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Abstract

In this dissertation we deal with two distinct methods for pricing financial 

options with early-exercise features. First we use finite difference methods 

to calculate the prices, examining in particular two new schemes designed 

to deal with problems where the problems becomes singly perturbed. The 

second method is MonteCarlo techniques which allow for the early exer­

cise of the option using different techniques to determine whether or not 

it is optimal to exercise early. Two new algorithms in particular were 

developed, one which uses an interpolation method to calculate the ex­

pected payoffs, the other uses an iterative technique and Ito’s Lemma to 

determine if the option should be exercised.



Summary

In this dissertation we discuss various methods used to price financial option 

contracts with early exercise features.

Three main methods are used to price these financial derivatives: finite difference 

solutions to the Black-Scholes PDE, MonteCarlo simulation, and tree methods. This 

dissertation discusses the first two approaches, but gives a passing reference to the 

tree methods used.

In Chapter 1 we discuss the Black-Scholes model, and introduce the field of 

stochastic calculus. We derive the Black-Scholes PDE and discuss the importance of 

the various partial derivatives of the option price (collectively known as the ‘Greeks’).

In Chapter 2 we introduce partial differential equations, and how this applies 

to the Black-Scholes PDE, paying particular attention to the boundary and ini­

tial/term inal conditions that arise as a result.

In Chapter 3 we discuss stochastic calculus. Brownian motion and function of 

stochastic variables. We derive Ito’s Lemma, which plays a vital role in the derivation 

of the Black-Scholes equation, and discuss how the theory of stochastic mathematics 

and calculus apphes to financial theory.

In Chapter 4 we derive an exact solution of the Black-Scholes equation for Euro­

pean options (contracts that do not have early-exercise features).

In Chapter 5 we introduce the finite difference approach to solving the problem 

of pricing the American option. We discuss five numerical schemes and discuss the 

results of the five for the solution of both European and American options. We 

look at the problem of singly-perturbed systems in particular, and discuss how the 

schemes perform under these parameters.

In Chapter 6 we introduce the MonteCarlo approach to pricing the options and 

discuss different methods used to capture the early-exercise feature of the American 

option pricing problem. Two algorithms in particular are produced, and the results 

of these are compared to existing methods for solving this problem.

In Chapter 7 we introduce the tree model approach, and discuss a few methods 

for solving options.



Chapter 8 is the conclusion, where we summarise all the work and compare results 

between the different methods.
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Chapter 1

Introduction

This chapter defines the financial instruments for which we wish to develop pricing 

methodologies. These instruments include:

• European Options

• American Options

• Asian Options

• Barrier Options

• Path-dependant Options

After these definitions, a summary of the various pricing methodologies is provided. 

Forward references are included to later chapters in which these pricing methodologies 

are discussed.

1.1 Pricing M ethodologies

There are a number of different models used to calculate the price of an option. 

Probably the most common and widely used model is the Black-Scholes model.

What follows is a brief description of the most common option-price models, with 

the more important models being treated more comprehensively later.
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1.1.1 The B inom ial M odel

The basic concept for the binomial model is simple. Taking the current value of 

the underlying asset (often abbreviated to just the underlying), we discretise the 

lifetime of the option into a number of timesteps, allowing the value of the asset to 

either increase or decrease by a set ratio at each timestep. At expiry, we have a 

number of different possible values for the underlying, which are straightforward to 

calculate.

Having found all these possible values at expiry, we can then calculate the value of 

the option, since the value of an option at expiry is simply the payoff of the option. 

We can then use these set of values for the option to calculate the values at the 

previous time-step, and so on back to the initial option price.

1.1.2 T he Black-Scholes M odel

The Black-Scholes model [2] takes a similar approach, but produces a much more 

general result. The value of the underlying is modeled as a lognormal random walk, 

and the risk-free interest rate is assumed to be a known function of time. Using 

the no-arbitrage principle and some stochastic calculus theory, a partial differential 

equation is derived.

The Black-Scholes equation for a the price of a vanilla call or put, V, is given by: 

dV  1 2^2 n d V  ^

The boundary conditions for this problem are dependent on the option being studied. 

The vast majority of this dissertation will deal with the Black-Scholes Model.

1.2 The Black-Scholes M odel

The price of the option depends on a number of variables and parameters, including 

the price of the underlying asset, 5; the lifetime of the asset, T; the current time, t\ 

the volatility of the returns cr; and the risk-free interest rate r.
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We first list some basic assumptions made by the following model:

• The underlying follows a lognormal random walk.

• The risk-free interest rate is a known function of time (and is assumed constant 

for the moment).

• There are no dividends on the underlying (dividends are easily accounted for 

and are omitted for the sake of clarity).

• Delta-hedging can be performed continuously.

• There are no transaction costs on the underlying.

• There are no arbitrage opportunities.

Rather than use the unwieldy notation V (5, t; a, fj,-, K,T]r) ,  we shall just refer to 

V as a function of the underlying and time, V{S,t).

Since a call option is a contract to buy the asset for a fixed price in the future, it

should be immediately obvious that this contract increases in value as the value of 

the underlying increases.

We define 11 to be the value of a portfolio consisting of a long option position and 

a short position of size A, de lta  of the asset:

The first term on the RHS is the option, and the second term is the short asset 

position. It is negative because we have shorted the position, and the value of A is 

for the moment considered to be an arbitrary constant.

Assuming the underlying is following a log-normal random walk,

U = V { S , t ) -  AS. ( 1.2 )

dS = i iSdt  + aSdX, (1.3)

we consider the change in value of the portfolio between time t and t + 5t. The change
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in the portfoho value is due to changes in both the underlying and the option:

dU = dV -  AdS .  (1.4)

A has not changed, but from Ito’s Lemma [22], we have

dV  , dV  1 n^nd^V  ,

and substituting Eq. (1.5) into Eq. (1.4), we get

d U = ^ d t + ^ d S +  ^  dt -  A  dS.  (1.6)

We can see that Eq. (1.6) has both deterministic

and stochastic terms,

^ d S ,  - & d S ,  (1.8)

but we can never know the exact value of the stochastic terms. By its very nature,

the value of dS  is random.

Grouping the stochastic terms together, we get

g - A ) . S .  (1.9)

It immediately becomes obvious that equating the two terms will eliminate the

stochastic terms from Eq. (1.6) and allow us to deterministically calculate the value 

of dU:
dV

A =  ^ .  (1.10)

We now have

Since Eq. (1.11) contains only deterministic terms, it is completely riskless. How-
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ever, a risk-free change in a portfolio value over a time period must be equal to 

the change in an equivalent investment in a risk-free interest-bearing account, as 

otherwise there are arbitrage opportunities:

dY[ = r lid t. (1-12)

This is because were the portfolio return to be greater than the interest return, 

we could borrow from the bank at rate r, invest in the portfolio and then pay off the 

loan to make a guaranteed profit. Were the return to be lower, we could short the 

option and invest the money in the bank to make a profit.

Either method guarantees a risk-free profit that exceeds the risk-free interest rate. 

Although this scenario is very possible in modern markets, such opportunities tend 

to be exploited very quickly by arbitrage traders. The natural consequence of this 

arbitrage trading is that prices move to close the arbitrage opportunity.

Returning to Eq. (1.12) and substituting the values for dU. from Eq. (1.11), and 

n  from Eq. (1.2) and Eq. (1.10), we get

Some simple re-arranging gives us the Black-Scholes E quation :

It is a linear, second o rd er, p arabo lic  p a r tia l d ifferential eq u a tio n  [42]. Al­

most all equations in finance are of a similar form, and are similar to heat and 

diffusion equations used in physics.

Note that the value of the drift, ji, has dropped out of Eq. (1.14), due to the fact 

that the hedging of asset has eliminated the dS  term.

Initially, we assumed that A was constant. Now it is dependent on both the 

underlying and time. The result is that the value of A is constantly changing, and 

as a result, the portfolio must be constantly updated to preserve the equality of Eq.
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( 1.10).

This continuous-time process is referred to £is D ynam ic Hedging. Since our 

hedging strategy involves ensuring that the risk in the equation is removed by ma­

nipulation of the A, it is called delta  hedging.

1.3 Boundary and Terminal C onditions

The Black-Scholes Equation is a general stochastic partial differential equation for 

options, and is valid for both call and put options, for any strike price.

These distinctions are made by the choice of boundary and terminal conditions 

used to solve the equation. The value of the option at expiry must always be equal 

to the payoff, and so we have for calls

C(5,T) =  m ax(5 -iC ,0 ), (1.15)

where K  is the value of the strike price.

For puts,

P{S,T) = max{K -  S,0). (1.16)

Also, when 5 =  0, the value of the call option is worthless, since once the stock

reaches zero it will never change. For puts, however, it is worth the discounted value

of strike price. This is because, at expiry, we are guaranteed P = K\

c ( o ,r )  =  0, (1.17)

P(0,T) =  (1.18)

Conversely, for 5 —> oo, the value of the put becomes worthless, whereas the value 

of the call approaches S  —
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1.4 The ‘G reeks’

1.4.1 D elta , A

The D elta, A, of an option is the sensitivity of its price to the value of the underlying:

dV
A = ^ .  {1.21)

For portfolios, the value of Delta, A, is just the sum of all the individual deltas for 

each instrument comprising the portfolio.

Delta-hedging is a practical technique for minimising the effect of changes in asset 

price on the value of the portfolio. It is a common practice of hedge traders.

In the real world, transaction costs limit the effectiveness of maintaining a delta- 

n eu tra l position, since each change of portfolio incurs an overhead. In general, this 

problem is circumvented by trying to minimise the Delta, A, rather than maintaining 

a zero-value.

This provides a degree of certainty and immunity to changes in the market, while

allowing the trader to avoid having to pay prohibitive transaction costs,

Ac = iV(di), (1.22)

Ap =  N { d i ) - l .  (1.23)

where

d, =

do =

ln{S/K)  + { r + i a ^ ) { T - t )  
a y / T ^ t  

\ n iS / K)  + { r - i g ^ ) { T - t )  
a \/T  — t

and N{x)  is the cumulative probability function for a normal distribution.
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1.4.2 G am m a, F

The G am m a, F, of an option or portfoUo is the second derivative of its value to the 

value of the underlying:

r  =  ^ .  (1.24)

It is a measure of the sensitivity of the Delta to changes in the asset price and so 

gives an indication of how often and by how much a portfolio must be re-hedged to 

retain the delta-neutral position. Time does have an effect on this, but the dominant 

factor is the Brownian motion of the underlying.

In reality, re-hedging a portfolio incurs transaction costs, and so it is often de­

sirable to have a portfolio which does not need a large amount of maintenance (this 

should also reduce the effect of model errors). In this case, it is com.mon to construct

G am m a-n eu tra l portfolios, which seek to minimise the Gamma of the portfolio.

This requires the incorporation of options into the portfolio.

 ̂ J V W  ,1,5)
aSV T ^t  ̂ ^

r .  =  (1.26)aSy/T^t

1.4.3 T heta, ©

The T h e ta , 0 , of an option or portfolio is the derivative of the option value to time:

dV
e  =  ^ .  (1.27)

The Theta is related to the Delta, Gamma and option price by the Black-Scholes 

equation.

In a Delta-hedged portfolio, the Theta contributes to ensuring that the portfolio 

earns the risk-free interest rate,

e c  =  ]V(<i2). (1.28)

Qp =  + r g e - ' - g - ‘> A^(-ti,). (1.29)
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1.4.4 Vega

The Vega is the derivative of the option price to the underlying volatility, cr,

dV
Vega = — . (1.30)

It is an unusual quantity in that, unlike the previous Greeks, it is a parameter deriva­

tive rather than a variable derivative (which usually makes it more difficult to find a 

numerical approximation of its value).

The volatility of the underlying asset is hard to quantify exactly in practice and 

can be a major source of model error. Thus, hedging a portfolio to make it Vega- 

neu tra l can go a long way to eliminating model-risk, as we are reducing the de-

pendance of the model on a parameter whose value we cannot be truly confident

in,

Vegac = S y / T ^ t N \ d { ) ,  (1.31)

Vegap =  S V T - t N ' { d i ) .  (1.32)

In this work, the volatility is assumed constant and so the Vega is zero.

1.4.5 Rho, p

The Rho, p, is the derivative of the option value to the interest-rate used in the 

Black-Scholes model,
dV

(1.33)

In practice, financial theory uses a term structure for interest rates which is time- 

dependent, r{t). Rho is the sensitivity of the option price to the interest rate level:

PC  = i^ (T -i)e - '- (^ -‘)iV(d2), (1.34)

P p  = - K { T N { - d 2 ) .  (1.35)

In this work, the interest rate is assumed constant and so the Rho is zero.



Chapter 2

Partial Differential Equations

A P a r tia l  D ifferential E q u a tio n  (P D E ) is an equation that relates the partial 

derivatives of an unknown function of more than one variable. PDEs occur in all 

aspects of applied mathematics, and a large body of work has been amassed to try 

to solve the various types of PDE that occur.

A solution of the PDE is a functional form that satisfies the equation. A PDE 

usually has many (and possibly infinitely many) solutions that satisfy it. Thus, a 

particular problem often requires additional b o u n d a ry  cond itions which further 

constrain the solution set.

Where o rd in a ry  d ifferentia l equations (i.e equations that only contain or­

dinary derivatives) have solutions that are families that are characterised by some 

parameter value, solutions to PDEs are often parameterised by functions. Informally, 

this means that the solution set is much larger for PDEs.

The study of PDEs is a vast subject [42], and so the following discussion is limited 

to a few general types of PDE that occur in the financial problems that we are trying 

to solve.

A PDE is said to be linear if it can be rewritten in the form

Au  = f ,  (2.1)

for some linear operator A  and functions u, and / .

The o rd e r  of the PDE is the highest order of derivative that appears in the
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equation.

Some very commonly-occuring equations are:

V^u =  0

V^u =  f

d'^u
^  ̂ — c V  u, c constant 
dt^
du , _o ,—  = k V u, k constant 
dt

Laplace’s Equation 

Poisson’s Equation

Wave Equation

Diffusion (Heat) Equation

This discussion is limited to second-order linear PDEs, as most of option pricing 

theory results in this type of equation.

2.1 Classifying Second-Order PD E s

The general formula for a second-order, linear PDE is

d^u .  d“̂u d'̂ u d u d u
K ^   ̂ ^ a—  ̂  ̂a— \- fu - \-g  = Q, (2.2)ox^ ox ay oy^ ox oy

where a, b, c, d, e, / ,  and g are independant of x, y and u.

Second-order PDEs are classified by the relationship between the second-order 

derivative coordinates in the PDE. The equation is said to be:

E llip tic  if — 4ac < 0,

P arab o lic  if b̂  — 4ac =  0,

H yperbo lic  if 6̂  — 4ac > 0.

Laplace’s equation is a classic example of an elliptic equation. It occurs frequently 

in steady-state problem where there is no time-dependence. In two dimensions, we 

have
d^u d'̂ u ^

The diffusion equation is a parabolic equation. It is also known as the heat
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equation, and is often found when modelling the flow of heat into a region surrounding 

a heat source:
du
a  = *= (2.4)

The above is the one dimension version of the equation.

The wave equation is a hyperbolic equation. It models the amplitude u of a wave 

moving through a medium with speed c:

2.2 W ell Posed Problem s

A PDE problem is said to be w ell-posed if the solution exists, is unique and depends 

continuously on the problem data (i.e. the coefficients of the equation, the initial and 

boundary conditions and the problem space of the PDE).

The required conditions for a problem to be well-posed depend on the type of 

PDE involved:

• An elliptic problem is well-posed if the solution satisfies the boundary conditions 

at each point of the problem space.

• A parabolic problem is well-posed if the solution satisfies the boundary con­

dition at each point of the boundary, and if the solution satisfies some initial 

condition.

• A hyperbolic problem is well-posed if the solution satisfies the boundary con­

dition at each point on the boundary, and if the solution satisfies an initial 

condition for both the solution and the first derivative of the solution.

2.2.1 B oundary C onditions

Boundary conditions are extremely important when considering PDEs, as many PDE 

problems only make sense when accompanied by appropriate initial, final, and bound­

ary conditions.
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There are several different types of boundary conditions, and they are given dif­

ferent names depending on whether they are boundaries for space or time dimensions. 

Common boundary condition types for space coordinates are

D irich le t B o u n d ary  C ond itions The solution is specified at boundary.

N eu m an n  B o u n d ary  C ond itions The first derivative of the solution is specified 

at the boundary.

P eriod ic  B o u n d ary  C ond itions Similar to Dirichlet boundary conditions, but 

the value of the solution is the same on both sides of the boundary.

R ob in  B o u n d ary  C ond itions The boundary condition is a linear combination of 

the solution and the first derivative of the solution.

2.3 Characteristics

Characteristics play an important role in PDEs, as they are used to classify the 

PDE, and a study of the characteristics associated with a problem can give insight 

into effective procedures for solving the PDE.

2.3.1 The Origin o f C haracteristics

Taking the general form of the second order, Unear PDE, Eq. (2.2), we can re-write 

this equation as simply

d'̂ u , (  du d u \

Suppose, for simplicity, we have /  =  0 everywhere. Now, our equation looks like

We shall now adopt the notation
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etc.

y

X

Figure 2-1: Derivation of Characteristics for a Second-Order PDE

Now suppose we have a curve in space, F, (see Fig 2-1) upon which we know u, 

Ux and Uy. Let P  and Q be points on this curve F. Suppose we wish to know the 

value of u at another point P', which is not on F. This is given by the standard 

multi-dimensional Taylor expansion

u(P') = u{P) - { x -  xp)ux + {,y-  Vp)uy

Thus we need all the derivatives of u{P).  In particular, we need to find Uxx, Uyy and 

Uxy. Eq. (2.7) gives us one equation so two more are needed.

Let p - Ux, q =  Uy, r =  Uxx, s =  Uxy and t -  Uyy. Thus

dp =  p{Q) -  p{P) 

= r d x  + sdy. (2 .10)

Similarly

dq = sd x  + tdy. (2 .11)
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Thus we have a 3D Unear system:

^ ' ^ x y  ^ ' ^ y y  5̂

U x x  dx +  U:cydy +  0 =  dp,

0 +  Uxy dy  +  Uyy dx =  dq,

(2 . 12)

which can be rewritten as

(  A B C \  (  (  0 \

dx dy  0 Uxy

y 0 dx dy J  Y ' ^ y y  J

dp 

\ d q  )

(2 . 13)

The characteristics of a PDE are defined to be those curves in the problem space 

from which the second derivatives cannot be uniquely determined from this hnear 

system. For this to occur the above matrix must be singular i.e. its determinant 

must be zero. So,

Eq. (2.14) is said to be the C haracteristic  E quation  of Eq. (2.7).

It is the characteristics of a PDE that define, in general, whether or not the PDE 

is elliptic, parabolic or hyperbolic. The general method of classifying a PDE is

Elliptic, if the PDE has no real characteristics.

Parabolic, if the PDE has less distinct characteristics than the order of the PDE.

H yperbolic, if the PDE has the same number of distinct characteristics as the 

order of the PDE.

Characteristics can be thought of as curves through which information propagates 

throughout the problem space.

In elliptic problems, there are no real characteristics and so information does not 

propagate through the problem space. In fact, information travels instantaneously

A dy^ — B d x d y  -\- C dx^ = 0,

(2 . 14)
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throughout the domain in all dimensions. Thus, elliptic problems tend to be steady- 

state problems since information cannot travel instantaneously through time or there 

would be no causality. A good example of where this occurs is in a steady-state 

potential problem, which is modeled by Laplace’s Equation where a change at the 

source instantaneously affects the entire problem domain.

In parabolic problems, information tends to travel instantaneously through one 

or more dimensions, but travels with a finite time through the others. This occurs 

in the Heat Equation when a change in the source instantaneously affects the space 

coordinate, but there is causahty as the information must propagate through the time 

dimension at finite speed (i.e. the heat requires time to spread out, but all directions 

are affected simultaneously).

In hyperbolic problems, all information must travel at finite speeds for each di­

mension in the problem. The Wave Equation is a fine example of this, all wave 

pulses travel along the characteristics in a finite time, in both forward and backward 

directions.

2.4 The Black-Scholes Partial Differential Equa­

tion

The Black-Scholes PDE,

dV  1 n d V  ^

is a second order, linear, parabolic PDE because comparing it to Eq. (2.2), we see 

that

A = ^ a ^ S \  B  = 0, C = 0. (2.16)

Thus, 5 2  -  iA C  = 0 - 0  = 0.

However, if 5  =  0, the problem reduces to that of an ordinary, first order hyper­

bolic equation with characteristic 5  = 0.

Thus our problem is parabolic for 5  > 0 but hyperbolic at 5  =  0. Financially,
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this is important: the line S' = 0 is a barrier through which information cannot cross. 

Thus, we do not have to consider negative stock values in our calculations. This is 

just as well, as negative values of the underlying has no real financial interpretation 

for stock prices.

It is worth noting that forward contracts can have a negative value and so options 

on these assets require a different analysis. We do not concern ourselves with these 

derivatives however.

Thus, we need not worry about spurious results due to quirks in the mathematics 

of the models which do not have any real-world meaning.

As has been mentioned, the Black-Scholes equation is a type of diffusion equation, 

a mathematical system that has been known of since the beginning of the 19th 

century.

Versions of the diffusion equation have been used to successfully model the diffu­

sion of one material within another (such as smoke particles in the air); the flow of 

heat from one region to another; the dispersion of populations with individuals mov­

ing both randomly and to avoid overcrowding; pursuit and evasion in predator-prey 

systems; and the dispersion of pollutants in a running stream.

In most of the above cases, the resulting equations are more complicated than the 

Black-Scholes equation.

The Black-Scholes equation can be accurately interpreted as a reaction-convection- 

diffusion equation. The diffusion part is a balance of a first-order i-derivative and a 

second-order S  derivative:

If those were the only terms in the Black-Scholes equation, it would still exhibit 

the smoothing out effect — any discontinuities in the payoff would be immediately 

smoothed out. The only difference between this and the basic diffusion equation is 

that the diffusion coefficient is a function of one of the variables, S. Thus we really 

have diffusion in a non-homogeneous medium.
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The first-order 5-derivative term

(2.18)

can be thought of as a convection term. If this equation represented some physical 

system, such as the diffusion of smoke particles in the atmosphere, then the convective 

term would be due to a breeze, blowing the smoke in a preferred direction.

The final term

is a reaction term. Balancing this term and the time derivative would give a model

Put together, we get a reaction-convection-diffusion equation. An almost identical 

equation would arise when modelling the dispersion of a pollutant along a flowing 

river with absorption by the sand. In this, the dispersion is the diffusion, the flow is 

the convection and the absorption is the reaction.

2.4.1 B oundary and In itia l/T erm inal C onditions for Solving

(2.19)

for decay of a radioactive body, with the half-life being related to r.

the B lack-Scholes Equation

Since the Black-Scholes equation is a parabolic equation, to uniquely specify a solu­

tion, we need to specify an initial (or term inal) condition, and boundary  condi­

tions.

Our terminal condition is simply the payoff function for the option (which we 

shall assume to be a Put):

F ( 5 t ,T )  =  M a x ( i C - 5 r , 0 ) . (2 .20)

The boundary conditions are those given in Chapter 1. If the stock S  becomes zero, 

the payoff is simply the full strike price, discounted for the time:

(̂O.f) = (2 .21)
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As the stock gets larger and larger, it becomes less and less likely that the option 

will move into the money, and so the option becomes worthless:

V{oo,t) = 0. (2.22)

Thus, we have a terminal condition and two boundary conditions (all of which 

are Dirichlet conditions), as required.

The Black-Scholes equation is linear: add two solutions together and you will get 

a third. Linear diffusion equations have some useful properties, one being that any 

discontinuity in the boundary or initial/terminal conditions is immediately smoothed 

out in the solution.

This is useful because the payoff of the option is not differentiable at S  = K  (i.e. 

the derivative of the function does not exist ai S  = K),  but the linear nature of 

the equation means that we do not need to worry about this affecting the analytic 

solution, though this does have consequences for some numerical approaches (see 

Chapter 5).



Chapter 3

Stochastic Differential Equations

3.1 Introduction

One of the most fundamental assumptions made in modern theories of financial math­

ematics is the fact that the underlying assets do not behave deterministically (i.e. 

there is a certain amount of “randomness” intrinsic in the evolution of the asset 

through time).

For example, when studying the price of futures or options, it is assumed that 

the underlying asset price changes randomly. For interest-rate derivatives (such as 

bonds or swaps), it is the interest-rates which change randomly.

This assumption was made once it became apparent that techniques for predicting 

the future evolution of prices and interest rates were essentially worthless. Since it 

was effectively impossible to model these behaviours, the idea to assume random 

behaviour and work from there is logical.

Probably the most commonly known example of these models that assumes an 

inherent random element is B row nian  M otion , the motion of a small pollen grain 

suspended in water first observed by Robert Brown in 1827.

In 1900, Louis Bachelier submitted his PhD thesis dissertation T h eo rie  de la 

S pecu la tion  [1]. His thesis discussed the use of Brownian motion to evaluate stock 

options, and is historically the first paper to use advanced mathematics in the study of 

finance. Thus, Bachelier is considered a pioneer in the study of financial mathematics
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and stochastic processes, though his contribution is often overlooked (including by 

this author in the past).

His work predated Einstein’s celebrated study of Brownian motion by about five 

years.

Einstein eventually explained the phenomenon of Brownian Motion by surmising 

that the pollen grain was in constant collision with water molecules, and the random 

nature of these collisions explained the erratic behaviour of the molecule. He did his 

work independently of Bachelier.

Figure 3-1; Example of a 2D Brownian Motion

In stochastic mathematics, Brownian Motion is considered to be an example of 

a R andom  W alk. The concept of a random walk is extremely important in finan­

cial applications of stochastic mathematics, as the underlying assets are assumed to 

undergo a random walk.

3.2 Stochastic Calculus

To explain the key ideas in stochastic calculus, I will use its application to option 

pricing theory. Stochastic calculus is much more general than this (many of the 

original theories for it were developed by scientists working on rocket propulsion, this 

is genuine “rocket-science”), but as this is the only application to which we shall 

apply it, there is no need to generalise further.

As mentioned previously, the aim of investing is, for a given level of risk, to 

maximise the re tu rn , that is, the percentage growth in the value of an asset over a 

period of time.
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The percentage growth is much more important than the actual growth, since 

if two investments increase in value by $10 over a period of time, but A involved 

an initial investment of $100, whereas B involved $1000, clearly A is the superior 

investment to B.

Table 3.1 shows a sample path of an asset starting from an initial value of $40. 

Calculating the returns on the asset is relatively straightforward. Suppose the value 

of an asset on day i is given by Si, then the return on the asset from day i to day 

i +  1 is given by

The above equation does not allow for dividends, and this study does not deal with 

their effect.

Figure 3-2 shows a plot of the daily returns of the above asset for a 100-day period. 

As can be easily seen, it appears very much like a random set of data, and it can be 

modelled as such.

Prom statistics, the sample mean of a distribution is given by

where N  is the number of returns in the sample (which is one less than the number 

of asset prices).

The frequency distribution of the daily returns is easily done and is shown in Fig­

ure 3-3. The smooth curve is the normal curve for the mean and standard deviation 

of the sample data and closely follows the histogram.

Although the returns in this sample closely follow the normal distribution, this 

is not true in general. However, nearly all data sets are close enough to make the 

assumption that they are drawn from the normal distribution a reasonable one, and

(3.1)
'i

(3.2)

and the sample standard deviation is defined to be
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Day Asset Return
00 $40.0000
01 $39.2866 -0.0178
02 $38.6155 -0.0171
03 $39.0341 +0.0108
04 $39.1175 +0.0021
05 $38.9316 -0.0048
06 $39.4114 +0.0123
07 $38.6777 -0.0186
08 $38.8083 +0.0034
09 $38.9933 +0.0048
10 $38.7756 -0.0056
11 $38.7477 -0.0007
12 $39.5847 +0.0216
13 $40.5058 +0.0233
14 $40.7901 +0.0070
15 $40.5649 -0.0055
16 $40.4339 -0.0032
17 $39.7304 -0.0174
18 $38.9643 -0.0193
19 $38.7945 -0.0044
20 $39.2986 +0.0130
21 $38.8695 -0.0109
22 $39.3801 +0.0131
23 $39.6275 +0.0063
24 $39.7340 +0.0027
25 $39.6653 -0.0017

Table 3.1; Sample Path Data

we shall proceed as such.

Thus, the returns are treated as a random variable, drawn from a Normal distri­

bution with non-zero, constant mean and non-zero constant standard deviation;

R i+ i  =  — ~  =  mean +  std dev * 0, (3.4)
Oi

where 0 is a random variable drawn from the standard, normal distribution.
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Figure 3-2: Daily Returns of a Sample Asset

3.3 Tim e Scales

Up to now, there has been little reference to the time-scales involved in these series of 

data. The timescale was stated to be daily, but all the above formulae work equally 

well using hours, minutes, months or years as the time intervals. How would this 

change of timescale affect the distribution?

Let the St be the timestep between data measurements. We assume that the 

mean of the returns scales with the size of the timestep, i.e. the larger the sampling 

time, the larger the average. For simplicity, we shall assume this scaling is linear and 

constant.

mean =  /x 5t, (3-5)

for some constant /x.

Thus, by taking enough samples to ehminate the random element of the measure-
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Figure 3-3: Histogram of the D a ily  Returns Frequency D is tribu tion  

ments, we have

E{R,^,)  =  E  6t, (3.6)

and rearranging,

(1 +  /X 5t). (3.7)

Asset Return 
Mean Value 

Normal Distribution

Thus, an asset w ith  in it ia l value of So at tim e t =  0 has a value aX t =  5t of

S\ — 5o (1 -l- (3.8)

At t =  2 St, we have

S2 =  ( 1  - l - (3.9)
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and after M  timesteps, t = M  St and

S m — 50  (1 + (3.10)

With total time T  fixed, then as the number of timesteps gets larger, St get smaller, 

and Eq. (3.10) becomes

The above result is exact, and so the asset exhibits exponential growth in the absence 

of any randomness, just like cash in the bank.

Also, as the above result is finite in the limit as the timestep approaches zero, we 

can see that the model is meaningful. Any other power of St would have given us 

either a trivial {St  =  So) or infinite answer.

With this in mind, we can now see that the obvious choice for scaling the change 

in standard deviation with time is \/Si.

With T/5t  timesteps, Eq. (3.3) contains a sum of that many terms, and for the 

sum to remain finite, each must be of 0{St). Since each is a square of the return, the 

standard deviation of the asset return over a timestep St must be 0{\/M).

Again, we assume we have some parameter in the scaling, a, so that

Note that cr is a measure of the randomness of the asset, since the larger this param­

eter is, the more uncertain the return. This value is often assumed to be constant 

and we make this assumption for the moment.

We can now substitute all this into our asset return model, Eq. (3.4)

St=T =  hm So{l + fJ.St), 
S t —>0

=  So lim (1 +  II St),
6t—*0

=  Soe^^. (3.11)

std dev =  a (3.12)

Ri =    = IX St + aVM  4>.
‘J i'i

(3.13)
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Re-writing, we get

Si = jiSi 5t +  a S i V ^  (j). (3.14)

The LHS of Eq. (3.14) is the change in the asset price from timestep i to timestep

asset is. The future values are unknown, but are distributed about the current value 

according to Eq. (3.14).

We now consider the two param eters /j, and a in more detail.

The param eter is called the d r if t  r a te  or e x p e c te d  r e tu r n  or the g ro w th  r a te  

of the asset. It is hard to measure statistically as it scales with the param eter 5t, 

which is usually small, and is often estim ated by

The unit of time is usually one year, and so /i is often quoted as an a n n u a lise d  

growth rate.

The param eter a  is called the v o la tility  of the asset, and can be estim ated by

The volatility is usually quoted in annualised terms.

The volatility is an extremely im portant param eter in the theory of financial 

derivatives, as it estimates the ‘randomness’ of the asset price and dominates the 

short-term  behaviour of the asset price. High volatility stocks can be very risky, with 

wildy fluctuating prices over short timescales (ready examples would be technology

i The RHS is the ‘model’. We can think of this equation as being a model for 

a random  walk of the asset price. We know precisely what the current value of the

3.3.1 The Drift Rate

(3.15)
i—1

3.3.2 The Volatility

(3.16)
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start-up companies), whereas low volatility stocks will have prices which will change 

very slowly (the so called ‘blue-chip’ companies, such as the old-school investment 

banks and industries).

However, when viewed over long timescales the randomness of the asset averages 

out, leaving just the effect of the drift.

3.4 W iener Processes

Up to this point, everything has been modeled with d isc re te  tim e. Financial models 

require the use of con tinuous tim e, i.e. where the time dimension is not discretised 

but continuous throughout the lifetime of the derivative.

In continuous time, the price path of the asset is a continuous function of time, 

unlike previously, where the price of the asset was only considered at the discrete 

timesteps. We now must consider the effect of continuous time on Eq. (3.13).

In the limit as 6t —> 0, we use the notation d instead of S to denote a change in a 

quantity. Thus, in continuous time, the change is the asset price is denoted dS  and 

the change in time is denoted dt. However, it is not so easy to deal with the y/M. It 

will be shown that we can write this as

We can treat d X  as being a random variable drawn from a Normal distribution with 

zero mean and variance dt:

=  dX. (3.17)

E[dX] =  0 and E[dX^] = dt. (3.18)

Using this continuous-time limit, and Wiener process notation, we can write our asset 

price model as

dS = f iSdt  + a S d X .  (3.19)
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3.4.1 Brownian M otion

We will now define B row nian  M otion , X{t )  as being a random walk with the 

following properties:

F in iteness: The value of X{t )  should scale with the size of the timestep in a way 

that ensures that, in the limit of the zero timesteps, the value does not go to 

infinity or result in no change. For asset price movements, this means that the 

increment scales with the square root of the timestep.

C on tinu ity : The paths are continuous and there are no discontinuities. Brownian 

motion is the continuous-time hmit of the discrete time random walks.

M arkov: The conditional distribution of X { t )  given information up until t  <  t  

depends only on X { t ).

M artingale : Given information up until t  <  t, the conditional expectation of X{t)

Q u ad ra tic  V ariation : If we divide up time 0 to i in a partition with n +  1 partition 

points, with U = ^  then

N o rm ality  Over finite time increments U to U, X{ti) — is Normally dis­

tributed with mean zero and variance U — U-i.

is X { t ).

n

(3.20)

3.5 Stochastic Integration

A sto ch astic  in teg ra l is defined as



3.6 F unctions o f S tochastic  V ariables an d  I to ’s L em m a 30

with

In the above calculation, it is important that the function / ( r )  being integrated is 

evaluated at the t = t j - i  timestep. The integration is said to be n o n -an tic ip a to ry  

and this ensures there is no future information used in current calculations.

Since the use of such integrals can be extremely cumbersome in calculations, it is 

much more common to write Eq. (3.21) as

d W  =  f{t )  dX.  (3.23)

Note that this notation comes from ‘differentiating’ Eq. (3.21), and has the benefit 

that it looks much more like an ordinary differential equation. We can think of d X  

as being an increment oi X ,  a. Normal random variable with zero mean and VM  

standard deviation.

We do not then divide the equation by dt, as this would introduce the difficulty 

of giving meaning to dX/dt .

Extending this idea, we can see that

dW = g{t) dt + f{t)  dX,  (3.24)

is a simple shorthand for

= f  g{r) dT + f  f i r )  dX (r). (3.25)
Jo Jo

These are examples of s to ch astic  d ifferential equations.

3.6 Functions of Stochastic Variables and Ito ’s Lemma

Now we consider functions of a stochastic variable, F{X{t)).  Suppose we define 

F = X'^, and wish to find dF.  The standard rules of differentiation do not hold in

the stochastic environment and so we need to develop new rules of calculus.
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To develop these rules, we introduce a very small timescale, denoted by h, such 

that

h = — . (3.26)
n

This timescale is so small that we can approximate F{X{ t  +  /i)) by a Taylor series;

dF
F{X{t  + h)) -  F{X{t))  = {X{t  + h ) ~  X{t))

1 F
+  -  {X{t  + h ) -  X ( t ) f  + ... (3.27)

We can then use this to show that [29]

ftp
F(X{ t ) )  =  F{X{0) )  +  I  — (X{T))dX{T)  +  -  I  — ^{X{r))dT.  (3.28)

This is the integral version of I to ’s Lemma, which is usually written in the form

dF \ d^F

So, to return to our example of F  =  X"  ̂ it is now obvious that since

dF  , d'^F ^—  = 2 X a n d ^  =  2,

then we have dF  =  2X d X  + dt.

Generahsing, suppose we have the stochastic differential equation

dS = a{S)dt  + b{S)dX,  (3.31)

for some functions a(5) and b{S). A function of S, V{S)  would satisfy

This will be used when considering financial applications of stochastic differential 

equations.
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Consider the appUcation of Ito’s Lemma to functions of one stochastic variable, 

S  and one deterministic variable t, V{S, t).  We have

dS = a{S, t )dt  + b{S, t )dX,  (3.33)

and it follows that the increment of the function, dV  is

3.7 A pplications to  Financial D erivatives

Consider a simple random walk with a drift

dS = fidt + a dX .  (3.35)

Integrating it exactly, we get

S{t) =  5(0) + fit + a{X{t) -  X{0)).  (3.36)

The above example is not particularly suited to option pricing as it allows the

value of S  to become negative (which is unrealistic for the the price of stock). A

possibility is to scale the the drift and volatility with S:

dS = ^ S d t  + a S d X .  (3.37)

In this case, as the value of 5  ^  0, the size of dS  also decreases, so that 5  =  0 can

never actually be reached.

To show this, we examine the function F{S)  =  In S.

dF  1 2^2 

=  ^i^iSdt +  a S d X ) - l a ^ d t ,
O

=  (ix — ^a'^) dt + a d X . (3.38)
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Thus, —oo < In 5 < oo.



Chapter 4

Exact Results

4.1 Exact Solution for Vanilla Calls and P uts

We now turn our attention towards deriving an analytical solution to the Black- 

Scholes equation.

The Black-Scholes equation is

The value of the option is the present value of the average risk-neutral payoff, and 

this suggests a possible simplification by converting to a future value price, U, given

by

y (5 ,t)  =  (4.2)

Making this change of variable, we get

dU 1 ^ d U  ^

This is a backw ards equation, because we have a terminal condition as opposed to 

an initial condition.

This is trivially changed by the simple change of variable

T  = T  — t, (4.4)
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which leaves us with
dU 1 2a2d^U ^ d U

When first modeling equity prices, the stochastic differential equation model was 

built up around consideration for the re tu rn  of the asset. As we assume the return 

is a lognormal walk, this would suggest another change of variable, namely,

e =  In 5. (4.6)

Using this new variable, we find that

d  - £ d   ̂ - 2 f  - 2 f  d
dS ^ dS^ ^ ^ d^' ^

With this change of variable, our PDE becomes

dU I od'^U , o.dU
^  =  + (4-8)

We now have a second-order partial differential equation with constant coeffi­

cients, which is relatively straightforward to solve.

Eq. (4.8) is a PDE in two dimensions, ^ and r , a ‘space’ and ‘time’ dimension 

respectively.

We can again change the variables of the problem to simplify it down again, to

X =  ^ + ( r - i a ^ ) r ,  (4.9)

and

W { x , t ) = U. (4.10)

with this change of variables, we have reduced the problem down even further, to 

simply,
aw I

Linking the current dimensions back to our original Black-Scholes equation, we
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see that

V{S, t )  =

=  e - ^ ^ U { S , T - t ) ,

= e-^^U{e^,T-r),

=  e-^^W{x,T),  (4.12)

and

X -  ̂+  (r —|(T ) r

=  logS + {r - ^a^ ) {T  - t ) .

To solve this equation, we first look for a special solution of Eq. (4.11) of the 

form

W, (x , T)  = r y  (4,13)
T ‘

where x ' is an arbitrary constant. The function /  is unknown and it depends on 

a single variable, {x  — x ' ) / t ^, and so as well as determining /  we need to fix the 

values of a  and j3. This has the benefit that Eq. (4.11) should reduce to an ordinary 

differential equation since /  is a function of just one variable.

We now substitute Eq. (4.13) into Eq. (4.11),

(“•f - '’"I) = 0 '

X — x'
where

» = ^ .  (4.15)

For equality to hold, the powers of rj in Eq. (4.14) must be identical, and this
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gives us

a - 1  = a - 2 / 3 ,  (4.16)

/? =  i  (4.17)

The next step is to ensure th a t the solution has the property th a t the integral

over all is independant of r  (the reason for this will be explained later). Thus, we 

need to have

/° °  (̂ -18) 

where C  is a constant. Rewriting this as an integral of dr] this becomes

poo
/  f{ji)dr] = C, (4.19)

J OO

and so this requires th a t a  = ~ P  = ^.

The function /  now satisfies the ordinary differential equation

which can be rewritten in the form

d{rjf)

This can be integrated once to  get

2dfa — +7] f  =  a, (4.22)

where a is an arbitrary constant. We now choose a =  0 and integrate again to get

f{rj) = b e x p ^ .  (4.23)

Again, b is an arbitrary constant, but we will fix it so th a t the integral of /  over
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[—oo, oo] is unity:

=  (4,24)
V 2 7 r  CT

So, substituting Eq. (4.24) into Eq. (4.13) we get

W { x , t ) =  . }— . (4.25)
V27rrcr

Fig. 4-1 shows the shape of W { x , t ) for various values of r . As r  —> 0, we see 

tha t the function gets taller and thinner around the point x  — x'.  Mathematically 

speaking, for decreasing values of r  the function grows without bound a t this point 

and approaches zero everywhere else.

Dirac Delta Function
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Figure 4-1: Plots of the Function W { x , t ) for different values of r

However, we ensured earlier th a t the value of the integral was independent of the 

value of r  and so the area under this curve is constant for all values of r . The result 

is th a t in the limit r  —> 0, the function W { x , 0 )  becomes the D ira c  d e l ta  fu n c tio n .
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which is a mathematical function with the important property that

J  5{x '— x) g{x') d x ' — g{x). (4-26)

Thus, integrating with the Dirac delta function essentially ‘selects’ the value of

the function at the point where the Dirac function is singular. In the limit r  —> 0,

our function W{x,  r )  is the dirac function so that

We now turn our attention to the payoff of the option, and denote it

H{S).

where H  is the payoff function of the option.

This is the value of the option at expiry, where t = T.  It is the final condition for 

V{S,T),  satifying the Black-Scholes equation:

V{S,T)  = H{S).  (4.28)

In the other set of variables, this condition becomes

W{x,0)  = (4.29)

It is easy to see that

— OO

Wf{x,T-,x')H{e^')dx' .  (4.30)
0

and this can be easily verified by substituting it into Eq. (4.11) and into Eq. (4.29) 

(from the properties of the function Wf).

W { x , t ) -L
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Re-writing the function in terms of the new variables S and t, we have 

a^j2'K(T — t) Jo \  2a (T — t) J(7y/2TT{T — t)

V -

S'

4.1.1 Formula for Call Option

A call option has a payoff of

H{S)  = meix{S -  K,0).  (4.32)

Substituting this into Eq. (4.31), we get

^ - r ( T - t )  roo  / (in(5 /5 ') +  (r - i a ^ ) { T - t ) f \  dS’
V{S,t) = T e x D  (  (HS/ S' )  +  { r - i a ^ ) { T - t ) f \  _

a ^ 2 i , { T - t ) L  I 2(7^{T-() ’ S' -
(4.33)

Returning to the variable x =  In 5',

^ - r { T - t )  roo  /  5 ' +  ( r  - 1 ( 7 ^ ) ( T  -  t ) ) ^ '

~ ) L k  2 a ^ ( r - i )  )a y ^ 2 n { T  -  t )  J \ n K

^ - r { T - t )  roo  /  ( _ 3 , / +  5 ' +  ( r - i a 2 ) ( T  -  i ) ) ^

(e^' -  K)  dx'

■t) roo  /

^ )L dx'
aV'27r(T - 1) Jk  V 2a2(T - 1)

Both integrals on the RHS can be written in the form

POO

/  e~'2 '̂"dx', (4.35)
Jd

for some d, and so the option price can be written as two separate terms involving 

the cumulative distribution function for a Normal distribution:

C(S,t)  =  SN(di )  -  N(ih), (4.36)
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where

\n{S/K) + {r+^,a^){T - t )
d i  =

ay/T — t
ln{S/K) + { r - ^ , a ^ ) {T - t )

4.1.2 Formula for P ut Option

The put option has a payoff

H{S) = max{K -  S,0). (4.38)

The value of the put option can be calculated in a similar manner to that of a call

option, yielding the formula

P{S, t) = - S N { - d i )  + Ke-^^'^-^^N{-d2), (4.39)

with the same values for di and ^2 as in Eq. (4.36).



Chapter 5

The Finite Difference Approach

This chapter defines the various finite difference schemes for partial differential equa­

tions.

Results of formal analysis for convergence and stability will be listed for each 

scheme.

5.1 The F inite Difference M ethod

5.1.1 Ordinary D erivatives

The finite difference method is a computational method for approximating continuous 

derivatives in a discrete way. Suppose we have a function u, of the variable x, defined 

on a discrete mesh with N  mesh points. Suppose that the value of x  is in [0,X]. 

Thus, if the distance between mesh-points is constant and denoted dx, we have

We denote the values of u on each mesh-point as Ui, where i =  0,1,..., — 1 and Ui

= u{x =  idx).

We now require some method of approximating derivatives on this mesh. Fortu­

nately, the definition of the derivative immediately suggests an appropriate approxi-



5.1 T h e  F in ite  D ifference M eth o d 43

mation:
du ^  u(x + h ) - u ( x )
dx h-*Q h

Since we are working on a discrete mesh, we do not take the hmit as h 0 and 

instead fix it as the grid size Ax

du Ui  / r  o\

&  =

Eq. (5.3) is called the F orw ard  difference app rox im ation .

There are many other ways of approximating the derivative (using different com­

binations of mesh-points). Two other very common approximations are

du Ui -  Ui.i
dx A x

  ^ i+ l 1
2"Ax

(5.5)

which are known as the B ackw ard  difference and C en tra l difference approxima­

tions respectively.

To approximate higher order derivatives, we use the fact that the n-th deriva­

tive is just a derivative of the (n — l)-th  derivative, and apply a finite difference 

approximation. The following are finite difference approximations to the second- and 

third-order derivatives, using a central differencing approximation.

d^u _  u '̂^  ̂ — 2w " + u^~^ 
dx'^ (Aa:)2
d^u
dx̂  {AxY

5.1.2 Partial Derivatives

(5.6)

(5.7)

We now turn our attention to functions of more than one variable and the partial 

derivatives of these functions. The discussion is hmited to functions of two variables, 

such as u{x,y),  for the purposes of clarity and brevity, as the extension to higher 

dimensions is very straightforward.

So, suppose we have the function u{x, t) which depends on two independant vari-
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ables X and t. We now need a two-dimensional mesh to discretise x  and t. Suppose 

the grid is of size .{N x J), containing J  points in the x-direction and N  points in 

the t-direction.

We now need two indices to specify a value of u on this mesh, and for simplicity, 

we shall use li", where

= u{x = j  dx , t  = n At),  (5.8)

where n =  0 , 1 , — 1 is the t-index, and j  =  0 , 1 , J  — 1 is the x-index.

The partial derivatives are then approximated as follows:

dx A x  ’
^
dt A t

Higher-order derivatives are approximated in a similar way:

d^u _
dx'̂  {Axy
aH u”+' -  2uJ +
~dP ~  (A ()5  ■

(5.9)

(5.10)

(5.11)

(5.12)

Note that for time derivatives, using central differences results in schemes with 

mesh points along three different time-slices Uj and This proves quite

cumbersome to solve numerically, and so time derivatives are usually approximated 

with forward or backward differencing only.

5.2 Solving Partial Differential Equations

We now turn our attention to using these finite differences to solve partial differential 

equations (PDEs). The study of PDEs is a vast topic, and we shall concentrate on 

one particular type of PDE, second-order paraboUc equations, which occur quite 

frequently in the pricing of financial instruments.
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5.2.1 Consistency, Stability and Convergence

Before we can use any kind of finite difference scheme, it is very important to ensure 

that the scheme will give accurate results. Checking the accuracy of a scheme is very 

important in Numerical Analysis, and to do this we require a number of concepts.

Consistency: A finite difference scheme is said to be consistent if the discretised 

equation approaches the PDE as the number of mesh-points increases.

Stability: A finite difference scheme is said to be stable if the computed numerical 

solution approaches the actual solution of the discretised difference equation as 

the number of mesh-points increases.

Convergence: A finite difference scheme is said to be convergent if the computed 

numerical solution approaches the actual solution of the continuous PDE as the 

number of mesh-points increases.

The three concepts of Consistency, Stability and Convergence are linked by a 

principle called the Fundamental Equivalence Theorem of Lax:

For a well-posed Initial Value Problem , w ith a consistent dis­

cretisation scheme, stability is a necessary and sufficient condi­

tion for convergence.

Thus, if we know our difference scheme is consistent with the PDE (and this is 

normally fairly straightforward to verify), then we just have to prove that the scheme 

is stable to show that the solution converges to the correct answer.

Stability is the main reason why explicit schemes are not used very often. They 

usually have highly restrictive stability conditions that impose strict bounds on the 

mesh-sizes. As a result, explicit schemes can be very expensive to calculate compu­

tationally due to sheer size, rather than complexity.

In some cases, explicit schemes are unconditionally unstable. When this happens, 

the scheme is completely useless for any kind of calculation.
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Implicit schemes tend to have much less restrictive stability conditions (indeed 

many, such as the simple imphcit scheme for the diffusion equation, are uncondition­

ally stable) and so are the most common type of scheme used.

5.2,2 The Diffusion Equation

The diffusion equation is the most simple type of second-order parabolic equation:

du d^u

where k is called the diffusion constant.

The diffusion equation commonly occurs in physics to describe the evolution of 

fluids as they move freely from regions of high concentration to regions of low con­

centration.

Also often referred to as the heat equation (since it was originally used to model 

how heat diffused through a medium), this equation is one of the most successful and 

widely used models in physics and applied maths.

One finite difference approximation of this PDE could be

'̂ 1 -  2u] +
=  . -. A . - - —  • (5-14)At \  (Ax)

This scheme is quite straightforward to solve. Assuming we have the initial values 

for u (along time-step n = 0), we can use these values to calculate the values for u 

along time-step n = 1. In turn, we can use these values to calculate u along each 

successive time-step, using the values calculated along the previous time-step. This 

type of difference scheme is referred to as an explicit difference scheme, since 

we can calculate the unknowns explicitly from the difference scheme and the known 

values in the equation.

In an explicit scheme, the difference equations contain single unknown mesh- 

point, allowing its value to be calculated directly from the known values. Thus, 

solutions arising from explicit schemes are very easy to find.

The above scheme, Eq. (5.14) is often referred to as the FT C S scheme (Forward-
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n , j - l

-  •  X n+1, j

Figure 5-1: An Explicit Scheme

in-Time, Centred-in-Space), and is very simple to derive. Unfortunately, it is com­

pletely useless for computational purposes since it is easily shown to be uncondi­

tionally unstable for the simple diffusion equation [32], rendering any solutions it 

produces useless.

Now, instead of using a forward difference for the time-derivative, take a backward 

difference instead:

The disadvantage to  this scheme is th a t of the four mesh-points used in the scheme, 

only one is known { u ^ ) ,  whereas three are unknown and so we

of difference scheme is referred to as an im p lic it d ifference  schem e

In an im p lic it scheme, the difference equations contain multiple unknown mesh- 

points. These are still solvable but require linear methods. The problem is reduced 

to  th a t of a standard linear system and solved using a linear solver.

(5.15)

A stability analysis of this scheme shows tha t this is unconditionally stable [32].

are required to solve a system of these equations to  find the values . This type

X n+l,  j+1

X n+l,  j
X

X
n+l, j-1

Figure 5-2: An Implicit Scheme
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Despite being much easier to  calculate, explicit schemes are not used very often, 

for reasons which will be explained in the next section.

Thus, we usually require m atrix methods and linear solvers to obtain solutions to 

these numerical schemes.

5.3 Singly-Perturbed Problem s

Problems can arise when the coefficient of the diffusion term  in Eq. (5.17), e, becomes 

small. In this case, the second-order equation begins to behave like a first-order 

equation (as the effect of the diffusion term  is being reduced by the small coefficient).

This is a well-known problem, as it is a common occurence in fluid flow problems 

when the amount of diffusion is very small. This problem is exacerbated by the 

non-differentiability of the payoff function aX. S  =  K .  Such problems are known as 

s in g ly -p e r tu rb e d  p rob lem s.

The end result is oscillations in the numerical solution. While often small in the 

solution itself, these oscillations are greatly magnified should the derivatives of the 

solution be required, and this is indeed the case with the Fully Implicit and Crank- 

Nicolson schemes (see Figs 5-11 -  5-14). This problem can be eliminated by using a 

small enough timestep, but sometimes this is not practical.

These spurious oscillations are due to the fact tha t, when central differences are 

used for the derivative |^ ,  a scheme is not guaranteed to  be a p o s itiv e  coeffi­

c ien t d isc re tisa tio n . Such a discretisation will prevent spurious oscillations, as the 

numerical scheme will obey a Local Extremum Diminishing (LED) property th a t 

guarantees local maxima are not increased and local minima are not decreased.

The Implicit scheme can be made to have all positive coefficients by using up­

stream  differencing at nodes where the coefficients resulting from central differences 

are negative. In this way, spurious oscillations will not occur in the solution.

For a uniform mesh, central differencing can be used so long as
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where i is the index of the mesh node.

Thus, for “typical” financial parameters, on a few nodes near 5  =  0 need upstream 

weighting, so that fact that this discretization is 0{h) will not have a large impact.

However, in problems with low volatility and high interest rates, upstream weight­

ing is required for all nodes to guarantee a positive coefficient discretisation.

Zvan, Forsyth and Vetzal also discuss this problem in detail in the article that 

first used the Van Leer fiux-limiter in the financial area [43].

5.4 The Discretisation Schemes

Writing the Black-Scholes equation in a more general form (used quite often for this 

class of equations in Fluid Dynamics), getting

du du , .. . _

where

X  — >

c — 

e = 

a = 

b = 

fix) =

In this thesis, five different numerical discretisation schemes were used to solve the 

Black-Scholes equation:

1 -  The Fully Implicit scheme

2 -  The Fitted Duffy scheme

3 -  The Crank-Nicolson scheme

1 ,

1
2
r5,

(5.18)
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4 -  The Fitted Crank-Nicolson scheme

5 -  The Van-Leer flux limiter scheme

5.4.1 The Fully Implicit Scheme

The Fully Implicit discretisation scheme is one of the simplest schemes in Numerical 

Analysis. It uses the backward difference approximation in the i-direction and the 

central difference approximation in the S'-direction.

Thus,

dV
dt A t
dv
dS ~  2 Ax

(5.19)

and giving us

2 Ax

Putting all this together and grouping co-efficients, we get

n + l  \  /  ^ "+ 1
________ “ Z___  1 -,,” +1 I I _ A n + l  _  o  J _  [1___  1 , , n + l

{A xy  2 A x  I  ̂ (Ao:)2 At  ' ^
n + l  n+1 \  n

The fully implicit scheme does have the disadvantage that it is just a first-order 

scheme, and so is not as accurate as some of the others.
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5.4.2 The C rank-N icolson Schem e

The expUcit scheme is unconditionally unstable but is an 0{h?) scheme nonetheless. 

The idea behind the Crank-Nicolson scheme was to combine both the implicit and 

an explicit schemes and try to gain the benefits of both.

The Crank-Nicolson scheme is a well-known numerical scheme. It is 0{h?) and 

stable, and is found by taking an average of both the implicit and explicit schemes:

+ 1
2 Ax

1 ( \  1 -  2u] +

2 V ( A ^ )2

,n+l ,n+l

+

(A/l)2

2 Ax i>r  ( r r + r i ) = o

(5.22)

Rearranging,

2 { Ax y

e ] At

4 Ax 

o‘ A('

“ 3 - 1  + 1 ( A i ) 2  2

b A t \
2 (Ax)2 4 Ax

u + I ---- ------‘ ’ (Ax)2

e” At  a” At
J  I J

2 (Ax)2 4 Ax
j . n + l
“j+1

e^At  < A A  „
 2__________i_ _i______1

2 (Ax) 2 ^ A Ax J ^+1' 

(5.23)

For the Crank-Nicolson scheme, using upstream weighting does not guarantee a 

positive coefficient discretisation, as there is also a further restriction on the timestep 

that must be satisfied. However, Rannacher sm oothing [33] — where two implicit 

steps are applied before Crank-Nicolson timestepping is used -  usually damps out 

any initial spurious oscillations while maintaining 0{h?') convergence.

5.4.3 The F itted  D uffy Schem e

Daniel J. Duffy in his doctoral thesis [11] developed a scheme for this type of problem 

that would be uniformly convergent. The scheme works by replacing the coefficient
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of diffusion with a fitting factor, which is defined as follows:

Ax (  a” Ax .
=  (5.24)

Note that this is a distinct quantity from the volatihty of the underlying, and is an 

unfortunate clash of notation, but confusion can be avoided by noting that the fitting 

factor will also have a superscript and subscript, and the volatility will not.

Thus, the Fitted Duffy Scheme is as follows:

-  2 u

and rearranging,

_J ^ __ 1 + I _/,"+! _  2  ̂ -  J —
(Ax)2 2Ax ] ^  I (Ax)2 At I ^

+ (5-26)\ (Ax)2 2Ax / •̂ +1 A t  ̂  ̂ ’

Note that as volatility gets smaller, cr —»■ 0, the discretisation of the in the 

Fitted Duffy scheme degenerates to upstream differencing.

5.4.4 The F itted Crank-Nicolson Scheme

Since the Crank-Nicolson scheme has problems with these ’numerical’ oscillations, we 

decided to try doing something equivalent for it. In the fitted Crank-Nicolson, the 

coefficient of diffusion, e, is again replaced with this fitting factor, cr” and the scheme
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is developed accordingly.

) + - r '
1 1 + u]ij \ 1 -  2u]+ u
2 I ( A x ) 2  /  2 V ( A x ) 2

, n + l  I „,n+l n
'j-1

+ a f> 1 I u]t! -
2 Ax

1 i  -  ^ - 1

and rearranging,

a'^At a)A t ,
2 (Ax)2 4 Ax

2 (Ax)^ 4 Ax

2 Ax y

<t” A( b At
(Ax)2 2

a^At bAt^
(Ax)2 2 y

-  >>T' 15« r ‘ + 5«?) =  0,

(5.27)

u y +
(7? A t a? Af 

+2 (Ax)2 4 Ax
un + l
•j'+l

cr̂  A t ah A t , , . ,,__     , _ ,    ,
'  '  ' « ^ i +  ) « ? + (  + ^  U " ̂ ' V2(Ax)2 4 A x J

(5.28)

5.4.5 The Van Leer Flux-Lim iter

The Van Leer scheme is a slightly more complex scheme, first used to solve options 

by Zvan et al. [43]. It is non-linear, making it more difficult to implement.

A finite volume approach is taken, with the Black-Scholes equation Eq. (1.14) 

being rewritten in the form

y n + l  _ y n  
I______

At
(1 -  0 )F l+ l -  (1 -  «)F”+,‘ + (1 -  e) f ,n + l (5.29)

where

6 = temporal weighting (0 < 0 < 1),

* 2

f i

= flux entering cell i at interface * ~ 2 ’

= flux leaving cell i at interface i +  - ,
2

= source/sink term. (5.30)
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In particular,

■2 ASi \ 2 A 5 . 1 ̂ 2
1 (  1

‘V ;
/ r *  =  (->-)Vr+‘. (5.31)

The above scheme is generalised for a non-uniform mesh.

Matters are simplified for a uniform mesh, since bSi is a constant, and different 

schemes can be constructed by choosing different assumptions about how the value 

of the convective terms V,.! and Vi, are calculated. A central weighting scheme,2 5

V ;ri' =  5 « « '  +  V"+'). (5 32)

gives us the familiar Crank-Nicolson for 0 and the fully implicit scheme for 9 =  

1 .

The Van Leer approach is slightly more complicated, instead of taking the mid­

point of the line-segment, it calculates a value depending on the gradient of the 

solution at that mesh-point. This will then make the scheme Total Variation Dimin­

ishing (TVD), which prevents oscillations. The formula used is:

C i ‘ = 5 (C l) -  K * ') -  (5-33)2 ^ 2

The direction of upstream is determined by the sign of the rS  term, and since 

this must always be negative, K+|up Vi+i. Vi+idown Vi.

In Eq. (5.33), the value of q is determined by
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and

This scheme is non-linear, and so a hnearised approximation is required for its 

implementation. This is done by calculating a starting (p using the values of V  from 

the previous time-step.

This value of 0 is then used to calculate a new V. This new V  is then used to 

re-calculate a better approximation to 0, which in turn produces a better V, and 

so on until the value of the calculated 0 stays sufficiently constant. The value of V 

taken from this final 4> is then taken to be the value used.

It is immediately apparent that this means that the Van Leer scheme may take 

a significantly longer time to execute due to the required re-iterations at each time- 

step. In practice however, this is not necessary, as the first approximation (using the 

values obtained from the previous timestep) gives sufficiently accurate answers that 

the convergence iterations are not required, greatly enhancing the efficiency of the 

scheme.

5.5 Analysis of the Schem es for European Options

A full scaling analysis was performed for all the schemes, using uniform mesh-sizes 

of 100, 200, 400, 800 and 1600 meshpoints in the 5 —direction. 50 steps in the time 

direction were used initially.

Two factors were important in the analysis of these schemes, speed and accuracy.

The speed of a scheme was measured by timing its execution for each scheme 

using the internal timing mechanism of the computer architecture. This resulted in 

a time which was given in seconds, which is considerably less than the actual time 

require to execute the software, as it does not take into account such factors as file 

I/O and software multitasking. However, since all that is counted is the actual time 

the software was using system resources, this has the advantage that it is an excellent 

method of comparing relative values of the timings for the different schemes. Ambient 

factors such as the load and number of users on the system are removed by default.
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Thus, although the values obtained may be of no use for absolute timings of the 

scheme, they are very good for calculating relative values of the speed of the schemes.

5.5.1 Error A nalysis

Comparing the accuracy of the schemes was somewhat more involved.

The Black-Scholes equation is solvable analytically for European options under 

the conditions that the interest-rate and volatility are fixed and constant over the 

lifetime of the option. Under these (admittedly restrictive) conditions, the calculation 

of the option price is straight-forward and computationally inexpensive. Thus, the 

solutions generated by the four different schemes were compared to the exact solution, 

and a simple error-calculation routine was applied to allow quantitative analysis to 

be performed.

Calculating the Average Norm

The error routine used to calculate an error value for each scheme was:

f „ d S d W l W { S , t )  '

where

iy(5 , t) is a weighting function over the solution domain,

Unum is the solution generated by the numerical scheme, and

Uex is the exact solution.

Q is the domain over which the error analysis is performed.

The inclusion of the weighting function, W{S, t )  in Eq. (5.36) also gave the 

flexibility of performing a local analysis of the solution around specific areas of the 

solution domain, as will be seen later.

The above error analysis was performed on both the solution of the Black-Scholes 

equation, and the sensitivities of these solutions. Cross-sections of the full 2D surface
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were also taken to provide a visual aid to the accuracy of the schemes.

Calculating the Meix Norm

Maximum norms are also very insightful for calculating errors for solution schemes 

to singly-perturbed problems. The maximum norm is simply

(5.37)

where w" is the numerical solution at the mesh-point {n,j) and C/" is the exact 

solution at the mesh-pooint {n,j)

For the purposes of this discussion, one set of parameters was used to calculate 

the solution. The Black-Scholes code developed required five parameters to specify 

the problem. These five parameters were T, the time to expiry; K,  the strike price; 

'S'tnax, the maximum stock value used (typically set to be \QK, ten times the strike 

price); cr, the volatility of the underlying asset; and r, the risk-free interest rate.

The parameter values where

T = 1.

K  = 1,

max 10,

n 0.01,

r 15%

This discussion is limited to vanilla European call options. Put options are almost 

identical mathematically, and no exact solution exists for the American options, mak­

ing it more difficult to perform an accuracy analysis.

5.5.2 Com parison o f th e T im ings

It is immediately apparent from Table 5.1 that the quadrupling of the number of 

mesh points leads to an approximate ten-fold increase in the execution time of the

|ii|| =  sup \u - 
xeci

c/;i
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Scheme 500x500 1000x1000
Fully ImpHcit 
Fitted Duffy 
Crank-Nicolson 
Fitted Crank-Nicolson 
Van-Leer Flux Limiter

1.750000 7.210938 
2.281250 9.539062 
1.851562 7.632812 
2.406250 10.015625 
3.320312 13.250000

Table 5.1: Execution Times for the Numerical Schemes

Scheme Ratio
Fully Imphcit 
Crank-Nicolson 
Fitted Duffy 
Fitted Crank-Nicolson 
Van-Leer Flux Limiter

1.00
1.06
1.31
1.38
1.87

Table 5.2: Execution Time Ratios for the Numerical Schemes

code. On both meshes, the Fully Implicit method is the quickest, followed closely by 

the Crank-Nicolson method, with a big jump up to the fitted Duffy method. The 

Van Leer flux-limiting method is the slowest.

The execution times of the non-fitted schemes are roughly in the same proportion 

over the two meshes, as are the execution times for the two fitted schemes.

Table 5.2 gives an estimate of the execution times of the four discretisation 

schemes. The execution times for the two mesh-sizes was measured and averaged 

and compared to the corresponding time for the Fully Implicit scheme. This number 

is the ratio of those two timings. Thus, we have a measure of the relative performance 

of the schemes against the Fully Implicit.

5.5.3 Comparison of the Accuracy of the Schemes

The maximum norm is much more insightful for an error-analysis of singly-perturbed 

problems, the discussion will commence with this metric.
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Matx-Norm Analysis

Tables 5.3 - 5.6 show the error tables obtained for the 1600 x 1600 mesh-size, with 

an error calculation performed for the Call option price and Greeks.

It is readily seen from these tables that the Van-Leer flux limiter is the best 

performing scheme in terms of the Greeks, producing errors which are sometimes an 

order of magnitude lower than those produced by the other schemes.

Error-Scaling Analysis

A scaling analysis was also performed using all five mesh-sizes. The analysis was 

performed by taking the error measure of each scheme (measured against the data 

found from the exact solution), and plotting a graph of the log of the error against 

the step size of the mesh (i.e. the graph was In Error vs ln5x). The slope of this will 

give an approximation of the order of convergence for the errors.

The expected result is a straight line (showing that the scheme is 0(/i") for some 

n, which will be the slope of the line in the graph).

The results obtained are shown in Figure 5-3. The lines shown are connecting the 

datapoints, and no fitting has been done on the data.

Calculating the scaling of errors for the Greeks is much more difficult since the 

Greeks are approximated by the finite difference approximations of the solutions. We 

would expect the Gamma to be particularly bad in this regard.

The results for the scaling of the Greeks is shown in Figs 5-4, 5-5, and 5-6.

As can be seen in Fig 5-3, a logscale plot of the errors against stepsize for each 

discretization scheme are roughly linear. The straightest one is the implicit scheme, 

and this also gives the best errors, as its scaUng line is the lowest on the graph.

The Van Leer is also roughly Unear (allowing for a small amount of noise) and the 

other schemes are slightly curved, showing that rate of increase in error slows down 

as the mesh gets coarser.

The error scaling of the Greeks was better than I had expected. While not dis­

playing a linear relationship under a logscale, in most instances they exhibit the trend 

of decreasing the error as the stepsize gets smaller.
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T

Exact Im p Duff CN F ittC N VanLeer
Exact — 0.002 0.009 0.002 0.009 0.001
Im p 0.002 — 0.008 0.000 0.008 0.002
Duff 0.009 0.008 — 0.008 0.000 0.009
CN 0.002 0.000 0.008 — 0.008 0.002
F ittC N 0.009 0.008 0.000 0.008 — 0.008
VanLeer 0.001 0.002 0.009 0.002 0.008 —

: European call option price errors for mesh-size 1600 x 1600 wit
= 0.01 and r = 15% using the Maximum Norm metric

Exact Im p Duff CN F ittC N VanLeer
Exact — 0.198 0.282 0.199 0.281 0.062
Im p 0.198 — 0.309 0.013 0.307 0.186
Duff 0.282 0.309 — 0.324 0.002 0.267
CN 0.199 0.013 0.324 — 0.320 0.188
F ittC N 0.281 0.307 0.002 0.320 — 0.265
VanLeer 0.062 0.186 0.267 0.188 0.265 —

1 ,

Table 5.4: European call option Delta errors for mesh-size 1600 x 1600 with K  = 1, 
T = l, (j = 0.01 and r = 15% using the Maximum Norm metric

Exact Im p Duff CN F ittC N VanLeer
Exact — 77.974 61.739 78.230 61.326 40.398
Im p 77.974 — 59.111 1.466 59.086 47.411
Duff 61.739 59.111 — 59.697 0.542 38.329
CN 78.230 1.466 59.697 — 59.672 48.023
F ittC N 61.326 59.086 0.542 59.672 — 38.071
VanLeer 40.398 47.411 38.329 48.023 38.071 —

Table 5.5: European call option Gamma errors for mesh-size 1600 x 1600 with K  = 1, 
T  = 1, a = 0.01 and r = 15% using the Maximum Norm metric

Exact Im p Duff CN F ittC N VanLeer
Exact — 0.072 0.131 0.072 0.131 0.069
Im p 0.072 — 0.059 0.003 0.059 0.026
Duff 0.131 0.059 — 0.059 0.003 0.062
CN 0.072 0.003 0.059 — 0.059 0.028
F ittC N 0.131 0.059 0.003 0.059 — 0.062
VanLeer 0.069 0.026 0.062 0.028 0.062 —

Table 5.6: European call option Theta errors for mesh-size 1600 x 1600 with K  = 1, 
T  = 1, cr = 0.01 and r = 15% using the Maximum Norm metric
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Figure 5-3: Scaling Analysis of the Price of a European call option with K  — 1, 
r =  15%, a =  0.01 and 50 timesteps {St =  0.02) using the Maximum Norm metric
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Figure 5-4: Scaling Analysis of the Delta of a European call option with K  = 1, 
r = 15%, a = 0.01 and 50 timesteps {5t — 0.02) using the Maximum Norm metric
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Figure 5-5: Scaling Analysis of the Gamma of a European call option with K  = I, 
r = 15%, a = 0.01 and 50 timesteps {St =  0.02) using the Maximum Norm metric
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Figure 5-6: Scaling Analysis of the Theta of a European call option with K  — 1, 
r =  15%, a =  0.01 and 50 timesteps {5t =  0.02) using the Maximum Norm metric
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It is possible that the high value for the timestep could distort these error calcu­

lations, and so to check this, the calculation was also performed for 1000 steps in the 

time direction. Another scaling analysis was performed, with every other parameter 

held unchanged.

The scaling of the errors are shown in Figs. 5-7, 5-8, 5-9, 5-10.

These graphs are very similar to those with 50 timesteps (Figs 5-3 - 5-6) showing 

that the errors due to the stockstep have a greater influence on the total error than 

those due to the timestep size.

Similar patterns emerge as for the 50 timestep case, although the error scaling 

for the Greeks is more unpredictable with sharp drops in errors despite an increase 

in stepsize.

Again, the errors for the option price scaling in a approximately linear fashion 

with the stepsize, and again the Implicit scheme has the lowest errors for a particular 

stepsize.
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Figure 5-7: Scaling Analysis of the Price of a European call option with K  = 1, 
r = 15%, cr =  0.01 and 1000 timesteps {5t = 0.001) using the Maximum Norm metric
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Figure 5-8: Scaling Analysis of the Delta of a European call option with K  = 1, 
r = 15%, a =  0.01 and 1000 timesteps {5t =  0.001) using the Maximum Norm metric
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9; Scaling Analysis of the Gamma of a European call option with /C =  1, 
o =  0.01 and 1000 timesteps {5t =  0.001) using the Maximum Norm metric
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Figure 5-10: Scaling Analysis of the Theta of a European call option with K  = \, 
r =  15%, cr =  0.01 and 1000 timesteps {5t = 0.001) using the Maximum Norm metric
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5.5.4 Summary

Looking at Tables 5.3 - 5.6, the errors calculated for the fitted Crank-Nicolson scheme 

are the largest for the Price, the Delta and the Theta, but the difference is only 

marginal. They are also quite large for the Gamma.

Figs. 5-11 -  5-14 shows a plot of the cross-sections of the price. Delta, Gamma 

and Theta taken at T  — i =  0.1.

The oscillations are shown to be especially bad for the Gamma, but are also very 

obvious with the Delta and Theta. The two fitted methods, however, do not contain 

any oscillations. This is as expected, since they were designed to prevent to spurious 

oscillations.
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Figure 5-11: Plots of the European call option price, V  around the money. The 
parameters are K  =  1, r =  15%, cr =  0.01, T  =  1, SS =  0.00625, St =  0.000625
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Figure 5-12: Plots of European call Delta, A, around the money. The parameters 
are K  =  l , r  =  15%, cr =  0.01, T  =  1, SS =  0.00625, St =  0.000625
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Cross-section data for European Call Gamma: TImestep 160 of 1600
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Figure 5-13: Plots of European call Gamma, F, around the money. The parameters 
are K  =  l , r  =  15%, a =  0.01, T  =  1, 5S =  0.00625, 5t =  0.000625
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Figure 5-14: Plots of European call Theta, 0 , around the money. The parameters 
are K  =  l , r  =  15%, a  =  0.01, T =  1, 55 =  0.00625, 5t =  0.000625
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5.6 A nalysis of the Schemes for Am erican Options

The only difference between the American and European options is the fact that 

American options can be exercised at any time up to the expiry date. European 

options may only be exercised at the time of expiry.

This added complexity to the problem translates mathematically into a sub-region 

of the solution domain where early exercise is optimal. This region is not fixed, and 

is dependent on the parameters of the problem, as well as the value of the underlying 

and the time to expiry.

Thus, we have a free boundary which moves as time progresses. This free bound­

ary has its own conditions (known as free b o u n d a ry  conditions), which the so­

lution must also satisfy. It is the added complication of this free boundary which 

has prevented the American option pricing problem from being solved analytically, 

although approximate analytic solutions do exist.

When solving the American option pricing problem numerically, it is actually quite 

easy to account for the free boundary, creating only a small increase in execution time.

At each time step, the option price at each mesh-point is calculated, and is then 

compared to the payoff of the option at that time. If the option price is lower than 

the instantaneous payoff, then the option value is reset to be equal to this payoff. 

This must be done to avoid arbitrage opportunities, since if this were not done, it 

would be possible to buy the option and the underlying and immediately exercise the 

option to make an immediate risk-free profit. Thus, the value of the option in this 

case must be equal to the payoff.

Thus, the region in which this value reset occurs is the region of optimal exercise 

and the free boundary can easily be tracked by just taking note of the mesh-points 

where the change-over from taking the calculated value to the payoff value occurs.

In terms of coding, this simply requires the addition of a value-checking statement, 

which decides whether or not to reset the value of the put option. Tracking the free 

boundary is somewhat more involved but is also quite simple to implement.

Fig. 5-15 shows a comparison between the prices of a European and American 

Put for the same parameters as before, with the cross-section taken at the same
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Figure 5-15: Comparison of European vs American Put Prices

time-step, T  — f =  0.1. It is quite easy to see that the value of the American Put is 

higher than that of the European, and this value is that of the payoff of the option, 

suggesting that it is optimal to exercise the option at this time-step, if the option has 

not already been exercised.

The majority of this error analysis used a parameter configuration similar to those 

used in Chapter 6. We restrict the timesteps to 50 timesteps per year, and we use a 

constant interest rate of 6%.

5.6.1 Error analysis

Estimating the errors for the schemes for the American option solutions is not as 

simple as it is for European options, since there is no exact solution to use as a 

benchmark.
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Scheme Comparison Analysis

One method was to use each scheme as the benchmark, and compare all the other 

schemes to it. Again, both the Average and Max Norm errors were used, and the 

results of this are tabulated in Tables 5.7 -  5.38

One thing is immediately apparent from these tables: there is very close agreement 

between the Implicit and Duffy schemes, and also between the Crank-Nicolson, Fitted 

Crank-Nicolson and VanLeer schemes.

The solution errors are very small between schemes of these groups and much 

larger between schemes in the other group. To cite an example, using the Average 

error calculation and the Implicit Scheme as a basis, the error for the Duffy scheme 

is 0(10“®), yet is 0(10“ )̂ for other schemes.

Using the Max norm, these differences are even more pronounced: again using 

the Implicit scheme as the basis, the error in the Duffy scheme is 0(10“ ®̂), compared 

to 0(10''^) for the others.

Similarly, using the Crank-Nicolson scheme as the basis, we get similar results: 

the Implicit and Duffy schemes have errors of 0(10“ )̂ and 0(10“ )̂ for the Average 

and Max Norm errors, compared to errors in the Fitted Crank-Nicolson and VanLeer 

schemes of 0(10"®) and 0{h~^^) respectively

The reason for this is pretty straightforward: the Implicit and Duffy schemes are 

0{h) schemes, with the other three being 0{h?), so it is obvious there will be more 

agreement intra-group than inter-group.
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Im p Duff CN F ittC N VanLeer
Im p — 5.19e-08 4.09e-03 4.09e-03 4.09e-03
Duff 5.19e-08 — 4.09e-03 4.09e-03 4.09e-03
CN 4.09e-03 4.09e-03 — 5.01e-08 6.49e-07
F ittC N 4.09e-03 4.09e-03 5.01e-08 — 6.24e-07
VanLeer 4.09e-03 4.09e-03 6.49e-07 6.24e-07 —

Table 5.7: Error table for American Put Price, V, with K  = AO, T  =  1, r  = 6%, 
a = 0.2 using 50 timesteps per year {St = 0.02) and the Avg method

Im p Duff CN F ittC N VanLeer
Im p — 3.34e-07 1.15e-02 1.15e-02 1.15e-02
Duff 3.34e-07 — 1.15e-02 1.15e-02 1.15e-02
CN 1.15e-02 1.15e-02 — 3.23e-07 1.50e-05
F ittC N 1.15e-02 1.15e-02 3.23e-07 — 1.47e-05
VanLeer 1.15e-02 1.15e-02 1.50e-05 1.47e-05 —

Table 5.8: Error table for American Put Delta, A, with K  = 40, T =  1, r  = 6%, 
a = 0.2 using 50 timesteps per year {5t — 0.02) and the Avg method

Im p Duff CN F ittC N VanLeer
Im p — 3.17e-05 5.34e-01 5.34e-01 5.35e-01
Duff 3.17e-05 — 5.34e-01 5.34e-01 5.35e-01
CN 5.34e-01 5.34e-01 — 3.13e-05 6.88e-04
F ittC N 5.34e-01 5.34e-01 3.13e-05 — 6.72e-04
VanLeer 5.35e-01 5.35e-01 6.88e-04 6.72e-04 —

Table 5.9: Error table for American Put Gamma, F, with K  = AQ, T  = 1, r = 6%, 
a =  0.2 using 50 timesteps per year {5t = 0.02) and the Avg method

Im p Duff CN F ittC N VanLeer
Im p — 1.21e-06 2.44e-01 2.44e-01 2.44e-01
Duff 1.21e-06 — 2.44e-01 2.44e-01 2.44e-01
CN 2.44e-01 2.44e-01 — 1.25e-06 3.25e-05
F ittC N 2.44e-01 2.44e-01 1.25e-06 — 3.12e-05
VanLeer 2.44e-01 2.44e-01 3.25e-05 3.12e-05 —

Table 5.10: Error table for American Put Theta, 0 , with /C =  40, T = 1, r  = 6%, 
cr = 0.2 using 50 timesteps per year = 0.02) and the Avg method
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Im p Duff CN F ittC N VanLeer
Im p — 4.07e-16 1.24e-07 1.24e-07 1.24e-07
Duff 4.07e-16 — 1.24e-07 1.24e-07 1.24e-07
CN 1.24e-07 1.24e-07 — 4.14e-16 4.39e-14
F ittC N 1.24e-07 1.24e-07 4.14e-16 — 3.97e-14
VanLeer 1.24e-07 1.24e-07 4.39e-14 3.97e-14 —

Table 5.11: Error table for American Put Price, V, with K  = 40, T  = 1, r = 6%, 
a = 0.2 using 50 timesteps per year {5t = 0.02) and the Max method

Im p Duff CN F ittC N VanLeer
Im p — 2.02e-ll 2.94e-04 2.94e-04 2.95e-04
Duff 2.02e-ll — 2.94e-04 2.94e-04 2.95e-04
CN 2.94e-04 2.94e-04 — 2.06e-ll 2.43e-10
F ittC N 2.94e-04 2.94e-04 2.06e-ll — 2.46e-10
VanLeer 2.94e-04 2.94e-04 2.43e-10 2.46e-10 —

Table 5.12: Error table for American Put Delta, A, with K  = 40, T  = 1, r = 6%, 
a = 0.2 using 50 timesteps per year {5t =  0.02) and the Max method

Im p Duff CN F ittC N VanLeer
Im p — 2.48e-10 5.00e-04 5.00e-04 5.01e-04
Duff 2.48e-10 — 5.00e-04 5.00e-04 5.01e-04
CN 5.00e-04 5.00e-04 — 2.51e-10 1.25e-09
F ittC N 5.00e-04 5.00e-04 2.51e-10 — 1.27e-09
VanLeer 5.01e-04 5.01e-04 1.25e-09 1.27e-09 —

Table 5.13: Error table for American Put Gamma, F, with K  = 40, T  = 1, r = 6%, 
a — 0.2 using 50 timesteps per year =  0.02) and the Ma:x method

Im p Duff CN F ittC N VanLeer
Im p — 4.91e-10 4.96e-02 4.96e-02 4.96e-02
Duff 4.91e-10 — 4.96e-02 4.96e-02 4.96e-02
CN 5.63e-02 5.63e-02 — 4.39e-10 9.22e-09
F ittC N 5.63e-02 5.63e-02 4.39e-10 — 9.27e-09
VanLeer 5.63e-02 5.63e-02 9.22e-09 9.27e-09 —

Table 5.14: Error table for American Put Theta, 0 , with K  = 40, T = 1, r  = 6%, 
cr = 0.2 using 50 timesteps per year =  0.02) and the Max method
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Im p Duff CN F ittC N VanLeer
Im p — 3.22e-08 8.24e-03 8.24e-03 8.24e-03
Duff 3.22e-08 — 8.24e-03 8.24e-03 8.24e-03
CN 8.24e-03 8.24e-03 — 3.21e-08 1.75e-07
F ittC N 8.24e-03 8.24e-03 3.21e-08 — 1.75e-07
VanLeer 8.24e-03 8.24e-03 1.75e-07 1.75e-07 —

Table 5.15: Error table for American Put Price, V, with K  = 40, T  = 1, r = 6%, 
a =  0.4 using 50 timesteps per year {5t = 0.02) and the Avg method

Im p Duff CN F ittC N VanLeer
Im p — 3.56e-07 1.21e-02 1.21e-02 1.21e-02
Duff 3.56e-07 — 1.21e-02 1.21e-02 1.21e-02
CN 1.21e-02 1.21e-02 — 3.31e-07 4.08e-06
F ittC N 1.21e-02 1.21e-02 3.31e-07 — 4.08e-06
VanLeer 1.21e-02 1.21e-02 4.08e-06 4.08e-06 —

Table 5.16: Error table for American Put Delta, A, with K  = 40, T  — 1, r — 6%, 
a =  0.4 using 50 timesteps per year {5t = 0.02) and the Avg method

Im p Duff CN F ittC N VanLeer
Im p — 3.01e-05 5.48e-01 5.48e-01 5.49e-01
Duff 3.01e-05 — 5.48e-01 5.48e-01 5.49e-01
CN 5.48e-01 5.48e-01 — 3.12e-05 2.03e-04
F ittC N 5.486-01 5.48e-01 3.12e-05 — 2.03e-04
VanLeer 5.49e-01 5.49e-01 2.03e-04 2.03e-04 —

Table 5.17: Error table for American Put Gamma, F, with =  40, T = 1, r = 6%, 
a = 0.4 using 50 timesteps per year {5t — 0.02) and the Avg method

Im p Duff CN F ittC N VanLeer
Im p — 1.20e-06 4.94e-01 4.94e-01 4.94e-01
Duff 1.20e-06 — 4.94e-01 4.94e-01 4.94e-01
CN 4.94e-01 4.94e-01 — 1.27e-06 8.71e-06
F ittC N 4.94e-01 4.94e-01 1.27e-06 — 8.71e-06
VanLeer 4.94e-01 4.94e-01 8.71e-06 8.71e-06 —

Table 5.18: Error table for American Put Theta, 0 , with K  = AO, T  = 1, r = 6%, 
a = 0.4 using 50 timesteps per year {5t = 0.02) and the Avg method
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Im p Duff CN F ittC N VanLeer
Im p — 1.20e-16 8.37e-07 8.37e-07 8.37e-07
Duff 1.20e-16 — 8.37e-07 8.37e-07 8.37e-07
CN 8.37e-07 8.37e-07 — 1.22e-16 8.20e-15
F ittC N 8.37e-07 8.37e-07 1.22e-16 — 7.95e-15
VanLeer 8.37e-07 8.37e-07 8.20e-15 7.95e-15 —

Table 5.19: Error table for American Put Price, V, with K  = 40, T = 1, r  = 6%, 
a — 0.4 using 50 timesteps per year {6t = 0.02) and the Max method

Im p Duff CN F ittC N VanLeer
Im p — 1.63e-ll 7.48e-04 7.48e-04 7.48e-04
Duff 1.63e-ll — 7.48e-04 7.48e-04 7.48e-04
CN 7.48e-04 7.48e-04 — 1.67e-ll 9.10e-ll
F ittC N 7.48e-04 7.48e-04 1.67e-ll — 9.12e-ll
VanLeer 7.48e-04 7.48e-04 9.10e-ll 9.12e-ll —

Table 5.20: Error table for American Put Delta, A, with K  =  40, T =  1, r  = 6%, 
a = 0.4 using 50 timesteps per year {St = 0.02) and the Max method

Im p Duff CN F ittC N VanLeer
Im p — 1.87e-10 5.84e-04 5.84e-04 5.84e-04
Duff 1.87e-10 — 5.84e-04 5.84e-04 5.84e-04
CN 5.84e-04 5.84e-04 — 1.92e-10 8.94e-10
F ittC N 5.84e-04 5.84e-04 1.92e-10 — 8.98e-10
VanLeer 5.84e-04 5.84e-04 8.94e-10 8.98e-10 —

Table 5.21: Error table for American Put Gamma, F, with K  = 40, T  = 1, r = 6%, 
a =  0.4 using 50 timesteps per year {5t =  0.02) and the Max method

Im p Duff CN F ittC N VanLeer
Im p — 3.18e-ll 3.43e-02 3.43e-02 3.43e-02
Duff 3.18e-ll — 3.43e-02 3.43e-02 3.43e-02
CN 3.75e-02 3.75e-02 — 2.92e-ll 2.25e-10
F ittC N 3.75e-02 3.75e-02 2.92e-ll — 2.25e-10
VanLeer 3.75e-02 3.75e-02 2.25e-10 2.25e-10 —

Table 5.22: Error table for American Put Theta, 0 , with K  =  40, T =  1, r  = 6%, 
cr = 0.4 using 50 timesteps per year {St =  0.02) and the Max method
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Im p DufT CN F ittC N VanLeer
Im p — 5.19e-08 4.09e-03 4.09e-03 4.09e-03
Duff 5.19e-08 — 4.09e-03 4.09e-03 4.09e-03
CN 4.09e-03 4.09e-03 — 5.01e-08 6.49e-07
F ittC N 4.09e-03 4.09e-03 5.01e-08 — 6.24e-07
VanLeer 4.09e-03 4.09e-03 6.49e-07 6.24e-07 —

Table 5.23: Error table for American Put Price, V , with K  =  40, T  = 2, r = 6%, 
a = 0.2 using 50 timesteps per year {5t = 0.02) and the Avg method

Im p Duff CN F ittC N VanLeer
Im p — 3.34C-07 1.15e-02 1.15e-02 1.15e-02
Duff 3.34e-07 — 1.15e-02 1.15e-02 1.15e-02
CN 1.15e-02 1.15e-02 — 6.94e-07 1.50e-05
F ittC N 1.15e-02 1.15e-02 6.94e-07 — 1.47e-05
VanLeer 1.15e-02 1.15e-02 1.50e-05 1.47e-05 —

Table 5.24: Error table for American Put Delta, A, with X  = 40, T =  2, r  = 6%, 
a = 0.2 using 50 timesteps per year = 0.02) and the Avg method

Im p Duff CN F ittC N VanLeer
Im p — 3.17e-05 5.34e-01 5.34e-01 5.35e-01
Duff 3.17e-05 — 5.34e-01 5.34e-01 5.35e-01
CN 5.34e-01 5.34e-01 — 5.23e-05 6.88e-04
F ittC N 5.34e-01 5.34e-01 5.23e-05 — 6.72e-04
VanLeer 5.35e-01 5.35e-01 6.88e-04 6.72e-04 —

Table 5.25: Error table for American Put Gamma, P, with K  =  40, T =  2, r = 6%, 
a = 0.2 using 50 timesteps per year {5t — 0.02) and the Avg method

Im p Duff CN F ittC N VanLeer
Im p — 1.21e-06 2.44e-01 2.44e-01 2.44e-01
DufT 1.21e-06 — 2.44e-01 2.44e-01 2.44e-01
CN 2.44e-01 2.44e-01 — 2.85e-06 3.25e-05
F ittC N 2.44e-01 2.44e-01 2.85e-06 — 3.12e-05
VanLeer 2.44e-01 2.44e-01 3.25e-05 3.12e-05 —

Table 5.26: Error table for American Put Theta, 0 , with K  = 40, T =  2, r =  6%, 
a = 0.2 using 50 timesteps per year {5t = 0.02) and the Avg method
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Im p Duff CN F ittC N VanLeer
Im p — 8.01e-16 1.06e-07 1.06e-07 1.06e-07
Duff S.Ole-16 — 1.06e-07 1.06e-07 1.06e-07
CN 1.06e-07 1.06e-07 — 8.10e-16 6.20e-14
F ittC N 1.06e-07 1.06e-07 8.10e-16 — 5.26e-14
VanLeer 1.06e-07 1.06e-07 6.20e-14 5.26e-14 —

Table 5.27: Error table for American Put Price, V, with K  = 40, T  =  2, r = 6%, 
a = 0.2 using 50 timesteps per year {6t = 0.02) and the Max method

Im p Duff CN F ittC N VanLeer
Im p — 1.73e-ll 1.12e-04 1.12e-04 1.12e-04
Duff 1.73e-ll — 1.12e-04 1.12e-04 1.12e-04
CN 1.12e-04 1.12e-04 — 1.75e-ll 1.28e-10
F ittC N 1.12e-04 1.12e-04 1.75e-ll — 1.30e-10
VanLeer 1.12e-04 1.12e-04 1.28e-10 1.30e-10 —

Table 5.28: Error table for American Put Delta, A, with K  =  40, T =  2, r  = 6%, 
a — 0.2 using 50 timesteps per year = 0.02) and the Max method

Im p Duff CN F ittC N VanLeer
Im p — 9.29e-ll l.lle-04 l.lle-04 l.lle-04
Duff 9.29e-ll — l.lle-04 l.lle-04 l.lle-04
CN l.lle-04 l.lle-04 — 9.48e-ll 3.52e-10
F ittC N l.lle-04 l.lle-04 9.48e-ll — 3.60e-10
VanLeer l.lle-04 l.lle-04 3.52e-10 3.60e-10 —

Table 5.29: Error table for American Put Gamma, F, with K  =  40, T  — 2, r — 6%, 
a = 0.2 using 50 timesteps per year {5t = 0.02) and the Max method

Im p Duff CN F ittC N VanLeer
Im p — 1.19e-09 4.52e-02 4.52e-02 4.52e-02
Duff 1.19e-09 — 4.52e-02 4.52e-02 4.52e-02
CN 5.05e-02 5.05e-02 — 1.09e-09 1.19e-08
F ittC N 5.05e-02 5.05e-02 1.09e-09 — 1.21e-08
VanLeer 5.05e-02 5.05e-02 1.19e-08 1.21e-08 —

Table 5.30: Error table for American Put Theta, 0 , with K  = AO, T  ~  2, r = 6%, 
a = 0.2 using 50 timesteps per year {5t =  0.02) and the Max method
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Im p Duff CN F ittC N VanLeer
Im p — 3.22e-08 8.24e-03 8.24e-03 8.24e-03
Duff 3.22e-08 — 8.24e-03 8.24e-03 8.24e-03
CN 8.24e-03 8.24e-03 — 3.21e-08 1.75e-07
F ittC N 8.24e-03 8.24e-03 3.21e-08 — 1.75e-07
VanLeer 8.24e-03 8.24e-03 1.75e-07 1.75e-07 —

Table 5.31: Error table for American Put Price, V, with K  = 40, T =  2, r  =  6%, 
a =  0.4 using 50 timesteps per year (St = 0.02) and the Avg method

Im p Duff CN F ittC N VanLeer
Im p — 3.56e-07 1.21e-02 1.21e-02 1.21e-02
Duff 3.56e-07 — 1.21e-02 1.21e-02 1.21e-02
CN 1.21e-02 1.21e-02 — 3.31e-07 4.08e-06
F ittC N 1.21e-02 1.21e-02 3.31e-07 — 4.08e-06
VanLeer 1.21e-02 1.21e-02 4.08e-06 4.08e-06 —

Table 5.32: Error table for American Put Delta, A, with K  — 40, T  =  2, r  =  6%, 
a = 0.4 using 50 timesteps per year {5t =  0.02) and the Avg method

Im p Duff CN F ittC N VanLeer
Im p — 3.01e-05 5.48e-01 5.48e-01 5.49e-01
Duff 3.01e-05 — 5.48e-01 5.48e-01 5.49e-01
CN 5.48e-01 5.48e-01 — 3.12e-05 2.03e-04
F ittC N 5.48e-01 5.48e-01 3.12e-05 — 2.03e-04
VanLeer 5.49e-01 5.49e-01 2.03e-04 2.03e-04 —

Table 5.33: Error table for American Put Gamma, F, with K  = 40, T  = 2, r = 6%, 
a = 0.4 using 50 timesteps per year {6t = 0.02) and the Avg method

Im p Duff CN F ittC N VanLeer
Im p — 1.20e-06 4.94e-01 4.94e-01 4.94e-01
Duff 1.20e-06 — 4.94e-01 4.94e-01 4.94e-01
CN 4.94e-01 4.94e-01 — 1.27e-06 8.71e-06
F ittC N 4.94e-01 4.94e-01 1.27e-06 — 8.71e-06
VanLeer 4.94e-01 4.94e-01 8.71e-06 8.71e-06 —

Table 5.34: Error table for American Put Theta, 0 , with A' =  40 , T =  2 , r  =  6%, 
a = 0.4 using 50 timesteps per year {6t = 0.02) and the Avg method
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Im p Duff CN F ittC N VanLeer
Im p — 2.28e-16 7.25e-07 7.25e-07 7.25e-07
Duff 2.28e-16 — 7.25e-07 7.25e-07 7.25e-07
CN 7.25e-07 7.25e-07 — 2.29e-16 1.22e-14
F ittC N 7.25e-07 7.25e-07 2.29e-16 — 1.15e-14
VanLeer 7.25e-07 7.25e-07 1.22e-14 1.15e-14 —

Table 5.35: Error table for American Put Price, V, with K  =  40, T =  2, r  = 6%, 
a =  0.4 using 50 timesteps per year {St — 0.02) and the Max method

Im p Duff CN F ittC N VanLeer
Im p — 1.84e-ll 3.03e-04 3.03e-04 3.03e-04
Duff 1.84e-ll — 3.03e-04 3.03e-04 3.03e-04
CN 3.02e-04 3.02e-04 — 1.85e-ll 8.02e-ll
F ittC N 3.02e-04 3.02e-04 1.85e-ll — 7.97e-ll
VanLeer 3.03e-04 3.03e-04 8.02e-ll 7.97e-ll —

Table 5.36: Error table for American Put Delta, A, with K  = 40, T  = 2, r = 6%, 
a =  0.4 using 50 timesteps per year {5t = 0.02) and the Max method

Im p Duff CN F ittC N VanLeer
Im p — 9.33e-ll 1.52e-04 1.52e-04 1.52e-04
Duff 9.33e-ll — 1.52e-04 1.52e-04 1.52e-04
CN 1.52e-04 1.52e-04 — 9.37e-ll 3.68e-10
F ittC N 1.52e-04 1.52e-04 9.37e-ll — 3.67e-10
VanLeer 1.52e-04 1.52e-04 3.68e-10 3.67e-10 —

Table 5.37: Error table for American Put Gamma, F, with K  =  40, T =  2, r  = 6%, 
a = 0.4 using 50 timesteps per year {5t =  0.02) and the Max method

Im p Duff CN F ittC N VanLeer
Im p — 9.31e-ll 2.80e-02 2.80e-02 2.80e-02
Duff 9.31e-ll — 2.80e-02 2.80e-02 2.80e-02
CN 3.02e-02 3.02e-02 — 8.61e-ll 4.35e-10
F ittC N 3.02e-02 3.02e-02 8.61e-ll — 4.33e-10
VanLeer 3.02e-02 3.02e-02 4.35e-10 4.33e-10 —

Table 5.38: Error table for American Put Theta, 0 , with /C = 40, T =  2, r = 6%, 
a =  0.4 using 50 timesteps per year [5t =  0.02) and the Max method
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Single Scheme Analysis

Another common numerical analysis method to estimate the errors in these schemes 

is to compare solutions of a scheme using different mesh sizes. Since one solution has 

more datapoints than the other, interpolation is used to enable comparisons at the 

missing points. It is usual to use the Max Norm for this analysis.

Our American option solutions were compared using a fixed timestep of = 0.02 

(or 50 timesteps per year), and 10,000 meshpoints in the S'-direction as our benchmark 

solution.

We also calculated the solutions using 5000, 2500 and 1250 meshpoints in the 

S'-direction and compared them to our benchmark solution of 10000 meshpoints in 

the error analysis.

The results are shown in Tables 5.39 - 5.46. As would be expected from convergent 

discretisation schemes, the errors get smaller as the step size decreases. Again, the 

errors are smallest for the option price, V, and largest for the Gamma, F.
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1250
a =  0.2 

2500 5000 1250
a  =  0.4 

2500 5000
Im p 5.88e-03 2.71e-03 1.39e-03 3.69e-03 1.71e-03 9.60e-04
Duff 5.89e-03 2.72e-03 1.39e-03 3.69e-03 1.71e-03 9.60e-04
CN 3.23e-02 1.41e-02 4.97e-03 3.17e-02 1.41e-02 4.62e-03
F ittC N 3.23e-02 1.41e-02 4.97e-03 3.17e-02 1.41e-02 4.62e-03
V anLeer 3.18e-02 1.40e-02 4.95e-03 3.16e-02 1.40e-02 4.61e-03

Table 5.39: Error table for American Put Price, V, with K  = 40, r = 6% and T  =  1. 
The other parameters are as shown in the table headings. The stock stepsize is 10/A ,̂ 
where N  is the size of the mesh.

a = 0.2 
1250 2500 5000

cr =  0.4 
1250 2500 5000

Im p
Duff
CN
F ittC N
V anLeer

6.22e-03 2.89e-03 1.43e-03 
6.23e-03 2.89e-03 1.43e-03 
3.23e-02 1.41e-02 4.97e-03 
3.23e-02 1.41e-02 4.97e-03 
3.18e-02 1.40e-02 4.95e-03

4.40e-03 2.04e-03 9.95e-04 
4.40e-03 2.04e-03 9.96e-04 
3.17e-02 1.41e-02 4.86e-03 
3.17e-02 1.41e-02 4.86e-03 
3.16e-02 1.40e-02 4.86e-03

Table 5.40: Error table for American Put Price, V, with K  — 40, r =  6% and T  =  2. 
The other parameters are as shown in the table headings. The stock stepsize is 10/A ,̂ 
where N  is the size of the mesh.

1250
(7 =  0.2

2500 5000 1250
a =  0.4 

2500 5000
Im p 3.76e-02 1.75e-01 1.83e-02 2.41e-02 1.75e-01 1.216-02
Duff 3.77e-02 1.75e-01 1.83e-02 2.41e-02 1.75e-01 1.21e-02
CN 4.18e-01 3.64e-01 2.45e-01 4.29e-01 3.69e-01 2.47e-01
F ittC N 4.18e-01 3.64e-01 2.45e-01 4.29e-01 3.69e-01 2.47e-01
V anLeer 4.16e-01 3.63e-01 2.44e-01 4.28e-01 3.69e-01 2.47e-01

Table 5.41: Error table for American Put Delta, A, with K  — 40, r = 6% and T  = 1. 
The other parameters are as shown in the table headings. The stock stepsize is 10/A'’, 
where N  is the size of the mesh.
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a = 0.2 II o

1250 2500 5000 1250 2500 5000
Im p 3.90e-02 1.75e-01 1.89e-02 2.66e-02 1.75e-01 1.37e-02
Duff 3.90e-02 1.75e-01 1.89e-02 2.66e-02 1.75e-01 1.37e-02
CN 4.18e-01 3.64e-01 2.45e-01 4.29e-01 3.69e-01 2.47e-01
F ittC N 4.18e-01 3.64e-01 2.45e-01 4.29e-01 3.69e-01 2.47e-01
VanLeer 4.16e-01 3.63e-01 2.44e-01 4.28e-01 3.69e-01 2.47e-01

Table 5.42: Error table for American Put Delta, A, with /C' =  40, r  =  6%, and 
T = 2. The other parameters are as shown in the table headings. The stock stepsize 
is 10/A ,̂ where N  is the size of the mesh.

a = 0.2 
1250 2500 5000

a =  0.4 
1250 2500 5000

Im p
Duff
CN
F ittC N
VanLeer

1.60e+00 2.19e+00 1.30e+00 
1.60e+00 2.19e+00 1.30e+00 
1.97e+01 1.72e+01 1.17e+01 
1.97e+01 1.72e+01 1.17e+01 
1.97e+01 1.72e+01 1.17e+01

1.05e+00 2.19e+00 8.84e-01 
1.05e+00 2.19e+00 8.84e-01 
1.99e+01 1.72e+01 1.17e+01 
1.99e+01 1.72e+01 1.17e-f01 
1.99e+01 1.72e+01 1.17e+01

Table 5.43: Error table for American Put Gamma, F, with K  =  40, r = 6%, and 
T =  1. The other parameters are as shown in the table headings. The stock stepsize 
is 10/A ,̂ where N  is the size of the mesh.

a = 0.2 
1250 2500 5000

a =  0.4 
1250 2500 5000

Im p
Duff
CN
F ittC N
VanLeer

1.62e+00 2.19e+00 1.31e+00 
1.62e+00 2.19e+00 1.31e+00 
1.97e+01 1.72e+01 1.17e+01 
1.97e+01 1.72e+01 1.17e+01 
1.97e+01 1.72e+01 1.17e+01

1.17e+00 2.19e+00 9.07e-01 
1.17e+00 2.19e+00 9.07e-01 
1.99e+01 1.72e+01 1.17e+01 
1.99e+01 1.72e+01 1.17e+01 
1.99e+01 1.72e+01 1.17e+01

Table 5.44: Error table for American Put Gamma, F, with K  = 40, r = 6%, and 
T  — 2. The other parameters are as shown in the table headings. The stock stepsize 
is 10/A ,̂ where N  is the size of the mesh.
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1250
a =  0.2 

2500 5000 1250
a =  0.4 

2500 5000
Im p 1.38e+00 5.72e-01 1.87e-01 1.32e+00 5.56e-01 1.84e-01
D uff 1.38e+00 5.72e-01 1.87e-01 1.32e+00 5.56e-01 1.84e-01
CN 3.15e+00 1.40e+00 4.96e-01 3.15e+00 1.40e+00 4.62e-01
F ittC N 3.15e+00 1.40e+00 4.96e-01 3.15e+00 1.40e+00 4.62e-01
V anLeer 3.11e+00 1.40e+00 4.94e-01 3.14e+00 1.40e+00 4.61e-01

Table 5.45: Error table for American Put Theta, 0 , with K  =  AQ, r — 6%, and 
T =  1. The other parameters are as shown in the table headings. The stock stepsize 
is 10/A^, where N  is the size of the mesh.

1250
a =  0.2 

2500 5000 1250
a =  0.4 

2500 5000
Im p 1.38e+00 5.72e-01 1.87e-01 1.32e+00 5.56e-01 1.84e-01
D uff 1.38e+00 5.72e-01 1.87e-01 1.32e+00 5.56e-01 1.84e-01
CN 3.15e+00 1.40e+00 4.96e-01 3.15e+00 1.40e+00 4.86e-01
F ittC N 3.15e+00 1.40e+00 4.96e-01 3.15e+00 1.40e+00 4.86e-01
V anLeer 3.11e+00 1.40e+00 4.94e-01 3.14e+00 1.40e+00 4.86e-01

Table 5.46: Error table for American Put Theta, 0 , with K  =  40, r  =  6%, and 
T — 2. The other parameters are as shown in the table headings. The stock stepsize 
is 10/A^, where N  is the size of the mesh.
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The error scales well with step-size, yielding a roughly linear relationship between 

the log of the error and the log of the step-size 5S (see Figure 5-16).

As before, the schemes have split into two groups: the Implicit and Duffy schemes 

in one group and the CN, the Fitted CN and the Van Leer flux-limiting scheme in 

the other.

The slope of the two groups appear to be roughly equal, and this is surprising, 

since the CN, Fitted CN and Van Leer are higher order schemes than the Implicit 

and Duffy schemes.

Also, as in the case for the European options, the error scaling for the Greeks are 

not as well-behaved as for the option price. Again, this is not surprising, and is to 

be expected.

Once again, the graphs form into two groups, one for the CN, Fitted CN and Van 

Leer, and one for the Implicit and Duffy schemes.

The first groups (with the 0{h?) schemes) behave remarkably well for the Greeks. 

The scaling line is almost linear, and bears a similar resemblance to the scaling of 

the prices.

Please note again that the lines are a simple joining of the datapoints, there was 

no regression line or fitting done on the datapoints.
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Figure 5-16: Scaling Analysis of an American Put option Price, V,  with K  = 40, 
T  =  1, cr =  0.2, r =  6%, 50 timesteps per year {St — 0.02) using the Max Norm 
metric
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Figure 5-17: Scaling Analysis of an American Put option Delta, A, with K  = 40, 
T  = 1, a = 0.2, r = 6%, 50 timesteps per year {5t = 0.02) using the Max Norm 
metric
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Figure 5-18: Scaling Analysis of an American Put option Gamma, F, with K  = 40, 
T = 1, (7 =  0.2, r  =  6%, 50 timesteps per year {5t =  0.02) using the Max Norm 
metric
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Figure 5-19: Scaling Analysis of an American Put option Theta, 0 , with K  = 40, 
T = 1, cr = 0.2, r  =  6%, 50 timesteps per year {5t = 0.02) using the Max Norm 
metric
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Analysis o f R esults for American Options w ith Extrem e Param eters

The fitted schemes were designed primarily for situations where the second-order 

equation becomes singly-perturbed, i.e. the coefficient of diffusion becomes very 

small in comparison to the other terms.

A similar comparison of the schemes for the extreme values of r, S' and a that 

were used for the European options was performed. The parameters used were as 

follows:

T = 1,

K  = 1,

max ~ 10,

a = 0.01,

r = 15%.

The error analysis data are shown in Tables 5.47 -  5.50.
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1250 2500 5000
Im p 6.68e-04 3.18e-04 1.12e-04
D uff 6.29e-04 2.70e-04 9.00e-05
CN 6.27e-04 2.87e-04 1.08e-04
F ittC N 6.29e-04 2.70e-04 9.00e-05
V anLeer 6.30e-04 2.71e-04 9.08e-05

Table 5.47: Error table for American Put option Price, V,  with K  = 40, T  =  1, 
r  =  15%, a = 0.01, and 50 timesteps per year {5t =  0.02) using the Max Norm 
metric

1250 2500 5000
Im p 4.47e-01 4.10e-01 2.48e-01
D uff 4.36e-01 3.94e-01 2.50e-01
CN 4.34e-01 3.99e-01 2.48e-01
F ittC N 4.36e-01 3.94e-01 2.50e-01
V anLeer 4.37e-01 3.95e-01 2.50e-01

Table 5.48: Error table for American Put option Delta, A, with K  — 40, T  =  1, 
r = 15%, a = 0.01, and 50 timesteps per year = 0.02) using the Max Norm 
metric

1250 2500 5000
Im p
D uff
CN
F ittC N
V anLeer

7.97e+02 6.99e+02 4.45e+02 
7.99e+02 7.02e+02 4.52e+02 
7.98e+02 6.99e+02 4.44e+02 
8.00e+02 7.03e+02 4.53e+02 
8.19e+02 7.21e+02 4.68e+02

Table 5.49: Error table for American Put option Gamma, F, with K  = 40, T  — 1, 
r = 15%, a = 0.01, and 50 timesteps per year {St =  0.02) using the Max Norm metric

1250 2500 5000
Im p 2.59e-03 l.OOe-02 5.58e-03
D uff 2.78e-03 l.OOe-02 5.00e-03
CN 2.91e-03 l.OOe-02 5.62e-03
F ittC N 2.78e-03 l.OOe-02 5.00e-03
V anLeer 2.74e-03 l.OOe-02 5.00e-03

Table 5.50: Error table for American Put option Theta, 0 , with K  = 40, T  = 1, 
r = 15%, (7 =  0.01, and 50 timesteps per year [5t = 0.02) using the Max Norm metric
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A graph of cross-section of the option price and the Greeks at a single timestep 

are shown in Figs 5-20 -  5-27.

The Crank-Nicolson and Implicit schemes exhibit the numerical oscillations in 

the American option solution also, just Hke for the European option solution. This 

is shown in Figs. 5-20 - 5-23. Once again, the Greeks oscillate signficantly around 

the true value.

This effect disappears with the use of a finer mesh, and this is shown in Figs. 5-24 

- 5-27. In these plots, the oscillations have been completely eliminated, and all the 

schemes closely agree with one another.



5.6 Analysis of the Schemes for American Options 90

0.9

CN
FittCN

V anL eer

0.8

0.7

0.6

0.5

a>
3
<13
>

0.4

0.3

0.2

-0.1
39 39.5 40 40.5 41 41.5 42

S to ck  P rice

Figure 5-20: Plots Around the Money for American Put option Price, V,  with K  =  
40, r  =  1, (7 =  0.01 and r  =  15%, 50 timesteps per year =  0.02), and 1000 point 
mesh {5S =  0.4)
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Figure 5-21: Plots Around the Money for American Put option Delta, A, with K  = 
40, T =  1, (7 =  0.01 and r =  15%, 50 timesteps per year {5t =  0.02), and 1000 point 
mesh {5S = 0.4)
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Figure 5-22: Plots Around the Money for American Put option Gamma, F, with 
A' =  40, r  =  1, cr =  0.01 and r =  15%, 50 timesteps per year [5t =  0.02), and 1000 
point mesh {5S =  0.4)

0.004
irnplicit r  

Duffy 
CN 

FittCN ; 
V anLee r;-0.003

0.002

0.001

nj>

- 0.001

-0.002

-0.003
39 40 41 42 43 44

Stocl< Price

Figure 5-23: Plots Around the Money for American Put option Theta, 0 ,  with 
/C =  40, T =  1, (T =  0.01 and r =  15%, 50 timesteps per year {5t =  0.02), and 1000 
point mesh {5S =  0.4)
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Figure 5-24: Plots Around the Money for American Put option Price, V,  with K  = 
40, T =  1, cr =  0.01 and r = 15%, 50 timesteps per year = 0.02), and 10000 point 
mesh {5S = 0.04)
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Figure 5-25: Plots Around the Money for American Put option Delta, A, with K  =  
40, r  =  1, cr =  0.01 and r =  15%, 50 timesteps per year {6t = 0.02), and 10000 point 
mesh {5S - 0.04)
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Figure 5-26: Plots Around the Money for American Put option Gamma, F, with 
K  = 40, T  = 1, a = 0.01 and r  =  15%, 50 timesteps per year {5t = 0.02), and 10000 
point mesh {SS = 0.04)
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5.6.2 Summary

Overall, the scheme reasonably well. The errors scaled with the step-size as would be 

expected for their order of convergence, yielding lines that were approximately linear 

for In 55 vs In Error.

Overall, under the conditions of high interest rate and low volatility, there is 

definite room for improvement in terms of calculation of the Greeks, and perhaps 

other methods should also be considered in this case (such as the Penalty method, 

used by Forsyth[14]).



Chapter 6 

The Stochastic Approach

This chapter will define various stochastic pricing methods and utihse these methods 

to price American options.

6.1 M onte Carlo M ethods

Monte Carlo methods are a widely used class of computational algorithms for sim­

ulating the behaviour of various physical and mathematical systems. They are dis­

tinguished from other simulation methods (such as molecular dynamics) by being 

stochastic , i.e. non-deterministic in some manner - as opposed to deterministic 

algorithms.

Monte Carlo methods are especially useful in studying systems with a large num­

ber of coupled degrees of freedom, such as liquids, disordered materials, and strongly 

coupled solids. More broadly, Monte Carlo methods are useful for modehng phenom­

ena with significant uncertainty in inputs, such as the calculation of risk in business 

(so called V alue a t  R isk  or VaR). A classic use is for the evaluation of definite inte­

grals, particularly multidimensional integrals with complicated boundary conditions.

Use of Monte Carlo methods require large numbers of random numbers, and it 

was their use that spurred the development of psuedo-random number generators, 

which were far quicker to use than the tables of random numbers previously used for 

statistical sampling.
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6.2 M onte Carlo M ethods and the Black-Scholes 

M odel

The value of an option is defined to be the present value of the expected payoff of 

the option at expiry under a risk -n eu tra l random walk for the underlying.

This definition for the option price lends itself perfectly to the Monte Carlo tech­

nique, and the resulting algorithm follows intuitively:

A lg o rith m  6-1 The Monte Carlo Method

1 -  Simulate the risk-neutral random-walk, starting at the initial value of the asset
So, over the whole hfe-time of the option. This gives a single realisation of the
underlying price path.

2 -  For this realisation, calculate the option payoff.

3 -  Perform N  such realisations (where is a large number).

4 -  Calculate the average payoff over all realisations.

5 -  Take the present value of this average payoff.

One of the assumptions of the Black-Scholes differential equation is that the un­

derlying asset follows a lognormal random walk. Thus, the random walk for S  is 

given by:

dS — r S  dt + a S  dX.  (6.1)

The option price is therefore defined to be:

V = E[H{S)].  (6.2)

where H{S)  is the payoff function of the option, as this is just the discounted value 

of the expected payoff.

To simulate the random-walk of the underlying we need to decide how exactly to 

update S  at every time-step. This can be derived from the random walk (Eqn 6.1):

5S — rS  5t + (p, (6.3)
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where 0 is a random number drawn from a standardised Normal distribution.

In most circumstances, this update sequence would be simulated in a discrete 

way, using some approximate method to calculate 5S, and using this new value to 

update the value of S.

For lognormal random walks it is possible to integrate the stochastic differential 

equation exactly, producing an exact time-stepping algorithm. This means that there 

will be no error associated with the number of time-steps used in each simulation.

Once the integration has been done, our time-stepping algorithm becomes

S{t + St) = S{t) exp ^(r —̂ cr̂ ) 5 t a  (f>̂ . (6.4)

Thus, all that is required to make good use of the Monte Carlo technique is the 

capability to produce a large number of normally distributed, independent random 

variables.

Note that the accuracy of the algorithm is dependent only on the number of 

simulations performed, N,  but this accuracy is of 0{y/N),  so that to get a ten-fold 

accuracy increase it is necessary to multiply the number of simulations by a factor of 

100 .

It is also important to remember that the payoff can never be below zero (since 

the option will not be exercised). Should the final price be such that the payoff would 

be negative, then the option is not exercised and the payoff is zero.

Monte Carlo methods have the big advantage that they are very powerful for 

solving problems involving more than one asset, and so are very useful in portfolio 

calculations. Once more than one asset needs to be modeled, other methods such 

as finite difference become prohibitively expensive to run, as the problem becomes 

multi-dimensional.

6.3 M onte Carlo M ethods and Am erican Options

American options are problematic for Monte Carlo methods due to the difficulty 

of incorporating the early exercise aspect into the technique. The optimal exercise
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boundary cannot be calculated easily and so it is very difficult to know whether it is 

optimal to exercise early or not.

There are a number of methods for incorporating this early-exercise into the Monte 

Carlo algorithms and we shall discuss the different techniques separately.

6.3.1 Simple MaLximal Calculation

The value of an American option can be written as

VAmer =  { E [ H t = r { S r ) ] )  ■ (6.5)
r<T

which implies a very simple algorithm for calculating the value of an option (Algo­

rithm 6-2).

A lg o rith m  6-2 The Simple Maximal Calculation

1 -  Generate the required number of paths for the option price.

2 -  Calculate the discounted payoff at each time-step along each generated path.

3 -  Average these discounted payoffs at each time-step.

4 -  Take the maximum discounted payoff as the option value.

Although this method has the benefit of simplicity, it has the disadvantage that 

it gives an estimate of the p erfec t foresight so lu tion  and so has a tendency to 

over-estimate the value of the option.

6.3.2 Regression Estim ation of the Expected Payoff

Another method for simulating the early exercise is the “Least-Squares” method, 

which uses a least squares regression technique to estimate the expected payoff at 

each time-step.

It was first developed by Longstaff and Schwartz [24] and is applicable to a variety 

of early exercise instruments.

An expected payoff is calculated at each time-step based on the asset path and
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is compared to the current instantaneous payoff. This data is then used to decide 

whether or not it is optimal to exercise early.

The details of this technique require that each time-step is examined backwards, 

starting at the final time-step and moving backwards towards the initial date of the 

option. This introduces the obvious disadvantage that it is much more computation­

ally expensive to produce a value, and so takes longer to calculate.

Algorithm 6-3 Regression Estimation of the Expected Payoff
1 -  Generate the required number of paths for the option price, N  say, each con­

taining M  time-steps per path.

2 -  For each path, do the following:

a) Inspect the payoffs at time t = tm- i , and only consider those paths with 
non-zero payoffs.

b) Calculate the payoffs on each path at time t = tm = T, and discount them 
by one time-step to time t = tm- i -

c) Using the asset prices at i = tm- i as one variable, and the discounted 
payoffs as the other, calculate least squares regression coefficients.

d) Use these regression coefficients to calculate an expected payoff at time 
t = tm- i based on the instantaneous payoff.

e) If the current payoff is larger than the expected payoff, then exercise the 
option at this point.

3 -  Repeat this process on successive time-steps, moving backwards each time,
revising for each path the time when exercise occurs.

4 -  When this process is complete, each path should have a payoff and a time for
when that payoff occurs.

5 -  The option value is calculated from taking the average discounted payoff at
time t = 0.

The above algorithm probably appears to be quite complex, but its working should 

be made clear through a reading of the example given by the authors of the method.
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6.4 M onte Carlo M ethods using Optim al Exercise 

Estim ation

The methods of the previous section have proved to be very successful in solving 

American options using some sort of Monte Carlo method for generating the random 

walk of the underlying asset. Unfortunately, they have a few drawbacks in that they 

require a large amount of memory storage for their calculation or need to generate all 

their asset paths first, then work backwards to calculate the optimum exercise point.

6.4.1 The Brute Force Calculation M ethod

This method is very straightforward but is totally impractical for calculating the 

price of an option, due to its hugely inefficient performance, which is 0{M^) ,  where 

M  is the number of iterations performed and N  is the number of discrete time-steps 

per iteration.

The idea is simple. At any point in time, if the immediate payoff obtainable by 

exercising the option is greater than the discounted expected payoff obtainable by 

holding the option, then the option should be exercised immediately.

Since the problem is to be solved numerically, we have discretised the time di­

mension, and so we need to make the decision on early exercise at every time-step.

The exercise price is immediately obtainable from the payoff function of the op­

tion, so we need to calculate the discounted expected payoff of the option.

Since the fair price for an option is just the discounted expected payoff of the 

option over the lifetime of the option, the problem of calculating the discounted 

expected payoff is simply that of recalculating the option price.

This argument immediately seems circular, as we are trying to calculate this value 

in the process. This is not the case, as the decision is occuring at some time t > 0, 

and so we are calculating the price of option with T„ew < T  and the asset price 

for this ‘virtual’ option is ĉurrent! which is, in all probability, different from S. Note 

however, that the size of the time discretization is remaining the same, so the number 

of discrete time-steps in this virtual calculation is getting smaller.
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Calculating the price of this new, virtual option repeats this process, which will in 

turn spawn new virtual price calculations, until we are left with a calculation which 

only involves a single time-step. With a single time-step, the expected payoff is 

readily calculable since it is just the mean payoff after a single time-step, discounted 

by the time step-size, 5t.

Having found the option price for one time-step, we can then work backwards, 

filling in the just-calculated option prices. Note that this backward substitution will 

occur naturally through the recursive nature of the algorithm.

Algorithm  6-4 The Brute Force Calculation

1 -  For each iteration, initiahse S = So, t = 0.

2 -  For each time-step:

a) Advance a single time-step t t + 5t.

b) Update S  ^  S  + dS, where

dS = r S d t  + a S d X

where d X  is a random variable drawn from a standardised normal distri­
bution.

c) Calculate Fexercise, the value of option if it were exercised immediately.

d) Calculate Pexpectedi the value of the option with the same settings as the 
current value but with T  —* T  — t and N  ^  N  — n, where n =  t/6t,  the 
number of time-steps taken since t — 0. Essentially, this is a recursive 
step, with the recursion terminating when the iteration contains only a 
single time-step, as the option must be exercised at this time-step.

e) Compare Pexercise to êxpected- If -Pexercise IS larger, then the option is exer­
cised immediately, otherwise move onto the next time-step.

3 -  Discount the resulting payoff using the time at which the option was exercised.
For early exercise scenarios, this time will be less than the contract duration, 
T.

4 -  Record this result, and start a new iteration.

5 -  Average all the results over each iteration to find the option price.
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A Brief Worked Exam ple

We will illustrate the Brute Force algorithm by way of a simple example.

Suppose we are calculating the price of an American put with K  = $40. We have 

a starting asset price of $30, and we want to run two timesteps. With T =  1 we have 

5t =  0.5. At each timestep, we are going to run two simulations.

So, we start at 5  =  $30. Suppose our stochastic algorithm gives us a new value 

S  =  $40. We now need to know what the value of the expected payoff from this point 

is.

Thus, we start a new calculation with S  =  $40, T  — 0.5, and 1 timestep in the 

simulation. Our first simulation step gives us 5  =  $50, yielding a payoff of

Max{K -  5,0) =  Max($40 -  $50, $0) =  $0.

Our second simulation step gives us 5  =  $30, so the payoff is

Max(/^ -  5, 0) =  Max($40 -  $30, $0) =  $10.

Thus, the average payoff is $5. This payoff needs to be discounted by a timestep. 

Suppose the interest rate is such that the discounted value is $4. Thus, our expected 

payoff value is $4.

Our original asset walk gave us a value of S' =  $40 after one timestep. The 

instantaneous payoff for this is

MaxiK - S , 0 )  = Max($40 -  $40, $0) =  $0.

Thus, should we exercise now our payoff is zero.

Since the instantantaneous payoff is lower than the expected payoff, it is not 

optimal to exercise at this point, and so we continue on to the next timestep.



6.4 M onte Carlo M ethods using Optim al Exercise Estim ation 103

6.4.2 Expected Payoff Interpolation

A second method for estimating the option price is derived directly from the previous 

method.

The brute force method is so appallingly inefficient due to the fact that it recal­

culates the expected payoffs each time a value is required.

This immediately suggests an optimisation. If possible, calculate some of these ex­

pectations in advance and then use an interpolation method to calculate the expected 

payoffs when we need them in the simulation.

So, the algorithm is now split into two stages: first we need to generate a list of 

values from which we can perform a payoff interpolation. Once that is completed, 

we perform a similar calculation algorithm to that of the Brute Force method, the 

primary distinction between the two being the fact that the expected payoff values 

are determined using an interpolation from the data calculated in the first stage.

A number of benefits of this new algorithm are immediately apparent. The im­

mediate benefit is that there is no recursion in this method and so the performance 

of this algorithm is O(MNK),  where K  is the number of asset price iterations over 

M  interpolation points at each of the N  time-steps, an immense improvement over 

the brute force method.

Secondly, in the event of a number of different calculations being required, we can 

simply re-use the previously calculated interpolation points -  allowing us to skip the 

first stage completely. This results in a computation performance of 0{NM),  yet 

another improvement. It is important to note that this can only be done in the case 

where the strike price, interest rate, and volatility of the underlying all remain the 

same.

Thus, interpolation data for different scenarios can be pre-generated and stored 

for future use, which should lead to significant time-cost savings (though the trade-off 

is that all the interpolation data needs to be stored somewhere, so that the time cost 

is traded for a storage cost).
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A Brief Worked Exam ple - Stage One

Again, we will illustrate the calculation of the interpolation mesh by way of a simple 

example. Again, we have an American put option with T = 1, K  = $40, our starting 

asset price is $30 and we shall use two timesteps in our algorithm (so that 5t = 0.5). 

Finally, two iterations are used at each timestep.

First we need to calculate all the S'-values that we will use in our interpolation 

mesh. Suppose for simplicity we will use $30, $40, and $50. We now wish to calculate 

the expected payoffs of an option when the asset price has these values at each 

timestep.

Calculating the expected payoffs at the T = 1 is very simple -  it is just the payoffs 

of the option. Thus, our payoff mesh looks like this:

S = $30

oII S = $50

t = 0.0

 ̂=  0.5

t =  1.0 $10.00 $0.00 $0.00

Now move back a timestep, so that t =  0.5. The expected payoffs for the option 

are now needed for this timestep for each of these prices.

Start for the $40 price, we evolve the asset forward to expiry a number of times 

equal to the iteration count (in this case, twice).

Suppose our two new prices are $35 and $45. We now need to use linear interpo­

lation to find out what our expected payoff is for these two asset prices. The hnear 

interpolation is based on the 3 points of bivariate data we have in the i = 1.0 row of 

the interpolation mesh.

Interpolating for $35, we get an expected payoff of $5. Since we are now at t = 1,

we cannot step any further and are finished with this iteration. We discount this

payoff by a timestep (giving us $4 say), and store this value.

Interpolating for $45, we get an expected payoff of $0. Again, we are now at t =  1

and are finished. Thus, our payoff for this iteration is $0.

Having done two iterations, our calculation for this asset price is now complete, 

and the payoff for this asset price and timestep is the mean of the calculated payoffs.



6.4 M onte Carlo M ethods using Optim al Exercise Estim ation 105

Thus, we store ($4 +  $0)/2 =  $2 for this mesh point.

Repeating for $30 and $50, let us assume we calculate expected payoffs of $11 

and $0 respectively, giving us an updated interpolation mesh of

5  =  $30 5  =  $40 S  =  $50

t =-- 0.0 ***>(=

t == 0.5 $11.00 $2.00 $0.00

t == 1.0 $10.00 $0.00 $0.00

1 t --= 0 line. Again, we will use the $40

Suppose the two asset paths generated are

$40.00 $35.00 ^  $30.00

$40.00 -> $45.00 $50.00

The asset price aX t = 0.5 is $35. We use linear interpolation to find that the 

expected payoff at this asset price is $6.50. The instantaneous payoff for this asset 

price is $5, and since this is less than the expected payoff at this point, we continue 

on to i =  1. This results in an asset price of $30, giving us a payoff of $10. Our 

payoff is $10 and discount this to t =  0 to give us $6 (say). Thus, the payoff for this 

iteration is $6.

Proceed to the next iteration. The new asset path calculates an asset price of $45 

at t = 0.5. Using the interpolation mesh, this gives a payoff of $1. The instantaneous 

payoff for this asset price is $0 and so we again proceed to t = 1. The next asset 

price is $50, giving a payoff of $0. Thus, the payoff for the second interation is $0.

We now find the mean of these two payoffs to find the expected payoff for $40 at 

i =  0. The mean of the two values is $3.

Suppose a similar procedure gives expected payoffs of $11.50 for S  = $30 and $0 

for S  =  $50. This gives us a final interpolation mesh that looks like

5  =  $30 S '=  $40 S = $50

II o o $11.50 $3.00 $0.00

t = 0.5 $11.00 $2.00 $0.00

t=  1.0 $10.00 $0.00 $0.00
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A Brief Worked Exam ple - Stage Two

To illustrate Stage Two of the algorithm, the same parameters are used as before, 

and we shall use the interpolation mesh calculated in the Stage One illustration.

Thus, we have an American put option with T  = 1, K  = $40, our starting asset 

price is $40 and we shall use two timesteps in our algorithm (so that 6t = 0.5). 

Finally, two iterations are used in the algorithm.

Suppose our two asset paths are:

$40.00 $35.00 -> $40.00

$40.00 ^  $30.00 ^  $35.00

Starting with an asset value of $40, the price a,t t = 0.5 is $35. Thus, the 

instantaneous payoff is $5. Our expected payoff is interpolated from the bivariate data 

taken from the t = 0.5 line of the interpolation mesh. In this case, our interpolated 

value is $6.50 and so the we do not exercise at this timestep. At the next timestep, 

the asset price is $40, so the payoff is $0 for this iteration.

On the next iteration, the asset price at  ̂ =  0.5 is $30. In this case, the instan­

taneous payoff is $10 and the interpolation of the expected payoff is $11, and so we 

hold the option. The next price is $35. Thus, the payoff is $5 and we discount this 

back to t =  0 to give us $3 (say). Thus, the payoff is $3 for this iteration.

Finally, the value for the option is the mean of the two calculated values, which 

is ($3 + $0)/2 =  $1.50.
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A lgorithm  6-5 Expected Payoff Interpolation - Generating the Interpolation Mesh
1 -  Determine the spread of asset values for which we require the interpolation data

to be calculated, 5/j.

2 -  Starting at t = T, the expected payoffs are simply the payoffs given by
Payoff(5, K).

3 -  For each time-step:

a) Step back a time-step t t — 5t.
b) For each interpolation mesh-point we perform the following iteration a 

number of times defined by the simulation parameters:
I. Using S = Sii as a starting point, evolve the asset back t o t  = T  using 

time-steps of the same size 6t.
II. At each of these new time-steps:

i. Calculate the instantaneous payoff, Pexercise, using the payoff for­
mula.

ii. Calculate the expected payoff, Pexpected) by interpolating from the 
expected payoff data at this time-step. This data has already 
been calculated since the overall algorithm is stepping backwards 
through time.

iii. If Pexercise > -Pexpected) then exercise at this time-step, taking a note 
of the time ^exercise-

iv. Discount the payoflF from êxercise to t.
III. Repeat for each iteration.

c) Repeat this process for all the other interpolation mesh values.
d) Store all the expected payoff values at this time-step. These values will 

be used to interpolate all payoffs at this time-step for the rest of the 
simulation.

4 -  Repeat for each time-step all the way back to t =  0.
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Algorithm  6-6 Expected Payoff Interpolation - Calculating the Option Price

1 -  For each iteration, initialise S  = So, t = 0.

2 -  For each time-step:

a) Advance a single time-step t t 5 t .

b) Update S  S  dS,  where

dS = r S d t  + a S d X

where d X  is a random variable drawn from a standardised normal distri­
bution.

c) Calculate Fexercisei the value of option if it were exercised immediately.
d) Calculate Pexpected using an interpolation of the values at time t generated 

in Stage One.

e) Compare Pexercise to Pexpected- If -Pexercise IS larger, then the option is exer­
cised immediately, otherwise move onto the next time-step.

3 -  Discount the resulting payoff using the time at which the option was exercised.
For early exercise scenarios, this time will be less than the contract duration, 
T.

4 -  Record this result, and start a new iteration.

5 -  Average all the results over each iteration to find the option price.
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6.4.3 The Iterative Ito M ethod

This method relys heavily on the fact that the price of an option V  can be viewed 

as arising from two elements: the in trin sic  value and the tim e  value. The option 

can be exercised immediately, and so has an intrinsic value, VSnt, the payoff obtained. 

Also, since the value of this payoff may increase in the future, the option also has a 

time value, Kime- Thus, we have

V  =  V^nt +  Kime- (6 .8)

In theory, the optimal exercise point is when the time value of the option drops to 

zero (and so there is nothing to be gained by holding onto the option). The difficulty 

is that finding the time value at any given instant is non-trivial.

The value of the option is constantly changing as the asset evolves, causing cor­

responding changes in both VSnt and Vtime> and so it is necessary to be able to first 

calculate this evolution of the option price, and then split this value into its time and 

intrinsic parts.

Thus, at every point on the asset path, the value of the option is calculated and 

compared to the current intrinsic value. If there is no difference between the two, the 

option price has no time component and so can be exercised.

We cannot do this for continuous time, and so we break up the lifetime of the 

option into N  discrete time-steps of length St, and so we can use Algorithm 6-7.

Obviously, this is not a practical solution as it requires a full knowledge of the 

option price as the asset evolves, even allowing for the discretisation of time, and so 

traders use close approximations of prices for deciding whether or not to exercise.

So, now that we know how an option is used in the financial world, how do we 

translate this to calculating its price?

Although the above algorithm is useful for providing insight into what is required 

from our price-calculation algorithm, it does not really help us find that algorithm, 

as it requires full knowledge of the option price to be able to determine the optimal 

exercise point. Thus, we have a circular algorithm.
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A lgorithm  6-7 Trader’s Method for Exercising an Option
1 -  Start at i =  0.

2 -  While t < T,  repeat:

a) Add 5t to t.
b) Update the asset value at time t, St, using

dS = rS dt + aS  dX

c) Calculate V{St, T  — t).
d) Calculate V i „ t  = Payoff(5(, K, t) and V "tim e  =  V — V i n t

e) If Kime = 0, then exercise.

3 -  Exercise at i =  T if Payoff(5T, K, T) > 0.

Fortunately, such circular calculations occur frequently in numerical problems, so 

all is not lost.

Usually, we can get a good approximation of the solution using an iterative pro­

cess, which can be summarised as follows:

Algorithm  6-8 Standard Algorithm for Iterative Techniques
1 -  Take an inital estimate of our unknown quantity X,  X q say.

2 -  Using Xo, proceed with the calculation.

3 -  This calculation will give us a new value for X, Xj.

4 -  Use Xi  as our new value and start the process again.

5 -  Repeat these steps until the changes in successive values of X  go below a given
tolerance level (Note that some iterative algorithm use different methods of 
calculating accuracy).

In principle, this solves the problem of not knowing the initial option price in 

advance, but it still does not allow us to know how the option prices changes over 

the evolution of the asset, 0 < t  <T.

None of the above discussion has taken performance of the algorithms into ac­

count, and the above iterative method may prove to be far too expensive, but it is fair 

to say that using an iterative method again at this point would not be too expensive.
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In any case, it can be readily seen that over use of iterative techniques to calculate 

unknown values would make the algorithms extremely complex immediately, which 

can only lead to problems during implementation.

Thus, another method is required.

One option is to use Ito’s Lemma (Eqn 1.5) to approximately calculate the changes 

in V  as the asset price S  and time t evolve. To recap, we have

Once found, we can add dV to V  to estimate the current value of the option at each 

time-step.

The intrinsic value of the option VJnt is readily found from the payoff function of 

the option, and so we can also calculate the time-value Kime quite easily.

Now we need to calculate dV using Eqn (1.5).

An immediate problem becomes apparent: the equation uses the Greeks to calcu­

late dV, but how can we know what the derivatives are if we don’t even know what 

y  is?

To find the Greeks, we need to be able to calculate V  and then use a finite 

differencing approximation or something similar, but to find V  we need to know the 

value of the greeks.

Again, an iterative technique could work here, and work has been done to show 

that it will work in this case (though there is a systematic error involved).

We evolve a differential volume of the phase space of a option price with known 

greeks in the ranges (S' — 5S, S  + AS)  and {t, t + At). Note that the small quantities 

A S  and At  are used purely for calculating the greeks.

Having evolved this differential volume by a few time-steps, we then calculate 

the new values for the Greeks and plug these new values back into the algorithm, 

repeating the process until the changes in all the Greeks fall below a given tolerance 

level.

We can then compare this value to our known values at each time-step and see if 

our results are accurate.
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V erification o f th e  I te ra tiv e  A lgorithm

This entire algorithm hangs on the assumption that an iterative process will converge 

on the final solution.

It is immediately obvious that there is no clear, logical basis upon which to justify 

this initial assumption, so some verification is required.

Fortunately, we can again fall back on the fact that we have a complete solution 

for the European option problem. A good test for the method would be to use it in 

this case and see how closely our algorithmic solution can match the analytic solution. 

The algorithm is shown in Algorithm 6-9.

The results of this should be that the iterative algorithm produces good approx­

imations to the analytically calculated ones.

Results from this algorithm are discussed at the end of this chapter.

T h e  I te ra tiv e  I to  A lgo rithm  for A m erican  O p tions

Using an iterative technique to estimate the greeks, and hence dV,  is acceptable here 

since the algorithm is efficient and does not provoke cascading levels of iteration to 

get a result.

S um m ary

At this point it is probably worth pausing and summarising what we have done so 

far, since it is very easy to lose track of the goals through all the details.

• We are trying to develop a Monte Carlo method for calculating prices for options 

that have early exercise features, and we are trying to do so by developing a 

method for rehably determining the optimal exercise time, as it would appear 

to a holder of the contract.

• To do this, we use the fact that the option price consists of an in trin sic  and 

tim e  value and it is optimal to exercise the option when the time value, Vtime 

is zero.
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• The intrinsic value of the option, VSnt, is simply the amount obtained from 

immediate exercise, and so is readily calculated. To find V̂time, we need the 

current price of the option V, and use Kime = V — Vint-

• To calculate V we use an iterative technique, continually performing the Monte 

Carlo simulation to refine our initial value of V, which is our final solution.

• The Monte Carlo simulation requires that we know the values of V during the 

simulation, so we calculate changes in V using Ito’s Lemma:

• At each time-step calculation, we use an iterative method to calculate the values 

of the greeks for the above equation.

Im plem entation

With all the problems solved, we now have an algorithm which should, at least in 

principle, calculate the value of an American option.

In the discussion above, very little consideration was given to algorithm efficiency 

or execution times.

One major drawback of the above technique is the fact that the main focus of the 

iterative convergence, the price of the option, requires a lot of work to calculate.

Each price calculation requires M  iterations, each iteration requires N  time-steps, 

and each time-step requires at most K  subiterations to calculate the greeks.

Thus, each calculation is 0{NMK).

This is for just a single calculation of the price and so this algorithm could prove 

expensive if high accuracy is important, since it is not known in advance how many 

iterations will be required for convergence.

We now need to investigate the possibility of calculating the option price using 

the principles outlined above without having to resort to an iterative technique to 

converge on an answer.
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The simplest possibility is to remove the iterative part of the technique, i.e. we 

take an initial estimate for the option price, perform the calculation and use our 

output as our final answer.

For this to be successful, our initial guess becomes very important for calculating 

our final price, and so must be chosen with care. This method will be far from ideal 

and its dependency on the initial guess renders it largely impractical for regular use.
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A lgorithm  6-9 Verification of the Iterative Algorithm to Calculate the Greeks
1 -  Set the stockstep and time-step parameters h and k.

2 -  Set t = 0.

3 -  While t <T ,  repeat:

a) Update t t + dt.
b) Initiahse solution estimates ^' ot guess oo guess guess

c) Evolve S  using

S = S exp + (<^v^ 4>)

and calculate the corresponding dS.
d) Repeat for each iteration until (error < TOL):

I. Using the analytic solution, initialise the volume values 
V{S, t), 1/(5 + AS, t), V(S  -  AS, t), V{S, t + At).

II. Calculate the Ito updates for these values:

dV , dV  1
dV = —  dt + —  dS + - a  S  —  dt.

O t guess OO guess ^  O o  guess

III. Update the volume values
V{S,t), V { S ^ A S , t ) ,  V { S - A S , t ) ,  V{S, t  + At).

IV. Update the value of the Greeks:

_  V{S + AS, t)  - V { S  -  AS, t)

r = 

0 -

dS 2AS
d^V V{S + A S , t ) - 2 V { S , t )  + V { S - A S , t )
dS  ̂ ~ {ASy
dV V{S + A S , t ) - V { S - A S , t )
dt 2At

V. Calculate the error ratios:

ratio 1 

ratio2 

ratio3

A - A , old

A oidr — Told

Told
0 0 o ld

0 o ld

VI. error = Max(ratiol, ratio2, ratioS)
e) Output the calculated values for at this time-step and compare

to the values from the analytical solution.
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A lgorithm  6-10 The Iterative Holding Method

1 -  Choose an initial guess for the option price, V̂ uess-

3 -  Repeat the following steps while > V-tolerance:3 -  Repeat the following steps while

a) Start at t =  0.

b) Repeat for each Monte Carlo iteration:
I. While t < T ,  repeat:

i. Add 5t to t.
ii. Update the asset value at time t, S{t), using

where ^ is a random variable drawn from a standardised normal 
distribution.

iii. Calculate dS — S{t) — S{t — 6t).
iv. Iteratively calculate dV  using algorithm 6-11.
V. Update V  using V{t) =  V{t —  5t) +  dV.

vi. Calculate Vi„t =  P a y o f f ( 5 t , i ) .
vii. Calculate K i m e  =  V — V ^ n t -

viii. If V t i m e  =  0, then set iexpiry =  t  and exercise.
II. If t = T  then set êxpiry =  T  and exercise.

III. Calculate the payoff and discount it back to  ̂ =  0.

c) Average over each Monte Carlo iteration to find a new value for the option
price V.

4 -  The final value V  from this iterative calculation is the final result.
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A lgorithm  6-11 Iterative Calculation for dV

1 -  Set initial values for iterative dV  calculation:

dV =  1, 
dV
dt

dS
d^V

1 ,

0, and

1 .
dS^

2 -  Set internal stepping values for S  and t, h and k respectively.

3 -  Set d V p j - e v  =  dV.

4 -  Repeat while ^ dV-tolerance:

a) Calculate:

V = m o ,
Vps = V (S  +  h,t),

V̂nS = V ( S - h , t ) ,

V  = V( S , t  +  k), and
KnT = V { S , t - k ) .

b) Calculate the derivatives of V  using:

^  ^  {VpT -  V̂ mT) 
dt 2k
d v  (Vps -  v;.s) ,
^  == 2h ’

d^V ^  (Kps -  2V +  K.s) 
dS^

c) Calculate a new value of dV  using Ito’s Lemma,

5 -  The final value dV  from this iterative calculation is the final result.
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6.5 A nalysis of the M onte Carlo Techniques for 

European Options

Once we have obtained some results from the Monte Carlo techniques, it is very 

important to analyse the results so that we can draw conclusions both on the data 

itself and on the various techniques used to solve the problem.

The basic idea is that of a Sim ulation Ensemble. A Simulation Ensemble is a 

fixed number of iterations of the basic Monte Carlo simulations, with each ensemble 

having a variation of one or more of the simulation parameters.

With a fixed number of ensemble iterations, a comparison on the dependency of 

the different parameters on the option price could be performed.

This comparison is done by placing the output data from the ensemble into a 

frequency histogram and observing how the histogram changes for different values of 

the parameters in the simulation.

For the current problem, the only parameters varied were the number of time-steps 

used and the number of random-walk simulations performed per execution.

It is expected that the histogram produced will be of roughly normal shape, and 

the goodness of fit of this histogram to the standard normal distribution can be used 

to determine information on the dependency of the calculated price to the number 

of walk simulations and time-stepping count.

The results of the Monte Carlo solutions are shown in Fig. 6-1 and Fig. 6-2.

The first two histograms are for the European Call option price, and the single 

vertical line represents the price calculated using the exact solution.

The parameters used in this calculation were

5  =  1 

K  =  1 

T = 1 

cr =  0.5 

r  = 5%
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It is immediately obvious from Fig 6-1 that as the number of random-walk reali­

sations increase, the histogram gets narrower around the actual value (note that the 

diagrams are not on the same scale), showing that the algorithm gets more accurate 

with the number of simulations per price calculation, as expected.

Conversely, from Fig 6-2, the increasing number of time-steps per realisation has 

no real effect on the accuracy of the option price, as the histograms do not change in 

any significant way. Again, this is as expected since the time-stepping formula was 

exact and so will not be improved by increasing the number of time-steps used.
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Figure 6-1: Variation of the European Call option price wrt the Number of Random- 
Walk Realisations
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6.5.1 A nalysis o f the M onte Carlo Techniques for A m erican  

O ptions

The Interpolated Expectation Algorithm

Table 6.1 shows the results of the Interpolated Expectation algorithm. The prices 

calculated agree very strongly with both the finite difference solution as well as the 

Regressed Expectation algorithms. The errors are in the region of a few cents. On 

some exchanges, option prices are still quoted as fractions of a dollar (or local cur­

rency), and so this is accurate enough. Even on electronic exchanges, the errors below 

are within the usual bid-ask spreads quoted for an option.

s T a Fin Diff Regression Interpolation
36 1 0.2 4.478 4.472 ± 0.010 4.485 ± 0.010
36 1 0.4 7.101 7.091 ± 0.020 7.090 ± 0.020
36 2 0.2 4.840 4.821 ± 0.012 4.826 ± 0.012
36 2 0.4 8.508 8.488 ± 0.024 8.458 ± 0.024

38 1 0.2 3.250 3.244 ± 0.009 3.236 ± 0.010
38 1 0.4 6.148 6.139 ± 0.019 6.183 ± 0.019
38 2 0.2 3.745 3.735 ± 0.011 3.737 ± 0.011
38 2 0.4 7.670 7.669 ± 0.022 7.644 ± 0.023

40 1 0.2 2.314 2.313 ± 0.009 2.307 ± 0.009
40 1 0.4 5.312 5.308 ± 0.018 5.311 ± 0.018
40 2 0.2 2.885 2.879 ± 0.010 2.884 ± 0.011
40 2 0.4 6.920 6.921 ± 0.022 6.863 ± 0.024

42 1 0.2 1.617 1.617 ± 0.007 1.607 ± 0.008
42 1 0.4 4.852 4.588 ± 0.017 4.564 ± 0.018
42 2 0.2 2.212 2.206 ± 0.010 2.201 ± 0.010
42 2 0.4 6.248 6.243 ± 0.021 6.183 ± 0.022

44 1 0.2 1.110 1.118 ± 0.007 1.102 ± 0.007
44 1 0.4 3.948 3.957 ± 0.017 3.965 ± 0.017
44 2 0.2 1.690 1.675 ± 0.009 1.668 ± 0.009
44 2 0.4 5.647 5.622 ± 0.021 5.630 ± 0.021

Table 6.1: Interpolated Expectation Results for an American put option with K  = 40, 
r = 6%, 50 timesteps per year, 100 interpolation points per timestep, and 10000 
iterations at each interpolation node
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Tables 6.2 and 6.3 show the results obtained from the mesh generation stage of 

the Interpolated Expectation algorithm (Algorithm 6-5) i.e. the values calculated for 

the expected payoff of the option a t each timestep.

s T a Fin Diff Regression Interp. M esh Rel Error
36 1 0.2 4.478 4.472 ± 0.010 4.565 ± 0.010 0.019
36 1 0.4 7.101 7.091 ± 0.020 7.334 ± 0.021 0.033
36 2 0.2 4.840 4.821 ± 0.012 5.002 i 0.012 0.033
36 2 0.4 8.508 8.488 ± 0.024 9.028 ± 0.025 0.061

38 1 0.2 3.250 3.244 ± 0.009 3.325 ± 0.010 0.023
38 1 0.4 6.148 6.139 ± 0.019 6.366 ± 0.020 0.035
38 2 0.2 3.745 3.735 ± 0.011 3.934 ± 0.012 0.050
38 2 0.4 7.670 7.669 ± 0.022 8.182 ± 0.025 0.067

40 1 0.2 2.314 2.313 ± 0.009 2.390 ± 0.009 0.033
40 1 0.4 5.312 5.308 ± 0.018 5.507 ± 0.019 0.037
40 2 0.2 2.885 2.879 ± 0.010 3.051 ± 0.011 0.058
40 2 0.4 6.920 6.921 ± 0.022 7.395 ± 0.024 0.069

42 1 0.2 1.617 1.617 ± 0.007 1.669 ± 0.008 0.032
42 1 0.4 4.852 4.588 ± 0.017 4.775 ± 0.018 0.016
42 2 0.2 2.212 2.206 ± 0.010 2.325 ± 0.010 0.051
42 2 0.4 6.248 6.243 ± 0.021 6.710 ± 0.024 0.074

44 1 0.2 1.110 1.118 ± 0.007 1.160 ± 0.007 0.045
44 1 0.4 3.948 3.957 ± 0.017 4.133 ± 0.017 0.047
44 2 0.2 1.690 1.675 ± 0.009 1.813 ± 0.009 0.073
44 2 0.4 5.647 5.622 ± 0.021 6.077 ± 0.023 0.076

Table 6.2: Interpolated Expectation interpolation values for an American put option 
with K  = AO, r = 6%, 50 timesteps per year, 100 interpolation points per timestep, 
and 10000 iterations at each interpolation node

It is immediately obvious th a t the algorithm is over-estimating the value of the 

expected payoff. The relative error is small but significant (ranging from just under 

2% to just under 8%), and is always larger than  the values calculated for the op­

tion price by either the finite difference method or the Regression Estimation of the 

Expected Payoff algorithm (Algorithm 6-3).

This overestimation bias is a systematic error. Since the algorithm works back­

ward in time, it allows the holder to exercise a t a more optimal time as he has
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foreknowledge of the expectation at future points.

Table 6.2 shows the values generated by the interpolation mesh where 100 values 

are calculated at each timestep for the purposes of the expectation interpolation.

Table 6.3 shows the corresponding values generated using 200 values on the inter­

polation. As can be seen, the effect is relatively small, with all the differences lying 

with the error margins. There are no results for the T  — 2, a = 0.4 configuration 

because the calculation took too long on the cluster being used. The time limit was 

96 hours.

Linear interpolation was used in all of the results shown.

5 T a Fin Diff Regression Interp. M esh Rel Error
36 1 0.2 4.478 4.472 ± 0.010 4.572 ± 0.010 0.021
36 1 0.4 7.101 7.091 ± 0.020 7.362 ± 0.021 0.037
36 2 0.2 4.840 4.821 ± 0.012 5.020 ± 0.012 0.037
36 2 0.4 8.508 8.488 ± 0.024 ***

38 1 0.2 3.250 3.244 ± 0.009 3.329 ± 0.010 0.024
38 1 0.4 6.148 6.139 ± 0.019 6.378 ± 0.020 0.037
38 2 0.2 3.745 3.735 ± 0.011 3.921 ± 0.012 0.047
38 2 0.4 7.670 7.669 ± 0.022

40 1 0.2 2.314 2.313 ± 0.009 2.396 ± 0.009 0.035
40 1 0.4 5.312 5.308 ± 0.018 5.523 ± 0.019 0.040
40 2 0.2 2.885 2.879 ± 0.010 3.055 ± 0.011 0.059
40 2 0.4 6.920 6.921 ± 0.022 *** ***

42 1 0.2 1.617 1.617 ± 0.007 1.678 ± 0.008 0.038
42 1 0.4 4.852 4.588 ± 0.017 4.762 ± 0.018 0.019
42 2 0.2 2.212 2.206 ± 0.010 2.333 ± 0.010 0.055
42 2 0.4 6.248 6.243 ± 0.021 ***

44 1 0.2 1.110 1.118 ± 0.007 1.146 ± 0.007 0.032
44 1 0.4 3.948 3.957 ± 0.017 4.126 ± 0.018 0.045
44 2 0.2 1.690 1.675 ± 0.009 1.814 ± 0.009 0.073
44 2 0.4 5.647 5.622 ± 0.021 *** ***

Table 6.3: Interpolated Expectation interpolation values for an American put option 
with K  = 40, r = 6%, 50 timesteps per year, 200 interpolation points per timestep, 
and 10000 iterations at each interpolation node

In terms of timing, an overwhelming amount of the calculation time is spent in
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calculating the interpolation mesh, and this has been shown through timing the code.

The code was ran for 100,000 iterations, with 10,000 iterations used at each of the 

50 mesh interpolation nodes, for the standard set of parameters (S' =  $36, K  — $40, 

T  = 1, a = 0.2, r = 6%). Again, 50 timesteps were used per year (giving a timestep 

size of 5t = 0.02).

T otal C o m p u ta tio n  S ystem
693.91 692.74 1.07

7.21 7.02 0.16

Table 6.4: Timings for execution of the Interpolated Expectation algorithm with 
100,000 iterations, 10,000 ‘mini’ iterations at each interpolation node, 50 interpolation 
nodes, using 50 timesteps per year. The option parameters were S  — $36, K  =  $40, 
T =  1, cr =  0.2, and r  =  6%.

The main column is the second one ( “Computation” ) as this is the number of 

seconds that the processor used to execute the code. The “System” column is less 

useful, since it includes time spend on other tasks, file I/O , and others.

In any case, having the interpolation mesh speeds up the calculation by a factor 

of almost 100, which is a very significant speed up. Thus, should a number of op­

tion prices be required for different stock prices, re-using the interpolation mesh will 

substantially reduce the amount of computation overhead required.

The major downside to the algorithm is that it does not converge on the correct 

solution. While this is usually fine for practical purposes, since the result lies within 

the usual bid/ask spread for an option, it is hardly ideal for a computational point 

of view.

More work is definitely required to improve this.

T h e  I te ra te d  I to  A lgo rithm

We now turn our attention to the Iterated Ito algorithm (Algorithm 6-10).

We first must check the verification algorithm for the European option Greeks to 

see if we can use this kind of iterative technique to get good approximations in the 

first place.
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An immediate problem becomes apparent: the Ito update,

does not have an explicit t-dependance.

As the dV does not depend on t exphcitly, it will update both V (5, t) and V{S, t+  

5t) by the same amount. Since we then take the difference of these quantities when 

calculating the updated value of Theta we end up with the same value with which 

we started i.e. the value of Theta, 0 , at the beginning of each iteration is identical 

to that at the end.

The output of the algorithm illustrates this problem. For the Delta and Gamma 

it works much better. The results are shown in Table 6.5 for t G (0,0.5). The full 

simulation ran from t = 0 to t = T  = 1 , but the results shown are representative of 

the whole, the rest being removed for space considerations.

Although the iterative technique does not calculate the Greeks precisely, it is 

giving close approximations for the Delta and Gamma (the first and second order 

partial derivatives of the option price V  with respect to the asset price S, important 

quantities in dynamic hedging).

As predicted, the value for Theta is wildly inaccurate, and does not change 

throughout the iterations.

This poses an immediate problem for the Iterated Ito algorithm.

The algorithm may not necessarily require very accurate values for the Greeks 

(since the Ito updates are just being used to determine when the option should be 

exercised early), but it does require them to give a value which approximates the true 

value. This is simply not the case for the Theta.

With this in mind, we found a consistent and strong underestimation bias in the 

results from our Iterated Ito algorithm, the results of which are shown in Table 6.6. 

The number of iterations required for convergence is also shown.

There are a number of reasons for bias, the first being that the Ito updates are 

not accurate as they cannot approximate the Theta, 0 . While the contribution of 

the Theta-term to the Ito update is small, this error tends to cause the algorithm to
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t ^ c a lc ^ a c tu a l Tcalc Tactual © ca lc © actual

t =  0.000 -0.6585 -0.7254 0.0547 0.0489 0.4659 -1.6163
t =  0.020 -0.6434 -0.7113 0.0555 0.0501 0.3908 -1.6979
t  =  0.040 -0.5871 -0.6592 0.0569 0.0527 0.1645 -1.9462
t =  0.060 -0.6867 -0.7488 0.0548 0.0486 0.5346 -1.5509
t =  0.080 -0.6574 -0.7222 0.0564 0.0508 0.3964 -1.6976
t =  0.100 -0.6159 -0.6838 0.0580 0.0532 0.2147 -1.8945
t =  0.120 -0.5941 -0.6631 0.0588 0.0545 0.1140 -2.0067
t =  0.140 -0.6257 -0.6916 0.0588 0.0539 0.2134 -1.8987
t =  0.160 -0.6760 -0.7364 0.0577 0.0517 0.4008 -1.7007
t =  0.180 -0.7360 -0.7889 0.0546 0.0477 0.6576 -1.4399
t =  0.200 -0.7671 -0.8154 0.0524 0.0452 0.7958 -1.3053
t =  0.220 -0.7630 -0.8114 0.0532 0.0461 0.7574 -1.3459
t =  0.240 -0.7512 -0.8007 0.0548 0.0478 0.6783 -1.4270
t =  0.260 -0.7371 -0.7878 0.0566 0.0498 0.5863 -1.5217
t =  0.280 -0.7137 -0.7665 0.0590 0.0525 0.4480 -1.6644
t =  0.300 -0.8050 -0.8456 0.0506 0.0433 0.9154 -1.2037
t =  0.320 -0.8689 -0.8987 0.0411 0.0340 1.2949 -0.8505
t =  0.340 -0.8780 -0.9059 0.0398 0.0328 1.3423 -0.8104
t =  0.360 -0.8425 -0.8761 0.0467 0.0395 1.0910 -1.0463
t =  0.380 -0.8321 -0.8669 0.0489 0.0417 1.0049 -1.1309
t =  0.400 -0.7195 -0.7680 0.0629 0.0565 0.3213 -1.8073
t =  0.420 -0.6301 -0.6855 0.0689 0.0642 -0.1451 -2.3011
t =  0.440 -0.6636 -0.7157 0.0685 0.0631 -0.0273 -2.1746
t  =  0.460 -0.6499 -0.7023 0.0702 0.0651 -0.1301 -2.2853
t =  0.480 -0.6694 -0.7195 0.0703 0.0648 -0.0757 -2.2277
t =  0.500 -0.5936 -0.6478 0.0745 0.0706 -0.4659 -2.6527

Table 6.5: Comparison of Greeks from Iterative Algorithm and Analytic Values

optimise at a time that is sub-optimal, thus giving a value for the option which is 

lower than otherwise expected.

Another major problem, as it stands, is the convergence of the algorithm. A 

sample output of the Iterative Ito code is shown in Table 6.7. The convergence of 

each iteration is not smooth, with the value bouncing around and finally settling on 

a final solution. This can make for very erratic convergence counts, ranging from 7 

iterations to 74 iterations across sixteen different configurations.

Thus, the results of the algorithm can be skewed by two successive iterations 

occuring close to one another by pure random chance. The algorithm will then 

terminate, despite there being no guarantee of the next iteration also being within
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the tolerance level.

With all these factors, it is not surprising that the algorithm does not produce 

accurate results.

s T a Fin Diff Regression Itera tive  Ito
36 1 0.2 4.478 4.472 ± 0.010 4.26 (39 iters)
36 1 0.4 7.101 7.091 ± 0.020 5.79 (9 iters)
36 2 0.2 4.840 4.821 ± 0.012 4.48 (33 iters)
36 2 0.4 8.508 8.488 ± 0.024 6.46 (41 iters)

38 1 0.2 3.250 3.244 ± 0.009 2.77 (15 iters)
38 1 0.4 6.148 6.139 ± 0.019 4.61 (22 iters)
38 2 0.2 3.745 3.735 ± 0.011 2.97 (53 iters)
38 2 0.4 7.670 7.669 ± 0.022 5.28 (12 iters)

40 1 0.2 2.314 2.313 ± 0.009 1.61 (53 iters)
40 1 0.4 5.312 5.308 ± 0.018 3.58 (57 iters)
40 2 0.2 2.885 2.879 ± 0.010 1.88 (10 iters)
40 2 0.4 6.920 6.921 ± 0.022 4.30 (33 iters)

42 1 0.2 1.617 1.617 ± 0.007 0.90 (35 iters)
42 1 0.4 4.852 4.588 ± 0.017 2.92 (65 iters)
42 2 0.2 2.212 2.206 ± 0.010 1.15 (74 iters)
42 2 0.4 6.248 6.243 ± 0.021 3.54 (47 iters)

44 1 0.2 1.110 1.118 ± 0.007 0.52 (23 iters)
44 1 0.4 3.948 3.957 ± 0.017 2.21 (7 iters)
44 2 0.2 1.690 1.675 ± 0.009 0.74 (18 iters)
44 2 0.4 5.647 5.622 ± 0.021 3.01 (16 iters)

Table 6.6: Iterative Ito results for 50 time-steps per year, r = 0.06 with an iteration 
tolerance of 0.001
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Initial Guess: 1.000000

V
V Iteration 1 3.928396
V Iteration 2 4.230936
V Iteration 3 4.331693
V Iteration 4 4.258384
V Iteration 5 4.233188
V Iteration 6 4.286959
V Iteration 7 4.229965
V Iteration 8 4.292180
V Iteration 9 4.248276
V Iteration 10 4.289446
V Iteration 11 4.251653
V Iteration 12 4.256610
V Iteration 13 4.320329
V Iteration 14 4.269716
V Iteration 15 4.270077
Final solution: 4.270077

V_prev Rel chcinge
1.000000 2.928396
3.928396 0.077014
4.230936 0.023814
4.331693 0.016924
4.258384 0.005917
4.233188 0.012702
4.286959 0.013295
4.229965 0.014708
4.292180 0.010229
4.248276 0.009691
4.289446 0.008811
4.251653 0.001166
4.256610 0.014970
4.320329 0.011715
4.269716 0.000085

Table 6.7: Output of the Iterative Ito code



Chapter 7 

The Tree M odel Approach

7.1 Introduction

Up to this point, we have been primarily concerned with the Black-Scholes model 

for pricing options. It is worth that there are other methods for pricing options, the 

most commonly-known of which are Tree Methods.

Tree methods take a different, but related, approach. Rather than using the initial 

price of the asset and evolving this price through time, tree methods construct a tree 

of prices, with the starting price at the root.

Various algorithms are then used to calculate the asset price using the values at 

each node of the tree.

7.2 The Binom ial M odel

Probably the most famous of the tree methods is the Binomial Model.

The Binomial Model is popular because it can be used and understood without 

any knowledge of higher mathematics (such a Stochastic Mathematics and Differential 

Calculus) and does not use partial differential equations.

Although this has the benefit of simplicity, it does have a hmiting effect on the 

application of the model.

We assume that the asset, with initial value S, can either rise to a value uS  or
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fall to a value vS  over a time interval 6t, where 0 < I) < 1 and tt > 1. We assign a 

probability p to the event S  —»• uS,  and hence the probability of 5  US' is 1 — p.

So, we have three unknowns, u, v and p, requiring three constraints to fix these 

values.

Two of these constraints come from the fact that it is necessary for these transi­

tions to result in the same drift /x and variance as found in the asset price model 

Eq. (3.19):

dS = fxS dt +  crS d X  

For a random walk to have the correct drift we need:

pu + {1 — p)v =

Rearranging, we get
  7 1

p =  ------- ^ (7.3)
u  —  V

To ensure the random walk has the correct variance, we need

pu^ + {1 -  p y  = (7.4)

We now have two constraints on three unknowns, giving us a single degree of 

freedom.

Thus we can arbitrarily choose a third constraint to tailor our model depending 

on our preferences.

Also, as before, the drift is assumed to be the risk-free interest rate, and so we 

have fjL = r.

As an example, we could desire that a rise and fall in the asset price be equally 

likely, giving us the constraint
1

However, the standard constraint is to allow the asset price to return to its original
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value after two time-steps, i.e. uvS  =  S.

Solving for these constraints Eq. (7.3, Eq. (7.4), and Eq. (7.6), we have

u  =  +  iJ (e -M « t  +  e(M+‘̂ )̂<5‘) 2 - 4 .  (7.7)

5

vS
5t

Figure 7-1: A Time-Step in the Binomial Model

So, our Binomial Model allows the asset value to move up or down by a prescribed 

amount over a single time-step. If we fix the starting asset value to be S  at time 

t = 0, then the new value is uS  or vS  at time t =  5t. Extending onto the next 

time-step, our new possible values are u^S, uvS  or v^S.

It should be immediately obvious that we have a binomial situation here, and this 

is shown diagrammatically in Figure 7-2, the resulting tree structure. Combinatorics 

tells us that there are (") possible paths to the asset value v l ' S  at time-step 

t = n5t.

Thus, as there are more paths to the middle nodes in the tree, it is more likely that 

any particular asset evolution will attain this non-extremal values. In this way, the 

binomial tree gives results which approximate those obtained from using the gaussian 

density function for the lognormal asset walk.
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u^vS

4 2 cu V S

2 4cu V S

uv^S

Figure 7-2: The Binomial Tree

7,3 The Binom ial M odel and Option Pricing

We now need to show how we can use the Binomial Model to price an option.

The basic concept is that we know the value of the option at expiry, and so develop 

an algorithm that allows us to calculate the value of the option at time t using the 

value at time t + St i.e. we calculate backwards in time. We can do this at every level 

of the tree, eventually giving us a value at the root node, which is the option price 

V.

The reader should note that the argument below is similar to that of the derivation 

of the Black-Scholes equation given in Chapter 1.

Suppose then that we know the value of the option at t + 5t.

Consider a portfolio consisting of an option and a short position in a quantity A 

of the underlying asset. Then, at time t this portfolio has the value

n = -  A5, (7.8)
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where V  is unknown.

It follows that the value of the portfoUo at time t + 5t will be either V~̂  — AuS  

or V~ — AvS.

Our choice of model determines u and v, the asset price S  is known, and we 

have made no assumptions about the quantity A and so it is arbitrary at this point. 

Finally, we know the value of the option at time t + 5t, and so and V~ are also 

known. Thus, both the above values are known and depend on the value A.

We constrain the value of A by choosing that the value of the portfolio should be 

independent of movement in the asset price, giving us

-  AuS  = V~ -  AvS.  (7.9)

givmg us
V+ -  V~

A = 7 -------------------------------------------------(7.10)[u — v)b

The value of the portfoho at time-step t + 5t is

[U — V )  [U — V)

Since the value of the portfolio is independent of movements in the underlying 

asset, the no arbitrage condition means that its value must be equal to the value of 

the original portfolio along with any interest earned at a risk-free rate, so

5U = rUSt. (7.12)

After some manipulation this equation becomes

V + _ y -  u V ~ - v V +  
u — v {l + r6t){u — v)

This equation can be approximated to the first order as

e '‘'V  = p'V* + { l - p ' ) V - , (7.14)
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where
e,r 5t — V

P = (7.15)
u — V

7.3.1 B inom ial M odel C alculation

The algorithm for calculating an option price using the binomial method is straight­

forward and is shown in Algorithm 7-1. The algorithm requires two trees of equal 

size, one to hold the asset values and one to calculate the corresponding option prices:

A lgorithm  7-1 The Binomial Model 

P h ase  1: F illing  th e  A sset T ree

1 -  At the root node, the asset value is simply the starting price for the asset S.

2 -  Calculate the two child nodes using the given values for u and v in Eq. (7.7).

3 -  Repeat for all the successive child nodes until the tree has been filled.

P h ase  2: C alcu la ting  th e  O p tio n  P rices

1 -  Fill in the option prices for bottom tree level using the payoff function of the

and the two child values on the tree and V  in the above formula), calculate 
the option prices on the parent nodes.

3 -  Repeat from all higher parent nodes, the calculated value at the root node of 
the tree is the calculated option price.

u
1
2
1

V
u

option and the corresponding asset values given in the asset tree.

2 '  Using Eq. (7.13):

V  =
u — v ( 1 -|-r 5i)(w — i;) ’
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7.4 Tree M ethods and American Options

7.4.1 Converging Bounds M ethod

This method was first developed by Broadie and Glasserman[5].

It uses two tree/node asset price structures very similar to those used in the 

binomial method for pricing options to calculate an upper and lower bound for the 

American option, which converge as the accuracy of the algorithm is increased.

A lg o rith m  7-2 The Converging Bounds Tree Algorithm - Building the Asset Tree 

B uild ing  th e  A sset T ree

1 -  The root-node of the tree contains the initial stock value Sq.

2 -  Generate b values for each branch, using the stochastic formula

where (j)is & random variable drawn for a normalised Gaussian distribution, and 
N  dt = T,  where N  is the number of time-steps taken throughout the option 
lifetime.

3 '  Repeat this process at all the children nodes just created, and repeat until the 
whole tree has been filled.
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A lgorithm  7-3 The Converging Bounds Tree Algorithm 

Calculating the H igh Estim ate

1 -  Working from the t — T  nodes, the value at each leaf-node is defined to be the
exercise value, using the asset prices from the corresponding node in the asset 
tree.

2 -  Working backwards, the value at each node is the maximum of the exercise
value (using the corresponding asset price from the asset tree) and the average 
of the discounted expected payoffs from all the child-nodes.

3 -  Work back to the root node.

4 -  The high estimate is the calculated value at the root node.

Calculating the Low Estim ate

1 -  Working from the t = T  nodes, the value at each leaf-node is defined to be the
exercise value, using the asset prices from the corresponding node in the asset 
tree.

2 '  Working backwards, the estimate at the node is calculated as follows;

a) Assume each branch is labelled, Bi, with i going from 1 to b.

b) At Bi, we decide whether or not to exercise by calculating the expected
payoff of the other 6 —1 child nodes, B 2 , B 3 , ..., Bf,.

c) If this expected payoff is larger than the exercise value, the value at the 
node is the continuation value calculated from the Bi node, discounted for 
time.

d) Otherwise, the exercise value is used.

e) Repeat this calculation using B 2 , B 3 , ... Bt, as the continuation branch.
f) Average the results.

3 -  Work back to the root node.

4 -  The low estimate is the calculated value at the root node.



Chapter 8

Conclusion

During the course of our research, we looked at different methods for solving the 

Black-Scholes equation for vanilla options, both European and American.

Our primary goal was to find solutions for the American problem, as this problem 

does not have any analytical solutions.

Our first method was to use finite difference schemes to solve the problem.

The use of the Implicit, Crank-Nicholson and Van Leer Flux-limiting schemes are 

known in numerical finance, and we tested two new schemes, the fitted Duffy scheme, 

and a fitted version of the Crank-Nicholson scheme, showing that they performed well 

in situations where the Implicit and Crank-Nicholson have known limitations, i.e. 

when the coefficient of diffusion is small and the problem becomes singly-perturbed.

Secondly, we looked at stochastic methods, specifically variations on the well- 

known MonteCarlo approach.

Two new algorithms were discussed: the Interpolated Expectation algorithm and 

the Iterative Ito algorithm.

The Interpolated Expectation algorithm has a slight high bias on the interpolation 

mesh calculation but the full algorithm produces results which agree with the other 

methods. It has the benefit that once it is used, subsequent simulations are much 

faster, as the intepolation can be reused in different simulations.

This interpolation mesh can also be used to approximate the Greeks directly, 

avoiding the messy methods normally required from MonteCarlo methods in these
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situations, where values on volumes around the calculation points are required (all 

of them requiring the same sequence of random numbers).

The mesh generation stage is computationally expensive. Each point on the mesh 

requires a separate simulation to calculate its value, and this is expensive on large 

meshes. It was shown that if this mesh can be reused, substantial improvements can 

be made to the performance of this algorithm.

Overall though, the fact that this algorithm does not converge on the solution 

indicated by the Longstaff-Schwartz method and the finite difference solution indi­

cates that this algorithm is in need of improvement. Also, the initial generation of 

the interpolation mesh can take some time, and so the algorithm is best used when 

a number of prices are required at different stock prices.

The iterative algorithm was shown to calculate approximate values for the Delta, 

A, and Gamma, F, and I find this approach encouraging.

The Iterative Ito algorithm itself produces results with a low bias. This is due 

to the inaccurate estimation of the Ito updates {dV), resulting in sub-optimal early 

exercise of the option. As the option is being exercised at a time that is sub-optimal, 

the calculated price is lower than it should be, as the payoff is less than is achievable 

with a more optimal early-exercise mechanism.

Again, quite a lot of work is required to make this algorithm competitive with 

existing methods for the calculation of American option prices.

Tree methods were also briefly discussed, but were primarily used as a reference for 

other solutions and no new research was done into these methods. A few techniques 

using this method were illustrated and described.

Overall, the finite difference schemes were the most successful at calculating so­

lutions for the American options, both in terms of accuracy and computation time. 

However, our work was primarily based on looking at vanilla options, which have 

only a single space dimension S  and time dimension t.

MonteCarlo methods become much more useful for calculating the values of more 

exotic options, where the payoff is path-dependant and involves multiple variables.

In these cases, the use of finite differencing can quickly become expensive, both
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in terms of memory requirements and computation times, since these increase expo­

nentially as more dimensions are added to the problem space.

Also, when trying to calculate the value of portfolios, which involve a number of 

different financial derivatives, the finite difference approach quickly becomes unus­

able, due the the high-dimensionality of the resulting problem. In this case, Monte 

Carlo methods really come to the fore as they are much better equipped to deal 

with the problems introduced by having multiple financial derivates that need to be 

priced.

8.1 Further Work

A number of problems and further work came to light as a result of this work:

• For the finite difference approach, the requirement of having a boundary con­

dition at 5  —> oo means that when using a uniform mesh, large areas of the 

solution mesh are wasted. The use of non-uniform meshes would probably suit 

the problem better. In particular, I would like to take a look at the possibility 

of using a Shishkin meshes on this problem.

• For the finite difference approach, only vanilla options were researched. Asian 

options, which depend on averages of the stock price during the lifetime of the 

option, are very common in finance and need to be looked at, especially for both 

fitted schemes, the fitted Duffy Imphcit scheme and the fitted Crank-Nicholson.

•  The Interpolated Expectation algorithm spends most of the time generating 

the mesh of interpolation data. Our algorithms used 100 and 200 interpolation 

points, but it is worth seeing how small the mesh can be and still produce 

reasonable results, as this would greatly reduce execution times.

•  For the stochastic approach, only linear interpolation was used in the Interpo­

lated Expectation algorithm. It would be worthwhile investigating the use of 

cubic spline interpolation, or some similar higher order interpolation that uses 

more of the data points to calculate the values.
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•  The Iterative Ito algorithm cannot calculate a good approximation for Theta, 

0 , and this needs to be addressed.

•  One of the underlying assumptions of the Black-Scholes model is that the asset 

price moves according to Brownian motion (i.e. the underlying random process 

obeys a Normal distribution). Many studies have proved that this is false, using 

numerous approaches. One of the reasons for using the Iterative Ito algorithm 

was that it uses Ito’s Lemma directly. We would wish to look at non-gaussian 

distribution and try to calculate option prices using these distributions, as they 

more accurately reflect real-world movements.
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Option Pricing Problem s

A .l  Statem ent of the Pricing Problem s

A. 1.1 European O ptions

For European problems, we must find V{S, t) satisfying

dV  1 ^ d V  ^
dt 2^ dS^  ̂ dS ~  ’

subject to the boundary conditions:

European Call <

V{S,T)

V{0,t)

V{S,t)

= max {S — K,  0)

=  0

^  5 -  a s S ^ o o

European Put <

V{S, T) = m s i x { K -  S, 0)

v{o, t) =
V{S,t) —> 0 as 5  —> oo

(A.1.2)

(A.1.3)



A .l Statem ent of the Pricing Problem s II

A. 1.2 American Options

For American problems without dividends, the price of an American call is identical 

to that of a European Call. To find the value for an American Put, we find P{S, t) 

satisfying
1 Ftp

(A.1.4)dP  1 202 o n
^ ^ 2 " "  dS^ dS

subject to the conditions:

Am erican P ut <

P{S, T) = max {K -  5,0) 

P(0, t) =

P{S, t) —y 0 as S' —> oo 

P{Sf,  t) =  max {K — Sf,  0)

P{S, t) > max {K — 5,0)

(A.1.5)

A. 1.3 Barrier Options

The price function for a barrier option still satisfies the standard Black-Scholes PDE 

as in Eq. (A.1.1).
dV  1 ^
d t ' ^ 2 ' ^  dS^ ^  55

The effect of the barrier manifests in the boundary conditions, and depends on

whether the option is an ‘In’ or ‘O ut’ barrier option.

Out Barrier <

V{Su,t) = 0 for t < T  

V (0, t) same as for vanilla option 

V{S,T)  same as for vanilla option

(A.1,6)

In Barrier
V{Sb, t) = Vv{Sb, t) barrier reached

V{S, t )  = 0 barrier not reached
(A J.7)
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where Sb is the barrier value, and Vy is the price of a vanilla option of the same type 

as the barrier option.

A. 1.4 Asian Options

The value of an Asian option is given by

The boundary conditions depend on the details of the Asian option. Since we gener­

ally do not get conditions for I, we assume they are the same as for S.

A rith m e tic  A verage S trike  C all O p tions

The problem is to solve

In the above equation A is defined to be the average value of / ,  so we have

(A.1.8)

where

(A1.9)

(A .I.10)

where

C{ S, I , T)  =  m a x { S - A ,  0)

C{0, I , t )  =  0

A rith m e tic  A verage S trike  C all C{S, 0, t) =  0

C{S,  S -  as 5  ^  oo

C{S, I , t ) ^  S -  as /  ^  oo
\
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Geom etric Average Strike Call Option

The problem is to solve

dC 1 202 , ^ d C  ^ d C  ^  ^
d t ^  2^ dS^ ^  a /  ^  ^ ~  °

where

Geom etric Average Strike Call <

C { S J ,T )  = m a x { S - A , 0 )  

C{0,I, t)  =  0 

C{S,0,t) = 0

C{S, as 5

C{S, as I  -

In the above equation A is defined to be the average value of /, so we have

A =  exp ( -

(A.I.13)

GO

oo
(A.I.14) 

(A.I.15)

A rithm etic Average R ate Call Options

The problem is to solve
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where

A rithm etic Average R ate Call <

C(0, / , t) = max(yl — 0)

C { S , 0 , T ) ^ 0  

C{0, I ,T)  = 0

C{S, I , t ) ^  S -  as S

C{S,  as I  -

G eom etric Average R ate Call Options

The problem is to solve

where

dC 1 2 o 2 d'^c  ̂ ^ dC ^ d C  _ ^

G eom etric Average R ate Call <

C{S, I ,T)  = xn&x{A- K,0)  

C{S,0,T)  = 0 

C (0 , / ,T )  =  0

C{S, as 5

C (5 ,1,t) ^  S -  as I  -

A. 1.5 Lookback O ptions

For a look-back option, we find V{S,t)  satisfying

oo

oo
(A.l.17)

(A .l.18)

oo

oo
(A.l.19)

(A.l.20)



A .l Statem ent of the Pricing Problem s VI

with the conditions

Lookback Option <

V{S, J, T) = Payoff(5, J) 

V{0,J, t )  = 0

where J  is defined by

J  = max Sir)
0 < T < t

(A.l.21)

(A.l.22)



A ppendix B

Glossary

A .l Financial Instrum ents

This section explains the terminology used in this field, and defines the various types

of financial instruments dealt with in this work.

A. 1.1 O ption C ontracts

• Vanilla Options

O ption  C o n tra c t An Option Contract (or just option) is a financial contract 

which confers upon the holder the right, but not the obligation, to buy 

or sell a particular asset for an agreed price on an agreed date. The price 

and date are fixed and considered to be part of the contract.

S trike  P rice  The Strike Price is the agreed price for the asset in an option 

contract.

E x p iry  D a te  The Expiry Date is the agreed date in the option contract when 

the right to buy or sell must be exercised.

Payoff The payoff of an option contract is the value of the option at exercise.

C all O p tion  A Call Option is an option which confers the right to buy upon 

the holder.
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P u t  O p tion  A Put Option is an option which confers the right to sell upon 

the holder.

E u ro p ean  O p tio n  A European Option is an option which may only be ex­

ercised on the expiry date.

A m erican  O p tio n  An American Option is an option which may be exercised 

throughout the lifetime of the contract until the expiry date.

• Asian Options

P a th -d e p e n d e n t O p tion  A path-dependent option is an option in which the 

payoff of the option is dependent on the history of the underlying asset 

during the lifetime of the option.

A sian  O p tion  An asian option is a path-dependent option in which the payoff 

at exercise is dependent on the history of the underlying price through an 

average of some kind.

A verage R a te  A sian O p tio n  An average rate asian option is an asian 

option in which the dependancy of the underlying in the option payoff is 

replaced with the average of the underlying value throughout the lifetime 

of the option.

A verage S trik e  A sian O p tio n  An average strike asian option is an asian 

option in which the dependancy of the strike price in the option payoff is 

replaced with the average of the underlying value throughout the lifetime 

of the option.

C on tinuously  Sam pled  A verage A continuously sampled average is an av­

erage where the value being averaged is measured continuously throughout 

the averaging interval.

D iscre te ly  Sam pled  A verage A discretely sampled average is an average 

where the value being averaged is measured at a finite number of points 

throughout the averaging interval.

• Barrier Options
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B arrie r  O p tio n  A Barrier Option is a weakly path-dependent option whose 

value depends on whether or not the price of the underlying crossed some 

fixed point during the life-time of the option. In general, the actual payoff 

of the option is only dependent of the asset price at expiry.

O u t B a rr ie r  O p tio n  An Out barrier option is an option which expires worth­

less if a defined barrier is reached.

In  B a rr ie r  O p tio n  A In barrier option is an option which expires worthless 

if a defined barrier is not reached.

U p  B arrie r  O p tio n  An Up barrier option is an option where the defined 

barrier is above the initial value of the underlying asset.

D ow n B arrie r  O p tio n  A Down barrier option is an option where the defined 

barrier is below the initial value of the underlying asset.

B a rrie r  O p tio n  R eb a te  A Rebate on a barrier option is the amount paid to 

holder when a barrier is reached on a barrier option.

• Lookback Options

Lookback O p tion  A Lookback option is a path-dependent option where the 

payoff of the option depends on the maximum or minimum value of the 

underlying asset attained during the lifetime of the option contract.

A. 1.2 Bond Contracts

B ond C o n tra c t A bond contract is a contract, paid for up front, which pays a fixed 

amount at some date in the future. The amount and date of payment are fixed 

and considered part of the contract.

M a tu r ity  D a te  The maturity date of a bond contract is the date at which the 

seller of the bond must pay the holder of the bond the agreed amount in the 

contract.
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C oupon  A coupon is a known cash dividend paid out to holders bond contracts at 

fixed dates during the lifetime of the bond. Coupons are considered part of the 

bond contract.

Z ero -C oupon  B ond A zero-coupon bond is a bond contract which does not pay 

out any dividends during its lifetime.
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