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Abstract

The area o f  delay-tolerant netw orking (DTN ) is concerned with highly challenged 

netw orks in which application layer “sessions” com m only lack contem poraneous end-to- 

end connectivity . For exam ple, efforts to create netw orks involving M ars orbiters m ust 

deal w ith visibility constraints that mean that devices are not contactable for extended 

durations. Som e w ireless sensor netw orks, (where sensors are only occasionally  

contactable, for pow er m anagem ent or location reasons), also im pose sim ilar netw orking 

challenges.

C urrently , the m ost im portant technique used in delay tolerant netw orking is based on the 

overlay netw ork approach as exem plified by the bundle protocol. The bundle protocol is 

essentially  a store-and-forw ard protocol that can be layered above a range o f  low er-layer 

protocols via a. (so-called), convergence layer. Convergence layers often use standard 

transport protocols, like UDP or TCP, but som etim es m ake use o f  m ore esoteric protocols, 

such as a file based transport via USB token. There is also a delay-tolerant point-to-point 

protocol called the Licklider Transm ission Protocol (LTP) that is designed to be used by a 

convergence layer on very high latency links, as m ight be encountered in deep-space 

com m unications.

As an overlay netw ork that has to be able to run over various lower layers, the bundle 

protocol cannot be optim ally efficient in all such cases. Som etim es, fields w ithin the 

bundle protocol will replicate inform ation present at low er layers. This is an inherent 

consequence o f  being a low er-layer agnostic overlay and is not in itself, a flaw. H ow ever, 

it does m ean that there is an opportunity to develop an alternative protocol that is more 

tightly  bound to som e specific low er-layer (e.g. UDP or IP), and hence can be more 

efficient in cases where that low er-layer is in use for all “hops” betw een source and 

destination.

This thesis describes such protocols, which we term DTN transports, and specifes a 

specific DTN transport protocol, (a variant o f  LTP), called LTP-T, for “ LTP transport.” 

There are a num ber o f  other benefits to addressing D ITM requirem ents at, essentially, layer 

4 o f  the OSI reference m odel. W ith LTP-T for exam ple, we specify a more determ inistic
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placem ent o f  the nodes in the store-and-forw ard network where storage occurs, thus 

leading to m ore reactive error recovery in m any cases.

Thus, the m ain thesis o f  this work is that DTN transport protocols generally, with LTP-T 

as a proof-of-concept, provide an alternative to the overlay approach, (as exem plified by 

the bundle protocol), that is som etim es better suited to handling delay and disruption. Our 

conception o f  a DTN transport protocol is the substantive contribution o f  this thesis to the 

area o f  delay-to lerant networking.

To evaluate LTP-T we constructed a network that realistically em ulates a deep-space 

netw ork consisting o f  nodes on Earth, and on and around Mars. Our results show cases 

where LTP-T outperform s the bundle protocol (running over UDP). Our m ain perform ance 

m etric is goodput, which is the num ber o f  application-layer bytes successfully transferred 

per unit o f  tim e where com m unication is possible. Based on this em ulation, and other tests, 

we derive a characterisation o f  a set o f  situations where each o f  the protocols is a better 

option.

VI



Table of contents

Acknow ledgem ents................................................................................................................... iii

A bstrac t .......................................................................................................................................... v

Table o f  C ontents ..................................................................................................................... vii

List o f  F igures ........................................................................................................................... xii

List o f  T a b le s ............................................................................................................................xiv

List o f  E quations ......................................................................................................................xiv

1 Introduction...................................................................................................   1

1.1 W h a t i s a D T N ? ..................................................................................................... 1

1.2 Major DTN A ctiv ities .......................................................................................... 3

1.3 Existing DTN Protocols...................................................................................... 4

1.4 Problem Statement................................................................................................ 6

1.5 The Contribution....................................................................................................7

1.6 Scope..........................................................................................................................8

1.7 Document L a y o u t ............................................................................................... 10

2 Background............................................................................................................................. 11

2.1 The Basic Problem .............................................................................................. 11

2.1.1 Martian Networking..........................................................................12

2.1.2 Some Terrestrial A pplica tions .......................................................12

2.2 Causes o f  Delay and D isrup tion ..................................................................... 15

2.2.1 Light-Trip Times and Ephem eris..................................................16

2.2.2 Conserving Pow er............................................................................. 21

2.2.3 Intermittent A vailab ili ty ................................................................. 24

2.2.4 Quiescent Environm ents.................................................................26

2.2.5 Security Considerations.................................................................. 28

2.2.6 DTN Requirements S u m m a ry ...................................................... 30

2.3 A Simple Demonstration o f  Delay (In)Tolerance..................................... 31



2.4 Using Existing Protocols for D TN ..............................................................36

2.4.1 Application Layer Protocols.......................................................36

2.4.2 Transport Protocols.......................................................................37

2.4.3 Congestion Control Schem es......................................................46

2.4.4 Lower layer p ro tocols.................................................................. 48

2.5 Sum m ary...........................................................................................................52

3 DTN-specitlc Protocols...................................................................................................53

3.1 The Genesis o f DTN Research.....................................................................55

3.2 The Bundle P ro tocol...................................................................................... 57

3.2.1 Basic Bundle Protocol Concepts................................................58

3.3 I'he Licklider Transmission Protocol......................................................... 60

3.3.1 Some LTP D etails......................................................................... 62

3.3.2 Example LTP Sessions................................................................. 65

3.3.3 LTP History.....................................................................................68

3.4 Implementations.............................................................................................. 70

3.5 Sum m ary...........................................................................................................71

4 DTN Transport..................................................................................................................72

4.1 I'erm inology..................................................................................................... 72

4.2 A Summary in A dvance................................................................................ 73

4.3 What is a DTN Transport?............................................................................74

4.4 Transport vs. Overlay..................................................................................... 77

4.4.1 Custody Considerations............................................................... 79

4.4.2 Deploym ent.....................................................................................82

4.4.3 Topology..........................................................................................83

4.4.4 The IPN ............................................................................................92

4.4.5 Routing............................................................................................. 93

4.4.6 Future Proofing..............................................................................95

4.4.7 M anagem ent....................................................................................96

4.4.8 Security ............................................................................................97

vui



4.4.9 The End-to-End A rg u m e n t .......................................................... 100

4.4.10 Late Binding and the Domain Name System ....................... 101

4.4.11 Summary o f  Overlay vs. Transport......................................... 102

4.5 Design Pragm atism ......................................................................................... 102

4.5.1 The Sockets A P I ............................................................................. 102

4.5.2 Always-On O peration....................................................................103

4.5.3 Real-world Wireless Sensor Network D ens i ty ...................... 104

4.5.4 Middlebox Visibility...................................................................... 106

4.6 Sum m ary ..............................................................................................................107

5 The LTP-T Protocol............................................................................................................108

5.1 LTP-T O verv iew ................................................................................................108

5.2 LTP-T Protocol Specification......................................................................112

5.2.1 LTP-T Extensions......................................................................... 112

5.2.2 LTP-'f Protocol O pera tion ..........................................................117

5.3 LTP-T Design & Implementation D iscuss ion ......................................... 120

5.3.1 Congestion H a n d l in g ..................................................................... 120

5.3.2 R e-fragm entation ............................................................................ 121

5.3.3 Forwarding........................................................................................ 123

5.3.4 Routing............................................................................................... 124

5.3.5 Routing Loops.................................................................................. 125

5.3.6 UDP Binding.....................................................................................126

5.3.7 A 3rd Party Analysis o f  LTP-T...................................................127

5.4 LTP-T Im plem entation................................................................................... 128

5.4.1 Preamble - Implementation O verv iew ......................................128

5.4.2 Main Loop Pseudo-C ode..............................................................130

5.4.3 Routing................................................................................................131

5.4.4 Garbage Collection Model and Handling R eboo ts  132

5.4.5 Cues Service Provider In te rface .................................................134

5.4.6 S chedules ......................................................................................... 134

IX



5.4.7 Configuration........................................................................... 136

5.4.8 File transfer via L T P -T ...........................................................139

5.4.9 M iscellany.................................................................................140

5.5 Summary................................................................................................... 141

6 Evaluation................................................................................................................. 142

6.1 Comparing LTP-T w ith other Protocols...............................................143

6.1.1 Test Setup..................................................................................143

6.1.2 UDP Rate C ontro l....................................................................144

6.1.3 Software Versions....................................................................144

6.1.4 Test Results.............................................................................. 145

6.1.5 Discussion.................................................................................146

6.2 Martian Network Em ulation.................................................................. 147

6.2.1 Why Emulation?......................................................................147

6.2.2 Hardware and Software...........................................................153

6.2.3 DTN Goodput..........................................................................154

6.2.4 DTN Goodput in the Martian Emulation..............................156

6.2.5 Effect o f UDP Rate Control on DTN Goodput....................157

6.2.6 Emulating Delays.....................................................................158

6.2.7 Spacecraft V is ib ility  Information.......................................... 160

6.2.8 Communications Schedules................................................... 162

6.2.9 DSN Gateway Schedule..........................................................164

6.2.10 Sample Segments.................................................................. 165

6.2.11 Test Runs.................................................................................166

6.2.12 Test Results............................................................................ 167

6.3 Two-hop tests............................................................................................169

6.3.1 Test Setup..................................................................................169

6.3.2 Test Results.............................................................................. 170

6.3.3 Discussion.................................................................................171

6.4 Conclusions...............................................................................................171

X



7 Conclusions and Future W o rk ........................................................................................ 172

7.1 Re-iterating the Problem  S tatem ent.............................................................172

7.2 A ddressing the Problem  S tatem ent..............................................................173

7.3 M eeting the DTN R equirem ents...................................................................173

7.4 The C ontribu tion ............................................................................................... 177

7.5 Future W ork ........................................................................................................178

R eferences................................................................................................................................. 180

A ppendix A -  Com paring LTP, LTP-T, the BP and S F T P ...................................... 201

Appendix B -  M artian Em ulation R u n s ......................................................................... 205

B.l Local Runs with no Additional D elay ....................................................... 205

B.2 Error-Free Runs from Earth to M ars ..........................................................208

B.3 Error-Free Runs from M ars to E arth ..........................................................215

B.4 M ars to Earth: 2K Red with 1 Percent E rro rs .........................................216

B.5 Mars to Earth: 8K Red with 1 Percent E rro rs ......................................... 220

B.6 Mars to Earth: All Red with 1 Percent E rro rs .........................................233

B.7 M iscellaneous R u n s ........................................................................................235

Appendix C -  M artian Em ulation Test Run D etails....................................................242

XI



List of Figures

Figure C aption.........................................................................................................Page

2.1 Earth/Mars Light Trip T im es........................................................................16

2.2 Results from a DTN Experiment..................................................................31

2.3 CPIP Ping T race.............................................................................................. 49

3.1 The Overlay Network A pproach................................................................. 53

3.2 DTN O rganisations.........................................................................................56

3.3 Basic LTP O peration...................................................................................... 64

3.4 A Small LTP Session.....................................................................................65

3.5 A Medium-Sized, Scheduled LTP Session...............................................66

3.6 An LTP Session with Packet Losses.......................................................... 67

4.1 Normal and DTN Transports....................................................................... 76

4.2 An Overlay N etw ork...................................................................................... 77

4.3 Custody in D I N Overlays.............................................................................80

4.4 A Deep-Space Network Topology..............................................................87

5.1 An Interworking Diagram for an LTP-T Session ................................. 110

5.2 A Desirable Routing L oop ..........................................................................126

5.3 LTPD Usage() O utput.................................................................................. 129

5.4 Main Loop Pseudo-Code............................................................................. 130

5.5 Ephemeris Driven Schedule....................................................................... 135

6.1 One-Hop Tests with 100ms L T T .............................................................. 145

6.2 Martian Emulation S e tu p ............................................................................ 153

6.3 Earth/Mars Ping T race .................................................................................159

6.4 Views o f MER-B Com m unications..........................................................163

6.5 Initial LTP-T D S ........................................................................................... 165

6.6 EOB LTP-T D S..............................................................................................166

6.7 Mid-Block LTP-T D S ..................................................................................166

x i i



List of Figures (Cont’d)

Fi gure C aption.......................................................................................................... Page

6.8 Measured DTN Goodput vs. Number o f N o d es..................................... 168

6.9 Two-Hop Tests o f BP vs. LTP-T.............................................................. 170

A.l One-Hop 0ms LTT.......................................................................................201

A.2 One-Hop 1ms LTT.......................................................................................202

A.3 One-Hop 10ms LTT.......................................   202

A.4 One-Hop 100ms LTT..................................................................................203

A.5 One-Hop Is LTT..................... ....... ............................................................203

A.6 One-Hop Longer L T T s.............................................................................. 204

B. 1 Contacts D etails........................................................................................... 205

Appendix B contains figures for 75 Martian Emulation Test Runs.



List of Tables

Table C ap tion .............................................................................................................. Page

2.1 Summary o f  Causes o f  Delay and Disruption.............................................15

2.2 DTN R equirem ents ............................................................................................ 30

3.1 Deep-space/Sensor Network A n a lo g y ......................................................... 54

4.1 Overlay vs Transport O verv iew ..................................................................... 78

4.2 Different DTN Topologies favour Different Solutions........................... 83

5.1 L l ’P-T Extensions Sum m ary ......................................................................... 116

5.2 SOCKO PTs for L T P lib ...................................................................................136

5.3 LTPlib Configuration F i le s ............................................................................138

6.1 Options for T e s t in g ..........................................................................................148

6.2 LTP-T Segment Field S iz e s .......................................................................... 158

6.3 Expected Maximum D'fN G oodpu t............................................................ 158

6.4 Martian Test Run T ypes ..................................................................................167

6.5 Martian Test Result O v e rv iew ..................................................................... 168

List of Equations

Number D escription......................................................................................................Page

6.1 DTN G oodput.....................................................................................................155

X I V



Chapter 1

Introduction
Delay-tolerant networking (DTN) is concerned with highly-challenged networks in which 

application layer sessions commonly lack contemporaneous end-to-end connectivity. 

[FA03] The most important current approach to DTN is centred on an overlay protocol 

called the bundle protocol (BP). [SC07] In this thesis we develop the concept o f  a DTN 

transport protocol and document the design and evaluation o f one such protocol, called the 

“Licklider Transmission Protocol -  Transport” (LTP-T). [FA05] We show that a DTN 

transport has advantages when compared to the overlay approach and ultimately 

characterise a number o f cases where LTP-T and the BP perform differently.

1.1 W hat is a DTN?

A couple o f  examples may help the reader understand the kinds o f networking challenges 

that DTNs are aiming to address. One o f the main factors motivating the use o f networking 

for deep-space communications is the fact that communications between Earth and a Mars 

lander are more mass and power efficient when data is sent via an orbiter. [FR04] Efforts 

to create networks involving Mars orbiters and landers and Earth stations clearly encounter 

extremely high latency links, but must also deal with visibility constraints that mean that 

devices are not contactable for extended durations.

For example, there are regular periods when Mars is near the Sun for a number o f  weeks, 

and during which very little or no effective communication can take place. [AL98] A more 

common, though less extended, disruption occurs due to rain at an Earth station, which can 

disrupt scheduled communications [T003] leading to re-transmissions being required, and 

such re-transmissions may have to wait until the next contact opportunity, which could be 

hours later.

The Sensor Networking with Delay Tolerance (SeNDT) project’s planned lake-water 

quality monitoring network [FA06] involves the deployment o f  a wireless sensor network 

in which the sensors are only contacted occasionally primarily for power management



reasons. This creates networking challenges that are similar to those described in the deep- 

space communications scenario above. For example, SeNDT water-quality sensors 

deployed in a lake use a close-range radio frequency (802.11b) [IE99] and will only

occasionally be visited by a node/router -  the data-mule - with (eventual) Internet
• • 2connectivity.

It is worthwhile noting that, since the SeNDT nodes will typically only contact the data- 

mule (a boat), [LE05] this constitutes a different networking scenario from the usual 

Mobile Ad-hoc Network (MANET) case, where any pair o f nodes may be the source and 

destination for a packet. In the SeNDT case, the data-mule is planned to be a fishing boat. 

If the sink node (the destination for sensor data) is back on shore, somewhere on the 

Internet, and is only connected to the sensor(s) via the boat then the effective latency o f  the 

sensor/sink application layer will be similar to that o f an Earth/Mars link since the boat 

must move before the relevant traffic is delivered.

Such a network can also suffer extended periods when no boats come in range o f sensor 

nodes, e.g. in the lake where SeNDT nodes have been prototyped, during winter flooding 

tethered boats are sometimes under water for weeks. Such periods are similar to the 

Martian solar conjunction. Disruptions due to radio frequency (RF) shadowing or rain will 

similarly occur at times and the use o f multi-hop sensor node to sensor node 

communications is also similar to the use o f orbiters as data relays, though in the SeNDT 

case this is done to increase the area connected rather than to save power or mass.

The first example demonstrates that there is at least some need for DTNs and the second 

shows that DTNs need not be solely concerned with deep-space communications but can 

also be useful in terrestrial networks. We will see further argument along these lines later.

 ̂ S eN D T  is a TCD  project in which the author is active http://dow n.dsg.cs.tcd.ie/sendt/ (Throughout the 

thesis, URLs are added as footnotes.)
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1.2 M ajor DTN Activities

This work is not taking place in a vacuum - there is an Internet Research Task Force 

(IRTF) DTN research group (DTNRG^) working to develop (experimental track) Internet 

RFCs for DTN protocols. That group had its genesis in a previous IRTF research group on 

an Interplanetary Internet or Interplanetary Network (IPN) that itself grew out o f some 

work done in the late 1990s and thereafter largely by NASA on their future network 

requirements.

In 2003, the US Defence Advanced Research Agency (DARPA) issued a call for 

proposals'^ for what they called “disruption-tolerant networks” thus creating a potential 

cause o f confusion. However, the DARPA change o f terminology crystallised the fact that 

delay is not the only source o f disruption in terrestrial networks. Link-specific delays are in 

fact, probably the exception, and disruption is really the more general term.

For the present though, the acronym DTN can be expanded either way and both expansions 

are considered to be essentially equivalent. In fact, for the purposes o f this thesis we will 

generally not distinguish between delay and disruption, since one can justifiably consider 

disruption to be the more general term, and regard delay as simply an extended disruption.

The current emphasis for many DTN projects is focussed on developing and trialling the 

basic DTN protocols (e.g. the BP) and their implementations. A good example is the 

DARPA-funded SPINDLE^ project that is building BP-based prototypes for use by the US 

military, with a focus on the development o f a modular architecture for the BP stack 

implementation. There have also been a few initial investigations [AK04,FIA06t] 

(described later) into issues related to the use o f  transport protocols in a DTN environment, 

but to date, DTNs have been o f marginal interest to the broader transport community, for

See  http://ww w.irtf .org/  and http://ww w.dtnrg .org /  It should  be noted that the author has been, and  

continues to be, ac t iv e ly  in v o lv ed  in the D T N R G  (as co -cha ir )  and a lso  (as co-author) in the d ev e lo p m en t  o f  

the LTP sp ec if ica t ion s  and (again  as co-author) in work on BP security.

h ttp : / /w w w .darpa .m iI /sto /so lic ita t ions/D  I N/

* http:Vw w w .ir .b bn .com /p ro iec ts /sp ind le / ind ex .h tm l
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example, Fall and McCanne [FA05j] quite properly discuss currently important transport 

performance issues without any mention o f  DTNs.

More broadly, the overall level o f scientific interest in DTNs has been demonstrated by the 

holding o f a Dagstuhl seminar [BROS] on the topic in 2005, with another planned^ for
o

2009. DTNs have also been the topic for a number o f SIGCOMM workshops. The June 

2008 IEEE Journal on Selected Areas in Communications,*^ was a special issue dedicated 

to DTNs, and included a paper, co-written by the author, setting out an architectural 

retrospective view o f DTNs. [FA08J] A special issue o f the Elsevier journal on Computer 

Communications on DTNs, (with the author as one o f the guest editors), is also currently in 

preparation.'*^

1.3 Existing DTN Protocols

In order to understand the approach taken in this thesis one must o f course first consider 

existing work on DTNs. As stated earlier, today’s mainstream approach to DTN is based 

on the BP. [BU03, FA03, SC05] The BP is essentially a store-and-forward protocol that 

can be layered above a range o f lower-layer protocols via so-called convergence layers 

(CLs). [FA03] CLs often use standard transport protocols, like UDP or TCP, but 

sometimes make use o f  more esoteric protocols, like file-based transfer via USB token 

[DE04J.

There is also a delay-tolerant point-to-point protocol, called the Licklider Transmission 

Protocol (LTP), [RA08] that is designed to be used as a convergence layer on very high- 

latency links, as might be encountered in deep-space communications, in order to deal with 

such latency, without first requiring negotiation or other handshakes (that waste scarce 

bandwidth), LTP assumes that the peers share “massive” amounts o f state, [BU08] for

 ̂ http://ww w.dagstuhl.de/en/program /calendar/sem hp/?sem nr=200907l

* E.g. http://w w w .sigcom m .org/sigcom m 2005/cfp-w dtn.htm l and http://www.dritte.org/nsdr08/ 

 ̂ http://ww w.isac.ucsd.edu/Cails/delavanddisruptioncfp extended.pdf 

http://ww w.eisevier.com /authored subject sections/P05/C FP/cfp dtn.pdf
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example, knowing when the peer will be listening for transmissions (modulo the light-trip- 

time between the peers).

As an overlay network that has to be able to run over various lower layers, the BP cannot 

be optimally efficient in all such cases -  sometimes, fields within the bundle protocol will 

replicate information present at lower layers. To take a trivial example, a cryptographic 

checksum could be added both in the BP [FA07s] and by a CL running over IPsec [KE05]. 

This is an inherent part o f being a lower-layer-agnostic overlay and is not in itself a flaw. 

However, it does mean that there is an opportunity to develop another protocol that is more 

tightly bound to some lower layer(s), and hence may be more efficient in cases where that 

lower layer is in use for all hops between source and destination.

rhe BP also introduces the concept o f a “custodian” which is an overlay node at which 

packets (called bundles) are stored, before being forwarded later. The BP furthermore 

defines bundle reports and various acknowledgements that travel towards the source in the 

network. The fact that the BP is an overlay introduces a need to decide where 

(topologically) to locate such functionality and introduces a requirement to make sure 

those nodes remain available as required, even possibly in the face o f  an adversary. [AB03] 

Such difficulties are actually inherent in any overlay where additional functionality is 

being placed inside the network, instead o f at the edges, as would be the case if  one could 

follow the end-to-end principle more faithfully. [BLOl, RE98, SA84]

LTP o f course, cannot offer end-to-end services, since it is designed purely as a point-to- 

point protocol. So LTP cannot by itself be an alternative to the BP since its packets lack, 

for example, a destination field. LTP can however, be layered on top o f  UDP and used 

directly by applications.

We therefore have both an overlay protocol and a point-to-point protocol, thus leaving 

open the space for the development o f a protocol filing the gap where we would normally 

use a transport layer.
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1.4 Problem Statement

The main problems considered here are the consequences o f  choices related to the location 

o f functionality (e.g. re-transmission) within a DTN and how those choices interact with 

various protocol features (e.g. reliability or security). The challenge faced is to explore this 

design space to develop protocols that meet a sufficiently broad set o f requirements so as 

to warrant the wider-scale testing o f those protocols with the ultimate goal o f eventually 

incorporating DTN features and functionality into the standard suite o f Internet protocols. 

This thesis represents yet another step along that road.

While there have been some attempts to examine meeting DTN requirements at the 

transport layer, there has yet to be a fleshed-out demonstration that this is possible and that, 

as an architecture, the result provides comparable performance to the overlay approach. 

This is the specific question that this thesis attempts to answer.

The methodology followed is to review the main causes o f delay and disruption in order to 

derive a set o f protocol requirements that are specific to the DTN context" and to examine 

how existing protocols, and in particular the overlay approach as instantiated by the BP, 

meet these requirements.

Based on this review, we define our concept o f a DTN transport protocol and analyse in 

detail how that compares with the overlay approach. We then describe one DTN Transport 

protocol (LTP-T), developed specifically in order to test the DTN transport concept. We 

describe a set o f tests and results in order to demonstrate: a) that LTP-T is a viable DTN 

transport protocol, and b) that in some cases LTP-T can significantly outperform the BP. 

We finally consider how well LTP-T meets our set o f DTN specific requirements in order 

to point the way forward for future work in the area o f DTN transport protocols.

" W e d o  not sp ec ific a lly  d iscu ss  g en eric  protoco l requirem ents, e .g . lack o f  liv e lo ck , s in ce  those d o  not help  

d istin gu ish  betw een  the relevant op tions.
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1.5 The Contribution

In this thesis, we propose what we call a “ DTN transport” to mean a protocol offering end- 

to-end services similar to current transport protocols and that meets the requirements 

imposed by DTN (derived in the next chapter).

We use this term because it reflects our view that DTN protocols will commonly be

layered over IP (or UDP/IP), as the thin-waist [CR99] o f the network. Our DTN transport

concept also follows two additional principles: all nodes adjacent to disruptable nodes

implement the DTN transport and secondly, all nodes that implement the DTN transport
1 ?provide storage. For example, a DTN transport will use the next layer down (UDP or IP ) 

to get as far as possible towards the destination. One result is that only nodes that are 

adjacent to hops that are subject to delay or disruption need to implement the DTN 

transport. Equivalently, if  all-to-all traffic is to be allowed, then all nodes that are adjacent 

to hops that are subject to delay or disruption must support the DTN transport.

In this way, we reduce the options in comparison to the overlay approach, thus making the 

network more deterministic and predictable and therefore increasing the reliability o f the 

overall network.

The concrete DTN transport protocol that we use to test this architecture is LTP-T which is 

in fact designed as a set o f extensions to LTP, using the standard LTP extensibility 

mechanism, [FA08] for example, one such extension being a “destination” field. An end- 

to-end LTP-T path then consists o f a sequence o f LTP hops, but with LTP-T we also 

mandate that those LTP sessions run over UDP (or IP), and that LTP-T nodes should be 

placed adjacent to hops that are liable to suffer from delay or disruption.

So, the main thesis o f this work is that the DTN transport architecture is an alternative to 

the overlay architecture (so that LTP-T is a possible alternative to the bundle protocol) that 

is, under circumstances that we identity later, better suited to the task in hand. Our

From our DTN transport point-of-view , w e can regard layering above U DP and IP as essentially  

equivalent, in fact the main choice between these relates to implementation -  whether to write kernel or user- 

space code.
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conception o f a DTN transport protocol is the substantive contribution o f this thesis to the 

area o f delay tolerant networking.

To test whether LTP-T is a viable DTN protocol, we constructed a network that 

realistically emulates a deep-space network consisting o f nodes on Earth, and on and 

around Mars, and demonstrated that LTP-T can operate in that environment. We also 

carried out a range o f tests that show cases where LTP-T outperforms the bundle protocol 

(running over UDP). Our main performance metric for these tests is goodput, which is the 

number o f application-layer bytes successfully transferred per unit o f time where 

communication is possible. Based on this emulation and other tests, we derive a 

characterisation o f a set o f  situations where each o f  the protocols is a better option.

To summarise, the main contributions o f this thesis are:

• fhe definition o f the DTN transport concept and the elucidation o f requirements for 

a DTN transport protocol.

• The design and implementation a DTN transport protocol, and the publication o f 

source-code for that implementation.

• The evaluation o f that design and implementation via a network emulation 

encompassing a realistic Earth-Mars networking scenario.

• The development o f an LTP implementation concept, built around the idea of 

punctuated time (described in Chapter 4).

• To examine some o f the performance implications o f the BP and LTP protocols.

1.6 Scope
Not everything connected to DTNs or transport protocols is in scope for this thesis. So, in 

order to avoid misunderstanding it may be useful to specifically draw attention to a few 

things that are out o f scope.

As stated above, DTNs cannot assume normal end-to-end connectivity, as is required for 

example by TCP (see section 2.4.2 for more details o f how TCP and variants are 

problematic in DTNs). This means that we need not consider many o f the TCP variants 

that have been proposed for use on the terrestrial Internet.
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To be clear, we are not proposing LTP-T as a generic transport protocol, but only as one 

suited for use in DTNs and so we don’t need to compare LTP-T against the full panoply o f 

actual and proposed transport protocols. Were LTP-T ever to become an Internet 

standard'^, then it would presumably require a very clear applicability statement covering 

this, as was for example, done for the stream control transmission protocol (SCTP). 

[C002]

Routing and security for DTNs are areas where the hard work is only beginning. Whether 

and to what extent routing schemes for MANETs [XI02] or other ad-hoc networks will be 

suitable for use in DTNs is an open question. And while there has been some work on 

DTN security [FA07s, SY07] , that has not so far encompassed the development o f any 

D'FN-friendly key management schemes -  current key management schemes generally 

require muUiple exchanges which are problematic in DTNs. [FA06s]

One could also envisage applying some o f the broad range o f techniques used to design 

autonomous systems to DTNs, for example, methods to predict future connectivity based 

on historic patterns. [CU02] Such optimisations can improve the performance o f the 

protocols that are considered here, but their application is not part o f this study since we 

are mainly concerned with demonstrating that the DTN transport architecture is a realistic 

alternative to the overlay approach.

The BP and LTP specifications are Experimental track RFCs, and hence are not Internet standards, though 

they are Internet RFCs. The LTP-T specification has not, so far, been published in Internet-draft form.
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1.7 Document Layout

The remainder o f this thesis is laid out as follows:

• Chapter 2 describes the general background including causes o f delay and 

disruption, derives a set o f requirements to be met by a DTN transport protocol and 

discusses relevant existing protocols.

• Chapter 3 describes the on-going work in the DTNRG on the DTN-specific 

protocols being developed there -  the BP and LI P.

• Chapter 4 analyses the reasons for wanting to use a transport solution for DTN.

• Chapter 5 describes the LTP-T protocol and its implementation.

• Chapter 6 documents our evaluation o f LTP-T.

• Chapter 7 draws conclusions and describes planned and potential future work.
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Chapter 2

Background
In this chapter we present the background to delay and disruption tolerant networking 

(DTN) and the current state o f the art in this field. The presentation here is mainly based on 

our book' on DTNs [FA06] and on a related article in IEEE Internet Computing [FA06iJ.

We begin by describing the basic problem with using standard transport protocols in a 

DTN and outline some applications that could make use o f DTNs. We then go on to 

describe some common (and exceptional!) causes o f delay and disruption and from this, we 

derive the DTN-specific requirements that DTN protocols should meet. (We do not list 

more standard protocol requirements, such as the lack o f livelock etc.)

W'e then describe a range o f approaches to DTN-like problems that have previously been 

attempted and why they each fail to meet some important DTN protocol requirement. In 

this way, we provide evidence that some new architecture is needed, be it an overlay or our 

DTN transport concept. In Chapter 3 we look in detail at existing DTN protocols and 

subsequently, (in Chapter 4) analyse why this leaves room for an alternative architecture to 

be developed -  what we call a DTN transport.

2.1 The Basic Problem

The main justification for the development o f any DTN protocol depends on there being 

interesting networking scenarios in which important Internet protocols cannot be used. We 

begin with one, critical, example -  the fact that the Transmission Control Protocol (TCP) 

|P 081 ] sometimes breaks. TCP underlies most o f  the applications we use every day -  

email, the web and enterprise single-sign-on to mention a few. So if we have a set o f

' The book goes into significantly more detail on most o f  the material from this chapter -  w e have tried to 
take the approach o f  selecting sufficient o f  that material to motivate and understand the remainder o f  the 
thesis.



application scenarios that are interesting, and where TCP sim ply cannot work due to delay 

or disruption, then we will have established the basic need for D l'N  protocols. O f  course 

TCP is not the only transport protocol currently defm ed, but as w e’ll see later, none o f  the 

current standard transport protocols m eet the set o f  requirem ents im posed by DTNs.

2.1.1 Martian Networking

M uch o f  the work described in this chapter has its roots in a research project to develop an 

Interplanetary Internet (IPN) [BU02, AK 04i], The basic idea was to try to m ake data 

com m unications betw een Earth and (very) rem ote spacecraft about as easy as betw een two 

people on different sides o f  the Earth. As it happens, before any application data can be 

sent using TCP there is a handshake required that consum es one round-trip tim e (RTT). 

TCP also specifies a num ber o f  tim eouts, the longest o f  which, the default user tim eout, is 

specified to be five m inutes.

The result is that if  no data is sent or received for five m inutes the connection is broken. 

Putting those facts together, once a spacecraft is more than two and a half m inutes aw ay in 

term s o f  light-trip tim e (LTT), then every attem pt to use a TCP connection will fail, and no 

application data will ever be transferred. In the case o f  M ars, at its closest approach the 

RTT is about eight m inutes, with a w orst-case RTT o f  about forty m inutes. The result is 

that standard TC P cannot ever work for Earth/M ars com m unications. There are, in fact, 

other reasons why TCP will fail at EartlVMars distances, but one is sufficient. So, there is, 

(at least), this deep-space application where we cannot use one o f  the m ost im portant 

standard netw ork protocols, and where there are DTN netw orking requirem ents to meet.

2.1.2 Some Terrestrial Applications

Even if  a M artian netw ork cannot use TCP, that, in itself, m ight not be seen as sufficient 

reason to be interested in going to the trouble o f  developing DTN protocols. How ever, 

there are also terrestrial netw orking situations where DTN protocols are required, and in 

this section, we will outline a couple o f  these. One reason for including these here is 

basically so as not to create the im pression that DTN is really ju st IPN.

One application o f  the Sensor N etw orking w ith Delay Tolerance (SeN D T) project was 

m entioned in the previous chapter. In addition to dealing with lake water quality, the same
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hardware platform is also used for a noise monitoring application. Monitoring noise in 

urban areas is typically required in order to ensure that traffic and other noise remains 

within acceptable limits. Normally such monitoring is carried out by local government 

authorities and involves a monitoring station that can either continuously sample and store 

am bient noise or else can record events such as when noise levels cross thresholds. In this 

case, the end users were Dublin City Council and the Irish National Roads Authority, so 

the end-user requirements were real, not invented.

Traditionally, such monitoring has required the use o f highly expensive microphones 

connected to simple data-logging equipment; however, some colleagues (also in Trinity 

College Dublin) are now exploring the use o f arrays o f less expensive microphones, but 

with more capable data processing. [MC07] Their hope is that such a monitoring station 

will produce results which are o f an equivalent quality, but at a much lower cost per 

station. The unit then calculates various noise statistics that can be sent back via various 

com munications methods, e.g. SMS, GSM data service, or WiFi.

The DTN requirement comes with the addition o f two further end user requirements, first 

that they be able to re-locate nodes periodically and second, that they be able to 

occasionally get access to actual noise samples, in particular those associated with peaks 

(i.e., loud noises). The first requirement implies a need for flexibility in how data is 

returned and rules out some options (e.g. using landlines), and the second implies a need to 

be able to occasionally return large volumes o f data, but in a cost-effective manner. Taking 

the above requirements, and the fact that the data being gathered is not time-critical, this 

application is very well suited to using a DTN protocol.

There is another context in which similar monitoring is done, but with somewhat o f an 

opposing set o f  requirements for data transmission. In this case the context is planning o f 

future infrastructure such as roads or new airport runways where the requirement is 

initially to monitor the quiet, and not the noise. However, we can clearly use mostly 

identical equipment though we are now much more likely to locate stations in areas 

w ithout wired power and even perhaps out o f coverage o f commercial data networks.

There is also a related application worth noting here -  a sensor network for detecting cane 

toads in Australia [SH04] that makes use o f a mixture o f very small sensors (so-called
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motes^) as well as more capable nodes. The application requirement here is to detect the 

extent o f  the spread o f the cane toad, which is an introduced species that is considered to 

be damaging to the local environment.

The toads are detected via an analysis o f their calls, with the motes including microphones 

and the more capable nodes running the analysis software. In this context, the authors 

estimated that they need a mote in each 20m diameter hexagonal cell and one more capable 

node for each 2,000 motes. Thus they calculate a requirement for about 1,000 motes per 

square kilometer.

Clearly in order for this to be feasible the cost o f the motes (including batteries, 

provisioning, and deployment costs) must be very small. The authors also don’t address 

how to gather up the thousands o f motes at the end o f the experiment -  one o f the perhaps 

least considered aspects o f  many sensor networks.

The main benefit from a DTN protocol (and application) here would be that it simplifies 

the application layer code by handling disruption in the stack. In this case, we would need 

whatever protocol is used to be present on various hardware platforms, which is yet 

another good reason to investigate using a “standard” set o f DTN protocols.

The above are only a couple o f  representative sketches o f how DTN protocols can solve 

real problems. Our DTN book [FA06J covers these and many additional applications, for 

example, bus-based networks, networking in developing regions, DTNs as a backup or 

enhancement for some emergency services and many more.

In most o f these terrestrial cases, individual network hops (point-to-point connections) do 

not suffer overly from delay or disruption*, so one could well develop an application layer 

solution where the end-to-end delays and disruption are handled “outside” or “above” the 

network. However, if one did develop useful end-to-end DTN protocols then that could

’ h ttp ://w w w .tin y o s.n et/
* B a sica lly , th is is w h y  the d eep  sp ace  app lication  rem ains the “poster ch ild ” D T N .
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save repeated development o f application layer code for each new application thus saving 

effort and presumably increasing the overall consistency o f the application and o f the 

network.

2.2 Causes of Delay and Disruption

We now concentrate on some common sources o f delay or disruption, rather than on 

handling delays and disruption.

By delay we mean the end-to-end latency o f data transmission. Some o f those delays are 

inherent in the transmission medium, or the geometry o f the system, but others are due to 

packets being temporarily stored on intermediate nodes.

By disruption, we mean factors that cause connections to break down, or not be 

established, normally due to transient or quickly changing aspects o f the system and/or its 

environment.

Table 2.1 summarises the causes o f delay and disruption described in this section that give 

rise to our set o f Dl'N requirements.

Cause Section

•  Finite speed o f  light and the scale  o f  the so lar-system  (ligh t-trip  tim e)

•  P lanetary  (and other) m ovem ents do not conform  to sim ple, regu lar pa tterns

•  Position ing  inaccuracy  (N -body  prob lem )

•  V isib ility  restric tion  in line o f  sight com m unications

•  O ver-subscribed  com m unications system s

2.2.1

•  Pow er conservation  (on /o ff/s leep  m odes)

•  R adio range restric tions to  conserve pow er

•  L ong-duration  ou tages (e.g. snow  on so lar panels)

2.2.2

•  N ode m ovem ent out o f  coverage  area (incl. In frastructure nodes)

•  L ong app lica tion -d riven  du ty -cycles

•  N etw ork  in terface selection  decis ions

2.2.3

• Lack o f  app lica tion  activ ity

• B eacon-based  node w ake-up

2.2.4

• M alw are/D en ia l-o f-S erv ice  (D oS )

• S tealth  requ irem ents

2.2.5

T able 2.1 -  S um m ary  o f  causes o f  de lay  and d isrup tion .
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Figure 2.1 - Light-tr ip times betw een Earth and M ars from January  I, 2000. Each “w ave” 
represents  about 2 Earth years. The  vertical a.xis is the light-trip time in seconds, the 
horizontal axis covers  15 years. (D iagram  generated  by the author.)

2.2.1 Light-Trip Times and Ephemeris

Since it presents some o f  the best exam ples o f  unavoidable delay, we look in some detail at 

delays in deep-space netw orking. The main constraints in such netw orks are the finite 

speed o f  light and the fact that the solar system is a very, very big place which is very, very 

sparsely populated with constantly m oving bodies. We will however generalize the causes 

o f  delay and disruption described here when form ulating requirem ents statements.

Finite speed  o f  light

Because the solar system  is so big, the finite speed o f  light is a m ajor consideration when 

com m unicating at solar-system  distances. Even though light travels at approxim ately 300 

thousand kilom eters per second, the distance from  the Sun to the Earth m eans that light 

from the Sun takes around 8 m inutes to reach us here. We are literally looking at the Sun 

as it w as 8 m inutes ago. How ever, to reach the outer planets, things are m uch worse. On 

average, light from  the Sun will take about five and one ha lf hours to reach the outerm ost 

planet (or one o f  the largest Trans-N eptunian Objects), Pluto.

Figure 2.1 shows how  the light-trip tim e betw een Earth and M ars varies over a 15-year 

tim e fram e. As can be seen the two planets have a close approach roughly every 2 years 

when light-trip tim es are dow n to around 4 m inutes, but at m axim um  separation light-trip 

tim es can be up to 20 m inutes. This therefore provides our first DTN protocol requirem ent:
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Req. DTN protocols should be able to operate (relatively efficiently) even when link 

or path latencies are o f the order o f  minutes, hours or days^.

Another noteworthy point is that the graph in Figure 2.1 is not symmetric, which means 

that handling such variations is inherently complex, and tends to involve significant 

amounts o f  scheduling data, (e.g., multiple megabytes), a fact that has consequences for 

how we implement support for such situations.

Positioning inaccuracy

Light-trip time is not the only obstacle to communicating at these distances. As it happens, 

we cannot predict the exact positions o f the planets with sufficient precision for all time. 

The general N-body problem [GR90] in physics ensures that there will always be some 

uncertainty in the positions.

The N-body problem states that once there are more than three bodies involved, even if  we 

know all about them (how big, where they are, etc.) we cannot calculate their exact 

locations at any time in the future with arbitrary precision. In fact the uncertainties will 

fairly quickly become such that we may end up pointing a radio antenna in the wrong 

direction were we to ignore this problem. Ultimately this problem is due to the fact that we 

do not (or perhaps cannot) exactly solve the mathematical equations involved precisely. 

Practically, what we do is to use approximations that we periodically have to adjust to 

reflect the reality o f the solar system.

In addition, there are also other more local variations that cause unpredictability; for 

example, an orbiting satellite's path will be slightly perturbed by passing over the equator 

o f  the Earth which bulges somewhat compared to the poles. Such perturbations can mean 

that satellite positions may become uncertain within a range o f  kilometers over time.

’ DTN requirements are called out like this near the text m otivating them. They are also collected  (and 
numbered) in section 2 .2 .7  below . All but one o f  the requirements are phrased as requirements that DTN  
protocols “should” meet -  since we are not dealing with a (set of) specific application context(s), w e cannot 
generally resolve requirements as M U ST vs. SH O U LD  vs M AY etc.
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Visibility

As well as positional uncertainty, there are also visibility considerations. As the planets 

rotate, a position on the surface o f one planet becomes visible on another. It is worth noting 

that some o f the planets rotate rather slowly (a Venus day is 224 Earth d ay s") and that 

sometimes we might be more interested in the visibility o f a location on the surface o f  a 

moon orbiting another planet. This happened recently with the Huygens lander that was 

part o f the Cassini mission to Saturn [JA97]. Huygens landed on Titan, which is one o f 

Saturn’s moons, and for a brief while that landing site was one o f the most interesting 

places in the solar system, at least in terms o f deep space communications.

More often, orbiting spacecraft have orbits which are shorter than the rotation time o f  the
12

body they orbit, (e.g.. Mars Express has an approximately 6-hour orbit and the 

International Space Station has an approximately 90-minute orbit'^), so the visibility o f 

such spacecraft change frequently, since they will typically spend about one-third o f each 

orbit behind the body. This means, o f course, that we cannot use line-of-sight 

communications for those eclipsed periods and deep space communications are all line-of- 

sight.

Req. DTN protocols should not require simple, regular, strictly periodic nor cyclic 

patterns o f  visibility, but should be able to benefit from such patterns where 

they exist.

Visibility will also be constrained by other factors, for example, the local horizon, so 

typically one would require an object to reach a certain altitude before considering it 

visible for data communications purposes. This is both because signals that have to travel 

further through the Earth’s atmosphere will be o f lower quality compared to signals that 

are heading straight up, but also because it is simply not possible to point most large 

antennae right down to the horizon because they are too heavy to be easily supported in

" M ost planetary data quoted here is available at; http://www.nineplanets.org/data.html 
'■ http://w w w .rssd.esa. int/index. php?project==MARSEXPRESS&page=orbit 

http://ww w.space.gc.ca/asc/pdtyeducator-observini’ edu.pdf
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such positions, and in any case would be far more likely to suffer from terrestrial 

interference even if  one did build them to operate in such an orientation.

O f course, in long-haul communications one must also take the light-trip time into account, 

so that one is interested in visibility modulo the light-trip time. In principle, one could 

begin transmitting when the recipient is not yet visible from the transmitter. Often however 

enough leeway is allowed before transmissions start, at least for closer deep-space 

contexts, so that the recipient will actually be visible before transmission starts.

Req. DTN protocols should support changes in the scheduling and/or contactability 

o f nodes.

H andling ephemeris-related factors

In order to handle all o f the above factors, space missions use so-called e p h e m e r is f i le s  

and software. These files store calculated positions o f the bodies (planets, moons, and 

spacecraft) o f interest at the various times o f interest and the software basically interpolates 

between these data points to determine the estimated position at any given time in the 

applicable range. Such ephemeris files must be updated occasionally, for example, as more 

information becomes available from observation, or as the results o f spacecraft maneuvers 

are taken into account.

Ephemeris files will typically be large multi-megabyte files, which could be considered 

somewhat similar to an Internet router having to store large routing tables. The main 

source o f  software for handling ephemeris files is the NASA Jet Propulsion Laboratory 

(JPL) ephemeris library,'^ which provides functions to estimate the positions o f the various 

solar system bodies at various times. There is also a JPL ephemeris file format that is the 

de facto standard used in many interplanetary missions.

'■* An ephem eris lists the spatial coordinates o f  celestial bodies and spacecraft as a function o f  time. 
http://w w w .ephem eris.com / or ftp://ssd.ipl.nasa.gov/pub/eph/export/
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To get a feel for the complexities involved in such communications, consider sending a 

command from Earth to a lander on Mars. First, scientists and mission planners meet, 

sometimes years in advance, to decide what commands to send and when. The set o f 

commands will then go through various stages o f approval and format translations. Finally, 

the commands will be encoded in an often mission-specific manner for transmission to the 

spacecraft.

The commands may then be sent via the NASA deep-space network (DSN) or European 

Space Agency (ESA) Tracking Station Network (ESTRACK), both o f which consist o f  a 

terrestrial data network with large antennae (up to 70 meters diameter) spread around the 

globe. The large antenna is required in order to supply the power to transmit over such 

long distances. Global coverage is required in order to make it possible to “see” the entire 

sky at any time.

Next one needs to point the antenna in the correct direction, at the correct time. Accurately 

pointing a 70-meter antenna is a nontrivial problem and may require a few minutes to 

slowly slew the antenna to the correct position. Once in position, the transmitter can begin 

to send the signal.

1 lowever, there is o f course no point in sending the signal if the receiver is powered off, 

which is exactly how a spacecraft receiver will be for most o f the time. And if the receiver 

is in space, it may have to be warmed up before operating, so even before pointing the 

receiver's antenna (if it is not an omni-directional antenna, that is), there is work to be 

done. The need for data to “wait” for the next period when both antennae are powered and 

properly oriented provides yet another source o f disruption.

And o f course things don’t always go according to plan. With the Galileo probe to Jupiter, 

its main (high-gain) antenna that was intended to transmit data at the rate o f about 130 

Kbps, failed to deploy correctly, so all data had to be returned via the much smaller om ni­

directional antenna. Most spacecraft include such an antenna usually as a backup for 

controlling the spacecraft in case something goes wrong with the main antenna.

Since this antenna has to be contactable regardless o f the spacecraft’s orientation, it must 

transmit in all directions, (i.e., be omni-directional), which clearly means that the
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transmission in the direction o f Earth carries much less power, and hence less data. The 

resulting data rate was 10 bits per second! However, by simultaneously using multiple 

antennae, in the United States, Spain, and Australia, the data rate when all three were 

pointing at Galileo could be increased to 160 bits per second. While this may still seem 

tiny it was enough to save the mission, which went on to be highly successful.'^

Req. DTN protocols should be able to support a wide range o f data rates.

As can be seen, there can be a lot o f complexity involved in deep space communications, 

certainly compared to sending a single e-mail over the terrestrial Internet. We could 

describe the situation by saying that the plumbing for deep space communications involves 

lots o f complexity that is absent in the terrestrial Internet, but o f course given that the 

Internet is approaching or has passed a billion hosts; scale factors may act to make both 

situations roughly equally complex!

2.2,2 Conserving Power

Ultimately many systems are constrained by the need to conserve power. Basically, total 

battery depletion is equivalent to destruction for many o f  these systems, whether one is 

dealing with a lander on Mars, or a sensor floating in a lake. Even where a node is 

recoverable (which it is not in the former case), the cost to recover it may be significant 

and, o f course, even if the node can eventually recharge its battery, the inability to provide 

service while the node’s battery is dead could be significant.

In the future, one may also have to deal with systems that, though they are nearby, are 

practically irrecoverable if  no power is available, say, a sensor node that is simply too 

small to find by searching. In those cases, what was deployed as a way to monitor the 

environment could end up itself being a pollutant. So long as the node has sufficient power 

it can at least send out a beacon signal, possibly with some location information.

http : / /w w w 2.ip l .nasa .gov /ga li leo /faghga .h tm l
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Similarly, for devices that are carried about on a person, such as mobile phones, we have 

power conservation requirements (say, to last for a number o f days between recharges), 

which effectively override most other requirements -  in the mobile phone case, power 

conservation is one o f  the highest priorities, for example, according to Kim: “The 

outstanding problem with the current mobile handset is the battery drain on the device.” 

[KI06]

Req. DTN protocols should be usable in systems where power conservation is the 

over-riding system-level requirement.

So, we can see that conserving power is a requirement for many systems. The next 

question is how does this cause delay and disruption? Well, first, one o f the most power- 

hungry devices on many wireless devices is the radio. It has been estimated that each bit 

transmitted or received costs the same amount o f power as executing some hundreds to 

thousands o f central processing unit (CPU) instructions. [BL05a]

In a typical embedded system a significant amount o f full-on power consumption will be 

due to radio communications, in many cases these days using WLAN-based protocols (i.e., 

IEEE 802.1 Ib/g). In fact, the actual power consumption can depend on the details o f the 

traffic pattern; for example, if a streaming application has predictable packet inter-arrival 

times, then the wireless interface can be more easily tuned to conserve power. [CH02]

Even radio setups with much smaller ranges (radio range and power consumption will 

increase together) like Bluetooth [KAOl] will consume significant power. In fact, when we 

take into account the overall network power consumption, the longer-range radio solution 

will normally be the more cost effective. We can fully cover a square kilometer with 100 

devices, each with an ~70m effective range (say 802.11b devices), but we need 2,500 

devices if each has only an ~30m effective range (like Bluetooth).

Clearly then, a very simple and effective way to save power is to turn off the radio. 

However, this causes the obvious problem that the device is offline while the radio is off, 

and hence constructing the network to handle this voluntary disruption can be difficult.
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Powering off the radio also causes delays. If the nodes in a multi-hop path are sometimes 

on, and sometimes off, then data will sometimes have to “pause” in a node until the node is 

ready to transmit the data to the next hop on the path.

Regardless o f how the transmitter knows that the receiver’s radio is on (and it must know 

that), there will be a delay involved. And those delays may be significant since in some 

cases the most natural way to handle powering the radio on and off will be related to some 

application-specific duty cycle, for example, related to day/night cycles in environmental 

monitoring sensor networks, or roughly related to the frequency with which a node is 

“visited.”

Even were battery technology to undergo dramatic improvements (e.g., based on fuel 

cells), the fact that for many applications one would like to deploy nodes that can last for 

significant periods (months, years) means that batteries alone will not be enough to power 

most systems over their entire lifecycle.

So, many systems will also include some kind o f power harvesting (e.g., solar panel, wind 

generator, piezoelectric, etc.) that can also lead to disruption; for example, a solar powered 

node that is liable to be shadowed for a significant period (say due to snowfall) will 

eventually suffer communications disruption.

Most forms o f power harvesting appear to be vulnerable to some such long-duration 

outage. The first reappearance o f such a node may well also require some special handling 

-  it may otherwise appear to be a newly introduced node or may no longer have an up-to- 

date network configuration.

Req. DTN protocols should be able to operate in situations where applications or the 

environment determine duty-cycles.
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2.2.3 Interm ittent A vailability

Som etim es a node will be physically m oving. And som etim es that m ovem ent will take the 

node to “dead” coverage areas between access points.'*^ Depending on the duration o f  the 

disconnection and the am ount o f  coordination behind the scenes by the access point 

adm inistrators, TCP sessions can som etim es survive such a handover. However, in general, 

i f  the access points are not coordinated or are too far apart, then TCP sessions will fail due 

to the disruption. N ote that this may or may not becom e visible to an end-user; for 

exam ple, a m ail client m ay totally hide the disruption, w hereas a Web browser will 

probably fail for outstanding requests, but m ay begin to work correctly once the new 

connection is established.

Req. DTN protocols m ust co-exist with, and be able to make use of, the existing 

Internet.

A side from the usual cases o f  access points being interm ittently visible (in radio term s, that 

is), a very fast-m oving node m ight be m oving quicker than the infrastructure can handle 

the m igration o f  the various aspects o f  the system  state that are required to provide service. 

Current infrastructure system s are designed and provisioned so that the so-called “binding 

updates” can in fact be handled as quickly as required. How ever, if  we consider a case 

where the access points them selves are only interm ittently connected to the Internet, then 

we can see that this can cause disruption and delay.

Req. DTN protocols should operate in the face o f  significant node m obility, even for 

infrastructure nodes.

One may ask why an access point m ight only have interm ittent connectivity. W ell, it could 

be that the access point will await cheaper (off-peak) Internet access, or perhaps the access 

point is on a ship, which can only connect back to shore for a certain distance. Or, perhaps

In th is section  and throughout, w e  use W L A N  term in o lo g y , but w e  cou ld  equally  describ e the issu es here 
in term s o f  m o b ile  IP co n cep ts like hom e a g en t/fore ign  agent; or w e  co u ld  use G lobal S ystem  for M ob ile  
com m u n ica tio n s (G S M ) or 3rd G eneration Partnership Project (3G P P ) term in o logy  - the point be ing  that the  
d ela y  and disruption issu es are the sam e regardless o f  the type o f  m ob ile  com m u nication  in use.
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the access point is awaiting a satellite pass. The disruption in such intermittent access point 

cases is fairly obvious in that the node will not have Internet connectivity when the current 

access point does not. The delay caused will be directly related to the delay before the 

access point next has connectivity.

The infrastructure may also be unreliable if  a node is moving quickly past sparsely 

deployed access points, say along an autobahn, if access points are deployed at service 

stations. Ott and Kutscher [OT04] have demonstrated that an IEEE 802.1 Ig node in a car 

traveling at about 120 km/hr will have about 11 seconds connectivity with an access point 

at the side o f the motorway, which will often not be sufficient to service application layer 

requests (say for information about the destination). In this case, their “drive-thru Internet” 

architecture'*^ envisages starting the request with the car picking up results as it passes the 

next access point at the next service station, perhaps 30 km further down the autobahn.

Req. DTN protocols should not assume the same path is always used for application 

layer requests and responses.

And if intermittent availability is an issue for some infrastructure networks (those with 

access points), we can see that this will clearly be much worse for networks that have no 

infrastructure at all. In those typically ad hoc networks, hop-by-hop connections will be 

established at sometimes unpredictable times, so that the probability o f successfully 

establishing an end-to-end connection (even assuming the endpoints are both available at 

once) might be very small.

Req. DTN protocols must operate even in the face o f the total absence o f an end-to- 

end connection.

There are also some ad hoc cases where delays may be introduced due to the nature o f the 

context or application, rather than the network. For example, if  two commuters play one 

another at chess each morning while both are on the train, then it might be a fair setup to

http ://\v \vw .drive-thru-in ternet.org
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stop the chess clocks whenever the players are no longer in proximity, (on the basis that 

the out-of-range player cannot make a move). Such a system would lead to delays o f the 

order o f  a day being introduced.

Recognizing the facts presented in this section is perhaps one o f the main differences 

between DTNs and other networking approaches including mobile ad hoc networks, peer- 

to-peer networks, and other similar networking approaches. Those approaches basically 

attempt to engineer end-to-end connectivity, in the face o f ad hoc, disrupted connections, 

using such routing protocols as Ad hoc On-demand Distance Vector routing, (AODV), 

[PE03] Dynamic Source Routing, (DSR), [J096] Optimized Link State Routing (OLSR) 

protocol, [CL03] Network Mobility, (NEMO), [DE05] or similar schemes. As w e’ll see, 

with DTNs one does not generally attempt to build such end-to-end connections, which is a 

significant difference.

In some networking scenarios it may be hard to decide which interface or contact to use to 

forward data, so that the data moves “closer” to the destination. For example, in the 

Earth/Mars scenario, it will be more efficient for a lander to skip an orbiter contact if the 

orbiter from the 2"‘* lander/orbiter contact will have an earlier (or more reliable) contact to 

the deep space network. In such cases, the optimal route to select may involve data first 

moving “further away” from the destination.

Req. DTN protocols should generally attempt to move data “towards” the

destination, even though some optimal routes may involve temporarily moving 

data “away” from the destination.

2.2.4 Quiescent Environments

One fact about many (though not all) embedded systems is that they tend to spend lots o f  

time doing absolutely nothing. For example, this will be the case with most systems that 

are not continually monitoring their environment. In such cases, having the device 

connected to a network solely in order to be available is very wasteful, especially in terms 

o f power consumption. This provides yet another motive to be able to support disrupted 

and delayed networking.
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So, for many systems we’d like a way to have the system turn itse lf o f f  completely and 

only have it wake up when something is happening. How we arrange to wake up the 

system w ill depend upon what the “ something”  is that happens. Possibilities might include 

the availability o f power as the sun rises, receiving a beacon signal (usually using a radio 

receiver dedicated to this purpose) from another system that comes into range, an 

independently powered sensor reading crossing some threshold value, or movement o f the 

system itse lf could trigger the wake-up. However, perhaps the most common scheme, and 

one which should almost certainly be combined w ith any o f the above, is to wake up in 

response to a scheduled alarm call from an on-board clock, frequently powered via a 

separate button battery.

O f course, the system also has to handle the opposite problem, deciding when to go to 

sleep, but we can see that each o f the wake-up possibilities suggests a way to decide when 

to sleep. For example, a system might decide to shut down when the sun sets and its solar 

panel ceases to charge the battery.

Many processors w ill also have a range o f power-down settings, analogous to the standard 

personal computer power settings: running; standby, (where system state is stored in 

random access memory (RAM )); hibernate, (where system state is stored to disk); and 

“ o f f ’ (which isn’ t actually totally off, for many devices, when they’ re still plugged in).

There are a range o f standards in this area, w ith the Advanced Configuration and Power
"?0Interface (ACPI) standard [C003] bemg perhaps the most commonly supported. Many 

embedded systems developers w ill however invent their own scheme for handling 

equivalents to standby and hibernation.

Req. DTN protocols should be able to operate when the host hibernates or reboots in 

the “ middle”  o f a “ session.”

Regardless o f how a system is put to sleep and awakened, the fact that different systems in 

a network are doing this w ill clearly create delay and disruption in more or less the same

littp ://acp i.in fo /
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way as if  the systems were powering on and off their radios. However, even with 

individual nodes making individual sleep/wake decisions, there may well be correlations 

between them. For example, as the sun rises, presumably the more easterly and less shaded 

systems will power up first, resulting in a wave o f power-ons. Similarly, if a sensor 

threshold were used to control powering on and off, then variations in those levels might 

cause other patterns in how the systems in the network power on and off, which could 

negatively impact traffic patterns if only a few sensors at a time are likely to have crossed 

the threshold value.

One particular case where unexpected interactions could occur would be where each 

system has a radio for communications and a separate beacon radio that it can use to wake 

neighbors. In such a case, one can easily imagine a faulty node; say one that is awake too 

often, acting so as to accidentally deplete the batteries o f neighbors, by continually 

awakening them. So, in practice, most systems that manage power by turning off will also 

have some built-in safe-guards, for example, ensuring that they awaken at least once per 

day at a fixed time, and perhaps that once woken they stay awake for a certain period and 

once put to sleep, that they don’t immediately reawaken.

2.2.5 Security Considerations

We have seen that handling the fact that not much happens can be a source o f delay and 

disruption. But some o f the things that do happen (either accidentally or deliberately) can 

create quite bad effects on our putative network. Anyone who is familiar with the problem 

o f Internet worms (the original o f the species dates back to 1988 [SP88]) will know that 

networks are always vulnerable to some security problems.

In terms o f  DTNs, one o f our main concerns is going to be ensuring that network nodes are 

available when they ought to be available. This means considering so-called denial o f 

service (DoS) attacks, where an attacker consumes some network resource in order to 

prevent (or disrupt) normal network traffic.

For example, if  a DTN node can be woken by a beacon as described above, then an 

attacker who generates such a beacon will awaken the node, causing it to consume power, 

perhaps to the extent that the node never has sufficient power to take part in handling 

normal network traffic.
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Req. DTN protocols should be designed so as to be highly robust in the face o f  DoS 

attacks.

Another simple, though often easily detected, DoS attack might involve physically 

shielding the node so that its radio transmissions are blocked. Yet another might involve an 

attacking node masquerading as a genuine node and generating so much traffic that real 

traffic never gets forwarded. More traditional networks also suffer from all o f  these 

problems, but they are worse in the DTN context due to the fact that since one is generally 

dealing with a less structured networking environment, it is harder to maintain the shared 

state that allows nodes to detect these DoS attempts. For example, centralizing firewall 

logs (as is done for example in some honeynets [CH05]) might be very difficult in many 

DTNs.

We are also much more likely to be dealing with nodes for which a successful DoS is a 

catastrophic event. With many nodes, if an attacker can succeed in a battery depletion 

attack, then they have effectively destroyed the node, and perhaps also partitioned the 

network so that many other nodes are also badly affected.

In addition to DoS, DTN nodes also have more or less the same set o f security 

requirements that apply to any normal network host. They need support for confidentiality, 

data integrity, authentication, and the type o f security countermeasures that Internet 

protocol security (IPsec) [KE05] or transport-layer security (TLS) [D106] address.

Req. DTN protocols should provide (or leverage) confidentiality and data integrity 

services.

We will see how this can be (partly) achieved later on, but we will also see that there are 

still open research issues in this area. Basically, it’s really hard to do the type o f security 

negotiation involved in protocols like IPsec or TLS when the communicating nodes are 

using a DTN. The reason is more or less the same as why TCP w on’t work for DTNs. Such 

protocols require too many round-trips before data can flow. However, unlike the case o f 

TCP where comparable DTN protocols have been developed, there are, as yet, no DTN 

analogs for the low-level key management features present in IPsec and TLS.
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R. 1 DTN p ro toco ls m ust opera te  even in the face o f  the total absence  o f  an end-to -end  connection .
R.2 DTN pro toco ls should  be able to  o pera te  (re latively  effic ien tly ) even w hen link or path latencies are o f

the o rder o f  m inutes, hours o r days.
R.3 DTN pro toco ls should support changes in the scheduling  and /o r con tac tab ility  o f  nodes.
R .4 DTN pro toco ls should be able to  o pera te  w hen the host h ibernates o r reboots in the “ m idd le” o f  a

“session .”
R.5 DTN pro toco ls should  be usable in system s w here pow er conservation  is the over-rid ing  system -level 

requirem ent.
R.6 DTN pro toco ls should  generally  a ttem p t to  m ove data “tow ards” the destination , even though  som e 

optim al rou tes m ay involve tem porarily  m oving  data “aw ay” from  the destination .
R.7 DTN pro toco ls should not require  sim p le , regular, stric tly  period ic  nor cyclic patterns o f  v isib ility , but 

should  be ab le  to  benefit from  such  patterns w here they exist.
R.8 D TN pro toco ls should be able to o pera te  in situations w here app lications o r the env ironm ent 

determ ine du ty-cycles.
R.9 DTN p ro toco ls should  no t assum e th e  sam e path  is a lw ays used for application  layer requests and 

responses.
R. 10 DTN pro toco ls should  be ab le  to suppo rt a very w ide range o f  data  rates.
R. 11 DTN pro toco ls m ust co -ex ist w ith, and be able to  m ake use of, the ex is ting  Internet.
R. 12 DTN pro toco ls should  operate  in the face o f  sign ifican t node m obility , even for infrastructure  nodes.
R. 13 DTN pro toco ls should  be designed  so as to  be h igh ly  robust in the face o f  DoS attacks.
R. 14 DTN pro toco ls should  provide (o r leverage) confiden tia lity  and data  integrity  services.

T ab le  2 .2  -  D TN R equirem ents.

We should also note at this stage that some DTN nodes, perhaps mainly those in military 

tactical networks, will also be required to be stealthy or “hide,” to the extent that this might 

cause additional delay in establishing a link, say, if  such a node cannot react to a simple 

beacon, since to do so would expose its existence. While such stealth is mainly a matter for 

lower layers (i.e. layers 1 and 2), a DTN protocol that required constant “keep-alive” style 

m essages might not be able to be stealthy enough for use in such contexts.

When discussing security, we should also note that compared to a standard personal 

computer or server, DTN nodes w ill tend to be placed in much harsher environments. This 

is obvious for a Mars lander, but is also true for many other DTN applications where the 

nodes will be vulnerable to, for example, interference from animals (including humans) 

and the elements, i.e., all o f  the standard problems that arise when equipment is exposed  

for longer durations. The failures resulting from such occurrences o f  course act to increase 

the likelihood o f  delay or disruption, further justifying our DTN approach.

2.2.6 DTN Requirements Summary

Table 2.2 above lists all o f  the DTN requirements together for ease o f  referencing. We 

have re-ordered the requirements to place the more important ones first and grouping
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Figure 2,2 - Results from a DTN experiment. (From [D E 04])

others. As stated earher, we are not including generic protocol requirem ents, (e.g., no 

livelock), but only those that are specific to, or should be em phasised for, DTTM protocols.

In subsequent sections o f  this chapter, where we can see a requirem ent that is not m et by a 

solution or protocol then we will include a “ ( - R . x ) ”  in the text. For brev ity’s sake, we will 

not however, go into full detail about why each requirem ent is, or is not im posed or m et in 

each case.

2.3 A Simple Demonstration of Delay (In)Tolerance

In order to dem onstrate how  some protocols operate in an environm ent experiencing delay 

and disruption, D em m er et al. carried out an experim ent [DE04] using a sequence o f  

“relays,” each o f  w hich im plem ented a num ber o f  standard Internet protocols plus a DTN 

protocol (described later) called the bundle protocol (BP).

The experim ental setup had data passing through each o f  the relays, using a range o f  

protocols and under a range o f  connectivity conditions. The protocols used were the 

Sim ple Mail Transfer Protocol (SM TP) [KLOl], a less chatty variant o f  the File Transfer
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Protocol (FTP) [P085] (here called SimpleFTP or SFTP^' [DE04]) and the BP. Each o f the 

protocols was run in both an end-to-end (“E2E”) mode where IP forwarding was used 

between protocol daemons running at the source and destination and in a hop-by-hop 

(“HOP”) mode where protocol daemons were running at each node.

At first all o f the relays were operated “full-on” and the performance o f the various 

protocols was measured in terms o f throughput. Then relays were selectively powered off 

following various power cycling patterns, either all on or o ff together (“Aligned”), in a 

shifting pattern (“Shift”) so that there was overlap between each node powering up and the 

next, then a sequential pattern (“Sequential”) in which only one node is powered up at a 

time, and finally, a random (“Random”) pattern in which nodes are powered up and down 

independently. As shown in Figure 2.2, these patterns o f connectivity/availability have a 

highly detrimental effect on standard Internet protocols. For example, in the sequential, 

non-overlapping case, no SFTP-based traffic gets through at all. (-R.l,-R.3)

As might be expected the DTN protocol survives all this much better than the others, at 

least in terms o f  most effectively utilizing the available bandwidth. The reader is referred 

to [DE04] for full details and discussion.

The conclusion to be drawn is fairly obvious and is that for these types o f connectivity 

setups, standard Internet protocols may have unacceptable performance. (-R.2) The more 

interesting question to ask at this point is whether such communications setups are likely to 

occur in practice. As explained earlier, one can lose communications for various reasons to 

do with power management, radio range or interference, and node movements.

In fact, a number o f scenarios have similar patterns o f communication, particularly related 

to so-called Vehicular Ad-hoc Networks (VANETS). Wong et al. [W 003] described 

differences between the random waypoint based model and a more realistic model o f inter- 

vehicular networking that takes a street-pattern into account -  one example they give is the 

fact that traffic lights create clusters o f  nodes (cars) and that the clusters then disperse over

N ot to be confused with secure FTP which is the more comm on expansion o f  the acronym SFTP.
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a period. Communication between such clusters could, for example, replicate the “ shift”  

pattern described above.

Naumov et al. [NA06] take this examination o f VANETs a step further by basing their 

simulation work on a city-scale “ micro”  model o f traffic movements. Although their 

chosen network simulator (ns-2 [FA97]) cannot scale to run complete city-scale 

simulations they nonetheless also conclude that more realistic VANET mobility models 

(compared to the random waypoint model) imply worse behaviour for standard protocols. 

(-R.12)

VANETs are essentially based on a significant body o f work [ZH03, H002] devoted to 

what are called mobile ad hoc networks (MANETs). MANETs are networks where each 

node is also a router and where some kind o f cooperative routing protocol is used, with the 

ultimate goal that by sharing the available bandwidth and connections, any node in the 

network can communicate with any other.

One might question whether this is the best goal to set for ad-hoc networking, given that it

apparently ignores the fact that a one billion node infrastructure network (the Internet)

exists and is nearby for almost all MANET/VANET applications. Put another way, i f  we

set the goal for MANET/VANET protocols to be the ability for end-to-end communication

solely based on the use o f MANET/VANET protocols, then we lose the ability to

communicate via some paths that are very likely to be available in many scenarios. A more

interesting goal would be end-to-end communications where some “ hops”  in the path use

MANET/VANET protocols, and where others, (most likely those in the “ middle”  o f the

path), use standard Internet routing. This wrong-goal problem is often fatal for such efforts

even where enormous effort is expended and even where the wrong-goal is, in fact, very
22close to some real, though subtly different, requirement. (-R.12)

DNS security, the WAP forum’s stack and OSF/DCE arguably offer additional examples o f the same 
problem.
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One of the best known MANET routing protocols is called Ad hoc On-demand Distance 

Vector routing (AODV) [PE03] and has as its main aim the on-demand discovery of, and 

maintenance of state for, routes from a source node to a destination. In many applications, 

the appropriate destination node for the ad hoc network is a gateway to the terrestrial 

Internet, and AODV should be usable to create a route between a sensor node and the 

gateway node.

Another well known MANET routing protocol is the Open Link State Routing Protocol 

(OLSR). [CL03] In contrast to AODV, OLSR doesn’t attempt to build routes on-demand, 

but rather regularly has nodes exchange topology information, so that details of the 

relevant next hop are (hopefully) available when needed. OLSR also attempts to constraint 

the amount of overhead, routing protocol traffic, to within a few hops of each relevant 

node.

So why aren’t AODV or OLSR suited for use in networks exhibiting the communications 

patterns discussed above? Well, first, they fail if one of the nodes on a route is powered 

o ff This is not a bug. The protocols are simply not designed to cater for devices that are 

frequently turned off being part of the routes that are built. The obvious effect of this is that 

when nodes are frequently un-contactable, the routes derived by AODV or OLSR are not 

valid for nearly as long as would be expected. (-R.3)

However, more seriously, once a node (call it “lazy”) is powered off, it cannot be used to 

create new routes (and will indeed cause other nodes who remember our “lazy” node from 

its previous power cycle to send packets that are never acknowledged, thus wasting 

resources). In many scenarios where the ad-hoc network communicates with the Internet 

via a gateway, once all of the nodes that are in radio range of the gateway are sometimes 

powered off then one faces a situation where no other node can find a working route to the 

gateway and the entire network essentially breaks down. (-R.4)
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One can ameliorate this to some extent if  we synchronize (even loosely) the on/off cycles 

o f  the various nodes. However, in such a situation it only requires one node’s clock to be 

slightly off to disrupt an entire set o f routes. We could therefore migrate between the 

different communications patterns as clocks diverge. (-R.7)

Synchronization problems can also happen as the set o f nodes changes over time. Say a set 

o f  nodes are somehow scheduled to communicate on the hour, for 5 minutes, and to then 

power off. At some later time, a new batch o f nodes arrives on the scene, but with these 

new nodes communicating at half-past the hour, and again once per hour for 5 minutes. If 

some nodes act as bridges between these two sets, communicating every 30 minutes, then 

data can flow across the network, but without there ever being an end-to-end connection. 

Packets from the first set o f nodes will however take at least 25 minutes to get to members 

o f  the second set in this setup. Neither AODV nor OLSR would successfully route packets 

in this scenario (-R.2)

In the cases discussed so far, we have only really considered cases where, for example, a 

TCP connection is to be established between the source and destination. However, even 

with store-and-forward protocols such as SMTP, the random pattern might perform very 

badly if mail is forwarded to whatever host is currently contactable. Messages would, in 

that case, be just as likely to travel “backwards’' as towards the destination - this could 

happen if there is only likely to be a single connected node at any given moment, and if 

routes are set up so that the currently contactable node is always the next hop Mail 

Transfer Agent (MTA). (-R.6)

In summary, this simple demonstration setup is sufficient to show that standard protocols 

and even experimental ad hoc protocols can be problematic in some easily constructed 

scenarios that map to realistic application use cases. As can be seen from Figure 2.2, the 

demonstration also shows that it is at least plausible that DTN protocols can offer better 

solutions for these cases.

For this reason, one could probably make a good case that routing protocols like A O D V  should be 
extensible so as to support in-band clock synchronization.
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2.4 Using Existing Protocols for DTN

In this section we review how relevant existing apphcation, transport and lower-layer (sub- 

IP) protocols might meet DTN requirements. Existing protocols designed specifically for 

DTNs will be considered in the next chapter. The general approach o f a DTN overlay and 

its consequences are analysed in Chapter 4.

2.4.1 Application Layer Protocols

As mentioned above, one can imagine attempting to meet DTN requirements via the 

development o f application layer protocols. One example that has been suggested in the
24past has been to “just use SMTP ” since SMTP, as a store-and-forward end-to-end 

protocol has clearly been a success and, in practice, offers sufficient reliability in most 

cases. However, as also previously noted, since SMTP is layered on TCP, it cannot bridge 

a hop that is significantly delayed, or sufficiently frequently disrupted. (-R.2)

Another approach is to invent a new application layer protocol that sits above whatever 

transports are available and to handle DTN requirements in this application layer protocol. 

This has in fact been done in projects that pre-date the DTNRG work on the BP and LTP, 

for example, Zebranet [ZH04z] and Seaweb [R105 |.

Assuming for the moment that our set o f  DTN requirements are self-consistent, then, since 

it is therefore possible to build some protocol meeting the requirements, one could o f 

course, choose to run that protocol at the application layer. At that point however, the only 

reason that one has not developed an overlay network protocol would have to be that there 

is something application-specific about the protocol design. And that, in turn, means that it 

is highly unlikely that such a protocol could be used to carry traffic for some other 

application. In summary then, we can postpone further discussion o f application layer DTN 

to when we consider the overlay approach in Chapter 4.

This has been repeatedly suggested at DTNRG m eetings, though seem ingly without m aking it into written 
form.
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Haggle [SU07] demonstrates a different approach that sits “across” layers from the 

application, down to the data link layer. Haggle basically adds an additional naming layer 

above current protocols (e.g. HTTP, SMTP) that it uses to resolve meta-data about named 

data objects. In this way, Haggle attempts to be transport and lower layer agnostic since it 

only cares about the names o f the data objects and not how they are acquired. However, 

Haggle itself doesn’t seem to include support for high-latency (-R.2) or highly-disrupted 

links (-R.1), though presumably Haggle could be extended to support use o f  such links. 

Nor does Haggle really provide application independence, since any application that 

wishes to use Haggle, has to re-engineer its data model to fit the Haggle naming scheme 

which is not currently used by any widely deployed application.

2.4.2 T ransport Protocols

As we have seen there are at least niches where TCP won’t work. However, one may well 

wonder whether or not TCP or some other transport protocol, perhaps specially configured 

or modified, might avoid these problems. In this section we review existing transport 

protocols, to see whether or not they suffer similar problems when it comes to meeting 

DTN requirements. This review o f transport layer protocols is largely based on Iren et a l’s 

survey [1R99] o f transport protocols.

As mentioned already TCP’s handshake-before-data is hugely problematic for very high 

latency cases. (-R.2) However, even at lower latencies this handshake wastes significant 

bandwidth that could be used for carrying data. For example with a 1.25 second delay 

(approximately the Earth-Moon light-trip time), and with a 256Kbps data link (which 

would be very small in that context) each wasted roundtrip costs 40KB, roughly the size o f 

a small image. The basic message is that any transport protocol that is “chatty” is not 

suitable for use in DTNs. (-R.1) By “chatty,” we mean a protocol that requires multiple 

round-trips before something useful is achieved. This covers not only TCP, but SCTP 

[STOO] and RTP [SC03] which are basically the standard reliable transport protocols in 

widespread use today, (both SCTP and RTP have the same problem o f consuming a round- 

trip before data flows).

In addition to the initial round-trip, TCP and other transports react to congestion by being

sensitive to dropped or delayed packets. While this works well in today’s wired Internet

(since links are mostly reliable) it will not work in many DTNs and is already problematic
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in some wireless contexts since as stated by Montenegro et al: “TCP does not perform well 

in the presence o f significant levels o f non-congestion loss.” [MOOO]

Harras and Almeroth [HA06t] consider TCP-style transport reliability issues in what they 

call “Delay-Tolerant Mobile Networks” (DTMNs) which are essentially DTNs with many 

mobile nodes. They consider ways to provide reliability, including hop-by-hop and end-to- 

end and propose a new approach that they call the network-bridged approach.

The network-bridged approach assumes that nodes can send small amounts o f signaling 

traffic end-to-end, so that when a node receives a packet, it can send a “success” signal 

back to the originator via this separate channel. (-R.1) The motivation for this approach is 

a scenario where nodes can use a (probably expensive and low bandwidth) cellular 

network for signaling but must use DTN protocols for bulk data transfer. Based on a 

modified random waypoint mobility model simulation, they conclude that the network- 

bridged approach can offer reliability more efficiently than hop-by-hop or end-to-end 

approaches, but o f course, the availability o f the end-to-end signaling channel does breach 

our most important DTN requirement. While the network-bridged approach is interesting 

and could be a basis for future DTN signaling work, it does not provide a generic 

mechanism that DTN nodes can use to achieve reliability.

in addition to standard transports there have also been various research proposals over the 

years for alternative transports or modifications to current transports that could potentially 

be a match with DTN requirements - in particular DTNs are a bit like very high-speed 

networks.

Very high-speed networks are like DTNs because the bandwidth-delay product is 

increased; perhaps sufficiently that signaling traffic becomes problematic due to the wasted 

bandwidth required. Basically, if the bandwidth-delay product is sufficiently high, and if 

application traffic is blocked (temporarily) by signaling traffic, then we effectively re­

create the problem with TCP in DTNs -  the additional roundtrips required mean that the 

overall suite o f  protocols are too chatty for use. (-R.2)

Kumazoe et al. [KA06] describe how high-speed network variants o f TCP perform in a 

fairly realistic environment, in particular in the presence o f numerous “small” standard

38



TCP sessions and a relatively small number o f constant bit rate UDP sessions (like phone 

calls). Their conclusion is that the 19 (19!) TCP variants they examined for use in high 

bandwidth-delay environments are badly affected by a requirement to co-exist with other, 

short-lived TCP flows (e.g. web accesses). (-R .11)

According to Kaneko et al. [KA06f] these TCP variants can be classified into three 

categories: loss-based  where the congestion window is modified by deliberately causing 

packet loss delay-based  which make use o f (estimated) RTT as a network congestion 

estimator and lastly loss-based protocols using RTT metrics which can adaptively switch 

congestion controls according to the congestion level or estimated RTT.

However, none o f these approaches can work, in general, in a DTN -  the problem being 

that estimating the RTT is quite a different proposition since, in a DTN, the RTT may bear 

no relationship to the level o f congestion being suffered. In addition, DTNs, like wireless 

networks generally, may experience much higher rates o f packet drop that are not due to 

congestion. So both loss-based and RTT estimation based schemes are problematic in 

DTNs. (-R.1)

Overall it appears to be the case that none o f the TCP extensions currently proposed for use 

on the Internet meet our DTN requirements well, since they all either require a round-trip 

before data is transferred and/or base their congestion handling on changes in RTT. (-R.2) 

However, there have also been some proposals to modify TCP in ways that might be more 

suited to DTNs and we now examine those.

TP-Planet is a DTN-like TCP variant

TP-Planet [AK04] represents an interesting, though ultimately unsuccessful, attempt to use 

a standard IP network analysis approach in order to develop a way to handle high-latency 

links in a transport protocol running directly over IP. As w e’ll see, the result turns out to be 

usable only in limited cases o f high-latency networks where an end-to-end connection can

T h ese  variants gen era lly  ram p up transm ission  very q u ick ly  until packet lo sse s  occur.
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be established and maintained. Put another way, TP-Planet doesn’t work where there is no 

end-to-end connection. (-R.1) TP-Planet might perhaps work in some Earth-Moon 

scenarios, but probably not if the connections are via a relay satellite that isn’t always 

visible to both sides.

The basic approach to tackling problems with TCP has usually been to run simulations o f 

protocols that differ subtly from TCP but which exhibit quite different behavior in 

simulated stressed environments. TP-Planet follows this approach, in that it first examines 

the aspects o f TCP that are problematic in the face o f delay, and then proposes new ways 

to achieve acceptable performance in those high-latency environments. Unlike the bundle 

protocol and LTP“*’, however, TP-Planet tries to fix these problems by developing a variant 

o f TCP, rather than by inventing an entirely new protocol.

The first problematic aspect o f TCP that is considered is slow start. This is the algorithm 

that TCP uses to slowly increase bandwidth utilization so that at the beginning o f a session 

TCP will spend a considerable amount o f (wasted) time waiting for packets to be 

acknowledged. (-R.2) As the session goes on, so long as there are no negative 

acknowledgments, TCP continues to widen the window of packets that remain to be 

acknowledged. This widening o f the window allows TCP to use more o f the available 

bandwidth. Clearly an algorithm like slow-start should not be run over an interplanetary 

link, since the inefficiency involved in starting with a small window size would be 

enormous. [AK02] So, TP-Planet starts by using some environmental knowledge in order 

to determine the best transmission parameters, but then allows the rate to be adjusted in 

response to events as the session proceeds. This approach o f adjusting the transmission rate 

based on the end-to-end performance mirrors how TCP works.

TP-Planet monitors how the session is proceeding by inserfing some so-called “N IX ” 

packets into the stream, some at a low (IP) priority and some at a higher priority. These 

packets are like ICMP “echo” packets, in that they are echoed back to the sender by the

B oth are descr ib ed  in the next chapter.
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recipient. By monitoring the arrival rates o f these packets, TP-Planet estimates how the 

session is progressing, the logic being that if some node on the route is experiencing 

congestion, then presumably this will cause the delay or dropping o f some o f the low- 

priority NIX packets, and so the ratio o f transmitted to returned NIX packets at each 

priority gives an estimate o f network performance. Importantly though, this estimate is 

arrived at in an end-to-end fashion, without having to have knowledge o f how intermediate 

nodes operate. While this approach is different from TCP due to the new NIX packets, the 

overall idea o f establishing an end-to-end performance metric based only on the end-to-end 

performance o f transmissions again mirrors TCP.

TP-Planet, Hke TCP, uses an additive increase, multiplicative decrease (AIMD) model for 

tuning the session based on the behavior o f the network. This means that when the protocol 

detects that the network has more capacity, then the number o f data packets transmitted 

can be increased by the addition o f a small number o f additional packets per second. This 

is the additive increase step, and in the case o f TP-Planet is triggered by noting that the 

low-priority NIX packets are arriving as quickly as the high-priority ones, thus 

demonstrating that the network has unused capacity. The multiplicative decrease step 

occurs when the ratio o f NIX packets shows that low-priority packets are being delayed or 

dropped, thus signaling congestion somewhere in the network.

When this occurs the protocol halves the rate at which it is sending data packets, a 

multiplicative decrease. This AIMD model is a very well-known approach in networking 

and its use brings with it a large body o f knowledge of, for example, how much memory is 

required to be provisioned in nodes in order to handle congestion.

TP-Planet also caters for cases where a session is interrupted, say for example due to a 

short-lived occultation. The idea presented is to reestablish the session without having to 

suffer the full multiplicative decrease. Basically, by monitoring the NIX packet arrival 

rates, this condition can be detected fairly quickly. This represents a difference between 

TP-Planet and TCP, in that TCP basically assumes that all dropped packets were dropped 

because o f congestion, v/hereas TP-Planet attempts to distinguish between these two cases, 

so that we don’t dial-down the transmission rate unnecessarily. However, the claimed 

utility o f this feature is not clear since for example Mars orbiter occultations last for tens o f 

minutes and not seconds (e.g. while an orbiter is behind a planet).
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So, TP-Planet seems to offer an attractive way to leverage lots o f existing networking 

expertise, techniques, and results in order to deal with high-latency environments. 

However, there is a major problem with TP-Planet that, in fact, appears to make this 

protocol unusable for many deep-space deployments.

The problem is that TP-Planet assumes that there is a working end-to-end connection for 

the entire duration o f the transport session. That is, in order for TP-Planet to work at all, 

packets need to have arrived at their destination and must be acknowledged back to the 

sender, within a timeout, or else the protocol assumes that congestion is occurring and 

drops the transmission rate, eventually, presumably, to zero or some very low rate. If one 

o f  the nodes on the route were an orbiter, and were that orbiter only able to forward 

packets to a lander during a period when the orbiter is eclipsed (the lander is on the “far 

side” o f the planet), then TP-Planet would not work any better than TCP, which is to say, 

not at all! (-R.1)

This problem restricts TP-Planet to uses where all o f the nodes on the route are effectively 

simultaneously visible to their peers; in other words, it requires an end-to-end connection. 

Now, while this configuration does occur, it would seem to be very restrictive for a generic 

DTN protocol.

So, unfortunately TP-Planet appears not to be usable, but it does perhaps show that it is 

worthwhile considering how standard networking approaches (and related theory) could be 

applied in DTN cases.

SUM OW IN and Explicit Transport Error Notification

In a similar vein, the survivable mobile wireless networking (SUMOW IN) project was a 

U.S. DARPA project that looked at a number o f issues related to disruption-tolerant 

networking. One o f the outputs o f  that project was an explicit transport error notification 

(ETEN) [KR02] scheme aimed at assisting in such networks. As with TP-Planet, the 

approach here is the standard networking one o f using simulations to examine alternatives
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to standard TCP. In the case o f this project, their stated aim was to determine whether or

not transport-layer performance could be improved via the use o f explicit error
28notifications.

The basic idea behind the approach is to note (again) that standard TCP assumes the 

existence o f congestion whenever packets are not successfully acknowledged. However, 

the packet may have been corrupted or lost in-transit rather than dropped from a congested 

router. If the packet was corrupted or lost, then there may in fact be no reason to apply the 

multiplicative-decrease antidote that is part o f the normal TCP AIMD scheme. Thus, the 

logic here is that if one can explicitly notify the source and/or destination about errors, as 

opposed to congestion, then it may be possible to improve the performance o f TCP in 

networks that are likely to see more disruption than congestion.

ETEN defines a few different ways to handle errors. The ETEN message can be returned to 

the source or sent on to the destination or in some cases (say if the error affects the IP 

source or destination fields), then perhaps only cumulative error information will be 

contained in the ETEN messages. However, the ETEN approach, as a TCP variant, still 

suffers from some fundamental problems as far as a generic DTN protocol is concerned, 

mainly that we are still wasting time with TCP's chatty session establishment and slow- 

start. And as with TP-Planet, this approach simply fails if  no end-to-end connection ever 

exists between the source and destination. (-R.1, -R.2)

It is worth noting in passing that ETEN is complementary to the standards-track Explicit 

Congestion Notification (ECN) scheme, [RAOI] which might allow a node in the right 

place, that notes the absence o f  the ECN flag, to implicitly determine that packet loss is not 

due to congestion. As an explicit notification ETEN would, were it deployed, presumably 

offer more certainty and hence produce better overall network performance.

httD ://\vw w .sterbenz.oi'g/ip t’s/su m o\v  in/
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SCPS-TP -  A Space O riented TCP Variant

The Consultative Committee for Space Data Systems, (CCSDS^*^) is an international 

standards development organization dedicated to developing data handling protocols 

specifically for space missions. CCSDS has therefore defined a number o f  protocols for 

use in space missions and amongst those is a TCP variant called the Space 

Communications Protocol Standards -  Transport Protocol (SCPS-TP). [CC06, DU97]

SCPS-TP is frequently used between so-called Performance Enhancing Proxies (PEPs) that 

are used to hide the higher latency involved in TCP paths that include a geostationary 

satellite -  in that case SCPS-TP is said to act as the “inter-PEP” protocol [SC05c] with 

typical latencies measured in the hundreds o f  milliseconds (36,000km up and down is 

about 250ms LTT, routing delays can add as much again). [GL98]

SCPS-TP makes use o f a number o f features o f other TCP variants and det'mes some new 

TCP options in order to increase the distance (in terms o f LTT), over which TCP remains 

usable. Among these are two o f  interest -  use o f TCP for transactions (T/TCP) and 

selective negative acknowledgements (SNACK -  apparently first defined in SCPS-TP^^).

T/TCP, defined in Rf-'C 1644, [BR94] specifies a variant o f TCP intended mainly for use to 

support transactional applications where the normal TCP 3-way handshake is problematic 

and/or where the usual TCP session closing scheme consumes too much time.

T/TCP avoids the 3-way handshake via the use o f  some shared state, so that the initial 

SYN packets from the sender (and subsequent packets) can contain a connection count 

(CC) TCP option that essentially identifies the connection and protects against erroneous 

processing o f repeated packets. If the shared state is not present, (e.g. f ollowing a reboot), 

then T/TCP falls back to the normal 3-way handshake, which could clearly be problematic 

in a DTN if it occurred frequently. By itself T/TCP still requires contemporaneous end-to-

http :/ /w ww .ccsds.org/
Personal com m unicat ion  from Robert Durst, w ho said he had “adapted it from w ork that Richard  Fox had 

done in RFC 1106 (his N A K )” .
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end connectivity (-R.1) and hence is problematic for use in DTNs, but at least it no longer 

requires the 3-way handshake for every connection.

The SNACK scheme used in SCPS-TP allows TCP senders to specify a list o f  “holes” 

(gaps in the set o f packets that were received). Once the peer receives this information it 

re-transmits all o f the relevant packets, required to fill the holes. The list is however carried 

as a TCP option, and so is somewhat limited in terms o f the number o f bytes available -  

essentially the sender is limited to describe a small number o f  holes in each segment.

There is also a security implication here, that perhaps would not have been generally 

considered at the time SCPS-TP was developed -  SNACK provides a potentially damaging 

denial-of-service attack, with significant amplification (-R.13) -  if  a bad actor forged a 

packet containing SNACK options that specify large holes, then the receiver will 

needlessly re-transmit many bytes, thus potentially contributing to a denial o f service at the 

peer, or some intermediate router.

So SNACK appears to increase the requirement for some lower layer security, which in the 

case o f SCPS-TP would presumably be IPSec. [KE05] IPSec in a DTN context however, is 

problematic since its key exchange scheme, the Internet Key Exchange (IKE), [KA05] 

requires multiple roundtrips. (-R.2)

In the main use-case for SC PS-l’P, (as an inter-PEP protocol) the satellite hops are at GEO 

distances or less and so are not nearly as delayed as, for example, a deep-space link. As 

w e’ve seen, SCPS-TP still requires contemporaneous end-to-end connectivity and also 

increases the requirement for IPSec, and so, while SCPS-TP can address some DTN 

contexts, it does not provide a general transport layer for DTNs that would cope well with 

higher delays. (-R.2)
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Datagram Congestion Control Protocol

The Datagram Congestion Control Protocol (DCCP) [K006] is a transport protocol that 

“provides bidirectional unicast connections of congestion-controlled unreliable 

datagrams” '̂ that, at the time of writing, is being standardized in the IETF working group 

of the same name .

DCCP attempts to provide a reliable connectionless transport that is efficient for large 

flows but which is also TCP-friendly, in various senses, e.g. not unduly causing bad TCP 

performance when TCP and DCCP flows share common links. For an application, using 

DCCP would be very like using UDP, but with the main difference that the UDP-consumer 

has to implement its own congestion controls, whereas the DCCP-consumer has a choice 

of a couple o f built-in congestion control schemes, called TCP-like congestion control and 

TCP friendly congestion control (TFRC).

DCCP however is (not unexpectedly) also targeted mainly at flows between current 

mainstream Internet hosts, for example calling for an initial default timeout of 200ms, and 

having the same maximum segment lifetime as TCP, namely 2 minutes. Crucially, DCCP 

also begins with a three-way connection initiation in the same way as TCP and is therefore 

similarly problematic when used in a DTN. (-R.l,-R.2)

2.4.3 Congestion Control Schemes

While describing many of the above protocols we made the point that they reacted to 

packet loss with an assumption that the cause for that loss is congestion. While that 

assumption is clearly not safe in a DTN, we do still also have to consider congestion 

handling.

Although the whole area of DTN congestion control is in its infancy, there are a couple of 

(more-or-less) protocol-independent congestion control schemes that are worth a mention 

here.

http:/'/w w w .read.cs.ucla.edu/dccp/ 
http://www.ietf.onz/html.charters/dccp-charter.hlrnl
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TCP Friendly Congestion Handling

As mentioned above DCCP includes a congestion avoidance scheme called TCP Friendly 

Rate Control (TFRC) [HA03]. in this section we briefly consider how this, or similar rate 

control schemes, might match our DTN requirements.

The basic idea with TFRC is to try to limit the extent to which potentially “greedy” 

protocols (like DCCP, or a DTN protocol) might impact other flows in the Internet. A 

protocol is greedy if  it attempts to monopolize the bandwidth on a link, and most naive 

approaches to DTN protocols will, in fact, be greedy, since to some extent greedy is the 

other side o f  the coin to chatty. (A chatty protocol gets to test the channel a number o f 

times and can adjust its behaviour so as to be fair to other flows; a non-chatty protocol 

cannot do that, and is therefore more likely to try to grab an unfair amount o f bandwidth.)

TFRC is a receiver-based scheme, which means that the receiver gives feedback to the 

sender as to recent packet arrivals, and the sender uses this to calculate a sending rate so as 

to remain fair to other flows that are on the set o f hops used by the TFRC flow. (-R.2) 

Essentially, this calculation is based on the TCP throughput equation [PA98] and has the 

goal o f allowing the TFRC flow consume about as much bandwidth as would a TCP flow 

over the same path.

TFRC however, doesn 't explicitly take into account the potentially high latencies as might 

be found in a DTN and there is evidence that TFRC underestimates its fair allocation of 

bandwidth with higher delays (e.g. 500ms) [RH05] (-R.2) There is also a recent “small 

packet” variant o f TFRC [FL07] where the use o f a TFRC variant tailored for the use o f 

1500 byte packets is defined. Whether this may perform better for higher latency links is 

not yet clear, for example Sathiaseelan and Fairhurst [SA07] conclude that “the current 

algorithm ...suffers for paths with appreciable delay” when considering voice traffic over 

satellite links.

DTN-Specific Models for Congestion Control

Burleigh and Jennings [BU06] provided a model for DTN congestion control based on an 

analogy with financial transactions where nodes in a store-and-forward DTN consider their 

temporary storage o f packets as an investment -  their model proposes a set o f investing
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rules that determine when the packet should be stored, dropped or negatively 

acknowledged. Since the model has only been tested in very simple scenarios its suitability 

as a generic approach to DTN congestion control is still an open question. The model is 

also currently quite specific to congestion control for the bundle protocol, (e.g. it assumes 

packets have an expiry time field) though most aspects o f  it might generalize to cover other 

DTN protocols.

Seligman et al, [SE06] propose another DTN specific scheme where storage congestion is 

ameliorated by moving some stored bytes to another “nearby” router that can then further 

forward the bytes, possibly at a later stage. While this scheme doesn’t address cases where 

overall “ local” storage is congested, it does appear to nicely solve some problems where 

the sender doesn’t know which o f a set o f potential storage points to use, and so allows a 

form o f load-balancing that might be quite useful.

In summary however, the proper handling o f congestion for DTN protocols is not yet a 

well-understood area and is actually perhaps less pressing than is congestion control in 

non-Dl'N  cases, due to the fact that many current DTN scenarios are very application 

specific and don’t involve much, if  any, sharing o f bandwidth. Presumably, as DTN 

matures, congestion control will however, become an increasingly important aspect to 

consider.

2.4.4 Lower layer protocols

In addition to the DTN-specific protocols we will examine later, we can identify a number 

o f other DTN-like protocols that have been defined over the years. In this section we very 

briefly consider three o f  these that operate at or below the network layer.

The first was actually intended as a joke, but has in fact been fairly influential, in terms o f 

both how it has been perceived, but more so in terms o f how it provides a demonstration 

that other physical media might produce unusual results (e.g. very high loss rates) when 

used to carry IP traffic.

This is o f course the IP over avian carriers, or Carrier Pigeon IP (CPIP) [WA90] protocol. 

In a classic example o f the computer literate being over-literal, this was in fact 

implemented in Norway in 2001, producing ping traces as shown in Figure 2.3. (Since no
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Script started on Sat Apr 28 11:24:09 2001 
vegard@gyversalen:~$ /sbin/ifconfig tunO 
tunO Link encap:Point-to-Point Protocol

inet addr:10.0.3.2 P-t-P:10.0.3.1 Mask:255.255.255.255 
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:150 Metric:1 
RX packets:1 errors:0 dropped:0 overruns:0 frame:0 
TX packets:2 errors:0 dropped:0 overruns:0 carrier:0 
collisions:0
RX bytes:88 (88.0 b) TX bytes:168 (168.0 b) 

vegard0gyversalen:~$ ping -i 900 10.0.3.1 
PING 10.0.3.1 (10.0.3.1): 56 data bytes
64 bytes from 10.0.3.1: icmp_seq=0 ttl=255 time=61657 31.1 ms
64 bytes from 10.0.3.1: icmp_seq=4 ttl=255 time=3211900.8 ms
64 bytes from 10.0.3.1: icmp_seq=2 ttl=255 time=5124922.8 ms
64 bytes from 10.0.3.1: icmp_seq=l ttl=255 time=6388671.9 ms
  10.0.3.1 ping statistics --
9 packets transmitted, 4 packets received, 55% packet loss 
round-trip min/avg/max = 3211900.8/5222806.6/6388 671.9 ms 
vegard@gyversalen:~$ exit 
Script done on Sat Apr 28 14:14:28 2001

Figure 2.3 - CPIP ping trace.

treatise on DTNs would be complete without referencing CPIP, this thesis can now be 

considered to have discharged its duty in that respect!) However, the CPIP reminds us that 

strange physical layers can produce interesting results -  in the case o f CPIP, any packet 

arriving is interesting.

In the Postmanet project [WA05], Digital Versatile Disks (DVDs) were used as the sole 

physical layer medium between rural schools in India and a central Internet connected 

station. Practically, the Postmanet scheme is tailored to use for Web browsing, but differs 

from other offline browsing approaches in that the client here is never connected to the 

Internet, but only sends and receives bytes via DVD.

DVDs are automatically written at the client end, then sent, via the postal system, to a 

central repository that is connected to the Internet. There, the DVDs are automatically read, 

queries are submitted, and new DVDs containing response content are written. All central 

DVD handling uses an automated DVD robot processor, so that responses can be returned 

to the clients cost effectively.

W hat’s interesting about Postmanet is the argument that the capacity o f physical storage 

media will continue to increase more quickly, and more cheaply, than more commonly

49



used communications media. While this argument doesn’t quite seem compelling, it is at 

least very suggestive that other applications could make use o f such a network, and not 

only perhaps for communications in such rural areas.

One could envisage some applications (e.g., delayed-video-on-demand) that could even 

make commercial use o f a network such as this. In fact this is somewhat reminiscent o f 

various commercial DVD (movie) rental services. The relative symmetry o f the channel 

might also be interesting, for example, allowing backup and recovery services to be 

offered. All in all, the ability o f a DTN protocol to be layered on top o f this physical 

medium is very interesting. With such a layering, one could allow applications to make use 

o f  the transmission medium without the application itself having to be aware that this is 

occurring.

But the main point o f Postmanet is the following: if a new 4.7GB of data arrives each day 

in the post, then that is the equivalent to a continuous data rate o f ~456Kbps being used on
33a 24-hour basis . With either HD-DVD or Blue-ray capacities one could achieve data rates 

equivalent to, or higher than, basic DSL service. O f course, it may not be possible to 

actually provide a useful 4.7GB o f data each day, but then again perhaps not all DSL 

connections are usefully busy all the time either. And to make use o f the bandwidth one 

needs applications that can handle the latency (e.g. wwwoffflc^'*) and perhaps new 

application programming interfaces (APIs) as well.

We have one further lower-layer DTN-like protocol to consider: Fidonet.^'*’ [BU93] Fidonet 

was a more or less ad hoc network that developed through the 1980s, before it was easily 

possible to connect to an Internet service provider (ISP). Though Fidonet is really only o f 

historic interest, some aspects o f it are reminiscent o f  some o f our DTN requirements. The 

network was based around the idea o f computer-to-computer phone calls. When a message

”  4 .7 * 8 * 1024* 1024 * 1024/ ( 60*60 *2 4 * 1024)=  456 
http://w w w .gedanken.dem on.co.uk/w w w oft1e/ 
http://ww w.tldonet.org/
“Ad hoc” is used here in the sense o f  being self-organized without comm ercial carrier involvem ent, not in 

the current sense o f  ad hoc networking.
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was to be sent from one node to another, then at some point the first com puter w ould 

directly dial the second and transfer the m essage. One o f  the reasons for Fidonet w as 

sim ply the costs associated with long-distance calling. At the tim e, in the United States, 

local calls were generally not billed per m inute, so any tw o local com puters could dial one 

another anytim e at essentially zero residual cost.

How ever, long-distance calling was billed per m inute and was much cheaper at night, so it 

m ade sense to route m essages so that those destined for rem ote locations were first 

centralized in the local calling area, and were then forw arded late at night, in fact, in 

Europe and elsew here even local calls were billed per m inute, so dialing up late at night 

m ade even m ore sense.

This naturally gave rise to a hierarchy, roughly related to the phone netw ork’s calling 

areas, but also to a nam ing and routing schem e and a set o f  associated protocols. 

Essentially, the requirem ent to centralize m essages for the long-distance connection and 

also to m ake use o f  cheaper calling tim es m eant that Fidonet ended up representing a quite 

sophisticated DTN!

The Fidonet hierarchy was structured into so-called zones where each zone was essentially 

a continent, then a local netw ork (equivalent to a telephony area code), and finally, a node 

num ber and an optional “point,” so, for exam ple, “ 1:105/6.42” represented a m achine in 

the US (zone = “ 1”), located in Portland, Oregon (“ 105”), where the host was host num ber 

6, and the “point” was “42.” A list o f  all the hosts and their contact points (i.e., the num ber 

to dial) w as m aintained in each locality with m odifications w idely distributed to other 

locations at frequent intervals (e.g., weekly). The “point” concept was for a m achine that 

could connect to the netw ork, but which w asn’t generally addressable, as it d idn’t publish 

contact inform ation. Each such m achine had to hang o ff  o f  a registered node with 

published contact inform ation and that node was held responsible for all (m is)behavior o f  

its associated “points.”

Over the 1980s and 1990s, Fidonet grew  to the point where there were tens o f  thousands o f  

nodes registered worldwide. How ever, it was eclipsed by the w idespread availability o f  the 

Internet, which show s that no m atter how technically appealing a DTN protocol may be, 

once there is a sim pler solution available, tha t’s what will be used. That lesson may, in the
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future, be relearned were, say, an urban IEEE 802.1 Ib/g-based data mule network to
7

become outmoded by a WiMAX"’ network that, whenever it does arrive, promises 

continuous metropolitan area coverage.

2.5 Summary

In this chapter we examined the background to DTNs, in particular the causes o f delay and 

disruption that affect these networks and we derived a set o f  requirements that we would 

like DTN protocols to meet. We saw that standard protocols, most importantly TCP. but 

also many proposed variants, are problematic to the point o f being unusable in some 

DTNs. In the end, we have seen that there is a niche where current protocols do not suffice, 

so our next step is to examine the main current proposals for DTN-specific protocols.

”  httD://grouper.ieee.org/groups/8Q2/16/
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Chapter 3

DTN-specific Protocols
In this chapter we present the main open research group developing DTN protocols (the 

DTN Research Group) and outline the two main DTN protocols that are currently being 

developed by that group.

The first o f these is called the bundle protocol (BP), which in essence works in very much 

the same way that email works today, but aimed at being integrated into other applications 

rather than being an application for end users. The second is called the Licklider 

Transmission Protocol (LTP) and is a point-to-point protocol tailored for use with very 

high-latency links.

The BP is an example o f what is generally called an “overlay network protocol” [AB03J 

and is depicted in Figure 3.1. As an overlay network protocol it can be run above the 

current suite o f Internet protocols as well as over the more esoteric protocols used by 

spacecraft or those proposed by researchers for dealing with complex sensor networks and 

other challenged environments.

Application Application

Bundle Bundle Endpoint Bundle Endpoint Bundle
cnapoini

1
cnapoini

Transport
(TCP)

Transport
(TCP)

Transport
(SCTP)

Transport
(SCTP)

Network (IP) m Network (IP) Network (IP) m Network (IP)

Figure 3 . 1 - The  overlay netw ork  protocol approach show ing  the bundle  layer in dark gray  (adapted  
from [CE07]).
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D eep space network Sensor network
" E d g e " n o d e s Spacecraft Sensors
"M iddle" nodes Earth stations Data mules
"Sink" nodes Internet host internet host
E dge/M iddle
C onnectiv ity

Via schedule  and ephemeris Via schedule  and radio range

M iddle /End  connectivity Via application layer gateway Scheduled/ w hen mule "at 
home"

Main netw ork  constraint Spacecraf t pow er Sensor node pow er
Application traffic 
profile

Telem etry  and science payloads Telem etry  and  sensor data

Scale Few, highly  valuable nodes M any relatively inexpensive 
nodes

C om putational
complexity

Highly constra ined processors but 
an ability to expend  significant 
com putational resources on 
coding/processing.

Relatively constrained 
processors and limited storage

O verheads Encoding  m ust be highly terse 
since bandw id th  is at a  p rem ium

G ood bandw idth  for individual 
links but m ulti -hop  protocols 
could result in bandwidth  
scarcity

Table 3 . 1 - D eep-space/Sensor  netw ork analogy.

Many o f the problems that arise in DTNs are quite well addressed by the BP. However 

there is also sometimes a need for delay tolerance at a lower layer in the network; mainly 

to handle cases where there is either very high latency or intermittent connectivity between 

one host and the next. The classic example is the connection between the orbiter and the 

Earth station mentioned in Section 2.1.

There are also terrestrial applications that require similar behavior, for example, if  no 

contact between two machines will ever be sufficiently long to complete an application 

layer exchange. In such cases we need some way to handle forwarding o f  data one part at a 

time, where there may be a delay o f  hours between each partial transmission. Essentially in 

that case we may need a delay and disruption tolerant point-to-point protocol, like LTP.

In fact, some o f those terrestrial sensor networking cases, (particularly where they use 

"data mules" [SH03]), are actually tightly analogous to deep-space networks. For our 

present purposes it is perhaps sufficient to note that data-mules that physically traverse a 

field o f sensor nodes are quite like Earth stations in a deep space network as can be seen 

from Table 3.1 which compares such networks. As with all analogies, this uhimately 

breaks down, perhaps primarily in terms o f the numbers o f sensors expected versus the 

number o f spacecraft, however, it is worth noting that current sensor networks also tend to
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involve lim ited num bers o f  nodes and that the total num ber o f  spacecraft supported by the 

DSN today is perhaps not that dissim ilar to an experim ental-scale sensor network.

Before we deal with the detail o f  the BP and LTP, it will help to understand the various 

groups that are involved w ith this work.

3.1 The Genesis of DTN Research

At base, the “vision” behind the DTN effort is to try to extend the Internet architecture to 

cater for applications where delays or disruption are significant factors. That vision, in 

large part, was initially fostered and prom oted by a relatively small group o f  people 

including V int C erf and some engineers at the N A SA  Jet Propulsion Laboratory (JPL) and 

elsew here w ithin N A SA  who started w orking on the so-called Interplanetary Internet (IPN) 

back in 1998. [BU02ipn]

The IPN group eventually m orphed into an Internet society (ISOC ) special interest group, 

the IPNSIG , which had (and still has to an extent) a public web site and m ailing list where 

discussions on relevant topics were held. The group w orking on the IPNSIG began 

developm ent o f  an architecture for an IPN and m ade som e progress tow ards developing 

protocols conform ing to that architecture. In fact, m uch o f  that work survives into the 

current versions o f  the D'TN architecture and protocols. Som e work specifically on the IPN 

is also still ongoing w ithin NASA.

How ever, the IPNSIG faced the problem  that it is very hard to experim ent with an inter­

planetary netw ork when no such netw ork exists. It would also be very expensive to try to 

create such a netw ork. At the same tim e, som e people (including the author) were 

investigating how  IPN concepts m ight apply to terrestrial applications, [FA03e] in 

particular sensor netw orks, which, as w e’ve ju st seen, have a lot in com m on with a putative 

IPN. Since experim enting with a sensor netw ork is a lot easier to do, it becam e clear that 

the IPNSIG was no longer the best venue to do w ork on this topic.

' http://w w w .isoc.ora/

 ̂ http://w w w .ipnsig.org/
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You are here... IPN project 
contributions to 
expefimenla! 
work of DTN R G

IPM
DTNR'

DA R PA  NASA  
Cooperative worK

DA R PA  DTN
DAR PA DTN  
Results contributing 
to the experimental 
work of DTN RG

Core research

Figure 3.2 - A diagram relating the main organizations working on DTN topic. (Image credit:
Vint Cerf &  DTNRG members.;

-j

For this reason, an Internet Research Task Force (IRTF ) research group was formed to 

look at the more general area o f Delay-Tolerant Networking (DTN) -  that group is called 

the Delay Tolerant Networking Research Group (DTNRG'*) and is currently the main open 

venue for work on the DTN architecture and protocols. The main protocols (the BP and 

LTP, described below) under consideration by the DTNRG are being developed with the 

aim o f producing experimental RFCs^ documenting the protocols.

Just to confuse matters somewhat, the United States Department o f Defense, under their 

defense advanced research projects agency (DARPA^) issued a call for proposals in early 

2004 [BA04] for what they called "disruption-tolerant networking" (also DTN!), which is 

yet another generalization o f the same concept. The difference is that, until the DARPA 

call, the main focus o f the DTN work was on high-delay cases like the IPN or sparse 

sensor networking (where sensor readings are not needed in real time). However, there are 

other types o f disruption that can occur, e.g., radio shadowing, frequently passing in and

 ̂ http://www.irtf.org/ 

http://www.dtnrg.org/

 ̂ An RFC is a Request For Comment, the Internet’s archival document series. Experimental RFCs specify 

protocols that are o f interest to the Internet community, but that are not yet ready for widespread deployment.

* http://www.darpa.gov/
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out o f range o f a base station etc., and that are not properly reflected in the phrase “delay 

tolerance”. Whether the D in DTN will come to mean ^disruption’’ or will continue to mean 

"delay" is not yet clear, but in any case, the same architecture and protocols can hopefully 

serve in both contexts.

In any event there are therefore a number o f different, but overlapping and collaborating, 

groups o f people working on this topic. Figure 3.2 is a graphic that was used at a recent 

DTNRG meeting to explain this to the audience. The DTNRG work is, at the time of 

writing, coming to fruition. The DTN architecture [CE07] has been published as Internet 

RFC 4838, and the BP specification [SCO?] as Internet RFC 5050. LTP is described in 

three Internet RFCs: RFC 5325 covers the motivation for the protocol [BU08], RFC 5326 

specifies the protocol itself [RA08] and lastly, RFC 5327 on protocol extensions, [FA08] 

mainly addressing security issues. Work on other topics, such as BP security and DTN 

routing, is ongoing and will hopefully lead to further RFCs in the months and years ahead.

3.2 The Bundle Protocol

The bundle protocol packages a unit o f application data along with any required control 

information into a “bundle", which is very similar to an email message. I'he bundle is then 

forwarded along a route consisting o f a number o f intermediate machines that may each 

store the bundle for significant periods. So, the bundle protocol is an overlay network 

store-and-forward protocol.

For example, if the source machine is a lander on Mars, it may create a bundle but not be 

able to forward it to a Mars orbiter for a few hours until the orbiter is next overhead. When 

the orbiter receives the bundle it. in turn, may have to store the bundle until its next 

scheduled contact with an Earth station. When the bundle is received by the Earth station it 

can be quite quickly forwarded on to its destination, perhaps the desktop machine o f  a 

scientist studying some Martian rock formation. The overall delay could be hours, or even 

longer if  sufficiently intense rain disrupted the orbiter to Earth station contact, in which 

case it may take days for the data to eventually arrive at the scientist’s desktop computer.

The overlay network approach as represented by the bundle protocol represents the 

mainstream DTN approach in terms o f  the number o f people who are working on its 

specification and development. The bundle protocol is described in two main documents:
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The DTN architecture document [CE07] introduces the general overlay architecture, puts 

this in context in terms o f applicability and introduces key architectural terminology. The 

Bundle Protocol Specification [SC07] specifies the formatting o f bundles and the 

processing rules associated with sending and receiving bundles. There are also a few 

subsidiary documents related to security, an overview [FAOVs] and a document defining 

security extensions for the bundle protocol [SY07].

Aside from DTN, overlay networks have been proposed for a number o f reasons, ranging 

from increased resilience [ANOl], to security and privacy [DI04, CH81] and accelerated 

content delivery [SA02]. To the best o f our knowledge none o f these has considered very 

high-latency communications, with the exception o f some anonymizing networks [M003J 

which in fact create high latency as part o f their approach to disguising traffic patterns. 

Nevertheless, it is clear that an overlay approach can address DTN requirements -  be that 

via development o f a specific new overlay (like the IPN as originally envisaged), or else 

via modifications to some current overlay network. However, given that most overlays to 

date tend to be application- or function-specific (other than the X-bone [TOOl]), a DTN- 

specific overlay network based around the BP is a reasonable option to investigate now.

3,2.1 Basic Bundle Protocol Concepts

A DTN node is considered to be any entity that runs an instance o f the BP and so can in 

principle send and/or receive bundles. There may be exceptional nodes that can only ever 

transmit, (e.g. a very simple sensor). Nodes are identified by endpoint identifiers (EIDs), 

which are the BP’s equivalent o f  addresses. Syntactically, EIDs are uniform resource 

identifiers (IJRls), [BEOS] and each can refer to one or more bundle nodes, i.e. one EID 

could refer to a set o f  bundle nodes. (That last property o f EIDs is essentially future 

proofing in order to support potential multicast-like modes [SY07m] o f operation for the 

BP.)

Clearly then some component o f each DTN must map from EIDs to lower-layer addresses 

when deciding how to forward bundles. The DTN architecture calls for this to follow the 

late-binding principle [FA03] so that the URI, (or in particular its DNS hostname part), 

should be resolved into a lower-layer address as close to the final destination as possible.
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How that late-binding is eventually resolved, is not currently specified in any detail in 

either the architecture or the BP specification.

The next concept to consider is the “contact,” which tries to capture the idea that not all 

nodes will be contactable at any given moment. According to Fall, [FA03] “The DTN 

architecture is targeted at networks where an end-to-end routing path cannot be assumed to 

exist. Rather, routes are comprised o f a cascade o f time-dependent contacts 

(communication opportunities) used to move messages from their origins toward their 

destinations. Contacts are parameterized by their start and end times (relative to the 

source), capacity, latency, endpoints, and direction.”

This is in contrast to the trend in the Internet where we more and more consider that 

addressable entities are online all the time. In DTNs however we need to explicitly 

consider that communication is only possible at certain times, and perhaps also with 

additional time-varying constraints. As weMl see, the handling o f those constraints is a 

major differentiator between DTN and other protocols.

Since bundles have to traverse lower-layer networks, they are ultimately subject to 

whatever restrictions exist on those networks in terms o f maximum packet sizes. For 

example, on most IP networks it is safest to assume that single packets should be less than 

] 500 bytes long. [M 090] Other DTNs may be able to support forwarding o f much larger 

bundles but may be subject to disruption o f the lower-layer connections. O f course, in 

many such cases, e.g., where the lower layer runs over TCP, then the bundle will not in 

fact be fragmented (at the bundle layer) thanks to the retransmissions o f lost IP packets 

being handled by the TCP layer. But in any case, the BP has to include support for 

fragmentation and re-assembly o f bundles which it does in two forms -  proactive and 

reactive fragmentation. In the former, the bundle node basically deliberately re-fragments 

due to knowledge about the outbound path for the bundle.

The reactive fragmentation option is intended to cater for cases where a link is 

unexpectedly broken after some significant amount o f a bundle has already been 

transmitted and received. The idea is that the receiving bundle node can in any case 

forward on the fragment(s) it has already received. Whether or not this feature sees much 

use will be interesting to see -  reactive fragmentation creates a number o f potential
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problem s, (e.g. w ith security when only some fragm ents are encrypted), so it may not see 

w idespread adoption.

The B P’s low er-layer protocol specifics are handled via so-called convergence layers 

(CLs). CLs for TCP, UDP, and other low er-layers (e.g. USB stick) have been im plem ented 

in the reference BP im plem entation, although only the TCP CL has so far been fully 

docum ented. [DE06] W hen speaking o f  TCP as a CL, we o f  course include a small “shim ” 

layer required to glue together the BP and the TCP API (presum ably the sockets API).

DTNs can clearly be subject to extrem e constraints in respect o f  bit rates. For exam ple, if  

some nodes near the edge o f  the netw ork are running over an extrem ely low bit rate radio 

link, as was the case with say the Galileo probe to Jupiter where (due to a m alfunction) bit 

rates in the tens to hundreds o f  bits per second were com m on, then a highly bit efficient 

encoding schem e m ay be required. For the BP, there is, in fact, a com pressed header 

format [BU07c] defined for exactly this reason.

Another BP concept that needs to be understood is “custody.” DTNs using the BP are 

essentially store-and-forw ard netw orks that don’t require contem poraneous end-to-end 

connectivity. If, at a given m om ent in tim e, a bundle is only stored on one router 

som ew here in the “m iddle” o f  the netw ork, then should anything go wrong, only that node 

is in a position to re-transm it the bundle. The idea o f  custody is that a node accepts a 

bundle for storage, with a com m itm ent to keep the bundle until the bundle either expires or 

else is successfully delivered to the next custodian on the route to the destination. 

Custodians are therefore the nodes that can re-transm it the bundle if  som ething has gone 

wrong.

3.3 The Licklider Transmission Protocol

LTP tackles delay tolerance and disconnection in a point-to-point environm ent with an 

em phasis on operation over single, but typically very high-delay, links. The canonical use 

case for LTP is a single-hop, deep-space link typically betw een a rem ote spacecraft and an 

Earth station. Such links suffer from long light-trip tim es, occultations and Earth-station 

scheduling restrictions.

60



For example, if an orbiter is about to be eclipsed behind its planet it may still send a block 

o f  LTP data, and, knowing that an acknowledgement cannot be received until the orbiter is 

no longer eclipsed, the orbiter can freeze all the timers that drive the operation o f the 

protocol for the duration o f the eclipse. Once out o f eclipse, the spacecraft may once more 

restart these timers. This concept o f frozen or “punctuated” timers is a crucial aspect o f  our 

LTP implementation (see Chapter 5 for details).

From the above, one might think that LTP is only useful for space communications. 

However, this mode o f operation can also be very useful for terrestrial applications where 

disruption is highly likely. [MC07] Applications dealing with disruptive environments can 

be conventionally structured so that the application handles the expected errors, or else, 

using a protocol like LTP we can essentially isolate the application from all o f this 

complexity, by, e.g., having a communications daemon that handles all disruptive events, 

in this case perhaps retransmissions required after a host reboots. In the case o f a sensor 

network the resulting application layer sensor code can be simple, yet with reliable 

transmission over disrupted connections.*^

It is important to understand that LTP is a point-to-point protocol, so there are no routing 

or congestion issues to consider for LTP itself -  bytes are simply transferred between two 

peers with no intermediaries considered.

LTP is designed to be a potential CL to support the bundle protocol, although it can also be 

used in other contexts. So BP/LTP is a valid scenario, and has been implemented in the 

NASA JPL “ION” code mentioned in Section 3.4 below. In other contexts we have seen 

uses for LTP/UDP, e.g. between nodes in a sparse sensor network. LTP/UDP was also the 

variant used in DTNRG interoperability tests. [DT06] Once we begin to consider 

LTP/UDP, then, o f course, some congestion issues do arise, for example, one should

’ T he S e N D T  sen sor  serv ice  provider interface (S P I) a llo w s the sen sor  co d e  to interact w ith  w h atever  d ev ice  

is in use  and then sim p ly  ca ll “ ltp _ sen d to ()” -  the resu lting sen so r  read ings w ill be ca ch ed  until the next 

a v a ilab le  contact, ev en  i f  that contact is su bseq uent to a reboot.
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consider how to ensure that an LTP/UDP flow doesn’t try to monopolize the available 

bandwidth to the detriment o f TCP flows sharing some parts o f the UDP path.

As w e’ve seen, to operate in a DTN, a protocol cannot be chatty like TCP, since requiring 

any round trips before application data flows is just not an option. As a result, LTP 

effectively has no negotiation and all parameters required for interoperability have to be 

established on both sides before a contact occurs. LTP is consequently highly stateful, 

requiring relatively large amounts o f  information about previous and upcoming contacts.

While LTP uses a fairly standard set o f protocol primitives for handling timeouts, re­

transmissions, data integrity, origin-authentication, reliability and other on-the-wire issues, 

all o f this is done without requiring multiple (or any) roundtrips prior to sending 

application data. Where LTP really differs, due to its deep-space heritage, [CC07] is in its 

concept o f lower layer cues supporting scheduled communications. One can think o f  an 

LTP implementation sitting on top o f a separate "layer" that knows the network state 

sufficiently well to tell each peer when and how much to receive and transmit. As it turns 

out this is also a very nice way to handle a sensor network using data mules. [MC07]

In addition, if a sender can only communicate with a receiver once each hour for one 

minute, and the sender expects an acknowledgment message from the receiver within two 

minutes o f sending a message to him, then the appropriate timer to use is one that will take 

two hours to expire. The two minutes represent what might be called punctuated time and 

not elapsed time, where punctuated time is the continually-being-interrupted duration o f 

the scheduled contacts with the peer in question.

Once such punctuated timers are maintained independently for each LTP peer, and in each 

direction, then a fairly high degree o f  delay tolerance has already been achieved. High- 

latency cases are thus handled by ensuring that the lower layer cues reflect the in-transit or 

scheduled latency o f the communication, which in the case o f a deep-space contact will 

mainly consist o f the LTT between the peers in question.

3.3.1 Some LTP Details

We now introduce the most important LTP details that will be needed as we go forward. 

The set o f bytes that an application transfers in a single LTP session is termed a “block.”
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When a block is bigger than the local maximum transmission unit (MTU), then it must be 

fragmented, into LTP “data segments.”

LTP supports a model o f partial reliability, where some or all o f the data segments 

constituting a block can be retransmitted in the event o f errors. We call the part o f the 

block that is reliably transferred the “red part” o f  the block and the part that is transferred 

subject only to best effort the “green part.” In LTP the red part o f the block must be 

transmitted first, that is, the red part consists o f the initial set o f  data segments o f the block 

that are marked “red,” and the green part consists o f the remaining data segments up to the 

end o f the block (EOB).

The red/green marking is encoded in the segment type, for example an initial red data 

segment will have a type o f ‘0x00’ and a green data segment will have a type value o f 

‘0x04.’ The last red data segment is marked as a checkpoint (e.g. segment type ‘0x03’) in 

order to allow the receiver to detect the boundary. This checkpoint also triggers the 

receiver to send a report segment as described below so that the sender can re-transmit any 

segments that may have been lost, thus providing reliability.

This feature allows, e.g. the control information (location, time, camera orientation, 

codecs, filters etc.) associated with a deep-space image to be transferred reliably since that 

information is all required in order to make any use o f the image. Specific image pixels 

however can be green since their loss is less significant. A block can be partly or fully red 

or green. Data segments (DS) that are in the red part are selectively acknowledged using 

“report segments” (RS) that can each specify which range o f red-part bytes have been 

successfully received to date.

In addition to including the EOB flag in the last DS, LTP also allows the sender to 

nominate any DS as a “checkpoint” (CP). On receipt o f a checkpoint DS, the receiver must 

generate an RS reflecting its current state and enqueue that for the sender. The idea is that 

if one were dealing with a large block that this may be beneficial in terms o f  lessening the 

sender’s need to store already transmitted bytes o f the block. Upon receipt o f the RS 

replying to the CP, the sender can release storage associated with bytes already 

successfully received. The CP mechanism has also been found to be helpful in some error 

cases. [FA06e|
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Figure 3.3 -  Basic LTP operation

To handle the potential loss o f RS segments, “ report acknowledgements”  (RAs) are 

defined and there are also a few other segments types related to session cancellation. LTP 

control segments are those that are related to LTP session control, i.e. everything except 

the DS. I'he 1/LP specification requires that control segments be prioritized over data 

segments when de-queuing segments for transmission.

The extensibility mechanism o f LTP essentially allows the addition o f a set o f type-length- 

value (TLV ) tuples to each segment, into which whatever extensions are required can be 

placed. In order to provide some security, there are data integrity and cookie extensions 

defined for LTP, which essentially try to make it harder to succeed with a denial-of-service 

(DoS) attack on an LTP node.

Figure 3.3 shows a simple “ red”  LTP session in the style o f a normal TCP interworking 

diagram. The LTP sender is transmitting an LTP block (which is probably a higher layer 

PDU) using a number o f data segments, typically w ith each DS attempting to “ f i l l ”  an

In most cases, when all data segments have been sent the last data segment is marked as 

the EOB so that the receiver knows that all data segments should have been received. After 

the receiver has seen the EOB, then it w ill usually respond w ith an RS that contains a

MTU.

“ map”  o f the parts o f the block that were successfully received so far (some data segments 

may be missing or corrupt).
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Figure 3.4 -  A Small LTP Session

I f  the EOB is lost then a timer is used to control its re-transmission. The RS (which may 

itse lf span a number o f MTUs) is sent back to the sender who can then decide which bytes 

to re-transmit. The sender also acknowledges the RS w ith an RA segment.

3.3.2 Example LTP Sessions

In this section we give a few simple examples o f LTP session flows and introduce the type 

o f diagram that w ill be extensively used in later chapters. Additional examples can be 

found in Appendix B.

Figure 3.4 shows an example LTP session where a small file  (“ Filesize”  is 8K) was 

transferred between two LTP instances, (“ localclient”  and “ localserver” ), running on the 

same host, so the light-trip-time was zero (“ LTT” ) in this case. The number o f red bytes 

requested to be sent (“ Redlen” ) in this case was 2000 bytes. The “ Goodput”  figure 

represents the number o f  payload bytes transferred over the duration o f the run. Full details 

o f its calculation can be found in Chapter 6.
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Figure 3.5 -  A Medium Sized, Scheduled, LTP Session

The x-axis shows the seconds elapsed since the first event o f the run. This is calculated 

based on timestamps extracted from log files generated by our LTP implementation. The 

positive y-axis represents the bytes from the block to be transferred. The negative y-axis 

represents information about contacts, as can be seen in Figure 3.5 above.

The bars in the Figure 3.4 represent individual LTP segments. These appear as points in 

Figure 3.5 since the file size is much larger. For data segments, the bar represents the range 

o f  bytes sent in that data segments. Note that some o f the client and server bars overlap in 

the diagram -  in the Figure 3.4 run the last data segment was received less than one 

millisecond after transmission. For report segments, the vertical bar represents the upper 

and lower bounds o f the range o f bytes being reported upon. Report acknowledgements are 

not represented in these diagrams.

In Figure 3.4 the first two data segments are marked as red -  the implementation rounded 

up the red length to 2880 bytes in order to make better use o f the lower layer (UDP) MTU. 

The server generated a report segment, (at ~23ms), covering those. Subsequent data
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Figure 3.6 -  An LTP Session with Packet Losses.

segments are sent by the cHent about every 20ms. Finally, (at ~127ms), the client 

processed the report segment and generated a report acknowledgement (not visible).

Figure 3.5 shows another LTP session, this time for a 0.5MB file with the red length set to 

250,000 bytes, but this time with a schedule so that each node is “on” for 2 seconds out o f 

each 10 second period. The contacts section o f the diagram indicates this. As stated earlier, 

the data segments, (each o f which fits into a single UDP packet), are too small to be seen, 

but the report segment (sent at ~1 Is, noticed at ~12s) can be seen.

Finally, Figure 3.6 shows the same setup as in Figure 3.5, but this time with some packet 

losses. Re-transmitted data segments are marked (“Re-transmits”) and one can see the 

additional report segment following the last re-transmitted data segment. (Note that the 

goodput is higher here since the packet losses were generated by removing rate controls, so 

that the client was effectively transmitting too quickly for the underlying stack.
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Going through the events in Figure 3.6 in more detail, from 0-2s the client transmitted 100 

data segments, from 10-12s, another 100 segments were transmitted, o f which 75 were red, 

and 25 green. The remaining green segments were transmitted as contacts allowed. At 

about 11.5s, the server responded with a report segment, indicating 4 missing red data 

segments and the client generated a report acknowledgement for that which was sent at 

about 12s (the delay being due to data segments that were already in the lower layer 

transmission queue).

At roughly 31.3s, the client re-transmitted the missing data segments (shown by bold 

crosses in the Figure) and the server responded with a new report segment indicating that 

the entire red part had now been received. The client then responded with a report 

acknowledgement for that, however, with the horizontal scale used in the Figure, these 

exchanges cannot be distinguished.

3.3.3 LTP History

LTP is essentially revisiting a problem space that has previously been examined by the 

Consultative Committee for Space Data Systems (CCSDS). In particular, LTP provides 

many o f the functions provided by the CCSDS File Delivery Protocol (CFDP) [CC07].

One could therefore ask whether or not the IRTF approach to this protocol is significantly 

different to what the CCSDS has done, or whether it would be better to leave development 

o f such protocols to the CCSDS. The CCSDS (it seems) generally takes a more OSI-styIe'° 

approach to protocol development -  specifying both the protocol and the service interfaces 

that are required for conformance.

For example, at one point the CFDP specification [CC07] requires an implementation to 

free up some buffers in response to receipt o f a message. If we ignore the interfaces for the 

moment, there are clearly other protocol implementations possible (e.g., based on garbage

OSI is the open system s in terconnection  m odel o f  ne tw ork ing  prom oted in the 1980s and 1990s, w hose 

com ponen t protocols have largely been superseded  by Internet protocols. T he fact that the m ost recen t 

version o f  the OSI reference  m odel dates from  1994 perhaps show s that it is a som ew hat outm oded approach .
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collection), and the tradition in the Internet community is to be less prescriptive about 

implementations compared to the OS! approach.

In more closed communities, such as those building and operating spacecraft, following the 

OSI model more strictly is a reasonable approach, but one that arguably doesn’t scale up to 

applications where there are millions o f developers spread throughout the world with some 

being volunteers and others professionals. [BE02] The Internet approach o f specifying 

protocols without interfaces has been demonstrably more successful over the last two 

decades.

The closed community aspect is perhaps also demonstrated by the lack o f security 

mechanisms in CFDP. Equivalent Internet protocols (e.g., FTP) [P085] have included 

significant security considerations [H 097] for at least a decade and one would imagine that 

no new Internet Standard protocol would be considered, which mandated that 

implementers, for example, unconditionally provide directory listings. Again, for space 

missions, this security model (or lack thereof) can be justified to an extent, but it is clearly 

unacceptable for a protocol intended to have wider applicability.

Some CCSDS protocols also exhibit layering violations for reasons that are, 

unsurprisingly, specific to spacecraft. For example, the CCSDS Proxim ity-1 [CC06p] 

protocol has primitives that allow a communicating peer to reset the clock on a spacecraft. 

In a space-mission context that is probably reasonable, but as it stands such a feature could 

be to the detriment o f the host if  deployed in many terrestrial environments. Since such 

features are actually necessary in some contexts, the LTP extension mechanism allows 

such features to be defined, but as extensions, they would only affect a subset o f LTP 

implementations -  presumably that subset where the utility o f  the feature in question 

outweighs whatever risk is inherent in its deployment.

It may also be the case that CCSDS, as a de jure standards organization, cannot as easily 

create the type o f experimental protocol that is the main point o f IRTF research groups like 

DTNRG. Given that LTP is an experimental protocol, implementers are aware that they 

should expect changes over time. In contrast, presumably CCSDS would only define new 

protocols in response to immediate mission requirements. The inherent backwards
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compatibility requirements in such cases can also tend to stifle innovation to at least some 

extent.

Having said all that, one can clearly see the CFDP heritage o f LTP. Considered from an 

Internet protocol point-of-view, many o f the more innovative aspects o f LI P (e.g. partial 

reliability, no negotiation) are actually directly derived from CFDP equivalents.

3.4 Implementations

With protocols as complex as the BP or LTP there is clearly the potential to specify many 

seemingly sensible protocol features that turn out to be over complex, useless or simply 

broken. In the absence o f running code, protocol designers will in fact include all three 

types o f  error in any reasonably complex protocol. Recognising the above, DTNRG 

members have produced “reference” implementations o f both protocols, which has a 

number o f useful consequences. Firstly, as pointed out, it keeps the protocol designers 

honest by acting as a reality check whenever paper-only plans are getting out o f control. 

Secondly, a reference implementation makes it easier for people to experiment.

13The BP reference implementation is freely available for download and is currently 

maintained by a small team. There are various other BP implementations, some only of 

specific CLs, others more general, but those have not been as widely used in experiments. 

As far as we know, there are currently four LTP implementations, though only two have 

been released to date. The Ohio University LTP implementation is available for 

download^^ and is a Java implementation o f LTP. The author’s LTPlib ‘C ’ library is also 

available.'^

In November 2006, at the DTNRG meeting in San Diego, successful interoperability 

testing sessions were held for both the BP'^ and LTP'**. [DT06] During the LTP testing.

Look for “code” below  http://vvww.dtnrg.org/

http://m asaka.cs.ohiou.edu/ocp/

http://dtn.dsg.cs.tcd.ie/ltplib/

http:Vw w w .ietf.org/proceedings/Q 6nov/slides/D TN R G -l /sid I .htm
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basic operation for both small and large (10MB) blocks was validated, in both directions. 

As the Java code didn’t support specific extensions, all that could be validated was that the 

extensions produced by LTPlib were correctly skipped over, and in the case o f the cookie 

extension, LTPlib correctly dropped the session once the responses didn’t contain a correct 

cookie. During testing we also turned on some o f the error generation in LTPlib, basically 

randomly dropping segments. For a large block, this resulted in reports that spanned more 

than one report segment, thus validating what might otherwise seem to be a relative corner- 

case for the LTP specification. This mechanism is fully explained in the base LTP 

specification. [RA07]

In general this event'^ was very successful (as was the BP testing^^) and both were reported
2 1 22 as highlights o f the meeting for the IRTF in the IETF meeting proceedings .

More recently, during the spring 2008 IETF in Philadelphia^^, the LTPlib implementation 

was successfully tested with the JPL ION implementation o f LTP. This necessitated the 

addition o f a new mode o f operation for LTPlib, using e.g. single-byte identifiers, in order 

to match the (deep-space related) restrictions o f the ION code. While only a very basic test 

was carried out, it does mean that LTPlib has now been interoperated against two different 

LTP implementations.

3.5 Summary

In this chapter we described DTNRG and the two protocols currently being specified by 

the DTNRG. In the next chapter we will look at the reasons to design a DTN-friendly 

transport protocol, which is intended to complement the BP and LTP.

http :/ /w ww .ietf .ori’/p roceed ings /06nov/s lides /D T N R G -2/s ld  I .htm 

http :/ /w w w 3.ie tf .org/proceedings/Q 6nov/s lides/D TNR G-2/sld  I .htm 

h ttp :/ /w w w 3.ie t f .o rg /p roceed ing s /06 no v /s l ides /D T N R G -l /s ld i .h tm  

h t tp : / /w w w 3 .ie t f  org/proceedings/06nov/slides/p ienarvt-1  .pd f  

h t tp : / /w w w 3.ie tfo ra /p roceed ings/06nov /index .h tm i

h ttp :/ / ina il iis ts . in tel-research.net/p ipermaii/d tn-in terest/2008-M arch/003086.htm l
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Chapter 4

DTN Transport
In this chapter we describe and justify the use o f a DTN transport-layer solution for delay- 

and disruption-tolerant networking (DTN). In particular we demonstrate that there are 

various situations in which a DTN transport is preferable to the overlay network approach 

exemplified by the bundle protocol (BP). As stated earlier, the particular DTN transport 

protocol we have designed is called LTP-T - its details are set out in the next chapter. This 

chapter compares and contrasts the D l’N transport approach with the overlay approach.

4.1 Term inology

It is, o f course, important to be clear on the tenninology that we use. This is especially 

important since there are cases where a DTN transport can look very like an overlay 

network and vice versa. And in this particular case, many o f the terms about which we 

need to be precise, are terms that are in broad use in networking and are not specifically 

DTN terms. This section defines the meaning o f  such terms as used in this thesis.

We refer to a DTN transport when making generic arguments, and to LTP-T when dealing 

with arguments that are specific to our protocol design. Similarly, we refer to overlay 

networks when making generic arguments and to the BP when making arguments specific 

to the current BP. The protocols considered here use different terms to describe their 

protocol data units (PDUs) - “bundles” for the BP and “segments” for LTP & LTP-T; we 

will use the (in any case better) term “packet” when making protocol-independent 

arguments.

A “host” is a computer system that routes packets at some layer, though perhaps not using 

D'fN protocols. A “node” is a host that runs a DTN protocol, regardless o f whether that 

node is part o f  an overlay network running the BP or running a DTN transport protocol 

such as LTP-T. Not all hosts are nodes, for example, with the BP or LTP-T layered over 

the Universal Datagram Protocol (UDP), there can be a set o f Internet Protocol (IP) routers 

(hosts) in between adjacent DTN nodes. DTN nodes are “adjacent” when there is a
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(possibly delayed or disrupted) communication path, consisting o f one or more links, 

between them that involves no other DTN node.

A DTN “hop” refers to the delay-tolerant transmission o f  packets between two adjacent 

DTN nodes. A “link” is a connection between two hosts, which can be the same as, or 

different from, a DTN hop. For example, if some packets are sent via a satellite hop, with 

the ground stations being nodes, but with the satellite not implementing any DTN protocol, 

(and thus not being a node), then this single DTN hop involves two separate links (uplink 

and downlink).

The “source” for a packet is the node that creates that packet and initially forwards it to the 

next-hop node. Equally, the source is also the host that forwards the packet on the first 

link. The “destination” is the final node on the path, for which the packet is intended. 

Where we need to discuss packets originated by a non-node host, (e.g. when considering 

denial-of-service), then we specifically highlight that fact.

When talking generally, we will talk about “store and forward” in preference to 

“custody” which is a BP-specific term at this stage -  even though the concepts are almost 

the same. One difference however is that with BP custody, the current custodian should 

inform the previous one once it accepts a bundle into custody, whereas in general (and in 

LTP-T) this is not the case. When we talk about “storage” we mean non-volatile storage 

on a node, such that the to-be-forwarded packets will continue to be available for 

forwarding for longer than the expected disruption o f the next hop.

4.2 A Summary in Advance

Since there are many arguments presented below, it may help to summarise most important 

points in advance. Each o f these is discussed and justified in detail later in this chapter.

We will see that handling delay or disruption as close as possible to the delayed or 

disrupted link is, in general, better. Protocols, or protocol deployments, that deal with such 

delays or disruptions “ further away” will not do as well as those that are closer to the site 

o f delay or disruption. For example, if  a packet is dropped due to disruption, the sooner 

that a DTN node notices the packet loss, the sooner it can retransmit the packet (if
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retransmission is required). If the re-transmitting node is multiple hops away from the 

disrupted link, then it will take longer for it to become aware o f the packet loss.

In a similar vein, we will see that the “density” o f an overlay, in terms o f the node-vs-host 

ratio is significant. As the node-vs-host ratio approaches one, then most distinctions 

between an overlay network and a DTN transport disappear or at least become less 

significant. In fact, more precisely, the ratio o f interest is between nodes and hosts that are 

adjacent to disrupted links, though we make no numerical claims about specific values o f 

this ratio (other than “ I ”) '. This implies that we can (actually quite easily) construct 

scenarios involving a relatively sparse overlay with all nodes running over a single 

transport layer, such that a DTN transport should be preferable for that scenario.

We will also see that store-and-forward overlays that use multi-hop “backwards” signalling 

between nodes are problematic, for management, security and complexity reasons. A DTN 

transport involves no such signalling, whereas the BP uses this approach for custody 

acknowledgements.

However, before getting to the detailed justification for the above, we must define what we 

consider to be a DTN transport.

4.3 What is a DTN Transport?

In the OSI model [IS94] and the Internet a transport layer sits above the network layer and 

provides end-to-end connectivity upon which session and/or application layer services can 

be built. According to these basic models, the session and/or application layer in particular 

resides on the same host as the transport layer. The defining characteristic o f a DTN 

however, is the general lack o f  contemporaneous end-to-end connectivity - so one might be 

justified in being puzzled by the very concept o f  a DTN transport.

' Presumably at som e point when the density o f  the overlay passes som e threshold it no longer makes sense  
to regard the approach as being an overlay. Say if  95% o f  hosts are running the overlay protocol -  is that then 
really what w e are calling a transport here? In any case, w e assume overlays are generally relatively sparse in 
terms o f  the node-to-host ratio.
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Our goal is to be as close to a standard transport layer as is possible. This means that a 

DTN transport is a protocol that must be able to provide transport services in a “normal,” 

non-challenged, network and that sits above a network (or lower) layer. In situations 

characterised by a lack o f  end-to-end connectivity, a DTN transport must be able to 

provide something similar to the BP’s custody concept -  otherwise the packets will not 

reach their destination. And provision o f  anything like custody requires that some 

intermediate host store packets for some period until the next hop becomes usable.

So, a DTN transport node should, where possible, forward packets as “far as possible” 

before the next node stores the packets. How far packets can travel before being stored 

depends essentially upon the routing scheme in force and then upon whatever 

random/accidental/known delays and disruptions occur as the packets traverse their path to 

the destination. For many routing schemes, and certainly in the general case, this argues for 

DTN-transport code to be present on all hosts adjacent to links that may experience delay 

or disruption. Put another way, the DTN transport approach calls for, though doesn’t 

strictly require, all hosts adjacent to potentially disrupted links to be DTN nodes.

Figure 4.1 illustrates how a DTN transport differs from a more typical transport. With a 

normal transport protocol, such as the Transmission Control Protocol (TCP), only the 

source and destination need to implement the transport layer -  all routers in between need 

only implement the Internet protocol (IP). The bold line in the figure shows the path taken 

by packets flowing from node 1 to node 15, with one link on the path, (between nodes 10 

and 9) broken to indicate delay or disruption. That link, plus the disrupted link between 

nodes 5 and 9 would be sufficient to prevent traffic flowing in this case since there is no 

way to re-route around the disruption.

For the DTN transport Figure 4.1 shows that nodes that are adjacent to potentially 

disrupted links implement the DTN transport and are able to store packets for later 

forwarding should that be necessary. The result is that, including source and destination, 

there are 6 DTN-transport nodes shown on the path used in Figure 4.1 -  whether each 

would in fact receive and (store and) forward traffic can depend on the (lower layer) routes 

that are configured for the various nodes and hosts involved and on the types o f delay and 

disruption experienced as packets flow.

75



u

Unnsed liwfc
Used link TCPhoit

Q  Packet storaBe(cnitody) DTN-traiuport aode

-  —  —  —  Diirnpted link Non-DTN-transport kost

Figure 4 . 1 - N ormal and DTN transports

As a consequence o f  all the above, a DTN transport will have a high level o f  homogeneity. 

Since the DTN transport aims to have packets travel as far as possible, every hop above the 

“thin waist” network layer has to use the same protocol. In contrast, a DTN overlay can use 

different transport layers at each o f its hops.

This homogeneity requires that we select some network layer over which to run our DTN 

transport, and following the IP hourglass argument [CR99] there is only one, generic, 

reasonable choice here which is to run over IP. In order to allow for easier implementation 

however, we also allow layering our DTN transport over UDP (over IP), so that kernel 

modifications are not required on many platforms.

Since our packets must, in general, be sent via more than one DTN hop in order to handle 

the disrupted links, we clearly need a way to release storage at each hop once data has been 

sent. With our DTN transport model, all signalling to handle this release o f  stored data is 

handled in a single-hop manner. That is, there is no multi-hop “backwards” signalling 

involved in the release o f stored data. Put another way, DTN transports, as defined here, 

handle Automatic ReQuest for retransmission (ARQ) [LI84] on a DTN-hop by DTN-hop 

basis.
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Figure 4 .2  - An overlay network

Our definition o f a DTN transport is therefore:

A DTN transport protocol is a DTN protocol that runs over IP or UDP, where 

nodes (preferentially located close to potentially disrupted links) can store 

packets for subsequent forwarding once the disruption event is over, and where 

only single-hop signalling is used to implement ARQ.

Having defined what we mean by a DTN transport, we now move on to consideration o f 

when such a protocol will be more beneficial than the other approaches envisaged for 

handling DTNs.

4.4 Transport vs. Overlay

In this section we compare and contrast the overlay and DTN transport approaches. Note 

that for the purposes o f this section, unless stated otherwise, we restrict ourselves to 

considering the case where the overlay runs over a single transport. Cases where this is 

impossible o f course favour the overlay approach.

Figure 4.2 depicts a generic overlay network [TOOl] where a set o f  substrate hosts are 

connected via various links and a subset o f those hosts acting as nodes form the overlay 

network with its DTN hops depicted. In the figure hosts “ 1”-“ 15” represent the physical or
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lower layer view  o f  the network, whereas nodes “A” to “F” represents the overlay network. 

In the diagram node “A ” is in fact exactly the same machine as host “ 1 ”, “B” is the same as 

“3” etc. We will use variations o f  this diagram to represent the different topologies we 

consider below.

Table 4.1 gives an overview o f  the factors that differentiate between a DTN overlay 

approach and the DTN transport layer approach. Essentially these are the specific factors 

related to the location o f  functionality in a DTN that we referred to in the problem  

statement in section 1.4. We examine each factor in detail below.

Factor H ighlights A rgues for
C ustody  location N ot c lea r that selec tive  location  o f  custody  is beneficial 

since it m ay cause sign ifican t add itional de lay  if 
custod ians are located  far from  d isrup ted  links.

T ransport (strongly)

D eploym ent
considerations

N ew  overlays are, in general, easier to  dep loy  than 
transports (particu larly  w eb serv ices overlays), 
how ever the BP is no easier to  deploy than a DTN 
transport.

N eutral

T opological
considerations

D ifferen t topo log ies can favour either. N eutral

IPN considera tions T he IPN , as the poster-ch ild  D TN , in fact d o esn ’t 
favour e ither approach  due to  the nature o f  the specific 
dep loym ent contex t.

N eutral

R outing D TN  routing  is still such an open top ic  that it is hard to 
tell, but overlays being less dense m ake for easier 
routing.

O verlay?

M anagem ent O verlay  leaves m ore open and therefore  m akes 
netw ork  m anagem ent harder.

T ransport

Future proofing M odels like the convergence  layer allow  m uch easier 
support for new  experim ents.

O verlay

Security O verlay  is m ore heterogeneous (com plex ity ) and has 
harder-to -m eet AAA ^ requirem ents.

T ransport

W ireless sensor netw ork  
density

M ore capab le  nodes are m ore likely w ith less need for 
sw itch ing  tran spo rt layers.

T ransport

E nd-to-end-ness A D TN transport is c loser to  the end-to -end  princip le. T ransport
L ate-b ind ing  and D NS L ate-b ind ing  is part o f  the overlay  arch itectu re , but not 

the D TN transport
O verlay

T able  4 . 1 -  O verlay  vs. T ransport overv iew .

■ A uthentication , A u thorization  and A ccoun ting  (A A A ) is a standard  abbrev iation  used in networi< security .
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4.4.1 Custody Considerations

A DTTM overlay network must also do store and forward but in contrast to a DTN transport, 

with an overlay (like the BP) one nominates the storage points, (in the BP, the custodians), 

as opposed to requiring that every node be able to store and forward. In either case, it is 

quite acceptable for a DTN node to be temporarily unable (due to storage congestion) or 

unwilling (due to policy) to store packets (take custody), but with our DTN transport 

model every node must at least be able to store as well as forward. With the overlay 

approach, a node implementation with no non-volatile storage could be considered 

compliant, whereas in the DTN transport case, such an implementation would require a 

convincing, and unusual, rationale.

The overlay model certainly seems attractive, since it allows a network planner plenty o f 

flexibility to decide where non-volatile storage is distributed amongst DTN nodes, and 

how DTN nodes are distributed amongst hosts. There is however, a problem with this 

flexibility. In a DTN-overlay network, packets are stored at a node when some previous 

node asks for that, and the custodian’s storage is released when the next custodian (or final 

destination) sends some kind o f acknowledgement. Furthermore there is no requirement 

that these nodes are adjacent (i.e., on the same DTN hop), so that multi-hop signalling will 

be required.

To take an example. Figure 4.3 shows a network with two overlay custodians and one 

disrupted link. Imagine that packets should nominally flow along the path shown, that is 

through nodes 4, 2, 3, 7, 10, 9 and then 8, with the link from 10 to 9 being unexpectedly 

disrupted so that packet forwarding fails there.

In the DTN-overlay, assume node C is the current custodian and is in the process o f 

transferring custody to node D. The problem is that when the 10 to 9 link is disrupted, node 

C knows nothing about that and so must await a re-transmission timer expiry before 

retransmitting the packet, which will now traverse the 4, 2, 3, 7, 10 path needlessly.

In the DTN-transport case, where each o f the hosts adjacent to a potentially disrupted link

is a DTN node, the disruption is handled at node 10, which will re-transmit the relevant

packets to node 9 at the next opportunity. In this case, even if node 10 is a storage

constrained device, or equally is suffering congestion, then node 10 can, in principle,
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announce this fact to node 7, which might be able to route around the congested node, say 

having packets follow a path from 7 to 5 and then 9.

In this example, so long as other factors are equal, the DTN-transport approach 

outperforms the DTN-overlay approach. Again though -  this is because the DTN-transport 

nodes are closer to the problematic link -  with a sufficiently dense overlay similar 

performance will result.

There is also a routing issue to note here. In a DTN overlay, since custody acceptance has 

to be acknowledged in order to allow storage to be released, this introduces a requirement 

for custody signals to travel backwards along the path. In addition to creating additional 

traffic, this also introduces a requirement for a multi-hop backchannei, which sometimes 

will not be possible to meet. For example, in many ad-hoc scenarios such custody 

acknowledgements will fail to arrive because the previous custodian will no longer be 

routable. Since the DTN transport approach requires nodes to always store and forward, 

there is no need for a new multi-hop backwards acknowledgement and so the difficulty 

does not arise.

Finally, multi-hop backwards signals introduce a few hard security problems. The first is 

that nodes must now have a way to determine which other nodes are authorized to request
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that they accept custody, and such an any-to-any authorization infrastructure is complex. 

Simpler and more practical alternatives, (e.g., only accepting custody for known nodes), 

could act to partition a DTN if  they make it impossible to get packets past some disrupted 

link.

The second security problem is that most protocols (including the BP) give the new 

custodian no hint as to what kind o f security services ought to be applied to the backwards 

signals. For example, if the old custodian were to release the storage on the basis o f an 

unauthenticated custody acknowledgement signal then this creates a simple denial-of- 

service (DoS) vector. If, on the other hand, the old custodian does require authentication o f 

the signals, (say for accountability reasons), then there is no way for the new custodian to 

know that this is the case. (However, the BP is not alone in this respect; protocols going all 

the way back to X.400 [WI91] have had this problem.)

Lastly, even were the DTN overlay protocol’s packets to indicate the security requirements 

for the backwards signalling, (which is itself hard to specify, unless the new custodian is 

known in advance), this creates an additional key management burden. The reason is that 

there is a directional aspect to the use o f the cryptographic keys that supply the security 

mechanism to implement whatever service is required. For example, if we require a digital 

signature on the signals, then the old custodian will probably have to have a copy o f a root- 

certification authority (CA) public key for the new custodian’s domain, and perhaps even 

access to a certificate status checking mechanism, even across the presumably disrupted 

“divide,” and there are currently no simple ways to provide such access. The bottom line 

here is that even if  the new custodian can decide that some security service is required for 

the backwards signals, provisioning the network so as to make that work is often hard.

The contrast with the DTN transport approach is fairly stark here. With the DTN transport, 

storage and release o f  stored packets is always a single-hop issue. And since those two 

nodes are in any case in contact, and perhaps have other security associations, all o f the 

above is much simpler.

So overall, custody handling fairly strongly favours the DTN-transport approach.

81



4.4.2 Deployment

One o f the main benefits o f overlay networks is the ability to deploy such a network on top 

o f an existing substrate -  this is one reason why peer-to-peer networks o f various kinds and 

content-delivery networks [BY04] are designed as overlays. Typically the substrate in 

question is the terrestrial Internet. Deploying a transport on top o f IP, or even UDP, [P080] 

also requires no change in the underlying network and so, in one sense, is no harder than 

an overlay.

Since neither approach requires that all hosts be nodes, they are equivalent in terms o f  not 

requiring that all hosts are changed in order to allow deployment.

If the transport protocol is run as part o f kernel code and not in userland, then it will, 

however, be more difficult to deploy since modifying kernels must be done more carefully.

Since both the BP and LTP-T are experimental protocols where the user community has 

little or no experience, whatever deployments occur in the near term are likely to be fairly 

small-scale and limited, e.g. in terms o f how they could affect other flows, so neither 

approach outscores the other in terms o f relative maturity.

Web services type overlays in particular are easier to deploy, due partly to the way in 

which firewalls have been deployed and configured over the last decade. An overlay based 

on the BP however, faces the same deployment problems as LTP-T -  new holes have to be 

punched in firewalls in order to allow packets to flow. Even though both the BP (4556) and 

LTP (1113) have officially assigned port numbers, one would not expect firewall vendors 

to view opening those as being a high priority.

However, there are currently no web services based DTN overlay proposals, nor DTN 

overlay proposals based on a convergence layer (CL) that would have existing holes in 

firewalls, so though this factor could have favoured the overlay approach, with the current 

overlay proposals, it does not. So our conclusion is that there is, at present, no practical 

advantage for the overlay approach in terms o f deployment considerations.
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4.4.3 Topology

We next examine whether and how a network’s topology favours a DTN overlay or a DTN 

transport approach. It is worth starting with a note o f caution here - in the following we 

must bear in mind that network topology changes over time, and, particularly with a DTN, 

those changes may be more significant than the structure o f any snapshot o f the network 

topology. Conclusions drawn from static views o f network topology may give a misleading 

picture.

Topology type Favours
Intem et-in-the-m iddle Overlay (very slightly)
Long-fat-networks Transport
Data-mules Transport (very very slightly)
D eep-space Overlay (very very slightly)
Random badness T ransport
D TN -D M Z Overlay (for now)

Table 4.2  -  Different DTN topologies favour different solutions.

We now consider various representative topologies to see if any o f them favour the overlay 

or transport approaches. Table 4.2 lists the topologies considered and our conclusions as to 

which approach each favours. The topologies listed are the set o f (in the author’s opinion) 

distinct DTN topologies for which good DTN reference examples exist. As can be seen 

from the table, overall, we believe that the network topology is relatively neutral between 

the overlay and transport approaches.

Internet-in-the-middle Topology

The Intemet-in-the-middle topology is one where the Internet is seen as a set o f  sources 

and sinks for flows that are targeted to/from sets o f challenged, (e.g. sensor/actuator), 

networks that are connected to the Internet via one or more gateways. For example, some 

military tactical networks are designed in this manner [SC05, RI05]. A more common 

example might be a set o f environmental monitoring nodes like the Sensor Networking 

with Delay Tolerance (SeNDT) nodes [FA06i] connected to a data sink on the Internet.

Generally with this topology, there is little benefit in having a DTN node that is in the 

interior o f a well-connected part o f the network, (i.e., where all other nodes that are only 

one hop away are also well-connected). One would instead expect that the DTN nodes 

would be at the edge o f the well-connected Internet and not in the middle. (With perhaps a
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few well connected nodes acting as data sink or control sources.) This applies to both 

overlays and transports.

If a challenged network is using some unusual lower layer (e.g. using data-fusion [INOO] or 

network coding [W105]), then clearly the transport approach will be problematic since, by 

definition, the transport only runs over IP. However, there are sensor networks (like 

SeNDT) where the nodes are not extremely resource challenged other than in terms of 

power and contact opportunities, and so can make use o f standard Internet protocols while 

in contact. In such cases, a DTN transport can make excellent sense.

Overall though the Internet-in-the-middle topology very slightly favours the overlay 

approach on the basis that it more easily allows for the use o f non-standard lower-layers in 

the challenged parts o f the network.

Long-fat-netM'ork Topology

The archetypal long-fat-network (LFN) is an otherwise standard Internet flow that involves 

a geosynchronous Earth orbit (GEO) satellite [MOOO, GL98]. Such a (pair of) link(s) 

involves a distance o f approximately 35,786 km up and back with each leg involving an 

additional LTT (compared to a normal IP flow) o f ~120ms in either direction, thus adding 

a total o f a little less than one quarter o f a second to all flows involving these links. In fact,

with the addition o f queuing time in the spacecraft, the RTTs are even worse than this,
12being typically o f the order o f 700ms.

Regardless o f how the LFN is handled it remains the case that the overlay approach 

requires there to be some CL for these links that is also DTN capable. Without such a 

layer, it would not be possible to operate the LFN, since LFNs typically have two delayed 

or disrupted links (the uplink and downlink). So arguably the most natural thing to do is to
13implement a CL that is actually a transport protocol . Doing so allows the satellite itself to 

be addressed and so also allows other scenarios (e.g. constellations o f LEO satellites) to be

'■ httD://bnrg.eecs.berkelev.edu/~randv/D aedalus/BA R W A N /D B S.htm l 
In fact SCPS-TP is frequently used as this “ inter-PEP” protocol (see Chapter 2).
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supported more easily. At that point (when a new transport is defined to support the 

satellite hop), one would begin to question the benefits o f the overlay since all delay and 

disruption is being handled in the DTN transport which could probably relatively easily'"' 

be extended to run end-to-end.

Summarising, LFNs demonstrate few benefits for overlays which seem to require a DTN 

transport as a CL. So overall, we see the DTN transport layer approach being preferable to 

the DTN overlay here.

Data Mule Topology

The data mule [SH03] approach to DTNs involves one or more so-called data mules, 

(sometimes known as “message ferries” [ZH04]), that physically move amongst other 

network nodes establishing connections to each node according to a schedule; or whenever 

proximity allows, or following some other discipline. In many scenarios, the data mule also 

occasionally contacts a node, (here called a base station, but the term is irrelevant), that is 

well-connected to the Internet, and thus the data mule provides a moving bridge between 

the Internet and the isolated nodes.

Since the data mule itself will generally experience highly disrupted communications as it 

enters into, and looses, contact with other hosts, the data mule itself really has to be a DTN 

node. So in this topology we have a wandering DTN node that connects to other hosts. The 

next question is whether those mule-to-host connections really have to use a DTN 

protocol? In fact, in many data mule scenarios, one could use TCP between the mule and 

the other node so long as the contact duration is sufficient.

So one could structure a data mule driven DTN to use a home-grown application layer 

protocol (e.g. achieving end-to-end connectivity via a sequence o f  FTP connections), or 

one could use either a DTN overlay or a DTN transport. This level o f  flexibility, and the

“Easily” here is comparing tiie DTN overlay and DTN transport approaches ~  deploying either to the 
endpoints is hard but has been discussed already.
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fact that there appear to be many applications'^ [BR04, FA06i, ZH04] that already provide 

“natural” data mules makes this topology attractive for many scenarios.'^

However, the data-mule topology doesn’t really help decide between a DTN overlay and a 

DTN transport. The fact that all, or almost all, nodes are using the DTN protocol makes the 

overlay and transport very similar. However, other things being equal, there is no clear 

benefit to using different transport layers for one data mule, at which point the overlay 

protocol only represents additional overhead, so we consider this topology to very slightly 

favour the DTN transport approach.

Deep Space Network Topology

Figure 4.4 shows an example o f the type o f  network topology one might encounter on a 

deep-space mission [BU03]. Essentially there are five types o f  node that can be involved 

each with different properties as described below'

Landers are on-planet nodes that suffer e.xtreme power challenges, have very (frequent 

and long duration) disrupted communications with all peers and extreme delays back to 

Earth (from 4 to 20 minutes in the case o f Mars). Landers can communicate direct-to-Earth 

at low bandwidths and by consuming quite an amount o f hard-to-generate power. A Mars 

lander will generally be visible from somewhere on Earth for roughly half the time, 

however, the lander will not have power for such extended data transmission, and, in fact, 

the DSN Earthstations (see below) will be busy doing other things most o f the time. The 

result is that the practical availability o f the lander for direct-to-Earth communications is 

highly constrained. In order to save power and increase the scientific data return landers

A s already describ ed , lake w ater quality  and n o ise  m onitoring, bu s-b ased  netw orks like D iese lN et [Z H 06d] 
and Z ebranet [Z H 04z].

In fact, there is a partly separate research com m u n ity  w ork ing  on what th ey  call “opportunistic  
netw ork in g” d ea lin g  sp ec if ic a lly  w ith  netw orks that m ake use o f  ex is tin g  ph ysica l en tities as netw ork nodes. 
A rguab ly , th is is a su bset o f  the problem s addressed  by D T N , but o f  cou rse , an opportunistic  netw orking  
researcher m ight ju stif ia b ly  argue the opposite!

W hile  th is descrip tion  is ov erly  detailed  for this part o f  the argum ent, w e  w ill be using an em ulation o f  a 
setup like th is in our eva lu ation  so  the detail is usefu l for understanding that section .
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Figure 4.4 -  A deep-space network topology; im ages courtesy o f  N A SA  and ESA.

will, where possible use orbiters, as data relays; such orbiter passes will only last minutes 

but can use much higher data rate communications.

Orbiters as the name implies are in orbit around the target planet and perform as science 

instruments in their own right as well as (and even sometimes primarily) as data relays for 

landers. Typical Mars orbiters will tend to have roughly 90 minute orbits during perhaps 

2/3' ‘̂̂ ''of which the orbiter will be visible from Earth.

The Deep Space Network (DSN)'** is a NASA network o f Earthstations spread around the 

globe so that the DSN can, in principle, offer coverage to any deep space mission. The 

DSN is however almost always oversubscribed; so that a fairly complex scheduling system 

is used to allocate contacts during which a particular mission is allocated use o f  a DSN 

antenna. The actual DSN has an IP based network o f  its own for managing antennae and

httprVdeepspace.ipl.nasa.gov/dsn/ There is also an em erging European equivalent called ESTRACK but as 
yet all deep-space m issions have required N A SA  DSN support.
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distributing science data. While tliis network is itself complex (mainly due to the need to 

capture as much o f the physical layer information'*^ as possible for later analysis), for our 

purposes it is sufficient to imagine there being one or more DSN gateway nodes between 

the DSN and the Internet.

Finally, there will be a number o f principal investigator (PI) hosts and control hosts 

scattered around the Internet that are authorized to take part in the deep-space mission 

network for various purposes that are indistinguishable from our point-of-view.

Before contrasting the overlay and transport layer approaches in this context we should

also very quickly note some legacy protocol issues that arise in this environment. The main

point is that (from an Internet point o f view) atypical lower layer protocols are common in

deep-space networking -  Forward Error Correction (FEC) [HOOIJ is considered well
1worth the effort and even corrupted bit streams can have a value.

So, how do the overlay and transport approaches compare here? First, even the term 

overlay is somewhat odd in this context. There are, and for the foreseeable future will be, 

so few hosts involved in deep-space missions that essentially every space-side host will
23take part in any overlay . Given that there are, in this case, likely to be very few Internet 

connected hosts that are (or should be) authorized to be part o f this application; we end up 

with an overlay here that in fact includes most every host involved, exactly as we would 

were we to apply the DTN transport approach to this topology.

The DSN is also used for space science -  in which case there is (generally) only physical layer information 
recorded.

The use o f  FEC means that links are either perfect, or else totally broken (when FEC fails), and also that 
link throughput may depend on the level o f  FEC applied.

A s indeed do retained analog measurements. In many cases the DSN is part o f  the science effort as w ell. 
For exam ple analysis o f  the changes in radio frequency propagation as a spacecraft is occulted can provide 
information about planetary atmospheres. Another exam ple would be a partial image which can still have 
science value.

For those few m ission proposals that involve significant numbers o f  nodes (e.g . NetLander) the probability 
is that the less capable nodes should be more properly treated like spacecraft instruments and not as i f  they 
were independent spacecraft.
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However, the heterogeneous lower layers seen here do make it more likely that the overlay 

approach is more suited for deep-space networking.

Randomly Bad Topology

We now move to consider a topology where essentially every link has some non-negligible 

probability o f being disrupted (for simplicity, we will ignore delay in this part o f  the 

argument). In this case, we assume some standard network topology is being used and 

would like to consider whether or not an overlay differs from a transport when link 

disruptions happen at random.

This is clearly reminiscent o f the type o f argument about the Internet and the web being 

examples o f  scale-free networks [AL.OO] which have excellent resilience in the face o f 

random failures. It is unclear whether or not there will be any difference between a DTN 

transport and an overlay in these terms. Will the fact that a D'lTM transport is denser make it 

less likely to resemble a scale-free network? Or, will the relative sparsity o f an overlay 

make it less like a scale-free network? Those are questions that will become interesting as 

DTN deployments grow, but for the present are not resolvable.

One indicator may be that one peer-to-peer network - Gnutella [RI02] -  has been found to 

create traffic patterns that conflict to some extent with how the IP network that is its 

substrate is typically provisioned. For example, Gnutella creates lots o f additional, and 

perhaps unexpected, cross Autonomous System (AS) traffic. Since deployed peer-to-peer 

topologies are inherently hard to investigate^^ this may or may not be a significant point, 

but it at least indicates the potential for what is, in this case, a scale-free overlay on top o f  a 

scale-free network leading to possibly suboptimal routing.

While one could probably build a mathematical model differentiating between overlays 

and transports for each o f the standard network topologies, for the purposes o f this work 

that is unnecessary. In order to see this, we note that a DTN transport approach, being

Since they have few , if  any, central points where statistics can be gathered.

89



inherently “closer” to disrupted links, can react more quickly to disruptions and with better 

knowledge of the actual state o f affairs. The reason for this is simple: in an overlay, there 

may be disrupted links between hosts that are not part o f the overlay, and in that case, 

detecting and recovering from the disruption must take longer than in a DTN transport that 

involves “more” participating nodes that are closer to the disrupted links. As we saw above 

when discussing custody (in Section 4.4.1), distance from such disrupted links is 

problematic.

So random disruptions essentially favour the lower layer protocol, which in this case is the 

DTN transport.

DTN-DMZ Topology

In this section, we discuss how the two DTN approaches fare in the light o f the fact that 

many current enterprise networks isolate themselves from the less-trusted Internet via a so- 

called De-Militarized Zone (DMZ) [SH03d] in which various security, privacy and 

performance-enhancing services tend to be located. For example, firewalls control which 

flows are allowed in or out and perhaps manage Network Address Translation (NAT) as 

well; scanners may examine flows and email traffic for dubious patterns; split-DNS servers 

distinguish how name/address mappings are seen on the “inside” and “outside” and load 

balancers may hide multiple nodes behind what appears to be a single service interface in 

order to meet busy-hour requirements.

Many o f these services are widely considered to breach the end-to-end principle, [CA02] 

(as do DTNs^^). They are however extremely widely deployed, and used, on today’s 

Internet. It is therefore interesting to consider how or whether our two DTN approaches 

differ in respect o f how they address, subvert or otherwise affect these kinds o f DMZ 

services.

See Section 4.4.9 below.
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We would expect that wanting to have DMZ-like services in a DTN would favour the 

overlay approach because DMZ services depend on packets being funnelled towards 

special hosts (that provide DMZ services) which is quite reminiscent o f  an overlay. And in 

fact, the bundle security protocol (BSP) specification [SY07] is in some way tailored 

towards this view. While the same services can be implemented with a DTN-transport 

(since they are largely not visible to the endpoints), an overlay is still a more natural fit 

since a DMZ itself is a kind o f sub-network overlay. This is analogous to the way in which 

the HTTP protocol is more DMZ “friendly” than end-to-end protocols like IMAP.

Having said that however, the DMZ model for enterprise networks may be beginning to 

break down, for example, because it doesn’t necessarily suit when an enterprise deploys an 

internal wireless LAN -  at that point many access points are physically attached to the 

“internal” network but clearly allow connection establishment attempts from less-trusted 

environs (for example, the pub across the road). In addition, the fact that many hosts are 

now mobile (and possibly connected to untrusted networks at home) also means that the 

inside/outside distinction is much more blurred than used to be the case. So there is already 

a trend away from the DMZ model and towards boundary-less security, in which case 

presumably being able to embed DMZ-like services into any DTN-transport node would 

become the more natural fit. Whether or not this so-called “de-perimeterisation” [HA06, 

BL05] will become widespread however, is not at all clear at this stage.

However, since the DMZ model is in widespread use and is closely analogous to the 

overlay approach, this factor favours the overlay approach.

Concluding on Topology

We have considered a range o f DTN topologies, and found some that favour each o f  the 

approaches. In the end our analysis has essentially produced an overall neutral conclusion. 

This is both because there seems little to choose between the two approaches, but also 

because o f the caveat noted at the start o f this section -  for some DTNs there may be no 

fixed topology at all, which further re-enforces our overall neutral stance when considering 

how network topology affects the DTN overlay and transport approaches.
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4.4.4 The IPN

The fact that the DTNRG have mainly focused on the overlay approach represented by the 

BP is, in part, due to the fact that this work had its origin in the Interplanetary Network 

(IPN). [BU02] In the original IPN, networks on, and around, each planet were termed 

“regions” - and the terrestrial Internet was treated as simply one more region. From that 

point o f view an overlay approach was eminently sensible, since each region was assumed 

to be autonomous, including possibly running different lower-layer protocols. So it is no 

wonder that the BP, which started out as an IPN protocol, should take the overlay 

approach.

However, given the evolution from IPN to DTN described earlier, one could ask whether 

that evolution indicates more than just the problem o f solar-system scale experiments being 

inordinately expensive, or are there some networking reasons why w e’re better o ff with a 

DTN rather than an IPN and if  so, does that tell us anything about the overlay versus 

transport approaches?

Firstly, the IPN was originally spoken about as being the one and only overlay network 

covering the solar system. If we assumed that, then we would no longer be discussing the 

pros and cons o f  different networking approaches, but o f two different architectures for one 

network, which is a different discussion. So, we will treat the original IPN as being one
27amongst many solar-system scale networks for the remainder o f  the argument .

The question then is whether an overlay is a good or a bad way to create one among many 

(possibly interconnecting) solar-system scale networks? Since the main benefit from an 

overlay is that it allows for the use o f heterogeneous transport protocols in different parts 

o f the communications path from source to destination, this is clearly a plus in the IPN 

context.

In fact, the original IPN concept was largely the product o f  one space agency (N A SA ). W ere numerous 

different space agencies involved it is not at all clear that there would still be a single network.
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The late-binding [FA03] feature that the overlay naturally provides is also demonstrated at 

its clearest in this context. If a Mars-based node uses a name o f some form for a destination 

on Earth, then it would seem to be wise not to depend on an up-to-date name/address 

mapping (for Earth) being accessible to the source on Mars at the time o f original 

transmission o f a message. This is a good argument, but o f  course, only for a network o f  a 

certain scale -  the deep space networks envisaged for the next two decades will not really 

benefit from late-binding since there will not be a sufficient number o f  nodes involved 

either on Earth or Mars for name mapping to become a real problem.

One exception to this could be a cislunar network, where one could envisage a large scale 

network being built in the next few decades. However, the latencies involved here are not 

really problematic for management traffic. So again, late-binding doesn’t really seem to be 

that significant for cislunar networks.

It would appear from the above that the late-binding principle is actually not very 

beneficial for the overlay approach when considered in the context o f a realistic IPN being 

deployed at some time in the next two decades. Our conclusion is the IPN view o f overlay 

vs. transport is actually neutral rather than favouring the overlay as one might expect.

4.4.5 Routing

Routing is perhaps the main open research topic in DTNs -  we simply do not know at this 

time how best to handling routing issues in DTNs in general. [JA04] As a result, any 

conclusions to be drawn from arguments offered in this section must certainly be 

considered extremely tentative.

One could make a good argument that no DTN protocol ought hard-code one (or more) 

routing scheme(s), on the basis that a DTN protocol should be usable in as broad a range o f  

environments as possible, and that the range o f environments is so broad that no one-size- 

fits-all routing scheme will work everywhere.

For example, the mostly deterministic deep-space networking use case differs hugely from 

cases where opportunistic contacts are the norm.
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Since the overlay approach cannot really constrain routing very welP*, such approaches 

must inherently be less performant in some situations. There will always be some networks 

where additional knowledge o f the flows would allow better routes to be derived; in fact 

Jain et al. [JA04] show that some schemes o f theirs that make use o f  oracles perform better 

than those that don’t. On the other hand, the same paper describes such oracles as perhaps 

being more trouble than they were worth!

The density factor also works in favour o f the overlay here to an extent -  with fewer nodes 

for which routing has to be managed, the routing problems become easier. However, the 

counter argument is that someone has to manage the lower layer routes in any case and if 

some o f those involve delay or disruption prone links, then we have not solved the routing 

problem simply by distributing routes to overlay nodes. We must also provide some lower 

layer hosts with the information necessary to handle the DTN links to which they are 

adjacent (assuming such links are in the “middle” o f paths between overlay nodes).

2Q
The only current publicly-specified routing scheme for the DTN overlay is PRoPHET 

[L106] which is a probabilistic routing scheme where forwarders attempt to increase the 

probability o f delivery by forwarding each bundle to a group o f nodes that have previously 

been successful next-hops. Clearly, whatever CL is in use will also affect routing however, 

so PRoPHET alone doesn’t give a full picture, but is intended to benefit from whatever 

“best effort” the lower layers can manage, e.g. there has been some consideration o f  how 

PRoPHET and MANETs might interact [OT06], For DTN transports, we only have the 

LTP-T protocol where routing is a mixture o f IP routing and static tables (with 

wildcarding) that are used at each LTP-T node. So while we do have some examples o f 

DTNs with defined routing, in no case do we have any real deployment experience at a 

scale that is useful.

Since the overlay DTN cannot in general make end-to-end assum ptions about e.g. performance (due to the 
diverse CLs involved) it equally cannot be very determ inistic about routes.

“Specified” here is meant in the sense o f  having a (relatively) stable, published specification that different 
im plementers could code from -  and get the sam e result. In the case o f  PRoPHET, this took the form o f  an 
Internet-Draft.
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So for routing we currently prefer the overlay approach, based on the fact that it may lead 

to simpler solutions if the overlay is sparse, though recognising that this is an extremely 

tentative conclusion.

4.4.6 Future Proofing

As DTN matures, various new and variant protocols will emerge at different layers 

attempting to better handle aspects and causes o f delay and disruption. An overlay protocol 

like the BP is more robust when faced with such changes. For example, it may well be that 

there will be a period where many DTN-transports (e.g. LTP-T and others) and/or DTN
•2 A

lower-layers (e.g. USB Sneakemet ), [QU03] are defined that each form the basis o f 

separate experiments. In that scenario, an overlay protocol can remain the focus o f 

interoperability, so long as there is some good model for integrating new lower layers into
32the overlay. For example, the BP implementation does this with its CL concept which is 

robust enough to handle TCP, UDP, raw Ethernet and various other layers right down to 

Sneakernet.

There is however, an argument to the contrary which is basically that the hourglass 

modeP^ encourages us to make IP the thin waist o f the hourglass [CR99]. In a sense the CL 

model for the BP and (potentially) other overlays encourages the development o f a fatter 

(or split) waist for the hourglass. To the extent that one believes the hourglass argument is 

telling, one may consider that layering DTN-transports directly on IP (or perhaps on UDP) 

provides a safer basis on which to proceed and will therefore be better future-proofed, e.g. 

as new IP-over-foo combinations are designed, and more importantly, actually get used.^"*

O f course, the first argument above only applies when more than one CL is in use. For 

DTTM use cases that use a single CL, the overlay and transport are equally future-proofed.

”  h ttp ://d o i.a cm .o rg /10 .1145 /864056 .864078

A dow nside  o f  this is that befo re  the overlay  can in teroperate , each  party  has to  d e fin e /se lec t and 
im plem ent som e com m on C L. W ith a D T N -transport, it is m ore likely that the transport p ro toco l specifies 
those  deta ils natively .

h ttp ://w w w .cs.v irg in ia .edu /~ cs757 /siidespd f/deering -hou rg lass-london -ie tf.pd f
M any IP -over-foo  op tions are in w idespread  use today, w hile  on ly  a sm all num ber o f  B P /foo  op tions have 

yet been im plem ented  in the BP reference im plem entation .
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However, at present, we would have to favour the overlay approach given the flexibility 

inherent in the CL model.

4.4.7 Management

From the network management point o f view, an overlay network must be inherently more 

complex to manage since each lower layer technology requires specific knowledge and 

imposes its own operational burden. In many real networks, this knowledge problem is the 

most critical [CU05] since each new technology requires operator training and the need to 

deal with diverse technologies makes handling operator staff turnover more problematic. 

Overlays will also be harder to monitor, diagnose and debug since the administrator will 

almost certainly have less knowledge about the current state o f  the nodes themselves, given 

that they are connected by a potentially large range o f  technologies. Managing 

homogeneous networks is simpler.

With a DTN-transport that has a well-defined binding to its lower layers, many o f the other 

management issues are ameliorated -  so long as the DTN-transport does, in fact, make 

specific choices about lower layer binding that is -  were some putative DTN-transport to 

support a range o f network layers, then we would be in almost the same position as with an 

overlay. In particular a DTN-transport that binds to IP or UDP can leverage a lot o f 

existing management know-how and tools.

Considering the management o f overlays a little more, there has been at least one attempt 

to rein in the complexity o f managing overlays, namely the X-Bone, [TOOl, T005] which 

aims to be a generic management layer for any overlay network on top o f IP. However, in 

the case o f a DTN overlay, one o f the main justifications o f  the overlay approach is the 

potential for using non-IP lower layers, in which case the X-Bone would not be directly 

usable, at least without additional effort.

The X-Bone also provides a nice example o f a generic difficulty with managing DTNs, 

that is, node or service discovery. The X-Bone uses techniques like IP multicast in order to 

discover hosts that are to be managed.
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Good handling o f node discovery is a crucial feature for any network management scheme 

[BR04d], Unfortunately, a DTN, (whether served by an overlay or transport protocol), 

inherently makes discovery difficult since the discovery process will probably be 

significantly hindered by timeouts due to delayed and/or disrupted links. The net result 

here is that a system like the X-Bone is not easily able to manage a DTN, even though the 

X-Bone was designed specifically for overlay management.

T C

One could presumably extend the X-Bone and whatever DTN protocol one uses so that 

DTN nodes would notify some nearby X-Bone resource daemon or overlay manager 

component o f the existence (and perhaps “connectedness”) o f other DTN nodes -  this 

could for example be done using a collection o f values o f the “via” extensions in LTP-T, 

or reporting information from the BP. So, while the X-Bone is not currently suited for 

DTN node discovery, one can envisage a way to solve that problem, in a way that doesn’t 

really distinguish between the overlay and transport approaches. In the end. the more 

homogeneous nature o f the transport approach means that we strongly prefer it when 

considering network management.

4.4.8 Security

From the cryptographic-based security service point o f view overlays are somewhat 

difficult, since, in general, an end-to-end security analysis will have to consider 

combinations o f lower layer, CL, and DTN-overlay security. With the current Internet it is 

often hard to know when a flow is secured using IPSec, [AU05] and with an overlay the 

difficulties are increased with each new security option added. Achieving an end-to-end 

picture o f security from an overlay is inherently harder.

To give an example, the BP security specification (BSP) defines a way for a node to 

digitally sign a bundle, for example, in order to provide data origin authentication. Many 

people however envisage DTNs with sensor nodes that are so challenged in terms o f CPU

There would undoubtedly be additional changes required, e.g. the X -B one makes use o f  SSL, w hich uses 
TCP, which w on ’t work in som e DTN contexts.

See Chapter 5.
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and power that signing is not possible on the sensor nodes themselves. For this reason, the 

BSP detines a way for an intermediate node to digitally sign the bundle, the main intent 

being to allow the application o f CPU-intensive security functionality at the first node on 

the path that is not computationally challenged. The result is that due to the nature o f the 

overlay, it is less predictable as to what entity has signed a bundle, which could lead to a 

node (or more likely a designer/developer), making a false assumption that the sensor data 

arrives from the sensor with integrity assured. This is just one o f a number o f examples o f 

ways in which the overlay approach causes increased complexity from a security point o f 

view.

With a DTN transport, since there is at least one degree o f freedom less, the end-to-end 

security analysis is easier, even if it remains complex if one allows consideration o f lower- 

layer security, as one should. Basically, we no longer have to consider CL security features 

and are less likely to implement security (or other) features in the “middle’' o f the DTN.

The absence o f DTN key management schemes means however that end-to-end 

confidentiality in particular is problematic for both approaches. With the BSP, we have 

definitions o f how to apply end-to-end confidentiality though so far without any key 

management specification. For LTP-T, we have yet to define any confidentiality service, 

though would plan to provide similar functionality to the BSP, once some DTN key 

management specification exists.^’ Both the BSP and LTP-T have (relatively) well-defined 

hop-by-hop and end-to-end data integrity services. So, for cryptographic security services, 

the transport is preferred since it is simpler.

The area o f authentication, authorization and accounting (AAA) [HA02] is one that has 

been, and continues to be, problematic on the Internet [FAOO, TS05]. AAA might also be 

expected to be similarly problematic for DTNs w hen/if they move beyond experiments and 

become something for which service is purchased or for which service consumption has to

H opefully, whatever key management is done for the BSP can be re-used for LTP-T, though probably 
requiring a different encoding schem e.
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be accounted. We have also yet to see any serious consideration o f AAA for DTNs so 

much o f what is below is speculative, though defensible.

With a DTN transport, where custody is not a choice but a duty, many AAA difficulties 

simply go away, or are handled via ingress controls that might be built in to a firewall 

node. Since each DTN transport node must accept custody for each packet that it receives, 

there is only one decision to be made -  whether or not to accept a packet from the adjacent 

node. A DTN overlay has two different decisions to make, whether to accept the packet 

and separately whether to accept custody o f the packet. The former decision is the same as 

in the DTN transport case, but the latter decision may involve the previous custodian 

which will generally not be an adjacent DTN node. Making decisions about potentially any 

DTN node (the previous custodian) is inherently harder since the decision point may have 

no relationship with the node making the decision.

T O

Moreover, with an overlay where custody is selective, and where off-path signalling (of 

custody or reporting) is allowed, the protocol must contain flags and values to indicate the 

selections, which means that external hosts can more easily target a custodian with e.g. 

DoS attempts. Such signalling also presents a challenging authorization problem since one 

has to decide whether or not to forward packets (bundles in this case) that are only loosely 

associated with in-band traffic, which is surely a harder decision to make (or manage).

Current AAA protocols, in the main, could fairly easily be extended [RIOOe] to supply the 

kinds o f new information that a DTN AAA infrastructure would require. So long as the 

administrative information changes sufficiently slowly then standard solutions like 

RADIUS [RIOO], Diameter [CA03] and SAML [GR03] could be used. However, these 

would not necessarily be typical deployments o f those protocols since, e.g. the Policy 

Enforcement Point (PEP) and Policy Decision Point (PDP) might both have to be on the

A sim ilar  point cou ld  be m ade here about the reporting sch em e  in the B P , w here the packet inspector  
w o u ld  h ave to d ec id e  w h eth er to a llo w  in a packet that c a lls  for reports to g o  ou tsid e  its dom ain  -  not at all an 
ea sy  d ec is io n  to m ake w e ll.
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same side o f a set o f disruption-prone links. There would be work to be done to ensure that 

those protocols were practically usable for an overlay.

With a DTN transport, since all our signalling is in-band and on-path, AAA problems are 

generally less severe. The overlay approach is also more vulnerable in that complexity is 

the enemy o f security, so that the ability to mix and match different lower layers will 

inevitably create new vulnerabilities, simply due to the combinatorics o f the situation 

making analysis harder.

In summary then security considerations favour the transport approach given the reduced 

complexity and the fact that the AAA requirements flowing from a transport layer are 

simpler than those associated with an overlay.

4.4.9 The End-to-End Argument

We have already stated a number o f times that the DTN transport approach is preferred due 

to the fact that it involves no off-path signalling. The fact that this has cropped up a 

number o f  times indicates that there is perhaps really a more generic argument that can be 

made. Essentially, that is the end-to-end design principle, [SA84] which basically says that 

functionality should be implemented in the application layer, where there is no clear 

benefit from implementing the same functionality inside the network. This principle is 

widely credited with being highly important in the success o f  the Internet versus the at- 

one-time favoured Intelligent Networking (IN) or Open-Systems Interconnection (OSI) 

approaches.

One consequence o f the end-to-end argument is that it is easier to introduce new services if 

those don’t require changes to the middle o f the network, so, for example, with the 

Internet, one can become the main search engine without having to ask permission o f  any 

ISP.

Both the DTN overlay and transport approaches fairly clearly fail to honor the spirit o f the 

end-to-end argument since they are inherently dealing with passing traffic where there is 

no contemporaneous end-to-end connection. However, the transport approach is also fairly 

clearly more in tune with the end-to-end argument, since it at least keeps functionality on-
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path and minimizes the number o f new functions and entities that are present in the middle 

o f  the path from source to destination.

4.4.10 Late Binding and the Domain Name System

Any scheme that touches the Internet but is simple to deploy from the perspective o f the 

domain name system (DNS) will generally be able to spread much more easily. This 

doesn’t simply mean being able to use the DNS protocol to map names to addresses, but 

(with the current state o f the DNS) also implies not requiring any new resource record 

(RR) types, and effectively requires use o f RRs to be limited to certain types [AL94]. 

Basically, if a DTN protocol (whether overlay or transport) requires something new or 

unusual from the DNS then its deployment will be problematic.

Equally, if a DTN protocol ignores the DNS and attempts to replicate some DNS data, then 

its deployment may also be problematic since this leads to the DNS and local version o f 

the data eventually differing. Once one approaches the scale o f some o f  the larger DNS 

zones then such data replication is highly problematic.

The above are also issues when considering handling the late-binding approach'^'^ o f DTN 

overlays [FA03]. If the destination node name is looked up, (e.g. for routing purposes), at 

an intermediate node, then the late-binding advantage has been given up if  the protocol 

involved in doing the look up is liable to be disrupted. For example, if  a DNS lookup is 

used from a node that is liable to be disconnected from the Internet, then we will lose the 

advantage o f late binding. In particular, LTP-T can involve such lookups and so does not 

benefit from late binding.

So as long as a DTN does not involve too many names, then late-binding is preferential. 

However, presumably this also creates a (thus far unmet) need for a name resolution

In this context late-binding is where each router along a path can separately resolve the destination address, 
so as a result the source d oesn ’t need to be able to resolve the destination address from the destination name, 
it only needs to know which forwarding interface to use.
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service that is usable from the middle o f the network, which is not a trivial matter. Even so 

though, the late binding feature favours the overlay.

4.4.11 Summary of Overlay vs. Transport

In the above we examined a wide range o f overlay vs. transport issues and were we to 

simply aggregate our conclusions from Table 4.1 those would be: overlay-favoured (3), 

transport-favoured (5) and neutral (3). This provides a credible argument that the transport 

approach is at least tenable and deserves detailed investigation when compared against the 

currently mainstream overlay approach.

4.5 Design Pragmatism

In addition to the above there are also a few additional, more pragmatic factors worth 

mentioning. Some o f these issues really have more to do with protocol implementations, 

but such pragmatic issues also need consideration when developing a design for a DTN 

protocol and specifically for a DTN transport.

4.5.1 The Sockets API

Firstly, many developers are currently familiar with programming applications on top o f a 

transport layer via the sockets API [GI99], so the ability to use such an API is 

pragmatically quite useful. While developers are also beginning to become more familiar 

with developing applications based on overlays (mainly in a web services/web2.0'*' 

context), at this point the sockets API is still the more widely understood.

In particular, most applications that run on top o f sockets could be relatively easily ported 

to use a DTN transport. While they might still require application layer changes to handle 

operating in a connectionless and highly-delayed manner those will be easier if the sockets 

interface is maintained.

http ://w w w .ariadne.ac.uk /issue45/m iller /
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Actually doing this is relatively simple, especially if the application ran over UDP sockets 

previously (i.e., calls to s e n d t o  () rather than s e n d  () ) .  In fact the BP reference 

implementation could also provide a socket-like API so the differences here needn’t be 

huge, but developers are more used to a single library against which they link their 

applications and with the option to statically link or else to only distribute a shared object 

library or DLL with the application.

The BP reference code currently has more onerous requirements than this — whether this is 

an inherent aspect o f the BP reference implementation'*^ is not clear. Use o f separate 

processes and a database for bundle storage is a fairly natural approach to take for an 

overlay but is not really what application developers would expect from a communications 

stack.

The fact that there is a well-know'n transport layer API that is known by many developers 

and that overlay development is less mature means we consider this to favour the DTN 

transport approach.

4.5.2 Always-On Operation

A DTN protocol implementation that insists upon the use o f complex configuration and/or 

routing data before traffic fiows will be much harder to use than one that offers an 

“always-on” mode o f operation when no configuration is present. While this is perhaps 

largely an implementation issue, it can make a signitlcant difference in terms o f  

acceptance, and might perhaps constrain protocol design to some extent. For example a 

protocol that requires more than one node to be available before application data can flow  

is harder to experiment with'*̂  -  and experimenting is how most developers begin to work 

with new things. As a special case o f this, the protocol should also be able to work in a 

loopback mode so that it can be used even on a single host.

h ttp :/ /w w w .dtnrg .org /w ik i/C ode
An erasure cod ing  protocol w ould  be one such -  there  is no benefit in using such a p rotocol in a 1:1 

situation.
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This slightly favours the DTN transport again, on the basis that it is easier to know which 

always on configuration to use as the default since there are fewer degrees o f freedom.

4.5.3 Real-world Wireless Sensor Network Density

While this section partly repeats some earlier arguments, the relative importance o f 

wireless sensor networks for DTNs justifies the overlap. In addition since the argument 

here, if  correct, may be significant outside the context o f DTNs, it is worth having a 

separate section.

The basic argument is that when one considers the reality, as opposed to the theory, o f  

sensor networking, one sees far less need for the use o f  different, or unusual, transport 

layers. That in turn, means that there is less need to develop an overlay network protocol to 

handle DTN requirements and that a DTN transport that works well with current Internet 

transports is an option that warrants examination.

We already saw (in Chapter 2) that there is a relationship between conserving power and 

radio range with realistic sensor networks favouring devices with larger radio ranges. 

Increased radio range will also commonly involve external antennae for better signal 

quality. Such antennae are not miniature, but tend to be o f the order o f 6 cm long or more 

depending on power available and the desired radio range"'"'.

Similarly, realistic wireless sensor networks will favour devices that are easy to find, when 

the time comes to re-deploy (or harvest, or re-conflgure) nodes. Many proposals [CE04, 

COOl] assume that it is beneficial to have very many tiny devices placed in a measurement 

field without ever considering that those devices, if left for too long, become very effective 

pollutants (batteries are not environmentally friendly [RY03]).

http://ww \v.tonvstrains.com /technews/nce-hg-antenna-test.htm
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Lastly, nodes that themselves harvest and store power will be much more practical to use 

than those that can only use batteries or fuel cells -  the robustness offered by being able to 

recover from low-power situations is a significant benefit for real systems.

The net effect o f all these points is to favour larger, more capable nodes for real-world 

sensor networks, which runs counter to many o f the current approaches being taken to 

sensor networking which concentrate, to an extent, on miniaturisation and dense 

distributions o f devices each (supposedly) cheap, with very short-range radios (O(lOm)) 

[AK02s],

We can also see a few economic problems with the dense sensor network approach. Firstly, 

unit costs, even if  reduced by an order o f magnitude, i.e. from 0(€50) to 0 (€1), are not 

nearly cheap enough for the densities involved, for any widespread application. Even 

€ l/node with a 10m range requires 0(€1 million) to cover a field o f 400 sq km -  for some 

applications that is not a very large area at all -  roughly the size o f the island o f Saint 

Helena“̂^

And that o f course ignores the deployment and retrieval costs which will Hkely be an order 

or magnitude more than the presumed 0(€1) equipment cost. In fact, it is probable that 

there will be a balance between deployment and retrieval costs -  cheaper deployment 

(scattering) will tend to mean more expensive retrieval (searching) and vice versa. An 

estimate o f €10 cost/node incl. deployment and retrieval would mean our €1 million limits 

us to roughly 4 sq km - the size o f Helgoland which is the smallest island in Schleswig- 

Holstein'*^.

So our conclusion here is that practical wireless sensor networks will tend to involve more 

capable nodes that are therefore likely to be able to support standard IP stacks. This, in 

turn, means that networks o f such nodes are less likely to require changes in the transport

http s://w w w .cia .aov /lib rarv /p u b lica tio iis/th e-w orld -F actb ook /ran k ord er/2 l47ran k .h tm l 
h ttp ://w w w .sch lesw ig -h o lste in .d e /P o r ta l/E N /P o r ta l nod e.h tm l nnn=true
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layer. This favours the DTN transport approach over the DTN overlay one, or at least calls 

into question some o f the motivation for developing an overlay for this application.

4.5.4 Middlebox Visibility

Middleboxes [SR02] are systems within a network that carry out some function requiring 

“application intelligence,” typical examples include web proxies and caches in a content 

delivery network. Both approaches to DTN protocols involve the use o f new middleboxes 

in order to handle the lack o f end-to-end connectedness. There has historically been some 

concern [CA02] about this approach generally. The main concern being that middleboxes 

undermine the end-to-end aspects that have been crucial to the success o f the Internet. 

[DAOl] One o f  the conclusions reached (in [CA02]) is that it is preferable that the actual 

endpoints (i.e., source and destination) be able to be made aware o f the locations and 

behaviour o f whatever middleboxes are present in the path between them. So, for example 

during the setup o f a voice-over-IP (VoIP) call, various session initiation protocol (SIP) 

proxies may be used and it was argued that there are good reasons why a caller might want 

to know which middleboxes have been involved in setting up the call.

The counter argument to this is that any such control or signalling creates potential 

vulnerabilities whether to the source (potential DoS if  flooded by reports) or to the 

middleboxes (whatever hosts can signal to them, will be able to exploit whatever 

vulnerabilities exist in the middlebox). In addition there are some unsolved problems with 

such reporting, for example, if an outbound packet makes use o f  some security features 

(e.g., authentication, integrity, confidentiality), then it is very hard to know which security 

services to apply to reports back to the source. In such a case, if a source encrypts a packet, 

is that a signal that reports returned to that source should also be encrypted? If not, then 

there is a potential information leakage. But if  so, then this imposes a fairly extreme 

burden for key management or else creates very stringent restrictions on where traffic can 

flow.

So how does this impact the proper layering for a DTN protocol? Well, in one sense not at 

all since one can include middlebox reporting and control features at either layer, so there 

is no architectural difference there. However, the BP does include reporting back to the 

source (or to a “Report-to” endpoint), whereas LTP-T does not.
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At this point it is not clear which is the better approach -  the additional information 

provided by the BP reporting scheme has been found useful in interoperability testing, but 

generally such features have created real vulnerabilities in deployed services (e.g. McGann 

considered this for the session initiation protocol (SIP) [MC05]), so, for the present, we 

count this as being neutral for our argument.

4.6 Summary

In this chapter we defined what we mean by a DTN transport, provided a detailed analysis 

o f how this compares with the currently mainstream overlay network approach to DTN 

protocols and considered some additional pragmatic issues.

The overall conclusion is that a DTN transport as defined here is a worthwhile prospect 

and one that warrants further investigation since it offers advantages over the overlay 

approach in some contexts. Note that we do not conclude that a DTN transport is generally 

better than an overlay, only that it is sufficiently interesting to justify further investigation.

In chapters to come we will describe one such DTN transport protocol, its implementation 

and validation.
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Chapter 5

The LTP-T Protocol
So far we have derived a set o f DTN protocol requirements, defined the concept o f a DTN 

transport and compared and contrasted that with the overlay networking approach 

exemplified by the Bundle Protocol (BP). In this chapter we specify a DTN transport 

protocol as the basis for the further investigation o f the concept o f a DTN transport.

This protocol also provides the basis for the evaluation called for in the problem statement 

in Section 1.4. The goal o f that evaluation will be to determine whether or not our DTN 

transport protocol can usefully serve as a DTN protocol, and whether or not our DTN 

transport protocol can outperform the BP.

We have already described the Licklider Transmission Protocol (LTP), which is a DTN 

point-to-point protocol with an extensibility mechanism. [FA08] We note that as a point- 

to-point protocol, LTP has none o f the off-path signaling traffic o f  the BP. We also know 

that LTP can be used in at least some DTN contexts, (e.g., deep-space), and that there can 

obviously be situations where a sequence o f  DTN hops each use LTP. We therefore use the 

LI P extensibility mechanism to create an end-to-end capable DTN transport protocol, 

aimed at meeting the requirements we laid out in Chapter 2. We call that protocol the "LTP 

Transport" or LTP-T.

LTP-T was initially described in a TCD Computer Science Technical Report. [FA05] The 

version described here is largely the same, though some minor changes have been made as 

a result o f  implementation experience, in the remainder o f this chapter we first give a quick 

overview o f LTP-T, specify the protocol, and then discuss issues arising and some 

implementation factors.

5.1 LTP-T Overview

Since the base LTP specification [RA08] specifies LTP, including a full state machine, our 

specification o f LTP-T mainly consists o f the definition o f a number o f extensions and the 

specification o f  how those are processed.
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We define an LTP-T session to consist o f a sequence o f DTN hops, each o f  which is itself 

an LTP session. For LTP-T, all LTP sessions are layered over UDP. At an intermediate 

LTP-T node, the outbound LTP session can be started before the inbound LTP session has 

completed. In this way LTP-T attempts to get as many bytes o f a block as close to its 

destination, as rapidly as possible.

Figure 5.1 is an interworking diagram for an LTP-T session involving one intermediate 

router as well as the source and destination. The sequence o f  events is as follows (taking 

the labels A-G from the figure):

A: The source is ready to send out a block consisting o f three data segments 

(DSes). At this time, a contact (shown by the thick double-ended arrow) opens with 

the next hop and the source sends the block as three red data segments with the last 

one being the end o f block.

B. One light-trip time (LTT) later, the router starts to receive the data segments. 

However, the router cannot yet forward anything since, at this time, it has no open 

contact with a suitable next hop (in this case that will be the destination).

C. A contact opens with the destination so the router can now forward bytes from 

the block. In this case the MTU between the router and the destination is larger than 

it was between the source and router, so only two data segments will be required to 

transfer the block. The first such data segment is now sent from the router to the 

destination containing most o f the bytes from the first two data segments sent from 

the source to the router.

D. The full block has now been received by the router which sends a report 

segment back to the source indicating that the entire block has arrived. At the same 

time the router has now sent both o f the data segments to the destination and is 

awaiting a report segment from the destination.

E. By this time the destination has received and acknowledged the block by sending 

a report segment back to the router and has now also received a report 

acknowledgement from the router. Note that since the LTT between the router and

109



Source

O i
Router Destination

1

Light
Trip
Time

V

0

. - r "

Report 
 ̂ Adcnowtedgement

1 f

of

L^t
Trip
Time

Figure 5.1 -  An in ter-w ork ing  d iagram illustrating an L T P -T  session.

destination is less than between the source and router, the LTP session between the 

router and destination is completed before that between the source and router.

F. The source now receives the report segment indicating that all data segments 

arrived at the router and responds with a report acknowledgement. Note that the 

source knows nothing about whether or not the block has arrived at the destination.

G. The router receives the report acknowledgement from the source and at this 

point the LTP-T session is completed.

Further details, (including pseudo-code), o f the forwarding algorithm are given later 

(Section 5.4) when we describe our LTP-T impleinentation.

As shown in the example above, since the MTUs for the inbound and outbound links may 

differ, LTP-T has to define a way to handle the re-fragmentation o f the block. Essentially 

each LTP-T node can fragment the block into data segments in whatever way it selects 

with the only restriction being that the size o f the red part o f the block cannot decrease - it 

can increase. Since the red part is defined in terms o f data segments (DSes), and not bytes,
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we may not be able to preserve the exact size o f the red part due to re-fragmentation and/or 

the addition/deletion o f extensions. For example, as will be seen below, LTP-T defines a 

“via” extension that is useful for debugging and tracing and is added at each hop. Adding 

that extension in general causes the block to be fragmented into a different set o f data 

segments on each hop (since the “via” extension value grows larger at each hop). This can 

cause additional segments to be marked as red. The essential requirement is that each red 

byte from the block must always be red regardless o f how nodes re-fragment the block.

Comparing LTP-T to the BP, one might say that each LTP-T node is taking custody for the 

red part o f the block. However, given that this act o f taking custody is implicit in the 

protocol, there is no need for specific protocol data units (PDUs) to control or report on 

this, representing a perhaps significant simplification compared to the BP.

All information required for end-to-end operation (e.g., the final destination) is carried by 

means o f LTP extensions that are (mostly) preserved across all the LTP sessions required 

to deliver the block to the final destination.

At each LTP-T node, incoming segments that are not destined for this node are forwarded 

(or dropped) based on whatever routing scheme is used to determine the next LTP node. 

LTP-T itself does not define a routing scheme, nor how routing information is distributed. 

Although one could envisage a delay-tolerant equivalent o f the Border Gateway Protocol 

(BGP) [RE06] being used for that purpose the definition o f such a protocol is not part o f 

this work. BGP itself could not be used since it runs over TCP and also generally involves 

long-lived TCP sessions; however, many o f the other features o f BGP could be directly 

relevant here since LTP-T also forwards based on the destination.

LTP-T provides all the features o f  LTP, including partial reliability. LTP-T also provides 

end-to-end data integrity and congestion control. An end-to-end confidentiality service is 

not provided at present, since as previously discussed, such a service is much less valuable 

in the absence o f  a working DTN-friendly key management scheme.

Our design goals here include taking account o f the pragmatic arguments discussed in 

Section 4.5, for example, that an existing LTP implementation ought to be able to 

simultaneously work in either point-to-point or transport mode. LTP-T should also be



relatively easy to implement, given an LTP implementation. We also require that the 

protocol should be implementable below a sockets API.

5.2 LTP-T Protocol Specification

In this section we define the LTP-T protocol. This is followed (in section 5.3) by some 

discussion o f specific design issues. Our implementation is described in Section 5.4.

5.2.1 LTP-T Extensions

In this section we describe the set o f LTP extensions used by LTP-T.

As a point-to-point protocol LTP need not carry a destination identifier, does not have to 

consider (re-)fragmentation and has no need to consider congestion at intermediate nodes 

on a path. A transport protocol must o f course consider these issues and in LTP-T these are 

handled using the LTP extension mechanism, which was originally defined to handle the 

addition o f  authentication fields to LTP.

The LTP extension mechanism allows for the addition o f both header and trailer 

extensions, up to a maximum o f 16 (o f each). All LTP extensions consist o f a one-byte tag, 

a self-describing numeric value (SDNV')-encoded [ED06] value-length field and a set o f 

octets containing the value. In the base LTP specification [RA08], extension numbers 

OxCO-OxFF are set aside for private use extensions and are used here since the LTP-T 

extensions are not (yet) formally recognised.

We therefore start by defining the following set o f extensions to LTP (the tag used in our 

implementation for each extension is given in parenthesis).

Source address (OxCO): the value o f  this header extension is the address o f the originating 

LTP node (aka the LTP engine ID). This extension need not strictly be present for the first

' A n S D N V  is a se lf-d escr ib in g  num eric va lu e , b asica lly  an en co d ed  p o s itiv e , m ulti-precision  integer. The  

S D N V  en co d in g  sch em e  is defined  in LTP and is a lso  used by the BP.
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hop, where the LTP session ID contains the required value, but should be included. This 

information would be required when propagating congestion information upstream .

Destination address (OxCl): this header extension contains the address o f the final LTP 

node and is required for forwarding and routing. It is encoded identically to the source 

address header.

Estimated block size (0xC2): this header extension contains up to 4 network byte ordered 

octets (i.e. a 32 bit unsigned integer) that specify (an estimate for) the number or bytes in 

the block to be transmitted, so as to allow for congestion control at intermediate nodes. 

Note that this extension is an estimate since the exact size may not be available, for 

example, if  the application deals with streaming content. It is not an error for the actual 

block to be bigger or smaller than this value.

Port (0xC3): this header extension contains network byte ordered octets that represent the 

port at the destination to which this data is targeted. It is analogous to the client service 

identifier currently defined in LTP. Using more than two bytes for the value will mean 

that many nodes will not be able to translate that into a TCP/UDP port number which could 

be troublesome, so we recommend that the value be less than 65536.

Hop count (0xC4): this header extension has as its value one byte containing the number 

o f further hops allowed before segments from this session should be dropped. When a 

packet arrives when the session hop count is zero then, if  the current node cannot 

communicate directly with the destination, the segment must be dropped. This extension is 

used to mitigate undesirable looping.

Via (0xC5): This header extension should contain a sequence o f LTP address/time pairs 

representing the path taken by the data so far. The encoding is as a single octet string 

containing UTF8 characters. Any local time format may be used. If a node is configured to 

accumulate tracing information as segments traverse a path, then it may include a via

“ The upstream direction is the direction from w hich data segm ents arrive, i.e. towards the source, and the 

downstream one is (hopefully) towards the fmal destination for the block.
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extension in any LTP-T segment being forwarded. This first via must have one entry 

representing the sender and the time the segment was transmitted (rather than the time at 

which the segment was enqueued). Subsequent nodes should include an updated via 

extension in all segments (including fragments) containing data which was found in that 

first segment. Updating the via extension value is done by adding this node's identifier and 

timestamp to the end o f the previous value, that is, the value o f the extension lists the 

nodes in the order in which they were traversed.

A node may include more than one entry for itself in the via extension string, perhaps 

adding one at the time o f receipt o f the segment and another at the time o f forwarding. 

Note that this may become hard to interpret if re-fragmentation has occurred, which will be 

common if  all nodes add via segments. Care should be taken if  any conclusions are drawn 

from the value in a via extension. This extension is for testing and debugging and should 

be reminiscent o f  the Received: mail header field.

End-to-end authentication (0xC6): This t'leld defines how to calculate an authentication 

field, similar to that defined in LTP, but that can be validated end-to-end. We use almost 

the same syntax as the basic LTP authentication extension, the differences being that we do 

not need both a header and trailer here^, and that the input bytes consist only o f  those bytes 

o f the block that will be the same end-to-end.

In contrast to LTP’s hop-by-hop authentication, in this case there is no need to use a trailer 

extension since the authenticator covers the entire block, and not just a single segment. So 

this extension must be carried as a header extension with the ciphersuite, the optional 

KeylD and the authenticator value all present.

Only the final destination node is required to verify this extension's value, intermediate 

nodes may verify the value if the ciphersuite allows and if  they cache/digest all the 

required bytes o f  the block.

 ̂ The base LTP authentication extension authenticates segm ents, whereas here w e are authenticating blocks, 

so that the mem ory buffering considerations that m otivate the use o f  a trailer extension do not apply.
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The input bytes for the end-to-end authentication signature or message authentication code 

(M AC) calculation comprise the following, in the order stated:

• The number o f extensions included in the calculation (encoded in a single byte, a 

value between three and five"*).

• The ciphersuite and optional KeylD from the end-to-end authentication header

• The source address, even though this need not be explicitly present in the first hop

session

• The destination address

• The estimated block size, if  present

•  The port number, if  present

•  The bytes o f the block, preceded by its length, encoded as an SDNV

When canonicalising the above, the entire encoded set o f  extension values (source, 

destination etc.), but excluding the tag and length, are included in the input to hashing. 

Note that the input bytes do not include hop-by-hop extensions, nor the hop-count, or the 

via extension, which all change at each hop.

The structure o f this extension is the ciphersuite, followed by the optional KeylD, followed 

by the authentication value. Where the KeylD is not supplied we include a zero-byte value 

instead in the encoding (but not in the input to digesting) in order to make it easier to 

decode the structure. The contents o f the end-to-end authentication header are:

•  A single octet containing the ciphersuite (same values used as in LTP)

•  The optional KeylD. If no KeylD is supplied, the next byte is 0x00. If a KeylD is 

supplied, then the subsequent bytes contain the SDNV-encoded length o f the 

KeylD, followed by the bytes o f the KeylD itself.

•  The remaining bytes o f the header value contain the actual authentication value, as 

determined by the ciphersuite.

This count is for future proofing. For now, 3 m eans the source, destination and the end-to-end  

authentication header, 4 means either port or estimated block size was present and 5 m eans both were.
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Congestion notification (0xC8): The value o f this extension is a sequence o f pairs: the 

first element o f each being an encoding o f the LTP node address to which the congestion 

information pertains, the octets o f this element are preceded by a two byte unsigned length 

field, and then the octets representing the node address itse lf The second part o f each pair 

is a 4 octet (network byte order) value specifying the number o f (real, not punctuated) 

seconds from the time o f transmission o f the segment during which it is believed the node 

in question will be suffering from storage congestion. This value may be calculated in 

various ways in different circumstances -  see Section 5.3.1 below.

hi order to support various different orders o f magnitude o f delay the leftmost byte o f this 

value is treated as the exponent o f a power o f 10 that is to be multiplied by the rightmost 

24 bits. So, if the value is 0x00000001 this represents 1 second, a value o f OxftDOOOOl 

represents one tenth o f  a second, and 0x02000001 represents one hundred seconds. If the 

appropriate time value is unknown (e.g., if the congestion timer described below expires) 

then the time field should be zero.

Note that receivers should exercise caution in reacting to receipt o f such a notification -  

there is nothing to prevent a bad actor using this notification to try to control how and 

when segments are transmitted, for example, a greedy implementation could try to use this 

to decrease the latency o f its data transmission.

Table 5.1 below summarises the set o f LTP-T extensions.

E xtension Ju stiflcation
Source address Useful for logging and debugging.
Destination address Required for forwarding.
Estimated block size Required for congestion handling.
Port U seful for de-m ultiplexing.
Hop count U seful for logging and debugging  

A llow s handling erroneous routing loops.
Via U seful for logging and debugging.
End-to-end auth. Required to provide data integrity.
C ongestion notification Requried for congestion handling.

Table 5.1 -L T P -T  extensions summary.
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5.2.2 LTP-T Protocol Operation

LTP-T basically consists o f a sequence o f more-or-less independent LTP hops, with the 

differences/additions as described below.

Other than the congestion notification extension, all other LTP-T extensions are carried in 

data segments; they must not be present in report segments, report acknowledgements or 

cancel-related segments. The congestion notification extension can be carried in any 

segment (since it is not a part o f any session).

The originating LTP node determines the red/green parts o f the block and in order to meet 

the originator’s expectations for partial reliability, this distinction must be honoured by all 

intermediate nodes, which can, however extend the red part o f the block. Such red-part 

extension will typically be done to ensure efficient mapping o f data segments to MTUs. In 

this respect, the source trusts the intermediaries to carry out the protocol correctly, which 

leaves it vulnerable to an intermediary that causes delivery o f a smaller red part than 

requested. For example, if the source nominated the first IK  bytes o f a lOK block as red, 

then the destination could end up receiving only the first 0.5K bytes as red if  some 

intermediary cheats. In principle, this could lead to unexpected or even dangerous 

application behavior.

Other then applying end-to-end authentication there is no way to detect this specified by 

LTP-T. The justification for this decision is that, in the absence o f  end-to-end 

authentication, the intermediary can in any case modify the values o f the bytes o f the block 

so any improvement upon simply trusting the intermediaries requires some use o f  end-to- 

end authentication. One could argue that we should re-defme the end-to-end authentication 

extension so that it only covered the red part o f the block, however, that would remove the 

ability to extend the red part (which is specified on a per-segment. not a per-byte basis) 

which can be useful when re-fragmenting.

Alternatively, one could argue that the end-to-end authentication extension itself should 

specify which bytes o f the block it covers. While that appears to be a reasonable proposal, 

for now, we have chosen the simpler option that the end-to-end authentication extension 

covers the entire block. Future experimentation may o f course indicate a need to revisit this 

decision.



LTP-T handles errors and Automatic Retransmission reQuest (ARQ) on a hop-by-hop 

basis, so reports are used just as in LTP. Effectively this corresponds to the custody 

concept for bundles, with the difference being that each LTP node is required to accept 

custody o f  all blocks it successfully receives. Custody is therefore passed when a block is 

successfully received by the next node; however, whether or how many times a node will 

re-transmit a stored block is a local matter.

In some cases, an entire LTP-T block will be successfully transferred between two peers 

prior to any o f the block's bytes being forwarded to a subsequent peer on the path to the 

destination. However, there will also be many cases where some o f the block will be 

forwarded before the entire block has been received. In such cases, even bytes which have 

yet to be acknowledged to the originating peer may be forwarded to the next hop.

An intermediate node must re-fragment the block into segments if  required to do so. For 

example, if the MTU on the next hop is too small for segments received on the inbound 

hop. Fragmentation must not shorten the red part o f the block, but may extend it; otherwise 

nodes are free to re-fragment in any way.

Since each node takes custody o f  each segment's bytes, an LTP node may well suffer from 

congestion in terms o f storage space. In order to reduce the likelihood o f this occurrence, 

the estimated block size extension may be used to reserve space. A node that does not have 

sufficient space to handle an incoming block should cancel the session indicating that 

congestion has occurred. Congestion is discussed further below.

Cookie handling and hop-by-hop authentication are handled on a per-hop basis -  there is 

currently no end-to-end signaling related to either.

Since LTP-T is built on LTP, and since both protocols make use o f LTP extensions, we 

have somewhat o f  a clash when it comes to handling unsupported extensions -  effectively 

we have to route around the fact that we have two namespaces but only one extension-tag 

space. For now we adopt the rule below, but in future, one could simply pre-allocate a 

range o f LTP extension tags for use with LTP-T which would help simplify the rules 

below significantly.



Where a node is forwarding an LTP segment that contains an unknown or unsupported 

extension it should not include that extension in any corresponding outgoing segment, 

unless specially configured to do so. A node may be configured with a list (or equivalent) 

o f  extension tags that are in fact to be forwarded. When an unsupported extension instance 

is to be forwarded, then each inbound instance o f the extension must be included in exactly 

one outbound segment. Note that where the outbound segment size is significantly bigger 

than the inbound segment size, then it can happen that one outbound segment could 

include more than one inbound unsupported extension. The reason is that since LTP is a 

point-to-point protocol, then in general, it makes no sense to forward unknown extensions. 

If additional LTP-T extensions are defined later on then there will be an issue with 

upgrading old nodes, however for an experimental protocol at this stage o f  development, 

such a flag-day is acceptable, especially since we expect implementations to include 

support for the list o f to-be-forwarded extension tags.

We use the following terminology when discussing the use o f these extensions: The "initial 

segment extensions" are the source (where necessary) and destination address, the block 

size, the port and the hop-count. We have the following rules for handling initial segment 

extensions;

• The first segment o f a session must contain the initial segment extensions; 

subsequent segments o f the session may include them. LTP-T receivers must be 

able to handle the case where the initial segments for a session do not contain these 

extensions (or are not correctly received, at first). Including the initial segment 

extensions in a number o f segments may be useful if  there is a high probability o f 

the first segment o f the session being corrupted or lost.

• Initial segments should be marked as red. It basically makes no sense (in general) 

to risk that the initial segment extension-containing segments get lost.

•  The same values for the initial segment extensions must be used for all o f the initial 

segments, that is, a node may not vary the values in these extensions within a single 

session.

• If end-to-end authentication is to be used, the initial segments should also contain 

the end-to-end authentication header extension. The reason for the should above is 

that if  a source were to be supporting a streaming application, then it will not be
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able to calculate the authentication header until the last bytes o f the stream have 

been seen. However, this is an unusual case, especially end-to-end.

Note that there is no requirement to retransmit, or request retransmission for, data that fails 

end-to-end authentication checking. Such failure should be recorded and made available to 

a receiving application, but the data may still be delivered. The reason for this is that the 

end-to-end authentication covers both red and green parts o f the block, and o f course green 

segments may go missing. So long as the red part has arrived then the block should be 

delivered irrespective o f end-to-end authentication. If an application requires fully end-to- 

end authentication then this can be easily achieved by making the entire block consist o f 

red segments. Essentially, we leave it up to the higher layers to decide how to properly deal 

with such cases.

LTP-T clearly requires some routing scheme in order to work, however we do not define 

how to route blocks at this level, since that effectively has to be handled in the same way 

as lower layer cues, e.g. via a scheduling module. This is required, for example, if routes 

should be selected on a tlrst-available basis in an attempt to optimize “progress.” We 

therefore assume (for now) that the scheduling module (see below) also provides routing 

tables or equivalent. Characterising routing schemes that are generally suitable for LTP-T 

is for future study. We will however see what the LTP-T implementation does later in this 

chapter.

5.3 LTP-T Design & Implementation Discussion

Now that we have seen the protocol we can discuss some o f the more interesting aspects o f 

the LTP-T design, some o f which are generic and some implementation specific.

5.3.1 Congestion Handling

The scheme for handling congestion is currently quite simple and has not yet been 

implemented, so should be considered provisional.

We assume that each LTP implementation has a (punctuated) congestion timer for to-be- 

forwarded blocks, that is, for the entire LTP session (perhaps based on the estimated block 

size extension). The idea is that the entire block has to be transmitted and its red part
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acknowledged before this timer expires. The congestion timer is started when the first 

outbound segment for the block is transmitted (not when it is enqueued). This timer applies 

regardless o f the route taken, so that the timer is not reset if  a fall-back route is attempted 

following a failure o f the first attempted outbound LTP session. If this timer expires, the 

entire block is deleted and all state information associated with the block is also deleted 

(e.g., an inbound session might be cancelled).

If the congestion timer expires on an intermediate node, then that node should, at the next 

opportunity, signal the congested state to upstream nodes by using the congestion 

extension. Similarly, a node suffering storage congestion should signal this to relevant 

peers by including the congestion notification extension in a cancel segment.

Nodes further upstream should further report the congested state to peers whenever they 

are aware o f it and where segments from that peer may transit the congested node. If a 

node has no reason to believe that this infoiTnation will be useful, (for example, if it is 

known for policy reasons that the upstream peer will never route data via the congested 

node), then the information should not be forwarded. So LTP-T piggybacks congestion 

notifications and has no equivalent to an explicit congestion notification. [RAOl]

Nodes must keep account o f the time elapsed and the scheduling involved and must not 

include an entry in a congestion notification if that would be useless to the recipient. In a 

deep-space context, it is not unreasonable to expect nodes to be able to calculate an 

estimate o f the time for which they will continue to be congested, since the set o f 

upcoming contacts is generally known. If the expected congestion time remaining is less 

than the light trip time from the notifier to the peer and then back to the congested node 

there is no point in informing the peer, since the congestion event will be over before the 

information arrives at the peer. In this way, congestion notifications are bounded, in time 

and (equivalently) in space.

5.3.2 Re-fragmentation

LTP-T segments will arrive at an intermediate node according to the prevailing schedules 

or whatever conditions determine successful segment arrivals. The node will o f course 

carry out the LTP protocol with the upstream node but may also begin transmitting 

segments to the next downstream node, even before the entire block has been received.
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When this happens there are a number o f new considerations, mainly due to the potential 

for re-fragmenting the block.

If the MTU size differs in the upstream and downstream directions then re-fragmentation is 

almost certainly necessary, at least if efficient transmission is a goal. Re-fragmentation can 

also be caused for other reasons, in particular if the node is on some kind o f security 

boundary, the upstream segments may use cookies and hop-by-hop authentication, but 

perhaps the downstream direction is inside a “secure” zone and these extensions can be 

dropped. In this case re-fragmenting would be more efficient in terms o f requiring fewer 

segments, and so an implementation may choose to take advantage o f this.

The current implementation handles re-fragmentation without requiring the block to be 

copied, or requiring that there be no “gaps” in the inbound block -  essentially the 

implementation keeps track o f the “scopes” separately for the inbound and outbound LTP 

sessions, even though only one relay socket is used.

Whenever re-fragmentation does occur, then we have to consider how to handle the LTP-1’ 

extensions. We could for example require that the value o f some extension be the same in 

all incoming segments and treat changes as an error. However, we also need to allow some 

extension values to change (e.g., the via segment values will differ due to different 

timestamps). And if  re-fragmentation resulted in three data segments becoming two then 

we have to decide which value to include in the forwarded segments.

At this stage our general approach is to include the most recently received value for any 

given extension (over the entire block, so far) in all o f the outbound segments. Our 

implementation currently does this even if no re-fragmentation is required -  so that we can 

maintain a single value per LTP-T extension per block which simplifies the data structures 

required. It may be worth noting that, for the via extension, this has the effect that the 

outbound segments will contain a via extension value that reflects the most recently arrived 

inbound segment. For example, if  the entire block is received before any segment is 

forwarded, then the via extension on the first forwarded data segment will reflect the via 

extension value o f the last data segment arriving from that block. One consequence o f  this 

approach is that if ever a new LTP-T extension type is defined, that definition must allow
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instances from individual segments to be dropped^, since there is no LTP-T equivalent o f 

“do not fragment.” [P08H ]

5.3.3 Forwarding

In this section we describe some details o f how LTP-T forwarding works. These details are 

perhaps somewhat implementation dependent, since different implementations might 

involve different trade-offs.

Forwarding is relatively straightforward to envisage though somewhat cumbersome to 

implement. The basic idea is that each time we have a contact opportunity with a next hop, 

we check whether or not there are any data segments to send to that hop (LTP control 

segments^ will be forwarded by the normal hop-by-hop LTP code).

I'here is one notable difference between this forwarding and that normally done by an LTP 

node. The LTP-T node must only prepare segments when the communications contact is 

imminent, whereas an L IP  source or destination can often prepare segments for 

transmission by following the state machine, but without reference to when the next 

contact arises’.

If we assume for a moment that an L l’P-T router were to behave in the same way as a 

normal LTP node, then we can see why this is the case. Were the router to do this, it would 

receive some data segments, decide that these need to be forwarded, create new data 

segments (for the 2"̂ *, outbound, LTP session) and queue those for later transmission. 

However, if some data segments from the inbound session were initially lost, but then 

arrive prior to the outbound session contact, then the router will, at best, be likely to be 

sending data out o f order, but is, in fact, more likely to send data segments with 

unnecessary gaps. For the router to do as well as it can, it must not calculate the segments

 ̂ This w ill com plicate key management for an end-to-end confidentiality m echanism , e .g . m aking it quite 

hard to use a counter-m ode o f  operation.

 ̂ Recall that L.TP control segm ents are the RS, RA and session  cancellation segm ents.

’ This does assum e that the MTU will not vary on the relevant tim e-scales and that there are som e tim e-and- 

size dependent extensions to be added etc. that might affect the fragmentation.
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to transmit until (perhaps just before) the next outbound communications contact, when 

additional retransmitted data from the originator may be available.

In fact one can envisage a number o f  forwarding strategies that might differ in how they 

perform in the face o f various operational aspects o f the system, in the limit, one might not 

forward any data until the entire block has successfully arrived and any red-parts ACKed 

etc. Though this will clearly be less performant than more aggressive forwarding in many 

cases, there may be cases where it makes no difference if one attempts to forward 

aggressively -  say if  the time between contacts is much longer than a session duration 

which is, in turn, shorter than a single contact. In such cases, there is little point in 

attempting to be aggressive in forwarding.

fhe LTP-T implementation currently includes all configured LTP-T extensions in all 

DSes. While this is the simplest thing to do, one could tune the implementation to take 

better account o f bandwidth availability and loss characteristics o f specific LTP hops, for 

example, if the next hop were known to have a much smaller MTU than the one following 

that, then one can safely omit some instances o f extensions like end-to-end authentication.

5.3.4 Routing

LTP-T routing requires a router to select a next-hop destination for each outbound block. 

In principle one could use many different schemes to select the next hop, but for now, our 

implementation simply does a wild-carded IP address table lookup based on the destination 

address. Whenever there is a contact open, we check which o f the currently not-yet- 

forwarded blocks should be sent via that contact’s peer. Currently this involves a simple 

address mapping table, mapping from a netmask (e.g., “ 127.0/16”) to a particular next hop 

IP address.

The first time we encounter a netmask that matches the destination and where the next hop 

is currently contactable then we have identified the next hop for that block, and so begin 

the outbound LTP session. One consequence o f that is that we are selecting the route for 

the entire block -  different DSes cannot be routed differently in our model.

Since LTP-T inherently involves taking custody at each hop, this creates a limit on how 

“dynamic” routing can be. Essentially since each LTP session is heavily stateful, we
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require that the routes remain stable for about the duration o f  an LTP session. Were the 

underlying routing tables to change more frequently, then it is likely that many LTP 

sessions would fail, and so, eventually would the LTP-T session. One consequence o f  this 

is that one might want to use some other routing scheme were one to want to use LTP-T 

over a mobile ad-hoc network where routes will commonly change. On the other hand, 

with careful selection o f netmasks, one can actually support many situations and this 

method o f routing is well known and studied. [DOOO]

With LTP-T, the combination o f routing and fragmentation works differently from the BP. 

In LTP-T once we select the next hop, then the entire block is forwarded to that next hop 

and any re-fragmentation is carried out as required for that hop. Ignoring fall-backs, LTP-T 

never sends some bytes o f a block on one route, and others on a different route. BP 

fragmentation, in contrast, splits a bundle into separate bundles that can each take a 

different route towards the destination.

Basically, the LTP-T scheme is simpler, and as a result less flexible, but generates no 

overhead traffic and so is also more predictable. From at least the security point-of-view 

such additional complexity and overhead traffic is highly undesirable. However, this 

simplicity/flexibility trade-off is one that recurs in protocol design in many places and 

there is never a “right” answer in general -  only extended experience with operating the 

protocol will really select the right approach here.

5.3.5 Routing Loops

Most protocols properly treat routing loops as error cases that are to be avoided where 

possible, and mitigated when they occur. In a DTN however, there are some scenarios 

where a route containing a loop is the best route to follow.

For example, take the data mule scenario shown in Figure 5.2, where the data mule 

traverses a field o f six nodes on the outward leg o f its traverse, and then passes the same 

set o f  nodes, in reverse order, on the return leg o f its traverse. As shown, node 2 deposits 

packet A with a destination on the Internet. However, when node 3 deposits the much 

larger packet B, with a destination o f node 5, the data mule’s storage is starting to become 

full. So, knowing (somehow) that it will contact node 4 on the return leg, the data mule 

temporarily deposits packet A with node 4. Having delivered packet B and now with
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Figure 5 .2  -  A desirab le  routing loop .

sufficient storage, the data mule can again receive packet A on the return leg and finally 

successfully deliver the packet on its return to somewhere well-connected. In this example, 

packet A has followed the path, (node-2, data mule, node-4, data-mule, ... ,  destination}, 

which would normally be seen as containing a routing loop by the data mule the second 

time it receives the packet.

From the above we can see that we do not want to avoid all routing loops in a general 

DTN, but clearly we also do not want to allow a packet to loop endlessly. For this reason 

one can justify the inclusion o f some form o f loop control. That loop control could take the 

form o f including a via-like field or some other form o f tagging, or could (as in the case o f 

the BP) be based on an expiry field. For LTP-T, we chose a simple hop-count, to be 

decremented at each hop, and where the packet is dropped if  the hop-count reaches zero 

before the packet reaches its destination. The reasons for this are that it requires no clocks 

and hence is simpler and more robust than the BP’s expiry method, and secondly, that it is 

much easier to implement compared to any tagging based scheme.

5.3.6 UDP Binding

In the design o f  LTP-T, we basically assume that we are running LTP and LTP-T over 

UDP or IP. For ease o f implementation however, we have chosen to concentrate on 

layering LTP-T on UDP since this means we do not need to modify kernel code and can 

more easily port the code to various platforms. An IP binding would be trivial to derive 

though would o f course require that a new IP protocol number be assigned for LTP, which
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is perhaps premature. LTP-1’ can therefore be considered to be layered only on UDP for 

the present.

The UDP binding for LTP is fairly straightforward and basically involves using the IP 

address and optionally UDP port number as the LTP engine ID in LTP PDUs. The IP 

address is carried in network byte order and the port is carried similarly in two octets. If no
o

port number is supplied then the standard LTP port number (1113) is used.

5.3.7 A 3'̂ '* Party Analysis of LTP-T

Based on the initial definition o f LTP-T, [FA05] Fahad [FA06e] carried out a study o f 

LTP-T and also ran a simulation based analysis and found that:

• The omission o f LTP-T extensions in “initial” segments can be problematic -  the 

example was the omission o f the LTP-T destination in the 2"‘* and subsequent DS, 

when the 1°' DS is lost. Such cases are problematic, and probably justify inclusion 

o f at least the destination in all DSes.

• More checkpoints help with lossy hops - LTP supports data segments that 

effectively request an early report segment -  a so-called checkpoint segment. 

Whenever a received LTP segment contains the checkpoint (CP) flag, then the 

receiver prepares and sends a report segment specifying the current state o f 

reception o f the LTP block.

•  There was an ambiguity in the description o f  LTP-T [FA05], so that it w asn’t clear 

that segments could be forwarded before the entire block had been received. That 

has been clarified in the description above; as such forwarding was always intended 

to be allowed.

• The more red segments there are, the higher the end-to-end delay (and hence the 

lower the goodput^), if there are “significanf ’ losses on individual hops.

* This  port is registered with IAN A as 1113 Itp-deepspace for both T C P  and UDP. The T C P  port will 

p resum ably  not see much  use:-) h ttp :/ /w w w .iana .org /ass ignm ents/port-num bers

’ G o od pu t  here  is defined as the n um ber  o f  bytes successfully  received com pared  to the duration  during 

w hich one could  possib ly  receive som ething, e.g. time in “ suspen d ” w ould  not be counted  when calculating  

goodput.
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• The changes in response to increased propagation delay, increased losses, increased 

number o f red segments and other factors were linear -  there were no cases (in the 

study) o f exponential decrease in performance'*^.

Fahad’s overall conclusion is that an implementation should add more CPs as it sees more 

losses on the next hop. Generally that conclusion, and the linear decreases in performance 

are interesting validations o f the design o f LTP and LTP-T.

5.4 LTP-T Im plem entation

In this section we describe the LTP-T implementation, how it is configured and aspects o f 

the implementation that may be o f interest.

5.4.1 Preamble -  Implementation Overview

In order to simplify later parts o f this section we begin with a quick, description o f the 

structure o f our LTP and LTP-T im plem entation". Both protocols are implemented in the 

same source base, with the default being to operate in LTP mode. The implementation 

involves about 20,000 lines o f  C/C++ code, using the GNU development tools (gcc,
'  1Sautoconl etc) and has been ported to various linuxes and Cygwin ’ . The build starting 

script is called “bootstrap” and calls autoconf, autoheader, automake and runs the resulting 

“ ./configure” script.

The main library is called L T P l ib  and is built as both a shared object and a static library. 

The library offers the afore-mentioned sockets API to applications but with the functions 

being preprended with the string l t p _ ,  i.e., l t p _ s e n d t o  () , l t p _ r e c v f  ro m ,

l t p _ s e t s o c k o p t  0  etc. Each application socket can be used for multiple LTP (or 

LTP-T) sessions, both inbound and outbound.

Fahad interestingly characterized different applications based on the percentage o f  segm ents that are “red” . 

Whether that is a generic distinction worthy o f  note is not quite clear, but it is at least worth considering.

" The source code is available from: http://dtn.dsg.cs.tcd.ie/sft/ under the M ozilla/GPL/LGPL 3-w ay license.

An earlier version o f  the LTP code (called “perfum e”) was fully integrated with the main SeN D T  code and 

was also cross-com piled to run on arm-linux which is the OS on the SeN D T  hardware platform.
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$ Itpd -?
Itpd is the LTP and LTP-T ltp_daemon.
Itpd [-2 12mtu] [-b buffersize] [-c crypto-cfg] [~d] [-g [fname]] [-i input] [-1 log)

[-m mode] [-o output] [-r routes-cfg] [-s) [-t LTP-T-cfg] (-v) [-w sleeptime]
[-A ciphersuite] [-C cookielen] [-D dest[:port]] [-G cookie-grace-period]
[-L listener[:port]] [-K keyid] [-S source[:port]] [-R redlen) [-1]

Local parameters:
[-2 12mtu] sets the layer 2 maximum transmission unit (packet size) via a sockoptO 

call (min=500,max=104857 6)
[-b buffersize] specifies the size of receive buffer for the application to allocate 

(def=65536)
[-C crypto-cfg] sets the crypto-configuration file name to crypto-cfg [Itpd.crypt] 
[-d] instructs Itpd to sync state information to disk and re-load state on start-up
[-g [file]] instructs Itpd to act as a file server or to ask the server for a named

file, [def: Itpd.fetch]
[-i input] sets the input file name [Itpd.in]
[-1 log] sets the log file name [Itpd.log]
[-m mode] the operational mode - Client, Server or Router [Client]
[-0 output] sets the output file name(s) [Itpd.out]
[-r routes-cfg] specifies where LTP-T routing configuration file [Itpt.routes]
[-s] instructs Itpd to spawn a process to run as a daemon - the initial process 

exits leaving one behind [false]
[-t [LTP-T-cfg]] use LTP-T & optionally specify configuration file to use 

(default: Itpt.cfg)
[-v] requests verbose output (to stdio) [false]
[-W [sleeptime]] when operating as a client, instructs Itpd to exit without waiting 

for the user to hit a character [10] - a value of "b" makes the sending socket 
block until the session is complete, i.e. "-w b"

Protocol parameters:
[-A ciphersuite] specifies which LTP-Auth ciphersuite to use 

["Off"/0; "MAC"/1, "Signature"/2, "NULL",3 ] default is none 
[-C len] turn on cookies of len bytes (cookies are off by default, same as len=0)
[-D dest[:port]] sets the destination IP address or DNS name [127.0.0.1:1113]
[-G cookie-grace-period] specifies the number of seconds before cookies must be seen 

in responses [5]
[-1] forces the stack to use very short numbers, suitable for interoperating with 

the ION LTP code [false]
[-K keyid] specifies the key id to use if some LTP Auth stuff is wanted.
[-L listener[:port]] sets the host IP address and more commonly, port on which to

listen as a server
[-R redlen] sets the red/green length (default:allred=-l;allgreen=0,max=16777216)
[-S source[:port]] sets the source IP address or DNS name

Notes:
- The "Router" mode of operation is only meaningful for LTP-T of course.
- Options using uppercase (e.g. D,G,S) relate to protocol parameters, 

others are local
- Protocol parameters all default to 127.0.0.1:1113
- See the Itp extension document for ciphersuite descriptions but note that NULL is not 

"off" its a test mode
- If you set a source (-S) while in server mode (-m S) then all responses will be forced

to go to that address:port

Figure 5 .3  -  Itpd usage ( )  output.

There are various test programs includecJ in the source and one main binary, the LTP 

daemon (Itpd) that can act as either a file put/get client'"' or server or as an LTP-T router. 

The usage () information for Itpd is shown in Figure 5.3. As can be seen the code

In the fo llo w in g  w e  refer to the LTP sender as a c lien t and the L TP receiver  as a server.
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Fix/detect lower layer status as necessary via "cues" SPI

if (Transmitting) then
listeners=whos_listening ()
trickle_forward(listeners) ; create new segments for listeners based on stored data 
for each listener for which we have a segment enqueued (control segments first) 

while I haven't sent too much 
for each segment

check if extensions to be added 
encode segment 
transmit segment
update LTP protocol state (incl. timers if necessary)

if (Receiving and soething new in inbound queue) then 
decode segment
associate with session or create new session (if possible) 

if no session found/created drop segment and we're done 
update inactivity timer 
update LTP protocol state (e.g. scopes)
generate and enqueue control segments (e.g. RSes) as necessary

if (Transmitting or Receiving) then 
update punctuated timers
handle any timer expiry events (e.g. enqueue a segment for a re-tx)

Figure 5.4 -  main loop Pseudo-code.

supports all o f the features o f LTP and almost all o f the features o f LTP-T (the main 

missing features being congestion-related).

The LTPlib library runs in three threads, one for interfacing with the application, one for 

listening for incoming segments and one for handling queued segments and timers. The 

library generates a log file with detailed logging information; by default this will be called 

Itp.log, though there are APIs to control its name, location, verbosity etc.

The build environment allows the developer to turn on in-built error generation that 

randomly creates errors when sending segments. Features here include segment deletion, 

truncation, corruption and re-ordering, each happening with a compile-time configured 

probability.

5,4.2 Main Loop Pseudo-Code

The main loop o f the LTPlib is implemented in the l t p _ p i n g ( )  function. Figure 5.4 

presents a pseudo-code version o f this function which is called repeatedly inside the main 

thread. If the function returns more than a threshold number o f errors with no successes 

then the error state will be propagated to the application.
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The whos_listening () function returns the names o f  the LTP peers to whom this 

node can currently send segments. For “always on” type cases, there are some wildcard 

names that can be returned. The trickle_foward () function is where each current 

intermediate LTP session is checked to see if  new data segments can be created to be sent 

to the relevant next hop.

5.4.3 Routing

In implementation terms the LTP-T router is enabled via a command line option to the 

LTP daemon (Itpd). The library itself, when operating in router mode, creates a batch o f  

internal relay sockets (currently limited to 8) that are used to process inbound LTP- 

sessions for which this node is not the destination. This is purposely not visible to the 

application since we wish to be able to use any LTPlib application as a router, once the 

correct socket options and/or configuration are established. In other words, it is possible 

for an application to act as an LTP-T router without writing any application code. While 

this design option is useful for testing, a more scalable LTP-T router would properly take a 

different approach, in particular embedding the router code into the kernel.

When a new inbound LTP session is detected, and some conditions (see below) are met, 

then that session is allocated to a relay socket and bytes from the DSes are buffered in the 

same manner as with any inbound session for this node. However, once there are any bytes 

in a relay socket buffer then those are available for retransmission follow ing the normal 

scheme. In other words, once some bytes from the inbound session have arrived, they are 

immediately available for forwarding. The idea here is to be optimistically driven by the 

lower layer cues so as to push the bytes towards the destination as soon as possible.

There are two conditions to be met before a new inbound LTP session will be allocated to 

a forwarding socket. Firstly, there must be a free relay socket to use. When both the 

inbound and outbound LTP sessions on a relay socket are finished with, then the relay 

socket is closed and a new one opened.

The second condition is that the LTP-T destination is not the current node. However there 

is currently no check that the LTP-T configuration provides some next-hop for that 

destination. This leaves open a fairly problematic potential DoS attack since a bad actor
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could insert segments for spurious or unreachable destinations and thereby use up all o f the 

relay sockets, at least until the inactivity timer (see below) expires.

Routes for the LTP daemon are set by configuring a list o f IP network address prefixes. 

Whenever an inbound LTP session is determined to be for a different node, then the 

Itpt gatewayO function is called and returns the name o f the next hop. This function looks 

up the routing table and takes the first matching network address as the next hop.

For example, if  the destination is “ 10.0.0.1” and a routing table entry specifies 

“ 10.10.10.10” as the next hop for “ 10.0/16” then the function will find a match and the 

outbound LTP session will use “ 10.10.10.10” as its peer. There is also some wildcarding 

for UDP ports, with the explicit value “ :0” being the wildcard, so “ 10.0.0.1:1999” will also 

match “ 10.0/8:0” . At present only IPv4 dot-separated format addresses are supported by 

the routing code, but this could be easily extended since all o f the matching logic is in a 

single function called ltpaddr_cmp().

5.4.4 Garbage Collection Model and Handling Reboots

In order for LTPlib to work in many DTN contexts, it is necessary for an LTP session 

(whether standalone or as part o f an LTP-T session) to be preserved across a reboot cycle. 

This might happen for example in a power constrained node (like a SeNDT node) where 

the application sends data (calls ltp_sendto()) but the next data mule pass won’t occur until 

a subsequent power off/on cycle. So some sensor code might generate sensor data, send 

that using LTP and then the system is put into standby mode, say for 10 hours, until the 

next data-mule pass occurs. It is only at this point that the LTP data segments can be sent.

Handling this clearly requires that the block be synchronized to non-volatile storage, but 

that could o f  course be done by the application, or by LTPlib'^. It is easy to see that its 

better for LTPlib to handle this storage -  since LTP deals with the communications “cues” 

(see below), this is where the knowledge o f when the next contact might occur resides.

A low er layer co u ld  not really  do th is, s in ce  L T P -T  c a lls  for at least the v ia  ex ten sio n  to be en co d ed  at the  

tim e o f  tran sm ission , not w h en  the app lication  c a lls  the Itp_sendto() function.
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Having the appHcation handle this would, unless carefully done, represent a layering 

violation since the application would be forced to deal with a protocol-specific detail 

(“cues”) that are more properly handled by the communications stack.

The non-volatile storage used is simply the file system. When LTPlib is operating in “disk 

mode,” then each internal state change results in a re-synchronization to disk. LTPlib 

maintains a state variable that stores the state o f all LTP sessions outstanding at any given 

moment. All LTP-T specific state is also accessible from this data structure.

Once any application process is running that links LTPlib running in disk mode, then it 

will start by reading the state from disk and continue thereafter. Clearly this could lead to 

various forms o f livelock and/or deadlock, however the current LTPlib implementation 

does not cater for this problem since it w on’t arise in the initial deployments considered by 

the SeNDT project, which all involve a single main application process running for the 

duration o f the boot cycle on the SeNDT node. Were LTPlib to be used in a multi-user 

system, then either the code would need to be ported to the kernel, or, more likely, some 

additional code would be required to handle properly synchronizing LTP state across 

multiple processes. The current implementation o f  this scheme can be found in the 

ltp_file.cc source file where the walkstatetree() function implements most o f the 

functionality.

Another issue with this approach is that it brings with it a requirement for garbage 

collection since, for example, some timers may have expired, so that when the data 

structure is loaded from disk it may contain obsolete data. The current implementation 

however, only prunes this when it comes time to write the data structure to disk again.

All o f this actually creates an interesting benefit for application developers -  the 

application can operate in a fire-and-forget mode where that makes sense, thus greatly 

simplifying the application’s use o f  the sockets API. For a sensor application this can 

reduce the amount o f code required (at the application layer) significantly -  a very short 

function can create a socket, call sendto() and then close() the socket relatively secure in 

the knowledge that LTPlib will take care o f transmission even if  that only occurs after a re­

boot.
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5.4.5 “C ues” Service Provider Interface

This l t p _ p i n g  () function described above uses the ltp_cue_*() service provider 

interface (SPI), which can be initialized by the calling application or can use the built-in 

cue function implementations.

The main functions from the cues SPI that are used in the main LTP code are 

ltp_cue_whoami(), ltp_cue_whos_listening() and ltp_cue_whos_talking(). The first is 

provided since cue implementations will often involve schedule files or other configuration 

settings that will include the local identity. The ltp_whos_listening() function is used to 

determine when to forward segments to a peer and ltp_whos_talking() is used to decide 

when to decrement punctuated timers for those peers who should currently have the 

opportunity to be sending segments to me. The use of punctuated timers is the essential 

Dl'N component of the protocol stack.

Depending on configuration, the default for these functions is to use localhost (127.0.0.1) 

as the whoamiO result and a wildcard node name for whos listeningO and whos_talking() 

which results in an “always-on” mode of operation for any IP address.

The other standard implementation is based on the SeNDT project and its schedule files 

which are described in the next section.

5.4.6 Schedules

The current version o f LTPlib supports three types of schedule -  absolute time, relative 

time and ephemeris-based, each of which determine whether connectedness with given 

addresses is “on” or “o ff’ at a given moment. At any time an instance of LTPlib can be 

running according to a combination of one or more of each type of schedule.

The absolute time type schedule is the simplest and maps to the ltp_cue_*() SPI most 

obviously -  the schedule consists of a list of on/off times for each wildcarded IP address, 

e.g. saying that 127.0/16 is “on” between 200703120056Z and 200703120 lOOZ.

The relative time schedule sets a schedule dutycycle during which the on/off events of the 

schedule occur, and they recur after each dutycycle. The start time of the schedule can be 

given as an absolute time (or defaults to the most recent midnight). Given a start time and a
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Figure 5 .5  -  An inter-w orking diagram  for a D T N  setup  illustrating an eph em eris-d riven  sch ed u le .

dutycycle we can easily see where we are in a schedule in order to determine the 

connectedness at that time.

In addition to the on/off events, the ephemeris type schedule also has a separate list o f the 

visibility times for the connection in question. This information will generally be derived 

from real ephemeris data (as w e’ll see in the next chapter). During the process o f 

calculating such visibility, the LTTs o f the various connections are also handled, by yet 

another list.

The various lists are combined in order to meet the ltp_cue_*() SPI requirements -  

basically the scheme is to take a configured list o f relative on/off times and to move those 

further forward until they are consistent with the visibility constraints. After that, new 

on/off events are generated after another RTT. The idea is that the configured on/off period 

is the “prime” period, but subsequent periods are invariably needed to handle e.g. segment 

loss and re-transmission etc. There are clearly potentially many variations on this 

base+RTT scheduling scheme -  which will prove effective in the real world is a matter for 

future study. Figure 5.5 shows one such set o f schedule events.
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SOCKOPT Conmient
LTP SO AUTH set/get LTP auth parameters to use - parameter is an Itp auth so
LTP SO BLOCK calls to sendto will block until the LTP session has succeeded
LTP SO CLIENTONLY turn off "layer 2" listening
LTP SO COOKIE requests/reports cookies are on for this socket
LTP SO COOKIE GRACE set/get grace period during which we don't insist on seeing cookies
LTP SO INACTIVITY identifies the sockoptO as the inactivity timer option
LTP SO L2MTU set the 12 MTU from the application, ignoring lower layers
LTP SO LINGER LTP sockopts identifies the sockoptO as the linger option.
LTP SO RED set/get red/green-ness for the socket
LTP SO T AUTH recipient indicates it requires good LTP-T e2e auth
LTP SO T CFG feed in an LTP-T configuration
LTP SO T ROUTE feed in an LTP-T route
LTP_SO_SOP GetsockoptO returns a structure describing the state-of-play with a 

socket

Table 5.2 -  SOCKOPTs for LTPIib.

In addition to these types o f schedule an additional XML schema'^ based approach was 

used in earlier iterations o f the SeNDT code. That approach has been (temporarily) 

abandoned due to the dependency it introduced on the XML parser -  it was felt to be more 

important at this stage to have an easy to compile, install and use library. The XML 

schema approach may be revisited if and when backend integration with planning or 

graphical information systems (GIS) software becomes a requirement - for the purposes o f 

this thesis, it is not.

5.4.7 Configuration

LTP and LTP-T configuration is done via either files or calls to ltp_setsockopt(). We will 

document each separately though there is some overlap.

SOCKOPTS

Table 5.2 shows the set o f  socket options that are supported by LTPIib. With the exception 

o f those described below, the meaning o f  these should be fairly obvious. Basically, the idea 

is to allow the application to control anything that can be configured via files.

I'he LTP_SO_BLOCK option is used to make the ltp_sendto() call block until the LTP 

session is completed -  this is used mostly when generating timing information. Setting 

LTP_SO_CLIENTONLY has the effect o f pretending that the layer 2 listener thread can’t

T hose schemata are published at: http://dtn.dsg.cs.tcd.ie/schem as/
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produce anything and so pauses any punctuated timers (as well as meaning the library will 

miss any inbound segments). LTP_SO_T_CFG allows the application to feed in an LTP-T 

configuration file name. See below for a description o f this file format. 

LTP SO T ROUTE allows the application to add a new route to the list o f  LTP-T routes 

-  routing controls here use the same structure as in the route file described below. Finally 

(for now), LTP SO SOP can be used with ltp_getsockopt() to access detailed information 

about the state-of-play (SOP) o f the socket. This information includes for example, the size 

o f the red part o f  the block and information about remaining gaps in the green part -  the 

structure returned is the ltp_sop structure defined in Itp.h.

Configuration Files

Table 5.3 lists the configuration files that may be used with an LTPlib installation. Recall 

that none o f these files are required, in their absence LTPlib will act as an LTP client or 

server but will turn o ff LTP-T.

First, some preamble -  all configuration files treat lines beginning with “#” as comments. 

Whitespace at the start o f (almost) all lines is ignored. Whitespace, can however, be 

significant inside individual records in a file. Some o f  the file handling code is also a little 

brittle in how it handles, e.g. comma-separated lists, but following the examples found in 

the source tree should work fine.

The Up.names configuration file is straightforward and simply acts as a string mapper, so 

that names can be given to nodes, node:port combinations, subnets etc. All o f the other 

files unwind these names when they are encountered. No recursion is performed -  each 

name is mapped once and once only. After mapping, any DNS names will be resolved in 

the normal manner. So if  the configuration (after mapping) uses names and not IP 

addresses, LTPlib requires a working DNS, or at least a working name resolver (e.g. 

/etc/hosts file). This use o f DNS is the same whether the installation is a LTP client or 

server or LTP-T router.

The Itpd.crypt file contains settings for use by the LTP authentication extension. Each 

record here specifies some peers, and the ciphersuite and optional key identifier to use for 

that peer. The file can, o f course, contain any number o f  records. The first matching record
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File name Comment
Itp.names Maps strings to strings, e.g. "landers" to "10.1.1.1:1234" or earth to 

"10.2/16"
Itpd.crypt Contains LTP authentication key settings, including possible links to 

OpenSSL key files (e.g. mycert.pern, mykey.pem, or binary AES key files 
{e.g. mac-127.key)

Itp.sched Contains one or more LTP schedules, which can in turn refer to one or 
more visibility files and ephemeris files

Itpt.cfg Controls the LTP-T configuration
Itpt.routes Specifies the LTP-T routes
Visibility
file

Specifies the periods during which nodes are visible to one another

Ephemeris
file

Specifies the LTTs between nodes at a given moment

Table 5.3 -  LTPlib configuration files -  the exam ples shown are close to those to be found in the 

LTPIib/ciient directory o f  the LTPlib source code.

is used for doing security on inbound or outbound segments. Note that the contents o f  this 

tile can also be used for LTP-T’s end-to-end authentication.

A signature ciphersuite record specifies the public key file containing the public key 

(actually certificate) o f  the peer, and, if this is the signer’s own installation, the name o f the 

private key file containing the private key. These files are formatted according to the 

formats used by the openssl package, e.g., in the case o f  the public key this is the ASN.l 

DER-encoded [1T97] RSAPublicKey as defined in RFC 3447 (see sections 3.1 and A. 1.1). 

[J003]

In the case o f the MACing ciphersuite, the record contains the name o f a file that is treated 

as a binary file, the first 128 bits (16 octets) o f  which contain the AES key to be used for 

the MACing operation. The file may contain ASCII or UTF8 or binary data -  in all cases 

the first octets o f the file are simply read and fed into the MACing algorithm.

The Itp.sched file contains one or more schedules o f the types listed earlier, and in the case

o f an ephemeris-driven schedule, the name o f an ephemeris file. Each schedule entry
18specifies its type (only “COMM S” are o f  interest here ), a schedule index, an “ON” or 

“OFF” setting, a schedule-relative time (in seconds), the name o f the peer involved and 

whether the entry relates to transmission (“TX”) or reception (“RX”).

The SeN D T  XM L schedules referred to earlier also use other types related to use o f  sensors, d iagnostics  

etc. that can in fact be changed via an SPI specifically  for this purpose.
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Ephemeris-driven schedule entries are a little different -  in this case each entry represents a 

“TX ON” type, and the duration o f the prime ON period is specified as well as the number 

o f  iterations to follow that ON period'^. For each o f the iterations configured, both an “RX 

ON” period and a “TX ON” period are added one RTT after the end o f  the prime “TX ON” 

period. The basic idea is that we configure the initial TX (or RX) ON periods we want, and 

subsequent periods are added in order to handle potential segment drops. This kind o f 

schedule calculation is depicted in Figure 5.5 above.

Currently, those subsequent periods are hard-coded to be half as long as the configured 

period. There are o f course an infinite number o f  variations o f  the ways in which such 

schedules can be calculated. For example, in an earlier instance o f scheduling [FA03e] we 

calculated a “filled” schedule that attempted to include TX and RX slots o f a given size 

wherever allowed by the visibility constraints. The current approach was chosen for its 

relative simplicity, and also in order to be cognizant o f the LTP punctuated timers -  

keeping those shorter should result in faster retransmissions for lost or corrupted segments 

but clearly also increases the potential for un-necessary retransmissions. While it is not 

really a part o f this thesis to attempt to optimize this facet o f scheduling, one can clearly 

see that it is an area where more work can be done.

5.4.8 File transfer via LTP-T

Mainly for test purposes the LTP daemon also supports a file transfer mode, where the 

initiator can request a file from the peer. This is done as a payload protocol, where the 

block from the initiator contains a specially formatted request for a file. Since this is a 

payload protocol, it also works with LTP-T and allows us to create new test scenarios via 

scripting on the originator side.

In order to act as a file server the LTP daemon must be given a command line option and 

must be compiled specially (with LTP_D0DGY_F1LESERVER set). This is because the 

current implementation is not secure, in the sense that one would require say from an FTP 

server. In particular, the current code only reads a file from the current working directory,

T h is fun ctiona lity  is im plem ented  in the eph ex ten d () function  in the sen d t_ cu es .cc  sou rce  file .
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but doesn’t take into account potential international character based attacks when parsing 

the file request^^. Basically, the requested file name must not contain any “/” characters, 

but this is insufficient on some operating systems. This is acceptable since the feature is 

only intended for test purposes.

5.4.9 Miscellany

This section contains a number o f minor, but noteworthy points.

Segment Timers an d  Re-try limits

In the current implementation we set a default o f 10 punctuated seconds^' for various 

timers, e.g., receipt o f an RS in response to a checkpoint DS. Once these timers expire, the 

relevant segment will be re-transmitted and the timer re-initialised. Clearly there is a need 

for a re-try limit so as not to loop endlessly, and this is currently set to 3 re-tries for the 

DS/CP and RS timers, but only 1 re-try for the session cancellation timers. Once the set 

number o f  re-tries has been done, then the socket is closed.

Each o f these timers may be set independently in the Itp mib var setting. To date we have 

not added a SOCKOPT for passing this control setting, but doing so would be an obvious 

enhancement.

Inactivity Timer

Each socket in LTPlib also has an associated inactivity timer. This timer is punctuated but 

is decremented whenever this node can talk to the socket’s peer^^. When no segments have

For a recent exam ple see: http://cve.m itre.org/cgi-bin/cvenaine.cgi?nam e=C V E -2006-6950  

We have seen tests w here up to 6 punctuated seconds have elapsed before a DS/CP was processed. This is 

most likely due to im plementation inefficiencies that are more problem atic during stress tests, e.g. the replay 

cache gets quite large in such cases. H ow ever, the overall session still succeeds in alm ost all cases.

In fact, the current implementation could be improved here -  the inactivity timer is not decrem ented if  the 

socket’s next-hop peer is never contactable. There should really be a second non-punctuated timer to handle 

cases w here the contact to that peer is never re-activated. There is also a related bug w here only one such 

timer is maintained for a relay socket -  the right thing to do w ould be to maintain tw o such and only delete 

the socket after they have all expired.
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been sent or received and no ltp_*() API has been called for the requisite duration, then the 

timer expires and the socket is deleted (and any buffered data is lost). If an application 

subsequently makes a call on this socket (e.g. a new ltp_recvfrom()) call, then it will 

receive an error response. This mechanism is essentially a safety-valve for cases where 

either disruption is too great or a fire-and-forget application has left a socket hanging and a 

subsequent process has loaded that socket’s state from disk.

Checkpoint Setting

Similar to the above, one might wish to vary the number o f CPs included in DSes on the 

basis o f the known, or historical, loss rates for the next hop. For example, one could 

improve performance, potentially significantly, if  additional CPs were added as some 

function o f the loss rate seen, though probably with some exponential decay factor to 

eventually return the sender state to normal if  losses reduce. The current implementation 

makes no such adjustments.

Ltpd Output files

The Itpd binary produces a few output files -  a logfile (default Itpd.log) contains detailed 

run data but can mostly be ignored other than for debugging. When run in server mode, the 

l tp d .o u t-« n o d e -p o r t»  file contains the accumulated data received from the relevant 

node:port combination. Note that this file is accumulated over potentially many runs. The 

Itp d .o u t-« n o d e -p o rt» .so p  file contains the state-of-play (i.e. data returned thanks to 

L'FP SO SOP) information, and is again accumulated. These flies contain timestamps that 

are used for the generation o f the results in the next chapter.

5.5 Summary

In this chapter we specified the LTP-T protocol at a level o f detail that an implementer 

familiar with LTP should be able to use as a functional specification. We also justified the 

set o f  LTP extensions used by LTP-T and provided an overview o f our LTP and LTP-T 

implementation. Finally, we discussed how LTP-T is configured and managed as well as 

some other implementation considerafions.
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Chapter 6

Evaluation
This chapter describes our evaluation o f  the LTP-1’ protocol based on the implementation 

described in the Chapter 5. Our goal here is, as implied by the problem statement in 

Section 1.4, to demonstrate the following:

(a) That LTP-T works as a DTN protocol in a set o f basic tests.

(b) That LTP-T works, and that our LTP-T implementation performs as expected in a 

complex DTN -  in this case an emulation o f a Martian network.

(c) That in some scenarios, LTP-T out-performs the bundle protocol (BP).

in order to provide evidence for the first assertion, we carried out some single hop tests to 

compare LTP and the BP against a standard TCP application - secure FTP. Secure FTP 

was chosen since it allows for the same kind o f file transfers as our BP and LTP/LTP-T 

tests. These simple tests involve various delays and are described in section 6.1.

Perhaps the poster child DTN use case is the case of landers on Mars communicating back 

to Earth, sometimes via Mars orbiters. As a proof-of-concept for LTP-T, we built a 

Martian network emulation using a set o f standard computers to model Mars landers and 

orbiters interacting with a set o f terrestrial nodes. Section 6.2 describes this network and 

how LTP-T performs in this context.

Finally, section 6.3 demonstrates that LTP-T can outperform the BP in a set o f  two-hop 

tests due to the fact that LTP-T can begin forwarding data segments while the BP has to 

wait until the bundle is fully received at the intermediary before starting to forward 

packets.

All source code, test setup scripts, test results, and other data related to this evaluation may 

be found at http://dtn.dsa.cs.tcd.ie/sft - start with the README file in that directory.
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6.1 Comparing LTP-T with other Protocols

In this section we describe a set o f basic tests that verify that LTP-T is a viable DTN 

protocol. We describe a set o f single-hop tests that provide this verification.

The starting point is that basic interoperability testing for LTP, (not LTP-T), and our LTP 

implementation, has been successful, as described in Chapter 3. We therefore already 

know that LTP is a proven delay-tolerant peer-to-peer protocol, and that our LTP 

implementation, (LTPlib), provides a working implementation o f that protocol.

For the tests described in this section, we use the time required to deliver a set o f  files o f 

various sizes as our main metric. For the scenarios considered here, this is sufficient, (for 

those cases where the given protocols can actually operate), since the different protocols 

can be tested with the same file sizes and under the same, rather simple, network 

conditions.

6.1.1 Test Setup

In this section we describe the setup for our single-hop tests, where the DTN hop is, in this 

case, a UDP hop. The goal is to establish how the baseline performance characteristics o f 

the various protocols compare and also to be able to compare protocols in environments 

that don’t occur in our “Martian” test scenario, e.g. an LTT o f Is. The protocols compared 

are LTP (all green), LTP (all red), LTP (1^‘ 1KB red), BP/UDP and, representing TCP, 

SFTP (i.e., FTP/SSH).

Each test run consists o f 5 iterations o f a file transfer, for 13 different file sizes. Test runs 

were repeated with 7 different latencies, over and above normal (in this case negligible) 

system delays. The variations are chosen to span a large range (in exponentially growing 

steps) but where (most of) the protocols remain operational. The imposed LTTs used are 

0ms, 1ms, 10ms, 100ms, Is, 10s and 100s. Note that the round-trip time (RTT) is 2 x LTT. 

The file-sizes used are 1KB, 2KB, 4KB, 8KB, 16KB, 32KB, 64KB, 128KB, 256KB, 

512KB, 1MB, 2MB and, lastly 4MB. These combinations give us 5 x 13 x 7 = 455 samples 

per protocol, though since not all protocols work with all latencies we sometimes had 

fewer samples in our results, though generally around 400.
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In the tests, files are sent from the sending node to the receiving node, via routers (at the IP 

layer), which are running the Netem module to add the relevant delays. In all cases the 

nodes are “always-on,” that is, there is no additional disruption. (Our use o f  the Netem 

module is described further in Section 6.2 below).

6.1.2 UDP Rate Control

All o f the tests described below, (including those in Sections 6.2 and 6.3), involve LTP or 

the BP running over UDP. Transmitting UDP packets too frequently results in packets 

being dropped by the underlying IP network, so there is a need for some rate control in 

order to ensure successful packet delivery. For this reason, both the BP/UDP convergence 

layer and our LTP implementation include code to ensure that we do not send sets o f  UDP 

packets too quickly. Since the operating system for the test platform is not a real-time 

operating system; the minimum delay we can impose between packet transmissions may 

vary between 20 and 40ms (determined from logs o f these tests).

This rate control scheme has two effects: it determines the maximum throughput for the 

various tests but it also ensures fairness in the comparisons between the BP/UDP and 

LTP/UDP implementations. For example, since UDP packets will only be transmitted 

(roughly) every 20ms, a 4MB transfer requires almost an entire minute, just for 

transmission, (i.e., regardless o f the latency o f the link). Though very slow, this is 

acceptable for our purposes, as the same rate-control code is used in the both BP/UDP and 

LTP code, so that comparisons remain fair.

6.1.3 Software Versions

In order to carry out the comparative evaluations described below we had to do some work 

on the BP implementation. We started from the dtn-2.3.0 release' (dated December 2006) 

which, at that time, did not support bundle fragmentation. In order to be able to test with 

large bundles (our test scripts use files o f  up to 4MB), we had to modify the UDP CL to 

support fragmentation at the UDP layer. This change also included the UDP rate control

' http://ww w.dtnrg.org/docs/code/dtn 2 .3 .0 .tgz

144



scheme described above, and also used the same MTU size as used by our LTP code.  ̂The 

LTP/LTP-T code used here is as described in Chapter 5 and was checked to our CVS 

repository on May 1‘̂‘ 2007. The version string reported by the “sftp - v ” command is 

“OpenSSH_4.2pl Debian-7ubuntu3.1, OpenSSL 0.9.8a 11 Oct 2005”.

6.1.4 Test Results

Tests with 100ms LTTOne1000000

100000  ^

10000

Q 1000
<u
00

100

File Size

sftp-averago
ltp21kred-avcrago

bp-average
Itpred-average

Itp-averago

Figure 6.1 -  O ne H op Tests  with 100ms LTT.

Figure 6.1 above shows the results for a comparison o f the various protocols with a 100ms 

LTT. Each point represents the average o f  five runs o f the relevant protocol. The results for 

other LTT values are presented in Appendix A. The standard deviations are relatively large 

for the BP and LTP protocols for small file sizes, (and hence clutter the plots), but are

 ̂ The  change required is described  in the dtn-users mail archive: 

http://mailman.dtnrg .org/p iperm aii/d tn-users/20G7-M arch/0G0553.html
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small relative to overall delay for larger file sizes and LTT (and hence invisible). For this 

reason, we only include error bars, (representing one standard deviation), for the data series 

in Figure A .I.

6.1.5 Discussion

The main things to note from Figure 6.1 and the graphs in Appendix A, are that SFTP fails 

shortly after Is LTT, and so is not shown in Figure A.6, and that the BP and LTP perform 

almost identically for larger file sizes (i.e. over most o f the range o f  tests).

The first two graphs (Figures A .l and A.2) show that TCP outperforms the BP and LTP, 

especially when file sizes get bigger and TCP leaves slow start. This is however partly due 

to the UDP rate control scheme described above. At 10ms LTT TCP’s advantage is 

diminishing, so that it is effectively unusable at 100ms LTT.

By 10s LTT, TCP is timing out, in this case due to a timer in the SSH daemon 

(“LoginGraceTime”) that has a default setting o f 120s. With the TCP handshake, and a 

few cryptographic and login RTTs, this limit is reached at the 10s LTT mark.

By 100ms LTT (200ms RTT) both the BP and LTP are outperforming TCP. This is 

consistent with the findings in another recent LTP-related PhD thesis [RA07t] where the 

author estimated that at around 50ms LTT, LTP will begin to outperform TCP.

The graphs for the BP and LTP options are very similar at higher latencies and for larger 

file sizes. At 100s LTT, the backlog in the IP router running the Netem module, becomes 

such that the router begins to drop packets and the unrehable variants are affected. In the 

very last figure (Figure A.6) we only include the BP and LTP (all green) tests and can see 

that they continue to perform as expected for the delay involved.

Our conclusion from this set o f tests is that, as expected, both the BP and LTP outperform 

TCP at higher latencies, but that there is, so far, little to choose between LTP and the BP in 

terms o f performance for larger files sent at higher latencies.
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6.2 M artian N etw ork Emulation

We now come to the second claim above: that our LTP-T implementation performs as 

expected in a complex DTN -  in this case, an emulation o f  a Martian network.

Our Martian network emulates communications between the two Mars Exploration Rovers 

(MER), Spirit (MER-A) and Opportunity (MER-B); three Mars orbiters - Mars Global 

Surveyor (MGS), Mars Odyssey (ODY) and Mars Express (MEX); three Deep Space 

Network (DSN) Earth stations; Canberra (CAN), Goldstone (GOLD) and Madrid 

(MADR), and, as Internet endpoints: a DSN gateway and a set o f three Principal 

Investigator (PI) nodes. The emulation uses one host for the landers, one for the orbiters 

and one for the terrestrial nodes. In addition, we also use two hosts, running Netem, to 

model the delay between Earth and Mars (e2m) and vice versa (m2e). The emulation runs 

using realistic contact information provided by NASA JPL^ that reflects the situation for 

45 days on and around Mars in early 2004, just after the Spirit and Opportunity rovers had 

landed.

6.2.1 Why Emulation?

As we cannot (currently) carry out tests on real spacecraft actually on or orbiting Mars, we 

must use some form o f simulation o f the deep space environment. There are however, two 

different choices here -  one is to simulate the deep-space network using a network or space 

simulator, the other being to emulate the network, by setting up a network involving 

standard hosts running IP but with artificially managed delays between the hosts. Our 

conclusion is that the latter is preferable to the former. But in order to explain this we first 

examine the options. Table 6.1 lists the options that were considered for this evaluation.

We actually first planned to use SeNDT sensor nodes as the basis for evaluation. However, 

we revised this plan for a couple o f reasons. The first was simple pragmatism -  most o f the 

operational SeNDT node hardware was being used for a noise monitoring pilot at the time

 ̂ Thanks to Charles Lee, Chad Edwards, Scott Burleigh, Leigh Torgerson and Adrian Hooke all o f  N A SA .
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O ption C om m ent

S eN D T

[FA 06b]

instead  o f  m odelm g  an Eartti-M ars system  w e could have used a ne tw ork  o f  

S eN D T  sensor nodes to  com pare use o f  the protocols on sensor nodes.

STK

[MOOO]

T he “classic” space sim ulator, excellen t spacecraft and ephem eris m odels, 

but no w ay to m odel netw ork o r h igher layer protocols.

ns-2

[FA 97]

T he “classic” netw ork  protocol sim ulator. E xcellent coverage in term s o f  

p ro toco ls sim ulated . N o standard  w ay to m odel ephem eris.

O M N E T + +

[V A 99]

A nother, m ore m odem , netw ork  pro toco l sim ulator, but w ith few er p ro toco ls  

sim ulated  and less w ell know n. N o standard  w ay to  m odel ephem eris.

D T N -V N U M L

[FE04]

V irtual N etw ork  U ser M ode L inux is yet ano ther a lternative  w hose scrip ting  

can allow  sim ulation  o f  qu ite  in teresting  netw ork scenarios. A gain link 

delays are not well supported .

N etem

[H E05]

L inux kernel m odule that a llow s one to  add delays to  a router. T his is part o f  

som e standard  d is tribu tions (e.g . U buntu). N o ephem.eris handling  per se, but 

see below .

T able  6.1 -  O ptions for T esting .

that the protocol implementations were ready for evaluation. The second reason is 

however, more telling in the end. If the SeNDT nodes were actually in the laboratory for 

tests, then the fact that w e’re running on an embedded processor running arm-linux doesn’t 

really make any difference since we are, in this case, only emulating a network in any case. 

And since running repetitive tests in the field would be prohibitively expensive, we moved 

away from that plan.

Next we considered a space simulator, in particular the Satellite Took Kit"̂  (STK), which is 

the pre-eminent space simulator today, roughly in the place where ns-2 is in network 

simulation. However, STK has been found not to have an interface that is usable for 

network simulation or emulation [BR06]. We had planned however to use STK to generate 

ephemeris data for our test scenarios, but that was no longer necessary once we had access 

to the N A SA  JPL contact data (described below) for our emulated network.

“* h ttp ://w w w .stk .com /
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The next option therefore was to use a network simulator. The obvious choice here would 

be either ns-2, or maybe less obviously, OMNET++. We didn’t actually make any use o f 

ns-2 since, during development, we routinely used both Linux and Cygwin platforms, and, 

at that time, ns-2 w asn 't portable to the Cygwin environment. We did carry out some initial 

simulations based on extending OMNET++, (which does run on both development 

platforms), to support ephemeris driven delays, [FA03e] and while those were promising 

we ultimately rejected the entire idea o f using a network simulator for reasons given 

below. Though there are a range o f other open-source and commercial network simulators 

we didn’t find any that were affordable and seemed like they would be significantly better 

than the two above.

There were three reasons for our rejection o f  network simulation in this case. Our first, 

though weakest, argument is that we share some o f the skepticism [PA03, KUOS] as to the 

usefulness and fidelity o f  network simulations, especially for a network setup like a DTN 

which is significantly different from typical simulated, or real, network settings. While the 

developer o f the simulation undoubtedly gains insight from the work, our feeling is that 

readers o f the results gain much less insight and, in fact, often appear to have trouble 

generating commensurate results. This can be due to issues with differing levels o f detail, 

e.g., in wireless networks [HEOld] where different simulations embody different decisions 

as to what is interesting to represent faithfully. Simulation results also need to be presented 

so that they can be validated, something that isn’t always the case. [HEOl]

From our own work with OMNET++, one possibly general problem with network 

simulators may be a sort o f  “hidden variables” problem. In the simulation performed for 

one paper, [FA03e] the OMNET++ configuration file contained 174 separate numeric 

and/or string settings.^ With so many fairly opaque settings, it is no wonder that simulation 

results can be hard to replicate. This problem is also discussed by Kurkowski et al. 

[KUOS] While we do not make any claim that this argument represents a consensus within 

the networking community, our other arguments are stronger.

 ̂ T he sou rce for that sim ulation  is ava ilab le  at: h ttp ://d tn .d sg .cs .tcd .ie /esla b 3 7 /
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The second argument against using a network simulator for this work is that there are 

difficulties in using the same implementation for a simulation and in a real network stack. 

As part o f our work on LTP, however, one our goals was to achieve interoperability with 

the University o f  Ohio Java implementation^ and another was to be able to use LTP and/or 

LTP-T in SeNDT sensor nodes, so an implementation that was tied into a network 

simulator was not suitable for that aspect o f the work.

In other words, we could only validate the basic protocol design via interoperating two 

different implementations, and that cannot readily be achieved via simulations. For 

example, Kalyan et al. [KA02] report that it was “extremely time consuming” to 

investigate TCP interoperability issues when using different network simulators, even 

though the relevant TCP models (in ns-2 and GloMoSim) had previously been “validated 

in separate projects” to theirs. With new protocols (like the BP and LTP/LTP-T) the 

situation would be worse and we would have given up the benefit o f basing our tests on 

implementations that had successfully been interoperated.

Lastly, the test setups described in this chapter involve not just one, but two or more 

protocols (sftp, LTP, LTP-T, BP) being tested in sequence. While it might have been 

possible to implement (or re-implement) LTP-T in a network simulator, re-implementing 

an equivalent to the BP reference implementation would have represented significant effort 

and would have required yet another round o f testing to validate the putative BP simulation 

against the BP reference code.

Another alternative would have been to use DTN protocol implementations running on a 

Virtual Network User Mode Linux (VNUML^). VNUML is essentially a way to simulate 

a network with a set o f user-mode linux (UML) kernels running on a single host, and is 

typically used to simulate networks as part o f Honeynet projects aimed at determining the 

behaviour o f various forms o f malware or bad actors. [GA06] Although DTN simulation in

 ̂ h ttp ://irg .cs .oh iou .edu /ocp /ltp .h tm l

’ http://m ailm an .d tnrg.orE /p iperm ail/cltn -users/2Q 06-June/000265.htin i
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8 •this context is, in itself, quite an interesting concept, it is perhaps better suited to 

simulation o f disrupted networks, rather than delayed links, since, to our knowledge, there 

is no obvious support for simulating large delays in such a virtual network.

In our case, we can afford the relatively modest hardware requirements that are needed to 

emulate the latencies involved while at the same time using real network stacks. So our 

final plan was to emulate the network, based on the Netem module*^ [HE05] that is part o f 

some Linux 2.6 based kernel distributions -  which can be done at Httle cost. Netem is 

designed to allow application and protocol designers to emulate wide area network (WAN) 

properties (e.g., delay and loss) in local area networks (LAN). Netem is useful because 

many WAN properties are simply not seen in LANs, which are quicker and more reliable 

and generally not subject to the same kinds o f disruption. Netem is normally run on a 

separate host acting as an IP router that imposes WAN level delays (say around 100ms) 

and packet losses that wouldn’t be seen on a LAN. While Netem is not specifically 

intended for emulating DTN scale latencies, in fact, 20 minute latencies imposed using 

Netem work well as is shown in the trace in Figure 6.3 below.

Details o f our Netem setup for these experiments are specified below, but for now we want 

to consider why network emulation is a better approach. In the first place, emulations, 

while not perfect, are inherently better in respect o f both o f the main problems with 

simulations described above. With emulation, we get to use a real protocol implementation 

so that it can be interoperated and different combinations o f protocols can be tested over 

the same wires. We also have less o f a “hidden variables,” problem, since the network 

traffic is, by definition, externally visible and can be recorded and monitored etc. which 

makes replicating/checking results much easier.

The network emulation scheme does o f course have some issues, perhaps the main one 

being the lack o f serendipitous problems. In a real network, rain will attenuate wireless

* T he fact that the sim ulator has to hide its nature from  the app lication  is ind ep en dently  interesting. 
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signals, operator mistakes will be made and other types o f disruption will occur that will 

not necessarily occur during emulation. However, for our current purposes, (essentially 

LTP-T as a proof-of-concept and BP/LTP-T comparisons), modeling such events is not 

required since those events won’t usefully differentiate between the protocols at their 

current stage o f  development.

There are however, a few issues with network emulation where the model is inaccurate. 

The MTU size and throughput o f  the emulated network have to work on the lower layers in 

use -  in our case we have to live with an MTU size o f 1500 bytes and fixed 100Mbps links 

(due to the Ethernet hardware we are using). While this does represent a departure from a 

true Earth-Mars network, it is a) fair to the various protocols, and b) quite reasonable, as 

shown below.

Firstly, one can envisage an Earth-Mars link approaching 100Mbps via the use o f  optical 

communications, with one study [BI03] forecasting data rates o f 4-40M bps, and while the 

variability in Earth-Mars distance does affect bandwidth, it is not likely to do so over the 

duration o f a single LTP-T session or BP exchange.

Secondly, the Ethernet MTU isn’t in itself unreasonable, since many o f the proximity 

protocols [CC06p] used between spacecraft and orbiters use an MTU o f roughly 1000 

b y t e s . F o r  deep-space link protocols, like the telemetry space data link protocol, [CC03] 

the MTU can be a mission phase parameter, being set differently depending on other 

mission priorities, and so is harder to classify. However, the 1500 byte MTU is not very 

different from the current practice in deep-space communications.

So, our conclusion is that the best thing we can do is to evaluate LTP-T and other protocols 

using a network emulation scheme.

Personal com m unication from Scott Burleigh o f  N A SA  JPL.
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Figure 6.2 -  The Martian emulation setup.

6.2.2 Hardware and Software

The hardware platforms used consisted o f five Dell Latitude laptops (two model D410, 

three D300), each running a fresh installation o f Ubuntu (version 6.10 server edition). The 

D400 systems have IGhz Pentium 111 processors, with 256 MB o f RAM. The D410s have 

Pentium M processors running at 2GHz and have 512MB o f RAM. All network traffic is 

over 100Mbps Ethernet. A single 8-port Ethernet hub (3Com OfficeConnect Dual Speed 

Switch 8 plus) connects the five hosts. The hub is also connected to the campus network, 

eventually via a switched port, so there is little extraneous traffic affecting the overall 

setup.

Figure 6.2 presents a network diagram for the setup we use, showing which hosts emulate 

which nodes. Essentially we allocate a specific host:port combination for each node in our 

emulation, e.g., the host representing MER-A (Spirit), listens for UDP traffic on the 

landers host at port 1301." In addition to the DTN nodes, there are two additional hosts, 

e2m and m2e that are IP routers running Netem configured as described below to emulate 

the Earth/Mars and Mars/Earth latencies. Note that the landers-to-orbiters link in Figure

" For LTP and LTP-T the itp.names file contains the mappings from strings to host:port com binations.
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6.2 is not shown as delayed, but is run using an LTP ephemeris driven schedule (with a 

nominal 50ms delay for its LTP timers) since the link is disrupted.

All o f  the configuration settings, scripts and other instructions required to reproduce this 

and all other test setups are present at the location given above, in a directory called “test- 

setup” . The test-setup/box-setup directory contains details o f how the boxes were 

configured, e.g. specifying how N T? and SSH are setup. There are a few other details 

needed in order to make the setup repeatable, e.g. we have to set up IP routes so that 

packets from terr destined for landers go via e2m etc., and we also wish to be able to SSH 

into any o f the boxes from outside the emulation without having that traffic delayed.

The LTP/LTP-T code used here is o f course the LTPlib described in Chapter 5 with minor 

updates and bug-fixes added during testing, so this version is more recent, (and more 

stable), than that used for the tests described in Section 6.1.

6.2.3 DTN Goodput

The metric we use for these tests is goodput, [FL99] which essentially measures how many 

application layer bytes are successfully sent end-to-end, but taking into account the 

communications constraints inherent in the test scenarios. For example, periods when 

communications are impossible are not counted when calculating goodput.

The reasons we use goodput are as follows:

(a) It allows for fair comparisons between the various protocols and test scenarios.

(b) Packet delivery ratios, which have been used in other DTN tests, (e.g. [CH06]) are not 

relevant here, since in all our tests, we ensure reliability (or partial reliability) and all 

packets, (that are supposed to be received), are received.

(c) Bandwidth utilization (e.g. as used in [DE04]) is not used, since we are not attempting 

to “fill” a pipe here, but rather to produce a fair comparison o f different protocols under 

the same conditions. We essentially ensure that each protocol makes use o f the same 

bandwidth (see the section on UDP rate control above).

(d) DTN protocols and test scenarios are still at a relatively early stage in their 

development, so metrics related to fairness in the presence o f other flows, routing and 

other factors, are for future study.
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To quote a basic example o f a goodput calculation; “ Imagine that a file is being

transferred using HTTP over a switched Ethernet connection with a total channel capacity

o f 100 megabits per second. The file cannot be transferred over Ethernet as a single

contiguous stream, instead it must be broken down into individual segments, called

packets. These packets must be no larger than the maximum transmission unit o f Ethernet,

which is typically 1500 bytes. Each packet requires 20 bytes o f IP header information and

20 bytes o f TCP header information, so only 1460 bytes are available per packet for the

file transfer data itself. Furthermore, the packets are transmitted over Ethernet in a frame

which imposes a 38 byte overhead per packet. Given these overheads, the maximum

goodput is 1460/1538 * 100 Mbps which is 94.92 megabits per second or 11.866
12megabytes per second.” (quoted from Wikipedia ) In a DTN where connectivity is only 

available 50% o f the time, the maximum goodput would be halved, i.e. 5.833 megabytes 

per second.

The DTN goodput is derived from goodput as defined above as the number o f  application 

bytes transferred, divided by the connected time, where the connected time is the time 

during which the node in question could usefully transmit data, so:

G = B / ( E - D )  (Eq. 6.1)

Where G is the DTN goodput, B is the number o f payload bits (or bytes) transferred (i.e. 

not counting any headers such as LTP-T’s “via” extension), E represents the elapsed time, 

and D is the “disconnected” time, representing the accumulated delay and disruption seen 

on the entire path.

We do include in this goodput calculation the time used by acknowledgements or the 

equivalent, and only consider a packet to have been delivered after whatever 

acknowledgments concerned have arrived. In the case o f LTP for example, the time for the 

final report segment (RS) to arrive is included in the elapsed time for the goodput

h ttp ://en .w ik iped ia .o rg /w ik i/goodpu t - Q uoted  tex t co rrec t as o f  2 0 0 8 -0 9 -15
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calculation. As a consequence the DTN goodput for LTP sessions will depend to an extent 

on the red/green split, the block and segment sizing, the use o f various optional headers 

(e.g. “via” and authentication related), the LTT and, o f course, the error rate experienced.

6.2.4 DTN Goodput in the Martian Emulation

The actual calculation o f DTN goodput for Martian LTP-T test runs requires some 

additional work to calculate the overall delay for the transfer. In our Martian emulation the 

delays involved are less easily determined due to the complexity inherent in handling the 

mixtures o f LTT, ephemeris-driven visibility and scheduling explained below. For these 

tests, we use a scheme that derives the goodput from log-files generated during test runs.

For our DTN goodput calculation we extract all the sending and receipt times o f LTP 

segments from the log files for the relevant LTP/LTP-T session. The session duration is the 

elapsed time between the tlrst segment transmission time and the final segment receipt 

time. Note that the final segment receipt time can occur long after the payload bytes have 

been successfully delivered to the destination. For example, with a red file being sent from 

Mars to Earth, the DSN station that receives the file will have successfully transferred the 

entire file to its (terrestrial) destination before any LTP report segment has arrived back at 

Mars. In such a case, the last segment to be received will be the final report 

acknowledgement from Mars to the DSN station.

There are three different sources o f delay in our Martian emulation -  light trip time (LTT), 

visibility and scheduling delays. LTT and visibility are known, but scheduling delays are 

much less so, since the schedules must allow for a node to listen for a protocol response at 

more than one future contact. For example, if a DSN station sends a red BOB segment to 

Mars then it should be listening for a report segment two LTTs later, but since that report 

may be lost en-route, it must also schedule a contact for four LTTs later, which is when a 

re-transmitted report might arrive. And o f course, all o f those contacts must fit with the 

overall visibility o f the nodes in question, so the actual secondary contact may occur 

significantly more that four LTTs later.

With 10 nodes operating schedules in our emulation, and with all but one o f those 

schedules allowing for such re-transmission windows, within visibility constraints.

156



calculating the expected delay in advance would be cumbersome. Once we allow packets 

to be randomly dropped en-route, it becomes impossible.

So, for our DTN goodput calculation, we scan the list o f segment times (from the

accumulated log files), and consider any period longer than a threshold during which no

message transmission occurs, as being a “gap.” We use a threshold o f 40ms since our UDP 

rate control (see below) ensures that we don’t send segments closer than 20ms apart, but 

due to operating system uncertainties, some segments will actually be transmitted more 

than 30ms apart. In tests, thresholds between 40ms and 100ms all produce the same DTN 

goodput output figures. (And a 40ms threshold also maps reasonably well to latencies seen 

on well-connected Internet paths.)

We then add up durations o f all these gaps and consider the sum o f the gaps to be the 

overall delay for the session. The usable time is then the overall session duration minus 

the accumulated delay for the session. The result is that our overall DTN goodput 

calculation is as specified in Equation 6.1.

6.2.5 Effect of UDP Rate Control on DTN Goodput

In this section we analyse the effect o f our UDP rate control scheme, coupled with typical 

LTP-'r overheads, on DTN goodput. Table 6.2 shows typical sizes for the various fields in 

an LTP-T segment, as used in some o f our tests. Note that our LTP implementation is not 

currently optimized to properly fill an entire 1500 byte MTU, hence the odd overall packet 

sizes. In the table, the sizes for the via field are shown for segments as sent by the initial 

client (where only the via tag is sent), and for the next three hops -  the via field increases 

in size at each hop as arrival and destination times are added.

Table 6.3 shows the effect this has on the maximum DTN goodput for error-free paths o f  1, 

2, 3 and 4 hops, with packets being transmitted every 20, 30, 40 or 50ms. Essentially, this 

varies from 66KB/s, which should be provided for a single-hop LTP-T session running on 

a single host with no delays imposed, down to ~IOKB/s for a 4-hop path where operating 

system, network and/or implementation inefficiencies cause packets to be sent at a slower 

rate and thus lead to lower measured goodput values.
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Field Size

LTP header fields 17

L l'P-T extensions 31 159 285 409

Source 8

Destination 8

Port 4

Estimated Block Size 6

Hop count 4

Via (at hops 0,1,2,3) 1 129 255 379

Payload 1352 1265 1139 1013

Total 1400 1441 1441 1443

Table 6.2 -  Typical Field Sizes in an LTP-T Segment.

Hops 1 2 3 4

Payload 1352 1265 1139 1013

goodput(KB) @  1 packet / 20ms 66 61 55 49

goodput(KB) @ 1 packet / 30ms 44 41 37 32

goodput(KB) @ I packet / 40ms 33 30 27 24

goodput(KB) @ 1 packet/50ms 27 25 23 20

Table 6.3 -  Expected Maximum DTN goodput.

In order to validate our LTP/LTP-T implementation versus the above DTN goodput 

analysis we performed some tests involving a single hop with no delays, and running on a 

single host. Appendix B.l shows a pair o f graphs from this test, demonstrating that the 

implementation achieved the predicted goodput figures when running with a schedule file 

where communications are turned “on” for two seconds from each ten second period. The 

goodput figures for the two runs shown were 62983.2 B/s and 65331.8 B/s respectively.

6.2.6 Emulating Delays

For the tests in Section 6.1, we only needed to be able to emulate a fixed delay (e.g. 10s), 

which can be easily done with Netem. However, for our Martian emulation, we need to use
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stephen0TerrestrialInternet: ~$ date 
Tue Apr 24 19:06:51 1ST 2007
stephen0TerrestridlInternet:~$ ping -i 60 landers
PING landers.dsg.cs.ted.ie (134.226.36.242) 56(84) bytes of data.
64 bytes from landers.dsg.cs.ted.ie (134.226.36.242): icmp_seq=l ttl=63 time=1471369 ms
64 bytes from landers.dsg.cs.ted.ie (134.226.36.242): iemp_seq=2 ttl=63 time=1471356 ms
64 bytes from landers.dsg.es.ted.ie (134.226.36.242): iemp_seq=3 ttl=63 time=1471354 ms
64 bytes from landers.dsg.cs.ted.ie (134.226.36.242): iemp_seq=4 ttl=63 time=1471363 ms
64 bytes from landers.dsg.es.ted.ie (134.226.36.242): icmp_seq=5 ttl=63 time=1471352 ms

  landers.dsg.es.ted.ie ping statistics --
29 paelcets transmitted, 5 received, 82% packet loss, time 1680146ms
rtt min/avg/max/mdev = 1471352.2 60/1471359.4 04/1471369.808/948 67 6.694 ms, pipe 25
stephenSTerrestriallnternet:~$ date
Tue Apr 24 19:35:52 1ST 2007
stephen0TerrestrialInternet:~$

Figure 6.3 -  Pinging with an Earth/Mars LTT.

13a realistic LTT for Earth/Mars communications. The NASA JPL “Horizons” web site 

provides a web-based interface where the Earth/Mars LTT can be retrieved for specified 

durations and at specified granularity. For our purposes we used this tool (and a little 

processing) to create a file (“deacde-2h.vec”) that specifies the Earth/M ars LTTs with a 

two hour time step for the entire first decade o f  the 2 r ‘ century.

Figure 6.2 above shows how the various machines are allocated responsibility for the 

various nodes in our emulation. Two o f those hosts (e2m and m2e) act as IP routers, using 

the Netem module in order to enforce link delays. Those delayed links are shown as 

heavier lines in Figure 6.2. When a packet is sent from, e.g., terr to landers via e2m, the 

packet arrives normally at e2m (thanks to IP routes setup for that purpose) but is then 

delayed, at e2m, for the relevant LTT (by Netem) before finally being forwarded onto the 

landers host. Traffic in reverse is also appropriately delayed, by the m2e host.

With this setup, a ping from terr to landers can take for example 40 minutes to complete, 

but it does complete. Figure 6.3 shows the output o f a ping from landers to terr, with an 

Earth/Mars scale LTT (in this case about 745 seconds). This is a nice demonstration that IP 

is, in fact, delay-tolerant, even though TCP is not.

h ttp ://ssd .ip l.n a sa .g o v /iio r izo n s.cg i
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All that remained was to find a way to set the correct LTT on the e2m and m2e hosts. This 

is done via an hourly cron job (since the LTT variation within one hour can be ignored) 

which runs a script that reads the decade-2h.vec file to produce the correct result for the 

current time. As the Netem command line interface is quite awkward to use, we developed 

scripts that wrap the Netem command line (“tc”), hide the details o f the LTT file reading 

and set the desired LTT.

There are actually two different “desired” LTT settings that we may want to use -  one is 

the LTT for the current moment in real time described above. For our emulation however, 

we want an LTT from within our test epoch. In this case, we simply deal with time 

“modulo” 45 days, starting counting from the epoch (in our case that is Jan 25 '’’ 2004). 

This last case matches the behaviour o f the other nodes in the emulation which also deal 

with time “modulo” the 45 days in question via LTPlib scheduling.

One side-effect o f using cron like this is that it makes it simple to switch o ff delays. 

Together with the fact that LTPlib reverts to “always-on” mode when there is no Itp.sched 

file present, this provides us with a nice way to turn off both delay and disruption -  

something that was very useful for debugging at many stages o f development.

The decade-2h.vec file also becomes a part o f our schedules, for example, being quoted 

from inside the various visibility-configuration files which are in turn referenced from the 

Itp.sched schedule file. We use a similar file decade-2h-50ms.vec for schedules between 

landers and orbiters. As the name implies, this imposes only a fixed 50ms delay regardless 

o f the time o f the contact.

6.2.7 Spacecraft Visibility Information

The contact information supplied by NASA JPL consisted o f a set o f files, each o f which 

represents durations during which pairs o f spacecraft, or spacecraft and DSN nodes, can 

communicate. Essentially, this information represents the pair-wise visibility o f  the 

spacecraft and DSN nodes involved. The data were produced using the Telecom Orbit and 

Analysis Tool (TOAST) [LE06] that is used to generate and evaluate orbits for 

telecommunications orbiters.
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There is, or course, a certain irony here, TOAST is itself a simulator, though not one that 

was considered above, since it is not widely available. We can however, justify the use o f 

this simulation output on a number o f grounds.

First, it represents visibility which is largely determined by physics, and secondly it is a 

tool developed by the owners o f the spacecraft concerned -  so they have plenty o f 

motivation for the outputs to be a good basis for further work; and thirdly, TOAST is not a 

network simulator, but rather an STK-like simulator but just more specialized -  and our 

original plan was to use STK to generate ephemeris data -  in this case, we just got one step 

closer to the spacecraft hardware than we envisaged.

The tiles from TOAST have the following parameters: a duration spanning 2004- 

025T00:00:00 until 2004-070T00:00:00; a step size o f 1 minute (totaling 64,801 steps); 

DSN mask angle and Mars surface mask angle both o f 10° (the m.ask angle is the angle 

above which the object must be before being considered visible).

Two slightly differing file formats were used in the data supplied. For Mars to DSN 

communications, there was one tile per spacecraft, with each line representing the visibility 

situation for one minute and containing a “ 1” when the spacecraft and DSN station are 

mutually visible, so for example, the 447'*’ line o f the M ERA2CanGoldM adr.txt file 

supplied by NASA has the value “ 1 0 0” representing the fact that the Canberra DSN 

station becomes directly visible to MER-A 447 minutes after the start o f  our epoch.

The lander/orbiter files have a slightly different format, due to the fact that the windows o f 

visibility between lander and orbiter are both much shorter and more variable than those 

that span the Earth/Mars distance. In the case o f lander/orbiter visibility, the duration o f the 

contact will be a few minutes, with significantly different data rates seen when comparing 

the early and late parts o f the contact with those in the middle. For this reason, the file 

format specifies the data rate for the minute concerned so our sample record (the 240'* )̂ 

from the M ERA2M GS0DYM EXUHFRATE.txt file is “ 128 0 0” representing the fact that 

this MER-A/MGS contact supports a data rate o f 128 Kbps.

As can be seen these file formats involve one line per minute, that involves 64,801 lines 

per tile for the 45-day duration. Clearly, that much file processing isn’t ideal for running
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anything Hke a stress-test, and in fact, that file form at contains a lot o f  redundancy. So, for 

the purposes o f  this work, we reduced these ‘"raw” form ats, to our LTPlib schedule form at 

where records contain relative-tim e specifiers and each is a delta  from the last.

This reduces the M ER-A to DSN file from  64801 to 233 lines. In this file form at each line 

specifies a tim e (in seconds) and a “ 1” for visible, and a “0” for not visible, a set o f  

conditions that apply unfil the fime specified in the next line. The initial entry in the file 

nam es the nodes involved, specifying the nam e o f  the “from ” node and a set o f  “to” nodes. 

For exam ple, the 2"‘' line o f  the M ER A 2C anbG oldM adr.vis file is “V IS,26760,1,1,0,0” 

which m eans that 26,760 seconds from  the epoch, the 2"‘* node is visible from  the 1®* but 

the 3"̂  ̂ and 4'̂  ̂ nodes are not.

6.2.8 Communications Schedules

C om m unications with M ars are largely determ ined by LTT. Figure 6.4(a) shows a view  o f  

the LTT betw een Earth and M ars for the decade follow ing 2000-01-01T12:00:00Z with 

our 45 day test epoch show n as a thick vertical line. Figure 6.4(b) is a closer view  that 

shows the variation in LTT over our test epoch, from roughly 660 seconds at the start o f  

the epoch, increasing to roughly 870 seconds at the end o f  the 45-day period.

Figure 6.4(c) show s the view  for 5 days (from  Feb 7-12 2004) -  individual periods o f  

visibility are now  visible and are shown as coloured boxes lasting for the relevant duration 

(the heights o f  the boxes are offset from the LTT for clarity). Even at this level, one can 

see that the lander/D SN  periods o f  visibility are m uch longer than lander/orbiter periods o f  

visibility. Lastly, Figure 6.4(d) show s the visibility periods for one day (Feb 6 '’’ 2004), 

show ing that on that day, M ER-B could see M arsExpress three different tim es, O dyssey 

twice, and had extended duration visibility o f  the G oldstone and M adrid DSN stations.

O f course, these periods o f  visibility cannot be fully utilized by the real M ER-B, since 

additional considerations related to pow er m anagem ent and daylight, scientific tasking (o f 

all o f  the nodes, not ju s t the lander), and general scheduling constraints, have to be taken 

into account -  the DSN stations could not allocate all o f  this tim e to M ER-B for the full 45 

day period.
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So, we need to overlay a communication’s schedule o f some sort on top o f the visibility 

constraints. However, we do not have access to real scheduling data for this, since it is not 

easily available from the mission archives, though it could presumably be derived from 

DSN station schedules and mission image archives.

For the purposes o f our emulation, we overlaid a communications schedule that called for a 

30 second “primary” contact for each node, each hour (at 5 minutes past the hour), with 

diminishing-duration secondary contacts scheduled for 2 LTTs later, 4 LTTs later, etc. up 

to 10 LTTs after the primary contact. These secondary contacts allow for re-transmissions 

and acknowledgements, as stated earlier. While this schedule nominally creates a contact at
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five minutes past each hour, in fact all o f the contacts are time-shifted so as to fit within the 

next relevant (and sufficiently long) visibility period.

While this scheduling scheme is certainly ad-hoc, it is sufficient for our purposes in that it 

creates primary contacts that are long enough that an entire block can be transferred in a 

single contact, but that are also sufficiently short that we can also test sending blocks that 

require more than one contact to complete. (An example o f such an LTP-T session is 

shown in Appendix B.2.2.) It also means that tests can be run at any time during the epoch, 

and will complete, though requiring an uncertain duration.

Developing more realistic scheduling would have required us to include a model o f 

application-layer traffic, which is essentially driven by scientific activity, and also to deal 

with schedule updates and their distribution, both o f which are interesting aspects o f a 

DTN, but are considered out o f scope for now, since they are not required in order to 

establish our basic claim that LTP-T can work in a complex DTN environment.

Lastly, one should note that Figure 6.4 only shows the situation for one o f the ten nodes in 

our emulation that have to deal with such schedules; however the overall level o f 

scheduling complexity involved should be clear.

6.2.9 DSN Gateway Schedule

The LTP-T routes used for our tests are mostly obvious from Figure 6.2, for example, 

landers can send to Earth either via one o f the orbiters or else via one o f the DSN nodes. 

There is, however, an issue for the PI nodes - when they are originating traffic, they don’t 

know which Earth station is best positioned to make an early contact with Mars, so the 

DSN Gateway (dsn-gw) node is used to solve this problem.

The dsn-gw node has its own schedule, (also generated from the JPL Horizons site), that 

reflects the visibility o f Mars from the Earth stations during the period o f the emulation. 

So, for example, the dsn-gw will forward to the Goldstone Earth station between 

20040126T20:00:00 and 20040127T06:00:00 (emulated time), when Mars is visible (and 

more than 15 degrees above the local horizon). This dsn-gw schedule essentially overlaps 

with the orbiter and lander-specific schedules o f the individual Earth stations.
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PP: Pretty printed LTP message (at 2007-04-27 20:17:16.072).
PP: -----
PP: message type: Data segment [4]
PP: peer (session originator): PP: IP: 134.226.36.248:1404 [0xAlDCA2A7E08A7C]
PP: sno (session number): 0x0E764633 [0xF3D98C33]
PP: extensions: 6 headers, 0 trailers [0x60]
PP: ext 0: source: 134.226.36.242:1301
PP: ext 1: dest: 134.226.36.2 48:1403
PP: ext 2: port: 0x0005
PP: ext 3: est. bloclc size: 524288
PP; ext 4: hop count: 2
PP: ext 5: via: (379)
VIA: 134.226.36.244:1102 at 2007-04-27 20:04:46.513 (arrival)
VIA: 134.226.36.244:1102 at 2007-04-27 20:04:46.514 (departure)
VIA: 134.226.36.248:1407 at 2007-04-27 20:17:15.680 (arrival)
VIA: 134.226.36.248:1407 at 2007-04-27 20:17:15.687 (departure)
VIA: 134.226.36.248:1404 at 2007-04-27 20:17:15.977 (arrival)
VIA: 134.226.36.248:1404 at 2007-04-27 20:17:15.978 (departure)
PP: csi (client service ID): 0x044E [0x884E]
PP: offset: 00000 (0x0000) [0x00]
PP: data length: 01013 (0x03f5) [0x8775]
PP: data (1st 4 bytes or less): 0x30313233...
PP:
PP: -----

Figure 6.5 -  First Data Segm ent from an LTP-T session (on arrival).

While this scheme is somewhat artificial it does reflect a real issue with any DTN routing 

scheme -  how much knowledge to represent at which nodes. In this case, the scheme 

represents coarse-grained ephemeris information at the intermediary. When blocks are to 

be sent from Mars to Earth, the DSN Earth station can send segments directly to the PI 

node.

6.2.10 Sample Segments

In this section we present some example LTP-T segments extracted from a single test run. 

Figure 6.5 shows an initial data segment that was sent from the MER-A, rover, 

(134.226.36.242:1301), to principal investigator #3, (134.226.36.248:1403), in this case via 

Mars Express (134.226.36.244:1102) which also having an open contact to Earth 

forwarded the segment immediately to Madrid (134.226.36.248:1407). The LTT at the 

time is reflected by the fact that the segment arrived in Madrid about 13 minutes after 

being sent from Mars Express. The segment was then forwarded via our putative DSN 

gateway (134.226.36.248:1404) and finally to its destination.

Figure 6.6 shows an end-of-block (i.e. the last) data segment for the same destination, but 

this time the segment was transmitted directly from MER-A to Madrid, since there was a 

direct-to-Earth contact open at the time, which is about 30 minutes after the previous 

example. Figure 6.7 shows yet another segment, but this time one where the destination is
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PP: Pretty printed LTP message (at 2007-04-27 20:42 03.181) .
PP:
PP: message type; Data segment [7]
PP: peer (session originator): PP: IP; 134.22 6.36.248:1404 [0xAlDCA2A7E08A7C]
PP: sno (session number): 0x75EF7759 [0x87AFBDEE59]
PP: extensions: 6 headers, 0 trailers [0x60]
PP: ext 0: source: 134.226.36.242: 1301
PP: ext 1: dest; 134.226.36.248:1403
PP: ext 2: port: 0x0D05
PP: ext 3: est. block size: 524288
PP: ext 4: hop count: 3
PP: ext 5: via: (253)
VIA 134.226.36.248:1407 at 2007-04-27 20:41:26.334 (arrival)
VIA 134.226.36.248:1407 at 2007-04-27 20:42:00.406 (departure)
VIA 134.226.36.248:1404 at 2007-04-27 20:42:01.756 (arrival)
VIA 134.226.36.248:1404 at 2007-04-27 20:42:01.828 (departure)
PP: csi (client service ID): 0x057F [0x8A7F]
PP: offset: 524256 (0x7ffe0) [0x9FFF60]
PP: data length: 00032 (0x0020) [0x20]
PP: data (1st 4 bytes or less); 0x31323334...
PP:
p p . ------

Figure 6 .6  -  E nd-of-Block LTP-T Data Segm ent (on arrival).

the Mars Express orbiter. This sample, shows a delay o f over 30 minutes at the Goldstone 

Earth station (134.226.36.248:1406) while waiting for the next orbiter contact.

6.2.11 Test Runs

In order to automate our Martian emulation test runs we developed scripts that clear all 

logs, re-start all LTP-T demons, send a single file for each run and continue running until 

the file is successfully transferred and all LTP sessions involved in the LTP-T session are 

completed. Once the LTP-T session is completed, logs files are gathered from the relevant 

hosts, and copied to a store for later analysis.

PP:
PP:
PP:
PP:
PP:
PP:
PP:
PP:
PP:
PP;
PP:
PP:
VIA
VIA
VIA
VIA
PP:
PP:
PP:
PP:
PP:
PP:

Pretty printed LTP message (at 2007-04-27 21:17:32.658).

134.226.36.248:1406
message type: Data segment 
peer (session originator): PP: IP: 
sno (session number): 0xBBFA4217 
extensions: 6 headers, 0 trailers

ext 0: source: 134.226.36.248:1401
ext 1: dest: 134.226.36.244:1102
ext 2: port: OxODOS
ext 3: est. block size: 524288
ext 4: hop count: 3
ext 5: via: (253)

134.226.36.248:1404 at 2007-04-27 20:27:56.994 (arrival) 
134.226.36.248:1404 at 2007-04-27 20:27:56.996 (departure) 
134.226.36.248:1406 at 2007-04-27 20:27:57.298 (arrival) 
134.226.36.248:1406 at 2007-04-27 21:05:02.728 (departure) 

csi (client service ID): 0x057C 
offset:09112(0x2398) 
data length: 01139 (0x0473) 
data (1st 4 bytes or less): 0x41424344...

[4]
[0xAlDCA2A7E08A7E]
[0x8BDFE98417]
[0x60]

[0x8A7C]
[0xC718]
[0x8873]

Figure 6.7 -  M id-Block LTP-T Data Segm ent.
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In order to extract useful information from the log files, we use a set o f  scripts that produce 

the diagrams shown in Appendix B (using gnuplot) and that also calculate the DTN 

goodput (and other information) for the run, as shown in Appendix C. Those scripts can be 

found in the the test-setup/mars and test-results/mars-08 directories at the location given 

above.

This test scheme is somewhat limited at present, since each run only involves a single 

LTP-T session. In future, it would be interesting to test with multiple flows in parallel, 

however, that is not necessary for our current purposes, since, for now, our aim is only to 

demonstrate that LTP-T is a viable DTN protocol for such a complex environment.

6.2.12 Test Results

In this section we describe the results o f various tests run with our Martian emulation. Our 

test result corpus consists o f 75 LTP-T runs o f Earth/Mars transfers, graphs o f  which are 

shown in Appendix B.2 to B.7. Appendix C is a full table o f the results from each o f those 

tests. Table 6.4 describes the different kinds o f runs involved in our test set. While one 

could o f course endlessly extend the test set, these tests are sufficient to show that LTP-T 

can operate in this complex environment. Appendix B also contains diagrams for some 

additional tests that are not counted towards these results -  see the comments in the 

Appendix. The 75 tests from Table 6.4 are actually a subset o f a larger set o f  224 test runs 

carried out as the implementation was developed and debugged. Logs for all 224 runs can 

be found in the “mars-runs” directory at the URL given above.

Test type Section #Tests Redness Sender Dest. Errors

Earth —* Mars B.2 20 All green PIl M ER-A N one

Mars —> Earth B.3 1 All red M ER-B PI3 N one

Mars —> Earth B.4 5 All red MER-B PIS 1% Mars->Earth packet loss

Mars —> Earth B.5 33 2K B red M ER-B PI3 1% Mars->Earth packet loss

Mars Earth B.6 1 8KB red M ER-B PI3 1% Mars->Earth packet loss

M ixed B.7 15 Mixed Mixed Mixed 1% Mars->Earth packet loss

75

Table 6 .4 - T y p e s  o f  Test Runs.
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Factor Average Stdev Min Max

L I T 770s 35s 690s 825s

Test Duration 5,740s 10,402s 862s 64,902s

goodput I9KB/S 5KB/S 8 K B / S 32KB/S

Table 6.5 -  Overall Test Results.

The 75 runs were selected by excluding all runs with any “abnormal” behaviour. Abnormal 

behaviours seen included some crashes as well as some timer bugs where a session was 

cancelled before all reporting is complete, but after all application data has been delivered, 

that would have artificially increased the calculated DTN goodput. Essentially, we adopted 

a very conservative approach in selecting runs to use in DTN goodput calculations. That 

our selection is reasonable is shown by the fit between our measured results and the DTM 

goodput calculation provided in Section 6.2.5 as shown in Figure 6.8 below.

Table 6.5 above summarises our overall test results. O f the 75 tests, 47 involved sending a 

file o f  47KB in size, 5 involved a file o f  128KB, 22 involved a file o f 0.5MB in size and 1 

involved a file o f 1MB. The total test duration for the entire set is 431,135s or 4 days, 23
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hours, 45 minutes and 25 seconds (though in fact tests take significantly longer to run in 

real time) with a (modest) total o f 15MB transferred between Earth and Mars. O f the 75 

test runs 34 involved 3 nodes, 26 involved 4 nodes and 15 involved 5 nodes. The average 

number o f nodes over all tests was 3.74. The 19KB/s average DTN goodput figure 

achieved compares well with the expected maximum DTN goodput were packets sent 

every 50ms, which would be about 23KB/s.

Figure 6.8 shows that the measured DTN goodput decreases as expected as the number o f 

nodes involved increases. In the figure we also include lines indicating the maximum DTN 

goodput for various sending rates as calculated in Section 6.2.5.

Our network emulation shows that LTP-T could be used as part o f a real Martian network, 

however, at this point our implementation remains a proof-of-concept, and we do not yet 

have reliable comparisons, for such complex scenarios, as to how LTP-T might perform 

against other DTN protocols (like the BP or elements o f the CCSDS suite), or, perhaps 

more interestingly, against historic figures for data retrieval from the MER missions.

Given that LTP is a working delay-tolerant peer-to-peer protocol, and that LTP-T 

successfully delivered all blocks in the test cases above with a reasonable match to the 

maximum DTN goodput, we have now shown that LTP-T is, in fact, a viable DTN 

protocol for such environments.

6.3 Two-hop tests

Our final set o f tests pit the BP/UDP against LTP-T and show, as expected, that, at least in 

the situation presented, LTP-T does in fact outperform the BP.

6.3.1 Test Setup

Here we use one intermediate node (MEX) as a relay between the sending (MER-A) and 

the receiving (PIl)  nodes. The test setup here uses LTTs o f 10ms 100ms, Is, and 10s and 

file sizes o f 32KB, 64KB, 128KB, 256KB, 512KB, 1MB, 2MB and, lastly 4MB. The high 

latency hop is the intermediate node (MEX) to desfination (Pl l )  link, the sender (MER-A) 

to intermediate (MEX) has no delay introduced. Otherwise the test setup is as described in 

Secfion 6.1.
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Two-Hop Test DTN Goodput, BP vs LTP-T
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Figure 6.9 -  Two-Hop Tests o f  BP vs LTP-T.

The BP software version was as in Section 6.1, the LTP-T version was as described in 

Section 6.2. All LTP sessions were run in all-green mode, and the BP made no use o f 

custody, so both protocols are run in “unreliable” mode.

6.3.2 Test Results

Figure 6.9 above shows the DTN goodput achieved for the two hop tests for each o f the 

file sizes tested. The BP data series represent the average for a single run o f each latency, 

i.e., the first BP point represents the average DTN goodput for the BP sending a 32KB file 

over 10ms, 100ms, Is and 10s. For LTP-T we show the average o f 5 runs for each latency 

as a separate series, and also the overall average. In the case o f  the overall average (labeled 

“LTP-T (All),” each point represents the average over 20 runs, and for this data series we 

include error bars representing plus and minus one standard deviation.

Over all runs, the average DTN goodput for the BP is 36.0 KB/s, (standard deviation, 

0.36), whereas for LTP-T the overall average is 49.3 KB/s (standard deviation 8.09).
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6.3.3 Discussion

As can be seen from Figure 6.9 above, in this configuration, LTP-T outperforms the BP, 

essentially increasing DTN goodput by about one third. This is due to the fact that the 

LTP-T intermediary can start to forward LTP segments as soon as they are received, 

whereas the BP daemon only starts to forward parts o f the bundle after the entire bundle 

has arrived. It would be non-trivial for the BP daemon to take the same approach, since its 

Convergence Layer (CL) model is built around the assumption that different CLs must be 

able to be used for the inbound and outbound contacts for a given bundle, fhis same 

benefit will accrue at each DTN hop for which a DTN node can forward packets as they 

arrive, so that for longer paths, LTP-T will also outperform the BP.

However, one should be clear -  we are not here saying that LTP-T is “better” than the BP, 

but just that, as a DTN transport, it is easier for LTP-T to outperform the BP in some 

circumstances. Secondly, as an overlay, it is harder, though in principle perhaps still 

possible, for the BP to take advantage o f CL specifics so as to perform similarly to a DTN 

transport.

In summary, then this section has shown that LTP-T can outperform the BP.

6.4 Conclusions

In this chapter we documented our evaluation o f  LTP-T, which used a proof-of-concept 

Martian network emulation and some specific comparative tests o f LTP-T against the BP 

and other protocols. This allows us to conclude that LTP-T is very much a reasonable DTN 

protocol on which to base further DTN experiments.
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Chapter 7

Conclusions and Future Work
In this closing chapter, we re-iterate the problem statement from Section 1.4, we 

summarise how this thesis has addressed that problem statement; we specifically consider 

how LTP-T meets the DTN protocol requirements elicited in Chapter 2, and we review the 

contribution and discuss near and longer-term areas for future work on DTN transports.

7.1 The Problem Statement Re-iterated

The main problems considered here are the consequences o f choices related to the location 

o f  functionality (e.g. re-transmission) within a DITM and how those choices interact with 

various protocol features (e.g. reliability or security). The challenge faced is to explore this 

design space to develop protocols that meet a sufficiently broad set o f requirements so as 

to warrant the wider-scale testing o f those protocols with the ultimate goal o f eventually 

incorporating DTN features and functionality into the standard suite o f Internet protocols. 

This thesis represents yet another step along that road.

While there have been some attempts to examine meeting DTN requirements at the 

transport layer, there has yet to be a tleshed-out demonstration that this is possible and that, 

as an architecture, the result provides comparable performance to the overlay approach. 

This is the specific question that this thesis attempts to answer.

The methodology followed is to review the main causes o f delay and disruption in order to 

derive a set o f protocol requirements that are specific to the DTN context and to examine 

how existing protocols, and in particular the overlay approach as instantiated by the BP, 

meet these requirements.

Based on this review, we define our concept o f a DTN transport protocol and analyse in 

detail how that compares with the overlay approach. We then describe one DTN Transport 

protocol (LTP-T), developed specifically in order to test the DTN transport concept. We 

describe a set o f tests and results in order to demonstrate: a) that LTP-T is a viable DTN 

transport protocol, and b) that in some cases LTP-T can significantly outperform the BP.
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We finally consider how well LTP-T meets our set o f DTN specific requirements in order 

to point the way forward for future work in the area o f DTN transport protocols.

7.2 Addressing the Problem Statement

In Chapters 4 and 6 we considered the significance o f choices related to the location o f 

functionality (in particular storage and re-transmission) within a DTN and how those 

choices interact with various protocol features (e.g. reliability or security). We explored 

this design space and developed a protocol (LTP-T) that meets a sufficiently broad set o f 

requirements so as to warrant its wider-scale testing with the ultimate goal o f eventually 

incorporating DTN features and functionality into the standard suite o f Internet protocols.

We demonstrated that meeting DTN protocol requirements using the transport-oriented 

approach o f  LTP-T is feasible and also demonstrated that LTP-T can outperform the 

overlay approach as represented by the Bundle Protocol (BP). The demonstration o f 

feasibility involved a complex Martian DTN emulation that justifies our claim that LTP-T 

is a viable DTN protocol. We also used a simple two-hop scenario to demonstrate that 

LTP-T can significantly outperform the BP when the intermediary can immediately begin 

forwarding packets.

We have thus addressed all o f the issues called for by the problem statement in Section 1.4.

7.3 Meeting the DTN Requirements

We now consider how LTP-T meets each o f the DTN requirements posed in Chapter 2.

R. 1 DTN protocols must operate even in the face o f  the total absence o f  an end-to-end 

connection.

This is amply demonstrated for LTP-T by our Martian network emulation.

R.2 DTN protocols should he able to operate (relatively efficiently) even when link or path 

latencies are o f  the order o f  minutes, hours or days.

Again, the Martian network emulation demonstrates that LTP-T meets this requirement.
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R.3 DTN protocols should support changes in the scheduling and/or contactahility o f  

nodes.

The Martian network emulation demonstrates that LTP-T meets this requirement, at least 

in a scheduled scenario. We have not demonstrated that LTP-T works where contacts are 

changing at a high frequency. However, our LTP-T implementation (LTPlib) includes a 

whos_listening () Service Provider Interface (SPI) designed for such cases. For 

example, i f  a M obile Ad-Hoc Networking (M ANET) routing protocol were used to support 

the IP layer, then, even without knowledge o f  how the specific MANET protocol works, 

the SPI could periodically send an Internet Control Message Protocol (ICMP) echo request 

m essage to determine which o f  a number o f  peers are currently contactable. In such a case, 

higher layers o f  LTPlib would then properly manage timers in the same way as in a 

scheduled scenario.

R.4 DTN protocols should he able to operate when the host hibernates or reboots in the 

“middle  ”  o f  a “session.  ”

LTPlib’s “disk” mode o f  operation allows LTP-T to meet this requirement. Alhough we 

have not demonstrated this specifically in Chapter 6, this mode was demonstrated by the 

SeNDT project’s lake water quality monitoring node. [MC07]

R.5 DTN protocols should be usable in system s where pow er conservation is the over­

riding system -level requirement.

As a DTN protocol, LTP-T itself does not specifically address this system -level 

requirement. One could envisage the routing and forwarding implementation selecting next 

hops partly on the basis o f  power consumption, but it is not clear how well this might 

work. With the LTPlib “disk” mode o f  operation however, one can use LTP-T in a power- 

conserving device. This was also demonstrated as part o f  the SeNDT project. [MC07]

R.6 DTN pro toco ls should generally attem pt to move data “towards ” the destination, even 

though some optim al routes may involve tem porarily moving data “a w a y” from  the 

destination.
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LTPlib depends on configured routes and/or schedules for this. The “towards” part is 

demonstrated by our use o f the Deep-Space Network (DSN) gateway node schedule 

described in Section 6.2.9. The “moving away” part can also happen with the current 

forwarding scheme, since we select the next hop on the basis o f  the 

w h o s _ l i s t e n i n g  () SPI, e.g. in the case o f the run shown in Appendix B.2.18 we see 

segments being sent via an orbiter, resulting in that case in a significant increase in overall 

latency before the orbiter can contact the lander. However, to be clear, we should point out 

that neither LTP-T nor LTPlib currently have an explicit concept o f “distance from the 

destination,” nor have we done work on route optimisation as part o f this thesis. 

Presumably some other DTN protocol could make explicit use o f such a concept, but we 

have shown that LTPlib can meet the requirement for our Martian emulation even without 

such an explicit distance concept.

R. 7 DTN protocols should not require simple, regular or strictly periodic nor cyclic 

patterns o f  connectivity, but should he able to benefit from such patterns where they exist.

LTP-T doesn’t require any such regularity and LTPlib is able to handle both periodic and 

aperiodic patterns via our scheduling setup. By providing the SPI as discussed above, we 

also allow for future additions in this respect.

R.8 DTN protocols should be able to operate in situations where applications or the 

environment determine duty-cycles.

The set o f socket options provided (see Section 5.4.7) allows LTPlib configuration and 

routes to be fully determined by the application with the same level o f control as using the 

default file-based configuration and scheduling options. The fact that developers are 

familiar with this method o f modifying communication stack behaviour is also relevant in 

meeting this requirement.

R.9 DTN protocols should not assume the same path is always used for application layer 

requests and responses.

LTP-T makes no such assumption. An application built on LTP-T can simply use different 

sockets, and hence LTP-T sessions, and different routes can be taken. While each LTP-T
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session does involve a single path, the path selected for an application layer request has no 

effect on the application-layer return path, which will consist o f a different set o f LTP 

sessions, and hence can use a different path through the DTN.

R.IO DTN protocols should he able to support a very wide range o f  data rates.

LTP is primarily designed to be used for deep-space communications and so is efficient in 

terms o f  bandwidth consumption. LTP-T inherits this efficiency, though care should be 

taken in how LTP-T extensions are distributed amongst LTP data segments. (LTPlib is 

currently wasteful in this respect.) While we have demonstrated LTP-T operating at low 

and medium data rates in the Martian emulation and other tests, we have not yet considered 

LI P-T operating at very high data rates (e.g. in the gigabit/second range). While there 

seems to be a clear potential for the use o f DTN protocols in such high-performance 

networks, (where the bandwidth-delay product is increased due to the bandwidth available 

rather than delay or disruption), we currently make no claims as to the suitability o f LTP-T 

for such environments.

R.l I DTN protocols must co-exist with, and he able to make use of, the existing Internet

Ll'P-T  is layered on top o f UDP and uses IP addressing and so can clearly make use o f the 

existing Internet. With no specific configuration, LTPlib will operate in an always-on 

mode that will work well on the existing Internet. So, LTP-T could be used on the existing 

Internet without any requirement for a “flag-day.” However, a study o f how mechanisms 

like TCP Friendly Rate Control (TFRC) might improve LTP-T’s Internet friendliness 

would be worthwhile and would increase one’s confidence in respect o f  this requirement. 

Similarly, studies addressing ways to ensure fairness for different application layer flows 

in an LTP-T driven DTN would be required before we could confidently say that LTP-T 

fully meets this requirement.

R .l2 DTN protocols should operate in the face o f  significant node mobility, even fo r  

infrastructure nodes.

LTP-T itself requires no new infrastructure nodes and all LTP-T nodes act as routers so 

LTP-T is well suited for use in scenarios with significant node mobility. Larger scale use
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o f LTP-T however, may require use o f the Domain Name System (DNS). For example, if 

routes, sources or destinations use DNS names rather than IP addresses. Such uses o f  DNS 

can be a challenge in some mobility cases.

R. 13 DTN protocols should he designed so as to he highly rohust in the face o f  DoS 

attacks.

For LTP-T, this mainly affects LTP, which has been specifically designed with Denial-of- 

Service (DoS) in mind, for example recommending random session identifiers in the 

security considerations part o f the LTP specification. [RA08] The LTP cookie and hop-by- 

hop authentication extensions [FA08] allow the anti-DoS “paranoia” level to be ramped 

up, either generally, or in response to events. At the LTP-T level, since we have no multi­

hop backwards signalling at all, it will be relatively hard to create DoS amplification 

attacks. This is in contrast to other protocols, like the BP, that have more complex 

signalling since which inherently increases the attack surface for implementations o f the 

protocol in question.

R.I4 DTN protocols should provide (or leverage) confidentiality and data integrity 

services.

L rP-T  does provide end-to-end data integrity and, via LTP, hop-by-hop integrity. We have 

decided not to attempt to define an end-to-end confidentiality service until more work has 

been done on the general topic o f  DTN key management.

In summary then, the LTP-T protocol, and/or our LTPlib implementation substantially 

meets all o f the DTN requirements posed in Chapter 2.

7.4 The Contribution

In this thesis we proposed the concept o f a delay- and disruption-tolerant transport 

protocol and defined one such protocol, LTP-T. We have demonstrated that LTP-T and our 

LTPlib implementation address many o f the issues identified in our problem statement and 

have shown that LTP-T meets the set o f requirements we derived for DTN protocols, on 

the basis o f our assessment o f the background work on DTNs.
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Our DTN transport concept, and LTP-T specifically, is proposed as an alternative to, but 

not as a replacement for, the overlay approach as exemplified by the BP. There are clearly 

deployment scenarios where the BP can work but where LTP-T cannot, for example, 

where different lower layers are in use on each DTN hop.

However, there are gains to be made from use o f a DTN transport - both in performance 

and simplicity. For instance, with LTP-T one can sometimes forward segments more 

promptly than the BP can forward bundles. In terms o f simplicity, the DTN transport 

model, with its restriction to on-path, single hop signalling is far simpler than the BP 

model o f custodians, multi-hop backwards signalling and potential off-path reporting. That 

simplicity is beneficial in many respects, for example, such simplicity enables one to more 

easily have more confidence in the security o f a DTN.

In summary, LTP-T offers a new option for use in the design o f DTNs with lower layers 

that can all be accessed via IP. The DTN transport concept (which could be instantiated in 

other protocols) also results in a simpler model than the overlay approach and so may 

prove to be a better option when it comes to including DTN functionality into standard 

Internet protocols.

7.5 Future Work

O f course, we do not assert that the work on DTN transports, nor on LTP-T, is complete -  

a fact highlighted in our discussion o f how LTP-T meets the set o f DTN protocol 

requirements. In this section we suggest directions for further work on the DTN transport 

concept and LTP-T.

In the near term we can clearly work to enhance and further test the LTPlib 

implementation with a view to enhancing and extending the network emulation. For 

example, we could build a more realistic model o f application layer traffic, and could 

include schedule distribution as part o f the emulation. Separately, we could extend the 

emulation to better support the use o f LTP-T in DTNs that are more dominated by frequent 

disruption (e.g. military tactical networks), rather than networks dominated by scheduling 

as in our Martian emulation.
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There is also an opportunity to further develop DTNs generally, by making use o f 

predictive methods (e.g. as described by Baliosian et. Al. [BA06]) for resource availability 

-  the addition o f such intelligence to DTN nodes may be required before larger scale DTN 

applications can be deployed.

We can also use our emulation setup to further analyse and the differences between the BP 

and LTP-T. For example, it would be interesting to investigate the effects o f custody 

transfer on the performance o f the BP and contrast that with the use o f  the red-part in LTP- 

r  blocks. In a similar vein, we plan to investigate the effects o f custody placement on DTN 

protocols along the lines o f the topology discussion from Chapter 4.

Work on DTN key management and authorization is planned to begin in the near term and, 

once that has progressed, we plan to add an end-to-end confidentiality service to LTP-T. 

Similarly, work on DTN congestion is at a relatively early stage, and we plan to implement 

and investigate the LTP-T congestion control scheme described in Chapter 5.

in the medium term, we will determine whether there is broader interest in the concept o f 

DTN transport, and specifically in LTP-T, in the DITMRG. If there is, we will provide a 

specification o f LTP-T in the form o f an internet draft so that others can also implement 

the protocol. Ultimately, there may be sufficient interest to begin work on some Internet 

standards-track DTN transport protocol(s), in which case, this work will form one amongst 

no doubt many, inputs to the ongoing development o f delay- and disruption-tolerant 

networking.
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Appendix A - Comparing LTP, LTP-T, the 
BP and SFTP
This Appendix presents additional results related to the one-hop tests described in Section 
6.1. In all cases below, (except as otherwise noted), each data-point is the average over 
five runs o f the relevant test.

One Hop Tests with 0ms LTT
100000

10000

>. 1000

File Size

sftp-average bp-average Itp-average Itp21kred-average Itpred-average

Figure A .l -  One hop tests with 0ms LTT (1 standard deviation error bars are shown for 
the SFTP and B-LTP data series)
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Figure A.2 - One hop tests with 1 ms LTT
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Figure A.3 - One hop tests with 10ms LTT
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One Hop Tests with 100ms LTT1000000
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Figure A .4 -  One hop tests with 100ms LTT
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Figure A .5 -  One hop tests with 1 s LTT
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One Hop Tests with longer LTTs
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Figure A.6 -  One hop tests with longer LTTs -  only for BP and LTP (100s BP single run, 
not averaged)
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Appendix B - Martian Emulation Runs

This Appendix contains diagrams of the test runs described in Chapter 6.2. Section 3.3.2 

provides details o f how to interpret these figures. W here the data transferred was an image, 

the image-as-received is also shown - in some cases where the test involved partial reliability 

and packet errors, these images can be seen to be corrupted.

In some cases, runs are included here which are o f  interest, but where, due to bugs (sub­

sequently fixed, unless otherwise stated) in the LTP-T implementation, the runs were not 

used in the goodput calculations shown in Chapter 6.2. All such runs are commented. A p­

pendix C presents the numeric data derived from the test runs that were used in the goodput 

calculations in Chapter 6.2 and also lists the relevant section number from this Appendix.

Figure B .l ,  (cropped from B.2.1 below), shows 

detail of  the negative vertical axis of the graphics 

used below (the same in all cases). As can be seen, 

each scheduled node in our Martian network em u ­

lation is shown on the negative y-axis. Rectangles 

coming down from the x-axis indicate periods dur­

ing which the node in question is availble to receive 

data, i.e. inbound contacts. In the figure, one can 

see that the dsn-gw has many such contacts, and Figure B. l :  Contacts details,

that there is a "burst" of contacts around 400-500 seconds into the run. (While this aspect of 

the plots is perhaps of limited value here, they are automatically generated and are useful in 

other contexts, e.g. when debugging.)

For traceability, the section titles below are taken from the log file names. The actual log 

files (and graphics) can be found below http://dtn.dsg.cs.tcd.ie/sft - see the RE A D M E there 

for details.

B.l Local Runs with no Additional Delay

There are no additional delays involved here, the sender and receiver are both on the same 

host, but rate control is turned on (sending segments at most every 20ms). In these cases, 

LTP was run with a schedule of 2 seconds on from each 10 seconds. (Ignore the contacts 

part o f the diagrams for these runs.)

These runs are not used in the calculations in Chapter 6.2.

100000

contaclj

I i 1

0 200 400 600 800 100C
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B.2 Error-Free Runs from Earth to Mars

This Section presents a set of runs where node PI I (on Earth) sends blocks to node MER- 

A (on Mars) via the dsn-gw node and whichever DSN Earth stations and/or orbiters are 

appropriate according to the prevailing schedule. The second run below shows the LTP 

block being split over two contacts between the Goldstone DSN station and the Mars Express 

orbiter.

B.2.1 20080206T22-33-36-run0

This is a nomimal all-green run.

O 200 400 600 aoo 1000 1200 1400 1600

B.2.2 20080206T22-33-36-runl
LTP-T run. 200e020eX22-33-3e run1 

LTT-810.B08&00 Ftie6iz»-824288 R«dlen-0 Goodpul-21 105.

OOOOO

O SOO 1500 2000
s«cor>d*

I pi1-rn4r ~ qom - rrf<
I  d a n  Q W  —  n f  t  o _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

This is a nominal all-green run 

showing the use of a second con­

tact.
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B.2.3 20080206T22-33-36-run2

Iooooo

y
M

o SOO 10OO 1500 2000 2500 3000 3500 4000

gold

This is a nomimal all-green run.

B.2.4 20080206T22-33-36-run3

400000 -

This is a nomimal all-green run.

2000 4000 6000 »000 10000
seconds

f - gold ........ ■ ody

B.2.5 20080206T22-33-36-run4

o SOO 1000 1500 2000 2500 3000 3500 4000
s e c o n d s

p«T̂lt>5r gold ody
d»n aw ' '■ mr a_____________________

This is a nomimal all-green run.
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B.2.6 20080206T22-33-36-run5

B.2.7

B.2.8

400000

O 200 400 600 aOO 1000 1200 1400
s«cor>ds

( pi' i fTwi — dsn — I Qoki

This is a nomimal all-green run.

20080206T22-33-36-run6

20080206T22-33-36-run7

This is a nomimal all-green run.

O 200 400 600 800 10OO

I pil -mf ' qv»

This is a nomimal all-green run.
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B.2.9 20080206T22-33-36-run8

B.2.10

B.2.11

'A si I n
O 200 400 600 800 10OO 1200 1400 1600

s e c o n t l e
I pi1-m«r dsn ow

T his  is a nom im al all-green run.

20080206T22-33-36-run9
LTP-T fun: 20080200T22-33-:»-runO

OOOOO

200 400 600 800 1000 1200

This is a nom im al all-green run.

QOM

20080207T11-47-44-runO

T his  is a nom inal all-green run.

O 200 400 600 800 10OO 1200 1400
seconds

2 1 1



1

B.2.12 20080207Tll-47-44-runl

O 200 400 600 8CX> tOOO 1200

[ t>il r n p i — <jsn flw — gokj  ̂ m5T"5

This  is a nom inal all-green run.

B.2.13 20080207Tll-47-44-run2

IOOOOO

400 600
seconds

800 1000

B.2.14 20080207Tll-47-44-run3

O 200 400 600 600 1000 1200 1400 1600
seconds

( - dtn qw~ ~ gold m^r a

This  is a nominal all-green run.

This  is a nominal all-green run.
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B.2.15 20080207Tll-47-44-run4

B.2.16

B.2.17

LTP T mn. 200e0207T11-47-44 ruii4

IOOOOO

O 200 400 BOO 800 1000 1200 1400
seconds

( p i 1 c y w ______________________     f lQ lc j___ ~_T__ :_____ r n g L ? - -

This  is a nominal  al l-green run.

20080207T1 l-47-44-run5

" tes! I

O 100 200 300 400 500 BOO 700 BOO OOO 
s»cond«

d>n gw ■ gold ~ nWt a

This  is a nominal  al l-green run.

20080207Tll-47-44-run6

I OOOOO

Ijisi-S

This  is a nominal  al l-green run.

O 200 400 600 BOO 1000 1200 1400 1600
s e c o n d s

213



B.2.18 20080207Tll-47-44-run7

400000

200000 '

O SOOO 10000 1&000 20000 2SOOO 30000 3GOOO 
s e c o n d s

pil -msr o<a<d mg* I

This is a nom inal all-green run. 

(W ith a significant delay before 

M G S  has a contac t with M E R -

A.)

B.2.19 20080207Tll-47-44-run8

200 400 600 800 tOOO
8*cor>d«

d»n Qw ------------ aoW ~ m<K~

This is a nom inal all-green run.

B.2.20 20080207Tll-47-44-run9

I OOOOO

!i

This  is a nom inal all-green run.

O 10O 200 300 400 500 600 700 OOO &00
seconcts

I pH -mar ■ ■ ■ <1*0 qw oold m»r a

214



B.2.21 20080214T14-46-35-run4

This is a nominal run, except 

that the test was terminated as 

the Report Segment from MER- 

A was in-flight. Transmission of 

the Report segment from MER- 

A was properly delayed as can 

be seen. (This is not used in Sec­

tion 6.2.)

B.3 Error-Free Runs from Mars to Earth

In these runs, blocks were sent from Mars (node M ER-B) to Earth (node P13), via whichever 

DNS Earth stations and orbiters are appropriate according to the prevailing schedule. There 

were no errors introduced and all blocks were fully red.

B.3.I 20080222T14-34-12-run2
L T P  T fun. 2 O O 0 O 2 2 2 T 1 4  3 4  12-run2 

L T T > e a 4 . e 2 3  Fri96a2«-I01037& RecHen- 1 aoodptit-30169.7

In this case, the Canberra node 

had to wait until the next morn- 

nig to send the Report segment 

to MER-B (due to the schedule). 

This run is not included in calcu­

lations in Section 6.2.

O 10000 20WX) 30000 40000

LTT-854 069 FiteSLre-5242ea RodJ«n- 1 Goodput-22447.7

O 200 400 600 800 1000 1200
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B.3.2 20080223T19-09-41-runl
LTP-T fun. 20080223T19-00-41 »un1 

L T T - e a O . a o e  File&jzs«IO10375 Redlen- 1 Qoodput-30222.e

O SOOO 1 coco 1 SOOO 20000 ̂ 5000 30000 3&000
s ^ o n d s

I c a n  rr>«t-b   p i3  —  — |

This is a nominal run.

B.3.3 20080224T18-30-22-run0
LTP-T run-. 20080224T18-30-22-run0 

LTT-604.109 Fil«»i2e - 1010375 Redl«n>-1 Ooodput-10&42.1

This is a nominal run, except 

the test was terminated as the 

last Report ackowledgement was 

in flight from MarsExpress to 

Madrid. This run is not included 

in the calculations in Section 6.2.

500 1 0 0 0  1SOO a o o o

B.4 Mars to Earth: 2K Red with 1 Percent errors

This section shows runs as in the previous secction but with the first 2K bytes of the block 

being red, and with 1 percent of packets from Mars to Earth being dropped (by the m2e 

router, using Netem). The initial report segments can be seen to only cover the 2K red part, 

and in some cases re-transmission is visible, followed by a final report segment covering the 

entire block.
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B.4.1 2008-03-03T17-52-15-run0
LTP T run. 2008-03-03T1 7-52-1 5-rur»0 

LTT—730.866 FtJesize—47475 Redten—2048 Goodput—3 1S44 I

O 500 1000 I 500 25002000
s e c o n d s

1 m g f  .b  — m a a r  p i 3  —  - -  ]

B.4.2 2008-03-03T17-52-15-runl

LTP-T run: 2008-03-03T17-S2-1 5-r\jn 1 
LTT.731.25 FM*siz»-47475 R«dl»n-204B Goodput-20270.8

SOO 1000 1SOOO 2000 3000
seconds

I rr>T-b — — madf ' — odv ___ pl3

This is a nominal run. The 

last message shown is the R e­

port Segment sent from Madrid 

at about 1400 seconds arriving at 

MER-B.

Here we see re-transmission of 

red Data segments from Odyssey 

to Madrid. The final Report 

segment shown is from Madrid. 

Since test runs are terminated 

approximately two LTTs after 

the initial set of blocks have ar­

rived at the destination node the 

last Report segment had not ar­

rived at Odyssey at that point. 

This run is not used in the cal­

culations shown in Section 6.2.

217



B.4.3 2008-03-03T17-52-15-run3

B.4.4

L T T -7 3 4 .3 1 2  F il«s)26-4747&  R edlen«204fi G o o d p u l-2 9 5 2 4

II

O lOOOO 20000 30000 40000 50000 60000 70000
e«cortde

b —  p i3  J

In this run the Goldstone node 

crashed after the block had been 

successfully delivered to the PI3 

node, but before the Report seg­

ment had been sent back to 

MER-B. MER-B then retrans­

mitted the last red Data segment 

twice before closing the LTP ses­

sion. In this case, the sched­

ule led to a significant delay be­

fore these re-transmissions could 

occur, hence the long duration 

here. (The scale of the diagram 

also leads to the Goldstone and 

PIS nodes’ being indistinguish­

able.) This run is not included in 

the calculations in Section 6.2.

2008-03-03T17-52-15-run4

This is a nominal run.

0 500 10OO 1500 2000 2500
s e o o n d s

1 m * r - b  — _ floM -  Pi3 I
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B.4.5 2008-03-03T17-52-15-run5

O 500 1000 1500 2000 2BOO 3000
s»conde

L    h .  - p t t y .   .

B.4.6 2008-03-03T17-52-15-run7
LTP-T run:2008-03-03T17-S2-1S-run7 

LTT-743.1 15 Fil»siz*-4747S R«dten-2048 Qoodpu1-31254.'

50000

40000

30000

I OOOO

I

SOO 1000 1500 2000o

1 ĉ n '    m»r-b ■ p«3 I

B.4.7 2008-03-03T17-52-15-run9
LTP-T run: 2008-03-03T1 7-52-1 5-mnO

50000

40000

30000

20000

I OOOO

O 500 lOOO 1500 2000 2500 3000

I &an mT-h — o«Jv   _P.^

In this run, we see the seg­

ments being delayed on board 

the Odyssey orbiter before being 

forwarded to Earth. The red part 

at arrival was 4556 bytes long, 

due to red part extension. Con­

trast run? below where the red 

part on arrival is shorter since 

there are fewer hops.

This is a nomimal run. The size 

o f the red part at arrival here was 

3795 bytes, which is shorter than 

in runS above, where the addi­

tional hop resulted in the red part 

being further extended.

This is a nominal run.
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B.5 Mars to Earth: 8K Red with 1 Percent errors

This section shows runs as in the previous section, but this time with the first 8K bytes of the 

block being red.

B.5.1 2008-03-06T17-51-08-runl
LTP-T tun; 2008-03 0611 7 S1 08-runl 

LTT-74S.020 F-il«6iza-4747S Redlsn>ao»6 Goodput-21100.<

This is another run where the 

Madrid node crashed. However, 

we can see the re-transmission o f 

the last red Data segment in this 

run. This run is not included in 

the calculations in Section 6.2.

B.5.2 2008-03-06T17-51-08-run2
LTP-T lun. 2 0 0 e - 0 3 - 0 6 T 1  7-51 -Oe-ruti2 

LTT-746 41  1 r « t e s i2 « - 4 7 4 7 &  Rodtan-»096 Goodpijl-21

This is a nominal run. The red 

length on arrival was 8855 bytes.

8

O SCO 1000 1&00 2000

BOOOO

40000

30000

20000

I  OOOO

2000 2SO OO 500 1000 1500

220



I

B.5.3 2008-03-06T17-51 -08-run3

B.5.4

B.5.5

500 1OOO 1S-OO 2000 25C>0
s e c o n d s

■p ............... rn«>tJr p i  3  ...............

In this run, we can see the Report 

segment from Madrid is delayed 

until the next contact with MER- 

B allows for its transmission.

2008-03-06T17-51-08-run4

40000

oo

This is a nominal run.

2008-03-07T13-28-06-runO

d a n  'ovv

This is a nominal run. We can 

see the image returned in this 

test. In this case there no packet 

errors occurred.
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B.5.6 2008-03-07T13-28-06-runl

B.5.7 2008-03-07T13-28-06-run2
L T P -T  cvin; 2<>00-0'^-07T 13-20-O < >-ri>n 2  

LT T -7 4 W  2 3 7  F ilw i^ «»-»4 7 4 7 6  R ^ t o o  0 o o « j p « j t - i; 0 3 0 £ '  «

lOOO 1 5 0 0O

In this run, a packet in the green 

part was dropped (1351 bytes 

from offset 9465 to 10816 were 

missing) and we can see the re­

sulting degradation of the image. 

The Canberra node also crashed 

in this case, so the graph doesn’t 

show the Report segments arriv­

ing back at MER-B. This run is 

not included in the calculations

in Section 6.2

This is a nominal run.
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B.5.8 2008-03-07T13-28-06-run3
1

B.5.9

B.5.10

5 0 0 1000 1SOO 2000o

This is a nom inal run.

I m e f - b  m a d r

2008-03-07T13-28-06-run4

o soo 1000 aooo

This is a nom inal run.

1 n > » f-b  —  r r ta d t

2008-03-07T13-28-06-run5

T his is a nom inal run.

O BOO 10O O  1 SOO 2 0 0 0  2 6 0 0  3 0 0 0
s e c o n d s

h "  ' — " m a 3 r  —— o « ^  n i3
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B.5.17 2008-03-08T14-35-48-run2

I T P  T  a o 0 a - 0 ^ - 0 f ‘T 1 d -JS -4 8 - iL ir iii’
L I  r - 7 b J  *#2/' f ile% »3e-‘ 4 7 4 ;^ fj F iecJlo Ji’'»O W > U ;

50000 K

40000 h I

30000 h

it'OOOO |-

t o c o o

«) hCX) 1 o o o  1 f to o  :;'f>'>o ? '« k >

1 Ci»0 —— » —» m f r - t ?  .........KiS......................J

B.5.18 2008-03-08T14-35-48-run3
L TP T lUn: P008 03-0»T 1 4 3f. 48 .unr< 

LI T-7&S 3S« Fil«».ise-474/‘i RecJk»n~W>W-; (

fsOOOO

40000

30000

20000 f

ÔC-OO

O 500 1000 15.0C' ÔOO

In this run, a green packet was 
dropped. The Canberra node 
also crashed, and so MER-B can 
be seen re-transmitting the last 
red Data segment. However, the 
image was delivered to the PI3 

node.

This is a nominal run.

B.5.19 2008-03-08T14-35-48-run4
LfP-r lun: 2008-0?-08T14-3S-4<? iu»<4 

LT T-765.73'> F 75 Rc-Jle«>-80yt5 Guodpul-il 346.

30000

tOOOO

2000 2500500 lOOO 1500O
s«cc»(v :'«

This is a nominal run, where a 
green segment (from 44616 to 
45968) was dropped.
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B.5.20 2008-03-08T14-35-48-run6
I

i

B.5.21

B.5.22

2000O 1000

This is a nominal run.

soconds
gold

2008-03-08T14-35-48-run7

50000

40000

30000

20000

I OOOO

This is a nominal run.

O SOO 1000 * 500 2000 2SOO

2008-03-08T14-35-48-run8

0 5000 10000 1SOOO 20000 25000 30000
secofxls

1 m»r b Qold — pi3 I

This is a nominal run, though 

one where the schedule resulted 

in a 7.5 hour delay between de­

livery o f the block from Gold- 

stone to PI3, and the time when 

Goldstone could transmit the Re­

port segment back to MER-B.
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B.5.29 2008-03-llT04-12-24-run7
t I P  T iur>. 1 {T04 12 24 run?

L T T - 7 6 7  2 0 3  7 4 7 5  R * d » e r > - 6 0 9 6  G o < x Jp u 1 -2 1  1 4 7

o o rii< :icis

O mo 200 3CkO 400 SOO 600 'OO ©LX->

In this run, the Canberra node 

crashed. A green segment was 

dropped.

B.5.30 2008-03-llT04-12-24-run8
r u n  . a tX iS - O J - 1 1 T 0 4 - 1  2 - 2 4 - f u n 8  
, r e - 4 M ? b  R e .d h 9 r* -.(K )9 « > a o o fJp * .« 1 -2 0 « l3

40000

This is a nominal run
JOOOO

{OOf»

B.5.31 2008-03-1 lT04-12-24-run9

400C<0

This is a nominal run

10000

ooo
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B.5.32 2008-03-13T17-42-02-run0
aoof.-! 0 3  1 3 X 1 /  -32 O if «unO  

• 4 7 4 7 5  R tK j!«n-5}«70C  G<x;>clpul —1 2 9

401X X )

This is a nominal run

?OOCXJ

t o o o o

noo tooo ifiOO 2000 2SOO 3000

B.5.33 2008-03-13T17-42-02-runl
L T P - I  f u n :  2 0 0 3 - 0 3 - 1  3T 1  7 - 4 2 -O S -iu ri 1 

L J 1  ' ' 4 4  ' 4 / ' 4 / ^ i  R e d l # > i i ’ - i J O W 5  O o c < J p i > t ' » i ; 0 ' a ; ? S .

O
s * c o m i s

In this run, the Goldstone node 

crashed and we can see the two 

re-transmissions of the late red 

Data segment from MER-B. One 

green segment was dropped.

B.5.34 2008-03-13T17-42-02-run2
L T P  T  t u n  : O'? 13 T 1 7 0 2  r i ) n 2

L T T  7 7  8 S 8  - 4 7 4 7 5  & 0 0 6  G o o i lp u t  -»20t>25

^OOOO

JOOO<I

This is a nominal run
30000

2UO<5(3

lOOOO



B.5.35 2008-03-13T17-42-02-run4

B.5.36

B.5.37

m.

& 0 0  t  OOO 1SOO i'OOO
s«icor>d6

This is a nominal run.

: iT>e« b' tnadi --------

2008-03-13T17-42-02-run7

This is a nominal run.

2008-03-13T17-42-02-run8

docx:*:)

30000

This is a nominal run, with 

green segment dropped.



B.5.38 2008-03-15T06-03-28-runl

This is a nominal run.

O SOO IOOO 1 SOO 2 0 0 0  2SOO
s»cor>ds

B.6 Fully Red with 1 Percent errors

This section is as before, but with the entire block fully red. 

B.6.1 2008-02-26T02-47-24-run0

3 0 0 0 0

I OOOO

8
it

II

o 5 0 0 1000 2000 2SOO

In this run, a Data segment was 

re-transmitted from Odyssey af­

ter being dropped. The last R e­

port segment shown is received 

by Goldstone from PI3 after 

the successful receipt o f  the re­

transmitted Data segment.

seconds
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B.6.2 2008-02-26T02-47-24-runl

B.6.3

B.6.4

T H"

O 500 10OO 1500 2000 2500 3000 3500

2008-02-26T02-47-24-run6

This run shows the Odyssey 

node receiving a Report seg­

ment from a previous run be­

fore the sending node (MER-B) 

had actually started transmitting. 

That Report segment was actu­

ally a re-transmission from runO 

above!

50000

40000

30000

20000

I OOOO

] •

2500O 500 I GOO 2000

This is a nominal run.

cmn ■ m t - t^

2008-02-26T18-51-37-run8

I ' I '  PI
1 GOO 2000 3000 4000 5000

seconds

-=------- ____eL3 J

This run sees a re-transmission 

of four dropped data segments 

from MER-B. The Goldstone 

node however, crashed due to 

a subsequently fixed bug before 

forwarding.



I
I

I B.7 Miscellaneous Runs

This section shows a set of various runs, using the latest version of the LTPlib software. 

Some bugs previously noted are fixed in these runs.

B.7.1 2008-04-1ST 16-37-01-runO

“ & ! i
W ...... |-

WJO 100<) l.S<K) ^>0<! ?SJX) .S'XIO 3SIK> 4(K «) 4ft<30 
s« c o i> c ts

This run shows a still extant 

implementation bug where the 

Madrid node marked the block 

as being finished before the re­

ceipt o f  the re-transmitted seg­

ments from M ER-B. As a re­

sult the PI3 node exited and so 

d idn’t receive the correct bytes 

after they eventually arrived at 

Madrid. The bug has no effect 

on Goodput, but its effect on the 

resulting image can be seen!

B.7.2 2008-04-16Tll-45-31-runO

toooo

This is a nominal run.
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B.7.3 2008-04-17T10-29-43-run0

t T P  T  r u n - 2 0 0 «  0 4  tT T I O  i ^ - 4 3  r n n 0  
t  T T *  72®  9 5 2  F ite # 'Z * » -4  7 4  7fe R«»rdh»ri-.^''04‘8  «_ io< xJp» /l-860S  .3

»JO O  4CKH) 6>;>00 8 0 0 0  » 0 0 0 0  t;?<!CX)O
SHCC-SftUS

T .;:on  — - ............  Cl3r> g w  * ^ g »
I P ‘ 1 •rr*?.'!.  . fT**  ̂ ^  ............

B.7.4 2008-04-17T10-29-43-runl
L T P -T  fur>. 2 C J 0 8 -0 - l-1 7 T 1 0 -2 S '* 4 3 -f i« i1  

L T T - /.S O  1 0 1  R .;-dJ.;.n-**040 C ii; .o t1 |x i1 -8 5 .ia .7 i

O SOO 1 SOO ? 0 0 0  :>500

In this run, the Canberra node 

re-transmitted its last red data 

segment due to a timer'expiry. 

(This happens since timers have 

a 1-second granularity, so som e­

times trigger just before re­

ceipt of the required Report.) 

This re-transmission triggered 

some additional report segments 

which are visible in the dia­

gram, but the run is consid­

ered nominal since this bug sim­

ply adds unnecessary report re­

transmissions.

This is a nominal run. The last 

"spike" in the graph shows MGS 

forwarding the entire block to 

M ER-A - the two cannot be dis­

tinguished in this view, but are 

distinct in the data.

236



B.7.5 2008-04-17T10-29-43-run2

B.7.6

B.7.7

50000

40000

30000

20000

I OOOO

O 500 1000 1500 2000

This is a nom inal run. T h e  last 

"spike" in the graph  shows M G S  

fo rw ard ing  the entire  b lock to 

M E R -A  - the tw o cannot be d is ­

t inguished  in this view, but are 

distinct in the data.

2008-04-17T10-29-43-run3

2008-04-17T10-29-43-run4

This is a nom inal run.

This is a nom inal run.

O bOO 10OO t bOO 2000 2500 3000 3SOO
s e c o n d s
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B.7.8 2008-04-20T22-43-48-run0
L T P  T  l u n ;  2008-04 aOT22-43-48 m n O  

L T T - 7 4 5 .4 1  1 F i le & l2 « w 5 2 4 2 8 a  B e d i e n - 2 0 4 &  G o o d p u l - 10604.

IOOOOO

o n t a c ^  ^

1
O SOOO 10000 ISOOO soooo

S A C o n d s
I p i1 - m « r  ^  9 o k i  m g *

B.7.9 2008-04-21T12-26-07-run0
LTP-T lun: 2008-04-21 T 12-26-07-run0 

LTT-748.09 Fil«sjz«- 131072 R»dl«n-204e Goociput-7978.0{

This run succeeded, though in­

volved an unnecessary Report 

exchange between MGS and 

Goldstone due to the timer ex­

piry granularity issue - a timer 

expired just before the expected 

Report acknowledgement was 

received at MGS from Gold­

stone causing a re-transmission 

of the Report segment.

1ooooo

o 1SOOO 20000

This is a nominal run.

B.7.10 2008-04-21T12-26-07-runl
LTP-T fun: 2008 04 21T12 26 07 mnl 

LTT-740.237 FHsftiz*-131072 n*dl«n-204fi Goodpuf-i

1ooooo

o n ia c i i

O 10000 20000 30000 40000 50000 60000 
s e c o n d s

I p l i r r f r  —  m f td r
I d « n  g w     m r  a _______________________

This run succeeded, though in­

volved an unnecessary Report 

exchange between MarsExpress 

and Madrid due to the timer ex­

piry granularity issue previously 

mentioned. This run is also no­

table for its duration - it began 

at 2008-04-21 19:28:21 and only 

finished at 2008-04-22 13:30:04, 

a total of 18 hours!
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B.7.11 2008-04-21T12-26-07-run2

B.7.12

B.7.13

ooooo

eooo 8000 1 oooo 12000o 2000

This  is a nominal  run.

2008-04-21T12-26-07-run3

0000c

5 0 0  1 0 0 0  t BOO 2 0 0 0  2BOO 3 0 0 0  3SOOO

This  is a nominal  run.

s e c o n d s  
m a d r  —  •

2008-04-21T12-26-07-run4

1 5 0 0 0  2 0 0 0 0  2SO O O  3 0 0 0 0  3SOOO

This  is a nominal  ( though long) 

run.
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Appendix C - Martian Emulation Test Result
Section Title Itt filesize redlen goodput duration tim eused
B.2 1 20080206T22-33-36 runO 819.6085 524288 0 16319.7 1567.24 32.126
B.2 2 20080206T22-33-36 run l 819.6085 524288 0 21105.8 2168.17 24.841
B.2 3 20080206T22-33-36 run2 819.6085 524288 0 16265.6 4268.2 32.233
B.2 4 20080206T22-33-36 run3 819.6085 524288 0 16275.7 11305.4 32.213
B.2 5 20080206T22-33-36 run4 819.985 524288 0 16301 3887.22 32.163
B.2 6 20080206T22-33-36 run5 819.985 524288 0 23151.5 1496.24 22.646
B.2 7 20080206T22-33-36 run6 820.3615 524288 0 22907.7 1258.79 22.887
B.2 8 20080206T22-33-36 run7 820.3615 524288 0 22830.9 1010.7 22.964
B.2 9 20080206T22-33-36 run8 820.7385 524288 0 23507.5 1589.16 22.303
8.2 10 20080206T22-33-36 run9 820.7385 524288 0 23508.6 1144.68 22.302
B.2 11 20080207T11-47-44 runO 821.1155 524288 0 22876.7 1370.47 22.918
B.2 12 20080207T11-47-44 run l 821.1155 524288 0 23048.7 1184.66 22.747
B.2 13 200802Q7T11-47-44 run2 821.1155 524288 0 23054.7 997.329 22.741
B.2 14 20080207T11-47-44 run3 821.4925 524288 0 23269.6 1605.88 22.531
B.2 15 20080207T11-47-44 run4 821.4925 524288 0 23089.3 1360.97 22.707
B.2 16 20080207T11-47-44 run5 821.869 524288 0 23431.9 889.119 22.375
B.2 17 20080207T11-47-44 run6 821.869 524288 0 23064.9 1604.02 22.731
B.2 18 20080207T11-47-44 run7 824.504 524288 0 16302.5 33506.7 32.16
B.2 19 20080207T11-47-44 run8 824.504 524288 0 20690.1 1048.73 25.34
B.2 20 20080207T11-47-44 rung 824.504 524288 0 23530.7 862.236 22.281
B.3 2 20080223T19-09-41 run l 689.898 1019375 -1 30222.5 36381.5 33.729
B.4 1 2008-03-03T17-52-1S runO 730.866 47475 2048 31544.8 2842.27 1.505
B.4 4 2008-03-03T17-52-15 run4 740.437 47475 2048 30335.5 2831.84 1.565
B.4 5 2008-03-03T17-52-15 run5 740.819 47475 2048 20057 2978.79 2.367
B.4 6 2008-03-03T17-52-15 run7 743.115 47475 2048 31254.1 2259.46 1.519
B.4 7 2008-03-03T17-52-15 run9 743.88 47475 2048 19731.9 2990.66 2.406
B.5 2 2008-03-06T17-51-08 run2 745.411 47475 8096 21520.9 2266.95 2.206
B.5 3 2008-03-06T17-51-08 run3 745.793 47475 8096 20271.1 2827.14 2.342
B.5 4 2008-03-06T17-51-08 run4 746.177 47475 8096 20758.6 2826.46 2.287
8.5 5 2008-03-07T13-28-06 runO 748.472 47475 8096 21356.3 2275 2.223
8.5 7 2008-03-07T13-28-06 run2 749.237 47475 8096 20305.8 2820.67 2.338
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start end nodes nodelist
2008-02-06 22:39:03.127 2008-02-06 23:05:10.366 5 pil-mer+dsn gw +gold +mer a +mex
2008-02-06 23:29:02.180 2008-02-07 00:05:10.355 5 pil-mer+dsn gw +gold +mer a +mex
2008-02-07 00:50:02.148 2008-02-07 02:01:10.345 5 pil-mer+dsn gw +gold +mer a +mex
2008-02-07 02:24:45.126 2008-02-07 05:33:10.496 5 pil-mer+dsn gw +goid +mer a +ody
2008-02-07 06:00:23.129 2008-02-07 07:05:10.349 5 pil-mer+dsn gw +goid +mer a +ody
2008-02-07 07:35:37.209 2008-02-07 08:00:33.451 4 pil-mer+dsn gw +goid +mer a
2008-02-07 08:25:41.051 2008-02-07 08:46:39.838 4 pil-mer+dsn gw +goid +mer a
2008-02-07 09:15:54.303 2008-02-07 09:32:45.008 4 pil-mer+dsn gw +goid +mer a
2008-02-07 10:06:16.198 2008-02-07 10:32:45.360 4 pil-mer+dsn gw +gold +mer a
2008-02-07 10:55:27.510 2008-02-07 11:14:32.193 4 pil-mer+dsn gw +goid +mer a
2008-02-07 11:51:42.151 2008-02-07 12:14:32.619 4 pil-mer+dsn gw +gold +mer a
2008-02-07 12:40:54.002 2008-02-07 13:00:38.664 4 pil-mer+dsn gw +gold +mer a
2008-02-07 13:30:05.494 2008-02-07 13:46:42.823 4 pil-mer+dsn gw +gold +mer a
2008-02-07 14:19:57.316 2008-02-07 14:46:43.195 4 pil-mer+dsn gw +gold +mer a
2008-02-07 15:10:06.130 2008-02-07 15:32:47.102 4 pil-mer+dsn gw +gold +mer a
2008-02-07 15:59:46.823 2008-02-07 16:14:35.942 4 pil-mer+dsn gw +gold +mer a
2008-02-07 16:33:57.493 2008-02-07 17:00:41.515 4 pil-mer+dsn gw +gold +mer a
2008-02-07 18:38:43.677 2008-02-08 03:57:10.425 5 pil-mer+dsn gw +gold +mer a +mgs
2008-02-08 04:29:22.893 2008-02-08 04:46:51.626 4 pil-mer+dsn gw +gold +mer a
2008-02-08 05:18:30.443 2008-02-08 05:32:52.679 4 pil-mer+dsn gw +goid +mer a
2008-02-23 21:03:12.030 2008-02-24 07:09:33.483 3 can +mer-b+pi3
2008-03-03 18:19:00.004 2008-03-03 19:06:22.269 3 mer-b+madr +pi3
2008-03-05 20:19:58.097 2008-03-05 21:07:09.932 3 mer-b+gold +pi3
2008-03-05 22:04:57.788 2008-03-05 22:54:36.579 4 can +mer-b+ody +pi3
2008-03-06 10:55:00.014 2008-03-06 11:32:39.473 3 can +mer-b+pi3
2008-03-06 14:04:57.754 2008-03-06 14:54:48.417 4 can +mer-b+ody +pi3
2008-03-06 22:42:29.020 2008-03-06 23:20:15.969 3 mer-b+madr +pi3
2008-03-07 00:20:30.038 2008-03-07 01:07:37.176 3 mer-b+madr +pi3
2008-03-07 02:07:51.025 2008-03-07 02:54:57.484 3 mer-b+madr +pi3
2008-03-07 13:55:20.098 2008-03-07 14:33:15.096 3 can +mer-b+pi3
2008-03-07 19:08:09.090 2008-03-07 19:55:09.758 3 mer-b+madr +pi3



Section Title Itt filesize redlen goodput duration
B.5 8 2008-03-07T13-28-06 run3 749.62 47475 8096 21658.3 2278.92
B.5 9 2008-03-07T13-28-06 run4 750.002 47475 8096 21251.1 2280.56
B.5 10 2008-03-07T13-28-06 runs 750.385 47475 8096 13231.6 3017.45
B.5 11 2008-03-07T13-28-06 run6 750.385 47475 8096 20262.5 2281.69
B.5 12 2008-03-07T13-28-06 run8 751.149 47475 8096 20543.1 2283.57
B.5 13 2008-03-07T13-28-06 run9 751.532 47475 8096 13317 2499.82
B.5 14 2008-03-08T09-45-25 runO 752.297 47475 8096 13373.2 3025.17
B.5 15 2008-03-08T14-35-48 runO 753.062 47475 8096 13060.5 3028.4
B.5 16 2008-03-08T14-35-48 runl 753.445 47475 8096 21071.9 2290.73
B.5 18 2008-03-08T14-35-48 run3 755.356 47475 8096 20596.5 2296.74
B.5 19 2008-03-08T14-35-48 run4 755.739 47475 8096 21346.7 2811.71
B.5 20 2008-03-08T14-35-48 run6 756.121 47475 8096 21628.7 2298.39
B.5 21 2008-03-08T14-35-48 run7 756.504 47475 8096 20498.7 2806.16
B.5 22 2008-03-08T14-35-48 run8 756.886 47475 8096 21034.6 29218.2
B.5 23 2008-03-08T14-35-48 run9 758.797 47475 8096 21550.2 2814.17
B.5 24 2008-03-11T04-12-24 runl 765.293 47475 8096 21938.5 2807.63
B.5 25 2008-03-11T04-12-24 run2 765.675 47475 8096 21638.6 2807.04
B.5 26 2008-03-11T04-12-24 run3 765.675 47475 8096 21015.9 2328.17
B.5 27 2008-03-11T04-12-24 run4 766.057 47475 8096 21034.6 2328.55
B.5 28 2008-03-11T04-12-24 run6 766.821 47475 8096 21317.9 2803.03
B.5 30 2008-03-11T04-12-24 runs 767.585 47475 8096 20813.2 2319.07
B.5 31 2008-03-11T04-12-24 run9 767.967 47475 8096 13089.3 2430.63
B.5 32 2008-03-13T17-42-02 runO 776.744 47475 8096 12911.3 3123.51
B.5 34 2008-03-13T17-42-02 run2 777.888 47475 8096 20525.3 2364.23
B.5 35 2008-03-13T17-42-02 run4 780.555 47475 8096 21658.3 2372.08
B.5 36 2008-03-13T17-42-02 run7 781.698 47475 8096 21638.6 2375.96
B.5 37 2008-03-13T17-42-02 runS 782.08 47475 8096 21317.9 2376.3
B.5 38 2008-03-15T06-03-28 runl 790.072 524288 8096 21280.5 2782.53
B.6 3 2008-02-26T02-47-24 run6 702.149 47475 -1 20040.1 2433.34
B.7 2 2008-04-16T11-45-31 runO 724.74 47475 -1 12865.9 1473.38
B.7 3 2008-04-17T10-29-43 runO 728.952 47475 2048 8609.9 12812.2

timeused start end nodes nodelist
2.192 2008-03-07 20:55:26.077 2008-03-07 21:33:24.992 3 mer-b+madr +pl3
2.234 2008-03-07 22:29:58.005 2008-03-07 23:07:58.570 3 mer-b+madr +pl3
3.588 2008-03-08 00:04:57.641 2008-03-08 00:55:15.087 4 mer-b+madr +ody +pi3
2.343 2008-03-08 01:29:58.076 2008-03-08 02:07:59.764 3 mer-b+madr +pl3
2.311 2008-03-08 04:30:00.106 2008-03-08 05:08:03.677 3 mer-b+madr +pl3
3.565 2008-03-08 06:04:57.815 2008-03-08 06:46:37.631 4 mer-b+gold +mgs +pl3

3.55 2008-03-08 10:04:57.872 2008-03-08 10:55:23.047 4 mer-b+gold +ody +pi3
3.635 2008-03-08 15:04:57.623 2008-03-08 15:55:26.026 4 can +mer-b+ody +pi3
2.253 2008-03-08 16:42:53.024 2008-03-08 17:21:03.751 3 can +mer-b+pi3
2.305 2008-03-09 02:30:08.015 2008-03-09 03:08:24.758 3 mer-b+gold +pi3
2.224 2008-03-09 04:08:45.646 2008-03-09 04:55:37.354 3 mer-b+madr +pi3
2.195 2008-03-09 07:43:01.006 2008-03-09 08:21:19.396 3 mer-b+gold +pi3
2.316 2008-03-09 09:21:44.607 2008-03-09 10:08:30.763 3 mer-b+madr +pl3
2.257 2008-03-09 11:08:54.483 2008-03-09 19:15:52.675 3 mer-b+gold +pi3
2.203 2008-03-09 20:21:48.011 2008-03-09 21:08:42.180 3 mer-b+goid +pi3
2.164 2008-03-11 06:22:27.060 2008-03-11 07:09:14.694 3 mer-b+gold +pi3
2.194 2008-03-11 08:09:29.015 2008-03-11 08:56:16.051 3 mer-b+gold +pi3
2.259 2008-03-11 09:56:30.150 2008-03-11 10:35:18.325 3 mer-b+gold +pl3
2.257 2008-03-11 11:43:31.045 2008-03-11 12:22:19.591 3 can +mer-b+pl3
2.227 2008-03-11 15:09:37.021 2008-03-11 15:56:20.049 3 can +mer-b+pl3
2.281 2008-03-11 18:46:44.062 2008-03-11 19:25:23.131 3 mer-b+gold +pl3
3.627 2008-03-11 20:28:57.489 2008-03-11 21:09:28.124 4 mer-b+gold +mgs +pl3
3.677 2008-03-13 18:04:57.421 2008-03-13 18:57:00.927 4 can +mer-b+ody +pi3
2.313 2008-03-14 00:57:19.002 2008-03-14 01:36:43.232 3 mer-b+gold +pl3
2.192 2008-03-14 15:44:14.005 2008-03-14 16:23:46.081 3 mer-b+madr +pl3
2.194 2008-03-14 20:57:34.080 2008-03-14 21:37:10.040 3 mer-b+gold +pl3
2.227 2008-03-14 22:44:19.104 2008-03-14 23:23:55.405 3 mer-b+gold +pl3

24.637 2008-03-16 16:24:56.075 2008-03-16 17:11:18.609 3 mer-b+madr +pi3
2.369 2008-02-26 12:11:28.033 2008-02-26 12:52:01.369 4 can +mer-b+ody +pi3
3.69 2008-04-16 12:05:56.281 2008-04-16 12:30:29.661 4 mer-b+gold +ody +pi3

5.514 2008-04-17 10:49:29.012 2008-04-17 14:23:01.255 5 can +pil-mer+dsn gw +mer a +mgs
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Section Title
B.7 4 2008-04-17T10-29-43
B.7 5 2008-04-17T10-29-43
B.7 6 2008-04-17T10-29-43
B.7 7 2008-04-17T10-29-43
B.7 8 2008-04-20T22-43-48
B.7 9 2008-04-21T12-26-07
B.7 10 2008-04-21T12-26-07
B.7 11 2008-04-21T12-26-07
B.7 12 2008-04-21T12-26-07
B.7 13 2008-04-21T12-26-07
B.7 14 2008-04-23T22-05-14
B.7 16 2008-04-23T22-05-14
B.7 17 2008-04-23T22-05-14
Statistics

Columns are as follows: 
Section 
Title

LIT
Filesize
Redlen
Goodput

Itt filesize redlen goodput
ru n l 730.101 47475 2048 8518.75
run2 730.484 47475 2048 8392.26
run3 730.866 47475 2048 11901.5
run4 731.25 47475 2048 12012.9
runO 745.411 524288 2048 10604.7
runO 748.09 131072 2048 7978.09
ru n l 749.237 131072 2048 9420.15
run2 752.679 131072 2048 9400.56
run3 753.827 131072 2048 9528.35
run4 754.209 131072 2048 9556.84
runO 758.797 47475 32000 22257.4
run3 760.708 47475 32000 21337.1
run4 761.091 47475 32000 22163.9
Average 770.2169533 205871.9467 5279.107 19214.46
Stdev 34.6041729 235369.9349 6588.205 5466.155
Min 689.898 47475 -1 7978.09
Max 824.504 1019375 32000 31544.8
Total 15440396 Bytes
Total 15078.51172 KB

duration timeused start
3008.9 5.573 2008-04-17 15:31:52.434 2008-04-
2224.1 5.657 2008-04-17 17:29:14.275 2008-04-

3283.25 3.989 2008-04-17 19:11:38.843 2008-04-
3439.13 3.952 2008-04-17 21:09:04.464 2008-04-
23320.3 49.439 2008-04-20 23:03:35.331 2008-04-
20470.5 16.429 2008-04-21 12:45:53.663 2008-04-
64902.2 13.914 2008-04-21 19:28:21.891 2008-04-
12256.7 13.943 2008-04-22 14:40:56.368 2008-04-
3413.06 13.756 2008-04-22 19:08:19.966 2008-04-
34218.4 13.715 2008-04-22 21:05:45.727 2008-04-
2307.03 2.133 2008-04-23 22:30:15.018 2008-04-
2312.12 2.225 2008-04-24 08:43:15.094 2008-04-
2809.13 2.142 2008-04-24 10:22:05.255 2008-04-

5740.811 10.82075
10402.39 11.57899

862.236 1.505
64902.2 49.439

430560.8 811.556 Seconds

end nodes nodelist
17 16:22:01.334 5 pil-mer+dsn gw -t-madr -i-mer a +mgs
17 18:06:18.378 5 pil-mer+dsn gw -^madr -^mer a +mgs
17 20:06:22.089 4 pil-mer-t-dsn gw -fmadr +mer a
17 22:06:23.598 4 pil-mer-fdsn gw -fgold -fmer a
2105:32:15.583 5 pil-mer-^dsn gw +gold -i-mer a +mgs
21 18:27:04.138 5 pil-mer-fdsn gw +madr +mer a +mgs
22 13:30:04.132 5 pil-mer-i-dsn gw +madr +mer a +mex
22 18:05:13.029 5 pil-mer+dsn gw +madr +mer a +mgs
22 20:05:13.024 5 pil-m er+dsn gw +madr +mer a +mgs
23 06:36:04.082 5 pil-mer+dsn gw +gold +mer a +mgs
23 23:08:42.051 3 mer-b+gold +pi3
24 09:21:47.209 3 mer-b+gold +pi3
24 11:08:54.389 3

3.747
0.773

3
5

mer-b+madr +pi3

Duration 
Time used 
Start 
End 
Nodes 
Nodelist

IS tne lengtn or tne rea part as input to  itpa ( - i  means all) 
is the measured Martian Goodput fo r the run

is the elapsed (wall) time for the run
is the "non-gap" time for the run (see Section 6.2)
is the wall-clock time at which the run started (incl. Milliseconds)
is the wall-clock time at which the run ended (incl. Milliseconds)
is the number of nodes involved in the run
lists the set of nodes involved

is a pointer to  the related part of Appendix B. 
is the title  o f the relevant section and a pointer 
to the relevant directory below 
http://dtn.dsg.cs.tcd.ie/sft/ 
is the Light Trip Time for the run 
is the size of the file transferred

244


