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Abstract

This thesis explores the physics of foams, particularly those that are wet (i.e. have a high
liquid fraction). The properties which are measured here relate to structure, drainage and
rheology.

We have performed the first published Stokes experiment in a foam [41]. and compared
results with estimates derived from the Herschel-Bulkley model for rheology.

The first extensive, systematic experiments on drainage driven instabilities reveal as-
pects hitherto unreported, including hysteresis and the existence of a cylindrically sym-
metric case. We offer a preliminary theoretical analysis of the case in which the column is
tilted.

Other new results relate to the structure of finite 2D clusters [93].




Summary

The main focus of this work is on some particular problems that arise when an aqueous
foam becomes wet. These problems are related to the flow of the foam itself (rheological
properties) and the flow of liquid through the foam (drainage).

We start by making a general introduction of foam in Chapter 1. The main terms and
definitions used in this thesis are covered, paying particular attention to the drainage of a
liquid through the foam and the characteristics of flow in different materials.

In a version of the Stokes experiment, we have dropped spherical beads of known
diameter and weight into a column of foam (Chapter 2). Only some of these beads can
overcome the yield stress of the foam and sink immediately. The experimental results are
compared with a model that considers foam as a Herschel-Bulkley fluid.

The following chapters (Chapters 3 to 5) study the important phenomenon of convec-
tive instabilities produced by forced drainage in foam. We have studied these instabilities
in vertical cylindrical tubes, in Hele-Shaw cells and in tilted tubes. We have studied the
relation of these instabilities with the liquid fraction in the foam, giving some experimental
curves to describe how they vary. An interpretation of the convective instabilities in terms
of the yield stress of the foam and inhomogeneous liquid fraction is proposed as a model
for the system. This leads to satisfactory predictions for the tilted tube, and a preliminary
analysis of the more difficult case of instability in a vertical tube.

Drainage experiments are also conducted in 2D foams. During these experiments using
2D foams, an interest arose in finite clusters of 2D bubbles. Some results on the minimal
energy configuration of these clusters are included in Appendix B. Some further appen-

dices include details on experimental foam formation and explanations of computational

packages used on development. Reference is made to an additional internal technical report




on related research not included in this thesis.




Nunca persegui la gloria

ni dejar en la memoria

de los hombres mi cancién.
Yo amo los mundos sutiles,
ingravidos y gentiles,
como pompas de jabon.
Me gusta verlos pintarse
de sol y grana, volar

bajo el cielo azul temblar
stbitamente y quebrarse.

Antonio Machado (spanish poet 1875-1939).

Life is what happens to you
when you are busy making other plans.

John Lennon.



Contents

1 Basic notions 1

T R I G L e e i e T 1

12 AN Rl ORI e e A T ot TR S 3

Bt e BRI EE - e b e R N e L e T 3

R e e GG s A S et S R S N 4

Bl wdDiinhelauitabe Jaw - pile e De it Bt e T e 4

. s gl Y TR R (R T b Raie G e e LA ST e G A 3
1.83 . -The miny-bUBBIc prOBIGnN . - 1005 & o ci b e e R s 6
| 134 - dapoloccalicnanes, .o Laiiella B Sl 0 s TR R 5 e 7
1435 7 CRIMOBOIEEERNE ' U Wi e ooy AL ST e R e e 8

LA R . s O e S e 1 .

1.4.1 Free drainage, forced drainage and pulsed drainage . . . . . . .. 10

£42 . The growth of BlSteaubesaers. . % o ult wie ok WO i 11

Ld 3 e demitipge canation sih. 5, b o i AL R R 12

18" Bampa Bty (o et e Uy DE BRI R BBt e TR s S e R 15

12351 'Hlow piepetties-obmantetials o 0000 0 L Tl T 15

1.5.2 Mathematical models for viscoplastic flows, including foam 18
E .53 - Shearmbduing and yield sessontoam . .. - . s oia'y i 20
‘ 1.6 Lodmcung il oBlIBRGC: 1, 0 e s 24
I Rheological Properties 23

2 The Stokes experiment in a foam 24




SR O Al e RIS L T s et w e e e s e e e
2.2 TheSiokeneCreut M aiIoam . . . . o« .« 55 oo s s v m s b
2.2.1 Stokes experiment in Newtonianfluids . . . . ... ... .. ..
22 ) Sipkerexpemmment i adoam ™, . . . . . . .. os oo e s e e 4
o el T SR MR R S ST
PRSIl o] G T O SR
e e R R I LR L e e B e s e
241 "Expelnnenisin folcedidiaingge. . . . . bl e s v s v o
242 Expenments with comsening foams . . & . . . . .. .0 0.
AT T T ] RS e R e SR P
2ol Drcen corectiop andidatatieatment .. ... . - es v e d s e
$0s almkcto the theolopy ofthe foany . . . ., . . . v « v v v v s o
R TR T T R e S R A s S TR P

e () C S L0 e e R e e e e

Drainage induced convective motion in foam

CAlg e R e e D o S S Pt S PR

3.2 Theorical background 'of the cofiveetive motion . .. . ... « « v v v o v v
3.2.1  The nature of the transition to convective motion . . . ... . ... .
322 PrevioustCEulin on Copvective motion . « . . .« « « o o o v« on

o B e T T e T SR P

3.4 Drainage driven convective motion in a verticaltube . . . . . . . ... ..
3.4.1 Description of the drainage driven convectiverolls . . . . . . ..
3.4.2 General description of results for the convectiverolls . . . . . ..
3.4.3 Influence of the liquid input in the convectiverolls . . . . . . ..
3.4.4 Examples of hysteresis on the convectiverolls . . . . . . ... ..
3.4.5 Domains of the drainage driven convective motions in a foam
S bt O e eoRRERtmETONS . . . oL oL L e e e
347 Velocity of tlic bubbles in the convectiverolls . . . . . . . .. ..

35 "lerctaiion ofthe tesulls: towardsamodel . . . .. . oL L L e

B0 Sl hgrnasedientaal the thcory .. . L0, oo viasn o sl s




3.5.2.  Thedivingforeeat therwwalls Jv i 0 ey i, e Be L e Tl 82

353 .. ThetlwesholdeOmdifion . Vi o o S el T i s Tt 83

3.54  Towdrds amore conlplete theory:. . . ..o L o0 il 0% bl 88

£ P BERSI 01 e KRR e TRV N G L 91
3:0° WA gy (S S e Stk G e e atat il S R P Sy e 93
Convective instabilities in 2D 95
A1 RO | Tt e 30 0 e it W 0 ey ol ki S A N Sl M et i 95
T v 3 e R P SR e R SRR 96

e 2l RGeS ST S e e R SR D i b s ik 97
Convective motion in a tilted tube 101
R, T S R S-SR W P e S U et O TSk TR S 101
3.2 “Nlntemal RGN OIS . 0o s e T A e e e T T 102
5.3 - Expetimentad resnlis foridthedilted taloe . 0 v o Sdniiicaniy e 104
W0 B T I G S o e S T A e VR 107
5 ERCOIBI IR OB . e e N A e 109
5.6 . Coneluslons loyiledilietifile ./ o 0L O gl f e s i U 109

Measurements of local liquid fraction related to convective motions in foam 112

YRG0 SR OOl S T R T Bl IR TR s SR e VTN [ 112
A2 Surteee Bghrd diaction MCaSERIGNIS . . . oo de e s o e el 1 6
Minimal configurations of bidisperse bubble clusters 117
B 1N NGO < e B e e e R e b7
B.2 . The minimal problem i 2Dbubbleeliatorg . . 5il 000 i i 120
B.2.1 Contributions toithe energy in 2Diclusters . . .. .. .5 2. 121
B2 27 ‘e broke neBomdtipe o o O e e 122
B.2.3 Estimates of the energy on monodisperse clusters . .. . . . . .. 123
B.2.4 Estimates of the energy on polydisperse clusters . . . . ... .. 123
B3 B sperimcataimetiode s i Bl SR R ol el e L G N L e 124
Bio 1o Bidletahs dmbmiothiols . e 2| Fer Vel taile e S 126

1




Cem e gl e R e R e R N 127

B A Evolverealculatiionss i = -or. = St e e A e 137
B G TR O o P 0, e e e e e e 141
AR R T e R AR L L T 143
The channel-dominated form of the foam drainage equation 145
Experimental foam production 147
Fluent 151
Surface Evolver 153
The foam drainage equation in a tilted tube 158




List of Figures

1-1

1-6

Some of the main challenges at present in the physics of foams. The figure is
reproduced from [4] with the kind authorisation of the authors. . . . . . . . . .
A soap film, containing amphiphilic molecules. These are chemicals formed by
two parts. One of them attracts liquid molecules and the other repels them. The
physical chemistry inside the films can be very complicated, including dynamic
effects such as Marangoni convection which are beyond of the scope of this thesis.
Rlatean e ordiyah S e e s
In the T2 process in 2D a three-sided cell vanishes. It is similar in 3D with tetrag-
onallbubbles: st Sl s BTt i o B i L e aeat e
The T1 changes in 2D and 3D dry foams. In 2D foams, a four-fold unstable vertex
is broken. For 3D foams an elementary rearrangement exists that it is similar to
the T1 two-dimensional process (shown right up). However, the most common
form of rearrangement that is observed in three-dimensional foams is the multiple
PrOCeS S Sh oW gt Oy A e o e
The Plateau Borders (left) increase their volume when the foam becomes wet.
Four of them join in a junction (right), following the Plateau rules represented in

Higtrl=3%inithe deyalinitss SR et e L v e il iy S T L e S




1-8

2-1

Different response under shear stress for some characteristic types of fluids in
which viscosity is independent of time. A/Newtonian flow, viscosity (7) is a con-
stant, corresponding with the slope of the line in this case. B,C/ Shear-thinning
and shear-thickening fluids start flowing as soon as a shear stress is applied, but
in both cases a change occurs in viscosity while the stress is acting. In shear-
thinning fluids that change acts to decrease in the viscosity of the material. The
case of shear-thickening fluids is the opposite one, there is an apparent increase in
viscosity. D/ Viscoplastic fluids start flowing at a certain shear stress different to
zerosihistthreshoeldiisithetvieldistressiaie Sl b i ol e e o e
Sketched stress-strain relation for a liquid foam. Note the three different regions
of behaviour (elastic solid, plastic solid and liquid). The diagrams of simulations
in two-dimensional foams (which can be found in [34]) have a quite similar look.
One can see a linear elastic relation for low stresses and a fluctuating behaviour of

stress for larger strains, due to topological changes in a finite sample. Reproduced

The Stokes experiment in a Newtonian fluid. w is the weight force and /3 the
buoyancy. The drag force F), is proportional to the velocity v of the falling sphere.
Asymptotically, the equilibrium between forces causes the sphere to fall at con-
stant velocity. This is what is known as terminal velocity. In our case the terminal

velocitylisiteachedialmossmmediately i e SRR S o L

Vi

19

20




2-2

2-3

The density of the spheres is crucial in the Stokes experiment on a foam. We
can vary two parameters to obtain the right density values: the sphere radius and
weight. The radii of the spheres have to be chosen amongst those that make the
continuum approach reasonable and minimise boundary effects. If the spheres
are too heavy, it is difficult to time their descent and they can destroy the foam.
On the contrary, when they are too light, their weight is not enough to overcome
the initial force Fj associated to yield stress S,. The foam will not yield and
the spheres will stay on top of the foam. The right densities of the spheres to
perform forced drainage Stokes experiments are within a very narrow margin
(0.7 x ‘10% kg/m3 < p < 0.9 x 10° kg/m3). With spheres made of plas-
tic of densities smaller than p = 0.6 x 10% kg/m?, we perform the experiments
using coarsening foam. These values are taken for foams with a B, < 0.5 mm.

Stokes experiment using different bubble sizes. The graph at the top presents the
terminal velocity of the spheres of different bubble sizes. The empty circles are
experimental velocities obtained for each bubble size. We also include the average
of velocities for each bubble size within a margin of confidence of 65%. The data
are consistent with a linear fit, if we ignore the last point on the right (see text).
The graph below shows the ratio of sphere radius to bubble radius for the different
bubble radii used in this experiment. The breakdown is reached approximately
witn bl 10 iR gle (0 = D) s 0 L SN L ST
The velocity of spheres of radii a = 2.5 mm, 3 mm and 4 mm and p =
(0.9 £0.1) x 103 kg/m? falling in a foam undergoing forced drainage. While
the a = 4 mm sphere has a positive velocity for all the flow rates, the other ones
do not move through the foam at low flow rates. This shows the existence of a
yield stress in foams. The solid lines are linear fits to the data. The scale also
includes the approximate values of average liquid fraction that correspond to the

flow rates, estimated using Archimedes principle (Appendix D). . . . . . . ..

vii
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2-5

2-6

2-8

29

2-10

The sphere is dropped into a fairly dry foam compared with Fig. 2-4 (liquid
fraction less than 0.01) at time zero and its position recorded. The radii of the
spheres are between 2.5 mm < a < 3.1 mm and the cylindrical tube diameter is
40 mm. All the lines show a transition from creep (slow motion) to accelerated
motion. Local inhomogeneities in the foam structure apparently cause the sphere
to ‘hesitate’ in its descent during the accelerated motion, returning to the slow
creeplDataynilitiali2iandSlnialic) S s S & e
Original data for Trial 1. There is a transition between the motion produced by
creepiand the acceleratedimotionias theifoam coarsensii. s ia . i o . . .
We convert the original data from Fig. 2-6 to a log plot. The log plot helps to
difference the regions of slow creeping motion and fast accelerated motion, as
they both have different dependences of position versus time. The full black dot
represents tg, the time at which the motion changes from creep to acceleration. In
thisicaserwe ob@iniiot= A0 0mmin o o b I e e
We use the value of £y obtained from Fig. 2-7 to fit all the data in Fig. 2-6 with
t < 1y to a straight line. The value obtained in this case for the creep correction is
0534162 (OElihiSTlinerepicsenisithe creepimotions = i B Vi Sil el
We obtain a corrected set of data from the original data in Fig. 2-6 by subtracting
the creep correction (Fig. 2-8) from the position and the value of ¢y (Fig. 2-7)
T I S & R R L A et e
Using the correction described in Figs. 2-6 to 2-9 for the original data from the
Stokes experiment on a coarsening foam, we obtain a set of different lines, de-
seribedibystheipoweRlawintB I8 sl iy B i sl el L,
In order to obtain the values of the constant £ in Eq. 2.6, we take logarithms on
each side of the equation (Eq. 2.8). In this way, we obtain the values for £ stated
in Table 2.2. The line corresponds to the proposed value £ = 3.1. Note that the
second creep region on the data of Trial 2 (the flat part shown in Fig. 2-10) has

beeniayoidediwhen fittinotthisisctiofipoints:s .- fUos e £ S Sl i e
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2-12

2-13

2-14

2-15

2-16

3-1

3-2

The yield stress decreases due to coarsening (increase in bubble size with time)
while the applied stress is roughly constant (neglecting the small change in buoy-
ancy). Until the yield stress falls below the applied stress there is no motion, apart
ffomjthatfdueitolereep: g aE S A S S S e e
The foam flows past a stationary sphere. We sketch a cross-section showing the
position of the yield surface (dotted line) around the sphere. The size of the
yielded region between the yield surface and the sphere increases with velocity
v and decreases with yield stress .S,,. We measure this yielded region, da, in the
radial direction across the cylinder, as shown in the figure. . . . . . . . . . ..
Streamlines (A) and viscosity values (B) for the Stokes experiment in a foam.
The flow velocity is v = 0.03 ¢m/s Parameters are m = 1,5, = 0.01 N/m?
and K, = 0.01 Ns/m? for a sphere of radius a = 4mm in a tube of diameter
D = 40 mm. We attribute the non-spherical contour on the viscosity in (B) to the
interactiontwith thetboundany inithe calculation: . a8 8 e GE R i
The numerically calculated width (across the cylinder) of the yielded region as a
function of free stream foam velocity. Parameters are m = 1,.S, = 0.01 N/m?
and K, = 0.01 Ns/m? for a sphere of radius a = 4mm in a tube of diameter
D = 40mm. Also shown is a fit to da ~ /v, the value predicted in Eq. 2.12 for
m = 1. Note that the sphere produces a yielded region around it even at a zero
Veloettyzuie, 1o it o S R A e T L T I R A
In a numerical calculation, we vary the exponent m in Eq.(2.1) to find the cor-
responding variation of the force on the sphere with the velocity. For F' ~ o™,
we see that n is an increasing function of m; the values are given in Table 2.3.
Parameters are K, = 0.01 Ns/m? and S, = 0.01 N/m? for a sphere of radius

a'—dmm intatnbe ofidiameter D0y s e e e e

At some critical liquid fraction (or flow rate) uniform drainage is unstable. Con-
vective rolls occur either “side-by-side” as shown, or in a cylindrical form.

Schematic mechanical analogy: the observation of hysteresis suggests that the
system is more analogous to the one represented in (b) than to (a), close to the

thresholdicficonyecont. (1 & S T i sl G el i e R S i S
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3-3

34

3-5

3-6

3-7

The setups for Hutzler e al. and Vera et al. experiments. A list of the principal
dificrencesishncludcd S e e R
This sketch shows co-existence of both types of convective instabilities in a col-
umn of foam: the one that does not have cylindrical symmetry on top and the
cylindrically symmetric at the lower part. In some cases, only the symmetry-
breaking instability is observed. This happens when the tube is short or the bubble
size of the foam is relatively big. The cylindrically symmetric instability has not
been found on its own during any of the experiments. . . . . . . . . ... ..
Three consecutive snapshots of the SCR. The pictures are separated by 2 seconds.
The positions of two particular bubbles are marked to indicate the motion, one in
yellow, moving upwards and the other in red, moving downwards. If we plot the
position of the bubbles in relation to time, the velocity of the motion is approxi-
mately uniform. Downward motion is faster than upward motion. This is due to
the different relative volumes of wet and dry foam. N.B.: The tubes are accurately
yverticalibutitheteameraiwasislightlyimisaligned S o A e il o s,
Three consecutive snapshots of the continuous motion stage for CSI. The pictures
are separated by 2 seconds. The coloured bubble indicates the motion. Again,
a plot of the position of the bubble in relation to time, shows a quite uniform
velocitytofithe motIon S s esal s il ol o s gl S s Sl ) o s s
Three consecutive snapshots of CSI for the non-continuous motion. The pictures
are separated by 2 seconds. The red bubble moves downwards but then seems to

stop for a while, as we can deduce by the plot of position versus time. The yellow

bubble does not move at all during the making of the film. . . . . . . ... ..
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3-8

3-9

3-10

Typical domain of co-existence for the two types of instability in the same tube.
The x-axis shows liquid fraction values and the y-axis the fraction of the length
of tube occupied by the convective flows. Let us recall that SCR develops at the
top of the tube and CSI in the rest of it, as seen in Fig. 3-4. The different regions
of existence of SCR and CSI appear shaded. SCR develops at the top of the
tube, increasing in length until CSI appears in the rest of the tube. Data is taken
increasing the flow rate (solid line) until both motions are fully developed on the
tube. After that, we decrease the flow rate (dotted line). This shows hysteresis
(the area shaded in black) in the onset of CSI. An example of the experimental
data is shown in Fig. 3-11, where the shaded regions have been omitted. For most
of the experimental data, we have only measured values decreasing the flow.

Bubble velocities (y-axis) in the CSI related to liquid fraction (x-axis). This dia-
gram also shows hysteresis in the behaviour of the bubbles as flow rate is varied
(seeexperimentalivaluesiingEio $8=20) S sl i AT S e
The figure shows the influence of the three different positions available for the wetting
input in the convective rolls. We compare tubes with foam length 30 ¢m and (A) 1.6 cm
diameter, (B) 2.0 em diameter and (C) 3.2 ¢m diameter. The bubble radius is B, =
0.16 em. We increase the flow rate to obtain domains of the convective rolls (explained
in Fig. 3-8) but the shading of the different regions is omitted for clarity. The tube with
1.6 em diameter was too narrow to allow us to take data of the "Off-centred” position.
The values for the centred input cannot be compared with further experiments due to the
hysteresissexplainediiniSection 3 4id (seeiRig Sl -t i e S
Typical co-existence pattern for the two types of instability in cylindrical tubes. The input
of surfactant solution is centred for tubes (A) 1.6 ¢m diameter, (B) 2.0 ¢m diameter and
(C) 3.2 em diameter and foam length 30 ¢m. The bubble radius is B, = 0.13 ¢m in
the three samples. SCR first develops at the top of the tube, increasing in length until
CSI appears in the rest of the tube. We have increased the flow rate first and decreased it
afterwards. This shows the hysteresis (the area shaded in black at Fig. 3-8) in the onset
of CSI. The values for the onset critical liquid fractions are in accordance with the values

obtained iniBiol 8 1S e e e R R
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3-12

3-13

3-14

3-15

The velocity of the bubbles in CSI when the liquid fraction is increased until
the motion is fully developed and decreased afterwards. The bubble radius is
B, = 0.15 ¢m and the tube diameter is 2.0 ¢m with foam length 30 ¢m. The
plot is similar to the sketch in Fig. 3-9. Each velocity point is the average of six
measurementSReNppi R R ERE A Tl o e s b e b s R
A plot of the values of the domains of the two convective rolls (see Fig. 3-8) for
a centred input. The same tube diameters used in Fig. 3-11 are shown together
to compare them when we decrease the flow rate. These diameters are 1.6 cm,
2.0 ¢m and 3.2 ¢m with foam length 30 ¢m. The bubble radius is B, = 0.13 cm
Relatively wide tubes present a bigger SCR domain. There is also a tendency to
get lower onset values for CSI with higher tube diameter. This dependence of
critical onset liquid fraction with tube diameter will be confirmed later (see Fig.
3-17). Again, the domain regions (Fig. 3-8) are not shaded for the sake of clarity.
The domain of existence of the convective motions (see Fig. 3-8 for interpretation
of this diagram) is also dependent on bubble size. The graphs correspond to a tube
of 2.0 ¢m diameter and foam length 30 ¢m. The bubble radii are (A) 0.27 ¢m and
(B) 0.15 ¢m. An increase in the bubble size leads to an increase in the domain
of SCR, with the subsequent decrease of CSI. Therefore, for big bubble sizes or
relatively short tubes, SCR is the only instability that would be observed. This
affirmation has been checked several times during the experiments and will affect
the way in which we investigate the dependence of the onset of the rolls with
bubble size. The onset critical liquid fraction values seem to be lower at bigger
bubbles attending to the preliminary result in this plot. We can confirm this from
extendedidataliniRios W8S ndis =20 S feie s SRR e e
Dependence of the critical liquid fraction for the onset of the convective rolls
upon inverse bubble radius. Values for four different tube diameters (A 1.1 c¢m,
B 2.0 ¢m, C 3.1 ¢m and D 3.4 ¢m) are shown. The length of the tubes is 30 c¢m.
The dashed-dotted line marks the inverse bubble radius below which the motion

observed at the tube is SCR. The solid lines are fitstoEq. 3.3. . . . . . .. ..
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3-16

3-17

3-18

3-19

3-20

3-21

Dependence of the critical liquid fraction at the onset of the convective rolls with
inverse bubble radius. Values for three different tube lengths (A 15 ¢m, B 30 ¢m
and C 35 c¢m) are shown. The diameter of the tubes is 2.0 ¢m. The graph marked
as B is the same graph shown in Fig. 3-15-B. The dashed-dotted line marks the
inverse bubble radius below which the motion observed at the tube is SCR. The
selidilines arefitsitotEqh 330 e Bl lrti o nd s s el s R
A comparison of the slopes for all the tubes (A) in Fig. 3-15 and (B) in Fig. 3-16.
The slope a decreases with tube diameter and increases with tube length. This
corresponds with the qualitative observations deduced from these figures. . . . .
Comparison of the data obtained for CSI to the values reported by Hutzler et
al. [63] for the onset of SCR. We compare tubes with (A)-1.1 ¢m diameter and
(B)-15 e¢m length to (C)-the original data (1.5 c¢m diameter and length 12 cm).
Our results are in accordance to the previous ones for larger bubbles (as both
measure the onset of SCR at that range) but there is a departure of the points for
smaller bubbles. The data from Hutzler et al. appears to level off at a value around
¢ = 0.2, which is lower than the values obtained in Figs. 3-15 and 3-16. . . . .
This diagram shows the average velocities of the CSI bubble motion for four
sections of a relatively long tube, over a narrow range of liquid fractions above
threshold. The tube has 2.0 ¢m diameter and 52 ¢m length and the bubble radius
is 0.13 em. Each of the sections covers 5 ¢m in the tube. Section 1 is at the top
of the tube, close to the area where SCR ends. Sections 2 and 3 are at the middle
part of the tube (as sketched in the graphic). Section 4 is at the bottom part of the
tube. The values at the middle sections are similar (each data point is the average
ofisevenianeasureents) zes: ik 5 e e et sl SR S
Velocity of the bubbles in CSI. We found there is linear dependence on the excess
liquid fraction over its critical value. This dependence is found for several bubble
radins’Batusingiatube 2:{0femidiameteiandi3slcmilons e s
A blow up of Fig. 3-20 showing the detail of the lines fitted to the data. This

graphs also allow to determine values for the critical liquid fraction at the onset of

the motion in an alternative way to the values obtained in Figs. 3-15 and 3-16.
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3-22 A four-fold vertex at the surface of the container, reproduced from [74]. . . . . 82
3-23 Schematic illustration of forces/stresses involved in the equilibrium of a small
element of foam under steady drainage. Dashed lines indicate the direction of
shear staisiorstln palb JORPUBIIEEIT. o i ipn 5. arens 4Lk e i S 84
3-24 Estimated values of the threshold for the convective motion from the “surface-
driven” theory. We plot ¢7(z) with z = l—dQ. The theory gives a critical liquid
fraction, ¢f, much higher than the experimental values shown in Fig. 3-18, but
withsakvenyisimilarioverallishapesgiett. & i Athe el sl sele el | o - 86
3-25 A blow up from Fig. 3-24 showing the quadratic dependence when d — oo (Eq.
B Al ettt B vt A R S ity pidkn 0 S isanis it Bdel 40 87
3-26 The radial dependences of S and ¢f as from Section 3.5.3, without taking in ac-
counttheelasticidilatancyad it fagseier Ltk 0 il o (B SEEN - Lpbe W0 88
3-27 The solutions sketched in Fig. 3-26 change when we introduce the effect of elastic
dilatancy in our considerations. Recall that dilantacy predicts A¢; < S? . . .. 88
3-28 A slice of the tube is represented by a cylindrical shell of thickness dr and height
dh. Position is represented by the radial coordinate r. Liquid fraction and other
variablesiarefunctionsiofiranifisctusd S taen Sliawnaderpitusin B itinlls . 89
3-29 Examples of solutions of Eq. 3.23 for (A)-¢) ~ 0.08; (B)-¢) =~ 0.15. We
approach p = pwda?. The values of the constants are estimated using [37, 68, 66, 53] 91

3-30 Schematic diagram of the anticipated form of v(r) from a dynamic theory. . . . 92

4-1  An sketch of the 2D experimental setup. The separation between the plates is
around 0.5 mm. The reservoir is refilled constantly with surfactant solution and
spread evenly with the help of a piece of porous material. The foam undergoes
convective motions similar to the ones described on the 3D case. The symmetry

axisun the'convectionstis maskediby the dot-dashed et - .00 oe s m 96
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4-2

4-3

5-1

5-2

5-3

The patterns found for the 3D convective motions can be reproduced in the 2D
experiment. There are some differences between the 2D and the 3D case. A -
CSI, in which bubbles move downwards at the wall and upwards in the rest of the
foam appears in all the experiments with homogeneous wetting conditions. B -
However, to reproduce the SCR, in which bubbles on one side move downwards
and the ones at the opposite side move upwards, we need to force an inhomoge-
neous input. We do not find coexistence of the different convective patterns in the
7] DI o ot et G RERER F AN Bl B e S b S S D R R e
A liquid channel a 2D foam. The snapshots are separated by 0.02 seconds. Two
adjacent columns of bubbles separate to allow a great amount of water passing
through. After the water has drained through the bubbles, the foam returns to its
original iequilibrinmtstate ilhisioccuns tVerysseldon sl s a En e
There is a clear layer of fluid in contact with the wall at high liquid fractions. The

bubbles are deformed in a quite particular way that reminds us of an’S’.

A sketch of the convective roll in a tilted tube. The dashed central line is a refer-
ence showing the central axis of the tube. The black arrows show the sense of the
motion of the bubbles. Fluid draining on the foam moves preferably in the vertical
directionS dueitolthe grayity s fOrce atirae 1 oI s
As the angle is tilted in the tube, the water is driven to the wall. The width of the
wet region reduces. It may be possible that eventually, an angle would be reached
at which the dry foam will float on a thin layer of bubbly liquid. In practice, it is
impossible to do the experiment at angles close to the horizontal orientation.

Division of the sections in the tube. As we tilt the tube to the right, sections 1 and

2 will fall below the axis (wet foam) and sections 4 and 5 above it (dry foam). . .
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5-4

5-5

5-6

Average velocity of surface bubbles (six per point) at five different sections of the
tube sketched in Fig. 5-3. Each set of data is for a different angle of inclination.
Flow rate is fixed at 0.408 m! /s and the bubble radius is 1.79 mm. The change of
sign in velocity in section 3 start at angles ~ 15°. Bubbles in position 2, slow their
downwards motion as well at those angles. The width of the wet side decreases
when the tube is tilted, as it is marked by the solid lines. The speed of bubbles in
sections 4 and 5 is fairly constant at each angle, which is consistent with the plug
flow observed visually. Error bars have been omitted for clarity. . . . . . . . .
The figure shows the velocity of the bubbles that move upwards in relation to the
angle of tilt. Every curve is labeled with the fixed flow rate at which it was taken.
Small increases in the tilt angle lead to an increase in the speed of the bubbles at
first. This effect levels off. At low flow rates, the velocity reaches a stable level
and at higher flow rates, the bubbles moving upwards start to slow down showing
non-continuous motion. We ignore the points after this slow down deliberately to
fit the motion (this only affects to the data at flow rates higher than 1.16 ml/s. For
the other sets, all the data up to 25° is considered). The points for each different
flow rate can be fitted to the function f(0) = a tanh(bf — c). This set of data is
for foam with a bubble radius » = 1.56 mm in a 2 ¢m diameter tube. . . . . . .
The values for the limit velocity reached by the convective roll in a tilted tube
(parameter a in Fig. 5-5). vary linearly with flow rate. This set of data is for foam
with a bubble radius » = 1.56 mm in a 2 cm diameter tube. . . . . . . . . ..
The values for the flow rate related to critical angle at the onset of the tilt convec-
tive motion in radians (6, = g * 3%% see Fig. 5-5 for clarification.). This set of
data is for foam with a bubble radius » = 1.56 mm in a 2 ¢m diameter tube. The

data fits to Egs. 5.2 and 5.3 (the approximation for small angles) in Section 5.5. .
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A-1

A-2

A-3

A-4

B-1
B-2

B-3

Four pictures of the same bubble showing the growth of the Plateau borders when
the liquid fraction is increased. The values of liquid fraction are, respectively (A)-
¢ = 0.048; (B)-¢; = 0.075; (C)-¢; = 0.089 and (D)- ¢; = 0.097 for a bubble
radius 1.3 mm. The convective instability, CSI, is triggered at a slow velocity in
picture (D) (see movie wallmotion.mpgin CD). Two black dots at the bottom
of the pictures are one millimetre apart and serve also as a check for the camera
focus. We have measured only the evolution of the Plateau Border width marked
byitherediline $Results arelshowniniEio A= SE S e I e e
Apparent width of the Plateau Borders at the surface of the foam. The bubble
radius is 1.3 mm. The foam is static when the liquid fraction is lower than 0.09
(dots) and moves in convective motion (CSI) at higher liquid fractions (squares).
The solid line represent the values corresponding to Eq. A.1 and the dashed line
is a best fit to the equation § = constant * (]511/2 ................
A four-fold vertex at the surface of the container. The width of the Plateau border
at the container wall is twice the width of an internal Plateau border. Reproduced
O e o e R S SR TR e s
The experimental results in Fig. A-2 are sensibly lower than the ones expected

from Eq. A.1. We attribute this difference in the measurements to optical reasons.

g g
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The values we measure d.,, are different to the real width of the Plateau borders d,,.116

A bidisperse bubble cluster has bubbles of two different areas. . . . . . . . ..
What is the minimum perimeter that can enclose cells of a given area or volume?
A/ For an infinite plane, the best option available has been proved to be the hon-
eycomb. In 3D the problem is known as the Kelvin problem and space partition
remains debatable. B/ Kelvin conjectured a solution with a unit cell composed
by two equal cells (tetrakaidecahedrons), which are truncated octahedra slightly
deformed. C/ Weaire and Phelan have calculated that the structure shown in the
picture has lower energy than the Kelvin partition of space. The Weaire-Phelan
unit cell is composed of eight bubbles of two different shapes but equal volume.

One candidate for minimum energy in (2-2) clusters. Experimental picture of the

cluster (left). Simulations can be done the Surface Evolver (right). . . . . . . .

XVil

118




B-4

B-5

B-6

B-7

B-8

B-9

Bubbles come together because sharing a common film lowers their surface en-
ergy. This energy is proportional to the total length of the film that encloses the
bubbles. The bubbles are supposed to keep a constant area A. . . . . . . . . . .
When the bubbles sizes are different, the number of configurations that a cluster
with the same topology can access grows. We can see on the sketch that the
configuration on the left, does not change if we swap the elements between them.

The ones at the right, that have different tiles, are not the same, even if all share the

same topology. Greater polydispersity leads to a greater number of configurations.

A picture of the experimental set-up. A Plexiglas top plate covers the bottom left
part of the vessel. It can be tilted to separate the bubbles by submerging them into
the pool. One of the nozzles used for foam production (described in Appendix D)
can be seen at the top left. The top plate is covering a cluster in the centre of the
VECREI LR e T L e R S e e P TR R B
Stable experimental clusters formed by 4 bubbles. Ay /A, =~ % The reference
line corresponds to 5 mm in real size. Two different clusters are found. The
statistics of the two clusters occurrence (see Fig. B-13) show a preference for the
second configuration experimentally. This configuration is not symmetrical (the
twoismalltbubblestare (NIcOntaCE) e & 5l bl e am e L i W s e
Stable experimental clusters formed by 6 bubbles where Ays/A,, ~ -%. The
reference line corresponds to 5 mm in real size. Fifteen candidates are found.
The ones that appear more often experimentally (see Fig. B-13 for the complete
statistical values) are marked in the picture as S1,S2and S3. . . . . . . . . ..
Stable experimental clusters where Aps/A,, = 2. The reference line corresponds
to 5 mm in real size. Two different clusters are found. The statistic study of
occurrence of these clusters (see Fig. B-14) shows a preference to the symmetrical

configuration (number 1), where the two small bubbles are separated. . . . . . .

B-10 Stable experimental clusters for 6 bubbles where Ay /A, = 2. The reference line

corresponds to 5 mm in real size. We find the same candidates as for Ay /A,, =
% (Fig. B-8), except cluster 13. A statistical study of the clusters shows that the

mosiftequentionesiareinumpbenss? 16iandi it e ol e
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B-11 The two stable experimental clusters for 4 bubbles where Ay;/A,, = 4. The
reference line corresponds to 5 mm in real size. The cluster labelled number 1 is
statistically more probable than number 2 (see Fig. B-15). . . . . . . ... ..

B-12 Stable experimental clusters with six bubbles with area ratio Ays/A,, = 4. The
reference line corresponds to 5 mm in real size. The three statistically most
favourable clusters (see Fig. B-15) are marked in the picture. . . . . . . . . . .

B-13 Statistics that show the probability to find the clusters on experimental trials. In
this case, Ay /Ay = % .............................

B-14 Statistics that show the probability to find the clusters on experimental trials, when
Aoy | =B s e LR T L A R R N

B-15 Statistics that show the probability to find the clusters on experimental trials. In
I GREE S ines 08 ovasadili o Sol VB o el e e B e e IR B T ]

B-16 The (2, 2) cluster number 2 for the area ratio Ay;/A,, = %. The experimental
picture is shown together with the Evolver simulated shape. This cluster appears
experimentally more often than expected, giving its calculated energy. . . . . .

B-17 The (3, 3) cluster number 13. A/ Experimental picture at a ratio Ays/A,, = %. B/
Evolver calculated shape for the same ratio and topology. C and D/ Evolver calcu-
lated shapes for the same topology and ratios Ay /A, = 2 (C) and Ay /Ay, =4
(D). The cluster does not appear experimentally for these ratios. The length of the
edges at the small bubbles at the calculated shape (D) suggest that the cluster may
be prone to have a T'1 and become a new configuration. . . . . . . . ... ..

B-18 Cluster (3,3) number 7 becomes the one with less calculated energy at an area
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B-19 The calculated energy of all clusters is presented here and compared with the

D-1

D-2

F-1

F-2

lower bound calculated for polydisperse clusters and round boundary, Eq. B.8,
and the lower bound calculated for bidisperse clusters and hexagonal boundary,
Eq. B.9. The values are close to the theoretical equations, even if the number of
bubbles N is quite small. However, some of the calculated energies of our clusters
are below the possible lower bounds. This was expected, as Eq. B.8 and Eq. B.9
are deduced for clusters with a large number of bubbles. The experimental values
included correspond to the minimum energy clusters obtained in Table B.1. The
experimental values for E/¥foam \/(SAi) are around 10% below the energies

predicted by the theoretical lines. These lower energies can be attributed to the

experimental set-up, in which the bubbles are in contact to the surfactant liquid pool. 142

Foam produced by several different methods. The dispersion in bubble size is less
for the blowing production methods. Reproduced from [1, 113]. . . . . . . . .
Experimental set-up to obtain monodisperse foams. Once produced, the foam can
be introduced into different geometries to carry out 3D or 2D experiments.

Experimental set-up to obtain monodisperse foams. Once produced, the foam can

be introduced into different geometries to carry out 3D or 2D experiments.

Images of a Plateau border at different stages of an Evolver calculation. A- Start-
ing topology for the Plateau border. B- One level of refinement after 500 itera-
tions. C- Two levels of refinement after 500 iterations. D- Three levels of refine-
mentiafterd i fcrationSTFEaReEe el B e M e S S e
The diagram shows the method followed in our calculations of flow induced de-
formation in tetrahedral junctions. First, the channel shape is calculated using the
Surface Evolver. The surface is meshed using the preprocessor included in the
Fluent package, Gambit and we simulate flow conditions inside the channel. The
flow produces a force at the walls of the channels which can be introduced as a
new boundary condition in the Surface Evolver. At that point, we compare the
result of our calculation with the surface obtained at the previous step. If their

energies differ by less than 0.01%, we consider the result converged. . . . . . .
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G-1 The tilted tube changes its orientation with respect to gravity. The axis X1 and X2
are tilted an angle 6 to get the new set of axis in which Z is parallel to the axis of

the tube. M is the matrix that rotates the system X1-X2 into the new system Y-Z. 158
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A table of different models used to fit experiments (Ex) and computations (C)
in 2D and 3D systems on foam (F), Foam concentrates (FC) and emulsions (Em).
The main models used are Power Law (PL) (Eq. 1.17, with exponent ), Bingham
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Chapter 1

Basic notions

1.1 Motivation

This thesis deals with some aspects of the physics of foams [1]. The basic knowledge
of physical properties for dry static foam is sufficient to picture a quite complete theory
(see Fig. 1-1). This theory has been gained using a variety of different approaches that
combined experiments, mathematical modelling and computations. There has been a pref-
erence to use 2D geometries in experiments and simulations for the sake of simplicity. But
with the availability of more computational power and tools, 3D geometries have provided
new insight into the foam structure. The Surface Evolver [2] (Appendix F) calculations on

minimal bubble areas [3] can be mentioned as an example of the latest developments.

Areas in which we have a good understanding about foams include the structure, elec-
trical conductivity profiles and elastic deformation of the foam and how these properties
change with the addition of amounts of liquid small enough for the foam to remain close
to the dry limit. Some aspects, as drainage of liquid through the foam and foam flow prop-
erties, are fairly well understood but subtle questions related to these fields remain under
debate: one example is the choice of boundary conditions to represent the Plateau borders
when calculating the drainage equation on a foam. This problem will be explained in some

detail at Section 1.4.




Wet foam physics and dynamics still pose us interesting questions that have not been

explained (Fig. 1-1).
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Figure 1-1: Some of the main challenges at present in the physics of foams. The figure is repro-

duced from [4] with the kind authorisation of the authors.

This thesis deals with some of these unexplained effects in wet foams. This chapter is
dedicated in full to a review of what is already known and relevant to what follows.

Firsly, it is necessary to define what is a foam, and introduce the main laws that govern
foam behaviour. These rules will be grouped in four aspects: structure, drainage, rheolog-

ical properties and coarsening and rupture:

STRUCTURE Foam structure conforms to simple geometrical rules. We will describe
the laws for the equilibrium of a single bubble (Laplace law) and consider how two
bubbles become in contact (Plateau rules). When many bubbles come together, sta-

tistical measures of the behaviour of the foam are also needed.

DRAINAGE We use the term drainage to describe the motion of a liquid through the
foam. As we will see, foam is composed of a certain amount of liquid and this

liquid plays an important role in the behaviour and properties of the system (rheology




included). We have performed experiments in which a source of liquid is added at
the top of the foam. Therefore, we should describe how this liquid percolates into

the heart of the foam and the difference that the liquid makes in its properties.

RHEOLOGY Foams behave both as a solid and as a liquid, depending on external con-
ditions. This behaviour is common to foams and many other materials, that are
currently known as plastic materials. The capacity of foam to flow above a certain
stress, makes possible the Stokes experiment, in Chapter 2. The existence of a yield
stress is also an important aspect of the explanation of the convective instabilities

described in Chapters 3 to 5.

COARSENING AND RUPTURE We all know from experience that bubbles do not last
forever. This is a factor to be taken into consideration when experiments are made.
The concepts of coarsening and collapse will be defined and the methods to minimise

their effect during experiments will be noted.

1.2 Definition of a foam

Bikerman [5] says in his books devoted to the subject that ‘foams are agglomerations of
gas bubbles separated from each other by thin liquid films’. Weaire and Hutzler [1] refer to
a foam as ‘a two-phase system in which gas cells are enclosed by liquid’. Both definitions
share the reference to two different phases, gas and liquid.

We are going to restrict ourselves to aqueous foams, which are gas-liquid mixtures.
Other colloids, such as emulsions (liquid-liquid mixtures) and solid foams (often solidified

liquid foams) share many properties with aqueous foams.

1.2.1 Term definitions

Bubbles or cells The bubbles or cells are any of the gas volumes that compose a foam.

Each of the bubbles is partly surrounded by walls, which are called films.

Films The films or lamellae enclose some liquid. They are commonly stabilised by ad-

ditives called surfactants (see Fig. 1-2). The surfactant (surface active constituent)

3




also lowers the surface tension of the films.

Edges or Plateau borders The edges are the lines formed by three films coming in con-
tact. They are also known as Plateau borders after Joseph Plateau, who described the
rules that soap films follow to join together. Plateau borders will expand and thicken

into channels when liquid is added to a dry foam.

Vertices or nodes A vertex is the point where several edges join. The term node is also

used to refer the same point.

GAS

LIQUID

GAS

Figure 1-2: A soap film, containing amphiphilic molecules. These are chemicals formed by two
parts. One of them attracts liquid molecules and the other repels them. The physical chemistry
inside the films can be very complicated, including dynamic effects such as Marangoni convection

which are beyond of the scope of this thesis.

1.3 Foam structure

1.3.1 Young-Laplace law

The interface in a 3D bubble obeys the Laplace law :

'Sometimes also referred as Young-Laplace




A]) = 47/7“ = 2’7foa7n/ra (l])

where Ap stands for the pressure difference between the inside and the outside of the
bubble, v is the surface tension or surface energy per unit area and r is the local radius
curvature of the surface, related to the principal curvatures by 2/r = 1/r; + 1/r5. The
factor 4 takes in account that the film is formed by two layers. Note that when the surface
tension is renamed to be Yam = 27, the formulation in Eq. 1.1 is equivalent to the most

usual form of the Laplace law in an air bubble immersed in water [1].

1.3.2 Plateau rules

In the XIX century, the Belgian scientist Joseph Plateau described the main rules of equi-
librium for soap films (Fig. 1-3). These laws are valid for dry foams, but they can be

adapted to some extent to wet foams, as we will describe in Section 1.4.

A\~

120 degrees

\<\ approx. 109 degrees

Figure 1-3: Plateau rules for dry films.




e The first equilibrium law says that

— in a dry foam films can only intersect three at a time and with an angle of 120°.

— only four edges can intersect in every vertex with perfect tetrahedral coordina-
tion. This implies a characteristic angle called sometimes Maraldi angle with

value § = cos™'(—1/3).

e The second equilibrium rule says that a Plateau border joins the films at which it is
attached at a zero angle (the surface normal is the same at both sides of the intersec-

tion).

These laws can be adapted to a 2D foam, where edges intersect three at a time at
120°. Plateau was completely blind when he described these laws, and he gained all the
experimental data that needed for his theory using descriptions of other people and by

visualising them in his mind.

1.3.3 The many bubble problem

The laws we have described previously are local equilibrium rules. As foams are formed by
a large number of bubbles, a more extended theory, that describes the rules of coordination
of multiple bubbles has also been proposed [1]. An example are the statistical distributions
of bubble area p(A;) and number of edges p(n) proposed for two dimensional foam 2.

In a 2D dry foam, 7 = 6 that is, the average cell has 6 edges (and vertices). This
result will be used in Appendix B when we try to find the minimum configuration for a
bi-disperse cluster. It is derived directly from Euler’s theorem for cellular patterns, which
we state in its 2D form in Eq. 1.2. Euler’s theorem links the number of films F', edges
E and vertices V' in these materials with a parameter 7 that depends only on the surface

where the cells are constrained:

F—E+V=21. (1.2)

2For three dimensional foam, the distributions of bubble volume and number of faces are defined in a way

equivalent to these. For experimental convenience, the two dimensional case is studied more often.
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1.3.4 Topological changes

Among the most interesting phenomena in the structure of a foam are the topological
changes that occur both in 2D and 3D foams. The most elementary changes are the so-
called 71 and 72 processes, in a nomenclature due to Weaire and Kermode [6]. Other
changes are combinations of these ones.

A T2 change consists of the shrinking and disappearance of a three-sided cell (2D) or
a tetrahedral bubble (3D) as is sketched in Fig. 1-4.

T2 in two dimensions. T2 in three dimensions.

Figure 1-4: In the T2 process in 2D a three-sided cell vanishes. It is similar in 3D with tetragonal

bubbles.

T1 changes are more complicated. A vertex can become unstable (by having more
edges attached than the number allowed by Plateau rules) at some point in time. This may
be due to evolution (coarsening), caused by internal (gas) pressures or external (shear)
forces. This will lead to a change in the connectivity of the edges concerned. The unsta-
ble vertex dissociates in two and the relationships between neighbouring cells changes. A

rough sketch of T1 changes is represented in Fig. 1-5.
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Figure 1-5: The T1 changes in 2D and 3D dry foams. In 2D foams, a four-fold unstable ver-
tex is broken. For 3D foams an elementary rearrangement exists that it is similar to the T1 two-
dimensional process (shown right up). However, the most common form of rearrangement that is

observed in three-dimensional foams is the multiple process shown right down.

Topological changes are frequent in a coarsening foam and when the foam is subjected

to shear.

1.3.5 Osmotic pressure

The osmotic pressure is analogous to the pressure that equilibrates the concentration of
particles in solutions, hence the name. In a very wet foam, the bubbles are almost spherical
and the contact between them is minimum. When the foam dries out, the bubbles are
compressed together. They adopt polyhedral shapes that increase their surface energy. If
liquid is free to enter or leave the system, the bubbles must be held in equilibrium by an
external pressure - the osmotic pressure.

The osmotic pressure can be defined as the variation of the surface energy of the foam,

F, in all the volume of the foam, V:




Liieth
ETRAC

where it is assumed that the gas volume V, does not vary.

(1.3)

™= —(

The osmotic pressure depends on the liquid fraction. It goes from zero in a very wet
foam to infinity in a dry foam. Simulations made on 2D polydisperse foams [1] have shown

a good agreement with a quadratic dependence on liquid fraction, ¢;.

T =alb—d (1.4)

where a and b are constants.
The osmotic pressure also depends on state of the elastic deformation of the foam. This
is a second order term that can be neglected in many cases but it may play an important

role in the explanation of the convective instabilities in Chapter 3.

1.4 Drainage

The liquid content in a foam is quantified by the liquid fraction 3, ¢, the ratio of the volume
of liquid in the foam to the total volume of the foam. The experimental liquid fraction of a
foam can often be estimated using the Archimedes principle (see Appendix D).

In our experimental work, we often add some liquid on top of the foam. This liquid
is the same surfactant solution used to form the foam. The flow rate, @), is the volume of
fluid added per unit time. There is a simple relation between flow rate and liquid fraction

in a uniformly draining foam [1]:

d1 x 1/Q. (1.5)

The proportion of liquid or wetness of the foam determines many characteristics of the
system: the Plateau borders thicken into channels; the vertices grow and, at a certain point,

cannot be regarded as points any longer. Bubbles become more spherical in a wet foam.

3The gas fraction ¢ is defined as the ratio of the volume of gas in the foam to the total volume of the

foam: ¢ =1 — ¢;.




All these changes translate into different values for the physical parameters of the foam:
elastic and rheological properties vary with the liquid content.

There is an equilibrium profile of liquid fraction under gravity in the vertical direction
of the containers, with a dry foam at the top and wet foam at the bottom of the sample. The
excess liquid is drained out of the foam.

|
|
In this thesis, drainage plays an important role: the instabilities described in Chapters
3 to 5 only appear at a certain liquid fraction.

We will describe first different ways to input liquid on top of a sample. Each of these

will lead to a different vertical profile under gravity. Then, we will comment on the struc- !
ture changes, which happen when there is an input of liquid in the foam. Drainage in a
foam can be described mathematically by a nonlinear diffusion equation. There has been
quite a debate regarding which form this equation should take. One of the forms of the %
equation is based in assumptions that concentrate all the flow dissipation in the channels |
(Plateau borders) and ignores node effects. The other one is node-dominated and neglects
the channel contribution. The use of the channel-dominated form of the equation will be
justified experimentally for the type of surfactant that we use in the experiments. The

channel-dominated equation can be corrected to take the effect of the nodes to account

1.4.1 Free drainage, forced drainage and pulsed drainage

The most simple drainage experiment would occur when foam is left to drain on its own

after formation, in what is known as free drainage. It is possible to measure the amount of
liquid drained out from the foam as a function of time. Free drainage has fairly complicated
mathematical solutions, but some recent work has been aimed at explaining some of their
simplest features [7].

Forced drainage is established when an amount of liquid is input steadily into the foam.
If we start the experiment with a dry foam, the liquid travels through the foam in the form
of a solitary wave. An interface separates the wet part from the dry one. The solitary
wave triggers local rearrangements in its way on the foam. When the input is constant,

we can talk about forced stationary drainage. This is a very interesting case, as once the
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solitary wave has passed, the vertical liquid profile in the foam should be approximately
homogeneous. This is a uniform wet foam, although not in equilibrium, in the usual sense.
Another way to study drainage in foam is pulsed drainage. A pulse of liquid is added

on top of the foam and we can study how it spreads with time.

1.4.2 The growth of Plateau borders

Figure 1-6: The Plateau Borders (left) increase their volume when the foam becomes wet. Four of

them join in a junction (right), following the Plateau rules represented in Fig. 1-3, in the dry limit.

In wet foam, the bubbles become more spherical. The Plateau borders thicken and
become channels in which the water percolates through the foam. The union between the
Plateau borders is no longer a point-like vertex. The general case is that the three curvatures
of the films that form the Plateau border are different. However, it is convenient to neglect
the longitudinal curvature in many cases. In this way, the cross-section Appg of the Plateau

border can be written as:

APB :Cgé, (]6)

where ¢ is the width or radius of curvature of the Plateau border (see Fig. 1-6) and ¢, a
geometrical constant.

The volume of a Plateau Border in a dry foam is then:
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Vpp = AppL. (1.7)

A computation of a wet Plateau border and a four-fold vertex or tetrahedral junction
(the junction of these channels together) made using the Surface Evolver [2] is shown in
Fig. 1-6. For wet foams, the Surface Evolver calculates the shape of the junction, once
given the width, d, of the Plateau borders that join at it (related to the liquid fraction on the

foam).

Plateau rules can be adapted to wet foams to a certain degree. This has been done suc-
cessfully in 2D models [8] using the so-called ’decoration lemma’. It states that given a
picture of a dry foam, it is possible to create an equilibrium wet foam just by ‘decorating’
each threefold vertex with Plateau borders. The Plateau borders have to follow Plateau

rules and do not overlap. The ‘decoration theorem’ also works approximately in 3D [1].

1.4.3 The drainage equation

Several theoretical models have been described to predict the drainage behaviour in aque-
ous foam. All of them take the form of non-linear partial differential equations and neglect
the contribution of films to drainage (which is minor compared to the flow of liquid through

Plateau borders).

Goldfarb et al. [9], derived for the first time the channel- dominated form of drainage
equation. The formulation we are going to use has been reproduced from the paper of
Verbist and Weaire [10] in which this equation was independently derived and called as the

foam drainage equation for the first time:

. yeday
o T o (a )— . (1.8)

Here o, £ and 7 are non-dimensional variables obtained from the cross-section of the
Plateau border, the downward vertical coordinate and time, respectively. The main steps

for the derivation of this form of the equation are included on Appendix C.
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The equation described above only accounts for drainage in one dimension but it has
been generalised to two and three [11]. Saint-Jalmes et al., have attempted to apply it
for an arbitrary container shape [12]. The effects of gravity in the drainage equation have
received some interest in the last years [13, 14], linked in part to the possibility of perform-
ing experiments in microgravity conditions [15]. The microgravity experiments are often
mentioned as a way to avoid the convective rolls described in this thesis.

The drainage equation (Eq. 1.8) has shown a great deal of accordance with experimen-
tal results. It has an exact solution in form of a solitary wave whose velocity V' relates with

the flow rate () following the power law:
G V=, (1.9)

This result has been corroborated experimentally several times [16, 17, 18].

In 1999, new experimental results obtained by Koehler et al. [19] using improved
methods were not in accordance with the dependence shown in Eq. 1.9. These experimen-
tal data show a solitary wave profile, but the dependence of flow rate () with the velocity

of the front V' is found to be:

Qo V2. (1.10)

The authors explain their result writing a new form of the drainage equation, at which
there is full-slip conditions at the walls of the channels, the opposite of the (Poiseuille)
assumption previously used. The nodes viscous contribution becomes dominant and the
result is a new equation which has a solution for the solitary wave follows the power law
expected in Eq. 1.10. This approach is known as the node-dominated foam drainage equa-
tion.

The explanation to this dilemma came in the form of two different bottles of dishwash-
ing liquid. Both equations seem to agree with experimental results obtained at different
sides of the Atlantic. While Hutzler ef al. [17] use the commercial dish-washing lig-
uid Fairy for all the experimental work made in their group, the Harvard group [19] uses
Dawn, a fairly more popular brand in the U.S.A. It seems that Fairy liquid produces a foam

with different surface properties, a higher surface viscosity among them. This makes the
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assumption of Poiseuille flow a good one. Dawn produces a foam with comparatively low
surface viscosity (so that dissipation has to be dominated by the existence of nodes in this
case). Leonard and Lemlich had already noted that the rigid-wall hypothesis could fail in

some cases [20].

Brannigan and de Alcantara Bonfim [21] suggest a dependence of the velocity of the
solitary wave on the boundary of the tubes which contain the foam. And the dependence
of drainage on the surface properties of the surfactant was corroborated recently by the
data of Durand et al. [22]. They measured the velocity of the solitary wave for a single
surfactant (SDS) with different amounts of dodecanol. Dodecanol forms rigid layers with
SDS increasing the surface viscosity and the surface elasticity at the gas-water interface.
An increase in the amount of dodecanol in the system gives results closer to the channel-
dominated limit. Experiments carried out by Koehler et al. [23] seem to confirm further
the idea of surface viscosity playing an important role in drainage. However, a theoretical
model by Durand and Langevin [24] suggest that the surface elasticity is the main factor in
drainage, neglecting the effect of surface viscosities. This has been contested, at least for
slender Plateau borders, where the transverse shear viscous contribution is important [23],

and surface elasticity now seems to be relatively insignificant in the standard experiments.

It seems plausible that all surfactants will flow with properties which lie between these
two extreme behaviours. Efforts to join the effects of both equations in a single hybrid
foam drainage equation, of which the channel-dominated form and the node-dominated
form are extreme cases, are being undertaken at present [25, 24]. In this thesis, all our data
are taken with Fairy Liquid and we accept the channel-dominated foam drainage equation
as our standard flow equation, as it has been validated for our surfactant type in several

occasions [17, 24].
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1.5 Rheology

Some materials present a complicated type of flow, which makes them behave both as
solids and as liquids depending on external conditions. There are many examples of this
plastic behaviour (paint, cosmetics, spreads and so on). We can observe that in most cases
the flow properties are fundamental for the good performance of these materials, especially
in the ones developed as industrial products. A typical example is paint, which should flow
when you coat the brush and stay on the wall as soon as you spread it. A good knowledge
of the theoretical background of this flow allows to control the properties related to it.

Foam also shows this flow property: everybody who has played in a bubble bath as a child
has tried to retain some water on their hands. We all know that it is extremely difficult
because water escapes between your fingers. If we try to repeat this trick with foam, we
discover that it stays in your hands and it only flows when we squeeze it. The yield stress,

which determines the onset of flow is a key property.

1.5.1 Flow properties of materials

It is convenient at this point to introduce some terms of common use throughout the next
chapters. These ideas are fundamental in order to understand and develop a theory of
flow, and it is worthwhile to have a clear and rigorous definition of each of them. These

definitions are taken from references [26, 27, 1, 28].

shear: In a two-dimension material we can define simple shear by:

# = &Ry (1.11)

Ui 25
while extensional shear can be defined by:

¥ =ril+e) @i

g = ey,

In linear elasticity both types of shear are equivalent under a rotation by 7 /4 of axes

with ¢ = 2e.




shear stress or stress: It is defined as the external force applied to the system per unit
area. Its units are Pa (N/m?) in LS. It will be represented in this thesis by the

symbol S.

strain: It is a relative displacement of the atoms of a solid (Al/l) for extensional shears
and the angle of displacement for shear stress. The symbol used to represent strain

in this thesis is e.

shear modulus: The stress and strain can be represented by tensors and we can write their

relation as follows:

Si:Gijfj7 (113)

which is only valid when the material follows Hooke’s law and the shear we are
applying is into the elastic range. Using this formulation, it is easy to separate the
three components of the equation in tensorial form and treat the effects of extensional
and simple shear separately. &;; is the stiffness matrix. G, the shear modulus is the
ratio between the shear stress and the total shear strain on the plane at which we are

considering the shear occurring.

shear rate: This is the rate of change (derivative) of shear strain in time. We will represent

shear rate by the symbol €

yield stress: Some materials do not start flowing apparently when a small shear stress is
applied. In these cases, the yield stress is defined as the point at which the mechanical

properties change dramatically and liquid-like behaviour starts.

creep Many solids and soft materials also experience a ‘slow but continual steady defor-
mation when stressed for a long time below this level’ (for the yield stress) [26].
This phenomena is known as creep. However, the concept of yield stress previously

defined can be applied because it remains valid in practice.

viscosity: Newton’s law for viscous fluids gives a proportionality

§=ps-, (1.14)




where g—z is the gradient of velocity (or shear rate) in the fluid and S is the stress.

is the coefficient of viscosity of the fluid, often called just viscosity.

Viscosity is measured in Pa s(N s/m?) and it is represented by us using the symbol
7. A quantity often used in experimental work is the effective viscosity, n.ss. 1t is
defined as the ratio of shear stress and shear rate. This definition is related to that

above, but the viscosity becomes a variable.

Another common term is the kinematic viscosity, 7, that is defined as the ratio be-

tween viscosity and density in a fluid n = %.

For materials that present a yield stress a quantity called plastic viscosity, n,, is de-

fined in Section 1.5.2.

Newtonian and non-Newtonian flows: For certain fluids, the value of viscosity, 7, is in-
dependent of time (or time derivatives) and does not change with the shear stress
applied to the liquid. Under these conditions, 7 is just a constant of proportionality
between shear stress and shear rate (it follows Newton’s viscous law in Eq. 1.14)
and this type of flow is what we use to call Newtonian flow. Other types of flow that

do not have that simple behaviour are called by opposition non-Newtonian.

Under the denomination of non-Newtonian, is it possible to find many different types

of flow. The rheological classification that follows is suggested in [29]:

1. Time independent fluids

(a) Shear-thinning/Shear-thickening: Sometimes also called pseudo-plastic/dilatant
4 fluids. The effective viscosity decreases/increases with increasing shear rate.

The process is reversible without time lag.

(b) Viscoplastic fluids: A finite yield stress is required to start the flow.

2. Time dependent flows

4This is due to a traditional association between shear thickening and dilatancy [27]. Both effects are not
connected, at least not in a simple way, and as we are going to use the dilatancy in the original sense given

to the term later in this thesis, we will avoid this notation.
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(a) Thixotropic fluids: These materials present a special kind of shear thinning
dependent on time and followed by a recovery of the material. Changes in
viscosity in this type of materials are not instantaneous. A typical example is

non-drip paint.

(b) Viscoelastic fluids: They present both elastic and viscous properties.

Foam presents a combination of several of these properties, depending on time scale.
There is a time variation of the viscosity due to the ageing of the foam. We will explain
in Section 1.6 how coarsening is not an extreme concern to our experiments. If we neglect
this coarsening variation, foam can be treated fairly as a viscoplastic material.

We can see a schematic representation of different types of time independent flows in

Fig. 1-7.

1.5.2 Mathematical models for viscoplastic flows, including foam

The first model that we present includes a linear relationship between strain and stress

above the yield stress:

8 =8, +1mp €, (1153

and it is called the Bingham model.

In this formulation S, the yield stress, and 7, the plastic viscosity, are constants that
depend on the fluid.

Some analytical exact solutions exists for the Bingham model fluid subject to boundary
conditions, as in the case of tangential annular flow, thin slits or tubes [30] and a semi-
infinite bulk fluid with a planar boundary [31]. Sekimoto [32] has also studied the motion
of the yield surface at a Bingham fluid undergoing lateral shear.

The simplicity of this model makes it desirable to extend to some cases where a yield
stress exists but linear fitting of the data above the yield stress is not possible. The Herschel-

Bulkley model,

S=8 i K (1.16)
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Figure 1-7: Different response under shear stress for some characteristic types of fluids in which
viscosity is independent of time. A/Newtonian flow, viscosity (7) is a constant, corresponding with
the slope of the line in this case. B,C/ Shear-thinning and shear-thickening fluids start flowing as
soon as a shear stress is applied, but in both cases a change occurs in viscosity while the stress is
acting. In shear-thinning fluids that change acts to decrease in the viscosity of the material. The
case of shear-thickening fluids is the opposite one, there is an apparent increase in viscosity. D/
Viscoplastic fluids start flowing at a certain shear stress different to zero. This threshold is the yield

stress.

provides a framework for these cases. K, is a constant called the plastic consistency:
its dimensions depend on the value of m. K, becomes 7, when m = 1. Materials that
follow the Herschel-Bulkley law (Eq. 1.16) are often referred as presenting shear-thinning
(m < 1) or shear-thickening (m > 1) behaviour [27].

The validity and range of application of these models depend on shear rate. Bingham
(Eq. 1.15) and Herschel-Bulkley (Eq. 1.16) describe quite well the behaviour of shear-
thinning materials at very low shear rates but one has to be careful to work on a narrow
range of shear rates [33].

The power law model:

Nesf = 1€, (1.17)
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where ¢ is a constant that depends on viscosity and shear stress, increases in three times the
range of shear rates in which it can be used accurately respect to Bingham, but fails at very

high shear rates, where the local value of power is approaching to unity in experiments.

1.5.3 Shear modulus and yield stress on foam

The rheological behaviour of foam is still obscure to some extent [1]. But it is clear that
foam belongs to the kind of materials known as soft matter: it presents a quite low yield
stress beyond which it flows and behaves like a liquid. For stresses below this yield stress
the response is solid-like. A sketch of the typical stress-strain diagram for a dry foam is

shown in Fig. 1-8.
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Figure 1-8: Sketched stress-strain relation for a liquid foam. Note the three different regions of
behaviour (elastic solid, plastic solid and liquid). The diagrams of simulations in two-dimensional
foams (which can be found in [34]) have a quite similar look. One can see a linear elastic relation
for low stresses and a fluctuating behaviour of stress for larger strains, due to topological changes

in a finite sample. Reproduced from [1].

The elastic modulus, GG, of a foam depends only slightly on the geometry of the foam
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and more significantly on the bubble size and the liquid fraction. In the dry limit, G is
found to be:
o

a=, (1.18)
where ¢ is a dimensionless parameter, dependent on the structure of the foam and d the
average diameter of the cell or the bubble. This formula is valid for both two and three-
dimensional foams. The parameter c is roughly of order unity [1]. For example, the ordered
hexagonal two-dimensional structure (also known as honeycomb) gives the value G = 715

where a is the initial edge length and ¢ = %.

V&

Unfortunately, there is no corresponding exact result for the foam in three dimensions,
but some approximations lead to the Stamenovic estimate G = %‘4—5 where the average of
the elastic modulus is taken for generality (non-isotropic structures are included) and A,
and V,, are the surface area and the volume of the bubbles respectively.

If we add a small amount of liquid to the foam, applying the decoration theorem we
can expect the change in the shear modulus GG to be small. Overall, the modulus seems
to have a roughly linear variation with ¢; [35, 36, 37] in 3D. Modest increases of liquid
fraction lower the yield stress quite clearly, as some simulations carried out by Hutzler
and co-workers [38] show. In this case a quadratic variation in the form (¢f — ¢;)? is
generally accepted. As we move closer to the rigidity loss transition, the difficulty of both,

experimental and computational work is greatly increased [39] and we enter a regime for

future research.

1.6 Coarsening and collapse

Whatever method we have used to prepare foam, the gas diffuses among the bubbles. The
rate of diffusion is going to be dependent on the solubility of the gas in the fluid. Some
general values for the solubility of the most common gases in water are reproduced in
Appendix D.

The diffusion of gas depends mainly on the pressure differences between two bubbles.
The smaller bubbles have higher gas pressure than the bigger ones (Eq. 1.1). The direction

of gas diffusion is therefore from the small bubbles to the big ones. Eventually some of the
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small bubbles will collapse and disappear, causing the increase in the average diameter of

the bubbles d [1], according to:
dobitr=ry) L4, (1.19)

at least asymptotically.

We are not going to discuss this topic in full, as it is far from the subject of this thesis,
but it is worth mentioning the measures taken to try to minimise this effect experimentally.

Part of the problem is tackled when we are using monodisperse foam (as in Chapters
3) to 5, for which the pressure of the gas is quite similar. Coarsening is also reduced by
using relatively large bubbles.
It can be deduced from the data by Hutzler et al. [40] that the coarsening effect is small on
time-scales shorter that around one hour in the experimental conditions that we use. All our
experimental data are taken well below this time. We can neglect the effect of coarsening
in the results presented in the thesis.

In the case of the bi-disperse bubbles in Appendix B, we are dealing with bubbles in
contact with a pool of water. Coarsening depends also on the wetness of the foam [40].
When the foam is wet, the increase in the average bubble diameter is slower than it is in
dry foam. This occurs because the Plateau borders reduce the surface of contact between

bubbles, where the diffusion of gas takes place.
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Rheological Properties
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Chapter 2

The Stokes experiment in a foam

2.1 Motivation

This chapter reports the first (published) Stokes experiment in a foam [41]. This experiment
gives an easy way to measure the viscosity of Newtonian fluids, by timing the fall of
spheres in the fluid. Here we are applying it to a non-Newtonian fluid. Useful insight
about the yield stress and the rheological character of a foam, which is a non-Newtonian
fluid, can be gained by measuring the velocities of spheres falling through a column of
foam.

The experimental aims of this work are:

e Find the terminal velocity of a sphere falling through a foam. This terminal velocity

(defined in Section 2.2) is related to the drag force on the sphere.

e Investigate the variation of the terminal velocity of the spheres when different pa-
rameters of the experiment are changed. We vary the bubble radius of the foam B,,
the liquid fraction ¢; and the radii of the spheres a.

Our results show a linear dependence of the velocity of the spheres with the bubble
radius, at least up to the point when bubble radius and sphere radius become of com-
parable size. These is also a linear dependence of the terminal velocity with liquid

fraction for spheres with different radii.

e Compare our results with a model and computations which consider the foam a con-
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tinuum medium. Using spheres which will not fall initially through the foam, we
perform a coarsening experiment. The yield stress of the foam will decrease when
the bubble diameter increases and the sphere will start an accelerated motion through
the foam. These experimental findings can be compared to a theoretical model and

to calculations in order to characterise the foam as a Herschel-Bulkley fluid.

We have proposed a theoretical model for the forces acting on a sphere falling through
foam, based on the results of the experiments. The model proposes the total drag force
in a non-Newtonian fluid as a nonlinear function of the terminal velocity of the sphere.
This is a reasonable first order approximation, in which the Newtonian fluids would be a
particular case whose relation between total drag force and terminal velocity is linear and
the yield stress is zero. We expect to obtain values for the exponent of the relationship
from the experiment and to relate this theoretical model with the Herschel-Bulkley model
used in the calculations. One of our goals is to estimate the value of the coefficient m in

the Herschel-Bulkley equation (Eq. 1.16):
8 =5y + K€", @)

where S is the shear stress, S, the yield stress, K, is the plastic consistency and ¢ the shear

rate. We will extend here the preliminary results included in our previous paper [41].

2.2 The Stokes experiment in a foam

2.2.1 Stokes experiment in Newtonian fluids

In the 19th century, G. G. Stokes described the drag force of a solid sphere in a Newtonian

fluid [42, 43] (see Fig. 2-1). The result is the following equation:

Flarag = 6mn0Y, (2:2)

where 7) is the viscosity of the Newtonian fluid, a stands for the radius of the sphere and
v for its velocity. However, the drag force is difficult to measure, so experiments usually

concentrate on the terminal speed or terminal velocity [44].
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Viscous fluid

Figure 2-1: The Stokes experiment in a Newtonian fluid. w is the weight force and 3 the buoy-
ancy. The drag force F), is proportional to the velocity v of the falling sphere. Asymptotically, the
equilibrium between forces causes the sphere to fall at constant velocity. This is what is known as

terminal velocity. In our case the terminal velocity is reached almost immediately.

After an initial acceleration in the fluid, the sphere in free fall reaches a dynamic equi-
librium. The sum of all the forces (buoyancy, drag force and weight of the sphere) is zero

and the velocity of the sphere is constant,

4 Al
gﬂagpfluidg + 6mnav, — gﬂ-aspsphereg = 0; 2.3)
2a’g
Ugi— §T(psphere T pfluid)-

The derivation of the formula can be found in any elementary physics text [45]. It
provides an experimental way of measuring viscosity in Newtonian fluids (using the so-

called ball viscometer).
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2.2.2 Stokes experiment in a foam

The simple formula described in Equation 2.3 requires modification in the case of a non-
Newtonian fluid. Calculating the contribution of the drag force in this case becomes non-
trivial. Developing a heuristic theory, we can propose a relation between the drag force
and the velocity and relate the results obtained this way with the Herschel-Bulkley model.
Our final objective is to investigate the values of the exponent m in Eq. 2.1.

The idea of using falling spheres to get more information about non-Newtonian fluids
is not new in itself. Boger fluids ' [46] and Bingham fluids [47] can be mentioned as ex-
amples. The work of Mitsoulis’ group, making numerical computations for the creeping
motion of spheres in tubes filled with Bingham fluids [48] and Herschel-Bulkley fluids
[49], provides very useful information about the procedure for a computational simulation

of the experiment.

A list of different theoretical and computational rheological models for dry and wet
foam and emulsions can be found in the first chapter of the thesis of Gardiner [50]. The
choice of a Herschel-Bulkley model is supported by previous experiments in rheology of
foams and emulsions [51, 52, 53, 54]. Experimental work supports the existence of a yield
stress and shear-thinning behaviour in a foam (see Table 2.1). This makes the Herschel-
Bulkley model (Eq. 2.1), of which the Bingham model (Eq.1.15 on page 18) is a particular

case with m=1, a good candidate to describe dynamic flow of aqueous foam.

Recent simulations in 2D foams roughly fit to the Bingham model [58, 60] but experi-
ments in emulsions and foams seem to be in accordance with the Herschel-Bulkley model
with exponent 0 < m < 3/2 [53, 54]. One of our aims in these experiments is to study

the value of m in a three-dimensional aqueous foam.

'Boger fluids present shear thinning, but the drop in viscosity is quite small compared to the zero-shear

value. Viscosity appears to be constant in these fluids for practical purposes.
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Authors Type | Material | Model Exponent value
Brungraber et al. [51] Ex - 3D F H-B m = 0.13 to 0.69
Thondavadl and Lemlich [55] | Ex - 3D F PL n—1=-0.39
Schwartz and Princen [56] Ex - 3D Em H-B mee= 82
Reinelt and Kraynik [57] C-2D - H-B m.=3/2
Khan et al. [52] Ex - 2D F B il
Princen and Kiss [53] Ex - 3D Em H-B w2
Okuzono et al. [58] C-2D - B =1
Rosa et al. [59] Ex - 3D F PL n—1=-0.45
Durian [60] C-2D — Bingham T |
Bobert et al. [54] Ex -3D FC H-B m = 0.48 to 0.53

Table 2.1: A table of different models used to fit experiments (Ex) and computations (C) in 2D and
3D systems on foam (F), Foam concentrates (FC) and emulsions (Em). The main models used are
Power Law (PL) (Eq. 1.17, with exponent n), Bingham (B) (Eq. 1.15) and Herschel-Bulkley (H-B) ;‘

model (Eq. 2.1 with exponent m). The Bingham model is a particular case of the Herschel-Bulkley

model with exponent m = 1. The last two assume a finite yield stress of the foam.

2.2.3 Outlook of the chapter

We will describe first the materials and methods used in the experiments, in particular the
size and weight of the spheres used in the experiments. Our experimental set-up imposes
some limits in the accuracy that we could reach and these will be discussed as well. After-

wards, we describe the experiments. These can be divided into:

e Experiments on foam subjected to forced drainage in which we vary the bubble size
of the foam and the flow rate. In these experiments the spheres move quite rapidly,

involving velocities of the order of ¢m/s.

e Experiments on dry foam undergoing coarsening: in this case, we found two differ-
ent regimes of motion, one of them interpreted as a slow continuous creep (of the
order of mm/min) and a comparatively fast (order of ¢m/s) accelerated motion,

once the yield stress of the foam has decreased sufficiently.
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We have developed a heuristic model to relate the findings for the coarsening foam to
the Herschel-Bulkley model in Eq. 2.1. Furthermore, calculations have been made using
the fluid dynamics package Fluent (see Appendix E). These calculations represent the foam
as a continuum, using the Herschel-Bulkley model. We relate the results of the calculations
to the experimental findings through our theoretical model. The chapter concludes with a

review of all the findings and possible future experiments.

2.3 Materials and methods

We have timed the descent of solid spheres of different sizes in a column of foam. For all
the experiments described in this chapter, we use the same procedure to produce the foam,
which is made following the method explained in Appendix D. A sparger attached to the
gas line produces very fine polydisperse foam (B, < 0.5 mm) that is collected in tubes
of 4 em diameter and typical lengths of 30 ¢m for the forced drainage experiments and
of 40 em for the foam coarsening experiments. These tubes are partially submerged into a
pool of surfactant solution. We can pump liquid from the surfactant pool and add it at the
top of the foam using a Watson-Marlow peristaltic pump. Varying the flow rate of liquid
poured on top of the foam, we get an homogeneous liquid fraction in the column of foam.
This is the forced drainage described in Section 1.4.1.

One of the limitations of the experiment lies in the type of the spheres that can be used
(see Fig. 2-2). The spheres used in the experiments are made of different types of plastic
with densities of the order of p =~ 0.6 x 10 kg/m?. The density of the spheres that can be
used for the rapid motion experiment are between 0.7 x 10% kg/m3 and 1.1 x 103 kg/m?.
Plastic spheres whose densities are below those are not able to overcome the yield stress of
the foam and will stay on top of the foam. We use these spheres for the experiments with
coarsening foam. Some spheres with comparable densities made of wood and polystyrene
were considered for the experiments and then rejected due to their tendency to absorb
water. Other materials like metal or glass give much higher densities (of the order of
p=~5 x 10° kg/m?). The spheres become too heavy and it is very difficult to measure the

time of the fall, especially when the foam is wet, leading to increased speed. Sometimes,
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Figure 2-2: The density of the spheres is crucial in the Stokes experiment on a foam. We can
vary two parameters to obtain the right density values: the sphere radius and weight. The radii of
the spheres have to be chosen amongst those that make the continuum approach reasonable and
minimise boundary effects. If the spheres are too heavy, it is difficult to time their descent and
they can destroy the foam. On the contrary, when they are too light, their weight is not enough to
overcome the initial force Fj associated to yield stress S,,. The foam will not yield and the spheres
will stay on top of the foam. The right densities of the spheres to perform forced drainage Stokes
experiments are within a very narrow margin (0.7 x 10% kg/m? < p < 0.9 x 103 kg/m?).
With spheres made of plastic of densities smaller than p = 0.6 x 10% kg/m3, we perform the

experiments using coarsening foam. These values are taken for foams with a B, < 0.5 mm.

very heavy spheres rupture the foam films, causing the foam to collapse.
Using these ranges of densities in plastic, we can vary the diameter of our spheres to
determine our choice. At least for a first approach, we want to compare the foam with a

continuum model. To make this continuum assumption, the spheres have to be appreciably
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bigger than the bubble size of the foam. On the other hand, if the radius of the sphere is
too large, the container walls will interfere with the results. This effect has been calculated
to be significant in viscous flow at low Reynolds numbers (an error over 2% when the
diameter of the container is a hundred times the diameter of the sphere is suggested in
[43]).

In our case, the radius of the sphere has to accommodate both limits,

D
Br <<All@F << 5, (24)

where B, is the bubble radius, a is the radius of the sphere and D the diameter of the tube.
The continuum approach is not extremely satisfactory, with a ratio of sphere diameter to
bubble diameter from 2 to 8, but this is determined by the minimum bubble size that we can
reach experimentally with our set-up. The ratio between the tube diameter and the sphere
diameter varies from 5 to 10, so we can expect a significant wall effect. It is not possible to
increase this ratio by making the tube diameter bigger, because of the time that it will take
to fill it with foam: this would allow the foam on the top to coarsen. An estimation on the

coarsening effects and times of foam formation is included in Appendix D.

2.4 Experimental results

Let us remind ourselves again that we have performed two series of experiments in the

foam.
e Experiments in foam subjected to forced drainage.

e Experiments using coarsening foam.

2.4.1 Experiments in forced drainage

The terminal velocity is reached almost immediately and can be calculated by dividing
the total length of the column of foam by the time the sphere takes to go through it (this

is supported by visual observations of the motion of the coloured spheres that were close
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to the walls of the container). We further check the validity of the assumption of a ter-
minal velocity using two tubes of 4 ¢m diameter and lengths 15 ¢m and 30 em respec-
tively. We take some measurements using a single sphere (4 mm of radius and density
p=0.9 x 10% kg/m?) and a fixed value for the flow rate Q = 0.13 ml/s. We time the
descent of the sphere seven times on each tube under these conditions and calculate the
velocity of each trial dividing by the respective length. Then we take the average values
of the velocities for each tube. The values obtained in both tubes for the terminal velocity
are 5.3 £ 0.6 cm/s and 4.9 + 0.7 ¢m/s and they are close enough to proceed as above.
However, in the remaining experiments, we have used tubes longer than 15 ¢m to ensure
that we remain within the limits of this approach.

We have repeated the experiment using a single sphere of radius 5 mm and mass
0.53g(p=(1.140.1) x 10 kg/m®). We use a low constant flow rate of 0.02 ml/s
in order to get an homogeneous liquid fraction in the foam and vary the bubble size of
the foam. We have looked for the dependence of the velocity of the sphere with bubble
radius B,, at a constant low flow rate. We have a ratio @Q/A = 1.6 x 10~ ¢m/s, where
A is the cross-sectional area of the tubes, for bubble sizes between B, = 0.6 mm and
Br—="2 8,

As shown in Fig. 2-3 we find a linear relationship between the terminal velocity of
the sphere and the bubble radius B, of the foam. Except for the largest bubble radius,
all the points in the graph are well described by this relationship. This bubble radius of
B, = 2.8 mm is about half the radius of the sphere used in this experiment. We thus
attribute the deviation from linearity with a breakdown of the continuum approach (see
Section 2.3). In view of these results, we estimate that using a bubble diameter lower than
half the diameter of the sphere the terminal velocity can be interpreted using the continuum

approach.
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Figure 2-3: Stokes experiment using different bubble sizes. The graph at the top presents the
terminal velocity of the spheres of different bubble sizes. The empty circles are experimental ve-
locities obtained for each bubble size. We also include the average of velocities for each bubble size
within a margin of confidence of 65%. The data are consistent with a linear fit, if we ignore the last
point on the right (see text). The graph below shows the ratio of sphere radius to bubble radius for
the different bubble radii used in this experiment. The breakdown is reached approximately when

B, =~ a/2 in this case (a = 5 mm).
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Finally, we have obtained values for the terminal velocity of spheres with different
diameters within this range, varying also the flow rate for each sphere. The descent of
the spheres is quite rapid (just a few seconds) in these experiments. We have investigated
the dependence of the velocity of the spheres with the liquid fraction of the foam ( /A
between 0.510‘3cm/s and 210‘20771/5 , where A is the area of the cross-section of the

tubes, for a bubble radius of the order of < 0.1mm).
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Figure 2-4: The velocity of spheres of radii a = 2.5 mm, 3 mm and 4 mm and p = (0.9 +
0.1) x 103 kg/m? falling in a foam undergoing forced drainage. While the a = 4 mm sphere
has a positive velocity for all the flow rates, the other ones do not move through the foam at low
flow rates. This shows the existence of a yield stress in foams. The solid lines are linear fits to the
data. The scale also includes the approximate values of average liquid fraction that correspond to

the flow rates, estimated using Archimedes principle (Appendix D).

The velocity of spheres with the same density placed on top of a wet foam has a linear

dependence with flow rate (Fig. 2-4), with a slope that depends on the radius of the sphere.
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In the surfactant solution that we are using, the liquid fraction varies with the square root

of flow rate [1], so the velocity has a quadratic dependence with liquid fraction:

vox Q x ¢ (2.5)

The slope of the lines depends on the density of the spheres. However, the scattering
in the experiment and the number of spheres available to compare are not sufficient to
conclude anything from that dependence. Shown in Fig 2-4 are the results for spheres of
density p = (0.940.1) x 103kg/m?>. Two to four more spheres of the same density would

be needed to get the variation of the slope with the radius of the sphere a.

2.4.2 Experiments with coarsening foams

This experiment consists in measuring the position of a solid sphere placed on top of a dry
foam while the foam is coarsening (see Chapter 1). We have used spheres whose weight
is not sufficient to overcome the yield stress of the foam at first, so that the sphere initially
remains “floating” at the top surface. Due to the coarsening of the foam, the value of the
yield stress decreases steadily and after a time, the sphere will move through the foam. In
this case, we have found two different types of motion: a very slow creeping descent at first
and a later accelerated motion. We can plot the position of the sphere at different times
(Fig. 2-5) in order to understand the character of the motion.

We see indeed that two different types of motion are involved in the fall of the sphere
through the foam. In a first stage, the sphere moves downwards with a constant small
velocity (of the order of mm/min). This can be identified as creep, a slow yielding of
the foam due to local and topological rearrangements (see Section 1.3.4) which are the
concomitant of the coarsening process. In the second, the sphere gains a much larger

velocity (of the order of ¢m/min). This regime may be characterised by a power law:

T = C (f = to)k, 7 (2.6)

where z is the position of the sphere, ¢ the time and ¢, the time at which the change between

the two regimes occurs.
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Figure 2-5: The sphere is dropped into a fairly dry foam compared with Fig. 2-4 (liquid frac-
tion less than 0.01) at time zero and its position recorded. The radii of the spheres are between
2.5 mm < a < 3.1 mm and the cylindrical tube diameter is 40 mm. All the lines show a transi-
tion from creep (slow motion) to accelerated motion. Local inhomogeneities in the foam structure
apparently cause the sphere to ‘hesitate’ in its descent during the accelerated motion, returning to

the slow creep (Data in Trial 2 and Trial 6).

The transition to the more rapid descent is clearly attributable to the decrease of the
yield stress of the foam, eventually reaching a critical value. The bubble size varies with
the square root of time (Eq. 1.19) but it is possible to approximate this dependence as
linear on the short time-scale that involves this experiment. The yield stress is related in

turn to bubble radius on the sample [1]:

b od (20

where d is the mean bubble diameter, and hence varies at ¢ /2.
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As the yield stress continues to decrease beyond the point at which it balances the gravita-
tional force, the sphere accelerates. Since its velocity is always proportional to the net force
acting on it (inertia being negligible) and this varies linearly with time, this acceleration
may be expected to be approximately constant.

Such is the ideal behaviour to be expected. However, there are sections in the tube
at which the velocity of the sphere falls dramatically (shown in Fig. 2-5) and the only
measured change in position is due again to the creeping motion. We cannot avoid the
presence of regions of local inhomogeneities, where the bubbles are smaller and therefore,
the value of yield stress is higher locally. The sphere can get temporarily trapped in a high
yield stress area. Furthermore, the frontier between the creep and the accelerated motion
becomes difficult to define on these conditions.

It is possible to extract information on rheology in the foam using a theoretical model
created for this task and described in the next section to compare with the accelerated mo-
tion due to the change of the yield stress of the foam. But first we have to prepare the data,

excluding the effect of the creep from the experimental values.
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2.5 Analysis of the results

2.5.1 Creep correction and data treatment

We need to prepare the data in Fig. 2-5 in order to relate them to the model selected to
describe the foam, avoiding the effects of the creeping motion. To describe each step we

will apply this correction in detail to the set marked as Trial 1 in Fig. 2-5.

1. We start with the original data from the experiment plotted using position versus

time in Fig. 2-6.

ORIGINAL DATA
300 T T T T T T T T

200

150 [

POSITION [mm]

100

50 ;
.

++ + +

+ 0
0 x it 1L T8 L 1 I 1 I

5 10 15 20 25 30 35 40 45 50 55 60
TIME [min]

Figure 2-6: Original data for Trial 1. There is a transition between the motion produced by creep

and the accelerated motion as the foam coarsens.

2. We apply a log plot to both time and position (Fig. 2-7). This is going to help to
identify at what time ¢, we have a change between the slow motion (which follows
a linear dependence) and the accelerated motion characterised by a power law. In
the log-log plot the different regions appear roughly as straight lines with different

slopes. Distinguishing the frontiers of the different regimes becomes more difficult

if we do not use this type of plot.
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Figure 2-7: We convert the original data from Fig. 2-6 to a log plot. The log plot helps to differ-
ence the regions of slow creeping motion and fast accelerated motion, as they both have different
dependences of position versus time. The full black dot represents %, the time at which the motion

changes from creep to acceleration. In this case, we obtain ty = 40.50 min.

3. Using the value of ¢, obtained in Fig. 2-7, we select the points in which only creep
is present in Fig. 2-6. We fit these datapoints to a straight line. This line (in Fig. 2-8)
will characterise the creep correction and must be subtracted from all the data (the

creep motion remains after the sphere enters the accelerated motion regime).

4. The corrected data (Fig. 2-9) are obtained subtracting the creep line from the position

and the value of ¢, from the time.

Applying these corrections (Figs. 2-6 to 2-9) to avoid the effect of creep in all the lines
shown in Fig. 2-5, we obtain a new set of corrected data for all the experimental values,
shown in Fig. 2-10.

The corrected values can be fitted using a log-log plot (Fig 2-11) to obtain the value of

log(z — Tereep) = klog(t — to) + c2, Bl s (2.8)
and we obtain the values of k£ in Table 2.2.
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Figure 2-8: We use the value of ¢( obtained from Fig. 2-7 to fit all the data in Fig. 2-6 with ¢ < ¢

to a straight line. The value obtained in this case for the creep correction is 0.34¢ + 2.0. This line

represents the creep motion.
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Figure 2-9: We obtain a corrected set of data from the original data in Fig. 2-6 by subtracting the

creep correction (Fig. 2-8) from the position and the value of ¢y (Fig. 2-7) from the time.
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Figure 2-10: Using the correction described in Figs. 2-6 to 2-9 for the original data from the

Stokes experiment on a coarsening foam, we obtain a set of different lines, described by the power

law in Eq. 2.6.

The parameters used to correct each line and the individual final values for the constant
k are given in Table 2.2. The values obtained are roughly consistent with £ = (3.1 £0.9).
The individual values of the exponent & are quite variable. We have already mentioned the
flat regions found in the original data as a cause for this. It is difficult to get datapoints not
affected by these ‘hesitations’ in the descent of the sphere, as the foam formation method
used for this experiment produces an slightly polydisperse foam. We find that our value of
k (see above) can be tentatively related to a Herschel-Bulkley model, using the following

theoretical ideas.

2.5.2 A link to the rheology of the foam

In this section, we relate the experimentally determined exponent k of Eq. 2.6,

T =c (t —t)¥, t > to,
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Figure 2-11: In order to obtain the values of the constant £ in Eq. 2.6, we take logarithms on each
side of the equation (Eq. 2.8). In this way, we obtain the values for £ stated in Table 2.2. The line
corresponds to the proposed value k£ = 3.1. Note that the second creep region on the data of Trial 2

(the flat part shown in Fig. 2-10) has been avoided when fitting this set of points.

where x is the position of the sphere, ¢ the time and ¢, the time at which the change

between regimes occurs, to the exponent m in the Herschel-Bulkey equation (Eq. 2.1):
S = Sp 4 I, &7,

where S is the shear stress, S, the yield stress, K, is the plastic consistency and ¢ the
shear rate.

In order to do this we will introduce a model of the foam, based on the expected be-
haviour of the forces acting on the sphere (Eq. 2.9). We will assume that we can treat the
foam as a continuum medium. As the sphere radii are significatively larger than the bubble
radius, we can consider this choice as a reasonable first order approximation. This assump-
tion was described when we explained the adequate size of the spheres for the experiments
(Section 2.3).

First of all, let us introduce the balance of stresses in the foam in Fig.2-12.
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Data set to Creep correction | k
Triall | 40.50 0.34¢t 4+ 2.0 4.0
Trial2 | 60.75 0.26t — 3.6 3.9
Trial3 | 70.65 0.65t + 0.7 2.6
Trial4 | 42.20 1.79t — 21 3.0
Trial> | 49.00 0,24t -+ 2.1 L

Trial6 | 40.75 0.44t+6.9 22
Trial7 | 118.07 .68 —8 2.5

Table 2.2: Values for ¢y (Fig. 2-7) and the creep correction line (Fig. 2-8) applied to the ex-
perimental data in Fig. 2-5 to obtain the corrected values in Fig. 2-10. The last column gives the

individual values of k obtained from the slopes on the log-log plot in Fig. 2-11.

stress

A

Stress due to net

gravitational force

I

No Motion

Yield stress of foam

>
time

Figure 2-12: The yield stress decreases due to coarsening (increase in bubble size with time)
while the applied stress is roughly constant (neglecting the small change in buoyancy). Until the

yield stress falls below the applied stress there is no motion, apart from that due to creep.
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Our model is based on the idea that a foam has a finite yield stress. Therefore, a sphere

moving through the foam may be expected to follow the equation:

F—FO — I{Q'n. FZF() and (29)

where « is a constant dependent on the radius a, the liquid fraction ®; of the foam and
its rheological properties. £ is the minimum force required to move the sphere through
this medium. At all points we neglect inertia and it is therefore assumed that the forces

acting on the sphere (weight and drag) are in equilibrium.

The net force on the sphere, F', is constant while the minimum force required to move
the sphere in the fluid, F{, decreases with time; we assume this decrease to be linear
over the duration of the experiment on a first order approximation. We can support this
assumption because this minimum force Fj and the yield stress S, should follow the same
dependence with time. Equivalently, consider the shear stress that the sphere exerts on
the foam. In equilibrium the stress S is constant and less than the yield stress S, which
decreases with time. This is illustrated in Fig. 2-12. Since the falling of the sphere occurs
in a short time just after the yield stress decreases below the value of the maximum stress
in equilibrium, the yield stress variation with time is approximately linear.

We take the derivative of the fit for the experimental data (Eq. 2.6) to see that the

tk‘l

velocity of the ball varies as . Comparison with Eq. 2.9, where v™ varies linearly in

time, shows that the exponent in the experiments is
n=-——. (2.10)

We define the radius of yield, da, as the distance (in an average sense) from the surface
of the sphere where the stress of the foam equals the value of the yield stress. When
Fy becomes equal to F' the sphere acquires a non-zero velocity v. It is then contained
within a small yielding region of radius a + da. In all the points included in the yielded
region S > S,. Hence the distance da will increase with the ‘excess’ stress S — S,

by definition. We assume this increase to be linear on a first order approximation (as S,
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decreases also linearly with time approximately). Now, at the sphere’s surface the rate of

strain is approximately v/da so we find from Eq. 2.1 that

,U m
i (—) .
U oa
But since da < S — S,, we conclude that

88, o gVl ang (2.11)
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We wish to relate the stresses and forces around the ball, for which we need a length
scale. The relevant length here is the radius of the sphere, so we can immediately equate
the exponent of v in the stress equation, Eq. 2.11, with the exponent n in the force equation

Bq. 2.9:

n

Using Fig. 2-11 and the data on Table 2.2 we found k£ = (3.1 + 0.9), so that according

m =

(27039

to Eq. 2.10 we have 0.33 < n < 0.83. When we introduce these values into Eq. 2.13 we
obtain 0.5 < m < 4.8. This conclusion is consistent only partly with previous theoretical
and experimental values of m. We have to note again the dispersion of the values obtained
in the experiments, which provides a large range of values for the exponent m. Foam has
been largely found consistent with shear thinning behaviour before [50]. Part of our values
include the possibility of shear thickening foam (m > 1). This could be due to the nature
of the experimental shear, which does not encourage as many bubble rearrangements as
other methods of shearing the foam produce [61]. However, the proposed value of £ = 3.1
(n = 0.48 , m = 0.9) suggests that the Bingham model is a good choice to represent the
rheological character of aqueous foam and this result is in agreement with previous values
for aqueous foam accounted in Table 2.1.

We now test if the hypothesis introduced to make our theory holds when compared to

a numerical model of the experiments.
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2.6 Numerical modelling

The main objectives of the use of computations at this point are to check the theoretical
assumptions we have done and to obtain values of the drag force over the sphere, something
that we have pointed out it is difficult to measure experimentally. Using a computer allows
the variation of different parameters which would be very difficult to vary experimentally,
such as the ratio of the diameter of the sphere versus the diameter of the tube. This will be
helpful for future work on the subject.

We therefore model the flow of a yield stress fluid around a sphere confined within a
cylinder, similar to the analysis of Mitsoulis and co-workers [48, 49]. Using an axisymmet-
ric formulation, we hold the sphere fixed and allow the fluid to flow along the frictionless
tube, see Fig. 2-13. We have also sketched in the figure da, the radius of yield, defined in
Section 2.5.2. As the yielded region around the sphere is not exactly spherical, the values
of da depend on the direction in which we take our measurements. We decide to measure
the radius of yield, da, in the radial direction across the tube. The boundary condition on

the sphere is that of no-slip.

Cylinder Wall

Flow direction
_—> i

' Cylinder Axis

Figure 2-13: The foam flows past a stationary sphere. We sketch a cross-section showing the
position of the yield surface (dotted line) around the sphere. The size of the yielded region between
the yield surface and the sphere increases with velocity v and decreases with yield stress S,. We

measure this yielded region, da, in the radial direction across the cylinder, as shown in the figure.

To measure the limits of the yielded region (the values of da), we have used the values
of the viscosity in the foam. Foam is a non-Newtonian fluid, whose viscosity depends on

many structural factors and is also dependent on shear stress. In this type of material, it
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is possible to define the so-called effective viscosity 7.7y (see Chapter 1). If we use the
effective viscosity, we can write the stress-strain relation in a non-Newtonian material as
if it followed from Newton’s Viscous law, Eq. 1.14, with an effective viscosity which will

vary with the shear rate.

Using the Herschel-Bulkley relation (Eq. 2.1) we define this effective viscosity in our

case as:
neffzgz %—FKPém_l (2.14)

where K, is the consistency at high strain rate. We instigate a cut-off for values of 7.7, >
ns (a ’solid’ viscosity), after which 7,7, is constant (at low strain-rate where the foam
moves as a solid plug). Provided that 7, is sufficiently large, its value is not significant. We
retain the foam density as p = pyater®; & 10 kg/m? throughout (with ®; = 0.01).
| A I :
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Figure 2-14: Streamlines (A) and viscosity values (B) for the Stokes experiment in a foam. The
flow velocity is v = 0.03 crn/s Parameters are m = 1, S, = 0.01 N/m? and K, = 0.01 Ns/m?
for a sphere of radius a = 4mm in a tube of diameter D = 40 mm. We attribute the non-spherical

contour on the viscosity in (B) to the interaction with the boundary in the calculation.

Streamlines of the motion (Fig. 2-14-A) are easy to obtain but they prove of little value:
they do not differ much while we vary the flow parameters. More interesting is the position
of the yield surfaces (see the schematic in Fig. 2-13); this is taken as the contour at which
the effective viscosity is no longer equal to the solid viscosity (Fig 2-14-B). As we show in

Fig. 2-15, our computations in the case m = 1 are consistent with the theoretical estimate
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(Eq. 2.12): the width of the yielded region, da, does indeed increase with \/v.

1.6 T T T T T

14 F e -
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O 1 1 1 = 1
0 0.005 0.01 0.015 0.02 0.025 0.03
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Figure 2-15: The numerically calculated width (across the cylinder) of the yielded region as a
function of free stream foam velocity. Parameters are m = 1,5, = 0.01 N/m? and K, =
0.01 Ns/m? for a sphere of radius @ = 4mm in a tube of diameter D = 40mm. Also shown is a
fit to da ~ /v, the value predicted in Eq. 2.12 for mn = 1. Note that the sphere produces a yielded

region around it even at a zero velocity.

We finally perform a calculation of the force on the sphere (Fig. 2-16). By plotting the
variation of this force with velocity at different values of the coefficient m we expect to
check the values of the coefficient n obtained using the experimental values of k£ and Eq.
2.10. The results are compared in Table 2.3.

Our experiments, analysed using the theory developed in Section 2.5.2, include values
of the exponent of velocity n (nineory) in Eq. 2.9 between 0.33 and 0.83. However, most
of the experimental values obtained lead to values of 7npeory between 0.4 and 0.67 and
therefore we decide to concentrate our efforts on this interval for the force calculation
(Table 2.3). These values are related to the exponent in the Herschel-Bulkley equation (Eq.
2.1) by Eq. 2.13. We obtain values for m between 0.67 and 2.0. We use these values of m

in the numerical calculations to verify the values of 7 (n,ymeric) and obtain values between
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| Figure 2-16: In a numerical calculation, we vary the exponent m in Eq.(2.1) to find the corre-
sponding variation of the force on the sphere with the velocity. For F' ~ v", we see that n is an
increasing function of m; the values are given in Table 2.3. Parameters are K, = 0.01 Ns/m2 and

S, = 0.01 N/m? for a sphere of radius a = 4mm in a tube of diameter D = 40mm.

Ttheory m Nnumeric

DBT. |20 0.6
0.5 1.0 0.4
B4 06517

Table 2.3: Comparison of the theoretical and numerical estimates of the exponent of velocity,
n, in the force equation (2.9). We also give the corresponding value of the exponent m in the
Herschel-Bulkley relation, Eq.(2.1). We select values of nipeory between 0.4 and 0.67. The value
of m(Ntheory) is found from Eq. (2.13) and used in our numerical calculations to verify the value

of Ngheory- The values we find from the computations, nyumeric, are rather lower in all cases.

0.17 and 0.6. The numerical results are lower than the experimental ones in all the cases
that we have calculated. In conclusion, the computation follows the qualitative predictions

of the model but the quantitative results are lower than the expected ones.
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2.7 Conclusion

We have described a range of new experiments on spherical balls falling through foams.
We have shown that the concept of terminal velocity can be applied to these experiments
and we have calculated the relation of terminal velocities with parameters such as bubble
radius and liquid fraction. We have found that the terminal velocity of a ball varies linearly
with bubble radius, at least up to the point in which the sphere size and bubble radii become
comparable. The value suggested by our experiments for this breakdown is when the
bubble diameter is equal or larger than the sphere radius. There is also a linear dependence
of the terminal velocity with flow rate, and therefore with the square of the liquid fraction
of the foam.

These experiments have also shown that the lighter spheres remain more or less static at
dry foam and start gaining velocity at a finite liquid fraction. This is related to the existence
of a yield stress of the foam, which decreases when we increase the liquid fraction. Further
experimentation and theory needs to be undertaken to extract the exact dependence of the
results on the bulk properties of the foam. In particular, it would be desirable to find a
range of spheres with the adequate density and different radii to deduce the experimental
change of the slope at the linear fits of velocity and flow rate with the sphere radius. This
change is related to the drag force on the sphere.

Some spheres are too light to overcome the yield stress, even when its value decreases
as we increase the liquid fraction. We have used these spheres to perform experiments
in foam undergoing coarsening. When a light ball descends through a coarsening foam,
it initially creeps (with position varying linearly with time) and then accelerates after the
yield stress of the foam has been reduced by the coarsening process. We have found that in
the latter part of the motion the velocity of a ball varies with the square of time. Unfortu-
nately, the creep stage has been omitted from our simple analysis, but it may be eventually
interesting in the view of new experiments with objects moving slowly through foam [61].

Our heuristic theoretical model is qualitatively and semi-quantitatively consistent with
expectations based on the Herschel-Bulkley model, and also shows agreement with our
experiments, within the wide uncertainties of the present results. These suggest that the

exponent m in the Herschel-Bulkley relation lies between 0.5 and 4.8. Some of these values
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suggest foam as a shear-thickening fluid, which does not seem to agree with previous
values reported in literature. We have to recall at this point the difficulty to fit the values
due to the creep and ‘hesitations’ in our experiment. It is not yet possible to specify m
more precisely at this stage. We have performed numerical calculations to identify the
yield surfaces around a sphere and to obtain the variation of the force on a sphere with the
free stream foam velocity. The results support the conclusions of our theoretical model.
Further analysis is now required for larger parameter ranges.

Although the method is just starting to be developed, the Stokes experiment can be a
useful way to measure rheological characteristics of the foam in a simple and inexpensive
way. It allows measurements undergoing forced drainage, where it is easy to control that
the foam has homogeneous liquid fraction. It measures the effective viscosity of the foam
at low shear, where other methods used to measure viscosities (cone and plate, for example)
have important slip corrections, due to the wall effects. Possibly, a better experimental set-
up which will allow to use tubes of wider diameters, and further development of the theory

will help to make progress towards such applications.
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Chapter 3

Drainage induced convective motion in

foam

3.1 Motivation

This chapter is devoted to the convective motion which appears in foams subjected to
drainage at a high flow rate. Following on previous work at the TCD foam group, we have
discovered that there are two different kinds of convective patterns. As far as we know, all
previous reports of convective instabilities only mention one of these. We would like to
understand the effect that several experimental parameters (bubble size, liquid fraction and
the geometry of the container) have on both patterns. Accordingly we have produced the
first systematic data on the effect.

Some hypotheses about the nature of the convective rolls will be introduced in an effort
to explain the effect and character of the motion.

Firstly let us expose briefly some theoretical considerations about convective motions
in foams. We will include a brief summary of results of previous papers on convective rolls.
The following section is dedicated to the methods and materials used for the experiments.
After this, we will examine in a purely empirical spirit the patterns of drainage driven
instabilities found in a column of foam. We will report the two modes of motion found in a
vertical column of foam and how they vary with bubble size and different geometries of the

glass tubes. The speed of the convective motion of bubbles is studied in relation to liquid
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fraction. We report the finding of significant hysteresis associated to the convective motion.
Until this was realised, we had considerable difficulty obtaining reproducible results, since
the uniform state may persist metastably upon increasing the flow rate. Finally we will
critically examine the form of a possible theory and reach some limited conclusions on

this basis.

3.2 Theorical background of the convective motion

3.2.1 The nature of the transition to convective motion

We have already described how liquid drains through aqueous foam in Chapter 1. Here
we concentrate our effort in forced stationary drainage. This means that a source of liquid
is established at the top of the foam, delivering the fluid at a constant flow rate. One
solution to the drainage equation under these conditions corresponds to a homogeneous
liquid fraction profile and this corresponds closely to the observed profile. There is a small
departure from uniformity at the bottom, also derivable from the drainage equation.

If the flow rate is increased, a wet front moves downwards in the form of a solitary
wave, incidentally triggering local rearrangements [1]. After this solitary wave has gone
through the foam a new dynamic equilibrium state, with a homogeneous higher liquid
fraction, is reached. Theoretically, this could be carried on, increasing the flow rate step-
by-step up to the point in which the foam loses rigidity and becomes a bubbly liquid. This
rigidity loss transition is also referred to in literature as the wet limit [1] or melting. The
value of liquid fraction at the transition has been calculated and measured experimentally
in emulsions as ¢; = 0.36 for a 3D monodisperse foam or emulsion [62, 36].

However, flow instability appears in foams at high liquid fractions well before this
wet limit. Hutzler ef al. [63] investigated foams at high flow rates and report a range
of liquid fractions, below the rigidity loss transition, where convective instabilities are
present. These instabilities take the form of convective rolls where some bubbles move
upwards while other bubbles move downwards in the foam (see Fig. 3-1).

Even when we may occasionally use the term “convective instability” when we refer

to the motions we have investigated, it may be slightly misleading. The data (in as much
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UNIFORM DRAINAGE CONVECTIVE ROLL

Figure 3-1: At some critical liquid fraction (or flow rate) uniform drainage is unstable. Convective

rolls occur either “side-by-side” as shown, or in a cylindrical form.

as there is substantial hysteresis) do not point to a simple instability of uniform flow with
respect to small perturbations. In this scenario, it would seem that the convective state

should be regarded as an alternative stable state. In Fig. 3-2 we have sketched a mechanical

analogy.
ENERGY ENERGY
///‘\\ 4 B \.////’/
~e o
PERTURBATION PERTURBATION
(a) (b)

Figure 3-2: Schematic mechanical analogy: the observation of hysteresis suggests that the system

is more analogous to the one represented in (b) than to (a), close to the threshold of convection.

The phenomenon of convective instability is surely closely related to the viscoplastic
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character (see Chapter 1) of the foam: it behaves as an elastic solid when low forces are
exerted, but can flow as a liquid when the force is increased. Flow must occur in practice
when the yield stress is exceeded somewhere in the system. We will pursue this idea later,
as we are going to introduce a semi-phenomenological theory and therefore we will need

to introduce first the experimental findings that motivate the theory.

3.2.2 Previous results on convective motion

In the preliminary observations of the TCD group, which first announced the convective
effect in drainage, Hutzler et al. [63] have used cylinders of circular cross-section, filled in
with monodisperse foam. Vera et al. [39] at UCLA have used a wide rectangular box with
a very small depth and filled with polydisperse foam. Forced drainage is used to increase
the liquid fraction after foam formation in both cases. The results that have been reported
by both groups are quite different and we will not attempt to explain the effects seen by

Vera and their co-workers in their very different geometry (see Fig. 3-3).

Hutzler,Weaire, Crawford Vera,Saint-Jalmes,Durian

Polydisperse foam
Monodisperse foam

; Bubble sizes ~ mm.

rccl;\ngular Cross—section
cylindrical cross—section

Bubble sizes ~ pm

solution input

b4 ogod it

5 solution input

surfactant solution

surfactant solution

Figure 3-3: The setups for Hutzler er al. and Vera er al. experiments. A list of the principal

differences is included.

Hutzler et al. [63] have reported the existence of a single convective roll in which all
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the bubbles on one side of the tube move upwards while the bubbles on the other side of
the tube move downwards in a convective roll. Hutzler et al. observed that the motion has
a clear onset, corresponding to a critical liquid fraction. The variation of this critical liquid
fraction was measured in relation to inverse bubble radius. They have reported that the
critical liquid fraction shows a linear increase with inverse bubble radius, B, !, at first and
levels off to around ¢; = 0.20 for bubbles smaller than 1.25 mm?.

The authors noted some dependence of the data on the length of the foam columns, but
this dependence was not discussed in depth. They attempted to explain the onset of the

motion in terms of yield stress, but the argument given is inadequate. As we see it now, it

lacks several essential ingredients and it is in any case illogical.

3.3 Materials and methods

This section gives a description of the different apparatus and experimental tools that we
use for the experiments described in the chapter. We study in particular the convective
motion found in vertical 3D glass cylindrical tubes.

Monodisperse foam (see Appendix D), is introduced into glass tubes of different lengths
and diameters. All the different foam containers are partially introduced into a pool of sur-
factant solution, so the foam has contact with air at the top and with liquid at the bottom,
as shown in Fig. 3-4. Then, the surfactant solution is poured on top of the foam at differ-
ent flow rates using a Watson-Marlow (©) 505S peristaltic pump. The parameter that we
control in the experiments is the flow rate, as our pump allows to change it in increments
of 0.03 ml/s. But it is more convenient for comparison of different results and for pre-
liminary interpretations to use the average liquid fraction of the foam, estimated by using
Archimedes formula (Eq D.1). The straightness of the tubes and glass plates is checked
using a spirit level.

In some of the experiments, the bubbles are visually observed and the velocity of the
bubbles is timed with a stopwatch. The 3D convective motions are also filmed using a
Nikon (©) Coolpix 990 camera. This photo-camera can record short films (up to 40 seconds)

at a speed of 30 frames per second.
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3.4 Drainage driven convective motion in a vertical tube

3.4.1 Description of the drainage driven convective rolls

There are several parameters that may play a role in the drainage driven convective motions
in a foam. The main ones are the flow rate, (), at which liquid is added (related to the
average liquid fraction in the foam, ¢; by Eq. 1.5), the bubble radius and the container
geometry. The convective roll that has been reported by Hutzler et al. [63] has a clear
onset at a certain liquid fraction. In the same work, dependence on the length of the tube
has been suggested. Therefore, the aim at the start of the experiments undertaken here was
to study systematically that dependence for the diameter and length of the tube in glass
cylinders. But the results of the first experiments were quite surprising: a second type of

instability, not previously reported, was discovered.

I LIQUID INPUT

Simple
Ry Convective
Roll

Cylindrically
Symmetric
Instability

S

Figure 3-4: This sketch shows co-existence of both types of convective instabilities in a column
of foam: the one that does not have cylindrical symmetry on top and the cylindrically symmetric
at the lower part. In some cases, only the symmetry-breaking instability is observed. This happens
when the tube is short or the bubble size of the foam is relatively big. The cylindrically symmetric

instability has not been found on its own during any of the experiments.
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Both types of instability can sometimes co-exist in the same tube, as is sketched in Fig
3-4. Eventually we came to regard the second cylindrically symmetric convective roll as
the one of primary importance.

We will refer from now on to the convective motions shown in Fig. 3-4 as Simple

Convective Roll or SCR and Cylindrically Symmetric Instability or CSI.
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Figure 3-5: Three consecutive snapshots of the SCR. The pictures are separated by 2 seconds.

The positions of two particular bubbles are marked to indicate the motion, one in yellow, moving
upwards and the other in red, moving downwards. If we plot the position of the bubbles in relation
to time, the velocity of the motion is approximately uniform. Downward motion is faster than
upward motion. This is due to the different relative volumes of wet and dry foam. N.B.: The tubes

are accurately vertical but the camera was slightly misaligned.

In the SCR (Fig. 3-5), bubbles move downwards along one side of the tube and up-
wards along the opposite side, as described previously in the paper by Hutzler et al. [63].

A video of the SCR, SCR . mpg, is provided on the CD that accompanies this thesis. The
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bubbles on one side of the tube move downwards while the ones at the opposite side of the
tube move upwards. Visually following the motion of an individual bubble, one can see
that after about several centimetres (4 to 16, depending on bubble size) it slowly moves
towards the side, marking the end of this convective roll.

The plot of the position of the bubbles versus time for the SCR in Fig. 3-5 shows a
difference in velocities between the bubbles moving upwards and the ones moving down-

wards. The mass of the system is conserved and we can write then:

pupAupUup = pdownAdownUdowm (31)

where p,;, and pgo,n are the density of the foam moving upwards or downwards, A4,, and
Agown are the areas of the tube where the bubbles move upwards or downwards and v the
velocity of the motion.

We can express the density of the foam in terms of the density of the liquid that it
contains, neglecting the contribution of the gas phase. Therefore, proam = priguiai and

Eq. 3.1 becomes:

up __ adown :
1 Aupvup o ¢[ Adownudown- (32)

We have mentioned in Chapter 1 that when the foam is static and at low flow rate,
the liquid fraction is homogeneous all over the tube [1]. This is not the case when the
convective rolls appear. But as we will mention later (Section 3.5), the difference in liquid
fraction between the foam moving upwards and downwards is small. Therefore the change
in velocities between the foam moving upwards and downwards implies a difference also
in the relative volumes of foam moving upwards or downwards. Unfortunately, we do not
know the behaviour of the bubbles in the bulk of the foam. Our observation is limited to the
bubbles in contact with the walls of the tube, but within this limit the fraction of bubbles
moving downwards is quite smaller than the one moving upwards.

The second type of motion, (CSI) is shown in Fig. 3-4. In this pattern all surface
bubbles move downwards, implying that bubbles in the bulk move upwards. Playing with
the depth of field of the microscope it is possible to get a focused image of the bulk bubbles

but the image is not clear enough to get any quantitative information about the velocity of
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Figure 3-6: Three consecutive snapshots of the continuous motion stage for CSI. The pictures are
separated by 2 seconds. The coloured bubble indicates the motion. Again, a plot of the position of

the bubble in relation to time, shows a quite uniform velocity of the motion.

internal bubbles. Therefore, we track only the position of individual surface bubbles. Once
they reach the bottom of the tube, they are drawn towards the centre of the base of the
foam. Then, they disappear upwards into the bulk. CSI is the dominant bubble motion,
meaning by this that it covers a bigger region of the tubes, in most of the cases.

For the CSI, it is possible to distinguish several subtypes of motion, depending on

flow rate values. At higher flow rates, the video CSI-C.mpg shows a continuous regular

motion, with all the bubbles moving downwards (Fig. 3-6). The bubbles tend to move in

ordered layers, but some of them jump from one row to another.
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Figure 3-7: Three consecutive snapshots of CSI for the non-continuous motion. The pictures are
separated by 2 seconds. The red bubble moves downwards but then seems to stop for a while, as
we can deduce by the plot of position versus time. The yellow bubble does not move at all during

the making of the film.
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When the liquid fraction is decreased, the velocity of the motion becomes discontin-
uous, as we can see in the following pictures and in the film CSI-A.mpg. The motion
seems to be limited to some bubbles, with the subsequent collapse of the bubbles that are on
top of them (Fig. 3-7). These series of motions occur at random times, giving sometimes
the impression that the foam has stopped completely. This behaviour remind us of the
creep regime observed in the Stokes experiments (Chapter 2) which may well have some
correspondence here. In what follows we will not distinguish between these subclasses of

the motion unless stated otherwise.

3.4.2 General description of results for the convective rolls

So far, we have described the two instability types, Simple Convective Roll or SCR and
Cylindrically Symmetric Instability or CSI, which can be found and co-exist in a column of
foam at high flow rates. From the description of the motions in Section 3.4.1 and the sketch
in Fig. 3-4, we can establish that these convective rolls have clear domains of existence: at
a certain height of the tube and at a given value of the liquid fraction the surface bubbles
will either not move or move in one of these convective rolls. Our intention is to map out
these domains of occurrence, together with values of the liquid fraction at the onset and
velocity of the two kinds of instability with different values of flow input, diameter of the
tube and bubble size.

We will have a look first at the general pattern of appearance of the convective motions,
shown in Fig. 3-8: we indicate the fraction of the tube occupied by the convective motions
at different liquid fractions.

A major feature of these results not previously recorded is hysteresis, that is, the uni-
form state may persist above the threshold value for the convective rolls. This is mainly
observed for the CSI and the effect varies to a greater or lesser extent in different experi-
ments (Fig. 3-9).

Measuring by increasing the flow rate can lead to a value for critical average liquid
fraction that is higher than that presented by data for decreasing flow rate. Unless stated
otherwise, the experimental values in this the chapter are taken by increasing the flow rate

to a value in which both convective motions are fully developed, and then decreasing the
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Figure 3-8: Typical domain of co-existence for the two types of instability in the same tube. The
x-axis shows liquid fraction values and the y-axis the fraction of the length of tube occupied by
the convective flows. Let us recall that SCR develops at the top of the tube and CSI in the rest of
it, as seen in Fig. 3-4. The different regions of existence of SCR and CSI appear shaded. SCR
develops at the top of the tube, increasing in length until CSI appears in the rest of the tube. Data is
taken increasing the flow rate (solid line) until both motions are fully developed on the tube. After
that, we decrease the flow rate (dotted line). This shows hysteresis (the area shaded in black) in the
onset of CSI. An example of the experimental data is shown in Fig. 3-11, where the shaded regions
have been omitted. For most of the experimental data, we have only measured values decreasing

the flow.
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Figure 3-9: Bubble velocities (y-axis) in the CSI related to liquid fraction (x-axis). This diagram
also shows hysteresis in the behaviour of the bubbles as flow rate is varied (see experimental values

in Fig. 3-20).

flow rate while performing the measurements. In this way, we determine the critical liquid
fraction at the point at which the velocity v goes to zero. Note also that the shaded regions

at Fig. 3-8 will be omitted when showing experimental data, for the sake of clarity.
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3.4.3 Influence of the liquid input in the convective rolls

The convective rolls that we have just described in Section 3.4.1 depend strongly on the
liquid fraction. We have already mentioned that obtaining reproducible values for the onset
of the convective rolls is not straightforward. At low liquid fractions the dry foam theories
postulate that small inhomogeneities in the input of flow in forced drainage situation will
be compensated by the diffusion of the liquid through the foam. But this is not necessarily
true at higher liquid fractions. Therefore, we have decided to investigate the effect of
off-centring the input of surfactant solution (Fig. 3-10). We use three different wetting
conditions: data labeled as “Centred” correspond to a wetting input carefully centred in
relation to the cross-section of the tube, using a ruler; “Off-centred” means that the input
has been slightly misplaced from the centred position; the “Extreme off-centred” values
stand for data taken placing the wetting input touching the walls of the tube.

Off-centring the input produces an increase in the height of the tube covered by SCR,
at the expense of the length of CSI, but it does not seem to have a large effect on other
characteristics of the motion. For the wider tube, the one with diameter of 3.2 ¢m, this
effect is more pronounced than for the other tubes. Extreme off-centring produces lower
values for the onset of both convective motions. Our results show that the influence of
the wetting input is very important at the time of taking systematic values for the onset
of the convective rolls or to establish the domains of the two instabilities. The rest of the

experiments are done taking precautions to assure a centred input '

3.4.4 Examples of hysteresis on the convective rolls

Hysteresis can be appreciated in the onset of the Cylindrically Symmetric Instability (CSI)

pattern in the data shown in Fig. 3-11 (as sketched in Fig. 3-9).

N.B.: The next two sections contain a lot of detailed results: the reader who is concerned mainly with
the onset of convection and the present state of relevant theory may disregard these details and proceed to

Section 3.4.6.
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Figure 3-10: The figure shows the influence of the three different positions available for the wetting input
in the convective rolls. We compare tubes with foam length 30 ¢m and (A) 1.6 ¢m diameter, (B) 2.0 ecm
diameter and (C) 3.2 em diameter. The bubble radius is B, = 0.16 em. We increase the flow rate to obtain
domains of the convective rolls (explained in Fig. 3-8) but the shading of the different regions is omitted
for clarity. The tube with 1.6 ¢m diameter was too narrow to allow us to take data of the "Off-centred”

position. The values for the centred input cannot be compared with further experiments due to the hysteresis,
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explained in Section 3.4.4 (see Fig. 3-11).
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Figure 3-11: Typical co-existence pattern for the two types of instability in cylindrical tubes. The input of
surfactant solution is centred for tubes (A) 1.6 cm diameter, (B) 2.0 ¢m diameter and (C) 3.2 ¢m diameter
and foam length 30 cm. The bubble radius is B, = 0.13 ¢m in the three samples. SCR first develops at the
top of the tube, increasing in length until CSI appears in the rest of the tube. We have increased the flow rate
first and decreased it afterwards. This shows the hysteresis (the area shaded in black at Fig. 3-8) in the onset
of CSI. The values for the onset critical liquid fractions are in accordance with the values obtained in Fig.
67
3-15.




Average bubble velocity [cm/s]

A typical hysteresis cycle of velocities of the CSI motion as a function of average liquid
fraction, shown in Fig. 3-12, presents a lower but finite speed of the bubbles when the flow
rate is increased starting from a dry foam. These small, finite values, may be due to some
sort of creep analogous to that in the Stokes experiment of Chapter 2. We shall disregard

them in our discussion, treating them as effectively zero.
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Figure 3-12: The velocity of the bubbles in CSI when the liquid fraction is increased until the
motion is fully developed and decreased afterwards. The bubble radius is B, = 0.15 ¢m and the
tube diameter is 2.0 cm with foam length 30 ¢cm. The plot is similar to the sketch in Fig. 3-9. Each

velocity point is the average of six measurements.

The hysteresis for the onset critical liquid fraction is only of the order of 10% when it
appears (it is easier to appreciate the hysteresis in the velocity plots as in Fig. 3-12). But
the effect of hysteresis has to be taken in account when we do experiments. All the data
presented from this point will be taken in the way just explained (using a centred input and

decreasing the flow rate) unless explicitly mentioned.
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3.4.5 Domains of the drainage driven convective motions in a foam

In the last two sections, Sections 3.4.3 and 3.4.4, we have presented the necessary proce-
dure to obtain systematic data for the convective rolls. Now we are ready to determine the
domains of existence of each of the convective motions for different tube diameters and

bubble sizes.
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Figure 3-13: A plot of the values of the domains of the two convective rolls (see Fig. 3-8) for a
centred input. The same tube diameters used in Fig. 3-11 are shown together to compare them when
we decrease the flow rate. These diameters are 1.6 ¢m, 2.0 ¢m and 3.2 ¢m with foam length 30 cm.
The bubble radius is B, = 0.13 c¢m Relatively wide tubes present a bigger SCR domain. There is
also a tendency to get lower onset values for CSI with higher tube diameter. This dependence of
critical onset liquid fraction with tube diameter will be confirmed later (see Fig. 3-17). Again, the

domain regions (Fig. 3-8) are not shaded for the sake of clarity.

A comparison of three different tube diameters using a centred input (Fig. 3-13) shows
that the diameter of the tube has an effect in the height of the tube covered by SCR. Wider
tubes present a longer SCR domain and lower liquid fraction values for the onset of the

CSL
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Figure 3-14: The domain of existence of the convective motions (see Fig. 3-8 for interpretation
of this diagram) is also dependent on bubble size. The graphs correspond to a tube of 2.0 c¢m
diameter and foam length 30 ¢m. The bubble radii are (A) 0.27 ¢m and (B) 0.15 ¢m. An increase
in the bubble size leads to an increase in the domain of SCR, with the subsequent decrease of CSI.
Therefore, for big bubble sizes or relatively short tubes, SCR is the only instability that would be
observed. This affirmation has been checked several times during the experiments and will affect
the way in which we investigate the dependence of the onset of the rolls with bubble size. The onset
critical liquid fraction values seem to be lower at bigger bubbles attending to the preliminary result

in this plot. We can confirm this from extended data in Figs. 3-15 and 3-20.
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In Fig. 3-14 we compare the domains for CSI and SCR in the same tube using two
different bubble sizes. An increase of the bubble size produces a longer SCR domain.
It is also clear that the liquid fraction at the onset of the CSI is lower when the bubble
size increases. This trend is more clearly shown in the next section (Section 3.4.6), that

investigates the liquid fraction values at the onset of the motion.

3.4.6 Onset of the convective rolls

In this section we present results for the onset of convective motion and gather many of
them together in the last figure (Fig. 3-18).

Given what has gone before, it seems best to disregard the Simple Convective Roll
(SCR) for present purposes, since it occupies only the top of the tube at onset and is
somewhat sensitive to centring the liquid input (see the video input .mpg.). The newly
discovered Cylindrically Symmetric Instability (CSI) offers a better object for study, par-
ticularly as its symmetry is amenable to relatively simple theoretical treatment.

Accordingly, the onset of CSI motion is investigated below for different bubble sizes.
There is an exception for bubble radii B, > 2 mm, at the extreme lower range of our data.
The SCR reaches a longer distance at these bubble sizes (see Fig. 3-14) and it appears
into the region where we are measuring the onset of CSI. We take the values of liquid
fraction at which there is a convection occupying the whole tube (even if it is SCR) for
these bubble sizes. At even larger bubble radii B, > 3.5 mm it becomes impossible to
get data. Ordered cylindrical structures of foam [64] form in the tubes. These structures
do not present convective motion. They rotate at twist boundaries described previously by
Hutzler et al. [65].

First we show our main results in Figs. 3-15 and 3-16. Recall that values of the critical
liquid fraction at the onset are taken by decreasing carefully the flow rate at the foam.
Every time that we decrease the flow rate, we wait for some minutes before taking the
measurements to allow the system to reach a stable average liquid fraction. To determine
the critical liquid fraction, we just observe visually the foam after this waiting period.

We have chosen arbitrarily to fit the data on Figs. 3-15 and 3-16 to a line of the type:

axT

A= 1+bxz’

(3.3)
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Figure 3-15: Dependence of the critical liquid fraction for the onset of the convective rolls upon
inverse bubble radius. Values for four different tube diameters (A 1.1 em, B 2.0 em, C 3.1 ¢m and
D 3.4 ¢m) are shown. The length of the tubes is 30 ¢m. The dashed-dotted line marks the inverse
bubble radius below which the motion observed at the tube is SCR. The solid lines are fits to Eq.

33

where z = B% and a, b are free parameters. Here we assume that the data should level off
as it happened in the previous work of Hutzler et al. [63]. The tubes with bigger diameters
in Fig. 3-15-(C,D) do not show this tendency to level off, but note that ¢; does not reach
the same high values as it does in the narrower tubes. Due to the difficulty to fill in these
tubes with small bubbles, we have very few data for the range of values at small bubble
radius.

We can conclude from Fig. 3-16 than the shorter the tube, the easier to get a convective

roll. To confirm these qualitative impressions, we can compare the slope of the lines fitted

to the tubes. In Fig. 3-17 we show the values for the slope at the big bubble size range
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025‘

02+ 02

Liquid fraction at the onset of convective motion (Archimedes)

| Diameter 2.0 cm. Length 15cm. =
f(x)
L

Diameter 2.0 cm. Length 30 cm. =
f(x)
L

15 2
Inverse bubble radius [1/mm]

15
Inverse bubble radius [1/mm]

2 25 25 3

025

02

0.15

Liquid fraction at the onset of convactive motion (Archimedes)

Diameter 20 cm Lengh 35 cm. _ »
(x)
L

L L
15 2
Inverse bubble radius [1/mm]

L
1 25 3

Figure 3-16: Dependence of the critical liquid fraction at the onset of the convective rolls with
inverse bubble radius. Values for three different tube lengths (A 15 cm, B 30 cm and C 35 c¢m)
are shown. The diameter of the tubes is 2.0 ¢m. The graph marked as B is the same graph shown
in Fig. 3-15-B. The dashed-dotted line marks the inverse bubble radius below which the motion

observed at the tube is SCR. The solid lines are fits to Eq. 3.3.

(parameter @ in Eq. 3.3). This parameter gives an idea of how does the critical liquid
fraction grow with inverse bubble size. We can compare the evolution of the slope for all
the tubes with the same length Fig. 3-17-(A) and all the tubes with the same diameter Fig.
3-17-(B). As we expected, the wider and shorter tubes are more likely to present convective
rolls at lower liquid fractions

Finally (Fig. 3-18), we will show a comparison of our data to those of Hutzler et al.
[63].

Various consistent features emerge from all of these measurements, particularly the

average liquid fraction needed for the onset of the motion in the whole length of a tube is
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Figure 3-17: A comparison of the slopes for all the tubes (A) in Fig. 3-15 and (B) in Fig. 3-16.
The slope a decreases with tube diameter and increases with tube length. This corresponds with the

qualitative observations deduced from these figures.
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Figure 3-18: Comparison of the data obtained for CSI to the values reported by Hutzler et al. [63]
for the onset of SCR. We compare tubes with (A)-1.1 ¢m diameter and (B)-15 ¢m length to (C)-the
original data (1.5 ¢m diameter and length 12 ¢m). Our results are in accordance to the previous
ones for larger bubbles (as both measure the onset of SCR at that range) but there is a departure of
the points for smaller bubbles. The data from Hutzler et al. appears to level off at a value around

¢ = 0.2, which is lower than the values obtained in Figs. 3-15 and 3-16.

roughly equal for both convective motions in the case of large bubble sizes. The critical
liquid fraction goes to zero as B, — oo and levels off somewhat as B, — 0, with no clear

limiting value, in general 2.

2N.B. In the next section, we proceed to describe measurements of the velocity of convective motions
above threshold. Again, the reader may wish to set aside and consider the present attempts to understand the

threshold itself in Section 3.5
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3.4.7 Velocity of the bubbles in the convective rolls

Here we address the behaviour of the system above threshold, with a finite velocity of
convective motion. Again we start our experiment at an initial flow rate at which both rolls
are fully developed and then decrease the flow rate. Up to this point, the same procedure
has been used to take measurements of the critical onset in last section (Figs. 3-15 and
3-16) but in order to obtain the velocity of the motion we use a camera to film the CSI

convective roll.
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Figure 3-19: This diagram shows the average velocities of the CSI bubble motion for four sections
of a relatively long tube, over a narrow range of liquid fractions above threshold. The tube has
2.0 ¢m diameter and 52 c¢m length and the bubble radius is 0.13 ¢m. Each of the sections covers
5 cm in the tube. Section 1 is at the top of the tube, close to the area where SCR ends. Sections 2
and 3 are at the middle part of the tube (as sketched in the graphic). Section 4 is at the bottom part
of the tube. The values at the middle sections are similar (each data point is the average of seven

measurements).

We will use the speed of the bubbles at the central part of the tube (see Fig. 3-19) to

characterise the velocity of bubble motion associated with CSI convective rolls. Fig. 3-20
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shows such data.
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Figure 3-20: Velocity of the bubbles in CSI. We found there is linear dependence on the excess
liquid fraction over its critical value. This dependence is found for several bubble radius B, using

a tube 2.0 ¢m diameter and 35 ¢m long.

In order to proceed in a systematic manner, we have chosen to fit the data in Fig. 3-20

using the function:
cx(z—d)

e (3.4)

9()

where ¢, d are free parameters and e is a constant lower than 0.0001 (to obtain the steep step
expected). The function gives a velocity close to zero up to the point at which we reach the
critical liquid fraction (parameter ) and a linear increase of velocity with the excess liquid

fraction above this point. In this way we can identify the threshold in a well-defined way.
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Figure 3-21: A blow up of Fig. 3-20 showing the detail of the lines fitted to the data. This
graphs also allow to determine values for the critical liquid fraction at the onset of the motion in an

alternative way to the values obtained in Figs. 3-15 and 3-16.
3.5 Interpretation of the results: towards a model

Convective motion has been observed in the draining foam since 1998 [63], and probably
much earlier without being clearly identified and reported. It has grown in importance, as
it has been repeatedly described by Durian and others, as an impediment to research aimed
at understanding wet foams. It is frequently mentioned in the justification for microgravity
experiments [15], since it excludes the uniform draining wet foam from study for large
liquid fractions. In the microgravity environment, uniform wet foam of any liquid fraction
may be made and analysed in equilibrium.

There is no satisfactory published theory. In this section we shall attempt to lay the

foundations of one, based on ideas discussed in the Foams Group over several years and
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constrained by the facts presented by the data on this thesis.

Those facts are:

1. The critical value of liquid fraction for the onset of convective motion depends

strongly on bubble diameter d, tending to zero for large bubble radius, B,.

2. There is some tendency for the critical value to saturate as the bubble size decreases,

but this is not as clear as in the previous data from Hutzler et al. [63].

3. There is substantial hysteresis, in that the uniform state can persist above the thresh-

old, upon increasing flow rate.

4. The hysteresis region described in (3) as having uniform flow nevertheless shows a

slow “creeping” convective motion.

5. Velocity of convection is roughly linear in the excess liquid fraction, relative to its

threshold value.

The ideas which we shall present here will address only points (1) and (2), and invite

further elaboration to confront (3)-(5).

| 3.5.1 The ingredients of the theory

A theory successful in embracing the main facts presented seems a modest objective but
it has proved difficult to attain. In a sense this is not surprising, because we have become
accustomed to theories for dry foams (as presented in the book by Weaire and Hutzler [1]).
They perform miraculously well for liquid fractions up to, say, ten percent. In the present
case we confront a problem that has to do with wet foams. Perhaps unfamiliar factors
operate, as trusted approximations (which are not always explicit) fail?

That is our understanding, that the conventional descriptions of drainage and rheology
cannot simply be pasted together to obtain the required theory. They need to be reconsid-
ered. This reconsideration may bring into play several ingredients of theory that have been

disregarded until now. Three of these are dilatancy, gas pressure variation and wall effects.
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e Dilatancy. This is the coupling between expansion and shear. It has been introduced
into foam physics by Hutzler and Weaire [66]. We need to make a distinction here

between elastic or static and dynamic dilatancy.

Elastic dilatancy has been treated by Weaire and Hutzler in his paper [66]. The os-
motic pressure defined in Chapter 1 at Eq. 1.3 is a function of the liquid fraction. But
it has also a dependence, of second order, on the shear strain on the foam. Therefore,
the dilatancy coefficient, x can be defined as a function of liquid fraction ¢;:

O°TI(¢)

e (5]

x(o) =

If a foam is partially sheared, the consequence of dilatancy is that the sheared part
will increase its liquid fraction. Even if the foam remains in equilibrium, two liquid
fractions can thus co-exist in the same foam. A useful measure of the dilatancy
effect is the difference A¢;(¢;) between the liquid fractions of sheared and unsheared

foam:

1 0¢

Apy(dr) = —iﬁx(@)fg- (3.6)

The magnitude of this effect has been calculated at a foam sheared beyond the yield
strain [66]. Using a computer simulation program called PLAT [8, 67] in 2D, they
observe differences in liquid fraction of 1.5%-2.0% between the sheared and un-
sheared foam when the liquid fraction of the unsheared foam is around 0.08. There
is reason to think that this effect should be equally appreciable at a 3D foam and

therefore, relevant to the onset of convective motions.

In granular materials, dynamic dilatancy is more important than its static counterpart. |
The effect of both in foams is probably significant but we do not have a theory for

dynamic dilatancy.

e Gas pressure variation. In the successful theory of drainage for dry foams this is
completely disregarded. The conventional theory of foam drainage contains the ap-
proximation that there is no gas pressure variation (other than the local variation
between small and large cells if the foam is polydisperse): we speak of average

gas pressure. This is justified by noting that, in a dry foam, the pressure variation
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between cells is bounded (because the curvature, related to pressure difference by
Laplace law (Eq. 1.1), cannot exceed the inverse radius of the cell) and is restricted
to values small compared with the liquid pressure variation. It was always obvious

that this was questionable for large liquid fractions.

Weaire et al. [68] have discussed the possibility of gas pressure variation in equi-
librium dry foams recently, noting that an external force is required to balance them
and giving some examples. A mathematical treatment of this gas pressure gradients
has been also presented by Weaire et al. [69]. In the present case, if we assume
a completely uniform drainage, that external force can be identified simply with
the gravitational force on the liquid. Since liquid pressure cannot vary (with such
assumptions) the external force of gravity must be balanced by a gradient of gas
pressure, in the absence of shear stress. This argument indicates that the gradient

may be of the order of ¢, g.

Wall effects It proves to be difficult to write even a tentative theory without some
drag effects at the wall. Physically, this may be associated with the motion of Plateau
borders along the wall. This has been discussed recently in other contexts [70], with
a general acceptance of the Bretherton law [71] for the force, F' o< v*/3. At first
glance this appears to be the only boundary force, and it is opposed to the motion.
We believe that something further is missing and the missing ingredient is the force
associated to the surface drainage through the surface Plateau Borders [72].
Whenever a system with internal structure is described by a continuum approach
there is always a problem with the boundary conditions [73]. In this case, in addition,
the surface is different from the bulk, with a greater liquid flow through its Plateau
borders. Therefore, let us assume that this flow exerts a downwards force on the bulk
and supplies a surface force in the continuum approximation.

In summary, there is a driving force due to the flow at the surface and a drag force

forv=- 0
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3.5.2 The driving force at the wall

No calculation has yet been performed to evaluate the force on the interior faces (see Fig.

3-22) of a surface Plateau border (the force exerted on the outer surface is irrelevant here).

interior sides

; /A a7 |

5‘\ | ,,_\

BULK PLATEAU B()RDERJ

SURFACE PLATEAU BORDER

Figure 3-22: A four-fold vertex at the surface of the container, reproduced from [74].

However, one may estimate the required force (and stress) roughly for present purposes
as a half of the total force on these faces (recall that we have chosen to work within the
Poiseuille approximation for all sides). With this rough approximation one may proceed as
follows to work out the total stress at the outer surface, due to Poiseuille flow at the Plateau
borders.

For any shape of channel, the average velocity is related to the driving force for flow,
according to:

GA

u=C——, 3.0
i

where G is the pressure gradient in the absence of gravity (with gravity we must replace
this term with a contribution of both pressure gradient and gravitational body force and A
is the cross-section of the channel. The constant C' is dimensionless and depends on the
shape of the Plateau border. Peters [75] and Bradley [76] have calculated the value of C
for a Plateau border using different methods. Their results place this value around 1/50
which can be used in both cases, surface and bulk Plateau borders.

Under steady flow, the drag force at the boundary, ' per unit length, must balance the
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driving force. Therefore F' = G A and by simple geometry:

Fppyuk = G(V3 - 2)52§ (3.8)
1
FP.B.surface = G(é)(“1 _ 7T)52; 3.9

in terms of the Plateau border surface curvature §, which is the same in bulk and surface
Plateau borders within our approximation.

Then, we can also write the flow rate in a single Plateau border as Q) = A u:

C.G G T
QrBwmik = — ~ — (V3 — =)é%; (3.10)
I 50 p 2
@ e "
QP.B.surface T T o M(i)(4 T 7T)6 ; (3] 1)

These equations should be sufficient to build the required theory in which the driving
force for convective motion is provided by the force exerted by the Surface Plateau borders.
Eq. 3.10 can be used to assemble a method of evaluating the total flow rate, (), as a sum of

surface and bulk contributions, but we shall not pursue this here.

3.5.3 The threshold condition

So long as our preoccupation is only with the threshold condition for onset of convective
motion, we may proceed very simply as follows. The threshold is identified with the point
at which the stress in the foam at the wall (Fig. 3-23) has increased a value equal to the
yield stress, Syeu = Sy.

In what follows immediately, we shall implicitly neglect dilatancy and hence speak of
a liquid fraction which is uniform in the bulk.

In Section 3.5.2 we have estimated the force at the surface Plateau borders (Eq. 3.8).
We can write G = p g for a vertical Plateau border, since there is considered to be no
vertical liquid pressure gradient. Therefore, we can write the surface driving force exerted

on the static foam as:

1.1

Pt 1 2
S = TT14 9(5)(4 — m)6°ls, (3.12)

where the [g is the length per unit area in the surface (an analogous parameter [ is used by

Weaire and Hutzler [1] in the bulk). The 1/2 factor in front of the estimate comes from
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Figure 3-23: Schematic illustration of forces/stresses involved in the equilibrium of a small ele-
ment of foam under steady drainage. Dashed lines indicate the direction of shear strain or strain

rate, for positive S.

averaging the space orientation of the Plateau borders (this factor is 1/3 in the bulk as seen
in [1]) and the second 1/2 comes from the estimation made on the last section that the
stress required has to be roughly half of the total force on the faces.

Note also that for the bulk of the foam (Weaire and Hutzler [1] page 29):

L
i (3.13)

ol
and the surface length parameter can be crudely estimated using the bubble diameter as
ls ~ 2/d (d = 2B, in relation to the previous notation). The stress may be rewritten as:
()

5 = 3

3 2
Zpgqs,d?8 ~ 0.15pgpd. (3.14)

We want to equate this shear on the wall to the yield stress, which is given by:

) 2
Sy s SO (¢l (rbl) 7 (315)

y ((b?)?
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where ¢} is the value for the wet limit, that is, ¢} ~ 0.36 and S, ~ 7 is the value of yield
stress on the dry limit [62, 37].
Equating S and S, and using [§ = 5 the familiar definition of a length characteristic

of capillarity [1]:

7096

Eq. 3.16 is an estimation of the threshold liquid fraction ¢j. For large bubbles it gives

~ 0.15¢,d%. (3.16)

approximately: 5
l
h~ (3.17)

which goes to zero as bubble diameter goes to infinity in accord with the data. But this is
quadratic rather than linear in d~! (as shown in Fig. 3-25).

In the opposite limit (d tends to zero), ¢; — 0.36, which is the value of liquid fraction
on the wet limit. There is no upper bound to ¢;. Figure 3-24 shows the form of the
dependence of Eq. 3.16, to be compared with experimental data from Fig. 3-18. The
critical liquid fraction, qﬁf(d‘l), shows a downward curvature in accord with the data

At first sight these results look promising, in terms of their qualitative form, but they
imply values of critical liquid fraction which are at least one order of magnitude high.
The surface driving force is not, on its own, sufficiently large to explain the experiments

quantitatively.
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Figure 3-24: Estimated values of the threshold for the convective motion from the “surface-driven”

theory. We plot ¢f(z) with z = %1. The theory gives a critical liquid fraction, ¢7, much higher than

the experimental values shown in Fig. 3-18, but with a very similar overall shape.
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Figure 3-25: A blow up from Fig. 3-24 showing the quadratic dependence when d — oo (Eq.
817
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3.5.4 Towards a more complete theory

Here we address the details of the radial dependence of S and ¢, (Figs. 3-26 and 3-27). We
consider the various forces acting on it, which must balance (see Fig. 3-23). The resulting

differential equation, proposed by Weaire [72] will be solved numerically and analytically.

UPWARD DOWNWARD UPWARD DOWNWARD
S MOTION MOTION q) 1 MOTION MOTION
constant
B LS it ! SR STl e )
. oo
linear
e
”

0 R 0 R

Figure 3-26: The radial dependences of S and ¢f as from Section 3.5.3, without taking in account

the elastic dilatancy.

UPWARD DOWNWARD UPWARD DOWNWARD
S MOTION MOTION q) l MOTION MOTION

DRY WET DRY WET

0 R 0 R

Figure 3-27: The solutions sketched in Fig. 3-26 change when we introduce the effect of elastic

dilatancy in our considerations. Recall that dilantacy predicts A¢; o S?

The arguments of the previous sections establish a critical value of ¢; (Fig. 3-26). This
may be viewed more generally as applying only at the surface. That is, we can introduce
static dilatancy and still equate S and S, as a boundary condition. The full theory will in

principle give the detailed variation of stress and liquid fraction with r.
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With dilatancy (Fig. 3-27, the scheme of solution is a bit more complicated: we can
solve the differential equation as before, with two adjustable parameters, ¢} the liquid
fraction at = 0 and the pressure gradient P’. We have two required boundary conditions

at 7 = R (see Fig. 3-28) which can be used (by an iterative process) to fix the parameters:

1. S(R) = Sy(¢i(R)), yield stress.

2. S(R) o ¢d, driving force at the wall.

Our experiments suggest that the end effects at the top and the bottom of the tube are
not large (as seen in Fig. 3-19) and so we may hope that the convective motion can be
analysed without their inclusion. That is, we propose to consider only a thin horizontal
slice of the system (Fig. 3-28), and assume that it is similar everywhere (this is not quite
correct but it may serve as a first approximation). We seek solutions for the equations of
drainage and rheology for this slice. We can therefore ignore the azimuthal variable and

deal only with the radius r to describe position (see Fig. 3-28).

! B
et e
\
\ ‘ dh
l ‘
/ii’.f.L: L= lts),
Plees R \\
B S e B ,;:/—;’/'/
s
\ 1 r
0 R

Figure 3-28: A slice of the tube is represented by a cylindrical shell of thickness dr and height dh.
Position is represented by the radial coordinate 7. Liquid fraction and other variables are functions

of r.

We proceed to identify the forces on the element, taking positive forces upwards (there-

fore, gravity will go on the negative direction).
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1. Gravity contribution:

Fy = —¢y(r)pg2rrdrdh, (3.18)

where the liquid fraction, ¢;(r), is a function of r, p is the density of the foam and g

is the gravity constant.

2. Force due to pressure gradient:

Fp = P' 2xrdrdh, (3.19)
where P’ = —0P/0z is the upwards pressure gradient.
3. Shear stress:
d
o= —E;(TS(T)) 2ndrdh, (3.20)

where S(r) is the shear stress, a function also of 7. We assume this force to be in the

same direction of gravity

If we assume that the osmotic pressure is constant along the radius, then the variation of
¢, with 7 is tied to shear and shear rate, via elastic and dynamic dilatancy. For the moment,
let us confine ourselves to the steady state equation for the onset of convective motion, so

that we set aside the dynamic aspect and write, so long as the foam is static:
¢ = &) +aS?, @21

where a is a constant that can be evaluated from the work of Weaire and Hutzler [66]. ¢}
is the liquid fraction at r = 0 where S = 0 by symmetry. In this way we arrive to the force
balance equation:

d

- (rS(r)) = [P’ — (¢ + aS*(r)pg), (3.22)

where P’,¢!,a and pg are constants.

This is a differential equation which gives us two solutions as expected. By setting
S = 0 we have a uniform solution with the pressure gradient being the value required to
support the mass of the foam. We have solved Eq. 3.22 using Maple * and obtained the

following solution in terms of Bessel functions:

3A standard math software package.
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_\/pga(=P' + pge}) Bessely (1,+/pga(—P' + pgo})r)

sl =

pgaBessel;(0,\/pga(—P' + pgdf)r)

(3.23)

Eq. 3.23 presents solution of the type sketched in Fig. 3-27, as shown in Fig. 3-29.

(A) (B)
Yield Stress 8% liquid fraction Yield Stress 8% liquid fraction
20 20
S(r) S(r)
15 15
10 10
Yield Stress 15% liquid fraction Yield Stress 15% liquid fraction
gttt R MR A St e o - ek i
S(r)
S(r)
///
0 0.005 0.01 0.015 0.02 0.0250 0.005 0.01 0.015 0.02 0.025

Figure 3-29: Examples of solutions of Eq. 3.23 for (A)-¢) =~ 0.08; (B)—¢? ~ 0.15. We approach

)= pw¢>?. The values of the constants are estimated using [37, 68, 66, 53]

3.5.5 Discussion

Although we have exhibited some solutions of the differential equation for S(r) (and

¢i(r)), we have not pursued this work to its final conclusion, which would be a rather

elaborate calculation. Let us sketch a possible modus operandi.

The condition S = 0 is the boundary condition at » = 0 in all cases. As above,

the equation may be integrated with an assumed value of P’ and the liquid fraction at

r = 0. These may be considered free parameters, to be eventually adjusted by some

iterative process to establish an acceptable solution. The conditions which will determine
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this parameters have already been stated in Section 3.5.4. It seems intuitively clear that
static dilatancy favours instability, moving the threshold value of flow rate to a significant
lower value, but this remains to be confirmed. Perhaps will be better to concentrate on
the consequences for ¢;(r) which should eventually be measurable. Indeed this might
present one of the best measures of elastic dilatancy, which remains somewhat lacking in
experimental confirmation.

A full theory will also make predictions for v(r), as sketched in Fig. 3-30 (which are
far from obvious).
V(I') DRY
$<S,

WET
S>S8y

Observed surface velocity

Figure 3-30: Schematic diagram of the anticipated form of v(r) from a dynamic theory.

To make detailed predictions of v(r), particularly v(R), will require a calculation of a
different type of solution, in which the same general form of differential equation as that
above is used to determine S(r). The additional features in its formulation and interpreta-

tion will be: |

1. Introduction of the Bretherton drag force [71] opposing the motion at the surface,

hence a different boundary condition, determining v at the surface.
2. Introduction of dynamic dilatancy, of which little is known yet.

3. Identification of a region of continuous deformation (finite shear rate ¢), where .S

exceeds the yield stress.
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4. Calculation of €(r) by integration from the Herschel-Bulkley or Bingham model (as

suggested from Stokes experiment in Chapter 2).

5. Imposition of mass conservation: the final v(r) must satisfy [, drro(r) = 0.

In broad terms, the calculation seems tractable, but it is not practical at the present

time in terms of the programming involved and some uncertainties in the ingredients to be

added.

3.6 Summary

Two patterns of convective convective motions, Simple Convective Roll SCR and Convec-
tive Symmetric Instability or CSI are found in cylinders subjected to forced drainage, as
shown in Fig. 3-4. These convective motions present a finite onset in liquid fraction (Sec-
tion 3.4.6) related to bubble size. We conclude a inverse linear relationship with bubble
radius for large bubble sizes.

We are still far from a complete dynamical theory of the effect. Nevertheless we have
built up a reasonably coherent theoretical scenario, with the following features, which

should be amenable to test, in due course:

The cylindrically convective roll consists of a shearing wet outer shell with shear

rate, hence velocity, increasing close to the wall
e The interior undergoes plug flow.

e There is an small (=~ 1%) difference in liquid fraction (at threshold) between these

two regions, due to dilatancy.

e Theoretic critical values of ¢! (hence ) are in very rough agreement with existing
experiments, except that ¢f ~ d% at large values of d. Comparison with experiments
in this region is complicated by the fact that as d increases the bubble size becomes

comparable to the tube diameter, so the experiments may not be reliable on this point

in relation to the present crude theory.




e ¢/ tends to zero for large d and to the wet foam limit ¢ when d tends to zero. This
behaviour appears clear and consistent with the experiments and suggest that earlier

references of a lower limit are probably erroneous.

Further experiments that give new information to test the above assertions would be
valuable. For example, a non-destructive method that might permit to obtain local values
of liquid fraction with precision, even in the bulk of the foam, would be desirable. This
seems attainable with MRI or x-ray tomography in the near future. If this is done (and it is
under consideration) it will incidentally be an excellent test of foam dilatancy, which is as
yet a theoretical prediction with little validation.

More modestly, we have tried to determine external local liquid fractions using the
width of the wall Plateau borders as a reference, but the error in the measurements is quite
big and we are not able to conclude much from our data. We include our measurements
(Appendix A), hoping that future improvements on the technique might indeed allow one
to obtain more conclusive results.

One exciting possibility is the performance of experiments in microgravity, or reduced
gravity, which is under active consideration. In the elementary theory for onset, gravity
enters only through [y, so its predictions are clear. For a given surfactant system critical
liquid fractions should scale as ¢ = f(dg+/2). The conclusion although drawn for from
the above theory, may have a much more general validity in terms of scale arguments.

To pursue such questions experimentally an alternative is to pursue experiments on
emulsion systems, for which the effective gravity is reduced due to the small density dif-

ference of the components. In this case, some preliminary experiments have already been

performed [77] but more systematic work needs to be done.
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Chapter 4

Convective instabilities in 2D

4.1 Motivation

Given our inability to look inside the specimens of the 3D convective experiments (Chapter
3), the possibility of a 2D analogy presents itself. This is a familiar strategy in the physics
of foam and has often proved fruitful.

In this chapter we present the first results for convective motion in 2D forced drainage.

This requires further analysis, on which developing understanding of 2D foam dynamics

[78] can be brought to bear. Experimental work in flow of two-dimensional foam due to
shear has been recently carried out by Debregeas et al. [79] and Lauridsen et al. [80].

Is it possible to have a convective motion on 2D? That question was posed during one
of the meetings covered to discuss the 3D motion. The answer is yes. It is possible to
reproduce the patterns found in the 3D corresponding experiments, and observation of the
internal bubbles is easier in this kind of setup. However, we have to be cautious before we
compare the results between 2D and 3D experiments, as the geometries are quite different,
with large surface effects intervining in 2D [70]. The study of the motion in 2D geometries
(Hele-Shaw cells) is introduced and some empirical observations are described.

We also expect to find an easier way to measure liquid fraction locally in two-dimensional
foam. All these reasons will allow a much better picture of the phenomena occurring in

the foam undergoing forced drainage.
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4.2 Experimental set-up

We use a Hele-Shaw cell filled up with foam. Our system (Fig. 4-1) is quasi two-
dimensional, as the separation between the plates is small compared to the bubble size.
We also find a way of minimising the effect of the off-centring input of liquid and spread

more evenly the surfactant solution.

B LIQUID INPUT

LIQUID RESERVOIR

N 1./QUID DIFFUSER

FOAM

Figure 4-1: An sketch of the 2D experimental setup. The separation between the plates is around
0.5 mm. The reservoir is refilled constantly with surfactant solution and spread evenly with the
help of a piece of porous material. The foam undergoes convective motions similar to the ones

described on the 3D case. The symmetry axis in the convections is marked by the dot-dashed line.

Monodisperse foam (see Appendix D), is introduced between parallel glass plates with
a separation of half a millimetre (very small compared with the length and width of the
foam, which are 200 mm and 50 mm respectively). Then, the foam containers is partially
introduced into a pool of surfactant solution, so the foam has contact with air at the top and
with liquid at the bottom, as shown in Fig. 4-1. We can pour surfactant solution on top of
the foam at different flow rates using a Watson-Marlow (©) 505 S peristaltic pump.

We observe the bubbles using a Sony (©) DCR TRV 30E video camera to get a con-
tinuous film. The taped film is digitalised using Ulead Video Studio (©) 5.0 DV, a frame

grabber that allows digital capture at a speed of 25 frames per second.
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4.2.1 Results

We have been able to reproduce the patterns of convective motion found in a cylindrical
tube using this bi-dimensional system (see Fig. 4-2). However, we do not find coexistence
of the two patterns as it happened in the 3D experiments. CSI (Convective Symmetric
Instability, see Section 3.4.1) is the dominant bubble motion and appears on its own at all
times (see video 2D . mpg). We were only able to reproduce the SCR (Simple Convective
Roll instability, as shown in Section 3.4.1) by chance, due to an accidental asymmetry (a
hole pierced in the material used as a sponge) in our liquid diffusion system. The symmetry
axis in these experiments is parallel to the plates and equidistant on the two walls, as
sketched in Fig. 4-1.

As the 2D setup allows us to watch the interior of the foam, there are some particular
| aspects of the 2D motion that were not observable in the 3D experiment. One of such
; particularities a pulsing (see video pulse2D.mpg), in which there is a brief passage of a
| relatively large amount of liquid through the channels of the foam, Fig 4-3, as if a liquid
channel opens suddenly. The rows of bubbles open to allow this amount of liquid to make
its way to the bottom and then return to their initial positions after the liquid has made its
way. This occurs seldom and at relatively high liquid fractions.

The second observation, in Fig. 4-4, is that the last layer of bubbles (the ones closer

to the sides of the Hele-Shaw cell) adopt a distorted shape at high flow rates or liquid
fractions. In the 2D case, we can appreciate that the content of liquid at the sides is much
higher than it is in the interior of the foam. A layer of fluid forms close to the walls of the
Hele-Shaw cell at high liquid fractions.

We consider that the 2D system presents an interesting future opportunity because it
allows us to observe clearly the motion of all the bubbles in the system. It offers a beautiful
demonstration of the qualitative effect, but one must be careful in making any detailed
comparison with 3D, as the physics is quite different in some respects (drag forces on the

glass plates).
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Figure 4-2:

The patterns found for the 3D convective motions can be reproduced in the 2D
experiment. There are some differences between the 2D and the 3D case. A - CSI, in which bubbles
move downwards at the wall and upwards in the rest of the foam appears in all the experiments
with homogeneous wetting conditions. B - However, to reproduce the SCR, in which bubbles on
one side move downwards and the ones at the opposite side move upwards, we need to force an

inhomogeneous input. We do not find coexistence of the different convective patterns in the 2D

setup.
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Figure 4-3: A liquid channel a 2D foam. The snapshots are separated by 0.02 seconds. Two

adjacent columns of bubbles separate to allow a great amount of water passing through. After the

water has drained through the bubbles, the foam returns to its original equilibrium state. This occurs
very seldom.
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Figure 4-4: There is a clear layer of fluid in contact with the wall at high liquid fractions. The

bubbles are deformed in a quite particular way that reminds us of an ’S’.
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Chapter 5

Convective motion in a tilted tube

5.1 Motivation

There is another experimental variation of the convective motion [81] that we have ex-
plored, which results more amenable to theory than much of the above. Its successful
analysis, using some of the same ideas that we have presented already, must offer some
confidence in future progress. In this series of experiments in drainage driven instabili-
ties,we use cylinders tilted at an angle from the vertical (see Fig. 5-1). When subjected to
forced drainage, the bubbles in these tubes present a pattern of motion very similar to the
Simple Convective Roll or SCR in the vertical tube.

In Fig. 5-1, consider the line that marks the axis of the tube. As we tilt the tube, the
bubbles below this axis become wetter and the ones above the axis become dryer. This will
impose a shear stress which must exceed the yield stress, dependent on the liquid fraction
¢;. The wetter part eventually undergoes shear and a convective motion is produced, much
as the vertically aligned case. In the present case the essential driving force is very evident
(see Fig. 5-2). It is possible to adapt the homogeneous drainage equation to include this
case and interpret the onset of the motion in terms of yield stress.

The behaviour of the foam in the tilted tube is analogous to the Boycott effect [82],
which describes how the sedimentation of particles suspended in a fluid is five to ten times
faster in a tilted tube than in a vertical one. The explanation of this phenomenon [83] is

that in the vertical tube, the particles have to move against the static fluid. When the tube
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Figure 5-1: A sketch of the convective roll in a tilted tube. The dashed central line is a reference
showing the central axis of the tube. The black arrows show the sense of the motion of the bubbles.
Fluid draining on the foam moves preferably in the vertical direction, due to the gravity force

attraction.

is tilted, the concentration of particles below the axis of the tube grows and the fluid rises
above the axis. The convection produced helps to the particles to sediment faster. An
analogous situation has been found in granular materials falling out of a tube [84]. Duran
and Mazozi have used the complementary angle to the one we are using in our work (they
measure the inclination from the horizontal). The flow of grains out of the tube is faster at

angles between 30? and 45° degrees from the vertical.

5.2 Materials and methods

We introduce monodisperse foam produced as detailed in Appendix D into glass tubes of
different lengths and diameters. The tubes are partially introduced into a pool of surfactant
solution, so the foam has contact with air at the top and with liquid at the bottom. We make

sure that the tubes are perfectly vertical and establish forced drainage by adding surfactant
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Figure 5-2: As the angle is tilted in the tube, the water is driven to the wall. The width of the wet
region reduces. It may be possible that eventually, an angle would be reached at which the dry foam

will float on a thin layer of bubbly liquid. In practice, it is impossible to do the experiment at angles
close to the horizontal orientation.
solution at the top of the tube using a Watson-Marlow (©) 505S peristaltic pump which

allows increments of 0.03 ml/s in flow rate. Then we tilt the tubes to specified angles (see

Fig. 5-1).
In these experiments, the bubbles are visually observed and the velocity of the bub-

bles is timed with a stopwatch. We have also filmed the convective rolls using a Nikon

© Coolpix 990 camera. This photo-camera can record short films (up to 40 seconds) at a

speed of 30 frames per second.
The velocity of the surface bubbles can be measured as a function of the angle of tilt
and physical parameters of the motion can be obtained and compared to theoretical results.

A short film of the evolution of the motion when we increase the tilt angle is in the CD that
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comes with the thesis (video tilted.mpg).

5.3 Experimental results for the tilted tube

It is appreciable to the eye that the foam moves more quickly in the wetter part than in the
drier part. The drier part seems also to move in a plug flow. To check the validity of these
observations and provide detailed data for comparison with theory, the tube is divided in

five sections as indicated in Fig. 5-3.

/AIK;K‘M:”) INPUT 1 b Wi
[5 4> 372' 1( "/‘/54“’/ /; !\7;/)
| 1Y3/3Y

Figure 5-3: Division of the sections in the tube. As we tilt the tube to the right, sections 1 and 2

will fall below the axis (wet foam) and sections 4 and 5 above it (dry foam).

We measure the velocity of surface bubbles for different tilt angles. A positive velocity
here means that the bubbles move on average upwards and a negative velocity means that
they move downwards. The results are shown in Fig 5-4.

Bubbles in position 1 and 2 move clearly downwards and bubbles in positions 4 and
5 move clearly upwards. The bubbles at position number 3 change their behaviour when

the tube is tilted away from the vertical. Thus, when the tilt angle is low, roughly half of
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Figure 5-4: Average velocity of surface bubbles (six per point) at five different sections of the tube
sketched in Fig. 5-3. Each set of data is for a different angle of inclination. Flow rate is fixed at
0.408 ml/s and the bubble radius is 1.79 mm. The change of sign in velocity in section 3 start at
angles =~ 15°. Bubbles in position 2, slow their downwards motion as well at those angles. The
width of the wet side decreases when the tube is tilted, as it is marked by the solid lines. The speed
of bubbles in sections 4 and 5 is fairly constant at each angle, which is consistent with the plug flow

observed visually. Error bars have been omitted for clarity.

the bubbles move in each direction and these gives on average a small velocity. But as the
tilt angle increases, the bubbles on section 3 move clearly upwards. These results support
our visual impression that the wet bubbles move faster than the dryer side and the dry side
moves more or less in plug flow, as expected.

We choose the velocity of this plug flow to primarily characterise the motion. This is
recorded for different angles of tilt at fixed liquid fractions (see Fig. 5-5). It is not possible
to consider an experimental average liquid fraction in these experiments (the tilting of the
tube does not allow us to use Archimedes principle in Eq. D.1). The lines are fitted to a
function f(#) = a tanh(bf — c), chosen because it reproduces the sharp rise and plateau

observed in the data.
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Figure 5-5: The figure shows the velocity of the bubbles that move upwards in relation to the
angle of tilt. Every curve is labeled with the fixed flow rate at which it was taken. Small increases
in the tilt angle lead to an increase in the speed of the bubbles at first. This effect levels off. At low
flow rates, the velocity reaches a stable level and at higher flow rates, the bubbles moving upwards
start to slow down showing non-continuous motion. We ignore the points after this slow down
deliberately to fit the motion (this only affects to the data at flow rates higher than 1.16 ml/s. For
the other sets, all the data up to 25 is considered). The points for each different flow rate can be
fitted to the function f(0) = a tanh(b@ — c¢). This set of data is for foam with a bubble radius

r = 1.56 mm in a 2 ¢m diameter tube.
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Increasing the tilt angle beyond a certain point leads to a rapid increase of velocity in
all cases. The slope depends on the flow rate. For flow rates lower than 0.68 ml/s the
velocity reaches a plateau and stays at the same value when the tube is tilted further. Flow
rates bigger than that value result in a decrease of velocity of the surface bubbles, for tilted
angles above 12°. In some cases, for the higher flow rates and angles above 207, the slow
down is associated with non-continuous motion of the bubbles moving upwards. Foam
moves in short lapses, rather than continuous plug motion (video catter.mpg). This
may be due to the character of the motion at high tilted angles (sketched in Fig. 5-2). We

have neglected these points at the fitting in Fig. 5-5.

5.4 Analysis of results

Here, we relate the parameters a,b,c of the fittings for the velocity of the motion at different
flow rates in Fig. 5-5 to physical quantities. The parameter a is the limit value of velocity

at high flow rate.

"Values for a in Fig. 54 —a—
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Figure 5-6: The values for the limit velocity reached by the convective roll in a tilted tube (param-
eter a in Fig. 5-5). vary linearly with flow rate. This set of data is for foam with a bubble radius

r = 1.56 mm in a 2 ¢m diameter tube.

In terms of these fitted parameters, the tilt angle for onset of motion is 6. = ¢/b.
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The results on Fig. 5-5 may thus be reduced to 6. = ¢/b and a for many purposes.

Figs.5-6 and 5-7 use this procedure:

o The first relates the limit velocity a to flow rate. It varies linearly with respect to flow

rate. At the moment we cannot offer an explanation for this behaviour.

e The second relates the critical angle to flow rate. We will discuss now how this flow

rate varies respect to the critical tilt angle in Section 5.5.

The tilted experiment is repeated for different tube diameters and lengths using the

same bubble size (B, = 1.56 mm). All the results are consistent with the results described

so far for one tube.
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Figure 5-7: The values for the flow rate related to critical angle at the onset of the tilt convective
motion in radians (6, = % * 32% see Fig. 5-5 for clarification.). This set of data is for foam with
a bubble radius 7 = 1.56 mm in a 2 ¢m diameter tube. The data fits to Eqs. 5.2 and 5.3 (the

approximation for small angles) in Section 5.5.
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5.5 Theoretical Comparison

The drainage equation 1.8 on page 12 has been solved [81, 85] for the tilted tube using a
change of coordinates. A full derivation of the solution appears in Appendix G.
The shear stress, S, in a foam is a function of liquid fraction. The dependence of S

with flow rate can be obtained as (Appendix G):

S ~ 2¢°/* cos'/* fsin @ Q“}M. (5.1)

Foam flows when the value of shear stress equals the yield stress value S = S,. The
yield stress S, is taken as a fixed constant. We equate the right hand term in Eq. 5.1 to S,
and obtain the following expression for the flow rate in the gravity direction, ()7, under the

critical condition for onset of convection:

5«1/3
7 ~ ! —. 5.2
@z 24/3¢5/3 cos!/3 6, sin?/? 6, )
This can be approximated for small angles using cos ), ~ 1; sinf, ~ 6,:
Qz ~ 6,43, (5.3)

The values obtained in Fig 5-7 fit well to both Eqs. 5.2 and 5.3 as seen in Fig 5-7. It
is possible to evaluate the error committed in using Eq. 5.3 as the larger critical angles are
around 10° =~ 0.175rad. In this case sin 10° ~ 0.173 and cos 10? ~ 0.985 and introducing

these values in the formula we estimate an error about 2%.

5.6 Conclusions for the tilted tube

Our empirical conclusions are:
e the limit velocity of the bubbles grows linearly with flow rate.

e the critical angle at the onset of the motion, is related to the flow rate in the gravity

direction assuming a constant yield stress .S,. The dependence is found to be 0z ~

g
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These results are consistent for several tubes with different diameters and lengths. The
theoretical formula proposed in Appendix G provides a good fit for the data of the critical
angle at the onset of the motion, deduced from experiments. In this way we see a clear
demonstration of what was anticipated at the outset, that the requirement of a certain finite
tilt angle to induce convective motion is related to a finite yield stress .5, which must be

overcome.
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Appendix A

Measurements of local liquid fraction

related to convective motions in foam

A.1 Motivation

In Chapter 3) we have reported convective patterns of motion in foams at high flow rates
and we have described a phenomenological theory which should give solutions compatible
with those expected by the experiments.

As we have explained, it would be useful to have local measurements of the liquid
fraction. We will describe some attempts to estimate local surface liquid fractions with a
microscope. We try to relate the width of the Plateau borders in the surface of the sample
to the average liquid fractions calculated using the Archimedes method (see Appendix D).
The result is still uncertain, as such estimates involve considerable experimental errors and
the variations of liquid fraction entailed by convective motion do not appear to be large. In
the end, the purely optical method described here does not seem to be the solution to the

problem of finding precise liquid fractions at local level.
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A.2 Surface liquid fraction measurements

To observe the foam at a closer level, in an attempt to determine local liquid fraction, we
use a Euromex (¢) optical microscope with a trinocular head. It has x3 and x10 magni-
fication and allows us to take pictures of the magnified foam when used in conjunction
with the Nikon (¢) camera. In order to examine in detail the growth of the wall Plateau
borders, we have taken some pictures of a column of foam using the microscope at the

highest magnification available (x10). Fig. A-1 shows some of the pictures.

D

Figure A-1: Four pictures of the same bubble showing the growth of the Plateau borders when
the liquid fraction is increased. The values of liquid fraction are, respectively (A)-¢; = 0.048;
(B)-¢; = 0.075; (C)-¢; = 0.089 and (D)- ¢; = 0.097 for a bubble radius 1.3 mm. The convective
instability, CSI, is triggered at a slow velocity in picture (D) (see movie wallmotion.mpg in
CD). Two black dots at the bottom of the pictures are one millimetre apart and serve also as a check
for the camera focus. We have measured only the evolution of the Plateau Border width marked by

the red line. Results are shown in Fig. A-2.

We measure the evolution of a single Plateau border using a computer graphics pro-
gram (Adobe (©) Photoshop 5.0). The same bubble is pictured at different liquid fractions.

The liquid fraction is an average on the foam, calculated using Archimedes principle in

113




Appendix D. We mark the width of one of the Plateau borders surrounding the bubble and
measure this line in pixels, calibrating this with a known distance in millimetres. The er-
rors are calculated considering propagation of error from the original pixel measurements.

Results are shown in Fig. A-2.
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Figure A-2: Apparent width of the Plateau Borders at the surface of the foam. The bubble radius
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