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Abstract

Cluster analysis refers to a family of procedures which are fundamentally concerned with 

automatically arranging data into meaningful groups. These procedures are increasingly 

being employed in knowledge discovery tasks to assist in the exploration and interpretation 

of large datasets. Since users may often be unfamiliar with the exact contents of a dataset, 

clustering can provide a means of introducing some form of organisation to the data, which 

can also serve to highlight significant patterns and trends.

Cluster analysis methods have recently become an important part of commercial and 

industrial applications for mining data in a variety of domains. In the past, these methods 

have also been employed to facilitate the discovery of knowledge from large collections of 

unstructured text. Renewed interest in document clustering has been prompted by the 

exponential growth in the size of digital document collections, including web pages, e-mail 

messages and news articles. Another motivating factor has been the increased availability 

of computing resources, which has encouraged researchers to reconsider the application of 

machine learning methods to larger corpora.

A variety of techniques for generating and evaluating clusterings of text data  have 

been proposed in the literature, which differ significantly in terms of their theoretical 

foundations and practical implementation. A significant obstacle for researchers interested 

in harnessing this work is the absence of a comprehensive framework for comparing and 

extending these techniques. In this thesis, we introduce the Text Clustering Toolkit (TCT), 

a state-of-the-art framework supporting the development of applications for unsupervised 

text mining tasks. The toolkit covers all phases of the cluster analysis process, from the 

preprocessing of raw documents to the interpretation of a final clustering solution. As 

well as allowing researchers to evaluate popular learning algorithms, TCT also provides a 

flexible test-bed for the design and the development of novel clustering procedures.

The primary focus of a significant body of research in document clustering has been
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concerned with the production of solutions that are “accurate” in the sense that they suc­

ceed in revealing the underlying structure of a dataset. This thesis proposes a selection of 

novel clustering algorithms, which frequently succeed in accurately identifying the natural 

trends and groups in document collections. We also describe new strategies to improve 

the accuracy afforded by existing algorithms, such as those based on kernel learning. A 

secondary objective, which is frequently overlooked in this area, is the provision of in­

formation to help a user interpret the output of an analysis procedure. To support the 

extraction of knowledge from clustering solutions, techniques are described for producing 

summary information, in the form of human-interpretable cluster labels.

The increase in computing power available to researchers has opened up many new 

possibilities, such as the study of methods that involve aggregating information obtained 

from multiple clusterings. This information can often provide additional insight regarding 

the group structures in a dataset. However, due to the exceptionally large size and high­

dimensional nature of real-world document collections, the computational cost of applying 

aggregation methods to text data will generally be prohibitive. To address this scalability 

problem, we introduce novel techniques for efficiently generating and combining a diverse 

collection of clusterings to produce more accurate document clustering solutions.

A particularly problematic aspect of many common unsupervised learning procedures 

relates to the selection of key algorithm parameters, which can greatly dictate the success 

of the procedure. To this end, we explore ways in which the aggregation of information 

derived from a large collection of clusterings can provide us with clues about the validity 

of a clustering model. We devote particular attention to the estimation of the number 

of natural groups or topics in a text corpus, which represents a fundamental issue when 

employing well-known document clustering algorithms.
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C hapter 1

Introduction

1.1 C luster A nalysis

Cluster analysis refers to a family of procedures which are fundamentally concerned with 

automatically arranging data into meaningful groups. The grouping process, generally 

referred to as clustering, attem pts to divide a set of data objects so that those assigned 

to the same group share common characteristics, while those assigned to different groups 

are conceptually unrelated. In certain situations, this form of data analysis may be used 

to verify whether or not a dataset contains patterns that are assumed to exist according 

to a particular hypothesis. For other purposes, the identification of clusters represents 

the initial phase in a larger application, where it may be used as a means of summaris­

ing or compressing data. However, cluster analysis is increasingly being employed as an 

important tool in knowledge discovery tasks. In this context, it forms an integral part of 

exploratory data analysis, where users may be unfamiliar with the exact contents of the 

data and may wish to introduce some form of organisation, or identify important trends.

In the machine learning community, cluster analysis procedures are often referred to as 

unsupervised learning methods to emphasise the absence of any form of external feedback. 

This is in contrast to supervised learning methods, which use training examples from a 

fixed number of predefined classes to learn a model. Clustering algorithms must attem pt 

to identify patterns by relying solely on the intrinsic characteristics of a limited sample of 

data, without referring to any a priori class information. Consequently, the same set of 

data objects may be grouped in many different ways, depending upon various aspects of the 

clustering model employed, such as the desired number of clusters. A simple illustration

1
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F ig u re  1.1: Example of three alternative clusterings for the same set of d ata  objects.

of this is shovi^n in Figure 1.1.

1.1.1 C om m on A pplications

The use of cluster analysis m ethods can be found in the literature of many academic disci­

plines, ranging from geography to sociology, where they have proved useful in identifying 

patterns and trends in data. Recently, these m ethods have also become an im portant part 

of industrial and commercial applications for mining d a ta  in a variety of areas. Well-known 

examples include:

B io in fo rm a tic s : M icroarray technology makes it possible to simultaneously examine the 

behaviour of thousands of genes under different experim ental conditions. Cluster 

analysis techniques may subsequently be applied to  the resulting expression d ata  to 

identify functional groups of genes (Kluger et a i ,  2003).

Im a g e  a n a ly s is  : W hen working on images in tasks such as content-based image retrieval 

and object recognition, it is often desirable to  identify smaller regions of interest for 

further processing (Lau & Levine, 2002). This is particularly useful when deahng 

with large, complex images such as those analysed in biomedical applications.

M u lt im e d ia  s ig n a l p ro c e ss in g : It may also be useful to  identify groups of related 

scenes from whole video sequences, to aid browsing and navigation. Similar tech­

niques may be employed to  autom ate the detection of unusual activity or specific 

events in long sequences of video footage (Zhong et a i ,  2004).

M a rk e t in g  re se a rc h : Custom er records may be organised based on demographic a t­

tributes or purchasing patterns. These groups may be subsequently used to identify 

customers who may be interested in new products or services (Punj & Stewart, 1983).
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1.2 C lustering  D ocu m en t C ollections

In addition to the examples enum erated previously, cluster analysis has also formed an 

integral p a rt of text mining applications, where it has been used to facilitate the discovery 

of knowledge from large collections of natura l language text. In this context, the task of 

clustering represents an attem pt to  impose some form of s tructu re on a collection by iden­

tifying interesting groups of docum ents sharing a common topic or them e. This problem 

has been studied for some time [e.g. Jardine & van Rijsbergen, 1971), bu t has seen little 

progress until relatively recently. However, renewed interest in docum ent clustering has 

been prom pted by the exponential growth in the size of unstructured  digital docum ent 

collections, both  in the form of publicly available resources such as the World W ide Web 

and private, domain-specific tex tual databases. A nother m otivating factor has been the 

improvement in com puting resources, which has encouraged researchers and users alike 

to  reconsider the application of unsupervised learning m ethods in this area. Unlike text 

classification tasks, which require a set of labelled training examples to  be assembled 

beforehand to  provide supervision, cluster analysis procedures allow users to  explore doc­

um ent collections w ithout necessitating an initial training phase or requiring any form of 

prior knowledge regarding possible groupings.

Document clustering tasks can generally be divided into two categories: offline tech­

niques th a t seek to cluster a static, previously compiled collection of docum ents, and 

online techniques th a t operate on an incrementally compiled set of documents. In both 

cases, the application of a clustering procedure is intended to  allow the user to  browse and 

explore a collection more effectively. We follow the popular trend of research in this area 

and focus on offline docum ent clustering problems.

1.2.1 Cluster Analysis Workflow^

Formal research concerning the problem of cluster analysis dates back over four decades 

{e.g. Forgy, 1965). However, the m ajority of work in the literature of this area has 

been contributed over recent years, during which tim e a vast range of algorithm s have 

been proposed th a t vary greatly in their theoretical foundations and practical details. 

Most commonly, these algorithm s involve producing a hard clustering of a dataset, which 

represents a disjoint partition  where each object belongs to  one and only one cluster. In 

some cases, the clusters are arranged in a nested fashion to  produce a tree-like model of
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F ig u re  1.2: Generic document clustering workflow for a knowledge discovery task, which 
consists of three fundamental phases: preprocessing, clustering and validation.

concepts (Voorhees, 1986). Instead of assigning each object to a dedicated cluster, other 

authors have proposed methods to generate a soft clustering of data, which allows clusters 

to overlap so tha t objects may belong to several clusters to different degrees (Bezdek, 

1981). Often soft cluster membership weights are constrained to take probabilistic values, 

resulting in a fuzzy clustering of the data. In this case a weight of 0 indicates that an 

object does not belong to a cluster at all, while a weight of 1 indicates that an object 

belongs entirely to a cluster. In general, a soft clustering may be converted to a hard 

clustering by assigning each object to the cluster for which it has the highest membership 

weight.

For many applications, it is customary to represent a collection of data objects in terms 

of a fixed number of attributes or features, so that each object can be viewed as a point in 

a multi-dimensional feature space. In the case of text corpora, these data objects represent 

individual documents and their features generally correspond to unique words or phrases 

from the vocabulary of the corpus. As an alternative, other clustering algorithms have 

been proposed tha t operate on a representation which describes each object in terms of its 

pairwise relations with other objects. In practice, this representation wall typically take 

the form of a similarity or dissimilarity matrix. A benefit of this approach is tha t the 

repeated computation of similarity values in the original space can be avoided, although 

the clustering algorithm may no longer have access to the raw feature values.

While individual clustering algorithms may differ significantly, offline document clus­

tering tasks applied in the context of knowledge discovery typically proceed as shown in 

Figure 1.2. The three fundamental phases in this workflow may be summarised as follows:

1. Preprocessing: Transform the collection of raw, unstructured text documents into a 

suitable model for clustering. It may often be necessary to adjust this representation
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to improve clustering performance, such as by applying normalisation techniques or 

by removing unnecessary features from the model.

2. Clustering: Select a suitable clustering algorithm and a corresponding set of param­

eter values. Apply the chosen algorithm to the data model to produce a clustering 

solution.

3. Validation: Quantitatively evaluate the quality of the newly generated clustering 

solution. It may also be useful at this stage for a user to subjectively examine and 

interpret the clusters.

In many real-world scenarios it may be necessary to repeatedly adjust parameter values 

and reapply the clustering algorithm until a useful or interesting solution is obtained.

1.2.2 G oals and C hallenges

The primary focus of a significant body of research in cluster analysis has been on pro­

ducing accurate clusterings of data. Unlike supervised tasks, where classification accuracy 

is a well-defined concept, the lack of a definitive set of classes means that there is no cate­

gorical definition of what constitutes a correct clustering. However, it is generally agreed 

that, where possible, an accurate clustering should reveal the “natural classes” present in 

the data (Strehl, 2002). For a text corpus, this could correspond to groups of documents 

corresponding to a set of topics or themes. In practice, it may be the case that several 

meaningful groupings of the same data exists, depending upon the number of clusters 

chosen. Another aspect of cluster analysis that is often overlooked is the provision of 

information to facilitate the human interpretation of the output of a clustering algorithm. 

When working with text data, the ability to generate cluster labels that summarise the 

salient concepts present in groups of documents can help users to effectively understand 

a clustering solution.

Prior to the advent of machine learning techniques for document clustering, collections 

had to be manually organised by domain experts, a time-consuming task tha t is generally 

impractical for all but the smallest corpora. Although improved computing resources has 

made the automation of such tasks feasible, the development of algorithms tha t successfully 

achieve the goals of document clustering has continued to present computer scientists with 

a variety of challenges, with the most prominent of these being:

5



S calab ility : Even w îth the availabihty of significant processing power, an obstacle tha t is 

constantly present when applying machine learning techniques to textual databases 

is that of dealing with the sheer volume of data available, with some repositories 

containing millions of document. Current trends suggest that the growth in the size 

of data repositories will continue to outstrip computational power. Thus, an accept­

able trade-off must be found between clustering accuracy and algorithm running 

time.

D im ensiona lity ; In natural language corpora, the size of the vocabulary is often ex­

tremely large. Scalability problems may be exacerbated by the high dimensionality 

of text documents when they are represented as points in a feature space. Specifi­

cally, each unique word or phrase will typically require an additional dimension, and 

the time required to run many classical clustering techniques can increase rapidly 

as the number of dimensions increases. The sparsity of the feature space can also 

impact upon an algorithm’s ability to produce accurate clusterings.

R o b u stn ess : Another problem derives from the fact that most real-world data will con­

tain noise. For text documents, this could be due to the presence of irrelevant terms 

and errors introduced by misspellings, typographical mistakes or OCR recognition 

faults. Noise can also take the form of outlying documents that do not fit into any 

of the underlying groups in the data. In presence of such noise, many algorithms 

will not be effective in producing an accurate, definitive clustering solution.

M odel selection : A particularly problematic aspect of many clustering procedures is the 

selection of key algorithm parameters, such as the desired number of clusters. These 

decisions can greatly influence the outcome of the procedure. However, in many 

cases it is unclear as to how an appropriate clustering model should be determined.

V alida tion : A related problem is that of determining how to produce a quantitative 

evaluation of the quahty of a given clustering solution. As there is no universally 

accepted definition of what constitutes an accurate clustering, it may be difficult 

to automatically distinguish between a solution consisting of groups that accurately 

reflect the patterns in the data and one that does not provide a user with any useful 

insight.
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1.3 C ontributions

In this section we summarise the specific contributions of this thesis.

1.3.1 T oolkit for D ocu m en t C lustering

A major output of our work has been the development of the Text Clustering Toolkit 

(TCT), a state-of-the-art framework providing data analysts with access to a range of 

well-know classical and contemporary document clustering procedures. The toolkit in­

cludes implementations of techniques covering all phases of the cluster analysis process, 

from the application of preliminary preprocessing procedures to the final assessment and 

interpretation of a newly generated clustering solution. While the primary focus of our 

work has been on text data, an important design goal for TCT has been to support the 

deployment of learning applications in other domains. Therefore, the design of the toolkit 

is structured around a layer-based architecture, containing modular components that can 

be readily reused in difi^erent tasks.

1.3.2 Im proving A ccuracy and In terpretab ility

Accuracy and interpretability represent two fundamental objectives in document cluster­

ing. In this thesis, we introduce several novel clustering algorithms designed to produce 

accurate clusterings of large document collections. Empirical evaluations on real-world 

datasets demonstrate that these algorithms frequently succeed in identifying the natural 

trends and groupings in the data. To facilitate the discovery of knowledge from the re­

sulting clustering solutions, we propose complementary strategies for generating readily 

interpretable summary information, in the form of both descriptive and discriminative 

cluster labels.

1.3.3 A ggregating  Inform ation from M u ltip le  C lusterings

Recent work in machine learning has involved the study of methods that involve gener­

ating many diflterent clusterings of the same dataset and aggregating these solutions in a 

manner that extracts the most information about the underlying structures in the data 

(Fred, 2001). However, due to the exceptionally large size and high-dimensional nature of 

many document collections, scalability issues have meant that such aggregation methods 

have rarely been applied to this type of data. To address these issues, we propose efficient
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algorithm s for combining inform ation from m ultiple clusterings to  produce a more accu­

rate , definitive solution. We also dem onstrate th a t, by analysing the level of agreement 

between a large set of clusterings, we can gauge the suitabihty  of a given clustering model. 

This work is particularly  relevant to  the problem of estim ating the number of clusters in a 

dataset, which is a fundam ental question when employing docum ent clustering algorithms. 

As always, we seek to  perform this analysis in a m anner th a t is not prohibitively expensive 

when working w ith large corpora.

1.3.4 N ew  Benchm ark D atasets

In the task  of evaluating novel clustering and validation m ethods, the provision of an­

notated  and well-understood corpora is highly useful. To this end, during the course of 

our research we have constructed two new high-quality tex t corpora, the bbc and bbcsport 

collections. These are composed of news articles relating to a variety of themes. An 

advantage of producing corpora of this type stems from the fact th a t the d a ta  and any 

generated clusterings may be interpreted by users w ithout the need for specialist domain 

knowledge. In addition, we have constructed 84 artificial datasets, assembled from ex­

isting resources, which are specifically designed to  evaluate the ability of cluster analysis 

m ethods to  perform successfully on data  containing natu ra l classes of differing complexity 

and structure.

1.4 T h esis O rganisation

C h a p te r  2: A lg o r ith m s  fo r D o c u m e n t C lu s te r in g  presents a comprehensive review 

of classical and state-of-the-art algorithm s th a t have previously been applied for 

the task  of docum ent clustering. In addition, we examine related areas such as 

techniques for preprocessing raw docum ent collections and m ethods for reducing the 

dimensionality of the resulting da ta  model.

C h a p te r  3: C lu s te r  V a lid a tio n  M e th o d s  fo r T e x t D a ta  focuses on the general task 

of quantitatively assessing the quality of clustering solutions. We provide a survey 

of existing m ethods which may be employed to compare the relative accuracy of 

docum ent clustering algorithms. We also examine strategies intended to select the 

most suitable clustering model from among several possible candidates.



C h a p te r  4: T ex t C lu s te r in g  T oolk it introduces TCT, a new Java-based toolkit for 

document clustering, which provides researchers with the ability to compare and 

extend popular cluster analysis procedures. We describe the architectural design and 

functionality of the software, and provide practical details about its implementation 

and usage.

C h a p te r  5: B aseline  A nalysis contains a description of the experimental procedures 

and datasets used in empirical evaluations throughout this thesis. Furthermore, we 

provide a comparison of classical document clustering and vahdation methods, with 

a discussion of their advantages and limitations. This evaluation also provides us 

with a basehne for the assessment of approaches proposed in later chapters.

C h a p te r  6: Im p ro v in g  A ccu racy  an d  In te rp re ta b i l i ty  presents novel techniques to 

improve the performance of modern clustering algorithms on high-dimensional data, 

while also ensuring that the resulting solutions may be easily understood by a user.

C h a p te r  7: A g g reg a tin g  In fo rm a tio n  from  M u ltip le  C lu s te rin g s  explores ways in 

which multiple clusterings may be generated and combined to provide users with a 

greater insight into a collection of documents. Specifically, we describe both cluster­

ing and validation techniques, based on this concept, which are practical for use on 

large text datasets. A full comparison and analysis of the performance and efficiency 

of these techniques is included.

C h a p te r  8: C onclusions summarises the findings of this thesis and discusses potential 

avenues for future research.
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Chapter 2

Algorithm s for Docum ent 

Clustering

2.1 In trod u ction

A vast array of algorithms for grouping data have been proposed, not only by members of 

the machine learning community, but also by researchers in many other academic disci­

plines. These algorithms vary significantly in terms of their theoretical foundations and the 

details of their practical implementation, and many are not directly applicable when work­

ing with text data. In this chapter we provide a comprehensive survey of similarity-based 

algorithms, both classical and contemporary, which are relevant to the task of document 

clustering. These algorithms can be divided into five broad categories:

1. Partitional algorithms involve the generation of a flat grouping of the data objects, 

typically by performing an iterative refinement process that attem pts to optimise a 

given objective function. The generated clusterings may either by disjoint or overlap­

ping, and the algorithms often contain a stochastic element, where the optimisation 

process begins from a randomly generated initial solution.

2. Hierarchical algorithms produce a tree-like structure of nested clusters, which may 

be constructed using either a top-down or bottom-up strategy. These algorithms are 

often deterministic in that, for a given dataset, they will consistently produce the 

same single, definitive solution.

3. Matrix decomposition methods apply well-known techniques from linear algebra, such

10



as spectral analysis or sparse matrix multiplication, to produce a reduced represen­

tation of the data model, from which an accurate clustering solution can be more 

easily derived.

4. Kernel methods apply functions to implicitly transform the data to a new, possibly 

high-dimensional space where non-linear relationships between data objects may be 

more readily identified.

5. Ensemble clustering methods involve generating a diverse collection of clusterings on 

the same data and subsequently combining these clusterings to produce a superior 

solution.

The first pair of categories represent well-established approaches that have been widely 

used in the literature for several decades, while the latter three represent alternative, 

modern approaches that have recently become popular. In this chapter, we examine all 

five categories in detail, describing their respective advantages and limitations. In addition, 

we discuss a variety of issues that are relevant when applying clustering methods to text 

data, ranging from the generation of a suitable data model to problems pertaining to 

scalability.

2.2 T ext P reprocessing

Before introducing the clustering algorithms themselves, it is necessary to examine the 

preliminary phase of the cluster analysis process, which is concerned with producing a 

machine-interpretable representation from a document collection. As we shall see, the 

nature of the preprocessing techniques tha t are applied in this context can greatly influence 

the outcome of any subsequent clustering procedure.

2.2.1 D ocum ent Parsing

Given a new collection of unstructured text documents {c?i,. . . ,  d„}, the first task is to 

apply a once-off parsing process, where the set of raw documents is transformed into a 

data model which can be subsequently analysed by a machine learning algorithm. This 

task generally involves applying a chain of procedures to each document:

T oken isa tion : This initial procedure transforms the content of a document into a se­

quence of terms, representing words or phrases, which will subsequently be used to
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characterise the document. In some cases it may be useful to preserve information 

regarding the relative ordering of terms, depending upon the choice of data model.

S tem m in g : To reduce the number of unique terms, it is generally useful to stem terms 

to their roots. For the Enghsh language, the standard procedure is to apply the 

Porter suffix stripping algorithm (Porter, 1980) to eliminate common morphologi­

cal and inflectional endings {e.g. “programming” —* “program”). A variety of open 

and commercial techniques are available for stemming documents written in other 

languages.

S to p -w o rd  rem oval: It will often be the case that it is not necessary to include all terms 

from the original corpus vocabulary in the data model. Notably, in text mining tasks 

it is extremely common to remove basic functional words {e.g. “the” , “if” ) which 

occur so frequently in documents that they have no discriminating power and can 

be considered to be noise (Rijsbergen, 1975).

2.2 .2  V ector Space M odel

The choice of a suitable model to express document-term relations is fundamental to the 

success of text mining tasks. The vector space model (Salton et ai,  1975), also referred to 

as the “bag of words” approach, has been the dominant method for representing documents 

in information retrieval, text classification and clustering problems. In this model, each 

document dj is represented by a vector xj  = { / i , . . . ,  / „ }  in a m-dimensional term space, 

where m. is the total number of unique terms across all documents in the corpus and fi 

indicates the frequency of occurrence of the i-th term in dj. Once an entire corpus of n 

documents has been transformed to a corresponding set of feature vectors { x \ , . . .  ,x„}, 

the documents can be clustered based on the similarities or dissimilarities between vectors. 

For convenience, the complete model is usually stored as a single term-document matrix

A  =  [xyx2 . . .  Xn] G

where the entry Aij indicates the frequency of the z-th term in the document vector Xj.

When employing this model, a significant amount of information about the original 

documents is lost, including information describing the ordering and context of terms. 

Some authors have suggested adapting the bag of words approach to use features con­

structed from phrases or n-grams, which consist of sequences of n  consecutive characters
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extracted  from text strings. However, the former can greatly exacerbate problem s related 

to  sparsity, while the la tter reduces the in terpretability  of the model. O ther radically 

different approaches for modelling tex t have been proposed {e.g. Park et al., 2004), but 

none of these have been widely adopted. W hile the lack of spatial inform ation and the 

sparse, high-dimensional nature of the term  space do represent significant drawbacks, the 

vector space model remains the most popular choice due to its simplicity and the fact th a t 

trad itional clustering algorithms working on num erical feature vectors can be directly ap­

plied to  th is representation. The underlying assum ption here is th a t, if a pair of vectors 

are close to  one another in the high-dimensional term  space, the corresponding docum ents 

will share similar concepts.

2.2 .3  Term  W eighting

W hen working with text data, it is common to employ an additional preprocessing step, 

which involves replacing the original raw term  frequency values with w'eighted frequencies 

calculated according to  some norm alisation function. This function is typically composed 

of two components: term frequency (tf) and inverse document frequency (idf). The former 

has the effect of increasing the im pact of term s th a t  occur frequently in a single docum ent, 

while the la tte r seeks to  reduce the influence of term s occurring in many docum ents, which 

may not be helpful in discrim inating between the underlying classes in the data.

A wide variety of tf-idf weighting schemes were formally described by Salton & Buck­

ley (1987). Among these, the Itc variant is m ost frequently employed in the docum ent 

clustering literature, which applies logarithmic norm alisation to both  term  frequency and 

docum ent frequency values. Formally, the weighted frequency value for the i-th  term  in 

the docum ent dj is defined as:

where f i  is the number of occurrences of the i-th  term  in dj and dfi is the to tal number 

of docum ents in the dataset which contain th a t term .

2.2.4 S im ilarity M easures

The choice of a suitable measure for quantifying the strength  of association between pairs 

of docum ents is essential to the successful discovery of accurate groupings. For some clus-

where
otherwise

(2 .1)
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tering algorithms, a single pairwise similarity or dissimilarity matrix can be constructed as 

part of the preprocessing phase to avoid unnecessary computations during the subsequent 

clustering process. In other cases, the measure will be employed to pairs of documents 

during the execution of the algorithm itself. While a wide range of techniques for assessing 

similarity have been proposed in different application fields, we consider here three metrics 

that are interesting from the perspective of researchers working with text datasets.

E u clid ea n  d ista n ce

The most popular measure for working with real-valued feature vectors is Euclidean dis­

tance, which involves computing the squared L2 norm between two vectors:

This metric has been widely used in machine learning problems due to its intuitive ap­

proach to capturing the concept of distance and its applicability to many different types 

of data. For similarity-based algorithms, a common approach for converting Euclidean 

distances to similarity values is to use the exponential function (Ghosh, 2003):

A generalisation of Eqn. 2.2, often referred to as the Minkowski distance measure, employs 

the Lp norm, where the value of the exponent p is a user-defined parameter.

C osin e sim ilarity

Although Euclidean distance is useful in many domains, it has frequently been shown that 

it does not work well for high-dimensional data, due to the importance it places on absent 

values (Strehl, 2002). As an alternative, the most commonly used method to compute 

the similarity between two documents when employing the vector-space model has been 

to measure the cosine of the angle between their corresponding vectors (Salton & McGill,

Note that the numerator is the dot product between the two vectors, while ||a;i|| in the 

denominator indicates the length of Xi. This normalisation ensures that pairs of documents 

which differ in length, but have term frequencies in equal proportions, are considered to

(2 .2 )

s e d { x i , x j )  =  e (2.3)

1983):

(2.4)
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be identical. In that case, the value of Eqn. 2.4 is one, while a value of zero indicates that 

a pair of documents do not share any common terms. For algorithms that make use of 

dissimilarity values, cosine distance may be computed by simply using:

dcos{xi,Xj) — 1.0 — cos{xi,Xj) (2.5)

E x te n d e d  Ja c c a rd  s im ila rity

The Jaccard coefRcient (Jaccard, 1912), which assesses the level of agreement between two 

sets based on the ratio of union and intersection between the pair, has often been used as 

a measure of similarity on data represented by binary features. Strehl et al. (2000) recast 

this coefficient for use on non-negative, real-valued data, where the similarity between two 

feature vectors is computed by;

■ /  N { X i , X j )
£ - j { X i , X j )  —  I | 2  , I I  | | 2  / \ (2-6)

- { X i . X j )

As with the cosine measure, Eqn. 2.G gives more emphasis to the presence of a term than 

to its absence, making it potentially useful when working with a sparse vector space model. 

However, it is sensitive to document length and has not been widely used in the context 

of document clustering.

2.3 P artition a l C lustering  M eth od s

We now consider the problem of clustering itself, and begin by examining popular par­

titional clustering methods, which attem pt to directly decompose a dataset into a flat 

partition consisting of k disjoint clusters, denoted C — { C i , . . .  ,Ck}- These methods 

generally seek to produce a local approximation to a global objective function, which is 

identified by iteratively refining an initial solution.

2.3.1 Standard /c-Means A lgorithm

Standard k-means is the most widely used partitional clustering algorithm. It employs an 

iterative relocation scheme to produce a fc-way hard clustering that locally minimises the 

distortion between the data objects and a set of k cluster representatives. Each represen­

tative, referred to as a centroid, is computed as the mean vector of all objects assigned 

to a given cluster. In the classical version of the algorithm, distortion is measured using
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1. Create an arbitrary initial clustering with centroids {/xi, . . .  ,^k}-

2. For each object Xi £ X:

1. Compute ||xj — Mc|| for 1 < c < k.
2. Reassign Xi to the cluster corresponding to the nearest centroid.

3. Update cluster centroids.

4. Repeat from Step 2 until a termination criterion is satisfied.

F ig u re  2.1: Standard batch fc-means algorithm.

Euclidean distance, so that the goal of the clustering process becomes the minimisation of 

the sum-of-squared error (SSE) between the objects and cluster centroids { //i,. . .

k X

SSE{ C)  =  ^  \ \ x i - f i c \ \ ‘̂ where fic = — (2-7)
c = i x i e C c  '

While many variations of the basic algorithm exist, the most frequently applied version

for offline clustering is the batch k-means algorithm, generally attributed to Forgy (1965),

which involves a two-step process as shown in Figure 2.1. In the first step, each object

is reassigned to the closest cluster centroid. Once all objects have been processed, the

centroid vectors are updated to reflect the new cluster assignments. The iterative reflne-

ment process is repeated until a given termination criterion is satisfled. Typically this

occurs when the assignment of objects to clusters no longer changes from one iteration to

another. Alternatively, the procedure may be terminated if the change in the evaluation

of Eqn. 2.7 between two successive iterations is less than a user-defined threshold.

L im ita tio n s

The SSE function (2.7) implicitly assumes that the clusters approximate a mixture of 

Gaussians, such that each cluster is spherical in shape and data objects are largely con­

centrated near its centroid. Consequently, fc-means will often fail to identify a useful 

partition in cases where the clusters are non-spherical or differ significantly in size. As an 

example, we consider the synthetic 2-spirals dataset (Jain & Fred, 2002a), which consists 

of two elongated inter-woven clusters as shown in Figure 2.2(a). Due to the non-convexity 

of these structures, fc-means will tend to simply bisect them, resulting in a poor clustering 

such as that given in Figure 2.2(b).
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(a) Natural classes (b) A'-means clustering

F ig u re  2.2: Example where /c-nioans fails to  produce an accurate clustering when applied 
to the 2-spiinls dataset, due to  the presence of complex cluster shapes.

The traditional objective for /r-means can also give undue influence to  outlying objects. 

Their effect in centroid construction can lead to vectors th a t are not representative of the 

underlying groups in the data, resulting in highly skewed clusters. Some authors have 

proposed the introduction of an “outlier cluster” , which is used to hold objects th a t do 

not fit well in any other cluster (Fischer & Buhm ann. 2003). Others have suggested 

repeatedly applying tlie clustering algorithm and removing poorly clustered d a ta  after 

each run (Hautam aki et al., 2005). However, both approaches require the introduction 

of an arbitrary  threshold to determine whether an object is far enough from its current 

centroid to  be deemed an outlier. Another problem occurs when the iterative refinement 

process results in the formation of em pty clusters. A common strategy to deal with this 

is to assign the most outlying object (i.e. furthest from its current centroid) to the em pty 

cluster. However, if the problem persists, it is more likely th a t the fault may lie with the 

choice of clustering model, such as the use of an im suitable value for k.

A well-documented issue relating to  partitional algorithms in general is their sensitivity 

to the choice of initial clusters (Creator et al., 1984). Since algorithms such as /c-means can 

easily become trapped a t a local miniminn, the starting  point for the clustering process 

can greatly affect the accuracy of the final solution. W hen the starting point is chosen 

using a strategy th a t includes a stochastic element, this can often lead to the generation of 

a variety of significantly different solutions over multiple runs on the same dataset, making 

it difficult for a user to  identify a single, definitive grouping of the data.
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2 .3 .2  R e la te d  A lg o r ith m s

Since the fc-means algorithm was originally introduced, numerous variations and extensions 

have been proposed in the literature. We now summarise several notable variants that 

have been proposed to address the short-comings of fc-means discussed previously.

G eneralised fc-means

Rather than using Euclidean distance, the fc-means algorithm may be extended to work 

with other cost functions that encode some notion of object-representative similarity. As 

noted previously, the cosine measure represents a more suitable metric for working with 

high-dimensional text data. Using this measure, the clustering objective becomes to max­

imise the cohesion of the k clusters, which is equivalent to the sum of document-centroid 

similarities (Zhao & Karypis, 2002):

P artition ing Around M edoids

To reduce the influence of outliers, many authors have suggested alternatives ways of 

forming cluster representatives. A well-known example, the Partitioning Around Medoids 

(PAM) algorithm (Rousseeuw, 1987), uses the most centrally located data object or medoid 

of each cluster as a representative. After selecting k arbitrary initial medoids, the algorithm 

tries to find an optimal set of representatives by repeatedly attempting to swap pairs of 

objects, where one object is currently a medoid and one is not. Although this approach can 

be more robust in some circumstances, the cost of required for each iteration is 0{k{n  — 

k)'^). This additional computational expense renders it unsuitable for large values of n 

or k. Consequently, approximation methods have been proposed, such as CLARA (Ng & 

Han, 1994), which operates on a small sample of the original data.

Spherical /c-means

Dhillon & Modha (2001) suggested a slight variation of batch fc-means suitable for ap­

plication to text data, where both feature vectors and centroids are L2-normalised. The 

vectors may then be viewed as points lying on a high-dimensional unit sphere, while the 

normalised centroids, referred to as “concept vectors” , can be viewed as representing the

k
(2 .8 )

c=l Xi€Cc
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topics present in each cluster. The algorithm  seeks to maximise docum ent-centroid simi­

larities based on dot products, which gives rise to  the clustering objective:

After generating a clustering solution, the term s corresponding to the highest values in 

the concept vectors can be used to provide interpretable cluster labels.

F irst varia tio n  fc-means

Dhillon et al. (2002a) observed th a t centroid-based algorithm s such as spherical fc-means 

often become quickly trapped  at a poor local solution. To increase clustering accuracy, the 

authors proposed incorporating a local search technique into the standard  batch  fc-means 

algorithm . Specifically, this involves examining all “first variations” , which refers to  the 

set of possible partitions th a t may be produced from an existing partition  by re-assigning 

a single object to  an alternative cluster. The variation leading to  the largest improvement 

in the clustering objective function is subsequently chosen as the partition  for the next 

iteration. This concept can be expanded to  consider the search for a chain of first variations 

th a t lead to  the greatest overall increase in the objective function. For practical purposes, 

a “ping-pong” strategy can be employing th a t alternates between spherical fc-means and 

the first variation approach. The use of the la tte r allows the clustering procedure to  move 

away from poor local solution, leading to  a b e tte r final clustering. However, the application 

of multiple first variation iterations can be very com putationally expensive when working 

with large datasets (Zhong, 2005).

F u zzy  c-m eans

D unn (1974a) proposed a generalisation of standard  A>means, the Fuzzy r-m eans (FCM) 

algorithm , which allows objects to  belong to  different clusters to  certain degrees as ex­

pressed by probabilistic weights. These weights may be represented in the form of a n  x fc 

m atrix  V , where Vij G [0,1] denotes the degree of membership of the object Xj in clus­

ter Cj ,  and Vij =  1. Once again, the task of clustering is to  minimise the distortion 

between objects and centroids, which is now m easured by the fuzzy criterion function

0 (c )  =  E  E  Xi fic where fXc

k

c=l Xi6C(

n k

( 2 . 10)
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where the exponent m  >  1 controls the fuzziness of object memberships. In this algorithm , 

centroids are com puted using:

^ (2-11)

As noted previously. Euclidean distortion is often inappropriate for text data. To address 

this problem  in the context of fuzzy clustering, K um m am uru et al. (2003) proposed a fuzzy 

version of the spherical fc-means algorithm , which seeks to  maximise intra-cluster cosine 

sim ilarities on unit length docum ent vectors.

E M  clu ster in g

Another well-known soft partitional clustering technique is the Expectation M axim isation 

(EM) algorithm  (Dem pster et al., 1977). Unlike the other techniques described here, this 

algorithm  takes a model-based approach to  identifying groups in data. Formally, EM 

clustering is based on the assum ption th a t the d a ta  objects are generated using a model 6 

which consists of a m ixture of k underlying probability distributions {^ i, . . .  ,6^].  The task 

of clustering can then be viewed as the problem of determ ining the most likely param eters 

for the model, where each component in the m ixture represents a cluster. The likelihood 

of an object Xi is given by:

k
P(x,|^)-^P(C c)P(x,|C c)

c = l

In the standard  formulation of the algorithm , the k  d istributions are assumed to be Gaus- 

sians, so th a t the problem becomes the approxim ation of the m ean and covariance of each 

com ponent. In practice, the algorithm  begins with an initial estim ate for the model param ­

eters and subsequently apphes an iterative optim isation approach th a t alternates between 

two steps: firstly identify the expected value of the log likelihood with respect to  the 

current param eter estim ates, then find new param eter values to  maximise th is likelihood. 

Once the algorithm  has converged to  a local solution, each d a ta  object is probabilistically 

assigned to  each cluster based on the estim ated distributions. As with standard  A:-means, 

the choice of initial clusters can have a considerable effect on the  accuracy of the  final 

solution. EM clustering has been widely used in many applications, including docum ent 

clustering (Liu et al., 2002).
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2.3 .3  In itia lisa tion  o f P artitional A lgorithm s

As noted previously, the choice of a suitable initialisation strategy for a given clustering 

task  is highly im portant when employing fc-means. A num ber of different strategies have 

been proposed in the literature, the most common of which are summarised here.

R a n d o m  in i t ia lis a tio n : Most frequently, initialisation is perform ed by simply random ly 

dividing the d a ta  into k  disjoint subsets. However, this can often lead to  highly 

inconsistent results over many trials.

F o rg y  in i tia l is a t io n :  In this approach, k  d a ta  objects are selected at random  as seeds, 

and the remaining objects are assigned to  the nearest seed (Forgy, 1965).

M a c Q u e e n  in i tia l is a t io n :  A similar strategy was described by M acQueen (1967), which 

also involves random ly selecting k  objects to  act as initial centroids. Each rem aining 

object is then  assigned to  the nearest centroid. However, in this case the centroid 

vectors are recalculated after each reassignment.

F u r th e s t - f i r s t  in i tia l is a t io n :  This popular strategy is based on the assertion th a t, since 

clusters represent distinct groups in a feature space, a set of cluster seeds should be 

chosen to  be as well-separated as possible. To achieve this, an initial seed is chosen 

at random  and each additional seed is determ ined by finding the  unassigned object 

which is furthest from the previously selected seeds (Hochbaum & Shmoys, 1985). 

The process continues until k  seeds have been selected. Variations of this approach 

have been proposed th a t involve selecting the first seed to  be the mean of the  dataset, 

the object closest to the mean or the object whose feature vector has the maximum 

norm (Katsavounidis et ai ,  1994).

S u b s e t  f u r th e s t- f i r s t  in itia lis a tio n : In general, the  furthest-first m ethod tends to  be 

sensitive to  the presence of outliers, since the selection of objects th a t are most 

d istant will often result in the selection of seeds th a t are not representative of the 

true clusters. To address this, Turnbull & Elkan (2005) proposed randomly sampling 

a subset of the d a ta  to remove as many outliers as possible, and applying the furthest- 

first technique to  the selected subset.

W hile many of the more complex initialisation strategies can lead to improvements on 

certain  types of data , in other situations they can produce clusterings th a t are on average 

less accurate th an  those produced using simple random  initialisation.
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2.4 Hierarchical Clustering M ethods

Instead of generating a flat partition  of data, it may often be useful to construct a hierar­

chy of concepts by producing a set of nested clusters th a t may be arranged to  form a tree 

structure. While partitional clustering m ethods have received more attention in recent lit­

erature, hierarchical clustering algorithms represent the traditional choice for performing 

docum ent clustering, since tex t collections often contain broad themes th a t may be na tu ­

rally sub-divided into more specific topics. Hierarchical algorithms are generally organised 

into two distinct categories:

A g g lo m era tiv e : Begin with each object assigned to  a singleton cluster. Apply a bottom - 

up strategy where, at each step, the most similar pair of clusters are merged.

D iv isive: Begin with a single cluster containing all n objects. Apply a top-down strategy 

where, a t each step, a chosen cluster is split into two sub-clusters.

In either case, the resulting hierarchy may be presented visually using a tree-like strvicture 

referred to as a dendrogram, which contains nodes for each cluster constructed bj  ̂ the clus­

tering algorithm, together with cluster relations illustrating the merge or split operations 

th a t were performed during the clustering process. Figure 2.3 provides a simple example 

of an agglomerative clustering process apj)lied to a set of five data objects, together with 

the corresponding cluster assignments. It is worth noting th a t, as each merge operation 

is performed, the similarity between the chosen pair of cluster decreases.

Unlike the requirement in most partitional algorithms to  specify a value for the number 

of clusters k in advance, hierarchical algorithms support the construction of a tree from

_co1
W

k = 2

X] X4 X5

C  =  {{x i,j:2 ,.V 3 ,X 4,.V 5}}

C =  { {xuX2: Xi } , {x4 , Xs} }

F ig u re  2.3: Example dendrogram representing an agglomerative clustering of five da ta  
objects, together with the corresponding cluster memberships.
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which a user may manually select k  by examining the resulting dendrogram  and identifying 

an appropriate cut-off point (Milligan & Cooper, 1985). For instance, by cutting  the  tree 

in Figure 2.3 at the level indicated, we can derive a clustering of the d a ta  for A: =  2 from 

the two leaf nodes at th a t level.

2.4.1 A gglom erative A lgorithm s

Agglomerative hierarchical clustering (AHC) involves the construction of a tree of clusters 

from the bottom  upwards. A variety of agglomerative algorithm s have been proposed, 

such as BIRCH (Zhang et ai ,  1996) and CURE (G uha et ai ,  1998), which are suitable 

for specific types of data. However, we focus on the  standard  formulation th a t has widely 

been used in docum ent clustering (Voorhees, 1986), which proceeds as follows:

1. Assign each object to  a singleton clusters.

2. U pdate the pairwise inter-cluster sim ilarity m atrix.

3. Identify and merge the most similar pair of clusters.

4. R epeat from Step 2 until a single cluster remains or a given term ination criterion 

has been satisfied.

W hen an estim ation for the num ber of clusters k  is given in advance, the algorithm  may 

be term inated  when the required number of leaf nodes remain in the dendrogram.

A variety of linkage strategies exist for determ ining which pair of clusters should be 

merged from among all possible pairs. While these strategies are typically expressed in 

term s of distances, they may be easily adapted to  use similarity values such as those 

produced by the cosine measure. Given a sym m etric m atrix  S G IR"^” , where Sij denotes 

the sim ilarity between a pair of objects Xi and Xj, the most popular linkage strategies for 

docum ent clustering are defined as follows:

S in g le  lin k ag e: The most common strategy, also known as the nearest neighbour tech­

nique, defines the sim ilarity between two clusters (C^, C^) as the maximum sim ilarity 

between an object assigned to  and an object assigned to  Ĉ '-

sim{Ca,Ch)  =  m ax Sij
X' i ^Ca_ ^Ĉ f)

While this approach is widely used, it can often produce clusters of poor quality 

as it is subject to the phenomenon of “chaining” , where singletons are repeatedly
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merged with an existing cluster, resulting in one large, elongated cluster with highly 

dissimilar objects at either end.

C o m p le te  linkage: The similarity between two clusters {Ca, Ch) is defined as the mini­

mum similarity between an object assigned to Ca and an object assigned to Cb'.

This strategy tends to favour strongly compact, tightly coupled clusters and is often 

highly sensitive to the presence of outliers.

A verage  linkage: The similarity between a pair of clusters [Ca,Cb) is calculated as the 

mean similarity between objects assigned to Cq and objects assigned to Cf,:

This strategy is often referred to as unweighted pair group method using arithmetic 

averages (UPGMA), since normalising by cluster size has the effect of giving equal 

weights to  objects that are assigned to clusters of different sizes.

M in -m ax  linkage: Ding & He (2002) suggest the use of a novel graph partitioning objec­

tive, the min-max criterion (see Section 2.6.1), cis a means of assessing the similarity 

between two clusters;

In agglomerative clustering, this linkage strategy has the tendency of merging similar 

clusters with low self-similarities to produce larger, more balanced clusters, with high 

self-similarity.

Clearly, the choice of linkage strategy can significantly affect the structure of the clusters 

that are generated by AHC. As a consequence, the prior selection of a suitable strategy 

for a given dataset may represent a non-trivial parameter selection problem. In practice, 

a user may generate several hierarchies using different approaches, and manually inspect 

the results to choose the most appropriate solution.

L im ita tio n s

A substantial drawback of standard agglomerative algorithms is that poor decisions made 

early in the clustering process can greatly influence the accuracy of the final solution.

s i m { C a , C b )  = min Sij

sim. {Ca,Cb)  =

and si'm,{Ca,Cb) s{Ca,Cb)
s{Ca, Ca)s{Ch, Ch)
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W ithout the use of a global objective function, many potential mergers at these stages 

may appear to be equally valid. Once a merging decision has been made, there exists no 

facility to rectify an erroneous choice at a later stage. On the contrary, the adverse effects 

of these decisions are often exaggerated as the clustering process continues. In addition to 

deficiencies in clustering accuracy, hierarchical clustering algorithms are generally consid­

erably more computationally costly than their partitional counterparts, typically having 

time complexity O(n^).

2.4.2 D iv isive A lgorithm s

In contrast to agglomerative methods, divisive hierarchical clustering involves building a 

cluster tree from the root node downwards.

1. Assign all data objects to a single cluster.

2. Select a cluster to split.

3. Replace the selected cluster with two new sub-clusters.

4. Repeat from Step 2 until k leaf clusters have been generated or a given termination 

criterion has been satisfied.

Several authors have empirically shown divisive algorithms to be superior to agglomerative 

techniques on text data (Ding & He, 2002). In addition, these algorithms are often less time 

consuming than traditional bottom-up clustering. However, in general, they have been 

employed less frequently due to the non-trivial problems of selecting a cluster to split and 

finding the optimal sub-division of the chosen cluster. We now describe two representative 

divisive algorithms that have been primarily employed for document clustering.

B ise c tin g  /c-means

As a representative example of divisive clustering, we consider the algorithm proposed by 

Steinbach et al. (2000) for use on text data, which combines aspects of hierarchical and 

partitional clustering. Initially, all documents are assigned to a single root cluster. The 

algorithm involves repeatedly selecting an existing cluster and splitting the cluster into 

two sub-clustering using the generalised fc-means algorithm with cosine similarity. The 

process is repeated until k  clusters have been obtained. To split a cluster, a fixed number 

of randomly-initialised bisections r  may be performed, from which the best candidate
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1. Assign all n objects to a single cluster.

2. Select a cluster Cc to split according to a chosen splitting criterion.

3. Generate r  2-way partitions of the cluster Cc using randomly initialised fc-means.

4. Replace Cc with the best pair of clusters as determined by a given clustering criterion.

5. Repeat from Step 2 until k leaf clusters have been generated.

F ig u re  2.4: Bisecting fc-means (BKM) algorithm.

is selected. This choice is determined by a cluster evaluation criterion, such as mean 

document-centroid cosine similarity:

Cen{Cc) = (2-12)

A larger value for r  renders the algorithm less sensitive to the choice of initial clusters 

than the partitional algorithms described in Section 2.3, although it does increase the 

computational cost of applying the algorithm. A summary of the complete procedure is 

given in Figure 2.4.

Several strategies have been proposed to identify the most appropriate cluster to split. 

A naive approach is to divide the largest cluster into two sub-clusters at each stage (Stein- 

bach et ai, 2000). However, this may be inappropriate when working with text corpora, 

which frequently contain “unbalanced” clusters that differ in their relative proportions. 

An alternative strategy is to spht the cluster with maximal distortion or minimal cohesion, 

as measured by Eqn. 2.8. For instance. Ding & He (2002) suggested selecting the cluster 

with the minimum mean intra-cluster pairwise similarity, computed by:

H r  X p r  C O s { X i , X j )
Intra{Cc) = "    (2.13)

Given k potential candidates for splitting, Zhao & Karypis (2002) proposed evaluating 

all possible candidates and selecting the split that leads to the best subsequent partition 

containing A;-1-1 clusters. However, this approach requires significantly more computational 

time than the standard formulation of the algorithm.

P r in c ip a l D irec tio n  D ivisive P a r ti tio n in g

The well-known Principal Direction Divisive Partitioning (PDDP) algorithm (Boley, 1998) 

provides an efficient means of producing a hierarchy of clusters using a non-iterative ap-
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1. Assign all n  objects to  a single cluster.

2. Select a cluster to  split, such th a t the cluster has the highest level of intra-cluster 
scatter.

3. Calculate the principal direction Uc of the m atrix  representation of the cluster Cc, 
and its centroid fXc-

4. P artition  Cc into two sub-clusters {Ca,Cb) such th a t, for each original Xi G Cc’.

5. R epeat from Step 2 until k  leaf clusters have been generated.

F ig u re  2.5; Principal D irection Divisive Partitioning (PD D P) algorithm .

proach based on the concepts employed in Principal Component Analysis (PCA) (see 

Section 2.6 for more details regarding PCA). The principal direction of a cluster of docu­

m ents Cc, denoted by Uc, is defined as the leading eigenvector of the covariance m atrix of 

Cc- In practice, given a sparse term -docum ent m atrix  A representing an entire dataset, it 

proves more efficient to  com pute the leading left singular vector of the norm alised m atrix 

constructed according to:

where A^ is a sub-m atrix of A with columns corresponding to the docum ent vectors in 

Cc, He is the cluster centroid, and 1 =  is a n-dimensional vector of ones. Note

th a t each docum ent vector is assumed to  be scaled to  unit length.

The algorithm  commences by splitting the entire docum ent collection into two clusters. 

This is done by projecting each docum ent vector onto the principal direction of A  and 

examining the resulting values. A binary tree of clusters is subsequently constructed by 

recursively splitting clusters in the same m anner until the desired num ber of clusters is 

obtained. At each stage, the cluster for splitting is chosen to be the candidate Cc having 

the highest intra-cluster scatter, as m easured by the Frobenius norm ||M dip . A sum m ary 

of the complete algorithm  is provided in Figure 2.5.

PD D P has been widely used for docum ent clustering, although recent work has shown 

th a t the algorithm  can often perform poorly in the presence of overlapping clusters (Kru- 

engkrai et a i ,  2004) and th a t clustering on a larger num ber of singular vectors can often 

lead to superior results (Shi & Malik, 2000). As with bisecting fc-means, the selection of an

Ca if fc{x i)  < 0 
Ch otherwise.

where the projection fc{xi )  = Uc {xi — fic)

—  - ^ c
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appropriate cluster for splitting can significantly affect the quality of the  final clustering 

solution.

2.5 U n su p erv ised  D im en sion  R ed u ction  

2.5.1 M otivation

Like many machine learning m ethods, clustering algorithms are susceptible to  the “curse 

of dim ensionality” (Bellman, 1961), as additional inform ation in the form of a larger 

feature set does not necessarily improve their abiUty to accurately partition  data. Rather, 

algorithm  performance often deteriorates significantly in the presence of many irrelevant 

or redundant features. As a result, classical clustering techniques working on document 

collections are faced with m ajor obstacles due to  the high-dimensional nature of this type 

of data. Some of these problems are due to  lexical ambiguities which are endemic in 

natura l languages, while others arise from the choice of representation or algorithm  used 

in the clustering process. The most commonly observed problems are:

1. Sparsity. As discussed in Section 2.2.2, docum ents in tex t corpora are generally 

represented by large vectors, where each entry corresponds to a unique feature. 

While a typical feature vector will often contain 10,000 or more entries, for real- 

world corpora the vast m ajority of these values will be zero (typically 95-99%) since 

most term s will occur in very few documents. The inherent sparsity of documents 

when represented in a high-dimensional space can make it difficult for an algorithm  to 

find any structu re in the data. In particular, as the num ber of dimensions increases, 

document vectors tend to become equally similar to  one another, thereby impairing 

an algorithm ’s ability to  correctly discrim inate between docum ents th a t are truly 

related and those th a t have little or no conceptual relation.

To illustrate this. Figure 2.6 provides histogram s for intra-class and inter-class pair­

wise sim ilarity values for the bbc dataset (see Section 5.2.1 for details regarding this 

corpus). The vector space model for this corpus contains 5570 unique dimensions 

after preprocessing. Due to  the sparsity of the representation, the cosine similarities 

between the m ajority of pairs of docum ents are very low, even for pairs th a t belong 

to  the same natural class, thus making the successful identification of the classes 

difficult.
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F igure 2.6: Histograms for intra-class and inter-class pairwise cosine similarity values 
generated on the bbc corpus, which illustrate the problem of sparsity in text data.

2. Synonymy. The problem of sparsity can become significantly worse when using the 

vector space model, due to  the assmnption th a t term s are independent of one an­

other. In reality this is rarely the case, as it is common for natural languages to use 

many different words to refer to identical or closely related concepts (e.g. ‘residence’ 

and ‘abode'). Some authors have suggested the use of synonym lists from a thesaurus 

such as the WordNet* database to  provide external information regarding relations 

between term s (Sedding & Kazakov, 2004). However, these resources are usually 

limited to a general-purpose vocabulary and may have little effect when working 

with specialised dociunent collections, such as biomedical literature, where the m a­

jority of the discriminating term s will not be present in the thesaurus. The cost of 

constructing an appropriate list of synonyms for a specific domain may out-weigh 

the benefits of its use.

3. Polysemy and Homonymy. A more complex problem occurs when a single word 

has either multiple related meanings (polysemy) or has a number of different mean­

ings th a t are completely unrelated (homonymy). For certain languages, the use of 

context information is often crucial in distinguishing between the various senses of 

a word. While this occurs less frequently in the English language, both polysemy 

{e.g. ‘review’ as a noun or as a verb) and homonymy {e.g. ‘pupil’ referring to a school 

student or a part of the eye) will still present significant problems for text mining 

algorithms. Since the standard  vector space model does not retain context infor-

'http://wordnet.princeton.edu/
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F ig u re  2.7: Mean running time (in seconds) for the A’-means algorithm when applied to 
the bbc dataset. Observe th a t the com putational cost increases significantly as additional 
features are added to  the d ata  model.

m ation, algorithms th a t operate directly on a term -docum ent m atrix  will often be 

unable to  disam biguate word senses.

4. Scalability. The com putational cost of many popular text mining procedures is 

largely dependent upon the number of dimensions m in the data. To illustrate 

this, Figure 2.7 shows the mean running tim e in seconds for a single execution of 

the standard  A’-means algorithm on the bbc dataset. As the num ber of features 

used to represent the documents increases, the time required also significantly in­

creases. This effect is magnified when employing more com putationally complex 

algorithms. While sparse m atrix representations may be used to  significantly in­

crease algorithm  efficiency, the level of improvement is highly dependent upon the 

sparsity of a d a tase t’s term -docum ent m atrix. In addition, the overhead required 

to  store the m atrix can sometimes be prohibitive, so th a t for larger datasets it may 

become necessary to  load only a small segment of the full m atrix into memory at 

any one time.

To address these issues, dimension reduction techniques have been widely employed in 

machine learning tasks to reduce the number of features used to represent data. In cluster 

analysis, they commonly constitute p art of a preprocessing phase applied prior to running 

a clustering algorithm. Potential benefits of reducing the dimensionality of tex t d a ta  

include:
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1. Improved performance. Removing redundant or noisy term s may provide a clearer 

p icture of the true relations between docum ents in a corpus, leading to  higher clus­

tering accuracy. By com pensating for linguistic problems such as synonymy and 

polysemy, we can also discover hidden sem antic relations in the d a ta  th a t  are not 

apparent from examining the original term  frequency values.

2. Economy o f representation. D imensionality reduction can be viewed as a  compres­

sion procedure, providing a more com pact representation of the data. This can 

greatly improve the scalabihty of com putationally complex clustering algorithm s by 

reducing running tim e and storage requirements.

3. Visualisation. The outpu t of a clustering algorithm  can often be impossible to  visu­

alise due to the inherent problem of presenting high-dimensional spaces to  humans. 

To address this, dimension reduction techniques have been widely used to aid vi­

sualisation in d a ta  exploration applications. In practice, this involves selecting 2-3 

relevant dimensions, or projecting the original d a ta  to a lower 2-dimensional or 3- 

dimensional space, which can often help to illustrate the spatial relations between 

documents and cluster structures.

We now outline two general approaches used in many machine learning problems to  reduce 

the dimensionality of data.

2.5.2 Feature Selection

Feature selection is concerned with locating the “best” minimum subset of the original 

dimensions. By elim inating unnecessary features, the size of the model used to  represent 

the d ata  can be significantly reduced. Feature selection has been w'idely employed in 

supervised learning tasks, such tex t classification (see Dash & Liu, 1997). These m eth­

ods typically incorporate a search strategy for exploring the space of feature subsets, and 

can generally be divided into two broad categories based on the approach used to eval­

uate subsets (John et a i, 1994): wrapper schemes make use of the learning algorithm 

itself to choose a set of relevant features, while filter schemes attem pt to  remove features 

prior to applying the algorithm. The popularity of these techniques has m otivated the 

development of analogous m ethods for unsupervised learning, including w rappers around 

partitional clustering algorithm s (Dy & Brodley, 2000) and inform ation theoretic filter 

strategies (Dash & Liu, 2000). However, the  absence of class inform ation or any definitive
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subset evaluation criterion can significantly limit the  usefulness of these techniques. In

addition, the application of a costly optim isation procedure may often be prohibitive for 

large, very high-dimensional datasets such as tex t collections. For example, although the 

filter approach proposed by Dash & Liu (2000) is based on a heuristic search procedure,

pora. Consequently, the use of complex subset search selection has been very hm ited for 

docum ent clustering tasks.

Simpler, more efficient ranking strategies have been more frequently applied to improve 

the efficiency of text mining algorithms. These avoid the need for com putationally expen­

sive search procedures by assigning weights to  individual term s indicating their relevance, 

and subsequently selecting from a ranked list those term s whose weight is above a certain 

threshold. In classification tasks, popular term  ranking criteria, such as information gain 

(Quinlan, 1993) and the statistic  (Yang & Pedersen, 1997), can produce weights th a t 

discrim inate between a fixed num ber of categories in a training set. For clustering, the lack 

of class inform ation requires th a t evaluations are carried out using less sophisticated mea­

sures, which are often based upon the tf-id f weighting functions described in Section 2.2.3. 

For instance, Yang & Pedersen (1997) suggested simply weighting features inversely based 

on their document frequency values, while Tang et al. (2005) com puted the mean tf-id f 

value for each term  across all docum ents in a corpus under the assum ption th a t terms 

with a higher average value will have more discrim inating power. Several authors have 

employed term  variance quality (Dhillon et al., 2002b), which rewards features th a t exhibit 

high variance in fi'equency across different documents. Given a term -docum ent m atrix  A 

containing raw frequency values, this criterion computes a weight for the i-th  term  using 

the expression:

Empirical research has shown th a t, w ithout the provision of inform ation to discrim inate 

between term s and classes, unsupervised techniques will often perform poorly when terms

ranking strategies is often highly dependent on a user selecting an appropriate threshold 

or cut-ofT point below which term s are rejected.

this process requires time O(m n^), which will im practical for all bu t the smallest cor-

2

(2.14)

a removed beyond a certain point (Liu et al., 2003a). In general, the performance of
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2.5.3 Feature E xtraction

Feature extraction methods take an alternative approach to dimension reduction by apply­

ing a linear or non-linear transformation to map the original data to a new, low-dimensional 

representation, while attempting to preserve as much information as possible about the 

structure of the original data. The most popular unsupervised approach. Principal Com­

ponent Analysis (PCA) (Pearson, 1901), is a linear technique that projects data onto a 

reduced set of orthogonal dimensions. Formally, given a covariance matrix C, the new 

dimensions, referred to as principal components (PCs), are constructed from the eigen­

vectors of C such that the j- th  PC is given by the eigenvector corresponding to the j-th  

largest eigenvalue of C. By identifying the set of projection directions containing the 

largest variance and discarding the rest, PCA can reduce redundancy while minimising 

the reconstruction error. An example is provided in Figure 2.8, which shows 2-dimensional 

and 3-dimensional embeddings for a two class subset of the bbc corpus. By projecting the 

documents from the original high-dimensional vector space to the leading principal com­

ponents, it is possible to identify two well-defined clusters corresponding to the topics.

PCA hâ 5 proved useful in many domains, ranging from gene expression analysis (Ray- 

cliaudhuri et ai. 2000) to image processing applications such as face recognition (Sirovich 

& Kirby, 1987). A related technique. Latent Semantic Indexing (LSI) (Deerwester et a/., 

1990), has been widely employed for dimension reduction in information retrieval to un­

cover hidden patterns in text collections, which would otherwise be obscured by the lin­

guistic problems described previously. Other well-known methods in this area include

(a) Projection onto top 2 leading PCs. (b) Projection onto top 3 leading PCs.

F ig u re  2.8: Visualisation of the ‘business’ and ‘sport’ topics from the bbc corpus, based 
on an embedding constructed from 2-3 leading principal components (PCs).
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Independent Component Analysis (ICA) (Comon, 1994), which attem pts to map the data 

to a set of statistically independent variables that are not necessarily orthogonal, and 

Random. Projection (RP) (Bingham & Mannila, 2001), which apphes an efficient linear 

transformation to produce a small set of approximately orthogonal dimensions. However, 

these latter approaches have not been frequently applied to text data.

One notable drawback of extraction techniques such as PCA and LSI is the loss of 

interpretability resulting from the fact that the newly formed dimensions may not nec­

essarily have any physical meaning. From a knowledge discovery perspective, this may 

not be acceptable as it limits the degree to which a clustering solution can be explained, 

either with regard to the content of the clusters or to how the clusters were derived. We 

discuss this issue further in Section 6.2. In general, the computational and performance 

advantages of extraction-based reduction have made such methods far more prevalent 

than feature selection strategies in recent clustering literature. In the next two sections 

we provide detailed descriptions of two state-of-the-art extraction approaches that have 

been successfully applied to text data.

2.6 Spectral C lustering

Motivated by work in graph theory, unsupervised feature extraction methods have been 

developed that employ well-known techniques from linear algebra to analyse the spectral 

properties of a graph representing a dataset. In practice, this involves constructing a re­

duced dimensional space from the eigenvalue decomposition (EVD) of a matrix form of 

the graph. Existing clustering algorithms may subsequently be applied in the reduced 

space to uncover the underlying classes in the data. Spectral clustering methods have 

been widely used due to their efficiency and applicability in a variety of tasks, including 

image segmentation (Shi & Alalik, 2000), gene expression analysis (Kluger et al., 2003) 

and document clustering (Dhillon, 2001). In this section we examine the theoretical un­

derpinnings of spectral clustering and consider several algorithms that may be relevant in 

reducing the dimensionality of text data.

2 .6 .1  G r a p h  P a r t i t io n in g

As noted previously, a common way of expressing the relations between pairs of data ob­

jects is to use a symmetric similarity or affinity matrix S, where Sij denotes the association
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between the objects Xi  and X j .  The task of producing a disjoint clustering may then be 

modelled as a graph partitioning problem, where S becomes the adjacency matrix for a 

weighted undirected graph G(V,£). In this model, the set of vertices V represents the 

data objects and the set of edges £ represents pairwise similarities between objects. Given 

this graph-theoretic formulation, we seek to find a k-way partition C = { C \ , . . .  ,Ck}  of 

the vertices of G that optimises a particular objective function or cost criterion. We now 

enumerate several criteria that have been commonly used in graph partitioning, which are 

also relevant to the theoretical motivations for spectral clustering.

M in im um  cu t: The simplest approach for evaluating the quahty of a two-way partition, 

the minimum cut criterion, measures the weight of the edges crossing the parti­

tion. The optimisation of this objective may be viewed as the task of identifying 

a separator such that as few edges as possible must be removed from the graph to 

produce two disconnected sub-graphs (i.e. two disjoint clusters). Formally, we seek 

a bi-partition {Ci,C 2 ) of the graph vertices such that C 2 UC2  = V, which minimises 

the sum of the weights of edges connecting the two clusters, as denoted by:

s(C i,C 2 ) =  S,J (2.15)
i SCi  J6C2

This expression shows that the weight of the cut is directly proportional to the 

number of edges that join the two sub-graphs. Consequently, the criterion favours 

small groups of isolated vertices. This makes it sensitive to outliers and often leads 

to highly unbalanced clusterings.

R a tio  cu t: To address the shortcomings of Eqn. 2.15, the ratio cut criterion (Pothen 

et ai, 1990) has frequently been employed for bi-partitioning. This measure seeks 

to minimise the edge cut, while balancing the sizes of the clusters in the partition.

= + (2.16)

Chan et al. (1994) generalised the two-way ratio cut metric to evaluate a partition 

C consisting of k clusters:

j r j im t(C )  =  f :  (2 .17)
t = l

N orm alised  cu t: Shi & Malik (1997) proposed a more robust measure for assessing bi­

partitions, the normalised cut criterion, which measures the degree of association
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between a cluster and the remaining vertices, relative to the total association within 

that cluster. This normalisation makes the criterion less sensitive to the presence of 

outlying objects. Formally, the criterion can be calculated using the expression:

s(C ,,C2) s(C .,C2)=  +  (2J8)

Yu & Shi (2003) subsequently generahsed this objective for fc-way partitioning:

K N c u t iO  = Y ,  (2.19)^  s[Ci,V)

M in-m ax  cu t: Ding et al. (2001) proposed a graph partitioning criterion which aims to 

evaluate the common clustering objectives of maximising intra-cluster associations 

while simultaneously minimising inter-cluster associations. These objectives may be 

satisfied by minimising the expression:

+ ^  p.20)

This measure favours clusters of approximately equal size. It may be extended to k

clusters by computing the sum of Eqn. 2.20 over all pairs of clusters, which can be

simplified to:

K M M c u t iO  = (2.21)
i=l

2 .6 .2  S p ec tra l  B i-p a r t i t io n in g

Unfortunately, the problem of finding an optimal partition according to the criteria de­

scribed in the previous section is NP-complete. While traditional techniques such as the 

Kernighan-Lin algorithm (Kernighan &: Lin, 1970) have been used to produce local approx­

imations, such methods often have drawbacks in terms of partition accuracy. Rather than 

directly attempting to optimise a given criterion, many authors have sought to transform 

the optimisation task into a generalised eigenvalue problem. Given a symmetric adjacency 

matrix S, this involves computing its eigenvalue decomposition:

S =  VAV^

where the diagonal entries of A represent the set of eigenvalues and the columns of V  are a 

corresponding set of orthogonal eigenvectors. Unlike local partitioning methods, analysing 

the spectrum of S allows grouping to be performed based on global information describing 

the structure of the corresponding graph.
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Early work in this area was performed by Donath & Hoffman (1973) and Fiedler (1973), 

who first suggested a connection between the problem of finding vertex separators for a 

graph and the eigenvalue decom position of its corresponding Laplacian matrix  L =  D  — S, 

where D  denotes a diagonal degree matrix such that D a =  The Laplacian

of a graph G  containing n  vertices is symmetric positive semi-definite, with non-negative 

eigenvalues 0 =  Ai <  A2  <  • • • <  A„ and corresponding eigenvectors { u i , . The most

important common observation made by these authors was that the spectrum  of a graph 

provides useful structural information that may indicate how best to partition its vertices. 

The use of spectral partitioning was popularised by the proposal of a formal technique by 

Pothen et al. (1990). Following the work of Hall (1970), a bi-partition { C \ ,C 2 ) of G  may 

be represented by a membership indicator vector q =  { g i , . . . ,  qn} such that:

f +1  if i e  Cl
Qi ^  <[ - 1  i f i G C a

If the adjacency matrix S has a block-diagonal structure {i.e. the rows can be reorganised 

by cluster membership to form a checker-board pattern), we can optim ise the minimum  

cut (2.15) by finding a clustering that minimises the sum of the weights in the off-diagonal 

blocks. The problem can be formulated as the search for a vector q that minimises:

argm in Sij{qi — qj)'  ̂ such that '^^Qi =  1 
i j= l  i=\

This objective can also be expressed in quadratic form using the Laplacian L:

argm in g Lg 
q

Rather than solving this as a complex combinatorial problem, a solution may be found by 

relaxing the requirement on q to contain discrete values, so that the assignm ent of each 

vertex is continuous, with membership weights taking real values in the range [—1,1]. The 

partition approximating the minimal cut can then be found by exam ining the eigenvectors 

of L. Specifically, the relaxed membership weights are calculated as the com ponents of 

the eigenvector V2 corresponding to the second smallest eigenvalue A2  of the Laplacian 

(i.e. the first non-trivial eigenvector), which is often referred to  as the Fiedler vector.

A  variety of justifications for partitioning based on V2 are given in the literature. 

Fiedler (1973) showed the association between its corresponding eigenvalue A2  and the 

edge connectivity of a graph, while Pothen et al. (1990) dem onstrated a relationship
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Class Doc Content
business bi record company profits

company profits fall
h company takeover bid

football f i world cup football
/2 champions league football
h world cup soccer

T able 2.1: Small dataset consisting of six short text fragments relating to two topics.

between the edge separator induced by V2 and the isoperimetric number of a graph, which 

represents the value of the smallest possible edge cut over all candidate separators. The 

latter has motivated several popular spectral bi-partitioning algorithms. In these, the 

vertices are sorted according to the values in V2 , and those vertices with values below 

a chosen threshold, such as 0, the mean value or the median value, are assigned to one 

cluster, with the remaining vertices assigned to the second cluster.

To illustrate this approach, we consider the small dataset shown in Table 2.1, which 

consists of six short text fragments belonging to two disjoint classes which relate to busi­

ness and football/sport respectively. While these documents are trivial to group by man­

ual inspection, the example raises several interesting problems for automatic clustering. 

Specifically, even with such a limited number of terms, the problems of synonymy and 

sparsity are apparent. For instance, while the terms “football” and “soccer” are often 

used inter-changeably, this knowledge is unavailable to the clustering algorithm and the 

terms will be treated independently when using the vector space model. Consequently, the 

documents / i  and fs  do not achieve a perfect similarity score using the cosine measure, 

although they are conceptually identical. Likewise, the documents /2 and /a will achieve

Affinity
IVIatrix

Laplacian
Matrix

b\ 'O.O'
i>2 0.0
bi 0.0
h 0.6
f l 0.6
h 0.6

Eigenvector
V2

Cl =  { ^ 1 , ^ 2 , ^ 3 }

C2 =  { / l , / 2 , / 3 }

Bi-partition

F igu re 2.9: Example illustrating the spectral bi-partitioning process for the small dataset 
described in Table 2.1.
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a similarity score of 0 as they share no common terms, even though they are related to 

the same topic. To uncover the indirect associations between the documents, spectral 

bi-partitioning may be applied as described previously. The entire bi-partitioning process 

is shown in Figure 2.9. Observe that, by viewing the values in the Fiedler vector V2 as con­

tinuous membership indicators, the correct partition can be easily obtained by choosing a 

separator based upon the mean value (v2 =  0.3).

Spectral methods have also been developed to optimise other, more robust graph par­

titioning criteria. Notably, Shi & Malik (1997) suggested a spectral approach to finding a 

bisection that minimises the normalised cut criterion (2.18). A good approximation may be 

identified in a manner similar to that described previously, but rather using the spectrum of 

the normalised Laplacian matrix of the graph, which is defined as L„ =  D “ 5 (D — S )D “ 2 . 

Two clusters ai'e formed from the normalised Fiedler vector by sorting the entries and 

choosing a splitting point along the vector which results in the minimal value for Eqn. 2.18.

2 .6 .3  A '-W ay S p ectra l  C lu ster in g

In most cases, we will typically want to partition a dataset into more than two clus­

ters. Two general approaches have been proposed in the literature to extend spectral 

bi-partitioning to the problem of fc-way clustering. The first involves recursively applying 

spectral bi-partitioning to hierarchically divide each resulting sub-graph until k clusters 

have been recovered (e.g. Shi & Malik, 1997). However, if k is not a power of 2, it is 

unclear as to how to choose which segments should be sub-divided.

A more effective approach involves directly producing a fc-way partition by construct­

ing an embedding from multiple eigenvector.s of the affinity matrix. However, rather than 

using those vectors corresponding to the smallest eigenvalues, clustering may be performed 

using the eigenvectors associated with the largest eigenvalues, which also contain struc­

tural information. A formal justification for the benefits of clustering in the reduced space 

formed from these vectors was given in the polarisation theorem proposed by Brand & 

Huang (2003). This theorem asserts that, as an affinity matrix S is projected onto smaller 

subsets of successive leading eigenvectors, the angles between highly similar objects are 

least distorted, while the angles between dissimilar objects tend to greatly increase. Con­

sequently, by magnifying the similarities between objects that belong to the same natural 

class and attenuating the associations between objects belonging to different classes, the 

clustering problem will often become easier to solve.
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(a) M atrix  for th e  orig inal (b) M atrix  for th e  A>way
high-dim ensional d a ta . sp ec tra l em bedding  { k  =  5).

F ig u r e  2 .10 ; Pairw ise cosine sim ilarity  m atrices generated  on th e  bbc corpus, illu stra ting  
the  exaggeration of th e  block diagonal s tru c tu re  resu lting  from fc-way spectra l em bedding.

As an  exam ple, we consider th e  construction  of a  k-w ay  em bedding for the  bbc d a tase t. 

F igure 2.10(a) shows th e  block-diagonalised cosine sim ilarity  m atrix  genera ted  on the  

original high-dim ensional featu re  space. F igure 2.10(b) shows th e  corresponding m atrix  

generated  on th e  spectra l em bedding form ed from th e  five leading eigenvectors of the  

original sim ilarity  m atrix . W hile th e  values in th e  la tte r  are higher in general due to  

th e  far lower level of sjjarsity  in th e  em bedded dim ensions, it is p a rticu la rly  apparen t 

th a t  there  is a significant increase in in tra-class sim ilarity  as evident from  th e  prom inent 

blocks represen ting  the  n a tu ra l classes in th e  d a ta . To confirm  th is, F igure  2.11 provides 

h istogram s for the  in tra-class and  inter-class cosine sim ilarity  values com puted  using the 

em bedding. N ote th a t  these values now lie in the  range [—1-1] due to  th e  presence of 

negative values in th e  em bedded dim ensions. However, it is clear th a t  th e  trends in these

0.7 p  

0.6  -  

0.5 - 

0.4 - 

0.3 - 

0.2  -  

0.1 -  

0 -

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

(a) h itra -c lass  sim ilarities (b) h iter-claas sim ilarities

F ig u r e  2 .11 : H istogram s of pairw ise cosine sim ilarity  values for th e  k-w&y spectra l em­
bedding  of th e  bbc corpus {k — 5), d em onstra ting  th e  increase in in tra-class sim ilarity  
values after th e  app lication  of dim ension reduction .
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Pre-processing ----------1 |------  Spectral Mapping  1 |--------  Post-processing

A Similarity Y _ ^  „ f  EVD „ _ Y c iu s te r in g Y _ ^
^  M easure ^ C o m p u t e r ^ A l g o r i t h m J

Original Affinity Spectral K-way
D ataset Matrix Embedding Clustering

F ig u re  2.12: Workflow for the k-way spectral clustering process, which consists of three 
phases: pre-processing, spectral m.apping and post-processing.

histograms contrast sharply with those in the histograms produced on the original data  

as shown in Figure 2.6. The exaggeration of intra-class and inter-clsiss relations makes the 

goal of accurately uncovering the underlying classes far more attainable.

A’-way spectral clustering techniques generally consist of three principal phases, as 

shown in Figure 2.12: preprocessing, spectral mapping and post-processing (Verma & 

Meila. 2003). We now describe each of these phases individually and sunnnarise the most 

popular approaches tha t have been used to  implement them.

P re p ro c e s s in g : Initially, an affinity m atrix S is constructed from the original d a ta  using 

an appropriate metric, such as the Gaussian kernel function (see Section 2.8.2) for 

image d a ta  or cosine similarity for text documents. As with bi-partitioning, various 

normalisation techniques may be applied to S to support the optimisation of different 

partitioning criteria. Most commonly, an approxim ation to the k-'wa.y normalised 

cut (2.19) has been used, which is found by computing the truncated  EVD of the 

normalised affinity m atrix given by:

S „  =  D - 2 S D ' 5  (2.22)

W hen using this objective, some authors have observed th a t removing the influence 

of the diagonal values by setting Su — 0 prior to  decomposition results in improved 

accuracy {e.g. Ng et a i, 2001).

S p e c tra l  m a p p in g : The second phase of the spectral clustering process involves com­

puting the eigenvalue decomposition of the normalised affinity m atrix. Ng et al. 

(2001) showed th a t, when partitioning d a ta  into k  clusters, the use of eigenvectors 

corresponding to the k largest eigenvalues affords the best discriminating power.
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By stacking these vectors in columns to form Y  G a reduced-dimensional

representation is produced for the original n  objects.

P o s t-p ro c e s s in g : The columns of a /c-dimensional spectral embedding Y  can be viewed 

as a set of k sem antic variables. However, since these variables may take negative 

values, they are not immediately in terpretable as clusters. In simple cases where 

the  affinity m atrix  is approxim ately block diagonal, it may be possible to  identify a 

partition  by inspecting the values in Y . However, for real-world d a ta  such as text 

corpora some form of post-processing will be required to  ex tract th e  final cluster 

assignments.

A popular approach is to trea t the rows {y i,. • • ,2/fc} as points in a geometric space 

and apply a partitional algorithm, such as standard  fc-means, to  cluster these 

points. A final clustering of the original dataset may be derived by simply assigning 

the object Xi to  the cluster Cj which contains the corresponding embedded point yj. 

It has been shown the quality of this partition  may often be improved by normalising 

the rows of Y  to  L2 unit length prior to clustering (Ng et a i,  2001). Several other 

authors have focused on directly decomposing the selected eigenvectors into a set of 

k  clusters w ithout the need for the subsequent application of a clustering algorithm 

(e.g. Yu Sz Shi, 2003).

To illustrate how the th ree phases fit together, a sum m ary of a popular representative 

algorithm , Ng-Jordan-W eiss (NJW ) clustering (Ng et a i,  2001), is given in Figure 2.13.

2.6 .4  B ip artite  Spectral C o-clustering

The techniques described previously in this section focus solely on the problem of grouping 

the objects in a dataset. However, in certain situations it may be useful to perform co­

clustering, where both  objects and features are assigned to  groups simultaneously. Such 

techniques are related to the principle of the duality of clustering objects and features, 

which states th a t a clustering of objects induces a clustering of features while a clustering 

of features also induces a clustering of objects (Dhillon, 2001). The co-clustering problem 

may be viewed as the task  of partitioning a weighted bipartite  graph. Formally, given a 

text corpus, we build a graph G(V, £) such th a t V — Va' U V t, where V x  is a set of vertices 

representing the n  docum ents and Vt  is a set of vertices representing the m  terms. An 

edge {i , j )  only exists if the j - th  term  occurs a t least once in the docum ent Xi, where the
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weight on th a t edge indicates the number of occurrences. We may conveniently represent 

such a graph using a term -docum ent m atrix  A.

While the  m ethods in the previous section involve analysing the eigendecomposition 

of an affinity m atrix, for the b ipartite  case several authors have suggested the use of the 

related singular value decomposition (SVD), which may be applied to  rectangular matrices. 

Formally, this involves decomposing a m atrix  A  € into the product of three factors:

A =  U S V ^  (2.23)

The columns of the m atrix  U  € ^re referred to  as the left singular vectors, the

rows of V  e  are the right singular vectors, and the diagonal entries of S  S ]R™^"

are called the singular values of A . Note th a t the left singular vectors are equivalent to 

the eigenvectors of A A ^, the right singular vectors are the eigenvectors of A ^A  and their 

identical sets of eigenvalues are given by the diagonal of

Dhillon (2001) suggested th a t an approxim ation for the optim al normalised cut of a 

b ipartite  graph represented by a m atrix  A  may be obtained by analysing the I = log2  k 

leading singular vectors of the degree-normalised m atrix  given by:

An =  D i -5 A D 2 ~ 5  (2.24)

where D i and D 2  are diagonal m atrices such tha t
n m

[D\\ii =  Aij , [D2\jj =  Aij (2.25)
j=l i=l

1. C onstruct an affinity m atrix  S € on the original d a ta  A!, and set Sa  =  0.

2. Form the normalised affinity matrix:

S„ =  D “ 5 S D “ 5

3. Decompose S„ and construct an embedding Y  G such th a t the columns are 
given by the eigenvectors corresponding to  the k  largest eigenvalues.

4. Normahse the rows of Y  to  L2 unit length.

5. Apply standard  /c-means to the rows of Y  to generate a fc-way clustering C.

6. Produce a clustering of X  by assigning each object Xj to the j - th  cluster if j/j G Cj.

F igure 2.13: Ng-Jordan-W eiss (NJW ) spectral clustering algorithm.
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If A  is a term -docum ent m atrix, the rows of the left truncated  vectors U] represent a l- 

dimensional embedding of the term s, while the columns of the right trunca ted  vectors V] 

represent an  embedding of the documents. By selecting the leading vectors of the spectral 

decomposition, we can produce a reduced-dimensional space th a t amplifies the natural 

structures in the data. In th is case, a unified em bedding Z G jg constructed by

normalising and arranging the truncated  factors as follows:

Di-V2Ui

A partitional clustering algorithm , such as /c-means, is then  applied in the geometric space 

Z to produce a simultaneous fc-way partitioning of bo th  docum ents and terms.

2.6.5 L im itations o f Spectral C lustering

State-of-the-art k-way  spectral clustering algorithm s have become popular in the many 

domains. However, their performance is highly sensitive to  the selection of an appropriate 

number of leading eigenvectors. A num ber of authors have suggested choosing k  based on 

the largest eigengap {e.g. Ng et al., 2001), which refers to  the maocimum difference between 

any two consecutive eigenvalues {i.e. |A, — A,_|_i|). W hen considering this approach, it is 

worth noting th a t both  theoretical results and empirical observations suggest th a t spectral 

clustering performs best in cases where the rows of the m atrix  representing the dataset can 

be arranged in a block diagonal manner. Unfortunately, matrices representing real-world 

text corpora will contain overlapping structures and are therefore unlikely to  fulfil this 

requirement. This often leads the eigengap m ethod to produce misleading results. An 

example of this is shown in Figure 2.14, where analysis of the eigenvalues of the cosine 

similarity m atrix  for the bbc corpus suggests th a t fc =  2 is suitable in place of the correct 

value k — 5, despite the fact th a t the classes are reasonably well separated. In general, 

traditional model selection approaches, such as those described in the next chapter, tend 

to be more useful when working w ith tex t data.

The issue of the performance of spectral m ethods when applied to  non-block-diagonal 

m atrices is particularly im portant in docum ent clustering, where the d a ta  will frequently 

contain overlapping groups. It is worth noting th a t the generation of soft clusterings 

based on spectral m ethods has not been considered in the literature. Since soft member­

ship weights for docum ents and term s can be useful in providing an insight into a newly 

produced clustering solution, we consider this problem in more detail in Section 6.2.
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F ig u re  2.14: Exam ple application of the eigengap m ethod to estim ate the optim al number 
of clusters in the bbc corpus, based on the exam ination of the differences between the 
leading eigenvalues.

2.7 N on -n egative  M atrix  F actorisation

A disadvantage of spectral clustering m ethods stems from the presence of negative entries 

in the eigenvectors or singular vectors used to construct the reduced embedding. As 

a result, the features of a reduced representation do not have any im m ediate physical 

meaning. Therefore, the application of a post-processing technique is generally required 

to  produce a final partition  of the  data. As noted in Section 2.5, this is an issue th a t is 

inherent in many feature extraction techniques. To address this problem, Lee & Seung 

(1999) proposed an alternative unsupervised approach for reducing the dimensionality of 

non-negative m atrices, referred to  as Non-negative M atrix Factorisation (NM F). Unlike 

spectral m ethods, NMF seeks to  decompose the d a ta  into factors th a t are constrained 

so th a t they will not contain negative values. By modelling each object as the additive 

combination of a set of non-negative basis vectors, a readily interpretable clustering of the 

data  can be produced w ithout the requirem ent for further post-processing. In contrast to 

techniques th a t construct a reduced space from eigenvectors, these basis vectors are not 

required to be orthogonal, which facilitates the discovery of overlapping groups.

NM F also has a natura l tendency to produce sparse basis vectors, leading it to  perform 

well on d a ta  where structures exist in different low-dimensional subspaces of the  original 

high-dimensional space. In such cases, global dimension reduction techniques such as 

spectral clustering or PCA may fail to  identify these local patterns. In this respect NMF 

resembles subspace clustering techniques (Agrawal et a i, 1998), which aim  to  find clusters
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in various subspaces of the original feature space by performing the tasks of dim ensionality 

reduction and d a ta  clustering simultaneously.

Formally, given a rectangular non-negative m atrix  A  e  such th a t each column

represents a d a ta  object, NMF generates a reduced rank-fc approxim ation in the form of 

the product of two non-negative factors:

A  w W H  such th a t W  >  0 , H  >  0

where the rows of W  G represent a set of k  basis vectors and the columns of

are linear combinations of the basis vectors. Typically the number of basis 

vectors is a user-defined param eter, which is chosen so th a t k «  m in { m ,n ) .

While NM F has been prim arily applied in bioinformatics {e.g. B runet et al., 2004) 

and image processing {e.g. Li et al., 2001), it may also be used to  decompose the term - 

docum ent representation A  of a corpus. In this context, the factor W  can be viewed as 

a set of sem antic variables corresponding to  the topics in the data , while H  describes the 

contribution of the docum ents to  each topic. This idea of representing each docum ent as 

the additive combination of several overlapping topics is highly intuitive. Furtherm ore, 

the non-negativity of the factors allows them  to be directly interpreted as a soft fc-way 

co-clustering of both  docum ents and term s. To illustrate this, we consider the application 

of NMF to the 2-class subset of the bbc corpus described in Section 2.5.3. Table 2.2 

shows the highest weighted term s in the NM F basis vectors forming the rows of W , which 

immediately provide us w ith labels for the two clusters.

(a) Basis vector w i  (b) Basis vector W2

Rank Term Weight Rank Term Weight
1 year 0.15 1 play 0.16
2 company 0.15 2 game 0.16
3 firm 0.14 3 win 0.15
4 market 0.13 4 player 0.13
5 share 0.11 5 first 0.11
6 growth 0.11 6 match 0.10
7 bank 0.11 7 goal 0.10
8 government 0.10 8 England 0.10
9 sale 0.10 9 team 0.10
10 economy 0.10 10 club 0.10

T ab le  2.2: Top ranked term s in the basis vectors produced by applying NM F factorisation 
to the ‘business’ and ‘sp o rt’ classes from the bbc corpus.
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2.7.1 B asic A lgorithm

The choice of factors in NM F is determ ined by some objective function th a t seeks to m in­

imise the error of the reconstruction of A  by the product W H . In the original formulation 

proposed by Lee & Seung (1999), this involves minimising squared Euclidean distance as 

com puted by the Probenius norm:

/ ( W , H )  =  i | | A - W H | | 2  (2.26)

An approxim ate solution may be found by employing a diagonally re-scaled gradient de­

scent search strategy. In practice, this involves alternating between a pair of multiplicative 

update rules, as shown in Figure 2.15. At each iteration, W  and H  are updated  by m ulti­

plying the current factors by a measure of the quality of the current approxim ation W H . 

The authors showed th a t the error of this approxim ation decreases m onotonically as these 

rules are applied until the search procedure converges to a local minimum.

An information theoretic formulation of NMF was also proposed by Lee & Seung 

(1999), based on the use of generalised Kullback-Leibler (KL) divergence, also referred to 

as relative entropy. The clustering objective then becomes the m inim isation of the loss of 

inform ation between A  and the approxim ation W H  as quantified by the expression:

m  n /  4 \

D (A ||W H ) =  X ]  E  1 ^  + [W H ],, (2.27)
i=l j = l  V 1 ^ 1  =  1 )

This function may also be optimised by applying a gradient descent search in the form of 

a corresponding pair of m ultiphcative update rules.

1. Randomly initialise W  and H  w ith positive values.

2. U pdate factor H  for 1 <  j  <  n, 1 <  c <  fc:

(W "V )e,

3. U pdate factor W  for 1 <  i <  m, 1 <  c <  A-:

(VH"),e
W i c  \ ^ ' ^ c ------------------7------"(WHH"),e

4. R epeat from Step 2 until convergence or a fixed num ber of iterations have elapsed. 

F ig u re  2.15: Euclidean-based NM F algorithm , using multiplicative update rules.
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2 .7 .2  V a r ia t io n s

Recently, a number of techniques have been proposed that involve imposing additional 

constraints on the matrices U  and V  to enforce a certain degree of sparsity. While the 

standard NMF formulations described previously do tend to generate reasonably sparse 

factors, it may be desirable in some situations to increase the level of sparsity in the 

basis vectors to produce a more localised solution. Several algorithms have been proposed 

that implement sparsity constraints by including additional penalty terms in the objective 

function, including Local Non-negative Matrix Factorisation (LNMF) (Li et ai,  2001) and 

Sparse Non-negative Matrix Factorisation (SNMF) (Liu et ai, 2003b).

NMF techniques may also be applied to produce a rank-/c non-negative approximation 

of a symmetric matrix. Given a positive semi-definite similarity matrix S, Ding & He 

(2005) showed that a solution to the problem of minimising the SSE error (2.7) may be 

found by performing a symmetric factorisation of S based on the objective function;

where 0 < /3 < 1 is a user-defined parameter which controls the rate of convergence.

2 .7 .3  L im ita t io n s

Several authors have observed the sensitivity of NMF to the choice of initial factors.

randomly generated values. However, this can lead to inconsistent results over multiple 

trials in the same way as stochastically initialised /c-means. We discuss this issue further 

in Section 6.2.

Another drawback of NMF stems from the fact tha t the standard multiplicative update 

techniques are often very slow to converge. This is particularly significant as every iter­

ation will typically require several costly matrix multiplication operations. For instance, 

the update rules for the algorithm given in Figure 2.15 involve six multiplications, each 

requiring time 0{n^).  Even when sparse matrix multiplication techniques are applied to 

make the process more efficient, the running time can still be prohibitive for large datasets.

/(V )  =  ||s- (2.28)

The optimal factor V  e  can be approximated using a single update rule

The standard approach in the literature has been to initialise the factors U  and V with
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2.8 K ernel C lustering M eth od s

Kernel methods involve the transformation of a dataset to a new, possibly high-dimensional 

space where non-linear relationships between objects may be more easily identified. Rather 

than explicitly computing the transformed representation (}){x) of each data  object x, the 

application of the “kernel trick” (Aizerman et ai,  1964) allows us to consider the affinity 

between a pair of objects (xi,xj) using a kernel function k , which is defined in terms of 

the dot product;

K{xi,xj) = {(j}{xi),(j){xj)) (2.29)

In practice, the function k is represented by an n x n symmetric, positive semi-definite 

kernel matrix (or Gram matrix) K , such that Kij  =  K{xi,xj). By re-formulating algo­

rithms using only dot products and subsequentlj^ replacing these with affinity values from 

K , we can efficiently apply learning algorithms in the new kernel space.

Another significant advantage of kernel methods is their modularity, where every 

method is composed of two decoupled components: a generic learning algorithm, and 

a problem-specific kernel function. Consequently, it is possible to develop algorithms that 

can readily be deployed in a wide range of domains without requiring any customisation. 

Novel kernels can also be constructed in a modular fashion by chaining together multiple 

existing functions together.

The main focus of research in this area has been on the development of techniques 

for supervised tasks, notably the well-known support vector machine (SVM) classifier 

(Cristianini & Shawe-Taylor, 2000). However, kernel methods have also been shown to be 

effective in unsupervised problems, such as document clustering (Dhillon et ai,  2004b). 

We now describe several algorithms and kernel functions that are relevant in this context.

2.8.1 A lgorithm s  

K ern e l /c-means

A variety of popular clustering techniques have been re-formulated for use in a kernel- 

induced space, including the standard /c-means algorithm. To describe the algorithm, 

we firstly observe that, using the notation given above, the squared Euclidean distance 

between a pair of objects in the kernel space represented by a matrix K  can be expressed 

as:

M x i )  -  4>{xj)f = Ku  +  Kjj  -  (2.30)
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This may be used as a starting point for the identification of cluster structures. For­

mally, given a set of objects { x \ , . . .  ,x„}, the kernel A;-means algorithm (Scholkopf et ai, 

1998) seeks to minimise the distortion between the objects and the “pseudo-centroids” 

{fx\,. . .  ,fXk} in the new space:

-  MclP where Hc ^  (2.31)
c = l x i € C c  '

Note that this expression is analogous to the SSE objective (2.7) used in standard k- 

means. However, rather than explicitly constructing centroid vectors in the kernel space, 

distances are computed using dot products only. From Eqn. 2.30, we can formulate squared 

object-centroid distance by the expression:

M x , )  -  Mcll̂  =  Ku + (2.32)
| C c |  l ^ c l

The first term above may be excluded as it remains constant; the second is a common 

term representing the self-similarity of the centroid (iĉ  which only needs to be calculated 

once for each cluster; the third term represents the affinity between Xi and the centroid of 

the cluster Cc-

This kernelised algorithm has a significant advantage over standard A'-means in the 

sense that, given an appropriate kernel function, it can be used to identify structures that 

are not necessarily spherical or convex. In addition, once we have constructed a single 

matrix K, multiple partitions may be subsequently generated without referring back to 

the original feature space.

1. Select k arbitrary initial clusters {C\ , . . . ,  C^}.

2. For each object Xi £ X  and centroid fj,c, compute the distance:

d{xi,iic) =  + ------- — 2----------------- 7 T|------

3. Assign each Xi to cluster corresponding to nearest centroid.

4. Repeat from Step 2 until termination criterion is satisfied.

F ig u re  2.16: Kernel fc-means (KKM) algorithm.
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W e ig h te d  k e rn e l fc-m eans

In the standard  fc-means algorithm  and its kernel equivalent, each da ta  object in a cluster

the kernel A:-means algorithm  was proposed by Dhillon et al. (2004b), where each object Xi 

has an associated non-negative weight Wi indicating its relative importance. The objective 

function given in Eqn. 2.31 then  becomes:

weighted variant, where Wi — I Vi.

Dhillon et al. (2004b) showed th a t many of the graph partitioning criteria given in 

Section 2.6.1 can be shown to be equivalent to  the weighted objective function (2.33) 

when using a particular kernel m atrix and set of weights. For instance, an approxim ation 

for the normalised cut criterion may be found by applying the algorithm  to the m atrix

where D  is the degree m atrix of K  and object weights are chosen so th a t Wi — Da.

2.8.2 K ernel Functions

The selection of a suitable kernel function for a particular learning problem is crucial to 

the success of kernel methods. In general, any positive semi-definite m atrix can be viewed 

as a kernel m atrix  (Cristianini & Shawe-Taylor, 2000). We discuss here several popular 

kernel functions th a t may be applied to  text data.

N o rm a lis e d  l in e a r  k e rn e l: As noted previously, the most common choice of similarity 

measure for text d a ta  is cosine sim ilarity (2.4). A corresponding kernel function is 

formed by computing dot products and normalising by self-similarity (Scholkopf & 

Smola, 2001). Formally, the affinity between two docum ents Xi and xj  is defined as:

makes an equal contribution towards the location the cluster centroid. An extension of

fc
where — (2.33)

C—1 X i ^ C c

Since the weight for each object must be taken into consideration when computing object-

centroid distances, the expression Eqn. 2.32 m ust be altered as follows:

WjWiKji  2J2.
(2.34)

Note th a t the original kernel fc-means algorithm  can be viewed as a specific case of the

K  = (2.35)

(2.36)
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This function yields values in the range [0,1] and self-similarity values K{xi,xi) =  1.

G a u ss ia n  k e rn e l: The Gaussian Radial Basis Function (RBF) kernel is widely used in 

a variety of domains and applications, notable image processing. Formally, the 

function is defined by

where cr G IR"'" is a user-defined sm oothing param eter, often referred to  as the  kernel 

width. The choice of a suitable value for a  can greatly influence the structures 

th a t are generated by a kernel clustering algorithm  and its selection represents a 

non-trivial param eter selection problem (Lee & Daniels, 2005).

P o ly n o m ia l k e rn e l: Given an existing kernel expressed in term s of dot products, a new 

kernel can be created by applying the polynomial function

for some positive integer degree p. As w ith the Gaussian kernel, the selection of a 

value for the exponent can have a significant im pact upon the success of the learning 

algorithm.

feature vector representation of docum ents will also be subject to  certain drawbacks 

of the vector space model, notably the loss of context inform ation regarding the 

relative placem ent of term s in documents. To preserve this information, Lodhi et al. 

(2002) proposed the use of string kernels, which involve com puting similarities be­

tween docum ents by finding m atching non-consecutive sub-sequences of characters. 

R ather th an  making use of individual characters, Cancedda et al. (2003) proposed a 

kernel based on word sequences which proved successful in tex t classification prob­

lems. However, in contrast to  a simple linear kernel, the construction of string kernels 

is often complex and com putationally expensive.

2.9 E nsem ble C lustering M eth od s

Ensemble techniques have been successfully apphed in supervised learning to improve the 

accuracy of classification algorithm s, where the rationale is th a t the combined judgem ent

(2.37)

K { X i , X j )  =  { X i . X i } ^ (2.38)

S tr in g  k e rn e ls : It is worth noting th a t kernel functions which operate on the trad itional
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F ig u re  2.17; Generic ensemble clustering workflow, illustrating the generation and in te­
gration phases of the ensemble process.

of a group of predictors is frequently superior to  th a t of an individual (Breiman, 1996). 

In contrast, cluster analysis m ethods have often involved the repeated execution of a 

clustering procedure, followed by the m anual selection of a single solution th a t optimises an 

internal validation criterion. However, ra ther th an  merely selecting a “winning” partition , 

recent work has shown th a t combining the strengths of an ensemble of clusterings can 

often yield b e tte r results {e.g. Fred, 2001; Strehl & Ghosh, 2002b).

Given a collection of “base” clusterings generated on d a ta  originating from the same 

source, the prim ary aim of ensemble clustering is to aggregate the information provided 

the members of the collection to produce a more accurate solution. Additionally, ensem­

ble m ethods can often afford greater stability, which refers to the ability of a clustering 

procedure to  consistently produce similar solutions across multiple trials. Even though 

the underlying clustering algorithm , such as /c-means with random  initialisation, may gen­

erate inconsistent solutions of varying accuracy, by combining these solutions it may be 

possible to  produce a single definitive output. A nother potential benefit of these m ethods, 

which has received little a ttention, is in the reuse of knowledge from previously generated 

clusterings (Strehl & Ghosh, 2002b). R ather than  constructing a new partition  of the 

domain d a ta  from scratch, it may be preferable to aggregate legacy solutions or use them  

as a source of background information when producing a new clustering.

A range of approaches to ensemble clustering have been proposed in the h tera ture, 

which have been referred to  by different authors as “cluster com bination” , “m eta-chistering” , 

“evidence accum ulation” and “cluster fusion” . However, these m ethods generally follow a 

common workflow as illustrated in Figure 2.17, which consists of two distinct phases:

1. Generation: C onstruct a collection of r  base clustering solutions, denoted C =  

{C l,. . .  ,Cr}, which represent the members of the ensemble. This is typically done
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by repeatedly applying a chosen clustering algorithm  in a m anner th a t leads to 

diversity among the members.

2. Integration: Once a collection of ensemble members has been generated, a suit­

able integration function is applied to  combine them  to  produce a final consensus 

clustering C:

In practice, this often involves the application of an additional clustering procedure 

to  an interm ediate representation of C.

2.9.1 G eneration  Techniques

It has frequently been dem onstrated th a t supervised ensembles are most successful when 

constructed from a set of accurate classifiers whose errors lie in different parts of the data  

space {e.g. Opitz & Shavhk, 1996). Similarly, unsupervised ensemble procedures typically 

seek to encourage diversity with a view to improving the quality of the information avail­

able in the integration phase. For instance, Topchy et al. (2005) suggested th a t, given 

a collection of poor quality partitions of a dataset, a useful consensus clustering may be 

produced if the collection is sufficiently diverse. In these cases, the lack of accuracy in the 

ensemble members is com pensated for by their diversity. However, in general, empirical 

results suggest th a t it is preferable to  make use of reasonably accurate clusterings th a t 

adequately cover the space of possible solutions (Fern & Brodley, 2003).

A simple approach is to rely on the inherent instability of common clustering algorithms 

such as standard  fc-means. By employing a stochastic initialisation scheme, the algorithm 

may often converge to  different local solutions (Jain & Fred, 2002b). However, for many 

datasets this may not result in a sufficient level of diversity. Additionally, the effect of 

outlying objects may not be negated. Consequently, a variety of strategies have been used 

in the clustering literature to  artificially introduce instabilities in clustering algorithms. 

We now summarise several noteworthy ensemble generation approaches:

D a ta  sam p lin g : The most commonly employed strategy has been to  use unbiased ran­

dom sampling to  produce partitions on different parts of the same dataset. Many 

authors {e.g. Leisch, 1999; Dudoit & Fridlyand, 2003) have suggested the use of boot­

strapping aggregation or “bagging” , where subsets of the original d a ta  are produced 

by independently drawing w ith replacement. A related technique involves applying
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subsampling w ithout replacem ent, where typically 60-80% of the d a ta  objects are 

included when generating each base clustering (Minaei-Bidgoli et a l,  2004; Fern & 

Brodley, 2004). Having chosen a sample of data , an ensemble member is generated 

by applying a suitable base clustering algorithm , such as standard  fc-means w ith 

random  initialisation.

F e a tu re  s e lec tio n : A nother technique th a t has frequently been apphed in supervised 

learning to  introduce diversity is to  use different feature subsets, so th a t individual 

ensemble members have only a partia l view of each d a ta  object. A simple approach 

is to employ random  subspacing (Ho, 1998), where each member is generated on a 

random ly selected subset of the original dimensions. This technique was applied to 

produce ensemble clusterings of medical and synthetic d a ta  by Greene et al. (2004).

F e a tu re  e x tr a c t io n :  Fern & Brodley (2003) proposed the generation of a diverse set of 

base clusterings by randomly projecting d a ta  onto a lower dimensional subspace. 

Each ensemble m ember is generated by transform ing the n x  d d a ta  set to  a reduced 

set of d! new dimensions. This transform ation is defined hy a d x d '  m atrix  R, which is 

populated by randomly selecting values in the range [0,1] and norm ahsing the entries 

in each column to sum to 1. After performing the mapping, the authors applied 

the EM clustering algorithm  to the new data. O ther feature extraction techniques 

could potentially be used in this context (e.g. spectral embedding). However, the 

com putational cost and global nature of many of these m ethods makes them  less 

attractive.

R a n d o m  p a r a m e te r  se le c tio n : As noted in Section 2.3, the ou tpu t of partitional algo­

rithm s such as ^r-means is dependent on the initial choice of the num ber of clusters 

k. This has been exploited as a source of ensemble diversity by generating cluster­

ings using randomly selected values of k  from a user-specified interval (Jain k. Fred, 

2002b). Ghosh et al. (2002) observed th a t be tte r results can sometimes be achieved 

by combining a collection of clusterings generated at a much higher resolution than  

the value of k  used in the final clustering.

H e te ro g e n e o u s  en sem b le s: Typically in ensemble clustering, m embers are generated 

over m ultiple runs of the same clustering algorithm . As an alternative, heteroge­

neous ensembles may be employed, where diversity is induced by allowing each base
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clustering to  potentially be generated using a different algorithm  (Greene et al., 

2004). The m otivation here is th a t these algorithm s may differ in their strengths 

and weaknesses, so th a t an ensemble can combine the best aspects of each approach.

2.9.2 In tegration  Techniques

Once a collection of diverse ensemble members has been generated, a strategy is required 

to  combine these clusterings to produce a single solution. In supervised learning, it has 

been observed th a t the success of an ensemble technique depends not only on the presence 

of a diverse set of base classifiers, bu t also on the ability of the aggregating classifier to 

exploit the resulting diversity (Brodley & Lane, 1996). Similarly, the choice of a suitable 

strategy for integrating an ensemble of clusterings will greatly affect the accuracy of the 

final clustering solution (Greene et al., 2004). We now summarise three distinct integration 

techniques th a t have been frequently used in the ensemble clustering literature.

A n a ly s is  o f  p a irw ise  c o -a s s ig n m e n ts

The most popular integration strategy has been to  use inform ation derived from different 

clusterings to determ ine the level of association between each pair of objects in a dataset. 

The fundam ental assum ption underlying this strategy is th a t pairs of objects belonging 

to the same natu ral class will frequently be co-assigned during repeated executions of a 

clustering algorithm . This approach was initially proposed by Fred (2001), who referred 

to it as “evidence accum ulation” . Its use was m otivated by m ajority voting schemes 

commonly employed in classifier ensembles, since each pair of co-assigned objects may be 

viewed as a vote for the pair being assigned to the same cluster in the  final partition . Strehl 

& Ghosh (2002b) independently proposed an equivalent strategy, which they refer to as 

“cluster-based sim ilarity partitioning” . This strategy was motivated by the observation 

th a t pairwise co-assignments, averaged over a sufficiently large num ber of clusterings, may 

be used to  induce a new measure of sim ilarity on the data.

In practice, integration techniques based on co-association involve the construction of a 

sym m etric n x n  m atrix  M , such th a t Afy indicates the fraction of clusterings in C in which 

both  Xi and x j  were assigned to  the same cluster. As suggested by Monti et al. (2003), when 

using resampling-based ensemble generation, the norm alisation of M  should only take 

into account the to ta l num ber of clusterings in which pairs of objects were both  present. 

Once this interm ediate representation has been constructed, a standard  similarity-based
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clustering algorithm may be appHed to M  to produce a consensus solution. Algorithms 

that have been employed for this purpose include single linkage agglomerative clustering 

(Jain & Pred, 2002a) and multi-level graph partitioning (Strehl & Ghosh, 2002b).

In teg ra tio n  b ased  on  c lu ster  graphs

Rather than examining the pairwise associations between objects, several authors have 

suggested examining the relations between the clusters contained in all partitions in C. 

Strehl & Ghosh (2002b) proposed a technique that involves modelling the set of parti­

tions C as a weighted hypergraph, where each vertex represents a cluster from one of the 

partitions and the edge weight between a pair of vertices is computed based upon the 

similarity between the corresponding pair of clusters. This similarity may be computed 

using standard techniques for comparing disjoint partitions, such as the Jaccard index 

(see Section 3.3). A grouping of the clusters is then found using an appropriate /c-way 

graph partitioning algorithm. Each resulting group of clusters can be regarded as a “meta­

cluster” . A final clustering may be derived by assigning each object to the meta-cluster 

containing the largest number of clusters to which the object has been assigned.

Fern & Brodley (2004) proposed formulating the information contained in C as an 

unweighted bipartite graph, which preserves both the associations between objects as well 

as those between clusters. Formally, this involves the construction of a graph G{V,£)  such 

that V =  Va' U Vc , where Vx  represents the n  data objects and Vc  represents the set of 

all individual clusters in C. An edge {i, j) exists only if the object Xi was assigned to 

cluster j .  A  consensus clustering may be found by applying a bipartite graph partitioning 

algorithm such as spectral co-clustering.

In teg ra tio n  by c lu ster  co rresp on d en ce

The graph-based approach proposed by Strehl & Ghosh (2002b) is based on the assump­

tion that there will be a direct relationship between individual clusters across different 

partitions in C. This concept of correspondence, which is sometimes referred to as cluster 

voting, has been explicitly used by several authors for combining collections of clusterings. 

Since there is no intuitive way of finding the correspondence between all base clusterings 

in a single pass, Dimitriadou et al. (2002) proposed a heuristic approach where, for each 

newly generated base clustering, the new clusters are mapped to the existing clusters in 

the current consensus clustering. This mapping is performed by matching each pair of
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clusters that have the highest fraction of objects in common. The transformed cluster 

assignments may then be viewed as votes indicating associations between the data objects 

and the k clusters in the current consensus clustering. By repeatedly performing this pro­

cess, the r  base clusterings may be combined to form a fc-way fuzzy clustering of the data. 

Dudoit & Pridlyand (2003) described a similar algorithm, referred to as BagClustl, which 

involves finding the optimal alignment between the clusters in each newly generated base 

partition and those in the existing current clustering. Once all members have been added, 

a final clustering is obtained by taking the majority cluster for each data object.

2.9 .3  L im itations

A serious drawback of ensemble techniques in general is the computational cost of re­

peatedly processing a dataset. In ensemble clustering, the generation and aggregation of 

many solutions can be impractical for large, high-dimensional datasets such as text cor­

pora. Vv̂ hile reducing the number of base clusterings appears to be an intuitive solution, 

this can result in an unstable solution that is little better than that produced by the 

base clustering algorithm. Unfortunately, the feasibility of applying the ensemble cluster­

ing techniques described previously may be greatly limited by the number of objects in 

the data. The corresponding storage overhead required for techniques such as bipartite 

graph-based integration can also be prohibitive.

It is also the case that ensemble techniques require a series of key design issues to 

be addressed. Firstly, how do we generate a collection of base clusterings from which an 

ensemble is composed? Secondly, how many base clusterings must be aggregated to pro­

duce a stable, accurate solution? Thirdly, how can we aggregate the ensemble members to 

produce the final consensus clustering? This raises a number of parameter selection issues 

in addition to those pertaining to the base clustering algorithm. In particular, we have 

observed that the choice of a suitable integration method can greatly dictate the success 

of ensemble clustering (Greene et ai, 2004). Although traditional clustering algorithms 

have often been used in the integration phase, the limitations of those algorithms will 

often impact upon the accuracy of the resulting consensus clustering. For instance, while 

the application of single linkage AHC based on a co-assignment matrix has been the most 

popular choice for ensemble clustering in the literature, inaccurate clusterings may still 

be generated due to poor merging decisions and the chaining phenomenon described in 

Section 2.4.1. To address this problem, Strehl & Ghosh (2002b) suggested the use of a
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“supra-consensus function” which combines the output of multiple integration methods to 

produce a more robust solution. However, such an approach naturally leads to additional 

computational expense.

2.10 Sum m ary

In this chapter, we have reviewed a variety of clustering paradigms, ranging from par- 

titional and hierarchical methods proposed in the classical clustering literature to state- 

of-the-art approaches based on concepts such as spectral analysis and kernel learning. 

However, it is apparent that many well-known techniques, which have been widely em­

ployed in document clustering, suffer from non-trivial limitations. This particularly relates 

to important issues, such as the production of accurate clusterings in the presence of over­

lapping groups or the ability to scale to large datasets. In the latter chapters of this thesis 

we empirically examine these issues and propose novel solutions that are suitable for use 

in the context of document clustering.
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Chapter 3

Cluster Validation M ethods for 

Text Data

3.1 In troduction

In the previous chapter, we discussed a variety of clustering algorithms suitable for ana­

lysing text corpora. We now consider the task of assessing the validity of the output of a 

clustering algorithm, which represents a fundamental problem in unsupervised learning. 

Unlike in classification tasks, cluster analysis procedures will generally be unable to refer 

to predefined class labels when employed in real-world applications. Consequently, there 

is no clear definition of what constitutes a correct clustering for a given dataset. As a 

result, it may be difficult to distinguish between a solution consisting of groups that accu­

rately reflect the underlying patterns in the data and one that does not provide the user 

with any helpful insight. While it may be possible in some cases for a domain expert to 

manually evaluate a clustering solution, this will be unfeasible for larger datasets and may 

introduce an element of human bias. For instance, while some authors have suggested 

producing a hierarchical clustering of a corpus and identifying the “best” cut-ofF point on 

a dendrogram by inspection, it is likely that different users will suggest different cutting 

levels.

In contrast, cluster validation methods automatically produce a quantitative evalua­

tion, which can be highly useful both in the exploratory analysis of data and in the design 

of new clustering algorithms. The validation problem can be viewed as comprising of 

several different tasks:
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E x a m in in g  c lu s te r  te n d e n c y :  In certain applications, a crucial initial step in the clus­

te r analysis process is to  determ ine whether any significant structures exist in a 

dataset a t all. However, in the docum ent clustering literature it has been common 

to assume th a t tex t corpora will contain a t least two identifiable topics.

M o d e l se le c tio n : This task  relates to  the identification of an appropriate clustering al­

gorithm  and a corresponding set of param eter values. In the context of document 

clustering, a particularly  im portant model selection problem is th a t of estim ating 

the optim al num ber of clusters in a corpus, denoted by k. For certain  datasets, there 

may be several reasonable values for k.

R e la t iv e  c o m p a riso n : It is often necessary to  directly compare two or more candidate 

clusterings of the same dataset. This comparison may be performed as part of model 

selection, or may be used to  evaluate the performance of a newly proposed clustering 

algorithm , relative to  th a t afforded by existing algorithms.

S ta b il i ty  an a ly s is : W hen a clustering solution is generated using an algorithm  th a t con­

tains a stochastic element or requires the selection of key param eter values, it is 

im portant to  consider w hether the solution represents a “definitive” solution th a t 

may easily be replicated. This can typically be determ ined by assessing the level of 

pairwise agreement between two or more clusterings of the same data.

A wide variety of validation m ethods have been proposed in the cluster analysis literature, 

which perta in  to one or more of the above tasks. In the remainder of this chapter we 

review a range of methods, both  classical and contemporary, many of which are relevant 

for docum ent clustering. These m ethods are often organised into three distinct categories:

1. Internal validation: Com pare clustering solutions based on the goodness of fit be­

tween each clustering and the raw d a ta  on which the solutions were generated.

2. External validation: Assess the agreement between the ou tput of a clustering algo­

rithm  and a predefined reference partition  th a t is unavailable during the clustering 

process.

3. Stability-based validation: Evaluate the suitability of a given clustering model by 

examining the consistency of solutions generated by the model over m ultiple trials.
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3.2 Internal V alidation

Internal validation m ethods are designed to  provide a means of systematically assessing 

the quality of a clustering based on some evaluation function, which usually takes the form 

of an index measuring the goodness of fit between the clustering and the d ata  on w^hich it 

was generated. This evaluation is based solely on aspects of the features and metrics used 

during the clustering process, w ithout considering any additional information or external 

supervision. In certain cases, these indices can also be used to provide an objective function 

for clustering, although many are intractable to  optimise directly. Consequently, internal 

validation techniques are generally applied after the completion of the clustering procedure.

Model selection in areas such as bioinformatics has frequently been performed by using 

internal techniques (Bolshakova & Azuaje, 2002). Specifically, it is common to generate 

multiple clusterings of the d a ta  for a range of reasonable param eter values. As noted 

in Section 1.2.1, for knowledge discovery tasks it may be necessary to  repeatedly adjust 

param eter values and reapply the clustering algorithm until a useful solution is obtained. 

To guide this process, one or more internal validation indices may be employed to  assess 

the quality of different solutions. A set of suitable param eter values may be identified by 

locating a solution which optimises these indices.

It is common for internal validation indices to measure goodness-of-fit by examining 

aspects of a clustering solution such as intra-cluster compactness and inter-cluster sepa­

ration. To illustrate this idea, we consider the simple two-dimensional d ata  depicted in 

Figure 3.1, for which we wish to choose a suitable value for the number of clusters k. An

(a) W ell-separated clusters (fc =  3)

r.V.

(b) Poorly-separated clusters {k =  4)

F igure 3.1: Two possible clusterings of a simple synthetic dataset containing three well- 
separated groups, which illustrates the im portance of inter-cluster separation.
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internal index is likely to  favour the first clustering in Figure 3.1(a), which consists of three 

clusters that are relatively compact and well-separated. However, the partition shown in 

Figure 3.1(b) is clearly a poor fit for the data, as two of the clusters are not well-separated. 

Therefore, evaluating the second partition with the same index should result in a relatively 

poor score. From this, we can conclude that k — 3 is likely to represent a more suitable 

choice for the data.

3.2.1 C lassical Internal V alidation  Techniques

We now discuss a number of internal indices that have been traditionally used to  evaluate 

hard clusterings. N ote that, while many of these indices were originally designed to make 

use of Euclidean distances, it may be more appropriate to use cosine distance (2.5) when 

working w ith text data. For the remainder of this section, we assume the use of an 

arbitrary distance metric d{x , y ) ,  unless otherwise stated.

C alinsk i-H arab asz in d ex

M otivated by the clustering objectives used in well-known partitional algorithms, a number 

of internal indices have been proposed which assess cluster quality by considering the 

squared distances between data objects and cluster representatives. Formally, the within- 

cluster sum of squares is the total of the squared distances between each object X{ and 

the centroid of the cluster Cc to which it has been assigned:

k

c = i  n e C c

W hen employing Euclidean distance, this is equivalent to the SSE function (2.7) used in 

the standard /c-means algorithm. The between-cluster sum  of squares is the total of the 

squares of the distances between the each cluster centroid and the centroid of the entire 

dataset, denoted fv.

k 1 ”
B{C)  =  |Cc| where /i =  — Xi

1 n ^
C = 1  T = 1

The statistics W{C)  and B{C)  have been combined in a number ways by different authors 

for the purposes of validation. A representative exam ple, the Calinski-Harabasz (CH) 

index (Calinski & Harabasz, 1974), involves com puting the normalised ratio of within-
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cluster relative to  inter-cluster scatter:

B ( C ) / ( f c - l )
CH{C)

W{C) / {n  -  k) (3.1)

A larger value is indicative of greater internal cohesion and a large degree of separation

between the clusters in C. This index has been frequently used as a means of autom atically 

selecting the num ber of cluster in data , particularly in conjunction w ith agglomerative

selection in docum ent clustering (Surdeanu et ai ,  2005).

G en era lised  D u n n ’s in d ex

Many popular cluster validation indices are based on the assum ption th a t a correct cluster­

ing will minimise intra-cluster dissimilarity, while simultaneously maximising inter-cluster 

dissimilarity. A prototypical index is th a t proposed by Dunn (1974b), which was designed 

to reward “com pact and well separated clusters” . This index was generalised by Bezdek & 

Pal (1995) to support the use of arb itra ry  cluster evaluation criteria. Formally, for a dis­

joint /c-way clustering, we let A : C  —> IR denote a function th a t evaluates the intra-cluster 

dissimilarity or diam eter of a cluster in C, and let (5 : C  x C  —» IR denote a function th a t 

evaluates the inter-cluster dissim ilarity between a pair of clusters. An overall evaluation 

for C is calculated using the expression:

A larger value for D{C) indicates th a t the clustering C consists of compact clusters which 

are well-separated.

Since both  functions only make use of a single distance value corresponding to the most 

extrem e case, this formulation is highly sensitive to  the presence of outliers. An alternative 

approach is to  include the contribution of all objects in a cluster by considering object- 

centroid scatter and m easuring inter-cluster dissim ilarity in term s of the distance between 

centroids:

hierarchical clustering methods. It has also recently been applied to  the  task of model

mur < mm < ---------------,
i<i<fc [ maxi<;<*. { A (C ;)}

(3.2)

To evaluate clusters, the original formulation of D unn’s index made use of complete 

intra-cluster diam eter and single-linkage inter-cluster distance, as defined by:

A i ( C i ) =  max {d{x , y ) ]  5 i { Ci , C j ) =  min {<i(a;,y)}
xGGi,t/GGi xGGi,yGGj

(3.3)



Bezdek & Pal (1995) suggested that, by considering average object-centroid distance to­

gether with average-linkage inter-cluster distance, more robust cluster evaluations can be 

produced;

exhibit an unfair bias toward spherical clusters in the same way as the standard fc-means 

algorithm, leading to the production of misleading results on data where the underlying 

groups are elongated or non-convex in structure.

D a v ies-B o u ld in  in d ex

Davies & Bouldin (1979) proposed a related internal validation technique that considers 

the ratio of intra-cluster scatter to inter-cluster separability across all k groups in a clus­

tering. Formally, the DB index is defined as a function of the proximity between each 

cluster and its nearest neighbour:

This value will decrease as clusters become more compact and more distinctly separated.

evaluation functions can potentially be used in Eqn. 3.6. However, typically the centroid- 

based metrics defined in Eqn. 3.4 are employed to assess scatter and inter-cluster dis­

similarity. A significant disadvantage of the DB index is that it does not have a fixed 

range, with an output value only constrained to be non-negative, making interpretation 

problematic. In addition, empirical analysis has shown that, when attempting to select k, 

this index tends to underestimate the number of groups, particularly for weakly clustered 

data (Dubes, 1987).

C -in d ex

Hubert & Levin (1976) proposed a cluster validation measure that evaluates the homo­

geneity of a set of clusters by comparing the weight of the intra-cluster distances induced 

to a similar proportion of inter-cluster distances. Formally, let dw denote the sum of all 

intra-cluster distances induced by a clustering C. Furthermore, let dmin denote the sura of

(3.5)

It should be noted that evaluation criteria based on object-centroid distances will often

(3^6)

making smaller values for this index desirable. As with Dunn’s index, arbitrary cluster
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the Iw smallest and dmax denote the sum of the largest distances across all pairs of ob­

jects in the dataset. Having examined all pairwise distances, the C-index for a clustering 

is calculated as the ratio:

HL{C) =  (3.7)
(^m.n.T. O'Tn.i'n.

A small value for this ratio is generally indicative of a more cohesive clustering. While 

the C-index has not been frequently employed in unstructured text clustering problems, 

Dalamagas et al. (2004) did evaluate its application in determining a suitable cut-off point 

for hierarchical clustering of XML documents.

S ilh o u ette  in d ex

Rousseeuw (1987) suggested computing a “silhouette value” for each object in a clustering, 

which measures the degree to which the object belongs to its current cluster relative to 

the other fc — 1 clusters. Formally, for each Xi € Ca, let a{i) denote the average distance 

between the object and all other objects in Ca, and let h{i) denote the average distance 

between Xi and all objects in the nearest competing cluster Ci\

The silhouette width for Xi is then computed using the expression:

max {a[i),b(i)\

This produces an evaluation in the range [—1,1], indicating how well the object fits in 

its own cluster when compared to how' well it would fit if moved to another cluster. 

A value close to 1 indicates that xi is likely to have been assigned to the appropriate 

cluster, a silhouette closer to 0 suggests that Xi could also have been assigned to the 

nearest alternative cluster, while a negative value suggests that Xi is likely to have been 

incorrectly assigned. The latter case can also be interpreted to mean that the object is an 

outlier. An overall evaluation for a k-w&y clustering, the average silhouette width, can be 

computed by taking the mean silhouette of all n  participating objects:

1 "
ASW{C) = ~ Y ^ s i l ( i )  (3.9)

^  i=l

While the use of the silhouette index in identifjdng a suitable cut-off point for hierar­

chical document clustering was considered by Yao & Choi (2005), it has not been widely
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employed to validate clusterings of text corpora. When working with this type of data, 

an alternative formulation, based on cosine similarity values, may be more appropriate. 

In this case, ca{i) denotes the average similarity between a document x, S Ca and the 

other documents in that cluster, and cb{i) denotes the average similarity between Xi and 

the documents in the next nearest cluster Ci,:

A silhouette width for the document Xi is now calculated using the expression;

To produce an overall evaluation for a clustering, we take the average across all n  docu­

ments in a manner analogous to Eqn. 3.9:

Once again, a higher values signifies a superior clustering of the data.

3 .2 .2  R ecen t In tern a l V a lid a tio n  T ech n iq u es

W'hile the tasks of cluster evaluation and model selection remain largely unsolved problems 

in document clustering, there has been relatively little progress in this area over recent 

years. Therefore, we now describe several general-purpose internal validation indices that 

have been proposed in recent literature. While not all of these techniques are applicable 

to text data, they are nonetheless interesting for the broader task of cluster validation.

Hybrid clustering criterion

Zhao & Karypis (2001) suggested a criterion specifically for use in the context of document 

clustering, which rewards partitions that represent a good trade-off between the standard 

goals of maximising intra-cluster cohesion while minimising inter-cluster associations. The 

authors suggest that the former can be achieved by maximising the sum of the average 

pairwise cosine similarities induced by a clustering C, as quantified by:

1
CA SW(C)  = - y c s i l i i )  

n
(3.11)
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The second goal can be attained by ensuring that a clustering clearly separates the docu­

ments in a cluster from the rest of the collection, specifically by producing a low value for 

the quantity:

e l. 5
A complete evaluation for a clustering C is produced considering both objectives simulta­

neously, using the ratio:

H(C) =  ^  (3.12)

It is clear that a good clustering should produce a high value for this index, indicating 

strong associations between documents assigned to the same cluster and low associations 

between documents assigned to different clusters. While this criterion may be useful for 

comparing clusterings with equal numbers of clusters, it exhibits a strong bias toward 

larger values of fc, making it unsuitable for estimating the number of topics in a document 

collection.

G eo m etr ic  in d ices

Frederix & Pauwels (2004) proposed a number of non-parametric validation techniques 

which do not exhibit the strong bias toward spherical clusters that is present in a number of 

traditional indices. In contrast, the proposed indices are primarily based on the assumption 

that a cluster may take the form of an arbitrary geometric shape consisting of a dense 

region that is well-separated from the other clusters.

Motivated by the observation that regions forming cluster structures will normally be 

locally homogeneous, such that the majority of the set of neighbours of each object are 

likely to belong to the same cluster as that object, the authors propose an index referred 

to as cluster tension. This index examines the diversity of cluster assignments among the 

p nearest neighbours of each data object, while also asserting that diversity in high-density 

regions is more indicative of an incorrect clustering than diversity in less dense regions. 

This assertion is incorporated into the measure by weighting diversity by local density 

computed using a suitable density function <p{x). Formally, a global score for a clustering 

C is computed by taking the mean local tension over all n  data objects

1 "

T{C) = (3-13)
^  • 1 1=1
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where Sp{xi) denotes the fraction of the p nearest neighbours of Xj which have been assigned 

to a different cluster in C. In practice, the expected value for Eqn. 3.13 is calculated 

by applying the index to a collection of randomly generated clusterings of the data. An 

estimated p-value is then used to assess the significance of the clustering evaluation, where 

a small value relative for Eqn. 3.13 relative to the random evaluation scores is indicative 

of a good clustering.

While the index described above will assess cluster compactness, Frederix & Pauwels 

(2004) proposed a second measure, the connectivity index, that evaluates the degree to 

which a clustering C achieves the alternative objective of “connectedness” . Specifically, for 

any pair of objects assigned to the same cluster in C, the density of the data along the path 

connecting the pair should be consistently high. On the other hand, a poor clustering may 

contain clusters with weakly connected sub-regions. This objective has previously been 

employed in so-called path-based clustering algorithms {e.g. Fischer & Buhmann, 2003). 

In practice, connectivity is evaluated by randomly selecting r pairs (xi ,x j) ,  such that 

the objects in each pair belong to the same cluster in C. The density of the data at the 

midpoint of the path connecting each pair (xi ,xj )  is then computed. A total evaluation 

for the clustering is obtained by calculating the mean density at all r midpoints:

C(C) =  i ^ 0 ( m , )  (3.14)
i=l

where denotes the midpoint for the ?'-th pair of objects. The authors suggest that 

the robustness of this index can be improved by computing the density at multiple points 

along each path.

While density-based and path-based cluster analysis procedures have not been gener­

ally applied to text data, the dual objectives of connectedness and local density are still 

desirable in the context of document clustering. We examine a novel validation technique 

that makes use of the latter concept in Section 7.2.

B ayesian  In form ation  C riterion

When using model-based clustering techniques, a popular approach for estimating the 

number of clusters has been to apply the Bayesian Information Criterion (BIC) (Schwarz, 

1978). This criterion estimates the optimal number of mixture components for a dataset 

X  containing n objects by computing an evaluation for the current model based on

B I C  = L { X ) - ' ^ - \ o g n  (3.15)
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where r denotes the number of param eters in the model and L{ X)  refers to  its log- 

likelihood. The first term  indicates how well the  model fits the d a ta  in each cluster, while 

the second term  penalises model complexity. Consequently, a larger value for Eqn. 3.15 

indicates th a t the clustering model is more appropriate for the data.

W hen using the BIC criterion, it is generally assumed th a t the d a ta  consists of a 

m ixture of Gaussian components, corre.sponding to k  clusters (Pelleg & Moore, 2000). In 

this model, the maximum log-likelihood for a cluster Cj  of size n.j is com puted as

L{Cc) = - y  log(27r) -  log(o-^) -  +  rij log{rij) -  rij logn

where the variance estim ate is calculated in term s of Euclidean object-centroid dis­

tances:

i

The overall log-likelihood for a dataset is found by taking the sum over all k  clusters:

k
L{X) =  Y^L{Cc)

C = 1

The BIC technique has been used by a number of authors when employing model- 

based docum ent clustering methods, including spherical EM clustering (Kruengkrai et al., 

2004). However, it has been observed th a t the criterion exhibits a bias toward larger 

values of k when the cluster structures in the d a ta  are not perfectly spherical (Hamerly 

& Elkan, 2004). O ther similar probabilistic model selection techniques include the Akaike 

Inform ation Criterion (AIC) (Akaike, 1974) and M inimum Description Length (MDL). 

It has been observed th a t these techniques can often be com putationally expensive for 

high-dimensional d a ta  (Torre & Black, 2003).

G ap sta tis t ic

Tibshirani et al. (2000) proposed an alternative approach for estim ating the num ber of

clusters in data, which involves comparing the observed intra-cluster cluster dispersion

with its expectation as the value of k  increases. Formally, let Wk denote the to ta l of the

average intra-cluster pairwise squared distances for a clustering containing k groups:

k
=  (3-16)

c = l  ^ x ,y € C c

The Gap statistic compares the observed value of log {Wk)  w ith its expected value under 

an appropriate null reference distribution. In practice, this comparison is perform ed by
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firstly generating b reference datasets, typically from a uniform distribution. To evaluate 

the clustering model for a specific value of k, a clustering is generated on each reference 

set and the average value of log {W^) over the b runs is computed. The difference between 

the actual value for Eqn. 3.16 and its approximated expectation is then examined:

b
GAP{k)  =  y  

0
log Wkb

h = l

logH'fc (3.17)

A final estimation for k is obtained by selecting the smallest value k such that the quantity 

GAP{k)  — GAP{k  +  1) is above a given threshold value.

An advantage of the gap statistic derives from its ability to produce an evaluation for 

the case of A: =  1, which is useful when examining the issue of cluster tendency. However, 

its reliance on the within-cluster squared distance criterion given in Eqn. 3.16 leads it 

to favour compact clusters. In addition, the problem of creating a suitable reference 

distribution is non-trivial, particularly for high-dimensional data (Ben-Hur et ai,  2002). 

We are not aware of any application of this technique that involves text data.

3.3 E xternal V alidation

A significant disadvantage of internal techniques is that useful comparisons may only be 

made between clusterings that are generated using the same data model and similarity 

metric (Ghosh, 2003). We have also seen that many well-known internal indices make 

assumptions about the structure of the clusters in data, so that they favour clusters with 

certain geometric properties.

An alternative approach to validation is to apply the algorithm to a dataset for which 

a reference partition or “ground trTith” is available, typically in the form of predefined 

class labels. External validation indices make use of this information, unavailable to the 

clustering algorithm itself, to quantify the level of agreement between the algorithm’s 

output and the set of k' natural classes C' = { C ' \ , . . . ,  C'k'^ in a reference partition. Since 

these indices generally only consider the final partition of the data, they are independent 

of the representation and metrics used during the clustering procedure. In this section 

we provide a comprehensive review of external vahdation indices that are suitable for 

evaluating disjoint clusterings. When describing these indices, we let n ' denote the number 

of objects in class C ', let Uj denote the number of objects in cluster Cj, and let riij denote 

the number of objects common to both the class C ' and cluster Cj
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3.3.1 Set M atching M easures

A simple external validation approach is to identify a match between each cluster and a 

corresponding natural class in the reference partition. Once a mapping has been found, 

evaluations can be readily computed based on the k' x k confusion matrix N, where the 

entry Nij denotes the size of the intersection jC' n Cj\ between the class C- and cluster Cj.  

An example demonstrating the construction of a confusion matrix is shown in Figure 3.2. 

It is clear that, by examining the entries in the 3 x 3  matrix, we can find the optimal 

permutation tt of the groups in C relative to those in C .

C  =  { { x i ,J ;2 } ,{ x3,X4,A-5}, 

{X6,J;7,X8}}

{ x 4 , X 5 , X g } }

Class Cl C2 ^3
C'l 2 0 0
C'2 1 0 2
C'z 0 2 1

t̂ {Ci ,C2,C2}

= {C'i,C'2,C'3}

Figure 3.2: Example of a simple matching procedure to align the groups in a correct 
classification C  of eight data objects with those in a clustering C of the same data.

C lassification accuracy

Motivated by conventional evaluation techniques in supervised learning, several authors 

have suggested assessing the quality of a partition by assigning a unique dominant natural 

class to each cluster and counting the number of objects that have been assigned to the 

correct cluster (Meila, 2002). To do this, a heuristic correspondence procedure is applied, 

which first identifies the largest intersection Nij , resulting in a match between C- and Cj.  

The next match is chosen based on the highest value Nij from the remaining pairs, with 

the procedure continuing until min{k', k) matches have been found. Note that no class 

may be matched to more than one cluster. The classification accuracy for the clustering 

C is then calculated using the expression

j'=match{j)

where match{j) denotes the index of the class selected as a match for the cluster Cj.
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P u r ity

Zhao & Karypis (2001) suggested measuring the extent to  which each cluster contains 

objects from a single dom inant natura l class. The purity of a cluster Cj  is defined as the

fraction of objects in the cluster th a t belong to the dom inant class contained within th a t

cluster:

P{C'i ,Cj) = —  max{Ni j }  (3.19)
rij i

Unlike the classification accuracy measure, purity  allows multiple clusters to  be m atched 

to  the  same dom inant class. The overall purity  of a clustering is defined as the sum of the 

individual cluster purities, weighted by the size of each cluster:

k
P{C',C) =  ^  — P {C ' , C j)  (3.20)

j = i  ^

This measure provides a naive estim ate of partition  quality, where larger purity  values are 

intended to indicate a be tte r clustering. However, as noted by Strehl & Ghosh (2002a), 

the index favours small clusters, with the degenerate case of a singleton cluster resulting 

in a maxim al cluster purity score.

F -M easu re

The F-Measure (Larsen & Aone, 1999) is based on the recall and precision criteria th a t 

are commonly used in inform ation retrieval tasks. Each cluster is viewed as the result of 

a query operation, and each natu ral class is viewed as the target set of docum ents for the 

query. In the ideal case, each cluster will directly correspond to  a natu ral class. Using our 

notation, precision and recall for a class C- and cluster Cj  are defined respectively as:

p(C,.C') = ^  r{C„Cl) = ^
High precision implies th a t most objects in a given cluster belong to the same class, while 

high recall suggests th a t most objects from a single class were assigned to the same cluster. 

The F-m easure for a pair {C[,Cj)  is given by the harmonic mean of their precision and 

recall, calculated as:

Fy. ^  (3.21)
Pij +  ‘>'ij

For each class (7-, a unique m atching cluster Cj  is selected so as to  maximise the value 

Fij. An overall score for a clustering C is obtained by taking the weighted average of the
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maximum F-values across all k' classes:

F{C',C) = y  max {F^j} 
■“  n j

(3.22)
t = i

Ghosh (2003) observed th a t this index has a tendency to  favour clusterings containing a 

small num ber of clusters.

Partition  distance

Gusfield (2002) defined the partition distance between two clusterings, denoted D{C',C), 

as the minimum num ber of objects th a t must be reassigned in C to  produce a solution 

identical to  C .  A maximum value for this measure is achieved in the trivial case where 

one clustering contains a single cluster and the other contains only singleton clusters. 

To address this, a normalised distance function producing values in the range [0,1] was 

proposed, which is given by:

To efficiently identify the optim al correspondence betw'een groups in bo th  classifications, 

the authors suggested using the well-known Hungarian m ethod (Kuhn, 1955).

3 .3 .2  P a irw ise  C o -a ss ig n m en t M easu res

An alternative approach to  external validation is to  count the pairs of objects for which 

the clusters and natural classes agree on their co-assignment. By considering all pairs, we 

can calculate statistics for each of four possible cases:

• a = number of pairs in the same class in C  and assigned to the same cluster in C.

• b — num ber of pairs in the same class in C', bu t in different clusters in C.

•  c — number of pairs assigned to the same cluster in C. bu t in different classes in C .

• d =  num ber of pairs belonging to  different classes in C  and assigned to  different 

clusters in C.

Note th a t a+d  corresponds to the num ber of agreements between C' and C, b+c corresponds 

to the disagreements, and M  = a + b+ c + d — is the to tal num ber of unique pairs.

For instance, in the example shown in Figure 3.2, examining the co-assignments for the 

28 unique pairs results in the values a =  3, 6 =  4, c =  4, =  17.

(3.23)
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Jaccard  in d ex

The Jaccard coefficient (Jaccard, 1912) has been commonly apphed to  assess the sim ilarity 

between binary sets. It is also possible for this measure to be used in the context of external 

validation, where the level of agreement of between the disjoint partitions C  and C is given 

by normalising the num ber of positive agreements:

= (3 .24)d 0 c

This index produces a result in the range [0,1], where a value of 1 indicates th a t C  and 

C are identical. Dubes (1987) observed th a t Eqn. 3.24 tends to produce high values for 

random  clusterings and favours lower values of k.

R and  in d ex

The Rand index  (Rand, 1971) is similar to the above measure, bu t also considers cases 

where bo th  partitions assign a pair of objects to  different groups. This results in an 

evaluation in the range [0,1] based on the fraction of pairs for which there is an agreement:

R {C 'X )  = --------------------------------------------------------- (3.25)
a b c d

To elim inate biases related to  different cluster size d istributions and the num ber of clusters, 

H ubert & Arabie (1985) proposed the corrected Rand index, which is com puted £is follows:

CR{C',C) =  ------ 2 { a d - b c )    ^ ^ 26)
(o +  t>) (6 +  (i) +  (a +  c)(c +  d)

After applying this correction, a value of 1 indicates a perfect agreement between the

two groupings, while a value of 0 indicates th a t a clustering is no be tte r th an  a random

partitioning of the data.

F ow lkes-M allow s in d ex

A popular index for assessing the sim ilarity between partitions was proposed by Fowlkes & 

Mallow (1983), which is based on the calculation of two probability scores: the probability 

th a t a pair of objects are assigned to  the same cluster given th a t they belong to  the same 

class, and the probability th a t a pair objects belong to  the same class given th a t they were 

assigned to the same cluster. A value for the Fowlkes-Mallows index (FM) is found by 

taking the geometric mean of these probabilities:



A value close to  1 indicates th a t the clusters in C provide a good estim ate for the reference 

partition.

3 .3 .3  In fo rm a tio n  T h eo r e tic  M ea su res

Recent research relating to cluster validation has focused on concepts from inform ation 

theory, which consider the uncertainty of predicting a set of natural classes based on the 

inform ation provided by a clustering of the same data. We now describe two indices, based 

on these concepts, which have frequently been apphed to evaluate clusterings of tex t data.

Entropy index

Steinbach et al. (2000) suggested an entropy-based measure for assessing the agreement 

between tw'o partitions. By considering the probability ^  th a t an object assigned to 

cluster Cj  belongs to  a class C ', we can com pute the entropy for the assignments in Cj\

/  i " j  t C 'ji=l

An overall score for a clustering C is given by the sum of the entropy values for each cluster 

weighted by the fraction of objects assigned to  th a t cluster:

k
E { C 'X )  =  ^  — E{Cj)  (3.29)

i= i

Smaller values for this measure are desirable, with a value of 0 indicating th a t each cluster 

contains instances from a single class. To eliminate the strong bias of Eqn. 3.29 w ith 

respect to k, a variant of this index was proposed by Zhao & Karypis (2001), where the 

normalised entropy for a cluster Cj  is calculated as:

z = l

Unlike purity  and classification accuracy, entropy considers the distribution of all classes 

in a cluster, ra ther th an  a single dom inant class. However, this index still exhibits a bias 

in favour of smaller clusters.

Norm alised M utual Inform ation

Strehl & Ghosh (2002a) observed th a t external measures such as purity  and entropy are 

biased with respect to the number of clusters fc, since the probability of each cluster
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solely containing objects from a single natu ral class increases as k  increases. To address 

this problem, an alternative index was proposed, based on mutual information, which 

quantifies the am ount of inform ation shared between the random  variables describing a 

pair of disjoint partitions.

Formally, let p'{i) and p{j)  denote the probabilities th a t an object belongs to  class 

Cl and cluster Cj  respectively. Furtherm ore, let p{ i , j )  denote the joint probability th a t 

an object belongs to both  C- and Cj. For each d a ta  object assigned to a class in C', 

m utual inform ation evaluates the degree to which knowledge of this assignment reduces 

the uncertainty regarding the assignment of the object in C. The mean reduction in 

uncertainty across ail objects can be expressed as:

k' k
I{C',C) =  (3.31)

I{C',C) takes values between zero and min {E{C'), E{C)),  where the upper bound is the 

minimum of the entropy values for the two clusterings. To produce values in the range

[0,1], Sti’ehl & Ghosh (2002a) defined normalised mutual information (NMI), where the

m utual information between the two clusterings is normalised with respect to the geometric 

mean of their entropies:

NI{C',C)  = -  (3.32)
VEiC ')E{C)

In practice, an approxim ation for this quantity, based on cluster assignments, can be 

calculated using:

N M 1 { C \C )  = , . —    __ __— (3. 33)

An accurate clustering should maximise this score, where a value of 1 indicates an exact 

correspondence between the assignment of objects in C  and C, while a value of 0 indicates 

th a t knowledge of C provides no inform ation about the true classes C.  Eqn. 3.33 does 

have a slight tendency to  favour clusterings for larger values of k,  although it exhibits no 

bias against unbalanced cluster sizes.
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3.4 Stability-B ased Validation

Recently, a num ber of m ethods based on the concept of stability analysis have been pro­

posed for the task of model selection. The stability of a clustering algorithm  refers to  its 

ability to  consistently produce similar solutions on d a ta  originating from the same source 

(Lange et al., 2004). Since only a single set of d a ta  objects will be generally available 

in unsupervised learning tasks, clusterings are generated on perturbations of the original 

dataset. A key advantage of stability analysis m ethods lies in their ability to  evaluate a 

model independently of any specific clustering algorithm  or sim ilarity measure. Thus, they 

represent a robust approach for selecting key algorithm param eters (Law & Jain, 2003).

In this section, we focus on stabiUty-based m ethods th a t are relevant when estim ating 

the optim al number of clusters fc in a dataset. These m ethods are m otivated by the 

observation th a t, if the number of clusters in a model is too large, repeated clusterings 

will lead to arb itra rj' partitions of the data, resulting in unstable solutions. On the other 

hand, if the num ber of clusters is too small, the clustering algorithm  will be constrained to 

merge subsets of objects which should rem ain separated, also leading to unstable solutions. 

In contrast, repeated clusterings generated using the optim al num ber of clusters k  will 

generally be consistent, even when the d a ta  is perturbed or distorted.

3.4.1 S tab ility  A nalysis B ased on R esam pling

The most common approach to stability analysis involves perturbing the d a ta  by randomly 

sampling the original objects to  produce a set of r  non-disjoint subsets. For each potential 

value of /c in a reasonable range a corresponding set of r  clusterings are

generated on the d a ta  subsets. The stability  of the clustering model for each candidate 

value of k is evaluated using indices operating on pairs of hard clusterings, such as the 

external validation indices described in Section 3.3. A higher overall stability score suggests 

th a t k  is a b etter estim ate for the optim al value k.

A  representative example of this approach is the algorithm  proposed by Levine & 

Domany (2001). For each value of k, an initial partition  Cq is generated on the entire 

dataset using a partitional clustering algorithm , which represents a “gold standard” for 

analysing the stability  afforded by using k  clusters. Subsequently, r  samples of the d a ta  

are constructed by random ly selecting a subset of (3n d a ta  objects w ithout replacement, 

where 0 <  /? <  1 denotes the sampling ratio  controlling the num ber of objects in each
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sample. A set of clusterings {C i,...,C t-}  is then generated by applying the clustering 

algorithm  to each sample. For each clustering Cj, the fraction of co-assignments preserved 

from Cq is calculated, which is equivalent to the Rand index (3.25). An overall evaluation 

for the stability  afforded by k  is found by averaging the agreement scores across all r  runs. 

This process is repeated for each potential k  £ [kmin,kmax]- A final estim ation for k  is 

chosen by identifying the value k  leading to the highest average agreement.

Law & Jain  (2003) proposed an alternative stability analysis approach for model se­

lection where the d a ta  is pertu rbed  by bootstrapping. This involves generating t  samples 

of size n  by randomly sampling w ith replacement. R ather than  comparing each clustering 

to  a single gold standard  solution, stability is evaluated by considering the level of agree­

m ent between each pair of clusterings. A num ber of indices were considered for assessing 

agreement, including the Jaccard index (3.24) and the Fowlkes-Mallows index (3.27). The 

authors note th a t scores produced by these indices should be corrected for chance to  elim­

inate biases toward smaller values of k. After computing the variance of the corrected 

agreement scores for each potential value k, the model resulting in the lowest variance is 

selected as the best estim ate for k.

Ben-Hur et al. (2002) described a similar approach based on pairwise stability analysis, 

where agglomerative hierarchical clustering is applied to  each sample. By using different 

cut-off levels from the same hierarchy, the ou tpu t of a single clustering procedure m ay be 

used in the evaluation of all potential values of k. Giurcaneanu & Tabus (2004) extended 

this approach further to  encompass the problem of cluster tendency. This is achieved by 

setting a threshold 9 value for the minimum average pairwise stability th a t is sufficient 

to indicate a consistent clustering model. If no stability evaluation exceeds this threshold 

for any candidate k  G [ A m m ,  ^ m a x ] )  the da ta  is assumed to  have no significant underlying 

structure. The choice of 9 largely depends on the index used to  measure the agreem ent 

between clusterings.

3.4 .2  P red iction -B ased  V alidation

In supervised learning problems, model selection is typically performed by identifying a 

learning model whose estim ated prediction accuracy is highest. A num ber of authors 

have suggested th a t the concept of prediction accuracy can be adapted to  the problem  of 

evaluating models in clustering tasks. Recent work by Tibshirani et al. (2001) has provided 

a theoretical basis for prediction-based validation methods, which assess the stability  of a
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clustering model by measuring the degree to which it allows us to consistently construct 

a classifier on a training set that will predict the assignm ent of objects in a clustering of 

a corresponding test set.

Formally, the validation process involves applying two-fold cross-validation to ran­

dom ly split a dataset X  into disjoint training and test sets, denoted by and Xb respec­

tively. B oth sets are then clustered to produce partitions Ca and Cb, typically using the 

standard A:-means clustering algorithm. Subsequently, a prediction Vb for the assignment 

of objects in the test set is produced by assigning each x , 6  Xb to the nearest centroid in Ca- 

Prediction accuracy is measured by evaluating the degree to which the class memberships 

in Vb correspond to the cluster assignm ents in Cb-

To numerically evaluate prediction accuracy, Tibshirani et al. (2001) proposed a new  

pairwise measure for comparing partitions, referred to as prediction strength- For each 

cluster in the test clustering Cb =  { C i , . . . ,  C^}, we identify the number of pairs of objects 

assigned to the same cluster that also belong to the sam e class in the prediction Vb- These 

associations can be represented as a. binary m atrix M , where Mij =  1 only if the pair 

(xi ,xj )  are co-assigned in both Cb and Vb- From this matrix, an evaluation is computed  

based on the cluster containing the sm allest fraction of correctly predicted pairs:

The cross-validation process is repeated over r  runs for each candidate value k in the 

range \kmin-,kmax\- The authors suggest a heuristic approach to select the final number

threshold. This can be viewed as the selection of the largest number clusters that can be 

reliably predicted for a given dataset. They note that a threshold in the range [0.8, 0.9] 

was appropriate for the datasets with which they evaluated the algorithm.

As a simple example, we consider a single cross-validation run for fc =  2 applied to 

the set of 34 data objects shown in Figure 3.3(a). This dataset is randomly divided into 

two subsets containing 17 objects each. A training clustering Ca is generated on the first 

subset and a test clustering Cb is generated on the second, as shown in figures 3.3(b) and 

3.3(c) respectively. The centroids jii and ^2 of Ca are subsequently used to build a nearest 

centroid classifier, which produces the predicted classification Vb for the set of test objects 

as illustrated in Figure 3.3(d). By constructing a 17 x 17 co-assignment m atrix M  from 

Cb and Vb, and applying Eqn. 3.34, we can calculate that this run leads to a prediction

S{Cb,Vb) ^  min
1

(3.34)\Ch\ (|C'/j| — 1) 
X i ^ X j € C h

of clusters, which is chosen to be the largest k such that ps{k)  is above a user-defined
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(a) Full dataset (b) Training clustering (Ca)

(c) Test clustering (Ci,) (d) Predicted clustering {Vb)

F ig u re  3.3: Example of applying prediction-based validation to examine the suitability 
of a clustering model with k = 2 for a synthetic dataset of 34 data  objects.

strength of S{Ch,Vb) = 0.43, indicating th a t the clustering model is relatively unstable. In 

practice, nmltiple cross-validation runs would be applied to  produce a result tha t is robust 

to  the effects of unbiased random sampling.

A similar approach for selecting the nmnber of clusters was described by Roth et al. 

(2002), which also makes use of two-fold cross validation. However, prediction accuracy 

was measured by finding the optimal correspondence of the  clusters in the test clustering 

with the predicted clusters using the Hungarian method (Kuhn, 1955) and computing the 

niunber of incorrect assignment predictions. An evaluation for the instability of a clus­

tering model is found by averaging the number of incorrect assignments over r  iterations. 

Another variation of this approach was discussed by Giurcaneanu & Tabus (2004), who 

suggested evaluating prediction accuracy using a measure related to  the partition  distance 

index defined in Eqn. 3.23. Specifically, the partition similarity between a test cluster­

ing Ch and a corresponding prediction Vi, is equivalent to  the inverse of the normalised 

partition distance between the two groupings:

PSIM iC b,  n )  =  1 -  (3.35)( n -  1)

A higher mean value for this index across t  runs indicates th a t the clustering model under
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consideration affords a greater degree of stability.

3.5 Sum m ary

In this chapter, we surveyed a range of approaches for assessing the validity of cluster­

ing solutions, and the models used to produce them. External validation methods have 

been widely used in the document clustering literature for evaluating the ability of novel 

clustering methods to uncover the natural classes in pre-classified corpora. Hence, in the 

remainder of this thesis we make extensive use of external indices when comparing the 

relative performance of clustering algorithms. It is important to note that a priori class 

information will generally be inaccessible in real unsupervised tasks, making external 

validation methods inappropriate for problems such as model selection. As an alterna­

tive, internal validation indices have frequently been employed for this task in the past. 

Unfortunately, internal indices often exhibit biases towards clusters with certain charac­

teristics. Recent work has shown model selection methods based on stability analysis to 

be superior in domains such as bioinformatics (Dudoit & Fridlyand, 2002). However, the 

computational cost of generating and analysing many clusterings can be prohibitive for 

large, high-dimensional datasets. Consequently, these methods have rarely been applied 

by researchers working with text data. We examine this issue in detail in Section 7.2 and 

propose a new strategy for greatly enhancing the scalability of stability analysis methods.
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Chapter 4

Text C lustering Toolkit

4.1 In troduction

For researchers interested in the exploration of unstructured text datasets, the absence of 

a comprehensive toolkit providing access to state-of-the-art algorithms represents a signif­

icant obstacle. Motivated by this problem, we have developed the Text Clustering Toolkit 

(T C T )\ a new Java-based framework for document clustering, which provides researchers 

with the ability to compare and extend many popular cluster analysis procedures. In 

this chapter, we describe the architectural design and functionality of TCT, and provide 

practical details regarding its implementation and usage.

4.1.1 D esign  C onsiderations

Unlike existing machine learning toolkits, many of which are limited to the demonstration 

of specific types of learning algorithm, we have aimed to create a framework for unsuper­

vised learning that is modular and extensible. In particular, our goal has been to provide 

researchers with a test-bed to facilitate both the evaluation of existing techniques and 

the development of novel analysis procedures. Many clustering techniques share common 

characteristics, such as the iterative reassignment process common to partitional clustering 

algorithms. We have tried to ensure that implementations of frequently employed routines 

are readily available to serve as “building blocks” for new algorithms. By abstracting away 

these lower-level procedures, TCT allows researchers to concentrate on more sophisticated 

aspects of their algorithms.

^Available from h t t p : / / m lg .u c d . i e / t c t
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With TCT, we aimed to produce a set of loosely coupled libraries suitable for a va­

riety of tasks, without significantly compromising on efficiency or scalability. While our 

current focus is on the analysis of text data, we envisage that TCT will provide a basis 

for unsupervised learning applications in other areas, such as bioinformatics and image 

processing.

4.2 T oolkit S tructure

In this section, we describe the overall architecture of TCT, and highlight important 

aspects of the functionality of the toolkit.

4.2.1 A rch itecture

The arcliitecture of the toolkit reflects the considerations described in the previous section. 

To support the development of a wide range of machine learning applications, TCT is 

designed around a layer-based architecture, containing generic components that can be 

easily extended and customised for problem-specific tasks. W ith regard to the actual 

structure of the toolkit, it may be divided into three distinct layers as shown in Figure 4.1. 

These layers correspond to three separate libraries: the matrix library, the core learning 

library, and the document clustering library.

Document
Clustering
Library

Core
Learning
Library

Matrix
Library

F ig u re  4.1: Design of the layer-based architecture for the Text Clustering Toolkit (TCT).

User Applications

Text-Specific Methods

Corpus Data Structures

Preprocess
Methods

Clustering
Methods

•

Validation
Methods

Core Data Structures

Vector
Operations

Matrix
Operations

Storage
I/O
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M a trix  Library

Many unsupervised learning algorithms can be reduced to a series of matrix and vector 

operations. Thus, the foundation layer of the toolkit stack consists of a library providing 

essential linear algebra operations. Feature spaces, graphs, and other data models may be 

represented as matrices and manipulated by this library. TCT includes support for both 

dense and sparse matrices, which are useful for representing different types of data. In 

these cases, the matrix library supports functionality that is comparable to that provided 

by commercial offerings such as the MATLAB environment^. This includes operations 

for EVD and SVD computation, sparse and dense matrix multiplication routines, and 

functions for generating a variety of statistics describing a given vector or matrix.

C ore L earning Library

The central layer of the stack structure consists of two parts. Firstly, we provide a range 

of key data structures relevant to various clustering tasks. This includes generic struc­

tures for representing data in feature spaces, and models for hard, soft and co-clusterings. 

The second part of this layer consists of a large set of modular components, providing 

implementations for many of the algorithms discussed in this thesis. Conceptually, the set 

of component implementations in the learning library may be sub-divided into groups of 

methods corresponding to the three phases of the clustering workflow originally shown in 

Figure 1.2: preprocessing, clustering and validation.

D o cu m en t C lu ster in g  Library

At the top of layer stack, we have built a library specific to our area of interest, comprising 

of data structures and algorithms relevant to the task of document clustering. The former 

covers implementations for models commonly used to represent sparse text corpora, while 

the latter includes algorithms specific to text mining tasks, such as term weighting, term 

selection and cluster labeUing methods. Custom applications may subsequently be built 

upon the document clustering library to provide users with access to toolkit functionality. 

It is worth noting that this library could be interchanged for an alternative implementation 

when working in other domains.

^http;//www.mathworks.com/products/matlab/
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4.2.2 Functionality  

D a ta  F orm ats

For matrix storage, we support dense, whitespace-separated matrix storage with row la­

bels, coordinate-based storage compatible with the standard Matrix Market exchange 

format^ for sparse matrices, and a variety of character delimited formats compatible with 

MATLAB and Microsoft Excel. We build upon these basic formats to provide storage for 

both generic, low-dimensional datasets and sparse, high-dimensional document collections. 

In the latter case, the original term strings are available for use in the generation of cluster 

labels.

R ep o sito ry

While TCT can make use of stand-alone files, to provide ready access to datasets when 

performing experimental evaluations, the document clustering layer of the toolkit includes 

support for storing corpora in a local repository. In addition to providing access to various 

aspects of the data (such as raw documents or terms), we also provide the facility to save 

newly generated clusterings or reduced representations to the repository, which can be 

retrieved for use at a later time.

D a ta  P rep ro cessin g  C om p on en ts

For preprocessing document collections, we provide a standard “bag of words” parser, 

which supports both word and r?-gram tokenisation. Extremely rare or frequent terms 

may be removed at this stage to reduce the size of the corpus vocabulary. After an initial 

representation of the data model is produced, a variety of term weighting functions may 

be applied corresponding to those originally described by Salton & Buckley (1987). In 

addition, many state-of-the art methods are available to tackle issues resulting from high 

dimensionality, including many of the feature selection and extraction strategies described 

in Chapter 2. For the construction of affinity and kernel matrices, we provide imple­

mentations for a range of similarity metrics and kernel functions. A full list of currently 

supported preprocessing components is given in Table 4.3.

^See h ttp ://m ath .n ist.gov/M atrixM arket for format specifications.
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Category Components
Parsing • Word-based bag of words parser

• N-gram bag of words parser

Normalisation • Tf-idf  normalisation (and variants)
• Document length normalisation

Feature selection • Mean tf-idf
•  Term variance quality
• Term contribution

Feature extraction • Principal Component Analysis
• A'-dimensional spectral embedding
•  Bipartite spectral embedding

Similarity measures • Euclidean distance
• Minkowski distance
• Cosine similarity/distance
• Jaccard similarity

Kernel functions • Normalised linear kernel
• Gaussian RBF kernel
• Polynomial kernel

T a b le  4 .1 : A list of s ta n d a rd  preprocessing m eth o d s su p p o rted  by T C T .

C lu ster in g  C om p on en ts

T C T  contains im plem enta tions for a w ide variety  of classical algorithm s, such as /c-means 

and  agglom erative h ierarchical clustering , to g e th er w ith  recent techniques based on spec­

tra l decom position, non-negative m a trix  factorisation  and  ensem ble clustering. W hile we 

have prim arily  used these  im plem enta tions in conjunction  w ith  te x t d a ta , th e  m ajo rity  of 

these  algorithm s are also relevant to  o th e r types of d a ta . Table 4.2 provides a  com plete 

list of supp o rted  algorithm s. N ote th a t,  in add ition  to  those hsted  here, im plem entations 

of th e  novel m ethods proposed la te r in chap ters 6 and  7 are  also included in th e  too lk it.

V alid ation  C om p on en ts

Since one of th e  p rim ary  aim s of th is  too lk it is to  provide a  tes t-b ed  for th e  design and 

developm ent of new clustering  m ethods, we have paid  p a rticu la r  a tte n tio n  to  providing 

a  range of com ponents for assessing th e  o u tp u t of c lustering  a lgorithm s and  for guiding 

p a ram ete r selection procedures. For benchm ark  com parisons, a  num ber of ex te rn a l val­

id a tion  indices are provided, including all of those discussed in Section 3.3. For m odel 

selection, b o th  in te rna l indices an d  s tab ility -based  valida tion  m ethods are available. A
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C ategory C om ponents
Hierarchical algorithms • Agglomerative (single, complete, average linkage)

• Min-max agglomerative clustering
• Bisecting fc-means
• Principal Direction Divisive Partitioning

Partitional algorithms • Standard/generalised fc-means
• Spherical /c-means
• Fuzzy c-means

Matrix decomposition • NJW spectral clustering
• Bipartite spectral co-clustering
• Euclidean NMF clustering
• KL divergence NMF clustering
• Symmetric NMF

Kernel clustering • Kernel /c-means
• Weighted kernel /c-means
• Kernel bisecting /c-means

Ensemble clustering • Subsampling-based generation
• Random parameter value generation
• Initialisation-based generation
• Co-association integration
• Hypergraph integration
• Bipartite integration
• Correspondence-based integration

T ab le  4.2: A list of standard  clustering m ethods supported by TC T.

full list of supported validation m ethods is given in Table 4.3.

4.3 Im plem entation and U se

In this section we provide details regarding the practical im plem entation of the TC T 

framework, and describe several ways in which the toolkit may be used by researchers.

4.3.1 Im plem entation  D etails

To provide cross-platform com patibihty, T C T  was developed using Sun Java (version 1.5) 

on Ubuntu Linux 6 (Intel x86). In addition, it has been tested on Windows XP and Apple 

OS 10.4. The key d a ta  structures in the m atrix  and core learning layers take advantage of 

new features in Java 1.5, including generics and greater type safety. W hen implementing 

T C T , we found th a t the object-oriented nature of the language lends itself naturally  to 

the modular, com ponent-based architecture of the toolkit.

As discussed previously, the issue of scalability is highly im portant when performing



C ategory C om ponents
Internal indices • CH-index

• C-index
• Generalised Dunn’s index
• Generalised DB index
• Silhouette index
• Bayesian information criterion

External indices • Purity index
• Class accuracy
• Rand index
• Corrected Rand index
• Jaccard index
• Fowlkes-Mallows index
• F-measure
• Partition similarity/distance
• Normalised entropy
• Normalised mutual information

Stability analysis • Pairwise stability analysis
• Prediction-based analysis
• Correspondence-based analysis

T ab le  4.3: A list of standard  validation m ethods supported by TCT.

tex t mining tasks. To improve efficiency, m any of the clustering and validation m ethods 

in T C T  have been implemented in a way th a t takes advantage of the sparse m atrix  repre­

sentation used for corpus storage. For instance, calculating similarity values or computing 

cluster centroids can be m ade significantly more efficient by only iterating over the non­

zero entries in a sparse m atrix  A 6 ra ther than  examining all m -n  entries. Similar

improvements may also be made when applying spectral dimension reduction methods. 

To this end, we include a Java Native Interface (JNI) w rapper for ARPACK (Lehoucq 

et al., 1997), a standard  library of FORTRAN routines for computing a small number 

of eigenvectors or singular vectors for a m atrix. These routines are particularly efficient 

when employed to  sparse m atrices, making them  well suited to the task  of decomposing 

sparse corpus representations.

4.3.2 User Tools

Our prim ary focus has been on the production of an underlying framework th a t may 

be extended by developers and researchers alike. However, to provide direct access to 

the functionality of the toolkit, the T C T  distribution comes w ith a set of command-line 

applications covering all aspects of the cluster analysis process. The applications included
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are as follows:

parse-vsm : Employs a standard  word-based bag of words parser to  produce a vector space 

model from a raw collection of unstructured tex t documents.

parse-ng ram : Employs an n-gram  bag of words parser to  process a raw collection of 

unstructured tex t documents.

c l u s t e r - h i e r :  A tool for comparing agglomerative and divisive docum ent clustering al­

gorithms, including support for a variety of linkage strategies for the former and 

several representative algorithm s for the latter.

c l u s t e r - p a r t :  A tool for experim enting w ith popular partitional clustering algorithms 

th a t produce hard and soft clusterings.

c lu s te r-d eco m p ; Supports the comparison of a range of previously proposed and novel 

clustering m ethods based on m atrix  decomposition, which are suitable for tex t data.

c lu s te r - k e r n e l :  A tool for comparing various kernel clustering methods, and examining 

the effects of applying different kernel functions on text data. In addition, this 

application provides access to a range of diagonal dominance reductions strategies 

(these strategies are described in detail in Section 6.3).

c lu s te r-e n s e m b le :  Provides access to  ensemble techniques for docum ent clustering. As 

noted in Section 2.9, there are a number of im portant design decision th a t must 

be made when employing these techniques. Therefore, this tool allows users to 

experim ent with different ensemble generation strategies, integration m ethods and 

param eter values.

c l u s t e r - l a b e l :  A tool for comparing different approaches for generating interpretable 

labels for clusterings of tex t data , based on the techniques described later in Sec­

tion 6.2.

A sample of the term inal ou tput produced by the c l u s t e r - l a b e l  tool when applied to

the bbcsport dataset is shown in Figure 4.2. These command-line applications were used

to produce the experim ental results presented throughout this thesis.
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=== cluster-label : ’bbcsport’ =========================
Loaded corpus (Documents=737 Features=4613)
Loaded natural classes (K=5)
»  Pre-processing
Applying TfIdfNormalizer (tf=logarithmic idf=logarithmic) 
Applying UnitLengthNormalizer 
»  Clustering
Constructing linear kernel matrix (CosineSimilarity) 
Selected clustering algorithm: KSSC (k=5)
Selected label generator: IGAIN (top=9)
Applying clustering algorithm...
Generated 5 clusters in 1.8 seconds 
>> Post-processing 
Validation: NMI=0.87 
Applying label generator...
Generated 5x9 cluster labels
rugby
tennis
athletics
football
cricket

rugby,wales,ireland,nation,Scotland,robinson,england,franee,six 
seed,open,6-3,6-4,australian,7-6,tennis,7-5,roddick 
Olympics,athlete,indoor,race,athens,drug,european,gold,iaaf 
Chelsea,club,arsenal,league.united,football,boss,manchester,manager 
cricket,one-day,pakistan,wicket,series,india,test,bowl,bowler

F ig u re  4.2: O utpu t for the c l u s t e r - l a b e l  tool when applied to the bbcsport dataset.

4.3 .3  Sam ple U sage

The com ponents provided in the core and docum ent clustering libraries of T C T  are de­

signed to  be used in a m odular fashion, allowing developers to  chain together multiple 

analysis procedures to produce custom  applications. To dem onstrate how this works in 

practice, we consider a sample configuration th a t combines several procedures as defined 

by the workflow shown in Figure 4.3. Specifically, given a previously parsed document 

collection, we wish to  chain five individual toolkit com ponents pertaining to  different 

phases of the cluster analysis process: preprocessing (TF-ID F norm alisation, fc-way spec­

tra l decomposition), clustering (ensemble clustering based on resampling and hierarchical 

co-association integration) and validation (the external NMI measure).

Figure 4.4 provides a hsting for the Java source code for an application th a t imple­

m ents the configuration given in Figure 4.3. By utilising the  T C T  libraries, this relatively 

complex configuration can be rendered using few lines of code. It is clear from these figures 

th a t there is a direct m apping betw^een the conceptual cluster analysis workflow and the 

corresponding application im plem entation. It is also apparent from this example th a t the 

toolkit allows us to  experim ent w ith novel algorithm  combinations.
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4.4  Sum m ary

In this chapter we provided an overview of the design and implementation of the Text Clus­

tering Toolkit (TCT), a new framework for the development of unsupervised data analysis 

applications. While this toolkit is specifically aimed at researchers working with docu­

ment collections, its modular, extensible nature makes it suitable for use in the context of 

a variety of alternative machine learning problems. This chapter also introduced specific 

functions and example usage. Further details regarding technical aspects of the imple­

mentation, including developer documentation and user tool manual pages, are available 

at the toolkit homepage”*.

■^TCT homepage: h t t p : / /m lg .u c d .ie / t c t
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F igu re 4.3: Sample cluster analysis workflow that chains multiple toolkit components.

public class TestApplication extends TCTApplication 
{
public double runTestC String [] airgs ) throws Exception 
{
// Initialise toolkit 
init(args);

// Load dataset from the repository
Corpus corpus = repository.getCorpus( "bbcsport" );
int k = corpus.getNaturalClasses0 . size();
// Apply TF-IDF pre-processing 
new TfIdfNormalizer().apply(corpus);

// Build a cosine similarity matrix
SymMatrix S = new CosineSimilarityO.buildSimilarityMatrixC corpus );
// Apply spectral decomposition to the matrix
SpectralDecomposition decomp = new NCutAffinityDecompositionC S, k ); 
Embedding spectralEmbedding = decomp.apply(corpus);

// Apply ensemble clustering to the embedding
Generator generator = new SamplingGenerator( new KMeans( k ) );
Integrator integrator = new HierCoAssociationlntegrator( k ); 
EnsembleClusterer ensemble = new EnsembleClusterer( generator, integrator ); 
Clustering clustering = ensemble.findClusters( spectralEmbedding );

// Validate the clustering using NMI external validation 
return new NMIMeasureO.validate( clustering );

}
}

F igu re 4.4: Source code for an application implementing the cluster analysis workflow 
defined in Figure 4.3, which involves chaining multiple toolkit components.
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Chapter 5

Baseline Analysis

5.1 In trod u ction

W hen exploring an unstructured docum ent collection in a real-life learning scenario, a 

user is faced with the dilemma of choosing from among the many existing approaches 

th a t have been proposed for docum ent clustering, such as those reviewed in C hapter 2. 

A similar problem arises when selecting a suitable validation m ethod from those surveyed 

in C hapter 3. A lthough several authors have performed com parative evaluations on text 

da ta  involving a lim ited number of algorithm s (e.g. Steinbach et a i ,  2000), we use TC T  

to provide a comprehensive evaluation of classical cluster analysis m ethods, allowing us 

to  examine their respective advantages and limitations. This evaluation also serves as a 

baseline for the assessment of the novel approaches described in chapters 6 and 7.

5.2 E xp erim en ta l Setup

Before detailing our experim ental results, we begin by providing a full description of the 

datasets and experim ental methodologies which are common to all experim ents discussed 

in the rem ainder of this thesis.

5.2.1 R eal-W orld D atasets

W hen assembling a set of real-world docum ent collections for experim ental evaluation, we 

aimed to  select corpora th a t differ significantly in their them e, dimensions, complexity 

and underlying structure. Of those chosen, the smallest contains 505 documents, while 

the largest contains 8580 documents. Some of these corpora have been widely used as
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Dataset Description n m k Uc Balance
bbc News articles from BBC 2225 9635 5 445 0.755
bbcsport Sports news articles from BBC 737 4613 5 147 0.377
classic CISI/CRAN/M ED sets 7097 8276 4 1774 0.322
classics CACM /CISI/CRAN/M ED sets 3893 6733 3 1297 0.708
cstr Computer science technical abstracts 505 2117 4 126 0.398
ngl7-19 Overlapping newsgroups 2625 12020 3 875 0.824
ng3 Well-separated newsgroups 2928 12357 3 976 0.943
reuters5 Top 5 categories from Reuters-21578 2317 4627 5 463 0.136
reviews Entertainment articles from TREC 4069 18152 5 813 0.099
sports Sports news articles from TREC 8580 14615 7 1225 0.036

Table 5.1; Details of the real-world text datasets used in experiments.

benchmarks for document clustering, while others represent novel collections that have 

proved useful during the course of our research. In all cases, external knowledge in the 

form of a manual classification of documents was available for comparison purposes. A 

full summary of these datasets is provided in Table 5.1, where n  denotes the number of 

documents, m denotes the number of terms, k indicates the number of natural classes in 

the data, and fic denotes the mean number of documents in each class. In addition, the 

“balance” of each dataset refers to the ratio of the size of the smallest natural class in the 

data relative to the size of the largest.

New^s A rtic les

Articles from news sources provide a rich source of topics for document clustering due 

to their high quality and tendency to cover a wide range of interesting themes. For the 

purposes of our evaluation, we constructed two new text corpora^ from articles published 

by the BBC news service^. Specifically, the bbc corpus consists of 2225 complete news arti­

cles published during 2004-2005, which cover five topical areas: ‘business’, ‘entertainm ent’, 

‘politics’, ‘sport’, and ‘technology’. The bbcsport corpus consists of a smaller set of 737 

sports news articles from the same source and time period, also containing five categories: 

‘athletics’, ‘cricket’, ‘football’, ‘rugby’, and ‘tennis’. An advantage of producing corpora 

from these sources is that the data and any resulting clusterings may be interpreted by 

researchers without the need for any specialist knowledge regarding the subject matter.

Reuters-21578 is a collection of documents published by Reuters newswire in 1987,

^Available from h t t p : / / m l g . u c d . i e / d a t a s e t s /
^See h t t p : / /n e w s . b b c .c o .u k
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which has become the most widely used benchmark for tex t classification. The entire col­

lection consists of 21578 documents relating to 135 topics. In our evaluations we consider 

a subset of docum ents from this collection, referred to as reutersS, which is constructed 

as described by Lafferty & Lebanon (2004). Specifically, all docum ents not assigned to  

a  single category are removed, and docum ents assigned to  the five largest categories are 

then  selected: ‘earn ’, ‘acq’, ‘crude’, ‘money-fx’ and ‘grain’.

The reviews and sports datasets^ have been used by a num ber of authors in the evalua­

tion of docum ent clustering algorithms. They consist of subsets of news articles th a t were 

selected from the TR EC  collection based on their them e. The reviews dataset contains 

articles, originally published by the San Jose M ercury newspaper, which pertain  to  food, 

movies, music, radio and restaurants. The sports dataset contains sports news articles 

from the same source covering American football, baseball, basketball, boxing, cycling, 

golf and ice hockey. Both of these datasets contain largely overlapping natu ral classes 

th a t differ significantly in size, which is reflected by their low balance scores in Table 5.1.

T echnical A b stra c ts

The classics and classic datasets are formed from sets of technical abstracts contained 

in Cornell’s SMART repository'^, which have been widely used to evaluate supervised 

text mining procedures. The former is constructed from sets of abstracts from informa­

tion retrieval papers (CISI), medical journals (Medline) and aeronautical systems papers 

(Cranfield). The classic dataset also includes a fourth set, containing abstracts from 

com puter systems research papers (CACM).

The cstr dataset^ represents a smaller collection of abstracts th a t have also frequently 

been used for benchmark evaluation. The abstracts are taken from technical reports pub­

lished by members of the D epartm ent of Com puter Science a t the University of Rochester, 

and relate to  fom- fields of research: AI, robotics/vision, systems, and theory.

N ew sg ro u p  M essages

The 20 Newsgroups (20NG) collection® contains 20,000 Usenet postings, consisting of 

1000 documents from each of 20 different newsgroups covering a wide range of topics. The

^Available from h t t p : //uww. cs . iimn . e d u /~ k a ry p i s / c lu to  
^Available from f t p : / / f t p . c s . c o r n e l l . e d u / p u b / s m c L r t  
^Original abstracts available from h t t p : / /w w w . c s . r o c h e s t e r . e d u / t r s  
^Available from h t t p : / / p e o p l e . c s a i l .m i t . e d u / j r e im i e /2 0 N e w s g r o u p s /
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categorisation scheme for the collection is derived from these newsgroups. Various subsets 

of this collection have recently been used to  evaluate clustering algorithms. Specifically, 

we consider the ngS subset, which is composed of three relatively well-separated groups 

pertaining to  religion, politics and cryptography. We also make use of the ngl7-19 subset, 

which contains messages from three newsgroups th a t exhibit considerable overlap.

5 .2 .2  A rtificial D atasets

While many authors evaluating clustering techniques have made use of synthetic datasets, 

the generation of d a ta  th a t realistically models the distribution of term  frequency values 

in natu ra l language tex t is difficult. As an alternative, we used the 20NG collection as a 

source for artificially composed datasets because it contains a range of topics th a t overlap 

to  varying degrees. These datasets are specifically designed to  evaluate the ability of cluster 

analysis m ethods to  work on d a ta  containing a variety of different cluster structures, such 

as unbalanced cluster sizes or overlapping clusters. From the full collection we derived a 

large number of smaller datasets for which the correct value of k  is known. Specifically, 

we constructed 84 sets in total^, 12 for each value of  k G [2,8]. Half of these datasets 

consist of newsgroups th a t are reasonably compact and well-separated {e.g. ‘graphics’, 

‘hockey’, ‘m ideast’). The remaining datasets are formed from newsgroups th a t overlap 

considerably {e.g. ‘m ac’, ‘windows’). These two halves are further divided into subsets of 

datasets containing clusters of different proportions, in a m anner similar to  th a t suggested 

by Giiu'caneanu & Tabus (2004) for producing artificial data: balanced clusters containing 

500 docum ents each, unbalanced clusters where one cluster contains 10% of the docum ents 

in the dataset, and unbalanced clusters where one cluster contains 60% of the documents. 

In all cases the docum ents were randomly drawn from each newsgroup. The resulting 

datasets range in size from 1000 to  4000 documents, w ith the corresponding dimensionality 

ranging from 4674 to  16282 unique terms.

5 .2 .3  D ata  P reprocessing

The collections of raw docum ents were parsed and processed according to the standard  

tex t mining practises described in Section 2.2.1. For all datasets, we employed a stop- 

list containing 300 entries® to remove common functional words. We then applied the

^Available from h t t p : / / m l g . u c d . i e / d a t a s e t s /
^Available from h t t p : / / m l g . u c d . i e / f i l e s / t c t / s t o p u o r d s . t x t
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standard  Porter suffix stripping algorithm (Porter, 1980) to stem words to their roots. 

We subsequently excluded term s occurring in less than  three documents, which is widely 

performed in text mining tasks to  reduce dimensionality (Drucker et al.  ̂ 1999). To weight 

term  frequency values, we use a variant of log-based tf-idf, where the inverse docimient 

frequency component is defined as i df { i , j )  — \ o g ^ .  Unless otherwise specified, all ex­

perim ents in this thesis involve clustering using the cosine measure (2.4) to  assess the 

similarity between document vectors.

5.2.4 E valuation C riteria  

A c c u ra c y

In Section 3.3 we described a variety of existing approaches th a t may be used to  measure 

the agreement between two partitions of the same dataset, which is frequently done when 

comparing a newly generated clustering solution to  a set of manually labelled natural 

classes. However, while a number of these indices have been specifically used in conjunction 

with text data, many of them  exhibit biases with respect to the number of clusters in a 

partition or their structure.

To dem onstrate this, we consider the mean scores computed on a large niunber of pairs 

of clusterings for four popular indices; NMI, purity, normalised entropy (here we consider 

the inverse 1 — NE( C) )  and the F-measure. In Figure 5.1(a), where the clusterings have
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F ig u re  5.1: Mean external validation index scores based on the pairwise agreement 
between random partitions of 1000 d a ta  objects, illustrating the biases of popular external 
indices with respect to the num ber of clusters k and cluster balance.
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been generated by random assignment, we see that the two measures based on set matching 

award relatively high scores to trivial solutions, particularly for smaller values of k. In the 

experiments summarised by Figure 5.1(b), the solutions were also randomly generated, but 

in each case one cluster was constrained to be approximately 25% the size of the others, 

leading to unbalanced clusterings. As a consequence of this, the purity, entropy and F- 

measure techniques all exhibit a significant bias in relation to the relative proportions 

of the clusters. In contrast, the NMI measure exhibits little bias toward the number of 

clusters, particularly for smaller values of k, and the quality of its evaluations are not 

influenced by cluster balance. We have observed similar behaviour when examining other 

configurations involving skewed cluster sizes.

Our empirical observations corroborate the theoretical work of Strehl & Ghosh (2002a), 

who proposed NMI as a means of providing a robust assessment of external accuracy. For 

the remainder of this thesis, we employ NMI as calculated using Eqn. 3.33 to compare 

the relative accuracy of document clustering algorithms. It is worth noting that, in recent 

literature, NMI has largely become the standard technique for performing this task.

S tab ility

When considering stochastic clustering algorithms, not only is it important to consider the 

ability of an algorithm to produce accurate clusters, but also the frequency with which 

such solutions are produced. While it is possible to consider the variance of the NMI 

scores resulting from several runs of the algorithm, this can sometimes be deceptive as it 

is possible for an algorithm to produce solutions of approximately equal accuracy but that 

differ significantly in terms of cluster content. Therefore, another aspect for evaluation 

is related to the notion of stability introduced in Section 3.4. In cases where we wash 

to assess the stability of stochastic techniques, we employ an extension of the average 

normalised mutual information (ANMI) measure (Strehl & Ghosh, 2002a). Formally, 

given a collection of r  hard clusterings C =  {Ci,. . .  ,Cr]  generated on the same dataset, 

we measure the average NMI score between each unique pair of solutions:

A N M I { C ) =  . V  NMI { Ci , Cj )  (5.1)r(r — 11
 ̂ ' Ci,CjeC

A larger value is indicative of a higher level of agreement between the clusterings in C, 

suggesting that the algorithm producing the solutions affords a greater degree of stability.
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5.3 Com parison of Benchm ark C lustering A lgorithm s

To provide a baseline for comparing clustering algorithm s in the rem ainder of this th e ­

sis, we now present an evaluation of the standard  partitional and hierarchical clustering 

algorithm s described in sections 2.3 and 2.4 respectively.

5.3 .1  P a r t it io n a l  A lg o r ith m s

We performed a comparison of three classical partitional clustering m ethods th a t have 

been widely employed to  m any types of d a ta  including docum ent corpora: standard  k- 

means with cosine sim ilarity (KM), spherical fc-means (SKM), and EM clustering. Each 

experim ent was run for 200 executions on the real datasets listed in Table 5.1. In all 

cases, the param eter k was set to correspond to the num ber of natu ral classes k, and the 

algorithms were initialised with random  cluster assignments.

Table 5.2 presents the m ean and standard  deviation of the NMI scores for the three 

partitional algorithms. We observe th a t /c-means can potentially produce reasonably accu­

ra te  clusterings of tex t data. However, its performance is highly dependent on the choice 

of initial clusters. The other algorithm s dem onstrated similar sensitivity, resulting in a 

high level of variance in term s of accuracy on all datasets. The SKM algorithm  is ap­

proxim ately equivalent to fc-means, w ith the sole difference th a t docum ent and centroid 

vectors are normalised to  unit length. Therefore, it is unsurprising th a t the perform ance 

of the two algorithms is often highly similar. Of the three approaches, the EM algorithm  

consistently resulted in the lowest clustering accuracy.

Dataset KM SKM EM
bbc 0.81 ± 0.08 0.82 ± 0.08 0.81 ± 0.08
bbcsport 0.73 ± 0.10 0.77 ± 0.10 0.73 ± 0.09
classic 0.70 ± 0.04 0.71 ± 0.03 0.68 ± 0.04
classic3 0.93 ± 0.08 0.90 ± 0.12 0.86 ± 0.11
cstr 0.69 ± 0.05 0.65 ± 0.03 0.66 ± 0.05
ngl7-19 0.41 ± 0.12 0.39 ± 0.12 0.35 ± 0.10
ng3 0.83 ± 0.10 0.83 ± 0.10 0.81 ± 0.12
reuters5 0.55 ± 0.07 0.55 ± 0.05 0.50 ± 0.07
reviews 0.56 ± 0.08 0.56 ± 0.08 0.52 ± 0.07
sports 0.62 ± 0.05 0.60 ± 0.06 0.53 ± 0.05

T a b le  5.2: Summ ary of NMI accuracy results (mean and standard  deviation) for p arti­
tional clustering methods, when applied to  real-world text datasets.
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5 .3 .2  H ie re trc h ica l A lg o r ith m s  

A gg lom era tive  C lu s te r in g

We now turn our attention to evaluating methods based on hierarchical agglomeration, 

which has previously been regarded as the prototypical strategy for clustering document 

collections. As discussed in Section 2.4, a number of strategies exist for determining which 

pair of clusters should be merged at each stage of the agglomeration process. We evaluate 

four linkage strategies based on a precomputed cosine similarity matrix: average linkage 

(AHC-AL), single linkage (AHC-SL), complete linkage (AHC-CL), and clustering based 

on the min-max graph partitioning criterion (AHC-MM). In all experiments, the merging 

process is terminated when k leaf clusters remain. As these techniques are deterministic, 

instability is not an issue and a single execution on each dataset is sufficient to produce a 

definitive solution.

The NMI scores listed in Table 5.3 for the traditional linkage strategies (AL/SL/CL) 

clearly illustrate the significant drawbacks of agglomerative clustering techniques when 

working with noisy, real-world data. For the AHC-AL and AHC-CL methods, the presence 

of outlying documents leads to poor merging decisions being made in the early stages of 

the clustering process, which cannot be subsequently rectified. In the case of AHC-SL, 

the tendency of the single linkage strategy to suffer from the effect of “chaining” is highly 

evident. For all three strategies, these problems are often reflected in the generation 

of a single, dominant cluster and one or more singleton clusters. As a result, the final 

clustering is often little better than random, as documents are coerced into being co-

Dataset AHC-AL AHC-SL AHC-CL AHC-MM
bbc 0.03 0.02 0.17 0.74
bbcsport 0.48 0.03 0.46 0.90
classic 0.01 0.01 0.22 0.65
classics 0.01 0.01 0.01 0.01
cstr 0.51 0.04 0.40 0.70
ngl7-19 0.04 0.01 0.13 0.39
ng3 0.01 0.01 0.20 0.82
reuters5 0.61 0.02 0.28 0.50
reviews 0.06 0.01 0.14 0.57
sports 0.20 0.01 0.11 0.60

T able  5.3: Summary of NMI accuracy results for agglomerative hierarchical clustering 
methods, when applied to real-world text datasets.
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assigned even though they do not share a common topic or set of term s. It is interesting 

to  note th a t, when evaluating hierarchical m ethods, some authors tend to make use of 

external validation measures such as purity  (3.19) or entropy (3.29), which can produce 

reasonably high scores for such unbalanced clusterings, obscuring the true  degree of error 

in the co-assignment of documents.

In contrast to the other linkage strategies, the min-max cut technique (AHC-MM) 

proposed by Ding & He (2002) lead to  significantly b e tte r clusterings. Since values for this 

criterion are scaled by self-similarity (see Eqn. 2.20), it is possible th a t small clusters can 

result in large linkage values, allowing them  to be merged with larger clusters. This leads 

to an inherent bias toward balanced clusters, which minimises the influence of outliers and 

reduces the tendency to produce singletons. However, as evidenced by the poor solution 

produced for the classicS dataset, inappropriate merging decisions can still be made when 

using this criterion. This is surprising given the well-separated nature of the underlying 

classes in this dataset, which are identified with relative ease by the partitional clustering 

algorithms discussed previously.

R efined  A g g lo m era tiv e  C lu ster in g

Several authors have considered the application of iterative relocation to improve the 

output of agglomerative clustering. Ding & He (2002) proposed a greedy process where 

docum ents are moved between clusters based on a given objective function, in a manner 

similar to  th a t used by the “first variation” algorithm  described by Dhillon et al. (2002a). 

However, the com putational cost of this process can vary significantly, depending on the 

size of the dataset and the num ber of refinement iterations. As a simpler, less time 

consuming alternative, we suggest the application of the standard  A:-means algorithm 

w ith cosine sim ilarity to the ou tpu t of an agglomerative algorithm , so th a t erroneously 

assigned docum ents can be moved to  more appropriate clusters. The refinement process 

may also be viewed as using hierarchical clustering to  provide A:-means w ith a determ inistic 

and hopefully accurate set of initial clusters. This idea was originally proposed by Jain  & 

Dubes (1988) and developed by C utting et al. (1992) in the ‘buckshot’ algorithm , although 

it has not been commonly considered in recent clustering literature. It should be noted 

th a t the application of all such refinement techniques, which effectively involve moving 

docum ents between leaf nodes of the hierarchy, has the effect th a t  the  clustering can no 

longer be interpreted using a dendrogram , which may affect the  interpretability  of the
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D ataset AHC-ALR AHC-SLR AHC-CLR AHC-MMR
bbc 0.38 0.02 0.65 0.88
bbcsport 0.48 0.45 0.78 0.95
classic 0.38 0.54 0 .67 0.65
classic3 0.00 0.00 0.95 0.00
cstr 0.63 0.41 0.44 0.75
ngl7-19 0.05 0.01 0.52 0.56
ng3 0.62 0.22 0.51 0.90
reuters5 0.68 0.66 0.59 0.58
reviews 0.44 0.01 0.55 0.67
sports 0.70 0.56 0.58 0.62

T a b le  5.4; Summary of NMI accuracy results for agglomerative hierarchical clustering 
m ethods with refinement, when applied to  real-world text datasets.

solution. However, the production of a more accurate, flat partition  of the d a ta  may be 

more useful than  a trivial, inaccurate tree of clusters.

Table 5.4 provides a comparison of the NMI scores achieved by the agglomerative 

m ethods with A--means refinement. We observe th a t the application of refinement can 

often lead to  significant increases in accuracy when compared to  the results listed in 

Table 5.3. In particular, the application of refinement subsequent to  min-max linkage 

clustering (AHC-MMR) produced highly accurate clusterings on several datasets, such as 

the bbcsport and reviews corpora. However, the quality of the outpu t of the hierarchical 

algorithm  still plays a significant role. For instance, AHC-MMR shows little improvement 

on the classics dataset, where the singleton leaf clusters in the hierarchy lead fc-means to 

quickly converge to  an almost identical final solution.

D iv is iv e  C lu s te r in g

We now investigate the performance of divisive clustering algorithms, which have fre- 

cjuently been applied for docum ent clustering. Specifically, we considered the Principal 

Direction Divisive Partitioning (PD D P) and bisecting fc-means algorithms. In the la t­

te r case, we examined cluster splitting based on both  cluster size (BKM-S) and min­

imum average intra-cluster sim ilarity (2.13) (BKM-A). For each split, we produced 20 

randomly-initialised bisections, from which the best was selected as determ ined by the 

mean docum ent-centroid sim ilarity criterion (2.12). Due to  the stochastic element in the 

bisecting fc-means algorithm , we ran  the entire process 100 times. In all experim ents, we
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Dataset PD D P BKM-S BKM-A
bbc 0.77 0.82 ± 0.04 0.83 ± 0.03
bbcsport 0.60 0.74 ± 0.03 0.74 ± 0.03
classic 0.65 0.71 ± 0.01 0.80 ± 0.09
classics 0.85 0.94 ± 0.00 0.94 ± 0.00
cstr 0.64 0.71 ± 0.02 0.71 ± 0.02
ngl7 0.29 0.46 ± 0.08 0.47 ± 0.07
ngS 0.81 0.71 ± 0.12 0.73 ± 0.12
reuters5 0.50 0.60 ± 0.02 0.62 ± 0.04
reviews 0.50 0.52 ± 0.04 0.53 ± 0.04
sports 0.67 0.61 ± 0.04 0.70 ± 0.05

T ab le  5.5: Summ ary of NMI accuracy results for divisive hierarchical clustering m ethods, 
when applied to real-world tex t datasets.

stop the divisive process when the number of leaf clusters reaches k.

From the results listed in Table 5.5, we firstly observe th a t divisive techniques per­

form bette r on average than  their agglomerative counterparts. This corresponds to  the 

experim ental findings of Steinbach et al. (2000), who suggested th a t the improvement in 

accuracy is due to the availability of a global view of the entire dataset a t the beginning of 

the clustering process. While bisecting fc-nieans does exhibit some variance over multiple 

runs, its ou tpu t tends to be far more consistent th an  the randomly-initialised fc-means 

algorithm. The choice of cluster splitting criterion for bisecting fc-means did not appear to 

influence perform ance as greatly as one might expect, which may be due to  the relatively 

balanced nature of the group structures in many of the datasets under consideration. The 

BKM-A splitting strategy lead to slightly higher mean NMI scores on several datasets, 

with a particularly noticeable improvement on the sports corpus, which contains highly 

unbalanced cluster sizes. This confirms our belief th a t  the size-based BKM-S strategy is 

generally unsuitable unless it is known in advance th a t a corpus will contain clusters of 

approxim ately equal size.

While the PD D P algorithm  has been widely used in the docum ent clustering litera­

ture, our results indicate th a t it often performs worse th an  other hierarchical or partitional 

m ethods when applied to  d a ta  w ith significantly overlapping structures. Notably, it fre­

quently produced less accurate clusterings than  those generated by bisecting fc-means. On 

the other hand, a significant benefit of PD D P is the determ inistic nature of the  algo­

rithm  so th a t, like the agglomerative algorithm s evaluated previously, a single execution 

is sufficient to  produce a definitive result. From a com putational perspective, PD D P also
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performs favourably when compared to  the other hierarchical algorithm s considered here.

R e fin ed  D iv is iv e  C lu s te r in g

We also considered the possibility of applying A:-means to  refine the ou tpu t of hierarchical 

divisive clustering algorithms. The PD D P-R  approach is similar to th a t employed by 

Kruengkrai et al. (2004), who used Gaussian EM clustering to  improve the ou tput of the 

PD D P algorithm. However, the results given in the evaluation of the partitional algorithms 

in Section 5.3.1 suggest th a t /c-means w ith cosine sim ilarity is better suited for this task 

when working with tex t data. The combination of refinement w ith the size-based bisecting 

fc-means variant, denoted BKM-SR, is equivalent to  the strategy proposed by Steinbach 

et al. (2000). BKM-AR represents an analogous approach which makes splitting decisions 

based on average intra-cluster similarity.

The application of refinement in conjunction with bisecting fc-means lead to increases 

in accuracy on certain datasets, although in the case of the classic and reutersS corpora 

we actually observed a decrease in the resulting NMI scores. The marginally be tte r initial 

partitions available to  the BKM -AR m ethod lead refined solutions th a t were b e tte r than  

those produced by BKM-SR or PD D P-R . The gains in accuracy resulting from iteratively 

relocating docum ents in clusterings produced by PD D P were quite significant. However, 

these techniques do not frequently achieve scores com parable to  those afforded by the  best 

agglomerative m ethod (AHC-MMR). Once again, the application of refinement transform s 

a nested hierarchy of clusters into a flat partition , which may im pact upon interpretability.

Dataset PD D P-R BKM-SR BKM-AR
bbc 0 .87 0.87 ± 0.03 0 .87 ± 0.03
bbcsport 0.69 0.77 ± 0.04 0.76 ± 0.03
classic 0.70 0.69 ± 0.01 0.71 ± 0.03
classic3 0.95 0.95 ± 0.00 0.95 ± 0.00
cstr 0.70 0.72 ± 0.02 0.72 ± 0.03
ngl7 0.56 0.47 ± 0.07 0.47 ± 0.08
ng3 0.88 0.73 ± 0.13 0.73 ± 0.12
reutersS 0.59 0.59 ± 0.02 0.60 ± 0.04
reviews 0.52 0.55 ± 0.05 0.54 ± 0.05
sports 0.65 0.61 ± 0.04 0.66 ± 0.05

T ab le  5.6: Summary of NMI accuracy results for divisive hierarchical clustering m ethods 
with refinement, when applied to real-world tex t datasets.
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5.3 .3  Sum m ary

While partitional clustering methods such as fc-means are commonly employed in docu­

ment clustering, we observe that the success of these algorithms is largely dependent on the 

choice of initial clusters. When using standard stochastic initialisation strategies, the ac­

curacy of solutions generated on the same data across multiple trials can vary significantly. 

To address this problem, in Section 7.3 we propose an ensemble clustering approach that 

combines multiple clusterings generated by fc-means to produce a more robust solution.

From our comparison of hierarchical clustering algorithms, it is apparent that both 

agglomerative and divisive techniques have their respective merits and drawbacks. Nei­

ther approach produced highly accurate clusterings on all the datasets considered in our 

experiments. The agglomerative techniques, which have been widely used for document 

clustering, can often produce meaningless clusterings in the presence of outliers. The use 

of the min-max cut criterion (AHC-MMj does reduce this problem somewhat, although it 

may still produce poor results due to erroneous merging decisions.

Of the divisive hierarchical approaches we considered, the bisecting fc-means algorithm 

appears to be the most promising. However, the sensitivity of the fc-means algorithm to the 

choice of initial clusters remains a factor in the production of stable, accurate bisections. 

The execution of multiple iterations per bisection alleviates this somewhat. Unfortunately, 

this largely negates the efficiency benefits of the algorithms, and the choice of a suitable 

candidate bisection essentially introduces a cluster validation problem. Experimental re­

sults show that our suggestion of applying fc-means with cosine similarity to refine the leaf 

nodes of a hierarchy of clusters can frequently lead to more accurate solutions, although 

a meaningful tree structure will no longer be available for user inspection.
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5.4 C om parison o f B enchm ark V alidation  M eth od s

We now turn to the problem of cluster validation in document clustering applications. In 

this evaluation, we examine the performance of the internal vahdation techniques described 

in Section 3.2. Note that we only consider those that are practical for use on text data, 

which are denoted as follows:

CH: Calinski-Harabasz index (3.1)

D ll: Original formulation of Dunn’s index (3.3)

DI2: Centroid-based formulation of Dunn’s index (3.4)

DI3: Formulation of Dunn’s index recommended by Bezdek & Pal (1995) (3.5)

DB: Centroid-based formulation of Davies-Bouldin index (3.6)

Cl: C-index (3.7)

SIL: Cosine-based silhouette index (3.11)

BIC: Bayesian Information Criterion (3.15)

Internal validation indices are generally based on the assumption that the metrics used 

during validation will correspond to those that were originally employed in the generation 

of the clustering under consideration. Therefore, when employing these indices, we use 

cosine distance (2.5) as a measure of dissimilarity in place of Euclidean distance. While 

we did examine the possibility of using the latter metric in this context, our results re­

flected the findings of Strehl (2002), indicating that its emphasis on absent values makes 

Euclidean-based indices unsuitable in this context. However, for the BIC technique, which 

is based on the assumption that the clusters have Gaussian distributions where variance is 

modelled in terms of object-centroid Euclidean distances, the use of an alternative dissim­

ilarity metric is not appropriate. We therefore use the original formulation of the criterion 

as described in Section 3.2.2.

5.4.1 Cluster Evaluation

Internal indices are commonly applied in real-world unsupervised learning tasks, where 

they provide a means of comparing multiple clusterings of a given dataset. As mentioned 

previously, we regard the external NMI measure as providing a robust measure of clustering 

accuracy in cases where class information is available. This external knowledge is assumed 

to provide a “gold standard” on which cluster analysis techniques may be evaluated. 

Therefore, we now examine the degree of correlation between NMI and the classical internal
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indices described in Section 3.2.1. Ideally, a high correlation should exist between the

evaluations produced by NMI and those produced with a chosen internal index, indicating 

that the latter is successful at identifying clusterings that reflect the underlying classes in 

the data. Note that BIC is not included here as it is generally used for the task of model 

selection, rather than for cluster evaluation.

To evaluate the correlations, we required a large number of datasets to emphasise the 

differences between the various indices. Therefore, we made use of the artificial datasets 

derived from the 20NG collection as described in Section 5.2.2. We generated 100 clus­

terings on each of the 84 datasets, applying the NMI and internal validation indices to 

the resulting clusterings. For each dataset, we then computed the correlation between 

external and internal accuracy scores as given by the Spearman rank coefficient.

A summary of the absolute values of the mean correlations for different categories of ar­

tificial dataset is given in Figure 5.2. The standard forn)ulation of the Dunn’s index (Dll) 

and that recommended by Bezdek L  Pal (1995) (DI3) frequently performed poorly, par­

ticularly in the presence of overlapping clusters. The technique involving centroid-based 

metrics (DI2) fared better, although the Dunn's index generally appears to represent a 

poor choice of validation of text data. The DB-index and C-index techniques achieved 

approximately equivalent validation performance, with the former performing better on 

balanced clusters, while the latter proving more successful on unbalanced clusters. The 

CH-index was noticeably better than either, while the cosine-based silhouette measure 

(SIL) proposed in Section 3.2.1 consistently provided the highest level of correlation with 

the external NMI index. This suggests that, from the indices considered here, SIL pro­

vides the most useful measure of clustering quality when class information is unavailable. 

Furthermore, the consistency of its performance across the various categories suggests that

F igure 5.2: Summary of the absolute mean rank correlations between common internal 
validation indices and external NMI accuracy, measured across all artificial text datasets.

■ B alanced
■ U nbalanced
■  N on-overlapping
■ O verlapping

CH D ll DI2 DI3 DB Cl SIL
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it does not suffer dram atically due to  the presence of unbalanced or overlapping classes.

is relatively low, indicating th a t internal indices can frequently fail to  recognise clusterings 

which successfully uncover the underlying structures in text corpora.

5.4.2 M odel Selection

For many docum ent clustering procedures, the most im portant consideration during pa­

ram eter selection is the choice of the niunber of clusters k. Therefore, we now evaluate 

the suitability of popular internal validation techniques for the purpose of estim ating the 

true number of clusters k in a docum ent collection.

E v a lu a tio n  o n  A rtif ic ia l D a ta

For our initial set of experiments, we again used the set of artificial datasets constructed 

from the 20NG collection. We ran 100 executions of the A:-means algorithm with cosine 

similarity for each value of k  in the range [2,10], and applied eight internal indices to  each 

clustering. We subsequently averaged the scores over all runs and compared the rankings

selected by common internal validation indices, measured across all artificial tex t data;sets.

However, it should be noted th a t the level of correlation for all the indices examined here

100

80

■  B alan ced
■  U n b a lan ced
■  N on-overlapp ing
■ O verlapp ing

CH D ll DI2 DI3 DB Cl SIL BIC

(a) Correct estim ations

100

0

■  B alan ced
■  U n b a lan ced
■  N on-overlapp ing
■ O verlapp ing

CH Dll DI2 DI3 DB Cl SIL BIC

(b) Top-3 estim ations

F ig u re  5.3: Summary of the overall percentage of correct and top-3 estim ations for k  as
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produced by the indices w ith the known number of clusters k.

To summarise the results of our experiments, Figure 5.3(a) shows the percentage of 

datasets on which each validation index correctly identified k, while Figure 5.3(b) shows 

the percentage of datasets for which k  was selected among the top three choices. These 

results indicate th a t, although the internal indices under consideration have proved pop­

ular and effective for model selection in other domains, the m ajority of these techniques 

perform  poorly on tex t data. Even with the use of an appropriate cosine-based dissimilar­

ity m etric in place of Euclidean distance, techniques such as variants of the classical D unn 

and DB indices fail to  correctly estim ate k  on more th an  25% of the 84 datasets. There are 

two exceptions: the Calinski-Harabasz (CH) index and the Bayesian Inform ation C riterion 

(BIC). Both afforded significantly b e tte r estim ates for the num ber of clusters, particularly  

on datasets containing overlapping groups. Surprisingly, BIC performed well when us­

ing Euclidean distance, while we have generally observed th a t the other internal indices 

perform  very poorly when using th a t metric. It is interesting to  note th a t the cosine- 

based silhouette measure (SIL), which exhibited a high level of correlation w ith external 

accuracy in the previous set of experiments, performs poorly in the context of param eter 

selection. This suggests th a t, while certain indices can provide acceptable performance 

when choosing between partitions wdth the same number of clusters, this success may not 

translate  to  the problem  of choosing a suitable clustering model. In the case of SIL, this 

is due to an inherent bias in the index toward larger values of k, which is also present in 

the original formulation proposed by Rousseeuw (1987).

E valu ation  on  R eal D a ta

For our second evaluation, we com pared the eight internal validation schemes on the real- 

world corpora described in Section 5.2.1. The experim ental setup was identical to  th a t 

used for the artificial data . Table 5.7 summarises the top three estim ations produced by 

the indices on each corpus, where highlighted values indicate cases where k  was correctly 

identified. Once again, we observe th a t the classical CH index generally proved most suc­

cessful in correctly estim ating the num ber of clusters. Notably, it was the only technique to  

provide useful recom m endations for the sports dataset, which contains highly unbalanced 

clusters. In contrast to  the results produced on artificial data , in this set of experim ents 

the BIC technique generally lead to  the poorest results of all those techniques considered. 

This was particularly  evident on the larger datasets, suggesting th a t the perform ance of

110



Dataset k CH D ll DI2 DI3 DB Cl SIL BIC
bbc 5 5,6,4 5,2,4 5,4,6 5,6,7 5,6,4 6,7,5 5,6,7 6,7,5
bbcsport 5 6,5,7 4,3,5 4,6,5 6,5,4 6,7,5 8,7,6 6,7,8 5,3,4
classic 4 3,4,5 3,2,4 2,3,4 3,4,2 3,2,4 2,3,4 2,3,4 10,9,8
classics 3 3,4,2 2,3,4 3,2,4 3,2,9 3,2,4 3,2,4 3,2,4 8,9,7
cstr 4 3,4,5 3,2,4 2,3,4 10,9,8 3,2,10 3,4,2 3,2,4 3,2,4
ngl7-19 3 5,6,4 2,3,4 4,3,5 9,5,7 10,9,8 2,3,4 9,8,10 7,6,5
ng3 3 3,4,5 3,2,4 3,2,4 3,4,5 3,4,2 3,2,4 3,4,2 6,5,4
reutersS 5 2,3,4 2,3,4 2,3,4 3,2,4 2,3,4 2,3,4 2,3,4 10,9,8
reviews 5 2,3,4 2,3,4 2,3,6 2,3,4 2,7,8 2,9,7 2,3,4 10,9,8
sports 7 6,7,5 2,3,4 2,3,6 2,3,4 10,8,9 2,3,6 2,3,6 10,9,8

T able  5.7: Summary of the top-3 estimations for k as selected by common internal 
validation indices when applied to clusterings of real-world text datasets.

the BIC formulation proposed by Pelleg & Moore (2000) is biased with respect to the 

number of documents n. For larger values of n, BIC frequently over-estimates the number 

of clusters, which corroborates the experimental observations made by Hamerly & Elkan 

(2004).

5.4.3 Sum m ary

Our experiments show that the related tasks of evaluating clustering solutions and choos­

ing suitable models for clustering can be difficult to perform successfully when working 

with text corpora due to the complex nature of the data. It is apparent that many inter­

nal vahdation technique, such as the well-known indices proposed by Dunn (1974b) and 

Davies & Bouldin (1979), are ill-suited to assessing the validity of clusterings of text data, 

particularly in cases where the cluster structures are non-spherical or overlapping. For 

the task of estimating the optimal number of clusters k, the popular model-based BIC 

technique performed well on artificial data, although it proved less successful on larger 

real-world corpora. The index described by Calinski & Harabasz (1974), adapted to use 

squared cosine distance, was best suited for this task, when considering both artificial and 

real datasets. Therefore, we use this index as a baseline for validation performance in the 

remainder of this thesis.

The experimental results presented here indicate that there is significant scope for im­

proving the techniques available for model selection in document clustering. It should also 

be noted that, while our validation experiments are based on averaging index scores across
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a large number of runs, it is common practice to estimate k based on a single clustering 

for each potential value of k (Bolshakova & Azuaje, 2002). This can lead to estimations 

that are far less robust and highly sensitive to any instabilities introduced by the under­

lying clustering algorithm. To address these shortcomings, in Section 7.2 we introduce an 

alternative approach for performing model selection, based on the aggregation of multiple 

clusterings, which is robust to the presence of outlying documents and overlapping clusters 

that differ in structure.
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C hapter 6

Im proving Accuracy and 

Interpretability

6.1 Introduction

Experimental evaluations have shown that the accuracy afforded by many popular doc­

ument clustering algorithms can vary significantly, depending on the complexity of the 

cluster structures in the data to which they are applied. In Section 6.2, we introduce 

novel approaches designed to improve the accuracy of recently proposed clustering algo­

rithms when working with text data, specifically those based on spectral analysis and 

non-negative matrix factorisation. Many existing document clustering techniques do not 

address the problem of presenting a newly generated clustering to a user in an interpret- 

able manner. To facilitate the extraction of knowledge from clusterings of text corpora, 

strategies are proposed for generating readily interpretable summary information, in the 

form of descriptive and discriminative cluster labels.

In Section 6.3, we shift our focus to improving the performance of recently-proposed 

kernel learning methods. We examine the phenomenon of diagonal dominance, which can 

significantly impact upon the accuracy and stabihty of popular centroid-based algorithms. 

This phenomenon especially problematic when kernel functions are applied to sparse high­

dimensional data, such as text corpora. We explore the implications of diagonal dominance 

for kernel document clustering tasks, and propose a selection of strategies for reducing 

these effects, thereby leading to increased clustering accuracy and stability.
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6.2 P rod u cin g  A ccu rate In terpretab le C lusters

A fundam ental goal of docum ent clustering is the identification of a set of groups th a t ac­

curately reflects the topics present in a corpus. A second objective th a t is often overlooked 

is the provision of inform ation to facilitate the hum an in terpretation of the clustering so­

lution. The application of dimension reduction techniques in docum ent clustering has 

largely focused on improving algorithm  accuracy and scalability. However, from a user’s 

perspective, the production of concise, unambiguous descriptions of cluster content is also 

highly im portant. A simple b u t effective means of achieving this goal is to  generate weights 

signifying the relevance of the term s in the corpus vocabulary to  each cluster, from which 

a set of cluster labels can subsequently be derived. The provision of docum ent member­

ship weights can also help a user to  gain an insight into a given clustering solution. For 

instance, when a docum ent is assigned to  a cluster, it may be useful to  quantify the con­

fidence of this assignment. These weights also allow us to  represent cases where a given 

docum ent relates to  more than  one topic.

In this section, we introduce a family of co-clustering algorithm s which are motivated 

by the spectral analysis techniques described in Section 2.6. These algorithm s provide 

membership weights for bo th  term s and docum ents in the form of a soft co-clustering 

of the data. Furtherm ore, by applying an iterative m atrix  factorisation scheme, we can 

produce a refined clustering th a t affords improved accuracy and interpretability. We also 

examine a kernel-based approach, which can produce co-clusterings based on the use of 

an arb itra ry  affinity metric. The proposed algorithm s are compared to  existing m atrix 

decomposition m ethods on a range of real-world datasets. Strategies for generating useful 

cluster descriptions in conjunction with these algorithm s are also presented.

6.2.1 Soft Spectral C lustering

Spectral clustering algorithm s have focused on the production of hard clusterings, where 

it is assumed th a t the m atrix  representation of a dataset can be organised in a block- 

diagonal fashion, such th a t the blocks correspond to  a set of well-defined disjoint classes. 

In contrast, for text corpora it is not unusual for a single docum ent to  relate to  more than  

one topic, resulting in overlapping classes. Given a term -docum ent m atrix  A  G 

we now examine the problem of inducing membership weights from a hard clustering, and 

propose an intuitive m ethod to  produce soft clusters based on the spectral co-clustering
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model introduced by Dhillon (2001).

R e la te d  T echn iques

A common approach for the task of generating feature weights from a hard clustering is 

to examine the cluster centroid vectors, which can be viewed as providing a summary of 

the content of each cluster (Karypis & Han, 2000). In the spherical k-means algorithm 

(Dhillon & Modha, 2001), term weights are extracted from the unit normalised centroid of 

each cluster. Unfortunately, an analogous technique for spectral clustering is not feasible 

due to the presence of negative values in centroid vectors, which is a consequence of 

using eigenvectors to form the dimensions of the spectral embedding. Another possible 

approach is to consider the membership weights of a given document as being a function 

of the similarity between the document and each cluster centroid (Zhao & Karypis, 2004). 

Documents that are highly similar to a particular cluster centroid will be assigned a high 

membership weight for that cluster, whereas documents that bear little similarity to the 

centroid will be assigned a low weight. In the case of a co-clustering, we can also derive 

term membership weights using an analogous approach.

The success of spectral clustering methods has been attributed to the construction 

of an embedding from a truncated set of eigenvectors. When applied to text data, this 

has the effect of amplifying the association between documents that are highly similar, 

while simultaneously attenuating the association between documents that are dissimilar 

(Brand & Huang, 2003). However, while this process has been shown to improve the 

ability of a post-processing algorithm to identify cohesive clusters, the truncation of the 

decomposition of A  to fc ^  m singular vectors introduces a distortion that makes the 

extraction of natural membership weights problematic. As a consequence, we observe 

that directly employing embedded term-centroid similarity values as membership weights 

will not provide intuitive cluster labels.

As an alternative to inducing soft weights from a hard partition, one may advocate 

the application of existing fuzzy clustering techniques. An analogous approach to spectral 

fc-means clustering would involve the application of the fuzzy c-means algorithm (Bezdek, 

1981). However, its effectiveness as a post-processing method for spectral document clus­

tering is limited due to its reliance on a squared-norm metric to measure similarity and its 

inability to deal with outliers. The membership values produced by a fuzzy co-clustering 

of a spectral embedding will also be subject to the effects of the distortion described above.
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M otivated by these factors, we focus on the problem of deriving soft membership weights 

from a hard clustering.

I n d u c in g  S o ft  C lu s te r s

As a starting point, we construct a spectral embedding using the bipartite co-clustering 

approach described in Section 2.6.4. However, we form an embedding from k leading 

singular vectors rather than log2  k, as recent work has shown that truncating the eigenbasis 

to a smaller number of dimensions may negatively affect clustering accuracy and stability  

(Ng et al., 2001). Once we have constructed the embedding Z €  jp{̂ (m+n)x/ĉ  produce 

a disjoint /c-way clustering of the row vectors by applying the /c-means algorithm with  

cosine similarity. This clustering can be represented as the (m - I -  n) x k partition matrix 

P , where the i-th  column is a binary membership indicator for the i-th  cluster.

Since the spectral co-clustering strategy is based on the principle of the duality of clus­

tering docum ents and terms (Dhillon, 2001), we argue that we can induce a soft clustering  

of terms from the partition of docum ents in Z, while a soft clustering of docum ents from 

the partition of terms. Observe that the matrix P  has the following structure:

? 2

The m  X k sub-m atrix P i  indicates the assignments of terms to clusters, while the n x k 

sub-m atrix P 2  indicates the assignment of documents. An intuitive approach to producing 

term weights is to apply the transformation A P 2 , where P 2  denotes the matrix P 2  w ith  

columns normalised to unit length. This effectively projects the centroids of the partition  

of docum ents in Z to the original feature space. Similarly, we can com pute document 

weights by applying the transformation A ^ P i, thereby projecting the embedded term  

cluster centroids to the original data.

We observe that, due to the “winner takes all” nature of the fc-means algorithm, 

membership weights derived using the above approach will not reflect the existence of 

boundary objects lying between clusters or outliers that may be equally distant from all 

centroids. To overcome this problem, we propose projecting the centroid-similarity values 

from the embedded clustering to the original data. Due to the presence of negative values 

in Z, these values will lie in the range [—1,1], We rescale the values to the interval [0,1] and 

normalise the k columns to unit length, representing them by the m atrix S G ]f^(m+n)xfc
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as defined by:

5*, -  s,, -  (6.1)
1 +  C O s { Z i , C j )  ^  Sij

2 ^  E ,  %

As w ith  the partition  m atrix  P  of the embedded clustering, the centroid-sim ilarity m atrix 

S can be divided into two sub-matrices

S =-
51

52

where S i £ corresponds to the term-centroid s im ila rity  m atrix  and S2 €

is the document-centroid s im ilarity m atrix. By applying the projections AS2 and A ^ S i 

respectively, we can generate membership weights tha t consider both the a ffin ity  between 

vectors in the embedded space and the term  frequency values from the original term  space.

S o ft S p e c tra l C o -c lu s te r in g  (SSC) A lg o r ith m

Motivated by the duality of the co-clustering model, we now present a spectral clustering 

algorithm  w ith  soft assignment of terms and documents tha t employs a combination of the 

transformation methods described in the previous section. We formulate the ou tpu t of the 

algorithm  as a pair of matrices (U , V ) , where U  represents the term-cluster membership 

function and V  represents the document-cluster membership function.

As an appropriate document membership function, we select the projection A ^ S i on 

the basis tha t the use of s im ila rity  values extracts more inform ation from the embedded 

clustering than purely considering the binary values in P. We observe tha t this generally 

leads to a more accurate clustering, particu larly on datasets consisting of overlapping 

classes.

The requirements for a term membership function differ considerably from those of 

a document membership function, where accuracy is the prim ary consideration. As the 

production of useful cluster descriptions is a central objective of our work, we seek to 

generate a set of weights tha t results in the assignment of high values to relevant features 

and low values to irrelevant features. Consequently, we select the projection A P 2  as pre­

vious work has shown that centroid vectors can provide a summarisation o f the im portant 

concepts present in a cluster (Dhillon &  Modha, 2001). Our choice is also motivated by 

the observation tha t the binary indicators in P2 result in sparse discrim inative weight 

vectors, whereas the projection based on S2 leads to term weights such that the highest 

ranking words tend to be highly sim ilar across all clusters.
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1. Construct the normalised term -docm nent matrix:

A n  =  D i “ 5 A D 2 ~ 5

2. Compute the k leading singular vectors of A „ to produce the truncated factors 
Uk =  { u i , . . . , u k )  and Vk =  { v i , . . . , v k ) .

3. Construct the embedding Z by scaling and stacking U k and Vk:

Z = Di'i/^Uk
D2-'/"Vk

4. Apply A:-means with scaled cosine similarity and orthogonal initiahsation to the 
embedding Z to generate a disjoint co-clustering.

5. Construct matrices S i  and P i  from the co-clustering.

6. Form soft clusters by applying the projections U  =  A P 2 and V  =  A ^ S i.

F ig u r e  6.1: Soft Spectral Co-clustering (SSC) algorithm.

The traditional approach for initialising fc-means in the post-processing phase of spec­

tral clustering is to randomly divide the embedded data into k groups. W hile clustering 

based on an appropriate number of singular vectors should produce robust results, we have 

observed that, for larger datasets, stochastic initialisation can still lead to inconsistent so­

lutions. To avoid this behaviour, we generate initial clusters in a manner modelled on the 

furthest-first scheme described in Section 2.3.3. Specifically, the first cluster centroid is 

nom inated as the most centrally located point in the embedded space. Each successive 

centroid is chosen to be as close as possible to 90° from those that have been previously 

selected. After k centroids have been selected, the remaining objects are assigned to the 

nearest centroid in the embedding. In this way a fully determ inistic solution may be 

produced. The com plete procedure, designated as the Soft Spectral Co-clustering  (SSC) 

algorithm, is summarised in Figure 6.1.

6.2.2 Refined Soft Spectral Clustering

We now present an approach to docum ent clustering that builds upon the co-clustering 

techniques described previously to produce a refined clustering that affords improved ac­

curacy, while retaining the interpretability of the clusters. As discussed in Section 2.6, the 

dimensions of the embedded space produced by spectral decom position are constrained to
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be orthogonal. However, as text corpora will typically contain docum ents that pertain to  

m ultiple topics, the underlying sem antic variables in the data will rarely be orthogonal. 

The lim itations of spectral techniques to  effectively identify overlapping clusters has m oti­

vated the introduction of other dimension reduction techniques such as NM F, where each 

docum ent may be represented as the additive combination of the topics. Unfortunately, 

the standard NM F approach, which involves initialising a pair of factors with random  

positive values, can lead to convergence to a range of solutions of varying quality.

We argue that initial factors, produced using the soft cluster induction techniques 

discussed previously, can provide a good set of well-separated “core clusters” . B y subse­

quently applying m atrix factorisation with non-negativity constraints to the corresponding  

membership matrices, we can effectively uncover overlaps between clusters. The combi­

nation of the global information available to spectral techniques with the local nature of 

iterative matrix factorisation m ethods can yield accuracy superior to that achieved by 

either of the individual approaches. In addition, the relative sparsity of the factors pro­

duced by NM F improves our ability to identify outlying docum ents and elim inate irrelevant 

terms.

R e fin e d  S o ft S p e c tr a l C o -c lu s te r in g  (R S S C ) A lg o r ith m

We now describe a procedure to refine the output of m ethods based on the soft spectral co­

clustering model. In the SSC algorithm described previously, our choice of projection for 

the construction of the term membership matrix was m otivated by the desire to produce 

weights for subsequent use in producing cluster labels. However, the projection A S 2  

retains additional information from the embedded clustering, in the form of the set o i n x k  

normalised similarity values, while sim ultaneously considering the actual term frequencies 

in A . Consequently, we apply soft spectral co-clustering as described previously, but select 

V  =  A ^ S i and U  =  A S 2  as our initial pair of factors.

We refine the weights in U  and V  by iteratively updating these factors in order to m in­

imise the divergence between the original term-document m atrix A  and the approximation  

uv" , as quantified by:
7 7 1 7 1 /  1 \

D (A ||U V " ) =  X ]  E  ( T 7 T # r  “
i = i  \  /

This is equivalent to the Kullback-Leibler loss function given in 2.27, with a change of 

notation such that W  s  U  and H  =  V^. To com pute the factors, we apply a pair of
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1. Compute decompoyition of A „ , construct fc-dimensional embedding Z and apply 
fc-means as described in SSC algorithm.

2. Construct m atrices S i  and S 2  from the resulting co-clustering.

5. Update U  using the rule

6. Repeat from step 4 until convergence.

F ig u r e  6.2: Refined Soft Spectral Co-clustering (RSSC) algorithm.

m ultiplicative update rules as described by Lee & Seung (1999). The com plete Refined  

Soft. Spectral Co-clustering  (RSSC) algorithm is summarised in Figure 6.2.

6 .2 .3  K e r n e l - B a s e d  S o f t  S p e c t r a l  C lu s t e r in g

The techniques previously described in this section involve modelling a corpus using a 

bipartite graph. However, recent spectral clustering m ethods that make use of the eigen- 

decom position of a sym m etric affinity matrix have often been shown to  produce accurate 

clusterings (Yu & Shi, 2003). Other advantages of these m ethods, when compared with  

those working directly on a term -docum ent m atrix A , include a decrease in storage over­

head and the ability to make use of an arbitrary kernel function k to construct a matrix. 

However, these m ethods have been designed to produce a hard clustering of docum ents 

w ithout the provision of soft membership weights or exphcit cluster descriptions. We now  

introduce a kernel-based technique, analogous to the SSC algorithm, which produces a 

highly accurate soft co-clustering and meaningful cluster labels.

As with the bipartite approaches, we attem pt to minimise the normalised cut of a 

graph representation of the data. Rather than working on the original vector space m odel 

represented by A , our aim is to derive a /r-way partition of the weighted unipartite graph  

encoded in the form of a kernel matrix K . To produce an approximation to the optim al

3. Generate initial factors U  =  A S 2  and V  =  A ^ S i.

4. Update V  using the rule

(6.3)
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cut of this graph, we begin by constructing the degree-normaUsed matrix:

Kn =  D - 5 S D - 5 (6.5)

VVe subsequently set the diagonal values of the m atrix to zero as suggested by Ng et al. 

(2001), since we also observe that reducing self-similarity prior to decom position often  

leads to an increase in clustering accuracy. A low-dimensional embedding X  €  

is formed from the eigenvectors corresponding to the k leading eigenvalues, which are 

normalised to L2 unit length. The fc-means algorithm with cosine sim ilarity is then applied 

to produce a clustering of the rows in X . As w ith SSC, we observe that the use of 

orthogonal initialisation provides a determ inistic means of producing a good set of initial 

clusters. This embedded clustering, which consists of a grouping of docum ents only, may 

be represented by a. n x k binary partition matrix P . The application of LI column  

normalisation to this matrix provides equal weighting to each cluster, resulting in a matrix 

P . As with the techniques described previously in this section, we produce a soft-clustering  

by applying two projections to map the embedded partition to the original space. In this 

case, the mapping of docum ents is based on the use of the degree-normalised kernel m atrix  

K n, which leads to empirical results that are superior to those achieved when using the 

original kernel matrix K . Specifically, we com pute a document membership weight m atrix  

V  e  com puting the projection V  =  K „ P . The entry Vij represents the mean

affinity between Xi and the docum ents assigned to Cj:

1/ Sx;eCj  ̂ ^

“  —iqi— ' ’

1. Construct the normalised kernel matrix K „  =  D  5 K D  2 , and set the diagonal 
entries [K„]u =  0.

2. Com pute the k leading eigenvectors of K „  to form the fc-dimensional embedding X .

3. Apply L2-normalisation to the rows of X  to produce X .

4. Apply /c-means with cosine similarity and orthogonal initialisation to the embedding 
X  to generate a hard clustering Ch -

5. Construct the normalised partition m atrix P  from the clustering C h -

6. Form soft clusters by applying the projections V  =  K „ P  and U  =  A P .

F ig u r e  6.3: Kernel-based Soft Spectral Co-clustering (KSSC) algorithm.
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To produce term membership weights, it is necessary refer back to the frequency values in 

the original term-document matrix A. We apply a projection similar to that used in the 

SSC algorithm, where feature membership weights are induced from the partition matrix 

of the clustering of documents. In this case, we construct the matrix U  G such

that U  =  A P . The pair (U, V) may now be interpreted as a soft co-clustering of the data, 

where highest weighted terms in the columns of V  provides us with labels describing the 

content of the k clusters. The full procedure is summarised in Figure 6.3.

6.2 .4  E xperim ental E valuation

In this section, we compare the accuracy afforded by the newly proposed spectral clustering 

algorithms with that achieved by three popular benchmark algorithms, which are also 

Vjased on matrix decomposition methods:

BCC: Bipartite spectral co-clustering with orthogonal initiahsation (Dhillon,

2001), using k singular vectors.

NJW:  Ng-Jordan-Weiss fc-way spectral clustering (Ng et al., 2001).

NMF: NMF with the KL-divergence objective function and random initialisation

(Lee & Seung, 1999)

While the NJW  and KSSC algorithms support the use of an arbitrary kernel function,

for document clustering we use a normalised linear kernel as defined in Eqn. 2.36. In

our experiments, we select a value for the number of clusters k corresponding to the

number of natural classes k. Clustering accuracy is measured using the external NMI

index. When evaluating the non-deterministic NMF and NJW algorithms, we calculate

the average accuracy over 100 runs of the clustering algorithm. Since NMI is applied to

hard clusterings, for the algorithms generating soft clusterings we produce hard clusters

from the membership matrix V  by assigning each document Xj to the cluster Cj  such that

j  = arg max Vij.
3

C o m p ariso n  o f C lu s te r in g  A ccu racy

Table 6.1 summarises the NMI scores for the six clustering algorithm under consideration, 

with standard deviations supplied for those that are non-deterministic. The accuracy of the 

clusterings produced by the SSC algorithm was roughly comparable to tha t afforded by the 

bipartite spectral co-clustering method (BCC). By virtue of their ability to work with non-
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D ataset NMF N JW BCC SSC RSSC KSSC
bbc 0.77 ± 0.09 0.84 ± 0.04 0.69 0.65 0.84 0.89
bbcsport 0.61 ± 0.09 0.79 ± 0.04 0.64 0.64 0.75 0 .87
classic 0.73 ± 0.06 0.73 ± 0.02 0.69 0.73 0.84 0.76
classics 0.93 ± 0.06 0.93 ± 0.01 0.65 0.62 0.93 0.95
cstr 0.67 ± 0.06 0.74 ± 0.03 0 .80 0.79 0.76 0.79
ngl7-19 0.30 ± 0.11 0.29 ± 0.01 0.14 0.20 0.40 0.44
ng3 0.79 ± 0.13 0.56 ± 0.05 0.14 0.37 0.89 0.61
reuters5 0.55 ± 0.03 0.63 ± 0.03 0.59 0.62 0.57 0.65
reviews 0.49 ± 0.04 0 .57 ± 0.02 0.40 0.41 0.54 0.53
sports 0.52 ± 0.06 0.60 ± 0.03 0.48 0.52 0.56 0.70

T ab le  6.1: Summ ary of NMI accuracy results for clustering m ethods based on m atrix  
decomposition, when applied to real-world tex t datasets.

orthogonal basis vectors, both  the NM F and RSSC m ethods produced clusterings th a t were 

often superior to  those generated using b ipartite  m ethods. However, the RSSC algorithm ’s 

use of spectral inform ation to  seed well-separated “core clusters” for subsequent refinement 

leads to a higher level of accuracy on most datasets. We did observe th a t the NMF and 

N JW  m ethods exhibit considerable instability, with randomly-initialised NMF particularly  

resulting in solutions th a t varied greatly in term s of the clustering accuracy. In contrast, 

the determ inistic nature of the orthogonal initialisation strategy employed by the newly 

proposed algorithm s leads to  a single definitive solution. The techniques based on the use 

of a normalised affinity m atrix were frequently superior to  those operating on the original 

term -docum ent m atrix, with the KSSC algorithm  producing the most accurate solutions 

on the m ajority  of the datasets. These results are generally significantly be tte r than  those 

aff'orded by the classical algorithm s evaluated in Section 5.3. Only our proposed variation 

of m in-m ax agglomerative hierarchical clustering with fc-means refinement lead to  higher 

accuracy on certain datasets, although KSSC was more consistent when considering all 

the corpora.

C o m p a r is o n  o f  A lg o r i th m  E ffic ien cy

For the spectral clustering m ethods described in this chapter, we employ the im plem enta­

tion of the Im plicitly R estarted  Lanczos M ethod (Lehoucq et al., 1997) provided by TC T . 

This makes the com putation of a small num ber of leading eigenvectors or singular vectors 

far more efficient. For instance, the  tim e required to  com pute the truncated  SVD for a
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term -docum ent m atrix  A  of size m  x n  is reduced from 0{m ? n )  to  0 { z m n ) ,  where 2  is 

the average num ber of non-zero entries in each sparse docum ent vector.

In our experim ents we observed th a t, when applying fc-means to a spectral embedding, 

very few iterations are typically required before convergence is achieved. In contrast, due 

to  the slow convergence and com putational cost resulting from the repeated application of 

multiplicative update rules, the NM F and RSSC algorithm s exhibited much longer running 

times. W hile efficiency may be improved somewhat by using sparse m atrix  m ultiplication 

techniques, we suggest th a t, for larger tex t datasets, the KSSC m ethod provides a more 

pragm atic choice for producing accurate clusterings.

6.2.5 G enerating  C luster Labels

Once term  mem bership weights have been produced by a soft co-clustering algorithm , 

an intuitive approach for generating hum an-readable cluster labels is to select the set of 

h term s which have the highest values from each column of the m atrix  U  {i.e. top-rank 

selection). This results in labels th a t are descriptive, in the sense th a t they provide a 

sum m ary of the content of each cluster. However, it may occur th a t certain term s will be 

selected as labels for multiple clusters, or th a t the set of chosen term s will be relatively 

generic in nature, consisting of words th a t are not necessarily topic-specific. In such cases, 

it may be more appropriate to generate cluster labels based on the most discriminative 

term s, which are less ambiguous and serve to highlight the distinctions between clusters.

To select discrim inative cluster labels, we propose the application of techniques such 

as those use in classification tasks. We observe th a t the selection of discriminative term s 

based on a fixed set of clusters is closely related to  the task  of feature selection in clas.sifi- 

cation tasks, where the goal is to identify a subset of features th a t will improve the ability 

of a classifier to  distinguish between several predefined classes. Thus, many well-known 

feature selection m ethods, which have previously been applied in tex t classification, are 

relevant in this context. W hile a variety of options exist for this task, we propose labelling 

based on two criteria th a t have been particularly prevalent in the hterature:

In fo rm a tio n  g a in  ( IG A IN ): To directly produce discrim inative labels from a soft co­

clustering such as th a t produced by KSSC, we suggest the application of a weighting 

scheme based on information gain (Yang & Pedersen, 1997) to  the term  membership 

m atrix  U , which measures the number of bits of inform ation obtained to distinguish
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between the clusters based on a low or high value in U  for a given term . Formally, 

the weight for the i-th  term  in the cluster C j  is calculated as

Wij — Eij  ̂ Eii (6.7)

where the entropy Eij is given by

Eij — [/ij log2 C/ij (1 ?7jj)log2(l Uij~) (6 .8 )

A labelling for the cluster Cj may subsequently be found by selecting the h term s 

w ith the highest weights in the j - th  column of W .

m e a s u re  (C H I) :  The Chi-square test has been frequently applied in tex t classifica­

tion to m easure the level of association between a term  and a set of categories. We 

suggest th a t, given a hard clustering, the measure may also be used to  identify term s 

th a t occur frequently in one cluster bu t seldom in other clusters. Formally, given 

the i-th  term  t i  and the cluster C j ,  let a i j  denote the number of docum ents in the 

cluster th a t contain U and let bij denote the number of docum ents assigned to o ther 

clusters th a t also contain ti. In addition, let Cij denote the num ber of docum ents 

in C j  th a t do not contain U,  and let d i j  denote the number of docum ents in o ther 

clusters th a t do not contain U. A m atrix  W  e  of term  weights is com puted

based on the standard  formula:

Once again, after computing W , cluster labels are generated by choosing the highest 

ranked term s in each column of the matrix.

Note th a t this technique is suitable for use in conjunction with any hard clustering 

algorithm. For techniques such as KSSC, disjoint membership values are found 

by tem porarily assigning each object to  the cluster for which it has the highest 

membership weight in V .

To illustrate the  effect of applying these techniques, tables 6.2 and 6.3 respectively 

provide a list of labels selected for clusters produced by the KSSC algorithm  on the bbc 

and bbcsport corpora. We see th a t all three labelling m ethods provide meaningful cluster 

descriptions. It is interesting to  note th a t these annotations clearly reflect some of the 

m ajor news events from the period in which the datasets where constructed, including the

^  * (^^ijdij Cijbij'^
(6.9)

{ d i j  ~ t "  Cij') • {bi j  d i j )  • {cLij - h  b i j )  • {Cij  +  d i j )
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Original Information Gain Chi Square
company share growth market growth oil
year bank bank oil analyst company

Cl market economy economy price market profit
firm sale profit company bank investor
growth price share analyst economy firm
Labour Blair Labour minister Labour party
elect tory elect government tory government

C2 government plan party MP elect secretary
party people tory prime minister MP
minister MP Blair Conservative Blair Conservative
film year film oscar star nomination
award show award singer film actress

Cs star include star album award comedy
best actor actor band actor oscar
music nomination nomination best singer album
game against match injury coach win
play champion cup game game injury

C4 win team win player match player
player cup champion play champion championship
match England coach team cup season
people mobile user digital user online
technology phone technology phone technology download

C5 user software computer net computer internet
computer digital software online digital device
service firm mobile internet software PC

T a b le  6 .2 : Labels for a clustering  of th e  bbc corpus. Term s were selected using three 
different stra teg ies: to p -ran k  selection, in fo rm ation  gain  selection, and  selection.

2004 A thens O lym pics, th e  2005 B ritish  general election and  th e  2005 A cadem y A w ards 

ceremony. However, we observe th a t  using th e  orig inal te rm  weights leads to  m ore generic 

labels. For instance , consider th e  genera tion  of a label for th e  c luster C \ on th e  bbcsport 

corpus. W hile th is  c luster p rim arily  consists of artic les re la tin g  to  ‘ru g b y ’, th e  term s 

‘ag a in s t’, ‘p lay ’ and  ‘g am e’ are chosen, w hich could also p e rta in  to  any of the  o th e r topics 

in th e  corpus. In co n trast, th e  IG A IN  an d  CH I m ethods choose m ore specific te rm s such 

as ‘lions’ or ‘fly -half’. T hese tren d s  are  reflected to  varying degrees across all d a tase ts . 

T he CHI m ethod  exh ib its  a p a rticu la r tendency  to  choose highly d iscrim inative labels. In 

general, we observed th a t  th e  p ro d u c tio n  of intelligible c lu ster labels was closely re la ted  to  

c lustering  accuracy. N otably, th e  labels p roduced  in conjunction  w ith  KSSC were generally 

m ore m eaningful th a n  those produced  by th e  o ther a lgorithm s due to  th e  g rea te r accuracy 

afforded by th a t  a lgorithm .
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Original Information Gain Chi Square
England game rugby Robinson rugby flj'-half
rugby six Wales England nation Robinson
Ireland against Ireland France Ireland six
nation coach nation six Wales France
Wales play Scotland lions Scotland flanker
Olympics Athens Olympics drug Olympics gold
athlete European athlete European athlete trial

C2 race year indoor gold Athens 200m
indoor champion race lAAF indoor drug
world drug Athens medal sprinter race
open Australian seed 7-6 seed 7-5
seed set open tennis 6-3 7-6

C3 play first 6-3 7-5 tennis Wimbledon
win final 6-4 Roddick open 6-1
match 6-3 Australian 6-1 6-4 Australian
club play Chelsea football Chelsea Manchester
Chelsea game club boss Arsenal football

C4 player united Arsenal Manchester league FA
league football league manager boss manager
Arsenal manager united Liverpool club united
test Pakistan cricket India cricket series
cricket wicket one-day test wicket batsman

C5 series India Pakistan bowl one-day bat
one-day Australia wicket bowler bowler Pakistan
play first series Australia bowl over

T a b le  6 .3 : Labels for a c lustering  of th e  bbcsport corpus. Term s were selected using three 
different stra teg ies: to p -ran k  selection, in fo rm ation  gain selection, and  selection.

6 .2 .6  Sum m ary

In  th is  section, we described  m ethods based on spectra l analysis th a t  can yield accurate, 

in te rp re tab le  co-clusterings on high-dim ensional te x t d a tase ts . We exam ined th e  idea of 

using sp ec tra l clustering  to  provide a good in itia l s ta r t  p o in t for non-negative m atrix  

fac to risa tion , w hich can often produce poor, u n stab le  resu lts w hen s ta n d a rd  stochastic  

in itia lisa tio n  techniques are em ployed. Section 6.2.3 described a kernel-based approach, 

th e  K SSC algorithm , w hich frequently  ou t-perfo rm s p opu lar c lustering  m eth o d s based 

on m a trix  decom position. E valuations conducted  on real-w orld te x t co rpo ra  d em o n stra te  

th a t  these  m ethods can lead to  th e  im proved identification  of overlapping clusters, while 

s im ultaneously  producing  docum ent an d  te rm  weights th a t  are  am enable  to  hum an  in­

te rp re ta tio n . F u rtherm ore , we proposed th a t  highly d iscrim inative c lu ster labels can be 

g enera ted  by app ly ing  supervised fea tu re  selection m easures to  th e  o u tp u t of docum ent 

c lustering  algorithm s. W hile we have specifically considered th e  in fo rm ation  gain  and  

m easures, we suggest th a t  o ther sim ilar selection m ethods m ay also prove useful.
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6.3 P ractica l So lu tions for D iagonal D om inance R ed u ction

We now shift our focus to the state-of-the-art kernel learning methods introduced in Sec­

tion 2.8. These methods are composed of two key components: a generic learning algo­

rithm, and a kernel function which assesses the similarity between objects in the kernel 

space. In many domains, it will often be the case that the average similarity of one object 

to another will be small when compared to the “self-similarity” of the object to itself. This 

characteristic of many popular kernel functions has proved to be problematic for super­

vised kernel methods (Scholkopf et al., 2002). If, for a given kernel function, self-similarity 

values are large relative to between-object similarities, the Gram matrix of this kernel will 

exhibit diagonal dominance, which can significantly impair the accuracy of a classifier.

In the remainder of this chapter, we examine the implications of this phenomenon for 

document clustering when employing centroid-based kernel methods. We then propose a 

number of practical strategies for addressing this problem, and evaluate their ability to 

generate more accurate and stable clustering solutions on text data.

6 .3 .1  D o m in a n t  D ia g o n a ls  in  S u p e rv is e d  L e a rn in g

It has been observed that the performance of the SVM classifier can be poor in cases 

where the diagonal values of the Gram matrix are large relative to the off-diagonal values 

(Cancedda et a i, 2003; Scholkopf et al., 2002). This problem, sometimes referred to as 

diagonal dominance in machine learning literature, frequently occurs when certain kernel 

functions are applied to data that is sparse and high-dimensional in its explicit repre­

sentation. This phenomenon is particularly evident in text mining tasks, where linear or 

string kernels can often produce diagonally dominated Gram matrices. However, it can 

also arise with other kernel functions, such as when employing the Gaussian kernel with 

a small smoothing parameter, or when using domain-specific kernels for learning tasks 

in image retrieval (Tao et al., 2004) and bioinformatics (Saigo et al., 2004). These cases 

are all characterised by the tendency of the mean of the diagonal entries of the kernel 

m atrix K  to be significantly larger than the mean of the off-diagonal entries, resulting in 

a dominance ratio:

1 ^  »  1 (6 .10)

We can interpret this to mean that the set of data objects are approximately orthogonal 

to one another in the kernel space. In many cases, a classifier applied to such a matrix
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will effectively memorise the training data , resulting in severe overfitting (Scholkopf et ai ,  

2002).

An unfortunate characteristic of this problem is th a t m atrices which are strongly di­

agonally dom inated will be positive semi-definite and measures to  reduce this dominance 

run the risk of rendering a  m atrix  indefinite, so th a t  it no longer represents a valid Mercer 

kernel. Consequently, there is a tension between diagonal dominance on the one hand and 

the requirem ent th a t the m atrix  be positive semi-definite on the other.

6.3 .2  D om inant D iagonals in K ernel C lustering

The phenom enon of diagonal dominance also has implications for centroid-based kernel 

clustering methods, such as the kernel fc-means algorithm  described in Section 2.8.1. O b­

serve th a t, when calculating the square distance between a centroid fia and a docum ent 

Xi G Ca, Eqn. 2.32 can be separated as follows;

W j , /  \  | | 2  I ^ ^ X j G C a  {^x} ^  1 T \\\(p{xi)-fic\\ = K i i  + --------— 2---------------------------------- ( 6 . 11)

If K  is diagonally dom inated, the last term  in the above expression will be large. This 

has the effect th a t Xi will appear to be close to the centroid of Cq and d istan t from 

the remaining clusters, regardless of the affinity between Xi and the other docum ents 

assigned to Ca- Consequently, even w ith random  cluster initialisation, few subsequent 

reassignments will be made and the algorithm  will converge to a poor local solution.

The problem  of dom inant self-similarity has previously been shown to  adversely affect 

centroid-based clustering algorithm s in high-dimensional feature spaces (Dhillon et ai ,  

2002a). Therefore, it is unsurprising th a t similar problems should arise when applying their 

kernel-based counterparts using kernel functions th a t preserve this sparsity. Dhillon et al. 

(2004a) observed th a t  the  effectiveness of kernel fc-means can be significantly im paired 

when docum ent-cluster distances are dom inated by self-similarity values.

A normalised linear kernel (2.36) represents an intuitive choice when working w ith 

tex t data , due to its equivalence to the cosine m etric (2.4). However, a m atrix  constructed 

using this function will typically suffer from diagonal dominance due to  the sparsity of the 

vector space representation for real-world text datasets. Thus, while we will always have 

Sii = 1 Vi, it will often be the case for sparse tex t d a ta  th a t Sij  •C 1 for i 7  ̂ j .  W hen 

applying kernel fc-means using such a m atrix, the large diagonal entries may prevent the 

identification of coherent clusters. Often incorrect assignments in an initial clustering

129



F ig u re  6.4: A normalised linear kernel m atrix  constructed on a subset of 90 docum ents 
from the classicS dataset, which exhibits diagonal dominance.

solution will fail to  be subsequently rectified, since large self-similarity values may obscure 

sim ilarities between pairs of docum ents belonging to  the same natural class.

To illustrate this problem, we consider a small subset of the frequently used classicS 

dataset, which contains three relatively well-separated natura l cla.sses. From each class, 

we random ly sample 30 docum ents, resulting in a 1203 x 30 term -docum ent m atrix, such 

th a t 7% of the entries are non-zero. W hen constructing a normalised linear kernel on this 

data , the affinity values in the m atrix  reflect the reasonably well-separated nature of the 

original classes: the mean affinity between docum ents is 0.06, the mean affinity between 

docum ents in the same class is 0.11, while the mean affinity between docum ents belonging 

to  different classes is 0.03. As in all cases where this kernel is employed, the mean self­

sim ilarity value is 1.0. Due to the separation between classes and small size of the dataset, 

we would expect to  identify the three groups in the d a ta  with relative ease. However, the 

sparsity of the original high-dimensional space leads to  pairwise affinity values th a t are 

small relative to  very low relative to the self-similarity values. As a result, the m atrix  

exhibits significant diagonal dominance, which is evident from Figure 6.4. W hen applying 

kernel fc-means using this kernel over 1000 runs, we observe th a t the algorithm  frequently 

term inates prem aturely. In fact, 55% of the algorithm  executions ended after four or less 

iterations. Consequently, the accuracy of the partitions generated was poor, with a mean 

NMI score of 0.11 indicating th a t they were usually h ttle  be tte r than  random. In addition, 

the average agreem ent between each pair of clusterings, measured using ANMI, was only 

0.04, indicating th a t the outpu t of the algorithm  was highly unstable. This simple example 

clearly shows th a t, when employing kernel fc-means on sparse data, dom inant self-similarity 

values can often prevent the identification of the natural classes, even for small datasets
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containing well-separated structures. While this example represents a pathological case, 

the experimental evaluation presented in Section 6.3.5 indicates that diagonal dominance 

can similarly affect larger, more complex datasets.

6.3 .3  R educing D iagonal D om inance

We now present four practical strategies for addressing the issues raised by diagonal dom­

inance in centroid-based kernel clustering.

Diagonal Shift (DS)

To reduce the influence of large diagonal values, Dhillon et al. (2004a) proposed the ap­

plication of a negative shift to the diagonal of the Gram matrix. Specifically, a multiple a 

of the identity matrix is added to produce

K d s  =  ctI +  S (6.12)

The parameter cr is a negative constant, typically selected so that the trace of the kernel 

matrix is approximately zero. For a normalised linear kernel matrix with trace equal to 

n, this will be equivalent to subtracting 1 from each diagonal value, thereby eliminating 

the first and last terms from the document-centroid distance calculation (6.11).

The diagonal shift technique is equivalent to the addition of a negative constant to 

the eigenvalues of S. As a result, K qs -will no longer be positive semi-deiinite and the 

kernel /r-means algorithm will not be guaranteed to converge when applied to this matrix. 

Figure 6.5 compares the trailing eigenvalues for the matrix shown in Figure 6.4, before 

and after applying a shift of u = — 1. Notice that the modification of the diagonal entries 

has the effect of shifting each eigenvalue down by 1. Consequently, a large number of 

eigenvalues are below zero, signifying that the modified matrix is indefinite.

The application of diagonal shifts to Gram matrices has previously proved useful in 

supervised kernel methods. However, rather than seeking to reduce diagonal dominance, 

authors have most frequently used the technique to ensure that a kernel matrix is positive 

semi-definite. Several authors have previously proposed the addition of a non-negative 

constant to transform indefinite symmetric matrices into valid kernels. Unfortunately, 

this will have the side effect of increasing the dominance ratio. Specifically, Saigo et al. 

(2004) suggested adding a shift a =  |A„|, where A„ is the negative eigenvalue of the kernel 

matrix with largest absolute value. It is evident from Figure 6.5 that a positive shift will
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ofte?n re s u lt in  a  m a t r ix  th a t  is  once aga,in d ia g o n a lly  d lo m in a te d . In  add itiion i, co ix ip iu ting  

a fu l l  sp 'ectra l dlec:ompoKittion fo r  a large terni-docTunaemt m a t r ix  w i l l  o fte n  Ibe im p ra c tic a l, 

a lt lio u g h  W u  e t ad. (2()i05) dlid suggest am e s tim a tio n  ap)proa,ch fo>r app)ro.xirna.tinig A ,j.

S u lD p o ly rL o r ii ia l K e r n e l  W i t h  E m p i r i c a l  K e r n e l  M a p  ( S P M )

To ad;dr«ss th e  p ro b le m s in tro 'du iced b y  la rge  d iagom als in  SV!M s, Scliiollkoj^f et al. (20Ci2) 

suggested th e  re d u c tio n  lof th e  (iynai.n ic: range  o f t l ie  ke rne l m a t r ix  by tra n s fo rm in g  its  

en tries  u s in g  a s u b p o ly n a m ia l kerm el fn n c t io n . T h e  app)lica tion i o f  suc:h a fu n c t io n  has 

the range  cof “ f la tte n iin g ” th e  g a p  bietweien h ig h  affin.it> ’ va lues (w h ich  w i l l  p re d o m in a te ly  

corTes;po>ndl to  s e lf-s im ila r it ie s  fo r  c e rta in  kernels wheni appliecd to  te x t  d a ta ) a n d  low  a ff in ity  

vahues. F o rm a lly , a  s;ul;ipO)lyriomi:al k e rn e l fTm ction  is defined! as

(6.13)

w here  0 <  p <  1 is a u se r-d e fin ed  de;gre.e p a ra m e te r. F o r  a co rrespond ing : ke rne l m a tr ix  

K ^ p ,  decreasing  th e  v'alue o f th e  degree p  w i l l  have  th e  e ffect o f reduic ing th e  r a t io  of 

diajgomal en tries  to  o ff-d iagom a l en tries- U n lik e  th e  d ia g o n a l s h if t  te ch n iq u e , th e  n o n -lin e a r 

tra n s fo rm a tio n  in tro du ce id  b y  E qn. 6.13 d ire c t ly  m o d ifie s  th e  p a ir-w ise  a ff in it ie s  betw een  

the o fff-d iagona l en tries  in  S, w l i ic l i  m a y  p 'O te n tia lly  d is to r t  th e  nnd lerly im g c lu s te r s tru c tu re .

A n  im p )o rta n t issue th a t  m u s t hie laddressed w hen  u s in g  a sub)po lym om ia l ke rn e l is  the  

se lec tion  o f  th e  p a ra m e te r p .  I f  th e  va lue  is to o  large th e  G ra m  n ia tr ijc  w i l l  re n ia i j i  (di-
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agonally dom inated. On the other hand, if the value of p  is too small, all docum ents 

will tend to  become equally similar, thereby obscuring the true structures in the data. 

Scholkopf et al. (2002) suggested the use of standard  cross-validation techniques for se­

lecting p. However, this may not be feasible in cases where other key param eters such as 

the num ber of clusters k  m ust also be determ ined by repeatedly clustering the data.

Since the kernel m atrix k s p  may no longer be a valid kernel, it may be desirable to 

apply some technique to  render the m atrix  positive definite. Once such approach is the 

empirical kernel map m ethod (Scholkopf & Smola, 2001). This involves m apping each 

docum ent Xi to an n-dimensional feature vector

( f >m{ Xi )  =  { K { X i , X i ) , .  . . , K { X i , X n ) ) ^  (6.14)

By using this feature representation, we can derive a positive definite kernel m atrix  by 

simply com puting the dot products

K s p m  =  K s p K s p  (6.15)

In practice, normalising all rows of K sp  to  unit Euclidean length prior to  com puting the 

dot product leads to  significantly be tte r results.

D iagon a l Sh ift W ith  E m p irica l K ern el M ap (D S M )

While the empirical map technique was used by Scholkopf et al. (2002) to  produce a 

valid kernel from the m atrix of a subpolynomial kernel, this approach can be applied in 

com bination w ith other reduction m ethods. Thus, even if we alter the diagonal of the 

kernel m atrix  in an arb itrary  m anner so th a t it becomes indefinite, we may still recover a 

positive definite m atrix  th a t will guarantee convergence for the kernel fc-means algorithm.

Here we consider the possibility of applying a negative shift to  minimise the trace of 

the kernel m atrix  as described previously. This is followed by the construction of the 

empirical m ap K d s m  =  K d s K d s ^ i after normalising the rows of K d s  to unit length. 

While this approach does reduce the dominance ratio  (6.10), it should be noted th a t the 

application of the dot product will produce a kernel m atrix  with trace greater th an  zero. 

Thus, it can be viewed as providing a balance between reducing dominance and ensuring 

th a t the kernel m atrix  remains positive semi-definite.

133



A lg o r ith m  A d ju stm en t (A A )

When attem pting to apply supervised kernel methods to indefinite kernel matrices, Wu 

et al. (2005) distinguished between two fundamental strategies: spectrum transformation 

approaches that perturb the original matrix to produce a valid Gram matrix, and algorith­

mic approaches that involve altering the formulation of the learning algorithm. A similar 

distinction may be made between diagonal dominance reduction techniques. We now pro­

pose a new algorithmic approach that involves adjusting the kernel fc-means algorithm 

described by Scholkopf et al. (1998) to eliminate the influence of self-similarity values.

If one considers the distance between a document Xi and the cluster Ca to which it has 

been initially assigned, a dominant diagonal will lead to a large value in the third term 

of Eqn. 2.32. This will often cause xt to remain in Ca during the reassignment phase, 

regardless of the affinity between Xi and the other documents in Ca. A potential method 

for alleviating this problem is to reformulate the reassignment step as a “split-and-merge” 

process, where self-similarity values are not considered. Rather, we assign each document 

to the nearest centroid, where the document itself is excluded during centroid calculation.

Formally, each document Xi is initially removed from its cluster Ca, leaving a cluster 

Ca ~ {xi} with centroid denoted f.ia'- For each alternative candidate cluster Cj, b ^  a, we 

consider the gain achieved by reassigning Xi to C^ rather than returning it back to Ca- 

This gain is quantified by the expression:

^ab(Xi) = \\(i>ixi) -  Ha'\f -  \\4>ixi) -  (6.16)

By considering the definition of squared object-centroid distance in a kernel space (2.32), 

it is apparent that the diagonal value Ku  is not considered in the computation of Aab-

If max Aah{xi) > 0, then Xi is reassigned to the cluster Ĉ , which results in the maximal
b

gain. Otherwise, X{ remains in cluster Gq. As with the standard batch formulation of 

kernel fc-means, centroids are only updated after all n documents have been examined. A 

summary of the procedure is given in Figure 6.6.

This strategy could potentially be applied to improve the performance of the stan­

dard fc-means algorithm in sparse spaces where self-similarity values have undue influence. 

However, the repeated adjustment of centroids in a high-dimensional space is likely to be 

impractical. Fortunately, for kernel fc-means, we can efficiently compute Aab by caching the 

contribution of each document to the common term in Eqn. 2.32, making it unnecessary 

to recalculate the term in its entirety when evaluating each document for reassignment.
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1. Select k  arb itra ry  initial clusters { C i , . . .  ,Ck}-

2. For each object Xi and cluster Cb such th a t Xi G Ca and Ca ^ Cb, com pute the 
potential gain for moving Xi to  Cb'.

^ a b ( X i )  =  \\(t}{Xi) -  p.a'\\^ -  \ \ ^{Xi )  -

3. If maxf, Aab{xi) > 0, reassign x, to  Cb — argm ax Aab{xi).  Otherwise leave Xi in Ca-
b

4. R epeat from Step 2 until some term ination criterion is satisfied.

F ig u re  6.6: Kernel /r-means with algorithm  adjustm ent (AA).

6.3 .4  C om parison o f R eassignm ent B ehaviour

Dhillon et al. (2002a) observed th a t spherical fc-means often becomes trapped  at an ini­

tial clustering, where the sim ilarity of any docum ent to  its own centroid is much greater 

th an  its sim ilarity to any other centroid. As discussed previously, a diagonally dom inated 

kernel m atrix  frequently elicits similar behaviour from the kernel fc-means algorithm . Con­

sequently, the algorithm  will converge after relatively few reassignments have been made 

to  a local solution th a t is close to  the initial partition. If the initial clusters are ran­

domly selected, it is possible th a t the final clustering will be little be tte r th an  random. In 

addition, m ultiple runs may produce significantly different partitions of the same data.

To gain a clearer insight into this problem, we examine the reassignment behaviour 

resulting from the application of each of the reduction strategies proposed in the last 

section. Figure 6.7 illustrates the mean percentage of accepted reassignments occurring 

during the first 10 iterations of the kernel fc-means algorithm  when applied to the d ata  

represented by the m atrix  shown in Figure 6.4. It is evident th a t applying the algorithm 

to  the  original dom inated m atrix  results in significantly fewer reassignments, which can 

be viewed as a cursory search of the solution space. It is interesting to note th a t  these 

reassignment patterns are replicated to varying degrees across all the datasets described in 

C hapter 5. In this example, the increased number of reassignments coincides w ith higher 

accuracy and stability. For instance, the application of the DS strategy leads to  mean 

NMI and ANMI scores of 0.84 and 0.93 respectively, indicating th a t kernel fc-means is 

frequently successful in the identification of the three underlying classes.
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F ig u re  6.7: Average percentage of accepted reassignments made during the first 10 
iterations of the kernel A'-means algorithm, when applied to a subset of 90 documents 
from the classicS corpus.

6.3 .5  E xperim ental Evaluation

W’e now evaluate the degree to  which the diagonal dominance reductions strategies de­

scribed previously can improve our ability to  accurately and consistently group text docu­

ments when working with real-world corpora. Table 6.4 provides details of the normalised 

linear kernel m atrices for the datasets used in our experiments, including mean affinity 

values for three cases: all pairs of documents, pairs of documents associated with the same 

natura l class, and pairs belonging to different classes. The corresponding dominance ratios 

indicate th a t the kernel m atrices generally exhibit significant diagonal dominance.

Dataset
Overall

Mean Affinity 
Intra-Class Inter-Class

Ratio

bbc 0.04 0.07 0.03 24.18
bbcsport 0.06 0.09 0.05 16.19
classic 0.02 0.04 0.01 50.73
classics 0.03 0.05 0.01 40.53
cstr 0.06 0.10 0.04 17.10
ngl7-19 0.03 0.04 0.03 29.44
ng3 0.03 0.05 0.02 30.93
reuters5 0.04 0.09 0.02 23.83
reviews 0.04 0.06 0.03 27.18
sports 0.04 0.06 0.03 27.75

T ab le  6.4: Details of normalised linear kernel m atrices constructed on real-world datasets.
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For each approach, we performed 200 trials of the clustering procedure, which was 

random ly initialised in each case. We set the num ber of clusters k  to correspond to  the 

num ber of natu ra l classes in the data. For experim ents using a subpolynom ial kernel, 

we tested  values for the degree param eter from the range [0.4,0.9]. We observed th a t 

values for p < 0.4 invariably resulted in excessive flattening of the range of values in the 

kernel m atrix, producing partitions th a t  were significantly inferior to  those generated on 

the original m atrix.

To compare the accuracy of the clustering techniques, we again employ the NMI mea­

sure. As discussed in Section 2.3, many clustering algorithm s such as fc-means and its 

variations are particularly  sensitive to initial s tarting  conditions. This makes them  prone 

to  converging to  different local m inim a when using a stochastic initialisation strategy. 

Therefore, when selecting a diagonal reduction m ethod, we seek to identify a robust ap­

proach th a t will allow us to  consistently produce accurate, reproducible clusterings. In 

our experim ents, we assessed the stability of each candidate m ethod using the average 

normalised m utual inform ation (ANMI) between the set of all partitions generated on 

each dataset, calculated using Eqn. 5.1.

A n a ly s is  o f  R e s u lts

Our experim ents indicate th a t all of the reduction approaches under consideration have 

m erit. In particular, Table 6.5 shows th a t the AA and DS iriethods yield improved cluster­

ing accuracy in all cases. Generali}^, we observed th a t diagonal dominance reduction has

D ataset Orig. DS DSM AA SPM
bbc
bbcsport
classic
classics
cstr
ngl7-19
ng3
reuters5
reviews
sports

0.82 ±  0.07 
0.71 ±  0.11 
0.73 ±  0.03 
0.93 ±  0.06 
0.70 ±  0.05 
0.38 ±  0.13 
0.81 ±  0.11 
0.58 ±  0.05 
0.57 ±  0.07 
0.66 ±  0.06

0.84 ±  0.07 
0.82  ± 0.08  
0.73 ±  0.03 
0.93 ±  0.06 

0.75  ± 0.04  
0.41 ±  0.14 
0.83 ±  0.11 
0.59 ±  0.04 

0.59  ±  0.05  
0.66 ±  0.05

0.81 ±  0.08 
0.78 ±  0.07 
0.71 ±  0.02 
0.92 ±  0.08 
0.70 ±  0.02 
0.39 ±  0.10 
0.68 ±  0.08 
0.62 ±  0.05 
0.32 ±  0.06 
0.53 ±  0.07

0.85  ±  0.06  
0.80 ±  0.08 

0 .74  ±  0.02  
0 .94  ±  0.06  
0.74 ±  0.04 
0.42 ±  0.13 

0 .84  ±  0.10  
0.59 ±  0.04 

0.59  ±  0.05  
0.67  ±  0.05

0.84 ±  0.06 
0.75 ±  0.09 
0.72 ±  0.02 
0.91 ±  0.06 
0.71 ±  0.03 

0.46  ± 0.11  
0.79 ±  0.11 

0.60  ± 0.06  
0.46 ±  0.08 
0.53 ±  0.06

T a b le  6.5: Summ ary of NMI accuracy results (mean and standard  deviation) for kernel 
clustering with dominance reduction, when applied to  real-world tex t datasets.
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D ataset Orig. DS DSM AA SPM
bbc 0.83 0.88 0.86 0.90 0.90
bbcsport 0.63 0.82 0.83 0.78 0.74
classic 0.89 0.89 0.81 0.90 0.79
classic3 0.96 0.97 0.95 0.97 0.96
cstr 0.71 0.81 0.79 0.81 0.77
ngl7-19 0.45 0.52 0.60 0.52 0.63
ng3 0.81 0.84 0.68 0.86 0.82
reutersS 0.74 0.78 0.92 0.78 0.87
reviews 0.76 0.82 0.86 0.81 0.70
sports 0.72 0.74 0.78 0.74 0.72

T ab le  6.6: Summ ary of ANMI stability  results for kernel clustering with dominance 
reduction, when applied to  real-world tex t datasets.

a greater effect on some datasets than  on others. W hile the difference in reassignment be­

haviour after reduction is less pronounced on datasets such as classic3, there is no strong 

correlation between the  distribution of the affinity values in the kernel m atrix  and the 

increase in accuracy. However, it is apparent from Table 6.6 th a t applying kernel fc-means 

to  a dom inated kernel m atrix  consistently results in poor stability. It is clear th a t the 

restriction placed on the reassignment behaviour in these cases frequently results in less 

deviation from the initial random  partition , thereby increasing the overall disagreement 

between solutions. We now discuss the performance of each of the approaches individually.

D ia g o n a l S h if t (D S ). Table 6.5 shows th a t the negative diagonal shift approach fre­

quently produced clusterings th a t were more accurate than  those generated on the 

original dom inated kernel matrices. As noted in Section 6.3.3, this m ethod provides 

no guarantee of convergence. However, our results support the assertion made by 

Dhillon et al. (2004a) th a t, in practice, lack of convergence may not always be a 

problem. Frequently we observed th a t a com paratively stable partition  is identified 

after a relatively few number of iterations. At this stage the algorithm  proceeds to 

oscillate indefinitely between two nearly identical solutions w ithout ever attain ing 

convergence. To address this issue, we chose to  term inate the reassignment pro­

cess after five consecutive oscillations were detected and select the solution w ith the 

lowest distortion. This had no noticeable adverse effect on clustering accuracy.

D ia g o n a l S h if t  W i th  E m p ir ic a l  K e rn e l  M a p  (D S M ). While the application of the 

empirical kernel m ap technique subsequent to a diagonal shift does guarantee con-
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Dataset II o p — 0.5 II o p =  0.7

00oII p = 0.9
bbc 0.83 0.84 0.83 0.84 0.84 0.83
bbcsport 0.67 0.70 0.73 0.75 0.76 0.76
classic 0.71 0.73 0.73 0.72 0.72 0.71
classics 0.89 0.90 0.89 0.91 0.91 0.92
cstr 0.66 0.67 0.69 0.71 0.72 0.72
ngl7-19 0.44 0.45 0.45 0.46 0.43 0.41
ng3 0.85 0.85 0.82 0.79 0.79 0.74
reutersS 0.56 0.56 0.59 0.60 0.61 0.62
reviews 0.55 0.52 0.48 0.46 0.44 0.42
sports 0.51 0.52 0.53 0.53 0.54 0.55

T a b le  6.7: Comparison of mean NMI accuracy results for kernel clustering of real world 
tex t-datasets, when using a subpolynomial kernel w ith degree param eter p  G [0.4,0.9].

vergence after relatively few iterations, the m ap also has the effect of increasing 

the dominance ratio, resulting in accuracy gains th a t are not as significant as those 

achieved by the other strategies. The higher level of consistency between solutions 

generated using this m ethod does suggest th a t it represents a reasonable trade-off be­

tween accuracy and stability. However, there remains the additional com putational 

expense of constructing the m atrix  which requires O(n^) time.

S u b p o ly n o m ia l K e rn e l  W i th  E m p ir ic a l  K e rn e l  M a p  (S P M ). For the subpolyno­

mial kernel reduction m ethod, our experim ental findings underline the difficulty of 

setting the degree param eter p. The gains in accuracy resulting from this approach 

were significant, though less consistent th an  those achieved by the other methods. 

On certain datasets, such as the ngS and reviews collections, specific values of p  lead 

to a large improvement in both  accuracy and stability, while in other cases there 

was little or no improvement. This suggests th a t the alteration of cluster structure 

induced by the subpolynomial function may prove beneficial in some cases, b u t not 

in others. Therefore, while a value oi p  — 0.7 lead to the highest mean accuracy 

when considering all datasets, from the results shown in Table 6.7 we conclude th a t 

the selection of a value for p  is largely d a ta  dependent. Once again, the expense of 

calculating the empirical m ap must be taken into consideration when making use of 

this reduction method. As w ith the DSM approach, the application of the empirical 

m ap resulted in a marked increase in cluster stability.

A lg o r i th m  A d ju s tm e n t  (A A ). The adjusted kernel fc-means algorithm  yielded im-
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provements in accuracy th a t were marginally b etter than  those produced by the 

diagonal shift m ethod (DS), while also achieving slightly higher ANMl stability 

scores. The correlation between the two m ethods is understandable given their sim­

ilar reassignment behaviour. This stems from the fact th a t applying a negative 

diagonal shift of ct =  — 1 to  a m atrix with trace equal to  n  effectively eliminates the 

dom inant last term  in Eqn. 6.11, leading to  document-centroid distances th a t are 

approxim ately the same as those achieved using the “split-and-merge” adjustm ent. 

It should be noted th a t, while the AA reduction m ethod frequently failed to achieve 

complete convergence, the oscillation detection technique described previously re­

solved this problem satisfactorily on all datasets.

From our experiments, it is apparent th a t the DS and AA techniques both  represent 

efficient strategies for reducing diagonal dominance and thereby impro\'ing the ou tput of 

centroid-based kernel clustering algorithms. Of these, the latter leads to  slightly greater 

improvement in clustering accuracy.

While the results shown previously relate to  experiments th a t involve using a value 

k  corresponding to  the number of natural classes in the data, we have also noted tha t 

comparable improvements in accuracy and stability are apparent on all datasets when 

using alternative values for the number of clusters. As an example. Figure 6.8 shows a 

comparison of the mean NMl scores for the original kernel /r-means algorithm and the new 

AA technique, covering a range of values of k. In several cases, such as for the cstr dataset
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F ig u re  6.8: P lot of mean NMI accuracy scores for clusterings generated by kernel fc-means 
and adjusted kernel fc-means, for values of fc € [2,10].
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shown in Figure 6.8(b), the gain in accuracy becomes more pronounced as the number of 

clusters increases. This is largely due to  the frequent presence of smaller clusters in the 

initial clustering solutions, from which incorrectly assigned docum ents fail to  escape due 

to  the strong influence of self-similarity.

6.3 .6  Sum m ary

We have considered a range of practical solutions to  the issues introduced by diagonally 

dom inated kernel m atrices in unsupervised kernel m ethods. Furtherm ore, we have demon­

stra ted  the effectiveness of the  solutions when performing the task  of docum ent cluster­

ing. From our evaluation, it is apparent th a t the presence of disproportionately large 

self-similarity values precipitates a reduction in the num ber of reassignments made by the 

kernel /c-means algorithm . This may limit the extent to  which the solution space is ex­

plored, causing the algorithm  to become stuck close to its initial state. In cases where the 

initialisation strategy is stochastic or unsuitable, this can result in an appreciable decrease 

in accuracy and cluster stability. To remedy this, in Section 6.3.3 we proposed a selection 

of strategies for reducing the effects of dominance. The diagonal shift and adjusted kernel 

/c-means techniques represent particularly  appealing options for this task, particularly in 

light of the negligible increase in running time resulting from their application.

An interesting point arising from our experim ents is th a t techniques such as the diago­

nal shift strategy, which work on indefinite m atrices, can still produce good clusterings and 

can be term inated after a trac tab le  num ber of iterations w ithout any significant decrease 

in clustering accuracy. This indicates th a t kernel fc-means may not be as sensitive to  the 

requirem ent for a positive semi-definite kernel m atrix  as supervised algorithm s, such as 

the SVM classifier.

We suggest th a t the diagonal dominance strategies described here may also be useful 

in improving other centroid-based kernel clustering m ethods, such as the weighted kernel 

fc-means algorithm  (Dhillon et al., 2004b) or a kernel-based formulation of the bisecting 

fc-means algorithm  given in Section 2.4.2. In addition, we believe th a t these strategies will 

have m erit when applying kernel clustering in other domains, such as bioinformatics and 

image retrieval, where the ratio  of diagonal to  off-diagonal entries in the kernel m atrix will 

often be significantly higher.
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Chapter 7

A ggregating Inform ation from  

M ultiple Clusterings

7.1 In trod u ction

A compelling notion in machine learning research is the idea that, by combining the output 

of a group of algorithms, a superior solution may be found for a given learning problem. 

Ensemble classification techniques, such as bagging and boosting, are the most prominent 

examples of this idea (Breiman, 1996). Similar techniques can be employed in unsuper­

vised learning problems, where analysing information obtained from multiple clustering 

solutions can provide us with a better overall view of the structure of a dataset. In recent 

cluster analysis research, it has been shown that this t}^pe of information can be used in a 

number of ways. For instance, the ensemble clustering algorithms described in Section 2.9 

can produce more accurate, stable clustering solutions by combining a collection of base 

clusterings. Another previously explored area is that of stability analysis, which is dis­

cussed in Section 3.4. Techniques based on this concept use the information aggregated 

over many runs of a clustering algorithm to produce a robust assessment regarding the 

validity of a given clustering model.

Even with the availability of significant computing resources, the scalability issues 

arising from the dimensionality and size of the data models used in text mining tasks 

remain a constant concern. A serious drawback, common to both ensemble clustering 

and stability analysis, is the significant computational cost incurred when generating and 

analysing multiple clusterings. In both cases, a larger collection of base clusterings is

142



desirable to  provide more conclusive evidence regarding the cluster structures. A user 

employing these m ethods on large corpora must therefore deal with the classic trad e­

off between speed and precision. M any users will be reluctant to  compromise on either 

algorithm  scalability or accuracy. As a consequence, neither aggregation m ethod has been 

widely adopted for use in docum ent clustering tasks.

To address these concerns, we now propose efficient strategies for aggregating informa­

tion from m ultiple clusterings, which m aintain algorithm  performance while significantly 

reducing running time. In Section 7.2, we consider a prediction-based approach for s ta ­

bility analysis suitable for estim ating the number of clusters in a docum ent collection. In 

Section 7.3, we shift our focus to the related problem of rendering ensemble clustering 

techniques more practical for use on tex t datasets, w ithout negatively im pacting upon 

algorithm  accuracy or stability.

7.2 Efficient Prediction-B ased Cluster Validation

Validation techniques based on stability analysis have been shown to provide an effective 

means of determ ining the optimal num ber of clusters k in a, dataset (Lange et al., 2004). 

For small datasets, stability-based validation techniques offer a highly attractive  option 

for inferring a value for k. However, as the number of dimensions grows, the  time required 

to repeatedly apply an algorithm  such as /c-means will greatly increase. The num ber of 

objects n  will also be a limiting factor, since a larger value for n  will substantially  increase 

the com putational cost of the clustering and the stability assessment procedures, which 

typically run in 0{n^)  time or slower. Given these scalability issues, it is unsurprising 

th a t stability analysis m ethods have rarely been applied to  large-scale datasets such as 

tex t corpora. In th is section, we tackle these issues by proposing an efficient prediction- 

based validation scheme based on the idea of prototype reduction, which involves producing 

a smaller set of objects or prototypes to  represent a given dataset.

7.2.1 Background

P re d ic tio n -B a se d  V alid ation  for T ext D a ta

Prediction-based m ethods for stability analysis are m otivated by the concept of prediction 

accuracy in supervised learning (Tibshirani et al., 2001). To illustrate the relevance of this 

idea in the context of model selection for docum ent clustering, we consider a small subset
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(a) Training {k =  2) (b) Testing (fc =  2)

(c) Training (k =  3) (d) Testing {k =  3)

F ig u re  7.1; Plot of the first two Principal Components of a subset of 450 documents 
from the 20NG collection, showing partitions generated when applying two iterations of 
prediction-ba.sed validation.

of the 20NG collection, consisting of 300 documents from the ‘cryptography’ newsgroup 

and 150 documents from the ‘hockey' newsgroup. Figures 7.1(a) and 7.1(b) show training 

and testing partitions of this d a ta  generated for k = 2. Clearly, a suitable claiisifier built 

upon the groups in the former is likely to  be successful a t predicting the assignment of 

docum ents in the latter partition. In contrast, the partitions of the same sets for =  3, as 

shown in figures 7.1(c) and 7.1(d), are significantly different. This makes it unlikely th a t 

a classifier constructed on the former will accurately predict the latter. If these patterns 

are freqTiently replicated over many different splits of the data, it is reasonable to conclude 

th a t k = 2 represents a more appropriate choice for the number of clusters than  k = 3.

P r o to ty p e  R e d u c tio n

Prototype reduction techniques have been extensively used in supervised learning for tasks 

involving large datasets, typically in conjunction with a nearest-neighbour classifier. These 

techniques are concerned with producing a minimal set of objects or prototypes to  repre­

sent the data, while ensuring th a t a classifier applied to  this set will perform approximately 

as well as on the original dataset. In the literature, these techniques are generally divided
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into two categories: prototype selection techniques seek to  identify a subset of represen­

tative objects from the original data, while prototype extraction techniques involve the 

creation of an entirely new set of objects. A comprehensive overview of supervised reduc­

tion schemes has been provided by Bezdek & Kuncheva (2001).

M any reduction techniques are com putationally intensive, often involving clustering­

like procedures to identify relevant prototypes. In contrast, Hamamoto et al. (1997) pro­

posed a simple stochastic technique (BTS), which is based on bootstrap  editing. Initially, 

a random  sample of n' seed objects is drawn from the dataset. Each seed object is then 

replaced by a new prototype constructed from the mean of its p-nearest neighbours and 

the seed itself. A 1-NN classifier is subsequently applied to  the new set of n' prototypes. 

The entire process may be repeated m ultiple times to  give more robust results. Kim 

& Oommen (2005) described a novel framework th a t involves using a chosen reduction 

scheme, such as BTS, to produce a reduced set of prototypes, from which a smaller kernel 

m atrix  is constructed. Ensemble classifier m ethods are then  employed on this m atrix to 

com pensate for any loss in accuracy resulting from the reduction in dataset size.

While most work in prototype reduction has focused on supervised learning tasks, the 

concept has been used implicitly as part of many clustering algorithms. Notably, C utting 

et al. (1992) proposed a technique, referred to as fractionation, to  improve the efficiency of 

agglomerative hierarchical clustering m ethods. This technique can be viewed as perform­

ing a  type of prototype extraction. Initially, a corpus is divided into a predefined number 

of fractions. The docum ents in each fraction are then clustered separately so th a t, by 

treating  each cluster as a single “m eta-docum ent” , the num ber of d a ta  objects is subse­

quently reduced. The buckshot m ethod, also proposed by C utting  et al. (1992), employs a 

stochastic prototype selection scheme and combines elements of classical hierarchical and 

partitional algorithm s to reduce the tim e required to cluster large sets of documents. It 

is interesting to  note th a t the application of prototype selection in clustering is closely 

related to both  the problem of outher removal (Kollios et a i,  2003) and the choice of seeds 

in cluster initialisation (Juan  & Vidal, 2000).

7.2.2 K ernel P red iction -B ased  V alidation

To avoid having to  work in the original high-dimensional feature space, we make use of 

the recently proposed kernel clustering m ethods as described in Section 2.8. The ad­

vantage of these m ethods in the context of stabihty  analysis stem s from the fact that,
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having constructed a single kernel m atrix  K , multiple clusterings can subsequently be 

generated without referring back to the original data. Since the fc-means algorithm  has 

commonly been used in both stability analysis and document clustering, we make use of 

the corresponding kernelised version of the algorithm.

To form the basis for our validation scheme, we choose the prediction-based m ethod 

proposed by Tibshirani et al. (2001) due to its empirical success and com putational ad­

vantage over other stability analysis methods. The latter benefit derives from the fact tha t 

each run of the clustering algorithm  only considers a sample of ^ objects. Formally, the 

validation process involves applying two-fold cross-validation to  randomly split the dataset 

X  — {x i , . . . ,  x ,i} into disjoint training and test sets, denoted Xa and Xf, respectively. Both 

sets are subsequently clustered using kernel fc-means with random initialisation. A predic­

tion for the assignment of objects in the test set is then produced by assigning each Xi € Xh 

to  the nearest centroid in training clustering. The accuracy of this prediction is assessed 

by measuring the degree to  which it agrees with the original clustering of Xf,. To measure 

prediction accuracy, we propose using an adjusted version of the prediction strength index 

(3.34), because of its strong theoretical foundation and superior empirical performance. 

R ather than  manually choosing from among the potential values, we autom atically select 

the value k th a t leads to the maximum average score over r  runs. However, prediction 

strength  does exhibit a strong bias toward smaller values of k  as dem onstrated by the
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F ig u re  7.2: P lot of the expected values for the prediction strength index when applied 
to  randomly generated pairs of partitions for k G [2,20], illustrating the bias of the index 
with respect to smaller values of k.
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1. C onstruct a n x n kernel m atrix  K.

2. Random ly generate r  splits of X  into training and test sets.

3. For each value of fc S [kmin,kmax] '■

(i) For each split Ai):

a. Apply kernel fc-means to  the training set Xa using kernel K.
b. P redict the assignment of docum ents in based on the centroids from the 

clustering of A’q.
c. Apply kernel /c-means to the test set using kernel K.
d. Evaluate prediction strength  and correct for chance.

(ii) Com pute the mean corrected prediction strength  for k  over all r  splits.

4. E stim ate k  by selecting the candidate value k  leading to  the highest m ean corrected
prediction strength.

F ig u re  7.3: Kernel prediction-based validation scheme.

plot of expected values given in Figure 7.2. We can readily address this by employing 

the widely-used adjustm ent technique described in H ubert & Arabie (1985) to correct for 

chance agreement:
c'/r’ TI \ Si^bi'Pb) ~  Sk{Cb,T’b) / - 7  1 \

Note th a t Sk{Cb,Vb) is the expected prediction strength  on the split {Xa,Xb),  where each 

partition  contains k  clusters. This value may be approxim ated by calculating the mean 

value of Eqn. 3.34 over a large num ber of pairs of random ly generated partitions.

As discussed by Lange et al. (2004), the choice of classifier used to make predictions 

should complement the clustering algorithm . To “mimic” the assignment behaviour of 

the kernel /c-means algorithm , we employ a kernel nearest centroid classifier, such th a t 

each object in Xb is classified as being a m ember of the class represented by the nearest 

kernel pseudo-centroid in the training clustering. Subsequently, we use corrected predic­

tion strength  to  evaluate the degree to  which the predicted classification agrees with the 

clustering of Xb as produced by kernel /c-means. The full validation scheme is summarised 

in Figure 7.3.

7 .2 .3  K ern e l  P r o to ty p e  R e d u c t io n

In the previous section, we described a stability-based validation m ethod suitable for use 

on high-dimensional data. However, the validation process still requires r  runs consisting
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of clustering and prediction assessment phases, which both run in 0 ((^ )^ ) time. Clearly, 

decreasing n will make the process significantly less computationally expensive. Motivated 

by the large-scale clustering technique described by Cutting et al. (1992), an intuitive 

solution is to create a reduced set of n ' <  n objects, upon which the validation procedure 

may be applied. However, any such reduction must be performed in a way that preserves 

the structures in the data.

Meeting these requirements without any form of supervision is not a trivial task. 

Bezdek & Kuncheva (2001) noted that reduction approaches utilising class information 

tend to be far more successful than their purely unsupervised counterparts. Many su­

pervised prototype reduction approaches process each class separately. As a result, the 

reduced prototypes will be “meaningful” in the sense that they will be constructed from 

data objects belonging to a single class. In the absence of class labels, we must rely upon 

intrinsic properties of the data to ensure that all structures in the data are adequately 

represented. Unfortunately, text corpora often contain unbalanced clusters, which may 

also differ in their relative densities, making the task particularly problematic. To ad­

dress these issues, we propose a reduction scheme consisting of two phases. In the first 

phase, prototype extraction is used to generate a set of candidate prototypes formed from 

small homogeneous regions of the data. The second phase involves selecting a subset of 

n' prototypes which are used to build a. n' x n' reduced kernel matrix, denoted by K '.

P ro to ty p e  E x tra c tio n

Initially, we create a set of extracted prototypes S  — { s i , . . . , s „ }  in a manner similar 

to that employed by the supervised BTS reduction scheme (Hamamoto et al., 1997), 

where new prototypes are formed by locally combining subsets of the original dataset X. 

Formally, we define a neighbourhood Mi as a subset of X  consisting of a seed object Xi 

together with its set of p nearest neighbours. A new prototype Si may be constructed from 

the mean of the p + 1 objects in a neighbourhood. Since we wish to work in the kernel- 

induced space only, we consider Sj to be the pseudo-centroid of the subset A/”i as calculated 

from the values in K. We note tha t regions forming cluster structures will normally be 

locally homogeneous, in the sense that the majority of the set of neighbours of each object 

are likely to belong to the same cluster as that object (Frederix & Pauwels, 2004; Ding 

& He, 2004). Therefore, prototypes constructed from the centroid of sufficiently small 

neighbourhoods will generally be representative of a single natural class.
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(a) Full kernel (b) Reduced kernel (ran- (c) Reduced kernel (den-
dom sampling) sity biased selection)

F ig u re  7.4: Normalised linear kernels for a subset of 300 documents from the 20NG col­
lection, showing the relation between the original kernel m atrix and m atrices constructed 
using prototype reduction.

D e n s ity -B ia se d  C a n d id a te  S e lec tio n

The problem remains of selecting a subset S ' of n' optimal prototypes from the n possible 

candidates. A possible solution is to apply unbiased random  sampling to  choose S ', where 

each reduced prototype ha« an equal probability of being selected. However, this approach 

has several drawbacks in the context of \'alidation. Ideally, we wish to  select a fraction of 

prototypes from each class th a t is proportional to  the size of th a t class in the original data. 

A single random sample from S  is not guaranteed to achieve this. To illustrate the problem, 

we consider the two-class subset of 450 documents from the 20NG collection which was 

considered in Section 7.2.1. Figure 7.4(a) shows the full normalised linear kernel m atrix 

constructed on the original data, while Figure 7.4(b) shows a reduced approximation 

produced by randomly selecting seed objects. It is evident from the la tter th a t the smaller 

‘hockey’ class is not adequately represented by the random  reduction process. We observe 

th a t reduced prototypes chosen in this way frequently fail to  produce a true  proxy for the 

dataset, resulting in poor estim ations for k in the subsequent validation process. In these 

cases, the failure is often due to poor sampling of smaller clusters or im portant sub-regions 

within clusters. While we could run the process multiple times and aggregate the results, 

the com putational cost would negate the benefits of performing prototype reduction.

As an alternative, the second phase of our reduction procedure employs a density- 

biased strategy to  select S '. This strategy has similar goals to  existing density-biased 

sampling techniques [e.g. Palm er & Faloutsos, 2000), but is both determ inistic and signif­

icantly less com putationally demanding. Firstly, we define the compactness (i.e. density)



of a neighbourhood A q as the average of the pairwise affinities between its members:

C{Na) = (7.2)
|*^a|

where |A/’a| = p + I. This is equivalent to the “self-similarity” of the pseudo-centroid 

formed from A/’s. In the selection process, the prototypes in S  are ranked in descending 

order according to their compactness. From these, we uniformly choose n' = ^  prototypes, 

where p is the reduction rate that determines the degree to which the number of data 

objects should be reduced. Specifically, we select every p-th prototype from the ordered 

list, thereby ensuring that we represent all density patterns in the data. We then build the 

reduced kernel matrix K ' based on these n' prototypes. Rather than computing explicit 

representations for the new prototypes in the original feature space, we can make use of 

the values in the original kernel matrix to directly construct K '. Formally, the affinity 

between a pair of reduced prototypes Si and Sj is defined as:

j . ,  ^ xaeSi ,XbeS j  
( p + l ) 2

It is possible that a matrix constructed in this way may not always be positive semi- 

definite. However, as observed in Section 6.3.5, this does not pose a significant problem 

for the kernel /c-means algorithm.

Referring back to our previous example, we see that, unlike the matrix in Figure 7.4(b), 

the reduced kernel matrix shown in Figure 7.4(c) is clearly representative of the two 

classes in the original dataset. In practice, we consistently observe that this density- 

biased selection strategy produces extracted prototypes that accurately summarise the 

underlying structures in the data. We contend that this is due to the inclusion of regions 

representing clusters of varying densities and all sub-regions within those clusters.

A lg o rith m  Efficiency

Once we have constructed the reduced kernel matrix, the validation scheme proceeds as 

described in Section 7.2.2. The proposed reduction strategy results in a significant decrease 

in the computational cost of the validation process. Our approach does involve a once-off 

initialisation step, requiring time 0 (n  log n) for prototype extraction and O(n'^p^) for the 

construction of K '. However, the computational gains made in the subsequent validation 

process are substantial. For each of the r  runs, the costs associated with clustering and 

prediction assessment are both reduced to 0 ( (^ )^ ) .
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7 .2 .4  A pp lication  to  D ocum ent C lustering

While our proposed method may be used in conjunction with any valid kernel function, for 

document clustering we suggest the use of a normalised linear kernel (2.36). As discussed 

in Section 6.3.2, the matrix of this kernel will often suffer from diagonal dominance. 

To address the problem, we make use of kernel fc-means with algorithm adjustment as 

proposed in Section 6.3.3. A summary of the complete validation process is provided in 

Figure 7.5.

When performing prototype reduction, we assume that regions will be locally homoge­

neous, which should generally be the case when an appropriate kernel function is chosen. 

To maximise homogeneity, we select a low value for the number of nearest neighbours. 

For document corpora, we have observed that the use of p = 5 consistently leads to the

In itia lisa tion  Phase

1. Construct a full n x n kernel matrix K from the original data.

2. Extract candidate prototypes S, consisting of n neighbourhood pseudo-centroids.

3. Evaluate compactness of candidates in S  and sort accordingly in descending order.

4. Uniformly select a subset S' of n' reduced prototypes from the ordered list.

5. Construct the n' x n' reduced kernel matrix K ' based on S ' using Eqn. 7.3.

V alidation Phase

1. Randomly generate r  splits of S ' into training and test sets.

2. For each value of A; € [kmimkmax] ■

(i) For each split (A'a, Afc):
(a) Apply adjusted kernel /c-means to the training set Afa using kernel K'.
(b) Predict the assignment of documents in based on centroids from clus­

tering of Afa -
(c) Apply adjusted kernel /c-means to the test set using kernel K'.
(d) Evaluate prediction strength and correct for chance.

(ii) Compute mean corrected prediction strength for k.

3. Estimate k by selecting the candidate value k leading to the highest mean corrected 
prediction strength.

F igure 7.5: Kernel prediction-based validation scheme, with prototype reduction.
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construction of meaningful prototypes that represent a single natural class. Empirical ob­

servations also indicate that a value oi p = A for the reduction rate substantially reduces 

the time required for the validation process, without significantly affecting its accuracy. 

The selection of p is also related to the maximum number of runs r . The computational 

gains resulting from prototype reduction facilitate the use of a larger value {e.g.r = 200) 

to guarantee the robustness of the overall vahdation procedure. It must be stressed that, 

in practice, the use of these general purpose parameter values proved to be effective on a 

diverse range of datasets, indicating that the proposed validation method is quite robust 

to the choice of values for these parameters. This allows us to focus on the more immediate 

task of estimating the number of clusters.

7.2.5 Experim ental Evaluation

In this section, we compare the validation scheme proposed in Section 7.2 with techniques 

operating on the full set of original data objects. The experimental process involved 

applying four stability analysis schemes to each dataset:

KM-S:  Prediction-ba.sed validation using corrected prediction strength (Tibshirani

et ai,  2001), and A:-means with cosine similarity.

KM-P: Prediction-based validation using partition similarity, and fc-means with

cosine similarity (Giurcaneanu & Tabus, 2004).

KKM-S:  Kernel prediction-based validation using prediction strength, as proposed

in Section 7.2.2.

R E D S :  Kernel prediction-based validation using prediction strength and density-

biased prototype reduction, as proposed in Section 7.2.3.

The validation schemes were applied across a reasonable range of values for k and com­

paring their output with the “true” number of natural classes. For our experiments, we 

chose the range [2,10]. Note that, in the case of the kernel-based algorithms, we employ 

the adjustment described in Section 6.3.3 to lessen the effect of diagonal dominance. In 

all experiments, we set r  =  200 to minimise any variance introduced by subsampling, 

and use random cluster initialisation. Algorithm running times were evaluated based on 

experiments performed on an Intel Pentium IV 3.4GHz server with 2GB RAM, running 

Ubuntu Linux and Sun Java 1.5.
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E v a lu a tio n  o n  A rtif ic ia l D a ta

To illustrate significant differences between the validation strategies, we used the artificial 

datasets derived from the 20NG collection as described in Section 5.2.2. For the purposes 

of comparison, we also include results for the Calinski-Harabasz (CH) index, which was 

shown to be the most suitable index for model selection from among the internal techniques 

examined in Section 5.4.

Figure 7.6 summarises the relative performance of the validation schemes in term s of 

the percentage of datasets on which each scheme was successful in identifying k.  W'hen 

considering the stability analysis schemes, these results indicate th a t bo th  kernel-based 

algorithms consistently outperform ed those employing the standard /c-means algorithm, 

hi these cases, the application of a diagonal dominance reduction frequently lead to  sig­

nificantly higher prediction accuracy. Furtherm ore, we see that, across the  84 artificial 

datasets. RED-S generally lead to  more instances w'here the true number of clusters was 

correctly identified. This is particularly apparent for d a ta  with well-separated clusters. 

The difference was less pronounced on datasets with overlapping clusters, where object 

neighbourhoods were generally less homogeneous. W ith regard to the efficiency of these
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F ig u re  7.6: Summary of the overall percentage of correct and top-3 estim ations for k as 
selected by stability-based validation schemes, measured across all artificial text datasets.
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Datasets KM-S KM-P KKM-S RED-S
Balanced 1492 1358 6117 248
Unbalanced 1280 1180 4767 181
Non-overlapping 1214 1102 4630 184
Overlapping 1487 1376 5803 223
Overall 1351 1239 5217 203

Table 7.1: Summary of the average running times (in seconds) for stability-based vali­
dation schemes when applied to all artificial text datasets.

schemes, we observed that the speed-up achieved by working on j  reduced prototypes was 

dramatic, as illustrated by the running times listed in Table 7.1.

When comparing the performance of the stability analysis schemes to the results 

achieved by the internal CH index, we see that RED-S selected the correct value k  more 

frequently on all categories of the artificial datasets. However, CH does identify k in its 

top three estimations more often, particularly on those datasets with poorly separated 

clusters. It should be noted that the results for the CH index are also based on results 

aggregated over many clusterings, which can be costly for larger values of n. While it is 

possible to apply the index on a single clustering, the instability of the underlying fc-means 

algorithm could easily result in a misleading estimation for k.

Evaluation on Real D ata

In our second evaluation, we compare the validation schemes on real-world corpora that 

have previously been used in document clustering. Table 7.2 shows the results of the 

comparison, indicating the top three estimated values for k on the real corpora. In almost 

all cases, the reduced validation method (RED-S) recommended the same value of k as 

that chosen when working on the full kernel matrix (KKM-S). Only in the cases of the 

reutersS and sports datasets did it fail to rate k among its top three choices. However, in 

Section 5.4.2 we observed that other well-known validation methods also perform poorly 

on these corpora, which contain significantly overlapping clusters. It is worth nothing 

that both kernel-based techniques consistently outperformed those employing standard 

A'-means. In these cases, our evaluations indicate that the application of a diagonal dom­

inance reduction strategy leads to a non-trivial improvement in validation accuracy.

When we compare the performance of the stability analysis methods to that of the 

baseline internal technique, we see that RED-S performed at least as well in estimating
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Dataset k CH KM-S KM-P KKM-S RED-S
bbc 5 5,6,4 5,4,6 5,6,7 5,2,6 5,6,4
bbcsport 5 6,5,7 5,4,6 5,6,4 5,6,4 5,4,6
classic 4 3,4,5 5,3,4 3,5,6 5,4,6 4,5,3
classic3 3 3,4,2 3,2,4 3,2,4 3,4,5 3,4,2
cstr 4 3,4,5 3,2,4 3,4,2 3,4,5 3,4,2
ngl7-19 3 5,6,4 5,4,6 5,6,4 4,5,3 4,5,3
ng3 3 3,4,5 3,4,2 3,4,5 3,4,2 3,4,2
reuters5 5 2,3,4 2,3,4 2,3,4 2,3,4 2,3,4
reviews 5 2,3,4 2,6,7 2,9,8 2,5,4 2,5,6
sports 7 6,7,5 2,3,6 2,3,6 2,5,4 2,5,6

T able  7.2: Summary of the top-3 estimations for k as selected by stability-based validation 
schemes, when applied to clusterings of real-world text datasets.

the number of clusters as the CH index on all but the sports dataset, providing better 

estimations on four of the other datasets. It is interesting to observe that, in cases where 

both stability analysis and internal validation fail to identify k, they still often agree 

with one another. A prime example of this is the reutersS corpus, where each of the 

five methods under consideration selected k = 2 as its first choice. This suggests that 

it may represent a statistically good value for the number of clusters, although it does 

not agree with the manual classification for the corpus. In caises where this discrepancy 

occurs, it is possible that the problem lies with the model used to represent the data 

or the choice of similarity metric. If the underlying classes in the data are not linearly 

separable, the use of an appropriate non-linear kernel function may resolve this problem. 

In this respect, the kernel-based validation methods benefit from the modularity of kernel 

clustering methods, w'here an alternative measure of affinity may be readily used without 

modifying the validation algorithm itself.

We observed that, when using kernel-based validation, the application of prototype 

reduction with p = 4 resulted in a 20 fold decrease in the time required for the entire 

process. For example, selecting a value for k on the bbc corpus took 55 minutes when 

using the full kernel matrix, while the same procedure using RED-S took only 3 minutes. 

A complete comparison of algorithm running times is provided in Table 7.3, which clearly 

shows that RED-S was significantly faster than any of the other strategies considered. 

It is also apparent that the procedures running on the full n x n  kernel matrices took 

significantly longer than those performed using standard fc-means, particularly on the
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D ataset KM-S KM -P KKM-S RED-S
bbc 1503 1400 3199 139
bbcsport 434 423 315 12
classic 3181 2315 50804 2107
classics 1592 1344 11740 522
cstr 144 142 116 5
ngl7-19 2079 1971 6197 263
ng3 1881 1728 6599 288
reuters5 648 555 3397 157
reviews 4276 3960 11915 577
sports 10788 9870 90903 3137

T a b le  7.3: Sum m ary of the average running times (in seconds) for stabihty-based vah- 
dation schemes, when applied to real-world tex t datasets.

larger sports and classic datasets. This stems from the fact th a t the im plem entation of 

A:-means in our toolkit is optim ised to  take advantage of the sparse nature of tex t data. 

The improvement only occurs on datasets where at least 98% of the values in the term- 

docum ent m atrix  are zero. However, it is w orth nothing th a t this level of sparsity will 

generally not be present in o ther domains, where employing validation on a full kernel 

m atrix  may lead to  com putational savings.

7 .2 .6  S u m m a ry

In this section we proposed a practical approach to stability-based validation suitable for 

the task  of estim ating the num ber of clusters in large, high-dimensional datasets such as 

text corpora. The use of kernel clustering m ethods allows us to  work on a single kernel m a­

trix  ra ther than  repeatedly com puting distances in the original feature space. Moreover, 

we have dem onstrated th a t we can significantly decrease the com putational dem ands of 

the validation process by employing a form of prototype reduction to construct a reduced 

kernel matrix. To ensure th a t the use of a condensed representation does not adversely 

im pact upon the accuracy of the validation process, we have proposed a density-biased 

strategy for selecting a set of reduced prototypes th a t adequately represent the underlying 

classes in the data , regardless of their relative sizes or densities. Notably, the reduction 

process does not require th a t we explicitly represent these new prototypes as feature vec­

tors. Extensive experim ental evaluations have shown this validation process to  be effective 

on a large num ber of real and artificial datasets, where it consistently produced good esti-
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mates for the optimal number of clusters, often out-performing existing methods that are 

significantly more computationally expensive. In addition, it also provided estimations 

for the correct number of clusters k that were generally as good as or better than those 

achieved by the best internal validation technique.

A potentially interesting avenue of research would be to combine aspects of internal and 

prediction-based validation to produce an approach for model selection tha t rewards both 

high stability and the traditional of clustering objectives of producing separated, compact 

clusters. Once again, the use of prototype reduction could render such an expensive 

procedure tractable for larger datasets.

While we have focused on validation in document clustering, we believe that our ap­

proach is applicable for a wide variety of other domains and kernel functions, where large 

datasets would otherwise make stability analysis unfeasible. It is also apparent that the 

prototype reduction strategy described here has other potential applications. In the next 

section we develop this idea by applying reduction in the context of the clustering task 

itself.

7.3 Efficient E nsem ble M eth od s for D ocu m en t C lustering

Recently, ensemble clustering techniques have been showm to be effective in improving 

the accuracy and stability of standard clustering algorithms (Strehl & Ghosh, 2002b). 

Unfortunately, the computational cost of generating and integrating a large number of 

clusterings can prove problematic when working with large, high-dimensional datasets 

such as text corpora. In particular, the feasibility of applying popular ensemble clustering 

algorithms may be greatly limited by the number of documents. The number of unique 

terms used to represent the documents can also greatly affect the running time of the base 

clustering algorithm, thereby limiting the application of ensemble clustering techniques 

when working with high-dimensional data.

While reducing the number of base clusterings appears to be a natural solution to this 

scalability problem, an ensemble consisting of too few members is likely to result in an 

unstable solution that is little better than that produced by the base clustering algorithm. 

An example of this behaviour is shown in Figure 7.7, where ensemble clustering applied to 

the small cstr dataset only achieves reasonable increases in accuracy and stability until at 

least 40 base clustering have been generated. For larger, more complex datasets, the ideal
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number of ensemble members may be significantly higher. Clearly an alternative strategy 

is reqiiired for reducing ensemble nuining time.

In Section 7.2.3, we introduced a novel kernel-based prototype reduction scheme th a t 

is effective in producing a smaller representation of a tex t dataset, while still preserving 

the underlying class structures. An issue common to both  stability analysis and ensemble 

clustering is the requirement to  produce a large, diverse collection of base clusterings. 

We now expand upon our previous work by showing th a t the principles underlying the 

reduction scheme are also relevant in improving the efficiency of other com putationally 

costly learning methods. Specifically, we propose a novel scheme for docum ent clustering 

tha t involves aggregating an ensemble of clusterings generated on a reduced kernel matrix.

7.3.1 K ernel-B ased E nsem ble C lustering

We begin by introducing a correspondence-based ensemble clustering approach th a t oper­

ates on a full kernel m atrix, which also addresses a number of the ensemble design issues 

raised in Section 2.9.

E n se m b le  G e n e ra t io n

To avoid having to repeatedly recompute similarity values in the original feature space 

when generating a collection of ensemble members, we represent a full dataset of n  objects

0.9

0.8

0.7

0.6
A ccuracy  (NMI) 

Stability (ANMI)
0.5

10 20 30 40 50 60 70 80 90 100

E n sem b le  m em b ers

F ig u re  7.7: Exam ination of the effect of ensemble size on the accuracy and stability of 
correspondence-based ensemble clustering, when applied to  the cstr corpus.
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in the form of an n x n kernel matrix K. As a base clustering algorithm, we use kernel 

fc-means with algorithm adjustment to negate the effects of diagonal dominance. Note 

that a fixed number of clusters k is generated each time.

To encourage diversity among the ensemble members, unbiased sampling without re­

placement is applied, with random initialisation used to seed the kernel clustering proce­

dure. Minaei-Bidgoli et al. (2004) demonstrated that ensembles created in this way can 

lead to results that are comparable to bootstrap aggregation, while requiring less compu­

tational time to produce the base clusterings, since the size of the individual samples will 

smaller. We have observed similar behaviour when this generation approach is applied to 

text data, where we found that a sampling factor of /3 =  0.8 generally leads to diverse 

clusterings that maintain accuracy. After each sample is clustered, membership assign­

ments for the (1 — (3)n out-of-sample objects are determined by applying a classification 

scheme. This is analogous to the approach used in prediction-based validation as described 

in Section 7.2.2, where the classifier predicts the assignments of objects by mimicking the 

behaviour of the clustering algorithm. In this context, we apply a kernel nearest centroid 

classifier, where each missing object is assigned to the most similar pseudo-centroid in the 

base clustering.

E n sem b le In teg ra tio n

Once a collection of base clusterings C has been generated, we integrate the collection by 

employing a correspondence clustering scheme similar to the BagClustl algorithm pro­

posed by Dudoit & Fridlyand (2003). Unlike other ensemble clustering schemes, the final 

clustering of the data is constructed incrementally as each ensemble member is generated. 

Thus, the application of a subsequent clustering procedure to produce a final solution is 

not required. This scheme also avoids the large storage overhead of maintaining an in­

termediate representation of C, which is a notable drawback of graph-based integration 

schemes. We have observed that correspondence-based integration produces more stable 

results than other schemes such as those based on pairwise co-assignment, which are often 

highly sensitive to the choice of final clustering algorithm (Greene et al., 2004).

The kernel-based correspondence clustering scheme proceeds as given in Figure 7.8. 

Having generated the first member C\, we construct a n x k membership matrix V;

0 otherwise.

159



1. C onstruct a full kernel m atrix  K  and set counter t  — 0.

2. Increm ent t  and generate a base clustering Ct as follows:

(i) Draw a random  sample of (3n objects w ithout replacement.

(ii) Apply adjusted  kernel A;-means with random  initialisation to the  sample.

(iii) Assign each out-of-sample object to  the nearest pseudo-centroid in Ct-

3. If i =  1, initialise V  as the n  x  k  binary m em bership m atrix  for Cj.
Otherwise, u pdate  V  as follows:

(i) Com pute the current consensus clustering C from V  such th a t

Xi G Cj if j  =  arg m ax Vij 
3

(ii) Find the optim al correspondence 7r(Cf) between the clusters in Ct and C.

(iii) For each object Xi assigned to the j - th  cluster in 7r(Ct), increm ent V,j.

4. R epeat from Step 2 until C is stable ov t = Tmax-

5. R eturn  the final consensus clustering C.

F igu re 7.8: Kernel-based correspondence clustering algorithm .

As each subsequent clustering Ct is generated, the values in V  are updated. Unlike when 

combining voting classifiers, the clusters in each partition  will not have a predefined label. 

Therefore, each new set of clusters must be aligned w ith those th a t have been previously 

generated. The current disjoint consensus clustering, denoted C, is com puted by taking 

the m ajority cluster label for each object, as determ ined by the maximum value in the as­

sociated row in V . T he best m atch between the clusters in C and the existing clusters in Ct 

is then identified. Specifically, the optim al perm utation  7r(Cf) may be found in O(fc^) time 

by solving the m inim al weight b ipartite  m atching problem  using the H ungarian m ethod 

(Kuhn, 1955). For each object Xi assigned to  the j - th  cluster in ’!r{Ct), we increment the 

entry Vij. W hen all ensemble members have been added, C represents the final consensus 

clustering of the data.

To illustrate the correspondence approach to  integration, Figure 7.9 provides a simple 

example where three base clusterings are generated on a set of five d a ta  objects for k = 

2. After each base clustering is generated, the new clusters are m apped to  the existing 

consensus classes { C i ,C 2 ) and the 5 x 2  membership m atrix  V  is updated. Note th a t, for 

the second and th ird  iterations, the  maximum row values in V  are used to  determ ine the
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B a s e  clustering Mapping IVIembership

<:2

Cl

7t(G) = {C2,Q}

Cj = {Ci,C2 }
x i  1.0 0.0
X2 1.0 0.0
X3 1.0 0.0
X4 0.0 1.0
x s  0.0 1.0

x i 1.0 0.0
X2 1.0 0.0
X 3  0.5 0.5
X4 0.0 1.0
xs  0.0 1.0

Cl C2

Cl C2

<5 l C2

MC3) =  {Cu C2}

x i  1.0 0.0
X 2  0.6 0.3
X 3  0.6 0.3
X 4  0.0 1.0
x q  0.0 1.0

F ig u re  7 .9 : Exam ple illustrating three iterations of a correspondence-based ensemble 
clustering procedure, when applied to  a set of five d a ta  objects.

optim al perm utations of the base clusters. For instance, after the th ird  m ember is added 

to the ensemble, thresholding V  results in the hard clustering C — {{^i, X2,2:3}, {X4,X5}}.

E n se m b le  S ize

An issue th a t is often overlooked in ensemble clustering is the choice of a suitable value 

for the num ber of ensemble members r .  As discussed previously, if r  is too large, the 

running tim e of the ensemble process will be prohibitive. On the other hand, if r  is too 

small, it is likely th a t  ensemble clustering will result in a solution th a t is little be tte r than  

th a t generated by the base clustering algorithm . A notable benefit of the correspondence 

approach to  ensemble clustering is th a t, by performing the integration process in parallel 

with the generation phase, it is possible to  readily determ ine an appropriate point a t which 

the ensemble process may be term inated. We propose to autom atically stop generating 

new ensemble members when the the cluster assignments in C remain unchanged for a fixed 

number of generations. The process will also be term inated  if the num ber of members t 

reaches a predefined maximum value Tmax-
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7.3.2 Efficient E nsem ble C lustering

The ensemble clustering approach introduced in Section 7.3.1 allows each base cluster­

ing to  be generated w ithout referring back to  the original feature space. However, for 

larger datasets, the com putational cost of applying r  executions of an algorithm requiring 

0((/3n)^) time may still be prohibitive. Clearly, decreasing the value of n  would make 

the ensemble process significantly less com putationally expensive. We now generalise the 

work described in Section 7.2, showing th a t the new'ly proposed kernel-based prototype 

reduction technique can also be used to  improve the efficiency of ensemble clustering.

To dem onstrate the extent of the decrease in running time resulting from the use of 

prototype reduction, we consider the example provided in Figure 7.10. This shows running 

times for kernel /;:-means (averaged over 100 runs) when applied to  the classicS dataset. 

To investigate the effect of n in this context, we applied the algorithm  to samples drawn 

randomly from the data, for various sampling ratios 0  G [0.1,1.0]. It is evident that, 

as the sample size (in increa.ses, the tim e required for algorithm execution, 0((/3n)^), 

will also greatly increase. In contrast, applying kernel A"-means to  samples drawn from a 

set of reduced prototypes (in this example, we use n' — n./A prototypes) requires far less 

processing time, even as /J —> 1. This shows tha t the time required for aggregation methods 

th a t which generate clusterings on many da ta  samples can be dram atically reduced.

M otivated by these observations, we now propose an efficient ensemble clustering ap-
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S a m p lin g  R atio

F ig u re  7.10: Plot of the average running time (in milliseconds) for kernel fc-means when 
applied to  samples from the classicS corpus, using a full and reduced kernel matrix.

162



R eduction
E n sem b le
Clustering

Full
Kernel

R ed u ced
Kernel

R ed u ced
C lustering

M apping

Final
C lustering

F igu re 7.11: Workflow for the ensemble clustering process with prototype reduction.

proach th a t consists of three steps: apply prototype reduction, perform correspondence 

clustering on the reduced representation and subsequently map the resulting aggregate 

solution back to  the original data. An outline of this process is illustrated in Figure 7.11.

E nsem b le C lu ster in g  w ith  P r o to ty p e  R ed u ction

The initial reduction process follows th a t described in Section 7.2.3. Firstly, the original 

77 X n kernel m atrix K  is transform ed to  a condensed n' x n ' m atrix K ', where n' = ^ 

and p is a user-defined param eter controlling the reduction rate. Specifically, n extracted 

prototypes may be potentially constructed by finding the mean of each object together 

with its set of p  nearest neighbours. From these, a subset of n' < n prototypes are chosen 

using a density-biased selection strategy. The m atrix K ' may be directly constructed 

from the affinity values in K  w'ithout referring back to  the original feature space. In 

practice, we use a reduction rate of p =  4 and consider prototypes constructed from small, 

homogeneous neighljourhoods (the number of nearest neighbours is set to p = 5), as these 

param eter values worked well in the experimental evaluations described in Section 7.2.5.

Once the reduced kernel m atrix has been constructed, ensemble clustering proceeds 

as given in Figure 7.8. The application of proposed reduction results in a  significant de­

crease in the com putational cost of the ensemble process. W hen generating each ensemble 

member, the cost of clustering is reduced to  0 ( ( ^ ) ^ ) .  In addition, the time required 

to  construct a cost m atrix for the Hungarian matching m ethod and the time needed to 

update V  are both  decreased to  0{n ').

After the ensemble process has term inated, the problem remains of deriving a final 

clustering C of the original n  d a ta  objects from the consensus clustering of reduced proto­

types C'. M otivated partially by the buckshot method (C utting et al., 1992), we suggest 

th a t an intuitive way of achieving this is to  assign each original object x, to  the nearest
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1. Construct a full n x n kernel matrix K  from the original data X.

2. Apply prototype reduction to form the n ' x n' reduced kernel matrix K '.

3. Apply kernel-based correspondence clustering using K ' as described in Figure 7.8 to 
produce a consensus clustering C .

4. Produce a full clustering C of A” by assigning a cluster label to each Xi based on the 
nearest cluster in C'.

5. Apply adjusted kernel fc-means using C as an initial partition to produce a refined 
final clustering of X.

Figure 7.12: Kernel-based correspondence clustering algorithm with prototype reduction.

centroid in C . Just as each reduced prototype can be decomposed into a set of p -I- 1 

original objects, we can also decompose the centroid of each reduced cluster into the mean 

of all the original objects which form the reduced prototypes assigned to that cluster. In 

practice, we can identify the nearest cluster based on values in the original kernel matrix 

K and the list of nearest neighbours used to form the reduced prototypes. This mapping 

of C  to a clustering of the original data objects in X  can be performed in time 0{n'n).  

To further improve the accuracy of this solution, we suggest a refinement procedure that 

involves applying adjusted kernel fc-means to C using the full matrix K. In practice, we 

observe that this leads to a non-trivial increase in clustering accuracy, while typically 

requiring very few reassignment iterations before convergence. The complete ensemble 

process with prototype reduction is summarised in Figure 7.12.

7 .3 .3  E x p er im en ta l E v a lu a tio n

In order to assess the newly proposed ensemble techniques, we conducted a comparison 

on the set of real-world text datasets discussed in Section 5.2.1. The primary focus of our 

evaluation was to consider the effects of applying prototype reduction prior to ensemble 

clustering, in terms of accuracy, stability and running time. We compare three variations 

of ensemble clustering:

COR-KM:  Correspondence-based integration of clusterings generated by /c-means on

the original feature space.

COR-A A: Correspondence-based integration of clusterings generated by adjusted ker­

nel A'-means on a full normalised linear kernel matrix (see Figure 7.8).
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COR-RED: Correspondence-based integration of clusterings generated by adjusted ker­

nel fc-means on a reduced kernel matrix (see Figure 7.12).

For these experiments, we average the results over 25 trials. In each trial, we automatically 

terminate the ensemble process after 30 stable iterations have elapsed or when Tmax =  250 

ensemble members have been generated. As a basehne comparison, we also examine 

the two base clustering algorithms: fc-means with cosine similarity (KM) and adjusted 

kernel /c-means using a normalised linear kernel (AA). In these latter experiments, we 

performed random initialisation and averaged the results over 200 trials to compensate for 

the inherent instability of both algorithms. In all cases, we set the number of clusters k 

to correspond to the number of natural classes in the data.

C o m p ariso n  o f A lg o rith m  A ccuracy

Table 7.4 summarises the mean and standard deviation of the NMI scores for the five 

clustering methods under consideration. On all datasets, the kernel-based ensemble tech­

niques lead to an improvement over both base clustering algorithms. These techniques 

also performed at least as well as correspondence-based ensemble clustering using stan­

dard A'-means on the original feature space (COR-KM), and frequently achieved higher 

accuracy. We observe that the application of a diagonal dominance reduction technique, 

which limits the influence of self-similarity, contributes to this improvement. In addition, 

the results in Table 7.4 show that in several cases correspondence clustering after proto­

type reduction (COR-RED) lead to better results than clustering on the full kernel matrix

Dataset KM AA COR-KM COR-AA COR-RED
bbc 0.81 ± 0.08 0.85 ± 0.06 0.88 ± 0.00 0.88 ± 0.00 0.88 ± 0.00
bbcsport 0.73 ± 0.10 0.80 ± 0.08 0.87 ± 0.01 0.90 ± 0.00 0.89 ± 0.03
classic 0.70 ± 0.04 0.74 ± 0.02 0.69 ± 0.00 0.75 ± 0.00 0.75 ± 0.00
classics 0.93 ± 0.08 0.94 ± 0.06 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00
cstr 0.69 ± 0.05 0.74 ± 0.04 0.76 ± 0.01 0.76 ± 0.01 0.77 ± 0.03
ngl7-19 0.41 ± 0.12 0.42 0.13 0.47 ± 0.04 0.51 ± 0.05 0.55 ± 0.04
ng3 0.83 ± 0.10 0.84 ± 0.10 0.89 ± 0.00 0.90 ± 0.00 0.91 ± 0.00
reuters5 0.55 ± 0.07 0.59 ± 0.04 0.60 ± 0.00 0.61 ± 0.00 0.61 ± 0.01
reviews 0.56 ± 0.08 0.58 ± 0.05 0.61 ± 0.00 0.61 ± 0.00 0.61 ± 0.00
sports 0.62 ± 0.05 0.67 ± 0.06 0.66 ± 0.01 0.70 ± 0.02 0.69 ± 0.02

T able  7.4: Summary of NMI accuracy results for base and ensemble clustering methods, 
when applied to real-world text datasets.
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(COR-AA). We suggest th a t the use of neighbourhood centroids as prototypes allows the 

production of a robust initial solution th a t may not be readily obtained by clustering on 

the full dataset. The application of a subsequent refinement phase allows th is solution 

to  be further improved, resulting in a more accurate final clustering. The accuracy of 

the solutions produced using COR-RED was consistently higher than  th a t achieved by 

the standard  partitional and hierarchical algorithm s evaluated in Section 5.3 on the same 

data. Only the min-max agglomerative algorithm  w ith refinement provided comparable 

results on certain datasets, although it is significantly more prone to  the effects of outliers.

Both of the baseline techniques, KM and AA, exhibited considerable instability due 

to  the  sensitivity of these algorithm s to  the choice of initial clusters, which is reflected in 

the high standard  deviation scores in Table 7.4. In contrast, the ensemble m ethods tend 

to be far more robust, frequently producing identical or highly similar partitions. Only in 

the case of the bbcsport. and cstr datasets did the ensemble m ethods suffer any noticeable 

degradation in stability due to prototype reduction. This is hkely to  be due to the small 

size of the datasets, and we suggest th a t a higher num ber of ensemble members may be 

appropriate when working with small text corpora. As the tim e required to generate each 

member for small datasets is extremely low, this should not pose a significant problem in 

practice.

C om p arison  o f  A lg o r ith m  E fficiency

A nother im portant aspect of our evaluation was to assess the com putational gains resulting 

from prototype reduction. Table 7.5 provides a list of the mean running times for the 

ensemble clustering experim ents, which were perform ed on an Intel Pentium  IV 3.4GHz, 

2GB RAM running Sun Java 1.5. The cost of the m apping and refinement procedures 

in COR-RED has the effect th a t the com putational savings are not as dram atic as those 

observed in the experim ents perform ed in Section 7.2.5. However, the gains afforded by 

working on a reduced kernel m atrix  are still very significant. Only in the case of the 

classic dataset did reduction fail to  significantly reduce com putational cost relative to  the 

other ensemble techniques. Note th a t the  application of the early term ination technique for 

correspondence clustering also has a significant influence on the running times in Table 7.5.

We note th a t it is possible to  further reduce the com putational tim e of ensemble 

generation by using a smaller factor for subsam pling {e.g. (3 = 0.4). However, as discussed 

by Minaei-Bidgoli et al. (2004), a critical sampling size for a given dataset is required to
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Dataset COR-KM COR-AA COR-RED
bbc 95 215 13
bbcsport 27 34 1
classic 101 6181 157
classics 32 359 26
cstr 7 14 1
ngl7-19 85 753 40
ng3 57 485 19
reuters5 40 395 26
reviews 281 1722 81
sports 968 17954 579

T a b le  7.5: Comparison of the m ean running times (in seconds) for ensemble clustering 
m ethods, when applied to real-world tex t datasets.

m atch the accuracy afforded by more expensive bootstrapping strategies. We examined 

this possibility, bu t found th a t, for a num ber of datasets, using smaller samples lead to 

a less accurate consensus clustering and higher instability. Consequently, we suggest th a t 

using prototype reduction w ith a relatively high sampling ra te  {e.g. (3 =  0.8) represents 

a pragm atic choice for providing sufficient diversity and ensuring stability  on a range of 

datasets.

7 .3 .4  S u m m a ry

In this section, we have proposed an efficient approach for ensemble clustering based on 

the use of kernel learning m ethods and density-biased prototype reduction. This approach 

was evaluated on real-world tex t corpora, where the reduced ensemble clustering process 

was shown to frequently afford a significant decrease in running tim e, while m aintain­

ing high clustering accuracy. In several cases, the proposed m ethod out-perform ed more 

com putationally costly ensemble techniques operating on the original data.

While we have applied prototype reduction in conjunction with a correspondence clus­

tering scheme modelled on th a t proposed by D udoit & Fridlyand (2003), kernel-based 

prototype reduction may also be employed in conjunction with other integration schemes, 

such as those based on analysing pairwise co-assignments or a graph representation of an 

ensemble. The m odular nature of our approach naturally  lends itself to applications in 

o ther learning problems, where alternative domain-specific kernel functions may be used. 

In addition, we suggest th a t it may be possible to combine the ensemble m ethods described
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in this section with the stabihty analysis approach proposed in Section 7.2. By analysing 

the stability of the cluster correspondence model as represented by the membership matrix 

V, it would be possible to perform clustering and model selection simultaneously. Once 

again, the application of prototype reduction would make such a procedure feasible when 

working with large datasets.
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Chapter 8

Conclusions

8.1 Introduction

Document clustering has been widely used as a tool for knowledge discovery and data 

exploration by researchers working with large collections of unstructured text. While a 

substantial body of literature exists in this area, a number of fundamental issues have 

remained unresolved. When applying document clustering methods in practice, scala­

bility and performance issues arise due to the number of documents in a collection and 

the dimensionahty of the model used to represent them. The complex nature of cluster 

structures in this type of data, which often take the form of overlapping groups of un­

balanced size, can make the clustering task significantly more difficult. In this thesis, we 

have investigated a range of practical issues tha t affect the performance of cluster analysis 

procedures, and proposed novel solutions that are designed for use on text corpora.

8.1.1 T hesis Sum m ary

Chapter 2 provided a comprehensive review of both classical and contemporary clustering 

algorithms, which are relevant when working with text data. This included a discussion of 

the impact of the so-called curse of dimensionality on the performance of many common 

algorithms, and a study of techniques that may be applied to reduce the number of di­

mensions required to represent documents. Once a clustering solution has been generated, 

in many situations it will be useful to apply an automatic procedure to quantitatively 

assess the validity of the solution. Chapter 3 surveyed a range of different approaches for 

cluster validation, with a particular emphasis on the problem of choosing an appropriate
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clustering model for a given dataset.

Chapter 4 introduced the Text Clustering Toolkit (TCT), a state-of-the-art framework 

designed to support the development of applications for unsupervised text mining tasks. In 

our own research, this toolkit has proved invaluable in allowing us to perform comparative 

evaluations of existing techniques, and providing a flexible test-bed for the formulation of 

novel analysis procedures.

Chapter 5 provided a detailed comparison of the performance of classical clustering 

algorithms and validation methods when applied to text data. We examined the limi­

tations of these procedures, highlighting situations where they perform poorly. We also 

introduced two new benchmark datasets for document clustering, the hbc and bbcsport 

collections, which have proved highly useful in our empirical evaluations.

In Chapter 6, we proposed novel techniques for improving the performance of re­

cently developed clustering approaches when applied to text data. Section 6.2 presented 

a number of algorithms based on spectral dimension reduction, which produce soft co­

clusterings of both documents and terms. Experiments performed on high-dimensional 

text data show that, in particular, the KSSC and RSSC algorithms can produce clus­

tering solutions which are frequently more accurate than those generated by traditional 

document clustering methods. Section 6.2.5 described complimentary techniques for gen­

erating meaningful cluster labels. Notably, it was demonstrated that well-known criteria 

from supervised feature selection can be employed to produce highly discriminative la­

bels. In Section 6.3 we shifted our focus to kernel learning methods, where we explored 

the effects of diagonal dominance, a phenomenon which can impair the performance of 

centroid-based algorithms when applied to text data. A number of strategies were pro­

posed to address this issue, which lead to higher accuracy and stabihty in experiments 

performed on real-world corpora.

Chapter 7 examined the idea of aggregating information obtained from multiple clus­

terings generated on the same dataset. While this can provide additional insight regarding 

the underlying structure of a dataset, we observed that the computational cost of common 

procedures based on this idea can often be prohibitive when working with large document 

collections. To address this scalability problem, we suggested the application of proto­

type reduction, thereby rendering aggregation procedures more feasible for use on text 

data. Specifically, in Section 7.2 we proposed a novel kernel-based prototype reduction 

strategy, which produces a smaller set of representative objects that accurately summarise
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the natural structures in a dataset. This strategy was employed as part of an efficient 

scheme for prediction-based validation, with the effect that running time was substan­

tially reduced, without impairing the scheme’s ability to correctly estimate the number of 

clusters. Subsequently, in Section 7.3 we demonstrated that the scalability of ensemble 

clustering techniques can also be improved by employing kernel-based prototype reduction, 

without any loss in clustering accuracy.

8.2 Thesis Findings

The major theoretical and empirical findings of this thesis can be summarised as follows:

• Classical approaches to document clustering, such as the generalised /c-means algo­

rithm and agglomerative hierarchical clustering, are prone to producing inaccurate 

and inconsistent solutions when applied to high-dimensional text data. The accu­

racy of the latter can be improved by employing a partitional refinement procedure 

to correct erroneous cluster assignments.

• While spectral clustering methods have previously focused on generating disjoint 

partitions, these methods can be adapted to produce soft clusterings of both doc­

uments and terms. The resulting co-clusterings often achieve significantly higher 

accuracy than that afforded by existing algorithms based on matrix decomposition.

• Well-known supervised feature selection criteria, such as Information Gain and the

measure, can be used to identify highly discriminative terms when generating 

human-interpretable cluster labels.

• The phenomenon of diagonal dominance, which causes overfiitting in kernel classifiers, 

also impacts upon the performance of centroid-based kernel clustering algorithms. 

This is particularly problematic for kernel matrices representing sparse data, such as 

text corpora. The application of strategies to reduce these effects can alter algorithm 

reassignment behaviour, leading to a non-trivial increase in accuracy and stability.

• The efficiency of information aggregation procedures can be substantially improved 

by applying prototype reduction to minimise the number of objects required to 

represent the data. By ensuring that the new prototypes provide a true proxy for 

the original dataset, running times can be greatly reduced without any noticeable
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loss in algorithm  performance. Consequently, procedures such as those based on 

stability analysis and ensemble clustering can be rendered practical for use on large 

tex t corpora.

• Prediction-based validation m ethods provide a robust means of identifying the cor­

rect num ber of groups in a collection of documents, consistently leading to better 

estim ates than  those produced by many well-known validation techniques.

• Correspondence-based ensemble clustering can be used to  improve the  accuracy and 

stability  of standard  clustering algorithms. By employing kernel m ethods in this 

context, an ensemble can be constructed in a m odular m anner th a t is independent 

of the original representation of the data.

8 .3  F u tu re  W ork

Following the work presented in this thesis, we now highlight several promising directions 

for future research.

8.3.1 T oolkit Expansion

W ith TC T , we have largely focused on providing a comprehensive underlying framework, 

together with a set of im plem entations for popular cluster analysis procedures. A natural 

progression would be to  add visualisation capabilities to T C T  to further aid researchers in 

the in terpretation of large datasets and clustering solutions generated on those datasets. 

We believe th a t the dimension reduction functionality currently supported by the core 

learning library provides a suitable basis for the development of these capabilities. In 

addition, to  provide non-technical users with access to  the functionality of the toolkit, we 

envisage the development of a web-based or graphical front-end. The generic nature of 

the architecture of T C T  readily facilities the creation of alternative interfaces above the 

core libraries described in Section 4.2.

8.3 .2  Sem i-supervised  Learning

Recently, an increasing am ount of atten tion  has been paid to the problem  of applying al­

gorithm s in scenarios th a t do not perfectly correspond to the existing distinction between 

supervised and unsupervised learning problems (Chapelle et al., 2006). It is apparent
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th a t, for many real-world tasks, a lim ited degree of supervision may be available when 

performing exploratory d a ta  analysis. This may not necessarily correspond to the tra ­

ditional notion of a subset of labelled training examples. For instance, the supervision 

could be derived from user feedback regarding the relations between pairs of objects in a 

small subset of a given dataset. We can represent this inform ation as a set of pairwise 

constraints, where each constraint indicates th a t a pair of objects should either always be 

assigned to the same cluster or should never be assigned to the same cluster. This form 

of supervision can be used to  guide a traditional clustering algorithm, either by providing 

a good set of initial clusters (Basu et a i,  2002), by using a “learnable” sim ilarity function 

th a t adapts based on a small am ount of label information, or by modifying the objective 

function of the algorithm  to incorporate constraint inform ation (Bilenko, 2003).

Cohn et al. (2003) tentatively explored the possibility of employing limited user feed­

back to guide a traditional clustering algorithm  in order to  produce a superior partition  of 

a docum ent collection. W'e believe th a t significant potential exists to  develop these tech­

niques. For example, by presenting a user with pairs of docum ents representing potential 

boundary cases, it may be possible to  achieve higher accuracy than  th a t afforded by purely 

unsupervised algorithms. W hen employing semi-supervised methods, work by Xu et al. 

(2005) has shown th a t the selection of appropriate constraints can play a pivotal role in 

determ ining the level of improvement in accuracy. We believe th a t clustering aggregation 

methods, similar to those described in C hapter 7, may be useful in th is context. For 

instance, it may be possible to identify pairs of docum ents whose co-assignments are in­

consistent over many runs of a clustering algorithm. We suggest th a t the m odular nature 

of the T C T  libraries makes it a useful starting  point for work in the area of semi-supervised 

learning.

8.3 .3  A pp lications in O ther D om ains

While our focus in this thesis has been on the general task  of docum ent clustering, we 

expect th a t many of the novel techniques proposed here will also be applicable in unsuper­

vised learning problems arising in other domains. In particular, we believe th a t there is 

significant scope for applying the aggregation m ethods described in C hapter 7 to  improve 

the  efltectiveness and efficiency of knowledge discovery procedures in areas such as gene 

expression analysis and image processing, where large datasets have previously made the 

use of similar techniques unfeasible.
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