and the stocks left from
the other two indices was already spotted in the MST of Figures 8.1 and 8.3 for the real and
random cases, respectively.

In Figure 8.10 we present the eigenvector elements, for each industrial sector and index, of
the third and fourth highest eigenvalues, A\147 and A46, for the study of portfolio A.

For portfolio A, the eigenvector corresponding to the third highest eigenvalue, A\147 (top left
picture of Figure 8.10) shows almost all the stocks from the DJIA index with positive sign,
again showing some kind of clustering between the stocks of this index. For the random case,
the eigenvector related with the third highest eigenvalue, A4z (top right picture of Figure 8.10)
is very different from that of the real case. This one shows another segregation between stocks
of one index and the stocks of the other two, where in this case, the stocks that segregate
correspond to stocs from the CAC40 index, all of them with a positive sign, where almost all the
stocks from the FTSE100 and the DJIA indices show a negative sign. This behaviour has been
shown in the MST for the random case (Figure 8.3) where the stocks from the three different
indices were divided in three different groups, cach one related with one different index. But
this behaviour is not at all what we see in the real case.

For the eigenvector that corresponds to the fourth highest eigenvalue, A146 (bottom left
picture of Figure 8.10) almost all stocks from the CAC40 index are positive. This behaviour is
very similar with that of the eigenvector related with the third highest eigenvalue for the random
case, ;\147 (top right picture of Figure 8.10). This result is in agreement with what we stated
after looking at the comparison between the IPR, for real and random cases, for the portfolio
A

The eigenvector corresponding to the fourth highest eigenvalue, for the random case, ;\146
(bottom right picture of Figure 8.10) shows a random distribution of the values of each stock.
There is no pattern for a specific sector or index.

In Figure 8.11 we present the eigenvector elements, for each industrial sector and index, of

the two highest eigenvalues, A79 and A7; of both real and random cases, for portfolio B.
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Figure 8.10: Mean value of eigenvector elements, for each industrial sector, of the third and
fourth highest eigenvalues, A\j47 and A4, for the study of portfolio A. The left figures correspond
to the real time series and the right figures to the random time series. In the x axis we have
the industrial sector: a) Telecommunications; b) Basic Materials; c) Utilities; d) Consumer
Goods; e) Oil and Gas; f) Consumer Services; g) Financials; h) Industrials; i) Health Care; j)
Technology. The error bars represent the variance of each industrial sector. Each colour column
represent one index: dark grey for the CAC40 index, light grey for the FTSE100 index and black
for the DJIA index.

For the eigenvector related with the highest eigenvalue, A7o (top right picture of Figure 8.11)
all the elements of different sectors and indices have the same positive sign as shown before
for other portfolios. The same behaviour is also presented for the random case, where the
eigenvector related with the highest eigenvalue, A72 (top right picture of Figure 8.11) has all the

elements with a positive sign.

For portfolio B, the eigenvector corresponding to the second highest eigenvalue, A\7; (bottom
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Figure 8.11: Mean value of eigenvector elements, for each industrial sector, of the two highest
eigenvalues, A\72 and A7y, for the study of portfolio B. The left figures correspond to the real
time series and the right figures to the random time series. In the x axis we have the industrial
sector: a) Telecommunications; b) Basic Materials; ¢) Utilities; d) Consumer Goods; e) Oil and
Gas; f) Consumer Services; g) Financials; h) Industrials; i) Health Care; j) Technology. The
error bars represent the variance of each industrial sector. Each colour column represents one
index: dark grey for the CAC40 index, light grey for the BEL20 index and black for the AEX

index.

left picture of Figure 8.11) does not show any kind of segregation in terms of index, as shown
for portfolio A, but it shows some patterns in terms of industrial sectors. For different indices,
almost all the elements for the same industrial sector follow the same sign. For the random
case, the eigenvector corresponding to the second highest eigenvalue, A7l (bottom right picture
of Figure 8.11) shows the same behaviour as the second highest eigenvalue of the portfolio A,

where all the elements of one index segregate from the elements of the other two indices. In this




142

case, the stocks that segregate are those that belong to the BEL20 index. All these stocks have
a negative sign, and almost all the stocks from the CAC40 and the AEX indices have a pcsitive
sign. This segregation was already spotted in the MST of Figures 8.2 and 8.4 where the stocks

from the BEL20 index usually cluster together.

In Figure 8.12 we present the eigenvector elements, for each industrial sector and indsx, of

the third and fourth highest eigenvalues, A7g and \gg, for the study of portfolio B.
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Figure 8.12: Mean value of eigenvector elements, for each industrial sector, of the third and
fourth highest eigenvalues, A7g and Mgy, for the study of portfolio B. The left figures correspond
to the real time series and the right figures to the random time series. In the x axis we have
the industrial sector: a) Telecommunications; b) Basic Materials; c) Utilities; d) Consumer
Goods; e) Oil and Gas; f) Consumer Services; g) Financials; h) Industrials; i) Health Care; j)
Technology. The error bars represent the variance of each industrial sector. Each colour column
represents one index: dark grey for the CAC40 index, light grey for the BEL20 index and black
for the AEX index.
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For the eigenvectors related with the third and fourth highest eigenvalues, A7¢ (top left
picture of Figure 8.12) and Agg (bottom left picture of Figure 8.12), respectively, there seems to
be no segregation or clustering in indices or industrial sectors.

The eigenvector corresponding to the third highest eigenvalue, for the random case, ;\70 (top
right picture of Figure 8.12) has the same behaviour shown for portfolio A with the stocks from
the AEX index segregating from the stocks of the CAC40 and the BEL20 indices. All the stocks
from the AEX index have a positive sign and almost all the stocks from the CAC40 and the
BEL20 indices have a negative sign.

The eigenvector related with the fourth highest eigenvalue, for the random case ;\69 (bottom
right picture of Figure 8.12) shows a random distribution of the values of each stock. There is
no pattern for a specific sector or index.

For portfolio B, the only eigenvector corresponding to an eigenvalue that is higher than Aja.
and that we haven’t presented yet is the one related with the fifth highest eigenvalue. In Figure
8.13, we show the elements of this eigenvector and can see that all the stocks from the BEL20

index have the same feature, a negative sign.

8.7 Multifactor model

A realistic market model needs to incorporate correlations between stocks as shown by J. D.

Noh [137]. We use a multifactor market model with terms for each market:

ri(t) = ag, + a1, Rm, (t) + ag, Rm, (t) + a3, Rm,(t) + €i(t) (8.5)
where R, is the return of index of market m; and €i(t) is a Gaussian distributed random
number. The parameters « are estimated by the least square method for multivariate data
analysis [138] between the real returns R; and the indices of each market R,

ap = <R> - (—Y1<Rm1> i a2<R/m.2> e 03<Rm3>

OX1 — (2012 — (3013

x] =
o1
4y = IX201 - 0ox1012 + a3 (013013-023011)
011022 — 012
! (o110x3 — ox1013) (011022 — 012%) + (0x2011 — 0x1012) (012013 — 023011)

3
(011033 — 0132) (011022 — 0122) — (012013 — 023011)

where o;; is the covariance between indices of two markets:
dij = <Rm,-ij> - (Rm1><RmJ'> (86)
and oy is the covariance between return of stock ¢ and index of market j:

OXj = (RiRmJ> o (Ri><ij> (87)
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Figure 8.13: Mean value of eigenvector elements, for each industrial sector, of the fifth hizhest
eigenvalues, Agg for the study of portfolio B. In the x axis we have the industrial sectcr: a)
Telecommunications; b) Basic Materials; ¢) Utilities; d) Consumer Goods; e) Oil and Gas; f)
Consumer Services; g) Financials; h) Industrials; i) Health Care; j) Technology. The error bars
represent the variance of each industrial sector. Each colour column represents one index: dark

grey for the CAC40 index, light grey for the BEL20 index and black for the AEX index.

We found that the values of ag are around zero as expected by the zero mean of stock returns.
The values of as are shown in Tables E.1 and E.2. If the indices of each market were orthozonal
each value of a should represent the covariance between the stock and that index of the merket.
For each stock, depending on which market it belongs to, the highest value of « is the ore for
the market to which the stock belongs, there are just a few cases for portfolio B where this rule
does not apply. The cases are for companies Dexia (DX.PA) quoted in the CAC40 inde> and
Corio (CORA.AS), Fortis (FORA.AS), KPN (KPN.AS) and Royal Dutch Shell (RDSA.AS)
quoted in the AEX index. Probably there are many reasons why these examples don’t follow
the rule. For example, Dexia is a French-Belgian financial company that results from a merge
of two other financial companies, one from Belgium and the other from France. Fortis is also a
financial company listed in both the BEL20 and the AEX indices with a strong market in the

Benelux region.

Because the exceptions to the rule are few, that is the reason why we decided to use a simple
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market model that gives the same results as the multifactor model.

8.8 Conclusions

To the best of our knowledge, this is the first time correlations between stocks from three different
countries have been studied and compared with the outcome of a market model where the main
factor is the mean return of each of the three markets.

The study of the eigensystem of correlations between stocks shows some particular behaviour
for each eigenvalue outside the region predicted by the Random Matrix theory. The highest
eigenvalue shows the general trend of the market, because all the elements of the eigenvector
corresponding to this eigenvalue have positive sign. Other eigenvalues outside the region pre-
dicted by Random Matrix theory show some kind of segregation between sectors of different
markets. But we see from two different portfolios that there is not a rule about which eigen-
value should represent which market. For the case of a portfolio of stocks from the CAC40, the
BEL20 and the AEX indices the segregation between stocks of different markets is very weak.
But for a portfolio of stocks from the CAC40, the FTSE100 and the DJIA indices there is a
strong segregation between the stocks of the DJIA index and the stocks of the CAC40 and the
FTSE100 indices. This same segregation is reproduced in our simple market model. Our market
model is also able to reproduce some values of the Inverse Participation Ratio, that serves to
quantify the distribution of elements of an eigenvector. For the case of stocks from the CACA40,
the FTSE100 and the DJIA indices a good agreement between real and random cases for the
values of the first two eigenvalues and the values of the IPR of these eigenvalues is achieved.
This might be one of the reasons why the segregation is not so visible for portfolio B, as the
IPR for the real and random cases only looks identical for the highest eigenvalue.

Most of the conclusions about the segregation of stocks taken from the analysis of the eigen-
system of the correlation matrix was also achieved by the visualisation of the MST and the
clusters formed in the MST.

A model with more correlations between stocks of different markets will be necessary to

achieve the behaviour that some eigenvalues showed in our study.
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Outlook

From Chapters 2 and 3, we saw that the distributions of wealth for the rich people in the society
has a different power law exponent than for the billionaires. This conclusion comes from the
analysis of different sets of data, but should be important to have access to a data set of the
distribution of wealth that includes these two groups of the society.

In Chapter 3 we introduced a model able to recreate a double power law for the wealth
distributions. This double power law regime is due to the exchange rules adopted in this model
where the richest agents exchange a less percentage of their money compared with the poorest
agents. Using an analytical solution derived from a generalised function we fitted the distribution
of wealth from the simulations of our model successfully. A better understanding of the relation
between the values of parameters chosen in the model and the exponents of the power laws
should be a goal for the future. In addition, the search for an analytical solution of this model
should form the basis for further research.

In Chapters 5, 6, 7 and 8 we conclude that companies from the same stock market cluster
in terms of industrial sectors. The correlation between stocks from the same industrial sectors
is very high. Studying various portfolios of stocks we concluded that, depending on the market,
the stocks cluster first in terms of market and then in terms of industrial sector. For example,
in the study of the cross-correlations between stocks from the FTSE100 and DJIA indices, the
stocks from one market segregated from the stocks of the other market, but in each one of these
clusters, the stocks cluster in terms of industrial sectors. For a portfolio of stocks from European
markets, the segregation of stocks in terms of market is not so clear. There are some stocks from
different markets with higher correlation with stocks from other markets than with stocks from
the same market. From a portfolio of stocks from CAC40, BEL20 and AEX indices we saw that
many stocks from different markets cluster together in the same industrial sector. A further
study should include intraday data, to explain better the time-mismatch problem of stocks from
markets with different closing times, as for example, FTSE100 and DJIA.

The results are qualified based on the measures used in this thesis. Based on correlation

map further information can be obtained from complex network theory.
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Appendix A

Computation of parameters of

T-student distribution

The fractional moment of a T-student distribution is given as:
AQ:Q/ 2! Py(x)dz (A-1)
Jo
where Px(z) is the T-student probability distribution function of equation 4.4. We can write

the equation of moments as:

2 k
T ’ k
2Ny < o2k 202k
My = b / zf : k,ﬂ { Ug ] dx (A-2)
,/27r(7£ 0 1+ 202k *
Using a changing of variables where:
z2
202k .
z = —k = (A-3)
1+ 2021‘;
: By
T = 20,\_1@'1 e (A-4)

dr = \J202k(1 - 2)"¥2 12z (A-5)

the fractional moments can be written as:

2N}, fkr pl g :
M; = k[%@}?/z%ﬂywﬁi¥@ (A-6)
J0

2
27T0'k,

where the integral can be solved using the Beta function:

h m!n! C(m+ 1)['(n+1)
m!n m n
B +1.n 1) = u™ 1- “d,: = A7
b il /o ol o (m+n+1)! '(m+n+2) (A-7)
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In the case of the rate of moments (equation 4.10), dividing the fractional moments, M:_; by

My, we now obtain:
1L |2[k—1
[ ( ) _ l} (A-8)
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Appendix B

Stocks that belong to FTSE100 index
at June 30" 2005

Table B.1: Name, code and sector classification for the Industry Classification Benchmark (ICB)
and the Global Classification System (GCS) for 102 stocks that belonged to FTSE100 index at
June 30" 2005.

Name I code | ICB sector I GCS sector J
Anglo American AAL Basic materials Resources
Associated British Foods ABF Consumer goods Non-cyclical consumer goods
Alliance & Leicester AL. Financials Financials
Allied Domecq ALLD Consumer goods Non-cyclical consumer goods
Antofagasta ANTO | Basic materials Resources
Aliiance Unichem AUN Consumer services | Non-cyclical consumer goods
Aviva AV. Financials Financials
Amvescap AVZ Financials Financials
AstraZeneca AZN Health care Non-cyclical consumer goods
BAE Systems BA. Industrials General industrials
BAA BAA Industrials Cyclical services
Barclays BARC | Financials Financials
British American Tobacco | BATS Consumer goods Non-cyclical consumer goods
British Airways BAY Consumer services | Cyclical services
BG Group BG. Oil and gas Resources
British Land Co BLND | Financials Financials
BHP Billiton BLT Basic materials Resources
Bunzl BNZL Industrials Cyclical services
Continue on next page
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Name T code I ICB sector GCS sector
BOC Group BOC Basic materials Basic industries
Boots Group BOOT | Consumer services Cyclical services
BP BP. Oil and gas Resources
British Sky Broadcasting Group | BSY Consumer services Cyclical services
BT Group BT.A Telecommunications | Non-cyclical services
Cadbury CBRY Consumer goods Non-cyclical consumer goods
Carnival CCL Consumer services Cyeclical services
Centrica CNA Utilities Utilities
Cairn Energy CNE Oil and gas Resources
Compass Group CPG Consumer services Cyclical services
Capita Group CPI Industrials Cyclical services
Corus Group CS. Basic materials Basic industries
Cable & Wireless CW. Telecommunications | Non-cyclical services
Diageo DGE Consumer goods Non-cyclical consumer goods
Daily Mail & General Trust DMGT | Consumer services Cyeclical services
Dixons Group DXNS Consumer services Cyclical services
EMAP EMA Consumer services Cyclical services
Man Group EMG Financials Financials
Enterprise Inns ETI Consumer services Cyclical services
Exel EXL Industrials Cyclical services
Friends Provident FP. Financials Financials |
Gallagher Group GLH Consumer goods Non-cyclical consumer goods
GlaxoSmithKline GSK Health care Non-cyclical consumer goods
GUS GUS Consumer services Cyclical services
Hays HAS Industrials Cyclical services
HBOS HBOS Financials Financials
Hilton Group HG. Consumer services Cyclical services
Hanson HNS Industrials Basic industries
HSBC Hldgs HSBA Financials Financials
InterContinental Hotels Group IHG Consumer services Cyclical services
3i Group 111 Financials Financials
Imperial Tobacco Group IMT Consumer goods Non-cyclical consumer goods
International Power IPR Utilities Utilities
ITV IV Consumer services Cyclical services
Johnson Matthey JMAT Basic materials Basic industries
Kingfisher KGF Consumer services Cyclical services
Land Securities Group LAND Financials Financials
Legal & General Group LGEN Financials Financials

Continue on next page
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r Name | code I ICB sector GCS sector
Liberty International LII Financials Financials
Lloyds TSB Group LLOY | Financials Financials
Marks & Spencer Group MKS Consumer services Cyclical services
Morrison (Wm) Supermarkets MRW | Consumer services Non-cyclical services
National Grid Transco NGT Utilities Utilities
Northern Rock NRK Financials Financials
Next NXT Consumer services Cyeclical services
Old Mutual OML Financials Financials
02 OOM Telecommunications | Non-cyclical services
Prudential PRU Financials Financials
Pearson PSON | Consumer services Cyclical services
Reckitt Benckiser Group RB. Consumer goods Non-cyclical consumer goods
Royal Bank of Scotland Group RBS Financials Financials
Reed Elsevier REL Consumer services Cyclical services
Rexam REX Industrials Cyclical services
Rio Tinto RIO Basic materials Resources
Rolls-Royce Group RR. Industrials General industrials
Royal & Sun Alliance Insurance Group | RSA Financials Financials
Rentokil Initial RTO Industrials Cyeclical services
Reuters Group RTR Consumer services Cyclical services
SABMiller SAB Consumer goods Non-cyclical consumer goods
_Sainsbury (J) SBRY | Consumer services Non-cyclical services
i&'cottish & Newcastle SCTN | Consumer goods Non-cyclical consumer goods
_Schmders SDR Financials Financials
Schroders N/V SDRC | Financials Financials
Sage Group SGE Technology Information Technology
| Shell Transport & Trading Co SHEL | Oil and gas Resources
_Shire SHP Health care Non-cyclical consumer goods
Smiths Group SMIN Industrials General industrials
Smith & Nephew SN. Health care Non-cyclical consumer goods
Scottish Power SPW Utilities Utilities
Scottish & Southern Energy SSE Utilities Utilities
Standard Chartered STAN | Financials Financials
Severn Trent SVT Utilities Utilities
Tate & Lyle TATE | Consumer goods Non-cyclical consumer goods
Tesco TSCO | Consumer services Non-cyclical services
Unilever ULVR | Consumer goods Non-cyclical consumer goods
United Utilities UU. Utilities Utilities

Continue on next page
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Name | code [ ICB sector GCS sector
United Utilities A Shares | UU.A Utilities Utilities
Vodafone Group VOD Telecommunications | Non-cyclical services
William Hill WMH | Consumer services Cyeclical services
Wolseley WOS Industrials Basic industries
WPP Group WPP Consumer services Cyclical services
Whitbread WTB Consumer services Cyclical services
Xstrata XTA Basic materials Resources
Yell Group YELL | Consumer services Cyclical services




Appendix C

Stocks that belong to the FTSE1(00,
the Dow Jones Industrial Average
(DJIA), the Cotation Assistée en
Continu (CAC) 40, the BEL20 and the
Amsterdam Exchange Index (AEX)
indices at April 157 2008

Table C.1: Name, code and ICB sector classification for 102 stocks that belonged to the FTSE100
index at April 15¢ 2008.

| Name l code l ICB sector l
31 GROUP ITI.L Financials
ADMIRAL GROUP ADM.L Financials
ALLIANCE & LEICESTER AL.L Financials
ALLIANCE TRUST ATST.L Financials
AMEC AMEC.L | Oil and Gas
ANGLO AMERICAN AAL.L Basic Materials
ANTOFAGASTA ANTO.L | Basic Materials
ASSOCIATED BRIT.FOODS | ABF.L Consumer Goods

Continue on next page
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Name code ICB sector
ASTRAZENECA AZN.L Health Care
AVIVA AV.L Financials
BAE SYSTEMS BA.L Industrials
BARCLAYS BARC.L Financials
BG GROUP BG.L Oil and Gas
BHP BILLITON BLT.L Basic Materials
BP BP.L Oil and Gas
BRITISH AIRWAYS BAY.L Consumer Services
BRITISH AMERICAN TOBACCO | BATS.L Consumer Goods
BRITISH ENERGY GROUP BGY.L Utilities
BRITISH LAND BLND.L Financials
BRITISH SKY BCAST.GROUP BSY.L Consumer Services
BT GROUP BT-A.L Telecommunications
BUNZL BNZL.L Industrials
CABLE & WIRELESS CW.L Telecommunications
CADBURY CBRY.L Consumer Goods
CAIRN ENERGY CNE.L Oil and Gas
CAPITA GROUP CPL.L Industrials
CARNIVAL CCL.L Consumer Services
CARPHONE WHSE.GP. CPW.L Consumer Services
CENTRICA CNA.L Utilities
COBHAM COBL.L Industrials
COMPASS GROUP CPG.L Consumer Services
DIAGEO DGE.L Consumer Goods
ENTERPRISE INNS ETI.L Consumer Services
EURASIAN NATRES.CORP. ENRC.L Basic Materials
EXPERIAN GROUP EXPN.L Industrials
FIRST GROUP FGP.L Consumer Services
FRIENDS PROVIDENT FP.L Financials
G4S GFS.L Industrials
GLAXOSMITHKLINE GSK.L Health Care
HAMMERSON HMSO.L | Financials
HBOS HBOS.L Financials
HOME RETAIL GROUP HOMEL.L | Consumer Services
HSBC HDG. (ORD $0.50) HSBA.L Financials
ICAP IAP.L Financials
ICTL.HTLS.GP. IHG.L Consumer Services
IMPERIAL TOBACCO GP. IMT.L Consumer Goods

Continue on next page
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Name

code ICB sector

INTERNATIONAL POWER

IPR.L Utilities

ITV

I'RV.I5 Consumer Services

JOHNSON MATTHEY

JMAT.L | Basic Materials

KAZAKHMYS

KAZ.L Basic Materials

KINGFISHER

KGF.L Consumer Services

LAND SECURITIES GROUP

LAND.L | Financials

LEGAL & GENERAL

LGEN.L | Financials

LIBERTY INTL.

LII.L Financials

LLOYDS TSB GROUP

LLOY.L Financials

LONDON STOCK EX.GROUP

LSE.L Financials

LONMIN

LMI.L Basic Materials

MAN GROUP

EMG.L Financials

MARKS & SPENCER GROUP

MKS.L Consumer Services

MORRISON(WM)SPMKTS.

MRW.L Consumer Services

NATIONAL GRID NG.L Utilities

NEXT NXT.L Consumer Services
OLD MUTUAL OML.L Financials
PEARSON PSON.L | Consumer Services
PERSIMMON PSN.L Consumer Goods
PRUDENTIAL PRU.L Financials
RECKITT BENCKISER RB.L Consumer Goods
REED ELSEVIER REL.L Consumer Services

REXAM

REX.L Industrials

RIO TINTO

RIO.L Basic Materials

ROLLS-ROYCE GROUP

RR.L Industrials

ROYAL & SUN ALL.IN.

RSA.L Financials

ROYAL BANK OF SCTL.GP.

RBS.L Financials

ROYAL DUTCH SHELL A(LON)

RDSA.L | Oil and Gas

ROYAL DUTCH SHELL B

RDSB.L | Oil and Gas

SABMILLER

SAB.L Consumer Goods

SAGE GROUP SGE.L Technology
SAINSBURY (J) SBRY.L | Consumer Services
SCHRODERS SDR.L Financials

SCHRODERS NV

SDRC.L Financials

SCOT.& SOUTHERN ENERGY

SSE.L Utilities

SEVERN TRENT

SVT.L Utilities

SHIRE

SHP.L Health Care

SMITHS GROUP

SMIN.L Industrials

Continue on next page
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{ Name code ICB sector
SMITH & NEPHEW SN.L Health Care
STANDARD CHARTERED | STAN.L | Financials
STANDARD LIFE SL.L Financials
TATE & LYLE TATE.L | Consumer Goods
TESCO TSCO.L | Consumer Services
THOMAS COOK GROUP TCG.L Consumer Services
THOMSON REUTERS TRIL.L Consumer Services
TUI TRAVEL TT.L Consumer Services
TULLOW OIL TLW.L Oil and Gas
UNILEVER (UK) ULVR.L | Consumer Goods
UNITED UTILITIES UU.L Utilities
VEDANTA RESOURCES VED.L Basic Materials
VODAFONE GROUP VOD.L Telecommunications
WHITBREAD WTB.L Consumer Services
WOLSELEY WOS.L Industrials
WOOD GROUP (JOHN) WG.L Oil and Gas
WPP GROUP WPP.L Consumer Services
XSTRATA XTA.L Basic Materials

Table C.2: Name, code and ICB sector classification for 30 stocks that belonged to the DJIA
index at April 15 2008.

I Name l code [ ICB sector l
3M MMM | Industrials
ALCOA AA Basic Materials
AMERICAN EXPRESS AXP Financials
AMERICAN INTL.GP. AIG Financials
AT&T T Telecommunications
BANK OF AMERICA BAC Financials
BOEING BA Industrials
CATERPILLAR CAT Industrials
CHEVRON CVX Oil and Gas
CITIGROUP C Financials
COCA COLA KO Consumer Goods
E I DU PONT DE NEMOURS | DD Basic Materials
EXXON MOBIL XOM Oil and Gas
GENERAL ELECTRIC GE Industrials
GENERAL MOTORS GM Consumer Goods
HEWLETT-PACKARD HPQ Technology
HOME DEPOT HD Consumer Services
INTEL INTC | Technology
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Name I code I ICB sector
INTERNATIONAL BUS.MACH. | IBM Technology
JOHNSON & JOHNSON JNJ Health Care
JP MORGAN CHASE & CO. JPM Financials
MCDONALDS MCD Consumer Services
MERCK & CO. MRK Health Care
MICROSOFT MSFT | Technology
PFIZER PFE Health Care
PROCTER & GAMBLE PG Consumer Goods
UNITED TECHNOLOGIES UTX Industrials
VERIZON COMMS. vz Telecommunications
WAL MART STORES WMT | Consumer Services
WALT DISNEY DIS Consumer Services
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Table C.3: Name, code and ICB sector classification for 40 stocks that belonged to the CAC40

index at April 1%t 2008.

{ Name I code ] ICB sector
ACCOR AC.PA Consumer Services
AIR FRANCE-KLM AF.PA Consumer Services
AIR LIQUIDE ALPA Basic Materials
ALCATEL-LUCENT ALU.PA Technology
ALSTOM ALO.PA Industrials
ARCELORMITTAL (PAR) | MTP.PA Basic Materials
AXA CS.PA Financials
BNP PARIBAS BNP.PA Financials
BOUYGUES EN.PA Industrials
CAP GEMINI CAP.PA Technology
CARREFOUR CA.PA Consumer Services
CREDIT AGRICOLE ACA.PA Financials
DANONE BN.PA Consumer Goods
DEXIA (PAR) DX.PA Financials
EADS (PAR) EAD.PA Industrials
EDF EDF.PA Utilities
ESSILOR INTL. EF.PA Health Care
FRANCE TELECOM FTE.PA Telecommunications
GAZ DE FRANCE GAZ.PA Utilities
L’OREAL OR.PA Consumer Goods
LAFARGE LG.PA Industrials
LAGARDERE GROUPE MMB.PA | Consumer Services
LVMH MC.PA Consumer Goods
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Table C.4: Name, code and ICB sector classification for 20 stocks that belonged to the BEL20
index at April 1% 2008.

— concluded from previous page

Name code ICB sector }
MICHELIN ML.PA Consumer Goods ‘
PERNOD-RICARD RI.PA Consumer Goods
PEUGEOT UG.PA Consumer Goods
PPR PP.PA: Consumer Services
RENAULT RNO.PA | Consumer Goods
SAINT GOBAIN SGO.PA | Industrials
SANOFI-AVENTIS SAN.PA | Health Care
SCHNEIDER ELECTRIC SU.PA Industrials
SOCIETE GENERALE GLE.PA | Financials
STMICROELECTRONICS (PAR) | STM.PA | Technology
SUEZ SZE.PA Utilities
TOTAL FP.PA Oil and Gas
UNIBAIL-RODAMCO UL.PA Financials
VALLOUREC VK.PA Industrials
VEOLIA ENVIRONNEMENT VIE.PA Utilities
VINCI (EX SGE) DG.PA Industrials
VIVENDI VIV.PA Consumer Services

Name code I ICB sector
ACKERMANS ACKB.BR | Industrials
AGFA-GEVAERT AGFB.BR | Industrials
BEKAERT BEKB.BR Industrials
BELGACOM BELG.BR Telecommunications
COFINIMMO COFB.BR Financials
COLRUYT COL.BR Consumer Services
DELHAIZE DELB.BR Consumer Services
DEXIA DEXB.BR Financials
FORTIS (BRU) FORB.BR Financials
GBL NEW GBL.BR Financials
INBEV INB.BR Consumer Goods
KBC GROUPE KBC.BR Financials
MOBISTAR MOBB.BR | Telecommunications
NPM-CIE.NAT.PORTEFEUILLE | NAT.BR Financials
NYRSTAR (WI) NYR.BR Basic Materials
OMEGA PHARMA OME.BR Health Care
SOLVAY SOLB.BR Basic Materials
SUEZ (BRU) SZEB.BR Utilities
UCB UCB.BR Health Care
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Table C.5: Name, code and ICB sector classification for 24 stocks that belonged to the AEX
index at April 15t 2008.

| Name l code | ICB sector ]
AEGON AGN.AS Financials
AHOLD KON. AH.AS Consumer Services
AKZO NOBEL AKZA.AS | Basic Materials
ARCELORMITTAL MT.AS Basic Materials
ASML HOLDING ASML.AS | Technology
CORIO CORA.AS | Financials
CORPORATE EXPRESS CXP.AS Industrials

| DSM KONINKLIJKE | DSM.AS | Basic Materials
FORTIS FORA.AS | Financials
HEINEKEN HEIA.AS Consumer Goods
ING GROEP INGA.AS Financials
KPN KON KPN.AS Telecommunications
PHILIPS ELTN.KONINKLIJKE | PHIA.AS Consumer Goods
RANDSTAD HOLDING RAND.AS | Industrials
REED ELSEVIER (AMS) REN.AS Consumer Services
ROYAL DUTCH SHELL A RDSA.AS | Oil and Gas
SBM OFFSHORE SBMO.AS | Oil and Gas
TELE ATLAS TA.AS Consumer Services
TNT TNT.AS Industrials
TOM TOM TOM2.AS | Technology
UNIBAIL-RODAMCO (AMS) ULA.AS Financials
UNILEVER CERTS. UNA.AS Consumer Goods
VEDIOR VDOR.AS | Industrials
WOLTERS KLUWER WKL.AS Consumer Services







- Appendix D

: Indices from around the world

Table D.1: Country, index and symbol from european indices.

Country I Index I Symbol il Country 7 Index l Symbol
PORTUGAL PSI20 PRT | GREECE ASE20 GRC
U.K. FTSE100 UK POLAND WIG20 POL
GERMANY DAX30 GER || CZECH REPUBLIC PX50 CZK
FRANCE CAC40 FRA | RUSSIA RSMTIND RUS
SPAIN IBEX35 ESP HUNGARY BUX HUN
SWITZERLAND | SWISSMI CHF ROMANIA BET ROM
ITALY MIB30 ITA UKRAINE KPDRAG UKR
IRELAND ISEQ20 IRE SLOVAKIA SAX16 SVK
ICELAND ICEX15 ICE CROATIA CROBEX CRT
NETHERLANDS AEX NLD SLOVENIA SBI20 SVN
BELGIUM BEL20 BEL ESTONIA OMXT EST
LUXEMBOURG LUXX LUX LATVIA OMXR LAT
DENMARK OMXC20 DNK LITHUANIA OMXV LTU
FINLAND OMXH25 FIN BULGARIA SOfFIX BUL
NORWAY OBX25 NOR TURKEY NAT30 TUK
SWEDEN OMXS30 SWE MALTA MALTAIX MTA

AUSTRIA ATX AUT

Table D.2: Country, index and symbol from middle east and african indices.

| Country l Index ’ Symbol H Country ] Index I Symbol l
SOUTH AFRICA JSE40 SAR KUWAIT KIC KUW
EGYPT EFG EGY ISRAEL MAOF25 ISR
MOROCCO CFG25 MOR LEBANON BLOM LEB
TUNISIA TUNIN TUN BAHRAIN BHSE BAH
NIGERIA NIGALSH NIG JORDAN AMMAN JOR
KENYA NSE20 KEN OMAN OMANMSM OMA

163




Table D.3: Country, index and symbol from american indices.

l Country I Index I Symbol “ Country —[ Index [ Symbol l
U.S.A. DJIA USA CHILE IGPAGEN CHL
CANADA TSESP60 CAN VENEZUELA | VENGENL VEZ
MEXICO IMC30 MEX PERU ISP15 PER
ARGENTINA ARGSIBI ARG COLOMBIA IGBC COL
BRAZIL BOVESPA BRZ

Table D.4: Country, index and symbol from asian-pacific indices.

' Country Index l Symbol ” Country I Index TSymbol ]
JAPAN NIKKEI225 JAP THAILAND SET T THI
HONG KONG HANGSENG HK INDONESIA LQ45 IDO
CHINA SH180 CH INDIA BSE200 IND
TAIWAN TSECS50 TWA SINGAPORE STI SGR
SOUTH KOREA KRX100 SOK MALAYSIA KLPCOMP MAL
AUSTRALIA S&PASX100 AUS PHILIPPINES PSEi PHI
NEW ZEALAND NZ50 NEZ VIETNAM FTSEVI VIE
PAKISTAN PKSE100 PAK BANGLADESH DSE20 BAN
SRI LANKA MILANKA SRL




Appendix E

Tables of parameters « of the least
square method for multivariate
analysis between the real returns

and the indices of each market

Table E.1: Symbol, market the stock belongs to (m;), parameters a of the least square method
for multivariate analysis and market the stock has the highest correlation with (m‘j), for a

portfolio of stocks from the CAC40, FTSE100 and DJIA indices.

[ Symbol ] m; I agQ I (631 I g I (6%} I m} l
AC.PA | CAC40 | 0.00 | 0.98 | 0.05 | -0.05 | CAC40
AF.PA | CAC40 | 0.00 | 1.06 | 0.12 | 0.05 | CAC40
ALPA CAC40 | 0.00 | 0.78 | 0.11 | 0.02 | CAC40
ALU.PA | CAC40 | 0.00 | 2.03 | -0.54 | 0.12 | CAC40
ALO.PA | CAC40 | 0.00 | 1.72 | -0.26 | -0.18 | CAC40
CS.PA CAC40 | 0.00 | 1.32 | 0.11 | 0.11 | CAC40
BNP.PA | CAC40 | 0.00 | 0.97 | 0.14 | 0.11 | CAC40
EN.PA | CAC40 | 0.00 | 1.25 | -0.23 | -0.06 | CAC40
CAP.PA | CAC40 | 0.00 | 1.71 | -0.29 | -0.04 | CAC40
CA.PA | CAC40 | 0.00 | 0.84 | 0.03 | 0.06 | CAC40
BN.PA | CAC40 | 0.00 | 0.54 | 0.05 | -0.01 | CAC40
DX.PA CAC40 | 0.00 | 0.74 | 0.20 0.19 CAC40
EF.PA | CAC40 | 0.00 | 0.45 | 0.17 | -0.15 | CAC40
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Symbol m; I @ l ) m;
FTE.PA | CAC40 | 0.00 | 1.61 CAC40
OR.PA | CAC40 | 0.00 | 0.83 CAC40
LG.PA CAC40 | 0.00 | 0.85 CAC40
MMB.PA | CAC40 | 0.00 | 1.08 CAC40
MC.PA | CAC40 | 0.00 | 1.06 CAC40
ML.PA | CAC40 | 0.00 | 0.73 CAC40
RI.PA CAC40 | 0.00 | 0.52 CAC40
UG.PA | CAC40 | 0.00 | 0.79 CAC40
PP.PA CAC40 | 0.00 | 1.07 CAC40
RNO.PA | CAC40 | 0.00 | 0.88 CAC40
SGO.PA | CAC40 | 0.00 | 1.10 CAC40
SAN.PA | CAC40 | 0.00 | 0.76 CAC40
SU.PA CAC40 | 0.00 | 0.83 | 0.12 | -0.02 | CAC40
GLE.PA | CAC40 | 0.00 | 1.05 | 0.13 | 0.15 | CAC40
STM.PA | CAC40 | 0.00 | 1.53 | -0.40 | 0.19 | CAC40
SZEPPA | CAC40 | 0.00 | 1.18 | -0.09 | -0.05 | CAC40
FP.PA CAC40 | 000 | 0.59 | 0.22 | 0.0l | CAC40
UL.PA CAC40 | 0.00 | 0.35 | 0.31 | -0.12 | CAC40
VK.PA | CAC40 | 0.00 | 0.79 | 0.09 | -0.17 | CAC40
DG.PA | CAC40 | 0.00 | 052 | 0.19 | -0.15 | CAC40
VIVPA | CAC40 | 0.00 | 1.49 | -0.24 | -0.12 | CAC40
kLT, FTSE100 | 0.00 | -0.11 | 1.25 | 0.07 | FTSE100
ATST.L | FTSEL00 | 0.00 | 0.06 | 0.73 | -0.02 | FTSE100
AMEC.L | FTSEI100 | 0.00 | -0.09 | 0.91 | -0.04 | FTSE100
AAL.L FTSEL00 | 0.00 | 0.13 | 1.30 | 0.08 | FTSE100
ANTO.L | FTSE100 | 0.00 | -0.13 | 1.16 | -0.11 | FTSE100
ABF.L FTSE100 | 0.00 | -0.15 | 0.87 | -0.03 | FTSE100
AZN.L FTSE100 | 0.00 | 0.02 | 0.85 | 0.03 | FTSE100
AV.L FTSE100 | 0.00 | 0.14 | 1.22 | 0.10 | FTSE100
BA.L FTSE100 | 0.00 | -0.10 | 1.04 | 0.06 | FTSE100
BARC.L | FTSE100 | 0.00 | 0.07 | 1.22 | 0.12 | FTSE100
BG.L FTSE100 | 0.00 | -0.14 | 1.09 | -0.06 | FTSE100
BLT.L FTSE100 | 0.00 | 0.09 | 1.26 | 0.01 | FTSE100
BP.L FTSE100 | 0.00 | 0.06 | 0.76 | 0.04 | FTSE100
BAY.L FTSE100 | 0.00 | 0.41 | 1.02 | 0.16 | FTSE100
BATS.L | FTSEL00 | 0.00 | -0.26 | 0.87 | -0.01 | FTSE100
BLND.L | FTSE100 | 0.00 | -0.20 | 1.09 | 0.09 | FTSE100
BSY.L FTSE100 | 0.00 | 0.38 | 0.80 | -0.04 | FTSE100
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BT-A.L FTSE100 | 0.00 | 0.26 0.78 | 0.07 FTSE100
BNZL.L FTSE100 | 0.00 | -0.08 | 0.81 | -0.01 | FTSE100
CW.L FTSE100 | 0.00 | 0.37 0.95 | -0.05 | FTSE100
CBRY.L FTSE100 | 0.00 | -0.14 | 0.92 | -0.05 | FTSE100
CNE.L FTSE100 | 0.00 | -0.24 | 1.09 | -0.15 | FTSE100
CPIL.L FTSE100 | 0.00 | 0.34 0.79 | -0.02 | FTSE100
CNA.L FTSE100 | 0.00 | -0.20 | 1.08 | -0.06 | FTSE100
COB.L FTSE100 | 0.00 | -0.10 | 0.82 | -0.05 | FTSE100
DGE.L FTSE100 | 0.00 | -0.11 | 0.80 | 0.01 FTSE100
ETI.L FTSE100 | 0.00 | -0.15 | 0.86 | -0.12 | FTSE100
FGP.L FTSE100 | 0.00 | -0.28 | 1.14 | -0.11 | FTSE100
GFS.L FTSE100 | 0.00 | -0.16 1.01 | -0.04 FTSE100
GSK.L FTSE100 | 0.00 | -0.02 | 0.72 | 0.11 FTSE100
HMSO.L FTSE100 | 0.00 | -0.23 | 1.02 | -0.03 FTSE100
HBOS.L FTSE100 | 0.00 | -0.06 | 1.36 | 0.02 FTSE100
HOME.L | FTSE100 | 0.00 | -0.15 | 1.17 | 0.13 FTSE100
HSBA.L FTSE100 | 0.00 | 0.11 07251 011 FTSE100
IAP.L FTSE100 | 0.00 | -0.09 1.02 | -0.07 | FTSE100
IMT.L FTSE100 | 0.00 | -0.28 | 0.89 | -0.05 FTSE100
IPR.L FTSE100 | 0.00 | -0.17 | 1.10 | -0.02 | FTSE100
ITV.L FTSE100 | 0.00 | 0.36 0.87 | 0.01 FTSE100
JMAT.L FTSE100 | 0.00 | 0.05 0.97 | -0.08 FTSE100
KGF.L FTSE100 | 0.00 | 0.09 1.04 | -0.03 | FTSE100
LAND.L FTSE100 | 0.00 | -0.18 1.04 | 0.01 FTSE100
LGEN.L FTSE100 | 0.00 | 0.05 1.24 | 0.07 FTSE100
LII.L FTSE100 | 0.00 | -0.15 | 0.92 | -0.06 | FTSE100
LLOY.L FTSE100 | 0.00 | 0.05 1.16 | 0.05 FTSE100
LMI.L FTSE100 | 0.00 | -0.03 1.18 | -0.06 FTSE100
EMG.L FTSE100 | 0.00 | -0.06 | 1.03 | -0.02 | FTSE100
MKS.L FTSE100 | 0.00 | -0.13 | 1.07 | 0.00 FTSE100
MRW.L FTSE100 | 0.00 | -0.21 | 1.07 | -0.12 | FTSE100
NG.L FTSE100 | 0.00 | -0.07 | 0.77 | -0.10 | FTSE100
NXT.L FTSE100 | 0.00 | -0.06 | 0.98 | -0.07 | FTSE100
OML.L FTSE100 | 0.00 | 0.12 1.21 | 0.04 FTSE100
PSON.L FTSE100 | 0.00 | 0.29 0.97 | -0.08 | FTSE100
PSN.L FTSE100 | 0.00 | -0.14 | 1.09 | -0.04 | FTSE100
PRU.L FTSE100 | 0.00 | 0.23 1.27 | 0.18 FTSE100
RB.L FTSE100 | 0.00 | -0.26 | 0.93 | 0.00 FTSE100
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REL.L FTSE100 | 0.00 | 0.24 0.78 -0.01 | FTSE100
REX.L FTSE100 | 0.00 | -0.18 | 1.06 0.00 FTSE100
RIO.L FTSE100 | 0.00 | 0.13 119 0.02 FTSE100
RR.L FTSE100 | 0.00 | 0.21 0.96 0.03 FTSE100
RSA.L FTSE100 | 0.00 | 0.28 1.26 0.06 FTSE100
RBS.L FTSE100 | 0.00 | 0.15 1.11 0.07 FTSE100
RDSB.L | FTSE100 | 0.00 | 0.14 0.70 0.08 FTSE100
SAB.L FTSE100 | 0.00 | -0.02 | 0.93 0.04 FTSE100
SGE.L FTSE100 | 0.00 | 0.57 0.77 0.09 FTSE100
SBRY.L FTSE100 | 0.00 | -0.14 | 1.08 -0.06 | FTSE100
SDR.L FTSE100 | 0.00 | 0.08 1.40 0.12 FTSE100
SDRC.L | FTSE100 | 0.00 | 0.13 1.51 0.07 FTSE100
SSE.L FTSE100 | 0.00 | -0.25 | 0.96 -0.10 | FTSE100
SVT.L FTSE100 | 0.00 | -0.25 | 0.87 -0.02 | FTSE100
SHP.L FTSE100 | 0.00 | -0.07 | 1.08 -0.10 | FTSE100
SN.L FTSE100 | 0.00 | -0.07 | 0.87 -0.07 | FTSE100
SMIN.L FTSE100 | 0.00 | 0.00 0.83 0.02 FTSE100
STAN.L | FTSE100 | 0.00 | 0.03 1.19 0.02 FTSE100
TATE.L | FTSE100 | 0.00 | -0.20 | 0.64 0.03 FTSE100
TSCO.L | FTSE100 | 0.00 | -0.27 | 1.11 -0.02 | FTSE100
TRIL.L FTSE100 | 0.00 | 0.35 1.08 0.02 FTSE100
TT.L FTSE100 | 0.00 | -0.14 | 1.07 -0.03 | FTSE100
TLW.L FTSE100 | 0.00 | -0.14 | 0.92 -0.20 | FTSE100
ULVR.L | FTSE100 | 0.00 | 0.05 0.71 0.00 FTSE100
UU.L FTSE100 | 0.00 | -0.28 | 0.98 -0.02 | FTSE100
VOD.L FTSE100 | 0.00 | 0.55 0.61 0.04 FTSE100
WTB.L FTSE100 | 0.00 | -0.14 | 0.92 -0.02 | FTSE100
WOS.L FTSE100 | 0.00 | -0.05 | 1.12 -0.03 | FTSE100
WPP.L FTSE100 | 0.00 | 0.34 0.90 0.10 FTSE100
III.L FTSE100 | 0.00 | 0.19 1.09 0.09 FTSE100
MMM DJIA 0.00 | -0.11 | 0.12 0.85 DJIA

T DJIA 0.00 | 0.00 -0.01 | 0.90 DJIA
AA DJIA 0.00 | 0.08 0.20 1.16 DJIA
AXP DJIA 0.00 | 0.01 -0.01 | 1.36 DJIA
AIG DJIA 0.00 | 0.00 0.04 1.09 DJIA
BAC DJIA 0.00 | -0.06 | 0.03 1.03 DJIA
BA DJIA 0.00 | -0.04 | 0.07 0.94 DJIA
CAT DJIA 0.00 | 0.00 0.06 1.07 DJIA

Continue on next page




Appendix E

— concluded from previous page

169

Symboll m; | ag I ay I as | ag I mg ]

CVvX DJIA | 0.00 | -0.05 | 0.16 | 0.58 | DJIA

C DJIA | 0.00 | 0.05 0.02 1.32 | DJIIA

KO DJIA | 0.00 | -0.10 | 0.03 0.59 | DJIA

DD DJIA | 0.00 | -0.05 | 0.09 0.98 | DJIA

XOM DJIA | 0.00 | -0.06 | 0.13 0.73 | DJIA

GE DJIA | 0.00 | 0.02 -0.09 | 1.21 | DJIA

GM DJIA | 0.00 | 0.03 0.07 1.18 | DJIA

HPQ DJIA | 0.00 | 0.19 -0.23 | 1.26 | DJIA

HD DJIA | 0.00 | -0.05 | -0.04 | 1.30 | DJIA

INTC DJIA | 0.00 | 0.02 | -0.10 | 1.53 | DJIA

IBM DJIA | 0.00 | 0.15 -0.16 | 0.96 | DJIA

JPM DJIA | 0.00 | 0.16 -0.15 | 1.41 | DJIA

JNJ DJIA | 0.00 | 0.01 -0.09 | 0.55 | DJIA

MCD DJIA | 0.00 | -0.09 | 0.14 0.66 | DJIA

MRK DJIA | 0.00 | 0.02 -0.06 | 0.73 | DJIA

MSFT DJIA | 0.00 | -0.04 | -0.08 | 1.12 | DJIA

PFE DJIA | 0.00 | -0.01 | 0.03 0.76 | DJIA
PG DJIA | 0.00 | -0.07 | -0.04 | 0.58 DJIA |
UTXxX DJIA | 0.00 | 0.02 0.00 1.09 | DJIA {
VZ DJIA | 0.00 | 0.06 -0.02 | 0.84 DJIA |
WMT DJIA | 0.00 | -0.09 | -0.03 | 0.98 | DJIA ‘
DIS DJIA 0.00 | 0.09 -0.04 1.05 DJIA ‘

Table E.2: Symbol, market the stock belongs to (m;), parameters a of the least square method

for multivariate analysis and market the stock has the highest correlation with (m;-)7 for a

portfolio of stocks from the CAC40, BEL20 and AEX indices.

I Symbol I mj [ ag Iiczl l a2 I asg | ms l
AC.PA CAC40 | 0.00 | 0.94 | -0.08 | 0.11 CAC40
AF.PA CAC40 | 0.00 | 1.10 | 0.05 0.04 CAC40
ALPA CAC40 | 0.00 | 0.83 | 0.14 -0.08 | CAC40
ALU.PA | CAC40 | 0.00 | 2.22 | -0.72 | 0.01 CAC40
ALO.PA | CAC40 | 0.00 | 2.17 | -0.60 | -0.43 | CAC40
CS.PA CAC40 | 0.00 | 1.06 | 0.23 0.34 CAC40
BNP.PA | CAC40 | 0.00 | 0.98 | 0.18 0.03 CAC40
EN.PA CAC40 | 0.00 | 1.25 | -0.15 | -0.08 | CAC40
CAP.PA | CAC40 | 0.00 | 1.82 | -0.63 | 0.15 CAC40
CA.PA CAC40 | 0.00 | 0.81 | 0.09 0.03 CAC40
BN.PA CAC40 | 0.00 | 0.52 | 0.17 -0.10 | CAC40
DX.PA CAC40 | 0.00 | 0.39 | 0.72 0.14 BEL20
EF.PA CAC40 | 0.00 | 0.46 | 0.08 -0.05 | CAC40
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FTE.PA CAC40 | 0.00 | 1.70 -0.54 | -0.01 | CAC40
OR.PA CAC40 | 0.00 | 0.87 0.03 -0.06 | CAC40
LG.PA CAC40 | 0.00 | 0.82 0.15 0.01 CAC40
MMB.PA CAC40 | 0.00 | 1.03 -0.32 | 0.16 CAC40
MC.PA CAC40 | 0.00 | 1.12 0.02 0.01 CAC40
ML.PA CAC40 | 0.00 | 0.71 0.27 0.02 CAC40
RI.PA CAC40 | 0.00 | 0.39 0.16 -0.14 | CAC40
UG.PA CAC40 | 0.00 | 0.83 0.07 -0.02 | CAC40
PP.PA CAC40 | 0.00 | 1.02 0.02 0.05 CAC40
RNO.PA CAC40 | 0.00 | 1.05 0.10 -0.11 | CAC40
SGO.PA CAC40 | 0.00 | 1.14 -0.04 | -0.08 | CAC40
SAN.PA CAC40 | 0.00 | 0.74 0.16 -0.08 | CAC40
SU.PA CAC40 | 0.00 | 0.97 0.04 -0.16 | CAC40
GLE.PA CAC40 | 0.00 1.02 0.19 0.10 CAC40
STM.PA CAC40 | 0.00 | 1.56 -0.77 | 0.40 CAC40
SZE.PA CAC40 | 0.00 | 0.90 0.53 -0.08 | CAC40
FP.PA CAC40 | 0.00 | 0.58 017 0.08 CAC40
UL.PA CAC40 | 0.00 | 0.40 0.23 -0.14 | CAC40
VK.PA CAC40 | 0.00 | 0.66 0.22 -0.07 | CAC40
DG.PA CAC40 | 0.00 | 0.51 0.14 -0.09 | CAC40
VIV.PA | CAC40 | 0.00 | 144 | -0.28 | 0.10 | CAC40
ACKB.BR BEL20 0.00 | -0.12 | 0.90 0.03 BEL20
AGFB.BR BEL20 0.00 | -0.19 1.24 -0.03 | BEL20
BEKB.BR BEL20 0.00 | -0.16 1.30 -0.01 BEL20
COFB.BR BEL20 0.00 | -0.04 | 0.36 -0.07 | BEL20
COL.BR BEL20 0.00 | -0.24 107 -0.14 | BEL20
DELB.BR BEL20 0.00 | -0.20 | 1.30 0.07 BEL20
DEXB.BR BEL20 0.00 | 0.30 0.81 0.14 BEL20
FORB.BR BEL20 0.00 | 0.27 0.91 0.38 BEL20
GBL.BR BEL20 0.00 | 0.17 0.83 0.02 BEL20
KBC.BR BEL20 0.00 | 0.06 1.15 0.04 BEL20
MOBB.BR | BEL20 0.00 | 0.02 0.99 -0.11 | BEL20
NAT.BR BEL20 0.00 | -0.06 | 0.65 0.07 BEL20
OME.BR BEL20 0.00 | -0.35 | 1.69 -0.21 | BEL20
SOLB.BR BEL20 0.00 | 0.02 0.92 -0.07 | BEL20
SZEB.BR BEL20 0.00 | 0.68 0.71 -0.09 | BEL20
UCB.BR BEL20 0.00 | -0.11 1.07 -0.07 | BEL20
UMI.BR BEL20 0.00 | -0.06 | 1.00 0.03 BEL20
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AGN.AS AEX | 0.00 | 0.38 0.34 0.94 | AEX
AH.AS AEX | 0.00 | -0.18 | 0.26 1.26 | AEX
AKZA.AS AEX | 0.00 | 0.03 0.15 0.70 | AEX
MT.AS AEX | 0.00 | -0.68 | 0.03 145 | AEX
ASML.AS AEX | 0.00 | 1.24 -1.10 | 1.28 | AEX
CORA.AS AEX | 0.00 | -0.09 | 0.30 0.24 BEL20
CXP.AS AEX | 0.00 | -0.68 | 0.05 1.99 | AEX
DSM.AS AEX | 0.00 | 0.06 0.17 0.50 | AEX
FORA.AS AEX | 0.00 | 0.29 0.80 0.46 | BEL20
HEIA.AS AEX | 0.00 | 0.01 0.17 | 0.30 | AEX
INGA.AS AEX | 0.00 | 0.47 | 0.36 | 0.76 | AEX
KPN.AS AEX | 0.00 | 0.53 -0.55 | 0.91 | AEX
PHIA.AS AEX | 0.00 | 1.08 -0.55 | 0.90 CAC40—
RAND.AS | AEX | 0.00 | -0.20 | -0.06 | 1.25 | AEX
REN.AS AEX | 0.00 | 0.17 -0.05 | 0.72 | AEX
RDSA.AS AEX | 0.00 | 0.34 0.10 0.33 | CAC40
SBMO.AS AEX | 0.00 | -0.27 | 0.30 0.61 AEX
TNT.AS AEX | 0.00 | -0.09 | 0.23 0.59 | AEX
UNA.AS AEX | 0.00 | 0.16 0.20 0.26 | AEX
VDOR.AS | AEX | 0.00 | -0.25 | -0.24 | 1.60 | AEX
WKL.AS AEX | 0.00 | -0.11 | -0.03 | 0.83 | AEX
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