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Abstract

This thesis explores the physics o f foam s, particularly those that are wet (i.e. have a high 

liquid fraction). The properties which are m easured here relate to structure, drainage and 

rheology.

We have perform ed the first published Stokes experim ent in a foam  [41 ]. and com pared 

results with estim ates derived from  the H erschel-Bulkley model for rheology.

The first extensive, system atic experim ents on drainage driven instabilities reveal as­

pects hitherto unreported, including hysteresis and the existence o f a cylindrically sym ­

m etric case. We offer a prelim inary theoretical analysis o f the case in which the colum n is 

tilted.

O ther new results relate to the structure o f finite 2D clusters [93].



Summary

The main focus o f  this work is on some particular problems that arise when an aqueous 

foam becomes wet. These problems are related to the flow of the foam itself (rheological 

properties) and the flow of liquid through the foam (drainage).

We start by making a general introduction o f  foam in Chapter 1. The main terms and 

definitions used in this thesis are covered, paying particular attention to the drainage o f  a 

liquid through the foam and the characteristics of flow in different materials.

In a version of the Stokes experiment, we have dropped spherical beads of known 

diameter and weight into a column o f  foam (Chapter 2). Only some of these beads can 

overcome the yield stress o f  the foam and sink immediately. The experimental results are 

compared with a model that considers foam as a Herschel-Bulkley fluid.

The following chapters (Chapters 3 to 5) study the important phenomenon o f  convec­

tive instabilities produced by forced drainage in foam. We have studied these instabilities 

in vertical cylindrical tubes, in Hele-Shaw cells and in tilted tubes. We have studied the 

relation of these instabilities with the liquid fraction in the foam, giving some experimental 

curves to describe how they vary. An interpretation of the convective instabilities in terms 

of the yield stress o f  the foam and inhomogeneous liquid fraction is proposed as a model 

for the system. This leads to satisfactory predictions for the tilted tube, and a preliminary 

analysis o f  the more difficult case of instability in a vertical tube.

Drainage experiments are also conducted in 2D foams. During these experiments using 

2D foams, an interest arose in finite clusters of 2D bubbles. Some results on the minimal 

energy configuration of these clusters are included in Appendix B. Some further appen­

dices include details on experimental foam formation and explanations of computational 

packages used on development. Reference is made to an additional internal technical report



on related research not included in this thesis.
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tube. After that, we decrease the flow rate (dotted line). This shows hysteresis 

(the area shaded in black) in the onset of CSI. An example of the experimental 

data is shown in Fig. 3-11, where the shaded regions have been omitted. For most 
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3-12 The velocity of the bubbles in CSI when the liquid fraction is increased until 

the motion is fully developed and decreased afterwards. The bubble radius is 
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a centred input. The same tube diameters used in Fig. 3-11 are shown together 
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3-16 Dependence of the critical liquid fraction at the onset of the convective rolls with 
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Chapter 1

Basic notions

1.1 Motivation

This thesis deals with some aspects of the physics of foams [1], The basic knowledge 

of physical properties for dry static foam is sufficient to picture a quite complete theory 

(see Fig. 1-1). This theory has been gained using a variety of different approaches that 

combined experiments, mathematical modelling and computations. There has been a pref­

erence to use 2D geometries in experiments and simulations for the sake of simplicity. But 

with the availability of more computational power and tools, 3D geometries have provided 

new insight into the foam structure. The Surface Evolver [2] (Appendix F) calculations on 

minimal bubble areas [3] can be mentioned as an example of the latest developments.

Areas in which we have a good understanding about foams include the structure, elec­

trical conductivity profiles and elastic deformation of the foam and how these properties 

change with the addition of amounts of liquid small enough for the foam to remain close 

to the dry limit. Some aspects, as drainage of liquid through the foam and foam flow prop­

erties, are fairly well understood but subtle questions related to these fields remain under 

debate: one example is the choice of boundary conditions to represent the Plateau borders 

when calculating the drainage equation on a foam. This problem will be explained in some 

detail at Section 1.4.



Wet foam physics and dynamics still pose us interesting questions that have not been 

explained (Fig. 1-1).

Rapid structural 
changesDYNAMIC,

UNSTABLE
Film rupture

Dynamic effects 
in films

Avalanches

Convective
instabilities

Bubble
sorting

Successful theory 
and experiment 

1990 -  1999 Local structural 
changes

Rigidity
loss
transition

STATIC,
STABLE

►DRY WET

Figure 1-1: Some of the main challenges at present in the physics of foams. The figure is repro­

duced from [4] with the kind authorisation of the authors.

This thesis deals with some o f these unexplained effects in wet foams. This chapter is 

dedicated in fu ll to a review o f what is already known and relevant to what follows.

Firsly, it is necessary to define what is a foam, and introduce the main laws that govern 

foam behaviour. These rules w ill be grouped in four aspects: structure, drainage, rheolog- 

ical properties and coarsening and rupture:

STRUCTURE Foam structure conforms to simple geometrical rules. We w ill describe 

the laws for the equilibrium  o f a single bubble (Laplace law) and consider how two 

bubbles become in contact (Plateau rules). When many bubbles come together, sta­

tistical measures o f the behaviour o f the foam are also needed.

DRAINAGE We use the term drainage to describe the motion o f a liquid through the 

foam. As we w ill see, foam is composed o f a certain amount o f liquid and this 

liquid plays an important role in the behaviour and properties o f the system (rheology
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included). We have performed experiments in which a source of liquid is added at 

the top of the foam. Therefore, we should describe how this liquid percolates into 

the heart of the foam and the difference that the liquid makes in its properties.

RHEOLOGY Foams behave both as a solid and as a liquid, depending on external con­

ditions. This behaviour is common to foams and many other materials, that are 

currently known as plastic  materials. The capacity of foam to flow above a certain 

stress, makes possible the Stokes experiment, in Chapter 2. The existence of a yield 

stress is also an important aspect of the explanation of the convective instabilities 

described in Chapters 3 to 5.

COARSENING AND RUPTURE We all know from experience that bubbles do not last 

forever. This is a factor to be taken into consideration when experiments are made. 

The concepts of coarsening and collapse will be defined and the methods to minimise 

their effect during experiments will be noted.

1.2 Definition of a foam

Bikerman [5] says in his books devoted to the subject that ‘foams are agglomerations of 

gas bubbles separated from each other by thin liquid films’. Weaire and Hutzler [1] refer to 

a foam as ‘a two-phase system in which gas cells are enclosed by liquid’. Both definitions 

share the reference to two different phases, gas and liquid.

We are going to restrict ourselves to aqueous foams, which are gas-liquid mixtures. 

Other colloids, such as emulsions (liquid-liquid mixtures) and solid foams (often solidified 

liquid foams) share many properties with aqueous foams.

1.2.1 Term definitions

Bubbles or cells The bubbles or cells are any of the gas volumes that compose a foam. 

Each of the bubbles is partly surrounded by walls, which are called films.

Films The films or lamellae enclose some liquid. They are commonly stabilised by ad­

ditives called surfactants (see Fig. 1-2). The surfactant (surface active constituent)

3



also lowers the surface tension of the films.

Edges or Plateau borders The edges are the lines formed by three films coming in con­

tact. They are also known as Plateau borders after Joseph Plateau, who described the 

rules that soap films follow to join together. Plateau borders will expand and thicken 

into channels when liquid is added to a dry foam.

Vertices or nodes A vertex is the point where several edges join. The term node is also 

used to refer the same point.

F igure 1-2: A soap film, containing amphiphilic molecules. These are chemicals formed by two 

parts. One o f them attracts liquid molecules and the other repels them. The physical chemistry 

inside the films can be very complicated, including dynamic effects such as Marangoni convection  

which are beyond o f the scope o f this thesis.

1.3 Foam structure

1.3.1 Young-Laplace law

The interface in a 3D bubble obeys the Laplace law ':

' Sometimes also referred as Young-Laplace

GAS

LIQUID

GAS
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A p  =  A'y/r =  2 jfo a m /r , ( 1 . 1 )

where A p  stands for the pressure difference betw een the inside and the outside o f  the 

bubble, 7  is the surface tension or surface energy per unit area and r is the local radius 

curvature o f  the surface, related to the principal curvatures by 2 / r  =  1 /r i  +  l / r 2. The 

factor 4 takes in account that the film is formed by tw o layers. N ote that when the surface 

tension is renamed to be 7 /oam =  2 7 , the form ulation in Eq. 1.1 is equivalent to the most 

usual form o f  the Laplace law in an air bubble im m ersed in water [1].

1.3.2 Plateau rules

In the XIX  century, the Belgian scientist Joseph Plateau described the main rules o f  equ i­

librium f o r  soup film s  (Fig. 1-3). T hese laws are valid for dry foam s, but they can be 

adapted to som e extent to wet foam s, as w e w ill describe in Section 1.4.

120 degrees

approx.approx. 109 degrees

Figure 1-3; Plateau rules for dry films.
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•  The first equilibrium law says that

-  in a dry foam films can only intersect three at a time and with an angle of 120°.

-  only four edges can intersect in every vertex with perfect tetrahedral coordina­

tion. This implies a characteristic angle called sometimes Maraldi angle with 

value 9 =  cos“ ^(—1/3).

•  The second equilibrium rule says that a Plateau border joins the films at which it is 

attached at a zero angle (the surface normal is the same at both sides of the intersec­

tion).

These laws can be adapted to a 2D foam, where edges intersect three at a time at 

120°. Plateau was completely blind when he described these laws, and he gained all the 

experimental data that needed for his theory using descriptions of other people and by 

visualising them in his mind.

1.3.3 The many bubble problem

The laws we have described previously are local equilibrium rules. As foams are formed by 

a large number of bubbles, a more extended theory, that describes the rules of coordination 

of multiple bubbles has also been proposed [1], An example are the statistical distributions 

of bubble area ^(.4;,) and number of edges p{n)  proposed for two dimensional foam

In a 2D dry foam, n  =  6 that is, the average cell has 6 edges (and vertices). This 

result will be used in Appendix B when we try to find the minimum configuration for a 

bi-disperse cluster. It is derived directly from Euler’s theorem for cellular patterns, which 

we state in its 2D form in Eq. 1.2. Euler’s theorem links the number of films F ,  edges 

E  and vertices V  in these materials with a parameter ip that depends only on the surface 

where the cells are constrained:

F - E  + V  = ip. (1.2)

^For three dim ensional foam , the distributions o f  bubble volum e and number o f  faces are defm ed in a w ay  

equivalent to these. For experim ental convenience, the two dim ensional case is studied more often.
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1.3.4 Topological changes

Among the most interesting phenomena in the structure of a foam are the topological 

changes that occur both in 2D and 3D foams. The most elementary changes are the so- 

called T1 and T2 processes, in a nomenclature due to Weaire and Kermode [6], Other 

changes are combinations of these ones.

A T2 change consists of the shrinking and disappearance of a three-sided cell (2D) or 

a tetrahedral bubble (3D) as is sketched in Fig. 1-4.

T2 in three dimensions.T2 in two dim ensions

Figure 1-4: In the T2 process in 2D a three-sided cell vanishes. It is similar in 3D with tetragonal 

bubbles.

T1 changes are more complicated. A vertex can become unstable (by having more 

edges attached than the number allowed by Plateau rules) at some point in time. This may 

be due to evolution (coarsening), caused by internal (gas) pressures or external (shear) 

forces. This will lead to a change in the connectivity of the edges concerned. The unsta­

ble vertex dissociates in two and the relationships between neighbouring cells changes. A 

rough sketch of T1 changes is represented in Fig. 1-5.
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e d g e  in  7. d i r e c t io n

T1 in two dimensions T1 in three dimensions

Figure 1-5: The T1 changes in 2D and 3D dry foams. In 2D foams, a four-fold unstable ver­

tex is broken. For 3D foams an elementary rearrangement exists that it is similar to the T l two- 

dimensional process (shown right up). However, the most common form of rearrangement that is 

observed in three-dimensional foams is the multiple process shown right down.

Topological changes are frequent in a coarsening foam and when the foam is subjected 

to shear.

1.3.5 Osmotic pressure

The osmotic pressure is analogous to the pressure that equilibrates the concentration of 

particles in solutions, hence the name. In a very wet foam, the bubbles are almost spherical 

and the contact between them is minimum. When the foam dries out, the bubbles are 

compressed together. They adopt polyhedral shapes that increase their surface energy. If 

liquid is free to enter or leave the system, the bubbles must be held in equilibrium by an 

external pressure - the osmotic pressure.

The osmotic pressure can be defined as the variation of the surface energy of the foam, 

F , in all the volume of the foam, V':
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(1.3)

where it is assumed that the gas volume \ 'g does not vary.

The osmotic pressure depends on the Hquid fraction. It goes from zero in a very wet 

foam to infinity in a dry foam. Simulations made on 2D polydisperse foams [ 1 ] have shown 

a good agreement with a quadratic dependence on liquid fraction, (pi.

where a and b are constants.

The osmotic pressure also depends on state of the elastic deformation of the foam. This 

is a second order term that can be neglected in many cases but it may play an important 

role in the explanation of the convective instabilities in Chapter 3.

1.4 Drainage

The liquid content in a foam is quantified by the liquid fraction (f)i, the ratio of the volume 

of liquid in the foam to the total volume of the foam. The experimental liquid fraction of a 

foam can often be estimated using the Archimedes principle (see Appendix D).

In our experimental work, we often add some liquid on top of the foam. This liquid 

is the same surfactant solution used to form the foam. The flow  rate, Q, is the volume of 

fluid added per unit time. There is a simple relation between flow rate and liquid fraction 

in a uniformly draining foam [1]:

The proportion of liquid or wetness of the foam determines many characteristics of the 

system; the Plateau borders thicken into channels; the vertices grow and, at a certain point, 

cannot be regarded as points any longer. Bubbles become more spherical in a wet foam.

'K = a { b - (1.4)

(1.5)

^The gas fraction  <p is defined as the ratio o f  the volum e o f  gas in the foam to the total volum e o f  the 

foam: (p =  I ~  4>i.
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All these changes translate into different values for the physical parameters of the foam; 

elastic and rheological properties vary with the liquid content.

There is an equilibrium profile of liquid fraction under gravity in the vertical direction 

of the containers, with a dry foam at the top and wet foam at the bottom of the sample. The 

excess liquid is drained out of the foam.

In this thesis, drainage plays an important role: the instabilities described in Chapters 

3 to 5 only appear at a certain liquid fraction.

We will describe first different ways to input liquid on top of a sample. Each of these 

will lead to a different vertical profile under gravity. Then, we will comment on the struc­

ture changes, which happen when there is an input of liquid in the foam. Drainage in a 

foam can be described mathematically by a nonlinear diffusion equation. There has been 

quite a debate regarding which form this equation should take. One of the forms of the 

equation is based in assumptions that concentrate all the flow dissipation in the channels 

(Plateau borders) and ignores node effects. The other one is node-dominated and neglects 

the channel contribution. The use of the channel-dominated form of the equation will be 

justified experimentally for the type of surfactant that we use in the experiments. The 

channel-dominated equation can be corrected to take the effect of the nodes to account

1.4.1 Free drainage, forced drainage and pulsed drainage

The most simple drainage experiment would occur when foam is left to drain on its own 

after formation, in what is known as free drainage. It is possible to measure the amount of 

liquid drained out from the foam as a function of time. Free drainage has fairly complicated 

mathematical solutions, but some recent work has been aimed at explaining some of their 

simplest features [7].

Forced drainage is established when an amount of liquid is input steadily into the foam. 

If we start the experiment with a dry foam, the liquid travels through the foam in the form 

of a solitary wave. An interface separates the wet part from the dry one. The solitary 

wave triggers local rearrangements in its way on the foam. When the input is constant, 

we can talk about forced stationary drainage. This is a very interesting case, as once the
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solitary wave has passed, the vertical liquid profile in the foam should be approximately 

homogeneous. This is a uniform wet foam, although not in equilibrium, in the usual sense.

Another way to study drainage in foam is pulsed drainage. A pulse of liquid is added 

on top of the foam and we can study how it spreads with time.

1.4.2 The growth of Plateau borders

Figure 1 -6: The Plateau Borders (left) increase their volume when the foam becomes wet. Four o f  

them join in a junction (right), follow ing the Plateau rules represented in Fig. 1-3, in the dry limit.

In wet foam, the bubbles become more spherical. The Plateau borders thicken and 

become channels in which the water percolates through the foam. The union between the 

Plateau borders is no longer a point-like vertex. The general case is that the three curvatures 

of the films that form the Plateau border are different. However, it is convenient to neglect 

the longitudinal curvature in many cases. In this way, the cross-section A p b  of the Plateau 

border can be written as:

where 5  is the width or radius of curvature of the Plateau border (see Fig. 1-6) and Cg a 

geometrical constant.

The volume of a Plateau Border in a dry foam is then:

'X 's

—  Cg5, ( 1.6 )
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^ P B  — - ^ P b L . ( 1.7 )

A com putation o f  a w et Plateau border and a fo u r-fo ld  vertex  or te trah edra l junction  

(the junction o f  these channels together) made using the Surface E volver [2] is shown in 

Fig. 1-6. For w et foam s, the Surface E volver calculates the shape o f  the junction, once 

given the width, <5, o f the Plateau borders that join  at it (related to the liquid fraction on the 

foam ).

Plateau rules can be adapted to wet foam s to a certain degree. This has been done suc­

cessfu lly  in 2D  m odels [8] using the so-called  ’decoration lem m a’. It states that given a 

picture o f a dry foam , it is possib le to create an equilibrium  wet foam  just by ‘decorating’ 

each threefold vertex with Plateau borders. The Plateau borders have to fo llow  Plateau 

rules and do not overlap. The ‘decoration theorem ’ also works approxim ately  in 3D  [1],

1.4.3 The drainage equation

Several theoretical m odels have been described to predict the drainage behaviour in aque­

ous foam . A ll o f  them take the form o f  non-linear partial differential equations and neglect 

the contribution o f  film s to drainage (w hich is minor compared to the flow o f  liquid through 

Plateau borders).

Goldfarb e t al. [9], derived for the first tim e the channel- dominated form o f  drainage 

equation. The formulation w e are going to use has been reproduced from the paper o f  

Verbist and W eaire [10] in which this equation was independently derived and called as the 

fo a m  drainage equation  for the first time:

Here a , ^ and r are non-dim ensional variables obtained from the cross-section o f  the 

Plateau border, the downward vertical coordinate and time, respectively. The main steps 

for the derivation o f  this form o f  the equation are included on Appendix C.
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The equation described above only accounts for drainage in one dimension but it has 

been generalised to two and three [11]. Saint-Jalmes et a i ,  have attempted to apply it

for an arbitrary container shape [12], The effects of gravity in the drainage equation have

received some interest in the last years [13, 14], linked in part to the possibility of perform­

ing experiments in microgravity conditions [15]. The microgravity experiments are often 

mentioned as a way to avoid the convective rolls described in this thesis.

The drainage equation (Eq. 1.8) has shown a great deal of accordance with experimen­

tal results. It has an exact solution in form of a solitary wave whose velocity V" relates with 

the flow rate Q  following the power law:

Q ( x V \  (1.9)

This result has been corroborated experimentally several times [16, 17, 18].

In 1999, new experimental results obtained by Koehler et al. [19] using improved 

methods were not in accordance with the dependence shown in Eq. 1.9. These experimen­

tal data show a solitary wave profile, but the dependence of flow rate Q  with the velocity 

of the front V  is found to be;

Q o c V \  (1.10)

The authors explain their result writing a new form of the drainage equation, at which 

there is full-slip conditions at the walls of the channels, the opposite of the (Poiseuille) 

assumption previously used. The nodes viscous contribution becomes dominant and the 

result is a new equation which has a solution for the solitary wave follows the power law 

expected in Eq. 1.10. This approach is known as the node-dominated foam  drainage equa­

tion.

The explanation to this dilemma came in the form of two different bottles of dishwash­

ing liquid. Both equations seem to agree with experimental results obtained at different 

sides of the Atlantic. While Hutzler et al. [17] use the commercial dish-washing liq­

uid Fairy for all the experimental work made in their group, the Harvard group [19] uses 

Dawn, a fairly more popular brand in the U.S.A. It seems that Fairy liquid produces a foam 

with different surface properties, a higher surface viscosity among them. This makes the
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assum ption o f Poiseuille flow a good one. Dawn produces a foam  with com paratively low 

surface viscosity (so that dissipation has to be dom inated by the existence o f nodes in this 

case). Leonard and Lem lich had already noted that the rigid-wall hypothesis could fail in 

som e cases [20].

Brannigan and de A lcantara Bonfim [21] suggest a dependence o f the velocity o f the 

solitary wave on the boundary o f the tubes which contain the foam. And the dependence 

o f drainage on the surface properties o f the surfactant was corroborated recently by the 

data of D urand et al. [22]. They m easured the velocity o f the solitary wave for a single 

surfactant (SDS) with different am ounts o f dodecanol. Dodecanol form s rigid layers with 

SDS increasing the surface viscosity and the surface elasticity at the gas-w ater interface. 

An increase in the am ount o f dodecanol in the system  gives results closer to the channel- 

dom inated limit. Experim ents carried out by Koehler et al. [23] seem to confirm  further 

the idea o f surface viscosity playing an im portant role in drainage. However, a theoretical 

model by Durand and Langevin [24] suggest that the surface elasticity is the main factor in 

drainage, neglecting the effect o f surface viscosities. This has been contested, at least for 

slender Plateau borders, where the transverse shear viscous contribution is im portant [23], 

and surface elasticity now seem s to be relatively insignificant in the standard experim ents.

It seem s plausible that all surfactants will flow with properties which lie betw een these 

two extrem e behaviours. Efforts to jo in  the effects of both equations in a single hybrid 

foam  drainage equation, o f which the channel-dom inated form and the node-dom inated 

form  are extrem e cases, are being undertaken at present [25, 24]. In this thesis, all our data 

are taken with Fairy Liquid and we accept the channel-dom inated foam  drainage equation 

as our standard flow equation, as it has been validated for our surfactant type in several 

occasions [17, 24].
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1.5 Rheology

Some materials present a complicated type of flow, which makes them behave both as 

solids and as liquids depending on external conditions. There are many examples of this 

plastic behaviour (paint, cosmetics, spreads and so on). We can observe that in most cases 

the flow properties are fundamental for the good performance of these materials, especially 

in the ones developed as industrial products. A typical example is paint, which should flow 

when you coat the brush and stay on the wall as soon as you spread it. A good knowledge 

of the theoretical background of this flow allows to control the properties related to it. 

Foam also shows this flow property: everybody who has played in a bubble bath as a child 

has tried to retain some water on their hands. We all know that it is extremely difficult 

because water escapes between your fingers. If we try to repeat this trick with foam, we

discover that it stays in your hands and it only flows when we squeeze it. The yield stress,

which determines the onset of flow is a key property.

1.5.1 Flow properties of materials

It is convenient at this point to introduce some terms of common use throughout the next 

chapters. These ideas are fundamental in order to understand and develop a theory of 

flow, and it is worthwhile to have a clear and rigorous definition of each of them. These 

definitions are taken from references [26, 27, 1, 28].

shear: In a two-dimension material we can define simple shear by:

x' = X + Cy (1.11)

y' =  y ,

while extensional shear can be defined by:

x'  =  (1 +  e)x (1.12)

y' =  (l +  e)“ 2̂/,

In linear elasticity both types of shear are equivalent under a rotation by tt/ 4 of axes 

with ^ =  2e.
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shear stress or stress: It is defined as the external force applied to the system per unit

strain: It is a relative displacement of the atoms of a solid (A ///)  for extensional shears 

and the angle of displacement for shear stress. The symbol used to represent strain 

in this thesis is e.

shear modulus: The stress and strain can be represented by tensors and we can write their 

relation as follows:

which is only valid when the material follows Hooke’s law and the shear we are 

applying is into the elastic range. Using this formulation, it is easy to separate the 

three components of the equation in tensorial form and treat the effects of extensional 

and simple shear separately. Gij is the stiffness matrix. G, the shear modulus is the 

ratio between the shear stress and the total shear strain on the plane at which we are 

considering the shear occurring.

shear rate: This is the rate of change (derivative) of shear strain in time. We will represent 

shear rate by the symbol e

yield stress: Some materials do not start flowing apparently when a small shear stress is 

applied. In these cases, the yield stress is defined as the point at which the mechanical 

properties change dramatically and liquid-like behaviour starts.

creep Many solids and soft materials also experience a ‘slow but continual steady defor­

mation when stressed for a long time below this level’ (for the yield stress) [26], 

This phenomena is known as creep. However, the concept of yield stress previously 

defined can be applied because it remains valid in practice.

viscosity: Newton’s law for viscous fluids gives a proportionality

area. Its units are Pa {N/rn?) in I.S. It will be represented in this thesis by the 

symbol S.

(1.13)

(1.14)
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where | |  is the gradient of velocity (or shear rate) in the fluid and S  is the stress. 

is the coefficient o f  viscosity of the fluid, often called just viscosity.

Viscosity is measured in P a  s {N  s / m ^ )  and it is represented by us using the symbol 

7 7. A quantity often used in experimental work is the effective viscosity, rjef f .  It is 

defined as the ratio of shear stress and shear rate. This definition is related to that 

above, but the viscosity becomes a variable.

Another common term is the kinematic viscosity, r], that is defined as the ratio be­

tween viscosity and density in a fluid V ~  p-

For materials that present a yield stress a quantity called plastic viscosity, rjp, is de­

fined in Section 1.5.2.

Newtonian and non-Newtonian flows: For certain fluids, the value of viscosity, r/, is in­

dependent of time (or time derivatives) and does not change with the shear stress 

applied to the liquid. Under these conditions, 77 is just a constant of proportionality 

between shear stress and shear rate (it follows Newton’s viscous law in Eq. 1.14) 

and this type of flow is what we use to call Newtonian flow. Other types of flow that 

do not have that simple behaviour are called by opposition non-Newtonian.

Under the denomination of non-Newtonian, is it possible to find many different types 

of flow. The rheological classification that follows is suggested in [29]:

1. Time independent fluids

(a) Shear-thinning/Shear-thickening: Sometimes also called pseudo-plastic/dilatant

fluids. The effective viscosity decreases/increases with increasing shear rate. 

The process is reversible without time lag.

(b) Viscoplastic fluids: A finite yield stress is required to start the flow.

2. Time dependent flows

"^This is due to a traditional association between shear thickening and dilatancy [27]. Both effects are not 

connected, at least not in a sim ple way, and as we are going to use the diiatancy in the original sense given  

to the term later in this thesis, w e w ill avoid this notation.
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(a) Thixotropic fluids: These materials present a special kind o f  shear thinning 

dependent on time and followed by a recovery of the material. Changes in 

viscosity in this type of materials are not instantaneous. A typical example is 

non-drip paint.

(b) Viscoelastic fluids; They present both elastic and viscous properties.

Foam presents a combination of several of these properties, depending on time scale. 

There is a time variation of the viscosity due to the ageing of the foam. We will explain 

in Section 1.6 how coarsening is not an extreme concern to our experiments. If we neglect 

this coarsening variation, foam can be treated fairly as a viscoplastic material.

We can see a schematic representation of different types of time independent flows in 

Fig. 1-7.

1.5.2 Mathematical models for viscoplastic flows, including foam

The first model that we present includes a linear relationship between strain and stress 

above the yield stress:

S  = Sy + j]j, e, (1.15)

and it is called the Bingham model.

In this formulation Sy,  the yield stress, and r/p, the plastic viscosity, are constants that 

depend on the fluid.

Some analytical exact solutions exists for the Bingham model fluid subject to boundary 

conditions, as in the case of tangential annular flow, thin slits or tubes [30] and a semi­

infinite bulk fluid with a planar boundary [31]. Sekimoto [32] has also studied the motion

of the yield surface at a Bingham fluid undergoing lateral shear.

The simplicity of this model makes it desirable to extend to some cases where a yield 

stress exists but linear fitting of the data above the yield stress is not possible. The Herschel- 

Bulkley model,

S  = Sy +  Kpe ' ^ ,  (1.16)
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F ig u re  1-7: D ifferen t resp o n se  u n d e r sh e a r  stress fo r  so m e  charac te ris tic  types o f  fluids in w hich  

v iscosity  is in d ependen t o f  tim e. A /N ew to n ian  flow, v isco sity  (r;) is a  constan t, co rresp o n d in g  w ith  

the s lo p e  o f  the line in th is case . B ,C / S h ear-th in n in g  an d  shear-th ick en in g  fluids start flow ing  as 

soon  as a  shear s tress is ap p lied , but in bo th  cases  a ch a n g e  occu rs in v iscosity  w h ile  the s tress is 

ac ting . In shear-th inn ing  flu ids tha t ch an g e  ac ts  to  d ec rease  in the v iscosity  o f  the m ateria l. T he 

case  o f  sh ear-th ick en in g  flu ids is the o p p o site  one , th e re  is an apparen t inc rease  in viscosity . D / 

V iscop lastic  fluids sta rt flow ing  at a  ce rta in  sh ear s tress d iffe ren t to  zero . T h is  th resho ld  is the  y ie ld  

stress.

provides a framework for these cases. Kp  is a constant called the plastic consistency. 

its dimensions depend on the value o f m. Kp  becom es rjp when m  =  1. Materials that 

follow the Herschel-Bulkley law (Eq. 1.16) are often referred as presenting shear-thinning 

(m  <  1) or shear-thickening (m  >  1) behaviour [27],

The validity and range o f application of these models depend on shear rate. Bingham  

(Eq. 1.15) and Herschel-Bulkley (Eq. 1.16) describe quite well the behaviour of shear- 

thinning materials at very low shear rates but one has to be careful to work on a narrow 

range o f shear rates [33].

The power law model:

7 ] e f f = C i e ^ ~ \  ( 1 .1 7 )
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where Ci is a constant that depends on viscosity and shear stress, increases in three times the 

range of shear rates in which it can be used accurately respect to Bingham, but fails at very 

high shear rates, where the local value of power is approaching to unity in experiments.

1.5.3 Shear modulus and yield stress on foam

The rheological behaviour of foam is still obscure to some extent [1]. But it is clear that 

foam belongs to the kind of materials known as soft matter: it presents a quite low yield 

stress beyond which it flows and behaves like a liquid. For stresses below this yield stress 

the response is solid-like. A sketch of the typical stress-strain diagram for a dry foam is 

shown in Fig. 1-8.

LIQUID

yield stress

bubbles
rearrange

PLASTIC
SOLIDstress

ELASTIC
SOLID

elastic
modulus

strain

Figure 1-8: Sketched stress-strain relation for a liquid foam. Note the three different regions of 

behaviour (elastic solid, plastic solid and liquid). The diagrams of simulations in two-dimensional 

foams (which can be found in [34]) have a quite similar look. One can see a linear elastic relation 

for low stresses and a fluctuating behaviour of stress for larger strains, due to topological changes 

in a finite sample. Reproduced from [I].

The elastic modulus, G, of a foam depends only slightly on the geometry of the foam
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and more significantly on the bubble size and the liquid fraction. In the dry limit, G is 

found to be:

C  =  (1.18)a
where c is a dimensionless parameter, dependent on the structure of the foam and d the 

average diameter of the cell or the bubble. This formula is valid for both two and three- 

dimensional foams. The parameter c is roughly of order unity [ 1 ]. For example, the ordered 

hexagonal two-dimensional structure (also known as honeycomb) gives the value G =  

where a is the initial edge length and c=

Unfortunately, there is no corresponding exact result for the foam in three dimensions, 

but some approximations lead to the Stamenovic estimate G =  where the average of 

the elastic modulus is taken for generality (non-isotropic structures are included) and 

and V'fc are the surface area and the volume of the bubbles respectively.

If we add a small amount of liquid to the foam, applying the decoration theorem we 

can expect the change in the shear modulus G to be small. Overall, the modulus seems 

to have a roughly linear variation with 4>i [35, 36, 37] in 3D. Modest increases of liquid 

fraction lower the yield stress quite clearly, as some simulations carried out by Hutzler 

and co-workers [38] show. In this case a quadratic variation in the form {(j)'( — is 

generally accepted. As we move closer to the rigidity loss transition, the difficulty of both, 

experimental and computational work is greatly increased [39] and we enter a regime for 

future research.

1.6 Coarsening and collapse

Whatever method we have used to prepare foam, the gas diffuses among the bubbles. The 

rate of diffusion is going to be dependent on the solubility of the gas in the fluid. Some 

general values for the solubility of the most common gases in water are reproduced in 

Appendix D.

The diffusion of gas depends mainly on the pressure differences between two bubbles. 

The smaller bubbles have higher gas pressure than the bigger ones (Eq. 1.1). The direction 

of gas diffusion is therefore from the small bubbles to the big ones. Eventually some of the
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small bubbles will collapse and disappear, causing the increase in the average diameter of 

the bubbles [I], according to:

d oc {t — (1-19)

at least asymptotically.

We are not going to discuss this topic in full, as it is far from the subject of this thesis, 

but it is worth mentioning the measures taken to try to minimise this effect experimentally.

Part of the problem is tackled when we are using monodisperse foam (as in Chapters 

3) to 5, for which the pressure of the gas is quite similar. Coarsening is also reduced by 

using relatively large bubbles.

It can be deduced from the data by Hutzler et al. [40] that the coarsening effect is small on 

time-scales shorter that around one hour in the experimental conditions that we use. All our 

experimental data are taken well below this time. We can neglect the effect of coarsening 

in the results presented in the thesis.

In the case of the bi-disperse bubbles in Appendix B, we are dealing with bubbles in 

contact with a pool of water. Coarsening depends also on the wetness of the foam [40]. 

When the foam is wet, the increase in the average bubble diameter is slower than it is in 

dry foam. This occurs because the Plateau borders reduce the surface of contact between 

bubbles, where the diffusion of gas takes place.
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Chapter 2

The Stokes experiment in a foam

2.1 Motivation

This chapter reports the first (published) Stokes experiment in a foam [41]. This experiment 

gives an easy way to measure the viscosity of Newtonian fluids, by timing the fall of 

spheres in the fluid. Here we are applying it to a non-Newtonian fluid. Useful insight 

about the yield stress and the rheological character of a foam, which is a non-Newtonian 

fluid, can be gained by measuring the velocities of spheres falling through a column of 

foam.

The experimental aims of this work are;

•  Find the terminal velocity of a sphere falling through a foam. This terminal velocity 

(defined in Section 2.2) is related to the drag force on the sphere.

•  Investigate the variation of the terminal velocity of the spheres when different pa­

rameters of the experiment are changed. We vary the bubble radius of the foam Bj., 

the liquid fraction 0/ and the radii of the spheres a.

Our results show a linear dependence of the velocity of the spheres with the bubble 

radius, at least up to the point when bubble radius and sphere radius become of com­

parable size. These is also a linear dependence of the terminal velocity with liquid 

fraction for spheres with different radii.

•  Compare our results with a model and computations which consider the foam a con-
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tinuum medium. Using spheres which will not fall initially through the foam, we 

perform a coarsening experiment. The yield stress of the foam will decrease when 

the bubble diameter increases and the sphere will start an accelerated motion through 

the foam. These experimental findings can be compared to a theoretical model and 

to calculations in order to characterise the foam as a Herschel-Bulkley fluid.

We have proposed a theoretical model for the forces acting on a sphere falling through 

foam, based on the results of the experiments. The model proposes the total drag force 

in a non-Newtonian fluid as a nonlinear function of the terminal velocity of the sphere. 

This is a reasonable first order approximation, in which the Newtonian fluids would be a 

particular case whose relation between total drag force and terminal velocity is linear and 

the yield stress is zero. We expect to obtain values for the exponent of the relationship 

from the experiment and to relate this theoretical model with the Herschel-Bulkley model 

used in the calculations. One of our goals is to estimate the value of the coefficient m in 

the Herschel-Bulkley equation (Eq. 1.16):

S = Sy + Kpi'^, (2 . 1)

where S  is the shear stress, Sy the yield stress, Kp is the plastic consistency and e the shear 

rate. We will extend here the preliminary results included in our previous paper [41].

2.2 The Stokes experiment in a foam 

2.2.1 Stokes experiment in Newtonian fluids

In the 19th century, G. G. Stokes described the drag force of a solid sphere in a Newtonian 

fluid [42, 43] (see Fig. 2-1). The result is the following equation:

Fdrag =  Gnrjav, (2 .2)

where rj is the viscosity of the Newtonian fluid, a stands for the radius of the sphere and 

V for its velocity. However, the drag force is difficult to measure, so experiments usually 

concentrate on the terminal speed or terminal velocity [44].
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V isc o u s  flu id  
K

F igure 2-1: The Stokes experiment in a Newtonian fluid, w  is the weight force and P the buoy­

ancy. The drag force Fy is proportional to the velocity v o f  the falling sphere. Asymptotically, the 

equilibrium between forces causes the sphere to fall at constant velocity. This is what is known as 

terminal velocity. In our case the terminal velocity is reached almost immediately.

After an initial acceleration in the fluid, the sphere in free fall reaches a dynamic equi­

librium. The sum of all the forces (buoyancy, drag force and weight o f  the sphere) is zero 

and the velocity of the sphere is constant.

The derivation of the formula can be found in any elementary physics text [45]. It 

provides an experimental way of measuring viscosity in Newtonian fluids (using the so- 

called ball viscometer).

TTO P f lu id Q  d'KT]CLVi „ 7 rQ  P sp h e re d  0 (2.3)

2a^g
Vt =   ------

9 T]
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2.2.2 Stokes experiment in a foam

The simple formula described in Equation 2.3 requires modification in the case of a non- 

Newtonian fluid. Calculating the contribution of the drag force in this case becomes non­

trivial. Developing a heuristic theory, we can propose a relation between the drag force 

and the velocity and relate the results obtained this way with the Herschel-Bulkley model. 

Our final objective is to investigate the values of the exponent m in Eq. 2.1.

The idea of using falling spheres to get more information about non-Newtonian fluids 

is not new in itself. Roger fluids ' [46] and Bingham fluids [47] can be mentioned as ex­

amples. The work of M itsoulis’ group, making numerical computations for the creeping 

motion of spheres in tubes filled with Bingham fluids [48] and Herschel-Bulkley fluids 

[49], provides very useful information about the procedure for a computational simulation 

of the experiment.

A list of different theoretical and computational rheological models for dry and wet 

foam and emulsions can be found in the first chapter of the thesis of Gardiner [50]. The 

choice of a Herschel-Bulkley model is supported by previous experiments in rheology of 

foams and emulsions [51, 52, 53, 54]. Experimental work supports the existence of a yield 

stress and shear-thinning behaviour in a foam (see Table 2.1). This makes the Herschel- 

Bulkley model (Eq. 2.1), of which the Bingham model (Eq. 1.15 on page 18) is a particular 

case with m = l, a good candidate to describe dynamic flow of aqueous foam.

Recent simulations in 2D foams roughly fit to the Bingham model [58, 60] but experi­

ments in emulsions and foams seem to be in accordance with the Herschel-Bulkley model 

with exponent 0 <  m  <  3 /2  [53, 54]. One of our aims in these experiments is to study 

the value of m  in a three-dimensional aqueous foam.

' Boger fluids present shear thinning, but the drop in v iscosity  is quite sm all compared to the zero-shear 

value. V iscosity appears to be constant in these fluids for practical purposes.
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Authors Type Material Model Exponent value

Brungraber et al. [51 ] E x -3D F H-B rn =  0.13 to 0.69

ThondavadI and Lemlich [55] E x -3 D F PL n - l  =  -0 .3 9

Schwartz and Princen [56] E x -3D Em H-B m  =  3 /2

Reinelt and Kraynik [57] C- 2D - H-B m  =  3 /2

Khan et al. [52] Ex - 2D F B m  =  1

Princen and Kiss [53] Ex - 3D Em H-B m  =  1 /2

Okuzono et al. [58] C - 2 D - B m  =  1

Rosa et al. [59] E x - 3 D F PL n -  1 =  -0 .4 5

Durian [60] C - 2 D - Bingham m  =  1

Bobert et al. [54] E x - 3 D FC H-B rn =  0.48 to 0.53

Table 2.1; A table of different models used to fit experiments (Ex) and computations (C) in 2D and 

3D systems on foam (F), Foam concentrates (EC) and emulsions (Em). The main models used are 

Power Law (PL) (Eq. 1.17, with exponent n), Bingham (B) (Eq. 1.15) and Herschel-Bulkley (H-B) 

model (Eq. 2.1 with exponent m).  The Bingham model is a particular case of the Herschel-Bulkley 

model with exponent m = I. The last two assume a finite yield stress of the foam.

2.2.3 Outlook of the chapter

We will describe first the materials and methods used in the experiments, in particular the 

size and weight of the spheres used in the experiments. Our experimental set-up imposes 

some limits in the accuracy that we could reach and these will be discussed as well. After­

wards, we describe the experiments. These can be divided into:

•  Experiments on foam subjected to forced drainage in which we vary the bubble size 

of the foam and the flow rate. In these experiments the spheres move quite rapidly, 

involving velocities of the order of cm /s.

•  Experiments on dry foam undergoing coarsening: in this case, we found two differ­

ent regimes of motion, one of them interpreted as a slow continuous creep (of the 

order of m m / m i n )  and a comparatively fast (order of c m /s )  accelerated motion, 

once the yield stress of the foam has decreased sufficiently.
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We have developed a heuristic model to relate the findings for the coarsening foam to 

the Herschel-Bulkley model in Eq. 2.1. Furthermore, calculations have been made using 

the fluid dynamics package Fluent (see Appendix E). These calculations represent the foam 

as a continuum, using the Herschel-Bulkley model. We relate the results of the calculations 

to the experimental findings through our theoretical model. The chapter concludes with a 

review of all the findings and possible future experiments.

2.3 Materials and methods

We have timed the descent of solid spheres of different sizes in a column of foam. For all 

the experiments described in this chapter, we use the same procedure to produce the foam, 

which is made following the method explained in Appendix D. A sparger attached to the 

gas line produces very fine polydisperse foam (Dr < 0.5 m m )  that is collected in tubes 

of 4 cm  diameter and typical lengths of 30 cm  for the forced drainage experiments and 

of 40 cm for the foam coarsening experiments. These tubes are partially submerged into a 

pool of surfactant solution. We can pump liquid from the surfactant pool and add it at the 

top of the foam using a Watson-Marlow peristaltic pump. Varying the flow rate of liquid 

poured on top of the foam, we get an homogeneous liquid fraction in the column of foam. 

This is the forced drainage described in Section 1.4.1.

One of the limitations of the experiment lies in the type of the spheres that can be used 

(see Fig. 2-2). The spheres used in the experiments are made of different types of plastic 

with densities of the order of p ft; 0.6 x 10^ % /m ^ . The density of the spheres that can be 

used for the rapid motion experiment are between 0.7 x 10^ kg /m ^  and 1.1 x 10^ kg/m^.  

Plastic spheres whose densities are below those are not able to overcome the yield stress of 

the foam and will stay on top of the foam. We use these spheres for the experiments with 

coarsening foam. Some spheres with comparable densities made of wood and polystyrene 

were considered for the experiments and then rejected due to their tendency to absorb 

water. Other materials like metal or glass give much higher densities (of the order of 

p 5 X 10^ kg/m^).  The spheres become too heavy and it is very difficult to measure the 

time of the fall, especially when the foam is wet, leading to increased speed. Sometimes,
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F ig u re  2 -2 : The density o f the spheres is crucial in the Stokes experim ent on a foam . We can 

vary two param eters to obtain the right density values; the sphere radius and weight. The radii o f 

the spheres have to be chosen am ongst those that make the continuum  approach reasonable and 

m inim ise boundary effects. If the spheres are too heavy, it is difficult to tim e their descent and 

they can destroy the foam. O n the contrary, when they are too light, their w eight is not enough to 

overcom e the initial force F q associated to yield stress Sy.  The foam  will not yield and the spheres 

will stay on top o f the foam . The right densities o f the spheres to perform  forced drainage Stokes 

experim ents are w ithin a very narrow margin (0.7 x  10^ kg /m ^  < p < 0 .9  x  10^ kg/m^) .  I 

With spheres m ade o f plastic o f densities sm aller than p =  0.6 x  10^ kg /m ^ ,  w e perform  the 

experim ents using coarsening foam. These values are taken for foam s with a Bj- < 0 .5  mm .

very heavy spheres rupture the foam films, causing the foam to collapse.

Using these ranges o f densities in plastic, we can vary the diameter o f our spheres to 

determine our choice. At least for a first approach, we want to compare the foam with a 

continuum model. To make this continuum assumption, the spheres have to be appreciably

T I r
Experiments with forced drainage 

Too heavy
Experiments with coarsening foam
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bigger than the bubble size of the foam. On the other hand, if the radius of the sphere is 

too large, the container walls will interfere with the results. This effect has been calculated 

to be significant in viscous flow at low Reynolds numbers (an error over 2% when the 

diameter of the container is a hundred times the diameter of the sphere is suggested in 

[43]).

In our case, the radius of the sphere has to accommodate both limits,

D
Br (2.4)

where Br is the bubble radius, a is the radius of the sphere and D  the diameter of the tube. 

The continuum approach is not extremely satisfactory, with a ratio of sphere diameter to 

bubble diameter from 2 to 8, but this is determined by the minimum bubble size that we can 

reach experimentally with our set-up. The ratio between the tube diameter and the sphere 

diameter varies from 5 to 10, so we can expect a significant wall effect. It is not possible to 

increase this ratio by making the tube diameter bigger, because of the time that it will take 

to fill it with foam; this would allow the foam on the top to coarsen. An estimation on the 

coarsening effects and times of foam formation is included in Appendix D.

2.4 Experimental results

Let us remind ourselves again that we have performed two series of experiments in the 

foam.

•  Experiments in foam subjected to forced drainage.

•  Experiments using coarsening foam.

2.4.1 Experiments in forced drainage

The terminal velocity is reached almost immediately and can be calculated by dividing 

the total length of the column of foam by the time the sphere takes to go through it (this 

is supported by visual observations of the motion of the coloured spheres that were close
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to the walls of the container). We further check the validity of the assumption of a ter­

minal velocity using two tubes of 4 cm diameter and lengths 15 cm and 30 cm respec­

tively. We take some measurements using a single sphere (4 mm  of radius and density 

p =  0.9 X 10^ kg/m^)  and a fixed value for the flow rate Q — 0.13 ml/s.  We time the 

descent of the sphere seven times on each tube under these conditions and calculate the 

velocity of each trial dividing by the respective length. Then we take the average values 

of the velocities for each tube. The values obtained in both tubes for the terminal velocity 

are 5.3 ±  0.6 cm/s  and 4.9 ±  0.7 cm/s  and they are close enough to proceed as above. 

However, in the remaining experiments, we have used tubes longer than 15 cm to ensure 

that we remain within the limits of this approach.

We have repeated the experiment using a single sphere of radius 5 m m  and mass 

0.53 g { p = (1.1 ±  0.1) X 10^ kg/m^).  We use a low constant flow rate of 0.02 ml/s  

in order to get an homogeneous liquid fraction in the foam and vary the bubble size of 

the foam. We have looked for the dependence of the velocity of the sphere with bubble 

radius Br, at a constant low flow rate. We have a ratio Q/A = 1.6 x 10“  ̂ cm/s,  where 

A is the cross-sectional area of the tubes, for bubble sizes between Br =  0.6 m m  and 

Br =  2.8 7Tim.

As shown in Fig. 2-3 we find a linear relationship between the terminal velocity of 

the sphere and the bubble radius Br of the foam. Except for the largest bubble radius, 

all the points in the graph are well described by this relationship. This bubble radius of 

Br =  2.8 m m  is about half the radius of the sphere used in this experiment. We thus 

attribute the deviation from linearity with a breakdown of the continuum approach (see 

Section 2.3). In view of these results, we estimate that using a bubble diameter lower than 

half the diameter of the sphere the terminal velocity can be interpreted using the continuum 

approach.
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Figure 2-3; Stokes experiment using different bubble sizes. The graph at the top presents the 

terminal velocity of the spheres of different bubble sizes. The empty circles are experimental ve­

locities obtained for each bubble size. We also include the average of velocities for each bubble size 

within a margin of confidence of 65%. The data are consistent with a linear fit, if we ignore the last 

point on the right (see text). The graph below shows the ratio of sphere radius to bubble radius for 

the different bubble radii used in this experiment. The breakdown is reached approximately when 

Br ~  a/2  in this case (a =  5 mm).

33



Finally, we have obtained values for the term inal velocity o f spheres with different 

diam eters within this range, varying also the flow rate for each sphere. The descent of 

the spheres is quite rapid (just a few seconds) in these experim ents. We have investigated 

the dependence o f the velocity o f the spheres with the liquid fraction o f the foam  ( Q jA  

betw een 0.510“ ^ c m /s  and 210“ ^ c m /s  , where A  is the area o f the cross-section o f the 

tubes, for a bubble radius o f the order o f <  0.1m m ).

10

a=3 mm •  
a=4 mm ' - ■*

8

6

4

2

0
0 0.05 0.250.1 flow-rate [ml/s] 0.15 0.2
0 0.0004 0.0016liquid fraction 0.003 0.006 0.010

Figure 2-4: The velocity of spheres of radii a = 2.5 mm,  3 m m  and 4 mm  and p = (0.9 ±

0.1) X 10^ kg/m^  falling in a foam undergoing forced drainage. While the a =  4 mm  sphere 

has a positive velocity for all the flow rates, the other ones do not move through the foam at low 

flow rates. This shows the existence of a yield stress in foams. The solid lines are linear fits to the 

data. The scale also includes the approximate values of average liquid fraction that correspond to 

the flow rates, estimated using Archimedes principle (Appendix D).

The velocity o f spheres with the sam e density placed on top o f a wet foam has a linear 

dependence with flow rate (Fig. 2-4), with a slope that depends on the radius o f the sphere.
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In the surfactant solution that we are using, the liquid fraction varies with the square root 

of flow rate [1], so the velocity has a quadratic dependence with liquid fraction:

V oc Q (X (j)^. (2.5)

The slope of the lines depends on the density of the spheres. However, the scattering 

in the experiment and the number of spheres available to compare are not sufficient to 

conclude anything from that dependence. Shown in Fig 2-4 are the results for spheres of 

density p =  (0 .9± 0 .1 ) x lO^/cp/m^. Two to four more spheres of the same density would 

be needed to get the variation of the slope with the radius of the sphere a.

2.4.2 Experiments with coarsening foams

This experiment consists in measuring the position of a solid sphere placed on top of a dry 

foam while the foam is coarsening (see Chapter 1). We have used spheres whose weight 

is not sufficient to overcome the yield stress of the foam at first, so that the sphere initially 

remains ’’floating” at the top surface. Due to the coarsening of the foam, the value of the 

yield stress decreases steadily and after a time, the sphere will move through the foam. In 

this case, we have found two different types of motion: a very slow creeping descent at first 

and a later accelerated motion. We can plot the position of the sphere at different times 

(Fig. 2-5) in order to understand the character of the motion.

We see indeed that two different types of motion are involved in the fall of the sphere 

through the foam. In a first stage, the sphere moves downwards with a constant small 

velocity (of the order of mm/min).  This can be identified as creep, a slow yielding of 

the foam due to local and topological rearrangements (see Section 1.3.4) which are the 

concomitant of the coarsening process. In the second, the sphere gains a much larger 

velocity (of the order of cm/min).  This regime may be characterised by a power law:

x = Ci { t - t Qf ,  t > t o  (2.6)

where x is the position of the sphere, t the time and to the time at which the change between 

the two regimes occurs.

35



300
Trial 1 
Trial 2 
Trial 3 
Trial 4  
Trial 5 
Trial 6 
Trial 7

2 5 0

200

E
E

Z
O
c/3
O
CL

100

5 0

100 120 1400 20 4 0 60 8 0

TIM E [min]

Figure 2-5: The sphere is dropped into a fairly dry foam compared with Fig. 2-4 (liquid frac­

tion less than 0.01) at time zero and its position recorded. The radii of the spheres are between 

2.5 m m  <  a < 3.1 m m  and the cylindrical tube diameter is 40 m m . All the lines show a transi­

tion from creep (slow motion) to accelerated motion. Local inhomogeneities in the foam structure 

apparently cause the sphere to ‘hesitate’ in its descent during the accelerated motion, returning to 

the slow creep (Data in Trial 2 and Trial 6).

The transition to the more rapid descent is clearly attributable to the decrease o f the 

yield stress o f the foam , eventually reaching a critical value. The bubble size varies with 

the square root o f tim e (Eq. 1.19) but it is possible to approxim ate this dependence as 

linear on the short tim e-scale that involves this experim ent. The yield stress is related in 

turn to bubble radius on the sam ple [1];

Sy  oc d~^ (2.7)

where d is the mean bubble diameter, and hence varies at
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As the yield stress continues to decrease beyond the point at which it balances the gravita­

tional force, the sphere accelerates. Since its velocity is alw ays proportional to the net force 

acting on it (inertia being negligible) and this varies linearly with tim e, this acceleration 

may be expected to be approxim ately constant.

Such is the ideal behaviour to be expected. However, there are sections in the tube 

at which the velocity o f the sphere falls dram atically (shown in Fig. 2-5) and the only 

m easured change in position is due again to the creeping motion. We cannot avoid the 

presence o f regions o f local inhom ogeneities, where the bubbles are sm aller and therefore, 

the value o f yield stress is higher locally. The sphere can get tem porarily trapped in a high 

yield stress area. Furtherm ore, the frontier between the creep and the accelerated m otion 

becom es difficult to define on these conditions.

It is possible to extract inform ation on rheology in the foam  using a theoretical model 

created for this task and described in the next section to com pare with the accelerated m o­

tion due to the change o f the yield stress of the foam. But first we have to prepare the data, 

excluding the effect o f the creep from  the experim ental values.
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2.5 Analysis of the results

2.5.1 Creep correction and data treatment

We need to prepare the data in Fig. 2-5 in order to relate them to the model selected to 

describe the foam, avoiding the effects of the creeping motion. To describe each step we 

will apply this correction in detail to the set marked as Trial I in Fig. 2-5.

1. We start with the original data from the experiment plotted using position versus 

time in Fig. 2-6.
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Figure 2-6: Original data for Trial 1. There is a transition between the motion produced by creep 

and the accelerated motion as the foam coarsens.

2. We apply a log plot to both time and position (Fig. 2-7). This is going to help to 

identify at what time to we have a change between the slow motion (which follows 

a linear dependence) and the accelerated motion characterised by a power law. In 

the log-log plot the different regions appear roughly as straight lines with different 

slopes. Distinguishing the frontiers of the different regimes becomes more difficult 

if we do not use this type of plot.

ORIGINAL DATA

+ +
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Figure 2-7: We convert the original data from Fig. 2-6 to a log plot. The log plot helps to differ­

ence the regions of slow creeping motion and fast accelerated motion, as they both have different 

dependences of position versus time. The full black dot represents the time at which the motion 

changes from creep to acceleration. In this case, we obtain — 40.50 miii .

3. Using the value o f to obtained in Fig. 2-7, we select the points in which only creep 

is present in Fig. 2-6. We fit these datapoints to a straight line. This line (in Fig. 2-8) 

w ill characterise the creep correction and must be subtracted from all the data (the 

creep motion remains after the sphere enters the accelerated motion regime).

4. The corrected data (Fig. 2-9) are obtained subtracting the creep line from the position 

and the value o f to from the time.

Applying these corrections (Figs. 2-6 to 2-9) to avoid the effect o f creep in all the lines 

shown in Fig. 2-5, we obtain a new set o f corrected data for all the experimental values, 

shown in Fig. 2-10.

The corrected values can be fitted using a log-log plot (Fig 2-11) to obtain the value o f

k:

log{x -  X c r e e p )  =  k \og{t -  t o )  +  C2 , t >  t o ,  (2.8)

and we obtain the values o f k in Table 2.2.
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Figure 2-8: We use the value of obtained from Fig. 2-7 to fit all the data in Fig. 2-6 with t  <  to  

to a straight hne. The value obtained in this case for the creep correction is 0.34i +  2.0. This line 

represents the creep motion.
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Figure 2-9: We obtain a corrected set of data from the original data in Fig. 2-6 by subtracting the 

creep correction (Fig. 2-8) from the position and the value o f t o  (Fig. 2-7) from the time.
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F igure 2-10: Using the correction described in Figs. 2-6 to 2-9 for the original data from the 

Stokes experiment on a coarsening foam, we obtain a set o f  different lines, described by the power 

law in Eq. 2.6.

The param eters used to correct each line and the individual final values for the constant 

k  are given in Table 2.2. The values obtained are roughly consistent with k =  {3.1 ±  0.9). 

The individual values o f the exponent k  are quite variable. We have already m entioned the 

flat regions found in the original data as a cause for this. It is difficult to get datapoints not 

affected by these ‘hesitations’ in the descent o f the sphere, as the foam  form ation m ethod 

used for this experim ent produces an slightly polydisperse foam. We find that our value of 

k  (see above) can be tentatively related to a H erschel-B ulkley m odel, using the following 

theoretical ideas.

al 2 
al 3 
al 4 
al 5 
al 6 
al 7

m

2.5.2 A link to the rheology of the foam

In this section, we relate the experim entally determ ined exponent k  o f  Eq. 2.6,

X  =  C i { t  -  t > t o .
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Figure 2-11: In order to obtain the values of the constant k in Eq. 2.6, we take logarithms on each 

side of the equation (Eq. 2.8). In this way, we obtain the values for k stated in Table 2.2. The line 

corresponds to the proposed value k = 3.1. Note that the second creep region on the data of Trial 2 

(the flat part shown in Fig. 2-10) has been avoided when fitting this set of points.

w here x  is the position  o f  the sphere , t  the tim e and the tim e at w hich the change 

betw een  reg im es occurs, to  the  ex p o n en t m  in the H erschel-B ulkey  equation  (Eq. 2.1):

S  =  Sy +  K p  e^,

w here S  is the shear stress, Sy the y ield  stress, Kp  is the p lastic  consistency  and  e the 

sh ea r rate.

In o rd e r to  do  th is  w e w ill in troduce a m odel o f  the foam , based  on the ex p ected  b e­

hav io u r o f  the forces ac ting  on the sphere (Eq. 2 .9). We will assum e that w e can trea t the 

foam  as a co n tinuum  m edium . A s the  sphere radii are sign ificatively  larger than  the bubb le  

rad ius, w e can co n sid er th is ch o ice  as a reasonab le  first o rder app rox im ation . T h is  a ssu m p ­

tion  was d escribed  w hen w e ex p la in ed  the  adequate  size o f  the spheres for the ex p erim en ts  

(Section  2 .3).

F irst o f  all, let us in troduce the ba lan ce  o f  stresses in the foam  in F ig .2-12.
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D ata set to Creep correction k

Triall 40.50 0.34t +  2.0 4.0

Trial2 60.75 0.26t -  3.6 3.9

Trials 70.65 0.65t +  0.7 2.6

Trial4 42.20 1 .7 9 t-2 1 3.0

Trial5 49.00 0.24^+ 2.1 3.7

Trial6 40.75 0 .4 4 t+  6.9 2.2

Trial? 118.07 0.68t -  8 2.5

Table 2.2: Values for to (Fig. 2-7) and the creep correction line (Fig. 2-8) applied to the ex­

perimental data in Fig. 2-5 to obtain the corrected values in Fig. 2-10. The last column gives the 

individual values of k  obtained from the slopes on the log-log plot in Fig. 2-11.

stress

S^ess^ue_to_net 
gravitational force

Yield stress of foam

time

F igure  2-12: The yield stress decreases due to coarsening (increase in bubble size with time)

while the applied stress is roughly constant (neglecting the small change in buoyancy). Until the 

yield stress falls below the applied stress there is no motion, apart from that due to creep.
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Our model is based on the idea that a foam has a finite yield stress. Therefore, a sphere 

moving through the foam may be expected to follow the equation:

F  — Fq = F  > Fo and (2.9)

V =  0, F  < Fq

where k is a constant dependent on the radius a, the liquid fraction of the foam and 

its rheological properties. Fq is the minimum force required to move the sphere through 

this medium. At all points we neglect inertia and it is therefore assumed that the forces 

acting on the sphere (weight and drag) are in equilibrium.

The net force on the sphere, F ,  is constant while the minimum force required to move 

the sphere in the fluid, Fq, decreases with time; we assume this decrease to be linear 

over the duration of the experiment on a first order approximation. We can support this 

assumption because this minimum force Fq and the yield stress Sy should follow the same 

dependence with time. Equivalently, consider the shear stress that the sphere exerts on 

the foam. In equilibrium the stress S  is constant and less than the yield stress Sy which 

decreases with time. This is illustrated in Fig. 2-12. Since the falling of the sphere occurs 

in a short time just after the yield stress decreases below the value of the maximum stress 

in equilibrium, the yield stress variation with time is approximately linear.

We take the derivative of the fit for the experimental data (Eq. 2.6) to see that the 

velocity of the ball varies as Comparison with Eq. 2.9, where w” varies linearly in 

time, shows that the exponent in the experiments is

(2. 10)

We define the radius o f  yield, Sa, as the distance (in an average sense) from the surface 

of the sphere where the stress of the foam equals the value of the yield stress. When 

Fo becomes equal to F  the sphere acquires a non-zero velocity v. It is then contained 

within a small yielding region of radius a + Sa. In all the points included in the yielded 

region S  > Sy. Hence the distance Sa will increase with the ‘excess’ stress S  — Sy, 

by definition. We assume this increase to be linear on a first order approximation (as Sy
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decreases also linearly with time approximately). Now, at the sphere’s surface the rate of 

strain is approximately v /S a  so we find from Eq. 2.1 that

We wish to relate the stresses and forces around the ball, for which we need a length 

scale. The relevant length here is the radius of the sphere, so we can immediately equate 

the exponent of v in the stress equation, Eq. 2.11, with the exponent n  in the force equation

Using Fig. 2-11 and the data on Table 2.2 we found k =  (3.1 ±  0.9), so that according 

to Eq. 2.10 we have 0.33 < n < 0.83. When we introduce these values into Eq. 2.13 we 

obtain 0.5 < m  < 4.8. This conclusion is consistent only partly with previous theoretical 

and experimental values of m. We have to note again the dispersion of the values obtained 

in the experiments, which provides a large range of values for the exponent m.  Foam has 

been largely found consistent with shear thinning behaviour before [50]. Part of our values 

include the possibility of shear thickening foam (m >  1). This could be due to the nature 

of the experimental shear, which does not encourage as many bubble rearrangements as 

other methods of shearing the foam produce [61]. However, the proposed value of /c =  3.1 

(n =  0.48 , m  =  0.9) suggests that the Bingham model is a good choice to represent the 

Theological character of aqueous foam and this result is in agreement with previous values 

for aqueous foam accounted in Table 2.1.

We now test if the hypothesis introduced to make our theory holds when compared to 

a numerical model of the experiments.

But since Sa oc S  — Sy, we conclude that

S - S y  oc and (2 . 11)

Sa oc (2 . 12 )

Eq. 2.9:

n
(2.13)rri =

1 — n
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2.6 Numerical modelling

The m ain objectives o f the use o f com putations at this point are to check the theoretical 

assum ptions we have done and to obtain values o f the drag force over the sphere, som ething 

that we have pointed out it is difficult to measure experim entally. Using a com puter allows 

the variation o f different param eters which would be very difficult to vary experim entally, 

such as the ratio o f the diam eter o f the sphere versus the diam eter o f the tube. This will be 

helpful for future work on the subject.

We therefore model the flow of a yield stress fluid around a sphere confined within a 

cylinder, sim ilar to the analysis o f M itsoulis and co-w orkers [48, 49]. U sing an axisym m et- 

ric form ulation, we hold the sphere fixed and allow the fluid to flow along the frictionless 

tube, see Fig. 2-13. We have also sketched in the figure Sa, the radius o f yield, defined in 

Section 2.5.2. As the yielded region around the sphere is not exactly spherical, the values 

o f 6a depend on the direction in which we take our m easurem ents. We decide to m easure 

the radius o f yield, 5a, in the radial direction across the tube. The boundary condition on 

the sphere is that o f no-slip.

_______________________________________________________ Cylinder Wall

Flow direction

Yield surface

Sphere Cylinder Axis

Figure 2-13: The foam flows past a stationary sphere. We sketch a cross-section showing the 

position of the yield surface (dotted line) around the sphere. The size of the yielded region between 

the yield surface and the sphere increases with velocity v and decreases with yield stress Sy.  We 

measure this yielded region, Sa, in the radial direction across the cylinder, as shown in the figure.

To measure the limits of the yielded region (the values o f Sa), we have used the values 

of the viscosity in the foam. Foam is a non-Newtonian fluid, whose viscosity depends on 

many structural factors and is also dependent on shear stress. In this type o f m aterial, it
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is possible to define the so-called effective viscosity rjefj (see Chapter 1). If we use the 

effective viscosity, we can write the stress-strain relation in a non-Newtonian material as 

if it followed from Newton’s Viscous law, Eq. 1.14, with an effective viscosity which will 

vary with the shear rate.

Using the Herschel-Bulkley relation (Eq. 2.1) we define this effective viscosity in our 

case as:

(2.14)'  - m —1

where Kp is the consistency at high strain rate. We instigate a cut-off for values of ijefj >  

T]s (a ’solid’ viscosity), after which r]eff is constant (at low strain-rate where the foam 

moves as a solid plug). Provided that r/s is sufficiently large, its value is not significant. We 

retain the foam density as, p =  Pwater^i ~  10 kg/m^  throughout (with =  0.01).

1 90e-C6 

1 7la-C6 

1 52e-05 

1 33e-06 

1 14«-C6 

9 52e-06 

7 62e-06 

5710-06 

3810-06 

1 90e-0e 

0 00«^X

A I953e<)l

&S9eOl
B

200e-01 

1 06e-01 

1 12^02

Contours of Stream Funcbcn (kg/s) M an  4. 2000 
FLUENTS 1 (an . segregated, lam]

Contours of Molecular Viscosty <kg/m-s) M an  4 2000 
FLUENT 5 1 ( a a . segregated, lam)

Figure 2-14; Streamlines (A) and viscosity values (B) for the Stokes experiment in a foam. The 

flow velocity is w =  0.03 cm/s  Parameters are m =  1, Sy =  0.01 NI'm? and Kp =  0.01 Ns/m^  

for a sphere of radius a =  4mm in a tube of diameter Z? =  40 mm.  We attribute the non-spherical 

contour on the viscosity in (B) to the interaction with the boundary in the calculation.

Streamlines of the motion (Fig. 2-14-A) are easy to obtain but they prove of little value: 

they do not differ much while we vary the flow parameters. More interesting is the position 

of the yield surfaces (see the schematic in Fig. 2-13); this is taken as the contour at which 

the effective viscosity is no longer equal to the solid viscosity (Fig 2-14-B). As we show in 

Fig. 2-15, our computations in the case m  =  1 are consistent with the theoretical estimate
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(Eq. 2.12): the width o f the yielded region, Sa, does indeed increase with ^/v.

Eo
®  0.8 
to

0.6

0.4

0.2

Numerical da ta

0.0250 0.005 0.01 0.015 0.02 0.03
V [cm/s]

Figure 2-15: The numerically calculated width (across the cylinder) of the yielded region as a 

function of free stream foam velocity. Parameters are m =  l , S y  = 0.01 N/m?  and Kp =  

0.01 Ns/Tn? for a sphere of radius a =  4mm in a tube of diameter D =  40mm. Also shown is a 

fit to 5a ~  y/v, the value predicted in Eq. 2 .12 for m =  1. Note that the sphere produces a yielded 

region around it even at a zero velocity.

We finally perform a calculation of the force on the sphere (Fig. 2-16). By plotting the 

variation o f this force with velocity at different values o f the coefficient m  we expect to 

check the values o f the coefficient n  obtained using the experimental values o f k and Eq. 

2.10. The results are compared in Table 2.3.

Our experiments, analysed using the theory developed in Section 2.5.2, include values 

o f the exponent o f velocity n  (ntheory) in Eq. 2.9 between 0.33 and 0.83. However, most 

o f the experimental values obtained lead to values of n t h e o r y  between 0.4 and 0.67 and 

therefore we decide to concentrate our efforts on this interval for the force calculation 

(Table 2.3). These values are related to the exponent in the Herschel-Bulkley equation (Eq. 

2.1) by Eq. 2.13. We obtain values for m  between 0.67 and 2.0. We use these values o f m  

in the numerical calculations to verify the values o f n  ( n n u m e r i c )  and obtain values between
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Figure 2-16: In a numerical calculation, we vary the exponent rn in Eq.(2.1) to find the corre­

sponding variation of the force on the sphere with the velocity. For F  ~  we see that n is an 

increasing function of m; the values are given in Table 2.3. Parameters are Kp =  0.01 Ns/vn? and 

Sy =  0.01 N /w ?  for a sphere o f radius a =  4mm in a tube o f diameter D  =  40mm.

^theory rn ^numeric

0.67 2.0 0.6

0.5 1.0 0.4

0.4 0.67 0.17

Table 2.3: Comparison o f the theoretical and numerical estimates o f the exponent of velocity, 

n, in the force equation (2.9). We also give the corresponding value of the exponent m in the 

Herschel-Bulkley relation, Eq.(2.1). We select values of ntheory between 0.4 and 0.67. The value 

of m(ntheory) is found from Eq. (2.13) and used in our numerical calculations to verify the value 

o f ntheory The values we find from the computations, nnumerio are rather lower in all cases.

0.17 and 0.6. The numerical results are lower than the experimental ones in all the cases 

that we have calculated. In conclusion, the computation follows the qualitative predictions 

o f the model but the quantitative results are lower than the expected ones.
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2.7 Conclusion

We have described a range of new experiments on spherical balls falling through foams. 

We have shown that the concept of terminal velocity can be applied to these experiments 

and we have calculated the relation of terminal velocities with parameters such as bubble 

radius and liquid fraction. We have found that the terminal velocity of a ball varies linearly 

with bubble radius, at least up to the point in which the sphere size and bubble radii become 

comparable. The value suggested by our experiments for this breakdown is when the 

bubble diameter is equal or larger than the sphere radius. There is also a linear dependence 

of the terminal velocity with flow rate, and therefore with the square of the liquid fraction 

of the foam.

These experiments have also shown that the lighter spheres remain more or less static at 

dry foam and start gaining velocity at a finite liquid fraction. This is related to the existence 

of a yield stress o f  the foam, which decreases when we increase the liquid fraction. Further 

experimentation and theory needs to be undertaken to extract the exact dependence o f  the 

results on the bulk properties of the foam. In particular, it would be desirable to find a 

range of spheres with the adequate density and different radii to deduce the experimental 

change of the slope at the linear fits of velocity and flow rate with the sphere radius. This 

change is related to the drag force on the sphere.

Some spheres are too light to overcome the yield stress, even when its value decreases 

as we increase the liquid fraction. We have used these spheres to perform experiments 

in foam undergoing coarsening. W hen a light ball descends through a coarsening foam, 

it initially creeps (with position varying linearly with time) and then accelerates after the 

yield stress of the foam has been reduced by the coarsening process. We have found that in 

the latter part o f  the motion the velocity of a ball varies with the square of time. Unfortu­

nately, the creep stage has been omitted from our simple analysis, but it may be eventually 

interesting in the view of new experiments with objects moving slowly through foam [61].

Our heuristic theoretical model is qualitatively and semi-quantitatively consistent with 

expectations based on the Herschel-Bulkley model, and also shows agreement with our 

experiments, within the wide uncertainties of the present results. These suggest that the 

exponent m  in the Herschel-Bulkley relation lies between 0.5 and 4.8. Some of these values
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suggest foam as a shear-thickening fluid, which does not seem to agree with previous 

values reported in literature. We have to recall at this point the difficulty to fit the values 

due to the creep and ‘hesitations’ in our experiment. It is not yet possible to specify m 

more precisely at this stage. We have performed numerical calculations to identify the 

yield surfaces around a sphere and to obtain the variation of the force on a sphere with the 

free stream foam velocity. The results support the conclusions of our theoretical model. 

Further analysis is now required for larger parameter ranges.

Although the method is just starting to be developed, the Stokes experiment can be a 

useful way to measure rheological characteristics of the foam in a simple and inexpensive 

way. It allows measurements undergoing forced drainage, where it is easy to control that 

the foam has homogeneous liquid fraction. It measures the effective viscosity of the foam 

at low shear, where other methods used to measure viscosities (cone and plate, for example) 

have important slip corrections, due to the wall effects. Possibly, a better experimental set­

up which will allow to use tubes of wider diameters, and further development of the theory 

will help to make progress towards such applications.
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Chapter 3 

Drainage induced convective motion in 

foam

3.1 Motivation

This chapter is devoted to the convective motion which appears in foams subjected to 

drainage at a high flow rate. Following on previous work at the TCD foam group, we have 

discovered that there are two different kinds o f convective patterns. As far as we know, all 

previous reports of convective instabilities only mention one of these. We would like to 

understand the effect that several experimental parameters (bubble size, liquid fraction and 

the geometry of the container) have on both patterns. Accordingly we have produced the 

first systematic data on the effect.

Some hypotheses about the nature of the convective rolls will be introduced in an effort 

to explain the effect and character of the motion.

Firstly let us expose briefly some theoretical considerations about convective motions 

in foams. We will include a brief summary of results of previous papers on convective rolls. 

The following section is dedicated to the methods and materials used for the experiments. 

After this, we will examine in a purely empirical spirit the patterns of drainage driven 

instabilities found in a column of foam. We will report the two modes of motion found in a 

vertical column of foam and how they vary with bubble size and different geometries of the 

glass tubes. The speed of the convective motion of bubbles is studied in relation to liquid
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fraction. We report the finding of significant hysteresis associated to the convective motion. 

Until this was realised, we had considerable difficulty obtaining reproducible results, since 

the uniform state may persist metastably upon increasing the flow rate. Finally we will 

critically examine the form of a possible theory and reach some limited conclusions on 

this basis.

3.2 Theorical background of the convective motion 

3.2.1 The nature of the transition to convective motion

We have already described how liquid drains through aqueous foam in Chapter 1. Here 

we concentrate our effort \n forced stationary drainage. This means that a source of liquid 

is established at the top of the foam, delivering the fluid at a constant flow rate. One 

solution to the drainage equation under these conditions corresponds to a homogeneous 

liquid fraction profile and this corresponds closely to the observed profile. There is a small 

departure from uniformity at the bottom, also derivable from the drainage equation.

If the flow rate is increased, a wet front moves downwards in the form of a solitary 

wave, incidentally triggering local rearrangements [1]. After this solitary wave has gone 

through the foam a new dynamic equilibrium state, with a homogeneous higher liquid 

fraction, is reached. Theoretically, this could be carried on, increasing the flow rate step- 

by-step up to the point in which the foam loses rigidity and becomes a bubbly liquid. This 

rigidity loss transition is also referred to in literature as the wet limit [1] or melting. The 

value of liquid fraction at the transition has been calculated and measured experimentally 

in emulsions as 4>i'̂  =  0.36 for a 3D monodisperse foam or emulsion [62, 36].

However, flow  instability appears in foams at high liquid fractions well before this 

wet limit. Hutzler et al. [63] investigated foams at high flow rates and report a range 

of liquid fractions, below the rigidity loss transition, where convective instabilities are 

present. These instabilities take the form of convective rolls where some bubbles move 

upwards while other bubbles move downwards in the foam (see Fig. 3-1).

Even when we may occasionally use the term “convective instability” when we refer 

to the motions we have investigated, it may be slightly misleading. The data (in as much

53



DRY WET

UNIFORM DRAINAGE CONVECTIVE ROLL

Figure 3-1: At some critical liquid fraction (or flow rate) uniform drainage is unstable. Convective 

rolls occur either “side-by-side” as shown, or in a cylindrical form.

as there is substantial hysteresis) do not point to a sim ple instability o f uniform  flow with 

respect to small perturbations. In this scenario, it would seem  that the convective state 

should be regarded as an alternative stable state. In Fig. 3-2 we have sketched a m echanical 

analogy.

EN ER G Y

PER T U R B A TIO N

EN ERG Y

P ER T U R B A TIO N

(a) (b )

Figure 3-2: Schematic mechanical analogy: the observation of hysteresis suggests that the system 

is more analogous to the one represented in (b) than to (a), close to the threshold of convection.

The phenom enon of convective instability is surely closely related to the viscoplastic
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character (see Chapter 1) o f the foam: it behaves as an elastic solid when low forces are 

exerted, but can flow as a liquid when the force is increased. Flow m ust occur in practice 

when the yield stress is exceeded som ew here in the system . We will pursue this idea later, 

as we are going to introduce a sem i-phenom enological theory and therefore we will need 

to introduce first the experim ental findings that motivate the theory.

3.2.2 Previous results on convective motion

In the prelim inary observations o f the TCD  group, which first announced the convective 

effect in drainage, H utzler et al. [63] have used cylinders o f circular cross-section, filled in 

with m onodisperse foam. Vera et al. [39] at UCLA have used a wide rectangular box with 

a very small depth and filled with polydisperse foam. Forced drainage is used to increase 

the liquid fraction after foam form ation in both cases. The results that have been reported 

by both groups are quite different and we will not attem pt to explain the effects seen by 

Vera and their co-w orkers in their very different geom etry (see Fig. 3-3).

H u l/ lc r .W c a ir e .  C ra w fo rd

so lu t io n  in p u l

so lu t io n  inpu t

Figure 3-3: The setups for Hutzler et al. and Vera et al. experiments. A list of the principal 

differences is included.

Hutzler et al. [63] have reported the existence of a single convective roll in which all
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the bubbles on one side of the tube move upwards while the bubbles on the other side of 

the tube move downwards in a convective roll. Hutzler et al. observed that the motion has 

a clear onset, corresponding to a critical liquid fraction. The variation of this critical liquid 

fraction was measured in relation to inverse bubble radius. They have reported that the 

critical liquid fraction shows a linear increase with inverse bubble radius, ^  at first and 

levels off to around 0/ =  0.20 for bubbles smaller than 1.25 rnm^.

The authors noted some dependence of the data on the length o f  the foam columns, but 

this dependence was not discussed in depth. They attempted to explain the onset of the 

motion in terms o f  yield stress, but the argument given is inadequate. As we see it now, it 

lacks several essential ingredients and it is in any case illogical.

3.3 Materials and methods

This section gives a description o f  the different apparatus and experimental tools that we 

use for the experiments described in the chapter. We study in particular the convective 

motion found in vertical 3D glass cylindrical tubes.

Monodisperse foam (see Appendix D), is introduced into glass tubes of different lengths 

and diameters. All the different foam containers are partially introduced into a pool of sur­

factant solution, so the foam has contact with air at the top and with liquid at the bottom, 

as shown in Fig. 3-4. Then, the surfactant solution is poured on top of the foam at differ­

ent flow rates using a Watson-Marlow @  505S  peristaltic pump. The parameter that we 

control in the experiments is the flow rate, as our pump allows to change it in increments 

of 0.03 m l / s .  But it is more convenient for comparison of different results and for pre­

liminary interpretations to use the average liquid fraction of the foam, estimated by using 

Archimedes formula (Eq D .l) .  The straightness of the tubes and glass plates is checked 

using a spirit level.

In some of the experiments, the bubbles are visually observed and the velocity of the 

bubbles is timed with a stopwatch. The 3D convective motions are also filmed using a 

Nikon (c) Coolpix 990 camera. This photo-camera can record short films (up to 40 seconds) 

at a speed of 30 frames per second.
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3.4 Drainage driven convective motion in a vertical tube

3.4.1 Description of the drainage driven convective rolls

There are several parameters that may play a role in the drainage driven convective motions 

in a foam. The main ones are the flow rate, Q, at which liquid is added (related to the 

average liquid fraction in the foam, 4>i by Eq. 1.5), the bubble radius and the container 

geometry. The convective roll that has been reported by Hutzler et al. [63] has a clear 

onset at a certain liquid fraction. In the same work, dependence on the length of the tube 

has been suggested. Therefore, the aim at the start of the experiments undertaken here was 

to study systematically that dependence for the diameter and length of the tube in glass 

cylinders. But the results of the first experiments were quite surprising: a second type of 

instability, not previously reported, was discovered.

H  I J Q U I I )  IN P U T

Simple 
( ) Convective

Cylindrically
Symmetric
Instability

Figure 3-4; This sketch shows co-existence of both types of convective instabilities in a column 

of foam: the one that does not have cylindrical symmetry on top and the cylindrically symmetric 

at the lower part. In some cases, only the symmetry-breaking instability is observed. This happens 

when the tube is short or the bubble size of the foam is relatively big. The cylindrically symmetric 

instability has not been found on its own during any of the experiments.
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Both types o f instability can som etim es co-exist in the same tube, as is sketched in Fig 

3-4. Eventually we cam e to regard the second cylindrically sym m etric convective roll as 

the one o f prim ary im portance.

We will refer from  now on to the convective m otions shown in Fig. 3-4 as Simple 

Convective R oll or S C R  and Cylindrically Sym m etric Instability  or CSI.

I B  u
 ̂ 7

B ubble  m oving d o w n w ard s  
B ubble  m oving u p w ard s

T im e fsl

Figure 3-5; Three consecutive snapshots of the SCR. The pictures are separated by 2 seconds. 

The positions of two particular bubbles are marked to indicate the motion, one in yellow, moving 

upwards and the other in red, moving downwards. If we plot the position of the bubbles in relation 

to time, the velocity of the motion is approximately uniform. Downward motion is faster than 

upward motion. This is due to the different relative volumes of wet and dry foam. N.B.: The tubes 

are accurately vertical but the camera was slightly misaligned.

In the S C R  (Fig. 3-5), bubbles move downw ards along one side o f the tube and up­

wards along the opposite side, as described previously in the paper by H utzler et al. [63]. 

A video o f the SC R , S C R . m pg, is provided on the CD that accom panies this thesis. The



bubbles on one side of the tube move downwards while the ones at the opposite side of the 

tube move upwards. Visually following the motion of an individual bubble, one can see 

that after about several centimetres (4 to 16, depending on bubble size) it slowly moves 

towards the side, marking the end of this convective roll.

The plot of the position of the bubbles versus time for the SCR in Fig. 3-5 shows a 

difference in velocities between the bubbles moving upwards and the ones moving down­

wards. The mass of the system is conserved and we can write then:

Pup^up'^up Pdown ̂ d o w n ^  down 1 (3- 1)

where pup and pdown ^re the density of the foam moving upwards or downwards, Aup and 

Adown are the areas of the tube where the bubbles move upwards or downwards and v the 

velocity of the motion.

We can express the density of the foam in terms of the density of the liquid that it 

contains, neglecting the contribution of the gas phase. Therefore, p jo a m  =  Pnquid4>i ^nd 

Eq. 3.1 becomes:

(^r^upVup = <l>f^^^AaownVdown. (3.2)

We have mentioned in Chapter 1 that when the foam is static and at low flow rate, 

the liquid fraction is homogeneous all over the tube [1]. This is not the case when the 

convective rolls appear. But as we will mention later (Section 3.5), the difference in liquid 

fraction between the foam moving upwards and downwards is small. Therefore the change 

in velocities between the foam moving upwards and downwards implies a difference also 

in the relative volumes of foam moving upwards or downwards. Unfortunately, we do not 

know the behaviour of the bubbles in the bulk of the foam. Our observation is limited to the 

bubbles in contact with the walls of the tube, but within this limit the fraction of bubbles 

moving downwards is quite smaller than the one moving upwards.

The second type of motion, (CSI) is shown in Fig. 3-4. In this pattern all surface 

bubbles move downwards, implying that bubbles in the bulk move upwards. Playing with 

the depth of field of the microscope it is possible to get a focused image of the bulk bubbles 

but the image is not clear enough to get any quantitative information about the velocity of
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Figure 3-6; Three consecutive snapshots o f  the continuous motion stage for CSI. The pictures are 

separated by 2 seconds. The coloured bubble indicates the motion. Again, a plot o f the position of  

the bubble in relation to time, shows a quite uniform velocity o f  the motion.

internal bubbles. Therefore, we track only the position of individual surface bubbles. Once 

they reach the bottom  of the tube, they are drawn towards the centre o f the base o f the 

foam . Then, they disappear upwards into the bulk. CSI is the dom inant bubble m otion, 

m eaning by this that it covers a bigger region o f the tubes, in m ost o f the cases.

For the CSI, it is possible to distinguish several subtypes o f motion, depending on 

flow rate values. At higher flow rates, the video C S I - C . m pg shows a continuous regular 

m otion, with all the bubbles m oving downw ards (Fig. 3-6). The bubbles tend to move in 

ordered layers, but some of them  jum p from  one row to another.

Bubble m oving d ow nw ards
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B u b b le  m oving  d o w n w ard s

Tim© [s]

F igure 3-7: Three consecutive snapshots of CSI for the non-continuous motion. The pictures are 

separated by 2 seconds. The red bubble moves downwards but then seems to stop for a while, as 

we can deduce by the plot of position versus time. The yellow bubble does not move at all during 

the making of the film.



When the liquid fraction is decreased, the velocity of the motion becomes discontin­

uous, as we can see in the following pictures and in the film C S I-A .m p g . The motion 

seems to be limited to some bubbles, with the subsequent collapse of the bubbles that are on 

top of them (Fig. 3-7). These series of motions occur at random times, giving sometimes 

the impression that the foam has stopped completely. This behaviour remind us of the 

creep regime observed in the Stokes experiments (Chapter 2) which may well have some 

correspondence here. In what follows we will not distinguish between these subclasses of 

the motion unless stated otherwise.

3.4.2 General description of results for the convective rolls

So far, we have described the two instability types. Simple Convective Roll or SCR and 

Cylindrically Symmetric Instability or CSI, which can be found and co-exist in a column of 

foam at high flow rates. From the description of the motions in Section 3.4.1 and the sketch 

in Fig. 3-4, we can establish that these convective rolls have clear domains of existence: at 

a certain height of the tube and at a given value of the liquid fraction the surface bubbles 

will either not move or move in one of these convective rolls. Our intention is to map out 

these domains of occurrence, together with values of the liquid fraction at the onset and 

velocity of the two kinds of instability with different values of flow input, diameter of the 

tube and bubble size.

We will have a look first at the general pattern of appearance of the convective motions, 

shown in Fig. 3-8: we indicate the fraction of the tube occupied by the convective motions 

at different liquid fractions.

A major feature of these results not previously recorded is hysteresis, that is, the uni­

form state may persist above the threshold value for the convective rolls. This is mainly 

observed for the CSI and the effect varies to a greater or lesser extent in different experi­

ments (Fig. 3-9).

Measuring by increasing the flow rate can lead to a value for critical average liquid 

fraction that is higher than that presented by data for decreasing flow rate. Unless stated 

otherwise, the experimental values in this the chapter are taken by increasing the flow rate 

to a value in which both convective motions are fully developed, and then decreasing the
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(PERCENTAGE)

ONSET CSI
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FRACTION

F ig u re  3-8: Typical domain of co-existence for the two types of instability in the same tube. The 

x-axis shows liquid fraction values and the y-axis the fraction of the length of tube occupied by 

the convective flows. Let us recall that SC R  develops at the top of the tube and C SI in the rest of 

it, as seen in Fig. 3-4. The different regions of existence of SC R  and C SI appear shaded. SCR  

develops at the top of the tube, increasing in length until CSI appears in the rest of the tube. Data is 

taken increasing the flow rate (solid line) until both motions are fully developed on the tube. After 

that, we decrease the flow rate (dotted line). This shows hysteresis (the area shaded in black) in the 

onset of CSI. An example of the experimental data is shown in Fig. 3-11, where the shaded regions 

have been omitted. For most of the experimental data, we have only measured values decreasing 

the flow.
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Figure 3-9; Bubble velocities (y-axis) in the CSI related to liquid fraction (x-axis). This diagram 

also shows hysteresis in the behaviour o f the bubbles as flow rate is varied (see experimental values 

in Fig. 3-20).

flow rate while performing the measurements. In this way, we determine the critical liquid 

fraction at the point at which the velocity v goes to zero. Note also that the shaded regions 

at Fig. 3-8 will be omitted when showing experimental data, for the sake of clarity.
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3.4.3 Influence of the liquid input in the convective rolls

The convective rolls that we have just described in Section 3.4.1 depend strongly on the 

liquid fraction. We have already mentioned that obtaining reproducible values for the onset 

of the convective rolls is not straightforward. At low liquid fractions the dry foam theories 

postulate that small inhomogeneities in the input of flow in forced drainage situation will 

be compensated by the diffusion o f  the liquid through the foam. But this is not necessarily 

true at higher liquid fractions. Therefore, we have decided to investigate the effect of 

off-centring the input o f  surfactant solution (Fig. 3-10). We use three different wetting 

conditions: data labeled as “Centred” correspond to a wetting input carefully centred in 

relation to the cross-section of the tube, using a ruler; “Off-centred” means that the input 

has been slightly misplaced from the centred position; the “Extreme off-centred” values 

stand for data taken placing the wetting input touching the walls of the tube.

Off-centring the input produces an increase in the height of the tube covered by SC R , 

at the expense of the length of CSI, but it does not seem to have a large effect on other 

characteristics of the motion. For the wider tube, the one with diameter of 3.2 cm, this 

effect is more pronounced than for the other tubes. Extreme off-centring produces lower 

values for the onset of both convective motions. Our results show that the influence of 

the wetting input is very important at the time o f  taking systematic values for the onset 

of the convective rolls or to establish the domains of the two instabilities. The rest of the 

experiments are done taking precautions to assure a centred i n p u t '.

3.4.4 Examples of hysteresis on the convective rolls

Hysteresis can be appreciated in the onset of the Cylindrically Symmetric Instability (CSI) 

pattern in the data shown in Fig. 3-11 (as sketched in Fig. 3-9).

The next two sections contain a lot o f  detailed results: the reader w ho is concerned mainly with 

the onset o f  convection and the present state o f  relevant theory may disregard these details and proceed to 

Section 3.4.6.
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Figure 3-10: The figure shows the influence o f the three different positions available for the wetting input 

in the convective rolls. We com pare tubes with foam length 30 an  and (A) 1.6 cm diameter, (B) 2.0 cm 

diam eter and (C) 3.2 cm diameter. The bubble radius is Br =  0.16 cm. We increase the flow rate to obtain 

domains of the convective rolls (explained in Fig. 3-8) but the shading of the different regions is omitted 

for clarity. The tube with 1.6 cm diam eter was too narrow to allow us to take data of the ’’Off-centred” 

position. The values for the centred input cannot be com pared with further experim ents due to the hysteresis, 

explained in Section 3.4.4 (see Fig. 3-11).
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F ig u re  3 -11 ; Typical co-existence pattern for the two types o f instability in cylindrical tubes. The input of 

surfactant solution is centred for tubes (A ) 1.6 cm  diameter, (B) 2.0 cm  diameter and (C) 3.2 cm diameter 

and foam length 30 cm . The bubble radius is B r  =  0-13 cm  in the three samples. SCR first develops at the 

top o f the tube, increasing in length until CSI appears in the rest o f the tube. We have increased the flow rate 

first and decreased it afterwards. This shows the hysteresis (the area shaded in black at Fig. 3-8) in the onset 

o f CSI. The values for the onset critical liquid fractions are in accordance with the values obtained in Fig.
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A typical hysteresis cycle o f velocities o f the CSI motion as a function o f average liquid 

fraction, shown in Fig. 3 -12, presents a lower but finite speed o f the bubbles when the flow 

rate is increased starting from a dry foam. These small, finite values, may be due to some 

sort o f creep analogous to that in the Stokes experiment o f Chapter 2. We shall disregard 

them in our discussion, treating them as effectively zero.

0.5
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Figure 3-12: The velocity of the bubbles in CSI when the liquid fraction is increased until the

motion is fully developed and decreased afterwards. The bubble radius is Br =  0.15 cm and the

tube diameter is 2.0 crn with foam length 30 cm. The plot is similar to the sketch in Fig. 3-9. Each

velocity point is the average of six measurements.

The hysteresis for the onset critical liquid fraction is only o f the order o f 10% when it 

appears (it is easier to appreciate the hysteresis in the velocity plots as in Fig. 3-12). But 

the effect o f hysteresis has to be taken in account when we do experiments. A ll the data 

presented from this point w ill be taken in the way just explained (using a centred input and 

decreasing the f lo w  rate) unless explic itly mentioned.
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3.4.5 Domains of the drainage driven convective motions in a foam

In the last two sections, Sections 3.4.3 and 3.4.4, we have presented the necessary proce­

dure to obtain systematic data for the convective rolls. Now we are ready to determine the 

domains of existence of each of the convective motions for different tube diameters and 

bubble sizes.

100

T riang les --> 1.6 cm  d iam eter 

D ots - >  2 .0  cm  diam eter 

S q u a re s  - >  3 .2  cm d iam eterO)

60

CSI DOMAIN

NO MOTION20

S C R  DOMAIN
* * ■

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
A verage Liquid Fraction (A rchim edes)

Figure 3-13: A plot of the values of the domains of the two convective rolls (see Fig. 3-8) for a 

centred input. The same tube diameters used in Fig. 3-11 are shown together to compare them when 

we decrease the flow rate. These diameters are 1.6 cm, 2.0 cm and 3.2 cm with foam length 30 cm. 

The bubble radius is Br =  0.13 cm Relatively wide tubes present a bigger SCR domain. There is 

also a tendency to get lower onset values for CSI with higher tube diameter. This dependence of 

critical onset liquid fraction with tube diameter will be confirmed later (see Fig. 3-17). Again, the 

domain regions (Fig. 3-8) are not shaded for the sake of clarity.

A comparison of three different tube diameters using a centred input (Fig. 3-13) shows 

that the diameter of the tube has an effect in the height of the tube covered by SCR. Wider 

tubes present a longer SCR domain and lower liquid fraction values for the onset of the 

CSI
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Figure 3-14: The domain o f existence of the convective motions (see Fig. 3-8 for interpretation 

of this diagram) is also dependent on bubble size. The graphs correspond to a tube of 2.0 cm  

diameter and foam length 30 cm. The bubble radii are (A) 0.27 cm  and (B) 0.15 cm. An increase 

in the bubble size leads to an increase in the domain of SCR, with the subsequent decrease of CSL 

Therefore, for big bubble sizes or relatively short tubes, SCR is the only instability that would be 

observed. This affirmation has been checked several times during the experiments and w ill affect 

the way in which we investigate the dependence of the onset of the rolls with bubble size. The onset 

critical liquid fraction values seem to be lower at bigger bubbles attending to the preliminary result 

in this plot. We can confirm this from extended data in Figs. 3-15 and 3-20.
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In Fig. 3-14 we compare the domains for CSI and SCR in the same tube using two 

different bubble sizes. An increase of the bubble size produces a longer SCR domain. 

It is also clear that the liquid fraction at the onset of the CSI is lower when the bubble 

size increases. This trend is more clearly shown in the next section (Section 3.4.6), that 

investigates the liquid fraction values at the onset of the motion.

3.4.6 Onset of the convective rolls

In this section we present results for the onset of convective motion and gather many of 

them together in the last figure (Fig. 3-18).

Given what has gone before, it seems best to disregard the Simple Convective Roll 

(SCR) for present purposes, since it occupies only the top of the tube at onset and is 

somewhat sensitive to centring the liquid input (see the video i n p u t  .m pg.). The newly 

discovered Cylindrically Symmetric Instability (CSI) offers a better object for study, par­

ticularly as its symmetry is amenable to relatively simple theoretical treatment.

Accordingly, the onset of CSI motion is investigated below for different bubble sizes. 

There is an exception for bubble radii Dr > 2  mm,  at the extreme lower range of our data. 

The SCR reaches a longer distance at these bubble sizes (see Fig. 3-14) and it appears 

into the region where we are measuring the onset of CSI. We take the values of liquid 

fraction at which there is a convection occupying the whole tube (even if it is SCR) for 

these bubble sizes. At even larger bubble radii Br > 3.5 m m  it becomes impossible to 

get data. Ordered cylindrical structures of foam [64] form in the tubes. These structures 

do not present convective motion. They rotate at twist boundaries described previously by 

H utzlerefa /. [65].

First we show our main results in Figs. 3-15 and 3-16. Recall that values of the critical 

liquid fraction at the onset are taken by decreasing carefully the flow rate at the foam. 

Every time that we decrease the flow rate, we wait for some minutes before taking the 

measurements to allow the system to reach a stable average liquid fraction. To determine 

the critical liquid fraction, we just observe visually the foam after this waiting period.

We have chosen arbitrarily to fit the data on Figs. 3-15 and 3-16 to a line of the type:

, a *  X
f i x )  = —  ------, (3.3)

I  +  b *  X
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Figure 3-15: Dependence of the critical liquid fraction for the onset of the convective rolls upon 

inverse bubble radius. Values for four different tube diameters (A 1.1 cm, B 2.0 cm, C 3.1 cm and 

D 3.4 cm) are shown. The length of the tubes is 30 cm. The dashed-dotted line marks the inverse 

bubble radius below which the motion observed at the tube is SCR. The solid lines are fits to Eq. 

3.3.

where x  =  ^  and a, b are free param eters. Here we assum e that the data should level off 

as it happened in the previous work o f H utzler et al. [63]. The tubes with bigger diam eters 

in Fig. 3-15-(C,D ) do not show this tendency to level off, but note that 0; does not reach 

the same high values as it does in the narrow er tubes. Due to the difficulty to fill in these 

tubes with small bubbles, we have very few data for the range o f values at small bubble 

radius.

We can conclude from  Fig. 3-16 than the shorter the tube, the easier to get a convective 

roll. To confirm  these qualitative im pressions, we can com pare the slope of the lines fitted 

to the tubes. In Fig. 3-17 we show the values for the slope at the big bubble size range
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Figure 3-16: Dependence of the critical liquid fraction at the onset of the convective rolls with 

inverse bubble radius. Values for three different tube lengths (A 15 cm,  B 30 cm  and C 35 cm)  

are shown. The diameter of the tubes is 2.0 cm. The graph marked as B is the same graph shown 

in Fig. 3-15-B. The dashed-dotted line marks the inverse bubble radius below which the motion 

observed at the tube is SCR. The solid lines are fits to Eq. 3.3.

(parameter a in Eq. 3.3). This parameter gives an idea of how does the critical liquid 

fraction grow with inverse bubble size. We can compare the evolution of the slope for all 

the tubes with the same length Fig. 3-17-(A) and ail the tubes with the same diameter Fig. 

3-17-(B). As we expected, the wider and shorter tubes are more likely to present convective 

rolls at lower liquid fractions

Finally (Fig. 3-18), we will show a comparison of our data to those of Hutzler et al. 

[63],

Various consistent features emerge from all of these measurements, particularly the 

average liquid fraction needed for the onset of the motion in the whole length of a tube is
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Figure 3-17: A  comparison of the slopes for all the tubes (A) in Fig. 3-15 and (B) in Fig. 3-16. 

The slope a decreases with tube diameter and increases with tube length. This corresponds with the 

qualitative observations deduced from these figures.
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Figure 3-18: Comparison o f the data obtained for CSI to the values reported by Hutzler et al. [63] 

for the onset o f SCR. We compare tubes with (A ) - l. l  cm diameter and (B)-15 cm length to (C)-the 

original data (1.5 cm  diameter and length 12 cm). Our results are in accordance to the previous 

ones for larger bubbles (as both measure the onset of SCR at that range) but there is a departure of 

the points for smaller bubbles. The data from Hutzler et al. appears to level o ff at a value around 

(pi =  0.2, which is lower than the values obtained in Figs. 3-15 and 3-16.

roughly equal fo r both convective motions in the case o f large bubble sizes. The critica l

liqu id  fraction goes to zero as B r oo and levels o ff  somewhat as B r  0, w ith  no clear

lim itin g  value, in general

^N.B. In the next section, we proceed to describe measurements o f the velocity o f convective motions 

above threshold. Again, the reader may wish to set aside and consider the present attempts to understand the 

threshold itself in Section 3.5
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3.4.7 Velocity of the bubbles in the convective rolls

Here we address the behaviour o f the system  above threshold, with a finite velocity of 

convective motion. Again we start our experim ent at an initial flow rate at which both rolls 

are fully developed and then decrease the flow rate. Up to this point, the same procedure 

has been used to take m easurem ents o f the critical onset in last section (Figs. 3-15 and 

3-16) but in order to obtain the velocity o f the m otion we use a cam era to film the CSI 

convective roll.
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Figure 3-19: This diagram shows the average velocities of the CSI bubble motion for four sections 

of a relatively long tube, over a narrow range of liquid fractions above threshold. The tube has 

2.0 cm diameter and 52 cm length and the bubble radius is 0.13 cm. Each of the sections covers 

5 cm in the tube. Section 1 is at the top of the tube, close to the area where SCR ends. Sections 2 

and 3 are at the middle part of the tube (as sketched in the graphic). Section 4 is at the bottom part 

of the tube. The values at the middle sections are similar (each data point is the average of seven 

measurements).

We will use the speed o f the bubbles at the central part o f the tube (see Fig. 3-19) to 

characterise the velocity o f bubble m otion associated with C SI convective rolls. Fig. 3-20
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shows such data.
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Figure 3-20: Velocity of the bubbles in CSI. We found there is linear dependence on the excess 

liquid fraction over its critical value. This dependence is found for several bubble radius Dr using 

a tube 2.0 cm  diameter and 35 cm  long.

In order to proceed in a systematic manner, we have chosen to fit the data in Fig. 3-20 

using the function:
c *  (x — d)

g{x)  =  T— (3.4)1 +  e x p ( ^ )

where c, d are free parameters and e is a constant lower than 0.0001 (to obtain the steep step 

expected). The function gives a velocity close to zero up to the point at which we reach the 

critical liquid fraction (parameter d) and a linear increase of velocity with the excess liquid 

fraction above this point. In this way we can identify the threshold in a well-defined way.
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Figure 3-21: A blow up o f Fig. 3-20 showing the detail of the lines fitted to the data. This 

graphs also allow to determine values for the critical liquid fraction at the onset of the motion in an 

alternative way to the values obtained in Figs. 3-15 and 3-16.

3.5 Interpretation of the results: towards a model

Convective motion has been observed in the draining foam since 1998 [63], and probably 

much earlier without being clearly identified and reported. It has grown in importance, as 

it has been repeatedly described by Durian and others, as an impediment to research aimed 

at understanding wet foams. It is frequently mentioned in the justification for microgravity 

experiments [15], since it excludes the uniform draining wet foam from study for large 

liquid fractions. In the microgravity environment, uniform wet foam o f any liquid fraction 

may be made and analysed in equilibrium.

There is no satisfactory published theory. In this section we shall attempt to lay the 

foundations o f one, based on ideas discussed in the Foams Group over several years and
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constrained by the facts presented by the data on this thesis.

Those facts are:

1. The critical value of liquid fraction for the onset of convective motion depends 

strongly on bubble diameter d, tending to zero for large bubble radius, Br.

2. There is some tendency for the critical value to saturate as the bubble size decreases, 

but this is not as clear as in the previous data from Hutzler et al. [63].

3. There is substantial hysteresis, in that the uniform state can persist above the thresh­

old, upon increasing flow rate.

4. The hysteresis region described in (3) as having uniform flow nevertheless shows a 

slow ’’creeping” convective motion.

5. Velocity of convection is roughly linear in the excess liquid fraction, relative to its 

threshold value.

The ideas which we shall present here will address only points (1) and (2), and invite 

further elaboration to confront (3)-(5).

3.5.1 The ingredients of the theory

A theory successful in embracing the main facts presented seems a modest objective but 

it has proved difficult to attain. In a sense this is not surprising, because we have become 

accustomed to theories for dry foams (as presented in the book by Weaire and Hutzler [ 1 ]). 

They perform miraculously well for liquid fractions up to, say, ten percent. In the present 

case we confront a problem that has to do with wet foams. Perhaps unfamiliar factors 

operate, as trusted approximations (which are not always explicit) fail?

That is our understanding, that the conventional descriptions of drainage and rheology 

cannot simply be pasted together to obtain the required theory. They need to be reconsid­

ered. This reconsideration may bring into play several ingredients of theory that have been 

disregarded until now. Three of these are dilatancy, gas pressure variation and wall effects.
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•  Dilatancy. This is the coupHng between expansion and shear. It has been introduced 

into foam physics by Hutzler and Weaire [66], We need to make a distinction here 

between elastic or static and dynamic dilatancy.

Elastic dilatancy has been treated by Weaire and Hutzler in his paper [66], The os­

motic pressure defined in Chapter 1 at Eq. 1.3 is a function of the liquid fraction. But 

it has also a dependence, of second order, on the shear strain on the foam. Therefore, 

the dilatancy coefficient, x  can be defined as a function of liquid fraction 0/:

X (* )  =  ■ (3-5)

If a foam is partially sheared, the consequence of dilatancy is that the sheared part 

will increase its liquid fraction. Even if the foam remains in equilibrium, two liquid 

fractions can thus co-exist in the same foam. A useful measure of the dilatancy 

effect is the difference A(j)i{(j)i) between the liquid fractions of sheared and unsheared 

foam:

The magnitude of this effect has been calculated at a foam sheared beyond the yield 

strain [66]. Using a com puter simulation program called PLAT [8, 67] in 2D, they 

observe differences in liquid fraction of 1.5%-2.0% between the sheared and un­

sheared foam when the liquid fraction of the unsheared foam is around 0.08. There 

is reason to think that this effect should be equally appreciable at a 3D foam and 

therefore, relevant to the onset of convective motions.

In granular materials, dynamic dilatancy is more important than its static counterpart. 

The effect of both in foams is probably significant but we do not have a theory for 

dynamic dilatancy.

• Gas pressure variation. In the successful theory of drainage for dry foams this is 

completely disregarded. The conventional theory of foam drainage contains the ap ­

proximation that there is no gas pressure variation (other than the local variation 

between small and large cells if the foam is polydisperse): we speak of average 

gas pressure. This is justified by noting that, in a dry foam, the pressure variation
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between cells is bounded (because the curvature, related to pressure difference by 

Laplace law (Eq. 1.1), cannot exceed the inverse radius o f  the cell) and is restricted 

to values small compared with the liquid pressure variation. It was always obvious 

that this was questionable for large liquid fractions.

Weaire et al. [68] have discussed the possibility o f  gas pressure variation in equi­

librium dry foams recently, noting that an external force is required to balance them 

and giving some examples. A mathematical treatment of this gas pressure gradients 

has been also presented by Weaire et al. [69]. In the present case, if we assume 

a completely uniform drainage, that external force can be identified simply with 

the gravitational force on the liquid. Since liquid pressure cannot vary (with such 

assumptions) the external force of gravity must be balanced by a gradient of gas 

pressure, in the absence of shear stress. This argument indicates that the gradient 

may be of the order of 0/ g.

•  Wall ejfects It proves to be difficult to write even a tentative theory without some 

drag effects at the wall. Physically, this may be associated with the motion o f Plateau 

borders along the wall. This has been discussed recently in other contexts [70], with 

a general acceptance of the Bretherton law [71] for the force, F  oc At first

glance this appears to be the only boundary force, and it is opposed to the motion. 

We believe that something further is missing and the missing ingredient is the force 

associated to the surface drainage through the surface Plateau Borders [72]. 

W henever a system with internal structure is described by a continuum approach 

there is always a problem with the boundary conditions [73]. In this case, in addition, 

the surface is different from the bulk, with a greater liquid flow through its Plateau 

borders. Therefore, let us assume that this flow exerts a downwards force on the bulk 

and supplies a surface force in the continuum approximation.

In summary, there is a driving  force due to the flow at the surface and a drag  force 

for D 7  ̂ 0
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3.5.2 The driving force at the wall

No calculation has yet been performed to evaluate the force on the interior faces (see Fig. 

3-22) of a surface Plateau border (the force exerted on the outer surface is irrelevant here).

Figure 3-22: A four-fold vertex at the surface o f the container, reproduced from [74].

However, one may estimate the required force (and stress) roughly for present purposes 

as a half of the total force on these faces (recall that we have chosen to work within the 

Poiseuille approximation for all sides). With this rough approximation one may proceed as 

follows to work out the total stress at the outer surface, due to Poiseuille flow at the Plateau 

borders.

For any shape of channel, the average velocity is related to the driving force for flow, 

according to:

where G is the pressure gradient in the absence of gravity (with gravity we must replace 

this term with a contribution of both pressure gradient and gravitational body force and A  

is the cross-section of the channel. The constant C  is dimensionless and depends on the 

shape of the Plateau border. Peters [75] and Bradley [76] have calculated the value of C  

for a Plateau border using different methods. Their results place this value around 1/50 

which can be used in both cases, surface and bulk Plateau borders.

Under steady flow, the drag force at the boundary, F  per unit length, must balance the

interior sides

SURFACE PLATEAU BORDER

BULK PLATEAU BORDER

(3.7)
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driving force. Therefore F  = G A  and by simple geometry:

F p .B .b n i k  = G{V3 -  (3.8)

F p . B . s u r f a c e  =  — 7t)(5̂ ; (3.9)

in terms of the Plateau border surface curvature 5, which is the same in bulk and surface 

Plateau borders within our approximation.

Then, we can also write the flow rate in a single Plateau border as Q = A u :

Q p . B . b u i k  = ------- ~  — ( \ / 3 — — (3. 10)
// 50 // 2

C  G  G 1
Q P .B .s u r fa c e  ~  TTi (o )(^  7t)^ , (3.1 1)

/ X  50 IL 2

These equations should be sufficient to build the required theory in which the driving 

force for convective motion is provided by the force exerted by the Surface Plateau borders. 

Eq. 3.10 can be used to assemble a method of evaluating the total flow rate, Q, as a sum of 

surface and bulk contributions, but we shall not pursue this here.

3.5.3 The threshold condition

So long as our preoccupation is only with the threshold condition for onset of convective 

motion, we may proceed very simply as follows. The threshold is identified with the point 

at which the stress in the foam at the wall (Fig. 3-23) has increased a value equal to the 

yield stress, S^aii =  Sy.

In what follows immediately, we shall implicitly neglect dilatancy and hence speak of 

a liquid fraction which is uniform in the bulk.

In Section 3.5.2 we have estimated the force at the surface Plateau borders (Eq. 3.8). 

We can write G = p g for a vertical Plateau border, since there is considered to be no 

vertical liquid pressure gradient. Therefore, we can write the surface driving force exerted 

on the static foam as:

5 =  “ P c /(^ ) (4 -7 r )^ ^ /s ,  (3.12)

where the Is is the length per unit area in the surface (an analogous parameter I is used by 

Weaire and Hutzler [1] in the bulk). The 1/2 factor in front of the estimate comes from
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Figure 3-23: Schematic illustration o f forces/stresses involved in the equilibrium o f a small ele­

ment o f foam under steady drainage. Dashed lines indicate the direction o f shear strain or strain 

rate, for positive S.

averaging the space orientation o f the Plateau borders (this factor is 1 /3  in the bulk as seen 

in [1]) and the second 1 /2  com es from the estimation made on the last section that the 

stress required has to be roughly half o f the total force on the faces.

Note also that for the bulk o f the foam (Weaire and Hutzler [1] page 29):

~  3 ( ( i / 2 ) 2 ’

and the surface length parameter can be crudely estimated using the bubble diameter as 

Is ^  2 / d (d =  2Br  in relation to the previous notation). The stress may be rewritten as:

S  =  ~  0 .1 5 p # ;d . (3.14)

We want to equate this shear on the wall to the yield stress, which is given by:

y  ( 0 0 ) 2  ’ p . i j ;
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where 0° is the value for the wet limit, that is, 0° Ri 0.36 and 5°  ~  ^ is the value of yield 

stress on the dry limit [62, 37],

Equating S  and Sy and using the familiar definition of a length characteristic

of capillarity [1]:

(3.16)
0.36^

Eq. 3.16 is an estimation of the threshold liquid fraction For large bubbles it gives 

approximately:
I ^

(3-I7)

which goes to zero as bubble diameter goes to infinity in accord with the data. But this is 

quadratic rather than linear in d~^ (as shown in Fig. 3-25).

In the opposite limit (d tends to zero), (j)f —> 0.36, which is the value o f  liquid fraction 

on the wet limit. There is no upper bound to Figure 3-24 shows the form of the 

dependence of Eq. 3.16, to be compared with experimental data from Fig. 3-18. The 

critical liquid fraction, 4>1{d~^), shows a downward curvature in accord with the data 

At first sight these results look promising, in terms of their qualitative form, but they 

imply values of critical liquid fraction which are at least one order of magnitude high. 

The surface driving force is not, on its own, sufficiently large to explain the experiments 

quantitatively.
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Figure 3-24; Estimated values o f the threshold for the convective motion from the “ surface-driven” 

theory. We plot with x =  The theory gives a critical liquid fraction, much higher than 

the experimental values shown in Fig. 3-18, but with a very similar overall shape.
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Figure 3-25: A blow up from Fig. 3-24 showing the quadratic dependence when d —> oo (Eq. 

3.17).
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3.5.4 Towards a more complete theory

Here we address the details o f the radial dependence o f S  and 4>i (Figs. 3-26 and 3-27). We 

consider the various forces acting on it, which must balance (see Fig. 3-23). The resulting 

differential equation, proposed by Weaire [72] will be solved numerically and analytically.

UPWARD
MOTION

DOWNWARD
MOTION

linear

( | > l
UPWARD
MOTION

DOWNWARD 
MOTION

constant

0 R 0 R
Figure 3-26: The radial dependences of S  and (pf as from Section 3.5.3, without taking in account 

the elastic dilatancy.

UPWARD
MOTION

DOWNWARD 
MOTION

DRY WET

< t ) |

DRY

UPWARD
MOTION

DOWNWARD
MOTION

WET

A(j)

0 R 0 R
Figure 3-27: The solutions sketched in Fig. 3-26 change when we introduce the effect of elastic 

dilatancy in our considerations. Recall that dilantacy predicts Acpi oc

The arguments of the previous sections establish a critical value o f 0/ (Fig. 3-26). This 

may be viewed more generally as applying only at the surface. That is, we can introduce 

static dilatancy and still equate S  and Sy as a boundary condition. The full theory will in 

principle give the detailed variation of stress and liquid fraction with r.
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W ith dilatancy (Fig. 3-27, the schem e o f solution is a bit more com plicated: we can 

solve the differential equation as before, with two adjustable param eters, 0° the liquid 

fraction at 7- =  0 and the pressure gradient P'.  We have two required boundary conditions 

at r  =  i? (see Fig. 3-28) which can be used (by an iterative process) to fix the param eters:

1. S{R)  =  Sy{(f)i{R)),  yield stress.

2. S{R)  (X 4>id, driving force at the wall.

O ur experim ents suggest that the end effects at the top and the bottom  o f the tube are 

not large (as seen in Fig. 3-19) and so we may hope that the convective motion can be 

analysed without their inclusion. That is, we propose to consider only a thin horizontal 

slice o f the system (Fig. 3-28), and assum e that it is sim ilar everyw here (this is not quite 

correct but it may serve as a first approxim ation). We seek solutions for the equations o f 

drainage and rheology for this slice. We can therefore ignore the azim uthal variable and 

deal only with the radius r  to describe position (see Fig. 3-28).

dh

Figure 3-28: A slice of the tube is represented by a cylindrical shell of thickness dr and height dh. 

Position is represented by the radial coordinate r. Liquid fraction and other variables are functions 

of r.

We proceed to identify the forces on the elem ent, taking positive forces upwards (there­

fore, gravity will go on the negative direction).

89



1. Gravity contribution:

Fg = —4>i{r)pg2'Krdrdh, (3.18)

where the liquid fraction, 4>i{r), is a function o f r, p is the density of the foam and g 

is the gravity constant.

2. Force due to pressure gradient:

Fp — P'2'Krdrdh,  (3.19)

where P' =  —d P / d z  is the upwards pressure gradient.

3. Shear stress:

Fs  =  — — (rS'(r)) 2-Kdrdh, (3.20)
dr

where S{r )  is the shear stress, a function also o f r. We assume this force to be in the 

same direction o f gravity

If we assume that the osmotic pressure is constant along the radius, then the variation of  

(̂ / with r is tied to shear and shear rate, via elastic and dynamic dilatancy. For the moment, 

let us confine ourselves to the steady state equation for the onset of convective motion, so 

that we set aside the dynamic aspect and write, so long as the foam is static:

(P, =  4>̂ + a S \  (3.21)

where a is a constant that can be evaluated from the work of Weaire and Hutzler [66]. 0°

is the liquid fraction at r =  0 where S' =  0 by symmetry. In this way we arrive to the force

balance equation:

^ { r S { r ) )  =  r[P'  -  (0? + aS'^{r)pg], (3.22)

where P',(fPi,a and pg are constants.

This is a differential equation which gives us two solutions as expected. By setting 

5  =  0 we have a uniform solution with the pressure gradient being the value required to

support the mass o f the foam. We have solved Eq. 3.22 using Maple  ̂and obtained the

following solution in terms of Bessel functions: 

standard math software package.
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_  \ l p m { - P '  +  pg(j)^i)Besselj{l, yJpga {-P ' +  p # ? ) r )  
o (̂ /'J j  — (3.23)

pgaBesselj{0, p g a { - P '  +  pg4ri)r)

Eq. 3.23 presents solution o f the type sketched in Fig. 3-27, as shown in Fig. 3-29.

(A) (B)

Y ie ld  Stress 8%  liquid fraction Y ie ld  Stress 8%  liquid fraction

S(r) S(r)

Y ield  Stress 15% liquid fraction Y ie ld  Stress 15% liquid fraction

S(r)

S(r)

0.005 0.01 0.015 0.02 0.025 0.005 0.01 0.015 0.02 0.025

Figure 3-29: Examples of solutions of Eq. 3.23 for (A)-0^ ks 0.08; si 0.15. We approach

P =  The values of the constants are estimated using [37, 68, 66, 53]

3.5.5 Discussion

Although we have exhibited some solutions o f the differential equation for S{r )  (and 

we have not pursued this work to its final conclusion, which would be a rather 

elaborate calculation. Let us sketch a possible modus opemndi.

The condition S' =  0 is the boundary condition at r  =  0 in all cases. As above, 

the equation may be integrated with an assumed value o f P '  and the liquid fraction at 

?• =  0. These may be considered free parameters, to be eventually adjusted by some 

iterative process to establish an acceptable solution. The conditions which w ill determine
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this parameters have already been stated in Section 3.5.4. It seems intuitively clear that 

static dilatancy favours instability, moving the threshold value of flow rate to a significant 

lower value, but this remains to be confirmed. Perhaps will be better to concentrate on 

the consequences for 0 /(r) which should eventually be measurable. Indeed this might 

present one of the best measures of elastic dilatancy, which remains somewhat lacking in 

experimental confirmation.

A full theory will also make predictions for v{r),  as sketched in Fig. 3-30 (which are 

far from obvious).

v(r) DRY

WET

Observed surface velocity

Figure 3-30: Schematic diagram of the anticipated form of v{r) from a dynamic theory.

To make detailed predictions of f;(r), particularly v(R),  will require a calculation of a 

different type of solution, in which the same general form of differential equation as that 

above is used to determine S{r).  The additional features in its formulation and interpreta­

tion will be:

1. Introduction of the Bretherton drag force [71] opposing the motion at the surface, 

hence a different boundary condition, determining v at the surface.

2. Introduction of dynamic dilatancy, of which little is known yet.

3. Identification of a region of continuous deformation (finite shear rate e), where S  

exceeds the yield stress.
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4. Calculation of e(r) by integration from the Herschel-Bulkley or Bingham model (as 

suggested from Stokes experiment in Chapter 2).

5. Imposition of mass conservation: the final v{r)  must satisfy drr(f){r) =  0.

In broad terms, the calculation seems tractable, but it is not practical at the present 

time in terms of the programming involved and some uncertainties in the ingredients to be 

added.

3.6 Summary

Two patterns of convective convective motions. Simple Convective Roll SCR and Convec­

tive Symmetric Instability or CSI are found in cylinders subjected to forced drainage, as 

shown in Fig. 3-4. These convective motions present a finite onset in liquid fraction (Sec­

tion 3.4.6) related to bubble size. We conclude a inverse linear relationship with bubble 

radius for large bubble sizes.

We are still far from a complete dynamical theory of the effect. Nevertheless we have 

built up a reasonably coherent theoretical scenario, with the following features, which 

should be amenable to test, in due course:

•  The cylindrically convective roll consists of a shearing wet outer shell with shear 

rate, hence velocity, increasing close to the wall

•  The interior undergoes plug flow.

•  There is an small ( ^  1%) difference in liquid fraction (at threshold) between these 

two regions, due to dilatancy.

•  Theoretic critical values of 0° (hence Q)  are in very rough agreement with existing 

experiments, except that 4>f ^  at large values of d. Comparison with experiments 

in this region is complicated by the fact that as d increases the bubble size becomes 

comparable to the tube diameter, so the experiments may not be reliable on this point 

in relation to the present crude theory.
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•  tends to zero for large d  and to the wet foam limit 0° when d  tends to zero. This 

behaviour appears clear and consistent with the experiments and suggest that earlier 

references of a lower limit are probably erroneous.

Further experiments that give new information to test the above assertions would be 

valuable. For example, a non-destructive method that might permit to obtain local values 

of liquid fraction with precision, even in the bulk of the foam, would be desirable. This 

seems attainable with MRI or x-ray tomography in the near future. If this is done (and it is 

under consideration) it will incidentally be an excellent test of foam dilatancy, which is as 

yet a theoretical prediction with little validation.

More modestly, we have tried to determine external local liquid fractions using the 

width of the wall Plateau borders as a reference, but the error in the measurements is quite 

big and we are not able to conclude much from our data. We include our measurements 

(Appendix A), hoping that future improvements on the technique might indeed allow one 

to obtain more conclusive results.

One exciting possibility is the performance of experiments in microgravity, or reduced 

gravity, which is under active consideration. In the elementary theory for onset, gravity 

enters only through Iq, so its predictions are clear. For a given surfactant system critical 

liquid fractions should scale as 4>1 =  The conclusion although drawn for from

the above theory, may have a much more general validity in terms o f  scale arguments.

To pursue such questions experimentally an alternative is to pursue experiments on 

emulsion systems, for which the effective gravity is reduced due to the small density dif­

ference of the components. In this case, some preliminary experiments have already been 

performed [77] but more systematic work needs to be done.
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Chapter 4

Convective instabilities in 2D

4.1 Motivation

Given our inability to look inside the specim ens o f the 3D convective experim ents (Chapter 

3), the possibility o f a 2D analogy presents itself. This is a fam iliar strategy in the physics 

o f foam and has often proved fruitful.

In this chapter we present the first results for convective m otion in 2D forced drainage. 

This requires further analysis, on which developing understanding o f 2D foam  dynam ics 

[78] can be brought to bear. Experim ental work in flow of tw o-dim ensional foam due to 

shear has been recently carried out by Debregeas et al. [79] and Lauridsen et al. [80].

Is it possible to have a convective m otion on 2D? That question was posed during one 

o f the m eetings covered to discuss the 3D m otion. The answ er is yes. It is possible to 

reproduce the patterns found in the 3D corresponding experim ents, and observation of the 

internal bubbles is easier in this kind o f setup. However, we have to be cautious before we 

com pare the results betw een 2D and 3D experim ents, as the geom etries are quite different, 

with large surface effects intervining in 2D [70]. The study o f the motion in 2D geom etries 

(Hele-Shaw cells) is introduced and some em pirical observations are described.

We also expect to find an easier way to m easure liquid fraction locally in two-dim ensional 

foam . All these reasons will allow a much better picture o f the phenom ena occurring in 

the foam undergoing forced drainage.
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4.2 Experimental set-up

We use a Hele-Shaw cell filled up with foam. Our system (Fig. 4-1) is quasi two- 

dimensional, as the separation between the plates is small compared to the bubble size. 

We also find a way of minimising the effect of the off-centring input of liquid and spread 

more evenly the surfactant solution.

■  L IQ U ID  IN P U T

L IQ U ID  R E S E R V O IR

F O A M

L IQ U ID  D IF F U S E R

Figure 4-1: An sketch of the 2D experimental setup. The separation between the plates is around 

0.5 mm. The reservoir is refilled constantly with surfactant solution and spread evenly with the 

help of a piece of porous material. The foam undergoes convective motions similar to the ones 

described on the 3D case. The symmetry axis in the convections is marked by the dot-dashed line.

Monodisperse foam (see Appendix D), is introduced between parallel glass plates with 

a separation of half a millimetre (very small compared with the length and width of the 

foam, which are 200 mm  and 50 mm  respectively). Then, the foam containers is partially 

introduced into a pool of surfactant solution, so the foam has contact with air at the top and 

with liquid at the bottom, as shown in Fig. 4 -1 . We can pour surfactant solution on top o f 

the foam at different flow rates using a Watson-Marlow @ 505 S peristaltic pump.

We observe the bubbles using a Sony @ DCR TRV 30E video camera to get a con­

tinuous film. The taped film is digitalised using Ulead Video Studio (c) 5.0 DV, a frarme 

grabber that allows digital capture at a speed of 25 frames per second.
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4.2.1 Results

We have been able to reproduce the patterns of convective motion found in a cylindrical 

tube using this bi-dimensional system (see Fig. 4-2). However, we do not find coexistence 

of the two patterns as it happened in the 3D experiments. CSI (Convective Symmetric 

Instability, see Section 3.4.1) is the dominant bubble motion and appears on its own at all 

times (see video 2D . mpg). We were only able to reproduce the S C R  (Simple Convective 

Roll instability, as shown in Section 3.4.1) by chance, due to an accidental asymmetry (a 

hole pierced in the material used as a sponge) in our liquid diffusion system. The symmetry 

axis in these experiments is parallel to the plates and equidistant on the two walls, as 

sketched in Fig. 4-1.

As the 2D setup allows us to watch the interior o f  the foam, there are some particular 

aspects of the 2D motion that were not observable in the 3D experiment. One of such 

particularities a pulsing (see video p u l s e 2 D . m pg), in which there is a brief passage of a 

relatively large amount of liquid through the channels o f  the foam. Fig 4-3, as if a liquid 

channel opens suddenly. The rows of bubbles open to allow this amount o f  liquid to make 

its way to the bottom and then return to their initial positions after the liquid has made its 

way. This occurs seldom and at relatively high liquid fractions.

The second observation, in Fig. 4-4, is that the last layer of bubbles (the ones closer 

to the sides of the Hele-Shaw cell) adopt a distorted shape at high flow rates or liquid 

fractions. In the 2D case, we can appreciate that the content of liquid at the sides is much 

higher than it is in the interior of the foam. A layer o f  fluid forms close to the walls of the 

Hele-Shaw cell at high liquid fractions.

We consider that the 2D system presents an interesting future opportunity because it 

allows us to observe clearly the motion o f  all the bubbles in the system. It offers a beautiful 

demonstration of the qualitative effect, but one must be careful in making any detailed 

comparison with 3D, as the physics is quite different in some respects (drag forces on the 

glass plates).
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F ig u re  4-2: The patterns found for the 3D convective motions can be reproduced in the 2D

experiment. There are some differences between the 2D and the 3D case. A - CSI, in which bubbles 

move downwards at the wail and upwards in the rest of the foam appears in all the experiments 

with homogeneous wetting conditions. B - However, to reproduce the SCR, in which bubbles on 

one side move downwards and the ones at the opposite side move upwards, we need to force an 

inhomogeneous input. We do not find coexistence of the different convective patterns in the 2D 

setup.
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F ig u re  4-3: A liquid channel a 2D foam. The snapshots are separated by 0.02 seconds. Two

adjacent columns of bubbles separate to allow a great amount of water passing through. After the 

water has drained through the bubbles, the foam returns to its original equilibrium state. This occurs 

very seldom.
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interior

F ig u re  4 -4 : There is a clear layer o f fluid in contact with the wall at high liquid fractions. The 

bubbles are deform ed in a quite particular way that rem inds us o f  an ’S ’.

100



Chapter 5

Convective motion in a tilted tube

5.1 Motivation

There is another experimental variation of the convective motion [81] that we have ex­

plored, which results more amenable to theory than much of the above. Its successful 

analysis, using some of the same ideas that we have presented already, must offer some 

confidence in future progress. In this series of experiments in drainage driven instabili- 

ties,we use cylinders tilted at an angle from the vertical (see Fig. 5-1). When subjected to 

forced drainage, the bubbles in these tubes present a pattern of motion very similar to the 

Simple Convective Roll or SCR in the vertical tube.

In Fig. 5-1, consider the line that marks the axis of the tube. As we tilt the tube, the 

bubbles below this axis become wetter and the ones above the axis become dryer. This will 

impose a shear stress which must exceed the yield stress, dependent on the liquid fraction 

(pi. The wetter part eventually undergoes shear and a convective motion is produced, much 

as the vertically aligned case. In the present case the essential driving force is very evident 

(see Fig. 5-2). It is possible to adapt the homogeneous drainage equation to include this 

case and interpret the onset of the motion in terms of yield stress.

The behaviour of the foam in the tilted tube is analogous to the Boycott effect [82], 

which describes how the sedimentation of particles suspended in a fluid is five to ten times 

faster in a tilted tube than in a vertical one. The explanation of this phenomenon [83] is 

that in the vertical tube, the particles have to move against the static fluid. When the tube
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Flow rate
Tilt angle

gravity

Surfactant solution

F ig u re  5 -1 : A  sketch o f  the convective roll in a tilted tube. The dashed central line is a reference 

sh ow ing the central axis o f  the tube. The black arrows show  the sense o f  the m otion o f  the bubbles. 

Fluid draining on the foam  m oves preferably in the vertical direction, due to the gravity force 

attraction.

is tilted, the concentration of particles below the axis of the tube grows and the fluid rises 

above the axis. The convection produced helps to the particles to sediment faster. An 

analogous situation has been found in granular materials falling out of a tube [84]. Duran 

and Mazozi have used the complementary angle to the one we are using in our work (they 

measure the inclination from the horizontal). The flow of grains out of the tube is faster at 

angles between 30° and 45° degrees from the vertical.

5.2 Materials and methods

We introduce monodisperse foam produced as detailed in Appendix D into glass tubes of 

different lengths and diameters. The tubes are partially introduced into a pool o f  surfactant 

solution, so the foam has contact with air at the top and with liquid at the bottom. We make 

sure that the tubes are perfectly vertical and establish forced drainage by adding surfactant
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dry foam foamwet foam
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bubbly liquid

F ig u re  5 -2 : A s the angle is tilted in the tube, the water is driven to the wall. The width o f  the wet 

region reduces. It may be p ossib le that eventually, an angle w ould be reached at w hich the dry foam  

w ill float on a thin layer o f  bubbly liquid. In practice, it is im possib le to do the experim ent at angles 

c lo se  to the horizontal orientation.

solution at the top of the tube using a Watson-Marlow ©  505S peristaltic pump which 

allows increments of 0.03 m l/s  in flow rate. Then we tilt the tubes to specified angles (see 

Fig. 5-1).

In these experiments, the bubbles are visually observed and the velocity of the bub­

bles is timed with a stopwatch. We have also filmed the convective rolls using a Nikon 

@  Coolpix 990 camera. This photo-camera can record short films (up to 40 seconds) at a 

speed of 30 frames per second.

The velocity of the surface bubbles can be measured as a function of the angle of tilt 

and physical parameters of the motion can be obtained and compared to theoretical results. 

A short film of the evolution of the motion when we increase the tilt angle is in the CD that
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com es with the thesis (video t i l t e d  .m pg).

5.3 Experimental results for the tilted tube

It is appreciable to the eye that the foam  m oves m ore quickly in the w etter part than in the 

drier part. The drier part seem s also to move in a plug flow. To check the validity o f these 

observations and provide detailed data for com parison with theory, the tube is divided in 

five sections as indicated in Fig. 5-3.

4

Figure 5-3: Division of the sections in the tube. As we tilt the tube to the right, sections 1 and 2 

will fall below the axis (wet foam) and sections 4 and 5 above it (dry foam).

We m easure the velocity o f surface bubbles for different tilt angles. A positive velocity 

here m eans that the bubbles move on average upwards and a negative velocity m eans that 

they move downwards. The results are shown in Fig 5-4.

Bubbles in position 1 and 2 move clearly dow nw ards and bubbles in positions 4 and

5 move clearly upwards. The bubbles at position num ber 3 change their behaviour when 

the tube is tilted away from  the vertical. Thus, when the tilt angle is low, roughly half o f
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F igure 5-4: Average velocity of surface bubbles (six per point) at five different sections of the tube 

sketched in Fig. 5-3. Each set of data is for a different angle of inclination. Flow rate is fixed at 

0.408 m l/s  and the bubble radius is 1.79 mm.  The change of sign in velocity in section 3 start at 

angles ss 15°. Bubbles in position 2, slow their downwards motion as well at those angles. The 

width of the wet side decreases when the tube is tilted, as it is marked by the solid lines. The speed 

of bubbles in sections 4 and 5 is fairly constant at each angle, which is consistent with the plug flow 

observed visually. Error bars have been omitted for clarity.

the bubbles move in each direction and these gives on average a small velocity. But as the 

tilt angle increases, the bubbles on section 3 move clearly upwards. These results support 

our visual impression that the wet bubbles move faster than the dryer side and the dry side 

moves more or less in plug flow, as expected.

We choose the velocity of this plug flow to primarily characterise the motion. This is 

recorded for different angles of tilt at fixed liquid fractions (see Fig. 5-5). It is not possible 

to consider an experimental average liquid fraction in these experiments (the tilting of the 

tube does not allow us to use Archimedes principle in Eq. D .l). The lines are fitted to a 

function f {6)  = a tanh{b6 — c), chosen because it reproduces the sharp rise and plateau 

observed in the data.

I' u 
- - X

Angle 5 degrees 
Angle 7 degrees 
Angle 9 degrees 

Angle 12 degrees 
Angle 15 degrees 
Angle 20 degrees 
Angle 25 degrees
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flow rate = 2 .0 4  ml/s
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flow rate = 1 .70 ml/s

2 .5

flow rate = 1 3fi m l/s

flow rate = 1 .16  m l/s

flow rate = 1 .02  m l/s
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300 5 10 15 20 25

Tilt an gle [degrees]

Figure 5-5: The figure shows the velocity of the bubbles that move upwards in relation to the 

angle of tilt. Every curve is labeled with the fixed flow rate at which it was taken. Small increases 

in the tilt angle lead to an increase in the speed of the bubbles at first. This effect levels off. At low 

flow rates, the velocity reaches a stable level and at higher flow rates, the bubbles moving upwards 

start to slow down showing non-continuous motion. We ignore the points after this slow down 

deliberately to fit the motion (this only affects to the data at flow rates higher than 1.16 m ils . For 

the other sets, all the data up to 25° is considered). The points for each different flow rate can be 

fitted to the function f {0)  =  a tanh{bO — c). This set of data is for foam with a bubble radius 

r =  1.56 m m  in a 2 cm  diameter tube.
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Increasing the tilt angle beyond a certain point leads to a rapid increase of velocity in 

all cases. The slope depends on the flow rate. For flow rates lower than 0.68 m l / s  the 

velocity reaches a plateau and stays at the same value when the tube is tilted further. Flow 

rates bigger than that value result in a decrease of velocity of the surface bubbles, for tilted 

angles above 12°. In some cases, for the higher flow rates and angles above 20°, the slow 

down is associated with non-continuous motion of the bubbles moving upwards. Foam 

moves in short lapses, rather than continuous plug motion (video c a t t e r . m p g ) .  This 

may be due to the character of the motion at high tilted angles (sketched in Fig. 5-2). We 

have neglected these points at the fitting in Fig. 5-5.

5.4 Analysis of results

Here, we relate the parameters a,h,c of the fittings for the velocity of the motion at different 

flow rates in Fig. 5-5 to physical quantities. The parameter a is the limit value of velocity 

at high flow rate.

Values for a  in Fig. 5.4

3.5

CO1 2.5o

o
O  o
a>>
15
E
X
CO
S

0.5

0 0.8 1 1.2 1.4 1.6 1.80,2 0,4 0.6
Flow Rate (ml/s)

Figure 5-6: The values for the limit velocity reached by the convective roll in a tilted tube (param­

eter a in Fig. 5-5). vary linearly with flow rate. This set of data is for foam with a bubble radius 

r = 1.56 m m  in a 2 cm  diameter tube.

In terms of these fitted parameters, the tilt angle for onset of motion is 6c =  c/b.
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The results on Fig. 5-5 may thus be reduced to 6c = c/h and a for many purposes. 

Figs.5-6 and 5-7 use this procedure:

•  The first relates the lim it velocity a to flow rate. It varies linearly with respect to flow 

rate. A t the moment we cannot offer an explanation for this behaviour.

•  The second relates the critical angle to flow rate. We w ill discuss now how this flow 

rate varies respect to the critical t ilt  angle in Section 5.5.

The tilted experiment is repeated for different tube diameters and lengths using the 

same bubble size (Br =  1.56 mm).  A ll the results are consistent with the results described 

.so far for one tube.

2
Critical Tilt Angles from Fig 5.4 

0.017*((cos(x))**-1/3)*((sin(x))**-4/3) 
0.017*x**-1/3

1.5

1

0.5

0 >—  
0.02 0.04 0.06 0.14 0.16 0.180.08 0.1 0.12

Tilt Angle [rad]

Figure 5-7: The values for the flow rate related to critical angle at the onset of the tilt convective 

motion in radians (^c =  f  * see Fig. 5-5 for clarification.). This set of data is for foam with 

a bubble radius r =  1.56 mm  in a 2 cm diameter tube. The data fits to Eqs. 5.2 and 5.3 (the 

approximation for small angles) in Section 5.5.
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5.5 Theoretical Comparison

The drainage equation 1.8 on page 12 has been solved [81, 85] for the tilted tube using a 

change o f coordinates. A full derivation of the solution appears in Appendix G.

The shear stress, S,  in a foam is a function o f liquid fraction. The dependence o f S  

with flow rate can be obtained as (Appendix G):

S  ^2 g ^^ ^c o s^ ^^ 9 s in e  (5.1)

Foam flows when the value o f shear stress equals the yield stress value S  = Sy. The 

yield stress Sy is taken as a fixed constant. We equate the right hand term in Eq. 5.1 to Sy 

and obtain the following expression for the flow rate in the gravity direction, Qz ,  under the 

critical condition for onset o f convection:

 ^ __________

cos^A  ̂Oc Oc  ̂ ^
This can be approximated for small angles using cos 6 c  S i l l  Oq ^c*

(5.3)

The values obtained in Fig 5-7 fit well to both Eqs. 5.2 and 5.3 as seen in Fig 5-7. It 

is possible to evaluate the error committed in using Eq. 5.3 as the larger critical angles are 

around 10° «  Q.175rad. In this case sin 10° 0.173 and cos 10° 0.985 and introducing

these values in the formula we estimate an error about 2%.

5.6 Conclusions for the tilted tube

Our empirical conclusions are:

•  the limit velocity o f the bubbles grows linearly with flow rate.

•  the critical angle at the onset o f the motion, is related to the flow rate in the gravity 

direction assuming a constant yield stress Sy. The dependence is found to be Q z  ~

6 - ^ l \
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These results are consistent for several tubes with different diameters and lengths. The 

theoretical formula proposed in Appendix G provides a good fit for the data of the critical 

angle at the onset of the motion, deduced from experiments. In this way we see a clear 

demonstration of what was anticipated at the outset, that the requirement of a certain finite 

tilt angle to induce convective motion is related to a finite yield stress Sy ,  which must be 

overcome.
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Appendix A 

Measurements of local liquid fraction 

related to convective motions in foam

A .l Motivation

In Chapter 3) we have reported convective patterns of motion in foams at high flow rates 

and we have described a phenomenological theory which should give solutions compatible 

with those expected by the experiments.

As we have explained, it would be useful to have local measurements of the liquid 

fraction. We will describe some attempts to estimate local surface liquid fractions with a 

microscope. We try to relate the width of the Plateau borders in the surface of the sample 

to the average liquid fractions calculated using the Archimedes method (see Appendix D). 

The result is still uncertain, as such estimates involve considerable experimental errors and 

the variations of liquid fraction entailed by convective motion do not appear to be large. In 

the end, the purely optical method described here does not seem to be the solution to the 

problem of finding precise liquid fractions at local level.
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A.2 Surface liquid fraction measurements

To observe the foam at a closer level, in an attempt to determine local liquid fraction, we 

use a Euromex @ optical microscope with a trinocular head. It has x3  and xlO  magni­

fication and allows us to take pictures of the magnified foam when used in conjunction 

with the Nikon (c) camera. In order to examine in detail the growth of the wall Plateau 

borders, we have taken some pictures of a column of foam using the microscope at the 

highest magnification available (x lO ). Fig. A-1 shows some of the pictures.

A B

Figure A-1: Four pictures of the same bubble showing the growth of the Plateau borders when 

the liquid fraction is increased. The values of liquid fraction are, respectively (A)-</i( =  0.048; 

(B)-0/ =  0.075; (C)-0( =  0.089 and (D)- (f)i =  0.097 for a bubble radius 1.3 mm. The convective 

instability, CSI, is triggered at a slow velocity in picture (D) (see movie w a l lm o t io n . mpg in 

CD). Two black dots at the bottom of the pictures are one millimetre apart and serve also as a check 

for the camera focus. We have measured only the evolution of the Plateau Border width marked by 

the red line. Results are shown in Fig. A-2.

We measure the evolution of a single Plateau border using a computer graphics pro­

gram (Adobe @ Photoshop 5.0). The same bubble is pictured at different liquid fractions. 

The liquid fraction is an average on the foam, calculated using Archimedes principle in
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Appendix D. We mark the width o f one o f the Plateau borders surrounding the bubble and 

measure this line in pixels, calibrating this with a known distance in millimetres. The er­

rors are calculated considering propagation o f error from the original pixel measurements. 

Results are shown in Fig. A-2.

Moving foam h 
Static foam ^  

Eq. 4.1 for wall P.B. -  
Best fit

E
E

o
CD
D
CO
0ro
Q.
<0

0 
ig
1  0.6
9?
<fl
a  0.4

0.2

0.06 0.1 0.120 0.02 0.04 0.08
Average Liquid Fraction (Archimedes)

Figure A-2: Apparent width of the Plateau Borders at the surface of the foam. The bubble radius 

is 1.3 m m . The foam is static when the liquid fraction is lower than 0.09 (dots) and moves in 

convective motion (CSI) at higher liquid fractions (squares). The solid line represent the values 

corresponding to Eq. A .l and the dashed line is a best fit to the equation  ̂ =  constan t *

The error in the measurements is large. We have tried to minimise this error by aver­

aging different Plateau borders, but this method in fact increases the error when the foam 

is in motion. We believe that this is due to the deformation that the bubbles suffer during 

convective motion (see video w a l lm o t  i o n . mpg).

The results for one single Plateau border can be related to the theoretical formula that re­

lates liquid fraction, 0/, to the ratio between bulk Plateau border area and bubble volume 

in a dry foam [ ! ] .

, A p B  r  n r  ^9 ^^  /  A 1 \=  5 . 3 0 ; ^ ,  ( A . l )

where c k  is a geometrical factor (calculated assuming that the foam is a Kelvin structure),
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ApB is the cross-section of the Plateau border, Cg is a geometrical constant whose value is 

0.161 [1], 5 is the width of a Plateau border in the bulk of the foam and VJ, is the bubble 

volume. This formula gives a value of the bulk Plateau Border width 5 0.32 m m  for

a liquid fraction o f 0.02. The result is even more discouraging when we take in account 

that the Plateau borders at the wall of the container are twice the width of the interior ones 

according to corrections of the theory calculated using Surface Evolver (Fig. A-3). We 

should have got a value 6-w ~  0.62 m m  and our measured value is Sexp ~  0.03 mm.

Even if we can appreciate the growth of the Plateau border width on the bubbles at 

the wall, the method we have used is not good enough. The error is quite large, but even 

taking this in account, the values that we obtain seem to be lower than the ones expected 

theoretically by one order of magnitude in the dry foam case. We believe that this is due 

to optical considerations and lack of contrast in the images. Our understanding is that the 

Sexp that we are measuring is not the real width of the Plateau Border (Fig. A-4), but an 

apparent length that would need to be related to other parameters of the foam in order to 

get an interpretation of these results.

BULK

Figure A-3: A four-fold vertex at the surface of the container. The width of the Plateau border at 

the container wall is twice the width of an internal Plateau border. Reproduced from [74].
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F ig u re  A -4 :  The experim ental results in Fig. A -2  are sensibly low er than the ones expected  from  

Eq. A. 1. W e attribute this d ifference in the m easurem ents to optical reasons. The values w e m easure 

6 e x p  are different to the real width o f  the Plateau borders 6 w

Several techniques have been considered to obtain precise m easurem ents o f local liquid 

fraction values, even in the bulk o f the foam. MRI (magnetic resonance image) [86] or 

NM R (nuclear m agnetic resonance) [87, 88] have already been tried on aqueous foam  or 

porous m aterials. CT (com puter tom ography) scanning [89, 90], using X-ray radiation is 

another option that has rendered precise im ages o f the bulk o f foam. Real tim e confocal 

m icroscopy was another option available [91, 23]. This possibility was considered in our 

experim ent but rejected, as the only confocal m icroscope available could only acquire static 

data at several //m  in the bulk o f the sample. But real tim e confocal m icroscopy could be 

able to produce m icro-slices o f the foam up to several m m  into the sam ple [92].
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Appendix B 

Minimal configurations of bidisperse 

bubble clusters

B.l Motivation

In this Appendix we present a study o f  2D foam clusters [93], undertaken in the course 

o f our evaluation of 2D foam systems for experiments. Is it possible to determine the 

m inimum energy configuration for a 2D bidisperse foam cluster, such as the one in Fig. 

B-1?

Figure B - 1: A bidisperse bubble cluster has bubbles of two different areas.
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Maybe this question will sound more familiar if we ask another one more general: given 

a collection of planar regions with fixed areas, which is the arrangement with a minimum 

perimeter?

F ig u re  B -2 : W hat is the m inim um  perim eter that can en close ce lls  o f  a given area or volum e?  

A / For an infinite plane, the best option available has been proved to be the honeycom b. In 3D  

the problem  is known as the Kelvin problem  and space partition rem ains debatable. B / K elvin  

conjectured a solution with a unit cell com p osed  by tw o equal ce lls  (tetrakaidecahedrons), w hich  

are truncated octahedra slightly deform ed. C / W eaire and Phelan have calculated that the structure 

shown in the picture has low er energy than the K elvin partition o f  space. The W eaire-Phelan unit 

cell is com p osed  o f  eight bubbles o f  tw o different shapes but equal volum e.

The statement of the problem sounds simple but solving it is not. In 2D, the so-called 

‘honeycomb conjecture’ (see Fig. B-2), was enunciated about 2000 years ago. Fejes Toth 

produced a partial proof in 1943, assuming convex cells. It has only been proved without 

any assumption very recently by Hales [94]. It states that the minimum perimeter config­

uration for the packing of tiles with the same area is one in which all the tiles are regular 

hexagons. But this is only relevant when the 2D cluster is infinite or repeated periodically. 

For finite clusters, the boundary of the cluster (understood as the cluster’s external perime­

ter) has to be taken in account. Finite bubble clusters of N  bubbles have been investigated 

in search of the minimum perimeter solution. In a very few cases, the cluster minimum has 

been exactly solved (A  ̂ =  2 by Alfaro et al. [95, 96] and =  3 by Wichiramala [97]). 

However, in the rest of cases progress has been limited to making conjectures about the 

minimal perimeter configurations. Estimates have been suggested for clusters with N  be­

tween 1 and 42 and for N  = 50, N  = 100 and N  =  200 [98, 99, 95, 100]. The partition o f 

the space in 3D cells, known as the Kelvin problem, is also complicated although a struc-

A B C
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ture has been proposed as a candidate: the Weai re-Phelan [3] in Fig. B-2. Configurations 

of 3D clusters have been analysed only for N  =  2 to 4 bubbles [101], For a large number 

of bubbles the problem becomes complicated and difficult to analyse.

Recent works [102, 99, 98] that study the minimum configuration on equal size bubble 

clusters are described here. We will pay special attention to the work by Vaz et al. [103], 

as they propose approximate formulas for bubble clusters with different bubble areas (par­

ticularly bidisperse clusters). They calculate precisely the surface energy for bidisperse 

clusters composed of a central cell surrounded by one or two shells of cells.

Figure B-3: One candidate for minimum energy in (2-2) clusters. Experimental picture of the 

cluster (left). Simulations can be done the Surface Evolver (right).

We will describe in detail our experiments undertaken in collaboration with Vaz, as 

well as numerical simulations done using the Surface Evolver (see Appendix F). We have 

produced clusters of N  bubbles with two different areas.Our candidates that appear exper­

imentally are supposed to be the most energetically favourable (see Fig. B-3.) Therefore, 

we have used their topologies to calculate their energy using the Surface Evolver [2] and 

have compared the values obtained to theoretical lower bounds for the energy of clusters 

and statistics on the frequency of occurrence of a cluster, made on the experimental clus­

ters. The results show agreement between the Evolver calculations and the theoretical 

formulas, but poor correlation with the statistical values. This can be attributed to the low 

energy differences among the different candidate clusters and the neglected contribution of 

the Plateau borders.
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B.2 The minimal problem in 2D bubble clusters

When two or more bubbles join (Fig. B-4) the film length of the aggregate is less than the 

sum of the films of the individual bubbles. This happens because the intervening film is 

shared by the two bubbles.

I^ = A/n r2=6A /(3n+4)

Total length of film approx 10.63 \/A Total length of film approx 7.61 \fA

Figure B-4: Bubbles come together because sharing a common film lowers their surface energy. 

This energy is proportional to the total length of the film that encloses the bubbles. The bubbles are 

supposed to keep a constant area A.

Within a very good first approximation, the energy of the clusters is defined by the 

surface tension of the soap films that form them, that is:

E/ 'y JoamL, (B .l)

where E  represents the free energy of the bubble cluster, 7/oam the surface tension and L 

the total length (total area in 3D) of the films that separate the bubbles. We are neglecting 

several contributions to the total energy in this approximation. The main ones are the 

contribution of the liquid content of the foam and considering the gas to be incompressible 

in the cells. But we are also neglecting the effect of coarsening, any elastic contributions to 

the energy and local changes in the surface tension of the films. Experimentally, all these 

contributions are much lower than the main term that we are using in Eq. B .l. Studying 

the minimum energy configuration of bubbles is equivalent to studying isoperimetrical
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problems within this approximation.

B.2.1 Contributions to the energy in 2D clusters

Graner et al. [102] discuss in detail minimal 2D clusters of different bubble areas. They 

refer to the minimum energy for a given topology as the ground state. Graner et al. show 

that all the stable states of the clusters have an energy that is quite close to that minimum 

and describe the physical causes that raise the energy of a real cluster of foam: great 

differences in the areas of the bubbles (area mismatch), topological charges ' and the effect 

of the boundaries at free clusters (boundary conditions).

•  Two bubbles share a film that has to accommodate a length that suits both (optimal 

edge length). The effect of area mismatch grows when the difference between the 

areas of the bubbles is bigger.

•  The coordination number is the number of bubbles surrounding another bubble. In 

an infinite 2D dry foam, one cell will have an average of 6 neighbours. Graner et 

al. introduce a topological charge that measures how the topology deviates from 

the honeycomb topology. Using this topological charge, they show that a single 

topological charge is not favourable in energy (i.e. defects will appear in pairs at the 

real foam).

•  The contribution of the boundary comes from the fact that straight lines have to relax 

to arcs of circle in free boundary conditions. This is especially important in small 

clusters, as the one we describe in this chapter. For a small cluster N  <  15, most of 

the bubbles on the cluster are peripheral. Therefore, the contribution of the topology 

will be more noticeable for small clusters [102, 99].

Graner et al. also conjectured that for a fixed topology with given bubble areas, the 

shape of the cluster should be unique. This has been proved wrong by counter-example 

on a given topology and fixed bubble areas by Weaire et al. [104], where several minimal

'The topological charge o f  a bubble is a deviation in the coordination number o f  the bubbles from that o f  

the hexagonal honeycom b
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configurations were found. However, it is clear now that all these configurations all share 

the same energy [105],

We have to find a method to quantify the energy of the clusters, as we want to compare 

different candidates for the minimum. In the following sections, we will describe the 

different attempts to estimate and compare the energy of 2D bubble clusters. Most of these 

energies are calculated for monodisperse clusters (clusters in which the bubbles have all 

the same area), but the ideas underlying can be useful in our evaluation of the energy of 

bidisperse clusters.

B.2.2 The broken bond method

The free energy of a 2D cluster can be estimated using the excess energy [99] of the bubbles 

in the boundary:

Eb =  E -  Eo, (B.2)

where E  is the free energy of the whole cluster and Eg is the energy associated with the 

internal bubbles. Eo =  SNa'yfgam is the energy of a regular honeycomb of bubbles and 

a is the edge length of an hexagon of area A =

The perimeter cells have in general less than six bubbles surrounding them and there­

fore, have an excess energy compared to the internal bubbles. It is possible to estimate 

this excess energy by counting the broken bonds of the peripheral cells (the missing cells 

that will complete six neighbours). The number of broken bonds, B,  in a cluster with P  

peripheral bubbles is defined by [106, 107]:

5  =  6 +  2P.  (B.3)

Each broken bond gives a ‘penalty energy’, e{N,n) ,  that depends on the number of 

bubbles of the cluster N  and the average number of neighbours, n, of the internal bubbles. 

The sum of all these energies, is the excess energy of the boundary.

Eh =  Be{N,  n). 
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B.2.3 Estimates of the energy on monodisperse clusters

An analytical estimation of the energy of the clusters, using the broken bond method, has 

been compared recently with calculations made by Cox et al. [98] for equal area clusters. 

They estimate the number of perimeter bubbles, P  ^  —3 + ^3(4A^ — 1) assuming that 

the minimal configuration is close to a round shape. They suggest the expression:

E  ^  Eo + 2e^3{4N  -  l)Ljfoam,  (B.5)

where e is obtained by fitting Eq. B.5 to the values obtained in Surface Evolver simula­

tions. This parameter is always close to 0.45.

They obtained an initial cluster by cutting a circular section of the honeycomb with N  

bubbles. Some elongated initial configurations were tried for testing with the same final 

result (but longer computing time). They have allowed the clusters to shuffle by perform­

ing neighbour swapping events (T ls )  at each iteration. Their results suggest that minimum 

clusters have circular perimeters and few defects (the number of neighbours of each inter­

nal cell is as close to six as possible).

B.2.4 Estimates of the energy on polydisperse clusters

Vaz et al. [103] have made exact calculations of symmetrical 2D clusters formed by a cen­

tral cell and surrounded by one or two shells of bidisperse bubbles, i.e. with two different 

cell areas. They propose an estimate for the surface energy, taking the equation:

E  3.722 1̂2
 ~  E ’ (B.6)
T /  oam ^ i

used by Graner et al. [102] as an estimate for the surface energy of a polydisperse cluster, 

where Ai is the area of the z‘̂ -bubble of the cluster and 3.722 is the perimeter of a regular 

hexagon of area 1. This is a lower bound that considers that bubbles are going to be as 

round as their constraints (other bubbles in the cluster) permit them to be.

The coefficient in Eq. B.6 can be changed to 3.692 if the space is divided in clusters 

with two different bubble areas (bidisperse clusters), as proposed by Teixeira et al. [108]. 

^They have presumed this value exact for 6-foid  sym m etric clusters.
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E  3.692 , 1 /2
—  (B.7)
I f o a m  ^  i

In both cases, in Eq. B.6 and Eq. B.7, we can add the contribution of the boundary for 

real finite clusters. This contribution is calculated using a broken bond approach, with the 

values for the perimeter energy of a monodisperse cluster found by Fortes and Rosa [109]. 

The equation suggested for the surface energy of a round cluster is:

E  3.722 ^ ^ ^ i / 2 ^ 2 . 0 4 2 ( ^ A , ) 1 / 2 .  (B.8)
'y f o a m  2

Vaz et al. [103] deduce a possible lower bound considering that in a cluster of regular 

hexagons of the same area with regular hexagonal boundary the factor 2.042 reduces to 

1.934:

^  + 1.934(5: (B.9)
T f o am  ^  i i

Both equations, Eq. B.8 and Eq. B.9, work better for clusters with a fairly large number 

of bubbles [103], but which is the best approach for the boundary of a cluster with a large 

number of bubbles is still open to question [110].

The aim of our experiments is to obtain some information about the minimum energy 

configurations for clusters with two different bubble sizes. In particular, the energy found 

for the clusters in Surface Evolver can be compared to Eq. B.8 and Eq. B.9. We will 

achieve this aim of producing experimental clusters and reproducing their topology in the 

Surface Evolver to get an estimate on their energy.

B.3 Experimental methods

When we introduce the possibility of varying bubble sizes, the number of candidates avail­

able for a minimal cluster is much higher than in monodisperse clusters (see Fig. B-5). 

These clusters have N  bubbles and can be represented by the pair, (Af, m),  where M  is the 

number of bubbles of one size and m  is the number of bubbles of the other size. One idea 

to reduce the number of configurations to compare is using clusters with only two different
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bubble sizes and equal number of bubbles of each size M  =  m. But this reduction still 

leaves a great number of possibilities to be studied.

Figure B-5: When the bubbles sizes are different, the number of configurations that a cluster with 

the same topology can access grows. We can see on the sketch that the configuration on the left, 

does not change if we swap the elements between them. The ones at the right, that have different 

tiles, are not the same, even if all share the same topology. Greater polydispersity leads to a greater 

number of configurations.

To reduce even further the number of candidates we use a heuristic approach. We 

are searching for the clusters with minimum energy and we want to simulate them using 

Surface Evolver. One way of reducing the number of candidates is to make experiments in 

order to identify minimum energy candidates. We are not really sure that we have studied 

all the possible bubble clusters for a given number of bubbles (M,m), but it is quite probable 

that the ones with minimum energy will show in the experiments. We believe this because 

the number of experimental trials is fairly large and we encourage new configurations by 

perturbing the cluster. Even using this simple approach, we have plenty o f configurations 

to choose. For a iV =  4 bubble cluster, which we denote as (2 ,2), only two candidates 

are found, even if some metastable states (clusters that change their topology without any 

external perturbation) were photographed. But the number grows to fifteen in the (3,3) 

clusters. Although the final number of configurations will eventually grow as we made 

more experiments, in the (4 ,4) and (5,5) preliminary trials, we have found 15 and 31
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configurations respectively. We decide to concentrate on the (2, 2) and (3,3) clusters to 

study the effect of varying the relative size of the two different bubble areas in the cluster.

B.3.1 Materials and methods

The 2D bubble cluster production is similar to the one described in Vaz et al. [99].

Figure B -6: A picture o f the experimental set-up. A Plexiglas top plate covers the bottom left part 

of the vessel. It can be tilted to separate the bubbles by submerging them into the pool. One o f the 

nozzles used for foam production (described in Appendix D) can be seen at the top left. The top 

plate is covering a cluster in the centre o f the vessel.

A rectangular Plexiglas vessel (Fig. B-6) is filled with surfactant solution. Foam is 

produced by blowing air through different size nozzles in a similar way to the method 

described in Appendix D. When the two bubble sizes desired have been produced, bubbles 

can be picked with a fine nozzle and assembled to construct a monolayer, using a plate to 

cover the top of the tank. The air gap between the top plate and the surfactant solution of 

is approximately 3.0 mm.

The clusters produced are stable to small perturbations (caused by shaking gently the 

Plexiglas top cover and pushing individual bubbles with a nozzle). However, large per­

turbations can induce topological changes (see Chapter 1) in some configurations. The 

cluster topology appears in free conditions (i.e. not attached to other surfaces) and we take 

pictures of the configurations, that are numbered as they appear experimentally. In some
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cases, the clusters have been photographed near the border o f the plate. This can lead to a 

change in the experim ental energy o f the clusters. However, these clusters have the same 

topology when they are obtained apart from  the border and we estim ate the energy from  

the Surface Evolver calculation.

B.3.2 Experimental results

We have produced clusters o f three different area ratios to study the effect o f dispersity 

in the bubbles sizes. We have decided to study bidisperse clusters with com putational 

area ratios o f A u j A m  =  A m / A m =  2 and A m / A m =  4, where M  refers to the big 

bubbles and m  to the smaller. These ratios have been chosen in order to facilitate future 

com parison with our work. The experim ental bubble diam eters are chosen to facilitate 

qualitative com parison with the Evolver calculations that follow in Section B.4, but they 

are also dependent on the facilities available.

We can see that the experim ental candidates to be the m inim um  cluster are the same 

topological configurations for different dispersion o f the areas (Figs. B-7, B-8, B-9, B-10, 

B -l 1 and B-12). We found two stable (2, 2) experim ental clusters and fifteen in the (3 ,3 ) 

case. The photographs show that the m ajority of them  are rounded clusters. E longated 

configurations are less likely to be found experim entally. These are the configurations that 

we will reproduce in Surface Evolver in order to get an estim ation o f their energy.
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CLUSTER 1 CLUSTER 2

Figure B-7: Stable experimental clusters formed by 4 bubbles. A m /A m ~  | .  The reference 

line corresponds to 5 m m  in real size. Two different clusters are found. The statistics of the two 

clusters occurrence (see Fig. B-13) show a preference for the second configuration experimentally. 

This configuration is not symmetrical (the two small bubbles are in contact).
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Figure B-8: Stable experimental clusters formed by 6 bubbles where A m /Am ~  | .  The reference 

line corresponds to 5 mm  in real size. Fifteen candidates are found. The ones that appear more 

often experimentally (see Fig. B-13 for the complete statistical values) are marked in the picture as 

S I, S2and S3.
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The relation A ^ /A m  =  |  is approxim ated experim entally using bubbles of radius 

rM = 8 m m  and =  7 mm.  The real area relation for these clusters is A ^ jA m  =  1.30. 

That is, we have an error o f 2%, when we com pare the experim ental and the com putational 

ratio between areas. W ith the available experim ental set-up is difficult to produce bubbles 

with an exact radius =  6.93 m m  for =  8 m m , which would have given an exact 

area ratio.

CLUSTER 1 CLUSTER 2

Figure B-9: Stable experimental clusters where A m /A ĵ  = 2. The reference line corresponds 

to 5 mm  in real size. Two different clusters are found. The statistic study of occurrence of these 

clusters (see Fig. B-14) shows a preference to the symmetrical configuration (number 1), where the 

two small bubbles are separated.
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except cluster 13. A statistical study of the clusters shows that the most frequent ones are numbers 

2, 6 and 5.
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The experimental radius for the clusters in Figs.B-9 and B-10 are ta/ =  4 mm  and 

=  3 mm. This gives an area ratio o f A m  I  A m  = 1-78. The error in the approximation 

to Am/Ajti =  2 is around 10%.

CLUSTER 1 CLUSTER 2

F igure  B -1 1: The two stable experimental clusters for 4 bubbles where A m / A m — 4. The ref­

erence line corresponds to 5 m m  in real size. The cluster labelled number I is statistically more 

probable than number 2 (see Fig. B-15).
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For the last series of experiments, we used bubbles of radius rM = 6 mm  and rm — 

3 mm. The real area relation for these clusters is exactly A m /A m =  4. We find again 

similar candidates to the ones found in other ratios, with a few exceptions.

In order to gain some information about the experimental energy of the clusters, we 

acquire statistics for the probability of occurrence of the candidate clusters. We start the 

process with a given set of bubbles and tilt the upper plate until the bubbles separate im­

mersed in the water. The plate is returned to the original position, allowing the bubbles to 

rearrange in a new configuration. The value of the configuration is noted and the process 

is repeated around sixty times. Results are in Figs. B-13, B-14 and B-15.

S tatistics 2-2 clusters. AM/Am = A I3

□2-2 1 
■ 2-2 2

Statistics 3-3 clusters. AM/Am = 4/3

□  3-3 1
■ 3-3 2
□ 3-3 3
■ 3-3 4
■ 3-3 5
■ 3-3 6
■ 3-3 7
□ 3-3 0
■ 3-3 9
■ 3-3 10
□  3-3 11
■  3-3 12
■  3-3 13
■ 3-3 14
■  3-3 IS

Figure B-13: Statistics that show the probability to find the clusters on experimental trials. In this 

case. Am /Am =
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Statistics 2*2 clusters AM /Am  -  2

Statistics 3-3 clusters AM/Am = 2

□  3-3 1

■  3-3 2

□  3-3 3

■  3-3 4

■  3-3 5

■  3-3 6

■  3-3 7

□  3-3 8

■ 3-3S
■  3-3 10

□  3-3 11

■  3-3 12

■  3-3 13

■  3-3 14

■  3-3 15

Figure B-14; Statistics that show the probability to find the clusters on experimental trials, when

/  -^ m  — 2.
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Statistics 2-2 clusters. AM/Am = 4

Statistics 3-3 clusters AM/Am = 4

□

CO 1
■ 3-3 2
□ 3-3 3
■ 3-3 4
■ 3-3 5
■ 3-3 6
■ 3-3 7

□ 3-3 8
■ 3-3 9

■ 3-3 10
□ 3-3 11
■ 3-3 12
■ 3-3 13
■ 3-3 14
■ 3-3 15

Figure B-15: Statistics that show the probability to find the clusters on experimental trials. In this 

case, A m  I  Am =  4.
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The statistics show a change in the occurrence of the (2 ,2) clusters when the ratio of 

the areas approaches 1. The second candidate that was less probable for the higher ratios 

o f  areas becomes more probable at AM /Am  =  We do not notice significant differences 

in the statistics for the three ratios on the (3, 3) clusters. Clusters numbered 2 and 6 are 

the most frequent in all cases. A look at the experimental pictures reveals that they are 

both almost circular and have one internal bubble. But this cannot be the only reason that 

makes them so favourable, as cluster 9, for example, shares the same features. We notice 

that these two are the only clusters with one internal bubble o f  area A^-  They adopt the 

same configuration than the clusters surrounded by a single shell of  bubbles calculated by 

Vaz et al. [103], but the bubble sizes are different, making the comparison with the exact 

calculations on this paper quite difficult. A small central bubble leads to a more circular 

configuration of the bubbles at the periphery o f  the cluster and therefore, implies a lower 

boundary energy.

We have identified so far possible experimental candidates to the minimum configura­

tion in bidisperse clusters with different area ratios. This experimental configurations are 

reproduced in Surface Evolver, to estimate the energy computationally. We will compare 

the values of Evolver energies with the statistical values of occurrence of the clusters.

B.4 Evolver calculations

To calculate an estimate of the energy of the clusters found experimentally, we use the 

Surface Evolver [2]. The calculation process is as follows (see Appendix F for details):

•  A basic file reproducing the number of bubbles and a target area for each of the 

bubbles is written for the Surface Evolver.

•  The cluster is forced to the topology found experimentally, forcing T V s  (Chapter 1) 

in some edges until the bubbles have the desired number of neighbours.

•  We refine the mesh twice and iterate the minimisation routine until energy converges 

to within a value of 10“ ®.
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Cluster number E s E  / 1  f o a m

fo r  A m / A m = |

E s E  /  'y f o a m

fo r  A m /Am = 2

E s e / ' J  f o a m

fo r  A m /Am =  4

(2-2) 1 10.426758 9.555029 8.483212

(2-2) 2 10.446446 9.591514 8.529406

(3,3) 1 14.828815 13.582943 12.027617

(3 ,3) 2 14.699001 13.470386 11.972402

(3,3)3 14.858968 13.651651 12.155985

(3,3)4 14.820343 13.553717 11.985299

(3,3)5 14.832435 13.601391 12.086763

(3,3)6 14.701568 13.485487 12.031970

(3 ,3) 7 14.788875 13.509879 11.934931

(3,3) 8 14.833716 13.590822 12.037172

(3,3)9 14.774599 13.638529 12.275611

(3,3) 10 14.867307 13.654013 12.152186

(3,3) 11 14.863695 13.635199 12.090376

(3,3) 12 14.835380 13.605980 12.093257

(3,3) 13 14.871687 13.677043 12.230237

(3,3) 14 14.873046 13.651222 12.143695

(3,3) 15 14.816419 13.570611 12.048122

Table B.l: Surface Evolver energies for the area ratios A m /A ^  =  A m /A m = 2 and

^M/A,n  =  4.

•  We activate quadratic mode and iterate again until energy converges within the same 

value.

The results for all the clusters are in table B .l. The minimum energies in each area 

ratio are set in bold.

The more favourable cluster in the Evolver estimation for the (2, 2) is the symmetric 

one, where the two small bubbles are not neighbours (number 1). In the (3,3) case, the 

minimum candidate changes from the cluster with rotational trigonal symmetry (number
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7) in the / A m  =  2 ra tio  to the one in w hich  all the  sm all bubb les are neighbours, w ith 

one  o f  them  in the  cen tre  o f  the c lu ste r (num ber 2) in the  o th er ratios.

H ow ever, w e can  see that the energ ies are quite  c lo se  betw een  them . T he d ifference b e­

tw een  the low est and the h ig h est energ ies fo r the (2 ,2) c lu ste rs  is less than 0 .18%  in the 

A m ! A m =  T h is  d iffe rence increases w hen the ra tio  o f  areas o f  the bubb les A m / A m in ­

c reases  (0 .38%  fo r an area ratio  o f  =  2 and  0 .54%  fo r an area ratio  o f  A m / A m =

4). A n increase in the area m ism atch  increases the d iffe rence betw een  the energ ies o f  the 

con figu ra tions. G ra n e re t  al. [102] expect this, as w e have m en tioned  in subsec tion  B .2 .1. 

T h e  sam e tendency  happens in the (3 ,3) c lu ste rs  w hich  go from  a d iffe rence o f  less than 

1.2%  in the A m / A m =  |  to  2 .85%  fo r an area  ra tio  o f  A m / A m =  4.

We w ould  ex p ec t that the c lu sters  that have low er energy  w ould  ap p ear m ore often 

experim en tally . H ow ever, com parison  o f  the sta tis tics  m ade fo r the experim en tal c lusters 

w ith  th e ir ca lcu la ted  energ ies show  a w eak co rre la tio n , as in Vaz and F ortes [99].

F ig u re  B -16: The (2 ,2) cluster number 2 for the area ratio A m / A m =  The experimental

picture is shown together with the Evolver simulated shape. This cluster appears experimentally 

more often than expected, giving its calculated energy.

F or the (3 ,3 )  c lu ste rs , even if  the  can d id a tes  th a t ap p ear m ore o ften  experim en ta lly  

have a low  E v o lv er energy, c lu ste rs  w ith  very high  ev o lv er energy  also  o ccu r very often  

(F igs. B -13, B -14  and B -15). In the (2 ,2 )  c lu ste rs , at a ratio  A m / A m =  nu m b er 2 

ap p ears  m ore o ften  ex p erim en ta lly  than  it w ould  be ex p ected  by its energy  estim atio n  in 

E v o lv er (F ig. B -16). T h is m ay be due to  c lo se  energy  values, an insufficien t num ber
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o f cases in the s ta tis tics  o r o ther energy  con tribu tions, w hich  have been  neglected . The 

neglected  term s include the P lateau bo rd er con tribu tion . It can be app recia ted  in any p h o ­

tograph  o f  the c lu sters  that the film  edges do not jo in  in a sing le  vertex , but form  Plateau 

channels  (see S ection  1.4.2). O ur ex perim en tal c lu sters  are in con tac t w ith  a pool o f  su r­

factan t and they are not dry (th is is no t so im p o rtan t to  ob ta in  the cand ida te  to p o lo g ies  but 

has to be considered  w hen com paring  the energ ies).

F igure B -17: The (3 ,3) cluster number 13. A/ Experimental picture at a ratio A m ! A m  — B/ 

Evolver calculated shape for the same ratio and topology. C and D/ Evolver calculated shapes for 

the same topology and ratios A m / A m  =  2 (C) and A m ! A m  =  4 (D). The cluster does not appear 

experimentally for these ratios. The length of the edges at the small bubbles at the calculated shape 

(D) suggest that the cluster may be prone to have a T1 and become a new configuration.

C lusters  that do  not ap p ear ex p erim en ta lly  at certa in  area ra tios can  be rep roduced  and 

stud ied  w ith the S urface E vo lver (Fig. B -17). T hese  c lu ste rs  have a h igh  energy  and the 

ca lcu la ted  shapes m ay no t be very favourab le at som e o f  the area  ratios.

B

A
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Figure B-18: Cluster (3,3) number 7 becomes the one with less calculated energy at an area ratio 

I  -^m — 4 .

The cluster with rotational trigonal symmetry becomes more favourable for the area 

ratio AM/Ajn  =  4. This is interesting, as the cluster shape (Fig. B-18) remind us of the 

partition proposed by Teixeira et al. [108] to calculate the lower bound in Eq. B.7.

B.5 Analysis of results

We can compare the energies calculated in the Surface Evolver, which we denote as EsE/ j foam,  

with the possible theoretical lower bounds suggested in Eq. B.8 and Eq. B.9 (Fig. B-19).

The energy of all the bidisperse candidate clusters lies close to both theoretical lines, 

so we can consider them as good estimates of the energy of polydisperse 2D clusters. 

These equations were both suggested as lower bounds for the energy, but it is clear that 

the calculated energies of some of our clusters lie below the proposed lower bound. This 

can be attributed, as in Vaz et al [103], to the low number of bubbles studied in the clusters 

{N < 10) in the work described here.

An interesting observation when A m / A m changes is that some configurations that had 

an elongated perimeter for the lower area ratios, such as (3,3) number 4 and (3,3) number 

12, become more rounded in the higher area ratio. This has an effect in their calculated 

energy (that becomes lower in relation with the energies of the other candidates) and their 

statistical performance. The results are still partial, as the number of bubbles N  studied is
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AM/Am = 4. 2-2 clusters 
AM/Am = 4. 3-3 clusters 
AM/Am = 2. 2-2 clusters 
AM/Am = 2. 3-3 clusters 
AM/Am = 2. 4-4 clusters 
AM/Am = 2. 5-5 clusters 

AM/Am = 4/3. 2-2 clusters 
AM/Am = 4/3. 3-3 clusters 

Eq. A.8 
Eq. A.9 

Experimental points

1.8 2 2.2 2.4 2.6 2.8 3 3.2
S(AI)**1/2/(S AI)**1/2

Figure B-19: The calculated energy of all clusters is presented here and compared with the lower 

bound calculated for polydisperse clusters and round boundary, Eq. B.8, and the lower bound 

calculated for bidisperse clusters and hexagonal boundary, Eq. B.9. The values are close to the 

theoretical equations, even if the number of bubbles N  is quite small. However, some of the calcu­

lated energies of our clusters are below the possible lower bounds. This was expected, as Eq. B.8 

and Eq. B.9 are deduced for clusters with a large number of bubbles. The experimental values in­

cluded correspond to the minimum energy clusters obtained in Table B. 1. The experimental values 

for E / j f o a m V i S A i )  are around 10% below the energies predicted by the theoretical lines. These 

lower energies can be attributed to the experimental set-up, in which the bubbles are in contact to 

the surfactant liquid pool.

very  low  this tim e. B ut th is  still suggests  that the idea o f  the rounded  or hexagonal b o u n d ed  

c lu ste rs  being  the  m in im al ones is qu ite  reasonab le , as it was suggested  in S ection  B .2.

T h e  energy  fo r the  m in im um  experim en tal c lu sters  (in bo ld  at table B . l )  has been  e s ­

tim ated  by tak ing  the skeleton  o f  the bubble c lu sters  in the p ic tu res and m easu ring  th e ir 

perim eters  w ith  A dobe ©  P ho toshop . T he areas o f  the b ubb les are ca lcu la ted  u sin g  the  

values o f  the bubb le  d iam eters m easu red  in the lab. T he values are c learly  below  the ex ­

pec ted  theoretical values. T his is partly  due to the erro r a ttached  to the d ig ita l han d lin g
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of the images, but also reflects the fact that our clusters are floating in a pool of surfactant 

liquid during the experiment and therefore, their liquid fraction is non-zero, making the 

estimate of the energy more difficult to achieve.

It is noted that the difference in energy between the lowest and the highest configuration 

increases with area mismatch. As approaches the value of A^f,  we are getting closer 

to the monodisperse cluster situation and therefore, the difference in energies between the 

configurations becomes less wide, as expected.

B.6 Conclusions and Outlook

As we have seen, the theoretical formulas predicted in Vaz et al. [103] give a very good 

approach for the energy of dry 2D bidisperse clusters. These formulas were derived for 

round symmetrical clusters and were expected to work better with clusters with a high 

number of bubbles N .

Even though we have not studied all the possible clusters with our method, our ex­

amples suggest that the candidates obtained from experiments contain indeed the lowest 

energy cluster. Our partial results show that, for the surface Evolver energies, the agree­

ment is good in the dry limit even for clusters with a limited number of bubbles. A more 

exhaustive investigation that includes clusters with N  > 10 will establish if these prelim­

inary results are correct. Area mismatch in the clusters (a bigger A m  I  Am  ratio) increases 

the energy gaps between configurations. However, the difference in energy between the 

clusters is quite low and the Plateau border contribution seems to be fundamental in the 

case of experimental clusters. The Surface Evolver can calculate the Plateau border contri­

bution if we provide the Plateau border area. The problem lies in the difficulty to determine 

the Plateau border size from the pictures, as we have seen in Appendix A.

Anyway, it would be interesting to try to estimate the experimental cluster energies, 

even if it is in a dry limit approach. We can see in some of our pictures that the films shared 

by two bubbles of the same area are not straight lines, as it would be if their pressures were 

equal. This aim can be achieved by using two programs developed by MacLeod [111] 

and Foley [112]. Foley has produced a program that allows to minimise a 2D foam. It
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uses as an input the vertices and the connectivity between them (easy to deduce from the 

photographs that we have taken) and calculates the film final geometry, represented by 

circular arcs and the internal pressure of the bubbles. This is equivalent to calculate the 

real areas o f  the experimental cluster. M acLeod’s code reproduces graphically the cluster 

from the topology and the areas given by Foley’s program. We hope that this can explain 

further the variations in energy between the experimental and the theoretical case.
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Appendix C 

The channel-dominated form of the 

foam drainage equation

We neglect the flow through the films and accept that most of the liquid drains through 

the Plateau borders. The channels are reduced to a net of N independent pipes. Treating 

the liquid as incompressible, it is possible to obtain the equation of continuity for a single 

Plateau border vertically oriented,

( C . l )

where A{x, t )  is the cross-section of the Plateau border and u{x, t )  is the velocity of the 

fluid averaged over the cross-section. Both magnitudes depend on a downward vertical 

coordinate x  and time t.

In a Plateau border, there is a dissipative (viscous) force due to flow which is balanced 

by gravity and the pressure gradient. Here comes the most controversial assumption of this 

calculation: that dissipation of flow occurs by shear at the channel walls and the dissipation 

at the nodes is not significant. This is known as flow of Poiseuille type. In the element 

A{x, t )dx  the balance of forces gives the equation,

<C,2)

where p is the density of the foam, g the gravity constant, puguid the pressure on the fluid,
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Tliiquid the viscosity and /  a factor that depends only on the shape of the channel.

For a monodisperse foam we can write the Young-Laplace equation, that relates the gas 

pressure difference inside and outside the bubble with the radius of the bubble, in terms of

A{x,t),

Introducing the value of piiquid obtained from Eq. C.3 into Eq. C.2, u{x,t)  can be 

written as a function of A{x, t). It is therefore possible to write Eq. C. I as a function only 

of A.

Although derived for a single vertical Plateau border, the equation can be adapted to 

the case of a network, by the incorporation of various constants. Weaire et al. consider the 

foam to be isotropic, average over the different orientations of the Plateau borders, and use 

a change of variables to achieve the final result in Eq 1.8 :

The solutions of the equation are of various kinds of which the very simplest is just 

A = constant, the steady drainage case.

In work that deals with very wet foam, as in much of this thesis, many of the approxi­

mations inherent in the above equation must be treated with scepticism. One of their more 

interesting failings (because it may introduce extremely new effects) is the lack of any al­

lowance for deformation of the structure due to fluid flow. Indeed the deformation may 

even proceed to the point of local structure instability. This has been observed in wire 

frames [ 1] but it is not usually seen in foams: we suspect it takes over as the primary in­

stability of steady drainage for very large bubbles. In Appendix F we sketch a possible 

approach to this problem.

C l (C.3)P liq u id  P gas

where C  =  \/3  — tt/2  and 7 is the surface tension.

(C.4)
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Appendix D 

Experimental foam production

There are many procedures to obtain a foam, but not all are suitable for the sam e purposes. 

We reproduce in Fig. D-1 a picture o f the results o f different foam  production m ethods 

from Hutzler et al. [113]. Norm ally, blending and w hisking m ethods lead to highly poly- 

disperse foam and blowing gas in a controlled manner, produces m ore regular foams.

Foams produced by

Blowing g a s Blowing g a s  
(tu rbu len t flow)

S p arg in g

B lending S hak ing N ucleation  of g a s  
(b e e r  froth)

Figure D -1: Foam produced by several different methods. The dispersion in bubble size is less for 

the blowing production methods. Reproduced from [1, 113].

M uch of the work done for this thesis involves producing m onodisperse aqueous foam
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at different bubble sizes. This excludes the foam formed for the experiments described in 

Chapter 2, in which the main interest was to get a bubble size small enough to consider the 

foam a continuous medium.

The procedure we use to obtain monodisperse bubbles is to blow gas (air or nitrogen) 

through a nozzle or a syringe needle into surfactant solution. The surfactant solution is 

Fairy Liquid in water at approximately 2% in volume. A sketch of the experimental set-up 

is shown in Fig. D-2.

q Q  o o
bubbles

surfactant solution

Figure D-2: Experimental set-up to obtain monodisperse foams. Once produced, the foam can be 

introduced into different geometries to carry out 3D or 2D experiments.

Good control of the pressure of the gas flow results in a highly monodisperse foam. 

The gas tap provides a maximum gauge pressure of 3 ' but this pressure results in a

turbulent flow that gives polydisperse foam as a result, very close to a bimodal distribution, 

as pictured in Hutzler et al. (see Fig. D-1). The best range in pressures to produce a 

monodisperse foam is 0.5 iV/m^ to 1 N/rn^, corresponding to a laminar flow. This allows 

to grow ordered columns of foams that can be introduced in small capillary tubes. It is 

possible to grow up to several tens of centimeter without defects.

Bubble size can be controlled primarily by using nozzles with different cross-sections. 

For the smaller bubbles (0.5 mm  to 0.8 mm  in radius), we use special nozzles with a small 

' 1 iV/m^ =  I Pa
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circular cross-section of less than 1 m m  in diameter. In some cases, the nozzle has to touch 

the bottom of the basin. The result is a partial block at the opening of the nozzle that allows 

us to obtain smaller bubble sizes. Intermediate and big bubble sizes (0.8 m m  to 4.0 mm) 

are produced with syringe needles of elliptical cross-section. Polydisperse foam with a 

very small bubble size, as the one we use in Chapter 2, is produced by attaching a sparger 

to the gas source.

The bubble size is measured with the aid of small capillary tubes when we are using 

monodisperse foam. An ordered structure, as the ones described in Chapter 13 of [1], is 

grown on a tube of known diameter. The volume of a section of the tube is divided by 

the number of bubbles contained in that section. The measurement is extended to a large 

number of bubbles to minimise the errors. We have not quantified polydispersity in all the 

experiments, but it is possible to estimate it from the bubble size measurements. In the 

worst cases, only one every twenty fifth bubbles introduces a small defect in the ordered 

structures we grow on the capillary tubes. The bubble size of this defects is quite close to 

the one of the regular bubbles. This gives less than 5% defects in our foam, which can be 

taken as quite monodisperse.

Another effect that can affect the bubble size is the coarsening of the foam. The diffu­

sion of the gas through the films causes an enlargement of the average size of the bubbles. 

Bigger bubbles have a lower gas pressure than smaller bubbles. The gas diffuses to the 

area of lower pressure and big bubbles tend to coarsen at the expense of the small ones. 

This diffusion is related with the gas solubility, as mentioned in [1]. We can compare 

the values of solubility of pure gas at 1 atm  and 20°C for N 2 =  7.0 10“  ̂ molL~^, air 

= 7.9 10-4 m o lL - \  O2 =  1.3 10-^ molL~^, and CO 2 =  2.3 10"2 molL-^ [114]. The 

values of N 2 are the best to minimise coarsening in the experiments. Results of the effects 

o f coarsening of air foams under forced drainage, show that this coarsening is neglectable 

over a time scale of thirty minutes [40], All the experiments described here are well below 

this time, including the stage of foam formation. The growth of the column depends on the 

tube length and diameter and the bubble size we are producing. The rates of growth vary 

quite a lot, but a rough idea of the time-scale can be inferred from the following extreme 

examples:
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•  in a 1.5 cm diameter and 20 cm length tube, using 4 m m  radius bubbles, it w ill take 

a few seconds to f ill in the tube,

•  using the sparger (small bubbles with a radius less than 0.5 mm) with in the tube o f 

4 cm diameter, it takes around thirty minutes to f ill in the tube.

In most o f our experiments we have worked with wet foam. Once we have produced 

the foam, we w ill measure its experimental liquid fraction. In simple geometries, like rect­

angular or cylindrical containers, where the foam is in contact with the surfactant solution, 

the average liquid fraction o f a foam can be estimated experimentally using the Archimedes 

principle [115]:

where h is the depth which the foam reaches below the surface o f the liquid and H  is the 

total length o f the foam (Fig. D-3).

Forced i 
drainage^X,.

E
"oo
E
o

H

Soap solution

Figure D-3: Experimental set-up to obtain monodisperse foams. Once produced, the foam can be 

introduced into different geometries to carry out 3D or 2D experiments.
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Appendix E

Fluent

We have used FLUENT, a flow dynamics software package, in order to make computations 

of the Stokes experiment in Chapter 2. FLU EN T allows to model fluid flow and heat 

transfer in complex geometries. These geometries can be meshed in a very flexible way, 

allowing even to adapt the refining of the mesh based on the flow solution. These can 

be useful to determine which regions require a more refined mesh and therefore, can save 

computational effort. As FLUENT is written in C computer language, it is possible to 

write scripts to handle particular flow types, such as the Bingham model (Eq 1.15) or the 

Herschel-Bulkley model (Eq 1.16).

FLUENT solves the general conservation equations for mass and m omentum for in- 

viscid flows, with the appropriate boundary conditions. Depending on the solver formu­

lation chosen the equations will be solved segregated, first the momentum  equation, and 

once solved this, the continuity equation, or coupled (simultaneously solving both flow 

equations). In both cases, the solver divides the geometry into discrete control volumes 

(computational grid) and integrates the flow equations on the individual control volumes to 

get algebraic equations of magnitudes such as velocities, pressure and temperature. These 

algebraic equations, once linearised, constitute a linear equation system whose variables 

are the values of the magnitudes. The results are the same, regardless of the type of solver 

formulation chosen. The only advantage of using one or the other, is to obtain a speedier 

convergence in the values of flow.

After determining the features o f  the problem that we want to solve, the procedure of



the FLU EN T calculations is the following:

1. Create the mesh using the preprocessor package, GAM BIT.

2. Start the program  for 2D or 3D models.

3. Im port and check the grid. It is possible to scale the grid in this step, to allow a 

change o f units.

4. Select the solver form ulation if desired. Segregated is the default.

5. Create or select the fluid properties from the database.

6. Specify the boundary conditions.

7. A djust the value o f the residuals to control the accuracy o f the solution.

8. Initialise the flow field and iterate until convergence.

9. Exam ine and save the results.

10. If necessary, refine the mesh or the param eters o f convergence and repeat the calcu­

lation from  step 8.
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Appendix F

Surface Evolver

The Surface Evolver ' is used to perform calculations minimising bubble clusters in A p­

pendix B in this thesis. It is a computer program that minimises the energy of a surface 

subject to constraints [2], It was developed by Professor Kenneth Brake  ̂ during his par­

ticipation in the Geometry Center Project at the University o f  Minnesota. The capacities 

of this piece of software include many possibilities, the main being:

•  the capacity to perform calculations on N-dimensional surfaces, using the different 

surface modes;

•  it deals with any energy that can be represented as an integral over the surface;

•  different constraints and boundaries at the surface can be imposed;

•  it is possible to refine and change the surface during iteration;

•  it can be used with or without graphics. Compatible with Geomview

•  the output can be easily dumped in several image formats.

Thus, the Surface Evolver has been widely used in various environments and problems, 

as computing capillary forces at non-cylindrical geometries, simulating grain growth and

' The Surface Evolver is available free o f  charge at w ww .susqu.edu/facstaff/b/brakke/evolver/evolver.htm l

^w ww.susqu.edu/facstaff/b/brakke/

 ̂w w w .geom .um n.edu
"^Geomview is an interactive graphic view er that allow s, am ong any other capacities, direct rotation o f  the 

surface on screen. It can be found at w w w .geom .um n.edu/locate/geom view /
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studying the shape of molten solder on microcircuits. One of the problems tackled with 

the Surface Evolver is the equilibrium structure of soap films (foam) [116].

The Surface Evolver uses a finite-element approach to represent a surface. We can re­

duce a complex figure to a compound of small triangulated surfaces or facets. The Surface 

Evolver will work from a simple approximation to the surface provided, if they have the 

same topology. This simple topology is defined using vertices (points), edges that connect 

the vertices and faces enclosed by a series of edges. The Surface Evolver will triangulate 

automatically any face that has not this shape. A closed group of facets can form a body.

The Surface Evolver deals with different models of surfaces during calculations. The 

different models available, attending to the surface representation are:

•  String model; For one dimensional surfaces.

•  Soapfilm model: For two dimensional surfaces.

•  Simplex model: For n-dimensional surfaces with n  >  3.

There are also different models of representing the surface elements:

•  Linear model: The elements that join the vertices are lines and the facets are flat.

•  Quadratic model: Lines and flat facets are substituted by quadratic curves and 

patches, by interpolating a middle point between two vertices.

Default calculations in the Surface Evolver use Soapfilm model and Linear model. At 

some stages in our calculations we have made use of the String model and Quadratic model.

Surface Evolver performs calculations in iterative steps. The surface evolution uses a 

gradient-descent method. Each step will:

1. Calculate the force at each vertex.

2. Projects the forces to be tangent to the constraints for the elements if necessary.

3. Save the current vertex positions.

4. Moves the vertex in accordance with the force calculated in step 1.
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5. Projection o f the elem ents out o f place to the constraints.

6. Recalculates the new energy values.

7. Perform s a check in the increase o f energy, when this option is activated.

8. Prints the new values and re-displays the surface if graphics are on.

Figure F-1: Images of a Plateau border at different stages of an Evolver calculation. A- Starting 

topology for the Plateau border. B- One level of refinement after 500 iterations. C- Two levels of 

refinement after 500 iterations. D- Three levels of refinement after 500 iterations.

The Surface Evolver allows to refine the surface, i.e., interpolate new vertices to get 

a finer mesh, while there is m em ory available in the computer. Fig. F-1 shows a Plateau 

border at different levels o f refinement.
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Refinem ent level Final energy Extrapolated energy

0 1.37942

1 1.35594

2 1.35405 1.35388

3 1.35356 1.35339

4 1.35344 1.35340

5 1.35341 1.35340

Table F. 1: Final energies for the iterated Plateau border for several levels of refinement. The 

column on the right is a power law extrapolation based on the previous and actual values obtained 

for the energy. The energy value converges to 1.35340 at the sixth level of refinement.

Convergence is very difficult to judge, according to the own Surface Evolver manual. 

Hand tuning o f the surface is often required. Equiangulating the facets or averaging the 

vertices provides a more regular mesh and small facets and edges may be deleted if they are 

stalling the m inim isation. The final energies at each o f the refinement levels for a Plateau 

border are shown in Table F. 1, together with an estim ation o f the final energy, extrapolated 

from the values obtained at each level o f refinement. This power law extrapolation is very 

useful for com plex structures, where it is not possible to refine to this extent.

As noted in A ppendix C, we have investigated the interfacing o f the Surface Evolver 

and Fluen (Appendix E) in order to assess the deform ation due to flow for a single tetra­

hedral junction. W hile extensive technical work was done, the results o f the eventual 

calculations were not considered reliable. Accordingly this work has been archived in a 

separate internal Technical Report for the TCD Foam s Group. The spirit o f this report is 

contained in Fig. F-2.
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SURFACE
EVOLVER

Calculates initial shape

FLUENT
Simulates flow condition^ 
in the channel

SURFACE
EVOLVER

New shape calculation, 
considering the pressure 
of the liquid flowing 
through the channel

Convergence;

F ig u re  F -2 : The diagram  shows the m ethod follow ed in our calculations o f flow induced deform a­

tion in tetrahedral junctions. First, the channel shape is calculated using the Surface Evolver. The 

surface is m eshed using the preprocessor included in the F luent package. G am bit and we sim ulate 

flow conditions inside the channel. The flow produces a force at the walls o f the channels which 

can be introduced as a new boundary condition in the Surface Evolver. A t that point, we com pare 

the result o f our calculation with the surface obtained at the previous step. If their energies differ 

by less than 0.01% , we consider the result converged.
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Appendix G 

The foam drainage equation in a tilted 

tube

This is a derivation o f the theoretical form ula for the onset of the convective instability in 

a tilted tube, developed by Cox and W eaire in response to the experim ental results o f this 

thesis [85],

X2

cos

sin 6

Figure G-1: The tilted tube changes its orientation with respect to gravity. The axis XI and X2 

are tilted an angle 0 to get the new set of axis in which Z is parallel to the axis of the tube. M is the 

matrix that rotates the system XI-X2 into the new system Y-Z.

We will em ploy the channel-dom inated tw o-dim ensional form  of the drainage equation, 

as it appears in Cox et al. [ I I ] ,
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d a  d (  2 \ / a d a \  d ( J a d a \

where a  is the cross-section o f the Plateau border and (^, rf) its position (see Fig. G-1) 

at a time r. The acceleration due to gravity g has been included explicitly.

The tube that contains the foam is tilted an angle 6. We can define a new coordinate 

system, with the two new coordinates along and perpendicular to the axis o f the tube, as in 

Fig. G-1:

Z  = ^cos  9 + rj sin 9 and Y ' = —^ s m 9  + r]cos9.

When this change o f coordinates is applied to Eq. G. 1, it becomes:

da  d (  _ 2 '

If the flow rate is constant (steady drainage), then the time derivative in the equation 

can be neglected. These conditions lead to two separate equations that relate the balance 

of flow in the Y  and Z  directions. The boundary conditions on the flow are constant flow 

rate Q  in the Z  direction, and zero flow at the walls in the Y' direction.

The condition o f zero flow at the walls leads to the absence o f flow in the Y' direction. 

Under these hypothesis, a  =  « ( F )  and it has to satisfy

g sin 9 a'^ +
a  d a

2 d Y
(G.3)

One solution of Eq. G.3 is

a { Y )  =  [5 fsin 0(y  -t- C )\ - 2 (G.4)

w here the constant C  is eva luated  from  the total am ount o f  liqu id  input into the foam

Q t o t  *•

Qtot

f W
/ dY,
Jo

g cos 9
10 [ g s in 0  (Y -I- C)]^ 

to find C { Q t o t )  im p lic itly .

cos 9 
3g^ sin'  ̂9

1 1
C3 (C +  W)3

(G.5)

Qtot = Jo' Q z d y  where = gcosOa^.
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The liquid velocity in the foam is given by the flow rate divided by the Plateau border 

area a . The shear stress S  scales with the derivative of the velocity, so that we have

d f gcose \  2cos6> 1
95" +  C)]2j ~ g s in H jr T ^  ~ d s m d Q z  .

Now, consider the foam to have a yield stress Sy. The critical angle at which flow first 

occurs, 6»c, is given by the condition that S  =  Sy. At this point the variation of flow rate 

with angle is

2 4 /3 p 5 /3  c o s V 3  0^ s i n ^ / ^  Of.

For small angles i9c 1 we find that

Qz  ~  (G.7)
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