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Sum m ary

Since the dawn of civilization people have been intrigued by packing problems. They 

have a great significance in the practicalities of our everyday lives, with people always 

seeming to try to find more efficient ways of packing things together. Even though 

scientists have studied them for over 2,500 years, they are still prevalent today in 

almost every area of science. Much of the work that scientists have done on packing 

problems to date has been in considering sphere packings. These have been used 

widely to investigate the properties of granular materials and as simple models for 

everything from packings of atoms to packings of bubbles.

We shall begin by considering one of the simplest granular systems (and indeed 

one of the simplest packings of spheres) by performing the most detailed examination 

to date into the physics of Newton’s Cradle. This simple system is shown to ex­

hibit many complex dynamic effects that give insights into the general behaviour of 

granular materials and highlight how seemingly simple systems can exhibit complex 

behaviour.

The theme of sphere-packing is continued when we consider bubble packings 

in the wet foam limit. These packings are composed of almost spherical bubbles 

that have been observed experimentally to demonstrate a surprising degree of order. 

We consider the similarities between these systems and computationally generated 

sphere packings. We also perform two-dimensional simulations of packings of bub­

bles trapped between glass plates. The control of the position of the bubbles in 

the packing is being investigated as a potential technology with applicability to the 

emerging area of Discrete Microfluidics.

Packing models composed of spheres are characterised by forces that act under 

compression only with dense hard-sphere packings for instance not being able to 

withstanding expansions of the system but may withstand compressions. We turn 

the traditional packing model “inside-out” by defining a system where interactions



act under extension only. This system is seen to exhibit an onset of rigidity for 

sufficient expansions that may in some sense be considered to be the inverse of the 

onset of ‘jamming’ in compressed soft sphere systems.

We also go beyond traditional sphere packing models, by considering the impor­

tant role that shape plays in packings of grains. The author has created a software 

program called A r b i t r a r y P a c k e r  that allows for the investigation of the packing 

properties of grains of arbitrary shape. The properties of random packings of ellip­

tical grains is investigated, with a very interesting variation in the packing density 

of the grains observed as the ellipticity is varied.

Sequential packing of grains is considered and a new model that incorporates the 

rotational degree of freedom of asymmetric objects is investigated. We also present 

a new model which we term “Packing-driven shape evolution of grains” , where the 

shape evolution of the grains is determined by how they pack together in a dense 

random packing.
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Chapter 1

Introduction

1.1 T he im portance o f packing to  us all

The problem of how objects pack together has been of interest to scientists for 

millennia [8]. Indeed Bernal remarked that the problem of packing objects into a 

container is one of the oldest problems known to man [12], It can be of importance 

in all our daily lives, from when we try to squeeze those last souvenirs into our suit 

cases to times when we ponder upon how the bees know how to pack their honey 

cells together [97].

Packing problems are still prevalent today in almost every area of science. Physi­

cists investigate with how things fit together in nature. Mathematicians concern 

themselves with the theoretical aspects of packing, expending great energy at times 

attem pting to prove what type of packing is best in a given situation [47]. Chemists 

have historically had great success in taking a Newtonian view and considering how 

atoms pack together, relating this structure to the observed physical and chemical 

properties of substances [8]. Biologists even consider the geometrical contribution to 

the structure of living things, for example considering the cellular packing structures 

of biological cells [100, 40].
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2 CHAPTER 1. INTRODUCTION

We are surrounded in our everyday lives by granular packings, from the grains 

of sand on the beach to the box of cereal that sits on the breakfast table [56]. They 

play an important role in a great number of our industries, including construction, 

mining and pharmaceuticals [26]. They also have great importance in geological 

processes which can have a great impact on all our lives. The study of granular 

packings gives great insights into the physical mechanisms of landslides, erosion and 

even plate tectonics, where the dense packing of the Earth’s plates is considered [55].

1.2 Sphere Packings

Often in the packing problems found in nature, as in life, the goal is maximum 

density. Indeed, the dense packing of hard objects is a recurrent paradigm in physics, 

from early models of crystallinity to modern theories of granular materials which 

are under active debate today [8, 66]. Generally speaking the objects are taken to 

be spheres in three-dimensions (or circular disks in two dimensions), leading to the 

formulation of the Kepler Problem:what is their densest packing?. When considering 

questions of the density of packings we refer to the packing fraction $ . For a 2D 

packing of circles, this is simply the area covered by the circles divided by the total 

area, while in the 3D case of spheres, it is the volume of the spheres divided by the 

total volume.

For circular disks, the answer to the Kepler problem is a triangular packing with 

packing fraction $  =  0.906. For spheres the answer has long been known to be 

the f.c.c. or h.c.p structures, both with packing fraction $  =  0.7404. (However 

the proof of this problem eluded mathematicians for centuries, until Thomas Hales 

finally produced a complete proof in 1998 [47].) These structures are formed by 

packing layers of spheres in the triangular packing configuration. However as shown 

in Figure 1.1, when we consider a triangular packed layer, there is a choice of two
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Figure 1.1: Order of layers in HCP packing (ABABABA) and FCC packing 

(ABCABCA).

different locations in which the next layer can be placed, the layer B or layer C 

positions. For hexagonal close-packed (hep) structures, the sequence ABABAB... is 

followed, while for cubic close-packed (fee) the sequence is ABCABC...

When we consider disordered packings the problem becomes yet more compli­

cated. In 2D, monodisperse circular discs have a very high tendency to order, quite 

easily finding the triangular structure. However if a small amount of polydispersity 

is introduced, then the resulting packing will show a high degree of disorder, and in 

general for a dense packing only achieve the random close packing of circles value of 

$ « 0 . 8 4  [75, 7].

Bernal began the investigations by Physicists into disordered packings of spheres 

[12]. However it still remains difficult to give a precise definition of “densest random 

packing” of spheres [96]; nevertheless it is a concept to which the Physicist has 

become accustomed and one that is supported by the approximate reproducibility 

of the density found in a variety of experimental and computational procedures . It 

may be estimated as $  =  0.64 ±0.01, where the uncertainty reflects a small variation



4 CHAPTER 1. INTRODUCTION

F ig u re  1.2: A simulation of a random packing of 500 spheres with packing 

fraction $  =  0.637.

in dense packings prepared by one procedure to another (See Figure 1.2) [88, 12]. 

While significant, this variation is small compared to the difference between random 

and ordered packings.

If we consider a finite number of spheres confined within a box, at low packing 

fractions $ , if we shake the box, each sphere can move without impediment from its 

neighbours. If we reduce the size of the box, eventually a packing fraction will be 

reached where the system will resist further compression, with each grain locked in 

position by the grains that it contacts with. Exactly the packing fraction at which 

this happens will depend upon many factors including the relative size of the spheres 

and the box, the shape of the box and exactly how we treat the system during the
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packing process. If the container is shaken while we pour the spheres into it, the 

shaking helps to optimise the packing and a packing fraction of $  ~  0.64 can be 

achieved. However, when spheres are gently rolled into a stationary container a 

packing fraction of $  ~  0.60 is obtained. While attem pts at measuring the loosest 

random packing (LRP) of spheres using neutrally buoyant spheres in liquid have 

found a value of $  «  0.56 [84].

Recently new insights into the structure of random sphere packings have been 

made using X-ray computed tomography of packings of up to 150,000 mono-sized 

spheres with packing densities ranging from 0.58 to 0.64 [6, 5, 4]. These studies 

have among other things shown that disordered sphere packings can be locally more 

efficient than the fee and hep crystal packings, yet more evidence of the large number 

of interesting effects that can be seen in sphere packings.

1.3 T h e role o f  sh ap e

Computational studies of random packing of particles have focused on the simulation 

of sphere packings. This is the natural choice, as spheres allow a single simple 

calculation to determine when two grains are in contact. However, most granular 

materials do not consist of exactly spherical particles, and their shapes must play 

a role in their properties - even the most basic property, namely density [29, 33]. 

Little has been done on such cases, because it is computationally demanding to 

deal with the conditions of contact of irregular bodies. We utilise an approach 

that discritises the edges of the objects, allowing us to consider random packings 

of objects of arbitrary shape. In Chapter 3, we consider dense random packings of 

ellipses, investigating the transition in the packing properties as the shape transitions 

from circular to highly elliptical.

The shape of the individual elements that make up granular packings observed
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in nature changes over time. This is due both to the interactions of the grains 

with one another and interactions with their surroundings. We could for example 

consider beach pebbles, which are subject to erosion from both their interactions 

with the sea and with each other [67, 38]. In Chapter 5 we will consider a model in 

which the shape of randomly packed two-dimensional grains are allowed to evolve 

based on how the grains themselves pack together. This model consists of successive 

generation of dense random packings of grains and the removal of small amount of 

each of grain where it contacts with its neighbouring grains. It is thus the structure 

of the packing of the grains itself which determines the shape evolution of the grains. 

Full details of the implementation of this model are given in Chapter 5.

1.4 Jam m ing, constraints and contact num bers

For a given configuration of particles, there exists a threshold packing fraction <I>c 

at which jamming occurs, where the particles can no longer avoid each other and 

the bulk and shear moduli simultaneously become nonzero [79, 81] Attempts have 

been made to give a strict definition of jamming, based on three hierarchical jam ­

ming categories that range from “locally jammed” , where each particle is trapped 

by its neighbours, to “collectively jammed” where no subset of particles can simul­

taneously be displaced so that its members move out of contact with all particles, 

to “strictly jammed” where no globally uniform volume-nonincreasing deformation 

of the system boundary is possible [96, 36]. A recent analysis of computationally 

generated packings of particles found that random sphere packings with $  0.64

and random bi-disperse disk packings with $  «  0.84 were for practical purposes 

strictly jammed [36].

The standard arguments for the mean number of contacts of each particle in a 

random packing (due to James Clerk Maxwell [71] and Charles Bennett [11]) have



1.5. P A C K IN G  INSIDE-OUT 7

been based on the concept of jamming. They consider that to constrain the system, 

two contacts per degree of freedom are required. Thus for a random packing of 

circles with two degrees of freedom (the two coordinates describing the position of 

the circle) one would expect a mean contact number of 4. While for a an asymmetric 

object in 2-d one would expect a mean contact number of 6 (the extra degree of 

freedom being given by the angle describing the object’s orientation). These simple 

arguments that equate the number of contacts an object makes with its available 

degrees of freedom infer a discontinuous jump in contact number with the addition 

of an infinitesimal degree of asymmetry. This is in contrast to the smooth transition 

tha t we observer when we consider the transition from circles to highly elliptical 

objects in Chapter 3.

1.5 Packing inside-out

Packing models are characterised by forces that act under compression only [81, 

35, 82], Jammed hard-particle packings for instance cannot withstand expansions 

of the system but may withstand compressions. Commonly considered models of 

compression of randomly packed soft disks and spheres are founded on Hooke’s Law 

interactions which act under compression only. We will begin considering these 

forces in Chapter 2 when we consider the behaviour of the spheres in a Newton’s 

Cradle and give further consideration when we examine sphere packings in Chapter 

7. We will also turn this model “inside-out” in Chapter 6, by defining Hooke’s Law 

interactions under extension only, and hence a model of elastic strings that are loose 

under compression [30]. These systems exhibit an onset of rigidity for sufficient 

expansions that may in some sense be considered to be the inverse of the onset of 

’jamming’ in compressed soft sphere systems.
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F ig u re  1.3: The Apollonian packing. This packing is formed by filling the 

space between three mutually touching discs by placing a disc so that it just 

touches the other three. The procedure is then continually repeated, filling the 

new gaps generated by the addition of each new disc.

1.6 Sequential packing m odels

There exists many space filling packing models in which non-overlapping units of 

smaller and smaller sizes are placed according to a given set of rules. The oldest 

known packing of this kind is the Apollonian packing (AP) introduced by Apollonius 

of Perga around 200 BC [37]. (See Figure 1.6). This packing is formed by filhng 

the space between three mutually touching discs by placing a disc so that it just 

touches the other three. The procedure is then continually repeated, filling the new 

gaps generated by the addition of each new disc. Apollonian packing leads to a 

dense system, with the size of the circles inserted into the pores becoming smaller 

and smaller and the packing fraction approaching $  =  1 in the limit of an infinite 

packing. This model has been generalised to consider the case where the object 

centers are chose randomly (RAP) [39]. Using our approach of considering objects
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Figure 1.4: In 1887, Lord Kelvin posed the problem of how to pack cells of equal 

volume such that the total area of the interfaces between the cells is a minimum. 

His solution, the Kelvin Strcture (Left), stood for over a century until in 1993 

the Weaire-Phelan structure (Right) was discovered, beating Kelvin’s partition 

by 0.3% in area [106]. (Images generated using the Surface Evolver).

with discretised edges, we will consider the behavior of the RAP model for objects 

with various shapes in Chapter 4. We will also define a new model in which the 

objects are allowed to rotate during the packing process. We will term this new 

model Rotational Random Apollonian Packing (RRAP).

1.7 B ub b le  packings and foam s

When we consider packings of bubbles, like those in a glass of beer, the system has 

a more subtle behaviour than the simple achievement of maximum density. When 

the bubbles are packed tightly together they form a foam, adjusting their shape in 

an attem pt to minimise their surface area. (We will consider the behaviour of such 

bubble packings in Chapter 8). In these cases the water from the foam drains out 

under gravity, leaving a dry foam composed of a disordered packing of bubbles of 

polyhedral shape. The exact shape of the bubbles depends very strongly on the liquid 

fraction, but for dry foams even when monodisperse bubbles are used the packing of
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bubbles are highly disordered, except for where the packings are generated in vessels 

or channels of small dimension, with only a very low number of bubbles spanning 

the diameter of the channel [54].

The behaviour of these foam systems are closely linked to the problem posed by 

Lord Kelvin in 1887, that of how to pack cells of equal volume such that the total 

area of the interfaces between the cells is a minimum (See Figure 1.6). His solution, 

the Kelvin Structure, stood for over a century and is indeed observed in confined 

dry monodisperse foams [54]. However in 1993 the Weaire-Phelan structure was 

discovered, beating Kelvin’s partition by 0.3% in area [106]. This structure is not 

observed in foam systems.

The effect of gravity driven drainage is greatly reduced as the size of the bubbles 

is decreased. This allows one, when using sufficiently small bubbles, to generate a 

very wet foam composed of spherical bubbles, a system with a very strong analogy 

to the classically considered systems of sphere packings. When such packings of 

bubbles are created they show a very large degree of ordering. We will consider such 

packings in Chapter 7, comparing and contrasting their behaviour with simulation 

results for sphere packings.

1.8 A pp lication  o f C om putational M ethods.

T he Surface Evolver

There is a long history of the application of computational methods to the study of 

granular packings and to the study of bubbles and foams [104, 95]. A key software 

tool used by the foam community is the Surface Evolver [15]. This software was 

written by Ken Brakke more than 20 years ago and is still under active development. 

Surface Evolver is an interactive program for the study of surfaces shaped by surface 

tension and other energies and has been widely applied to the study of foams. Using
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this software a user is able to define the foam structure and evolve it toward a 

minimal surface energy by a gradient descent method.

Surface Evolver can also be used to implement other models using its command 

language. The advantage of this approach is that one can take advantage of Surface 

Evolver’s topological book keeping (for definitions of vertices, edges, bubbles etc.) 

and its implementation of a highly optimised minimisation routine. This approach 

was taken by Simon Cox when implementing a dynamic model (the Viscous Froth 

Model) for the evolution of 2d foams subject to viscous forces and we utiUse this 

implementation in Chapter 8.

We also make novel use of the Surface Evolver when we consider the inverse 

packing problem in Chapter 6. We modified Surface Evolver’s source code to make 

the Hookean spring interaction defined in the code one-sided. We were then able to 

take advantage of Surface Evolver’s implementation of periodic boundary conditions, 

and its built in optimised minimisation routines.

Packing o f A rbitrary Shapes.

We have developed a software program called A r b i t r a r y P a c k e r , that allows us 

to consider the packing behaviour of arbitrarily shaped grains in 2D. The software 

is written in the C programming language with graphics generated using OPENGL 

[25]. At the core of the software is the definition of the shape of 2D objects as 

polygons and the utilising of a polygon library CLIPPOLY  [74] to determine when 

objects are in contact and the degree to which their areas overlap. Details of the 

various computational models implemented in A r b i t r a r y P a c k e r  are given in the 

relevant Chapters and Appendix C gives details of the cell list technique used to 

greatly increase performance for sequential packing models.

Using this program we are able to generate dense jammed random packings of 

grains of any desired shape using a monte-carlo technique [93]. This is used in
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Figure 1.5: RAP packing of pentagons of pentagons generated using 

A r b i t r a r y P a c k e r . (Top left) 100 pentagons packed. (Top right) 200 pen­

tagons packed. (Bottom left) 500 pentagons packed. (Bottom right) 1000 pen­

tagons packed.
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Chapter 3 when we consider the random packing behaviour of elhpses and further 

details of the implementation of the packing algorithm are given in Section 3.2.

A rbitraryPacker  also implements both the RAP and our new RRAP model 

allowing us to study the role of shape in sequential packing models. Figure 1.5 shows 

random packings of pentagons generated using A rbitraryPacker and the RAP 

model. Full details of the implementation of the RAP and RRAP model are given 

in Chapter 4.

A r b i t r a r y P a c k e r  is again used in our packing-driven shape evolution of grains 

model in Chapter 5. Here we take advantage of the ability of the program to 

pack objects of any desired shape and to even vary the shape of the objects as the 

simulation proceeds. Full details of the model are given in Chapter 5.

Finally a 3D extension to A r b i t r a r y P a c k e r  that can consider sphere packings 

is utilised in Chapter 7. Here both a monte-carlo packing algorithm is implemented 

and a fully dynamic 3D model similar to that used in Chapter 2 where we consider 

Newton’s Cradle. Full details of the 3D implementation are given in Chapter 7.

1.9 W riting Style

In preparing a document such as this, one must decide on a writing style to use. I 

take the view that the passive voice is less pleasant to read and understand, thus a 

choice between the use of “I” or “We” is necessary. I have chosen to use we to refer 

to work presented in this thesis with consideration of the fact that research is so 

often a collaborative eflFort, with contributions made to this work from supervisors, 

group members, project students, collaborators and many many helpful discussions 

with fellow scientists. Except where I have explicitly acknowledged the computa­

tional implementations of others, I have been the developer of the software used in 

the generation of the computational results presented in this thesis, in particular
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the A r b i t r a r y P a c k e r  software used in Chapters 3, 4, 5 and 7 and the modifica­

tions to Surface Evolver used in Chapter 6. The numerical results in Chapter 2, I 

obtained by modifying a 2D code written by Finn MacLeod [53] and the implemen­

tation of the viscous froth model in Surface Evolver that I utilise in Chapter 8 was 

implemented by Simon Cox [58].

And now let us begin by considering the surprising insights that we can gain into 

the behaviour of soft sphere systems by examining one of the simplest - Newton’s 

Cradle.



C hapter 2

N ew to n ’s Cradle

2.1 Introduction

A line of touching spherical balls suspended from a rail by pairs of inelastic strings 

is often called a Newton’s cradle (see Fig. 2.1). The spheres are arranged at rest 

in what is referred to as a sausage packing [8]. Interestingly, it is conjectured that 

for N  < 56, such sausage packings offer the best arrangement which minimize the 

volume of the smallest convex figure containing all the spheres [108, 23].

Here we will consider Newton’s cradle in the context of a 1-dimensional granular 

system. The forces that govern the interaction of the spheres are the same as those 

considered in the study of three-dimensional granular packings. However as we shall 

see even this simple 1-dimensional system displays complex dynamic behaviour and 

provides excellent insights into the nature of the forces involved in 3-dimensional 

granular packings.

In introductory physics textbooks, Newton’s Cradle is generally introduced as 

an illustration of the conservation of momentum and energy [18, 89, 78, 72, 24, 109]. 

When one ball is displaced from the other four and released, it is claimed that the 

collisions will result in the ball at the opposite end of the line being ejected, with

15
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F ig u re  2.1: Newton’s cradle. Ball 1 on the right is released and swings down 

to impact the line of stationary balls. It is generally suggested that only ball 5 

on the left is ejected. However, both experiments and our simulations show that 

all balls will move after the impact.

all other balls remaining stationary. As the ejected ball swings back, it will collide 

with the line of balls. According to the common description, only the ball that was 

released initially will be ejected, while all other balls remain stationary.

However the actual experiment reveals a slightly different scenario. Careful ob­

servation shows that the first collision will break up the line of balls with the effect 

that all balls move. After further collisions all balls will eventually swing in phase, 

with an ever decreasing amplitude. The observed breakup of a line of balls after the 

impact of one ball was analyzed recently by Hinch and Saint-Jean. [52] We extend 

their work to consider the multiple collisions that follow thereafter. We believe that 

a closer examination of Newton’s cradle can enhance and extend the pedagogical 

value of the original demonstration [49, 50, 86].

Newton’s cradle has a long history. In 1662 papers on its underlying physics were 

presented to the Royal Society by no less than three eminent researchers, [24] John
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Wallis (known for his presentation of tt as an infinite product), Christopher Wren 

(mathematician, astronomer and architect of St. Paul’s Cathedral in London), and 

Christiaan Huygens (author of a book on the wave theory of light and contributions 

to probability theory). Huygens pointed out that an explanation required both 

conservation of momentum and kinetic energy. (He did not use the kinetic energy 

but referred to a quantity proportional to mass and velocity squared.)

However, two equations are not sufficient to describe the behavior of Newton’s 

cradle as was pointed out in Ref. [49]. A characterization of Newton’s cradle con­

sisting of N  balls requires N  velocities, but the conservation laws only give two 

equations. Herrmann and Schmalzle[49] analyzed Newton’s cradle in terms of elas­

tic forces between the contacting balls. They argued that a necessary condition for 

consistency with the simplified textbook description is that there be no dispersion 

in the relation between frequency and wavenumber for the vibrational motion of 

the chain of contacting balls. Their conclusion was based on their experiments with 

gliders on an air-track, where each glider was equipped with a spring bumper. These 

experiments effectively model the first set of collisions in Newton’s cradle. When all 

gliders are in contact, the gliders may be represented as a linear chain, allowing for 

the calculation of eigenfrequencies and corresponding wave numbers. Only when the 

masses of the gliders and the spring constants were chosen to achieve a dispersion- 

free linear relation, did the gliders behave as in the textbook description. [49, 86]

In a follow-up paper Herrmann and Seitz[50] re-examined the actual cradle ex­

periment and found in both the experiments and simulations that the first impact of 

a ball leads to a break-up of the line, contrary to the textbook description. In their 

simulations they modeled the interaction between balls as points of mass m  tha t are 

connected by (Hertzian) springs. The force between two such masses is given by

F  =  k{yn  -  V n - i T , (2 .1)

where Un is the displacement of ball n from its equihbrium position, /c is a spring
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constant, and the exponent a =  3/2. The comparison of the propagation time of a 

perturbation through a Une of balls obtained from both experiments and simulations 

using a range of different values of a showed that the assumption of Hertzian springs 

in Eq. (2.1) is valid. From their simulations of a five-ball cradle Herrmann and Seitz 

found that after the first collision, balls 1, 2, and 3 move backward, while balls 4 

and 5 move forward with ball 4 carrying about 12% of the initial momentum of the 

incident ball. (We have labeled the balls in the direction from the incoming ball 

(ball 1) to the ball at the opposite end of the line (ball 5).) The momentum of ball 

5 after the collision is nearly as large as that of ball 1 before the collision.

Without performing further simulations Herrmann and Seitz[50] concluded that 

when ejected ball 5 swings back, it would impact not on a compact line of balls 

(because the line has been broken up by the first impact), but rather there should 

be a sequence of independent collisions. However, in general there can be multiple 

collisions, involving more than two balls in contact during the collision as we will 

see in Sec. 2.2. This issue will be examined further in relation to our experimental 

results discussed in Sec. 2.6.

Hinch and Saint-Jean[52] conducted an exhaustive numerical and theoretical 

study of the fragmentation of a line of N  balls by an impact. They find that some 

balls at the far end detach from the line and fly off, some in the middle hardly move, 

and the impacting ball rebounds backward bringing with it some of its nearby balls. 

They reproduced the numerical results of Ref. [50] for the first impact, and also set 

their results into a wider context. For a linear contact force law (q =  1), the number 

of balls that are detached from the line is

iV d e ta c h  =  1.5iVl/^ (2.2)

while the majority of balls rebound. For the Hertzian force law (a = 3/2) only a 

few balls rebound together with the impacting ball, with a velocity greater than 1% 

of the impact velocity. For example, for a line of =  5 balls, two balls will leave
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in the forward direction, for =  15 this number increases to three. However, no 

power law analogous to Eq. (2.2) was established.

Despite the above studies and recent work in the engineering literature [21], there 

still is a need for further work on the nature of Newton’s cradle for the following 

reasons. Because gravity was not included, the discussion was hmited to the first 

impact. What happens in subsequent collisions? If we assume a dissipation-free sys­

tem, will the motion settle down to a regular behavior or will it be chaotic? In what 

way will dissipation affect the motion? We will discuss these questions by presenting 

the results of theory, experiments, and simulations where gravity has explicitly been 

included, together with dissipative effects due to collisions and friction. Our work 

by no means exhausts the possible corrections that might be added to the model, 

but it seems sufficient for the available data.

F igure 2.2: The overlap of two balls.

2.2 M odeling N ew ton ’s cradle

We define the overlap r̂n,n between two balls m  and n as

^m,n = (2/? -  r„„)+, (2.3)

where R  is the radius of the balls and r-mn is the distance between their centers 

(see Fig. 2.2). The notation ()+ specifies that the value of the bracket is zero if the
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expression inside is negative, as required for the representation of contact forces tha t 

cannot be in tension. If we model the contact forces as described in Sec. I, the force 

on ball n  may be w ritten as

mXn = k[^n-l,n -  C,n+l]^ (2.4)

where X n  denotes the position of ball n.

The introduction of gravity requires some discussion. A lthough Eq. (2.4) holds 

for a one-dimensional line of balls where the im pact is in the same direction as the 

line, Newton’s cradle is two-dimensional. The balls are attached to a frame by an 

inelastic string of length L  and can swing about their respective equilibrium positions 

(Xo,n, along arcs of circles. This motion causes the collisions to become off- 

centered if the balls are a finite distance away from their equilibrium positions. Our 

model neglects this effect. It is restricted to  small angles or am plitudes |x „—Xo,n| < <  

L, in order to m aintain a one-dimensional description of the cradle.

In the same approximation, gravity can be modeled as a simple restoring force, 

th a t is, a  harmonic spring which acts to move each ball back to its equilibrium 

positions Xo,„. The gravitational spring constant is given by kg = m g /L .

The equations of motion for the dissipation-free Newton’s cradle are thus:

mXn = k C - l ,n  -  kC,n+l +  kg{Xo,n ~  Xn), (2.5)

where n  ranges from 1 to N.  Modeling contacting spheres requires a  =  3/2  (Hertz 

law ).[63] The spring constant k  may be w ritten in term s of m aterial constants as

k = VmE/ [S{ l - i y%  (2.6)

where E  is Young’s modulus, u is Poisson’s ratio, and R  is the radius of the balls [52], 

We solved Eq. (2.5) for =  5 using the second-order velocity Verlet algorithm[45] 

and the initial conditions for x„(i =  0): Xi(0) =  A,  a;„(Q) =  Xo,n for 2 <  n <  5, and 

in (0 ) =  0 for all n, corresponding to  one ball being released with an am plitude A  

on to a stationary  line of balls (see Fig. 2.1).
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The velocity Verlet algorithm determines the positions, velocities and accelera­

tions at time  ̂ for each of the n balls in the following way:

Xn{t +  At )  =  Xn{t) +  Xn{t )At  +  ^X„Ai ^ (2.7)

• /  \  1  /  N AXn[t +  — ) =  Xn[t) +  - Xn i t ) A t (2.8)

Xn{t +  At )  =  - (  — +  At ) )  m
(2.9)

Xnit  +  At )  =  Xn{t +  +  ]^Xnit +  A t ) A t (2.10)

where is the total force on ball n.

It is common to introduce dimensionless variables before solving the equations 

of motion numerically. However, in our problem there are two time and length 

scales. Although the swinging balls may best be described in terms of their period 

To = ^ /l Jq and string length L, individual collisions occur on a much shorter 

time scale to — { r r ? and displacement scale Iq = { r n ^ v ^ . Here v is the 

velocity of the impacting ball, given by =  A ^fg jL .

Because Eq. (2.5) describes a conservative system, the appropriate time step Ai 

for the numerical integration may be found by checking for energy conservation. 

Our chosen time step of approximately 2.5 x 10“  ̂ to lead to a relative error in the 

energy of not more than 0.005% over a time of over 10000 Tq.

An initial test of our code was undertaken by setting fcg = 0 to model the impact 

on a line of balls in the absence of gravity. This simulation reproduced the results 

of Ref. [52] for the final velocities of all balls after the impact.
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Figure 2.3: Displacement from their respective equilibrium positions of each 

of the five balls as a function of time. Note that the first impact results in a 

fragmentation of the line of balls. Contrary to textbook explanations of Newton’s 

cradle, all balls are subsequently in motion. In the early stages of this dissipation- 

free simulation, the largest amplitudes of motion are exhibited by balls 1 and 5. 

(The displacement is plotted as a fraction of the initial amplitude of the incident 

ball. Time is displayed in multiples of the period of a single ball To =  27t .)

For kg > 0 we found that the first collision breaks up the line of balls. As the balls 

move back toward their respective equilibrium positions, however, they do not return 

to their individual stationary starting positions. This difference leads to a different 

scenario for the second set of collisions. As time evolves, an oscillatory motion 

becomes established, as we will demonstrate in Sec. 2.4 for the case of =  2.

Figure 2.3 shows the displacements of the balls for A =  5 where ball 1 has been 

released from an amplitude A = 0.27L onto a hne of four balls. The collision (at

2.3 R esu lts
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Figure 2.4: A detailed view of the first three sets of collisions reveals the sym­

metry breaking that occurs due to the break-up of the line in the first collision. 

Time is displayed in multiples of {m^ W e  have chosen the time origin 

as the moment when the incident ball passes through its equilibrium position. 

The displacements are made dimensionless by dividing by the length scale Iq. 

For visual clarity they are shifted by n, where the balls are labeled from 1 to 5 

as in Fig. 2.1.

time 7r/2y results in the break-up of the line with balls 4 and 5 moving forward 

and balls 1, 2, and 3 rebounding. Ball 5 reaches its maximum displacement at time 

As it swings back, it will no longer hit a stationary line at time L/g.

The second set of collisions, shown in Fig. 2.4(b) is thus not anti-symmetric to the 

first set (see Fig. 2.4(a)). Figure 2.4(c) displays the third set of collisions, which is 

clearly different from the first set.

Due to the fragmentation of the line of balls at the initial collision, there are no 

obvious symmetry considerations that can explain the configurations in the latter 

collisions. The question arises whether the system of five balls will develop any 

periodicity in its long-term behavior or will be chaotic. Our data for a time of more 

than 10000 To is best displayed by showing phase portraits at various times (see 

Fig. 2.5). Generally there is one ball colliding with a line of four slightly separated 

balls. However, the amplitudes of the first ball and the line of balls display very low
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F igure 2.5: (a) The long-time behavior of the dissipation-free N  = 5 cradle is 

characterized by a slow oscillation between two modes of motion. Both modes 

involve the collision of one ball against a group of four. In mode II all balls move 

with a similar speed, in mode I the cluster moves much slower than the single 

ball, (b) Simulation results in the form of phase-portraits. (c) A sketch of the 

evolution of these portraits.
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frequency oscillations between two modes of motion. In mode I the cluster of four 

balls moves much slower than the single ball while in mode II all balls move with a 

similar speed. This behavior is particularly pronounced for =  2, but also is well 

pronounced for =  4 and =  5 as shown in Fig. 2.5.

2.4 T heory o f a tw o-ball cradle

We now present an analytical treatment of the relatively simple two-ball cradle, 

which leads to the identification of the behavior with the phenomenon of beats. We 

will show that the softness of the balls leads to an oscillation of the collision points. 

This variation of the phase portrait in time is also seen in our simulations of the 

three and four ball cradles.

Even if the balls are not infinitely hard, the standard textbook description is still 

valid in the sense that the impacting ball comes to a complete standstill while the 

impacted ball moves off with the same velocity as the impacting ball. However, what 

is generally ignored is the fact that the impact does not take place instantaneously. 

During this finite interaction time, both balls have a nonzero velocity and their point 

of contact will move a certain distance along the direction of the impact. (For a 

discussion of the related case of a bullet shot into a hanging block, see Ref. [37].) The 

impacted ball will move away from its equilibrium position by a distance A x  and 

will consequently swing back after the collision. From our simulations we find that 

A x scales as A x  oc , consistent with the displacement scale introduced

in Ref. [52].

The subsequent behavior, sketched in Section 2.3 , can be analyzed as follows. If 

we denote the positions of each ball relative to their respective equilibrium position 

by x\ and X2 , the center of mass Xc is given by

( 2 . 11)
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while the  relative position Xr  is

Xr  = X\ — X2- (2-12)

For simplicity we shall assume a harmonic force law (with spring constant Kr),  

where the subscript r signifies tha t the interaction is due to the relative positions of 

the balls. The validity of the argument will however not be restricted to this force

law. The cradle will be seen to be equivalent to  a pair of coupled oscillators tha t

are coupled only when the two balls are in contact (Xr > 0).

Each ball is subject to gravitation, modeled as a spring with spring constant 

Kc =  m g / L ,  as in Sec. 2.2. (Previously this constant was called k^, bu t we shall 

use Kc  in the following discussion to remind us tha t the spring acts on the center of 

gravity of the two balls.) The potential energy of each ball is given by ^KcX^ .  The 

potential energy of contact is given by ^ K r X ^  for Xr  > 0 and is zero for Xr  < 0. 

The natu ra l frequencies associated with the two spring constants for mass m  are 

given by — K c / m  and =  Krjra.

We consider the case where ball 1 is released from X\ — —A  and X2 =  0. Then 

initially we have

Xc =  =  (2.13a)

X , =  - A .  (2.13b)

The center of mass motion is th a t of a mass 2m  acted on by external forces {F  =  

—KcXc) only. Hence, the motion is simple harmonic with frequency fl:

Xc = —— cosfl t.  (2.14)

The dependence of the relative position Xr  on the time as obtained from our simu­

lation is shown in Fig. 2.6.

The cradle features two time scales, the collision time, tq and the time between 

collisions, F q 2> tq, given by
27T
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F igure 2.6: Plot of the relative position Xr  for the N  — 2 cradle as a function of 

time plotted in multiples of Fq +  tq (time between collisions +  interaction time). 

The simulation was performed with a small ratio Kr/Kc  =  100 to increase the 

collision time tq.

corresponding to free motion under the action of Kc with Xr  < 0.

We make the approximation that during a collision {Xr > 0), where the repulsive 

force due to Kr dominates, we neglect Kc- Then the motion is another (short) half 

cycle under Kr,  as is seen in Fig. 2.6. We find for the interaction time tq

27t \ / 2 t:
2rn = (2.16)

\/2u  u;

Note that \/2uj is the frequency of a single ball with a doubled spring constant.

To represent the resulting motion of the balls, it is helpful to switch identities 

after every collision, so that ball 1 ball 2 and thus Xr ^  —Xr.  We may then 

approximate Xr  by
7tt

Xr = - A c o s -  . (2.17)
F q +  To

If we combine Eq. (2.17) with Eq. (2.11) for Xc,  we find “beats” for the motion of
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F ig u re  2.7: For N  = 2 successive collisions take place in turn on the left

(circles) and on the right (triangles) of the center of the system. The numerically 

determined points are well described by theory (continuous line), Eq. (2.20).

one ball (with the above role reversal implied). For tq <S Fq, we obtain

where x  denotes that the identity switches between x\ and X2 after each collision. 

Thus we have high-frequency oscillations with a frequency VL which are modulated 

by the low frequency 'k t o /2T '^  = / 2 \ / 2 u j .

We also can calculate the positions of the collisions. When they occur, we have 

Xr = Q and the position of the collision is X^- From Eq. (2.17) we obtain

where U is the time of the ith  collision. Hence the corresponding position is given

X
A nt A  
— cos  ----- — COS

irt A  -Kt

(2.18)



2.4. THEORY OF A TWO-BALL CRADLE 29

BaJI I 
Ball 2

■I -0.5 0
x„/A

0.5 ■I ■0.5 0 0.5

Figure 2.8: Two phase portraits that characterize the motion of the N  = 2 

cradle. The system slowly oscillates between the case where both balls move 

with the same speed and the case where one ball collides with a stationary ball. 

The axes are made dimensionless by dividing the velocity of each ball by the 

maximum velocity of the incoming ball and the position by the initial amplitude.

where we have used the definition of Xc in Eq. (2.11) and the approximation F »  

t q . Figure 2.7 shows the excellent agreement between the analytical expression in 

Eq. (2.20) and our simulation.

The oscillation of the collision points for =  2 is caused by the finite elastic 

response of the balls. Plotting phase portraits at difi'erent times, as shown in Fig. 2.8, 

reveals the same characteristics we had obtained for the N  = 5.

by

( ^ ( z  +  ^)(Fo +  ro))

(2 .20)
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2.5 T he effects o f d issipation

Although the study of a dissipation-free version of Newton’s cradle is interesting in 

its own right, any realistic simulation of the experiment needs to include dissipation. 

Two obvious such mechanisms are the velocity-dependent viscous drag of air and 

the viscoelastic dissipation associated with the collisions of the balls. We chose a 

simple linear dependence on the velocity = rjv (Stokes law).

The inelastic character of the collisions is modeled by including a viscoelastic 

dissipation force of the form [110]

into the equation of motion. Here ^ is the overlap between two balls as defined in 

Eq. (2.3) and /? = 3/2 (Hertz-Kuwabara-Kono model).[110]

The equation of motion for the dissipative Newton’s cradle is then given by

The Stokes term continually removes energy from the system, while viscoelastic 

dissipation occurs only during collisions. Due to the velocity dependent forces in 

the system we utilize the Euler-Richardson method to solve our new equation of 

motion (Eq.2.22) [102], The Euler Richardson method determines the positions, 

velocities and accelerations at time  ̂ - I -  for each of the n balls in the following 

way:

(2 .21 )

=  X n { t )  +  ^ X n { t ) A t (2.23)

(2.24)

(2.25)
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F ig u re  2.9: Due to energy dissipation during the colhsions, the distance

between the centers of the balls decreases in time and the balls will swing in 

phase. The data is for A'' =  2.

X, ,{t + At) = x{t) + (2.26)

Xn{t +  At)  =  x{t) + x ’̂ '^At  (2.27)

where and are the position, velocity and acceleration of the ball n  at

the half way point of the time step At.

We use the same time step as for our dissipation free simulations. The time step 

was tested using the Euler-Richardson method for the dissipation-free case and seen 

again to give excellent energy conservation.

To demonstrate the effect of the viscoelastic dissipation on the behavior of the 

system, simulations were run where the Stokes term was neglected ( 7 7  =  0). In 

Fig. 2.9 we plot the distance between the two balls as a function of time. This 

simulation demonstrates that the final collective motion of the balls that is reached
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Figure 2.10: Loss of energy due to the Stokes damping and viscoelastic

dissipation for the N  — 5 cradle. The y-axis is made dimensionless by dividing 

by the initial energy of the system.

experimentally is caused by the energy dissipation due to the collisions. The final 

amplitude of swing can be predicted in the following way.

Consider an A'’-ball cradle with initially only one ball moving with velocity vq. 

The total initial kinetic energy So =  ^rnvQ may be written as the sum of the kinetic 

energy due to the motion of the center of mass Sc plus the kinetic energy relative 

to the center of mass, Sr,

(2.28)

with Sc =  ^N m { j j  S i l l  Because all velocities are zero apart from v\ = vq, Sc 

reduces to Sc = From Eq. (2.28) we immediately obtain

(2.29)

Because all this relative kinetic energy will be dissipated in subsequent collisions,



2.5. THE EFFECTS OF DISSIPATION 33

the final energy of the system is given by

5 'f in a l  =  S o  -  S r  =  ^ . (2.30)

The final energy of each ball, neglecting the Stokes term, is simply given by 

■E'initiai/-̂ -̂ Note that this value is independent of the coefficient of dissipation, 

which specifies only the time it takes for the relative kinetic energy to be fully 

dissipated and thus the time it takes for all balls to swing in phase.

For a finite value of t], the Stokes damping constantly removes energy from the 

system, causing the amplitude of all the balls to diminish eventually to zero. In 

Fig. 2.10 we show the variation of the total energy with time for a five-ball cradle 

where both Stokes damping and viscoelastic dissipation is included in the simulation. 

Here we see that the energy decays quickly to approximately 1 /5  of the initial energy, 

where the collective motion state is reached. It then continues to decay due to the 

Stokes damping.
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F ig u re  2.11: Experimental data for Newton’s cradle with N  = 2, 3, and 4

balls. A single ball is released from an angle 9q. After many collisions, the balls 

settle into a collective mode of motion where all move together with amplitude 

9c- The data is well described by 9c =  9q/ N  (solid line). We take the error in 

the final angle of swing to be the accuracy of the protractors used, ±0.25°.

2.6 E x p er im en ts

To examine the validity of our simulations, we have carried out experiments using a 

specially constructed large Newton’s cradle consisting of four metal balls (diameter 

6.8 cm, mass 0.7 kg) suspended from 1.3 m long wires. (The balls we used were 

commercial sand-filled metal boules.) Specially constructed large protractors were 

used for accurate measurements of the angle of swing to an accuracy of ±0.25°.

Our first set of experiments investigated our prediction for the amplitude of the 

collective motion of the balls described in Sec. 2.5. A single ball was released from 

an angle 9q onto a Une of N  balls. Once the state of collective motion was reached, 

we determined its amplitude 6c. The time required for the system of balls to settle 

into the collective mode is between one and two minutes. This time compares with
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F ig u re  2.12: Variation of the amphtude of ball 1 in a A'’ =  2 cradle with time. 

Shown are experimental data and results from our simulations. (The experi­

mental data in Figs. 12 15 are averaged over 10 runs of the experiment, and 

the error in the amplitude is taken to be the accuracy of the angle measurement 

±0.25°.

the time of about one hour for the system to come to rest.

Figure 2.11 shows measurements of 6c as a function of 9q for N  = 2,3,  and 4. The 

data is well described by 9c = Oo/N, consistent with Eq. (2.30) and our conclusion 

that the collisions will only remove energy of the relative motion of the balls.

Our second set of experiments focused on energy dissipation due to the collisions 

of the balls. Again a single ball was released from an angle and collided with a 

line of 2, 3, or 4 balls. We determined its amplitude after every coUision with its 

neighboring ball. The experimental data, shown in Figs. 2.12 2.14, reveals that the 

textbook explanation of Newton’s Cradle with its prediction of a constant amplitude 

fails.
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F ig u re  2.13: Variation in am plitude of ball 1 for the N  = 3 cradle. The 

simulation used the same set of param eters as for the two-ball case.

To determine a value for the dam ping constant 77, the time-dependence of the 

am plitude was determ ined for a single ball and fitted to ^max( 0  =  9q exp(—r]t/2m) 

to give r) = 6 .8  ±  0.136 x lO^'^kg s~^. The constant k  was calculated from Eq. (2.6) 

with E  = 2 X 10^  ̂Pa and = 0.33 for steel and was found to be A: =  1.38 x 

10^°kgm~^/^ s~ .̂

The viscoelastic dissipation param eter 7  was then estim ated by adjusting it in 

the simulation to match the dissipation seen in the 2 ball experiment. The value 

was found to be 7  =  1.47 x 10^kgs“ ' m “ .̂ This value was then used in the three 

and four ball simulations shown in Figs. 2.13 and 2.14.

We find from our simulations th a t the exact separation of the balls when a col­

lision occurs has a very im portant influence on the behavior of the system. If balls 

2 5 are initially in their exact equilibrium positions when they touch, the subse­

quent collisions will essentially be m ulti-ball collisions. In such collisions the energy



2.6. EXPERIM ENTS 37

4 . 5

MO
T 3

CS
jOV.oo
-a
3

"E.
E<

Simulation

0 5 10  15  20
C ollision Number

Figure 2.14: Variation in amplitude of ball 1 for the =  4 cradle. The 

simulation used the same set of parameters as for the two-ball case.

dissipated is less than in a series of two-ball collisions. However, any experimental 

set-up has imperfections that will cause the system to deviate from this idealization, 

for example, small differences in the oscillation periods of the individual balls or the 

balls not hanging exactly at their equilibrium position.

To incorporate these imperfections into the simulation, we varied the value of 

kg for each of the balls so that the periods of the balls vary slightly, and thus 

all collisions after the initial one are no longer rnultiball-collisions. In Figs. 2.12 

2.14, the periods of the balls vary by A T =  0.01s or l/240 th  of a period. (This 

variation has no noticeable effect in the two ball case because all collisions are two 

ball collisions.) When this effect is incorporated, we find good agreement between 

the simulations and the experimental data.

We have tested the effect of a range of differences in the periods of the balls. 

We found that there is little variation in the amplitudes obtained until we choose
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Figure 2.15: Variation in amplitude of ball 1 for a =  2 cradle with a 1 mm 

gap between the rest positions of the balls. The simulation uses the same set of 

parameters as for the two-ball case of Fig. 2.12.

either very small values of AT that approach the idealized case, or large values of 

A T  that no longer represent an accurate description of the experiment. We tested 

removing the multiball collisions by introducing very small gaps, Ax, between the 

balls in the simulation. For small values of Ax w 0.1 mm, the amplitudes obtained 

in the simulations are almost identical to those obtained from the simulations that 

incorporate small variations in the period of the balls.

We also have considered the case where there is an appreciable gap between the 

balls. Figure 2.15 highlights the importance of a careful experimental setup, where 

instead of touching, there is a Ax =  1 mm gap between the balls when they are in 

their rest positions. Here we see a “beating” effect where the amplitude of ball 1 does 

not simply decay, but oscillates. This behavior is well replicated by our simulation.
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We have shown that the physics involved in Newton’s cradle is far from trivial and 

that the standard textbook explanation is only a first approximation. In the con­

text of physics education our study of Newton’s cradle might fulfill two purposes. 

Students should see that apparently simple experiments, when closely examined, 

can raise a number of complicated questions. One also should be cautious about 

fully accepting well-established explanations of physical phenomena without care­

fully scrutinizing the arguments.

In considering Newton’s cradle in the context of a ID granular system this work 

provides us with an excellent introduction to the nature of the interactions between 

soft spheres and the complexity that these systems can demonstrate even in the 

simplest ID cases. We will further examine systems composed of interacting spheres 

when we apply the same techniques used here to the investigation of 3D sphere 

packings in Chapter 7.

Kinoshita et. al have recently considered an experimental system which they 

term a quantum Newton’s cradle [59, 90]. They confine an atomic gas to an array 

of one-dirnensional tubes by a web of laser beams. Interestingly they observe a 

behaviour that could be considered similar to our observations of the long term 

behaviour of the dissipation free Newton’s cradle, finding that their system does not 

relax to equilibrium even after each atom has collided several thousand times. So it 

does indeed seem that Newton’s cradle, often considered a simple desktop toy, can 

yield beneficial insights into the behaviour of a wide range of physical systems.
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Chapter 3

Random Packing of Elliptical 

Disks

3.1 In troduction

Simulations of packings of grains have generally considered the grains to be circular 

(2D) or spherical (3D) [81]. However if we consider most granular materials that 

we find in nature, they do not consist of exactly spherical particles. From grains of 

sand on sand on the beach to packings of large rocks, real world granular materials 

have a wide variety of shapes [56]. Here we will begin our investigation into the 

contribution shape makes in the packing of non-circular grains, by considering dense 

random packings of elliptical grains.

To understand the role that shape plays in the properties of granular packings, it 

is natural to deal first with particles of uniform size and a simple shape. Computer 

simulations for the random packing of spherocylinders (cylinders with caps of semi­

spheres at both ends) were performed by Williams and Philipse [107]. They found 

that the packing fraction reaches a maximum of $  ~  0.70 for an aspect ratio a =  0.4 

of cylinder length to diameter, for larger values of a  it decreases continually (it

41
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is below the Bernal value for a  > 1.5). Another obvious non-spherical packing 

candidate is the elhpsoid. Hence Chaikin has recently chosen the confectionery 

known as M&M’s®  for packing experiments [91].

Our own study was motivated in part by the desire to better understand the 

remarkable results of Chaikin. These indicated a high packing density relative to 

sphere packings [33]. They find for a packing of ellipsoids of revolution with an aspect 

ratio of 1.93, appropriate to M&M’s® , a higher packing fraction than the random 

packing of spheres. Furthermore computer simulations of packings of ellipsoids with 

principal axes having three different values, lead to random packings with packing 

fractions close to that of fcc/hcp.

To explain this arguments of constraints and jamming have been adduced, which 

been a part of the general subject and which we outlined in Chapter 1. In brief, these 

associate the maximum density with the exhaustion of degrees of freedom by the 

constraints due to contacts, in a style of argument that goes back to Clerk Maxwell 

in the general context of static equihbrium of structures [71]. For eUipsoids there 

are effectively more degrees of freedom than those of spheres, so it is argued that 

compaction can continue further, establishing more contacts and a greater density.

3.2 Sim ulation of 2D packings of ellipses

In 2D there is a strong tendency for monodisperse systems to order (resulting in the 

hexagonal honeycomb packing for circular disks) [8], so it is necessary to deal with 

a polydisperse system, if we wish to gain insights into the role of disorder.

We utilise a monte-carlo type packing algorithm implemented in our software 

program A r b i t r a r y P a c k e r . A s determining whether two disks are in contact or 

overlap is a simple task only for circles, to allow us to study the packing of arbitrarily 

shaped objects, we discretised the surface of the disks. Each disk is represented as
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F igure 3.1: Com puter simulations of dense packings of 50 ellipses with aspect 

ratio  1.0 (circles), 0.8, 0.6 and 0.4 respectively. The simulations use periodic 

boundary conditions.

a polygon with one hundred surface points (vertices) [74]. This gives us a highly 

accurate representation of an ellipse, introducing an error in packing fraction, $ , of 

less than  0.001. (Calculated as the difference in $  between the same packings of 

disks using 100 and 1000 surface points).

O ur sim ulations are carried out using 50 disks of a given aspect ratio  X = b/a 

(where a and b are respectively the semi-major and semi-minor axes). We use 

uniformly d istributed random numbers to set the initial x and y coordinates of the 

disk centres (within a unit square) and the initial disk orientations (angle between 

semi-major axis and x-axis). The values of the semi-major axes a are taken from a
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uniform distribution with a finite lower bound to avoid disks that are too small. The 

semi-minor axes are then given hy b = \a .  There is no initial disk overlap. Periodic 

boundary conditions are employed in all simulations.

The compaction process consists of the following steps. First the area of each disk 

is increased such that the packing fraction is increased by A $ =  0.0001. We then 

check for every disk if this has resulted in any overlap with its neighboring ellipses. 

If it has, it is moved in a random direction (and/or rotated by a random angle 

between —t t /2  and t t / 2) that will reduce its total overlap with neighboring disks. 

(The overlap area between two disks is determined from the area of the overlap 

polygon using the CLIPPOLY polygon library [74]). If it already has zero overlap, 

then it attem pts to make a random movement and rotation to another position 

that also represents zero overlap. This process is continued until all disks have zero 

overlap. Then the area of each disk is again increased such that the packing fraction 

is increased by A $ =  0.0001.

The process of minimisation of the overlap to zero and increasing of the area 

of the disks is continued until it is no longer possible to obtain zero overlap. The 

packing fraction is then given by the ratio of the sum of all disk areas over the 

smallest box area at which the disks did not overlap.

Packings of ellipses of equal aspect ratios A are produced as follows. We generate 

a densest packing of circles (A =  1) using the above algorithm. For each subsequent 

packing, A is reduced by 0.01, making the disks more elliptical while retaining the 

positions of the disk centres, and the orientation and length of their semi-major axes. 

The compaction of the disks then proceeds in the same way as before, resulting in a 

new dense packing of disks with the reduced aspect ratio. In this way, we generate 

packings of ellipses of equal aspect ratio A, in the range from A =  1 to A =  0.1.
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F ig u re  3.2: Variation of packing fraction <I> witli 1 - A. Data shown is the 

average of 10 simulations of 50 disks for each aspect ratio. (The average standard 

deviation of the packing fractions obtained is 0.004.) The solid line is a fit 

to a third order polynomial with a maximum $  =  0.895 at A =  0.664 and 

$(A =  1) =  0.839.

3.3 R esu lts  and A nalysis

In 2D it is well established that polydisperse circular disks pack randomly with a 

density close to 0.84, for size distributions which involve substantial variations in 

size [8, 75]. This seems to apply quite widely, but cannot hold for extreme cases.

Figure 3.2 shows the variation of density <5 with aspect ratio, A. In qualitative 

accord with Chaikin’s observations [33] and the simulations of Williams and Philipse 

[107], we find tha t as one departs from a circular shape the packing fraction increases 

from an initial value of 0.837 to a maximum value of 0.895 for A 0.7. We see an 

initial linear increase in packing fraction as we increase the ellipticity and only see 

the packing fraction drop below that of the circular case for A < 0.25. Our data is
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F ig u re  3.3: When we disallow disk rotations in our packing algorithm we 

find that the packing fraction does not increase above the packing fraction 

of circular disks ($  «  0.84). There is a sharp decrease in packing fraction for 

aspect ratios less than 0.3. Data shown is the average of 10 simulations of 50 

disks for each aspect ratio.

well represented by a third order polynomial as shown in Figure 3.2.

In considering these trends, we may first observe that for hard contacts there 

is always available to the system a structure with the same density ($  ~  0.84) as 

that of circular disks, since any degree of eccentricity may be introduced by a simple 

affine transformation, conserving area and the hard contacts. So in some sense both 

the initial linear increase and the eventual decrease of density are associated with 

the rotational disorder which is frozen in by the process used for compaction.

In order to shed some light on this, we have performed the following further 

calculation. As before, disks of a given value of A were placed in a box with random 

initial locations and orientations. However, this time the disks were not allowed to 

rotate during the compaction process. Figure 3.3 shows that we no longer see the
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F ig u re  3.4: Variation of number of contacts, Z, with distance from edge of 

disks. We see a very clear plateau region at approximately 6 contacts for large 

aspect ratios.

large increase in packing fraction as we increase ellipticity away from that of a circle. 

Instead the packing fraction remains almost constant at $  0.84 up to A 0.8.

We then observe a slow decrease in packing fraction for midrange values of A. At 

high values of ellipticity there is a very large decrease in packing fraction, with a 

packing fraction as low as $  ~  0.43 found for an aspect ratio of 0.1. These results 

show that as expected, the additional rotational degree of freedom in the case of 

ellipses is essential for an increase in the packing fraction above that of the circular 

case.

As discussed in Chapter 1, the standard arguments for the mean number of 

contacts (due to James Clerk Maxwell [71] and Charles Bennett [11]) have been 

based on the concept of “jamming” , that is, to constrain the system, two contacts 

per degree of freedom are required. Thus for a random packing of circles with two 

degrees of freedom (the two coordinates describing the position of the circle) one
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F ig u re  3.5: Variation of the average contact number with aspect ratio. The 
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would expect a mean contact number of 4. While for the case of a random packing of 

ellipses one would expect a mean contact number of 6 (the extra degree of freedom 

being given by the angle describing the orientation of each elhpse).

The practical determination of contact numbers for computationally generated 

packings involves the definition of a cutoff {rc u t o f f )  distance around each particle 

where one considers any neighboring particle within that distance to be in contact. 

Figure 3.4 shows the average contact number obtained for increasing values of r c u t o f f -  

(This is similar to a cumulative radial distribution function). We see that for circles 

there is a very sharp increase to a value of approximately four, while at higher 

ellipticities there is a clear plateau region in the graph at a value close to six. We 

find a value of 4.0 ± 0 .1  for circles over the range rcutoff — 0.005 ravg —*• 0.007 ravg, 

where ravg is the average semi-major length. For larger values of ellipticity a clear 

plateau is seen at approximately 6 and so it is appropriate to consider a larger value
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of Tcutoff =  0.02 Tavg in this case. Figure 3.5 sliows the variation in contact number 

with aspect ratio where the error bars are determined from considering rcutoff in 

the range 0.005 —> 0 . 0 0 7 for values of A > 0.6 and 0.005 ^  0.02 for

A < 0.6.

The simple “jamming argument” is generally seen to be a very good indicator of 

the number contacts of particles in granular packings. However, it does imply that 

for an infinitesimal introduction of ellipticity there should be an immediate jump in 

contact number from 4 to 6. This is clearly contradicted by our simulation results, 

where a maximum contact number is only reached at an aspect ratio A 0.7. We 

find Z  = 4.0 ±  0.1 for circles consistent with the jamming argument, while for large 

ellipticities we find a value of Z =  5.7 ±0.2 for an aspect ratio of 0.3. This is slightly 

lower then the expected value of 6, consistent with the results of Donev [33] who 

found a maximum value of Z =  9.8 for spheroids and Z =  11.4 for ellipsoids to 

be compared with values determined from the jamming argument of Z =  10 and 

Z =  12.

The situation is different for periodic densest packings of identical ellipses. A 

list of 54 such packings was compiled by Nowacki [101], and was extended to 58 

packings by Griinbaum and Shephard [9]. Their book details coordination numbers 

and packing fractions for all these packings. The density of the closest packing of 

circles, $c =  n/\ / l2  is the conjectured maximum density of all packings, only taken 

by a subset of the listed 58 packings, all with coordination number six [92].

In three dimensions, quite surprisingly, the packing density of ordered arrange­

ments of ellipsoids can exceed that for ordered sphere packing, as was shown recently 

by Donev [34, 68]. This is yet another indication of the intricate nature of packings 

and their dependence on dimensionality and order.
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3.4 Conclusion

We have examined the pronounced effects that the elhpticity of grains can have on 

their packing properties. We have separated out the contribution to the packing of 

the grains from their rotational and translational degrees of freedom and demon­

strated that the increase in $  that we observe as the shape of the grains transitions 

from circular to elliptical is due to the additional degree of freedom that the ellipti­

cal grains have, with this large increase in $  not observed in simulations where we 

disallow rotations of the grains.

We also see that the simple “jamming argument” argument that relates number 

of contacts to number of degrees of freedom is not valid for low ellipticities, with a 

smooth variation and not a discontinuous jump in contact number observed as we 

vary the shape of the grains away from that of circle towards a highly shape. We 

will further consider the packing properties of non-circular grains in Chapters 4 and 

5. We will return to the subject of constraint theory in Chapter 6 when we consider 

the inverse packing problem.



Chapter 4 

Packing Limited Growth of 

Arbitrarily Shaped O bjects

4.1 Introduction

As was outlined in chapter 1, there exists many space filling packing models in which 

non-overlapping units of smaller and smaller sizes are placed according to  a given set 

of rules. The Apollonian packing (AP) shown in Figure 1.6 in C hapter 1 is formed 

by filling the space between three m utually touching discs by placing a disc so th a t 

it ju st touches the other three. The procedure is then continually repeated, filling 

the new gaps generated by the addition of each new disc. If the packing consists of 

circles w ith a range in radii from riarge to rgmaii, then the packing fraction will be 

given by:

where Df  is the fractal dimension of the packing {Df  = 1.305 for an AP pack­

ing) and d is the number of dimensions of the system {d = 2 for circles) [51, 70]. 

This equation is valid for other space filling packing models where there is a very

51

^  sm all (4.1)
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wide polydispersity in the disc radii (riarge ^  ?'smaii) and a power law in the size 

distribution as described below.

The AP model has been generalised by Manna [69] to consider the case where the 

centres of the discs are chosen randomly (RAP). New discs are added sequentially 

by choosing a random location in the packing’s pore space and placing the largest 

possible non-overlapping disc. This model has been further extended by Andrienko, 

BriUiantov and Krapivsky (the ABK model) to allow multiple discs to nucleate 

simultaneously with a linear growth rate [17, 1, 2], (The RAP model corresponds 

to the ABK model with an infinite growth rate.)

Dodds and Weitz [31] have shown some of the universal features of these mod­

els, considering them to belong to a broad class which they term “packing-limited 

growth” (PLG) models. In PLG models, objects are seeded randomly, grow accord­

ing to a given rule and stop growing when they collide with another object. They 

highlight the fact that the RAP and ABK models converge as the number of objects 

placed increases. This is due to the pore spaces increasing in number and decreasing 

in size. Thus for the ABK model, collisions of growing objects will increasingly be 

with already placed objects forming part of the pore space walls (the sole mechanism 

of packing in the RAP model) and not with other growing objects.

In PLG models, the limiting distribution of the radii, N{r)  is described by

for small r. The decay of the pore space volume p =  1 — 0 with the number of 

packed elements n is also described by a power-law for large n with

Dodds and Weitz obtain numerical estimates of a  for the RAP model, and the 

ABK model for the cases of discs growing heterogeneously, exponentially and lin­

early. They find that a universal exponent a  ~  2.56 exists, independent of the

N{r) (X r (4.2)

p{n) (X n (4.3)
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growth dynamics. In a further study Dodds and Weitz consider the role of shape, 

by considering a PLG model consisting of objects composed of rectangles [32], They 

consider packings of squares, rectangles and objects formed from combining sets of 

rectangles: a cross, a six spoked star and an eight pointed star. They find that 

the a  exponent characterising the size distribution of the objects is highly shape 

dependent, taking values in the range of 2.564 < a  < 3.

In this work we consider a PLG model in which objects can have arbitrary shape. 

We examine the detailed role that shape plays in how PLG models behave and the 

effect of shape on the properties of the packings that are formed. We achieve this 

by generating packings of arbitrarily shaped objects in the same manner described 

by the RAP model. However, the RAP model is not sufficient to fully study the 

properties of PLG models of arbitrarily shaped objects. They in particular ignore the 

additional degree of freedom that non-circular objects have in two dimensions. In the 

RAP model studied by Dodds and Weitz, an object would stop growing on collision 

with an object forming part of the pore walls. However, a larger non-overlapping 

object can be placed, if a non-circular object is allowed to take advantage of its 

additional degree of freedom and to rotate by an angle that allows it to increase its 

size and still not overlap with any other objects (See Figure 4.1). We will term this 

new model Rotational Random Apollonian Growth (RRAP).

4.2 T heory

Here we will outline the PLG theory due to Dodds and Weitz [31], which demon­

strates that PLG models in which objects nucleate simultaneously with a specified 

growth rate converge for large n to the case where objects are placed sequentially. 

We first consider a sphere growing in d-dimensions in a periodic box of volume V. 

Spheres are nucleated randomly in the unoccupied pore space at a rate k per unit
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Figure 4.1: RAP packing of 500 triangles with no rotations (top left) and with 

rotations (RRAP) (top right). RAP packing of 500 squares with no rotations 

(bottom left) and with rotations (RRAP) (bottom right). The objects pack 

more densely in the RRAP model as a result of being able to rotate during the 

packing process.
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volume and grow until they contact a neighbouring sphere. The ith  sphere, which 

is injected at ti, grows at a rate Gi{t — U) giving the radius rj(t) as

r t —ti

ri{t) ^  /  Gi{u)du  (4.4)
J o

for t >  ti. It is assumed tha t the spheres grow in a strict monotonic fashion, i.e., 

for each i, Gi{t  — ti) >  e > 0. Neglecting growth, spheres nucleate in an individual 

pore r  a t a rate  ^  given by

12 ~  kVA'̂  (4.5)

where A is the length of the longest line tha t can be drawn between the edges of 

the boundary spheres and be contained entirely within the pore space, and Vd is 

the volume of a  d-dimensional sphere of unit radius. The typical time r  between 

nucleations in F is, therefore,

r  =  l / / i  ~  (4.6)

If sphere i nucleates in F, it will reach its maximum size and jam  in a time Tjam tha t 

can not exceed the time it takes for its radius to reach its maximum possible value

of A/2. Using this, together with the stated  assumption th a t Gi{t — ti) >  e > 0, we

find

Tjam ^  A /2 e .  (4 .7)

Thus when Tjam t , i-e., when

KiA‘̂ + i/t/2e<C l (4.8)

the packing mechanism will reduce to tha t of the RAP model, where spheres will 

be stopped upon contacting already packed spheres and not other growing spheres.
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Rearranging Eqn 4.8 we see that irrelevant of the growth dynamics, all models will 

converge to that of the RAP model when A^ax satisfies

This condition must of course always eventually be fulfilled as more spheres are 

placed and the space fills up.

4.3 C om putational Im plem entation

We have implemented the PLG models we will consider here in our A r b i t r a r y -  

P a c k e r  software. All simulations are performed with periodic boundary conditions. 

All shapes are described using a discretised surface, with the exception of the circu­

lar case, where the exact contact solution is used. Where we consider straight edged 

objects, the discretised surface gives the exact contact solution. For the case of 

elliptical shapes, an approximation to the surface is made using 100 surface points. 

A cell list is implemented to greatly improve the computational performance of tne 

model and details of this implementation are given in Appendix C.

Random Apollonian Packing (RAP) simulations proceed in the standard way. 

Initially a small number of objects are placed at random locations and with random 

orientations in the periodic box. New objects are then placed individually in suc­

cession in the following way. A random position in the pore space is chosen. The 

object is then grown until it contacts with the objects making up the walls of the 

pore space it is located within. This is achieved by iteratively changing the area of 

the object in the following way:

At each iteration the current area of the object Îcurrent is increased by

A „ .a x  « (4.9)

A — A■ ^new  —•new •current (4.10)
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A A  is initially chosen to be the final area of the previous object that 

was packed. If increasing the area by A A  causes no overlap with any 

other object then the increase in area is accepted and A A  is doubled 

for the next iteration. If on the other hand increasing the area v4current 

by A A  causes an overlap with another object, then A„ew is reduced to 

its previous value and A A  is divided in half for the next iteration. This 

method proceeds until < Aoi- For standard RAP simulations the 

object is then considered to be packed.

Atoi is chosen to be sufficiently small that it does not impact the results of the 

simulation.

For our new Rotational Random Apollonian Packing (RRAP) simulations, when 

A A  < Atoi, it is tested if rotating the object by any angle (in increments of 1°) 

would allow a larger object to be packed. If this is the case, the object is rotated 

and the area increased again as before. Only when no possible rotation of the object 

will allow its area to be increased and a zero overlap configuration to be obtained, 

is the object considered to be packed.

4.4 S im ulation  R esu lts

Here we will present results of PLG simulations using a variety of shapes. We have 

simulated packings of each shape using both the traditional Random Apollonian 

Packing (RAP) model and our new Rotational Random Apollonian Packing (RRAP) 

model. For both models a power law variation of the decay in the pore space volume 

p with the number of objects packed n is found as stated in Eqn. 4.3. For each 

shape, we have determined the exponents /3 (RAP) and (3' (RRAP) by fitting the 

power law regions of the graphs of log p{n) vs. log n. A clear power law behaviour 

is evident when N  > 1000 objects have been packed (See Figure 4.2).
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F ig u re  4.2: The decay of the pore space volume for triangles, pentagons and 

octagons. The clear power law regions can be seen by the straight lines on this 

log-log plot.

A power-law variation of the limiting distribution of the radii of the packed 

objects is also observed as in Eqn. 4.2 (See Figure 4.3). The direct measurement of 

/3 and /?' is much more robust than measuring a  and a ’ from fitting to the power-law 

in Eqn. 4.2. We thus determine a  (RAP) and a ’ (RRAP) using the simple scaling 

relation between (3 and a  that was demonstrated by Dodds and Weitz [31]:

+  ^  (4 .11)

Details of the derivation of this relationship are given in Appendix A.

Packings of A'' =  100,000 were generated for each shape considered using the 

RAP model. For the RRAP model packings of A'' =  75,000 (straight edge and 

concave objects) and N  = 32,000 (ellipses) were considered. All data  was averaged 

over five packings and the standard deviation of the estimate of a , q ', /? and (3' for 

each object was determined.
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F ig u re  4.3: Plot of N{r),  the frequency of objects of size r, for triangles, 

pentagons and octagons. Solid lines are fits to the power law regions of the 

data with slopes a  =  2.72 ±  0.06 (Triangles), a  = 2.59 ±  0.05 (Pentagons) and 

a  =  2.57 ±  0.05 (Octagons).

As an initial verification of our simulation we determined (3 from RAP simulations 

of circles and of squares, finding (3 =  0.277(2) (circles) and (3 =  0.224(2) (square). 

These are consistent with the values oi (3 = 0.278(1) (circles) and (3 =  0.223(2) 

(squares) found by Dodds and Weitz [31, 32].

Estimates of a  from fitting to the power-law in the limiting distribution of the 

radii (See Figure 4.3) have been verified to be consistent with those found from 

Eqn. 4.11. We find from Figure 4.3: a  =  2.72 ±  0.06 (Triangles), a - 2.59 ±  

0.05 (Pentagons) and a  =  2.57 ±  0.05 (Octagons). The estimates using Eqn. 4.11 

are however much more accurate as there is a much smaller error associated with 

determining (3 from fitting to the power law regions of the graphs of log p(n) vs. log n, 

and hence determining a  using Eqn. 4.11. From Eqn. 4.11 we find a = 2.696(1) 

(Triangles), a  =  2.612(1) (Pentagons) and a  =  2.585(2) (Octagons).
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O O O
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Figure 4.4: The transition from straight edged to circular objects, as the 

number of sides nedges is increased. From left to right; triangle, square, pentagon, 

hexagon, septogon, octagon, nonagon and a 20 sided object.

In the discussions that follow we will focus our analysis on the variation of (5 

and j3'. As is shown from Equation 4.11, these are simply inversely related to a 

and a ', but the advantage of considering (3 and /?' is that these exponents represent 

a measure of how well a particular object packs. Larger values of these exponents 

tell us that an object is filling in space faster than other objects that have smaller 

values. This allows us to explicitly consider the packing properties of each of the 

shapes considered and in the case of ellipses compare our results to those obtained 

for the variation of packing fraction with ellipticity in Chapter 3. Tables of values 

for a , a ',  /? and p ' are given in Appendix B, along with graphs of the variation of a 

and a ' for each of the shapes considered in this chapter.

4.4.1 T he transition  from straight edged to  circular objects

Here we will consider the packing properties of the sequence of objects defined by 

the best representation of a circle that can be obtained using an object with a finite 

number of straight edges (See Figure 4.4). For a large number of edges, the object
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F ig u re  4.5: Variation of exponents (3 and /?' as the number of edges of the 

packed objects increases and the objects transition for a straight edged to a 

circular shape.

will tend towards and exact representation of a circle. However for smaller numbers 

of edges we will have a progression of shapes from risides =  3 (equilateral triangle), 

'iT'sides =  4 (square), nsides =  5 (pentagon) and so on.

Figure 4.2 shows the decay in pore space volume for RAP simulations of triangles, 

pentagons and octagons. The variation of the exponents (3 and f3' are shown in Figure

4.5. They show a very interesting variation as the number of edges hedges is increased. 

For the RAP case, the exponent (3 shows a quite smooth increase from a low value 

of /3 =  0.179(1) for nidges =  3 (equilateral triangle) to a value of /? =  0.275(2) for

h e d g e s  ~  2 0 .

A very different behaviour is found for our new RRAP model. The maximum 

P' =  0.323(2) value is found for square objects, with objects that have either one 

more (pentagons) or one fewer sides (triangles) both having lower /3’ values. This 

peak is followed by a slow decrease in /?’ towards the value for circles, with /3 =
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0.279(2) found for riedges =  2U. The RAP and RRAP models clearly show they 

converge as expected when the objects become more circular and their additional 

rotational degree of freedom begins to disappear.

The variation of a  and a' show the inverse to the trends seen for (3 and j3' as 

already noted. They vary from a  =  2.696(1) and a' = 2.552(2) (Triangles) to 

a  =  2.567(2) and a' =  2.564(2) (20-sided shape). A graph of the variation of a  and 

a' is given in Appendix B.

4.4.2 The role of ellipticity

In chapter 3, we presented detailed results for the variation in packing fraction in 

random packings of ellipses when the aspect ratio of the ellipses is varied. Here 

we will again consider ellipses represented by a discretised surface composed of 100 

edges. This gives us an extremely accurate representation of an ellipse tis shown in 

chapter 3.

Here again we simulate packings of ellipses using both the RAP and RRAP 

models. The variation of (3 and (3' with the aspect ratio (A) of the ellipses is shown 

in Figure 4.7. For the RAP case, we observe an initial fiat region, where the ellipses 

have a f3 value close to that of circles. For larger elliptcities, we see a very rapid 

drop off in f3, with a value of /? =  0.124(1) found for A =  0.1. This behaviour is 

very similar to what we found for the variation of packing fraction with ellipticity in 

random packings of ellipses where rotations of the ellipses were not allowed during 

the packing process (See Figure 3.3).

Simulations using the RRAP model again show a very different variation for /?'. 

There is an initial rapid increase in (5' with ellipticity, with a maximum value of 

f3' =  0.359(3) found for A =  0.5. Above this value there is a slow drop off in /?', with 

f5' =  0.341(2) found for A =  0.1. This behaviour is quite similar to what we found 

for the variation of packing fraction 0 for random packings of ellipses (See Figure
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Figure 4.6: RRAP packings of ellipses with aspect ratio A =  1 (top left), 

A =  0.8 (top right), A =  0.6 (Bottom Left) and A =  0.4 (Bottom Right)
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Figure 4.7: Variation of exponents (3 and (3' with ellipticity.

3.2), although interestingly the maximum value (3' is found for A =  0.5, whereas the 

maximum packing fraction in random packings of ellipses is found at A =  0.7.

The variation of a and a' again show the inverse to the trends seen for (3 and 

13'. They vary from a =  2.568(1) and a' =  2.568(3) (Circles) to a  =  2.780(1) and 

a' =  2.492(2) (A =  0.1). A graph of the variation of a and a' with ellipticity is given 

in Appendix B.

4.4 .3  Concave objects considered

A shape is concave if a line segment exists connecting any two interior points that 

is not totally contained within the shape. Concaveness will clearly have a large 

effect on the packing characteristics of a shape. To enable the examination of the 

role of concaveness in a controlled manner, we will consider a square with a second 

smaller square cut out of its side to create a concave shape (See Figure 4.8). We 

will quantify the degree of concaveness 7 as the ratio of the area of the outer large
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F ig u re  4 .8 : The role of concaveness is investigated by considering a large outer 

square with edge length L, with a second smaller inner square of edge length 

I cut out of its side. 7  is the ratio of the area of the outer large square to  the 

inner smaller square.

square to the inner smaller square

"7 — - d in n e r / - ^ o u te r  • ( 4 . 1 2 )

A 7  value of zero corresponds to  a perfect square, 0.5 to removing a square half the 

size of the outer square.

The variation of /3 and (5' w ith concaveness 7  is shown in Figure 4.10. We clearly 

see th a t increasing concaveness causes the objects to pack less well. Both the cases 

with and w ithout rotations show the same downward trend for increasing 7 . For 

7  =  0, we have simply a square shape, with j3 =  0.224(2) and (3' = 0.323(2). j3' 

shows a  quite sharp initial decrease with increasing concaveness 7 , followed by a near 

linear decrease for larger values of 7  up to 7  =  0.81. /3 shows less of an initial sharp 

decrease w ith 7  and appears to  decreases a t a close to linear rate  up to 7  =  0.81. 

Both /3 and j3' appear to tend toward zero for 7  —> 1 as expected, since at 7  =  1 the
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Figure 4.9: RAP packing of 500 concave objects with 7  =  0.04 with no rota­

tions (top left) and with rotations (RRAP) (top right). Packing of 500 concave 

objects with 7  =  0.64 with no rotations (bottom left) and with rotations (RRAP) 

(bottom right).
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F igure  4.10: Variation of exponents (3 and (3' with the concaveness 7  of the 

object.

shape would have zero area. (3 shows less of an initia l sharp decrease w ith 7  and 

appears to decreases at a close to linear rate up to 7  =  0.81.

a  and q ' do of course again show the opposite trend to (3 and f3'. They vary 

from a =  2.634(2) and a ' =  2.511(2) ( 7  =  0) to q =  2.931(1) and a' =  2.890(2) 

( 7  =  0.81), converging toward their maximum value of 3. A graph of the variation 

of Q and a' w ith 7  is given in Appendix B.

4.5 C onclusion  and O utlook

We have quantified the role that shape plays in RAP simulations of objects of 

arbitrary shape. We have also considered a new variation on the traditional theme of 

Random Apollonian Packing, by introducing our new RRAP model, which considers 

the additional degree of freedom which an asymmetric object has. Allowing such 

objects to rotate during the packing process allows them to increase their size and
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thus the density of the packing. We have seen that this additional degree of freedom 

has a very pronounced effect for asymmetric objects. Large differences are found for 

the power-law exponents that govern the decay in pore space area {(3 and /?’) and 

the size distribution of the radii (q and a ’).

We have defined and examined an interesting progression from straight edged 

to circular objects. This shows the convergence of the new RRAP model and the 

RAP model as the shape of the object transitions to circular and the additional 

degree of freedom disappears. Interestingly square shapes show the largest value 

of /3' = 0.323, with both objects with one few edges (equilateral triangles) and one 

greater edge (pentagons) showing lower values. The exact reason for this is unclear, 

but it is particularly unusual given that the (3 value for a square shape in the RAP 

model follows the overall smooth trend observed from the triangular to the circular 

shape (See Figure 4.5).

Our simulations of ellipse packings in the RAP and RRAP model show a very 

similar behaviour for the variation of (3 and /?' to the observed variation in the 

packing fractions obtained in random packings of ellipses in Chapter 3. For RAP 

simulations we see that the introduction of ellipticity has little impact on the (3 values 

obtained at low ellipticities, but that there is a rapid drop off in /3 at high ellipticities. 

(3' shows a rapid increase as we transition from a circular object, reaching a maximum 

at A «  0.5. This maximum value is at a larger ellipticity than the ellipticity for which 

the maximum packing fraction was obtained in Chapter 3 and there also is only a 

slight decrease in (3' as we transition to highly elliptical objects at A =  0.1, compared 

to the rapid drop off in packing fraction seen in Chapter 3.

We have also demonstrated the contribution that concaveness can make to the 

packing behaviour in both the RAP and RRAP models. By considering a square 

shape with a second square cut out of one of its edges, we are able to quantify how 

the degree of concaveness of an asymmetric object effects its behaviour. We see a
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rapid drop off in the value of both /3 and (3' as the shape becomes more concave.

PLG type models of the kind considered here have an applicability to a wide 

variety of physical and biological problems. Aste has highlighted the similarities 

between such models and the distribution of tin drops generated by vapour deposi­

tions onto a substrate [3]. It has been suggested by Dodds and Weitz that PLG type 

models could be extended to provide accurate descriptions of biological systems, by 

imposing a notion of aggregation, competition and death into simulations [32]. This 

could then be used for example to consider how geometry impacts the structure of 

plant communities.

A key challenge that remains is the reliable theoretical estimation of the power- 

law exponents observed in PLG type simulations. Previous attem pts at such esti­

mations have had limited success. Dodds and Weitz have been able to predict values 

for Q and (3 that do appear to be accurate upper and lower bounds, however they 

are only a good estimate of the values of the exponents for spheres in d =  4 where 

they estimate a value of /3 =  0.04348 compared to the value found from simulations 

of /3 =  0.0434(2). In d =  2, even estimations for the simplest case of circular pack­

ings are not accurate, with their estimate [3 =  0.1429 quite far from the value of 

/3 =  0.278(1) found from simulation.

This work has also highlighted the importance of the additional degree of free­

dom of asymmetric shapes in PLG type packings. Future theories which aim to 

provide accurate descriptions of the behaviour of such PLG type systems, will need 

to carefully consider this contribution.
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C hapter 5

Packing-driven shape evolution of 

grains.

5.1 Introduction

In this chapter we will consider a model in which the shape of randomly packed two- 

dimensional grains are allowed to evolve based on how the grains themselves pack 

together. It was originally inspired as a simple model th a t could yield insights into 

how the structu re of the random packing of pebbles/stones influences their resulting 

shapes. In considering the model in this context, it was desired to separate and 

highlight the  contribution to  the shape of the grains from the loss of m atter due to 

the abrasion th a t occurs where the grains contact when they are randomly packed 

together. If we consider this to be the sole driving force for the shape-evolution of 

the grains, w hat is the resulting shape? It also represents an interesting model in 

its own right, providing a variation on traditional random packing studies in which 

the shape of the individual elements in the packing is fixed.

In nature there are numerous examples of packings of objects with variable 

shapes, from the pebbles on a beach, to snow flakes, to the various elements tha t

71



72 CHAPTER 5. PACKING-DRIVEN SHAPE EVOLUTION OF GRAINS.

make up the soil [8]. All natural granular materials show a tendency for their shape 

to change over time. This is due both to the interactions of the grains with one 

another and interactions with their surroundings. If we consider the example of 

packings of pebbles on a beach [38], no two pebbles will have an identical shape. 

However we can say a lot about the general shape of the pebbles. In many cases 

the pebbles are well described as ellipsoidal, however a variety of shapes are ob­

served. These shapes can be largely influenced by the shape of the stone fragment 

that initially broke off from a large stone deposit. The shapes of these fragments 

can depend heavily on the type of rock. Granites tend to break into fragments with 

roughly equal axes, sandstone and limestones into tabular slabs, and shales and 

slates, which have a finer parallel texture, shatter into thin sheets [10].

There are in general many potential dynamic effects that will influence the shape 

evolution of pebbles on a beach or other objects that are subject to abrasive forces, 

including weathering effects from the wind and sea, and abrasive forces from the 

pebbles themselves as they rub and knock against one another [38]. As the erosion 

processes tha t cause the shape evolution of pebbles on a beach occur over such 

long time scales it is impossible to obtain definite information on the shapes which 

preceded the shape that we observe for each pebble. This may be overcome by 

considering appropriate experimental and computational systems [77, 60]. Rayleigh 

considered chalk pebbles, initially shaped as prolate or oblate spheroids, abraded 

by rotating a single pebble in a container with either steel nuts, nails or small shot 

[67]. He found that the axes tended to approach equality, however the pebbles 

disappeared before the spherical form was obtained. He also observed flint pebbles 

taken from a beach and found that they were well approximated as ellipsoidal, wuth 

the pebbles observed sometimes being somewhat flattened at the poles and even 

in some cases slightly concave. Experiments performed by Rayleigh using steatite 

pebbles in the shape of flat disks, found that when the abrasive masses were of the
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comparable size to the pebble itself a definite concavity developed on the initially 

flat faces, while the edges of the pebble became more rounded.

When limestone particles, that are initially jagged and irregular in shape undergo 

erosion by rotating a number of them in a tumbling barrel, the particles become 

smaller and rounder with increasing time [60]. They also appear to initially show a 

tendency to an elliptical type shape.

There have been many approaches used in the computational modelling of ero­

sion processes. Pellegrin has simulated individual abrasive particles using randomly 

generated polyhedrons [28]. The resulting shapes of the polyhedra are generated 

by cutting the particles with planes possessing random orientation and penetration- 

depth. The results are compared to silicon carbide abrasive particles which exhibit 

a random polyhedral shape.

Other dynamic models have considered particles that are discretised on a lattice, 

with each lattice site representing a small volume of the particle joined by a bond 

to its neighbours [22]. If the force on that bond exceeds a certain value due to 

externally applied force, the bond is broken. A site or cluster of sites is worn away 

when all bonds connecting the site or the cluster are broken.

These models in general consider the abrasive forces that occur when the in­

dividual grains collide or rub against each other [27]. They focus on the effect of 

single impacts between the grains, considering for example the effects of the impact 

angle and the surface properties of the materials. They do not consider the effect 

that the structure of a packing of the grains could have on the abrasion that grains 

would experience when randomly packed together. When a large number of grains 

are densely packed together, they will only contact each other at certain points on 

their surfaces. If they just experience abrasive forces at these points what will be 

their shape evolution? The novel packing model which we will now present can give 

us some insight into this question.
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Increase the size of all the 
grains so that the packing 
fraction increases by AO’

Remove the parts o f the 
grains where they overlap

Generate dense packing 
of the grains

Initialise the grains at 

<1) = 0.1 with random 
positions and orientations

Figure 5.1: Flow diagram showing the order of events in the simulation of our 

erosion model. We refer to one complete cycle £is one iteration i.

5.2 D escription  o f  the  M odel

The packing-driven shape evolution of grains model that we consider here is imple­

mented in our A r b i t r a r y P a c k e r  software. The order of events in the simulation 

is shown in Figure 5.1. We initialise the grains in a periodic box, with random posi­

tions and orientations, at a very low packing fraction ($  =  0.1). We then generate 

a random packing using the same algorithm that was used for the ellipse packings 

in chapter 3, again representing the grains as polygons with one hundred surface 

points. The packing algorithm consists of increasing the packing fraction in incre­

ments of A $, and reducing the overlap of the grains to zero by randomly varying 

the positions and orientations of the grains. This is iterated until a dense packing 

is achieved (see Section 3.2 for a detailed description). We assume that the ero-



5.2. DESCRIPTION OF THE MODEL 75

Generate dense packing

Increase O 
by AO’

Remove overlaps
Figure 5.2: A dense packing of the grains is generated. The packing fraction $  

is increased by A $ ' (A $ ' =  0.04 in the example shown) by uniformly increasing 

the size of all of the grains so that they overlap. The parts of the grains that 

overlap are then removed.
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sion that takes place between grains occurs where they contact each other in the 

packing. We thus remove a small amount of each grain where it contacts with its 

neighboring grains. This is achieved by increasing the packing fraction by (the 

erosion parameter) by increasing the size of each grain so that it overlaps with its 

neighboring grains. The parts of each grain that overlap with other grains are then 

removed (See Figure 5.2). The simulation is then reinitialised at $  =  0.1 and the 

process is repeated to generate a new packing. The simulation proceeds by succes­

sive generation of random packings and removal of a small amount of each grain as 

described.

5.3 M easures o f Shape

To quantify the variation of the shape of the grains and the system state as the 

simulation proceeds we measured the packing fraction $ , the area-perimeter ratio 

/ a p , the convexity ratio f c  and the standard deviation of the areas of the grains 

<7'area [60, 48]. For a 2D particle, the area-perimeter ratio is defined as:

f ^ X )  =  (5 J)

where A(X) is the area of the particle X and P(X) is the perimeter. This ratio gives 

a measure of the roughness and the deviation from a circle. For a circle f Ap { ^ )  =  1 

and for anything else /ap (X ) < 1.

The convexity ratio is defined as;

^  A{C{X))

where A(C(X)) is the area of the convex hull of X. This ratio shows deviations from 

convexity. For a convex shape f c { ^ )  = 1 and for any concave shape f c { ^ )  < 1- 

The standard deviation of the areas of the N  grains is defined as:
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where A is the average area of the grains.
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5.4 S im ulation  R esu lts

We have extensively examined the effect of varying the system parameters in the 

simulation. We will present results showing the effects of varying the:

• the number of grains in the simulation

• the initial shape of the grains

•  the initial range of sizes of the grains

• the rate of packing A $  (inversely related to average packing density)

• the amount of each grain removed during the erosion step (proportional to 

A $ ').

The computational demands of considering grains that have an arbitrary shape 

are extremely large. In the results presented here where we have performed simula­

tions exploring a broad range of parameter values, approximately 10,000 CPU hours 

were used on a cluster composed of AMD Opteron CPUs running at 2.4 GHz.

From considering the results of varying the system parameters, a clear picture 

emerges of the behaviour of the model. We will first present results where the 

system has been packed using the same A<I> =  0.0001 as in chapter 3. We will then 

consider simulations where A $  =  0.001. For these simulations the packing fractions 

obtained are slightly lower, but the running-time of the simulations is substantially 

reduced, allowing us to better examine the long term behaviour of the system. (In 

the following sections we will refer to simulations performed with A $ =  0.0001 as 

our short term simulations and those with A $  =  0.001 as our long term simulations). 

Finally we will outline the effects of varying the number of grains in the simulation, 

the initial shape of the grains and the initial range of sizes of the grains.
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i =  I O = 0.843

/ =100 0  = 0.903

/ = 500 O = 0.922

O = 0.893

z = 200 0  = 0.910

z = 1000 0  = 0.909
Figure 5.3: Images showing the evolution of the shapes of the grains for a 

short term simulation with A $ ' =  0.01. The simulations use periodic boundary 

conditions, i indicates the number of iteration steps where one step corresponds 

to a full cycle in the flow diagram of Figure 5.1. By iteration i = 1000 the grains 

have taken on the shape of irregular pentagons and hexagons.
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Figure 5.4: The top 4 images show the evolution of the shapes of the grains 

for a short term simulation with A $ ' =  0.02. The bottom 4 images are for the 

simulation with A $ ' =  0.03. Both simulations show the grains again forming 

irregular pentagonal and hexagonal shapes. The simulations with A $ ' =  0.03 

produce grains that are visibly more jagged.
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F ig u re  5.5: Moving average (taken over 10 iterations) of the packing fraction 

with number of iterations for A $ ' =  0.01, =  0.02 and A $ ' =  0.03.

5.4.1 Short Term Sim ulations

In the short term simulations considered in this section, the grains were initialised 

with a circular shape. The radii of the circles were randomly distributed uniformly 

in the range rmin =  1 Tmax =  2. We will consider three different simulation runs, 

with the erosion parameter set to A $ ' =  0.01, A $ ' =  0.02 and A $ ' =  0.03. For 

these simulations with A $  =  0.0001 we were able to obtain data for runs lasting up 

to 1000 iterations of the simulation.

When we initialise the system using circular grains, there is an initial rapid 

increase in packing fraction during the first iterations. Over the first few hundred 

iterations, the shapes of the grains begin to deviate from their original circular shape. 

They clearly form straight edges, and then begin to take on the shape of irregular 

pentagons and hexagons (see Figure 5.3).

Variation of the moving average of the packing fraction (each measurement being 

the average of the packing fraction over ten iterations) is shown in Figure 5.5. After
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Figure 5.6: Variation of convexity ratio witii number of iterations for A $' =  

0.01, =  0.02 and =  0.03.

the initial rapid increase in packing fraction <I> during the early iterations, the system 

reaches a maximum packing fraction of $  «  0.915 after 300 iterations for the system 

with A $ ' =  0.01. For larger values of A<I>' the maximum packing fraction is reached 

slightly earlier and has a lower value as can be seen from Figure 5.5. After this there 

is an overall slow' decrease in the packing fraction $  as the simulations proceed. The 

packing fraction $  is generally higher for systems where a smaller amount of each 

grain is removed during the erosion process (lower A $ ' value). For large values of 

A $ ', the grains become more jagged, as can clearly be seen from the behaviour of 

the convexity ratio (Figure 5.6). The convexity ratio falls rapidly from its initial 

value of 1 (circular grains) to stabilise around f c  =  0.990 ±  0.001 for A $ ' =  0.01, 

f c  = 0.977 ±  0.002 for A<I>' =  0.02 and f c  = 0.964 ±  0.003 for A $ ' =  0.03.

The variation of the standard deviation of the normalised areas of the grains with 

the number of iterations is shown in Figure 5.7. For the simulations with A $ ' =  0.01 

and A $ ' =  0.02, cTarea shows a consistent decrease as the simulation proceeds. For

AO’ = 0.02

AO’ = 0.03
_ J _________________________ I_________________________ L _
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Figure 5.7: Variation of the standard deviation darea of the areas of the grains 

with number of iterations for A $ ' =  0.01, A $ ' =  0.02 and A $ ' =  0.03. Sim­

ulations using A $ ' =  0.01 and A $ ' =  0.02 show the same slow convergence in 

the areas of the grains, while the simulation with A $ ' =  0.03 shows a different 

behaviour, with cTarea appearing to stabilise somewhat after approximately 600 

iterations.
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F igu re  5.8: Variation of the average area-perimeter ratio Jap of the grains 

w ith number of iterations for A^>' =  0.01, A<I>' =  0.02 and A $ ' =  0.03.

the simulations with A $ ' =  0.03, fXarea shows an initia l decrease, but then appears 

to stabilise somewhat and fluctuate around a value of (Jarea =  0.24. This change in 

behavior of the model indicates that A $ ' =  0.03 may be too large a value to use. A t 

larger values of A $ ' increasingly unusual effects are possible. For very large values 

of A $ ' it is for example possible to entirely remove a grain from the simulation by 

it having a complete overlap with neighboring grains.

Figure 5.8 shows the variation in the area-perimeter ratio Jap of the grains. 

After an initia l rapid decrease in Jap the values appear to stabilise, with larger 

values found for larger values of A $ '. We w ill consider this further in the next 

section when we look at longer simulation runs.
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F ig u re  5.9: Images showing the evolution of the shapes of the grains for a 

long term simulation (A<I> =  0.001) with A $ ' =  0.01. By iteration i =  5000 the 

grains have clearly become triangular in shape.
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Figure 5.10: Moving average of the packing fraction $  (each measurement 

taken over 10 iterations) for the long term simulation (A $ =  0.001).

5.4.2 Long Term Sim ulations

In simulations considered in this section, the grains were again initialised with a 

circular shape, with the radii of the circles randomly distributed uniformly in the 

range Tmin =  1 ^  Tmax =  2. We use a value of A $ =  0.001 to generate packings with 

slightly lower average packing fraction than those considered in the previous section, 

with the added advantage that the runtime of the simulations is greatly reduced. 

We also use a value of A $ ' =  0.01 in all simulations considered in this section.

As a result of the reduced runtime of the simulations with A $  =  0.001, we are 

able to consider simulations run over 5000 iterations compared to those run over only 

1000 iterations in the previous section. In Figure 5.9 we show the variation of the 

shapes of the grains as the simulation proceeds. Over the first 1000 iterations, the 

shapes of the grains behave in a very similar manner to the simulations presented 

in the previous section with A $  =  0.0001 and A $ ' =  0.01 (see Figure 5.3). We 

again see an initial deviation of the grains from their original circular shape. They
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F ig u re  5.11: Variation of the convexity ratio f c  with number of iterations for 

the long term simulation (A $ =  0.001). The data for the equivalent short term 

simulation (A«I> =  0.0001) is shown for comparison.

again clearly form straight edges, and have clearly taken on the shape of irregular 

pentagons and hexagons by iteration i = 1000. As the simulation proceeds the 

grains begin to take on a triangular shape, and by iteration i — 3000 the majority of 

grains are best described as triangular, with three straight edges meeting at rounded 

corners. By iteration i =  4000 all the grains are best described as triangular and 

this is still the case at iteration i =  5000.

The variation of the moving average of the packing fraction $  is shown in Figure 

5.10. This behaves very similarly to that observed in the previous section for the 

simulation with A<I> =  0.0001 and A $ ' =  0.01 (see Figure 5.5). We again see 

an initial rapid increase in packing fraction as the shape of the grains changes from 

circular to tha t of irregular pentagons and hexagons. The maximum packing fraction 

reached in this case is $  «  0.885, which is as expected lower than the maximum of 

$  w 0.915 obtained for the simulation with A $  =  0.0001. This is followed by a slow
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Figure 5.12: Variation of the standard deviation Carea of the area of the grains 

with number of iterations for long term simulations (A<I> =  0.001). The data for 

the equivalent short term simulation (A«I> =  0.0001) is shown for comparison.

decrease in $  as the simulation proceeds and the grains become triangular in shape. 

The slow decrease appears to continue or somewhat stabilise as we reach iteration 

i =  5000 where $  0.86.

In Figure 5.11 we show the variation of the convexity ratio. Initially there is a 

decrease, followed by a small increase in the convexity ratio, as the grains develop 

straight edges and take on the shape of irregular pentagons and hexagons. The 

convexity ratio then stabihses at a value of around f c  ~  0.99, the same as in the 

simulation with A $  =  0.0001 as shown in Figure 5.6.

The variation of the standard deviation of the normalised areas of the grains 

(Tarea with the number of iterations is shown in Figure 5.12. This shows a consistent 

decrease as the simulation proceeds, as was the case for the simulation with A $  =  

0.0001 (See Figure 5.12). The rate of decreases appears to slow as the simulation 

proceeds and the grains take on a triangular shape.
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Figure 5.13: Variation of the average area-perimeter ratio Jap of the grains 

with number of iterations for long term simulations (A $ = 0.001). The data for 

the equivalent short term simulation (A $ = 0.0001) is shown for comparison.

The variation of the area-perimeter ratio /ap  is shown in Figure 5.13. This shows 

an initial rapid decrease as the grains initially develop straight edges and deviate 

from their circular shape. The rate of decrease slows as the grains become irregular 

pentagons and hexagons. This behaviour is very similar to what was observed in the 

short term simulations considered in the previous section (See Figure 5.8). /ap  then 

begins to decrease faster again as the shape of the grains transitions to triangular 

and appears to have stabilised around a value of /ap  0.69 by iteration i = 5000. 

The maximum value of /ap  for a perfect triangle composed of exactly straight edges 

that meet exactly at points at the corners is that of an equilateral triangle with 

/ a p  ~  0.605. The value for our triangular shapes is higher than this as the corners 

are rounded and any such rounding of the shape of an object will increase its area- 

perimeter ratio toward 1 (the area-perimeter ratio of a circle).



5.4. SIMULATION RESULTS 89

.-/n  I

i  =  1 0  =  0.839

J==£
i  =  1 0  =  0.831

/ =  1000 0  =  0.905

V — ^

/—

/  =  600 0  =  0.917
Figure 5.14: Top two images show simulation at i =  1 and i =  1000 for a 

system with n =  50 initially circular grains with radii in the range Tmin =  1 ^  

fmax =  5. Bottom two images show simulation at i =  1 and i =  600 for a system 

with n =  100 initially circular grains with radii in the range r^in =  1 ^  ^max =  2.
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Figure 5.15: Short term (top two images) and long term (bottom two images) 

simulations with A $ ' =  0.01 using initially elliptical grains with aspect ratio 

0.7. We see the same general behaviour as the systems initialised with circular 

grains. By iteration i = 1000 in the short term simulation the grains are shaped 

like irregular pentagons and hexagons. By iteration i = 5000 in the long term 

simulation the grains appear to be transitioning to a triangular shape, with the 

majority best described as four sided.
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5.4 .3  Sundry param eter variations

Here we will briefly outline the effects of varying the initial shape of the grains, the 

initial range of sizes of the grains and the number of grains used in the simulation. 

The system behaves in a very similar manner when a larger range of initial sizes of 

the grains is used. Simulations using initially circular grains with a range of radii 

J'min =  1 —> Tmax =  3 (twice the range considered in the previous sections), show an 

identical behaviour to those considered in the previous section. Figure 5.14 shows 

simulation results using a range of radii for the initial circular grains of rmin =  1 —> 

'̂max =  5 (five times the range considered in the previous sections). The grains have 

again by iteration i =  1000 largely taken on the shape of irregular pentagons and 

hexagons. The range of sizes of the grains also decreases as the simulation proceeds, 

with the standard deviation of the area decreasing from Oarea = 0.675 at iteration 

i = I to a = 0.518 by iteration i = 1000.

Varying the the size of the system was found to have no effect on the qualitative 

results of the simulation. In Figure 5.14 the simulation performed using N  = 100 

grains has by iteration i = 600 reached the same state that was observed for the 

system with =  50 in Section 5.4.1, with the grains shaped as irregular pentagons 

and hexagons.

To investigate the effect of varying the initial shape of the grains, a short term 

and a long term simulation were performed using grains that were initially elliptical 

in shape. The ratio of the major to the minor axises was set to 0.7, which was the 

ratio shown in chapter 3 to be the aspect ratio that generated the densest packings. 

Figure 5.15 shows the shapes of the grains for z =  1 and i =  1000 for the short term 

simulation (A $  =  0.0001) and for z =  1 and i =  5000 for the long term simulation 

(A $ =  0.001). The short term simulation behaves in a similar manner to the case 

with initially circular grains. The grains take the shape of irregular pentagons and 

hexagons, although at iteration i = 1000 they still appear somewhat elongated
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due to their initial elliptical shape. The long term simulations also behave in a 

similar manner to those with initially circular grains. They initially form irregular 

pentagons and hexagons in the same manner seen for the short term simulations 

and by iteration i = 5000 the grains have clearly begun to transition to a triangular 

shape. However by z =  5000 the grains have not yet fully reached the triangular 

shape, in contrast to the simulation with initially circular grains where they have. 

The grains still do clearly appear to be transitioning in the same manner, as several of 

the grains have taken on a triangular shape, with the majority being best described 

as four sided.



/■= 1 / =  50 / =  100 / =  250 / =  1000 /•= 2000 / =  3000 / = 4000

/ =  1 / =  50 /• -  100 /■= 250 i =  1000 / =  2000 / =  3000 / =  4000

F igu re  5.16: Shape evolution of two grains during the long term simulation. (Top) The grain goes through a clear 

pentagonal shape, before becoming triangular by iteration i = 4000. (Bottom) The grain goes through a clear hexagonal 

shape before becoming triangular by iteration i — 4000.
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5.5 D iscussion  and C onclusion

Our simulation results show several key properties of the behaviour of the model:

•  the areas of the grains begin to converge to a mono-disperse distribution as 

the simulation proceeds

• the convexity and area-perimeter ratios of the grains appear to stabilise at 

constant values during long term simulations

• the grains have a tendency toward angularity, forming shapes composed of 

irregular pentagons and hexagons during short term runs

• the grains becoming triangular in shape over long term runs

The process by which the grains form triangular shapes can be understood by con­

sidering the progression of the shape of individual grains in the long term simulation. 

Figure 5.16 shows how the shape of two grains vary as the simulation proceeds and 

the shape transitions from its initial circular shape at i =  1 to the triangular shape 

by i =  4000.

The pentagonal and hexagonal shapes that the grains form during the early itera­

tions of the simulation are quite irregular and thus the internal angles that the edges 

form are not all equal. The more acute angles formed by the edges of the grain tend 

to survive as the simulation proceeds, while the obtuse angles tend to increase in 

value toward 180°, when the two edges forming the angle become one. This is caused 

by the way in which the grains tend to pack together. They generally attem pt to 

align themselves edge against edge in an attem pt to maximise the packing fraction. 

When an obtuse angle is formed by one longer and one shorter edge, the longer edge 

is more often aligned with the edge of another grain in the packing when the erosion 

step takes place, causing it to move inward toward the center of the grain and thus 

reducing the length of the shorter edge and increasing the angle between the edges.
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(This can be seen happening for the top grain at iteration i = 1000 in Figure 5.16. 

By iteration i = 2000, the small edge and the obtuse angle have been removed from 

the grain.) When an angle begins to approach 180°, the grain begins to pack as if the 

two edges were one, slowly removing the angle until the edges are one. (This can also 

clearly be seen for the top grain in Figure 5.16. From iteration i = 2000 to z =  3000 

the last obtuse angle is removed to give the final triangular form). The acute an­

gles may also have a tendency to stick into the interstices between the grains in the 

packing, causing less of the grain to be removed at the angle during the erosion step.

The model presented here is a novel twist on traditional packing models, where 

the individual elements in the packing have a fixed shape. By allowing the pack­

ing itself to determine the shape evolution of the grains, we gain insights into how 

nonuniform abrasive forces in granular packings can effect the long-term evolution 

of the shape of the grains. Our simulations show a clear tendency for our grains to 

form straight edges, initially in the form of irregular pentagons and hexagons, tran­

sitioning to a triangular form as the simulation proceeds. This result is somewhat 

surprising. One could have to a first approximation envisaged a circular shape being 

the final result, due to the grains contacting randomly, leading to a uniform loss of 

the surface of the grains.

Since each iteration of the simulation may be viewed as removing a small amount 

of each grain so as to increase the overall packing fraction, one might have also 

predicted that an elliptical shape would be the result. This is the shape tha t is 

often seen for beach pebbles and has been shown to pack with a higher density for 

low aspect ratios in chapter 3. Indeed the model does behave in such a way as to 

increase the packing fraction of the grains during the early iterations, but it does 

this by generating pentagonal and hexagonal shapes and not eUiptical ones. We see 

from our simulation results that acute internal angles that form in the grains are
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very stable and survive as the shape of the grains evolve.

Before undertaking these simulations we had envisaged an elliptical shape as a 

possible outcome for the final shape of the grains, our reasoning being that each 

grain would be abraded less where it is most “pointed” as a result of how the grains 

packed together and that this would lead to an elliptical type shape, with two 

rounded acute angles joined by two curved lines. Indeed as already noted, objects 

subject to erosion in nature, such as beach pebbles, often do show a tendency toward 

an elliptical shape. We do find that the grains tend to become “pointed” , but form 

triangular shapes. This is of course the only possible 2-dimensional shape that can 

combine straight edges and all internally acute angles.

If we consider the shape evolution of the grains in our simulation in the context 

of the shapes of grains generally seen in nature, a tendency toward angularity is not 

generally observed in the shapes seen in nature. In three-dimensions when packings 

of grains are compressed within a vessel they do show a tendency to angularity, 

forming polyhedral shapes as they adjust their shape to fill the vessel [100]. Indeed 

our short term simulations do show a tendency toward space filling shapes with a 

large number of hexagonal grains being observed as the packing fraction rapidly 

increases during the early iterations. In considering the behaviour of the model, 

one should keep in mind the analogy between its behaviour and the behaviour of 

compressed packings of grains.

Returning to our example of pebbles on the beach, our results may suggest that 

the main forces that determine the shape evolution of the grains are not the abrasive 

forces that they experience when they are randomly packed together on the beach. 

However we must be cautious in applying the results in this way. The lowest value 

of our erosion parameter A $ ' =  0.01 that we considered is still a substantial amount 

of each grain to remove during the erosion step. The results for A $ ' =  0.01 were 

seen to be consistent with those using A $ ' =  0.02. However, further examination
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of the low A $ ' limit, something which was not possible for us to do in this work 

due to the increasing computational requirements of considering a slower erosion 

process, would be desirable. Given the very interesting results we have obtained, an 

implementation of a 3D version of this model should also be considered.
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Chapter 6

The inverse packing problem  - 

O nset of rigidity for stretched  

string networks

6.1 In trod u ction

We have defined and analysed an elementary model which has a close affinity to exist­

ing models that represent the compression of randomly packed soft spheres [42] and 

randomly cut elastic strings. It appears to be distinct from either of its antecedents, 

and not trivially related to them. It was originally conceived as a variation on the 

theme of soft disk and sphere packings [65, 80, 81] which we will consider in Chap­

ter 7. That work is mainly founded on Hooke’s Law interactions which act under 

compression only (like those considered by us in our treatment of the interaction 

between the spheres in a Newton’s Cradle in Chapter 2) [53]. It has proved to be 

extremely rich in subtle phenomena, such as non-integer indices that relate contact 

number variations with compression. It occurred to us to simply turn this problem 

“inside-out” , by defining Hooke’s Law interactions under extension only, and hence
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Figure 6.1: (a) Expansion of a triangular lattice with 192 strings and range 

u; =  2 for the natural length of the strings. In the initial configuration of strings 

(left) all strings are slack and represented by thin lines between vertices. As 

the system is expanded, a fraction of the strings become taut. Only these taut 

strings are shown as thick black lines, close to the threshold expansion (middle) 

and for the expansion where the last spring becomes taut (right).

a model of elastic strings that are loose under compression. The strings initially 

connect nearest-neighbour vertices of a regular lattice and are given natural lengths 

li tha t are random variables. Here we will use a uniform distribution for /j. We 

may ask: when and how does the resulting network become taut as its boundaries 

are expanded? This is analogous to the “jamming” problem of compressed hard 

spheres, but simpler in some respects, as we shall see.

We have simulated the above system for large numbers of vertices in two dimen­

sions, using periodic boundary conditions. Results for different lattices are quite 

distinct, depending on their coordination number. Here we will consider the cases of 

the hexagonal, square and triangular networks, with each vertex having three, four 

and six neighbours respectively.
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6.2 Sim ulation Technique

101

We have used the Surface Evolver software [15] to define our string network system 

with periodic boundary conditions and to minimise the energy of the structure with 

a highly optimised conjugate gradient routine. We have modified the source code to 

redefine the Hookean spring energy as one-sided:

where L* is the separation of the two vertices at the ends of the string i and k is the 

natural length of each of the N  strings, ^br Lt < li a, string is slack.

We define a string network, consisting of strings and vertices (a string is formed 

by joining two vertices) in a two-dimensional box with periodic boundary condi­

tions. The lattice is initially defined with all nearest neighbour separations equal to 

unity. The natural lengths li of the corresponding N  elastic strings are uniformly 

distributed in the range

The width of the distribution of random numbers is thus given hy w = Imax ~  1- 

The system is uniformly expanded by a small amount using an affine transformation. 

The structure is then relaxed to minimise the total energy. This procedure of small 

expansion followed by relaxation is continued until all strings have become taut 

(Figure 6.2). A fraction of the strings first become tau t at some previous point, 

which we may call the threshold of rigidity.

In considering the basic properties of the model, we recognise some of its simpli­

fying features. In contrast to the soft-sphere problem, this stretched string model 

has the property of convexity, as does the line minimisation problem [41]. Convexity 

is defined (in this case) as follows. At every point in the space of vertex coordinates,

0 if L, < li

k { U - k f  if L i > k
(6 .1)

•max  • ( 6 .2)
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F ig u re  6.2: Increase in the number of tau t strings as the periodic box is 

expanded, for a triangular lattice with 49152 strings. Data is shown for five 

different ranges of random natural lengths of the strings w = 1, w = 3, w = 5, 

w = 7 and w = 9.

the second derivative of energy with respect to displacement is non-negative for all 

directions. This follows easily from the same statement applied to the energy term 

associated with each string.

Convexity implies that there cannot be more that one disjoint minimum of energy 

at and above the threshold expansion. (A sketch of a simple curve with two minima 

makes this obvious.) Unlike many of its disordered cousins, the model has a unique 

global minimum of energy. Thus any stable state reached in our minimisation of 

the system is the unique solution for the string network. This reinforces the point 

made earlier, to the effect that turning the soft-sphere model inside-out entails quite 

different properties, since the soft-sphere model has a multiplicity of alternative 

minima.

We will now present results for very large systems with =  32178 for the square
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F ig u re  6.3: Triangular lattice (49152 strings) above the threshold of rigidity. 

As the network is expanded, the average coordination number Z  increases lin­

early close to its threshold value, Zcru (the data shown is for five different ranges 

w of random natural lengths of strings, the lines are linear least squares fits to 

the data close to the threshold).

case and N  =  49152 for the triangular and hexagonal case. We find the same system 

behaviour when we consider systems with smaller numbers of strings.

6.3 Sim ulation results for the triangular lattice

For the ordered case {w =  0), it is obvious that expanding the boundaries simply 

results in an affine expansion of the lattice, all strings becoming equally tau t im­

mediately. However, even quite small values of w produce radically different initial 

behaviour upon expansion. In such a case, at a certain critical expansion the system 

becomes taut, with an average coordination number Zcrit (average number of tau t 

strings connected to a vertex), which we shall examine.
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Figure 6.4: Variation in the fraction of vertices with coordination numbers 

z = 2 to z = 6 a s  the network is expanded (here w = 4).

As the boundaries are further expanded beyond this point, the average coordi­

nation number Z  increases. It is obvious that for a finite-width distribution of li, 

Z  should tend to six  (all strings taut) as the expansion tends to infinity; indeed it 

is clear that this should occur at some finite expansion. Its initial variation beyond 

the critical expansion is less obvious; at what rate do the loose strings become taut? 

We find this variation to be linear for the triangular case (Figure 6.3). This is a very 

different behaviour from the strong nonlinear effects for disk and sphere packings 

under compression, as represented by compressed springs. In that case a power law 

variation with exponent 0.5 is found for the variation of the excess contacts with 

packing fraction above the jamming threshold [81].

An individual vertex can have a coordination number 2 of taut connections be­

tween 2 =  2 and z = 6. Figure 6.4 shows the variation in the fraction of vertices with 

each coordination number as the system is expanded. At the threshold expansion 

the coordination number of some of the vertices jumps up from zero. Initially there



6.3. SIMULATION RESULTS FOR THE TRIANGULAR LATTICE 105

3.5 

3

2.5
O

N
2

1.5 

1
0 2 4 6 8 10

Width of distr ibution of  Ij

Figure 6.5: Variation of the average coordination number Zcrit at the threshold 

of rigidity as a function of the width w of the distribution of random natural 

lengths Zj.

is a large number of vertices with coordination z = 2 (24.3% for the case with w = 4 

shown in Figure 6.4). This decreases steadily as the system is expanded and more 

strings become a part of the taut network. We see a similar decrease for 2 =  3. 

Coordination numbers z = 4 and 2 =  5 show an initial increase and then decrease 

for larger expansions as the system approaches the fully taut state where all vertices 

have 2 =  6.

Figure 6.5 shows the variation of the average coordination number (Zcrit) at the 

threshold expansion with the range of the natural string lengths w. The steep initial 

descent of Zcru makes it difficult to extrapolate reliably for lu —» 0. It is consistent 

with a finite value less than 6. There also appears to be a monotonic decrease of 

Zcrit as w tends to infinity.

T r iang u la r
S q u a r e
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Figure 6.6: Disregarding vertices with coordination z < 2 leads to a value of 

which in the limit of ^  0 is much closer to four, which is the prediction 

of constraint theory. (The data shown is for a square lattice with 32768 strings 

and a triangular lattice with 49152 strings.)

6.4 Interpretation

The first key to understanding these results is surely constraint theory, a venera­

ble mathematical technique with important modern applications in areas such as 

protein flexibility [94] and the random packing of particles [29]. It seeks to iden­

tify constraints and degrees of freedom, and equates these to make estimates of the 

statistics of critical points of the general kind that we have encountered here. In the 

triangular case, each vertex has the two degrees of freedom of translation and each 

tau t string, maintained at its natural length /j, will contribute one constraint which 

is L =  /j. The expectation is therefore that, in the absence of any symmetry (such 

as that which one obtains when Imax = l)i the degrees of freedom are exhausted 

when the average coordination Z  — 4, since each string joins two vertices. However
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we see tha t the estimate from constraint theory appears not to be at all accurate 

even for small values of w (the range of natural lengths). For w = 0.1, the average 

coordination at the threshold is Zcrit =  3.12 ±  0.06. For larger values of w there is 

a strong decrease of Zcrit, which appears to level off for large values of w.

We see that even for w 0, the naive estimate from constraint theory {Zcrit = 4) 

is not found, and the discrepancy grows rapidly with w. The reason for this lies 

largely in the symmetry of the initial state. It can happen that a vertex is connected 

to only two tau t strings, in which case it should be considered redundant in any 

constraint arguments, and the two strings considered as one. (This is obvious as 

taut strings that join vertices with coordination 2 =  2 must lie collinear and in effect 

behave as a single string.) We can also disregard all vertices that are only connected 

to slack strings (2 =  0), as these do not contribute to the taut network. W ith these 

refinements and thus a definition of an average coordination number Z ' which does 

not take into account vertices with z < 2, the constraints argument does succeed in 

the low w limit, as Figure 6.6 shows. We find that =  3.9 ±  0.06 for u; =  0.1. 

This correction however does not suffice to explain the additional decrease of Zcrit 

at high w.

6.5 R esults for the square lattice

A square lattice is set up with each vertex connected to its four nearest neighbours. 

An example of a simulation using a square lattice is shown in Figure 6.7. This is 

an interesting lattice configuration, as it has the same number of nearest neighbour 

connections as the number of constraints predicted to be required for the system to 

become taut. Nevertheless the system behaves in a somewhat similar manner to the 

triangular case. As the system is expanded, a threshold expansion is reached where 

a fraction of the strings become taut. As the system is further expanded there is an
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F ig u re  6.7: Expansion of a square lattice. Simulation output for 512 strings 

and w = 2, displayed as in Figure 6.1.

initial linear increase in the fraction of strings that are taut.

For a square lattice, a constrained vertex can have a coordination number be­

tween 2 =  2 and 2 =  4. Figure 6.8 shows the variation in the fraction of vertices 

with each coordination number as the system is expanded. At the threshold expan­

sion, the first strings become taut and so the coordination of some of the vertices 

jumps up from zero. We see again that a large fraction of vertices have coordination 

2 =  2 (28.5% for the case with w = 4 shown in Figure 6.8). This decreases steadily 

as the system is expanded and more strings become part of the taut network. The 

fraction of vertices with 2 =  3 shows an initial increase and then decrease for larger 

expansions, a similar behaviour as for 2 =  4 and 2 =  5 for the triangular lattice. 

Finally as the system approaches the fully taut state all vertices tend to 2 =  4.

The variation of coordination number (Zcrit) at the threshold expansion with 

the distribution of natural lengths w is shown in Figure 6.5. Here again we see a 

steep initial descent of Zcru which makes it difficult to extrapolate reliably the limit 

w ^  0. It is consistent with a finite value less than 4. There also appears again to
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F igure 6.8: Expansion of a square lattice. Variation in the fraction of vertices 

with coordination numbers 2  =  2 t o z  =  6 a s  the system is expanded (data 

shown is for a square lattice composed of 32768 strings and w — 4).

be a monotonic decrease of Zcrit as w tends to infinity, similar to what is seen in the 

triangular case.

It is clear from Figure 6.7 (and from the large number of vertices with coordina­

tion z = 2 in 6.8) that even at the threshold expansion we again have substantial 

pockets of loose strings. When we calculate the coordination number of the taut 

network (^cHt) triangular case, we again find that in the low w limit results

are brought towards the predictions of constraint theory with =  3.62 ±  0.04 for 

=  0.1, but not as closely as in the triangular case.

6.6 R esults for the hexagonal lattice

A hexagonal lattice is set up with each vertex connected to its three nearest neigh­

bours. An example of a simulation using a hexagonal lattice is shown in Figure 6.9.
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Figure 6.9: Expansion of a hexagonal lattice. Simulation output for 192 strings 

and w = 2, displayed as in Figure 6.1.

This lattice configuration has one fewer nearest neighbour connections than the pre­

dicted number of constraints required for the system to become taut. We would thus 

expect that as the system is expanded, a threshold will be reached where all strings 

would become taut simultaneously and that this behaviour would be independent 

of the width of the distribution of random lengths w.

We see in Figure 6.10 that the system behaves in the expected manner only in 

the low w limit. As w is increased, the average coordination Zcrit at the threshold 

decreases as for the triangular and square lattices. The coordination number of 

the tau t network formed at the threshold is indicated by the dashed line on

Figure 6.10. This must always be =  3 as by definition disregarding vertices 

with 2  < 2 in a system where the maximum coordination number is 3, must only 

leave the vertices with coordination z = 3.

6.7 C onclusion

A network of elastic strings of random lengths under tension has been seen here to 

behave in a very different way to the case of elastic disk and sphere packings under 

compression. In particular there is a global minimum of energy above threshold.
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F ig u re  6.10: Expansion of a hexagonal lattice. Variation of the average coor­

dination number Zctu a t the threshold of rigidity as a function of the w idth iv 

of the  distribution of random natural lengths li (data shown is for a hexagonal 

lattice with 49152 strings). As the maximum coordination is 3, disregarding all 

vertices with coordination z <  2 gives a constant value of =  3, indicated 

by the dashed line.

There is a strong dependence of the behaviour of the system, and in particular 

the critical average coordination number, on the polydispersity (represented by the 

d istribution of natural lengths of the strings). The naive application of constraint 

theory requires various corrections to explain these results.

There are also instances of the failure of constraint theory for packings of ob­

jects in two and three dimensions. Packings may for example contain “ra ttle rs” , 

objects th a t can move freely in the interstices of a rigid system of larger scale. A 

naive application of constraint theory also runs into difficulty in the case of objects 

th a t have an asymmetric shape [29, 33] and was have seen in C hapter 3 where we 

considered packings of elliptical grains.
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In future extensions to tliis work further insights into the behaviour of the system 

could be got from dealing with other lattices and other significant variables that 

characterise their behaviour. Of particular interest are the elastic properties of the 

network [111] and a statistical analysis of the pockets of loose strings. A project 

student with our group (Edmond Daly), has used our implemntation of the model 

to perform a preliminary examination of these properties of the system and they 

will be the subject of future investigations. Since the model corresponds closely 

to an experimental system that can be directly realised, the construction of an 

experimental system could also be considered.



Chapter 7

3D sphere packings and bubbles in 

the wet foam limit

7.1 Introduction

As was discussed in Chapter 1, theoretical and computational models based on 

interacting spheres in 3D (and interacting circles in 2D) have been widely used to 

study the packing properties of granular materials [80]. When bubbles are packed 

together in a very wet foam, their shapes are very close to spherical and it can indeed 

be useful to consider their interactions in terms of interacting spheres. Durian has 

applied this technique to the study of 2D wet foams [42, 43].

Here we will consider three-dimensional sphere packings generated using an adap­

tation of the technique we used to model Newton’s Cradle in Chapter 2. This work 

was inspired as a means of generating simulated sphere packings which could be 

compared to experimentally produced wet bubble packings which our research group 

have recently investigated. We have observed a surprising degree of ordering in a wet 

foam composed of small bubbles of diameter 200/^m [99]. Similar observations were 

made by Bragg and Nye in 1947, but their work on three-dimensional wet bubble

113
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packings appear to have never been followed up [61].

While it is extremely difficult to make an ordered dry foam composed of poly­

hedral cells [104], these bubble packings in the wet foam limit have been found to 

readily order as shown in Figures 7.1 and 7.2. Examination of the top three surface 

layers and the terraces formed by the bubbles at the bottom of the foam appear to 

suggest the order propagates through the entire sample which can be up to 15 layers 

deep. Random sampling of the structures seen in the top 3 layers suggest a ratio 

of 2:1 fee (ABC) over hep (ABA) occurring in the packings. Examination of up to 

6 layers in the terraces formed by the packing of the bubbles at the bottom of the 

foam also shows a preference for fee with random sampling finding 58% fee, 15% hep 

and 27% rhcp [98]. Large regions of square packed layers corresponding to fee (100) 

have also been observed in both the surface of the foam and the terraces underneath 

(See Figure 7.1). Various crystal defect structures have also been observed, similar 

to those found in opals [64, 87].

In this work we have carried out simple simulations utilising soft sphere molecular 

dynamics (like those used in Chapter 2 to model Newton’s Cradle). We have also 

implemented a 3D version of our random packing algorithm (used in Chapters 3 and 

5) and used it to generate random sphere packings. In performing these simulations 

we wished to identify what similarities existed between the behaviour of a simple 

model based on interacting spheres and the behavior of the wet foam system. As 

the bubbles that make up the surface layer of the wet foam can order easily into a 

triangular packed arrangement, we wished to investigate the contribution that this 

order in the top layer could make to the ordering of layers of bubbles that would 

form underneath it. Also, as large regions of surface bubbles packed in a square fee 

(100) arrangement have been observed, we have also investigated the contribution 

that a square packed surface layer would have.
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Figure 7.1: (Left) Large surface triangular packing of bubbles. (Right) Close 

up of a section of bubbles arranged in an fee packing in the direction (100). It 

can be determined from optical effects in the surface bubbles that the packings 

are ordered at least 3 layers deep (Left) and 5 layers deep (Right) [99]. Pictures 

courtesy of Antje van der Net.

Figure 7.2: Ordered terraces at the bottom of the packing of bubbles. This 

seems to suggest that the order propagates throughout the sample [99]. Picture 

courtesy of Antje van der Net.
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7.2 Bubbles in the W et Foam Limit

In general when a foam is created, the water contained within it drains out under

the force of gravity, leaving a relatively dry foam [104], However, it is possible to 

make very wet foams, by reducing the size of the bubbles used. A foam consisting 

of very small bubbles does not expel liquid to the same extent as one composed 

of larger bubbles. It remains very wet and composed of spherical bubbles up to  a 

height h above the underlying liquid surface given by

Here lo is the capillary length,

d is the bubble diameter, 7 is the surface tension, p is the density of the liquid and g 

is the acceleration due to gravity [104], An estim ate of the number of layers Mayers

We can therefore make a large sample of wet foam, composed of spherical bubbles, 

provided d <C lo- For the surfactants generally used in foam generation lo is of the 

order of 1mm, requiring bubbles with diam eter of only a fraction of millimeter to be 

used to  generate a large foam of sufficient wetness.

Members of our research group have used microfluidic flow' focusing to produce 

a rapid stream  of small bubbles of equal size [99]. Using this method it is possible 

to create bubbles with diam eters from 100 to 500 pm, and use them  to create very 

wet foams containing over 25 layers of bubbles (See Figures 7.1 and 7.2).

(7.1)

of bubbles th a t can be contained in this wet section of foam of width d can be made

from Eqn. 7.1 and Eqn. 7.2:

(7.3)
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We will now present simulation results of sphere packings using both a 3D version 

of our random packing algorithm used in Chapters 3 and 5 and a full dynamical soft 

sphere model like that used in Chapter 2. We will then compare and contrast these 

with the order seen in the experimentally generated wet bubble packings. Both 

the 3D monte-carlo type sphere packing model and the dynamic 3D sphere pack­

ing models we will now present have been implemented in a 3D extension to our 

A r b i t r a r y P a c k e r  software.

7.3 R andom  Sphere Packing

We have implemented a 3D spheres version of our monte-carlo type random packing 

algorithm used in Chapters 3 and 5. Figure 1.2 in Chapter 1 shows a random packing 

of 500 spheres generated using this algorithm with periodic boundary conditions in 

all three directions. This packing was generated in the same manner as the random 

packings in Chapters 3 and 5. Small spheres were initially placed at random positions 

in the periodic box. At each iteration of the simulation the packing fraction was 

increased by A $  =  0.0001 by increasing the size of all of the spheres. The energy 

(total overlap) of the spheres was then minimised to zero in the same way as for 

the 2D simulations, with every sphere which has a non-zero energy attem pting to 

make a random movement to a new position where it has a lower energy, while every 

sphere that already has a zero energy attem pts to make a random movement to a 

new location where it also has zero energy. This algorithm creates random packings 

with packing fraction $  =  0.63 ±0.01 , which is consistent with the random closed 

packed density of spheres ($  ~  0.64) [12, 13].

This is the packing fraction that one might expect to see for our packings of 

small bubbles in the wet foam limit. However those packings appear to order and



118 CHAPTER 7. 3D SPHERE AND BUBBLE PACKINGS
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Figure 7.3: Forces on spheres in the dynamics simulation. The spheres rise 

up due to Fbuoy until they reach the top of the simulation cell where they are 

stopped by Ftop. The velocity of the spheres is constantly reduced by ^stokes-

thus achieve a much higher packing fraction. One key difference between the bubble 

packings and the random packing shown in Figures 7.1 and 7.2 is the behaviour 

of the surface layer of bubbles. When a 2D monodisperse packing of bubbles is 

generated, it readily forms an ordered triangular packing. Thus if we are generating 

bubbles underneath the liquid and allowing them to rise up, the top surface layer 

will readily order in a triangular packing. This may act to assist the ordering of 

the subsequent layers of bubbles that form underneath it. As our random packing 

algorithm is solely designed to generate random packings, we will examine these 

potential ordering effects using our dynamic sphere packing model.

7.4 Dynam ic sphere packing m odel

The forces governing the interaction of the spheres in the model considered here are 

the same as those we considered for our simulation of Newton’s cradle in Chapter
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2. The force between two overlapping spheres each with radius r  and positioned a 

distance d apart is given by:

F  = k { 2 r - d ) l . (7.4)

The notation ()+ specifies that the value of the bracket is zero if the expression 

inside is negative, as required for the representation of contact forces that cannot 

be in tension. The exponent a  is 3/2 for spheres (Hertzian Law).

A schematic drawing of the forces on the spheres in the simulation box is given 

in Figure 7.3. We consider the spheres moving in a viscous liquid and again utilise 

a simple linear Stoke’s Law to model the velocity-dependent viscous force

As in the simulations of Newton’s Cradle we also again implemented a viscoelastic 

dissipation force in the collisions of the spheres of the form

where ^ =  2r — d is the overlap between two spheres and /3 =  3/2 (Hertz-Kuwabara- 

Konomodel) [110].

We model the spheres rising due to a buoyancy force Fbuoyi which is a constant 

force that acts upwards in the z direction. To stop the spheres from leaving the top 

of the simulation box, the spheres experience a strong spring force Ftop =  {ktop^z)+, 

where A z  is the vertical distance the sphere has traveled above the top of the box.

The dynamic model has been implemented using both the velocity Verlet algo­

rithm and the Euler-Richardson method (Details of these algorithms are given in 

Section 2 2.2 and 2.5). As we will consider dissipation forces which are velocity 

dependent, it is most appropriate to use the Euler-Richardson method in the results 

presented here. It is possible to use the velocity Verlet algorithm for systems with 

velocity dependent forces, so long as one recognises that an additional numerical

^ S tok es T]V. (7.5)

(7.6)
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error will be introduced from determining the viscous force using the velocity from 

the previous time step. This method has also been used to test our simulation 

and seen to give identical results to our implementation using the Euler-Richardson 

algorithm.

7.5 Sim ulation R esults

In the simulations presented here we have fixed the following simulation parameters 

k =  10000, Fbuoy =  t̂op =  10000, m =  1 (mass of the spheres) and R  =  0.1 

(radius of the spheres). A value of k = 10000 is sufficient to ensure that there is 

very small sphere overlaps during the course of the simulation and we have tested 

using a value ten times larger and found the system to demonstrate the same general 

behaviour, ktop =  10000 is sufficiently large to hold the surface spheres in place and 

using a larger value also does not change the system behaviour. All simulation 

results presented here use periodic boundary conditions in the x and y directions.

7.5.1 Form ation o f a surface layer

Figure 7.4 shows how a surface layer forms when we release new spheres into an 

empty simulation box at the center of the x-y plane at the bottom of the simulation 

box. The necessary boundary conditions are used to fit a fully triangular packed 

layer of 192 spheres. In this simulation we have set 7 =  0 and j] =  10. This puts 

us in the limit of spheres colliding elastically in a highly viscous liquid. Most of the 

top layer of spheres orders into a triangular packing, but there is some disorder as 

the layer of spheres is unable to make the final global rearrangements necessary to 

fit a fully ordered triangular layer. This disorder on the top layer will vary greatly 

from one simulation run to another. It is possible that by chance the top layer will 

order into a perfect triangular layer, but in general there will be some disorder. This
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F ig u re  7.4: Formation of the surface layer. Surface spheres are shown in 

red. The first seven spheres forming the second layer are shown in blue. The 

boundary conditions are such that an arrangement of the spheres in a fully 

ordered triangular layer is possible. The majority of the surface layer packs in 

a triangular arrangement but a fully triangular layer does not form.

disorder will greatly affect the layers that form underneath the top layer. Thus to 

study how an ordered hexagonal top layer will affect the subsequent layers, we will 

begin our simulation with a fixed hexagonal top layer. We will return to this issue 

of the formation of the surface layer in Section 7.5.4.
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y=0 Ti=0.1 
(rhcp)

'y=10ri=10
(random)

F ig u r e  7.5: Packings generated by initially creating 2000 spheres at random  

locations in the simulations box and allowing them to settle on a fixed trian­

gular packed top layer. (Left) Simulation with low dissipation. The spheres 

are allowed to slowly come to rest in a random hexagonal close packed (rhcp) 

configuration. (Right) Simulation with high dissipation. The spheres rapidly 

come to rest in a random packing.

7.5.2 D ep osition  of spheres onto a triangular packing

Firstly we will consider packings generated by initially creating 2000 spheres at 

random locations in the simulations box and allowing them to settle on a fixed 

triangular packed top layer composed of 192 spheres. We have simulated this in 

both a high dissipation regime with 7  — 10  and rj =  10 and a very low dissipation 

regime with elastic collisions ( 7  =  0) and t] =  0.1. Figure 7.5 shows the resulting 

packings generated. We see that for the packing generated in the high dissipation 

regime the system  rapidly comes to rest with the spheres in a highly disordered 

configuration. However the system in the very low dissipation regime forms an rhcp 

packing with very few defects. This is due to the spheres velocities slowly being
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Figure 7.6: Vertical density variation for sphere packings onto a triangular 

packed layer shown in Figure 7.5. (a) Low dissipation 7  =  0 and r] = 0.1. (b) 

High dissipation 7  =  10 and r/ =  10. Note the sharp high peaks in (a) indicating 

the high degree of vertical order in this rhcp packing. The rapid reduction in 

the height and sharpness of the peaks in (b) indicates the loss of vertical order 

in the packing.

reduced by the viscous dissipation, allowing the system to slowly order in a similar 

manner to a slow cooling or annealing of the system. The clear difference in the order 

between the two packings can be seen if we examine the variation in the vertical 

density of the packings. Figures 7.6(a) and 7.6(b) have been calculated by counting 

the number of sphere centers in vertical sections of the simulation box A h  = 0.1R 

wide. Sharpe peaks in the graph indicate ordered layers. We can see that Figure 

7.6(a) contains more than seven ordered layers, while there is little vertical order in 

the packing in Figure 7.6(b).

We will now consider packings generated by releasing spheres one at a time from 

the center of the bottom of the simulation box. Figure 7.7 shows packings generated 

in this way. The first packing was generated using parameter values of 77 =  1 and 

7  =  1. Here we see that there is a high degree of order in the packing. We observe 

an overall rhcp type packing, with a large number of dislocations between regions
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Figure 7.7: Packing onto a fixed triangular packed surface layer, with spheres 

released one at a time from the bottom of the simulation box. (Left) fee packing 

generated with 77 =  10 and 7  =  10. (Right) an ordered packing generated with 

7/ =  1.

of spheres in the packing. The second packing was generated in the limit of very 

high dissipation with 77 =  10 and 7  =  10. We see a high degree of ordering in this 

limit and providing the initial spheres arrange themselves correctly, the system can 

generate a large number of perfect fee layers as shown in Figure 7.7.
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Figure 7.8: Packings generated by allowing spheres to settle on a fixed square 

packed layer with 7  =  10 and ry =  10. (Left) 2000 spheres are released simultane­

ously at random locations in the simulations box and allov,fed to settle. Despite 

being in a high dissipation regime, ordered square packed layers form giving an 

fee packing. We observe a small number of point dislocations in the ordered 

layers of sphere as shown. (Right) An fee packing is formed by releasing spheres 

one at a time from the middle of the bottom of the simulation box.

7.5.3 D ep osition  o f spheres onto a square packing

In the experimental wet foam system a large amount of ordered fee (100) crystal 

structure is observed (See Figure 7.1). To investigate how the square packed layers 

of this structure influence the packing of layers of spheres that form underneath it, 

we simulated the deposition of spheres onto a square packed layer. Figure 7.8 shows 

packings generated by allowing spheres to settle on a fixed square packed layer with 

7  =  10 and r] = 10. The first packing was generated by initially creating 2000 

spheres at random locations in the simulations box and allowing them to settle. 

Despite being in a high dissipation regime, ordered square packed layers formed 

giving an fee packing. We observe a small number of point dislocations in the 

ordered layers of spheres as shown in Figure 7.8. This behaviour is very different to 

the same simulation run with a triangular surface packed layer as shown in Figure

7.5. There we observed very little order in the resulting packing in comparison to an
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Figure 7.9: Vertical density variation for the sphere packing (shown in Figure 

7.8) generated with 7  =  10 and 77 =  10 for 2000 spheres allowed to settle on a 

fixed square surface layer. The sharp high peaks show the square layers packed 

in an fee arrangement.

fee crystal packing in this case. Figure 7.9 shows the vertical density variation for 

the sphere packing. We observe sharp high peaks from the square layers packed in an 

foe arrangement. This tendency for spheres to order more readily when packed onto 

a square layer compared to a triangular layer is easy to understand if we consider 

that there is only one way to pack another square layer under the surface square 

layer, in contrast to the two (B and C) possibilities for packing onto a triangular 

packed layer.

Figure 7.8 also shows an fee packing formed by releasing spheres one at a time 

from the middle of the bottom of the simulation box and allowing them to settle on 

the fixed square packed surface layer. This simulation was performed with 7; =  10 

and 7  =  10. The system is seen to form a perfect fee packing. It does this more 

readily than the case with a triangular packed top layer, again due to there being 

only one type of site for the incident spheres to pack in.

3 .5 1 .5
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F ig u re  7.10: Figures shows the formation of an ordered surface layer using an 

attractive force between the surface spheres (Left) and the subsequent formation 

of an ordered packing underneath (Right).

7.5.4 Form ation o f an ordered surface layer

As already noted, a surface layer of mono-dispersed bubbles in a liquid readily forms 

an ordered triangular packed arrangement. This is both due to the ready ordering 

of 2D-monodispersed circles (or 3D spheres confined to a plane) and also due to the 

bubbles attracting one another due to surface tension forces.

We have performed simulations where instead of fixing the surface layer in a tri­

angular packed arrangement, we have added an attractive force between the spheres 

that lie at the top of the simulation box. The attractive force between two surface 

spheres is given by

-^a ttrac t - ^ a t tra c t  ̂  • ( '^ • '^ )

where d! is the distance between the centres of the spheres.

In this way we can release a stream of spheres into the empty simulation box, 

have them rise to the top of the box where they readily order into a triangular 

arrangement. Further triangular packed layers of spheres form in a similar manner
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as that observed in our simulations of deposition of spheres onto a fixed triangular 

surface layer shown in the previous section. Figure 7.10 shows a packing generated 

in this way with 77 =  1 0 , 7  =  1 0  and A"attract =  1 0 .

7.6 D iscussion

Simulations of random packings of spheres using our random packing algorithm 

have been shown to produce dense random packings at densities consistent with the 

random close packing of spheres (RCP) [12]. Dynamic simulations of the deposition 

of spheres onto a triangular packed layer show greatly differing behaviour depending 

on the system parameters. We have considered the case of releasing a large number of 

spheres simultaneously into the simulation box and determined the resulting order 

of the the packing. We find that in the limit of a highly dissipative system, the 

spheres pack randomly. However in the case of a weakly dissipative system, we find 

that the system behaviour mimics a slow cooling or annealing and a rhcp packing 

of spheres forms.

When we consider a packing of spheres generated by releasing spheres one at a 

time from the center of the bottom of the simulation box, we find that the system 

can exhibit a high degree of order. It is even possible for a perfect fee packing to 

form in the limit of high dissipation, providing the initial spheres arrange themselves 

correctly.

Simulations of the deposition of spheres onto a square packed surface layer show 

an even greater tendency to order. An fee crystal packing is obtained even when 

a large number of spheres are released simultaneously into the simulation box in 

a highly dissipative system. This is in contrast to the random packing that is 

obtained when the same simulation is run using a triangular packed layer. This 

greater tendency to order is attributable to the fact that simply filling all the sites
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created by a square packed layer will generate a second ordered square layer. In 

contrast for a triangular packed layer there is two possible ways for a second layer 

to pack (into either the B or the C sites), and randomly filling both B and C sites 

will create disorder in the packing.

We have also shown that if an attractive force between the surface spheres is 

added to the simulation, then we are able to simulate the formation of an ordered 

triangular packing at the surface, and the subsequent packing of ordered layers of 

spheres. This was conceived as a toy-model that could be used to conceptualize 

a possible packing mechanism for the bubbles in the wet foam experiment; with 

bubbles rising up from the bottom of a container of water to settle in an ordered 

triangular packing at the surface, with ordered layers of bubbles packing underneath. 

However recent more detailed experimental results suggest that the ordered packing 

of the bubbles observed in the experiment is not sensitive to the exact method 

by which the sample is prepared. Experiments have been performed releasing the 

bubbles from a height above the sample, from bellow the surface in the liquid and 

even directly into the middle of the foam. In all cases the same high degree of 

ordering of the bubbles has been observed.

These simulations have highlighted the differences between systems composed of 

packed spheres and the bubble packings in the wet foam limit. The ready ordering 

of spheres deposited onto square packed layers is not sufficient to explain the order­

ing observed in the experiment as only approximately 5% — 10% of the structures 

observed at the surface in the experiment are fee (100).

The ordering mechanisms demonstrated for depositing spheres on a triangular 

packed layer are also insufficient to offer an explanation of the order observed. The 

experiment is not performed sufficiently slowly enough to exhibit a packing mech­

anism similar to that observed in our simulations of packings generated by adding 

spheres one at a time to a packing in a a viscous liquid. The experiment also does
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not exhibit anything resembling the slow annealing type process used in our simula­

tions to generate rhcp packings of a large number of spheres simultaneously added 

to the system. While our simulations have demonstrated the degree to which an 

ordered surface layer can assist greatly in ordering layers of spheres (or bubbles) 

placed underneath it, the order observed in bubble packings in the wet foam limit 

still lacks a satisfactory explanation. The comparison of these simple simulations 

with experimental observations has helped us in better understanding the behaviour 

of the wet foam system and in particular highlighting the necessity for an additional, 

as of yet unknown, key ingredient to develop theoretical explanations of the order 

observed in the wet foam system. One direction which could be pursued would be 

to abandon simple sphere interactions and attem pt to consider a more appropriate 

form for the interaction between the bubbles [62], and to then investigate under 

what circumstances crystallisation would occur. It is also unclear what role the liq­

uid in the foam, and in particular liquid drainage, plays in the ordering process in 

the experiment. Simulations of the fluid dynamics of such flows of liquids through 

ordered bubble structures could yield interesting insights into the behaviour of these 

wet foam system [103].

There are other examples of the generation of ordered packings of spheres by various 

techniques. Pouliquen et al. has shown that beads poured at low flow rates into a 

horizontally shaken container order, with large areas of r.h.c.p. observed [85]. They 

have further shown that if the bottom layer is fixed in a square packing corresponding 

to the fee (100) plane, then a perfect fee crystal can form. These results are consis­

tent with the behaviour of the sphere packings observed in our simulations. Carvente 

et al. has also shown that spheres subjected to large vibrations followed by a cooling 

procedure (annealing) can readily order [20]. Both body-centered-tetragonal and fee 

arrangements are observed depending on the shape of the container. These order-
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ing mechanisms mimic the ordering observed in Brownian hard spheres, where the 

spheres order due to  therm al fluctuations and spontaneous crystallization can occur 

1112] ,
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Chapter 8 

A pplication of The V iscous Froth  

M odel to  the Flow of Ordered 

Arrays o f Bubbles

8.1 Introduction

When a quasi 2-dimensional packing of monodisperse bubbles is made by trapping 

the bubbles between two glass plates the bubbles will readily order in a triangular 

packed arrangement [104], If the liquid fraction is very low then we will have a 

dry foam in which the bubbles will form hexagonal shapes and the packing is then 

referred to as a honeycomb (This has the same appearance as the hexagonal lattice 

we considered in Chapter 6 and an image of it can seen in Figure 6.9). However 

other ordered packings of bubbles can be made by confining the quasi 2-d bubbles 

to channels etched into the glass plates. Our group has developed novel methods for 

the manipulation of these packings of bubbles and it is currently being investigated if 

these methods could be applied to the systematic processing of small gas and liquid 

samples [39]. These methods (which we have termed Discrete Microfluidics, enable

133
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the manipulation of ordered foam and emulsion structures in branched networks of 

channels and have been shown to be highly controllable and reproducible. Using 

this technology it is possible to perform “sample operations” on the bubbles such as 

sorting, replacing, adding and removing of bubbles. Further control of the system 

can be obtained using ferrofluids and appropriately designed magnetic fields. This 

research has clear applications in areas such as the pharmaceutical industry, where 

samples undergo systematic testing.

Here, we firstly outline some of the techniques and channel geometries used, 

and the success and failure of traditional simulation techniques in reproducing the 

behaviour of these systems. We will then outline the viscous froth model that we 

used to simulate a system whose behaviour cannot be replicated using traditional 

simulation techniques. Finally, detailed results of simulations will be given, including 

the first quantitative agreement between simulations and experiment.

8.2 M anipulation  o f ordered arrays o f bubbles

The experimental system is a quasi-2D systems of typically 0.5 — 1.5 mm channel 

depth and up to 10 mm channel width. The channel geometries are computationally 

designed and then carved into a plane Plexiglas sheet. This is glued onto another 

plane Plexiglas sheet in order to close the channel system. In these types of channels 

all walls are Plexiglas, which provides constant surface properties throughout the 

system. Bubbles of equal volume are generated by injecting nitrogen gas into Fairy 

Liquid dish washing solution of 0.4 % concentration. The bubbles are then driven 

through the channel system by applying a constant gas (nitrogen) pressure at the 

inlet.
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8.2.1 A dd in g/rem oving  or replacing bubbles

By utilising T junctions or crossing of channels it is possible to add/remove bubbles 

from the packing (see Figure 8.1). This is done by controlling the flow/pressure in 

each of the channels. In the figure below, the yellow bubble in the main channel is 

replaced by the red one.

Figure 8.1: Replacement of bubbles by controlling flow/pressure in the chan­

nels [39]. Pictures courtesy of Wiebke Drenckhan.

8.2 .2  Sorting o f bubbles into different branches o f  a network

Branching channels can be used to sort bubbles from the packing into different parts 

of a network or to (re)combine them (see Figure 8.2) to create a new packing. By 

varying the relative distances the bubbles travel between separation and recombina­

tion it is possible to introduce shifts between the rows of bubbles in the packing.

Figure 8.2: Two rows of bubbles are sorted into two narrow channels [39]. The 

process is reversible. Pictures courtesy of Wiehke Drenckhan.
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Rearrangement of bubbles in the packing can be achieved by utilising appropriate 

necks or bulges in the channel (see Figure 8.3).

• ••iti i t a t M f  ^ 116

Figure 8.3: An asymmetric neck is used to rearrange the bubbles to cause an 

interchange of the top and bottom rows in the packing [39]. Picture courtesy of 

Wiebke Drenckhan.
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8.2.3 C ontrolled neighbour sw itching in a U -bend

137

Figure 8.4: Diagram showing a neighbour switching T1 process. Initially bub­

bles 3 and 4 are neighbours. The length of the small edge in the middle reduces 

to zero and an unstable four fold vertex is formed. The vertex dissociates into 

two new three fold vertices resulting in bubbles 1 and 2 becoming neighbours.

A T1 process is a neighbour switching process between the bubbles in a foam. It 

occurs when an unstable four fold vertex (a point where 4 bubbles meet) dissociates 

into two stable threefold vertices (See Figure 8.4). When the foam structure is 

passed (sufficiently fast) around a U-bend it causes a shear on the structure which 

induces a series of T1 processes, which cause neighbour switching in the structure 

(see Figure 8.5). This causes an effective phase shift in the order of the two trains 

of bubbles.

Figure 8.5: A phase shift in order of the bubbles caused by passing around a 

U-bend [39]. Pictures courtesy of Wiebke Drenckhan.
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8.2 .4  Success of trad itional sim ulation techniques

Quasi-static simulations are the traditional method of simulation for theses types of 

rheological systems [104], These simulations proceed by a sequence of small move­

ments of the structure, followed by minimisation of the energy. The aim is to keep 

the structure in equilibrium and at an energy minimum. Quasi-static simulations 

of all of the systems described here replicate the behaviour observed experimen­

tally, with the exception of the T1 process observed in the U-bend experiment [39]. 

Quasi-static simulations of this experiment do not show the neighbour switching, in 

keeping with the low-velocity experimental results. So clearly the neighbour switch­

ing process is a dynamic effect that cannot be described by considering the system 

simply moving through a sequence of well-defined energy minima. This was one of 

the motivations in developing new tools to simulate these systems with the inclusion 

of external dissipation, by modelling the viscous drag of the bubbles against the glass 

plates which confine them, as described in section 8.3.3. To simulate this system we 

employ a computational simulation of the Viscous Froth Model, a dynamic model 

which includes the effects of viscosity.

We will now outline the theory and computational implementation of the Viscous 

Froth Model we have utilised to model this system.
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8.3 V iscous Froth M odel

The viscous froth model is a dynamical model describing the evolution of 2d foams. 

It was introduced over a decade ago in the context of domain growth [44, 105]. The 

model goes beyond other attem pts to  incorporate viscosity into simulation, which 

considered interfaces between bubbles as straight lines, with the viscous dissipation 

being concentrated a t the vertices [57, 83]. The viscous froth model has been used to 

simulate the dynamics of isolated topological events such as the relaxation of a foam 

following a film rupture and the T 1 process th a t occurs when the array of bubbles is 

passed around the U-bend [58]. Here we will outline the details of the viscous froth 

model, firstly describing its two commonly considered limiting cases and then its 

application to the simulation of the behaviour of controlled flow of ordered arrays 

of bubbles and in particular the case of the U-bend.

The viscous froth model describes the forces per unit length (See Figure 8 .6 ) on 

a point on a film where two bubbles meet by:

where Pi and pj are the gets pressures in adjacent cells i and j ,  7  is the surface 

tension, c is the local curvature of the boundary and v± is its normal velocity. The 

coefficient of viscous drag is denoted by A. The exponent n has been established to

Two limiting cases of the model exist: The ideal soap froth model and grain 

growth.

8.3.1 Quasi-static Soap Froth

In the case where the viscosity is negligible (A —> 0), equation 8.1 reduces to  th a t of 

the ideal soap froth:

Pi ~  Pj =  7C -  Au” (8 .1)

be I [19].

A P  =  7 c (8 .2)
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/  \

D irection o f  M otion

F ig u re  8.6: Forces acting on a film segment of length I.

This is Laplace’s Law. It states that the films of a bubble are arcs of circles. Ne­

glecting gas diffusion, the system will be in a constant state of equilibrium between 

the pressure and surface tension forces. The structure obeys Plateau’s rules, which

so at 120° [104].

Gas diffusion across films due to pressure differences will result in the growth 

of some bubbles and the shrinkage and disappearance of others. This is known as 

coarsening and results in the growth of the average bubble area. Fick’s law is used 

to describe the diffusion of gas between two bubbles i and j:

where k is a permeability constant, and AP,j and /y are the pressure difference 

and interface lengths of bubbles i and j .  If we follow each edge in an anticlockwise 

manner, the tangent will turn through:

state that for a dry foam: films intersect only three at a time, where they must do

(8.3)

li (8.4)
ri

for each film i of length k with curvature ^ As stated in Plateau’s rules, there is 

a turning angle of tt/3  at each of the rij vertices, thus we may write:

(8.5)
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This is known as the curvature sum rule. Combining Eqns. 8.2 and 8.3 we obtain:

If we now sum over the films of bubble i using Eqn. 8.5, we obtain:

This is Von Neumann’s law [76]. It states that bubbles with less than six sides will 

shrink, those with six will stay the same size and those with more than six sides will 

grow.

8.3.2 Grain growth

The other limiting case of the viscous froth model is that of grain growth. This 

occurs when pressure differences between bubbles are negligible (AFy —*■ 0). The 

motion of the films is then driven by curvature, as is the case in domain growth in 

metals [14]. The interface motion is determined by the balance between the 2"*̂  and 

3'"'̂  terms in Eqn. 8.1:

This leads to the same type coarsening law as in the case of the ideal soap froth 

model:

(8.7)

(8.8)

(8.9)

known as Mullins law for grain growth [73].

We will employ the full viscous froth model as described in Eqn 8.1, but neglect 

the contribution of coarsening since it is negligible on the time scale of the foam 

passing around the U-bend.
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Calculate Bubble PressuresCalculate Curvatures

Impose correct angles Move Points

Figure 8.7: Flow diagram showing order of events in Surface Evolver simulation 

using the viscous froth extension.

8.3.3 C om putational Im plem entation

We employ a software program called Surface Evolver to model the flow of the or­

dered arrays of bubbles. Surface Evolver is an interactive program for the modelling 

of liquid surfaces shaped by various forces and constraints [15]. This software can 

be used to simulate foam systems and foam flow through channels. In modelling 

foams, one sets up a Surface Evolver calculation by defining the vertices, edges, faces, 

surface tensions and any constraints on the system. Surface Evolver then evolves 

the system toward minimal energy by a gradient descent method. Quasi-static sim­

ulations of foam flow proceed by repeated steps of moving the foam structure a 

small amount and then minimising the energy. Such simulations using the Surface 

Evolver, replicate the behaviour of the flow of the bubbles in the channels described 

in section 8.2, except for the case of the U-bend.

Simon Cox, a then member of our research group, created an extension to Sur­

face Evolver that allows simulations using the viscous froth model [58]. It relies on 

Surface Evolver for all the necessary topological “book-keeping” and adherence to
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boundaries (e.g. solid walls), while implementing the numerical scheme described 

here in Evolver’s command language. Initially an external C program was used in 

determining the bubble pressures, but Ken Brakke, the software’s developer added 

matrix manipulation functionality to Surface Evolver, which allowed the entire im­

plementation to be done in Surface Evolver’s own command language.

We will now describe the numerical implementation of the viscous froth model 

(see Figure 8.7).

8.3 .4  T he D im ensionless V iscous Froth E quation

Here we write the defining equations in terms of dimensionless variables: the typical 

energy scale is 7 /?, and the (2d) pressure scale is 'y/R,  where R is the mean bubble 

radius. Thus we may write Eqn. 8.1 as:

A p  — K  =  V (8.10)

where the dimensionless variables are

P =  K  =  K R  and  ̂ =  7̂^ .

8.3.5 Curvature

We resolve all the films of the bubbles in the system  into a sequence of points, 

connected by straight line segments of finite length (edges). The calculation of the 

surface tension requires the curvature of the film at a point. Figure 8 . 8  shows the 

curvature pointing outward from the surface at the point where edges ei and 6 2  

meet. This is defined to be the direction of the normal, as is required by Laplace’s 

Law which requires the surface tension to be normal to the surface. The curvature 

is then calculated by:
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(8 .11)

2

(8 1̂2)

where / =  (/i +  /2 ) / 2 , 2̂x and are the unit x  and y tangent vectors to ei

and 6 2 , respectively. This is a first order approximation to the more usual definition 

of curvature A' =  | .

t.
F ig u re  8.8: The curvature K ,  at the point where edges e\ and 62 meet. The x  

and y tangents to the edges are given by t 2  ̂ and 1 2 .̂

8.3.6 D eterm ination  o f B ubble Pressures

After calculation of the local geometry and calculation of the resulting surface ten­

sion forces, it is necessary to calculate the bubble pressures. In the general case 

(arbitrary exponent u in Eqn. 8.1) this might be done using an iterative procedure, 

introducing a penalty function to keep the bubble areas fixed [58]. Currently we use 

a simplification to the general viscous froth model by considering the case of linear 

dissipation {u = 1). This leads to a more computationally efficient implementation 

of the model.
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If we integrate the equation of motion (Eqn. 8.1) around the boundary db of an 

arbitrary bubble b, the change in the area of the bubble is equal to the integral of 

the normal velocity field v on the surrounding film:

I  v d l=  (f (A P  -  K)dl. (8.13)
d t  J d b  J d b

Using the same arguments outlined in section 8.3.1, the curvature must integrate 

around a bubble to 27t, deducting |  at each of the rib vertices;

^  -  6) +  -  Pb>)lw (8.14)

where l̂ b' is the length of the film shared by bubbles b and b' and the summation is 

over all bubbles b' adjacent to b. (From this definition for Ibb', it is clear tha t Ibb' = 0 

if b and b' are not neighbours or if fe =  6'). Eqn. 8.14 represents a matrix equation 

for the N  bubble pressures,

Lbb'Pb' =  «f) (8.15)

The matrix Lbb' is given by:

I U"lbV' =  lî  ̂ i ib  =  h'
L bb' — {

I —Ibb' otherwise

where is the total length of the perimeter of bubble b. The entry of the 

matrix dtb is given by:

afc =  ^ - ^ ( n 6 - 6 )  (8.16)

The evolution of the network can now be predicted a time step St ahead as we 

will explain in the next section.
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8.3 .7  V elocities and D ispiacem ent

If we consider the velocity of a point on a film, this is determined by the local 

geometry and the pressures of adjacent cells, according to the viscous froth equation:

v[AP,K] = A P - K  (8.17)

The velocity v is in the normal direction, its sign being chosen consistent with 

the signs of the pressure drop A P and curvature K.  In a time step 5t, the resulting 

displacement is made in the normal direction associated with this point.

After cach point of the discretisation has been displaced, all the 3-fold vertices are 

moved in order to maintain angles of 120°. This is accomplished using an analytic 

solution to the Fermat-Steiner problem, which is only correct to lowest order, since 

no curvature of the line segments is considered when determining their point of 

intersection [46].

8.4 Sim ulation  R esu lts

Simulations that had previously been performed using the viscous froth model 

showed that the model replicated the behaviour seen in the experiment [58]. For 

low velocities no T1 occurred in the U-bend, while for velocities above a critical 

velocity Wcrit a T1 would occur in the bend. In this work we examine the detailed 

dependence of the critical T1 velocity Wcrit on the system parameters. We consider 

the effect of varying the area of the bubbles the radius of the bend R  and the 

width of the tube d. We also perform the first quantitative measurements using the 

viscous froth model, making an estimate of the value of the viscous drag parameter 

A.

As already stated, simulations using the quasi-static model show no neighbour 

switching process taking place in the U-bend, which is consistent with the low veloc-
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V  = 0.5 mm S'̂ v = 3  mm s''

Simulation

Experiment
7 mm

quasi-static viscous froth

F ig u re  8.9: Comparison of the distortion of a foam structure going around a 

bend without neighbour switching (T l) of bubbles.

ity experimental result. In this limit, the foam structure looks as shown on the left 

in Fig. 8.9, flowing around the bend without undergoing any topological changes. 

Upon increase of the velocity v, the viscous forces of the films being dragged along 

the top and bottom plate become of the order of magnitude of the surface tension 

force. Since the local velocity - and hence the viscous force - increases towards 

the outer boundary of the bend, an additional shear stress is imposed on the foam 

structure within the bend. For sufficiently high flow velocities this leads to a clearly 

visible distortion of the structure, as can be seen on the right in Fig. 8.9.

A key thing to note at the outset is that there are three possible ways to pass 

this structure around the U-bend.
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Case 1: The leading outer three-sided bubble

The first case, which we will refer to as the case of the “leading outer three­

sided bubble” , is illustrated in Figure 8.10. For a finite train of bubbles in 

the foam structure shown, all bubbles have four sides (discounting the side 

that each bubble makes with edges of the channel), except for a three-sided 

bubble at either end required to make the structure stable. In the first case, 

this three-sided bubble is on the outside as the bubbles enter the bend.

Case 2: The leading inner three-sided bubble

The second case, which we will refer to as the case of the “leading inner three­

sided bubble” , is illustrated in Figure 8.11. In this case the three-sided bubble 

is on the inside as the structure enters the U-bend.

Case 3: Tube fully filled

The third possibility is that the tube will be fully filled with bubbles before 

we begin pushing the structure. This is illustrated in Figure 8.12. This is the 

initial setup that was used in the lab experiment.
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Figure 8.10: Case 1: The leading 3 sided bubble is on the outside as the 

bubbles enter the bend.

F igure 8.11: Case 2: The leading 3 sided bubble is on the inside as the bubbles 

enter the bend.

F igure 8.12: Case 3: The third possibility is that the tube is already filled 

with bubbles, before the bubbles start to be pushed.

The first simulations of the U-bend using the viscous froth model considered case
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Figure 8.13: Case 1: The leading 3-sided bubble is on the outside as the 

bubbles enter the bend. The structure is pushed at a velocity just above Vcrit- 

We see that the T1 process takes place as the bubbles enter the bend in contrast 

to Case 2 where the bubbles fill the bend before the T1 process takes place. Vctu 

is lower for case 1 than for case 2 or case 3 due to the end effects as the structure 

enters the bend.

1, that of a leading outer three-sided bubble [58]. These simulations looked at the 

variation of Vcrit with bubble area and found that Vcrit was inversely proportional 

to the area of the bubbles. It was thought at that time that there would be little 

difference between cases 1 and 2, just that the critical T1 velocity Vcrit would be a 

factor of 2 higher. It also was not considered if either case 1 or case 2 represented 

the experimental setup of case 3, that of the tube being initially full of bubbles.

In simulations involving case 1, the T1 process occurs as the structure enters the 

bend. However in case 2, the structure will first fill the bend before any T1 process 

take place. This is due to the finite end-effect in case 1 tending to decrease the 

length of the edges that will shrink to a zero length and undergo a T1 process as the 

structure enters the bend (See Figure 8.13). However for case 2 the finite end-effect 

tends to increase the length of these edges, so that the structure fills the whole 

bend before any T1 processes takes place (See Figure 8.14). Thus Case 2 effectively 

recreates Case 3 (that of a fully filled tube) before any T1 takes place. To verify 

that this was the case we performed simulations of Case 3, that of the bend filled 

with a relaxed foam structure, and verified that the critical T1 velocity for case 2 is 

the same as that of the experimental setup of case 3. The results presented here will
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F ig u re  8.14: Case 2: The leading 3-sided bubble is on the inside as the struc­

ture enters the bend. We see that the tube first fills with bubbles before any T1 

processes takes places, creating the same initial setup as case 3.

also show that cases 1 and 2 can behave very differently when the parameter values 

of the system are changed. In particular the previously reported inverse relationship 

between the areas of the bubbles and the critical T1 velocities is not valid for the 

experimental setup of case 3.

In the experimental system, at a critical velocity Ucrit the shortest film in the 

bend shrinks to zero length, triggering the T l. Before this sets in, all bubbles have 

4 interior edges. Upon the flipping of the edge two pairs of 5- and 3-sided bubbles are 

generated, of which one pair follows the foam flow and leaves the bend. The other 

one moves into the bend to release the strain. This topology is sufficient to cause a 

T l process for all the subsequent bubbles that enter the bend, even if the velocity 

is reduced to u —> 0. Also, for large velocities more than one T l process can occur 

in the bend. This is observed experimentally and reproduced by the simulations.

8.5 V ariation o f sy stem  param eters

In our simulations, we setup a chain of bubbles in one of the possible initial structures 

described above. All bubbles have the same area A;,. A single bubble of area A q, 

spanning the width of the channel, is placed at one end of the tube and inflated at a 

rate Ao in order to push the other bubbles around the bend. The bubbles therefore 

move at a velocity
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C ase  1 (Outer leading bubble) 
C ase  2 (Inner leading bubble)
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Figure 8.15: Variation of the critical T1 velocity Vcrit with the radius of the

tube. A clear linear relationship is seen for both cases. The slopes of the lines

shown are m =  0.75 ±  0.02 (Case 1) and m =  1 (Case 2).

where d is the width of the tube.

Here we will first present results for the variation of the critical T1 velocity with 

various system parameters for case 1 and case 2. We have varied the radius of the 

bend R, the width of the tube d and the area of the bubbles Ab. The behaviour of 

case 2 is the same as that of case 3. We will then outline how the first quantitative 

estimate of the viscous drag parameter A was obtained by comparing the minimum 

edge lengths of the bubbles as they pass around the U-bend at a velocity below Ucrit-

8.5.1 V ariation o f th e radius o f th e bend

As the train of bubbles is pushed around the U-bend a shear is imposed on the 

system. Firstly, we consider the effect of varying the radius of the bend R. It is
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clear that increasing the radius of the bend will decrease the shear rate for a given 

velocity of the bubble train. (We need only consider the extreme case of an infinitely 

large radius, which would correspond to a straight tube and no shear stress on the 

system.) Simulations were done to ascertain the critical T1 velocity for the cases of 

a leading outer bubble (case 1) and a leading inner bubble (case 2). Both sets of 

simulations were run for a system of bubbles with area Ab = 1, in a tube of diameter 

d = 2 with the viscous drag parameter A =  1. A clear linear relationship between 

t>crit and the radius of the bend is found for both cases as shown in Figure 8.15. For 

all values of radii considered, Vcth was higher for the case of the inner leading bubble 

(case 2) than for the outer leading bubble (case 1).

For the leading outer bubble case the first T1 process occurs as the structure 

enters the bend. There is then a succession of single T1 events as the subsequent 

bubbles enter the bend. However, for the case of the leading outer bubble, the 

bend is first filled with bubbles before the T1 processes take place. For larger radii, 

more bubbles are of course required to fill the bend. This can mean that for larger 

radii, multiple T1 events occur almost simultaneously in the bend (See Figure 8.14) 

and that multiple three-sided and five-sided bubbles can then be observed in the 

structure that exits the bend.

8.5.2 Variation of the width of the tube

Increasing the width of the tube d will cause two effects which will tend to de­

crease the critical velocity ?;crit- Firstly, given that in travelling around the bend a 

film located at the outer edge of the bend will travel a distance nd greater than a 

film located at the inner edge, increasing d will increase the shear imposed on the 

structure. Secondly, for the relaxed structure in the straight tube, the lengths of 

the films that lie perpendicular to the sides of the tube are fixed at a length d/2. 

Thus increasing the width of the tube will increase the length of the films tha t lie
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Figure 8.16: Variation of the critical T1 velocity Ucrit with the width of the 

tube for the case of the leading outer bubble (case 1).
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Figure 8.17: Variation of the critical T1 velocity Vcrit with the width of the 

tube for the case of the leading inner bubble (case 2). The line is a fit of the 

function f {d)  = a{d)^ + c, with a = 11.6 ±  0.1, b = —2.0 ±  0.1 and c = 0.5 ±  0.2.
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perpendicular to the edges of the tube and consequently the length of the edges that 

will undergo the T1 processes will decrease, so that the total area of the bubbles 

remains constant. As these edges are shorter entering the bend, it will require less 

shear on the structure to cause them to shrink to zero length and for a T1 to occur.

We find quite similar behaviour for both the case of the leading outer bubble 

(case 1) and the leading inner bubble (case 2). The simulation of case 1 was done 

with a tube of radius R  = 1, with bubbles of area Ab = 1 and the viscous drag 

parameter A =  1. The variation of the critical T1 velocity with the width of the 

tube d can be seen in Figure 8.16. We find that Ucrit decreases as the width of the 

tube is increased.

Simulations of case 2 were run using a tube with radius R  = 2, with bubbles of 

area A^ = I and the viscous drag parameter A =  1. A fit to the data suggests the 

relation t>cnt oc d~^ (See Figure 8.19).

8.5.3  V ariation o f th e area o f th e  bubbles

Varying the area of the bubbles shows the largest variation in behaviour between 

the case of the outer and inner leading bubble. Increasing the area of the bubbles 

Ab, while keeping the width of the tube d fixed, and thus the length of the films 

tha t span the width of the tube fixed, will cause the lengths of the edges that will 

undergo a T1 process in the bend to increase. This should cause Wcrit to increase as 

the areas of the bubbles increase. This is indeed the behaviour that we find for case 

2, tha t of the inner leading bubble (See Figure 8.19).

The case of the outer leading bubble (case 1) shows the opposite behaviour (See 

Figure 8.19). Here it is found that Ucrit \ /A .  As the area of the bubbles is 

increased the length of the edge that undergoes the T1 as the structure enters the 

bend is decreased and so is This occurs solely as a result of the end of effect of 

the finite sized bubble train. As case 2 has been shown to replicate the behaviour
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of the experimental system (case 3), this inverse relationship of Vcnt with area will 

not be seen in the experimental system (case 3).

For small bubble areas it is not possible to make a stable structure of the kind 

we consider in this work, instead a structure where three or more bubbles span the 

channel width is required. For large bubble areas, the structure dissociates into 

a “bamboo” structure with plane parallel films separating bubbles that span the 

channel width.

We will now outline how we have achieved quantitative agreement between the 

viscous froth model and the experimental system.

8.5 .4  D eterm ining th e viscous drag param eter A

The direct experimental measurement of the critical velocity Vah is subject to signif­

icant errors. Thus in attempting to make a quantitative measure of the viscous drag 

parameter A in our experimental system, we consider instead the minimum edge 

length of the films that would undergo a T1 at Vcrit (see Fig. 8.20), when the foam 

is passed around the U-bend at a velocity bellow Ucrit- As the foam moves through 

the bend, the length of these films decrease and then increases again, going through 

a well defined minimum length L, which is measured as a function of the foam flow 

velocity v. In the experiment, a very dry foam is used with a liquid fraction of less 

than 1%. The velocity v is increased very slowly to provide quasi-steady conditions. 

By doing this we can extrapolate to find Wcrit for L ^  0, and determine the drag 

coefficient A by fitting the numerical prediction to the experimental data. This is 

possible because A acts as a scaling parameter for the velocity in Eqn. 8.1.

We set up a viscous froth simulation of the U-bend using the physical parameters 

of the experimental system: channel width d = 7 x  10“  ̂ m, inner channel radius R  

=  1.5 X 10“  ̂ m, bubble area Ab = 1.86 x 10“® m^ and the line tension =  3 x 10“®
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r '

Figure 8.20: We measure the shortest edge length L as a function of foam flow 

velocity v around the U-bend. If this edge gets short enough, a T1 neighbour 

switching process occurs.

J/m . The line tension is the 2D analogue of the surface tension. It is estimated 

for the system by multiplying the surface tension of the solution (3 x 10~^ 

by the depth (0.5 x 10“  ̂ m) of the channel, and by the factor 2 in order to take 

account of the fact that each film consists of two interfaces. The drag parameter A 

is replaced by an arbitrarily chosen Xsim =  1 kg m~^ s“ \  and later determined by 

fitting the experimental to the computational data. The tube is fully filled with foam 

(Case 3) and pushed around the bend at a range of velocities lower than Ucrit- The 

minimum line length Lsim (shown in Figure 8.20) is determined for each velocity. 

The simulation data is fitted to a power law

Lsim = + d, (8.19)

using a, b and d as fitting parameters. We obtain values of a =  —1.26 x 10“ ,̂ 

b = 1.29 and d = 1.98 cm. To estimate a value for A we fit the experimental data 

with the function

Lexp =  0.{2XVexpf’ +  d (8.20)

where the factor 2 takes into account the drag occurring on the top and bottom 

plates.
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F igure 8.21: Determination of the viscous drag parameter A through fitting 

data from viscous froth simulations to the experimental results. The critical 

velocity is found to be Vc = 0.19 cm/s. The minimum film length for zero 

velocity is taken from a quasi-static simulation.

From this procedure we obtain the value of A 14 kgm~^s“ ^ Fig. 8.21 shows 

the experimental and simulation data, in which the latter was rescaled using the 

obtained A parameter. A direct comparison of this value with previous estimates 

for the viscous drag [16, 19] is not straightforward as for example using a different 

value of Q in Eqn. (8.1) changes A.

8.6 Conclusion

In this work we have applied the viscous froth model to the flow of an ordered array 

of bubbles around a U-bend. We have highlighted the importance of the initial 

structure that is used before the bubbles are pushed through the bend. Previous 

simulations, which were compared to experimental results, used an initial structure
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which does not repUcate the full behaviour of the experimental system. We have 

performed a detailed analysis of how the variation of various system parameters 

affect the critical velocity at which a T1 process will take place in the bend. We 

have also obtained the first quantitative estimate of the value of the viscous drag 

parameter A ~  14 kgm^^s~^ This estimate of A will assist in the design of future 

experiments, which will also aim to establish a relationship between A and the liquid 

fraction of the foam.



Chapter 9

Conclusion and O utlook

In this thesis we have presented new and exciting results that give insights into the 

packing behaviour of bubbles and grains.

We began by considering the behaviour of New'ton’s Cradle in terms of a simple 

ID granular system where the interactions between the spheres are the same as 

those commonly considered in sphere packing models [53]. We provide the most 

complete description to date of the underlying physics of Newton’s Cradle, bringing 

together simulation, experiment and theory. This work highlights how seemingly 

simple systems can exhibit complex behavior and provides us with an excellent 

introduction to the nature of the interactions between soft spheres.

We then went on to consider the role of shape in granular packings, providing a 

detailed description of the variation of the packing properties of systems composed 

of elliptical grains [29]. We find a very interesting variation in the packing fraction 

$  with the ellipticity of the grains. We are also able to separate out the contribution 

to the packing of the grains from the rotational and translational degrees of freedom 

of the ellipses. Here we demonstrate that the increase in packing fraction that we 

observe as the shape of the grains transitions from circular to elliptical is due to the 

additional degree of freedom that the elliptical grains have, with the large increase

161
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in $  not observed in simulations where we disallow rotations of the grains.

We have considered the packing behaviour of objects with arbitrary shape in 

sequential packing models [31, 32], defining a new model which we have termed 

“Rotational Random Apollonian Packing” (RRAP), in which asymmetric objects 

additional rotational degree of freedom is taken into account. Our new RRAP 

model shows the dramatic effect that allowing asymmetric objects to rotate during 

the packing process has on the packing properties of these systems. This work has 

highlighted the need for the consideration of the rotational degree of freedom in 

future theories that consider the behaviour of such sequential packing models.

We have continued the theme of packing of objects with arbitrary shape when 

we consider our new model that describes the packing-driven shape evolution of a 

system of grains. This novel model allows the structure of the packing of the grains 

itself to determine the evolution of the shape of the grains. We see a very interesting 

behaviour, with the grains having a strong tendency toward angularity and over long 

term simulations forming triangular shapes. The behaviour of this system provides 

insights into how the abrasive forces that are felt between grains when randomly 

packed together may effect their shape evolution.

We have turned the traditional packing model “inside-out” by considering a 

system composed of Hooke’s Law interactions under extension only, and hence a 

model of elastic strings that are loose under compression [29]. The behaviour of 

this model was initially very surprising to us as it behaves so differently from the 

classical system of compressed sphere and disc packings [65]. We have highlighted 

these differences and performed a detailed analysis of the behaviour of the system 

at the onset of rigidity. As this model has shown such interesting behaviour, future 

work will investigate the elastic properties of the system at and above the onset of 

rigidity.

We have considered a dynamic model for 3D sphere packings which is the 3D
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equivalent of the model we used in simulating Newton’s Cradle [53]. We have per­

formed simulations releasing spheres onto fixed square and triangular packed layers 

to investigate the degree to which the order in the top layer will propagate through­

out the sample. These results have been compared to wet bubble packings which 

have been seen to produce a surprising degree of order [99]. The sphere simulations 

have highlighted the differences between the packing behaviour of simple sphere sys­

tems and that seen in the wet bubble experiment. While we find that ordered surface 

layers can indeed in certain regimes greatly assist in the ordering process of spheres 

deposited onto them, we are still unable to explain the spontaneous ordering in the 

experiment that is observed regardless of the method by which the foam sample is 

produced.

We have further investigated bubble packings in 2D foams and considered a dy­

namical model tha t incorporates the viscous drag on quasi-2D foam from the plates 

tha t confine them [58]. We see that this is a very important effect in certain cir­

cumstances and have performed a detailed analysis of a T1 process that occurs in a 

packing of bubbles tha t are passed sufficiently fast enough around a U-bend. These 

results have shown that previous simulations had considered an initial orientation of 

the foam structure tha t is not representative of the behaviour of the experimental 

system where the U-bend is full of foam prior to beginning the experiment. We 

have also determined a value for the viscous drag parameter A in the experimental 

system. This estimate of A will assist in the design of future experiments which will 

investigate the designing of new channel geometries for use in the potential applica­

tion of this technology to the handling of small liquid and gas samples.

In conclusion, in this work we have presented original ideas and research results 

tha t contribute greatly to the study of packing problems. We have defined new 

models, considered new shapes and even turned the problem of packing “inside-
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out” . At its core this has been a computational investigation and the computational 

tools developed, and in particular the A r b i t r a r y P a c k e r  software, with its abil­

ity to consider the packing properties of any desired two-dimensional shape, offer a 

limitless potential to further explore what scientists have considered for thousands 

of years - that of how things pack together.



A ppendix A 

Scaling relationships in PLG  

m odels.

Packing limited growth models like those investigated in Chapter 4 show a power-law 

variation for the limiting distribution of the radii of the packed objects

N{r)  oc (A .l)

and in the decay in the pore space volume for large n:

p{n) oc (A.2)

Here we will outline the derivation due to Dodds and Weitz [31, 32] of the scaling 

relationship used to estimate a  from (3, in Chapter 4. Using this relation a more 

accurate estimation of a  is obtained than attem pting to directly fit to the power-law 

in Eqn. A.I. We also show the derivation of their model which they use to make

theoretical predictions of the power-law exponents in the RAP model,

They consider an RAP packing of spheres and assume the following form for the
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probability distribution of sphere radii after n spheres have been packed:

' ( ^ )  for r > r .

for r < Tc
(A.3)

where is the maximum size of any sphere that may be added. This makes the 

assumption that P (r; n) above the cutoff scale Vf. follows the limiting power law 

form while bellow the distribution is essentially flat. Dodds and Weitz have shown 

from numerical simulations that this is a reasonable assumption to make. The 

corresponding frequency distribution is then given by:

Dodds and Weitz also investigate the form of Pinsir'^n), the probability distri-

where the integrals are over the pore space, and Dn{x) is the distance from the point 

X to the closest pore boundary after n spheres have been inserted. In the limit of 

very small radii this integral may be solved exactly as:

where S{n) and $(n) are the surface area and available pore space in the existing in 

packing. They propose that Pins{f", n) can be modeled as a purely flat distribution,

N{r\n)  =
Q  — 1

(A.4)
a

for r  > Tc- As the prefactor k must be constant:

(A.5)

bution of the (n +  l) th  sphere’s radius to be inserted into the packing, writing an

exact expression:

f  dVS(D„(x) — r)
(A.6)

(A.7)
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again verifying their assumptions using numerical simulations. From Eqn. A.7 and 

A.8, we see that

Tc =  $ (n)/5 (n). (A.9)

From N{r;n)  they determine S{n) and <I>(n) as

■SW = (A. 10)

♦(") =

where as in Chapter 4, Vd is the volume of a unit radius sphere. Using Eqns. A.9, 

A. 10 and A. 11 they find an estimate of a  as

a  =  (A.12)

While from Equations A.4 and A. 11 they obtain the scaling relationship:

$(n) oc oc (A.13)

from which the relationship between a  and /5 in d = 2 is:

“  =  1 +  (A.14)

This equation is used in Chapter 4 to determine a. Note that while this scaling

relationship is derived for spheres, it is valid for objects of any shape [32].
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Appendix B 

Additional data for R A P and 

R R A P simulations.

This appendix contains supplementary data from the packing limited growth models 

considered in Chapter 4. Tables of the values obtained for j3, /?', a  and a' are shown 

and graphs of the variation of a  and a '.

2.7
with rotations (a ') 

without rotations (a) —2.68

2.66

2.64

2.62

c
<uco
CL
X

U J

2.6

2.58

2.56

2.54

2.52

2.5
2 4 6 8 10 12 14 16 18 20

Num ber of ed g e s

Figure B .l:  Variation of exponents a  and a' as the number of edges of the 

packed objects increases and the objects transition for a straight edged to a 

circular shape.
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^edge 13 a o!

triangle 0.179(1) 0.288(2) 2.696(1) 2.552(2)

square 0.224(2) 0.323(2) 2.634(2) 2.511(2)

pentagon 0.241(1) 0.302(1) 2.612(1) 2.536(1)

hexagon 0.253(2) 0.299(2) 2.596(2) 2.540(2)

septagon 0.258(2) 0.294(2) 2.590(2) 2.546(2)

octagon 0.262(2) 0.291(2) 2.585(2) 2.550(2)

10-sided 0.267(2) 0.284(1) 2.579(2) 2.558(1)

15-sided 0.273(2) 0.280(2) 2.571(2) 2.562(2)

20-sided 0.275(2) 0.279(2) 2.567(2) 2.564(2)

circle 0.277(2) - 2.566(2) -

Table B . l :  Variation of exponents /?, /?', a  and a ' for the transition from 

straight edged to circular objects.
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A P P' a a'

1.000 0.276(1) 0.276(3) 2.568(1) 2.568(3)

0.950 0.278(1) 0.288(2) 2.565(1) 2.553(2)

0.900 0.277(2) 0.297(4) 2.566(2) 2.542(4)

0.800 0.276(1) 0.317(1) 2.567(1) 2.519(1)

0.700 0.273(1) 0.335(4) 2.571(1) 2.498(4)

0.600 0.266(1) 0.348(2) 2.580(1) 2.483(2)

0.500 0.258(1) 0.359(3) 2.590(1) 2.472(3)

0.400 0.245(1) 0.358(4) 2.606(1) 2.473(4)

0.300 0.225(1) 0.357(2) 2.633(1) 2.474(2)

0.200 0.188(1) 0.352(2) 2.684(1) 2.479(2)

0.100 0.124(1) 0.341(2) 2.780(1) 2.492(2)

Table B.2: Variation of exponents (3, (3', a and a' with elUpticity A.

7 P P' a a'

0.01 0.218(1) 0.313(2) 2.642(1) 2.523(2)

0.04 0.206(1) 0.292(2) 2.658(1) 2.549(2)

0.09 0.190(1) 0.267(2) 2.680(1) 2.578(2)

0.16 0.171(1) 0.242(2) 2.708(1) 2.610(2)

0.25 0.150(1) 0.217(2) 2.740(1) 2.643(2)

0.36 0.125(1) 0.181(2) 2.777(1) 2.694(2)

0.49 0.098(1) 0.148(2) 2.821(1) 2.743(2)

0.64 0.068(1) 0.107(2) 2.872(1) 2.807(2)

0.81 0.036(1) 0.058(2) 2.931(1) 2.890(2)

Table B.3: Variation of exponents (3, (3', a  and a' with concaveness 7 .
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Im plem entation o f a Cell List

F ig u re  C .l :  RAP packing of triangles with the simulation box broken up into 

a number of smaller cells. In the example shown 36 cells are used, while in our 

RAP simulations of large systems we generally use 2074 cells.

The A r b i t r a r y P a c k e r  software implements a cell list technique to greatly 

improve performance in PLG simulations where a large number of packed objects
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21 22 23 24 25
16 17 18 19 20
11 12 13 14 15
6 7 8 9 10
1 2 3 4 5

F ig u re  C .2: The simulation box is spUt up into a number of smaller cells. Each 

cell is given an index as shown.

are considered [102]. A cell list is a tool used to divide up the simulation box into 

smaller cells and to keep track of which cell each object’s center is located within 

(See Figure C .l). Every cell is given an index and at the start of the simulation 

for every cell the indices of its neighbouring cells are determined. For example in 

figure C.2, cell 8 would have neighbours 2, 3, 4, 7, 9, 12, 13 and 14. So if an object 

is located in cell 8, to determine its interaction with other objects in the packing it 

is only necessary to loop over the objects located in the neighbouring cells. This of 

course gives a very large performance boost for large systems.

However, this simple application of the cell list, assumes that all objects have a 

maximum diameter equal to the cell diameter. For systems with a very large poly- 

dispersity, like those found in Chapter 4, this implementation needs to be modified. 

In this case we have done so by labeling those objects that have a diameter greater
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than the cell diameter. When the interaction of a growing object with the existing 

packing needs to be determined, we loop over all the objects in the neighbouring 

cells and also all the objects that have been labelled as being larger than the cell 

diameter. The cell size is chosen so that in a PLG simulation involving up to 100,000 

objects, only around 300 would be larger than the cell diameter. (This corresponds 

to breaking up the simulation box into 2074 cells.) The cell list gives an excellent 

performance increase, as without it as each object was added to the packing, we 

would need to check for contact interactions with up to 100,000 other objects.
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