
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin 

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and 
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing 
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property 
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR 
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources 
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in 
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal 
conventions. Where specific permission to use material is required, this is identified and such 
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the 
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity 
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising 
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific 
use constraints, details of which may not be explicitly described. It is the responsibility of potential and 
actual users to be aware of such constraints and to abide by them. By making use of material from a 
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the 
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the 
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & 
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from 
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or 
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for 
your research use or for educational purposes in electronic or print form providing the copyright owners 
are acknowledged using the normal conventions. You must obtain permission for any other use. 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has 
been supplied on the understanding that it is copyright material and that no quotation from the thesis 
may be published without proper acknowledgement.



Electron-Hole Excitations
and

Optical Spectra 
of Rare Gas Solids

Svjetlana Galamic-Mulaomerovic

A Thesis submitted to 
The University of Dublin 

Trinity College 
for the degree of 

Doctor of Philosophy

DEPARTMENT OF PHYSICS 
TRINITY COLLEGE 

UNIVERSITY OF DUBLIN

February 2004 
©S. Galamic-Mulaomerovic & University of Dublin



^TRINITYCOLLEGE^

2 3 JUN 2004

^  LIBRARY DUBLIN ^



Declaration

This thesis is submitted by the undersigned to the University of Dublin for examination 

for the degree of Doctor of Philosophy.

This thesis has not been submitted as an exercise for a degree to any other university.

With the exceptions of the assistance noted in the acknowledgments, this thesis is en

tirely my own work.

I agree that the Library of the University of Dublin may lend or copy this thesis upon 

request.

Svjei

February 2004 

Dublin



Acknowledgements

I would like to thank everyone that has supported me during this work:

Foremost, I am extremely grateful to my supervisor, Dr. Charles Patterson for his contin

ual guidance and support, for taking an active interest in all aspects of this research, for 

all his ideas and suggestions that made this work possible and for his patience with me in 

lieu of frustration.

This work would never be so successful without the scientific support and suggestions I 

received from my colleagues, Dr. Conor Hogan and Dr. Michael Kuzmin, and for that I 

am very grateful. I am indebted to Prof. Nicholas Harrison and Prof. Vic Saunders for 

letting me to change their CRYSTAL code and helping me with that. I would also like to 

acknowledge Dr. Donal Mackernan and Andrew Rowan for some proof-reading. I owe 

my thanks to Dr. Simon Cox, Dr.Simon Elliot and Dr. Marco Nicastro for discussions on 

various scientific issues.

Many thanks to the staff of Trinity Center for High Performance Computing, in particu

lar Dr. Geoff Bradley and Robert Crosbie for much help and advice with computational 

matters and for providing me with extra accounts and CPU time on their computer facil

ities. I would also like to thank to my husband, Ernad for his professional advises with 

programming issues.

For financial support I would like to acknowledge the following Enterprise Ireland grants: 

SC/99/255 on ’’Numerical study of excitons and plasmons in materials” and SC/00/267 

on ’’Electronic structure of strongly correlated materials manganites and cuprates” .

Many thanks to my husband for all his support and encouragements, especially at times 

when things did not work very well and to my daughter as she was source of my moti

vation. I would also like to use this opportunity to apologize them for many nights and 

weekends they had to spend in my absence. I wish to thank to my parents for all their 

support during my education, and to my parents-in-low for their encouragement.

Finally, thanks to all inhabitants of the lab over the years for living up the place: Wiebke, 

Lorenzo, Andrew, James, Gemma, Joanne, Garry, Paul, Donal, Nikos, Lola, Marco, 

Gosia, Przemek, Finn, Conor, Geoff, Michael, Simon E., Simon C., Sadhbh, and Kate.



List of Publications

1. M. Nicastro, S. Galamic-Mulaomerovic and C. H. Patterson, Multipolar contribu

tions to electron self-energies: extreme tight binding model. J. Phys.: Condens. 

Matter 13, 1212-1231 (2001).

2. S. Galamic-Mulaomerovic C. H. Patterson, Eigenfunctions o f the Inverse Dielectric 

Functions and Response Functions o f Silicon and Argon, Phys. Stat. Sol. (a) 188, 

No. 4. 1291-1296(2001)

3. S. Galamic-Mulaomerovic and C. H. Patterson Optical spectra o f rare gas solids - 

in preparation



Summary

This thesis is a theoretical study of the optical and dielectric properties of semiconduc

tors and insulators. The quantity that defines the relationship between measurable optical 

properties and electronic structure of materials is the macroscopic dielectric function 

£:Q^(q, cj) . The aim of this thesis is accurate calculation and interpretation of the lon

gitudinal dielectric function by highly reliable ab initio techniques. In order to achieve 

this, two types of excitations of an electronic system are relevant: single-particle excita

tions and electron-hole excitations. The key concept in our approach is to describe these 

excitations with the corresponding one- and two-particle Green’s functions. A recently 

developed approach, which combines three computational techniques, was employed in 

the study. Firstly, density functional and Hartree-Fock methods were used in ground 

state calculations to generate non-interacting single-particle Green’s functions. In the 

second step, single-particle excitations were studied using the G W  approximation to the 

electron self-energy operator. Finally, the electron-hole interaction was calculated and 

a Bethe-Salpeter equation solved, leading to coupled electron-hole excitations. This ap

proach allows bound exciton states to be studied and entire optical spectra calculated. In 

addition, the influence of local field effects and single-particle excitations was examined 

separately. The importance of including both single-particle and electron-hole excitations 

in calculations of the dielectric function is highlighted.

Ground state calculations were carried out using density functional theory for silicon 

and rare gas solids; neon, argon, krypton and xenon. The Hartree-Fock method was used 

for the calculation of non-interacting Green’s functions of CU2O. The formalism adopted 

in these calculations is the linear combination of atomic orbitals (LCAO) scheme, in 

which the electronic Bloch functions are expressed in a basis of localised Gaussian or

bitals.

The reliability of G W  calculations within LCAO approach is carefully checked by 

comparing calculated band structure for Si with earlier calculations and experimental 

data. Comparison is made between all-electron Gaussian orbital basis sets and our pseu

dopotential calculation for Si. Both types of basis sets gave accurate band structures for



the states around the band gap. The valence band width was described very accurately by 

the all electron basis set for Si. A detailed analysis of the GW  band structure is given for 

the rare gas solids. The GW  self-energy correction improved DFT band structures in all 

rare gas solids yielding band gaps and valence band widths in very good agreement with 

experimental data. The GW  self-energy calculation was applied to CU2O and signifi

cant improvement of the Hartree-Fock band structure was obtained, however quantitative 

agreement with the experimental band structure was not achieved due to exaggerated 

Hartree-Fock eigenvalues.

Two-particle excitations and optical spectra are given for Si and the rare gas solids. 

It is shown that inclusion of local field effects and quasiparticle energies yields poor 

agreement with experimental spectra for all materials studied. Inclusion of the electron- 

hole interaction (excitonic effects) in optical properties calculations improved agreement 

between the computed macroscopic dielectric functions and experimental data. It is also 

shown that local field effects may correct energy loss functions and improve agreement 

with experiment at a higher energies.
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Chapter 1 

Introduction

The interaction of light with matter, manifested in optical spectra, plays a central role 

in physics and chemistry. Optical spectra are used to characterise and manipulate mate

rials and they form basis for a vast variety of spectroscopic methods and technological 

applications. On this basis, a detailed understanding and calculation of excited electronic 

states in materials and corresponding optical spectra are of great importance. Calculated 

spectral data can help to interpret experimental spectra, to develop a more detailed under

standing of the structure of materials and identify some specific features in the structure 

e.g. defect levels. This is particularly important for novel materials under specific condi

tions e.g. high pressure, and for systems that are of technological interest such as light- 

emitting devices, opto-electronic applications, or photovoltaics. Moreover, spectral data 

allow for the identification of fundamental physical processes in the electronic structure 

of materials and for careful analysis and understanding of interaction, correlation and 

coupling effects in the electronic system.

The quantity that defines the relationship between the measurable optical properties 

and electronic structure of materials is the macroscopic dielectric function,

The aim of this thesis is accurate calculation and interpretation of the longitudinal di

electric function by highly reliable ab initio techniques. In order to achieve this, two 

types of excitations of an electronic system are relevant: single-particle excitations and 

electron-hole excitations. The electron-hole excitations are formed from the quasiparti

cles (single-particle excitations) due to electron-hole correlation effects. They correspond 

to the transition of the N-electron system from the ground state to an excited state. The
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excitations interact with external electromagnetic fields and so they are of central impor

tance for the optical properties of the system. These include the absorption and emission 

of light from individual excited states- excitons and linear optical response from all pho

ton energies, excluding the infrared range where the spectra is dominated by phonons. 

Both types of excitations, quasiparticles and electron-hole are described by many-body 

perturbation theory, expressed in terms of equations of motion for corresponding Green’s 

functions.

The main advantage of many-body perturbation theory is that it reduces the unsolv- 

able many-body problem to an effective one- or two-particle problem, where all many- 

body processes are included in an effective interaction kernel. In most cases, the inter

action kernel cannot be calculated exactly, and reliable approximations ought to be em

ployed. Accurate description of single-particle excitations and corresponding spectrum 

requires approximation of electron self-energy which includes all exchange and correla

tion effects. One very successful approach is given by Hedin’s G W  approximation [1]. 

The G W  method has turned out to yield very accurate quasiparticle energies in excellent 

agreement with experimental data [2, 3, 4, 5, 6, 7] and become a standard tool for pre

dicting quasiparticle band structure. The electron-hole excitations are due to two-particle 

correlation and so they are described by two-particle Green’s functions. These are given 

as solutions of the Bethe-Salpeter equation (BSE) [8]. Solving BSE involves calculation 

of an electron-hole interaction kernel. In the current approach the interaction kernel is 

given in basis of quasiparticle states.

The key concept of the present approach is the systematic inclusion of the single

particle excitations and electron-hole interaction in the calculation of the dielectric func

tion. A major achievement of the approach lies in its realisation within ab initio frame

work, going far beyond the empirical techniques employed in the past. The approach 

was introduced by Hanke and Sham [9, 10] more than two decades ago, however due 

to its computationally complex nature it had been limited to simple situations until re

cently. The approach allows systematic investigation of a role of two-particle correlation 

effects in different classes of materials ranging from single atoms and molecules to crys-



tals. In implemenation adopted in this work, proposed by several groups [11, 12, 13], 

calculation is contained from the three major successive steps: (1) Firstly, the ground 

state calculation is performed using either the density functional theory (DFT) with lo

cal density approximation (LDA) or Hartree-Fock approximation (HFA) then the ’non

interacting’ single-particle Green’s functions were generated from DFT (HFA). (2) In the 

second step, tho non-interacting single-particle Green’s functions are employed to gen

erate self-energy operator and then the quasiparticle states were determined by solving 

corresponding equation of motion. (3) Finally, electron-hole interaction kernel can be cal

culated and BSE solved yielding electron-hole excitations (transition energies, electron- 

hole wave function) and macroscopic dielectric function is obtained which provides ab

sorption spectrum, dielectric constant, reflectivity, etc.

This thesis is organised as follows: Chapter 2 introduces the reader in the many- 

body problem and outlines the fundamental concepts behind the ab initio formalism: 

The Hartree approach, which neglects all exchange and correlation effects, the Hartree- 

Fock theory and finally modern and efficient density functional theory which has become 

a standard tool for ground state calculations. The latter two were used in the present 

context. The chapter concludes with general definitions of one- and two-particle Green’s 

functions in the limit of zero temperature.

Chapter 3 gives detailed formalism of single-particle Green’s function calculation. 

Hedin’s equations and a definiton of quasiparticles are presented in the chapter. The 

chapter gives detailed formalism on G W  self-energy calculations and numerical aspects 

of the calculations such as basis set and plasmon-pole model. Some remarks on the self- 

consistent G W  calculations are given in the final section of the chapter. Some practical 

applications of the G W  theory are presented in Chapter 4. The approach is applied to 

semiconductors and wide gap insulators. Comparison with experimental data and earlier 

calculations is presented where available.

Introduction to linear dielectric response and dielectric function is presented in Chap

ter 5. Formalism for two-particle correlation function and Bethe-Salpeter equation is

3



presented in detail as well as numerical aspects of the macroscopic dielectric function 

calculation with and without electron-hole interaction included. Optical properties for 

various materials are presented in Chapter 6. The chapter begins with brief discussion 

of optical spectra within the random phase approximation (RPA) optical and investigate 

influence of local field effects, then continues with optical spectra with electron-hole in

teraction included. This order was chosen to highlight importance of the electron-hole 

interaction in the optical properties of the studied materials. The electron-hole wave 

functions, static dielectric constant and energy loss spectra are discussed as well in the 

chapter. Finally, Chapter 7 summarizes all conclusions and gives a short proposal for 

possible future work.

Some additional relevant information is provided in several appendices. These in

clude in the first place manual of the computer code which was developed as a part of 

this project. The manual is written in order to provide guidelines for future users and 

to aid further development. The manual is presented in Appendix A. RPA dielectric 

matrix calculation and its graphical representation in a form of the dielectric band struc

ture (DBS) and eigenpotentials and response function eigenvectors are presented in Ap

pendix B. Finally Gaussian orbital basis set applicability and optimisation are discussed 

in Appendix C. The appendix provides the tables of basis sets used in the calculations.

4



Chapter 2 

Many-Body Perturbation Theory

2.1 What is the many-body problem?

The A^-electron system is described by the Hamiltonian'

where is a local external potential such as the field from a nucleus in an atom or the 

periodic potential of the ion cores in a solid. The last term in the Hamiltonian is the long 

range Coulomb interaction which ensures that each electron interacts with many others 

in its neighbourhood. This form of the Hamiltonian provides a rigorous starting point for 

the calculation of many-electron properties for non-relativistic interactions. Relativistic 

effects are negligible for most of the calculations carried out in this work. It is clear that 

this Hamiltonian presents a problem which is too complicated to solve directly, unless the 

number of electrons is very small. Fortunately, most physical properties do not require the 

full information of the many-particle wave-function, but can be described by correlation 

functions that involve the physics of only one or two particles. The key idea of many- 

body perturbation theory is to transform the many-particle problem into an equation of 

motion for such few-particle correlation functions, thus the many-body problem would 

lead to a single or two-particle problem. All many-particle effects would be included in 

corresponding interaction kernel.

'The form o f the Hamiltonian given here treats the nuclei as if they are fixed and neglects their ki
netic energy and Coulomb repulsion term between nuclei. This approximation is known as the Bom- 
Oppenheimer approximation.
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One and two particle correlation functions are defined by Green’s functions, which 

are the central quantities of many-body perturbation theory. Special attention is given 

to them in the Section 2.4 and Chapter 3. In the next two sections, different ab initio 

schemes for the approximation of the Coulomb electron-electron term of the Hamiltonian 

(2.1) with a single-particle potential are outlined.

2.2 Hartree and Hartree-Fock Theories

The earliest of these theories was suggested by Hartree [14] (1928). He suggested that 

an effective potential energy for the electron is determined by the average motion of the 

other electrons. In that approximation the many-electron wave function is expressed as a 

product o f single-particle functions, i.e.,

^ ' ( r i , r 2 , . . )  =  ' 0 i ( r i ) ^ 2 ( r 2 ) - -  (2 .2)

Each of the functions i)x{T\) satisfies one electron Schrodinger equation:

H 'iIjx =  Exi!)x (2.3)

H  = - ~ V ' ^ ^ V { v) + Vh {v) (2.4)
2 m

V «(r) =  (2.5)
J |r  — r'l

where n (r )  is the density
OCC

^(r) = Y.
i

of all electrons in the system. This approximation is known as the Hartree approximation. 

The Coulomb interaction is now replaced by an average local Coulomb potential, Vh 

(Hartree potential). W hile the approximation is computationally simple and intuitively 

attractive, it does not produce reasonable results in many cases. One of the problems with 

the Hartree approximation is that the density of electrons includes the electron whose

wave function, ■0a is being calculated. This means that that electron is included in the

Hartree potential, so it is interacting with itself.

Fock [15] (1930) pointed out that the Hartree approximation does not take the fermionic 

nature of the electrons into account. Antisymmetric many-electron wave functions give



rise to an extra potential in equation (2.3) which is called exchange and the equation then 

becomes:

The notation a = o  means that the sum runs only over states with parallel spin. (r) 

is the Hartree-Fock exchange term:

The exchange potential ensures that the Pauli exclusion principle is satisfied. This ap

proximation has been called the Hartree-Fock approximation (HFA). The physical mean

ing of equation (2.6) is clear, an electron is moving in an average potential which is a 

sum of three terms: A potential due to the ions or nucleus, a potential corresponding to 

the classical Coulomb interaction between the electron and the average electronic charge 

density and a nonlocal exchange potential which arises due to the fermionic nature of the 

electrons. Equations (2.6) and (2.7) are solved self-consistently.

For many atomic systems, the Hartree-Fock approximation works quite well. How

ever, for insulating solids the fundamental energy gap is generally overestimated by the 

approximation. This is essentially due to neglect of the the polarisability of the surround

ing electronic gas that produces correlation or screening, which is not too important in 

atoms, but crucial in solids. Two electrons of opposite spin are allowed to occupy the 

same single-particle state at the cost of the large Coulomb energy. Correlation keeps 

electrons away from each other, creating a screening hole around each electron, which 

reduces the interaction with the other electrons and decreases the Coulomb energy. Thus 

correlation or screening reduces the gap from its Hartree-Fock value.

An alternative approach that includes both, exchange and correlation effects in the Hamil

tonian is density functional theory (DFT). DFT was originally introduced by Hohenberg 

and Kohn 1964 [16] and Kohn and Sham 1965 [17]. Since then, it has become the stan

dard method for the calculation of ground-state properties of both molecules and solids

7

2 m
V 2 - f y ( r )  +  F ^ (r )]^ ,- t -  X : V ,v (r )V 'y (r )  =  i?,V',. (2.6)

(2.7)

2.3 Density Functional Theory



in modern solid state physics. Some recent reviews on DFT can be found in [18] and 

[19]. DFT is based upon two theorems:

1. The electron density n (r) in the ground state is a functional of the external potential

2. The potential V (r) is a unique functional (to within a constant) of the density n(r).

Both theorems were proved in [16], and together they are equivalent to the assertion 

that the ground state energy, B e  is a minimum with respect to variations in the electron 

density n(r). Using the variational property of the energy functional,

6E
T -  =  M (2.8)on

and introducing a set of Kohn-Sham orbitals, (j)x, one arrives at a set of single-particle 

equations, the Kohn-Sham equations [17] ;

where the non-interacting Hartree and kinetic energy parts of the potential have been 

separated out to leave an effective exchange-correlation potential 14c(r). /i in (2.8) is the 

Lagrange multiplier associated with the requirement of constant particle number and is 

actually the chemical potential.

In practice, the potential containing exchange and correlation effects is not known 

exactly. As an approximation to the full exchange-correlation potential, Kohn and Sham 

in [17] applied a simple local density approximation (LDA) to the limiting case of a 

slowly varying density. In LDA, the exchange-correlation energy is given by:

where £xc[>t] is the exchange and correlation energy per particle of a homogeneous elec

tron gas with density n. Although Kohn and Sham did not attempt to use this approx

imation in atoms, molecules or solids, as they did not expect it to work accurately in

V { t )

^ V ^  + V„(r)4-l/„(r)l<Sj=£A0A
^  7TZ

(2.9)

(2 . 10)

(2 .11)

8



electron interacting systems, a decade later it was shown that the LDA could reproduce 

many measurable quantities satisfactorily in such systems. The connection between this 

limiting non-interacting system and a real physical system is rigorously given by the con

dition that the Kohn-Sham density of the ground state matches the actual density of the 

system exactly:
OC C

„ K S ( r ) = „ . . - ( r )  =  5 ] | * ( r ) p  ( 2 . 1 2 )

i

It is necessary to satisfy conditions (2.10-2.12), and this is achieved in a self-consistent 

procedure.

The solution of this system o f equations leads then to the energy and density of the 

ground state, and all quantities derivable from them. Instead of seeking those quantities 

by determining the wave function of the system of interacting electrons, DFT within 

the framework of LDA, reduces the problem exactly to the solution of a single-particle 

equation. Equation (2.9) is an equation of the Hartree-Fock form, where the non-local 

Hartree-Fock exchange potential, V^x, is replaced now by a local Vxc- Within a local 

approximation to Exc, the Kohn-Sham equations present the same numerical simplicities 

as Hartree’s equations (2.3).

The Kohn-Sham equation (2.9) applies only to the ground-state, and KS eigenvalues 

Ei have no clear physical meaning, except for the highest occupied eigenenergy which 

corresponds to the ionization energy [20]. Although there is no theoretical justification, 

they are often interpreted as single-particle excitation energies corresponding to the exci

tation spectra of the system upon a removal or adding of an electron, even if the DFT-LDA 

energy gap is underestimated by about 50% [18]. Nevertheless, the KS eigenenergies 

and orbitals are a good starting point for Green’s function theory [2], and they are used 

throughout this thesis in that context.

2.4 Green’s Function Techniques

The central quantities of many-body perturbation theory are Green’s functions, which 

describe the propagation of electrons and holes in the electronic system. Single-particle, 

Gi, and two-particle, G 2 , Green’s functions will be of particular interest in the present

9



work. They are defined as the expectation values of the time-ordered operator products 

[21]:

G i(l,2 ) =  -z (iV ,0 |r (^ (l)^ t(2 ))|iv ,0 ), (2.13)

6-2(12; 1'2') =  -z(iV, 0). (2.14)

The short-hand notation (1) =  (ri, cri, ti) indicates a set of spatial, spin and temporal co

ordinates. \N, 0) denotes the normalised ground-state wavefunction of A^-electron system 

in the Heisenberg representation, T  is Wick’s time-ordering operator that rearranges the 

subsequent symbols in ascending order from left to right and ■0̂  and ■ijj are the electron 

creation and annihilation operators in the Heisenberg representation, respectively. The 

above definitions of Green’s functions are valid only for zero temperature.

Single-particle Green’s functions describe the propagation of an added electron to the 

ground state or of the remaining hole when an electron is removed i.e.:

| iV,0)— > | i V ± l , m ) ,

where ±  1, m) denotes an excited states of the {N + 1) and (Â  — l)-electron system. 

The type of particle depends on the order of the time variables and 2̂ - Two-particle 

Green’s functions describe the propagation of pairs of particles: pairs of electrons, pairs 

of holes or an electron-hole pair, depending on the order of the four time variables. In 

the present work we will restrict ourselves to the simultaneous creation and annihilation 

of an electron-hole pair. In that case, G 2 describes the transition from the ground state of 

the A^-electron system to the higher state without changing the total number of electrons,

| iV,o)—

and the four time variables are reduced to two since ti =  t\ and t 2 — 4-

The Green’s function (Ci or G 2 ) can generally be obtained as a solution of a Dyson- 

type equation schematically written as

G = + G^^^KG (2.15)

In the traditional approach, G f  ̂ corresponds to the Green’s function of a non-interacting 

electron and is a self-energy operator, describing exchange and correlation effects.

10



Alternatively (see Section 3.3), can be computed from a method that already includes 

some exchange and correlation effects in a simple self-energy (such as DFT or 

HFA). The interaction kernel in (2.15), K  is then replaced by a difference between the 

total self-energy K  and

For a case of two-particle Green’s functions, is approximated by a product of two 

single-particle Green’s functions which corresponds to a non-interacting pair of particles 

and K  denotes an effective particle-particle interaction. It should be noted that an exact 

evaluation of K  is not possible. Instead, appropriate approximations have be introduced 

for real systems taking all relevant many-body physics into account. The approximations 

are still very complex and both mathematically and computationaly difficult to evaluate. 

Therefore, treatment of real materials is only possible if powerful computers and efficient 

algorithms are available. The construction and implementation of such approximations 

and their application to various materials is the subject of this work.

11



t  ■■#iSSi

Jit"? * '

r- b j “ir»• J W  -S ' T T f  '  J ' J S M - ^ J



Chapter 3 

Theory of Single-Particle Excitations

3.1 Hedin’s Equations

Single-particle excitations and their spectra can be calculated from the single-particle 

Green’s function G\ defined by the Equation (2.13). G\ is rigorously given by the dy

namical equation [1]

where H{v)  is a local single particle Hamiltonian, which is, traditionally, given by the 

Hartree Hamiltonian (2.4),

The notation x  in Equation (3.1) stands for space and spin coordinates, (r, a) and u(r, r") 

is the Coulomb potential. The matrix element with a four field operator product in the 

second term of the equation is a special case of the two-particle Green’s function, G ,̂ 

originally defined by Equation (2.14). Equation (3.1) thus forms the starting point of an 

infinite series of dynamical equations, each of which involves the Green’s function of a 

higher order. Clearly, a truncation has to be introduced at some point.

The product of the four field operators in (3.1) can, however, be generated by a func

tional derivative of G\,  [1]. In addition, Hedin defined the electron self-energy operator

(3.1)

Z m
(3.2)
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E in terms o f the functional derivative in [1], which finally leads to the equation

Unlike the G 2 appearing in (3.1), the self-energy operator S ( l ,  3) depends on two sets of 

coordinates only and it does not contain all information contained in G2 but yet contains 

all many-particle information which is relevant for the single-particle Green’s function. 

Thus Equation (3.3) is still an exact equation of motion for Gi.

The self-energy operator E ( l ,  3) is related to G\  by a set of equations, [1]:

The short-hand notation I"*" indicates that the time variable ti is been augmented by a pos

itive infinitesimal. It is important to use , 4) in Equation (3.4) rather than W{\ ,A)  

in order to correctly reproduce the four point operators in Equation (3.1), [1]. W{1,2)  

is the screened Coulomb interaction, which essentially gives the potential at point 1 due 

to the presence of a test charge at point 2, including the effect of the polarization o f the 

electrons. It is appropriate to use the screened potential rather than the bare Coulomb 

potential, since particles in an interacting system respond to the total potential. P  is the 

polarisability of the system, e is the dielectric function which describes the dielectric 

screening, and F is a vertex function.

If Go is the single-particle Green’s function corresponding to the Hartree system, then 

the Green’s function of an interacting system is calculated through Dyson’s equation.

The set of Equations (3.4-3.8) are called Hedin’s equations and in principle, can be

-  //(r)}G’i(l, 2 )  -  I  E(l, 3 ) G i ( 3 ,  2 ) d ( 3 )  =  <5(1, 2 )  ( 3 . 3 )

E ( l , 2 )  =  z |Gi( l ,3) iy( l+ ,4)r(3 ,2;4)d(3)d(4)  

W^(l,2) 

e(l,2)

P ( l , 2) =  -z |G ' i (2 ,3 )G i(4 ,2 )r (3 ,4 ; l )d (3 )d (4 )  

r ( l ,2 ;3 )  =  5 ( 1 , 2 ) ( 5 ( 1 , 3 )  +

( 3 . 7 )

(3.4)

( 3 . 5 )

(3.6)

/  3 ) d ( 4 ) d ( 5 ) d ( 6 ) d ( 7 ) . (3.8)

G i ( l , 2 ) = G ' o ( l , 2 )  +  J  G o ( l , 3 ) E ( 3 , 4 ) G i ( 4 , 2 ) d ( 3 , 4 )  ( 3 . 9 )



solved self-consistently along with Equation (3.9). All many-particle effects i.e. correla

tion and exchange are included in the self-energy operator E.

Once Gi  is known, it gives us not only information on single-particle excitation en

ergies of the system, but also allows us to calculate the expectation value of any single

particle operator as well as the total energy operator [1]. However, in the present context 

we are only interested in the excitation spectra, and the other quantities will not be con

sidered for the remainder of this work.

3.2 Quasiparticles

The complicated structure of the resulting space and time dependence o f Gi  makes a 

numerical treatment of Equation (3.9) very difficult. In the absence of a time-dependent 

external potential, Gi  (1,2) only depends on the time difference t \  — t 2 and can be mapped 

to frequency space through a Fourier transform. In that representation, one can focus on 

long-lived particle-like excitations of the system, electron or hole quasiparticles, that 

appear as well-defined sharp peaks in the spectrum of the frequency-dependent Gi(o;). 

Due to the non-Hermitian character of the self-energy operator, such quasiparticle states 

are characterised by a complex energy: =  Em + i jm,  where Em  is the energy position

of the quasiparticle and 7^  is its inverse lifetime. Thus, Gi{u>) will be dominated by a 

structure like

where 0+ is a small positive constant which ensures that a function is analytic in the 

upper-half-plane. The spectral function or density of states A  is given by a Lorentzian,

A{uj) =  - Y , \ ^ { G U ^ ) ) \
m

=  - E t  2 (3.11)Emr + 7m

which is usually peaked at Em with a spectral width of 7 ^ .  G im i^ )  is the matrix element 

of Gi  in an eigenstate ’ipm of the non-interacting system. A { lo) could also show peaks or 

satellite structures at some other energies u>p which can be due to plasmon excitations
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or other collective phenomena'. The residual structure \m){m\ of the frequency poles 

can be understood as an amplitude (wave function) of the quasiparticle, The

quasiparticle’s inverse lifetime 7^,1 is given by the i maginary part of the self-energy E(o;). 

From Equations (3.3) and (3.10), an equation off motion of the quasiparticles can be 

derived:

+  I  S (x ,x ',E )? /)^^ (x ')d x ' =  e„'0^^(x) (3.12)

3.3 The GW  Approximation

The self-energy operator E and Gi can be computed from Equations (3.4 - 3.9) in a 

self-consistent procedure. However, in most calculations for real materials, that pro

cedure is numerically difficult due to the high complexity of the problem. Particu

larly, the high dimensionality of the vertex function F (l, 2; 3), the functional derivative, 

^E (l, 2)/^G i(4 , 5) and the sixteen-dimensional integration of Equation (3.8) are diffi

cult. An approximation is required to simplify the procedure.

Firstly, the approach could be significantly sinnplified with a good choice of starting 

point for Gi which can be so close to the real Gi that a self-consistent treatment of the 

equations is not necessary. Secondly, a simplified expression for the vertex function T 

can be made. The most common and efficient approximation, introduced by Hedin [22] 

is the so-called GW  approximation (GWA). This approximation neglects the second term 

in r  i.e. F (l, 2; 3) 5(1, 2)5(1,3) so that the polarisability can be schematically written

as P ( l ,  2 ) =  —iGi{l, 2)Gi{2,1 ), and finally, the self-energy is given by

E(l ,2)=iG,(l ,2)Vy(l+,2).

In the GWA, as a starting point, Gi and W  are constructed from either the DFT or HFA 

eigenenergies and orbitals, which are commonly labeled as SP  (for single particle) and

' i f  the interaction is switched on the peaks become broadened since the single-particle states can now 
decay to other excitations and lose some weight which might appear as collective excitations or satellite 
structures; it can be called the plasmon satellite due to the plasmon excitations.
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G i is approximated by a non-interacting single-particle Green’s function 2

n

Then all of the quantities (3.5-3.7) are calculated only once and finally the G qW q self

energy,

S  =  iGoWo (3.14)

is used in Equation (3.9) to calculate G i and its spectral function (3.11).

3.3.1 GW-DFT

In practical applications within the GWA, the non-interacting single-particle Green’s 

function. Go corresponds to a Hamiltonian which already contains some exchange or 

correlation effects. These have to be taken from E. The most common one is a DFT 

Hamiltonian, [see Equation (2.9)], which in addition to the Hartree term contains some 

local energy-independent exchange correlation potential, V^c- D yson’s equation for G i is 

then given by

G i ( l , 2 )  =  Go(l ,2)  +  I Go( l ,3 ) [E(3 ,4 ) - l4c(3) ]G'i (4 ,2 )d(34) .  (3.15)

Thus, the equation of motion for quasiparticles yields

//®^^(r)V>^^(x) +  I [S (x,x',E ) -  Vic(x')]'0m^(x')dx' =  (3.16)

It is assumed that the quasiparticle amplitudes are well described by DFT wave func

tions, thus, quasiparticle energies are given by the simple equation

f ir =Esr+{v>””'is(£r) - p.h)
This implies that only diagonal elements of the operator E — V^c have to be calculated. 

However in many materials DFT wave functions do not describe the true quasiparticle 

states well. In such cases quasiparticle wave functions can be expanded in a basis given 

by DFT wave functions.

In a crystal, the index n may be associated with the Bloch wave vector and band index.
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In this basis the quasiparticle H am iltonian operator corresponding to Equation (3.16) 

becom es

+  { r f ” ' |E ( £ ; r )  -  K c i t f  (3 .18)

Now calculation o f the full E  — \4c operator is required and the quasiparticle H am iltonian 

(3.18) has to be diagonalised.

Equations (3.17) and (3.18) can be interpreted as a perturbative approach on top o f 

the D FT calculation with a perturbation operator given by the difference betw een the 

GW  self-energy (non-local exchange-correlation) operator and a local DFT exchange- 

correlation operator.

A lthough the difference operator E  — V^c is often called ’’the quasiparticle correction 

to the DFT band structure” , there is no explicit expression for the difference to date. 

Instead, the m atrix elem ents o f both operators, E  and Vxc, have to be calculated separately 

and then the difference is taken. It should be noted that both o f them  are quite large (-10 

to -50 eV), and they cancel each other to a large degree, yielding final corrections o f the 

order o f a few tenths o f an eV up to several eV. This poses the problem  that both o f  them  

have to be calculated w ith a high accuracy to give a reliable value for the difference. 

Calculation o f the self-energy operator E  is described in the next section, w hile the V^c 

is been extracted from  CRYSTAL98 [23] w ithin the DFT calculation.

3.3.2 GW-BFA

Alternatively, the non-interacting single particle G reen’s function, G q can be obtained 

from  the H artree-Fock H am iltonian, (2.6). The HFA takes the ferm ionic nature o f the 

electrons into account which results in the exchange process. In that case the H artree- 

Fock tw o-particle G reen’s function is given by

G f ^ ^ (1 2 ,1 '2 ')  =  G i ( l ,  2 ) G i( l ',  2') -  G i ( l ,  2 ') G i( l ',  2). (3.19)

The first term  corresponds to the non-interacting two-particle propagator w hile the sec

ond term  coresponds to the quasi-particle added at point 1' exchanging with the particle  

added at point 2', the m inus sign results from  the Ferm i-statistics. This additional ex-
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change term yelds an equation of motion for within the Hartree-Fock approxima

tion. Thus in the HFA limit Equation (3.1) becomes

-  j G'f^"‘( l , 3 ) v ( l , 3 ) G ™ ( 3 , 2 ) d ( 3 )  =  <5(1,2).

(3.20)

The Hartree-Fock approximation includes the exchange self-energy correction

E ex(x ,x ',E ) =  iG^^'^{x,x',E)v{r -  v'), (3.21)

which is understood as the lowest-order approximation for E.

Starting from the Go =  G f  in the GWA, the exchange contribution accounted for 

in Go, has to be taken out from the more general G W  self-energy, E. Thus, the Dyson 

equation for G\ is given by

G i ( l ,  2) =  Go(l ,  2) +  I Go(l ,  3 ) A E ( 3 ,4 ) G i ( 4 ,  2)d(34).  (3.22)

with a self-energy given by

A E(x, x', E) = E(x, x ', E) — G q(x , x ', E)v(r,  r '). (3.23)

The quasiparticle equation thus obeys

+ I  A E(x, x ', E ) ^ ^ ‘’{x')dx' = £™V’S '’(x), (3.24)

Again, we can assume that the quasiparticle amplitudes are well described by the single 

particle wave functions so the quasiparticle energies become

£ 2' ’ =  (3.25)

3.4 Basis Sets

The numerical evaluation of the single-particle wave functions V 'n k (x ) and of two-point 

functions e(r, r ') , W (r, r'), E (r, r '), etc. requires the expansion of all position dependent 

quantities in a suitable basis. The basis for the wave functions and for the two-point 

functions can be chosen independently. The most common representation is a plane-wave
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(PW) representation o f all functions [2, 11, 24], Several different approaches have been 

proposed as w ell, such as a localised Gaussian orbital (GO) basis [7] for all functions, a 

combination o f  GO basis for the DFT and plane-wave representation for the GWA [6 ], a 

combination o f linear-muffin-thin-orbitals (LMTO) basis for the DFT and product basis 

for the GWA [25], and real-space representation [5, 24],

In the present work we use combined GO-PW basis sets. The Linear Combination 

o f Atom ic Orbitals (LCAO) is used as a basis for single-particle wave functions. This 

approach is adopted in the CRYSTAL [23, 26] package, which is used to generate single

particle states. In this approach, the atomic orbitals are given as a linear combination o f  

individually normalised, atom centred Gaussian type functions. More details about this 

type o f basis are given in Appendix C.

Unlike, single-particle wave functions, all two-point functions are expanded in a 

plane-wave basis in this thesis. The choice o f the plane-wave basis was motivated pri

marily by its simplicity. Other advantages are: (1) good control over convergence, and 

(2) the Coulomb interaction is diagonal with matrix elements given by ~  47r / |q  4- G p . 

However, in this mixed-basis approach the efficacy of the matrix elements calculation 

has been lost from a programmer’s point o f view. Namely, the matrix elements can be 

calculated easily when the crystalline Bloch functions are also expanded in plane waves. 

There are also other disadvantages related to the plane-wave representation: (1) the con

vergence could be very slow for some systems, and large number o f plane waves might 

be required, (2) there is no direct physical interpretation, (3) it cannot be easily used for 

atoms and m olecules. Nevertheless, we adopt a plane waves approach as it is a good  

starting point in GWA and exciton effects code development and it is preferable to calcu

late certain elements o f the GWA Gaussian orbital scheme in a plane-wave representation 

(e.g. the ’’head” and the ’’wings” o f the dielectric matrix for case 9 —> 0, see Appendix B) 

and transform this into the Gaussian orbital basis in future work.
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3.5 The Self-Energy Matrix Element

This section gives numerical details of the self-energy matrix calculation, and the final 

expression used in the thesis.

Within the GWA, the self-energy operator is given by a frequency convolution of the 

single-particle Green’s function, G\  with the screened Coulomb interaction W  (3.14). 

That can be written formally in a real-space and energy basis as

S (r , r ', E) = ^  [  Gi (r, r ', E  -  to) W{r,  r', uj) duj. (3.26)
ZTT J

While G i(r, r ', E —co) is given by (3.13) within either the DFT or HFA framework, W  

involves a convolution of the inverted time-ordered dielectric function and the Coulomb 

potential,

W{r,r' ,oj)  = y  dr"e~^(r,r",a;)w (r', r"). (3.27)

For the crystalline case it is appropriate at this point to exploit the lattice translation 

symmetry to transform this expression to a reciprocal-space basis. In the plane-wave 

basis this is done by the following decomposition:

W{r , r ' , co)=  (3.28)
q,G ,G '

where G  is a reciprocal lattice vector, and q  is a wavevector in the first Brillouin zone

(IBZ). The Fourier coefficients in Equation (3.28) are given by

W^GG'(q,w) =  ^ G G ' ( q > ‘̂ ) ^ G G ' ( q )

where denotes the crystal volume. The time-ordered symmetric dielectric matrix 

^GG' (q> calculated using the random phase approximation (RPA) [27]:

1
C G G ' i q , * ^ )  =  + 2 - j ^ | q + G | | q + G ' |

v ,c  k

X +
E c ,k .+ q  E y  \^ UJ -\- £ /c ,k+ q  E y  \^ -|- CJ “h
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For detailed reading about the RPA dielectric matrix see Appendix B or [27, 28, 29, 30, 

31,32, 33,34],

On combining the Fourier transformed expression for W  with the non-interacting 

single-particle Green’s function Go (3.13), the diagonal matrix elements of the self

energy operator yield [35]:

( m k  I E (£ ; )  I m k )  =  j  j  d v d v ' i p * ^ ^ , { r ) T , { r , r \ E ) ' t p r n k { ' r ' )

^  q , ^ G ' "  |q +  G | | q  +  G'l

X [  ^  ~  --------------- ETT (3-31)
jw G R  E  U) ^0  S i§ I l ( - ^ n ,k + q  ^F)

The SP  label has been left out from the eigenfunctions and eigenvalues for clarity

throughout.

The time/frequency dependence can either be treated by grid representation [5, 24] 

or by a plasmon-pole approximation [2, 6], In this work we adopt a plasmon-pole model 

which is presented in following section.

3.5.1 Plasmon-pole model

It is clear from a brief inspection of Equation (3.31) that a direct numerical evaluation 

involves the calculation of and inversion of the dielectric matrix, eQQ,(q, a;), at many 

values of ui. Although such schemes have been carried out by some authors [36], it is 

both time consuming and unnecessary in the present mixed GO+PW framework, (see 

Section 3.4). The physical features of W  allow us to approximate the frequency depen

dence of the dielectric matrix and to solve the integral in (3.31) analytically. Namely, 

the imaginary part of W  is characterised by a strong peak corresponding to a plasmon 

excitation at the plasmon frequency. This is particularly evident for the electron gas and 

for simple systems with only s- and p-type orbitals occupied. Based on these facts a so- 

called plasmon-pole model has been introduced. The plasmon-pole model assumes that 

all the weight in S(W^) resides in the plasmon excitation [3, 37]. This is strictly true for 

the electron gas case in the long wavelength limit q —> 0 [3, 37]. For finite q, however,

22



the spectrum  contains also electron-hole excitations at low er energy. The electron-hole 

spectrum  eventually m erges w ith the plasm on excitations as q gets larger.

Several different plasm on-pole m odels have been proposed in the literature [3, 22, 

37, 38, 39], and all o f these m odels use the static dielectric m atrix to fit the dynam ic 

e{u)). The m odel adopted in this thesis is one based on the m odel o f von der Linden and 

Horsch [38], w hich uses the concept o f dielectric band structure (DBS) [40]. The inverse 

o f the sym m etric dielectric m atrix can be generated from  its eigenvalues, and

orthonorm al eigenvectors, V/G(q)- The m odel assum es that all frequency dependence is 

projected onto eigenvalues, so the inverse o f the dielectric m atrix can be approxim ated 

by

^  ViG(q)e-/(a;) V;G'(q)- (3-32)
I

The sum  over I runs over all o f  the eigenvalues and corresponding eigenvectors. The 

m odel form  o f the eigenvalues, is given by

e,-/ (.) = 1 +
where Z(̂ l are w eighting param eters, and ujqi are the plasm on frequencies. O riginally [38], 

Zq/ and ojqi are generated by adjusting (3.32) and (3.33) to the static dielectric m atrix and 

taking Johnson’s / - s u m  rule [41],

into account. p (G ) is the Fourier com ponents o f the crystalline charge density. The sam e 

approach could be applied to the D FT based calculations in this thesis. However, the 

idea was to m ake the m odel w ork not only for the calculations w ithin a DFT fram ew ork, 

but also for the H artree-Fock RPA dielectric function. It has been shown [42] that the 

dielectric function obtained from  a H artree-Fock band structure violates the sum  rule. 

This was expected in the presence o f a non-local potential in the single-particle H am ilto

nian, which is the case in the H artree-Fock Ham iltonian. M otivated by this fact, a sim ple 

fitting procedure has been adapted in [42] to determ ine the w eights Zq; and the plasm on 

frequencies Wq/. The dielectric m atrix is calculated at two frequencies: at zero frequency
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and at some finite imaginary frequency iujf. It can be shown easily that

^  -u )[ l -  e-J(iu,)]
q I — l / * n \  “ 1 / '  \ffq; (̂ 0) -  e ^ i  { l U J } )

Ẑ i = I -  e~!{iQ) (3.35)

The imaginary axis was chosen because the dielectric matrix obeys a Lorentzian fre

quency behaviour on the imaginary axis, while it is very sensitive to the choice of wy on 

the real axis as rapid fluctuations occur in for energies around and above the gap.

Figures (3.1 - 3.4) demonstrate how eigenvalues of the dielectric matrix for bulk Sili

con and solid Argon compare with the eigenvalues generated by the plasmon-pole model. 

The agreement is quite good over the full frequency range along the imaginary frequency 

axis (icj), at both finite q and in the q —> 0 limit, so the choice of fitting frequency, iuij 

is not vital, any value chosen around the fundamental gap will give satisfactory results. 

However, when fitted values are projected onto the real frequency axis the agreement is 

good only at low uj values. Similar results were obtained for Silicon by Hybertsen and 

Louie [43]. It is important to mention that the frequency integration in Equation (3.31) is 

still performed along the real u) axis. This means that the plasmon-pole model is not suit

able for determining self-energy matrix elements accurately for the higher energy bands. 

However, this will not be a major concern; since we are interested only in optical proper

ties, it is important to accurately determine states at the top of the valence band and the 

bottom of the conduction band usually. A few more conduction bands could be required 

for optical properties of some materials.

Finally, the plasmon-pole form of the inverted dielectric matrix allows us to perform 

the analytical integration over frequency in (3.31). This yields the following expression 

for the expectation value of E:

(mk|E(£)|^k> = ^ ^  E  ^ (’»k|e-<^^°>-1.k + q)(.k + q|e-(^^°')-nmk) 
n q + G q+G'

X

E,v,.-G(-q)v;;_G.(-q) £ ' ~ £ ' n k + q + t ^ - q i
for n e  occupied
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Figure 3.1: Comparison between plasmon-pole model (dashed lines) and fully 
calculated eigenvalues of the inverted dielectric matrix (solid lines) for bulk Si, 
for the smallest eigenvalues in the q —> 0 limit, plotted along the real frequency, 
u), axis (bottom panel) and imaginary, luj, (top panel)

From a brief inspection of this equation we can see that self-energy splits into a bare ex

change part (from the 1 for n occupied”) which arises from the Hartree-Fock exchange 

potential and a part containing the contributions from correlation:

( m k 1 E( E ) I m k ) = ( m k | Eex | rnk) + {mk  \ Ec( E ) | mk) .  (3.37)

All energy dependence of the self-energy is contained in the correlation part (dynamic 

part), (mk|Ec(-E')|mk). If the GW-RVk is used the exchange (mk|Eex|mk) term is 

explicitly contained in the initial self-consistent Hartree-Fock calculation.

It is clear from Equation (3.36) how computationally intensive the calculation of the 

self-energy matrix elements is, even with a plasmon-pole model. Some illustrative ex

amples as well as numerical details of the calculations are discussed in Chapter 4.

25



0.8

0.6

0.2

0 .4

0.2

- 0 .2,

(0 [eV]
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Figure 3.3: Comparison between plasmon-pole model (dashed lines) and fully 
calculated eigenvalues of the inverted dielectric matrix (solid lines) for solid Ar, 
for the smallest eigenvalues in the q  —)■ 0 limit, plotted along the real, oj, axis 
(bottom panel) and imaginary, luj, (top panel)
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Figure 3.4: Same as Figure 3.3, in the q =  [1,1,0] 27r / a

3.6 Determination of Quasiparticle Energies

Once the self-energy matrix elements ( rrik | E( E ) | m k ) are evaluated, the quasiparticle 

Equation (3.17) or (3.25) must be solved. This involves calculation of the self-energy 

matrix element at the actual quasiparticle energy, Sometimes, just inserting the

single particle energy value into the self-energy operator on the right-hand side 

of Equation (3.17) gives reliable quasiparticle energies. This approach avoids further 

iterations of (3.17) with respect to the quasiparticle energy. However, it neglects the 

possibility that the self-energy operator may depend on energy E.

A somewhat better scheme is given by Hybertsen and Louie in [3] by the equation

ES.C ~  ( (mk I AE( )l »  (3.38)

where Z^k  are renormalisation factors. They are defined by

a$R( (mk| E, (£ ; )  |mk) )
- 'm k 1 -

dE
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The operator A E is either given by

A E(x, x ', E) =  E(x, x', E) -  \4c(x) (3.40)

for the case of DFT initial calculation or by

A E (x ,x ',E )  =  E (x ,x ',E )  - G i ( x , x ' , E ) t ' ( r - r ')  (3.41)

for the HFA. The derivative d{ m k | Ec( E^ ) | m\n)/dE is evaluated as a difference 

quotient, calculating the correlation part of self-energy matrix element at two energy 

points around the E^^  energy value, E^^  — A and E^^ + A. The size of A was varied 

to check its effect on quasiparLicle energies. It was observed that there are no changes in 

the energies at the F point if A was varied from 0.2 eV to 1 eV for all materials studied 

in this work. This scheme is used throughout this work.

3.7 Beyond G^Wq

For many materials GqWq already gives highly reliable single-particle spectra, so a self- 

consistent procedure defined by Equations (3.4-3.8) is not necessary. However, the in

teracting single-particle Green’s function G\ obtained from the Dyson Equation (3.9) is 

not necessarily the same as Gq. Self-consistency is evidently an important issue. Firstly, 

it guarantees that the final results are independent of the starting Green’s function. Sec

ondly, without self-consistency the GWA fails to conserve the particle number, energy 

and momentum under a time-dependent external perturbation according to the Baym- 

Kadanoff theory [44],

A number of authors have gone beyond the simple GqWo expression and extended 

the approach towards self-consistency [45, 46]. It turns out that self-consistency within 

GWA has a disadvantageous effect on the accuracy of calculated spectral properties. The 

results of these studies are: (1) the band gap is increased from its non-self-consistent 

value, worsening the agreement with experimental value; (2) the plasmon satellite is 

broadened and shifted towards the Fermi energy; and (3) the quasiparticles are narrowed, 

increasing their lifetime. This can be explained as follows. Unlike Go, which refers to
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Figure 3.5: Diagramatic expansion for the self-energy oparator. The arrows rep
resent the non-interacting Green’s function, the wiggly line is a screened inter
action. The first diagram is a first-order diagram and corresponds to the GWA, 
the latter two are self-consistency term and the vertex correction, respectively.

a non-interacting system with single-particle excitations only, some spectral weight in 

the interacting Green’s function G \ is transferred to a plasmon satellite, which describes 

collective excitations. The quasiparticle peaks are reduced accordingly. This implies a 

significant reduction in the dynamic self-energy part that describes correlation, Ec. The 

correlation part of the self-energy is positive, and tends to reduce the band gap, while the 

exchange part is always negative and increases the gap [4]. In the self-consistent calcu

lation, the exchange part is only marginally reduced, so it dominates over the correlation 

and tends to increase the band gap. As a result, the gap usually becomes overestimated. 

Reduction of the correlation part of the self-energy also explains the increase in the quasi

particle lifetime, which is inversely proportional to the 3 (E c).

In conclusion, a self-consistent GWA approach does not give reliable quasiparticle 

energies. One way of solving Equations (3.4-3.8) self-consistently is by the simultaneous 

introduction of the vertex function, which has been approximated by the delta function 

in the GWA. The self-energy can be expressed in terms of Feynman diagrams, some of 

which are shown on Figure 3.5. Arrows represent noninteracting Green’s functions and 

the screened interaction is indicated by a wiggly line. The first diagram is the GWA. 

The second is a self-consistency term, and the third represents vertex corrections. Ver

tex corrections introduce additional interaction channels not accounted for in the GWA 

self-energy and RPA polarisability. Vertex corrections in the polarisability, in general, 

reduce the screening and strengthen the interaction. In the self-energy, vertex corrections 

describe exchange and correlation effects between the central photoemission hole and 

the surrounding particles, thereby reducing the probability of finding other holes near
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the central photoemission hole. These two effects compete and cancel partially. Indeed, 

many authors have reported cancellation between vertex and self-consistency diagrams 

[47,48]. Schindlmayr and Godby [49] proposed a systematic approach based on a contin

ued iterative solution of Hedin’s equations. Numerical results for a finite Hubbard cluster 

[49] were promising and suggest that an iterative solution of Hedin’s equations can im

prove the spectrum. Generally, a systematic way of improving quasiparticle energies is 

still outstanding.
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Chapter 4 

Quasiparticle Band Structure of Bulk 
Materials

The GW method has turned out to be a highly successful approach for calculation of 

single-particle excitations for wide range of materials. The main focus of this chapter is 

to discuss the approach and illustrate the self-energy calculation for various of materials. 

Quasiparticle energies are the basis for further investigation of the optical properties and 

coupled electron-hole excitations. The aim of this chapter is to show the reliability and 

accuracy of the GW  approach. Quasiparticle band structures are presented along sym

metry lines and discussed. Energy dependent self-energy matrix elements for selected 

bands and materials have been discussed as well.

The chapter has been divided into two main sections. The first section gives GW 

calculations based on DFT-LDA eigenstates while the second section presents results 

for GPF-HFA band structure. Numerical details involved in the different steps in the 

calculations are given within the sections.

4.1 GW-DFT Calculations

We calculate the quasiparticle band structure for silicon and compare it with published 

data in order to investigate its accuracy. Then, we apply the approach to the condensed 

rare gase solids (RGS): Ne, Ar, Kr and Xe in the FCC structure. Numerical details 

involved in LDA and GW  calculations and convergence criteria are presented in Sec

tion 4.1.1 and 4.1.2, respectively for all materials. Then the results for self-energy and
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quasiparticle band structures are presented in Section 4.1.3 for Si and 4.1.4 for the rare 

gases.

All energy values presented further, refer to the valence-band maximum, that is set to 

0 eV in each case.

4.1.1 Details of the DFT-LDA calculation

The results of the LDA calculation enter into the G W  scheme at several points. Firstly, 

they enter into single particle Green’s functions and the RPA dielectric matrix to generate 

the self-energy operator, see Equations (3.26-3.29). Secondly, the LDA states are used as 

a basis for the calculation of the self-energy matrix element. Equations (3.31, 3.36) and 

finally, LDA eigenenergies are used to obtain the quasiparticle energies (3.17). Therefore, 

the LDA calculation must be carried out very carefully. We use the ab initio package 

CRYSTALxx' [23, 26] to generate DFT-LDA eigenvectors, eigenvalues and exchange 

correlation potential.

Unlike many other calculations, the CRYSTAL package uses the Linear Combina

tion of Atomic Orbitals (LCAO) approach in which the Bloch functions, (^ (̂r, k) are 

expanded over the crystal lattice vectors R in terms of atomic orbitals,

(r, k) =  (r -  -  R) (4.1)
R

Single exponent Gaussian type functions can be used for each but it is more efficient 

to use linear combinations of individually normalised Gaussian type functions, G[aj; r] 

which are called contractions:

" G

-  A;, -  R) =  ^  dj G[ay, r -  A^ -  R] (4.2)
j

The contractions are grouped into ’shells’ of the same type, i.e. s, p and d to improve the 

computational efficiency. This leads to shorter computational times than the traditional 

plane wave basis approach, however it involves additional difficulties regarding the con

struction of the complete and appropriate basis set. A large number of unoccupied states

'Currently code SMEXCITON runs in conjunction with CRYSTAL95 and CRYSTAL98, (see Ap
pendix A).
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Table 4.1: Experimental lattice constants in A .

ao
Si 5.429“
Ne 4.429*
Ar 5.256''
Kr 5.706"
Xe 6.2023<^

“Reference [56]. “̂ Reference [57]. 
'’Reference [58]. ‘̂ Reference [59].

is needed to achieve well converged results, for the self-energy matrix element (3.36) and 

dielectric matrix (3.30). Thus, special care has to be taken while constructing the Gaus

sian orbital basis set. The criteria used in construction of the Gaussian orbital basis sets, 

as well as some illustrative applications and convergence tests and tables of the sets used 

in this work are given in Appendix C. Several basis sets are presented in Appendix C for 

Si from which the two largest are chosen in further calculations: pseudopotental valence 

basis set labeled T P  64 AO’ and all-electron basis set labeled ’88 AO’. For each of the 

RGS a single basis set is presented in Appendix C.

We use LDA exchange [50] and a Perdew and Zunger [51 ] correlation potential for 

silicon. LDA exchange and Perdew-Wang correlation [52] are used for RGS: Ar, Kr 

and Xe. For Ne, only the LDA exchange potential is used. The potential was changed for 

RGS, because the latter gave more accurate results for the band structure, total energy etc. 

The Perdew-Wang correlation functional was also presented as a more accurate potential 

by the authors in [52], For pseudopotential basis sets, the Hay and Wadt Large Core 

[53, 54] parametrisation is used for silicon and the Durand and Barthelat Large Core [55] 

is used for neon. Experimental values have been used for the lattice constant, u q  and are 

listed in Table 4.1.
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4.1.2 Details of the GW  calculation

The calculation of the GW  self-energy matrix element involves summation over both 

occupied and virtual states, n, a double sum over reciprocal lattice vectors, G and G' 

and a sum over q-vectors from the first Brillouin zone. All these sums require careful 

examination for convergence.

The calculation is more efficient if we separate the static bare exchange part of the 

self-energy from the energy-dependent (dynamic) part which arises from correlation [see 

Equations (3.36) and (3.37)]. The static part is equivalent to the Hartree-Fock exchange 

energy:

imk) = <4.3)
“  q,G n |q  +  ^ l

In this relation, a sum over bands, n runs only over occupied states and it is important to 

include all core states in an all-electron basis set approach, e.g. inclusion of the core states 

increased the direct gap by 0.3 eV for Si. The effect was similar in the rare gases. The 

static term is diagonal with respect to the reciprocal lattice vectors G due to the orthogo

nality of the dielectric matrix eigenvectors ^,-G(~q)^*_G'(~Q) — < ĝg'- However a 

large number of G vectors is required to achieve well converged results. Generally, up to 

400 G vectors were used for rare gases and 283 G vectors were used for the all-electron 

approach calculations for silicon. An increase in the number to the next shell, 375 G vec

tors changed the gap by 0.02 eV for Si. When the pseudopotential valence electron basis 

set was used, only 70 G vectors gave sufficient convergence for Si and 200 G vectors for 

Ne.

When the correlation part of the self-energy was calculated, inclusion of the core 

states induced changes in the quasiparticle energy states by less than 0.01 eV, for Si 

and the RGS, which is less than the general accuracy obtained with GWA. This is not 

surprising, due to the large binding energies of these states, the interaction between them 

and valence electrons is small. So they are neglected in the calculation of the dynamic 

part of the self-energy. The total number of conduction bands included in the summation 

in (3.36) was limited by the size of the basis set. The summation was truncated at the 

upper free-electron limit as described in Appendix C. In the summation over G and G',
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59 vectors gave well converged results for all materials considered. This convergence 

is directly determined by the size and convergence of the dielectric matrix eigenvalues 

and eigenvectors. Details of the dielectric matrix calculation, as well as some illustrative 

examples are given in Appendix B.

The sum over q from the first Brillouin zone for self-energy matrix elements in (3.36) 

is performed using M onkhorst-Pack special points [60]. Two special points in the IBZ 

and their stars give sufficient accuracy. The use of ten special points results in quasipar

ticle energy differences less than 0.07 eV for Si. The differences were even smaller for 

the rare gases.

One important difficulty remains related to the summation over q points. Namely, 

if G =  G ' =  0 and m  =  n, the terms to be summed up in (3.36) diverge for small q 

/ (q )  =  A/q^. The special-point theorem is invalid in the presence of singularities. 

As noted by several authors [6, 61, 62], this summation has to be treated with care. The 

auxiliary function technique of Gygi et al. [61] has been adopted in this work. To perform 

the sum by special points, an auxiliary function ^(q) that shows the same behavior for 

q —> 0 as /(q)  has to be introduced as follows:

H  /(q )  -  E [ / ( ‘i) -  ^  E  ^(q)> (4-4)
q q q

with

A  =  lim[gV(q)]-
q —

The term /(q )  — Ag(q)  in (4.4) does not contain any divergence and special points can 

be used to evaluate the sum over q in the (3.36). If the auxiliary function, ^(q) is cho

sen carefully, then the second term in (4.4) or the corresponding integral over the first 

Brillouin zone can be done analytically [61]. The auxiliary functions used in this work, 

as well as the corresponding integrals are presented in Table 4.2. If only one vector (G 

or G ') is zero and m  =  n  the terms to be summed up in (3.36) diverge for small q 

like /(q)  =  B/ g.  Since these divergences are less problematic than 1/g^, they are not 

considered in this work. Alternatively, the same technique can be applied to this case.

As can be seen from (3.36), calculation of the self-energy matrix elements requires 

the calculation of the dielectric matrix at each special point q and at q —> 0. The latter
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Table 4.2: Auxiliary functions, p(q) and their integrals over the Brillouin zone 
[61] for the simple cubic, face-centred cubic and body-centred cubic lattices, a 
is the lattice constant.

Simple cubic (SC):

. . ^ __________ aV2__________
3 — cos{aqx) — cos{aqy) — 0 0 3 (0 9 2 ) 

2

E q ^ (q )  =  ( 1 ^ )  15.67249523473854

Face-centred cubic (FCC);

{ a / 2 f
i'(q) =

3  — c o s ( ^ ) c o s ( ^ )  — c o s ( ^ ) c o s ( ^ )  — c o s ( ^ ) c o s ( ^ )  

2

Eq^(q) =  13.89764556215925

Body-centred cubic (BCC);

{a!2f
^(q) = 1 -  c 0 s ( ^ ) c 0 s ( ^ ) c 0 s ( 2 f ) 

,2
E q ^ (q ) =  43.19806651591508

is used to determine the quantity A  in (4.4). The full RPA dielectric matrix (3.30) is 

computed at each point. Again to perform the sum over k points in (3.30) we use special 

points. The dielectric constant was calculated using 10 and 27 special points in the IBZ. 

The results differ by less then 6%. So, ten special points and their stars are considered as 

sufficient to give well converged results.

The central problem with the realisation of the GWA is the calculation of the spatial 

integrals (m k|e“*‘̂  ''|nk  + q) (where Q =  q +  G) that appear in (3.30) and (3.31). We
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write the crystalline orbitals as a linear combination of Bloch functions (4.1),

V’mk(r) =  -  R) • (4.5)
M R

where </?̂ k is, a localised atomic orbital (4.2) centred at A^, the sum over R spans all 

lattice vectors and a^m(k) are LDA eigenvector coefficients. Thus, the integral over the 

crystalline orbitals reduces to a sum over integrals over the Gaussian type functions:

(mkle-^^-'Ink +  q) =  ^A^)e*^'V/.'k+q(r-[A^/+ R]).
f i f i '  R

(4.6)

These are analytically evaluated and more detailed reading can be found in [63] and [42].

4.1.3 Results for Si

First of all, we applied our approach to Si in order to investigate its accuracy. We have 

used the pseudopotential ‘PP 64 AO’ and all electron ‘88 AO’ basis sets (see Appendix C) 

and our results are compared to highly converged plane-wave calculations. The reason 

for this was to investigate convergence criteria and the effect of core electrons on the 

GWA calculations within a localised Gaussian orbital all-electron framework.

The GW  and LDA band-structures calculated along high-symmetry lines are shown 

in Figure 4.1. The left and right panels present the pseudopotential and all-electron calcu

lations respectively. On first inspection, it can be noticed that GW  quasiparticle correc

tions shift all conduction bands uniformly up when using the pseudopotential approach. 

While this effect was reported by the earlier pseudopotential valence electron basis set 

calculations [3,6], it is not present in our all-electron Gaussian orbital framework. There 

is a strong dependence between quasiparticle corrections and the wave-vector q on the 

right panel of Figure 4.1.

To investigate this further, first, we compare our LDA results to the plane wave cal

culations in [5]. The results are given in the first and second columns in Table 4.3, for 

pseudopotential and all-electron respectively, while the plane wave data, taken from [5] 

are presented in the third column. Both, our PP 64 AO and 88 AO LDA calculations 

yield similar results to the plane wave LDA calculation. Also the all-electron basis set
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Figure 4.1: Band structure for Silicon, GW  (solid line) and LDA (dashed line).
Left panel is a pseudopotential valence electron based calculation and the right
panel presents all-electron basis set calculation.

calculation data agrees slightly better with the published data [5] than the pseudopotential 

calculation. Thus, both our basis sets, all-electron and pseudopotential valence electron 

are suitable to obtain reliable results for LDA band structure. Furthermore, they should 

provide a good basis for GW  calculations.

Secondly, we compare our GW  band structure to the plane wave non-self-consistent 

calculation of Rieger et al. [5]. The results are given in Table 4.4. The first and sec

ond columns give our pseudopotential and all-electron calculations respectively, the third 

column shows results taken from [5] and the last column shows experimental data.

The valence band width, 12.92 eV obtained by using the all-electron basis set is in 

excellent agreement with the experimental value of 12.5±0.6 eV, while our pseudopo

tential calculation as well as plane-wave data from [5] underestimates the experimental 

value. The lowest conduction band, F i5c =3.33 eV is again close to the experimental
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Table 4.3: Calculated LDA eigenenergies at points of high symmetry for Si (in 
eV) using the pseudopotential velance electron basis (PP 64 AO) and all-electron 
basis set (88 AO) in a comparison with plane waves LDA calculation.

Band PP 64 AO 88 AO PW^
r li; -11.7 -11.90 -11.99
r'̂ 2bv 0.0 0.0 0.0
r 15c 2.47 2.59 2.58
r'̂ 2c 4.01 3.33 3.28

Xi. -7 .78 -7.76 -7.78
-2 .90 -2.88 -2 .82

Xu 0.56 0.79 0.61
X i c 10.38 10.23 10.11

L '2 . -9.57 -9.61 -9.57
L \ y -7 .04 -7.01 -6.96
L 'z y -1.25 -1.22 -1.17
L i e 1.61 1.61 1.46
L ',c 3.21 3.44 3.33

“Reference [5].

3.4 eV and plane wave value of 3.2 eV. The same basis set yields a value of 0.97 eV for 

the fundamental (indirect) gap, which is slightly underestimated when compared to the 

experimental, 1.17 eV and the plane-wave result, 1.2 eV. However it is still within the 

GW  accuracy, which is estimated to be about ±0.1 to ±0.2 eV and the typical experi

mental error is about ±0.2 eV. It has to be noticed that our GW band structure based on 

the all-electron Gaussian orbital approach is in good agreement with previous all-electron 

calculations [62, 68, 69]. A recent study [70] suggested that an insufficient number of 

conduction bands included in calculations [62, 68] resulted in underestimation of the 

band gap in all-electron approach in the previous calculations. To investigate that possi

bility we calculated the band gap as a function of number of conduction bands using the 

all-electron 88 AO basis set. The results are presented in Figure 4.2. It is clear from the 

plot that sufficient convergence was already achieved for 25 conduction bands. A similar 

result was obtained in [6].
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Table 4.4: Calculated GW quasiparticle energies at points of high symmetry for 
Si (in eV) using the pseudopotential, PP 64 AO and all electron, 88 AO basis sets 
in a comparison with plane waves GW calculation and experimental result.

Band PP 64 AO 88 AO PW“ Experiment

F lu -11.30 -12.88 -11.57 -12 .5±0 .6 ''
F'^ 25v 0.0 0.0 0.0 0.0
F 15c 3.20 3.33 3.24 3.4'’ ; 3.05"
F'^ 2c 4.78 5.72 3.94 4.23''; 4 .P

X l. -7.75 -8.32 -7.67
-3.02 -3.16 -2.80 - l . ¥ \  -3 .3 ±  0.2''

X u 1.28 1.04 1.34 1.25''
X,c 10.86 11.53 10.54

L'2. -9 .36 -10.45 -9.39 -9.3±0.4 ''
L\v -7 .09 -7.42 -6.86 -6 .7  ±  0.2''
L'z. -1.31 -1.35 -1.17 -1.2±0.2'>; -1.5^=
Lie 2.35 2.75 2.14 2.1^; 2.4 ±0.15®
L'se 4.44 3.90 4.05 4.15±0.1®

E, 1.20 0.97 1.20 1.17

“Reference [5]. Reference [56].
‘̂ Reference [64]. ‘̂ Reference [65].
^Reference [66]. •^Reference [67].

To investigate this further, we calculated the dynamic term of the self-energy as a 

function of energy and plot its real part together with the data from [5], where the pseu

dopotential plane wave approach is used. Results at the F point, for the valence bands, 

and r'2 5 „ and lowest conduction bands, Fisc, are shown in Figure 4.3. The inserts 

show the data around the actual quasiparticle energies for the band. As we can see, there 

is remarkably good agreement between our calculation and data from [5] despite the 

plasmon-pole model used in our case. This suggests that our results are well converged 

with respect to the number of conduction bands at least for the states around the gap.

In conclusion, we succeeded in obtaining a good description of the quasiparticle states 

around the energy gap with either basis set. Since, we are mainly interested in low energy
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Figure 4.2: Direct band gap (upper panel) and fundamental gap (lower panel) for 
Si as a function of number of the conduction bands included in the calculation 
using all electron 88 AO basis set. The circles denote the calculated data and the 
lines are only guides to the eye.

optical spectra, and these states give the main contribution to it, our GW  calculations 

should provide a good basis for its computation.

A poor of description of the higher conduction bands could be due to either our sim

ple plasmon-pole model, which as stated in Section 3.5.1 works well only for the states 

around the gap. Although, there is a possibility that these bands are not well converged 

with respect to the number of conduction bands and a larger bases set should be de

veloped for equally accurate descripton of the higher conduction bands. However, the 

number of conduction bands has been limited within the Gaussian orbital framework 

(see Appendix C) and it would be difficult to increase it without / -  and ^-type^ orbital 

taken into calculation.

^These are not implemented in CRYSTAL95 and CRYSTAL98 codes which are used in a conjunction 
with our code (see Appendix A).
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Figure 4.3: The correlation part of the self-energy operator at F point for Si. The 
solid line corresponds our calculation and the dashed line is data from [5]. The 
upper panel corresponds Ti„ band, is in the middle and the lower panel is 
F 15c state. Inserts show data around the actual quasiparticle energies
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4.1.4 Results for rare gas solids

A number of studies of the electronic structure of rare gas solids (RGS) has been reported 

in the past. The most recent one of the whole class is given by Bacalis et al. [71]. They 

performed an augmented-plane-wave method using the Hedin-Lundqvist local-density 

exchange and correlation and a simplified self-energy correction that accounts for dy

namical exchange and correlation processes known as COHSEX [1, 72]. Their results 

are in better agreement with experimental data than those reported earlier by Kunz and 

Mickish [73] calculated by the HFA, Applying the quasiparticle corrections to the LDA 

eigenstates they improve agreement with experimental values for the band gap width, 

valence bands width and conduction band separation.

We calculated the band structures of RGS: Ne, Ar, Kr and Xe, using GW  self-energy 

corrections as described in Chapter 3, based on the LDA eigenstates. Numerical details of 

the LDA and GW  are given in Sections 4.1.1 and 4.1.2, respectively. Spin-orbit splitting 

is not taken into account in these calculations. Band structures of the RGS are plotted 

along symmetry lines in Figure 4.4. GW  calculations are presented in solid lines while 

dashed lines present LDA calculations. The figure (all four panels) shows that the con

duction bands have been shifted up by the GW  correction, which improves agreement 

between the calculated and experimental values for band gap in each solid.

The conduction energy bands of neon (top-left on Figure 4.4) are wide and free- 

electron-like, which is expected for a light atomic-like neon. Namely, the RGS atoms 

interact with a weak van der Waals interaction, which results in valence states of the 

isolated RGS atoms changing only slightly when being built into a solid. Thus, the 

wave functions of valence electrons in neighbouring atoms overlap only slightly, however 

excited states overlap with the neighbouring atoms significantly which modifies the van 

der Waals energy in the crystal (see Ref. [74]). The effect increases in strength from 

Ne to Xe and it is very weak in helium. The main effect of the crystal field for Ne is to 

remove the degeneracy of the free-electron bands at high symmetry points e.g the lowest 

conduction bands at L and X. The conduction band is the lowest component of the 

eightfold degenerate free-electron state.
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All G W  conduction bands in Ne are uniformly shifted up by about 9 eV, which is 

more than 70% of the LDA energy gap. Similarly, conduction states for argon (top-right 

panel) are uniformly shifted up by about 4 eV which is about 30% of the LDA energy gap. 

The valence band width is slightly changed for these two solids. This suggests that the 

LDA band structures of these two solids are qualitatively correct and the so called scissor 

operator (uniform shift of conduction states to adjust to the correct band gap) can be 

applied for these two elements to obtain quasiparticle energies. However this trend is not 

present in band structures for krypton (bottom-left panel) and xenon (bottom-fight panel). 

There is a significant dependence of the quasiparticle correction on the wave-vector q in 

the band structure for these two solids.

Tables 4.5-4.8 give a direct comparison at high symmetry points of our LDA and G W  

calculations to those from [71] and experimental values where available. Table 4.5 gives 

data for Ne. Our G W  energy gap is in excellent agreement with the experimental value 

[75]. The L'2y band is within 30% of the measured value, while the data from [71] is in 

slightly better agreement with the experimental value. The difference between our data 

and that of [71] is significant for the band, however there is no measured value for 

this band. At the X  point the valence band width in our G W  calculation and data from 

[71] are in good agreement. The conduction band separation, -  Tie known as the 

s — d separation and conduction band widths: Xic — Tie and — Tie differ from 10 to 

20% between our data and data in [71] for Ne.

Data for Ar is presented in Table 4.6. Our G W  energy gap is 14.02 eV, which is close 

to the experimental value of 14,15 eV. The valence band widths are in very good agree

ment with quasiparticle data from [71]. The band, overestimates the experimental 

value by less than 20%. However, the s — d separation and conduction bands widths 

^ ic  — Tic and Lie — Tic were all overestimated at the LDA level and they were worsened 

by the G W  correction.

As was the case for Ar, for both Kr (Table 4.7) and Xe (Table 4.8), the G W  energy 

gaps, ric are in good agreement with experimental values. Values for the valence band 

width at band are improved by GW  correction and they are in good agreement with
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Figure 4.4: Band structures for RGS: top-left panel Ne, top-right Ar, bottom-left 
Kr and bottom-right Xe. GW calculation (solid line) and LDA (dashed line)

45



Table 4.5: Energies (eV) at high-symmetry points for solid neon. The second 
and third columns correspond to this work (labeled as a LDA and GW,  respec
tively). The fourth and the last columns are quasiparticle states from [71] and 
experimental values, respectively.

Bands LDA GW Ref [71] Experiment

r i5v 0.0 0.0 0.0 0.0
Tic 12.44 21.56 16.56 21.42“

-0.71 -1.09 -0.88
-0.23 -0.31 -0.30

-0 .79 -0.87 -0.99 -1.306*'
-0.078 -0.21 -0.09

^25c ~  ^ic 22.81 24.37 20.51
^Ic ~  Tic 6.48 7.18 8.12
Lie Tjc 5.03 5.53 7.21

“Reference [75]. ’̂Reference [76].

Table 4.6: Energies (eV) at high-symmetry points for solid Ar. This work is 
presented in the second (LDA) and third {GW) columns, the fourth column cor
responds to published data and the last column gives the experimental data.

Bands LDA GW Ref [71] Experiment
0.0 0.0 0.0 0.0

Tic 10.63 14.01 11.96 14.15“

X . -1.23 -1.85 -1.73
-0 .40 -0.55 -0.63

L'2v -1 .34 -2.02 -1.92 -1.700''
L's. -0 .14 -0.22 -0.20

r;5c -  Ti 11.56 12.13 8.44 5.197
^Ic  ~  Tic 4.85 5.70 3.10 2.35
L\c Tic 3.89 4.70 3.50 1.646

“Reference [75]. ^Reference [76].
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Table 4.7: Quasiparticle energies (eV) at high-symmetry points for solid Kr. For 
explanation of the columns see Table 4.5 or 4.6

Bands LDA GW Ref [71] Experiment
Tist) 0.0 0.0 0.0 0.0
Tic 8.43 11.75 9.99 11.61“

-1.06 -1.87 -1.700
-0.36 -0.70 -0.64

L'2v -1.18 -2.07 -1.88 -2.30''
-0.15 -0.29 -0.22

-  Ti 5.35 5.97 7.36 5.197
^ I c  “ T i c 1.70 1.63 2.57 2.20
Lie 2.06 2.27 2.88 1.50

“Reference [75]. ''Reference [76].

Table 4.8: Energies (eV) at high-symmetry points for solid Xe. This work is 
presented in the second (LDA) and third {GW) colums. The last two columns 
are theoretical and experimental data (see Table 4.5).

Bands LDA GW Ref [71] Experiment
Tisu 0.0 0.0 0.0 0.0
Tic 7.33 9.63 8.23 9.32“

-1.46 -2.61 -1.52
-0.55 -1.01 -0.59

L'2v -1 .64 -2.96 -2.08 -3 .01 '’
-0 .17 -0.30 -0.26

r'25c -  Tl 10.95 9.64 5.43 3.70
^ I c  “ Tic 2.54 1.11 1.53 2.00

3.04 3.95 2.00 1.61

“Reference [75]. ’̂Reference [76].
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the experimental values for either solid, while the data Ifrom [71] is underestimated. Good 

agreement with the experimental values for encouirages us to believe that our data is 

closer to the realistic values at the X  point and at L'̂ ,̂ even if it does not agree well with 

data in [71]. It is important to mention that the magnituedes of spin-orbit interaction 

for Kr and Xe are Eso =0.64 eV and Ego =1-3 eV [ 77], respectively, which are quite 

important and we cannot expect good band structune without inclusion of relativistic 

effects in the calculation.

The s — d separation is overestimated at the LDA level for all four solids and it is 

increased by the G W  correction for Ne, Ar and Kr, so the agreement with experimental 

values worsens. Similar results were obtained in [71]]. Although the s — d separation 

for Xe was decreased by the G W  correction in our cailculation, it still overestimates the 

measured value by more then 60%. The conduction baind widths, Xic -  Tie and Lie — Tic 

are not in very good agreement with experimental vailues for either Ar, Kr, or Xe. As 

was case in the all-electron Gaussian orbital basis siliicon calculation (see discussion in 

the previous subsection) all of these omissions can bte explained by the following: (1) 

a lack of the convergence with respect to the numberr of conduction bands in the G W  

calculation, particularly the higher conduction bands fare more sensitive on that number 

and (2) the plasmon-pole model used in the calculation, which can describe the energy 

dependence of the dielectric function only below and airound the gap values. In addition, 

omission of the spin-orbit interaction contributed to the poorer band structures for Kr and 

Xe.

The G W  correction generally improved the band gap for all four rare gases. Fig

ure 4.5 illustrates the fundamental gap in our GW  and LDA calculations and experimen

tal values for all four rare gases. When going from Ne to Xe, both the LDA and the 

G W  approximations show a decrease in the fundamenital gap. The corrected G W  gap is 

in good agreement with the experimental value for alll four solids. Figure 4.6 illustrates 

the valence band width for all four gases and comparces our LDA and G W  calculations 

with experimental data. Again, it is shown that the G W  correction improved the valence 

bands, and our G W  values came close to the experimental values. The valence band
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Figure 4.5: Calculated band gap energies (in eV) for the RGS (symbols) vs. 
experimental values, 45° line presents ideal values

width increased when going from lighter Ne to Xe in both LDA and G W  approximation 

which is consistent with experimental measurements. From Tables 4.5-4.8 we can see the 

trend in decrease of the conduction band separation when going from Ne to Xe which is 

observed experimentally. The LDA and GWA confirm that trend from Ne to Kr, however 

the higher conduction bands in Xe are in a strong disagreement with experimental values 

and its s — c? separation does not fit in the mentioned trend.

Finally, the self-energy correction gives reliable band structure for the valence bands 

and the first conduction band, i.e, energy gap, however the higher conduction bands are 

not very accurate. Even, if the reasons for this could be explained by the disadvantages 

of the Gaussian orbital basis set mentioned above, a similar discrepancy was obtained 

by Bacalis et al. [71] when an APW model was used. Our results are applied in the 

calculation of the low energy optical spectrum, where the transitions between top valence 

p state and bottom conduction s state give the main contribution to the spectrum and is 

not sensitive to the higher conduction bands.
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4.2 Quasiparticle band structure for CU2O

The recent discovery of high-temperature superconductivity [78] in ceramic oxides con

taining copper has rekindled interest in studying the electronic structure of copper oxides 

in more detail. Copper oxides exist in two stable forms, cuprous oxide CU2 O and cupric 

oxide CuO.

Cuprous oxide is of interest in the present work. There are two interesting features 

of cuprous oxide: Firstly, it crystallizes in the cuprite structure [79] which is unusual and 

described in 4.2.1. Another interesting feature of CU2 O is the excitonic spectrum [80, 81] 

which is not considered in this thesis due to strong spin-orbit coupling.

Many theoretical studies of the electronic structure of CU2 O have been reported in the 

past. Some of the earliest studies were performed by Kleinman and Mednick [82] using 

the Hartree-Fock-Slater method, by Dahl and Switendick [83] using a non-self-consistent 

augmented plane wave method and by Robertson [84] using a tight-binding approach. 

More recently, Ching et. al. [85] reported a study of the ground state and interband optical 

properties within the DFT using orthogonalised linear combination of atomic orbitals
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and Ruiz et. al. [78] reported study o f the electronic and structural properties with a 

self-consistent Hartree-Fock approximation. There is no reported study o f the electronic 

structure o f CU2 O with a G W  approximation based on Hartree-Fock eigenstates that we 

are aware of. The main aim o f this section is to investigate quasiparticle band structure 

using the (?W^-HFA approach described in Section 3.3.2.

4.2.1 Crystal structure

A particularly attractive feature o f CU2 O is the cuprite structure, consists o f a BCC array 

o f oxygen atoms with Cu ions inserted between consecutive oxygen layers, in such way 

that each oxygen atom is surrounded by a tetrahedron o f copper atoms. Each copper 

atom is bonded by two oxygen atoms forming a linear unit O -C u-0, (see Figure 4.7). 

Alternatively, the structure can be described as two interpenetrating frameworks, each 

one equivalent to the Si0 2  cristobalite structure [86] and there is a weak interaction be

tween two frameworks. The cuprite structure has high symmetry with space group P n 3 m  

(Ofi). An unusually short C u -0  bond length o f 1.85 A, indicates the existence o f cova

lent bonding between Cu and O. The Mulliken population analysis in our self-consistent 

Hartree-Fock calculation gave values o f + 1 .05e  and — 2.1 e for the charges o f Cu and O, 

respectively. This confirms a fully ionic picture. Som e earlier theoretical works were 

contradictory about this, Ruiz at. al. [78] obtained an ionic structure with som e C u -0  

covalent character, Ching at. al. [85] obtained a quasi-neutral description with a small 

negative charge on the Cu ions. Restori and Schwarzenbach [87] fitted orbitals o f the 

experimental x-ray electron density showing that CU2 O is a fully ionic crystal.

The Hartree-Fock calculation was carried out using the CRYSTAL95 [26] code. An 

all-electron basis set is employed giving a total o f 180 atomic orbitals per unit cell. A  

detailed description o f the basis set is given in Appendix C. The experimental value 

for the lattice constant, gq =  4.2696 A, used in the calculation is taken from [88]. A  

spin-orbit interaction is not included in the present work.
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CU2O (cubic) lattice

Figure 4.7: Crystal structure of CU2O: primitive ceil (left) and supercell struc
ture (right). Green balls correspond to Cu atoms and red ones to O atoms. Figure 
of the supercell was taken from
http : //www.fhi —  berlin.mpg.de/personal/hermann.

4.2.2 Self-energy calculation

The self-energy matrix element in GVK-HFA includes only the dynamic part,

(m k|E (£;)|m k) =  — -  E E^  ^  g' n |q +  G| |q -h G'lq,G,G

■2— q / W — q /  1

E  ^ '^k+q ^ —q l -
(4.7)

since the Hartree-Fock exchange is already included in the self-consistent Hartree-Fock 

calculation (see Equation 3.21). The sum over q-vectors is carried out using a special 

points by Monkhrost and Pack [60] for a simple cubic lattice. Two special points in 

the IBZ and their stars and 27 reciprocal lattice vectors, G and G' produced the result 

converged within 0.01 eV. The sum over bands, n involves both occupied and conduction 

states. We found that the core states (Cu ls,2s,3s,2p,3p and O Is) do not contribute to the 

final GW^-HFA results, significantly. Inclusion of these states decreased the band gap by 

only 0.03 eV. This is not surprising due to the large binding energies of these states.

The divergence for the case q —> 0 and G =  G' =  0 was treated using the aux

iliary function technique given by Equation (4.4) and Table 4.2. The special integrals 

(m k|e“*  ̂''|nk  +  q) in (4.7) are computed as described in Section 4.1.2. The full RPA
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Fock and (b) Quasiparticle GW-WVA calculation. All bands refer to the top of 
the quasiparticle valence band set to 0 eV.

dielectric matrix was calculated at each q point and at the q —> 0 limit. In the dielec

tric matrix calculation 216 k-points were used in the simple cubic BZ to perform the 

integration over the zone.

4.2.3 Results

Calculated band structures for CU2O are presented in Figure 4.8. The figure compares the 

self-consistent Hartree-Fock band structure, panel (a) with the Gl/F-HFA calculation in 

panel (b). The results of both methods show the existence of the direct gap at the F point, 

which is consistent with experimental observations [80] and earlier calculations [78, 82, 

83, 84, 85]. The band gap and valence band width are highlighted in Table 4.9. The 

Hartree-Fock band gap is 9.84 eV, which is in strong disagreement with the experimetal 

value of 2.17 eV from [80] obtained by optical absorption. This fact reflects the well-
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known characteristic of the periodic Hartree-Fock method and does not permit use of the 

methodology for the interpretation of the excitonic spectrum of CU2 O because the band- 

gap energy enters directly into the absorption spectrum. However the topology and the 

main features of the band structure agree well with previous calculations [78, 82, 83, 84].

The G W  calculation shifted the valence bands up and conduction bands down. This 

resulted in the band gap of 3.12 eV (3.09 eV)^, which is by about 3 times smaller than 

the Hartree-Fock value but still overestimates the experimental value by about 40%. On 

the other hand, the valence band width is changed from the Hartree-Fock value of 8.55 

to 7.84 eV, which is close to the experimental estimate around 8 eV obtained from the 

ultraviolet photoelectron spectroscopy by Ghijsen et. al. [89]. The GW  valence bands 

are plotted separately in Figure 4.9 and topology of the structure agrees with previous 

calculations [78, 82, 85].

The overestimation of the G W -\l¥A  gap was also obtained in [42] for Si, diamond 

and MgO where GW^-HFA was used. Reasons for this were attributed to the use of the 

exaggerated Hartree-Fock eigenvalues in [42], since the gaps in all Si, diamond (see [6] 

and Section 4.1.3) and MgO [4] were described by GW^-LDA with an accuracy of order 

0.1 eV. The overestimation of the GW  band gap of CU2 O can also be due to use of the 

Hartree-Fock eigenvalues, and LDA eigenstates could be a better starting point in this 

case. We performed LDA calculation with CRYSTAL95/98 for CU2 O which failed to 

converge. It would be worthwhile to apply a self-consistent G W  calculation for this 

material. Finally, inclusion of the spin-orbit interaction is also essential for accurate 

description of the band structure for CU2 O [80].

^The result in the brackets indicates the value obtained with all core electrons taken into calculation.
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Table 4.9: Hartree-Fock (HF) and GW results for the band gap Eg and valence 
band width for CU2 O from the present calculation compared to the experimental 
values. All energies are given in eV.

HF GW Expt.

E , 9.84 3.1 2.17“

E v b 8.55 7.8 about s'*

“Reference [80]. ''Reference [89].
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Chapter 5 

Optical Spectra and Electron-Hole 
Excitations

The optical spectra of solids provide extremely useful information about the character 

of materials. Optical excitations provide the basis for a vast range of technical applica

tions, including laser technology, light-emitting devices and photovoltaics. In this con

text, it is important to describe and predict optical properties by a reliable and efficient 

theory.

Modern ab initio techniques have been used to study many properties of solids for 

many years. DFT has been proven as a very powerful tool for studying ground state 

properties and the GWA has been very successful for calculation of electron self-energies 

and quasiparticle band structures. However, neither of these theories leads to an accurate 

description of the optical spectrum. The cause of it lies in the fact that these theories deal 

with single-particle states only, and do not describe a key aspect of the optical absorption 

process: the electron-hole interaction. When a photon is absorbed, an electron in the 

valence band is excited into the conduction band leaving a hole behind. Single-particle 

theories regard the excited electron and hole as independent, noninteracting particles. 

However, the excited electrons and holes do interact and form bound states called exci- 

tons. This effect is especially pronounced in a wide gap insulators, where the electron- 

hole interaction is strong due to insufficient screening. In these systems electron-hole 

effects can dominate the spectrum and wash out the features found in the one-electron 

spectrum.
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More than two decades ago, Hanke and Sham introduced a scheme in which the 

electron-hole interaction can be included [9, 10], The approach relies on calculation of 

an electron-hole propagator, which describes the dynamics of the electron-hole pair in 

a quantum many-body system. Due to its computationally complex nature, it had been 

limited to simple situations or to simplifying model approximations for many years.

Only recently, the Hanke-Sham approach was applied together with single-particle 

energies and wave functions from LDA and quasiparticle calculations. An efficient algo

rithm for calculating electron-hole bound states and electron-hole wave functions based 

on the Hanke-Sham approach has been proposed by Rohlfing et al. [13]. This approach 

is adopted in this work and presented in this chapter.

This chapter is organised as follows: Section 5.1 gives a theoretical overview of 

the dielectric response and dielectric tensor. The electron-hole propagator and Bethe- 

Salpeter equation [8] are presented in Section 5.2. Section 5.3 gives details about the 

electron-hole interaction kernel. The spin structure of the electron-hole states and the 

optical spectrum are presented in Sections 5.4 and 5.5, respectively. Finally, numerical 

techniques are give in Section 5.6.

5.1 Linear Dielectric Response

The dielectric response of the system placed in an external field, E (r, oj) can be described 

by introducing the dielectric constant tensor Sij which gives relation between induced 

electric displacement D (r, u)  and external field [90]:

D j  =  (z , ;  =  1 , 2 , 3 )  (5.1)

In the crystalline case, it is appropriate to exploit lattice translation symmetry to trans

form expression (5.1) to a reciprocal-space basis with the following convention used:

e i j { r , r ' , u j )  = ^  ^  +  G , q G ' ,  (5.2)
q,G,G'

Here Q denotes the crystal volume, the wave vector q  is restricted to lie inside the first 

Brillouin zone and G  and G ' span the (infinite) reciprocal lattice. By this we obtain
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the wavevector and frequency dependent dielectric function, ejj(q +  G, q +  G ', w). As 

originally introduced by Lindhard [91], one can now define longitudinal and transverse 

components of the the dielectric function, £||(q +  G ,q  +  G',t<;) and e±(q +  G ,q  + 

G', w), respectively. However for the case of cubic symmetry, there is only one linearly 

independent component and can be shown that those two components are equivalent, 

£|l =  e± in long-wavelength limit which is relevant in the current work (see text below). 

From now, we will consider only the longitudinal component' and the index || will be 

left out for clarity. Also, it is common to write e(q + G, q + G ',cj) in a matrix form: 

£^GG'(q,‘̂ )-

We can now return to relation (5.1). By considering only the longitudinal dielectric 

function and transforming (5.1) into reciprocal space it can be shown that a small change 

in external potential + G) of wave vector q + G will induce microscopic fields

in the crystal of a different wave vector q +  G ' and change in total potential is given by:

SV^°\q + G',uj) = J2eG^G,(q,u)SV^^\q + G,uj). (5.3)
G

These microscopic fields arise from the crystal inhomogeneity and they have been termed 

local field effects [9].

Following the Hanke and Sham [9] approach, as a first step of the calculation of the 

dielectric function, we define the density response function or irreducible polarisability, 

Pgg 'IQ) w). which relates induced charge density caused by a change in external poten

tial,

6p(q + G , co) = Y^ Pgg ' (q, co)5V^^\q + G ' ,u ) .  (5.4)
G'

From Equations (5.3) and (5.4) one can express the dielectric matrix in terms of the 

polarisability as

£GG'(q,w) =  5gg' -  f (q  +  G)PGG'(q,w) (5.5)

where v{q +  G) =  47re^/r2|q + G p is a Fourier component of the Coulomb potential.

Within the single-particle picture, in a traditional random phase approximation (RPA)

'in  the more general case one should calculate the transverse dielectric constant for studying the optical 
properties since, light is a transverse electromagnetic wave.
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obtained by Adler [27] and Wiser [92] the polarisability is given by Pgg' =  ^ g g ' >

pO \ _  V ' /(-^nk+q) f(Enk)
 ̂ n,n' k -^n 'k+q ^nV. ^  *0

X {n'k +  \ n k  + q). (5.6)

Here, f {E)  denotes the Fermi function, n, n are band indices labeling the Bloch eigen

states |k, n) of energy £'„(k) in the solid, and the sum over k is performed inside the full 

Brillouin zone, a spin has been integrated over. If we restrict ourselves to the contribution 

from G =  G ' =  0, the dielectric matrix given by Equation (5.5) in a limit of vanishingly 

small q —> 0 is related to the macroscopic dielectric function £:m by

£ m (w ) =  l i n i £ o o ( q , w ) .  (5.7)
q —>U

In that case Equations (5.5-5.6) yields to the standard intraband macroscopic dielectric 

function, known as Cohen-Enhrenreich [93], without local field effects included. The 

local fields can be included by calculating the symmetrised entire dielectric matrix, £gg ' 

[94],

, - 167re  ̂ 1
'̂gg 'IQ)'^) — OqG' ^ r2 |q + G ||q+G ^|

(ck -f q|e®(‘i+^ '̂''|'uk) (uk|e~*(‘’+®')'‘''|ck + q)
^  T X  k i ? c , k + q - £ ^ « , k - C ^ - * 0  +

then the macroscopic dielectric function is given as the inverse of the head of the numer

ically inverted dielectric matrix [9],

l/[^GG'(q>‘̂ )]oo- (5.9)
q —)>U

Equation (5.8) applys to semiconductors and insulators where v and c correspond to 

valence and conduction bands, respectively.

On the other side, if P  includes the electron-hole interaction, then it can be defined 

by the electron-hole correlation function, L [95]

P (r, r', u) — —iL{r, r', r, r ', co) (5.10)
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then Equations (5.5) and (5.7) give us all necessary information about dielectric proper

ties [9] and e m {( )̂ obeys

47T6^
=  1 -  lim 7 ^ P o o (q ,w ). (5.11)q->0

The macroscopic dielectric function is addressed again in Section 5.5. In the follow

ing few sections, the method for calculation of L from the Bethe-Salpeter equation is 

presented.

5.2 The Bethe-Salpeter Equation

In this section we investigate electron-hole excitations of type:

|iV,0) |iV,5), (5.12)

where \N, 0) and \N, S) are the ground and excited states, respectively of the A^-electron 

system. As Equation (5.12) indicates we restrict ourselves to the excitations which con

serve the total number of electrons. The most convenient approach to these excitations is 

given by a two-particle correlation function, 1/(12; 1'2') which is defined by [8]

L(12; 1'2') -  -G2(12; 1'2') +  G i( l ,  l')G i(2, 2') (5.13)

L describes the correlated propagation of two particles in addition to the individual prop

agation of each particle, which is contained in the product of two single-particle Green’s 

functions in Equation (5.13). L obeys the Bethe-Salpeter equation [8]:

L(12; 1'2') =  Lo(12; 1'2') +  J d(3456) Lq(14; I'S) S(35; 46) L(62; 52'). (5.14)

E denotes the electron-hole interaction kernel (see Section 5.3), Lo(12; 1'2') corresponds 

to the non-interacting electron-hole pair propagator which is given by

Lo(12;l'2') =  G i( l ,2 ' )G i(2 , l ' ) .

The notation (1) stands for a set of space, spin and time coordinates: (1) =  (xi, ti) = 

(ri, (7i, ti). L depends on four time variables which correspond to two electron-hole cre

ation processes and two electron-hole annihilation processes. In the context of optical
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spectra we restrict ourselves to simultaneous creation and annihilation, so only two of 

four time variables are independent. Finally, only the difference o f these two time vari

ables is relevant for Equation (5.14) due to time homogeneity in the absence o f external 

fields. This allows us to carry out a time-energy Fourier transform to L (x i,  X2 ; x^, x^; a;).

Assuming that the one-electron Green’s function G\ is fu lly  given by the electron and 

hole long-lived quasiparticle states given by Equation (3.10),

m

Lq can be written as [8 ]

L o(x i ,X2;x 'i ,X2;u;) =
k,t),c

V'k+Q c ( X l ) V'L ( X l ) ^  ( X 2 ) ^ k + Q  C (x'2 )
(jJ ( £ ^ k + Q c  -^ k w ) ^0  '

^k,;(xi)V>i^+Q (̂x;) k̂+Qc(x2)V>L(xy
(5.16)

^  +  (■E'k+Qc — •E’ku) +  *0+

The sum over v includes occupied states and c runs over conduction states only, k  is the 

Bloch wave vector in the Brillouin zone and Q is the total momentum of the electron-hole 

state. In an optical excitation process, Q is the momentum o f the photon absorbed by the 

two particle state. Its magnitude is usually small for the case o f bulk solids in the visible 

region of the electro-magnetic spectrum. Thus, it is assumed zero in the present work. 

Energies, E'km and functions, V’km(x) refer to quasiparticle energies and wave functions 

respectively. In analogy to the quasiparticle approximation, we assume that the electron- 

hole excitations (excitons) are given by long-lived transitions thus the correlation function 

L  can be written in a form similar to Equation (5.16):

' X 5 ( X 1 ,  x ' J X 5 ( x ^ ,  X 2 ) X 5 ( x 2 ,  X ^ ) x 5 ( x ' i ,  X i ) -
L (x i,x2 ;x 'i,x2 ;a ;) =

s
(5.17)

LU — O5 -|- zO~*" CO -|- C lg

where S denotes the correlated electron-hole excitation of the system, and ^ 5  is corre

sponds to the excitation energy. The electron-hole amplitude is defined by

X5 (x ,x ')  =  -  (N,0\'ip\x')7p{:x.)\N,S). (5.18)

The amplitude can be transformed into a basis o f single-particle wave functions o f the 

electron and hole states. In that basis it is expressed in the form:.
occ empty

X5(x,x') =  [^LV^kc(x)7Ak„(x') +  B^„^-0k4x)V^;;^(x')]. (5.19)
k  U C
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The physical picture of an electron-hole pair suggests that only a limited number of 

electron-hole pairs will contribute to each excitation.

From Equations (5.16, 5.17) and (5.19) an integral Bethe-Salpeter equation (5.14) 

turns into a generalised eigenvalue problem given by the Hamiltonian [11],

/  }{{'»,c){v',c') f j{v ,c ){c ' ,v ')  \
^  ~  j  • (5.20)

The Hamiltonian has a block-matrix structure and each block, js (jg.

fined by

^ ( " ‘’"')("3’"')(o;) =  {En2 -  Eni)6n,,n3^u2,n4 +  i sign{En2 ~  En,)

J  d(3456)?/)„i(x4)'0„2(x3)H(x4,X3;x5,X6;w)V’;^3(x5)V'*^(x6). (5.21)

As indicated in (5.20) a pair of bands (rij, nj)  presents one occupied and one empty state, 

and one Bloch vector, k  from the Brillouin zone which is left out for clarity. The off- 

diagonal elements of (5.20) do not contain the quasiparticle transition energies, only the 

interaction elements. It has been shown [13] that these elements are small and they have 

little effect for the absorption spectrum, however they could influence some other optical 

properties such as the macroscopic dielectric constant [13]. Nevertheless, we neglect 

the off-diagonal blocks, and separate the Hamiltonian into two block-diagonal parts: the 

resonant contributions which correspond to positive frequencies and the anti-resonant 

ones, active for negative frequencies. In this work, we consider the resonant contribution 

only and the electron-hole Hamiltonian will refer to that block for the remainder of this 

work. The matrix of the resonant block is Hermitian and yields the set of equations [13]:

(Ek. -  +  [  dk' 5:(t,ck|H|.,'c'k')/l5e'k' =  (5-22)
v'c'

This corresponds to expanding the excited states in electron-hole pair configurations as

occ e m p ty  occ empty

\ l ^ . S )  = ' £ ' £  E  A i , , a V \ N , 0 ) = : Z E  E  (5.23)
k V c V c

where and ¥  create a quasi-hole or a quasi-electron, respectively, in the many-body 

ground state \ N , 0 ) .
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Figure 5.1: The irreducible electron-hole interaction E: electron-hole attraction 
(left) and Coulomb repulsion (right)

5.3 The Electron-Hole Interaction Kernel

The electron-hole interaction kernel E is given by the functional derivative [8]

(5.24,
dGi[2',2)

where Vcoui is the Coulomb potential and E is the self-energy operator. The self-energy 

operator is again treated within the G W  approximation given by Equation (3.31). The 

first term in (5.24) is simple since Vcoui = pv = p x l / | r  — r'| depends linearly on the 

charge density p, which is given in terms of Gi by p(l) =  —iGi{l,  1" )̂. The derivative 

of the self-energy leads to the two contributions:

= W  + G i ( ^ ]  (5.25)6Gi '\6G,

The contribution 5W/5Gi  contains information about changes in screening due to the 

excitation and is assumed to be small [8]. In addition, this term is difficult to evaluate, 

computationally and mathematically. It was neglected in earlier calculations [8, 11, 13], 

and in this work as well. Thus, one obtains the following expression for E:

E(1 2; 1' 2') =  - i5 ( l ,  l ')S{2,2 > ( 1 ,2') -f i6{l, 2)W{1+, l')

=: E^(12;1'2') +  E‘̂ (12;1'2') (5.26)

Feynman diagrams for the interaction are presented in Figure 5.1. The interaction in

cludes two terms: the screened electron-hole attraction, also called the direct interaction, 

E'̂  (left panel of Figure 5.1) and the exchange interaction, E^ which results from the un-
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screened Coulomb bare repulsion (right panel). Higher order exchange diagrams [96] are 

allowed, however they will not be considered in this work.

Matrix elements of the interaction kernel are given by

(t>ck|H'^(fi5)|?;'c'k')

I  dxdxVck(x)^Ac'k'(x)i/’„k(x') /̂'; '̂k'(x')  ̂J  du;e*‘"‘’̂ VF(r,r',a;)

X
1 1

.Cls —  OJ —  +  iO~̂  UJ —  ( £ / c ' k '  —  • S ' n ' k ' )  "t”
(5.27)

and

(?;cklE"̂ |̂ ;'c'k') = J  dxdx'V4WV’t;k(x)'y(r, r')t/>c'k'(x')V' '̂k'(x')- (5-28)

Their calculation requires evaluation of six-dimensional real-space integrals involving the 

quasiparticle wave functions. In addition, the direct interaction term requires a fre

quency integration. Although, this integration is possible to carry out within a plasmon- 

pole model, we restrict ourselves to static screening only. The dynamical properties of 

W{io)  are relevant if the excitonic binding energies are of the same order of magnitude as 

the characteristic oscillation frequencies in W{to).  This effect is pronounced in molecules 

or atoms [13]. However, dynamical effects in the electron-hole screening and in the one 

particle Green’s function tend to cancel each other [11] for periodic crystals and particu

larly semiconductors, which suggests that both of them can be neglected. In that case the 

direct interaction has a simple expression

{vck\E ‘̂ \v'c'k') =  -  j  dxdxV*k(x)'0c'k'(x)Vl^(r,r',a; =  (5.29)

which is used in this work.

5.4 The Spin Structure of the Excitons

The spin structure of solutions of the Bethe-Salpeter equation is an important issue. Two 

different situations can occur depending on the strength of the spin-orbit interaction com

pared to the electron-hole interaction in the system.
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Firstly, if the ground state is a spin-singlet configuration, and if the spin-orbit inter

action is negligible, the single-particle states, |n) are classified as a spin-up, |n+) and 

spin-down, |n_) states^. Then the Hilbert space of the electron-hole pairs, \vc) consists 

of four subspaces:

where D = Eck — This Hamiltonian decouples into a spin-singlet, j  =  1/2 class of 

solutions given by

The Hamiltonian becomes D + + 2E^ for the spin-singlet class and it is given by

D + E'  ̂for the spin-triplet class. Thus, the Bethe-Salpeter equation can be solved for the 

spin-singlet and spin-triplet configurations separately and the spin degrees of freedom 

have been eliminated from the remaining problem.

The second case occurs when the spin-orbit interaction is of the same order of magni

tude as (or larger than) the electron-hole interaction. In that case, the single-particle states 

cannot longer be classified as a spin-up and spin-down states and there is no distinction 

between singlet and triplet states any more [13]. So, the Bethe-Salpeter Hamiltonian 

must be discussed including its full spin structure. Since this increases the number of 

basis states by a factor of 4, the evaluation of the Bethe-Salpeter equation becomes more

^Spin of the hole states |?;) corresponds to the electron which originally occupied the state. The spin of 
the hole would be the negative.

Ît is convention to call j  =  1 /2  class and j  =  3 /2  spin-singlet and spin-triplet exciton states, respec
tively. In here, j  denotes momentum of the hole. The total momentum of an exciton state is J  =  0 for the 
spin-singlet and J  =  1 for spin-triplet states.

In this representation, the electron-hole Hamiltonian (5.20) obtains the form

f  D + E ‘̂ + E' X 0 0
D + E^ 0

0 D + E^ 
0 0

\ b+c+))
0
0

D  + E‘̂ + E^ j\

0
0

and spin-triplet, j  =  3/2 class^ consisting of the subspaces

|w+c_), \v_c+), and ^ ( |v + c + )  +  |?;-c_))
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difficult. For this reason the spin-orbit interaction is not taken into account in the present 

work. In addition, the full spin structure should be included in the H am iltonian for open- 

shell system s that do not have a spin-singlet ground state.

5.5 Optical Spectra

In Section 5.1 we have been presented m acroscopic dielectric function in its long-w ave

length lim it as:
47T

£ m {uj) =  1 -  (5.31)
q->o

In this lim it it describes collective excitations, absorption and refraction o f the light. Its 

real part in the static lim it, e i  {u> =  0) is the dielectric constant, Eq and describes the static 

screening o f the Coulom b interaction in the m any-body system , w hile the im aginary 

part £ 2 (1̂ )  is directly related to the m easured absorption spectrum . In Sections 5.2-5.4 

we presented a way o f calculating the tw o-particle correlation function which defines 

polarisability beyond the RPA. From  Equations (5.17), (5.23) and (5.31) we can write 

down a final expression f o r  s m ( t o )  [11]

=  1 +  lim  T r y  X ,  ------------- — ---------- , (5.32)
q^O g  i l s  — U) — zO+

which, now includes electron-hole excitations.

The m ain effect o f the electron-hole interaction is the coupling o f different electron- 

hole configurations |t)ck) in the excitations 15). In Equation (5.32), optical transitions are 

given as a coherent sum  o f the transition m atrix elem ents o f the contributing electron-hole 

pair configurations, including the coupling coefficients W ithout the electron-hole 

interaction, excitations are given by vertical transitions betw een independent electron 

and hole states. In that lim it Equation (5.32) reduces to the well know n RPA dielectric 

function which we presented in Section 5.1.

= 1 +  2 lim ^  E  ^  K t-k |e-»1ck)P

The factor o f 2 arises from  explicit integration over the spin variable.
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The RPA approximation of the dielectric function could be sufficient to describe opti

cal properties for the homogeneous electron gas. In Section 5.1 it has been shown how to 

introduce local field effects into calculations by means of calculating the entire dielectric 

matrix Sgq,' and inverting it, see Equations (5.8,5.9). However, in the present interacting- 

particle approach such a procedure is unnecessary. It has been shown by Del Sole et al. 

[97] that local field effects are already included due to the exchange interaction, in 

the electron-hole interacting kernel. So, all information that we need is contained in 

Equation (5.32).

Relations (5.32) and (5.33) contain a divergent factor l /q^  which comes from the 

Fourier transform of the Coulomb potential. This problem can be solved using well 

known ”k • p ” theory. It is based on the equation of continuity or on the resulting equality 

between density and current response. This condition is expressed in the equation [96]

(„k |e--^ '1ck  +  q) =  m M k | ± a )  (5.34)
■^ck+q

where j(q )  denotes the current operator and it is given by j(q ) =  i[Ho, e*'’ ’’], which in the 

q  —)■ 0 limit reduces to j(q ) =  i [Hq, r]. If the crystal potential is a local operator, i.e. if 

the potential commutes with the position operator [V(r), r] =  0, then the current operator 

can simply be replaced by the momentum operator p. However, this no longer holds in 

the case of the quasiparticle Hamiltonian (3.12) due to self-energy operator nonlocality 

and the commutator, [T/(r),r] has to be accounted for. Even if the quasiparticle shifts 

are the same for all empty states, the self-energy operator is non-local due to the differ

ent spatial properties of the wave functions at the different wave vectors. As discussed 

by Levine and Allan [98], the quasiparticle shift between the LDA and quasiparticle 

transition energy of an electron-hole pair |?;ck) leads to a renormalisation of the optical 

transition matrix element:

(« k |jk k )« '-  := - 5 ^ , _ ^ ( „ k | p | c k > ™ .  (5.35)

Alternatively, in the crystalline case, the optical transition matrix element can be calcu

lated from the relation [99]



with q being a small but finite shift of k in reciprocal space. To this end, the wave 

functions at the shifted wave vectors k +  qea {a =  x, y, z) have to be calculated ex

plicitly. In this relation not only is quasiparticle renormalisation accounted for, but also 

the non-local part of the pseudopotential or Hartree-Fock exchange, if one is used in the 

calculation [99].

5.6 Numerical Details

The Bethe-Salpeter equation for a periodic system is given as an eigenvalue problem of 

infinite dimensionality, (5.22)

(Etc -  +  /  dk' =  Q sAtc-  (5.37)
JVbz

The integration ranges over the full Brillouin zone of volume Vb z - For the numerical 

evaluation the continous integration with respect to k' has to be replaced by some dis

crete scheme of finite dimensionality. The easiest approach is to divide the BZ into an 

appropriate grid (uniform or nonuniform) of sub-volumes K, represented by one k  ̂point 

inside it [13]. Then we assume that the coefficients and the quasiparticle energy 

difference, {E^c — E^v) are averaged by values taken at the points kj. In the case of equal 

sub-volumes Vi =  V, the BSE yields

(£k,c -  „ + E E F  (5.38)
k' v'c' ^

In the current work k points are chosen from a Monkhorst-Pack mesh [60].

Electron-hole interaction matrix elements have to be evaluated in an appropriate basis. 

We use a plane-wave basis for all two-point functions, as stated in Section 3.4. In this 

basis, the screened potential is given by Equation (3.29), thus matrix elements of the 

direct term of the electron-hole interaction, given by (5.29) yields

(»ck|=VoV) = =
^  G ,G ' 1^

X (t;'k'|e*(‘i+^^-’|?;k)(ck|e-*(‘i+^')-'|c'kVq,k'-k- (5.39)

Special care has to be taken for the case q —> 0 (k =  k'). If G  =  G ' =  0 the interaction 

diverges as 1 /q' .̂ This contribution is separated in 5.38 and integrated over a small sphere
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of volume V  = V s z / N k ,  where is the total number of k points. This divergence 

contributes only notably when v = v' and c = c' [100]. In addition the divergence of 

l / q  type occurs when one of the G-vectors is zero (G  7  ̂ G ' =  0 or G ' 7  ̂ G  =  0). 

These terms are neglected, because their contribution either averages to zero or vanishes 

quickly in the limit of a large number of k  points [100]. For the finite q  case (i.e. k  ^  k ') 

the interaction kernel is averaged by the value taken at kj and k- which leads to

(^k.c -  Ek,v)Ai.^^  +  ^  L  £  dq(wck,| “
v 'd

+  E  IZ (^ck ,|E |? ;'c 'k ')^ f,,,k / =  (5-40)
k '^ k i v'c'

The exchange term of the interaction (5.28) in the plane-wave basis obeys

A t t p ^  _________ 1 «  «

(t)ck|E^|w 'c'k') =  2 X ——  ^  —  (ck|e |uk )(t) 'k '|e"  |c 'k '). (5.41)

The summation over the reciprocal lattice vectors is restricted to non-zero G  because the 

Coulomb interaction must be used without the long-range term of vanishing wave vector 

to obtain the macroscopic dielectric function [9]. Finally, this term does not suffer from 

any divergence.

In order to calculate the screened interaction (5.39) the inverse static dielectric matrix, 

£q q ' (^) w =  0) has to be computed at each q. We calculate the full RPA symmetric 

dielectric matrix given by Equation (5.8) at all stars of q  in the IBZ, numerically invert 

them and generate the inverted dielectric matrix for the remaining q  points by symmetry.
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Chapter 6 

Calculation of the Optical Properties in 
Bulk Materials

The main focus of this chapter, and final goal of this thesis is studying optical proper

ties for different materials, accurately. Initially, the macroscopic dielectric function was 

calculated using the RPA approach, with and without local field effects. The energy loss 

function within the RPA approximation is illustrated as well. It is known that the RPA 

approach cannot result in reliable low-energy optical spectra for semiconductors or in

sulators, however with local field effects included, it can give some main features of the 

energy loss function.

Inclusion of excitonic effects can be crucial in an optical spectrum calculation for 

semiconductors and particularly, insulators. The excitonic effects and electron-hole bound 

states were studied by calculating the electron-hole interaction (5.39) and (5.41) and solv

ing the Bethe-Salpeter Equation (5.38), then accurate optical spectra and dielectric con

stant were calculated from Equation (5.32).

Firstly, we applied our approach to bulk silicon. This gave us an opportunity to com

pare our data with accurate experimental measurements as well as with some earlier 

calculations. Then the approach was applied to the rare gas solids (RGS): Ne, Ar, Kr and 

Xe, because of their strong electron-hole interaction and interesting excitonic properties.

This chapter is organised as follows: Section 6.1 gives convergence details for the 

RPA and exciton calculations. Optical spectra within the RPA approach for Si and RGS 

are presented in Section 6.2. Sections 6.3 and 6.4 contain calculations of the optical spec-
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tra for Si and RGS, respectively, with the electron-hole interaction included. In addition, 

bound exciton states and electron-hole wave functions for the RGS are discussed in Sec

tion 6.4 and 6.5, respectively. The static dielectric constant is presented in Section 6.6 for 

Si and the RGS. Energy loss functions within the RPA for Ne, Ar and Kr are presented 

in Section 6.7.

6.1 Convergence Parameters

6.1.1 RPA calculation

Calculations within the RPA approach were carried out using either GW  quasiparticle 

energies (in Section 6.2) or DFT-LDA eigenvalues (Section 6.7). DFT-LDA and GW 

calculations have been discussed in Sections 4.1.1 and 4.1.2, respectively. Optical spectra 

were calculated using both interband transitions [Equation (5.33)] and local field effects 

[Equation (5.9)]. Local field effects were included by numerically inverting the full RPA 

dielectric matrix, ^g g 'Iq  given by Equation (5.8). The special case for the

q 0 limit when G =  G ' =  0 or G 7̂  G ' =  0 is treated analytically using ’k • p ’ 

theory, as described in Section 5.5.

We found that a dielectric matrix size of 59 x 59 all materials studied was sufficient 

to produce well converged results for the inverted dielectric matrix, the relative error of 

the inverse elements being less than 1 % when compared to the spectrum obtained with 

a matrix size of 65 x 65. In interband transitions, 4 valence and 45 conduction bands 

were employed for Si and 3 valence and 30 conduction bands for RGS (see Appendix C). 

Monkhrost-Pack special points were employed when performing summations over the 

Brillouin zone in Equations (5.33) and (5.8). 2048 special points in the full Brillouin 

zone were used for all materials studied here. More details and illustrations on RPA 

dielectric matrix convergence can be found in Appendix B.

6.1.2 Exciton calculation

When computing an optical spectrum with electron-hole excitations included [Equa

tion (5.32)], 4 valence and 3 conduction bands and 864 special k points in the full Bril-
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louin zone were used for Silicon, 3 valence and 1 conduction band and 2049 k points for 

RGS. These sets of parameters define a maximum size (Ny x N c X  Nk) of an electron-hole 

Hamiltonian that can be diagonalised on a sequential computer with 2 GBytes of RAM. 

They usually produce converged optical spectra in the low energy region, however spe

cial points can result in limited resolution, thus some results may not be fully converged. 

Advantage could be taken by using off-symmetry shifted points, since the shifted set 

contains less degeneracy, and thus yields a better resolution, as stated elsewhere [12]. 

Nevertheless we used the special points as they are directly provided from the CRYS- 

TAL95/98 calculation. The CRYSTAL code has limited size of shrinking factor (see 

Appendix A) and use of shifted points would require interpolation of the eigenvalues and 

eigenvectors at points which are not on the standard grid. For the first implementation of 

the BSE code it is simpler to use the special points.

Calculation of the electron-hole interaction (5.39, 5.41) and solution of the Bethe- 

Salpeter equation (5.38) requires large numerical effort, since the basis set for the electron- 

hole wave functions contains a large number of functions (Ny x  Nc x  Nk).  For the sets 

of parameters specified above, there are up to 10® elements to compute. Fortunately, this 

number can be reduced by half when using hermiticity of the Hamiltonian. The number 

of calculated matrix elements can be further reduced by employing crystal symmetry. 

However, it is assumed in the general case, that the k (k') points are not high-symmetry 

points, but shifted points, thus the use of symmetry would not yield shorter computation 

times in this case. Instead, we focus on creating the most efficient algorithm for calcula

tion of interaction matrix elements without employing symmetry. This approach provides 

an equally efficient calculation by using either set of points.

In computing matrix elements of the screened interaction (5.39), the RPA dielectric 

matrix has to be computed at each q  =  k ' — k. This is done using the same convergence 

parameters as in the self-energy calculation (see Section 4.1.2). Even if k (k') points 

were not high symmetry points, their difference, q  lies on a symmetric grid and the q- 

point symmetry has been fully exploited in the RPA dielectric matrix calculation and this 

significantly reduced computational time.
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Figure 6.1: Imaginary part of the dielectric function, for Si. The circles with 
dashed curve present experimental (EXP) data taken from [101], The solid and 
short-dashed curves correspond to the calculated data using the LDA eigenen- 
ergies without (LDA-RPA) and with (LDA-LF) local field effects included, re
spectively. The dotted line corresponds to the calculated spectrum using the 
GW  quasiparticle energies. This calculation was obtained by solving the Bethe- 
Salpeter equation (5.40), when only the exchange interaction (5.41) was in
cluded. An artificial broadening of 0.15 eV was used.

Matrix elements of the bare Coulomb interaction (5.41) require a large number of G 

vectors for convergence, so up to 400 G vectors were used in calculating this term for all 

materials considered here. However, calculation of this term is not time consuming since 

the Fourier coefficients of the Coulomb potential are diagonal in reciprocal space in the 

present plane wave basis.

6.2 Calculated Optical Spectra and Local Field Effects

Figure 6.1 shows the imaginary part of the dielectric function as a function of photon 

energy for Si. Solid and dashed curves present RPA calculation without (5.33) and with 

(5.9) local field effects, respectively, using DFT-LDA eigenenergies. Experimental data 

is given by circles and taken from [101]. The first peak called Ei, which appears at 

3.4 eV in the experimental spectrum, is visible only as a small shoulder in the calculated
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Figure 6.2: Imaginary part of the dielectric function as a function of photon 
energy for the rare gas solids: Ne, Ar, Kr and Xe. The figure shows comparison 
between experimental data (symbols with solid curve) and calculated spectra 
within the RPA using GW  quasiparticle energies without (dashed curve) and 
with (solid curve) local field effects. The experimental data is taken from [77]. 
An artificial broadening of 0.15 eV was used.
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Figure 6.3: Calculated imaginary part of the dielectric function, E2  for solid Ar, 
using LDA eigenvalues and eigenvectors, without (solid line) and with (dashed 
line) the local field effects. The figure illustrates the influence of the local field 
effects at the higher frequency region. Local fields reduced the spectral weight, 
but did not affect the peaks positions.

RPA spectra. Its position is at about 3 eV in our LDA-RPA calculations (solid and dashed 

curves) and about 3.8 eV in the GW^-RPA calculation (dotted curve). Local field effects 

did not affect the low energy spectrum for Si in our calculation. This result is in agree

ment with other RPA calculations [100]. The intensity of the second peak, E 2 , at 4.2 eV 

is underestimated in RPA calculations, which is in agreement with the pseudopotential 

plane-wave RPA calculations by Onida et al. [11], however not with the all-electron cal

culation by Arnaud et al. [100]. Moreover, the introduction of G W  corrections shifted 

peak positions toward higher energies and agreement with measured data was worsened 

at the region between 4 and 6 eV. It is clear that already in a conventional semiconduc

tor such as silicon calculated peak positions can deviate from the measured values by 

several tenths of an eV. Also, the magnitude of the spectrum is either underestimated or 

overestimated when compared with the experimental data.

This discrepancy is even larger for wide gap semiconductors and insulators. Fig

ure 6.2 shows e2 {uj) for the rare gas solids: Ne, Ar, Kr and Xe. The symbols with solid 

lines present experimental data taken from [77]. The solid and dashed lines correspond
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to calculated spectra within the RPA with (5.9) and without the local field effects (5.33), 

respectively. GW  corrections were taken into account in these calculations. An artificial 

broadening of 0.15 eV was introduced for all solids. The figure illustrates that local field 

effects reduced the magnitude of the spectrum in the higher energy region (see Figure 6.2 

for Kr and Xe), however peak positions were not changed by local field effects. On the 

other hand, local field effects did not influence the spectra in the low-energy region, so the 

structure in that region observed experimentally, is not described within RPA either with 

or without local field effects. Moreover, the main oscillator strength is shifted toward the 

higher energies yielding strong disagreement with the measured spectra. Illustration of 

that effect is given in Figure 6.3 where the RPA S2 is presented for solid Ar as a function 

of photon energy for the energy range up to 30 eV. LDA eigenenergies were employed 

in these calculations since our GW  approximation does not describe states at the higher 

energy region (far from the gap) very well, (see Chapter 4). On the other hand, scattering 

of an electron in higher energy states by atomic potentials is small and the electronic 

structure of these states can probably be described by an almost free-electron theory. 

For this reason it is very likely that higher states can be described better by a DFT-LDA 

Hamiltonian rather than GW  correction. The figure illustrates that local field effects do 

not change peak positions, but magnitudes of spectra. For the higher energy region this 

effect can improve agreement with experimental data.

6.3 Optical Spectrum for Si

In this section we present the optical spectrum for Si with included the electron-hole in

teraction (Figure 6.4, solid line). Figure 6.4 compares the calculated spectrum with the 

experimental (circles with dashed line) one and one with GW  corrections and local field 

effects included. The spectrum which includes the interaction is in much better agree

ment with experimental data than the interband transition {GW-LV) calculation. The 

most important, difference is that the oscillator strength is shifted toward lower ener

gies. This change originates from the coherent coupling of the optical transition matrix 

elements in the excited-state electron-hole wave function, which leads to a constructive
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Figure 6.4: Imaginary part of the dielectric function, 6 2  for Si. The circles with 
dashed curve present experimental (EXP) data taken from [101]. The solid line 
corresponds to the calculation with excitonic effects included and the dotted line 
corresponds to the RPA calculated spectrum using the GW  quasiparticle ener
gies. An artificial broadening of 0.05 eV was used in the excitonic calculation.

superposition of the oscillator strengths for transitions at lower energies and to a destruc

tive superposition at higher energies [11].

The position and intensity of the first peak, Ex agree well with experiment. However, 

the position of the second peak, E 2 occures at 4.5 eV while the experimental value is 

at 4.2 eV. This difference is due to the limited number of k points; as reported in Sec

tion 6.1 we used only 864 special k points. Due to the large dispersion of bands and 

high localisation of excitons at the zone boundary, optical spectra calculations require 

large number of k points in Si. In a converged calculation by Onida et. al [11], 2048 

special points were used and in Ref. [13, 100] up 500 shifted points were used to obtain 

a converged calcultion in semiconductors. Slight overestimation in the intensities of the 

peaks and oscillations in the spectrum between 3.2 and 4.5 eV are due to limited num

ber of k points. Although, a similar structure was reported in Ref. [11], use of a root 

sampling technique in BZ integration [Equation (5.32)] gave a rise to the oscillations. 

Smooth spectra can be obtained by using more accurate integration method such as that
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of by Gilat and Raubenheimer [102].

In conclusion, we have shown how inclusion of excitonic effects in the optical spectra 

calculation improves agreement with experimental data. The calculated Si spectrum is 

not fully converged, however it agrees qualitatively with experiment and earlier calcula

tions [11]. Using a large number of special points (2048 or more) or shifted points and 

use of more accurate integration methods such as Gilat-Raubenheimer [102] would be 

desirable for more accurate description of optical spectra in semiconductors.

6.4 Macroscopic Dielectric Function and Exciton Effects 
ofRGS

Electronic and excitonic properties of the RGS have been under investigation both the

oretically and experimentally for about four decades. A collection of absorption data 

(imaginary part of the dielectric function) obtained experimentally has been presented 

already in Figure 6.2. The same figure shows our interband calculations and huge dis

crepancies between the calculated and measured data. The reason for that is neglecting 

the electron-hole interaction in the calculated data.

The sharp absorption lines observed experimentally are assigned to the two spin-orbit 

split exciton series [77, 75]. The excitons of the RGS consist of a hole in a p-type valence 

band and an electron in a s-type conduction band. The momentum of the hole can be 

either j  = 3/2 -  exciton quantum number n (triplet) or j  =  1/2 -  exciton quantum 

number n' (singlet). Apart from the n =  1 and n' =  1 exciton energies, of the 

experimental spectrum can be described successfully by the Wannier-type formula given 

by

En = E g a p - ^  n =  2 , 3 . . . ,  (6.1)

were is the binding energy of the exciton states, and Egap is energy difference be

tween last occupied and first conduction band at T point. The energies of the first exciton 

states (n =  1 and n' = 1) deviate significantly from the Wannier values and it was be

lieved that these excitons were more Frenkel-type excitons [103, 104]. This demonstrates 

that low-lying excitations of the RGS are examples of intermediately bound excitations
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where neither the Frenkel nor the Wannier-type' of exciton is fully applicable. Several 

authors [105, 106, 107] tried to evaluate the energy shift of the first exciton state, sepa

rately, continuing to describe the higher states within Wannier approach. However, from 

the theoretical point of view, this is by no means satisfactory [108]. It can be expected 

that the short-range corrections of the electron-hole potential required to describe the 

n =  1 and n' = \  state will affect the states n > 2  too.

Our state-of-the-art, ab inito approach described in Chapter 5 allows us to describe 

the entire optical spectrum accurately. Also it presents a unified approach for studying 

bounded exciton states below the gap as well as unbounded electron-hole states, without 

using any free parameter. As described earlier, the approach consists of calculation of 

the electron-hole interaction (5.39, 5.41), solving the Bethe-Salpeter equation (5.38) for 

coupled electron-hole pair excitations and evaluating the coupled optical transition matrix 

elements in (5.32).

6.4.1 Neon

Neon is a wide-gap insulator and is characterised by weak dielectric screening and con

comitantly strong excitonic effects. Its calculated macroscopic dielectric function, with 

excitonic effects included, is presented in Figure 6.5. The left panel shows the real part, 

El and the imaginary part, S2 is on the right panel. Experimental data is given by circles 

joined by a dashed line as a guide for the eye. It was obtained by Skibowski cited in 

[77] by means of the Kramers-Kronig relation from reflection measurements. Numerical 

details of the calculation are given in Section 6.1. The chosen set of parameters yields 

a spectral resolution of several meV for the energy range from 20 to 22 eV and about 

0.05 eV for energies below 20 eV. An artificial brodening of 0.05 eV was introduced in 

the calculated spectra.

The spectrum is completely changed at all energies when the electron-hole interaction 

was included. The most important, the sharp peaks in the low-energy region, observed

'The Frenkel model assumes that an exciton is highly localised on the atom site or at bond between 
atoms, and the Wannier model describes excitons delocalised in a real space and highly localised in a 
reciprocal space usually at the zone boundary.
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Figure 6.5: Real (left panel) and imaginary (right panel) parts of the macro
scopic dielectric function for FCC Ne, calculated with excitonic effects included 
(BSE). Artificial brodening of 0.05 eV was used in the calculated spectra. The 
experimental data (EXP) is determined by Skibowski from reflection measure
ments cited in [77].

Table 6.1: Energy positions of the maxima detected in e2 {uj) of solid Ne. Our 
calculation is presented in column (1). Spin-orbit splitting is smaller than 0.1 eV, 
thus only spin-singlet, r(l/2) series is presented. The gap in the GW calculation 
and experiment are compared in the last row. All values are given in units of eV.

n (1) (2) (3) (4)
1 17.79 17.93 17.37 17.36“; 17.50''
2 20.42 20.62 20.64 20.25“
3 21.03 21.17 21.19 20.94“

21.56 21.42“; 21.51*

(2) Reference [109]. (3) Reference [110]
(4)“ Reference [111]. (4)’’ Reference [75]
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experimentally, are described by the calculation as well. In both ei(w) and e 2 {co), the 

main oscillator strength is in the low energy region (below the gap). As we can see there 

is remarkable agreement between the experimental and calculated spectra (Figure 6.5).

The positions of the first three peaks are tabulated in Table 6.1. Since, the spin-orbit 

interaction in Ne is small, only singlet j  =  1/2 type excitons were calculated. Our 

data, column (1) is compared to some earlier non-ab initio calculations: columns (2) by 

Grosso et al. [109], (3) by MarteUi et al. [110] in Table 6.1 and experimental data (4). 

All our calculated peak positions lie in the range between the experimental and published 

data. More recent experiments obtained n = \ triplet peak at 17.36 eV and singlet at 

17.50 eV [75]. This indicates that our value of 17.79 eV should be compared to the value 

of 17.50 eV rather than 17.36. Some small differences between our data and experiment 

can be due to the band structure. The fundamental gap of our G W  calculation and the 

experiment is given in the last row of the table.

Intensities of the first peak for Si and 8 2  are higher by about 2 eV than the exper

imental values. Although, one might address these deviations to the limited number 

of k-points and limited resolution, we have to highlight experimental accuracy before 

bringing out conclusions about reliability of the calculation. As stated in [77], it was 

impossible to determine the errors of the absolute values of the reflectivity and there is 

much more uncertainty in intensities than in peak positions. In other words, experimental 

dielectric function intensities are not highly reliable in the case of the RGS, generally. A 

theoretical approach such as a G W -BSE calculation with a converged set of parameters 

can be superior to experimental measurements in this type of material.

6.4.2 Argon

One good example of intermediately bound excitons is argon. Figure 6.6 illustrates cal

culated macroscopic dielectric function for Ar with excitonic effects included (solid line) 

and experimental data (the dashed line left panel and circles with the dashed line is a 

guide to the eye, right panel) by Saile cited in [77]. The calculation is carried out using 

the parameters described in Section 6.1 and an artificial broadening of 0.05 eV, which
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F ig u re  6.6: Real (left panel) and imaginary (right panel) parts o f the macro
scopic dielectric function for FCC Ar. Experimental data measured by Saile is 
cited in [77].

corresponds to the average resolution obtained by the given set o f parameters. The ex

perimental data is determined from reflectivity measurements by Saile [77].

Again, inclusion of excitonic effects changed the spectrum drastically and made re

markable agreement with experimental data for e 2 {oj). £i(oi) agrees qualitatively with 

measurements by Saile. The oscillator in our calculation is stronger, while the dielectric 

constant Sq slightly underestimates the measured value by Saile. However, the optical 

spectrum 6 2  obtained by Saile for Ar is up to 40% higher than one determined by Ski- 

bowski as reported in [77], while they agree well with the maxima positions. When 

comparing spectra for RGS, experimental and calculated one should put more weight on 

actual peak positions rather than values o f £ 1 (0 ;) and e 2 {u)).

The calculated spectrum includes singlet (J — 1 /2 ) excitons only, thus the splitting o f  

the first exciton (the two sharpest maxima around 12 eV) is not present in our calculation, 

but only one maximum at energy 12.16 eV. The third peak in the experimental spectrum 

belongs to the triplet ( j  =  3 /2 ) series and is not visible in the calculation.
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Table 6.2: Calculated (1) and experimental energy positions of the maxima de
tected in 6 2  (uj) for triplet and singlet excitons in solid Ar. The fundamental gap 
of our GW  calculation and experimental gap are listed in the last row. The ex
perimental data is by Skibowski cited in [77]. All values are in units of eV.

n Type (1) Exp.
1 r(3/2) 12.00 12.09
1 r ( i / 2) 12.16 12.33
2 r(3/2) 13.76 13.58
2 r ( i / 2) 13.76 13.76
3 r(3/2) 13.91
4 r(3/2) 14.09
3 r ( i / 2) 14.4

14.10 14.15

Since a magnitude of the spin-orbit interaction for Ar is only 0.18 eV which is much 

smaller than the actual exciton energies one can calculate singlet and triplet spectra sepa

rately (see Section 5.4). Energy positions of the maxima detected in our E2 (uj) spectrum 

for both triplet and singlet excitons are presented along with corresponding experimen

tal peak positions in Table 6.2. Apart from the spin-orbit interaction a major difference 

between the singlet and triplet exciton energies comes from the exchange interaction, 

(5.41), which vanishes for triplet excitons. The exchange term originates from the re

pulsive bare Coulomb potential and shifts singlet excitons to higher energies than triplet 

excitons. The differences in the energies between singlet and triplet states in our calcu

lation are direct measures of the exchange contribution. For the first exciton state n' = 1 

and n = 1 the difference, r(l/2) — r(3/2) is 0.16 and 0.24 eV in our calculation and 

experiment, respectively. For higher states, n > 2, there is no splitting in the calculated 

spectrum and the differences in the experimental exciton energies are 0.17 eV, which is 

close to the spin-orbit interaction strength. Inclusion of the exchange interaction only af

fected the first exciton state and contributed to the singlet-triplet energy difference while 

the splitting of n > 2 states is due to the spin-orbit interaction, mainly.

In conclusion, our calculated singlet spectrum agrees very well with experimental
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data (related to the singlet excitations) in both intensity and maxima positions. Rapid 

oscillations in the range between 14 and 16 eV are due to the integration technique and 

limited number of k-points. For determination of the spectra above 16 eV it is necessary 

to include more conduction bands. Moreover, ei spectrum underestimates the experiment 

at energies w <  12 eV and convergence of Eq may require more conduction bands as well. 

The dielectric constant sq is discussed again in Section 6.6.

6.4.3 Krypton

In krypton, the spin-orbit interaction becomes significant (A^o =  0.6 eV), but is still 

smaller than the electron-hole interaction. This fact allows us to apply the same approach, 

as we did for neon and argon, and study singlet and triplet states separately. The set 

of parameters used in the calculation has been presented in Section 6.1. The artificial 

broadening of 0.15 eV was introduced.

The calculated singlet £i (u) and S2 (co) spectra are presented in Figure 6.7 (solid line). 

Experimental data (circles) is determined by Skibowski from reflectivity measurements 

at 20 K and taken from [77]. Peak positions agree with experiment very well for the 

first two singlet-type peaks. The spectrum in the from range 12 to 14 eV agrees with 

experiment. There are considerable discrepancies between reflectance measurements of 

Kr and Xe reported by different authors [77]. Not only do absolute reflectivities differ by 

more than a factor of two, but also the relative heights of the maxima vary drastically. It 

is clear that difficulties are encountered in experiments leading to uncertainty in dielectric 

functions.

All peak positions obtained in our calculation and in Skibowski experiments, [77] are 

listed in Table 6.3. The first (n' = 1) singlet peak position of 10.92 eV agrees nicely with 

experimental value of 10.87(10.92) eV. States for n' > 2 agree moderately well with 

Skibowski data. Difference between measured and calculated peak position for triplet 

n  =  1 state is due to omitted spin-orbit interaction. As was the case in Ar, the exchange 

interaction affected only the n' = I state. Splitting of the other peaks originates mainly 

from the relativistic effects.
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Figure 6.7: Real (upper panel) and imaginary (lower panel) parts of the m acro
scopic dielectric function for FCC Kr. Our calculation with excitonic effects 
included compared to the experimental data by Skibowski in [77].
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Table 6.3: Calculated (1) and experimental peak positions detected in S2 {oj) for 
triplet and singlet excitons in solid Kr. The fundamental gap of our GW calcula
tion and experimental gap are listed in the last row. All values are in units of eV. 
Experimental data is determed by Skibowski reported in [77]

n Type (1) Exp.
1 r(3/2) 10.80 10.23

10.3
1 r ( i / 2) 10.92 10.87

10.93
2 r(3/2) 12.00 11.27
3 r(3/2) 12.50 11.44
2 r ( i / 2) 12.01 11.95
3 r ( i / 2) 12.5 12.22
E, 11.61 11.75

An interesting feature of the experimental spectra is splitting of the first exciton states 

n =  1 and n' =  1 into two peaks each, at energies 10.23 and 10.3 eV for n =  1 and 10.87 

and 10.93 eV for n' =  1. This splitting disappears at a temperature of 8 K, so it is not 

expected to be seen in our theoretical approach. The origin of the splitting is not clear 

[77].

6.4.4 Xenon

So far, it has been illustrated, when going from light Ne toward heavier Kr, relativistic 

effects are becoming more important. In Xe, the spin-orbit interaction is 1.3 eV, which 

is about the same order of magnitude as the electron-hole interaction. In such a case it is 

certain that coupling is close to the jj-coupling and the full spin structure as well as the 

spin-orbit interaction should be taken into account.

Nevertheless, we applied the same approach to Xe and results are presented in Fig

ure 6.8. As we can see, there is no longer qualitative agreement between the calculated 

and experimental data. Peak positions are summarised in Table 6.4 and directly compared 

to the experiment. It can be seen that our n' =  1 singlet peak coincides with experimental
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densed Xe. The calculated spectra include only singlet excitations. The experi
mental data is taken from [77].
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Table 6.4: Calculated (1) and experimental peak positions detected in £2 (uj) for 
triplet and singlet excitons in solid Xe. The fundamental gap of our GW  calcu
lation and experimental gap are listed in the last row. All values are in units of 
eV. Experimental data is determined by Skibowski in [77]

n Type (1) Exp.
1 r(3/2) 9.25 8.4
2 r(3/2) 10.5 9.1
3 r(3/2) 10.75 9.2
1 r ( i / 2) 9.14 9.47
2 r ( i / 2) 10.03 9.8
E, 9.63 9.32

n —2 triplet state.

Difficulties with these experiments has been mentioned already. Particularly difficult 

was to observe r(l/2) series, because it overlaps with the the r(3/2) [75, 77]. However 

many different authors agree on peak positions if not with absolute or relative values of 

the reflectivity [77]. It would be worthwhile to include spin-orbit coupling in the Xe 

calculation before making any judgments.

6.4.5 Summary

In this section we presented results for the macroscopic dielectric function, ei{uj) and 

€2 (0 0), for the RGS. The results for e2 (uj) are in excellent agreement with experimental 

data for Ne, Ar and Kr, and inclusion of the electron-hole interaction was crucial for a 

reliable description of the low energy spectra. Intensities of the spectra differ from mea

sured values, however they are not highly reliable in experiments and experimental errors 

are unknown. Calculated peak positions deviate from measured ones mainly by spin-orbit 

coupling. These deviations are more pronounced in r(3/2) series then in r(l/2). In Xe 

the spin-orbit interaction is larger than the electron-hole interaction and the current ap

proach is not suitable. Peak positions in the spectrum of Xe deviate by more than 1 eV 

for the triplet states and by several tenths of an eV for singlet excitons (see Table 6.4).
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Figure 6.9: Contour plots of real 
space distribution |x(x/i, Xe)P of an 
electron (xg) with respect to a fixed 
hole (x/i), upper panel and distri
bution of a hole with respect to a 
fixed electron, lower panel. The hole 
(electron) is fixed at the central atom 
(blue circle). The eigenvector cor
responds to lowest energy excitation 
at 12.16 eV in Ar in the (100) plane. 
Data along the lines A B  is presented 
in Figure 6.10. Green empty circles 
correspond to atom positions.

So far, we have not discussed line shapes for the first exciton peak, n = 1 and n' — 1 

in any of RGS. The large value of the oscillator strenghts is due to a strong interaction 

with the radiation field inside the crystal. In fact, the interaction is so strong that excitons 

cannot be treated separately. Mixed modes of the electromagnetic field and excitons are 

called exciton-polaritons. The line shapes, exciton transport and exciton decay have to be 

discussed within an exciton-polariton model and so they are not considered in the present 

work.
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Figure 6.10: Same as Figure 6.9 
along the line AB: electron dis
tribution - upper panel, hole dis
tribution - lower panel. Blue cir
cles present atom positions.

6.5 Electron-hole wave functions for Argon

In the very early calculations [103, 104] it was observed that the first exciton {n = n' = 

1) in Ar is highly localised in real space with a radius less than the interatomic distance 

which violates the basic assumptions of the Wannier model and explains why the Wannier 

model does not descibe the first exciton state in the RGS. However, the doubts emerged 

from the experimental findings of Laporte et al. [112, 113] according to which the ex- 

citons are delocalised at least over first nearest-neighbor atoms. The same conclusions
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were made from theoretical calculations of Rossles [106] and Griinberg [108].

The current approach allows us to explicitly compute the wave function of an electron- 

hole excitation \n). The electron-hole wave functions are given by Equation (5.19) in the 

single-particle wave functions basis. For resonant transitions only, the coefficients 

are set to zero, thus the wave function obeys

occ em pty

X n ( X e , X f t ) = ^ ^  £  ^LcV'kc(Xe)V’L(x/i)- (6.2)
k c

The coordinates Xg and x/j refer to the position of the electron and hole, respectively. 

The wave function is a scalar six-dimensional function. In a crystalline system, it is 

invariant to the lattice translations simultaneously applied to x/̂  and Xg. Due to its high 

dimensionality, to get the best insight into electron-hole correlation in real space, one may 

keep either electron or hole at a fixed position and study x  with respect to the coordinates 

of the other particle. This yields a correlation function which depends on the difference, 

(xg — x/i), but also includes all details of the microscopic structure of the excited states.

Figure 6.9 (upper panel) illustrates the probability of finding an electron with respect 

to a hole fixed at the central atom (blue circle in Figure 6.9) for the lowest electron-hole 

eigenvector which corresponds to the n =  1 exciton state. Our calculation reveals an sp- 

type envelope function, what is not surprising, as we stated, the exciton is formed from 

the hole in a p state and an electron in an s state. However from a simplified isotropic 

effective-mass model this function would correspond to an hydrogen-like electron wave 

function. In addition, there is significant delocalisation over the first-neighbor atoms and 

even further with mean radus about 7 a.u. The delocalisation is extended along the line 

AB  which comfirms findings in [106, 108, 113]. The maxima of charge distribution in 

the (100) plane is on the nearest-neighbor atoms along the line AB.  The lower panel of 

Figure 6.9 gives the hole distribution in the (100) plane with respect to the fixed electron 

at the central (blue) atom. Again, the charge is delocalised over the first-neighbor atoms 

with maximum (in the plane) of probability at the central atom. Figure 6.10 illustrates 

charge distribution along the line AB  as a function of distance from the central atom. The 

charge distribution at the neighboring atoms is polarised toward the central atom. This 

is due to an attractive screened interaction between quasielectron and quasihole with
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effective positive charge. D istributions for the second and third eigenvectors are sim ilar 

to the first one, they differ only in the orientation o f the envelope function.

O ur results confirm  conclusion from  [106, 108, 113], w hich is that the first exciton 

is delocalised over the first first-neighbor atom s and give for the first tim e even more 

detailed inform ation on the structure and sym m etry o f  correlated electron-hole functions 

in real space in Ar. Figures 6.9 and 6.10 give clear picture why n  =  n ' =  1 excitons in 

rare gas solids are not described by either Frenkel- or W annier-type exciton.

6.6 The Static Dielectric Constant

The approach described in Chapter 5 can be directly applied for the calculation o f the 

static dielectric constant, E q =  9f?[£(u; =  0, q  — 0)]. We calculated £o for Si and RGS 

using RPA m ethods with and w ithout local field effects, based on DFT-LDA eigenvalues, 

the RPA dielectric constant based on the CVF-LDA quasiparticle energies and finally 

electron-hole interaction and Bethe-Salpeter equation in order to include the excitonic 

effects into E q .

The results are presented in Table 6.5 and com pared to the published theoretical 

(where available) and experim ental data. The set o f param eters given in Section 6.1 

for RPA calculation was used for all m aterials. The LDA-RPA calculation w ithout local 

field effects, (colum n overestim ates experim ental values for Si, Ne, A r and Kr.

This effect is well know n and Xe, as an exception, w ill be left out from  further discus

sion. W hen local field effects were taken into account, E q decreased and agreem ent with 

experim ent was im proved ( E q ^ ^  colum n). In addition, the calculation for Si, presented in 

row (b) is carried out using 10 k-points in the IBZ. A lthough, this data agrees very well 

w ith o ther plane wave data [29], as well as Gaussian orbital basis approach by Rohlfing 

[6], it is not fully converged. We presented this calculation because in [6], they also use 

only 10 points and the same basis set type, while in [29] 60 points were used [row (a) 

in Table 6.5] in the B rillouin zone sum m ation. This indicates that the values in [6] may 

not be converged either. Our converged data for Si underestim ates the p lane wave data 

and agrees w ith the experim ental value nicely. It is im portant to m ention that we did not
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Table 6.5: The Static dielectric constant, Sq for different materials. The table 
presentes RPA calculations without local field effects (column 2), illustrates in
fluence of the local field effects (column 4) , quasiparticle corrections (column 
6) and excitonic effects (column 7) and compares with experimental data (last 
column) and published data, columns indicated as (1), without local field effects 
and (2), with the local field effects included. Rows indicated as (a) and (b) for Si 
present converged calculations with 60 k-points in the IBZ included and using 
only 10 points, respectively.

^RPA*̂00 (1) ^RPA (2) ^GW0̂0 ^BSE Exp [114]
Si (a) 12.93 13.6“ 11.67 12.2“ 10.95*= 11.7
Si (b) 13.79 12.4 12.8'’
Ne 1.38 1.28 1.26 1.24
Ar 1.98 1.70 1.79 1.63 1.66
Kr 2.13 1.80 1.75 1.86
Xe 1.52 1.40 1.32 2.18

“Reference [29]. ^'Reference [6],
^The local field effects are included

consider the exchange-correlation contribution [34]. It is expected that inclusion of the 

exchange-correlation kernel will increase the static dielectric constant and so worsen the 

agreement with experiment.

Good agreement between experiment and is not suprising because a similar 

trend was observed by other authors [115] for wide-gap insulators. However when quasi

particle energies are used instead of LDA energies and local field effects are included the 

agreement was worsened by about 6% for Si. It seems that errors caused by LDA eigen

values and exclusion of other (effects, exciton, exchange-correlation etc.) cancel out in 

wide-gap insulators. Generally, use of accurate band structures, such as GW together 

with local field effects, would lead to underestimation of Eq. This suggests that inclusion 

of excitonic effects along with quasiparticle energies could lead to a unified approach 

which would result in good experimental agreement for all materials regardless of the 

gap size.

As shown in Section 6.4, inclusion of excitonic effects is crucial for description of
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optical spectra and thus can be of great importance for an accurate description of e o  as 

well. The real part of the macroscopic dielectric function for the RGS was presented 

in Figures 6.5-6.8. Excitonic effects induced a positive contribution at lower photon 

energies leading to better agreement with experiment for spectra, {u>) and € 2 {co) overall. 

This contribution arises from the transfer of oscillator strength toward lower energies.

This calculation is presented in Table 6.5 in column. As we can see, the errors 

introduced by the quasiparticle energies were canceled by the excitonic effects to a large 

degree leading to good agreement with experiment, again. Unfortunately, we still have 

to exclude Xe from our discussion since its eo is underestimated by nearly 90%. Small 

differences between calculated and measured values are of the same order of magnitude 

as differences in experimental data observed by different authors. Difficulties in experi

ments for these type of materials have been briefly discussed in Section 6.4, more detailed 

reading can be found in [77].

Despite a good agreement between the calculation and experimental values, we can

not guarantee that our values were fully converged. e i { u )  was much more sensitive than 

e 2 { u j )  to choice of parameters, and so was s q .  A s suspected by Arnaud [100], a much 

larger number of k-points, N k  and conduction bands, N c  may be required to calculate 

converged Co- Our findings confirm their belief that the set of parameters reported in Sec

tion 6.1 is not sufficient to calculate Cq accurately. Calculations presented in Table 6.5 as 

were generated using 3 valence, 4 conduction bands and 864 k-points in full Bril- 

louin zone. Fortunately, when we decreased N k  from 2048 to 864, the values of Eq  were 

changed by less than 1% (see Table 6.6). By using 864 k-points we were able to increase 

the number of conduction bands without increasing the size of the matrix, significantly. 

Unfortunately, N c  could not be increased and N k  kept reasonably large at the same time, 

so we cannot be certain that inclusion of the higher bands would not affect the value of

E q .
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Table 6.6: Convergence of Cq for Ar and Kr with respect to Nc and Nk including 
excitonc effects.

Argon Krypton
N , X Nc Nk =  2048 Nk =  864 Nk =  2048 Nk =  864

3 X 1 1.1798 1.1793 1.656 1.656
3 X 4 1.63 1.755

6.7 Electron Energy Loss Function

In this section we want to address the energy loss function, at higher energy,

calculated within the RPA. We did not include excitonic effects in this calculation for the 

following reasons: firstly, a much larger number of conduction bands is required to obtain 

higher energy spectra and plasmon energies than we could use in the exciton calculations. 

Secondly, Olevano and Reining [116] calculated the energy loss function for silicon in

cluding G W  and excitonic effects and they found that the G W  corrections worsen the 

results with respect to the RPA calculation while inclusion of the electron-hole interac

tion improved the results with respect to both G W  and RPA calculation only by taking 

into account the coupling between resonant and anti-resonant parts of the Hamiltonian 

(5.20), which was neglected in our calculations of the optical spectra.

The calculated energy loss function is presented in Figure 6.11 (left column) for the 

rare gas solids: Ne, Ar and Kr along with experimental data by Schmidt cited in [77] 

(right column). The DFT-LDA eigenenergies were used in the calculations for the reasons 

described in Section 6.2 and Ref. [116]. The full dielectric matrix in the q  —> 0 limit 

is calculated at the range of frequencies and numerically inverted, so local field effects 

are included in the calculations. We cannot discuss absolute or relative weights for the 

spectra, since experimental weights are not known. However the most pronounced peaks 

and their positions match the actual experimental positions very well. Calculated peak 

positions are compared with experimental positions from Figure 6.11 in columns (a) for 

Ne and Ar and column (c) for Kr, Table 6.7. In addition, more recent measurements by 

Nuttall et. fl/ [117] are presented in columns (b).
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Figure 6.11: Energy loss spectra within the RPA (left column) for the rare gas 
solids: Ne, Ar and Kr. DFT-LDA eigenenergies were employed, and artificial 
broadening of 0.15 eV was introduced. Local field effects were included in the 
calculations by numerical inversion of the full dielectric matrix. Right column: 
experimental data obtened by Schmidt, 1971 for Ne and Ar, 1972 for Kr taken 
from [77],
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Table 6.7: Energy loss function - calculated (RPA) and measured peak positions 
for solid Ne, Ar and Kr. Only peaks which originate from intraband transitions 
were tabulated here.

Neon Argon Krypton
RPA Exp. RPA Exp. RPA Exp.

(a) (b) (a) (b) (c)
25.0 26.0 16.5 16.5 16.5 12.5 12.6
26.6 29.1 17.2 17.2 17.3 15.25 14.6 15.1
28.6 32.0 19.2 19.7 15.5

21.0 20.8 17.0 16.8 17.7
26.5 26.4 18.0 17.9 18.5

19.5 21.4

(a) in [77] Ref. Schmidt 1971. (b) Reference [117]. 
(c) in [77] Ref. Schmidt 1972.

The most important maxima positions are the strongest broad maxima which occur in 

calculated loss spectra at 28.6 eV in Ne, 21.0 eV in Ar and 17.0 eV in Kr. They agree very 

well with experimental peaks at 32.0, 20.8 and 16.8 eV for Ne, Ar and Kr, respectively 

(Table 6.7). These maxima coincide with a strong decrease of the reflectivity in the 

reflectance spectra [77]. This indicates that they are due to plasmon excitation of the 

outer p-type electrons [77].

There is remarkable agreement between all calculated and measured peak positions, 

particularly for Ar and Kr where all calculated data lie in the range between two mea- 

surments. Less accurate results obtained for Ne may be ascribed to LDA band structure 

which underestimates the experimental one by more than 70%, (see Section 4.1.4). From 

this we can conclude that an RPA calculation, either with or without local field effects, 

can describe the high-energy spectra and plasmon energies moderately well for insula

tors as well as semiconductors. This justifies use of the RPA dielectric matrix in GW  

calculations.
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Chapter 7 

Conclusions

This thesis presents a detailed investigation of optical and dielectric properties of 

solids. In carrying out this study, two types of electronic excitations, single-particle and 

electron-hole excitations have been calculated within a reliable ab initio approach.

7.1 Single-particle Excitations

Unlike traditional ab initio calculations which use pseudopotential and valence electron 

plane wave basis sets, we employed all-electron localised Gaussian orbital (GO) basis 

sets in generating single particle states, while all two-point functions, such as dielectric 

functions and self-energies were expressed in a plane wave basis. This combined basis set 

approach, even if not the most efficient from the computational point of view, presents an 

important step forward in developing an approach for studying complex d-type systems 

and finite systems such as atoms, molecules etc, where conventional plane waves basis 

sets may not be applied.

In this combined basis we studied single-particle excitations within the G W  approxi

mation based on DFT-LDA single-particle states. We have shown that an all-electron GO 

approach yields a good description of the quasiparticle states around the energy gap. Cal

culated quasiparticle energies for bulk Si were in good agreement with experimental data 

and an all-electron projector augmented wave method by Arnaud and Alouani [62] and 

with pseudopotenital calculations by Rieger et al. [5]. Calculation of the band structures 

for rare gas solids (RGS): Ne, Ar, Kr and Xe were also shown to be highly reliable within
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the GW  approximation. Values for the fundamental gap and valence band width are in 

good agreement with experimental values. However, higher conduction bands were not 

described very well, generally. Although, there is a large uncertainty in measured en

ergies in rare gas solids, it would be worthwhile to replace our simplified plasmon-pole 

approximation by a more accurate plasmon-pole model given by Engel and Farid [39] 

or to use the space-time method by Rieger et. al. [5] for evaluation of the self-energy 

matrix elements. Nevertheless, accurate calculation of the valence bands and first con

duction band in the rare gas solids was sufficient for studying electron-hole excitations 

and low-energy optical spectra.

Finally, we presented for the first time the GW  quasiparticle band structure of cuprous 

oxide. This calculation was based on an initial self-consistent Hartree-Fock calculation. 

The calculated Hartree-Fock band gap overestimated the experimental value by about 

three times. We have shown that a large shift of the Hartree-Fock states results when GW  

corrections are applied leading to moderate agreement with experimental values. The 

GW  band gap overestimated the experimental value by about 40% and self-consistent 

GW  calculation may be required for a better description of the band gap when starting 

from Hartree-Fock eigenstates.

7.2 Electron-hole Correlation and Optical Spectra

The most challenging part of the thesis was studying electron-hole excitations and cal

culation of corresponding optical spectra. It was briefly illustrated that calculation of 

the dielectric function within the random phase approximation failed to produce reliable 

optical properties in semiconductors and insulators. Inclusion of local field effects im

proved the spectra in the high energy region but not at lower energies. It is shown that 

inclusion of both quasiparticle energies and electron-hole excitations was of crucial im

portance in an accurate study of optical spectra. Our absorption spectrum for silicon with 

the electron-hole interaction included improved agreement with experimental data, par

ticularly the position of the first peak, Ei agrees well with the experimental value. The 

intensity of the spectrum and position of the second peak, £'2  are slightly overestimated.

100



These discrepancies were due to an insufficient number of k  points in the integration. 

The calculated spectrum agrees moderately with experimental data and with the calcula

tion by Onida et al. [11], which confirms its reliability. Taking a large number of special 

points (2048 or more) or shifted points and use of more accurate integration method such 

as that of Gilat-Raubenheimer [102] would be desirable for a more accurate description 

of optical spectra in semiconductors.

The electron-hole interaction is quite significant in the RGS and excitons are highly 

localised in real space and so delocalised in reciprocal space, which makes the RGS ideal 

systems to apply our approach to with a special points set. As a result we achieved an 

excellent agreement of absorption spectra with experiment for Ne and Ar in both peak 

positions and weights. Three excitonic peaks were detected and matched with experi

ment in both solids. The calculated spectrum for Kr was in qualitative agreement with 

experiment: peak positions agreed with experiment but not actual weights. Uncertainties 

in measured spectra for Kr and Xe were also discussed in Section 6.4. Relativistic effects 

turned out to be at least as important as excitonic effects for solid Xe. In such case it is 

certain that angular momentum coupling is jj-coupling . Agreement between experimen

tal and calculated data was no longer qualitative and inclusion of the full spin structure 

and spin-orbit interaction is required.

Calculation of the electron-hole correlated wave function in real space for the first 

exciton state (n =  1) of Ar revealed moderate localisation of the hole around a fixed 

electron position. The probability of finding the hole was slightly delocalised on the 

first and second neighbor atoms. The radius of the exciton was about the size of the 

lattice constant. The wave function was an sp-type function with polarisation toward 

nearest atoms. This conforms that these excitations belong to an intermediate regime 

between Frankel- and Wannier-type and confirms experimental findings in [113], and 

earlier calculations in [108, 106]. As stated in earlier publications, this explains the 

failure of the Wannier formula for exciton states n  =  n ' =  1 in rare gas solids, since the 

basic assumption of the Wannier model is violated.

We also achieved accurate calculation of the static dielectric constant for rare gas
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solids, Ne, Ar and Kr, and illustrated the importance of including both quasiparticle 

corrections and electron-hole excitations in its calculation.

7.3 Outlook

An original and efficient computer code was developed to address all aspects in this 

thesis. Although, care has been taken to assure efficiency of the code with respect o f the 

memory requirements, use of storage space and computational time, there are still some 

limitations. Some of them have already been mentioned in the text. It is possible to make 

improvements in the code and eliminate some of those limitations and extend the abilities 

of the code.

First of all, the study of exotic novel materials and highly correlated materials is not 

possible without spin structure taken into account as many of these materials do not have 

a spin-singlet for the ground state and cannot be described by a closed-shell model. In

clusion of spin structure and possibly the spin-orbit interaction is desirable and would 

extend the abilities of the code significantly. Application to open-shell systems would, 

on the other hand increase the number of basis states by a factor of 4 and evaluation of 

the Bethe-Salpeter equation would become even more difficult and more time consum

ing. One solution to this problem would be parallelisation of the code and use of vector 

computers with distributed memory. This could significantly cut down the computation 

time of the systems studied in this thesis and allow study of much larger systems. It is 

strongly recommended that further code development goes toward that direction.

The second source of difficulty arises from limitations in the CRYSTAL code. So far, 

the CRYSTAL95/98/03 generates eigenvalues and eigenvectors on a symmetric grid only 

and has limited k  points sampling to a maximum 1 6 x 1 6 x 1 6  grid (see Appendix A and 

Ref. [23, 26,42]. As was shown in Si, this led to unconverged optical spectra. Advantage 

should be taken of shifted points and that would involve interpolation of single particle 

eigenfunctions and quasiparticle energies at arbitrary off-symmetry points, but that is 

a small price for the achievements gained; the required number of k-points for fully 

converged spectra could be halved by this approach [13, 100]. Additional improvement
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in the calculated spectra can be made by using an analytic continuation method [102] 

instead of the current root sampling method in integration over the Brillouin zone.

As already mentioned above, G W  calculations can be improved by employing space

time [5] integration method instead of the plasmon-pole model. This approach would 

allow application to not only s and p-type materials for which the current plasmon-pole 

method works, but also d-type. The approach will yield highly reliable quasiparticle band 

structure not only for states around the band gap but also for higher energy states.

The code also provides great potential for excitations beyond G W  calculation such as 

self-consistent, self-energy calculations, T-matrix [118] and electron-phonon coupling 

[119]. Implementation of the code with localised Gaussian orbital bases for two-point 

functions is already ongoing. The use of Gaussian orbital instead of plane-waves will 

provide applications to the finite systems such as atoms, molecules and clusters.

All suggested improvements in the code will give opportunity to study dielectric prop

erties of different types of materials, transition metal oxides such as manganites and 

cuprates, hight temperature superconductors such as MgB2 , conjugated polymers and 

many other novel materials.
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Appendix A 

Computer Code Manual

This appendix gives an overview of the computer code called SMEXCITON, orig

inally developed and used to calculate all different quantities presented in this thesis. 

The appendix is divided into two main sections. Section A .l gives detailed information 

about installing and running the code and documents the input and output files. Section 

A.2 is a guideline for further developers, it describes the structure of the code, memory 

requirements and data structure in detail.

A.l User Guide

The main part of the program is implemented in C++ programing language, but there 

are some FORTRAN77 source files used as well, which are mainly imported from ex

ternal sources [120]. The source files and their purpose are discussed in more details in 

Section A .2. The program contains the following files and directories:

suscep/README 
suscep/INSTALL 
suscep/source/ * .cpp 
suscep/source/ * .f 
suscep/source/Makefile 
suscep/include/ * .h 
suscep/source/ * .o 
suscep/bin/smexciton 
suscep/bin/initdata

short overview of the code 

installation instructions 

C++ source files 

FORTRAN?? source files 

the make file 

C++ include files 
object files 

main executable 

auxiliary executable
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A. 1.1 Getting Started

The user is required to set up severel parameters prior to the compilation. Firstly, the 

SMEXCITON code requires the CRYSTAL95/98 [26, 23] p ro p e r t ie s  programs to 

be installed. The p ro p e r t ie s  programs are called in run-time from the code so two 

macro variables CRYSTAL95-CALL and CRYSTAL98_CALL are defined in the file 

su scep /include/parcun .h . The file param.h has to be edited and their values set to the 

path of the each of the p ro p e r t ie s  programs:

CRYSTAL95-CALL = "crystal95path"

CRYSTAL98_CALL =  "crystal98path".

Most memory allocation is done dynamically, however there are several static global 

arrays, and several user defined data types, e.g. matrices (see also Subsections A.2.2 

and A.2.3). Their dimensions are defined by the parameters which are assigned in the 

file su scep /in lu d e /p aram .h . The user is advised to edit this file and check if these 

parameters comply with a studied crystal and computer’s memory capacity and alter them 

if necessary. Alternatively, the code makes various run-time check ups and warns the user 

if the values of the parameters do not comply with the input data. The parameters and 

their meaning are:

MXBF max. number of basis functions
MXGF max. number of Gaussian primitives
MXSH max. number of shells
MXK max. number of k-vectors
MXG max. number of G-vectors
MXSL max. number of spherical shells for R , G-vectors
MXL max. number of R  vectors generated
MXBEH max. number of bands in the electron-hole kernel calculation
MXKDIM dimension of the electron-hole kernel

The Makefile is provided in the su sc e p /so u rce  directory and simply typing make in the 

same directory generates two executables: sm exciton and in i td a ta .  The preferable 

compiler is g+4-, however, the code is portable and it does not use any special libraries so 

it can be adopted for any C+-i- compiler.
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Figure A .l: The computational flow of the main calculation carried out with 
sm exciton executable.

The main calculations are carried out by the sraexciton executable, while the latter 

is used for preliminary calculations and it is discussed in the next subsection. The main 

executable takes two arguments, input Jile and output Jile, so the command line takes the 

form:

% sm exciton [input_f ile_name] [out_f ile_najne]

The input Jile is a user generated ASCII file. The output is written to the output Jile 

and to several task-dependent files. Optionally, some system information related to the
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FORTRAN call' might be written to the standard output file. All errors are written to 

the standard error file and an auxiliary error file, e r ro r_ f i le . lo g .  The auxiliary error 

file is introduced because the standard error stream is equivalent to the standard output 

stream, which prints to the monitor in some systems, so information can be lost if a job 

is running in the background and the user is logged off.

The computational flow of the main calculations is presented in Figure A.I. The 

inputJile is divided into two main blocks. The first block contains general parame

ters specific to the studied system and is read in the ’input data’ task (see Figure A .l), 

while the second block contains particular computational task-dependent data. The task- 

dependent data is read inside the startjob() function. As shown in Figure A .l, auxiliary 

input files are required for the code as well. The next subsection explains how to generate 

them and gives an overview of their content. Details on how to prepare the input .file are 

given in Sections A. 1.3 and A. 1.4.

A.1.2 Preliminary tasks

The first step in calculations of optical properties in the Gaussian orbital basis approach 

is to develop an accurate basis set. A brief overview of the optimisation process, as well 

as basis sets used in this thesis are presented in Appendix C.

Assuming that a sufficiently accurate basis set has been developed, the first task is to 

generate the auxiliary input files: C ry s ta l .d a ta , f o r t . 99, f o r t . 9, f o r t . 65^ The files 

f o r t . 99 and f o r t . 9 contain the density matrix and they are generated by the CRYS- 

TAL95 and CRYSTAL98, respectively. Thus, they are used by the p ro p e r t ie s  programs 

during the system call. The file f o r t . 65 contains the exchange-correlation operator and 

it is used by the CRYSTAL98 p ro p e r t ie s  program. The file C ry s ta l .d a ta  contains 

all other relevant information gathered from the CRYSTAL95 calculation.

To generate these files, we run the in te g r a l s  and s c f  executables of the CRYS- 

TAL95 [26]. The procedure is schematically presented in Figure A.2. The in te g r a l s  

input file has to be named d a t.in p . Standard output must be directed to a file entitled 

'CRYSTAL95/98 programs p r o p e r t ie s  are FORTRAN executables
^The default names for FORTRAN units are given by f  ort.X where X indicates the unit number
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Figure A.2: Computational flow of the preliminary task.

dat.ou t. Following in te g ra ls  and scf the CRYSTAL95 executable p ro p e rtie s  has 

to run using the following keywords in the input file: NEWK, KNETOUT, EXTPRT, 

COORPRT [26] . The new k-point mesh generated by the NEWK option should have 

the same Monkhorst-Pack shrinking factors [60, 23] as specified in the sc f part. The 

output from p ro p e rtie s  should be appended to the file dat.out. The command lines 

for the above have the form:

% integrals < dat.inp > dat.out 
% scf >> dat.out
% properties < dat.pro >> dat.out
This process results in the creation of several FORTRAN units, f ort.X. The units created
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Table A .l: Output files written by CRYSTAL95 used to generate the auxiliary 
input file C ry s ta l .d a ta .

Filename Content Created by Format

fort.99 Density matrix, input to properties NEWK binary®
fort. 10 Eigenvectors in the IBZ SCF binary
fort.30 Eigenvalues in the IBZ NEWK binary
fort.33 Lattice data, symmetry operators, 

non-primitive translation vector
EXTPRT ASCII

fort.34 Accurate atomic positions COORPRT ASCII
dat.inp Gaussian orbital basis set, 

standard integrals/scf input file
User ASCII

dat.out CRYSTAL95 standard output in te g r a ls ,  sc f , 
p ro p e r t ie s

ASCII

“All fort.X binary files are the FORTRAN type binary files, where 
data is written in records.

should include files listed in Table A. 1.

In the second step the short executable i n i t d a t a  (no arguments required) runs, 

which gathers all relevant data from each of these files and concatenates them into an 

ASCII file. C ry s ta l .d a ta . The two files f o r t . 99 and C ry s ta l .d a ta  should be kept for 

subsequent use.

Finally, some tasks of the main optical properties code require the exchange-correla- 

tion potential, which is generated by the CRYSTAL98 code. In order to extract this data, 

in te g r a l s  and s c f  executables of the modified CRYSTAL98 code have to run in the 

same way and with the same input file as described for CRYSTAL95. This produces, 

in addition, f o r t . 9 and f o r t . 65 units. Both of them are binary units and used by the 

CRYSTAL98 program p ro p e r t ie s  called during the main calculation. So they should 

be stored along with f o r t . 99 and C ry s ta l .d a ta  files.

A.1.3 General input task

The user generated input file contains an initial common block of general parameters, 

followed by various task-dependent optional blocks. Each block is arranged in lines of
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Table A.2: Notation used in the description of the input data.

Symbol Description
• New record, keyword
o Optional record (switch keyword)
* Free format
o Input record follow some certain conditions

var[if\ Record is an array of dim

records. The convention used in a description of the input data is presented in Table A.2. 

The initial input block is specified with following records:

Record/Variable Options/Keyword
•  * t i t l e  
o SYMMETRY
• * po in t-g roup

• * sh r  shg i t o l
•  * i s k i  i s q i  iskm is k p i
• * band-bottom  band_top 
o m etal
• p o te n t ia l- ty p e

title User comments, limited to 99 characters.

SYMMETRY Optional keyword NOSYMM switches all symmetry operations off. By 

default the symmetry is switched on in each task.

point-group Specifies a type of point group, currently implemented only 186, 224, 225, 

and 227.

shr shg itol Various numerical control cutoff parameters:

shr The number of shells summed over in the real space to ensure correct normal

isation of the Bloch functions, usually setting shr = 1 is sufficient.

I l l

NOSYMM
225, 227,
224, 186

< 16
band-bottom  < band-top
METAL
DFT, RHF



shg The number of G-vectors used in various summations, as well as the number 

that determine the actual size of the dielectric matrix. This number should be 

set to a value that defines a complete ’star’ of G vectors and it may not exceed 

the value set up by MXG.

itol This parameter determine a cutoff for calculation of one-electron integrals. In

tegrals involving shells of Gaussian orbitals whose largest overlap is less than 

will be neglected. By introducing the cutoff in the integral calculation, 

the CPU time could be significantly reduced.

iski isqi iskm iskpi This record is related to the various ’shrinking factors’ of the recip

rocal lattice points. The k-points mesh is discussed in Ref. [42]. At this stage we 

want to highlight that only multiples of 4 are permissible as shrinking factors. Var

ious optical properties require different densities of k points to achieve sufficient 

convergence, so four different shrinking factors are introduced in the code to ensure 

both accuracy and efficiency for all tasks. In addition, a common k point mesh is 

generated by using the common shrinking factor

iskq =  max(iski, isqi, iskm, iskpi)

and all different k and q points meshes are scaled into this one. Thus, all four

shrinking factors must be multiples of one another^.

Iski Shrinking factor that determines the density of the Monkhorst-Pack k point 

mesh for the integration over the BZ in the RPA dielectric matrix calculation 

(5.8).

isqi determines density of q  points used for different plotting purposes such as the 

quasi-particle band structure, dielectric band structure, Hartree-Fock and V^c 

exchange operator plotted along lines in BZ, the self-energy spectrum and 

RPA optical spectrum, 

maximal shrinking factor supported by CRYSTAL95/98 is 16.
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iskm Shrinking factor of the Monkhorst-Pack q point mesh for the integration over 

the BZ for the self-energy matrix element, (3.36) and Hartree-Fock exchange 

energy calculation.

iskpi determines the density of the k point mesh used for the integration over the 

BZ in the optical spectrum with the electron-hole interaction included.

band_bottom band Jop The first (occupied) and final (conduction) band used in the 

summations of the RPA dielectric function (5.8) and self-energy matrix element 

(3.36).

metal The code at the moment is not capable of automatically distinguishing metals from 

semiconductors and insulators so the keyword METAL is required for application 

to metals. The default case is non-metal.

potential-type Calculation of the GH^-DFT quasiparticle band structure requires the 

exchange-correlation potential generated by CRYSTAL98. Inserting the keyword 

DFT causes the CRYSTAL98 p ro p e r t ie s  program to be called in run-time, while 

the keyword RHF switches off that call.

A.1.4 Optional Blocks

The initial input section is immediately followed by an input block specifying the re

quested calculation. The block is identified by the keyword at the beginning of that 

block, which is followed by the formatted input data. The input file can contain one or 

more of these blocks. All k, q points given in an input file must be in oblique coordinates:

k =  (fcpl, fc(l). m )  =  +  ^ b 3 ,  (A.l)isqz isqi isqi

where bj are reciprocal primitive lattice vectors. All keywords are listed in Table A.3. 

A detailed description of the input data of all supported tasks, as well as a format of the 

output data is given below.

SETPRINT Printing selected output. All data is printed in the output file given by the 

second argument if not otherwise specified. All lengths are written in Bohr’s units.
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Table A.3: List of the task identification optional keywords.

Keyword Description
SETPRINT Various printing options
RPA_DBS RPA dielectric band structure
RPA_SPECTR RPA dielectric function
EXCHENG HF exchange energy
EXCHANGE HF exchange matrix element
SE_PLOT G W  self-energy vs. energy
Q P ^A N D S G W  Quasiparticle band structure
PPTEST Plasmon-pole model test
EXCITON electron-hole interaction
END The program ends

The following options are supported:

EIGENVEC Prints eigenvectors in real space - see input below. 

EIGENVAL Prints eigenvalues - see input below.

GVECS Prints G  vectors - no input required.

KVECS Prints k vectors - no input required.

ENDTASK Termination of SETPRJNT task.

EIGENVEC input:

Record/Options Meaning
Number of k  points

1 < Hk <  10

Insert each point fo r  i =  1. . .  m the separate record
o ki[3] The oblique coordinates for k̂

•  * bands_m[2] Lower and upper bands for printing

•  * grid[3] Number of points along x, y and z directions
grid[3] >  0

•  * orig in[3] Coordinates of origin (in Bohr’s units)

•  * griddim[3] Lengths along x, y and z (in Bohr’s units)
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The real part of the eigenvectors are written in ASCII files, e e ig v e c # .d a t, 

where #  presents an ordinal number of k-points as appear in the input task. 

The files have the following format:

e e ig v e c # .d a t content 
X y  z 3?('0mk) =  bands_m[0]. . .  bands_m[l])

EIGENVAL - input;

Record/Options Meaning
• * Hk Number of k  points

Insert each kj point fo r  i = \  in the separate record
o ki [3] The oblique coordinates for kj

The SETPRINT task can support any number of subtasks and they can come in 

any order. The task must be terminated by ENDTASK keyword.

RPA_DBS Random phase approximation dielectric band structure

Record/Options Meaning
n_eigenv Number of the dielectric matrix eigenvectors

and eigenvalues printed out.
1 <  n_eigenv < shg

Hq Number of q points at which the dielectric matrix
is computed.

Hq > 1

Insert each point fo r  i =  1 . . .  Hq m the separate record 
o Qi[3] The oblique coordinates for qj

In this task the static symmetric dielectric matrix, £g g ' (q> =  0) is calculated

within the random phase approximation, (5.8) and diagonalised. The inverse of the 

eigenvalues, £^^(q) and eigenvectors V„;(q) are written in the files:

Output filename Content Format
rpa_dbs.dat i |qi| (n =  0 . . . n_of _eigenv) ASCII
dm.eigenvectors ^nl ( Q i ) binary

The number of eigenvalues printed out, as well as the number of eigenvectors is de

termined by the first record, n_eigenv. The eigenvalues are printed in an ascending
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order. Their matching eigenvectors are printed in a binary file as complex < double > 

quantities. The total size of the file is given by

size =  Hq X  n_eigenv x MXG x s izeo f {complex <  double >). 

RPAJSPECTR Macroscopic dielectric function within RPA level.

Record/Options Meaning

• *  energy[2] Lower and upper frequency bounds (in eV)

• *  n_energy Number of frequency points
n_energy > 1

• * gamma Artificial broadening parameter
gâ mna >  0

• *  Hq Number o f q points at which the dielectric
matrix is computed

1 <  Hq < 4

Insert each Qj point fo r  i  =  1 .. . n^ in  the separate record
^9i[3] The oblique coordinates for qj

The symmetric dielectric matrix, (5-8) is fu lly  computed and numeri

cally inverted at the range of frequencies. This provides for the study o f the optical 

spectrum within the RPA level, with both local fields included and without local 

fields. Separate elements o f the dielectric matrix'*, macroscopic dielectric function, 

eM{^)  — ei{uj) +  ie2 {co) and energy loss spectra (with local fields included) are 

printed in the ASCII files:

Output filename Content

RPAeGG#.dat U) 3 ? ( e G G ' ( w ) )

RPAeM#.dat UJ E i i u j ) ê 2(w)

RPAloss#.dat (jj

Again the symbol # is replaced by the q-point index.

''Supported elements at the moment are for G  =  G ' =  (0 ,0 ,0 ), G  =  (0 ,0 ,0 );G ' =  (1 ,1 ,1 ) and 
G  =  G ' =  (1 ,1 ,1 ).
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EXCHENG Hartree-Fock exchange energy. No additional input required, however the 

number of k, q, and G vectors taken into account has to be chosen carefully [42], to 

ensure well converged calculation. This option allows relatively low-cost testing of 

convergence of the Hartree-Fock exchange operator, (4.3) computed as a part of the 

G iy-D FT quasiparticle corrections. If the Hartree-Fock eigenenergies and wave 

functions are used in this calculation, then the converged exchange energy should 

correspond to the value obtained from CRYSTALxx^ using a UHF Hamiltonian 

and the EXCHGENE keyword. The Hartree-Fock exchange energy is written in 

the output file given in the second argument of the command line, output .file. The 

energy is written in units of Hartree®.

EXCHANGE Hartree-Fock exchange operator.

Record/Options Meaning
bands_m[2] Lower and upper bands for plotting

nit Number of k points
Hk >  1

Insert each point fo r  i  =  1 . . .  m  the separate record 
o /ci[3] The oblique coordinates for kj

In addition, the diagonal elements of the Hartree-Fock exchange operator,

(4.3) are computed and plotted in a form of a band structure. If the DFT keyword is 

selected in the initial input block, matrix element of the DFT exchange-correlation, 

will be plotted as well. Auxiliary output files are both in an ASCII format and 

are listed below.

File Content
vxc.dat i 
hfexchange.dat i |k

(m =  bands_m[0]. 
:j| ( m  =  bands J i i [0 ] .

.. bands_m[l]) 

.. bands_in[l])

^Any CRYSTAL release supports these options. 
^IH artree =  27.211396130eV .
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SE_PLOT Self-energy diagonal matrix element as a function of energy

Record/Options Meaning

bands_m[2] Lower and upper bands for plotting

•  f  i t - ty p e Plasmon-pole fitting
IMAG Imaginary type fitting
REAL Real type fitting

•* f it_ e n e rg y
f it_ e n e rg y  ^  0 Finite energy at which the dielectric matrix is

fully calculated for the plasmon-pole model (eV)
f  i t .e n e rg y  <  Eg If REAL type fitting is selected.

energy[2] Lower and upper energy bound (eV)

n_energy Total number of energy points to be considered
n .energy  >  1

gamma Artificial broadening parameter for self-energy plot

•* Hk Total number of k points to be considered
Hk >  1

Insert each k  ̂point fo r  i = 1. . .  in the separate record
o A:i[3] The oblique coordinates for kj

The self-energy matrix element, (m k |E |m k) (3.36) is computed as a function of 

energy, E  within the G W  approximation (see Chapter 3), at a range of bands, 

from baindsjTifO] to bands_ni[l] and specified k  points. The auxiliary output file, 

s e lfk k .d a t is an ASCII file and has a structure:

s e lfk k .d a t Content 

i m  E  (eW) UjEi,,m{E))

i and m  indicate kj-point and band index respectively. Data for each k  ̂ and m  is 

stored in separate blocks followed by a blank line.
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QP_BANDS Quasiparticle correction to the either Hartree-Fock or DFT-LDA band struc

ture

Record/Options Meaning
bands_m[2] Lower and upper bands for plotting

•  f i t - ty p e Plasmon-pole fitting
IMAG Imaginary type fitting
REAL Real type fitting

• * f it_ e n e rg y
f  it_ en erg y  ^  0 Finite energy at which the dielectric matrix is 

fully calculated for the plasmon-pole model (eV)
f i t - e n e rg y  < Eg If REAL type fitting is selected.

•* gamma Artificial broadening parameter for self-energy plot

•* d e l ta _ s h i f t Defines size of the interval for calculation of the 
functional derivative of E(£^).

d e l ta _ s h i f t  /  0

Total number of k points to be considered
Hk > 1

Insert each point fo r  z =  1 . . .  m the separate record
oki[2,] The oblique coordinates for kj

The quasiparticle correction is calculated using the G W  approximation. If the LDA 

eigenvalues and eigenvectors are used then the keyword DFT is required in the 

initial input block to ensure calculation of V^c- Both the quasiparticle eigenvalues 

and LDA/HFA eigenvalues are printed in separate ASCII files :

File Content
qpbands.dat i |ki| (m =  bands_m[0]. .. bands_m[l])
hfbands.dat i lkj| (m =  bands_m[0].,.. bands_m[l])

S P  indicates either LDA or HE
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PPTEST Plasmon-pole model dielectric matrix:

Record/Options Meaning
•* energy[2] Lower and upper energy bouns (in eV)

•  * n_energy Number of energy points
n_energy >  1

•* gamma Artificial broadening parameter

n_eigenv Number of the dielectric matrix 
eigenvalues printed out.

1 <  n .e igenv  <  shg

Total number of q  ̂ points to be considered
1 <  Hq <  4

Insert each qj point fo r  i = 1 . .  .n^ in  the separate record
OQi[^] The oblique coordinates for q^

•  f i t_ ty p e Plasmon-pole fitting
IMAG Imaginary type fitting
REAL Real type fitting

f it_ e n e rg y
f i t .e n e r g y  ^  0 Finite energy at which the dielectric matrix is 

fully calculated for the plasmon-pole model (eV)
f i t .e n e r g y  < E g If REAL type fitting is selected.

This task calculates the plasmon-pole approximation to the frequency dependent 

dielectric matrix as well as the full dielectric matrix at a range of frequencies. It 

is primarily meant for checking the reliability of the plasmon-pole model. Output 

files are all in ASCII format:

File Content
real_fit#.dat U! {n = l . . .n_eigenv)
imag_fit#.dat CO e~^{iLo) (n =  1 .. .n_eigenv)
real_numeric#.dat U) (« =  l . . .n .e ig e n v )
imag_numeric#.dat U) e~^{iLu) {n — 1 ..  ,n_eigenv)

The symbol #  is replaced by an ordinal number, i of qj point listed in the input 

task.
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EXCITON Program for the calculation the electron-hole interaction and properties re

lated to it. This is the most time consuming task and the total calculation consists 

of several steps. In the first step, GW  quasiparticle energies are generated for the 

set of k points in the IBZ. In the second step, the electron-hole interaction is cal

culated and the Bethe-Saltpeter Hamiltonian diagonalised. Finally, properties such 

as the dielectric function or electron-hole eigenfunctions can be computed. In or

der to minimize the CPU time of the calculation the user is allowed to split the 

entire calculation into steps and calculate each step separately by choosing appro

priate keywords. Thus, one could recalculate, e.g. the dielectric function using a 

different energy range or a different step without repeating the calculation of the 

electron-hole kernel or the GW energies which are the two most expensive parts 

of the computation. The input for this task has the following structure:

Record /Options Meaning
•* bands_m[2 Lower and upper electron-hole bands
• GW ta sk
GWCALC Calculation of the quasiparticle energies

- additional input required
GWREAD Reading quasiparticle energies in IBZ - no input
• electron-hole interaction ta sk
EHKERNEL Calculation of the electron-hole interaction

- additional input required
o properties ta sk
SPECTRUM Calculation of the macroscopic dielectric function

- additional input required
EHWAVEFUNCTIONS electron-hole wave functions in real space

- additional input required
• ENDTASK Termination of the EXCITON task

GWCALC Computes GW corrections for the set of k points in IBZ and for bands 

from bands_m[0] to bcLnds_m[l] used in the calculation of the electron-hole 

excitations.
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Record/Options Meaning

• f i t - ty p e  
IMAG 
REAL

Plasmon-pole fitting 
Imaginary type fitting 
Real type fitting

•* fit_energy
f  it_energy 7  ̂ 0 Finite energy at which the dielectric matrix is

fully calculated for the plasmon-pole model (eV) 
f i t  ̂ energy < Eg If REAL type fitting is selected.

d e lta _ sh if  t  Defines size of the interval for calculation of the
functional derivative of T,{E).

This option writes all quasiparticle energies into binary the file qpenergies, 

which is used in follow-on calculations. The energies are written as a data 

type double.

GWREAD Once the GW  quasiparticle corrections are calculated by the above 

option, the user can avoid repeating their calculation with this option. It is 

possible in the first run to calculate only the GV/ quasiparticle energies and 

in the second run to calculate the electron-hole interaction. This option is 

useful if the user has limited CPU time per process. The option does not 

require additional input, however it is required that the option GWCALC has 

been run before so that the file qpenergies exists. It is also assumed that the 

initial parameters, such as k, q points density or bands_m[2] are not changed 

between two runs. While the existence of the file ’qpenergies’ is checked by 

the code, the latter two parameters are not checked and any change in them 

could result in unphysical solutions or cause dumping of the process.

EHKERNEL Electron-hole interaction calculation and solving the Bethe-Selpeter 

equation
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Record/Options Meaning

•  s c re e n in g .ty p e
FULL_DM  Full RPA DM in screening.
DIAGONAL_DM  Diagonal elements of the RPA DM only.
O FF  Screened potential switched off

•  e x c i to n .ty p e
SIN G LET (j =  1 /2 )-type exciton
T R IP L E T  {j  =  3/2)-type exciton

The electron-hole interaction kernel (5.39) can be computed by calculating

the full RPA dielectric matrix in screening (FULL_DM) (see Chapter 5), tak

ing a diagonal approximation only, (DIAGONAL_DM) or with the screening 

can be switched off (OFF). The last option, together with S IN G L E T  exciton 

type is equivalent to taking only local fields into account. Separate calculation 

of the spin singlet and triplet exciton is possible, assuming that the magnitude 

of the spin-orbit interaction is negligible and the ground state is spin-singlet. 

The excitation energies, Qs  are written in an ascending order. The corre

sponding wave-function coeffiicients, are written in the same order as 

Qs  in a binary file as the complex <  doub le  >  data type. The output files 

are:

File Content Format

eh_eigenvalues.dat ASCII

eh.eigenvectors ■^kvc binary

SPEC TR U M  Calculate the macroscopic dielectric function from the electron- 

hole states. The input data for this task is:

Record/Options Meaning

energy[2] Lower and upper energy bounds (in eV)

n_energy Number of energy points

gcunma Artificial broadening parameter

The following ASCII output files are produced within this task:

Output filename Content

e2.dat uj ei(a;) S2 {u>)

loss.dat CO ^(1/£m (<^))
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EHW AVEFUNCTIONS Calculation of the electron-hole wave functions in real 

space

Record/Options Meaning

•  number_of _wfns Number of wave functions
1 <  number_of_wfns < 1 0

•  * grid[3] Number of points along x, y  and
2: direction

•  * o rig in [3 ] Coordinates of origin

•  * griddim [3] Lenghts along x, y  and 2:

The wave functions are computed for the hole fixed at the central atom. They 

are printed in the same order as they are written in the file e h .e ig e n v e c to rs .  

Each function is printed in the separate ASCII file e h e ig v e c # .d a t

e h e ig v e c # .d a t  content 

X y z U{xs)  ^(X s) IXsP 

where the symbol #  is replaced by index, s of the eigenfunction.

Note, if the properties tasks, SPEC TR U M  and EHW AVEFUNCTIONS are called 

without calling programs G W C A LC  or E H K E R N E L  in run-time, the user has to 

ensure that the files q p e n e rg ie s , e h _ e ig e n v a lu e s .d a t and e h .e ig e n v e c to rs  

do exist and the setup which dictates the dimensions of the electron-hole kernel 

has not been changed between runs. The setup includes bands_m[2], k point mesh 

(shrinking factors) and MXBEX (see [42]).

A.2 Programming Guidelines 

A.2.1 The code structure

The original source is written in C/C-i--)- language. Some features of the C++ language 

are used, however overall programming style is C for simplicity. The features include the 

complex <  d o u b le  >  class and reading and writing on binary files. The complex class 

is defined within GNU C++, and renamed as Complex in the code. It is simple to use and 

compatible with FORTRAN’S complex * 16 data type.
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The code is developed mainly for computationally demanding problems with large 

memory requirements (2 GB or more). To handle such large memory requirements, the 

local file system is widely used instead of memory whenever possible. The of streain  

and i f  s tream  classes provide efficient writing and reading of large arrays in a file. Par

ticularly efficient random access to stored data is provided by the i f  s tream  class. For 

those reasons, all original source files have a *.cpp extension and they are required to be 

compiled by C++ compiler. However a developer is not required to have knowledge of 

truly C++ object oriented programming.

Source files The source files are:

main.cpp The primary source file for the program. It contains the function

int main(int argc, char * argv[])

which controls the reading of the input files and the designation of the computa

tional tasks. All other functions contained in main.cpp or called from it are listed 

in the header file main.h.

kpoints.cpp All functions which are related to the k and q points, the general paral

lelepiped k  point mesh, Monkhorst-Pack special points, symmetry information and 

the shifted points mesh.

linear_algebra.cpp Source code dealing with the matrix algebra; multiplication, in

version, diagonalisation, etc. Actual diagonalisation and inversion routines are 

imported from an external source which is in FORTRAN??, so the header file 

l i n e a r  .a lg eb ra .h  in addition contains all necessary definitions for calling FOR

TRAN subroutines from a C++ source.

tools.cpp Functions for initialisation and printing of different type of arrays.

integrals.cpp Contains the main algorithm for the Gaussian orbital integration schemes.

integrals_qGzero.cpp All functions for calculation of the momentum operator of the 

optical matrix elements.
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epsilon.cpp All functions for the calculation of the RPA dielectric function, dielectric 

matrix and RPA polarisability. The two main functions which are directly related 

to the computational tasks are: calc_RPA_spectrum() and calc_RPA_DBS(). For 

more details of the data type passed in, as well as other functions programmed in 

this file, see the header file ep silo n .h .

setprintcpp Functions for general printing options.

wave_functions.cpp Functions for the calculation of single-particle and two-particle 

wave functions in real space.

self_energy.cpp Functions for the calculation of the self-energy matrix element, quasi

particle band structure and plasmon-pole model. Main calculation routines include:

•  QP_bands_plot() Calculates quasiparticle band structure

•  s e l f  .energy  _plo t() Calculate self-energy matrix element as a function of 

energy

•  plasm on_pole() Plasmon-pole model testing

Details about declaration of the functions, data types and all other functions con

tained in the file are listed in the header file s e l f  .energy.h.

HFexchange.cpp Functions for calculation of the Hartree-Fock exchange matrix ele

ment and Hartee-Fock exchange energy.

exciton.cpp The source code dealing with the electron-hole interaction kernel and macro

scopic dielectric function with excitonic effects included. The function,

ca lc_ ex cito n ()

is the major computational function of the code. Again, all additional functions, as 

well as some extra global data can be found in the file exciton .h .

In addition there are several FORTRAN?? source files which are mainly imported from 

external sources:



init-data.f Source code for the preliminary data manipulation. The executable i n i t d a t a  

gathers all relevant information from CRYSTAL95 code into C ry s ta l .d a t  file. 

The source was originally written by Hogan [42] and it has been slightly changed 

since then.

The source files, blas.f, dblas.f, cheev.f, dzasum.f, zblas.f, zgeev.f and zgetri.f are part 

of the the LAPACK library. We list them here and user/implementer is referred to [120] 

to find out more about these source files and their use.

Include files Each *.cpp source file listed above has its own include file *.h which 

contains all functions relevant to the source file and some global data relevant only for 

that source file. In addition, there are several more include files which are included in all 

*.cpp files, if not specified differently:

param.h All dimensions/constants used in the declaration of static arrays and user gen

erated data types (matrices).

user_data.h The user defined data types.

globaLdata.h All global data declared before main(). Included only in main.cpp.

extern_global_data.h same as above but included in all *.cpp files except main.cpp.

constants.h contains all different physical/mathematical constants, such as tt, mo elec

tron mass, etc.

conversion_factors.h defines conversion factors to CGS units.

mycomplex.h sets up proper header file for the complex numbers class, also defines 

type Complex,

ty p ed ef complex < double > Complex

mylogical.h defines data types BOOLEAN and BYTE if they are not defined. Also, it 

defines logical constants TRUE =  1 and FALSE =  0 and binary operators OR and 

AND which are more familiar to fortran programmers than the standard C/C++ op

erators II and &&.
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A.2.2 User defined data types

Several user defined data types were introduced in the code. This approach is taken 

mainly to simplify handling of linear algebra objects such as matrices and vectors and 

to generate so called data base ’cards’ for objects which contain many different types of 

information related to one object i.e. k points. All constants needed in these declarations 

are assigned in the param .h file (see previous subsection and Section A .l .1).

The major data types defined globally are:

ty p e d e f  s t r u c t  { 

i n t  compl ; 

i n t  comp2 ; 

i n t  comp3 ;
} VECTOR_INT ;

This structure is used for vectors which have integers for components. It is used for

the oblique coordinates of reciprocal lattice vectors. All introduced structures are new

data types so it will be an error if one declares

s t r u c t  VECTOR_INT k ;

instead, the correct declaration is

VECTOR-INT k ; .

ty p e d e f  s t r u c t  { 

d o u b le  compl ; 

d o u b le  comp2 ; 

d o u b le  comp3 ;
} VECTOR-DOUBLE ;

A vector, with type d o ub le  (real numbers) for components. The components are the 

actual coordinates x, y  and 2;, respectively. The lattice vectors are declared with this data 

type. One might think that the above two data types could be defined as a simple ar

rays of three elements, however the idea was to extend VECTOR_DOUBLE and VECTOR.INT 

structure into VECTOR class and defined the operators such as +, -, * (dot product) and 

cross product (e.g **) for the vector class.
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typedef struct {
VECTOR_INT oblique ;
VECTOR_DOUBLE cart ;

} VECTOR_KNET ;

This structure is used for k /q  points. Vectors in oblique coordinates are used for printing, 

while Cartesian coordinates are needed in an actual calculation.

typedef struct {
int number_of-Stars ; 
int symmetry_labels[48] ; 
int kfpointer ; 
double weights ;

} K_PROPERTIES ;

This structure is related to the k points in the special Monkhorst-Pack set. It contains 

information related to the symmetry: number_of . s t a r s  is the number of points in the 

BZ belonging to the star of k, syrametry_labels[48] is an array of symmetry labels 

which correspond to the symmetry operations from the little group of k, k fp o in te r  is 

the index of the eigenstate at a particular k point and finally, w eight is the geometrical 

weight of the k point (see [42]).

typedef struct {
Complex akfull[MXBF][MXBF];

} EIGEN_VECTOR ;

The matrix used mainly for single-particle eigenvectors. A value of MXBF is assigned 

in the file param.h and presents the maximum possible number of atomic orbitals, (see 

A.1.1).

typedef struct {
double ekfull[MXBF] ;

} EIGEN.VAL ;

ID array used for single-particle eigenvalues.
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typedef struct {
Complex Matrix[MXG][MXG] ;

} DM_MATRIX ;

The matrix used in declaration of the dielectric matrix. MXG is assigned in the param.h 

file and presents the maximum number of G vectors.

typedef struct {
Complex Matrix[MXKDIM][MXKDIM] ;

} K_MATRIX ;

The matrix used for electron-hole interaction kernel. The value of MXKDIM is required 

to be large, generally between 2000 and 11000. The latter number is a maximum value 

for the dimension of the complex < double > type matrix supported at computers with 

2 GB of RAM. Since efficiency of diagonalisation depends of this constant, the user is 

recommended to alter this constant according to their own needs and keep its value as 

small as possible.

All the data types listed above can be found in the header file user_data .h , which is 

included in all files.

A.2.3 Global data

The most frequently accessed data has been declared globally prior to main() function. 

The data is declared in files g lo b a l_da ta .h  and ex tern_g lobal_data .h . In this subsec

tion, we give a list of global variables and explain each variable.

Firstly, all data from the common input task (Section A. 1.2) is stored as global data. 

Additionally, the common shrinking factor isk q , as well as some BOOLEAN type vari

ables: SYMMETRY, m eta l and p o te n tia l_ ty p e , which are generated from the switch 

keywords (Section A. 1.4) are also stored globally. Then the data taken from the file 

C ry s ta l .d a ta  is stored as global data and can be divided into noumber of groups:

(1) All data mainly used in the Gaussian integration routines such as in in te g ra ls .c p p  

and in tegralS -qG zero .cpp :

int ndf ;
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The number of basis (Bloch) functions, 

i n t  ndf 1 ;

The number of atomic orbitals, which differs from ndf if (i-orbitals are present. 5 

<i-orbitaIs are expanded into 6 linearly dependent functions, which are recombined 

at the inclusion of the Bloch eigenvectors.

i n t  nkf ;

The number of k-points in the irreducible Brillouin zone, as used in the initial 

CRYSTAL95/98 calculation. This number is not used in the current code, however 

it may become of use in some further version of the code in which the eigenvectors 

and eigenvalues would be used from a CRYSTAL special points grid and generated 

by symmetry and interpolation at the other required points.

in t  nexp ;

The number of Gaussian primitives.

double sc[MXGF], pc[MXGF], dc[MXGF] ;

These are the values of the contraction coefficients for s, p  and d type Gaussian 

primitives.

double expo[MXGP] ;

Contains the value of the exponent of each Gaussian primitive.

VECTOR-DOUBLE xyz[MXGP] ;

the coordiates of the centers of Gaussian orbitals, usually situated at atom sites.

i n t  ng[MXSH] ;

the number of Gaussian primitives in each shell.

i n t  gpos[MXSH] ;

labels the index of the first primitive in a shell of all related arrays.

i n t  shtype[MXSH] ;

labels the orbital type of each shell; 0 —> s, 1 —> sp, 2 —> p, 3 —> d.
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VECTOR_DOUBLE ai[3], bi[3] ;
Primitive vectors of the real and reciprocal lattice, respectively.

double vol ;
The volume of the primitive cell.

(2) All symmetry related data, also read from the file C ry s ta l.d a ta :

int number_symmetry_operators_inPointGroup ;
Number of symmetry operators for the point group.

int irr[48 * 9] ;
Symmetry operators.

VECTOR_DOUBLE tauR[48] ;
Non- primitive translation vectors, th related to non-symmorphic groups.

There are several global arrays generated in run-time:

EIGEN-VAL single_part_val[MXK] ;
Single particle eigenvalues in a uniform grid in the parallelipiped. The common 

shrinking factor, isk q  is used to generate the grid (see also ref [42]). The eigenval

ues and eigenvectors are generated by using the C/C++ function in t  system () with 

the command line for running the p ro p e r t ie s  program as an argument. While the 

eigenvalues are stored globally, the actual eigenvectors are written in a binary file 

D FT states as the Complex data type.

EIGEN_VAL exchange-correlation ;
The DFT exchange-correlation functional matrix element generated at the same 

grid as the single-particle eigenvalues and eigenvectors. At the moment only diag

onal elements of the exchange-correlation potential matrix element are stored.

VECTOR_INT gvecs[MXG] ;
The reciprocal lattice vectors in oblique coordinates.
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VECTOR_DOUBLE gvecs_bi[MXG] ;

The reciprocal lattice vectors in Cartesian coordinates.

VECTOR_DOUBLE Rvec_ai[MXL] ;

The real space lattice vectors in Cartesian coordinates.

i n t  n\imber_of_R-vectors ;

Total number of lattice vectors used the integration.
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Appendix B 

Static RPA Dielectric Matrix

The symmetrised dielectric matrix and the concept o f dielectric band structure was 

mentioned in Section 3.5. Dielectric band structure is used to determine frequency depen

dent dielectric functions for GW  self-energy matrix elements (3.31) within the plasmon- 

pole approximation. In this appendix we outline the formalism and illustrate the dielec

tric band structure concept through applications to silicon and FCC argon. The second  

aim o f this appendix is to illustrate convergence o f the inverse dielectric matrix, since it 

has been used for calculation of the screening in context o f the self-energy and screened 

electron-hole interaction.

B .l Dielectric Band Structure

The longitudinal dielectric matrix o f Adler [27] and Wiser [92] has been presented in 

Section 5.1 for semiconductors and insulators,

, , 16ne  ̂ 1
=  ^GG' + n  | q + G | 2

^  ^  (ck - I -  q|e*(‘i‘̂ *^ '̂''|t;k) |ck +  q)

v,c  k -^ c ,k + q  ^ v , k  ^

In Section 5.1 we have related the long wavelenght q  -> 0 limit o f the dielectric matrix to 

the macroscopic absorption spectra. Here, we will focus on its static limit within the RPA 

£GG'(qi =  0), since this limit determines static screening. In this context, the artificial 

brodening, 0+ has been set to zero. Its application has been illustrated in determining 

the static and dynamic screening in computing the screened electron-hole interaction
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and self-energy matrix elements, respectively. In these applications, the inverse of the 

dielectric matrix had to be calculated. Further applications were presened in the dielectric 

constant, Eq, calculation and RPA optical spectra in Sections 6.2 and 6.7.

Calculation of the DM for semiconductors and insulators can be drastically simpli

fied by the concept of the dielectric band structure (DBS) introduced by Baldereschi and 

Tosatti [40]. The concept is based on dielectric eigenvalues and eigenpotentials which 

diagonalise the DM in the same way as the energy band structure and set of energy eigen

functions diagonalise the Hamiltonian matrix. They allow a graphical representation of 

the DM.

The static DM, defined by (B.l), can be symmetrised by [94]:

^gg ' \ r ' ' \ ^GG' (q) (B.2)
| q  - h  V jr  I

The matrix (q) is Hermitian and therefore can be diagonalised as:

IZ^GG'(q)KiG(q) =  £n (q )K G (q ) (b .3)
G'

This will give a set of real eigenvalues e„(q) and complex eigenvectors KiG(q). and it 

can easily be proven that K ic(q) =  |q +  G*|“ ^y„G(q) are the eigenvectors of £:qq' (q) 

with the same eigenvalues £:„(q), as well as eigenvectors of with eigenvalues (q). 

We will consider only the symmetric dielectric matrix given by (B.2) and denote it by 

£g g ' for the remainder of this appendix.

The DM is defined in terms of its inverse (5.3), it is convenient to consider inverse 

eigenvalues e~^(q), which when q spans the Brillouin zone, define a dielectric band 

structure. A real space dielectric eigenfunction, called an eigenpotential is given by:

V ;(q ,r) =  e*‘̂ --^ V ;G (q )e* ''"  (B.4)
G

When the crystal is perturbed with a weak external potential,

5y ’̂'‘(q + G') = KG(q),

it is straightforward to show from equation (5.3), that the screened potential is given by 

(5V‘°‘(q +  G) =  ^ffG G /(q)V „G (q) =  £„^(q)V;G(q)- (B.5)
G'
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Its Fourier transform  has the sam e r-dependence as the perturbation, but is scaled by a 

constant factor £:“ ^(q). The dielectric band structure w ith corresponding eigenpotentials 

give us all essential inform ation contained in the static dielectric m atrix, particularily 

the deviations o f the dielectric eigenvalues from  diagonal values o f the DM  and of the 

dielectric eigenpotentials from  plane waves (hom ogeneous lim it) give us the m agnitude 

o f local field effects [40, 30].

B.2 The RPA Response Function and Local Field Effects

The charge density  response function, P  or polarisability has been defined as a ratio 

betw een induced charge density and an external potential, (5.4). W ithin the RPA, cal

culation o f the polarisability  m atrix, P g g ' takes only intraband transitions into account 

and local field effects are not included. However, it can be shown that local field effects 

(and exchange-correlation if it is considered) can be included in the polarisability  via the 

relationi [28]:

’̂g G' =  X/^GG"^G"G' (B.6)
G "

The response m atrix is Herm itian and can be diagonalised. E igenvectors o f P g g ' trans

form ed into real space can be interpreted as a possible form  o f induced charge oscillation 

or plasm ons [121].

B.3 Convergence Parameters

The sym m etric RPA dielectric m atrix , £G G '(q, has been calculated for all m ateri

als studied in the thesis. In this section we illustrate som e convergence criteria o f the 

dielectric m atrix.

Equation (B .l)  involves sum m ation over occupied and conduction bands. It has been 

shown elsew ere that only valence electrons contribute to the sum m ation over occupied 

states. This conclusion was confirm ed in our calculations. In the sum m ation over conduc

tion bands we refer to A ppendix C where the conduction band ’cu t-o ff’ was determ ined 

for each basis set considered in the thesis.
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Table B .l: Some selected elements of DM for Si at q -> 0 limit, calculated using 
different basis sets and 256 k-points in FBZ, compared with published data.

G G ' (42AO) (52AO) (88AO) Ref [29] Ref [33]
(0 0 0) (0 0 0) 9.9126 13.7453 13.7954 13.610 15.4646

( 1 1 1 ) (0 0 0) -0.2018 -0.3669 -0 .4150 -0.441 -0.4665
(2 2 2) (0 0 0) 0.1213 0.1637 0.1627 0.1767
(1 1 1) ( 1 11 ) 1.1443 1.6325 1.7261 1.780 1.7976

By using the all electron basis sets for Si presented in Appendix C we calculated 

some selected elements of the static dielectric matrix at q ^  0. The data is presented in 

Table B.l and compared with published data (last two columns). Two main conclusions 

can be drawn from the table: (1) A large basis set is requared to produce a dielectric 

matrix which is comparable with fully converged plane-wave data. (2) For elements at 

large G-vectors even more conduction bands are needed to achieve good agreement. The 

table shows that using a relatively large basis set (88AO), the ’head’ element is larger 

by about 1.2% than the result obtained with a plane-wave basis in [29], the ’wing’ and 

’body’ elements differ from the published data by about 2% and 5%. These deviations are 

mainly due to an insufficient number of conduction bands, and they are even larger for the 

smaller basis sets. It is shown in Appendix C that only 45 conduction bands contribute 

to the calculation for the largest 88 AO basis set. However, the exact matrix elements are 

not known, and measurable quantities such as Eq or optical spectra are comparable with 

published and experimental values (see Section 6.6). For calculation of these quantities 

only the 88 AO basis set was used for silicon.

After the number of conduction bands, the most important factor in the dielectric ma

trix calculation is the Brillouin zone integration. The integration is carried out using the 

Monkhorst-Pack special points scheme [60]. Convergence of different dielectric matrix 

elements is examined and presented in Table B.2 for Si using the largest basis set, 88 

AO. Very good convergence is achieved for the ’wing’ and ’body’ elements with 256 k 

points, however the ’head’ element for N\^ =  256 deviates by about 7% from the element
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Table B.2: Some selected DM elements and (last row) for Si calculated 
using different number of k-points in FBZ, using 88 AO basis set. Displayed 
elements are calculated at q  —>■ 0 limit, the matrix size 59 x 59 was inverted in 
obtaining

G  G ' Nk = 256 iVk =  864 Nk = 2048
(0 0 0) (0 0 0) 13.795 13.021 12.939
(1 1 1) (0 0 0) -0 .415 -0.415 -0 .415
( 1 1 1 )  ( 111) 1.726 1.725 1.725

^RPA^0 12.47 11.73 11.65

obtained with N\^ =  2048, there is the same error in the value for Nevertheless,

we used a mesh of the 256 points in the calculation of the screening [see Equations (3.30 

and 5.39)]. This mesh was used by Rohlfing et al. [6] and resulted in a good band struc

ture for different materials. Also, Rohlfing et al. [6] examined different models for the 

dielectric matrix and they showed that the choice of the dielectric matrix is not crucial 

for calculation of the self-energy, since it is rather averaged over the Brillouin zone. Ac

cording by we limited ourselves to use only 256 k-points in the FBZ (or 10 points in the 

IBZ) for the dielectric matrix calculation in the context of G W  self-energy and screened 

electron-hole interactions for all materials. This was motivated by large savings in the 

computation time when the DM was computed at a large number of q-points, such as in 

the electron-hole interaction. However for determining an optical spectrum or dielectric 

constant, a fully converged dielectrc function was used (see Section 6.1).

Finally, when the dielectric function was transformed into reciprocal space (5.2), vec

tors G  and G ' span the infinite reciprocal lattice. However, in a realistic calculation some 

cutoff has to be introduced. Converged inverse dielectric matrices £qq, or converged 

eigenvalues and eigenvectors of the dielectric matrix require a sufficiently large matrix 

to be calculated. Table B.3 shows the convergence of the dielectric constant, eo with lo

cal fields included for Si, Ne, Ar and Kr. Well converged results were achieved after 59 

G-vectors for Si and the RGS, including Xe (not shown). The choice of 59 G  vectors 

for converged dielectric constant was also supported in literature [62, 42], In our case eo
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Table B.3: Convergence properties of the dielectric constant for different mate
rials with respect to the size of the dielectric matrix when the local field effects 
were included. The size used in the calculations in Chapters 4, 5 and in following 
section is indicated in bold.

N g Si Ne Ar Kr
1 13.79 1.38 1.98 2.13

15 13.05 1.287 1.704 1.802
27 12.833 1.287 1.701 1.801
59 12.478 1.286 1.701 1.800
65 12.474 1.286 1.700 1.800
89 12.468 1.285 1.700 1.797
113 12.464 1.285 1.700 1.796
137 12.464 1.284 1.699 1.795
169 12.464 1.283 1.795

converges to less than 1 % for all materials studied here.

B.4 Results and Discussion

The dielectric band structures are calculated for Si and Ar and presented in Figure B .l . 

As stated in Section B.l an external potential can be expressed in the form of dielectric 

eigenpotentials or, generally, any arbitrary potential of a given symmetry can be decom

posed into eigenpotentials of the same symmetry [40]. Thus, screened potentials inside 

the cell are given by a set of dielectric eigenpotentials reduced by screening factors, 

eigenvalues of £“ ’̂ (q), equation (B.5). The induced charge density can be presented in

Table B.4: Smallest inverse eigenvalues of Sqq / (q —>■ 0). The number in brack
ets indicates the degeneracy

^1  ^ £2 ^ £ 3 ^ ^ 4 ^

Si 0.071 0.398 0.517(2) 0.537
Ar 0.384 0.476 0.508(2) 0.723
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Figure B .l: DBS for bulk Si (left) and FCC Ar (right)

real space as a set of eigenfunctions of the response function, P(q) [121],

Several of the most screened dielectric eigenpotentials and response eigenfunctions, 

at the q  0 limit, for Si and FCC Ar are shown in Figures B.2-B.4. These are presented 

as contour plots; positive values are indicated by solid lines and negative values by dashed 

lines. The corresponding eigenvalues are tabulated in Table B.4.

The most screened eigenpotential in silicon with eigenvalue =  0.071 has a bond- 

centred dipolar character, (top-left panel. Figure B .2 ). The arrow on the panel indicates 

the dipole direction on the bond. The response eigenfunction for this mode has a similar 

character to the eigenpotential, with an extra node on atomic sites (Figure B.3, top-left 

panel). The next mode is approximately monopolar and atom-centred, in both, the eigen

potential and the response eigenfunction, but changes sign on going from one atomic 

site to the other, (bottom-left panels. Figures B.2, B.3). It can be interpreted as one in 

which charge is transferred between atomic centers. Two panels on the right correspond 

to =  0.517 and ej^ =  0.537 eigenvalues and they are the most screened transverse
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Figure B.2: First four the most screened dielectric eigenpotentials for Si at q —)•
0, plotted in [Oil] plane, conventional cell. Atomic sites are indicated by circles 
and an arrow on the bottom-right panel indicate q direction.

(T) and longitudinal (L). Eigenpotentials and the response eigenfunctions also show the 

same pattern for this mode.

The DBS of Ar (Figures B .l, right) shows that four eigenpotentials in Ar are the most 

important in screening. The most screened eigenpotential, e f  ̂  =  0.384, and response 

eigenfunction are monopolar, atom-centred functions (top panels. Figures B.4). In this 

mode the charge expands and contracts almost spherically in response to an external 

potential of that symmetry. The next two modes have dipolar longitudinal (L) character 

which corresponds to =  0.476 (middle panels. Figures B.4) and doubly degenerate 

transverse (T) with eigenvalue ej^  =  0.508 (bottom panels, Figures B.4). The fourth 

eigenpotential is longitudinal, dipolar in character and atom-centered with a radial node 

on bonds (not shown).

The most important eigenpotentials and response eigenfunctions in the two solids are 

similar in character and consist of the monopolar and dipolar functions located either
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Figure B.3: The response eigenfunctions which correspond to eigenpotentials 
displayed at Figure B.2

on atom centres (Ar, Si) or bond centres (Si). That lends credence to the ansatz of the 

discrete dipole model which locates the dipole polarisabilities located on bond or atom 

sites.
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Figure B.4: Three the most screened dielectric eigenpotentials (left) and corre
sponding response eigenfunctions (right) calculated at q -> 0 for FCC Ar and 
plotted in [001] plane, conventional cell
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Appendix C

Gaussian Orbital Basis Set

C.l Optical Properties and GO Basis Set

As was discussed in Chapters 3 and 4 we adopt the Linear Combination of Atomic Or

bitals (LCAO) approach to expand the single-particle wave functions, '0 i(r,k ). In this 

approach, -0j(r, k) is defined as a linear combination of single-particle Bloch functions,

= Y^a^i{k)(j)f,{T,k). (C .l)

Each 0 ^ (r ,k )  is expanded over the crystal lattice vectors, R  and defined in terms of 

atomic orbitals, (/?^(r)

k) =  ^  (^^(r -  A^ -  R) (C.2)
R

The atomic orbitals, are given as the Gaussian Type Functions (GTF). A single expo

nent can be used for each however it is more efficient to use the linear combination 

of individually normalised Gaussians, known as a contraction, where the Gaussians are 

grouped into shells of a same type i.e. s, p, d-type

no
(/7̂ (r -  A^ -  R) =  ^  dj G[aj-r -  A^ -  R], (C.3)

j

The construction and use of an appropriate basis set constitutes a critical factor in 

most ab inito calculations, but is particularly important within the Gaussian orbital frame

work. There is no single criterion that may be used to construct an adequate (complete) 

Gaussian orbital basis set. A basis which minimises the total energy of the ground state
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may be sufficient for most physical applications, however this is a weak criterion for con

structing virtual states and for calculation of many-body effects such as self-energy or 

dielectric function. Assuming that the accurate calculation of the the optical properties 

requires at least a reasonable value for the total energy we have chosen a few all-electron 

different Gaussian orbital basis sets and a pseudopotential (PP) basis set (for silicon) 

created from s, p  and d-iy^t primitives.

A look at the eigenenergies will give us additional criteria and suitability of particular 

basis sets. As the index, n, of the conduction band increases, the energy E{n)  of that 

state would be expected to approach the theoretical free electron result given by,

because electrons occupying energy states far above the band gap tend to become delo

calised and their wavefunctions become free electron-like. V  indicates the volume of the 

primitive cell.

Figures C. 1 -C.3 show how different basis sets satisfy the condition (C.4). The figures 

illustrate the problem of incompleteness that arises when a Gaussian orbital basis set is 

used. The number of effective conduction band states in the calculation of the optical 

properties is limited by the number of states which lie below the free-electron line, and 

the sum over states in Equations (3.36) and (5.8) can be truncated at that limit (’cut

off’ index). So according to Figure C.l there are only about 10 conduction bands that 

contribute to the sums for the smallest highly optimised basis set 42 AO, about 22 for 52 

AO basis set and so on. There are 45 effective virtual states for the largest 88 AO basis 

set for silicon.

To increase the number of effective conduction bands one should describe the correct 

multi-nodal character of the higher bands (i.e. 4d,...5/,...etc.). This can be done by 

including /  and ^-type functions into the basis set as well. As an alternative, we added 

an extra set of orbitals located at interstitial sites to the basis. This improves the flexibility 

of the basis set through the cell and attempts to reproduce the highly nodal structure of 

the free-electron eigenstates. However, this type of set is found to be difficult to optimize 

and sometimes is difficult to converge during the self-consistent DFT or HF calculation.

(C.4)
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Figure C.l: Dependence o f energy eigenvalues on conduction band number for 
different basis sets for Si. The energies shown are eigenvalues at T point and 
the zero level is aligned with bottom of the valence band. The labels in the plot 
indicate numbers of atomic orbitals (AO) available for particular basis set. Label 
PP stands for pseudopotential basis set
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Figure C.2: Dependence o f energy eigenvalues on conduction band number for 
different basis sets for CU2O (see Figure C .l).
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Figure C.3: Energy eigenvalues vs. conduction band number for the RGS.

To examine this further, we calculated the RPA dielectric matrix (5.8) as a function of 

number of conduction bands for Si using two different all electron basis sets: the highly 

optimised, labeled 52 AO and the largest, 88 AO set. These calculations are carried 

out using 256 k-point in the FBZ, which is not sufficient for fully converged dielectric 

matrix and optical spectra, however in the context of the GW self-energy calculation 

with plasmon-pole model this mesh gave sufficient convergence to generate plasmon- 

pole parameters (see Chapters 3 and 4). Also, it has been suggested elsewhere [6] to use 

this mesh when the dielectric matrix is calculated in order to obtain the plasmon-pole 

parameters. Thus this mesh was used in Section 4.1.3 for the plasmon-pole factors and is 

used here as well.

The results for the dielectric constant, Sq (with local fields included), head of the di

electric matrix, sqo, one ’wing’ element ein,ooo and ’body’ element ein^ui are presented 

on Figures C.4 and C.5. Again, these figures confirm that only states which lie below the 

free-electron (’cut-off’) line (see Figure C .l) contribute to the calculation of the optical
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Figure C.4: Dielectric constant, eo and some selected dielectric matrix elements 
for Si as a function of number of conduction bands for 52 AO all electron basis 
set.

properties. Figure C.4 illustrates relatively poor convergence of the dielectric constant, 

and dielectric matrix elements with respect to the number of conduction bands in the 

region bellow the ’cut-off’ index, which is 20 for 52 AO basis set (see Figure C .l). So 

highly optimised basis sets, such as 52 AO or 42 AO, which are more than sufficient 

for calculation of many ground state properties, are not adequate for the calculation of 

the optical properties when virtual states are summed. This is not surprising, since there 

are very few effective unoccupied states, which contribute in summation of the dielectric 

matrix and self-energy.

Some improvement was achieved with the 88 AO basis set, which is generated by 

adding interstitial functions. Figure C.5 shows good convergence of dielectric constants 

and matrix elements for about 30 conduction bands taken into calculation. Also, the 

direct and fundamental gap was converged for only 30 conduction bands used in the 

summation (3.36), and the results are close to the plane wave results (see Section 4.1.3
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Figure C.5: As Figure C.4 for the largest, 88 AO all electron basis set for Si.

and Figure 4.2). The two largest basis sets, all-electron labeled 88 AO and pseudopoten

tial, PP 64 AO have only 45 and 35 effective virtual states, respectively, however they 

showed up as sufficient to obtain the GW quasiparticle band-structure that agrees well 

with highly converged plane-wave calculations, Section 4.1.3.

According to the analysis we made for silicon, and Figures C.l and C.3, one can 

conclude that there are only about 100 effective conduction bands which we used for 

CU2O, 30 for Ne and Ar, and 45 for Kr and Xe.

C.2 Optimisation and Basis Set Tables

We highlighted the importance of using a large and good quality basis set for calcu

lation of optical properties in the previous section. Extreme care must be taken when 

using newly developed or altered basis sets. In each case, the basis set should be tested 

throughly before use.

There are several resources where basis sets can be found, and most of them are usu-
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ally sufficient for most purposes for ground state calculations. The Pople STO-nG are 

built into CRYSTAL95/98 code and they can be printed out and altered. The wide range 

of basis sets can be ordered from:

Basis Set Database [122] at:

h t tp  : / / www.emsl.pnl.gov/forms/basisform.html.

In addition, many different basis sets are offered at the CRYSTAL development home

page at:

h t tp  : / / www.crystal.u n i to .i t /B a s is_ S e ts /p ta b le .h tm l, 

and Mike Towler’s CRYSTAL resources page at: 

h t tp  : / / www.tcm.phy.cam.ac.uk/~mdt

Standard basis sets found in any of these resources or taken from the CRYSTAL95/98 

data base must be altered for the calculation of the optical properties. To generate an 

improved set with extended set of states one must use the following procedure:

1. The outermost valence shells have to be uncontracted and their exponents opti

mised with respect to the total energy and to the band gap. Optimisation was done 

by hand in this work.

2. Polarisation functions should be added, if not already present, and outermost func

tions reoptimised.

3. If the number of basis functions is still not sufficient, ’ghost’ orbitals can be added 

interstices. This could increase the number of basis functions dramatically, de

pending on the point group. Care should be taken when choosing coordinates for 

the new orbitals. This set should be reoptimised.

4. As a final check, the GW band structure should be calculated using the keyword 

Q P^A N D S in the smexciton executable (see Appendix A.1.4). A poor basis set 

will very often result in either too large or too small GW  quasiparticle corrections 

of the DFT (or HFA) band structure.
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A comprehensive guide to the use and optimisation of the basis sets in CRYSTAL95 can 

be found in [123].

Notation: Basis set are referred to by the number of Gaussian primitives in each con

traction. A dash separates the core functions from the valence functions and polarisation 

functions are indicated by brackets. ’X[spd]’ denotes a ghost atom with s, p and d or

bitals.

Silicon

All-electron basis sets used for silicon have been already used and documented in [42]

with following notation:
42 AO 8 - l l l l G
52 AO 8-11110(d)
68 AO 8 -llllG (dH X [sp ]
88 AO 8-llllG (d)+X [spd]

Pseudopotential basis set, PP 64 AO for Silicon is generated using Hay and Wadt Large

core built in the CRYSTAL95/98 code and s, p, and d orbitals, each with decay constants

0.18, 0.4 and 0.8 in atomic units.

CU2O

8-41 l(d)/864-4111(d) - basis set with 167 atomic orbitals 

Fractional coordinates - O: (0.25, 0.25, 0.25); Cu: (0, 0, 0)

8 5 OXYGEN BASIS
0 0 8 2.0 1.0
8020.0 0.00108
1338.0 0.00804

255.4 0.05324
69.22 0.1681
23.90 0.3581

9.264 0.3855
3.851 0.1468
1.212 0.0728
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0 1 4 8.0 1.0
49.43 -0.00883 0.00958
10.47 -0.0915 0.0696
3.235 - -0.0402 0.2065
1.217 0.379 0.347

0 1 1 0.0 1.0
0.470 1.0 1.0
0 1 1 0.0 1.0
0.170 1.0 1.0
0 3 1 0.0 1.0
0.45 1.0
29 8 COPPER BASIS
0 0 8 2.0 1.0
398000.0 0.000227

56670.0 0.001929
12010.0 0.01114
3139.0 0.05013

947.2 0.17031
327.68 0.3693
128.39 0.4030
53.63 0.1437

0 1 6 
1022.0 
238.9 

80.00 
31.86 
13.33 
4.442

8.0 1.0 
-0 .00487 
-0 .0674  
-0 .1242 

0.2466 
0.672 
0.289

0.00850
0.06063
0.2118
0.3907
0.3964
0.261

0 1 4 8.0 1.0
54.7 0.0119 -0 .0288
23.26 -0 .146 -0.0741

9.92 -0 .750 0.182
4.013 1.031 1.280

0 1 1 0.0 1.0
1.582 1.0 1.0

0 1 1 0.0 1.0
0.559 1.0 1.0

0 3 4 10.0 1.0
48.54 0.031
13.55 0.162
4.52 0.378
1.47 0.459
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0 3 1 0.0 1.0 
0.430 1.0
0 3 1 0.0 1.0 
0.230 1.0

8-41 l(d )/864-411 l(spd) set with 180 atomic orbitals is added an extra s and p  type func

tions on Cu sites with decay constant 0.25. The oxygen basis and the other functions of 

the copper basis are identical to those above.

Neon

Durand pseudopotential basis set is used for Ne with following configuration for valence 

electrons and polarisation functions:

1 1 3 8.0 1.0
.9.00 -0 .1 0 9 4 0.1244
4.530 -0 .1 2 8 9 0.5323
1.387 1.0 1.0

t 1 1 0.0 1.0
1.537 1.0 1.0

1 1 1 0.0 1.0
0.437 1.0 1.0
1 1 1 0.0 1.0
0.247 1.0 1.0
1 3 1 0.0 1.0
1.5 1.0

1 3 1 0.0 1.0
0.4 1.0

Argon

86-11lll(d d )
18 9
0 0 8 2.0 1.0
135320.0 0.000225

19440.0 0.00191
4130.0 0.01110
1074.0 0.04989

323.4 0.1703
111.1 0.3683

43.4 0.4036
18.18 0.1459
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0 1 6 8.0 1.0
324.8 -0 .0 0 7 6 3 0.00820

73.0 -0 .0 8 2 9 0.0605
23.71 -0 .1 0 4 6 0.2115

9.138 0.2540 0.3765
3.930 0.695 0.3967
1.329 0.399 0.186

0 1 1 8.0 1.0
0.2 1.0 1.0

0 1 1 0.0 1.0
0.39 1.0 1.0

0 1 1 0.0 1.0
1.4 1.0 1.0

0 1 1 0.0 1.0
14.0 1.0 1.0
0 3 1 0.0 1.0

0.2 1.0
0 3 1 0.0 1.0

0.39 1.0
0 3 1 0.0 1.0

0.79 1.0

Krypton

Basis set generated at [122] of type STO-6G, with added interstitial functions ’X[spd]’ 

at (0.5,0.5,0.5).

36 11
0 0 6 2.0 1 
28853.7364400  

5290.30099100 
1480.03557300 

508.43216470 
197.43908780 
81.3163196  

0 1 6 8.0 1 
2425.79644800  

480.12842440  
149.22355640 

57.41168085 
24.93393212 
11.42904540

.0
0.00916360
0.04936149
0.16853830
0.37056280
0.41649153
0.13033408

.0
-0 .01325279
-0 .04699171
-0 .03378537

0.25024179
0.59511725
0.24070618

0.00375970
0.03767937
0.17389674
0.41803643
0.42585955
0.10170830
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0 1 6 8.0 1.0
128.49657660 -0.00794313 -0.00713936
37.00047197 -0.07100264 -0.01829277
14.55321200 -0.17850269 0.07621621
6.65131252 0.15106351 0.41450986
3.31013216 0.73549148 0.48896215
1.69995829 0.27605931 0.10588165

0 3 6 10.0 0.0
128.49657660 0.00663343
37.00047197 0.05958178
14.55321200 0.24019496
6.65131252 0.46481147
3.31013216 0.34340923
1.69995829 0.05389057

0 1 6 8.0 0.0
8.80866625 0.00377506 - -0.00705207
2.83432530 - -0.05585965 - -0.05259505
1.21100984 - -0.31929460 - -0.03773450
0.60388718 - -0.02764780 0.38747730
0.32595180 0.90491990 0.57916720
0.18124828 0.34062580 0.12218170
0 1 1 0.0 1.0
5.83432530 1.0 1.0
0 1 1 0.0 1.0
1.21100984 1.0 1.0
0 1 1 0.0 1.0
0.60388718 1.0 1.0
0 1 1 0.0 1.0
0.32595180 1.0 1.0
0 3 1 0.0 1.0
0.8 1.0
0 3 1 0.0 1.0
0.2 1.0
0 2 
0 1 1 0.0 1.0
0.5 1.0 1.0
0 3 1 0.0 1.0
0.3 1.0

Xenon

976633-1111 l(dd)+X[spd]
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54  13
0 0 9 2.0  1.13768
3796580.0  0.0000487

555987.0
119804.0 

30861.1
8935.91 
2853.77 
1014.17 

404.235 
170.404

0.0003934 
0.0022931 
0.01113 
0.04616 
0.153675 
0.349145 

0.430543 
0.202905

0 1 7
10735.9 

2493.21 
767.941 
274.67 
111.819 

52.219 
25.4397 

0 1 6 8.0

8.0  1.15818
- 0.000275 
- 0.0061041 
- 0.050989 
- 0.146855 

0.104336 
0.572975 
0.484459 
1.18824

231.531 
91.7816 
38.1398 
17.3959 

8.1913 
3.92195 

0 3 6
414.512  
123.928 

46.6214 
19.5093 

8.79497 
3.93506 

0 1 3
9.48423 
5.43822 
2.54876 
0 3 3
7.19406 
2.88277 
1.1781

0.0065159 
- 0.025451 
- 0.316576 
- 0.047196 

0.897682 
0.474729 

10.0 1.0 
0.014096 
0.097746 
0.31137 
0.469409 
0.297241 
0.05124 

8.0 1.0 
- 2.60248 
- 0.639355 

5.68511
10.0 1.0 

0.227881 
0.576082 
0.40614

0.001075
0.0097891
0.057466
0.218886
0.459944
0.461107
0.223164

- 0.01352
- 0.068249

0.0045716
0.837103
1.32771
0.471369

099033
304635
701398
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0 1 1 8.0 1.0
2.29001 1.0 1.0
0 1 1 0.0 1.0
1.196936 1.0 1.0
0 1 1 0.0 1.0
0.633874 1.0 1.0
0 1 1 0.0 1.0
0.256598 1.0 1.0
0 1 1 0.0 1.0
0.196936 1.0 1.0
0 3 1 0.0 1.0
0.7 1.0
0 3 1 0.0 1.0
0.442072 1.0
0 2
0 1 1 0.0 1.0
0.2 1.0 1.0
0 3 1 0.0 1.0
0.45 1.0
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