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Summary

The last 20 years of research in the physics o f foams display the developm ent of a thor­

ough understanding of dry and static foams. In the realm of wet and dynamic foams, 

however, many interesting and puzzling effects have been observed experimentally but 

lack theoretical explanation. It has become clear at this stage that a mere extension of 

existing theories is not sufficient, but that new approaches have to be taken to establish 

a more complete understanding of dynamic effects in foams.

This thesis aims at providing a new angle on foams by establishing a road map 

of effects encountered upon leaving the familiar ground of dry and static foams. It 

proceeds by establishing exciting new aspects related to the structure o f  foams, before 

investigating the fluid dynamic properties of their individual building blocks and the 

rheological properties of some ordered foam structures. The emphasis o f  this research 

is on experiments with systems of quasi-two-dimensional nature. W herever possible, 

these are accompanied by computer simulations and theoretical considerations. This 

“Trinity approach” has proven extraordinarily successful.

Within the realm of static foams, it is demonstrated how m ono-layers of bubbles 

between angled or non-planar surfaces can be employed to beautifully reproduce con- 

formal transformations of the honeycomb pattern.

Studies of the fluid dynamic properties of individual surface Plateau borders and 

soap films shed light on the influence of the physical properties of the gas/liquid in­

terfaces on drainage in foams. By studying high drainage rates, elucidating observa­

tions and measurements tie in well to break away from the traditional picture of foam 

drainage. Beautifully regular and reproducible meandering instabilities of extended 

Plateau borders establish a new angle on the stability of foams.
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Investigation o f tFie flow of ordered foam structures in confined geometries does not 

only provide ideal test beds for models o f viscous foam flow (Viscous Froth Model), 

but offers great potential for technological applications in the real o f m icrofluidics. We 

termed this novel concept o f discrete fluid and sample handling “ Discrete M icro flu­

idics” .



Ackno wledgments/F ore word

It is interesting, how documents like these are always written “backw ards” : the au­

thor writes last what the reader is going to encounter first. To a certain extent, these 

acknowledgments symbolise a door which irretrievably closes a stage of o n e ’s life. 

Closing this door at the beginning of the thesis is like demonstrating that one is not 

departing from this stage by turning the back to it, but by facing and em bracing it.

These pages seem the only space left to sneak in some very personal thoughts. On 

the hunt for objectiveness m odem  science provides very little room for the scientist 

himself, his emotions, excitement, doubts, personal insights or sense o f  beauty.

"All unnecessary rubbish ” said one o f my colleagues whilst crossing out all the words 

like "beautifu l” or "exciting” in my papers.

We all know that doing a PhD is above all a very personal struggle. It is not only a 

link, but a very important “switch” between the student and the professional hie. It is 

the time to find out what science means to you in a philosophical and practical sense. 

And who would not agree that the key qualities of a good scientist are everything else 

but objective: creativity, curiosity, passion, intuition, .... In my opinion, it is not the 

universe, which is at the centre of science. It is the human being and its struggle to 

understand and describe the universe. Very little of this shows through in our literature, 

which for me is an important reason for the decreasing popularity of science. The 

excessive use of romantic and philosophical quotations in scientific books and talks 

IS a desperate sign of people trying to make some space for their emotional outlook 

on their work. Why, however, is it accepted to put a famous person’s poem into a 

physics book, but not your own? Even though I am writing this, I have not dared 

myself to break this pattern (and would not know how to, at this stage); except for
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implementing some of my drawings. The three years of working on this thesis and 

in science, however, have left me with the strong desire to iool< for a way out of this 

misery.

“It m ust be such a great excitem ent to fin ish  your th es is !”, peop le  say.

They are disappointed that I cannot really agree. It is a great excitement to be doing  

the PhD. One probably never again gets the chance to spend three years exploring 

the world of physics in an almost childlike manner; and to have time and plenty of 

opportunities to find out what science means to you in general. The thesis itself is in 

this sense rather disappointing, as it shows very little of the really important processes 

going on during the years of working towards it. Very little is said about the doubts 

and the excitement, the many wrong turns you took, the many small and big moments 

o f  enlightenment, the periods when you simply did not care any more, and those when 

all you wanted was to pitch a tent in the lab.

Being a scientist is not just a job, it is a way of being. The years of working on 

the PhD are the time during which this way of life is being tediously established. The 

“W ho am I, what do I want?” -  questions from childhood are haunting you again. And 

just like then, you spend a lot of time learning to walk on your own feet and to develop 

an independent mind. And those who never fell during this process probably never 

learned how to walk.

One pretends in the thesis that its subject is the centre of the universe. But every­

body knows (including yourself) that it is not. However, it is one of many doors to 

a better understanding of our universe. And for me, the physics of foams has indeed 

been a particularly beautiful and exciting one.

I have no shame to confess that the most important part of my PhD has been the 

collaboration or general interaction with some amazing scientists who inspired me 

on various levels, of  which the physics of foams was only a part. Becom ing a good 

scientist, in my opinion, means learning to broaden your mind. By sharing their time 

and most o f  all their thoughts with me, these people have given me invaluable presents 

on my way. I cannot and will not single out people, apart from one: my supervisor
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Denis Weaire. He has been much more than a supervisor by re-evoking my love for 

science. Like many other people, I had lost this love during my years at university. 

When I came to Dublin, I only wanted to do a Masters to make sure that I would not 

ask m yself for the rest o f  my life what it would have been like to do research. Working 

with Denis gave me the chance to absorb his energy and creativity, but most of all his 

childlike fascination for this world as a whole. At the same time, I found the world of 

science opening up in front of me as a result o f  him supporting every aspect of my very 

personal exploration of it. This greatly helped me to realise that the kind of science 

and scientists I had set out to look for when I decided to study physics did exist after 

all. And here I mean science in its very broad sense: an inquisitive approach to the 

world, which includes arts just as much as philosophy or mathematics. In this sense, 

this PhD marks a return. A return of someone who knows much better what she wants, 

because she has com e through a long period o f doubt.

I will never be able to repay this. But I can and will always try to give to students 

what he -  and m any other people who I got a chance to meet and to work with -  have 

given to me. Thank you.

Somebody said ‘‘Be careful with the acknowledgments. They are the only part o f  

the thesis which everybody is going to read, because they are all hoping to find  their 

names in it".

But is it really possible to single out people? To me, the security man at the gate, 

who starts my day with a “M om ing, luv!” and a smile, or the cleaning ladies who 

shared their cigarettes with me on my night shifts, are just as important as the secre­

taries, technicians or academics who helped solving difficult problems. W here would 

I start, and where would I stop, if I wanted to go through all the wonderful people in 

this department and college, who, through their unconditional technical and personal 

support, have created a place I simply loved working in for the last three years? Start­

ing from my students, the technical and administrative staff, to the people in my group 

and my office, and the academics in the department.
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Chapter 1 

Introduction

1.1 Introduction to foams and scope of this thesis

Foams have found their way into many areas of our everyday Hves. The types they 

come in are as versatile as the appHcations they are used for: soaps, food, beverages, 

fire fighting, refined oil recovery, upholstery, insulation, metal foams, foam flotation 

or foam fractionation.

Their popularity, however, is not only a result of  their usefulness; foams provide 

a very accessible system which interlinks a plethora of subjects ranging from elegant 

mathematical theories via fluid dynamics and chemistry to the aesthetic beauty of pat­

tern formation and growth. The physics o f  foams is therefore a fascinating conglom ­

erate of interdisciplinary research, bringing together a variety of fields and reaching 

out into ju st  as many. Insights from the physics of foams have been applied to various 

subjects dealing with cellular structures and pattern formation. Particularly popular ex­

amples are found in biology, rock formations in geography, or the cellular distribution 

of galaxies in the universe [125, 46, 97, 93, 8].

Intermingled with all these aspects is certainly the human fascination for the daz­

zling beauty and graciousness of soap bubbles in general, which for most of us started 

very early in our lives - as demonstrated in figure 1.1.

Traditionally the subject of foams was mostly studied by engineers. About 2 

decades ago, however, the attention of physicists was drawn to this field, when a grow­

ing interest in increasingly complex foam applications began to demand a much better 

understanding of their physical properties.

1
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Figure 1.1: The fascination of bubbles and foams begins at an early age for many people.

Film rupture

Dynamic effects 
^ in films , Avalanches

Convective
instabilities

Bubble sorting
Successful ttieory 
an d  experim ent 
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STATIC,
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loss transition
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Figure 1.2: A phase diagram of our current understanding of foams and the attempted outreach 
of this thesis (light gray area). The physics of dry (very little liquid) and static/stable foams is 
very well understood and theoretically grounded. In the regime of wet and dynamic/unstable 
foams a number of striking observations have been made, which yet await theoretical explana­
tion. It is clear at this stage, that a mere extension of existing theories will not be sufficient to 
account for effects encountered in this regime.
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The last 20 years of foam research display the development of a thorough under­

standing of dry and static/stable foams (Fig. 1.2). This was greatly enhanced through 

the availability of increasing computer power and the application of successful com­

putational models [125, 46, 97], In the regime of wet and dynamic foams, however, a 

wide range of complex and puzzling phenomena has been experimentally observed and 

studied [126], but could not be included into the existing theories. After several, rather 

unsuccessful, attempts of merely extending the existing theories, it seems clear that the 

physics of foams is now at some borderline that demands new ideas incorporated into 

new models and theories. In order to succeed in this undertaking, researchers need to 

approach the subject from a new angle. The search for this new angle is very much at 

the heart of this thesis.

Until very recently, foams were mainly studied from a macroscopic point of view, 

which most of all ignored the subtle chemistry involved. It has become clear, however, 

that in order to proceed further, we will have to assume a microscopic approach by 

focusing on the dynamic properties of the individual building blocks of a foam. The 

understanding of these elements can then be put together to re-create the complex 

scenario of a complete foam in a “bottom-up” approach.

By employing this microscopic approach, this thesis aims at mapping out a range

of effects encountered beyond the borderline (light gray area in Fig. 1.2) of the well

understood physics of dry and static/stable foams (dark gray area in Fig. 1.2). From

my journey through this unknown territory I have brought back plenty of suiprising 

and unexpected observations. Most of them are reported and studied for the first time. 

This is very much in the spirit of this thesis, which I would like to consider an attempt 

to map out some of the yet unfamiliar terrain lying ahead of us, in which some of the 

painted scenarios have to remain fairly speculative. However, the frame they provide 

is necessary guidance and most of all a frame of reference for any further work. Maps 

like these are needed in order to decide which areas will be most vital to the under­

standing we are seeking, and to prepare the thorough scientific conquest of the yet 

unknown. Often it turns out in science that the more speculative some interpretations 

the better, as they challenge other researchers’ efforts and attention. And even if they
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are proven wrong, they will have fulfilled their purpose, namely to advance people’s 

understanding of the field.

1 begin this conquest in this chapter with an introduction to the basic properties of 

foams that will be required for an understanding of the following investigations. In 

order to establish a general overview of the relevance of the problems introduced in 

this thesis, I use this introduction to point towards the missing links or holes in the 

existing understanding of foams, which are then tackled separately in the remaining 

thesis.

Part I moves on the familiar grounds of “foam structure” by introducing new as­

pects of conformal transformations into the physics of two-dimensional foams. Part II 

crosses the border to wet and dynamic foams by focusing on microscopic aspects of 

the flow of liquid in foams. Part III focuses on the flow of foam itself.

During the first year of my PhD, I programmed a software tool to simulate liq­

uid flow in a solidifying metal foam in order to support preparations of micro-gravity 

experiments in collaboration with the IFAM in Bremen. Since I have not used the 

program for scientific investigations myself, I have only attached a brief overview as 

Appendix A. The program itself can be found on the CD provided with this thesis.

In writing a document like this, there always arises the question of whether to use 

a personal or technical perspective and writing style. I believe that personal styles, 

implying the use of “I” and “w e” , are not only much more pleasant to read, but allow 

to distinguish in a much more straightforward way between what has been done and 

thought by the author and co-workers, and what is already generally accepted know l­

edge. Even though I have been the key driver of the work reported here, hardly any 

o f it would have been possible without the constant interaction with o ther people in 

the science comm unity and their input on practical and intellectual levels. This ranges 

from sum m er students, technical staff, colleagues and collaborators to my supervisor. 

For these reasons and to make the document more consistent I will use the term 'w e ” 

throughout the thesis.



1.2. STATIC FO AM S

1.2 Static foams

5

1.2.1 General properties of foams

Foams are two-phase systems consisting of a continuous liquid phase and a dispersed 

gaseous phase forming a closed cell structure. For many applications the liquid phase 

is chosen such that it solidifies after foam generation, which leads to solid foam s. This 

thesis focuses on the physics of liquid foam s, in particular aqueous foam s, in which 

the continuous phase is water.

The total area of the gas/liquid interfaces separating the two phases can be under­

stood to represent the energy of the foam. Like in any other physical system, this 

energy is at a minimum when the foam is in equilibrium and therefore determines the 

topology of its closed-cell structure. Most foams have a very complex structure and 

therefore an equally complex energy landscape. Hence, when dealing with foams -  

experimentally or computationally -  we hardly ever encounter global energy minima. 

Only for simple cases can we find the structure that presents the absolute energy mini­

mum of a system [122, 125, 28, 27]

The stability of foams is provided by the presence of surface active agents (“ sur­

factants”), dissolved in the liquid phase. These are generally molecules which are at­

tracted to the gas/liquid interface as a result of their amphiphilic nature, generated by a 

hydrophobic tail and a hydrophilic head. Research over the last decades has provided 

the community with a vast selection of different surfactants. These are commonly 

grouped into non-ionic, anionic (negatively charged), cationic (positively charged) and 

amphoteric (charge depends on pH level of solution). The presence of surfactants sig­

nificantly reduces the interfacial tension, but more importantly prevents film rupture 

by steric (non-ionic surfactants) and/or electrostatic (ionic surfactants) repulsion.

A very important parameter in the description of foams is their liquid fraction 4>, 

which is given by the volume fraction of the continuous phase. It has a significant 

effect on many physical properties of a foam and re-occurs in various parts of this 

thesis.

In the wet limit the bubbles of a foam are spherical and barely touch each other. In
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The building blocks of:
3D foams 2D foams
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Figure 1.3: Overview of the building blocks and equilibrium properties of three-dimensional 
(3D) and two-dimensional (2D) foams. (Simulations by S. Cox and S. Hutzler)

the dry’ limit they form polyhedral cells, separated by thin films.

Despite the complex topology o f a foam, the local equilibrium rules governing its 

structure are suiprisingly simple. The essential building blocks o f a dry foam and their 

equilibrium rules are show in Fig. 1.3 a). They can be described as follows:

1. Films are formed where bubbles touch. They consist o f two gas/liquid interfaces 

separated by a thin layer o f liquid. The mean curvature k  o f such a film  is related 

to the pressure drop Ap across it by

A p  =  27K =  2 7 ( ^ 1 -i-/^2)- (1.1)

Here and are the two principle curvatures and 7 is the surface tension. This 

equation is called the Yoimg-Laplace law (or simply Laplace law) and lies at the 

heart o f foam physics [137, 77].

2. Plateau borders are formed were films meet. In equilibrium it is always three 

films that meet at angles o f 120° [95].
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glass plate 

soap films

a) Plateau border b) Surface Plateau Ixirder

Figure 1.4: The two possible cases of Plateau borders in a foam: a) The interior Plateau 
border, which is formed where three films meet; and b) the surface Plateau border which is 
formed where a film is attached to a surface. Nearly all of the liquid transport in a foam occurs 
along these interior and exterior “channels” . (Simulations by S. Cox.)

The three sections of the boundary of the cross-section of a Plateau border are 

arcs of circles whose radius of curvature is determined by the Laplace law (Equ. 

(1.1)), and therefore by the pressure difference between the liquid in the Plateau 

border and the gas in the adjoining bubble.

A special type of Plateau border {surface Plateau border) is formed where films 

are attached to surfaces (see Fig. 1.4 b)). In equilibrium the angle between the 

suiface and the film is always 90“.

The Plateau borders form a network of channels, which generally contains more 

than 99% of the total liquid content of a foam. Nearly all liquid transport, driven 

by gravity or a pressure drop, occurs along these channels. Therefore, under­

standing the fluid dynamic properties of these elegant “pipes” is a key to un­

derstanding the flow of liquid in foams. Part II of this thesis is devoted to this 

subject.

3. Vertices are the junctions formed where Plateau borders meet. Stable junctions 

are always four-fold with angles of 109.6° between any two borders. Like the 

Plateau borders, they are a vital part of the liquid network.
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4. The energy of a foam is represented by the total area of its gas/liquid interfaces. 

1.2.2 Two-dimensional foams

Many of the challenges of visualisation and analysis of complex foam structures can 

be met by working with two-dimensional (2D) cell structures. The building blocks and 

equilibrium rules of such 2D-foams are illustrated in Fig. 1.3 b) and can be described 

as follows.

1. Films are represented by edges of constant curvature n (arcs of circles) given by 

the simplified Laplace law

A p  =  2j k , ( 1.2 )

where A p  is the pressure difference across the edge.

2. Edges meet three-fold at angles of 120“ at the ID-vertex, which contains nearly 

all of the liquid phase. The geometry of the vertex is the same as that of the 

cross-section of a 3D-Plateau border. It is formed by three arcs of circles, whose 

curvatures are given by Equ. (1.2). Here, Ap is the pressure difference between 

the liquid in the vertex and the gas in the adjoining 2D-bubble.

3. The energy of a 2D foam is represented by the total line length of its one­

dimensional gas/liquid interfaces.

A wet 2D foam of reasonably low liquid fraction can be thought of as a dry equi­

librium foam “decorated” with appropriate liquid pockets at its vertices [123].

Experimentally, quasi-2D  foams are generated by producing mono-layers of bub­

bles. This can be achieved by collecting bubbles on the surface of the surfactant solu­

tion (Bragg raft [14]), by trapping a layer of bubbles between the liquid surface and a 

plate {Fatima configuration), or by squeezing a layer of bubbles between two narrowly 

spaced plates {Hele-Shaw configuration).

The reduction of dimensions from three to two greatly reduces the complexity of 

a problem whilst leaving most of the significant physics untouched. Major discov­

eries in the physics of foams have been made with or guided by these simple “foam 

sandwiches” following the lead of Bragg and Nye [14] and Smith [113] [125, 19, 65].
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A  major strength of 2D systems is provided by the opportunity to guide experi­

mental and theoretical approaches by computer simulations. With the availability of 

the powerful Surface Evolver Software by Brakke [16], this “Trinity approach” of com­

bining experiment, theory and simulation (termed by Stefan Hutzler) has become fairly 

straightforward and has proven very successful over the recent years. Nearly all of the 

experiments reported in this thesis make use of this very fruitful approach in two di­

mensions. In Part I we explore the pattern formation of mono-layers of equal-volume 

bubbles between two non-planar surfaces. In Part II we investigate the properties of 

liquid flow through a single film in a Hele-Shaw configuration. In Part III we study the 

flow of quasi-2D foams in Hele-Shaw cells of specific geometries.

For a better understanding of the investigations reported in this thesis it is important 

to be aware of the peculiarities and approximative nature of 2D foam experiments, in 

which the third dimension may still play a significant role;

•  As expressed in §1.2.1, films form surface Plateau borders where they are at­

tached to (liquid or solid) surfaces. It is these Plateau borders that we see as 

edges in images, not the soap films as such.

• Gravitational effects acting perpendicular to the surface normal might still play 

a significant role in non-vertical systems by generating an asymmetry between 

the top and bottom Plateau borders.

•  Films contained between non-parallel surfaces will have a non-zero curvature in 

the direction of the surface normal. This could have a significant effect on the 

measured 2D-curvature, which is in the surface plane. This is a result of the 3D 

Laplace law (Equ. (l .I)) .

The specific implications of these effects are discussed in the respective chapters.

The definition of the liquid fraction of a quasi-2D foam is still an open problem 

which needs to be addressed rather urgently. Due to the 3D effects mentioned above, 

the 3D volume fraction of a 2D foam can only be an approximation of the apparent 2D 

liquid fraction. As most of the properties of a 2D foam are determined by the size of
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its surface Plateau borders and vertices, much more thought will have to go into their 

quantitative description as a function of liquid content, cell geometry and bubble size.

Despite these limitations, however, the two-dimensional approach has proven ex­

traordinarily successful in the understanding of foams and related systems and has 

provided scientists with very important stepping stones into the realm of 3D foams.

1.3 Dynamic foams

The dynamic aspects o f the physics of foams can be grouped into two physically differ­

ent phenomena: foam drainage Siwdfoam rheology. Drainage (§1.3.1) deals with the 

flow of liquid within the network of Plateau borders, vertices and films in an otherwise 

static foam structure. Foam rheology (§1.3.2), on the contrary, focuses on flow of the 

foam itself. Naturally, both aspects are interlinked, particularly for wet foams and high 

liquid or foam flow rates. For most purposes, however, it has proven sufficient to focus 

on each aspect separately.

1.3.1 Foam drainage

Foam drainage describes how liquid is driven through a foam by gravity or pressure 

gradients. To a good approximation this process can be considered as the flow of liquid 

through the network of Plateau borders and vertices, neglecting the contribution of the 

thin films. For low liquid fractions (0 <  10%) this process is well described b> the 

drainage equation [125, 71], which is essentially a non-linear diffusion equation.

It is important to distinguish be tw een /ree  drainage and fo rced  drainage. In free 

drainage the foam is left to drain freely, whilst in forced drainage liquid is added at a 

constant flow rate at the top of the foam so that a steady state of flow is established in 

the foam.

For a long time neglected, it has been established in recent years that the dynamic 

properties of the gas/liquid interface have a significant influence on the drainage prop­

erties of a foam. Depending on the type of surfactant used to stabilise the foam, its in ­

terfacial mobility can range from mobile  to rigid, resulting in plug-like or Poisseuille- 

like flow in the Plateau borders and vertices. This leads to two different typoS of
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drainage. In foams with very mobile interfaces most of the energy is dissipated in 

the nodes. Hence, this type of drainage is called node dominated  [71, 72]. In a foam 

with very rigid interfaces most of the dissipation occurs in the Plateau borders and is 

therefore called Plateau border dominated  drainage [119, 128, 125]. Most cases lie 

between these limits.

Even though the existing drainage theories apply well to both extremes , we are yet 

in the process of establishing a description for intermediate cases [107, 42, 114, 108]. 

Two different approaches are currently being taken to establish this missing link. The 

macroscopic approach [108], which investigates the drainage of a bulk of foam, and 

the microscopic approach [73, 41], in which the flow in individual Plateau borders is 

at the centre of interest.

This thesis introduces studies of the microscopic type, in which the properties of a 

simple system of two surface Plateau borders connected by a thin film are investigated 

(Part II). We have exploited this system by studying it from various angles, focusing 

on different aspects of the microscopic flow properties and the stability of the Plateau 

borders (Chapter 4) and the connecting film (Chapter 5). Most of the introduced ef­

fects are reported for the first time and therefore await theoretical explanation. We do 

provide some theoretical key ideas.

We believe that with the insights gained from this thesis we can draw a bigger 

picture of microscopic effects in foams. These should be considered carefully fur high 

drainage rates, as many of the reported observations and conclusions go well beyond 

the question of interface mobility. In particular, they challenge the traditionally held 

point of view that the liquid flow velocity is zero at the point where the film is attached 

to the Plateau border [78].

1.3.2 Foam rheology

The rheology of foams deals with the shearing flow of the foam itself. The interaction 

between the structure of the foam and its flow gives rise to interesting non-Newtonian 

effects. For mstance, under small shear stress foams behave like elastic solids, whereas 

at large shear stress they behave like viscous liquids.
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before T l
Intermediate state 

(unstable) after T 1

Figure 1.5: Neighbour switching (“T l” ) of bubbles in a 2D foam - the key process of topolog­
ical rearrangements.

The apparent viscosity of a foam is related to two key aspects of its flow:

1. Topological rearrangements within the foam structure

In our 2D geometry these occur via the neighbour-switching of bubbles. This 

is called a Tl process, which is illustrated in Fig. 1.5. In a dry foam, the edge 

length between the vertices has to go to zero to initiate a T l.  In a wet foam it is 

sufficient i f  the comers of the liquid loaded vertices touch. Hence, topological 

rearrangements occur more easily in a wet foam, which corresponds to a lower 

yield stress.

In section §7.4.4, we introduce a device that can be used to study individual, 

successive T l processes in a highly controlled manner.

2. Viscous dissipation of films (surface Plateau borders) sliding along container 

walls

This effect is of particular importance in quasi-2D geometries as the ratio of 

the container surface area to the container volume is very large. The details 

of this dissipation mechanism have not yet been fully understood. But current 

attempts of modelling [19, 69] these processes seem to be converging well with 

accompanying experiments [20, 37]. We demonstrate this in detail in section 

§7.5 in Part III.

Part III o f this thesis introduces experiments that provide a context in which several 

aspects of quasi-2D foam rheology can be studied in a tightly controlled, systematic
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way. They involve ordered mono-disperse foam structures of a few bubbles only, which 

flow through specifically designed channel geometries of quasi-2D nature. These ex­

periments can easily be modelled in computer simulations and therefore provide ideal 

testbeds for our theoretical understanding of the governing processes.

Not only do we believe that the introduced experiments and simulations will serve 

as excellent tools in providing keys to the understanding of foam rheology, but we see 

a very strong potential for commercial applications. Our systems provide methods for 

the highly controlled manipulation of gas (and liquid) samples, which may be very 

useful in a variety of applications in the chemical, medical or biological sector. Com­

bining methods of sample manipulation (Chapter 7), sample volume control, sample 

detection and storage (Chapter 8) on small length scales, we introduce a novel tech­

nique within the realm of microfluidics, which we have termed Discrete Microfluidics.

Because much of our research in this area has been driven from this exciting applied 

(rather than fundamental) point of view', we retain this angle in Part III.

1.4 Interface dynamics

The dynamic properties of interfaces and the hydrodynamics of the adjacent fluid layer 

are strongly coupled and have become of increasing importance in many fields in 

physics and engineering. Interface rheology has therefore become an independent area 

of research [43, 106, 104],

Foams have a very large surface to volume ratio, and in particular a large surface 

to liquid volume ratio. The rheological properties of its interfaces should therefore be 

carefully evaluated in the study of its overall dynamic properties.

Because considerations of the interfacial properties re-occur throughout the thesis, 

this section is devoted to introducing some key aspects of this subject.

Interface rheology is described by four rheological parameters:

1. Interfacial dilational elasticity

2. Interfacial shear elasticity

3. Interfacial dilational viscosity

4. Interfacial shear viscosity r/5 .
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O f these, 1 and 4 are the most important for our purposes. The possible importance 

of 3 for foams is currently being discussed, but without any particular conclusions so  

far. Interfacial viscosity and elasticity have long been considered the same quantity by 

people like Plateau [95] or Boussinesq [13]. Intensive debates over the different nature 

of these effects started in the second half o f the 20th century [79] and have now been 

settled w'ith detailed theoretical description [43, 106, 104].

The interfacial shear viscosity r)s of a (Newtonian) interface in the x,y-plane is de­

fined analogous to the bulk viscosity

rate. In the physics o f wet foams this parameter plays an important role and is usu­

ally combined with the liquid viscosity r/; and the Plateau border radius rp s  in the 

dim ensionless mobility parameter M  [108],

which is the inverse o f the Boussinesq number B q [13].

The surface viscosity is determined by the kind o f surfactant that is used to stabilise 

the foam. Small surfactant m olecules generally make very mobile interfaces (large A/), 

whereas chunky m olecules like proteins or polymers generate very rigid interfaces 

(small M ).

The interfacial dilational elasticity is a more complicated quantity, as it is linked to 

the concentration o f surfactants adsorbed at the interface, which is in equilibrium with 

the bulk concentration. If an interface is expanded, the interfacial surfactant concen­

tration is diluted temporarily until enough surfactant m olecules are adsorbed from the 

bulk to re-establish equilibrium. The opposite happens upon compression. How long 

this takes depends on the adsorption/desorption time scales o f the particular surfactant.

Since the surface tension 7 depends on the interfacial surfactant concentration, the 

dynamic depletion or accumulation of surfactant m olecules leads to a dynamic surface

(1.3)

where is the interfacial shear stress tensor and ^  -I- ^  is the interfacial shearax ay

A / = ^
Vs

(1.4)
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tension. This in turn results in an elastic response of the interface. If the change of area 

occurs under quasi-static conditions, we call the associated parameter Gibbs elasticity 

E  [52];

r  , d-iE  =  =  A — . (1.5)
dln(-4) (lA

Most processes, however, are out of equilibrium processes leading to Marangoni elas­

ticity [81].

The M arangoni effect refers to a broad variety of phenomena, generally describing 

interfacial flow driven by surface tension gradients. The most familiar type is related 

to the sensitivity of surface tension to temperature. This generates the well known 

interfacial swirling motion in soap films. Another equally important ongin of surface 

tension gradients is the bulk fluid flow adjacent to the interface, dragging along the 

chunky surfactant molecules in the interface. This phenomenon is well known from 

bubbles rising in surfactant solution [47], where the viscous drag of the liquid on the 

gas/liquid interface leads to a re-distribution of surfactants from the top of the bubble 

to the bottom, hence generating Marangoni flows in the interface. We believe that this 

particular effect may be of importance for some of the observations reported in this 

thesis.

1.5 Some thoughts on surfactants

As mentioned in §1.2.1, surfactants govern the stability of a foam. Maximum stability 

is often reached by using subtle mixtures of ionic and non-ionic species, which have 

been extensively researched and optimised for the industry of washing detergents.

For most of our research up to date the specific chemistry of the surfactants has not 

been of importance. In search of maximum foam stability we have hence resorted to 

using commercial dish-washing detergents {Fairy Liquid  by P&G [48]), even though 

its precise composition is, of course, a company secret.

Since some of the effects observed at the outset of the research leading to this thesis 

could only be reproduced using Fairy liquid, we decided to use the same detergent
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Figure 1.6: a) The surface tension of a solution of “Fairy” dish-washing detergent in de-ionised 
water as a function of its concentration, measured using the b) pendant drop technique [56|. A 
concentration of 0.4 % is used throughout the thesis.
[52]

(Fairy Series S402) throughout the whole thesis. This provides the opportunity to 

study the same system from various angles and hence gain a deeper understanding of 

its particular properties.

Figure 1.6 shows how the surface tension 7  of a solution of Fairy dish-washing liq­

uid (Fairy Series S402) in de-ionised water varies with detergent concentration. These 

measurements were conducted using the pendant drop technique [56]. The data shows 

that 7  drops rapidly until the concentration reaches about 0 . 1 % and remains constant 

above this value. It is a well known fact that only a minute bulk concentration is needed 

to reach the maximum  possible concentration of surfactants adsorbed at the interface. 

Beyond a critical bulk concentration, which is called critical micellar concentration  

(CMC), all additionally added surfactant molecules remain in the bulk, where most of 

them agglomerate in micelles.

We used a solution o f  0.4% Fairy (S402) in de-ionised water throughout the thesis 

in order to make sure that the solution was well above the CM C and to allow com ­

parison between various experiments. Table 1.1 summarises the ingredients of Fairy.

The presence of surfactants generally does not change the physical properties of 

the bulk liquid. They have a major influence, however, on the dynamic properties of
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Common name of chemical Type CAS Concent.
Alcohols, C 9 -1 1. Ethoxylated 
Ethanol
Amies, ClO-16-Alkyldimethyl, N-Oxides 
S.O.Alkyl Ethoxsulph.Fat.Alc.(AE0.6)

non-ionic
non-ionic

cationic
7

68439-46-3 
64-17-5  

70592-80-2 
reacted ingred.

1-5 % 
1-5 % 

5-10 7h 
20-30 %

Table 1.1: Chemical ingredients of Fairy dish-washing liquid.

the interfaces. The surfactants contained in Fairy (listed in table 1.1) form a very rigid 

mesh of molecules at the gas/liquid interface, making it very immobile (small mobility 

parameter A/). This is reinforced by polymers attached to some o f  the head groups 

(“ethoxylated” ). Earlier experiments on foam drainage have confirmed this [125],

In some cases we use SDS (sodium dodecyl sulfate), which is the most comm only 

used pure surfactant. It produces very mobile interfaces, which can therefore be con­

trasted with the Fairy experiments (see Chapter 5). Care needs to be taken, however, 

as SDS oxidises into dodecanol, which generates very rigid interfaces.
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Structure



Chapter 2 

Conformal maps with 2D foams

2.1 Introduction

In this chapter we present a very simple, but strikingly beautiful experiment giving new 

insights into the structural properties of two-dimensional (2D) foams. For this pur­

pose we generate monodisperse, two-dimensional foams by trapping a layer of equal- 

volume bubbles between two glass surfaces. The application of appropriately angled 

or curved surfaces imposes a specific variation of the apparent bubble area in the foam. 

We show that upon minimising their interfacial energy within these constraints, the 

bubbles order in such a way as to reproduce conformal maps of the hexagonal hon­

eycomb lattice. The honeycomb is the structure which minimises the line length (or 

energy) of a 2D foam with cells of equal area [55] (Fig. 2.1).

Conformal mapping finds uses in many areas of physics where 2D fields or patterns 

are found. Such a mapping can be constructed using any analytic function w = f { z ) ,  

according to

u + iv = f { x  + iy)

where z  = x  + iy  and w = u + iv [87]. The application of conformal maps is perhaps 

most familiar in the context of 2D incompressible fluid mechanics [96], where they are 

used to produce equivalent problems with simpler boundary conditions.

Certain patterns that occur naturally are immediately recognisable as conformal 

transformations of simpler ones. Popular examples include cellular growth patterns 

m biology [130], structures formed by magnetised steel balls in external force fields

19
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(b)

Figure 2.1: Examples of the honeycomb structure, which is the 2D monodisperse foam with 
minimum energy, used as initial pattern for the conformal transformations, (a) Computater 
generated honeycomb. The shading will be retained throughout this chapter to visualise the 
effect of the transformations, b) Experimentally obtained dry and c) wet 2D monodisperse 
foams sandwiched between two parallel glass plates.

[103, 102], ferrofluid foams in magnetic fields [44] or crystal growth in amorphous 

films [74],

One of the principal properties of conformal transformations is isogonality: any 

two curves that intersect are transformed into curves that intersect at the same angle. 

Isogonality upon transformation preserves a very important property of any 2D foam at 

equilibrium: in order to balance surface tension, edges have to meet three-fold at 120“ 

( see §1.2.2). Another property is only preserved by the special class of bilinear con­

formal maps: that all edges have to be arcs of circles whose curvatures add to give zero 

at every vertex (see §2.2.2). Together these conditions guarantee that the new structure 

obeys the rules of equilibrium. For the general case, the theoretically mapped paitems 

will only be approximations of the experimentally observed equilibrium structures.

In the following sections we review some properties of conformal maps before 

showing how certain examples can be realised with our simple setup.

2.2 Conformal maps, inversion and soap froth

Locally, a confonnal mapping f { z )  preserves angles (the isogonal property) but not 

areas (see Fig. 2.2). If ds^ =  {dx^ -I- dy^)^ is a small element of line in the [x,y)  

plane, it will be magnified according to

dsw = ds^ = \ f { z ) \  ds^ (2.1)
az
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V  V

f(z)

Figure 2.2: A conformai mapping of a hexagonal “bubble” preserves the angles at vertices, but 
not the area of each bubble. Only bilinear maps transform arcs of circles into arcs of circles.

upon transformation. Hence a small element of area will be scaled by a factor of 

\ f'{z)\'^. We will concentrate on two types of maps of the hexagonal lattice, which are 

characterised by their symmetry properties, and which are of particular relevance to 

many areas of science:

1. Conformai transformations with translational symmetry (§2.2.1)

2. Conformai transformations with rotational symmetry (§2.2.2).

The numerical mapping has been carried out by Simon Cox. For a more detailed 

description of his procedure refer to [38].

2.2.1 Conformai transformations with translational symmetry

It can be shown that the logarithmic map is the only conformai transformation with 

translational symmetry [103]. It is

w  =  f { z )  = u{z)  +  iv{z) — [ia)~^Log ( a z ) , (2.2)

which maps the interior of a circle of radius 1 /a  onto the upper half plane. For an 

example of the effect of this upon the honeycomb structure see Fig. 2.3 b). This elegant 

pattern has been dubbed Gravity’s Rainbow. In our case it has translation period tt/S q  

rather than 2 tt/ a  because of the 6-fold symmetry of the honeycomb pattern.

Application of Equ. (2.1) reveals that the area A  of the transformed hexagons 

depends only on v:
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Figure 2.3: The logarithmic map (G ravity’s Rainbow), a) Experimental setup: A mono-layer 
of bubbles is trapped between two inclined glass pates. The bottom plate is horizontal, b) 
Numerical mapping of a perfect honeycomb using Equ. (2.2). c) Experimentally obtained 
pattern. The shading shows how lines of neighbouring cells that were initially straight (compare 
Fig. 2.1) are transformed.

A{w )  =  A{v )  -  (2.3)

2.2.2 Conformal transformations with radial symmetry

Any conform al map o f radial sym m etry has to satisfy the differential equation [103]

w~^ d w  =  l3 dz ,  (2.4)

where 5 is a real and (3 a com plex number. Equ. (2.4) has two different solutions 

depending on the value of S.

For (̂  =  1 we obtain the map

w  =  f { z )  =  Wo (2.5)

which is com m only referred to as phyllotaxis  [64] and found in m any system s governed 

by cellu lar growth. Popular exam ples are the florets o f a sunflower (Fig. 2.4 b)) o r the
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Figure 2.4: Two special cases of maps with radial symmetry, (a) Numerical example of phyl- 
lotaxis using Equ. (2.5). (b) Phyllotactic design shown by a sunflower (photograph taken by 
Yves Couder). (c) Numerical example of the inversion defined by Equ. (2.8) with 6 = 2.

scales of a pineapple [5], The latter type of cylindrical phyllotaxis can be beautifully 

reproduced using the regular stacking of soap bubbles in cylindrical tubes [127], which 

we introduce in Part III (Fig. 6.2).

The case ()' 7  ̂ 1 is more general and we will refer to it as the circle map:

w =  f { z )  =  Wo . (2.6)

The area .4 of the transformed hexagons varies with distance r from the centre as:

A{w)  =  -4(r) ~  (2.7)

The circle map also contains the important special case of inversion for 5 = 2 (see 

Fig. 2.4 c)):

f { z ) = z - \  (2 .8)

or more generally the bilinear or homographic transformation generated by

f { z )  =  {az +  b)/{cz + d),

where a, b, c and d are real numbers. This combines the inversion with an arbitrary 

translation and rotation, which are of no significance in the present context. This case 

has additional special properties that are of particular relevance to 2D soap froths, as 

noted by Weaire [123], Under inversion, arcs of circles remain circular upon transfor­

mation. They conform to a further property which may be obliquely stated ac, follows:

any 2D soap froth structure in static equilibrium transforms into another equilibrium
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structure. This requires rather more than the preservation of 120° angles at venices. 

The existence of a unique gas pressure in each cell requires that the curvatures of cell 

edges (related to pressure differences by the Laplace Law) add to give zero at every 

vertex. This zero sum rule is preserved upon inversion [123].

Only an inversion has this exact property of preserving equilibrium for the 2D soap 

froth while changing the area of its constituent bubbles. However, a general conformal 

transformation can achieve a good approximation to this property. To see this, note that 

any f { z )  can be approximated by an inversion (or homographic transformation) in the 

neighbourhood of a point zq, in the sense that terms in its Taylor expansion in {z — zq) 

are identical up to second order. This is a sufficient condition to allow us to assume 

that the conformal transformation has similar effects on local curvatures to those of the 

bilinear transformation which approximates it. But in general this holds only in lowest 

order, so the sum rule holds at every vertex, but the curvature varies along each edge.

Such arguments can be adduced to transform any equilibrium soap froth structure.

2.3 Experimental procedure and simulation

Bubbles of equal volume are generated by blowing nitrogen at constant pressure through 

a nozzle into a surfactant solution (we use tap water and Fairy Liquid). Glycerol is 

added to the solution to prolong the lifetime of the foam. The bubbles are then trapped 

between two glass surfaces, of which the bottom one is flat and horizontal. A variation 

of the apparent 2D bubble area with position within the pattern is imposed by using 

a curved upper surface. If the separation between the surfaces is d{w),  then the bub­

ble areas vary as A(w)  ~  d{w)~^.  The precise shapes of surfaces required by theory 

are difficult to manufacture. We find, however, that astonishingly good results can be 

obtained by using small bubbles and much simpler surfaces, which can be considered 

as approximations of the required ones (see next section for details). The number of 

available geometries is plentiful: inclined plates or cylinders for the map with trans­

lational symmetry, spheres of different radii and funnels of different shapes for maps 

with radial symmetry. We will concentrate on a small selection.

Even if the theoretically suggested mappings of the previous section produ<^the
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ideal, energy-minimizing foam structures (and we make no claim to prove this), they 

do not occur spontaneously in this procedure. A many-bubble foam has a vast en­

ergy landscape of meta-stable states, which need to be overcome by an annealing-like 

experimental procedure. This involves keeping the foam very wet and varying the 

spacing and angles between the surfaces repeatedly. After a while, the perfect pattern 

begins to emerge and one can concentrate on eliminating isolated defects, which glide 

beautifully along the arches of the pattern.

2.4 Conformal 2D foam with translational symmetry

To obtain the Gravity’s Rainbow defined in §2.2.1, we should introduce an upper plate 

which decreases exponentially in height in one direction, d{w) ^  However, we

obtain an excellent approximation to this map with a linear decrease, corresponding 

to a tilt of the upper, flat plate. The setup is shown in Fig. 2.3 a). A large bubble 

cluster is produced in order to reduce any quantising influence of the boundaries of 

the specimen on the periodic pattern -  the boundaries are so far away that they have 

only a negligible influence on the choice of period. Using a large cylinder instead of 

the slanted upper plate works equally well. Fig. 2.3 c) shows an experimental result 

obtained by projecting the foam with an ordinary overhead projector.

The similarity between the experimental image and the conformally mapped pat­

tern (Fig. 2.3 b)) is striking. Apart from a few defects, we obtain the well-known 

pattern of interwoven rainbows, whose periodicity is determined by the bubble volume 

and angle between the plates.

However, the conformally mapped honeycomb is neither a true equilibrium foam 

structure, nor does the variation of bubble area in the experiment obey precisely that 

demanded from the conformal theory. We attempt to bridge the gap between the con­

formal and experimental pattern by considering the effect of relaxation on a true equi­

librium structure. This may be accomplished using any of a number of published pro­

cedures [4, 12]. We used the Surface Evolver [16, 38] to produce the relaxed structures 

shown in Fig. 2.5. We began with the equilibrated free cluster of 400 equal-area bub­

bles shown in Fig. 2.5 a), imposed a variation of bubble area with vertical coordinate
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Figure 2.5: The effect of relaxation on 2D foam structures, simulated by Simon Cox [38] using 
the Surface Evolver [16]. (a) The initial rectangular configuration of 400 bubbles with equal 
areas (honeycomb), (b) The equilibrium structure for a linear increase in bubble area, and (c) 
for an exponential increase. The two are difficult to distinguish, even over a range of values of 
A{y) .  Hence the logarithmic map is well-approximated by a linear increase in the height of the 
experimental sample, (d) The imposed variation of area A  with vertical position y  for linear 
and exponential growth.

y, and re-equilibrated the structure. The rectangular cluster bends to accommodate the 

change in cell areas, which is shown for linear and exponential A{ y)  in Fig. 2.5 b) and 

c) respectively. This procedure introduces no topological defects in either case, at least 

for a wide range of parameters in the function A[ y) .  Indeed, the two cases are almost 

indistinguishable, explaining why the linear increase in the height of the experimental 

system is such a good approximation of the logarithmic map. The outline of the com ­

puted sample is rather arbitrary since it is essentially the transform of the outline of the 

corresponding arbitrary boundary of the original monodisperse sample.
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2.5 Conformal 2D foam with rotational symmetry

In order to generate a circle map we would need a variation of the spacing according 

to d{w) = d{r) ~  The case 5 = —\  can be approximately realised by using a 

large spherical vessel or watch glass for the upper plate, as illustrated in Fig. 2.6 a). 

An experimental result can be seen in Fig. 2.6 c). Fig. 2.6 b) shows the corresponding 

conformal pattern.

We do not recover the predicted 12-fold symmetry in the experiment, hut obtam 

an almost perfect 9-fold symmetry with a few defects, whose origins will be discussed 

in the next section. Analysis of Fig. 2.6 c) shows that the 2D bubble area decreases 

almost linearly with distance from the centre (rather than with as predicted by 

Equ. (2.7)). This is more consistent with the case 5 =  —1/2 and 9-fold symmetry. 

Such discrepancies maybe due to the effects of wetness and the 3D curvature of the 

films, as described in section §2.6.

To generate cases with 5 > 0 we stretch an elastic membrane across the end of a 

short cylinder and attach a piece of string to its centre, which is pulled to produce a 

“funnel” shape. For an experimental result refer to Fig. 2.6 e). Comparison between 

theoretical prediction and experiment is more difficult here, as the patterns exhibit less 

symmetry and the precise shape of the funnel is not known. Nevertheless, the similar­

ities between the pattem is obvious, with almost perfect sections being separated by 

lines of defects.

All the circle experiments are conducted on a glass table, as we find that the best 

images can be obtained with transmitted light from a diffuse source.

2.6 Complications and discussion

In addition to the discrepancies entailed by the approximate representation of uiialytic 

functions, a further difficulty arises if the separation increases too steeply. At a certain 

critical separation, bubbles with less than six sides detach from one of the surfaces to 

create a three-dimensional structure [25]. For the hexagonal lattice this initially affects 

only the bubbles on the boundary of the cluster, but the instability then propagates
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Figure 2.6: Examples for the two general cases of the circle map defined by Equ. (2.6). Case 1: 
Decrease of bubble area with distance from centre (5 <  0). This can be realised experimentally 
by using convex vessels for the upper surface, a) A spherical vessel or watchglass can be 
used for an upper surface to approximate the case 5 =  - 1 ,  for which b) shows the numerical 
prediction, and c) an experimental result. Case 2: Increase of bubble area with distance from 
centre (<5 > 0), obtained between funnel-like surfaces and a glass plate, d) Setup: A funnel 
shaped surface is produced by shapes by pulling the centre of a membrane which is stretched 
over a cylinder, e) Numerical example for S = 2/3.  f) Experimental result. (The shading shows 
how lines of neighbouring cells that were initially straight (compare Fig. 2.1) are transfoi.ned.)
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inwards to destroy the pattern.

On some occasions we have found topological defects in more or less ordered 

arrangements. The precise role of these defects, which might be to compensate for 

the approximate representation mentioned above, has not been clarified. Note that 

with topological arguments one can prove that any finite bubble cluster must contain 

at least 6 defects [99]. But this theorem can be accommodated by defects at the edge.

2.7 Conclusions and Outlook

Two-dimensional foams offer a system for very beautiful and easily accessible exper­

iments, which improve our understanding of foams and physically related systems. In 

particular, we have shown that various conformal patters may be demonstrated. Other 

illuminating experiments with this simple “foam sandwich” include

•  Coarsening, topological changes and statistics [53, 26]

•  The structure of the beehive [129]

•  Foam motion in various channels and networks [39]

Brakke [15] has applied inversion in 3D (which has similar properties to the 2D 

case), to create 3D bubble clusters, which serve to test mathematical conjectures. In 

the 3D case, inversion provides a mapping between equilibrium structures on'y in a 

very limited number of cases, where surfaces are spherical.

Our technique may also be useful for the investigation of more complex patterns 

usmg more complicated surfaces or polydisperse foams. Questions also remain con­

cerning the precise distribution and role of defects, which we sometimes find to have a 

periodic arrangement.

Very recent theoretical work by Mancini and Oguey [80], in which they built on our 

suggestion of considering the curvature in the third dimension [38], has added another 

perspective. As a result of the curvature of the confining surfaces and the condition 

that films must meet these vertically, the films have a curvature in the third dimension, 

which has been neglected in our 2D calculations. If this additional curvature i.. taken
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into account, the 2D pattern generated by the films touching the surface do not have 

to be arcs of circles any more as a result of the 3D Laplace law (Equ. (1.1)). There is 

some interesting physics involved in these “2D surface foam s” considered by Mancini 

and Oguey [80]. It remains to be seen whether our foam patterns might actually be per­

fect conformal transformations of the honeycomb, rather than approximations, under 

consideration of the influence of the third dimension.
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Drainage
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Chapter 3 

Introduction to Part II

In this part we discuss the microscopic properties o f  foam drainage (refer to §1.3.1) by 

focusing on a simple system consisting of two extended surface Plateau borders (Fig. 

1.4 b) in §1.2.1) connected by a thin film. Unlike interior Plateau borders (Fig. 1.4 a) 

in §1.2.1), these are formed where a film is attached to a surface. In our system they 

are generated by injecting surfactant solution at a constant rate between two nairowiy 

spaced, vertical glass plates. The setup is shown in Fig. 4.1, cross-sections of this 

system for various flow rates in Fig. 4.2. Whenever we refer to the whole unit, rather 

than the individual Plateau borders, we call it rivulet. Chapter 4 focuses on the flow of 

liquid in the Plateau borders at a broad range of flow rates, whilst Chapter 5 investigates 

the flow in the connecting film.

The cross-sectional area A p s  of the Plateau borders depends on the flow rate ap­

plied at the top of the plates. A theoretical description of this dependence is given in 

§4.2.1. The point where the thin film and the Plateau border are joined, labeled S (Fig. 

1.4), is of special interest here.

Upon varying the flow rate in this simple system, we study a variety of elucidating 

phenom ena which can be grouped into four main categories:

1. The variation of the Plateau border cross-section with flow rate offers insights 

into the mobility of the gas/liquid interface and the flow condition at the point 

S. In §4.2.2.1 we show that surfactants known to make very rigid interfaces be­

com e increasingly mobile under the shear stress of high liquid flow velocities.

33
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Furthermore we provide arguments which show that the traditionally assumed 

zero flow velocity at the Plateau border com er S only holds for low flow rates.

2. For large flow rates and small plate separations, the two Plateau borders swell 

enough to merge. Upon this merging an unexpected effect is observed: the 

Plateau border width remains constant over a large range of flow rates. We relate 

this to a change in the flow boundary conditions, which ties in well with con­

clusions drawn from point 1. Further supporting arguments are given in Chapter 

5.

3. At a critical flow rate the entire rivulet becomes unstable, displaying beautifully 

regular wave patterns, which range from upward-travelling, sinusoidal forms to 

downward-travelling serpentine waves. We have identified four different regimes 

[40], which are elaborated in §4.3. The detailed physical mechanism of this 

instability is not yet understood. We present some theoretical key ideas, which 

seem to identify some important key ingredients.

4. A general assumption made in foam drainage relates to the observation that the 

liquid in the films moves opposite to that in the Plateau borders. By using the 

same system as above but focusing on the flow in the film instead, we show that 

this assumption is only valid for low flow rates (Chapter 5).

Unlike in most studies conducted up to date we investigate a very broad range of 

flow rates and focus on high flow rates in particular. These provide us with a plethora 

of puzzling observations, most of which await explanation. Even though it is rather 

unlikely that flow rates of these magnitudes will ever be encountered foams, we hope 

that by going to these extremes we will be able to take a different and elucidating angle 

at the fluid dynamics of foams, and in particular its instabilities.



Chapter 4

Drainage and stability of individual 
surface Plateau borders

4.1 Experimental setup and procedure

The experimental arrangement is shown in Fig. 4.1, incorporating an image of a me­

andering rivulet. Surfactant solution (0.4 % Fairy dishwashing solution, see §1.4) was 

injected with a glass nozzle at various constant flow rates at the top of two narrowly 

spaced, vertical glass plates of variable separation D. For all flow rates investigated 

the flow equilibrated within the 10 cm below the injection point. We confirmed this by 

measunng the variation of the rivulet width with distance from the inlet. All measure­

ments were taken well outside this entry length to ensure equilibrium conditions.

Fig. 4.2 shows the three distinct regimes of rivulet cross-sections obtained for 

various flow rates and plate separations. Regime 1 is obtained for low flow rates and/or 

large plate separations, regime 111 for large flow rates and/or small plate separations.

The boundaries of each Plateau border’s cross-section can be approximated by two 

circular arcs of radius rpB and the flat surface of the glass plate, as shown in Fig. 4.2. 

Since the system is nearly perfectly wetting', the width W  of the Plateau border, and 

hence the rivulet, equals twice the radius of curvature tpb of the Plateau border.

The glass plates were 1.5 m high in order to reduce the influence of boundary 

effects. Their spacing was adjusted using shims (thin metal sheets of high precision) of 

vcrious thicknesses. Before every experiment, the glass plates were carefully cleaned

'This m eans that the contact angle o f  surfactant solution on glass is c lose  to zero.

35
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Figure 4.1; Sketch o f the experimental setup. Surfactant solution is injected at various flow 
rates between two narrowly spaced vertical glass plates. Illustrated here is a photograph of 
a meandering rivulet, which is observed for high flow rates. For low flow rates, the rivulet 
is straight and vertical.

Increase of flow  rate O

Plateau 
bordGrs

W

Figure 4.2: The various cross sections o f the rivulet fo r different flow rates marking the 
three distinct flow regimes: (I) A thin film  is attached to the plates by Plateau borders. Flow 
through the film  can be neglected. The close-up shows the cross-section o f one Plateau 
border, marking the point 5 , where film  and Plateau border are connected. (II) The two 
Plateau borders touch. ( I l l)  The Plateau borders are merged and form a liquid bridge.
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Figure 4.3: Experimental setup to measure the rivulet width W: A Sodium lamp is used in 
combination with a semi-transparent plate to produce a monochromatic light reflection of the 
rivulet. Due to the curved nature of the gas/liquid interface, the rivulet appears as a well defined 
shadow through the microscope.

and wiped dry with a soft cloth. Most of the observed phenomena, however, did not 

seem to display a significant dependence on the cleanliness of the plates.

Variable flow rates were obtained and m onitored using a flow meter with a high pre­

cision needle valve. A large tank containing the solution provided constant pressure. 

Images were taken with a digital camera and subsequently analysed using the soft­

ware tool ImageJ [61J. For high precision measurements images were taken through a 

microscope.

Precise measurements of the Plateau border width W  pose an experimental chal­

lenge due to the curved nature of the liquid/gas interfaces and the vanishing contact an­

gle of the surfactant solution with the glass plate. After comparing various techniques, 

we found that the best results were obtained by using the reflection of m onochromatic 

light generated by a Sodium lamp (Fig. 4.3). In this set-up a clearly distinguishable 

shade is produced where the gas-liquid interface curves away from the plane of the 

glass plates.
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4.2 Low flow rates - the straight rivulet

4,2.1 The fluid dynamics of surface Plateau borders

This section establishes the theoretical frame work and assumptions necessary for the 

quantitative description of the fluid dynamics of vertical surface Plateau borders, cor­

responding to the geometry present in regime I (Fig. 4.2).

As a result of the constant flow rate, the system assumes a steady state. Hence, the 

conservation law is given by

where Q  is the flow rate and U  the average flow velocity in a Plateau border of cross- 

section A p s-  y  is the vertical and x  the horizontal, in-plane coordinate (see Fig. 4.1).

In equilibrium, the dissipation has to be balanced by gravity (pg) and the pressure 

gradient along the Plateau border {—dpi/dy) .  p is the liquid density, g the gravitational 

acceleration and pi the liquid pressure. For a vertical Plateau border this gives:

The dissipative term is well know from fluid flow in pipes [118]. rji is the viscosity 

of the liquid. The dimensionless factor /  depends on the geometry of the Plateau 

border and the flow boundary conditions at the liquid/gas and liquid/solid interface. It 

is generally determined by computer simulations and reappears at various stages ni this 

Part. This is a result of its strong link with the much discussed surface shear viscosity 

T]s of the gas/liquid interface (refer to §1.4) and the mobility M  of the Plateau border 

(Equ. (1.4) in § 1.4) [73, 42, 88, 114, 108].

Since the liquid is driven by gravity, we consider the second term in Equ. (4.2) to 

be zero. We therefore know that for the straight, equilibrated rivulet ■and U  are 

independent of y  and

Q = ApB{y)U{y)  = const, (4.1)

(4.3)

Using Equ. (4.1) we find
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Keeping in mind tiiat our system consists of two surface Plateau borders, and ne­

glecting the very small amount of Hquid flowing in the film, we obtain for the Plateau 

border width VV

We see from Equ. (4.5) that the width W  of a (surface) Plateau border is predicted

for various flow-rates and hence a general scaling argument, which holds for any ge­

ometry. For this reason, the exponent is independent of any physical parameters of the 

liquid and the interface. These only influence the pre-factor G{f ,  p, g, r]i). By leaving 

Tji, p and g unchanged in an experiment, we can therefore determine /  by measuring 

the variation of IT with flow rate Q. Hence, with this fairly simple experiment we were 

able to study implicitly the flow boundary conditions in a Plateau border (see §4.2.2.1).

Of similar importance to the mobility parameter M  is the flow condition at the 

Plateau border comer S (refer to Fig. 4.2). Traditionally, the flow velocity has been 

assumed to be zero at this point, which is based on findings of Jashnani and Lemlich 

[63]. They report that the flow direction in the film is opposite to that in the Plateau 

borders, concluding that there must be a point of zero flow velocity between Plateau 

border and film. For low flow rates, this assumption has been indisputably established 

by Koehler et al. [73] in recent experiments.

For higher flow rates and long Plateau borders, however, we show that this assump­

tion does not hold any more. At a critical flow rate, which depends on the surfactants 

used and the geometry of the film, the flow direction of the film is reversed from up­

ward to downward as it is dragged along with the flow in the Plateau borders. For more 

detailed arguments see §4.2.2.1 and Chapter 5.

ir = 2rps = 2 ( 2 - | ) " ^ 4 B
, (4.5)

to vary as . This is a result of the self-similarity of the Plateau border cross-section
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Figure 4.4: Velocity profiles and corresponding values for /  obtained by numerically solving 
the Navier-Stokes Equ. for three sets of boundary conditions: (A) No-slip at all the boundaries; 
(B) no-slip at the wall and the Plateau border corner S (see 4.2), and full slip at the gas/liquid 
interface; (C) no-slip at the wall and full slip everywhere else. (Simulations by S. Cox)

Fig. 4.4 shows numerically predicted flow profiles and the corresponding values 

for /  obtained by solving the Navier-Stokes equation for a veitical surface Plateau 

border for three different sets o f boundary conditions (simulations by S. Cox). Due 

to symmetry reasons it is sufficient to consider only one half o f a Plateau border. The 

three cases are chosen such that they represent lim its, which we compare w ith our 

expenmental findings.

Case A considers fu lly  rig id interfaces ( /  =  50.3). Case B implements no-slip at 

the wall and the Plateau border comer S, and fu ll slip at the interfaces ( /  =  9.8). This 

value depends on the width o f the film  and should at this stage only be taken as an 

approximation. In case C the interfaces and the comer point are fu lly  mobile; the drag 

force is only asserted by the no-slip condition at the wall ( /  =  5.4).

By combining Equ. (4.1) and (4.3) we find for the average flow velocity in the 

Plateau borders

The maximum flow rate Q applied in the experiments reported in this thesis was 

250 mm^s~^ Using the smallest possible /  =  5.4 from the simulations gives us a 

maximum average velocity of U ^  0.5 ms“ ^  Using the typical Plateau border ra­

dius 7'pb ~  0.5 mm for the length scale /, we can calculate the Reynolds number 

Re =  pUlrj'[^ Si 250. Since this is well in the laminar regime, we do not expect effects

(4.6)
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Figure 4.5: Variation of Plateau border width W  with flow rate for a plate separation of Z? = 2 
mm. The data is fitted to a power law, conforming well to Equ. (4.5).

of turbulence in our system.

4.2.2 Experimental results and analysis 

4.2.2.1 Separate Plateau borders -  regime I

Fig. 4.5 shows a typical set of data for the variation of the Plateau border width \V 

with flow rate Q for a plate separation of D  =  2 mm. Fitting it to Equ. (4.5) shows 

that the power law is indeed reasonably well obeyed with an exponent of (0.22 ±  

0.01) (ms)“ /̂'*. We find that the deviation from the expected 1/4  is systematically 

related to the range of flow rates investigated, being much smaller for low flow rales. 

'Ve obtain typical pre-factors in the range

6.93 10“  ̂ (ms)^/'^ < G{f , p, g, T] i )  < 7.16 10~^ (ms)^/^ (see Equ. (4.5)),

which gives 5.2 <  /  <  7.2. The smaller prefactors are obtained for higher flow rates. 

Conparison of these values with those predicted by our numerical calculations (refer to 

Fig. 4.4) imply that we are dealing with highly mobile interfaces and Pleateau border 

comer ”S” . From earlier work [128], on the contrary , we know that Fairy produces 

very rigid interfaces of /  ~  50.

Part of this deviation could be due to the possibility that we may only measure a 

certcin fraction of the actual Plateau border width due to the zero wetting angle. We
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Q = 20 mm^ s''' 0  = 25 mm^ s '" 0  = 28 mm^ s ''

Figure 4.6: Interference pattern generated by the thickness variation of the film (see Chapter 
5) show that for low flow rates {Q =  20 mm^s“ )̂ the film between the Plateau borders (Mack 
stripes) moves upwards in a turbulent fashion. At a critical flow rate (here Q ^  25 mm^s“ M 
the flow reverses direction and becomes increasingly laminar. At high flow rates it is being 
dragged along with the flow in the Plateau borders in a totally laminar fashion. (D = 2 mm in 
this example.)

confidently approximate this systematic error to be smaller than 10%. Using linear 

error propagation, this leads to an error of 40% in / ,  hence fmin =  5.2 ± 2 . 1  and 

fmax =  7 .2±2.9 . This error seems large, but is still well outside the originally expected 

/  50. Hence, the deviation must have a physical origin. The most obvious condition

to question is that of the rigid interfaces and com er point ”S”.

By observing and probing the flow of the film, which connects the two Plateau 

borders, we could indeed show that for elongated Plateau borders connected by narrow 

films there exists a flow rate at which the movement of the film reverses from upward 

to downward. This effect is shown in Fig. 4.6. It results in the Plateau border comers 

being released as the flow rate is increased, which leads to a higher average velocity 

and smaller Plateau border width for a given flow rate. For an extensive analysis and 

description of this particular experiment refer to Chapter 5.

Changes in the boundary condition at the point S do not only influence the pre­

factor, but also the exponent of Equ. (4.5). An increasing mobility of the Plateau 

border com er leads to a smaller exponent as we go to higher Q-, which is w hat we 

observe in the experiment.

We have not quantitatively determined the critical flow rate at which the film flow 

reverses as a function of plate separation. We can state qualitatively from observations 

that it occurs earlier for smaller plate separations - and hence narrower films. Furth;r-
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more, it occurs for flow rates at the very bottom of the range of flow rates considered 

in our experiments and is therefore expected to have a significant influence on the flow 

properties of the overall system.

Nguyen [88] has provided a numerically predicted relationship between the average 

flow velocity and the mobility parameter M  of an interior Plateau border with fixed 

comers. This can be related to our /  as follows:

/  =  +  0.020) (4.7)

where a =  0.0655, h =  0.209 and m  =  0.628. Surface Plateau borders are quite 

different to interior Plateau borders. But we can employ Equ. (4.7) to obtain an ap­

proximation of the order o f  magnitude of M  and for our system. For 5.2 < f  < 7.2 

we obtain 3.3 >  M  > 2.2, which (using a Plateau border radius of r p s  =  0.5 mm) 

leads to 1.5 x 10“  ̂ kg s”  ̂ <  //s <  2.3 x 10“  ̂ kg s“ ^

These values compare well with what Saint-Jalmes et al. [108] obtain experimen­

tally for surfactant systems combining SDS and dodecanol, which are known to have 

similar interface properties as Fairy. They find 0.5 < M  < 1.5, but work at much 

smaller flow rates and hence with much thinner Plateau borders, which give smaller 

mobility parameters (refer to Equ. (1.4)).

4.2.2.2 Merging Plateau borders - a reluctance to coalesce?

In the previous section we investigated the behaviour of two separate Plateau borders 

connected by a thin film. We have seen that the film plays an important role in the fluid 

dynamics of Plateau borders by setting additional flow boundary conditions.

Using the same set-up, we study what happens when the film vanishes and the two 

Plateau borders merge (regime II in Fig. 4.2). This is achieved either by bringing the 

plates together at constant flow rate, or by increasing the flow rate whilst keeping the 

plate separation D  constant. For easier experimentation, we decided to do the latter.

Fig. 4.2 shows the possible geometries of the cross-section of the rivulet as the 

flow rate is increased. For low flow-rates (regime I in Fig. 4.2) the system consists
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of the two separate Plateau borders studied in the previous section. Their self-similar 

cross-sectional area A pb  increases as For high flow rates (regime III in Fig. 4.2) 

the two Plateau borders are merged, forming a liquid bridge between the plates. The 

geometrical boundaries of its cross-section are given by the walls and two semi-circles 

with radius of curvature D/2.  Arguments of self-similarity upon change of flow rate 

cannot be employed in this regime, hence we do not expect to find a power-law relating 

its width to the applied flow-rate.

For sufficiently small plate separations (D < 1.4 mm, because of the meandering 

instability §4.3) it is possible to study what happens in the transition regime II when 

the Plateau borders merge. Following geometrical arguments, this happens when i r  

D.  During this merging process we observe an interesting effect: it appears that the 

Plateau borders refuse to merge over a fairly large range of flow rates. This shows up 

as a plateau in the W{Q)  curves with W  = const, si D.  Fig. 4.7 a) shows two sets 

of data for D  =  1 mm and D = 1.2 mm. Before the onset of the plateau, the curves 

con'espond very well to the predicted power law W  ~  Unfortunately, data can

only be taken up to the onset of the meandering instability. We do not believe that this 

plateau is related to the instability itself. This is because the instability is also observed 

for large plate separations for which the Plateau borders never merge.

Assuming that the flow rate at the end of the plateau is a certain multiple of that of 

that of the onset, we sketch n Q  — D phase diagram for the three rivulet cases, which is 

shown in Fig. 4.7 b). The area shaded in dark gray represents the flow rates and plate 

separations for which we expect to find the “non-merging” Plateau borders. The area 

shaded in light gray represents the phase space of the unstable meander (see §4.3.2.2). 

In this presentation, the W{Q)  data sets are given by straight, vertical lines.

From the phase diagram we expect to be able to measure full plateaus and the W -  

variation for regime III for sufficiently small plate separations. This, however, requires 

experiments to be conducted with a precision which we cannot provide with our equip­

ment. Furthermore, measurements for small D  tend to be less reliable, as the very thin 

(therefore light) Plateau borders of small interface area get pinned to the plates very 

easily and therefore tend to be of rather irregular shape -  even before the onset of the
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Figure 4.7: Plateau borders refuse to merge: a) The Plateau border width W  remains constant 
over a significant range of flow rates Q when both Plateau borders touch. This shows up as a 
plateau with W{Q) =  const =  D. b) Sketch of a Q -D  phase diagram for the three rivulet 
cross sections shown in Fig. 4.2. In this presentation the data from a) represents vertical lines 
crossing various regimes.

instability.

We have not observed any hysteresis upon increasing or decreasing the flow rate.

We beHeve that these observations may be explained using very sim ilar arguments 

to the ones employed in the previous section. Even though the “ fixed comer approx­

imation”  does not seem to apply for the flow rates and film  widths (not thickness) 

considered here, this point still seems to be o f lower m obility than the free gas/liquid 

interface. We concluded this from the fact that the film  moves at significantly lower ve­

locities than the average velocity calculated for the flow in the Plateau borders. As this 

film  vanishes, the Plateau border comers are slowly released until the system consists
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of two large, separate gas/liquid interfaces which are much less resistant to shear.

To sum up, we argue that once again an increase in flow rate is compensated by a 

change in boundary conditions, rather than an increase in the rivulet width.

4.2.3 Conclusions, outlook and remaining challenges

We have been able to demonstrate that our theoretical understanding of fluid f l o v v  in 

Plateau borders ties in well with our observations for low flow rates. For higher flow 

rates, however, we need to develop a much better understanding of the flow boundary 

conditions at the gas/liquid interfaces and Plateau border comers. These conditions 

have a significant influence on foam drainage and should therefore receive close a tten­

tion.

The most important conclusions from this work could be summarised as follows.

•  At high drainage rates interfaces are significantly sheared, even with surfactants 

known to make very rigid interfaces.

•  The assumption of zero flow velocity at the Plateau border com er ”S” only holds 

for low flow rates. Its finite velocity and width has to be taken into account. This 

problem is re-visited in Chapter 5.

Computer simulations in the style o f  Nguyen [88] and Koehler et al. [73] are heading 

into the right direction, but should be taken further to consider the finite flow velocity 

at the Plateau border comer. They should furthermore go hand in hand with thorough 

experimental investigations of various surfactant systems and Plateau border geom e­

tries. Particle velocimetry seems a very good method to obtain velocity profiles in the 

Plateau borders [73]. Laser-Doppler velocimetry may be a good m ethod to measure 

the local interface velocities.

An assumption that we would suggest to consider more carefully in the future is 

that of the interfaces being approximated by arcs of circles. At high flow rates, the 

locally varying interface velocity and dynamic surface tension should surely have an 

effect on the Plateau border geometry and hence its fluid dynamics.

To make things even more complicated, shear thinning effects m ight come into 

play as well. This would result in even lower interface mobilities at h igher flow rates



4.3. H IG H  F L O W  RATES  - M E AN D ER IN G  IN STABILITIES 47

and might already play a role in the effects reported in this Chapter.

Most of all, we will have to establish quantitative criteria in order to be able to 

decide under which circumstances the traditional assumptions can be confidently ap­

plied.

4.3 High flow rates - meandering instabilities

4.3.1 Introduction

As part of an investigation into various instabilities that are encountered in the physics 

of foams [125, 126], we explore the stability of the rivulet discussed in the previous 

chapter. A surprisingly rich variety of phenomena is observed for flow rates such that 

the straight downward motion of the rivulet becomes unstable, causing it to meander. 

The meandering ranges from sinusoidal waves of small amplitude to serpentine waves 

of larger amplitude. The waves can travel either upward or downward. More complex 

waves and disordered motion are observed in some regimes. The ensemble of these re­

sults presents a complicated scenario and a considerable challenge to theory, of which 

we have only some elements at this stage. Analogous, but much less regular patterns 

are familiar from investigations of the meandering motion of a rivulet on an inclined 

hydrophobic plane [86, 121, 85, 109], Our system, however, seems to be quite distinct 

in its behaviour and produces elegant wave patterns that have no counterpart in earlier 

work, so far as we are aware. For a more detailed comparison of both systems refer to 

§4.3.5.

4.3.2 Experimental results and analysis 

4.3.2.1 Main Observations

Fig. 4.8 encapsulates much of the content of this chapter. It indicates the various 

regimes that are encountered as the flow rate is increased.

For low flow rates we observe the straight, vertical rivulet which has been studied 

in detail in §4.2.2. At a critical flow rate Qi it becomes unstable assuming the shape of 

a sinusoidal upward  travelling wave. The wave velocity is finite at the point of onset
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Figure 4.8: Overview of the physical characteristics of the wave patterns in the four distin­
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D = 2 mm. A detailed description of the phenomena can be found in §4.3.2.1. a) Regime, b) 
Wave velocity, be) Wavelength and Amplitude, d) Photograph of the pattern.
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Qi, and decreases steadily in regime 2 up to a second critical flow rate Q2 , where it 

vanishes. At this point, a stationary wave is observed. Beyond Q 2 we observe a motion 

similar to the garden hose instability just below the inlet, whose frequency increases 

with flow rate. This results in downward travelling waves of irregular form in regime 

3. Only when a much higher flow rate Q3 is reached does the pattern restabilise (be­

ginning at the inlet). The pendulum motion below the inlet now generates essentially 

perfect, downward travelling waves of large-amplitude, serpentine form in regime 4. 

In this regime the amplitude increases linearly close to the inlet, but eventually tends 

to a limiting value further down. This value decreases with flow rate, leading to in­

creasingly sinusoidal wave forms at the end of regime 4. For even higher flow rates, 

the rivulet breaks into sub-rivulets which, due to the surfactants, do not detacn from 

the main rivulet and hence generate a foam between the plates.

Of the three regimes which exhibit travelling waves, 2 and 4 have proven to pro­

vide the most reproducible behavior. We shall concentrate on these for the analysis in 

§4.3.2.2 and §4.3.2.3.

4.3.2.2 Regime 2

In regime 2 we observe the onset of the instability at a very well defined flow rate Qi, 

which depends on the plate separation. The small-amplitude, sinusoidal waves travel 

upwards. Their velocity decreases with increasing flow rate until a stationary wave is 

obtained at Q2 , marking the end of this regime. Amplitude and wavelength mcrease 

with flow rate, as seen in the example in Fig. 4.8.

The variation of the wave velocity \ ' (upward and hence negative in our conven­

tion) with flow rate Q may be explained or rationalised as follows. In a simple model 

we consider the forces acting horizontally on a segment of the slender rivulet at the 

point of maximum amplitude. We believe the two key ingredients to be the destabil­

ising centrifugal force Fc, caused by the liquid being forced around the bend of local 

curvature k.

F , =  2 A p B p { U - V f  K, (4.8)
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and the stabiHsing surface tension force related to the same curvature,

F-y = 2 D  ^  K. (4.9)

Here U  is the average fluid velocity in the Plateau borders, p the fluid density, D  

the plate separation, A p s  the cross-section of one Plateau border and 7 the surface 

tension. For the derivation of Fc see APPENDIX B. Liquid flow through the thin film 

connecting the Plateau borders is neglected in the derivation of Fc- The surface tension 

force is roughly estimated by ignoring the Plateau borders, so that a film of width D  

spans the plate. Note that both forces are proportional to k .

In equilibrium Fc =  F^. Equating (4.8) and (4.9), and expressing U and A p s  

through Q  as given by the equations (4.4) and (4.6), we obtain for the wave velocity

This is negative for low Q and becomes positive beyond a critical value which we 

identify with Q 2 in Fig. 4.8. Downward travelling waves, roughly consistent with 

this trend, are indeed observed in regime 3. But we have refrained from trying to 

characterize them here in account of their disordered form.

Even though the model qualitatively reflects the system’s key behaviour, it fails to 

quantitatively reproduce the experimental figures. Note furthermore, that since both 

forces employed in the model scale with k , it is not elaborate enough to reproduce the 

observed wavelengths at the onset (see Fig. 4.9).

For the steady wave at Q 2 we establish a relationship between the flow rate and the 

plate separation by setting =  0 in Equ. (4.10),

Unfortunately, Q 2 is difficult to determine experimentally, as the wave velocity v anes 

gradually over a fairly large range of flow rates. Qualitatively it can be said that the flow

V — — Cl Q (4.10)

with

(4.11)

(4.12)



4.3. H IGH  F LO W  RA TE S - M EAN D ER IN G  IN STA B ILITIE S 51

45
40

T

♦
^  30

^  25
g

5
0

0 2 3 4
Plate separation D (mm)

5

Figure 4.9: Wavelengtii A at the onset of the instability as a function of plate separation. We 
have no model yet to describe this data.

rates obtained for stationary wave patterns are about twice as high as those predicted 

by Equ. (4.12).

M easurements of the flow rate Qi at the very well defined onset of the instability as 

a function of plate separation (Fig. 4.10) display the proportionality predicted in Equ. 

(4.12) very well. The data is fitted lo Qi = a  with a  =  (57.7 ±  1.4) nam^/^s“ ‘, 

which is about one third o f  what is theoretically predicted for Q 2 in Equ. (4.12) using 

/  determined in §4.2.2.1.

We have as yet no theoretical explanation of the onset of the instability, but the 

above argument leads us to believe that it occurs at a certain fraction of Qa- A more 

elaborate model is needed, in particular, to account for the m easured wavelengths at 

the onset of the instability (see Fig. 4.9) and the deviation between the quantitative 

predictions of the model and the experimental findings. At this stage our derivations 

either lack important ingredients, or first-order approximations do not suffice for the 

description of the problem. Am ong other attempts we have tried to take into account 

normal and tangential dissipation. But we have not succeeded so far in finding a model 

that leads to a physically meaningful dissipation relation. This may be the point where 

the properties of the wetting film could come into the equation, literally.

For reasons yet unknown, we observed an anomalous dispersion relation in regime
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The data is fitted with the power law ~  (compare Equ. (4.12)).

2, meaning we occasionally found that the wavelength decreases with increasing flow 

rate (see Fig. 4.11).

4.3.2.3 Regime 4

In this regime, the rivulet performs a pendulum motion below the inlet, which generates 

highly regular, downward-travelling wave patterns. The frequency of the pendulum 

motion depends on the nozzle size (unlike in regime 2), the plate separation and the 

flow rate. So does the wave velocity V', which is shown in Fig. 4.12 for three different 

plate separations. V  seems to depend Hnearly on the flow rate Q, with the slope being 

similar for all plate separations and nozzle sizes, but shifted along the Q axis. As the 

waves descend, their amplitude A  and wavelength A grow in a very linear manner until 

they saturate.

Fig. 4.13 shows the variation of amplitude A  and wavelength A with distance from 

the inlet for various flow rates in regime 4. In some cases a fitting procedure^ is needed 

to infer the limiting values. Like the pendulum frequency, these values depend on the 

nozzle size, with smaller nozzles resulting in higher undulation frequency, higher wave

-The data was fitted to F{x)  = .4(1 +  , with A, B and C being the fitting parameters.
There is no physical reason for using this formula, apart from the fact that it describes the data very 
well.
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Figure 4.12: Wave velocity V" as a function of flow rate for three different plate separations. 
D =  ], 2 and 3 mm. The different lines for each plate separation correspond to different nozzle 
sizes.
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Figure 4.13: Wave pattern in regime IV (here D = 2 mm): a) Photographs of the rivulet 
for different flow rates. The length of the pattern is determined by the instability of large 
amplitudes, b) Variation and saturation of amplitude and c) wavelength with distance from 
inlet, including the data from the images of a).

velocity and smaller amplitudes/wavelengths. We found, however, that amplitudes and 

wavelengths for all nozzle sizes can be related to the plate separation D  in a very 

simple way, as all o f  the acquired data conforms well to

A'  ̂ ~  A D .  (4.13)

This is demonstrated in Fig. 4.14, which comprises data for different plate separations 

and nozzle sizes. The fitted curve is given by

XD~^  =  (4.55 ± 0 . 0 1 ) ( 4 . 1 4 )

It is clear that the large-amplitude serpentine waves of regime IV are not a simple 

continuation of the trends discussed in §4.3.2.2 for lower flow rates. We believe this 

is because the trend to larger amplitudes, and hence larger m axim um  curvature, even­

tually encounters an upper bound on the possible curvature of the rivulet. To see this, 

consider the same type of argument as advanced above, but applied only to the thin 

film which spans the plates between the Plateau borders. This has negligible inertia 

and hence negligible centrifugal force; hence the surface tension force on an element
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same graph when is plotted against A.

of film must be approximately zero. This means that the two principal radii o f curva­

ture -  one parallel to the plane of the plates, the other perpendicular -  must be equal 

and opposite. Any increase in the curvature of the rivulet must be matched by an equal 

and opposite increase of the transverse curvature. So long as the Plateau borders are 

small, this transverse curvature cannot exceed 2 /D , where D  is the plate separation. 

We therefore attribute to the remarkable relation (4.13) the significance of maintenance 

of approximate constant curvature, close to its maximum allowed value.

This general idea may be mathematically expressed in an admittedly simplistic 

model: The local curvature k{ x ] of a sinusoidal wave pattern y { x )  =  .4 e**̂  ̂ with 

k =  27tA~\ can be derived to be

Which, assuming constant curvature Kq for the points of maximum amplitude, would 

give us the relationship

(4.15)

(4.16)
K q

Assuming that kq =  2/1?, as reasoned above, we obtain

XD 2 =  \/2  n A'i, (4.17)



56 CHAPTER 4. DRAINAGE AND STABILITY OF PLATEAU BORDERS

identifying the constant of proportionahty as C =  \ /2  tt ~  4.44, which agrees 

extraordinarily well with the fitting results from Equ. (4.14).

However, while this argument may have identified the correct physical basis for the 

relation, in detail it relies on assumptions, namely small Plateau borders and sinusoidal 

waves, which do not apply well in regime 4. Clearly a detailed analysis is called for 

and should be possible using such tools as the Surface Evolver [16] in combination 

with more detailed fluid dynamic simulations.

4.3.3 The role of the wetting film

Due to the vanishing contact angle of surfactant solution on glass, the surfaces of the 

plates are coated with a wetting film in the vicinity of the moving rivulet. The precise 

role of this surrounding film is not clear, but it may well be responsible for some of 

the patterns and trends observed. In particular, it could have a significant contribution 

to the stabilisation of the wave patterns and hence play a similar role to that of contact 

angle hysteresis in the traditional meandering experiments on hydrophobic surfaces. 

Stabilising forces could, for instance, be related to the Gibbs elasticity (§1.4) of the 

wetting film. This could be caused by local depletion of surfactant concentration in the 

gas/liquid interface as a result of the rivulet dynamics.

Fig. 4.15 gives some indication of the existence and motion of the wetting film. 

It shows monochromatic light interference patterns of a downward sliding wave in a 

sequence of successive time steps (0.2 s intervals). The interference pattern in the 

background of the black rivulet displays the thickness variations of the wetting film as 

the rivulet is sliding across it (V = 20 mm/s). Suiprisingly, this pattern seems to be 

more or less static with respect to the glass plates, rather than to the nvulet.

4.3.4 Further observations

In view of the wide extent of the data presented here, we do not elaborate it with any 

detailed consideration of various further effects that we have observed. These include 

the occasional observation of waves which appear to contain two Fourier components, 

“beating” together (Fig. 4.3.4 a)). Also, for wave patterns with large amplitudes or
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Figure 4.15: Observation of the wetting film using monochromatic light interference. Images 
1-6 display successive time steps of a downward sliding wave in regime IV.

at very high flow rates, there is a local thickening of the rivulet, leading to “varicose” 

instabilities (Fig. 4.3.4 b) and c)).

The rivulet width varies significantly along the wave pattern for high flow rates, 

with the horizontal parts of the rivulet being distinctively thicker than the vertical parts. 

There does not seem to be a general rule for the respective rivulet cross-sections (ac­

cording to Fig. 4.2) required to produce a stable wave pattern, as these depend on the 

plate separation D. We can state, however, that if D  is chosen such that the vertical 

parts of the rivulet have a cross-section of type I (Fig. 4.2), the waves are much better 

behaved. We believe that this can be attributed to the stabilising effect of the thin film 

formed between the Plateau borders.

Unlike in the meandering on non-wetting planes [32], hysteresis does not seem to 

play a role in this experiment as long as the plates are wetted evenly. This means that 

a pattern obtained for a specific flow rate Q does not depend on whether Q has been 

increased or decreased up to that point.

Attempts to reproduce the patterns with chemically more pure and better charac­

terised surfactants than Fairy have not proven successful in generating such regular 

and stable patterns. Using pure liquids (no surfactant) with very low surface tension 

(e.g. silicone oil) resulted in irregular patterns. Experiments with pure de-ionised wa­

ter between glass or Plexiglas plates produce patterns very similar to those encountered 

in the meandering of water on hydrophobic surfaces (refer to §4.3.5), displaying very 

clearly the effects of pinning and contact angle hysteresis. But despite of the lack of 

regularity of the wave patterns, all systems mentioned in this paragraph display the
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Figure 4.16: Some oddities observed in regime 4; a) Example of an experimentally observed 
and computationally generated “beating” pattern of two sinusoidal waves with a wavelength 
ratio of 5:6. The component with smaller wavelength travels down faster within the pattern, b) 
For large amplitudes a thickening instability develops on the horizontal sections of the rivulet, 
c) For very high flow rates a localised thickening might develop and travel downward in the 
rivulet without spreading out. The image sequence shows this process with the images bemg 
0.2 s apart.

well defined instability at a critical flow rate.

4.3.5 Comparison with othier meandering phenomena

Despite its significance for industrial applications and fundamental science, research 

on stream meandering has been surprisingly limited. M ost of the experimental work 

up to date investigates the properties of rivulets of various liquids on inclined, non­

wetting planes [67, 68, 31, 32, 86, 85, 109], As in our case, these systems display sev­

eral regimes with fairly well defined transition regions. With increasing flow rate these 

regimes have been identified to be: (i) individual droplets, (ii) straight rivulet, (iii) sta­

ble meandering rivulet, (iv) unstable meandering rivulet and (v) restable rivulet. Due 

to the irregularity of the patterns, quantitative analysis has been restricted to measure­

ments of the sinuosity of the meanders, which is the ratio of total length of the nvulet 

to the distance between inlet and bottom of rivulet. Several attempts have been made to
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m ap out phase diagrams of the various regimes, with one of the key parameters being 

the inchnatio r  o f  the surface.

Theoretical work has been similarly scarce, being limited to rather specific aspects 

o f  the problem or suffering from fairly strong simplifications [117, 33, 132, 34, 136, 

18, 70], Some o f  the m odels predict aspects of the experimental results, but fail to 

describe a more complete picture.

In general, the gap between theory and experiment seems to be rather large, seem ­

ingly dom inated by the struggle to fully understand and implement the role of contact 

angle hysteresis.

Our system resembles that described above, the key similarities being the stabilis­

ing effect o f  surface tension forces and the destabilising effect o f centrifugal forces of 

the liquid being forced around bends in the rivulet. However, as a result o f  the differ­

ent set-up and wetting properties, certain aspects differ significantly and might help to 

overcome some o f  the difficulties encountered in the traditional work on meandering 

phenomena. The advantage of our system lies in its accessibility and the remarkable 

regularity o f  the wave patterns observed. Due to the rivulet being contained between 

two vertical surfaces, its cross section is well defined and measurable. Furthermore, 

the existence of a wetting film (see §4.3.3) eliminates the problems of contact angle 

hysteresis and pinning effects and hence leads to nearly perfect, travelling wave pat­

terns, which can easily be analyzed and compared to theoretical models in terms of 

wavelength, amplitude, local curvature or rivulet width.

Detailed comparison between experimental results for stream meanders is difficult 

as a result of  the different geometries and physical properties of the investigated sys­

tems, and the different parameters which researchers have focused on. However, a 

few general comparisons can be made: We do not observe rivulet breakup into sepa­

rate droplets (low flow rate) or sub-rivulets (high flow rate) as a result of  the surfactant 

loaded interfaces forming highly stable films. The overall characteristics of the various 

regimes seem to be similar and we are tempted to draw parallels between the “stable 

meandering” (iii) and our regime 2, and between the “unstable m eandering” (iv) and
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our regime IV. Nakagawa [85] reports an increase of sinuosity with flow rate in the for­

mer and a decrease in the latter, which is what we see in terms of increasing (regime 2) 

and decreasing (regime 4) wavelengths and amplitudes. The “unstable m eander” was 

termed “pendulum rivulet” by Schmucki [109]. Its properties, especially its relation­

ship between decay frequency and flow rate, are strikingly similar to our observations 

in regime 4. Our rivulet, however, does not break up into sub-rivulets, but stabilises 

into very regular, travelling waves.

We have not observed any surface waves, which seem to precede the onset of me­

andering on non-wetting surfaces [85, 109].

4.3.6 Conclusions, Outlook and remaining challenges

We have introduced novel investigations of a simple system which we believe will 

greatly enhance our understanding of the science of meandering. O ur system poses 

many advantages over those employed for the traditional work on m eandering on hy­

drophobic surfaces (see §4.3.5). It produces extremely regular and well controlled 

wave patterns, which will permit straightforward analysis and study of a great variety 

of physical and chemical parameters. It is very rich in interesting effects, and a suc­

cessful and comprehensive theory may well be just as rich in interest. We therefore 

expect that this work will trigger a new wave of theoretical and experimental studies 

of meandering problems.

It remains to be seen how the underlying physics relates to seemingly similar prob­

lems such as that of §4.3.5, and also to fluid-structure interactions [90], such as the 

“garden hose instability” , or viscous fluid buckling [30, 116].

In addition, we hope to employ our investigations for improving our understanding 

of foam drainage and dynamic effects in high velocity flows in Plateau borders and 

soap films.



Chapter 5 

Flow in soap films

5.1 Introduction

The previous chapter focused on the flow of liquid through Plateau borders. There, 

the film connecting the two Plateau borders only played a role in terms of providing a 

restoring surface tension force or a specific flow boundary condition where it is joined 

to the Plateau border. In the discussions of Chapter 4 it became obvious that the general 

assumption of no slip at this point has to be reconsidered for higher flow rates.

Most work up to date neglects the contribution of films to drainage. For wet foams 

and high drainage rates it seems to become increasingly obvious, however, that a better 

understanding of the film dynamics and its contribution to foam drainage is required.

Therefore, this chapter is entirely devoted to observations of forced drainage through 

films o f  sizes of the order of a few square millimeter to centimeter. These films are 

“fram ed” by surface Plateau borders as we encountered them in the previous chapter. 

In order to allow for comparison with our previous work and enable us to put obser­

vations into a broader perspective, all experiments are carried out with Fairy and SDS, 

which are known to form very rigid and mobile interfaces, respectively.

The work introduced here is of highly exploratory character. As the observed ef­

fects are of rather complex nature, we will restrict ourselves to mostly qualitative de­

scriptions and general conclusions and speculations.

A lot of research has been conducted on freely draining soap films [84] during the 

last century. However, it focused merely at the very bottom of the range of drainage 

velocities and film widths encountered in the dynamics of wet foams. The opposite
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end of this regime has been studied extensively with a very different focus: quasi-2D 

film flow provides a powerful (and extraordinarily beautiful) tool for the experimental 

study of 2D-turbulence in fluid dynamics [24, 21,51, 66, 105]. Results of this research 

can only guide our own exploration, as it focuses on yet another extreme, namely very 

large films (often order of square meters) and very large film velocities (several meters 

per second) of free-falling film. Furthermore, the use of thin fishing wire as a frame for 

the film suppresses the Plateau borders whose fluid dynamic properties we are trying 

to understand here.

5.2 Experimental setup

The experimental set-up was aimed at reproducing the constellation studied in the pre­

vious chapter, i.e. two surface Plateau borders connected by a film. This time, however, 

we focused on the dynamics of the film.

In order to obtain more flexibility regarding film size and geometry, we replaced 

the glass plates by a frame of flexible silicone tubing (5 mm outer diameter) spanned 

onto a wooden frame. By putting tension onto wires attached to the tubing, a range of 

film geometries were easily obtained, as demonstrated in Fig. 5.1.

Surfactant solution (’’Fairy” [0.4 % by volume] and SDS [0.3 % by weight], both 

well above the CMC) was injected at the top of the frame at various constant flow 

rates. These were controlled and monitored by a flow meter with a high precision 

needle valve, which was attached to a large container providing constant hydrostatic 

pressure.

Surfactant solution wets silicone tubing slightly less than the glass plates, which 

has an effect on the size of the Plateau borders. So does the fact that the surface of 

the tubing is curved. However, these differences should be negligible considering the 

qualitative nature of the observations reported here. Using glass plates instead of the 

tubing results in the same overall behaviour.

In order to visualise the flow in the film, we employ the interference of monochro­

matic light (Sodium Xs ^  580 nm) reflected by the two interfaces of the film. The
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Figure 5.1: Setup to study forced drainage in soap films of various geometry contained be­
tween flexible silicone tubes. Surfactant solution is injected at a constant rate at the top of the 
vertical film.

set-up is the same as in Fig. 4.3, w ith the film  and Plateau borders rotated by 90°. 

Destructive interference is obtained wherever the film  thickness T  obeys the follow ing 

equation

T  =  { n ^ - l )  2 (m +  l ) ^ ,  (5.1)

where n =  1.333 is the refractive index o f water and m  an integer number. Plateau 

borders appear black in the images due to the large curvature o f their interfaces.

Unfortunately, monochromatic light interference only provides measures o f rela­

tive thickness. In order to obtain absolute film  thickness one would have to use more 

sophisticated methods, which still remains a challenge for films significantly thicker 

than Newton Black films [105].

In order to obtain a (very) rough idea o f the flow direction and magnitude, we 

probed the film  with thin nylon fibers and micron sized nylon particles.
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5.3 General observations (Fairy and SDS)

The overall behaviour of Fairy and SDS films over the range of tested flow rates dis­

plays striking differences. In the following sub-sections we give a brief description of 

each case.

Most of the images presented in this section were taken using the diamond shaped 

film shown in Fig. 5.1 a) with a width of 1.5 cm. The overall observed features are 

very similar to those of the stretched hexagon in Fig. 5.1 b), but confined to a smaller 

space and therefore easier to capture in one photograph.

5.3.1 SDS films

Fig. 5.2 a) shows a series of images of the interference pattern of the diamond shaped 

film for a range of flow rates. Fig. 5.2 b) attempts to sketch the flow directions of the 

film.

For low flow rates (image 1 & 2 in Fig. 5.2 a)) the motion of the film is turbulent, 

but overall upward, even though the flow in the Plateau borders is directed downward. 

Upon increase of flow rate (around 20 mm'^s“ ‘ in this geometry) the film at the top 

starts to move down. For a range of flow rates the upward moving bottom and the 

downward moving top compete with each other, forming a beautiful, turbulent transi­

tion region which moves down in the film as the flow rate is increased (images 3 & 4 in 

Fig. 5.2 a)). For even higher flow rates (above Q ^  35 m m ^s" ') the whole film moves 

downward in a laminar flow (image 5 -  7 in Fig. 5.2 a)). For the highest flow rates con­

sidered here the film flow velocity seems to be nearly constant over a large horizontal 

section of the film (image 7). This is the type of flow employed for 2D-hydrodynamic 

studies [105],

5.3.2 Fairy films

Fig. 5.3 displays a sequence of images for the same film geometry used for the study 

of the SDS film described above. Sketches of the overall film flow are shown in Fig. 

5.4 in comparison with those of the SDS film from Fig. 5.2 b).
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For a large range of flow rates (up to Q ~  60 mm^s“ )̂ most of the film moves 

upward -  apart from a small section at the bottom (images 1 -  7 in Fig. 5.3). Unlike 

in the case of SDS, this motion is much less turbulent, apart from the sections close to 

the Plateau borders.

The section of film within the transition region between the upward and downward 

moving part is almost stationary. This region moves up and expands upon increase of 

flow rate. At Q 80 mm^s“  ̂ most of the film moves downward at a small velocity of 

the order of a centimeter per second. The upper part of this section forms a stationary 

film which we have termed the “Crocodile Belly”, for obvious reasons. This stationary 

film displays beautiful patterns, in particular when irregularities rise in it like bubbles 

in a liquid (Fig. 5.5).

Experiments with the Fairy film provide us with several more surprises. Looking 

more closely at the upward moving films we see that horizontal thickness variations 

of about 4 /im (calculated using Equ. (5.1)) are stabilised. This is puzzling and has 

neither been observed nor explained, as far as we are aware. Fig. 5.6 shows what the 

mterference images of such undulations look like and how they change with flow rate. 

A similar pattern is introduced and reconstructed in §5.4.

Fig. 5.7 shows an image and the sketched flow pattern of a transition region be­

tween two sections of downward (at the top) and upward (at the bottom) flowing film. 

These regions can be extraordinarily well defined and stable in Fairy films. How these 

fit into the overall picture is not clear.
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F igure 5.2: a) Interference pattern of an SDS film subjected to forced drainage at increasing 
flow rates in a diamond shaped film (Fig. 5.1). b) Slcetches of the flow direction in the film 
corresponding to the images shown in a).
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:* * * > fimmliiih

Figure 5.3: Sequence of images siiowing the interference pattern of a diamond shaped (Fig. 
5.1 a)) Fairy film subjected to forced drainage at increasing flow rates. The coaespt)nding flow 
patterns are sketched in the top row of Fig. 5.4.
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Fairy

SDS

0 = 1 0  mm ŝ3 o - t 0  = 120 mm ŝ '

Figure 5.4: Comparison of the overall flow pattern of the Fairy (compare images Fig. 5.3) 
and SDS film (compare Fig. 5.2) for increasing flow rates.

Figure 5.5: These beautiful Crocodile Bellies are formed at high flow rates in a Fairy film 
in the transition region between the upwared moving section at the top and the downward 
moving section at the bottom. This section of the film is more or less static. The im­
age sequence shows how a piece of (probably) thinner film travels upward through such a 
Crocodile Belly.
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increase flow rate Q

5 mm

Figure 5.6: These images show the interference pattern at the very top o f the diamond 
shaped Fairy film . The film  is moving upward and stabilises a horizontal thickness undula­
tion, whose wavelength seems to depend on the flow rate.

Figure 5.7: In Fairy films we sometimes obtain these type o f transition regions, which look 
sim ilar to those in a SDS film , a) Interference pattern, b) Sketch o f flow pattern.
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thumb
nail

Figure 5.8: a) The “thumbnail effect” : it seems that in small, triangular Hlms a vortex is gen­
erated by the upward moving film at the Point where the two Plateau borders come apart. The 
film below the vortex displays a beautiful pattern, whose basic features are reproduced in b) 
by calculations assuming a linear thickness variation in the vertical and a sinusoidal thickness 
variation in the horizontal direction of  the film. The left image o f  b) shows the film p;ofile, 
whereas the right one shows the corresponding interference pattern.

5.4 Small Fairy films - the Thiimhnail

If the film is sufficiently small (approx. 1 cm^) and narrow (a few millimeters), we 

observe a peculiar phenomenon at the very top of the diamond. It seems like the up­

ward moving film in the center generates something that looks like a vortex at the point 

where the Plateau borders separate (Fig. 5.8 a)). Its size increases with decreasing film 

area. The film below this Thumbnail is just as striking as it assumes a very regular, 

steady pattern with horizontal thickness variations of up to 2 jim. Fig. 5.8 b) attempts 

to reconstruct the general characteristic of this pattern by assuming a film width which 

decreases linearly with distance from the vortex and is subject to a sinusoidal thickness 

undulation in the horizontally direction. As in §5.3.2, it is not clear what generates and
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Figure 5.9: Interference images of two surface Plateau borders connected by a thin film formed 
between two narrowly spaced glass plates (D = 2 mm) for increasing flow rates. (1) Upward 
moving film; (2) Transition point where the film starts to move downward; (3)-(8) Downward 
moving film of increasing thickness and curvature. The flow in this film is highly laminar.

stabilises this pattern.

We had hoped that experiments of this type might elucidate some of the questions 

raised concerning the merging or separating of Plateau borders. Up to now' we have not 

been able to relate these observation with the ones reported in §4.2.2.2. They might 

be of quite different nature as here we deal with non-parallel Plateau borders. The 

different geometry might lead to quite different dynamic effects.

5.5 Narrow films

The narrower the films the lower the flow rates that are required to drag the whole 

film along with the flow in the Plateau borders. As already mentioned in §4.2.2.1 and 

shown in Fig. 4.6, this has important consequences for the average flow velocity in the 

system. Most of all it shows that the assumption of fixed Plateau border comers has to 

be reconsidered for higher flow rates.

Fig. 5.9 shows an extensive series of images of the film between two Plateau 

borders between two glass plates of separation D  =  2 mm for various flow rates. 

In this particular case we used glass plates instead of silicone tubes in order to allow
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Figure 5.10: Profile o f one half o f the film  interface shown in Fig. 5.9 fo r three different 
flow rates, calculated from the interference pattern using Equ. (5.1). A ll thicknesses are taken 
relative to the centre o f the film  at Q = 28 mm’̂ s“ ^  The data points are extended by arcs 
o f circles presenting the Plateau borders. Their radii were obtained from the data presented in 
§4.2.2.1.

straighforward comparison with the investigations in §4.2.2.1. Image 1,2 and 4 were 

already used in Fig. 4.6 to illustrate the change of direction of the film flow. The black 

stripes of either side represent the Plateau borders, the bright stripe in the middle is the 

film.

We see that for low flow rates the film moves upward, producing quite regular vor­

tices at the boundary to the Plateau borders (image 1, Fig. 5.9). As the flow rate is 

increased, the Plateau borders swell, forcing the film to become narrower. The in­

terference pattern changes increasingly towards vertical, parallel stripes, marking the 

transition to downward flow in the film. In this particular geometry this transition oc­

curs at a flow rate of about 25 mm'^s”  ̂ (image 2, Fig. 5.9). The increasing number of 

interference fringes appearing upon increasing the flow rate emphasises that the inter­

faces become increasingly curved. Since the fringes are vertical and parallel over the 

whole vertical range of the film, we conclude that the film thickness does not change 

with vertical position. Counting the colour'changes in the centre of the film whilst 

increasing the flow rate, we can furthermore conclude that the film thickness increases 

by approximately 2 fjm between the onset of the laminar regime at Q =  26 mm^s“  ̂

and Q =  120 mm^s“ ^

Fig. 5.10 shows the profile of one half of the film interface for three different flow
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rates, calculated using Equ. (5.1). All thicknesses are taken relative to the centre of the 

film at Q =  28 mm^s“ ^ The data points are extended by arcs of circles presenting the 

Plateau borders. Their radii were obtained from the data presented in §4.2.2.1.

5.6 Discussion

The observations made in this chapter generate a lot of questions. We focus on a small 

selection in the following discussion.

How can films move upward?

It seems counterintuitive that a liquid film subjected to gravity would move upwards. 

However, we have leamt by now that soap films are anything but ordinary objects 

(see §1.4). There are two important mechanisms at work in a soap film which can be 

brought forward as an argument. A third one might come into play for rigid interfaces.

1. Marginal regeneration [84, 89]: The pressure in a Plateau border is iower than 

the surroimding atmospheric pressure (interfaces are curved inward), whilst the 

pressure in the flat film is equal to the atmospheric pressure. This results in a 

pressure gradient, which sucks liquid from the film into the Plateau border. The 

film therefore thinnens in the vicinity of the Plateau border, the lower limit of 

its thickness being set by the Common Black Film [125] of approximately 30 

nm. A locally thinned film surrounded by thicker film experiences an effective 

buoyancy force, causing it to rise in the film. Since these sections are very thin, 

they appear black in interference images.

Fig. 5.11 shows very striking examples of marginal regeneration in sections of 

the Fairy film. These effects are only seen for the lowest flow rates considered 

here. They are much less striking in the case of SDS.

2. M arangoni effect (see ^1.4) The flow in the film and Plateau borders generates 

surface tension gradients by locally diluting or accumulating surfactant molecules 

This process generally occurs as a result of expanding and contracting films or 

by liquid flowing past an interface and thereby sweeping away the surfactant
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Q 0

F igu re  5 .11: Striking exam ples o f  “Marginal R egeneration” in a “Fairy” soap film: The n eg­
ative pressure in the Plateau borders sucks liquid out o f  the film , w hich leaves a thin (hence  
black) film  behind. This thin film  rises in the surrounding film as it is lighter, a) E xam ple in a 
diam ond shaped film, b) E xam ples in a long, narrow film.

molecules. As explained in §1.4, the resulting surface tension gradients generate 

movement of the interfaces and hence the thin film.

The details of the mechanism as it applies to the problems studied here are not 

clear and require a much more thorough investigation of different geometries 

and surfactants.

3. Simple conservation o f  soap film?  If the interfaces are very rigid, like in the case 

of Fairy, it might be energetically quite “expensive” to destroy a film. Hence, the 

interfaces being dragged down along the Plateau borders might displace those in 

the middle of the bottom, which are then forced to move upward.

In order to understand the flow in soap films, it will be important to disentangle the 

various possible contributions of these effects.

The Crocodile Belly. What could the stationary film sections be?

The crocodile belly (Fig. 5.5) has only been observed with Fairy films. It looks like an 

island of very rigid film, of which bits and pieces literally break off at its boundaries.
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We know that the various surfactant molecules used in Fairy make a very rigid inter­

face. It may be a reasonable assumption that under certain conditions it might form 

very rigid islands. An important question arising from this assumption is whether the 

liquid between the two interfaces drains in a Poiseuille type flow. This question could 

be extended to many of the effects observed here. Since we deal with films of several 

micrometers thickness, one needs to ask whether it is still correct to assume that we 

can neglect flow variations along the film normal (lubrication approximation).

How could the film thickness variations be stabilised?

In the case of Fairy we have seen that large thickness variations of up to 4 //m are 

stabilised over a small region of a few mm^. SDS has not displayed anything similar to 

this. A significant difference between the two surfactants is the existence of Polymers 

attached to the head groups of the fairy surfactant molecules. Polymers are know to 

have rather unusual flow properties, which could well be responsible for the observed 

phenomena.

How does this work relate to bigger, free-falling films?

The much bigger films (without Plateau borders) used by the hydrodynamics commu­

nity display the well know Poiseuille profile flattened by the friction of the film with 

the surrounding air. Unlike in our case, the maximum flow velocities of several meters 

per second are obtained in the centre of the film, whilst they go to zero towards the 

frame [105].

We have seen in §4.2.1 that the maximum velocities ( 0.5 m s“ ^) achieved in

our setup occur in the Plateau borders. Our film velocities are therefore significantly 

smaller than those studied by researchers like Rutgers et al. [105]. Since the principle 

idea of our experiments are very similar, but at different scales, it would be important 

to find out how they can be brought together in a model that combines both.

5.7 Conclusions and outlook

The observations made in this chapter generate a lot of interesting questions. They 

confirm that the rheology of soap films is very complex, in particular when surfactants
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with complex rheological properties are involved.

The most important lesson to be learnt here is that the flow in soap films can e i­

ther be upward or downward depending on the film geometry, its physico-chemical 

properties and the flow rate of the surfactant solution.

In order to proceed from here it will be important to establish a more quantitative 

approach to this matter. M odem  technology [105] enables us to determine local flow 

velocities, film thicknesses and surfactant concentration to a high precision. These 

findings should be employed to establish phase diagrams for the flow properties of 

small films, taking into account the film geometry and the physico-chemical properties 

of the solution. In particular it will be important to study even smaller films - on the 

scale of a typical foam film.

It will be interesting to relate the findings of this chapter to the instability discussed 

in the previous chapter. Buckling instabilities of soap films at high film velocities have 

been observed at many occasions [105].

A very important step will be to employ the findings for individual soap films to 

the more complex scenario provided by foams. In particular, one needs to establish 

quantitative criteria below which it is justified to neglect the films by focusing on the 

Plateau border network only.

Not only does interface dynamics have an importnat effect on drainage in foams, 

but on the flow of foams as well. We refer to this in Part III.



Conclusions and outlook of Part II

This part of the thesis has investigated the properties of a simple system, namely that 

of fluid flowing through two surface Plateau borders connected by a thin film. We have 

seen that despite its simplicity, the system poses a variety of very complex problems 

due to the challenging dynamics of surfactant loaded interfaces. We believe that we 

have been able to point out a few general properties of such systems at high flow rates. 

A lot more thorough experimental investigations combined with computational and 

theoretical m odelling need to be undertaken to establish a deeper understanding and 

quantifiable criteria.

In general, we have confirmed the significance of the interface mobility as an im­

portant parameter in the physics of foams.

We believe that for foam systems at low drainage velocities the traditional assum p­

tion of fixed Plateau border com ers holds. For higher velocities, however, the film is 

bemg dragged along with the flow in the Plateau borders. We propose that this changes 

the geometry of the cross-section from the traditional picture of two Plateau borders 

connected by a thin, flat film (Fig. 5.12 a)) to one of two semi-merged Plateau borders 

connected by a liquid bridge (Fig. 5.12 b)). Even though the flow rate in the film 

itself is still negligibly small in comparison to the amount of liquid going through the 

Plateau borders (less than 1 %), it changes the boundary conditions and cross-section 

of the system, and hence the average velocity for a given flow rate. In this light it seems 

to make sense that the geometrical parameters determined in §4.2.2.1 are smaller than 

those predicted by the traditional picture. In Fig. 5.12 we have sketched our suggestion 

for the cross-section and velocity profile of narrow films between Plateau borders at 

high flow rates. For justification of the cross-section refer to Fig. 5.10. Within these
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Figure 5.12: Cross-section and velocity profiles of a system of two surface Plateau borders 
connected by a film for a) low flow rates and b) high How rates.

considerations it will be important to answer the question whether Plateau b o rd e rs  can 

still be approximated by arcs of circles at high flow rates.

As a result of these conclusions we suggest that in foams subjected to fast forced 

drainage, the contribution of the films has to be taken into account. This is mainly 

important regarding the flow boundary conditions in the Plateau borders, as even thick 

films of a few microns would only contribute a negligible part to the overall flow rate 

through the foam.

The physics of upward versus downward moving films and the relation of the turn­

ing point to the general physics of foams has to be understood. The interface mobilities 

at this point and the onset of the meandering instability seem to coincide with those 

marking the transition from rigid to mobile interfaces. Upon this transition, the flaw re­

sistance of a Plateau border is significantly reduced, which may result in the system be­

coming unstable to slight perturbations (private communication Amaud Saint-Jalmes 

and Florence Elias). Effects of this nature may be related to convective instabilities in 

foams.

Our observations suggest that dynamice surface tension effects are important at 

hight drainage rates. In this light, it may be appropriate to re-introduce a second mo­

bility parameter N  =  where Dgf j  is the effective surface diffusion coefficient

and E  the Gibbs elastic modulus of the surface [42].
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Chapter 6

Juggling bubbles - on the way to a 
Discrete Microfluidics

6.1 Introduction

Part II of this thesis dealt with the flow of liquid in the individual building blocks of 

a foam, namely Plateau borders and films. This is, however, only one of two ma­

jor aspects of the dynamics of foams, as it generally leaves the structure of the foam 

unchanged (refer to §1.3).

In this part we focus on the second aspect, nam ely/oaw  rheology, by considering 

simple model systems, which allow easy observation and comparison with computer 

simulations. This research elegantly combines highly applied and theoretical interests. 

Because the applicational side is very promising and has been the major driving force 

of this project, it will govern the approach and reasoning of the following chapters.

6.2 Motivation of this research

The handling of small quantities of liquids and gases has moved into the focus of 

various technological fields, ranging from pharmaceutical, medical and biological ap­

plications to printing. Today many of its challenges are met by quickly advancing 

microfluidic technologies [1, 2, 76, 120, 22, 23, 45], which utilise an assembly of 

micro-channels and detectors on small chips to manipulate liquids by various means. 

These Total Analysis Systems are at the verge of replacing traditional macro-sized labs 

by Labs-on-a-Chip [1, 83, 131], which contribute to an extraordinary downscaling of
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Figure 6.1: Example of the flow of ordered foam structures in a quasi-2D channel geometry. 
A Y-shaped channel can be used to split rows of bubbles.

space and financial requirements in a plethora of fields. However, even though the field 

of microfluidics has seen astonishing leaps in its development in recent years, impor­

tant issues remain unsolved and have proven to be very difficult to tackle within the 

framework of traditional methods [2, 115].

New advances have been made in using individual droplets, rather than continuous 

liquids, for the purpose of controlled transport and mixing. This method of manipula­

tion of discrete fluid samples has been termed Digital Microfluidics [91].

With our background in the physics of foams, we take the digital approach even 

further by utilising the manipulation of ordered foam or emulsion structures in specifi­

cally designed channel geometries. An illustrative example is shown in Fig. 6.1, where 

an ordered foam structure of two rows of samples is split into two separate individual 

rows in a Y-shaped channel on a chip.

The unique opportunity of sorting the discrete pockets of a two-phase system 

purely by moving the samples through specific channel geometries makes use of the 

most fundamental physical principle; minimisation of energy. The energy of a two- 

phase system is related to its interfacial area and therefore to its structure (refer to

By trapping foams or emulsions in channels of purpose-designed shapes, we force 

specific boundary conditions upon the system and hence select particular sample ar­

rangements. Upon moving through these channels, the sample structures will undergo 

well defined transitions, which can be utilised for sample manipulation in various ways

§ 1.2 . 1).
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(see Chapter 7).

This novel method, which we have termed Discrete Microfluidics ??, would have 

many advantages over current practice, of which some of the most striking are:

• ^ince the proposed technology is based on the minimisation of interfacial area, 

the samples can either be gaseous (foam) or liquid (emulsion) for the same chan­

nel geometry.

• If diffusion is prohibited, an indefinite number of different samples can be treated 

on the same chip.

• As most of the sample manipulation is based on pure geometry, the number of 

movable (and hence sensitive) parts on a chip can be greatly reduced.

• Due to the discrete nature of the method, sample manipulation becomes very 

reliable and quantifiable. Samples can be labeled and traced easily throughout 

the chip.

• The m.inimisation of interfacial area of a structure can be modelled more easily 

than the complex fluid dynamics of continuous (micro)fluidic processes. Hence, 

a major part of the channel design can be done by computer simulation, rather 

than expensive try and eiTor procedures in the experiment (see §7.3) .

• A well-know problem of traditional microfluidics is an efficient link between 

the microchip, the micro-arrays (well plates) and sample storage. Our pioposed 

technology unifies these in a straightforward way (see §8.3).

•  If the sample material is chosen such that it makes up a small volume frac­

tion of the two-phase system, the sample material can be greatly reduced whilst 

maintaining reasonably large channel sizes. This is particularly interesting for 

analysis methods requiring the application of beads, which would clock up small 

channels.

By arranging the various channel elements in a network that integrates means of 

sample generation, analysis and storage, we can design Total Analysis Systems in a
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relatively straightforward manner. These may, for example, find use in the analysis of 

blood samples or environmental probes, or in the area of genotying.

Another exciting dimension of manipulation is added by using magnetic fluids and 

specifically designed magnetic fields (see §8.1 and §8.2) [60, 39].

In the remaining Part we give an overview of our recent investigations into several 

aspects of this concept of discrete microfluidics. We introduce a method of highly ac­

curate bubble production (§8.1), the detection of bubbles in channels (§8.2) and sample 

storage (§8.3). Our main focus, however, lies on the introduction of the rheology of 

ordered two-phase structures in various channel geometries, guided by experiments 

and computer simulations (Chapter 7). At the outset we give a brief introduction to the 

physics of ordered foam structures (§6.3) and ferrofluids (§6.4).

All our investigations have been conducted on millimeter scale. It remains to be 

seen how easily the introduced principles can be applied to the length scales required 

by microfluidics. We do not expect this to pose major problems. For many potential 

applications it is not even necessary to go much below millimeter scale.

To reduce confusion and to take into account that most of our experiments have 

been conducted with foams rather than emulsions, we will only talk ahoul foam s  and 

hubbies from now on. The reader should keep in mind, however, that everything said 

should similarly apply to emulsions and droplets [58].

6.3 Ordered foam structures

Due to their complex energy landscapes, foams are generally highly disordered. How­

ever, if bubbles of equal volume are introduced into regular containers of cross-sections 

of the order of a few bubble diameters, they order in a highly predictable manner 

[127, 94, 59, 60]. Fig. 6.2 shows photographs of some simple cases of these structures 

generated with foams and emulsions in cylindrical tubes. Their specific structure de­

pends on the ratio 5 of the tube diameter to the bubble or droplet diameter. They have 

been modelled very successfully in computer simulations using the Surface Evolver 

[16]. For the classification of these structures we use the (cylindrical) phyllotactic no-
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Figure 6.2: Ordered foam and emulsion structures in cylindrical tubes. W hich type o f structure 
is stable depends on the ratio o f bubble/droplet diameter to tube diameter. The emulsion is 
silicone oil in water stabilised by “ Fairy”  (§1.5).

tation [i,j,k] of the hexagonal patterns formed on the surface of the container (refer to 

chapter 2 or [64]).

In two-dimensional systems these ordered structures reduce to i columns of bub­

bles, which we classify with the notation [i]. Fig. 6.3 shows an expeiiment of a series 

of highly localised transitions between consecutive structures of a mono-disperse foam 

continuously flowing through a wedge shaped, quasi-2D channel (transitions; [1] — 

[2] ^  [3] —> [2] —> [1]). More about the experimental set-up w ill be said in section 

§7.2. The image shows that there is a very strong hysteresis between the [i\ —> [i -f- 1] 

and the [i 4- 1] — [i] transition. At which channel width to bubble diameter ratio (6') 

the transitions occur and how strong the hysteresis is, depends very much on the liquid 

fraction of the foam. The wetter the system is, the less hysteresis plays a role, as the 

foam can explore its energy space more easily. A similar system has been investigated 

for wet foams by Rosa and Fortes [100], ignoring the effects of hysteresis.

‘bamboo
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Figure 6.3: Transitions between ordered 2D foam structures as a result of foam flowing 
through a quasi-2D, wedge-shaped channel.
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Figure 6.4: Experimental data showing 5 as a function of liquid fraction for the wedge 
shaped quasi-2D channel displayed in Fig. 6.3. Computer simulations (by N. Kern) for the 
perfectly dry foam fit in very well with the data.

Fig. 6.4 comprises experimental data of 6 for the first two transitions as a function 

of liquid fraction for the wedge shown in Fig. 6.3. Com puter simulations for the dry 

limit ((j) =  0), undertaken by Norbert Kern using the Surface Evoiver [16], fit in very 

well with the experimental data.

For a successful application of discrete microfluidics a thorough understanding of 

these transitions will be crucial. In order to manipulate and analyse samples and sample 

structures in networks of channels, it will be very important to predict and control the 

type of structure present at any point in the network. This is the case because some of 

the elements, which we introduce in Chapter 7, employ well controlled transitions to
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perform specific sample operations.

6.4 Introduction to ferrofluids and ferrofuid foams

Ferrofluids are stable colloidal dispersions o f solid, magnetic, single domain particles 

suspended in a liquid carrier. A typical ferrofluid contains 10^  ̂ particles of typically 

3 — 15 nm size per cubic meter . There are two main groups o f ferrofluids, which 

are either water based  or oil based. In order to prevent agglomeration (as a result 

of magnetic and van der Waals interaction), the particles are coated with long chain 

m olecules generating a steric repulsion. Water based ferrofluids are generally o f ionic 

nature, generating an additional electrostatic repulsion between the equally charged 

particles (Fig. 6.5 a)) .

At room temperature the magnetic moments o f the particles are randomly oriented, 

which results in a zero net magnetisation of the ferrofluid (Fig. 6.5 a)). Upon the 

application of a magnetic field, thermal agitation competes with magnetic energy to 

produce an overall paramagnetic response (Fig. 6.5 b) and c)). Ferrofluids are o f su- 

perparamagnetic  type, as the small size of the magnetic particles leads to paramagnetic 

behaviour well below the Curie temperature o f their bulk material.

Fig. 6.5 c) shows the general response o f a ferrofluid to an external magnetic field. 

At low magnetic field strength, the magnetisation increases linearly, its slope providing 

the magnetic susceptibility x  o f the suspension. Upon increasing the external field the 

magnetisation saturates at a value A/5 .

In order to make ferrofluid foams, we simply replace the ordinary soap solution 

by a water based, ionic ferrofluid. The ferrofluid already contains SDS as a surfactant 

m olecule to stabilise the suspension. We usually increase the SDS concentration in 

order to make sure that we work well above the CMC of the solution.

If feiTofluids o f low susceptibility are used, the structural and hydrodynamic prop­

erties o f the foam remain unchanged upon the application o f magnetic fields. For high 

susceptibilities, however, particular care needs to be taken as strong magnetic dipole 

interaction leads to various effects influencing the viscosity o f the solution and the
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Water

Figure 6.5: Ferrofluids are suspensions of nano-metre sized magnetic dipoles in a liquid car­
rier. a) At room temperature and zero applied magnetic field the net magnetisation of a fer- 
rofluid is zero, b) Upon the application of a magnetic field, the dipoles align to give an overall 
paramagnetic response, which is sketched in c). x  magnetic susceptibility, Ms is the 
saturation magnetisation.

structural properties o f the foam  [62].

Initial work on the application o f ferrofluid foam s has been conducted by H utzler 

et al. [60], who used m agnetic field gradients to m anipulate ordered ferrofluid foam 

structures. The research introduced in this thesis extends their work w ith the generation 

(§8.1) and detection (§8.2) o f ferrofluid bubbles.



Chapter 7 

Rheology of ordered foams

7.1 Introduction

We have shown in §6.3 that the structure of an ordered foam is determined by its con­

fining geometry. Hence, by designing channels or containers of particular geometries, 

we cannot only control the structure of the foam, but we can use it to perform ’’logic 

operations” on the bubbles as the structure flows through these channel elements.

In the following sections we give a brief overview of our experimental procedure 

and the basics of our computational modelling. Even though the simulations have been 

entirely conducted by S. J. Cox or G. Delaney, they have been developed in very close 

collaboration and form an integral part of the motivation and outcome o f  this project. 

They therefore receive some consideration in this thesis.

Subsequently we demonstrate in a few striking examples how experiment and sim ­

ulation can be com bined very efficiently to purpose-design “building blocks” for a 

more complex network of channel geometries performing specific tasks of bubble m a­

nipulation.

7.2 Experimental set-up and procedure

M ost of our experiments were conducted with aqueous foams on millimeter scale. 

Adaptation to emulsions should be straightforward [58]. It remains to be seen how 

the downscaling to micro-fluidic length scales affects the properties of our designs. 

Apart from the fact that micro-structures will be very wet due to the strong capillary

89
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Figure 7.1: Setup for 2D-foam rheology; The channels were carved into a Plexiglas sheet, 
which was then glued onto another plain Plexiglas sheet. Monodisperse bubbles were injected 
into the horizontal channel system from a capillary by applying a constant (nitrogen gas) pres­
sure. The system was lit from below with an overhead projector topped with a light diffusing 
sheet. Images and videos were recoided with a digital camera from above and consequently 
analysed on the computer using ImageJ [61].

forces and that much higher pressures/forces will be required to drive the structures in 

the channels, we do not expect significant changes in the general principles dem on­

strated here. Initial experiments on ordered microemulsions by Seemann et al. (private 

communication) have been very successfull.

We worked with quasi-2D systems of typically 0.5 — 1.5 mm channel depth. For 

exploratory investigations these channels were created using a simple system of a rub­

ber sheet sandwiched between two glass plates. Channels of arbitrary shape can easily 

be cut into the rubber sheet.

For more quantitative investigations, we designed the channel geometries in Auto- 

cad. These were carved into a Plexiglas sheet, which was glued onto a plain Plexiglas 

sheet in order to close the channel.

Bubbles of equal volume were generated by injecting nitrogen gas (low diffusiv- 

ity) into Fairy dishwashing solution o f  0.4 % concentration (as in all the experiments 

before). They were collected in a capillary, which was attached to the channel system. 

The foam structure was then driven through the system by applying a constant gas 

pressure at the inlet. For a sketch of the set-up see Fig. 7.1.
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The quasi-2D setup has several advantages. Not only does it significantly simplify 

the observation, analysis and modelling, but it is more straightforward to manufacture. 

In any case, we believe that this will be the way to go for industrial applications, as 

most channel systems are generated by lithographic or stamping techniques, which 

will be significantly simpler for channels with rectangular cross-sections.

Images were recorded with a digital camera. Best image quality was achieved by 

placing the horizontal, transparent channel system between a diffusive light source and 

the camera. Due to the curved nature of the interfaces the films and vertex boundaries 

appear black in the images.

The reader should keep in m ind that surface Plateau borders are formed wherever 

films are attached to the channel walls. This does not only have an effect on the appar­

ent film thickness, but on the flow properties of the foam. It is a 3D-effect and can be 

neglected for m ost of the cases considered here. For higher flow velocities, however, 

it has to be taken into account (see §7.5).

7.3 Computational modelling

Com puter simulations are vital for the efficient design of channel systems and to test 

our physical m odels of foams and foam flow. For the purpose o f  modelling flow in flat 

channels it is sufficient to apply 2D-simulation.

Simplification can be taken further without losing significant physics by modelling 

perfectly dry foams. In such a system films are represented by lines (edges) and ver­

tices by the points, where these edges meet. The wetness of the foam can then be 

accounted for by adjusting the critical edge length at which neighbour switching pro­

cesses occur (refer to §1.3.2 and Fig. 1.5). The wetter the foam, the longer this critical 

length is going to be.

For reasonably low flow velocities we can assume quasi-static flow, whereby sim u­

lations proceed by a process of small increments in position and energy minimization, 

allowing the foam structure to move via a sequence of equilibrium states. This can be 

done with the software package Surface Evolver developed by Ken Brakke [16]. The 

required 2D foam structure is pushed in this way through the channel boundaries. Af-
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Figure 7.2: The Y-junction. a) Experiment and b) simulation of a channel geometry which 
divides a structure of two rows of bubbles into two structures containing one row of bubbles 
each. The reversibility of this process is demonstrated in c).

ter each step the total line length (energy) of the system is minimised, whilst keeping 

the bubble volumes constant.

For small flow velocities this procedure has proven very successful in reproducing 

the experimental observations. For higher velocities, however, viscous drag acting on 

the surface Plateau borders has to be taken into account. The magnitude of the critical 

velocity at which the quasi-static approach breaks down and the flow is dominated 

by viscous forces, depends on various parameters, of which the most important are 

the liquid fraction and the channel depth. Much of the work reported in section §7.5 

attempts to explore this dependence.

7.4 Examples of network elements 

7.4.1 The Y-junction

Branching channels can be used to sort bubbles into different parts of a network or 

to (re)combine them. The ratio of the channel widths of the branches determines the 

’’sorting algorithm”. A striking example is shown in Fig. 7.2, where one channel
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Figure 7.3: The Fhpper. a) Two or b) one “ Gaussian bumps” in a channel can be used to 
provoke controlled [2] —> [1] —> [2] transitions, which result in a re-sorting of the bubbles such 
that the two rows of bubbles are switched withing a single channel, b) is a computer simulation 
of the experiment shown in a).

containing two rows o f bubbles is split into two channels containing one row o f bubbles 

each. Fig. 7.2 b) shows an image of a computer simulation for this device. Note the 

incredible sim ilarity between simulation and experiment.

These processes are perfectly reliable and reversible. The reversibility is shown in 

Fig. 7.2 c). Here a double row o f bubbles is split into two individual ones, which are 

then brought together again to form the same double row structure. This type o f chan­

nel could furthermore be used to introduce a phase shift between the two rows o f bub­

bles by choosing an appropriate length difference between the two separate branches.

Specifically designed local narrowings or bulges in a channel can make use o f con­

secutive transitions between structures to re-sort bubbles w ith in a single channel. Fig. 

7.3 shows experiments and simulations o f two typical examples in which one or two 

’’Gaussian bumps”  cause a [2] ^  [1] —)• [2] transition during which the bubbles are 

resorted such that the two columns of bubbles switch sides in the channel.

Care has to be taken, however, about the in itia l configuration o f the double-row 

structure. When the foam flow is set up, one o f the bubble rows w ill be advancing the 

other by one bubble at the very beginning o f the foam structure. Depending on which

7.4.2 The flipper



94 CHAPTER 7. RHEOLOGY OF ORDERED FOAMS

Figure 7.4: The magic cross. Two crossing channels contain a single row of bubble each. The 
bubbles in the horizontal channel flow continuously. Upon the application of an appropriate 
pressure pulse in the vertical channel, a bubble from the horizontal channel (light gray) can by 
replaced with a bubble (dark gray) from the vertical channel.

row this is, the channel element will or will not switch them. More thought will have 

to go into a design that will work independently of this initial condition.

7.4.3 The magic cross

Bubbles can easily be added to, removed from or replaced in a structure using T- 

junctions or crosses of channels with individually controlled flow/pressure.

An example of a very versatile device is demonstrated in Fig. 7.4. Two crossing 

channels contain a single row of bubbles each. The main flow occurs in the horizontal 

channel from left to right. If the top vertical branch is closed (equivalent to T-junction), 

appropriate pressure pulses or pressure drops applied to the bottom branch result in the 

controlled injection or removal of bubbles from the main channel. If the top branch 

is open, which is the example shown in Fig. 7.4, a well timed pressure pulse results 

in a bubble from the main channel (light gray) being replaced by a bubble from the 

crossmg channel (dark gray).

Devices of this type could be very useful to inject tracer bubbles in a network, or 

to remove “bad” bubbles which failed a test at a detector. Most of all, it could be used 

to construct specific sequences of bubbles containing different chemical substances. 

A controlled breaking of films between them at a later stage could provoke chemical 

reactions or simply the mixing of minute quantities of gases (or liquids).
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Figure 7.5: Around the bend, a) Experiment and b) computer simulation of a neighbour 
switching process (§1.3.2) trapped in a foam structure flowing around a narrow bend. This 
generates a phase shift of one bubble between the two bubble rows.

7.4.4 Around the bend

The flow around a narrow bend induces a localised shear on the structure, which can 

be used to induce one or more controlled neighbour switching processes (§1.3.2). If 

applied continuously, this results in an effective phase shift of the bubble rows.

Fig. 7.5 demonstrates an example in which one neighbour switching process is 

trapped in a 180" bend, which induces a phase shift of one bubble between two rows 

of bubbles. The same is possible with more than one, say n, Tl-processes trapped in 

the bend, which results in a phase shift of n units between the bubbles.

Unlike in the other cases it is not sufficient to employ quasi-static models for a full 

understanding of the functioning of this device. Once a neighbour switching process 

has occurred in the bend, it can be modeled quasi-statically. The initial switching 

process, however, is triggered by the local shear of the sample structure, which is 

induced by the viscous drag on the walls and hence depends on the flow velocity. In 

order to tackle this problem we have developed a simple but powerful model, which 

has proven highly successful in reproducing experimental observations. In this context 

we revisit the bend in §7.5, giving a more extensive overview of the physics of this 

device and the related modelling.
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7.5 The viscous froth 

7.5.1 Introduction

In order to meet the industrial requirements of high sample throughput on a Lab-on-a- 

Chip, it will be important to consider the effect of high flow velocities on the methods 

introduced in the previous sections.

As we go down to smaller length scales, effects related to the channel walls will be­

come increasingly important with respect to bulk effects. At high flow velocities, one 

of the most dominant contributions is expected from the viscous dissipation of the sur­

face Plateau borders sliding along the channel walls. Questions related to this problem 

are very much at the core of current research activities in foam and emulsion rheology 

[75, 135, 19, 65]. It is not yet clear, what exactly the main dissipation mechanism is 

and how it is related to the physical properties of the bulk and interfaces. Despite these 

uncertainties, however, researchers have been able to show that the various contribu­

tions to the dissipation can be combined to a good approximation in one single drag 

coefficient A. This coefficient is defined such that it relates the drag force on a point of 

a surface Plateau border sliding along a wall to a power of the normal velocity vj_ at 

this point [17, 19, 20]:

where is the viscous force on a line. The units of A depend on the exponent a.

The interplay between the pre-factor A and the exponent a  is not yet clear as it 

involves a better understanding of the detailed hydrodynamics and interface dynamics 

involved [17, 110, 98, 133, 134, 57, 20], Traditional experiments of the flow o f indi­

vidual bubbles in tubes established a  =  2 /3  [17], which was confirmed by more recent 

work on quasi-2D foam flow by Cantat et al. [20], Current research seens to assign 

a  a range of values between 1/2 and 2/3, supposedly depending on the mobility o f the 

interfaces of the foam [36, 35].

We incorporate this local friction force in our 2D-modelling by adding :he velocity- 

dependent term (7.1) to the Laplace Equ. (1.2). The force balance acting locally at each

Vi se (7.1)
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P'Oint of the soap film therefore becomes

A p  = 2 j K - X  v l .  (7.2)

This relationship has already been established in the context of domain growth [54, 

127], The application to 2D foam flows turns it into the so-called Viscous Froth Model, 

introduced by Weaire et al. [128],

For an enormous simplification in the analysis and the numerical modelling we set 

a  = I [69]. We believe that this should leave the essential behaviour of the investigated 

systems largely unchanged. Detailed comparison between experiment and simulation 

will have to shed light on the fact whether this approximation is justified.

7.5.2 Example of the viscous froth: foam flow around a bend

We illustrate the strength of the Viscous Froth Model by applying it to foam flow 

around the tight bend introduced in §7.4.4.

For small flow velocities v, and hence in the quasi-static limit, the foam structure 

looks as shown on the left in Fig. 7.6. It flows around the bend without undergoing any 

topological changes. Upon increase of v, the viscous forces of the films being dragged 

along the top and bottom plate become of the order of magnitude of the surface tension 

force. Since the local velocity - and hence the viscous force - increases towards the 

outer boundary of the bend, a shear stress is imposed on the foam structure within the 

bend. For sufficiently high flow velocities this leads to a clearly visible distortion of 

the structure, as can be seen in Fig. 7.6. Simulations applying the Viscous Froth Model 

reproduce this distortion very well (bottom row of Fig. 7.6).

At a critical velocity Vc the shortest edge at the bottom of the bend flips to give a 

T1 (§1.3.2). Before this neighbour switching process sets in, all cells have 4 interior 

edges. Upon the flipping of the edge two pairs of 7- and 3-sided cells are generated, of 

which one pair follows the foam flow and leaves the bend. The other one mo''es into 

the bend to release the strain. This new topology generates a succession of neigbour 

switching processes for all the following bubbles (refer to Fig. 7.5).

As said in §7.4.4, this effectively shifts the two columns of bubbles with respect
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Figure 7.6: Comparison of tiie distortion of a foam structure going around a bend

to each other by one bubble. For even higher velocities, the structure w ill again be 

increasingly strained until another edge flips to give a second T l .  This can be driven 

even further, with n T l  processes resulting in a phase shift o f n  bubbles between the 

two rows o f bubbles.

Having the Viscous Froth Model at hand, we can make a range o f predictions about 

the behaviour o f the system as a function o f various parameters, which can then be 

tested experimentally. One o f the key quantities o f interest in this problem is the critical 

velocity Vc as a function o f various system parameters (e.g. bubble area, channel width 

and radius, liquid fraction, etc.). Simulations by S. Cox and G. Delaney [69] predict Vc 

to be inversely proportional to the bubble area for a perfectly dry foam.

The direct measurement o f critical velocities o f this nature in an experiment, how­

ever, are subject to significant errors. We therefore measure how the m inimum length 

L  o f the critical edge (see Fig. 7.7) changes with the foam velocity v. We do this by 

very slowly increasing v to provide quasi-steady conditions. By doing this we cannot 

only extrapolate Vc, but also determine the drag coefficient A by fitting the numerical 

prediction to the experimental data. This is possible, because A acts like a scaling pa­

rameter for the velocity in Equ. (7.2). Hence, by setting Ajin, =  1 in the simulation
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Figure 7.7: We measure the shortest edge length L as a function of foam flow velocity v (figure 
7.8). If this edge gets short enough, a Ti occurs.

whilst using the proper physical parameters for the other quantities, we can fit Ljim to 

Lexp using A as the fitting parameter. We do this by fitting the simulational data to the 

function

Lsim =  a + b (7.3)

via a,b and c. This function has no physical meaning, but fits the data very well. We 

then fit

•̂ exp a(2A t'exp) “1“ b (7.4)

via A, using a, b and c from Equ. (7.3). The factor 2 is included because friction occurs 

at the top and the bottom plate in the experiment.

The implementation of the surface tension in the model requires some more thought: 

In two dimensions, surface tension becomes a line tension (7 2 0 ). An edge of

length L in our experiment has an area A  =  L D ,  where D  is the depth of the channel. 

Since surface tension is defined as change of energy E  with change of area .4, we can 

write
dK dF, dl,  1

(7.5)
d E  d E  dL I

73D =  T T  “  T T  ~  72D -p:. l2 D  =  E> 73£).dA dL  dA  D

Therefore, in order to obtain the line tension of an edge in our system, we have to 

multiply the surface tension by the depth of the channel. The obtained value is then 

used in the simulations.

Fig. 7.8 shows a striking example for a very dry foam in a bend of 0.5 mm channel 

depth, 7 mm channel width and 1.5 mm inner radius of the bend. For this particular
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Figure 7.8: Experimental data showing how the minimum edge length L, shown in figure 7.7, 
varies with foam flow velocity v. Data from computer simulations (by G. Delaney) implement­
ing the Viscous Froth Model is fitted using A as fitting parameter.

setup and liquid fraction (cf) ^  1%) we obtain ~  1-9 rnm and A =  15 Nsm“ '̂ .

Sequences of experimental data from this experiment can only explore a fairly short 

range of velocities for two main reasons:

•  The velocities have to be increased very slowly to provide quasi-static flow con­

ditions (see §7.5.3).

• The liquid fraction of the foam structure changes during the experiment as a 

result of the foam flow and the applied pressure. This is a real problem, as A 

depends on the liquid fraction 0. In the future we w ill have to fit L  as a function 

of V and (I).

We have done this experiment for very dry foams. Future work w ill aim at estab­

lishing a relationship between A and a properly defined 2D liquid fraction.

Despite the excellent agreement between experiment and simulation, there are 

some important aspects arising from this work which deserve more attention in the 

attempt of testing the potential and limitations of the Viscous Froth Model. We w ill 

briefly illustrate the most important ones in the next sections.
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Figure 7.9: Effect of the long relaxation times in a quasi-2D geometry: The variation of L 
with foam flow velocity v depends significantly on how quickly the foam is accelerated.

7.5.3 Relaxation times

Viscous dissipation has a significant influence on how long it takes a 2D-foam to equi­

librate. In order to provide quasi-steady conditions in experiments, it will be important 

to understand the magnitudes of the various times scales involved.

Fig. 7.9 shows a striking example of how measurements o f  the edge length L (in­

troduced in the previous section) are influenced, if the foam flow velocity v is increased 

to quickly. In series 2 v was increased more rapidly than in series 1, leading to sig­

nificantly longer L  for the same velocity. We assign this to the fact that the the foam 

was accelerated more quickly than it could equilibrate. Hence, we deal with “out of 

equilibrium processes” , which are far more difficult to model and should be avoided at 

this stage.

7.5.4 Rules of Equilibrium with the Viscous Froth Model

Considering that for the description of a viscous foam a local friction force is added to 

the Laplace Equ. (1.2), it is obvious that the first rule of equilibrium (edges are arcs of 

circle, §1.2.2) is not obeyed by a viscous, flowing foam.

The second rule of equilibrium concerning the angles at vertices, however, is still 

obeyed. To see this, consider a small control area around a vertex which is subjected 

to the pressure, surface tension and drag forces imposed by the edges. If we now make
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Figure 7.10: The angles between films and channel walls deviate notably from the predicted 
90°. This deviation S increases very linearly with the foam flow velocity v. The slope depends 
significantly on the liquid fraction of the foam.

the control volum e infinitely sm all, only the surface tension forces rem ain. As they are 

equal for every edge, the angles between the edges m ust be equal, which gives 120° 

for in terior vertices and 90° for vertices at the wall. The m odel w ould therefore not 

predict a difference betw een a quasi-static and a viscous froth vertex.

In the experim ents we observe som ething very different. The m ost strik ing devia­

tion concerns the angles of vertices at the wall, which differ notably from  90° even for 

low foam  flow velocities. The drier the foam , the m ore evident this becom es. Fig. 7.10 

illustrates this effect for the sam e structure ([2]) with two different liquid fractions, 

which we have not quantified for the reasons expressed in §1.2.2. The m easurem ents 

are taken for the sam e channel cross-section (0.5 m m  x 7 m m ) and m aterial used for 

the U -bend in §7.4.4. They seem to suggest a linear relationship betw een the angle de­

viation 5 and the flow velocity o f the foam , the slope depending on the liquid fraction.
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Figure 7.11: For high flow velocities the interior angles of a 2D foam seem to deviate from 
the predicted 120°. Example: Plexiglas channel, width; 7 mm, depth: 0.5 mm, flow velocity 
V =  15 mm/s.

For the highest velocities considered here, it furthermore seems that the interior 

angles deviate from the expected 120°. For an example see Fig. 7.11. The word 

“seems” is used in this context because the precise angles at the vertex are very difficult 

to determine due to the curved nature of the edges.

Possible explanations of these effects are still rather vague and will require rigorous 

testing. Two very different reasons may be considered possible candidates:

1. Tangential dissipative forces: In the present model, only normal forces acting on the 

edges are taken into account. Recent work by Cantat et al. [20] confirms that this is 

indeed a good approximation for dry foams at low foam flow velocities. At higher 

velocities however, the liquid transport along the Plateau borders might contribute to 

a tangential viscous force. Unlike the normal force, this would have an effect on the 

angles at vertices, as it acts parallel to the surface tension force.

2. Marangoni effect: Bubbles being dragged between two plates or rising in a liquid 

are known to experience a redistribution of surfactant molecules from the front to the 

back as a result of the viscous drag along the gas/liquid interface (refer to §1.4). This 

results in a local variation of surface tension and hence a surface flow (Marangoni 

effect) directed opposite to the drag, which increases the total drag on the object. In 

case of the vertices this effect might lead to differences of the surface tension of the 

edges or the wetting film along the wall. This in turn would lead to non-equal angles.

Guidance in the exploration of the true nature of these effects may come from 

extensive research carried out on the motion of bubbles and bubble trains m tubes of 

various cross-sections [17, 110, 98, 133, 134, 57].
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7.5.5 Conclusions and Outlook

Using the simple experimental setup of an ordered, quasi-two-dimensional foam struc­

ture flowing around a tight bend, we have been able for the first time to qualitatively 

and quantitatively icsX the predictive strength of the Viscous Froth Model. Even though 

these investigations are very much at the beginning, we believe that the provided results 

already demonstrate the success of the Viscous Froth Model. Despite its simplicity, we 

find excellent agreement between experiments and simulations to the extent, that we 

can employ them to extract physical parameters like the viscous drag coefficient A of a 

foam film sliding along a surface. It remains to be seen how this A compares to similar 

experiments like those of Cantat et al. [20], keeping in mind that we have chosen a  = \ 

in Equ. (7.2).

Above all, it will be important to understand the detailed nature of the dissipation 

mechanism, in particular the role of the bulk versus interface properties and the liq­

uid fraction (j). Fortunately, modem research provides us with a vast range of liquids, 

surfactants and polymers to use as building blocks for thorough investigations of the 

individual parameters of interest. In this process it will be equally important to es­

tablish values for the exponent a  in Equ. (7.2). The quantification of an appropriate 

2D liquid fraction and its measurement, however, is still an open problem (see §1.2.2), 

which needs to be addressed in this process.

Understanding the precise interplay between A and the various relevant system 

parameters should enable us to fully purpose-design channel elements on the computer 

using the Viscous Froth Model. For this and other purposes it will be necessary to 

establish quantitative criteria of the various approximations that can be applied in the 

modelling of the foam flow. The key parameter for this distinction is likely to be the 

capillary number Ca =  which characterises the ratio of the viscous to the surface 

tension forces.

We have demonstrated some effects which cannot be accounted for within the Vis­

cous Froth Model. It will be important to understand their significance in order to de­

cide under which conditions they can be neglected or how they could be implemented 

into the existing model.
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Further questions arise regarding the dissipation of the T1 process itself. If a con­

tinuous pressure is applied to drive the foam through the channel, small pressure jumps 

should occur upon a T l .  Their magnitude would give information about the amount 

of energy dissipated in a T l  process. This might be the first step into investigating the 

bulk dissipation in a foam.
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Chapter 8

Bubble generation, detection and 
storage

8.1 Bubble Generation

8.1.1 Introduction

In order to control the type of foam structure present in a particular channel geometry, 

it is necessary to fine-tune the bubble volume. Bubbles are generally generated by 

injecting gas into a liquid at constant gas flux. The nozzle radius r  and liquid density 

P i control the critical bubble diameter Dc at which a bubble detaches from the nozzle 

for low gas flux Qg [46]:

For higher gas discharge, the bubble surface expands so quickly that the dynamic 

surface tension (§1.4) has to be taken into account, which results in bigger bubble 

volumes. For very high Qg the bubble volume is determined by the viscosity rji of the 

liquid, rather than the surface tension [46];

Adjusting the gas flow rate seems therefore a good param eter to set the desired 

bubble volume. Unfortunately, if the nozzle size is fixed, this method produces highly 

monodisperse bubbles only over a fairly small range of volumes.

(8 .2 )
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Figure 8.1: Bubbles are generated by blowing air at a constant flow rate through a nozzle into a 
ferrofluid pool at the bottom of a vertical Plexiglas tube. The nozzle is placed into a horizontal 
magnetic field created by two coils fitted with soft iron cores. At the top of the tube the local 
resistance of the generated foam structure is measured between two electrodes of different 
cross-section in contact with the foam.

We have been able to show that an elegant solution to this problem  is provided by 

injecting the gas into a ferrofluid-surfactant solution. The bubble volum e can then be 

varied very accurately over up to 3 orders of m agnitude by applying a m agnetic field 

gradient during bubble production [39]. In the follow ing we present data and a sim ple 

m odel, which describes the experim ental results very well.

8.1.2 Experimental set-up and procedure

For the continuous phase o f the foam , an ionic, w ater-based ferrofluid is used. In our 

case it is a dispersion o f m aghem ite (7 -F e2 0 3 ) colloidal particles in w ater at a volum e 

fraction o f 1.92 percent, stabilised by the presence of a negative electrostatic  charge
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at the surface of each particle [6], In order to achieve the required foam stabilily, two 

percent (by weight) of sodium dodecyl sulfate (SDS) are added as surfactant. Fig. 8.1 

shows the experimental set-up. The ferrofluid is injected into a vertical, cylindrical 

Plexiglas tube with an inner diameter of 7 mm. A monodisperse foam is produced by 

blowing air through a nozzle into the ferrofluid at a constant air flux Q a of  10 ml/min 

using a micro pump. The bubbles order in the tube. The foam structure which is 

formed depends on the bubble volume (as shown in Fig. 6.2). These structures are 

observed by video imaging. Since each of them corresponds to a particular num ber of 

bubbles per unit cell, the bubble volume can be derived from the num ber of unit cells 

filling a chosen section of the tube.

A magnetic field gradient is generated in the region of bubble production by placing 

the nozzle along the vertical line through the center of a two-coil system (Fig. 8.1 and 

Fig. 8.2), supplied with a direct current I. The coils are fitted with soft iron cores of 

height 21 — 30 m m, which form a gap of 12 mm. An air ventilation system prevents 

the ferrofluid solution from heating appreciably.

Fig. 8.2 shows the variation of the experimentally determined magnitude of the 

horizontal magnetic field H { z )  and its gradient between the two coils along the z-axis 

for 1 =  2 A.  For \z\ <  /, H{ z )  is roughly constant, whereas it decreases almost linearly 

with \z\ for \z\ ^  I.

The nozzle is placed at different vertical positions Zq in the magnetic field, and 

the variation o f  bubble volume with magnetic field strength is observed by varying the 

current through the coils. The effect of the strength of the current /  on the bubble 

volume V is found to strongly depend on the location of bubble production. For zq <  

— I the bubble volume increases with / ,  for zq >  + l  it decreases with I,  whereas it 

remams constant for —1 < z q < +1.  This indicates the important role of the field 

gradient in bubble size control. Above a critical current bubbles can even be observed 

to move downwards in the ferrofluid.

Fig. 8.3 presents data taken for different nozzle diameters d and different positions 

zq of bubble production within the region of positive field gradient {zq <  —I). For the 

purpose o f  fitting and plotting the data, the bubble diameter D  is used to represent bub-
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Figure 8.2: Magnetic field created by the pair of coils fitted with soft iron cores. On the right 
the shape of the field lines is sketched. The graph on the left shows the measured values of 
the amplitude of the horizontal magnetic field (full circles) and of the vertical magnetic field 
gradient (empty circles) along the z-axis for /  =  2 A. The amplitude of the magnetic field and 
the amplitude of the magnetic field gradient are proportional to I.  By placing the tip of the 
nozzle at the appropriate position a positive, negative or zero magnetic field gradient can be 
applied during the bubble formation.

ble size. As the current is varied betw een zero and 1.8 A, the bubble d iam eter is very 

reproducibly increased by a factor o f up to three. H ysteresis is not observed. The range 

o f accessible bubble volum es could in theory be much larger, since the bubble diam eter 

diverges as the current approaches a value o f about 1.8 A. However, the m onodispersity 

o f the foam  decreases noticeably when the bubble diam eter exceeds the tube d iam e­

ter, and also w hen the bubble extends over a region o f significant variation o f the field 

gradient.

We did not quantitatively investigate the decrease o f bubble volum e with increasing 

current in the region of positive field gradient, as the bubble d iam eter decreases very 

quickly to a value sm aller than the internal nozzle diam eter. This leads to very irregular 

bubble volum es, probably due to the w etting of the internal nozzle boundary by the 

ferrofluid.

In order to investigate w hether the dem agnetising field o f the ferrofluid (due to the 

m agnetic d ipolar interaction [101]) leads to a deform ation of the bubble during form a­

tion, we conducted accom panying experim ents of the sam e type using a H ele-Shaw  cell
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Figure 8.3: Bubble diameter D as a function of current through the coils at constant air Hux 
for two different a) nozzle sizes a and b) positions zq. The bubbles are generated in the region 
of positive field gradient. The lines represent the best fits of the data using equ. ( 8  '0). a) 
The two data sets correspond to measurements with different nozzle diameters d at the same 
position 2 o =  —21 mm. Circles: d =  0.84 mm, 7 /  =  39.1 x 10“ ^Nm'^ and d !3{z)\zq =  
1.91 X 10®Am“ ';  Squares: d =  2.5 mm, 7 /  =  38.4 x 10“ ^Nm“  ̂ and dz^{z)\zo =  2.26 x 
10®Am~^ b) The two data sets correspond to measurements with the same nozzle {d — 0.84 
mm) at different positions zq. Empty circles: zq =  -1 9  mm, 7 /  =  42.8 x  10~^Nm“ * and 
^z/3{z)\zo =  1.53 X 10®Am“ ^  Full circles: zq =  -1 7  mm, 7 /  =  45.0 x 10~^Nm~^ and 
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instead o f the Plexiglas tube. In this cell the ferrofluid is contained between two glass 

plates separated by a gap o f one millimeter, thus form ing a quasi-two-dimensional 

system, which allows easy observation o f bubble shapes. Fig. 8.4 shows an exam­

ple. Apart from the hydrodynamic deformation due to the rising o f the bubble in the 

ferrofluid, no additional deformation could be observed, indicative o f the negligible 

demagnetising effect o f the ferrofluid.

8.1.3 Modelling and analysis

The effect o f increasing bubble volume with magnetic field strength has already been 

reported fo r a quasi-two-dimensional cell containing ferrofluid submitted to a constant.
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Figure 8.4: Variation of bubbles size and initial shape with current 1 through the coils in a 
Hele-Shaw cell (quasi-two-dimensional), which was placed between the coils, (a) /  =  0; (b) 
/  =  1 A; (c) /  =  2 A; (d) /  =  3 A; (e) /  = 4 A.

peipendicular magnetic field [11], This effect was, however, interpreted as an effect of 

magnetic dipole interaction between the magnetic particles.

In the present case a ferrofluid is used whose concentration of magnetic paiticles 

is small enough for the demagnetising energy to be negligible with respect to interfa­

cial energy, as shown in our experiments in the Hele-Shaw cell. The influence of the 

magnetic field on the variation of bubble size then only depends on the existence of a 

magnetic force generated by a magnetic field gradient.

We develop a simple model of force balance, which very accurately reproduces the 

experimental data. The underlying idea is as follows. A magnetic field gradient gener­

ates a magnetic volume force on a bubble in a magnetic fluid [101]. Depending on the 

direction of the field gradient, the magnetic force results in the reduction or magnifica­

tion of the effective buoyancy of the bubble, which changes the critical bubble volume 

required for the detachment of the bubble from the nozzle.

Since our experiments in the Hele-Shaw cell show that no noticeable deformation 

of the bubbles takes place in the magnetic field, dipolar interactions within the fer­

rofluid are neglected in the derivation of the bubble volume as a function of the system 

parameters. Furthermore, all derivations are considered in the quasi-static limit, which 

is provided experimentally by choosing a very low air-flux (Q^ =  10 ml/min) for 

bubble generation.

A bubble detaches from the nozzle when the interfacial force F s  between nozzle
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and bubble, the buoyancy force F g and the magnetic force F m  on the bubble equalise. 

The interfacial force can be described by

F s  = -'K'ydfse^. (8.3)

Here d is the diameter of the nozzle, ") is the surface tension of the air-ferrofluid in­

terface, is a unit vector pointing upwards, and Js  is a correction factor close to 

unity [3], This is a rather crude model, but has proven sufficient for a very accurate 

description of the experiments conducted here.

The buoyancy force is given by

F g = : \p g V e , ,  (8.4)

where Ap is the density difference between the continuous (ferrofluid) and dispersed 

(air) phase, g is the gravitational acceleration and V' is the volume of the bubble.

The derivation of the magnetic force on the bubble requires a closer look at the 

physical properties of the ferrofluid - bubble system. The maghemite particles in the 

ferrofluid carry a permanent magnetic moment. In response to an applied magnetic 

field, theimal agitation competes with the magnetic energy, which tends to align the 

particles in the same direction as the external field. The resulting macroscopic' mag­

netic behavior of the solution is of paramagnetic type, the magnetisation M{ H )  of the 

ferrofluid having the same direction as the applied field H . M { H )  was experimentally 

determined using a Foner device [7]. The obtained data for the magnetisation, see 

Fig. 8.5, can in principle be described by a Langevin model, taking into account the 

polydispersity of the particles [10], However such a model does not give an analytical

expression for the magnetisation, making further derivations difficult. Alternatively,

the experimental data can be fitted very accurately using the empirical expression:

( 8 .5 )
Ms  + xH

where x  and Ms are the m agnetic susceptibility and the saturation m agnetisation o f  

the SDlution respectively. In our case: x =  0.176 ±  0.001 and M s  =  5230 ±  10 Am“ ^
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Figure 8.5: m agnetisation o f tiie ferrofiuid-surfactant solution as a function o f tiie applied 
external m agnetic field, perform ed using a Foner device [7], Solid line: best fit o f data using 
Equ. (8.5).

The magnetic force on the bubble can be found by noting that a non-magnetic 

bubble inside a magnetic fluid of magnetisation M{ H )  is physically equivalent to a 

magnetic bubble of magnetization —M{ H )  inside a non-magnetic fluid [111,  112]. 

Therefore, the magnetic force acting on the bubble is given by [101]

F m = ■ V) H.  (8.6)

In the region of bubble generation, the vertical components of the magnetic field 

and the ferrofluid magnetisation are negligible in comparison to their horizontal com­

ponents. Using furthermore the Maxwell Equ.s V  x  H  = 0 and V ( M  +  H)  — 0, the 

magnetic force on the bubble can be written as:

F m  =  f8.7)
oz

where H{z ,  I )  is the magnetic field strength as a function of position 2  and current /  

through the coils. Although local horizontal forces occur in the system, they can be 

neglected in the derivation. For symmetry reasons they would only slightly deform the 

bubble but not result in a net force on it.
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2: vertical position
Zq position of the nozzle
I current through the coils
7 surface tension of the ferrofluid - SDS solution
d internal nozzle diameter

A p density difference between air and ferrofluid
9 gravitational acceleration

f s correction factor (close to unity)
constant of magnetic permeability

X magnetic susceptibility of the ferrofluid (in low fields)
Ms saturation magnetization of the ferrofluid

P{z) coefficient relating the coil current I  and local magnetic field strength H

Table 8.1: Overview of variables used in this section.

Since H{z ,  I )  is proportional to /  it can be written as

H { z J ) = P { z ) I ,  (8 .8 )

and

= d , H{z ,  I )  = ^ 1 ^ /  =  d , P{z) I ,  (8.9)
oz  o z

where f5{z) depends on the position only and can be determined for the particular 

experimental set-up using a Hall-probe (see Fig. 8.2). Equating F g  + F q +  F ^  =  0 

(Equ.s (8.3), (8.4) and (8.7)) and using Equ.s (8.8) and (8.8), allows to determine the 

bubble diameter as a function of nozzle position zo and the current I  through the coils:

D ( 2 „ , / )  =  ( 5 v ) j  =  ( - --------------
"tt - /io 5^/3(^)|^o/'

where M { zq, I )  is given by Equ.s (8.5) and (8.9):

Ms + xPi^o) I

Formula (8.10) is in accord with our experimental observations: the bubble di­

ameter D  increases with I  when the gradient dzH{z ,  I)\z^ > 0 for zq < —I, it de­

creases with I  when d z H { z ,  /)|^g < 0 for zq >  — I, whereas it remains constant when 

dzH[z,  I)\zQ =  0 for +l > zq > —I. If the applied field gradient is positive, the bub­

ble diameter diverges when the denominator in Equ. (8.10) tends to zero for a critical
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current 1^, which corresponds to the situation where the magnetic and buoyancy force 

on the bubble equalize. In our experiments this is the case for /(, ~  1.8 A. For currents 

above this value the magnetic force on the bubble is strong enough to force it to move 

downwards in the ferrofluid.

Equ. (8.10) is fitted to the data (8.3) using two fitting parameters: the product 7 /5  

and the gradient !3{z)\zq. This was necessary because neither of these values could be 

determined with sufficient accuracy. Although approximate values for ^{z) \ 2 q were 

obtained from measurements of ^{z)  using a Hall-probe (Fig. 8.2), they vary signifi­

cantly with position across the region of bubble formation and were therefore only used 

as starting parameters in the fitting procedure. The fitted product 7 /5  is of the same 

order of magnitude for all sets of data, on average: 7 /5  =  (41.3 ±  3.1) x 10“  ̂ N m “ ‘. 

This is a reasonable order of magnitude since 7  30 x 10“  ̂ N m “  ̂ for a solution of

SDS in water [92], and f s  is of the order of unity [3]. The fitting results for P{z )\zq 

(see caption of Fig. 8.3) are usually within 15 % of the experimentally obtained values.

8.1.4 Conclusions and outlook

We showed that the application of ferrofiuids and magnetic field gradients provides a 

highly reliable and precise method for the generation of very monodisperse bubbles 

with volumes ranging over up to three orders of magnitude. A simple model of force 

balance can be used to predict these volumes to high accuracy, if the field gradient, the 

surface tension and the nozzle specific factor f s  are known for the system.

Even though demonstrated for gas bubbles, the introduced methods will equally 

apply to droplets.

A related application may be the use of an appropriate magnetic field gradient to 

precisely balance gravity, so that bubbles can be made free-floating in a ferrofluid. 

We have been able to do this experimentally for small bubble clusters. If this can 

be achieved with sufficient uniformity over large volumes, it will offer a convenient 

alternative to microgravity experiments in space or on parabolic flights [82, 1241

In general, the use of ferrofluid foams provides a new dimension of remote manip­

ulation. Hutzler et al. [60] demonstrated, for instance, how appropriate magnetic fields
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can trigger transitions between ordered foam structures or twist them.

The introduced methods of bubble volume control may only be appropriate for 

micro-litre bubbles. In order to go down to the nano-litre scale required by microflu- 

idics, other methods may have to be invoked. This is because on this length scale 

surface tension forces dominate all processes. A very promising candidate is the cap­

illary flow focusing method, based on the breakup of a gas ligament surrounded by a 

co-flowing liquid. This produces highly monodisperse nano-litre bubbles [50, 49],

8.2 Bubble detection

8.2.1 Introduction

Differences between the physical properties of the two phases of a foam or emulsion 

can be used for sample counting and sample volume measurements. There are a variety 

of properties to chose from: optical, acoustic or conductivity.

In this section we demonstrate how conductivity measurements in a foam can be 

applied for this puipose.

8.2.2 Experimental setup and procedure

In these experiments only the [100] (“bamboo”, as in 6.2) and the [211] (“staircase” , as 

in 6.2) structures are considered. We are still using ferrofluid foams. This is because 

their ionic nature makes them highly conductive; and we consider this work as an 

extension of the previous section. Any other (less fancy) conducting and foaming 

solution would suffice for these purposes.

Bubbles are continuously generated at the bottom of the vertical tube at a gas 

flux Q, which causes the foam structure to rise at a constant velocity (approximately 

2.5rr.ms“  ̂ in our case). The local resistance R f of the foam structure is measured in­

directly by determining the voltage U across a reference resistance R  = 10 kQ , which 

is in series with R p  for an applied voltage Uq =  0.5 V. For a sketch of the setup refer 

to Fig. 8.6. An alternating voltage (frequency: 10 kHz) is applied to avoid electrolysis 

at the electrodes, and a lock-in amplifier is used to measure the voltage U in phase
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Figure 8.6: Two small electrodes implanted into a tube probe the local resistance of a foam 
structure.

with Uq. In order to achieve a sensitivity of the measurement to the foam structure, 

the electrodes have different cross-sections Sy =  1.1 mm^ and S 2 =  12 mm^. They 

are made of conducting wire of diameters being smaller than the spacing between the 

Plateau borders of the foam structure.

8.2.3 Observations and interpretation

Foams contain a network of Plateau borders, which are formed where foam films meet 

or touch the container wall. Since the Plateau borders contain most of the liquid, foams 

can be considered equivalent to a network of conducting wires between the electrodes 

[125]. Since the cross-sections of the electrodes are smaller than the separation of 

the Plateau borders, the detected signal U reflects the structure of the foam. As the 

structures are penodic and flow within the tube at a constant velocity, the signal U 

is periodic in time, being superimposed upon a constant signal due to a conducting 

wetting film of ferrofluid around the inside of the tube. Typical data for the bamboo and 

staircase structures are displayed in Fig. 8.7. A peak in the electrical signal is recorded 

whenever a Plateau border is in contact with one or both of the electrodes. In the case 

of the bamboo structure, both electrodes are in contact with the same Plateau border at 

the same time, giving a regularly spaced sequence of identical spikes in conductivity 

(8.7 (I)). A more complicated signal characterises the staircase structure (Fig. 8.7 (II)). 

When one electrode touches a Plateau border, the other one is only in contact with 

the wetting film. This leads to the occurrence of two alternating peak heights in the
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Figure 8.7: Signal (7 as a function of time obtained for the (I) bamboo and ( I I)  staircase struc­
ture. I a) Configuration in the tube when the signal is at maximum; I b) Theoretically expected 
signal profile; I c) Experimentally detected signal. I I  a) The two possible configurations in 
the tube when the signal is at maximum - corresponding to two different peak heights; I I  b) 
Theoretically expected signal profile; I I  c) Experimentally detected signal. The deviation from 
the expected signal is due to the fact that the electrodes where not placed at exactly the same 
height in the tube.

periodic signal . The small peak is recorded when the smaller electrode is in contact 

with a Plateau border (Fig. 8.7 11(a) left), whereas the large peak corresponds to the 

case where the bigger electrode is in contact with a Plateau border (Fig. 8,7 11(a) right).

Since in both structures each peak in the signal corresponds to one bubble, thresh­

old techniques can be applied for the counting o f bubbles. Furthermore the period r  

of the signal can be used to calculate the bubble volume \ ' independently o f the liquid 

fraction o f the foam

where Q a is the gas flux for bubble generation, and c is a structure dependent constant 

with c =  1 for the bamboo structure and c =  1/2 for the staircase structure.

V ' =  cQ a t , (8 . 12)
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Figure 8.8: Possible setup for detection of the foam structure as a function of position in the 
channel by use of multiple electrodes.

In many applications it will be desirable to determine the bubble volume without 

taking into account the air flux. This could be achieved by using a set-up of several 

pairs of unequally sized electrodes along the tube or channel (see Fig. 8.8), Vvhich 

would allow the measurement of local conductivity of the structure versus position in 

the tube instead of versus time. However, when using this method, the liquid fraction 

of the structure has to be taken into account.

8.2.4 Conclusions and outlook

Bubbles can be detected in a straightforward m anner by utilising the conductivity of 

the films separating them. These type of ’’clocking machines” can be com bined with 

the bubble generation and manipulation in various feedback loops. Furthermore they 

can be used to trigger certain actions, for instance the removal or injection of bubbles 

at certain points in the channel network.

In many applications it will be important to probe the type of structure present in 

a channel without actually having to look into the channels. M ultiple electrodes of 

various sizes may prove to be a practical solution to this problem, in particular because 

the evaporation of electrodes onto micro- and nano-chips is a com m only  used and 

much tested technique today.

As already mentioned, there are various more physical properties waiting to be 

explored for this kind of purpose. Am ong them are, for instance, optical transparency
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Figure 8.9: Example of a channel arrangment which could be used for sample storage and 
analysis purposes.

or the propagation of sound.

8.3 Sample storage and analysis

Traditional microfluidic systems lack an efficient connection between the microfluidic 

chip, the micro-assay (well plate) and sample storage. Our proposed technology solves 

this problem very naturally, as all three systems can be accom modated and easily con­

nected by simply designing appropriate channel geometries for the required purposes.

Possible examples are plentiful. The most obvious geometry for a micro-assay and 

storage device would be a serpentine channel containing a single column of samples. 

Fig. 8.9 shows an example of this type of device with two rows of samples in the 

channel. Another promising possibility would be to arrange a spiraling channel on 

a chip of conventional CD format. This would allow to built on the knowledge and 

technology already developed for traditional CD purposes.

If the channel system is sealed properly and diffusion between samples prohib­

ited, the system can be stored for a very long time. These timescales depend on the 

chemistry of the system.
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Chapter 9 

Conclusions and Outlook of part III

In this part of the thesis we introduced a novel method of sample manipulation for 

microfluidic applications, based on the interaction between ordered sample structures 

and channel geometries. We have termed this technology Discrete Microfluidics.

The proposed approach would have many advantages over current practice. We 

believe that it could not only solve several of the problems encountered in fluid/gas 

sample handling, but also has the potential to generate a plethora of exciting new 

possibilities of sample manipulation, analysis and storage. In an attempt to give an 

overview of the basic ideas of Discrete Microfluidics this thesis could only touch on 

most of these issues. Various aspects of the method will have to be thoroughly investi­

gated in order to explore the feasibility of the proposed technology for the vast range 

of applications in this field.

Most importantly, we have to find out about possible problems entailed upon down- 

scaling of the proposed methods to the scales required by microfluidics. We would 

like to emphasise, however, that not every promising application requires microfluidic 

dimensions. Even on millimeter scale we could envisage interesting opportunities, for 

instance in the production of medical pills, the analysis of environmental gas samples 

or blood samples.

The investigation of various surfactants will become a key issue for chemically 

sensitive applications. Chemists have provided the research community with a broad 

range of surface active molecules (ionic or non-ionic), from which the appropriate 

ones can be chosen. The food industry is a major driving force in developing foams
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and emulsions stabilised by pailicles instead of molecules.

Associated with this aspect is the question of diffusion of chemicals between the 

samples. The continuous phase will have to be chosen very carefully to prohibit or 

reduce diffusion. In some cases, however, it might be of interest to allow a certain 

amount of controlled diffusion for mixing purposes.

For some applications it might be advantageous to use the continuous phase as 

sample material. The volume of the often expensive substances could then be reduced 

easily down to 0.5 % of the channel volume, whilst keeping reasonably big channels.

The implementation of magnetic fluids and specifically designed magnetic fields 

adds an additional exciting dimension of remote manipulation. We have demonstrated 

its usefulness for sample generation (§8.1). We could also show how using ferroflu- 

ids for the continuous phase allows to deform and twist sample structures, provoke 

transitions between them and to locally vary the volume fraction using magnetic fields 

[60].

In our simple, big-scale geometries it was possible to move the sample structures 

simply by applying a pressure at the inlet of the channel system. For more complicated 

networks on smaller scales this will not be sufficient. Alternative m ethods will have to 

be developed. These could either be based on methods already used in continuous or 

digital microfluidics, or exploit some of the particular strength of the discrete nature 

of our system. Magnetic fluids, for instance, could be employed to drive the structures 

through the channels using traveling magnetic fields. For this purpose, the magnetic 

fluids could either constitute the continuous phase or a certain num ber of the dispersed 

samples. These magnetic droplets could easily be added to and rem oved from an 

existing structure using, for instance, the method proposed in §7.4.3. Dielectric media 

in combination with electric fields might prove equally promising.

For future applications it will be essential to design m ethods for the controlled 

merging and splitting of samples. Using lasers to ’’pop” individual films between sam ­

ples has proven very successful for foams. The development of channel sections with 

adjustable wetting properties may be just as promising. The splitting of samples has 

been successfully demonstrated using suspensions of low volume fraction in a pointy
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Y-junction (like Fig. 7.2) witli only one column of samples (bam boo structure) in the 

bigger channel.

The minimization of interfacial energy and the forces associated with it, could be 

utilized for various other aspects. One of the more obvious examples would be the 

design of valves. If a channel geometry is designed such that the interfacial area of a 

structure increases or decreases more quickly by moving into one direction than into 

the other, it could potentially be used as a rectifier.

In the long run it would be useful to create dynamic channel designs, which can 

change shape to adjust to the required task. For instance, the ’’bum p” in the switching 

element in Fig. 7.3(c) could be varied in shape depending on whether sample columns 

have to switch sides or not. Again, magnetic fluids might be a very promising candidate 

for this purpose.

To sum up: we to have introduced basic concepts of very exciting and commercially 

attractive tools for the handling of small liquid and gas samples. We have been able to 

demonstrate their key features and are looking forward to exploring the vast landscape 

of scientific and applied opportunities opening up in front of us.
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Appendix A

Drainage in a solidifying metal foam
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A.l Introduction

In the m etallic foam  fabiication process developed by the F raunhofer Institute (Bre­

m en) [9], a foam ing liquid metal is frozen to create a solid m etallic foam . The M et­

Foam  program  m odels this process, to enable the prediction o f quantities such as freez­

ing tim e and the degree of inhom ogeneity in terms o f the physical param eters for a 

particular system . A screenshot o f the software tool is shown in Fig. A .l .

The sim ulation starts from  a state where the foam  is fully expanded and m olten, 

and then m odels the process o f solidification. Since the foam cannot solidify instanta­

neously, there m ust be a certain am ount o f drainage which m akes the solid  foam  inho- 

m ogeneous. For an in-depth discussion of the m athem atics and the necessary physical 

assum ptions, the user is referred to the publication [29]. We give here a brief synopsis 

to enable the interested user to make a start in applying the package to his particular 

situation.

I A p I ( H S

of nwa cii#acty

Figure A .l: Screenshot of the “MetFoam” software tool. It allows the user to input a broad 
range of parameters to simulate the competing drainage and solidification process in a metal 
foam.
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A.2 Theory

In the simulation the foam drainage equation [119, 125, 128]

d(t)i d{(j)iu)
dt dz

and the heat flow equation

(A.l)

(A.2)

with hquid fraction

0, = NA (A.3)

and liquid flow velocity

are simultaneously solved for one dimensional solidification and drainage using a finite 

difference method. For the meaning of the variables refer to table A.I.

The program allows the input of the physical parameters given in table A.2. Ta­

ble A.3 summarises the various pop-up menus which can be used to specify the initial 

profiles of viscosity, heat capacity and Plateau border distribution. The default values 

used in the program are approximately those of pure aluminium. About the values 

used for viscosity and surface tension needs to be said that they are not well known as 

the influence of additives and oxidation in the foam production is not fully understood. 

The computational parameters in table A.4 are those which can be adjusted. In partic­

ular, reducing A x  or A t (but keeping the ratio A x / A t  small) will generally improve 

stability at the expense of increasing computational time.

A.3 Assumptions 

A.3.1 Viscosity

The variation of the metal’s viscosity with temperature is represented by a step function

Vrnax Vm in (A.5)
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symbol explanation
t time
z position (2 =  0 at top of foam)
P metal density
9 gravity
K thermal conductivity of metal

T{ z , t ) temperature (in Kelvin)
A{z , t ) average Plateau border area at height z
N{ z ) number of Plateau borders per unit area

crossing horizontal plane at height z
M z , t ) relative density of foam
u{z,  t) fluid velocity
V{T) viscosity of metal (see §A.3.1)

C, ( T) specific heat capacity at constant pressure (see §A.3.2)

Table A.l: Variables used in solving the drainage and solidification equations.

quantity symbo unit default
value

initial temperature K 1500
freezing temperature Tf K 900
cooling temperature at bottom K 300
cooling temperature at top K 300
foam height m 0.1
gravity (J ms~^ 9.81
metal density P kg 2700
thermal conductivity K i r m - i /v '- i 200
surface tension 7 Nm~^ 10

Table A.2: Physical parameters that can be manipulated in the program.

where the maximum {rjmax) corresponds to the solid and the minimum {rimin) to the 

liquid state. The parameter measures the range of temperature over which the vis­

cosity changes between rimax and /7mm- T f is the freezing temperature of the metal. 

The parameters rj^ax (etaMax), rjmin (etaMin) and (W) can be chosen in the pro­

gram in a separate window that appears after clicking the “viscosity profile” button.

The default values used in the program are:

r]max (etaMax) 10^ N s  m  ^

r]rmn (etaMin) 1 N s
Wr, (W) 10 K -^
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quantity sym bo unit note
viscosity o f metal V{T) N s see §A .3 .1
specific heat capacity of metal c . J k g - ^ K - ^ see §A.3.2
average num ber of Plateau borders

per unit area at height 2 N m ~ ‘̂ see §A.3.3
average Plateau border area

at height z A{ z , t ) m2 see §A.3.4

Table A.3: The available commands for setting initial profiles.

num ber o f space inter­
vals

each of length A x

length o f tim e interval 
(in s)

length o f tim e step A i

num ber o f iterations be­
tween plotting

num ber of finite difference steps betw een the re­
plotting of the graphs

num ber o f iterations be­
tween printing

num ber of finite difference steps betw een writ 
ing data into file

m axim um  num ber o f it­
erations

the sim ulation will be interrupted after this 
num ber of finite difference steps, if you choose 
0 (default value) the sim ulation will run until 
the foam is frozen

file name The data (param eters, z, 0/, .4, T, N,  rj, Cp) 
is written into this file, which will be stored in 
the ’’data” directory of the M etFoam  program . 
Be careful: choosing a file nam e that already 
exists will result in O V ERW RITIN G  the old 
one.

Table A.4: Computational parameters that can be manipulated in the program.

A.3.2 Heat Capacity

The tem perature dependence of the heat capacity (at constant pressure) is chosen to be 

of the shape of a Gaussian

where the peak represents the latent heat o f freezing. (7° is the heat capacity  away 

from the freezing point, L j  the latent heat of freezing and Tj  the freezing tem perature 

of the metal. Wcp determ ines the width of the peak. The param eters (7° (Cp), Lf  (L)
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and Wcp (W) can be chosen in the program in a separate window that appears after 

clicking the “heat capacity profile” button.

The default values used in the program are:

Lf  (L) 3.78 X 10  ̂ Jkg-^
IFc, (Wc) 10 K

(Cp) 900 Jkg-^K-^

A.3.3 Initial Profile of Number of Plateau Borders per Unit Area

The initial profile of the number of Plateau borders N{ z )  crossing a horizontal plane 

at height z per unit area relate to the bubble size distribution in the sample. In the 

program the general cubic function

N{ z )  =  a{z  — eY  +  b[z — e)^ +  c{z — e) +  d (A.7)

is provided, which can be used to generate a variety of initial profiles by manipulating 

the parameters a,b,c,d and e .

The default values used in the program are for a constant profile:

a : 0 d : 10'*
b : 0 m~'  ̂ e : 0 m
c : 0 rrr^

A.3.4 Initial plateau border area

The initial profile of the Plateau border area A(z) at height z can be chosen by manip­

ulating the parameters of the cubic function

A{z)  =  a{z — e)  ̂ +  b{z — e)^ +  c{z — e) +  d. (A.8)

The default values used in the program are those for a constant profile::

a : 0 m~^ d : 10“ ®
6 : 0  — e : 0 m
c : 0 m
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A.4 Running the program
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The program is written in Java (user interface) and C++ (calculations). It requires Java 

version 1.2 or later which is available for free download from

h t t p : / / w w w . j a v a . s u n . c o m /

If you want to run the program under Windows use MetFoamWindows. If you 

want to run it under Linux use MetFoamLinux.

Because the program works with dynamically linked libraries you have to set the 

environment variable LD-LIBRARY _PATH to the MetFoamLinux/MetFoam Windows 

directory. If you are not sure how to do this, refer to appendix A.5.

To run the program make sure that the location of the Java interpreter is in the search 

path of your computer, change into the MetFoamLinux/MetFoam Windows directory 

and type at the command prompt:

j a v a  MetFoamFrame

Before running the program you can choose a variety of parameters and profiles 

(refer to section A.2 and A.3).

A.5 How to set Environment Variables 

A.5.1 Linux

The procedure for setting the environment variable depends on the shell you use. For 

example,

c-shell: s e t e n v  LD_LIBRARY_PATH < p a th > /M e tF o a m L in u x
ba-shell; e x p o r t  LD-LIBRARY_PATH=<path>/MetFoamLinux

< p a t h >  is the path to the MetFoamLinux directory on your computer. If you do not 

want to set the variable every time you log on to your computer or change the shell, 

add the corresponding line to either your .cshrc (c-shell) or your .bashrc (ba-shell) file. 

The variable and its path should now appear in the list when you type p r i n t e n v  or 

env .
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A.5.2 Windows

Open the command Hne tool (e.g. MS DOS Prompt) and type

set LD_LIBRARY_PATH=<path>\MetFoamWindows 

where <path> is the path to the MetFoamWindows directory on your computer.



Appendix B 

Inertial forces in the meandering 
rivulet

Here we give the detailed derivation of Equ. (4.8) from §4.3.2.2.

We choose the frame of reference to be that o f  the lab, with the x-coordinate parallel 

to gravity. For an illustration see Fig. B . l ,  for a summary of the variables used in this 

section refer to Table B .l .

ho y

Figure B .l: Geometrical description of the meandering rivulet as sinusoidal wave. The frame 
o f reference is chosen to be that of the lab.

Let us assume that the small-amplitude meandering rivulet of regime 2 (Fig. 4.8) 

can be approximated by a sinusoidal wave h{x,  t),  with amplitude ho

h { x , t )  =  (B .l)
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variable description
x , y Cartesian coordinates; reference frame is the lab; x  is par­

allel to gravity
^ x i unit vectors along x  and y

et unit vector along the tangential of the rivulet, et = et{x, y)
t time
Q flow rate

area of the Plateau border cross-section
U average velocity of the liquid flow in Plateau border
V phase velocity of the travelling wave
K curvature of the rivulet

h{x, t) wave form of the rivulet
ho amplitude of h[x, t)

k, w wave vector and angular frequency the meander

Table B.l: Summary of variables used in this section

Here, t is time, and k  and w  are the wave vector and the angular frequency, respectively.

We take the rivulet to consist of two separate Plateau borders connected by a thin 

film (regime I in Fig. 4.2). This is the case for plate separations of D  >  1.4 mm, which 

we determined by combining the experimental results for the flow rate Qi at the onset 

of the instability for various plate separations and the variation of the rivulet width 

i r  with flow rate Q. The amount of liquid flowing in the film is negligibly small in 

comparison to the contribution of the Plateau borders and is therefore neglected. The 

film therefore solely serves to provide a stabilising surface tension force.

Let us assume that the wave amplitude is small enough so that the average fluid 

velocity u{x,  t) can be taken as constant U along the rivulet. As a result of the constant 

flow rate Q  applied at the top, this assumption leads to a constant area a{x, t) =  A p s  

of the Plateau border cross-section, with

Q =  2ApB U. (B.2)

This basically means that we consider the rivulet to be of quasi-one-dimensional na­

ture. Measurements of the variation of the the width of the undulating rivulet in the 

experiment confirm that this assumption is justified.

Let us look at the forces acting on a small section of the rivulet. The assumption
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of small wave amplitudes allows us to neglect terms of second order in h{x, t) in the 

following derivations.

The total velocity v{x, t) of a fluid element is given by the super-position of the 

liquid velocity and the horizontal motion of the rivulet:

C y  (B.3)

with

t = 6x + ik h{x, t ) .  (B.4)

For the acceleration we therefore find

dv

_  f d t  ^  dt d x \  ^  f d ‘̂ h{x, t )  ^  dx
dt dx dt j  \  dxdt dt J  ̂ (B.5)

=  + 2cokU -  k'^U^) h{x, t) 6y

= —(a; — kU)‘̂ h{x, t) Cy

Using the fact that the local curvature k of the rivulet is given by

d'^hix, t) , , ,  ,
K = — —  =  - k  h{x, t), (B.6)

and the phase velocity V (which we measure in the experiment) by

' ■ = 1'

we can rewrite the acceleration in Equ. B.5 as

a =  — (V — D")  ̂ k^h{x, t) Cy 

=  {V -  U f  K ey.

This acceleration leads to a destabilising inertial force Fc (per unit length)

(B.8)

Fc — “̂ApBPiV — U)'^Key, (B.9)

which is Equation 4.8 from §4.3.2.2.
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