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Summary

This thesis describes a reflective programming model that provides a solution to the problem
of automatic and dynamic metaobject composition in a compiled reflective programming
language, IGUANA/C++.

Meta-object protocols (MOPs) reify elements of an object-oriented programming language
and are used to alter the behaviour of the language’s default object model in order to trans-
parently implement common non-functional concerns such as object state persistcnce; sSyn-
chronisation, remote invocation, authentication, encryption, fault-tolerance (replication), and
logging at the meta-level. The use of MOPs in this manner facilitates the separation of con-
cerns.

In many cases, applications have to address multiple non-functional requirements simulta-
neously. Thus, these MOPs and their constituent metaobjects need to be combined. Common
approaches to MOP composition are static (composition happens at design time, requiring
the programmer’s intervention), or dynamic (composition happens at run-time). A dynamic
solution may compose independently developed MOPs automatically. A few solutions exist to
compose MOPs automatically, but they do not address semantic overlap between MOPs and
provide little or no practical real-life examples.

The thesis attacks the problem of reusing already existing MOPs and combining their
metaobjects meaningfully such that, where possible, interference in semantics is detected
and taken care of. The main contribution of the thesis is the design and implementation
of the automatic and dynamic metaobject composition algorithm. We define a reflective
programming model called IGUANA, which supports automatic and dynamic MOP composi-

tion. Using this model, the application programmer at the base level may select one or many



MOPs from a library, which contains implementations addressing the above non-functional
requirements.

The key to the automatic composition mechanism, implemented by a default composer
metaobject, is that separate MOPs have descriptors containing information on the compos-

1 in which the

ability of the MoP. The descriptors define the non-functional concern area
MOP is intended to be used (exclusively or in a shared manner), specify metaobject ordering
requirements and constraints, indicate the explicit links between behavioural metaobjects
and middleware components, and list base level modifications that constituent metaobjects
in each behavioural reification category perform. The composer metaobject uses these MOP
descriptors to automatically compose MOPs. In case the default composer metaobject cannot
be used, the programmer can supply his/her own composer metaobject.

The thesis also defines a methodology for writing composable MOPs. The methodology is
based on the distinction between local and remote-related MOPs, where remote-related MOPs
conform to the proxy/server model. Metaobjects of remote-related MOPs are composed in
such a way such that metaobjects in the client (server proxy) and server address spaces form
a symmetric “protocol stack”.

The new reflective programming model is derived from and retains many features of pre-
vious versions of the IGUANA model, but adds major new features such as a reified stack, that
works in multi-threaded applications, support for dynamic multiple MOPs selection, extensible
object references for reflective objects, an explicit middleware layer, which supports common
MOP implementations, and a new composer metaobject with a default implementation that
attempts to automatically combine behavioural metaobjects of several MOPs based on their
semantic descriptors.

Similarly to its predecessors, the new version of IGUANA/C++ is implemented by a pre-
processor, which parses the reflective C++ code and XML MOP descriptors and generates
standard C++ code, which can be compiled using a standard C++ compiler.

We evaluate our model and implementation by designing, implementing, and dynamically

combining a suite of MOPs that address some of the most common non-functional concerns

!We refer to these areas of concerns as “concern areas” in the text.
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that can be found in real-life applications and use a common middleware. Our implementation
provides a platform for the exploration of reflective software composition in the context of

dynamic systems.
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Chapter 1

Introduction

“The use of anthropomorphic terminology when dealing with computer systems is a symptom

of professional immaturity.” - Edsger Dijkstra

1.1 Preface

The complexity of system-level applications has increased many times over the last decade
and is constantly increasing as new and higher-level requirements are being defined for them.
A few years ago, application requirements such as logging (for traceability purposes or for de-
bugging), distribution, state persistence, security, and fault-tolerance were specified only for
a small set of highly specialised applications, examples being industrial process control and
banking systems. The widespread, global use of the Internet and distributed computing has
dramatically increased the need for security and availability. Application developers nowa-
days face a difficult challenge when meeting these ever-increasing requirements for flexible
distributed deployment, security, persistence, fault-tolerance, and so on, which have become
standard.

With the advent of object-oriented programming (OOP) technologies and application
frameworks, support for these requirements, usually implemented as a hierarchy of appli-
cation classes, has become more available for use by application programmers. The use of

object-oriented frameworks has helped application programmers to focus more on their ap-
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plication’s primary business logic, while using the appropriate (often specialised) components
of the framework for implementing non-functional requirements. However, in order to meet
new unanticipated and dynamically changing requirements, the framework may need to be
extended and/or dynamically adapted at run-time.

The problem with frameworks is that, in most cases, the application programmer has to
know the details of how different components of the framework implement their functionality
and how they interact with each other, as well as what the required steps are to change the
framework dynamically in order to address the changes in the environment. Also it requires a
significant code refactoring effort to fit an existing (legacy) application into a new framework.
Furthermore, a framework for persistence may not work well (or at all) with a framework for
distribution.

The component-based architecture from Sun known as Enterprise Java Beans (EJB) [72] is
widely considered as a move in the right direction when it comes to tackling application com-
plexity, as it relieves the burden on application developers by providing a container for EJBs
that implements and manages commonly found non-functional concerns such as persistence
(in the case of Container Managed Persistence or CMP), distribution, security, and transac-
tion management. Containers in application servers use structural reflection to find methods
and members of EJBs. Containers also use intercession in order to carry out additional tasks
such as transaction handling, authentication, encryption/decryption, and resource pooling,
for example. This model insulates EJB developers from the details of the implementation of
these non-functional concerns. Deployment descriptors allow convenient deployment of the
same EJB in a container under different conditions. However, the implementation of the
non-functional concerns is hidden from the EJB programmer and there is no control given
to change/adapt these concerns in a running application. Microsoft’s Component Object
Model+ (COM+) [52] and OMG CORBA Components [55] support similar container-based
models.

Computational reflection and meta-level architectures [67, 47, 46] on the other hand have
been gaining popularity and are often used because of the ability to separate functional and

non-functional concerns. The application functionality (i.e., its business logic) is implemented



Chapter 1. Introduction

by base level objects, while meta-object protocols (MOPs) implement these non-functional
concerns.

One of the benefits of using reflection is that once an experienced programmer has imple-
mented and tested a recurring non-functional concern such as persistence of object state in
the form of a MOP, it can easily be utilised by relatively inexperienced programmers in many
applications. If an application has to persist its state between invocations, the base level or
application programmer selects the MOP, that implements persistence for classes or objects
that need it. Since meta-level programming is still regarded as a complex and difficult task
[78], while using MOPs in base level applications is not as complicated, this distinction between
the two programming roles in terms of programming skills required is very important. State
persistence, fault-tolerance, and distribution (i.e., remote method invocations) for example
can all be implemented as separate MOPs, with each MOP having its own set of metaobject
(MO) classes. Base level and meta-level are causally connected through the process of MOP
selection.

In a reflective programming model with multiple, fine-grained MOPs (e.g., IGUANA version
1 [30, 28] and version 2 [64]), each MOP consists of a set of structural and behavioural MO
classes, which reify certain elements (e.g., method invocation or state read) of the object
model of a typical object-oriented programming language such as C++ [70] or Java [27], and
interact with each other in order to provide an implementation for the desired, alternative
object model.

For system-level applications, that have to meet multiple non-functional requirements,
the base level programmer should simply be able to select the corresponding MOPs' that
implement them. Also, they should be able to deselect and reselect MOPs dynamically, at
run-time, in order to adapt to changes in the requirements. This implies that these MOPs
and their constituent MOs need to be combined.

The two common approaches to MO composition are static and dynamic. The static ap-
proach requires that the programmer manually combines MOPs when designing the applica-

tion. Static composition is not useful for applications that have to respond (i.e., dynamically

'In our model, we consider the MOP as the unit of composition, although this is not a restriction.
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adapt) to unanticipated changes in the operating environment. With the dynamic, run-time
approach, the programmer relies on the meta-level architecture to meaningfully combine
the MOs of the MOPs automatically, i.e., without prior knowledge of the set of MOPs to be
combined. However, automatic and dynamic MOP composition in a compiled language is a

difficult task.

1.2 The Problems of Metaobject Composition

A number of problems arises when one attempts to combine MOPs implementing different

non-functional concerns:

1. Except in the simplest cases, such as, logging and persistence, non-functional concerns
and hence MOPs may overlap semantically. For example, a synchronisation MOP overlaps
semantically with a MOP for object persistence, because the former provides atomic

read/write access to persistent objects, provided by the latter.

2. Different MoPs follow different implementation models or guidelines. For example, MOs
of one MOP may be shared between instances of base-level objects, while in another
MOP, each base-level object may have its own (local) set of MOs. A methodology for

writing composable MOPs needs to be defined.

3. MOPs may not have been written with future composition in mind. This means that
MO classes of a MOP may not participate in the composition model, which is most
commonly the chain of responsibility model. In this model, MOs responsible for reifying
a base level operation are ordered and inserted into a chain. The base level operation
in question is intercepted at the meta-level, which activates the first MO in the chain.
Each MO carries out its own before operation and is then responsible for calling the next
MO in the chain. The last MO is supposed to reflect the operation at the base level and
then return. This is followed by the execution of the after operations in a reverse order
to that of the before operations. This chain may be broken by uncooperative MOs, that

simply do not call the next MO in the chain.
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4. A meta-level programmer may need the source code of a MOP, if he/she wants to
combine it with another MOP or evolve it. However, as is often the case with system-
level software, the source code of a MOP may not be available for other programmers

to study and extend.

5. In many cases, MO classes of a MOP rely on standard or proprietary middleware compo-
nents (e.g., the Common Object Request Broker Architecture (CORBA) [41] from the
Object Management Group (OMG) 2 for object distribution or a Relational Database
Management System (RDBMS) for object persistence). An example of using propri-
etary middleware can be found in [22]. However the relationship between MO classes
and middleware components is often blurred. This can lead to difficulties when combin-
ing MOPs because it may require combining or reconfiguring middleware components,
unless the MOPs are unrelated and they use non-overlapping sets of middleware com-
ponents. The relationships between MOPs and middleware components are hidden in

the implementation.

The next section gives a MOP composition example which demonstrates some of these prob-

lems.

1.2.1 An example of composing MOPs

Let us imagine that a programmer wants to implement secure remote method invocations,
combined with the logging of events, whenever such secure and remote methods are invoked.
Remote method invocations are carried out between client and server, that reside in different
address spaces. By security in this example we mean that messages exchanged between client
and server are authenticated.

There are four MOPs (Remote, RemoteProxy, Authentication, and Logging, respectively)
needed to intercept method invocations at the client and server sides and carry out their ad-
ditional computation before and/or after the actual method has been invoked on the server.

For this reason, the above mentioned four MOPs reify method invocation (i.e., the Invocation

2CORBA is a registered trademark of OMG, see http://www.omg.org
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reification category in IGUANA) and declare three MO classes: Remotelnvocation®, Authenti-
cationlnvocation, and Loglnvocation, respectively. For a detailed description of these MOPs,
see Chapter 4.

Let us take an implementation of these MOPs, which uses proxy objects at the client side:
i.e., a proxy object represents a remote server object in the client object’s address space.
Note that care must be taken when Remote is involved in a MOP composition: a symmetric
communication protocol stack must be formed between the proxy and the server, otherwise,
similarly to a misaligned network protocol stack, communication would not be possible.

Ideally, the base level programmer would just select these MOPs for his/her application
classes and objects, and the language run-time would automatically take care of composing
the invocation MOs at the client and server sides such that it yields a system with the desired
combined functionality. Assuming that the chain of responsibility model is used, we show why
the ordering of MOs is important. We also show how the MO classes interact with middleware
components.

First, let the order of the invocation MOs be: Loglnvocation, Authenticationlnvocation,
Remotelnvocation, and Defaultlnvocation at the client side (see Figure 1.1). Upon invoking
a method on the proxy object in the client, the meta-level intercepts this call and activates
the first MO in the chain. The Loglnvocation MO creates a temporary data record with the
name of the operation being invoked, the identities of the client and server objects, and the
current time. Then it passes control to the next MO Authenticationlnvocation, which creates
the client’s digital signature for authentication. The next MO in the chain is Remotelnvoca-
tion, which finds out whether the server object is remote or local. If the server is remote,
Remotelnvocation MO marshalls the argument(s) together with the client’s digital signature,
and activates the communication middleware, which sends the method invocation request
over the network to the server object. The last MO in the chain is Defaultlnvocation by
convention, but it will not be called for remote servers.

In order to make the server side interwork with the client side, the order of MOs must be the

reverse to that of the client side: Remotelnvocation, Authenticationlnvocation, Loglnvocation,

3The same MO class is used by both the Remote and RemoteProxy protocols
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Client-side: the combined protocol for proxies (invocation)

Before: log request Before: create signature Before: if target remote, marshall args, send request over the net
otherwise, call next
; next o next next
Logging ——| Authentication > Remote > Default
After: log result After: check signature After: unmarshall result

Server-side: the combined protocol for servers (invocation)

Before: unmarshall args Before: check signature Before: log request
next g next N next
Remote ~———=| Authentication > Logging > Default
After: if caller remote, After: create signature After: log result

marshall result, send reply over the net;

Fig. 1.1: Example of combining the invocation MOs of Logging, Authentication, and Remote
MOPs at client and server sides.

and Defaultinvocation (see Figure 1.1).

At the server side, the communication middleware receives the remote method invocation
request from the client, finds the server object, and passes control to the Remotelnvocation
MO bound to the server. The Remotelnvocation MO unmarshalls the method arguments and
the digital signature, and it calls the next MO in the chain. Thus, Authenticationlnvocation MO
authenticates the remote caller object by checking its object identifier and digital signature

with the help of an authentication server (part of the middleware) and, upon a successful

_authentication, it passes control to next MO, which is Loglnvocation. The Loglnvocation MO

creates a log entry and records in it the name of the operation being invoked, the identities
of the client and server objects, and the current time. It passes control to the last MO in the
chain, which is Defaultlnvocation (as recommmended in [64]). This MO reflects the base level

operation.
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After the base level method has been effectively executed, the Loglnvocation MO records
the result of the operation and writes the new log entry to the application’s log. Control
goes back through Authenticationlnvocation to the Remotelnvocation MO, which marshalls the
return value of the method executed and returns control to the communication middleware,
which in turn sends the result back to the remote client side.

When the reply arrives at the client side, the middleware passes control to the Remotelnvo-
cation MO, which unmarshalls the result, and passes control back to Authenticationlnvocation,
which in turn passes control to Loglnvocation. Loglnvocation logs the event at the client side
and returns to the client.

The basic assumption throughout this example was that either the meta-level or a mid-
dleware component triggers the activation of the first MO in the chain: i.e., either a local
client invokes a method on the proxy object, or a method invocation request arrives from a
remote client over the network.

Now let us change the order of MOs at the server side from Remotelnvocation, Authentica-
tionlnvocation, and Loglnvocation to Remotelnvocation, Loglnvocation, and Authenticationln-
vocation. This implies that the order of MOs at the client side is the opposite, i.e., Authenti-
cationlnvocation, Loglnvocation, and Remotelnvocation. This MO combination would possibly
log method arguments together with the client’s digital signature and return val_ues, which
may not be of any use.

However, if we reorder the MOs by putting Authenticationlnvocation MO first at the server
side, followed by Remotelnvocation and Loglnvocation MOs, then we would break the compo-
sition because the Authenticationinvocation MO cannot work until the Remotelnvocation MO
has unmarshalled the method arguments.

This simple example shows that the order, in which the behavioural MOs are executed,
is wvital for correclty implementing any combined behaviour at both client and server sides.
Different orderings may result in completely different and/or undesired behaviour. Our goal
1s to come up with a MO combination mechanism, that can calculate the “correct” order of

MOs for a MOP combination at run-time, if possible.
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1.3 Previous Work on Meta-Object Composition

A few reflective programming models (e.g., the IGUANA version 1 [28] and the model in
[53]) support multiple MOP selection, which means that the base level programmer can select
multiple MOPs for the base level classes or objects that comprise his/her application.

Other reflective models (e.g., Open C++ version 1 [10] and 2 [9] as well as IGUANA version
2 [64]) restrict the programmer to selecting only one MOP at any time for base level classes
or objects. In this case, the single MOP has to combine and implement all of the selected
non-functional concerns by means of multiple MOP inheritance: two or more MOPs, each
implementing a certain non-functional concern, are manually or semi-automatically combined
in the derived MOP: By manual combination, we mean that the meta-level prorgrammer has
to write code (i.e., that of the MO classes) for the new, combined MOP, while in the semi-
automatic combination case the meta-level programmer writes the MOP declaration only; the
code from overlapping MO classes are combined at run-time, according to a fixed, pre-defined
MO combination algorithm. In both cases, conflicts arising from the overlap must be resolved
by the meta-level programmer.

Both IGUANA models support dynamic MOP re-selection, that is, the MOP associated with
base level objects can be changed at run-time. In both models, easy composition of non-
functional concerns, either at design-time or at run-time, needed to be properly investigated.
Ideally, independently developed MOPs and their constituent MOs should automatically be
composable, without requiring any additional effort (e.g., coding or code refactoring) from
the programmer.

Some reflective programming languages support manual and/or automatic MOP com-
position. For example, the manual composition in Guarand [57] requires the application
programmer to write code (i.e., the composer metaobject) that explicitly combines the MOs
of the selected MOPs. MOs that are being composed can be composers themselves. Although
this approach is simple and performance efficient, it is inflexible as it requires rewriting the
composer MO for each possible combination.

Reflective programming systems such as the Common Lisp Object System (CLOS) [36]
MOP [2, 37], and IBM’s System Object Model (SOM) with Before and After Meta-classes
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[16, 25, 24] support some form of automatic composition. The CLOS MOP is a description of
the CLOS system itself as an extensible CLOS program. Fundamental elements of CLOS such
as classes, slot definitions, methods, generic functions, and method combination are reified as
first-class entities and available to programmers as MOs. The standard method combination
(implemented by the standard-method-combination) combines the primary, around, before,
and after methods for each generic funtion invocation in order to form a single effective
method. Although around, before, and after methods are not meta-methods, the concept has
been adopted by many MOPs, including SOM and IGUANA. At run-time, SOM automatically
determines an appropriate meta-class for an instance of a class, even if the class inherited
from multiple parent classes and the parent classes specified different meta-classes. However
the order of meta-classes depends on the class precedence list. Neither CLOS nor SOM deals
with semantic overlap between meta-classes.

Many of the reflective programming languages (e.g., CLOS, IGUANA) use a variant of the
simple chain of responsibility model, explained above. The chain of responsibility model for
composition works well if the MOPs are orthogonal (i.e., their functionality is unrelated). But
in practice, orthogonality is only an exception [53]. Even worse, the chain might be broken
by some non-co-operative MO: e.g., a MO may conditionally break the chain by not passing
control to the next MO.

It is clear that in most cases, automatic composition brings up problems with semantic
interference between MOs. In this thesis we show that the interference can be detected and

handled by describing the MOs semantics.

1.4 IGUANA version 1 and 2

In summary, IGUANA version 1 supports fine-grain, run-time MOPsS, where a MOP can reify
up to 29 aspects of the host object-oriented programming language, C++ for example. The
programmer can select multiple MOPs for base-level classes and their instances. Through
an explicit (i.e., using the meta pointer from base-level objects) or an implicit (i.e., us-
ing IGUANA exztension protocols) mechanism, the base-level programmer can dynamically

change/restructure the meta-level. Rudimentary support for combining MOs is provided in

10
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the form of the chain of responsibility model.

IGUANA version 2 has evolved the previous model by reducing the number of reification
categories to 12, streamlining the run-time meta-level structure, and by introducing the
concept of meta-typing, which constrains the base-level programmer such that he/she can
select one single MOP for a base-level class or object. The single MOP selected for the object
represents its meta-type. This meta-type can be dynamically changed (subject to certain
conditions regarding the relationship between the old and the new meta-types), and the
IGUANA run-time system automatically restructures the meta-level and combines behavioural

MOs in the affected reification categories, following the same chain of responsibility model.

1.5 Our Approach

The IGUANA version 2 reflective programming model and its implementation addressed au-

tomatic MOP composition in a very limited way:

Single MOP selection: the base level programmer can select at most one MOP at a time
for his or her classes or instances of classes. This implies that the selected single MOP
must implement all of the desired non-functional concerns, for example, both object
persistence and distribution. This can be done at design time only by means of multiple
MOP inheritance. For example, the MOP PersistentRemote extends both Persistent and
Remote MOPs. Meta-object classes in PersistentRemote are derived from the ones in
Persistent and Remote, in that particular order. Should we need to combine a larger
number of MOPs, we would need to write a new MOP for each desired combination of
them. This is a design-time solution to MOP composition and as more and more non-
functional concerns will be implemented as MOPs over time, it will lead to an exponential

“explosion” in the number of MOPs.

Multiple MOP inheritance: IGUANA version 2 allows the use of multiple MOP inheritance.
When the derived (metaobject) protocol’s super-protocols reify the same language con-
cept, the conflicting MOs are organised by default into a list (one list for each behavioural

reification category), following the chain of responsibility model. The order of the MOs

11
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in the list is fixed and derived from the MOP precedence list *. The only simple way
to change the order of MOs in the list is to change the MOP precedence list, i.e., by
re-ordering the list of super-protocols. Even in this case, the new order may not be
correct in all of the reification categories. For example, MOs for the Send and Receive
reification categories in certain “remote”-related® MOs may have to be in reverse order
of each other in order to form a symmetrical communication protocol stack between

the remote client and server.

Ordering of the M0Os: MOs reifying the same language concept are ordered according to the
calculated MOP precedence list. If this order does not work for a particular new MOP,
the IGUANA version 2 model allows the meta-level programmer to explore the MOs on
the list in terms of next MO references. This solution works for single MOP selection
only, where it is known at design time what MO the next references will refer to. With
dynamic MOP selection, the selection or deselection of MOPs will result in a meta-level
reconfiguration (i.e., MOs are inserted or removed). A meta-level reconfiguration can

easily invalidate the next references, for instance they may refer to a wrong or null MO.

This thesis defines a new IGUANA model - we call it version 3 - supporting a flexible, automatic
and dynamic MOP composition, that overcomes the above limitations.

The following design objectives are addressed in the new model:

Evolution: the new IGUANA model should address the problems and limitations of the

previous two versions, instead of defining a radically new model.

Simplicity: the new IGUANA model should be intuitive to use for both base level and meta-

level programmers.

Reusability: the new IGUANA model should facilitate MOP reusability through its framework

for dynamic and automated MOP composition.

Our approach to automatic and dynamic MOP combination is based on the fact that

the MOPs and their constituent MO classes are better specified (e.g., by clear separation of

“MoP precedence list is the MOP inheritance tree flattened out by a left pre-order walk.
“MOPs that are related to object distribution.

12
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around, before, and after meta-computation in behavioural MOs and by the categorisation of
MOs with respect to their relationships with each other and with the causally connected base
level object), so that the MOP composer, which is itself a MO, can calculate the appropriate
ordering of MOs in different reification categories at run-time, with certain limitations.

We also define a methodology for developing composable MOPs and MO classes by speci-
fying simple design rules that meta-level programmers can and should follow. For example,
only one MO in the chain should reflect the base level operation the way it is done by the
default object behaviour (in IGUANA version 3, this MO is an instance of a MO class called
e.g., DefaultCreation for creating a new instance of a reflective class, and should be the last
MO in the chain).

The characterisation (description) of the MOPs and their MO classes with respect to their
composability with other MOPs and their MO classes is key in solving the automatic and
dynamic MOP composition problem. In IGUANA version 3, this information is captured as a
set of MOP descriptor files, written in the eXtensible Markup Language (XML). We devise a
Document Type Definition (DTD) for specifying the semantics of IGUANA MOP descriptors.

Moreover, in many cases MOs are inherently linked to components of the middleware that
actually implement the desired non-functional behaviour. In the above example, Remoteln-
vocation uses distributed object middleware to communicate remote method invocation re-
quests and replies over the network. Therefore we also express the MOPs and their links to
components of standard or proprietary middleware in the MOP descriptor, which guides the
automatic MOP composition and middleware (re)configuration.

Figure 1.2 shows the new proposed IGUANA model, which adds a second interface to the
model to deal with the connections between MOs of IGUANA MOPs and the supporting middle-
ware components. The new model also refines the existing interface (i.e., the first interface)
between the base-level and the meta-level. See section 3 for a more detailed description of
the new model and interfaces.

As our research interest is system-level programming, we implement IGUANA version
3 by extending a compiled object-oriented programming language, C++. Similarly to its

predecessors, we implement our IGUANA/C++ as a preprocessor, which parses the reflective

13
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Middleware components

Interface 2 Meta—level programmer

Meta-I

Ihtenfacell- S i T e e T

Exté¢nsion
Pyotocols
Base—level programmer

Base-level classes

Fig. 1.2: The new IGUANA model with three layers

IGUANA/C++ code and XML-based MOP descriptors and generates standard C++ code, which
is compiled using a standard C++ compiler.

Finally, we evaluate our thesis by designing, implementing, and dynamically combining
a suite of MOPs that address the most common non-functional concerns and use a common
proprietary middleware. Our implementation provides a platform for exploring dynamic

software composition through reflection in a compiled proramming language, C++.

1.6 Roadmap to this Thesis

After this introduction to the problem of MOP composition and the outline of our approach to
solving it, we review a number of reflective programming languages, meta-level architectures,
and techniques to compose software components dynamically in Chapter 2. Within this

Chapter, we describe IGUANA version 1 and 2 in more detail as our new model derives

14
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from them. In Chapter 3, we describe the design of IGUANA version 3, primarily focusing
on the new extension that solves the automatic and dynamic MOP composition problem.
We also define a methodology for writing composable MOPs and MO classes. Chapter 4
outlines the design of a number of automatically composable IGUANA MOPs that address
the most common non-functional concerns. Chapter 5 describes the implementation of the
IGUANA model for C++, called IGUANA/C++. Chapter 6 evaluates the model and composition
mechanism through examples of combining the some of above MOPs by using the default and
a customised Composer MO. Chapter 7 summarises the work presented in this thesis, draws

conclusions, and specifies areas for future research.
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Related Work

“Whatever you do will be insignificant, but it is very important that you do it.” - Mahatma

Gandhi

2.1 “Introduction

A number of reflective programming languages and extensions has been defined that address
some form of metaobject (MO) composition. This chapter provides a brief overview of them

and evaluates them according to the following criteria:

1. Compile-time or run-time MOP: when is the customisation of the reflective base-level

program performed?
2. Fine-grain or coarse-grain MOP: what aspects of the language can be reified?

3. Single or multiple MOP selection: can multiple MOPs representing different behaviours be

selected?

4. Support for manual or automatic MOP composition: are the MOs of MOPs combined by

the programmer? Or are they combined by a composer object at run-time?

5. Static or dynamic composition: if multiple MOPs can be selected, is it possible to change

them dynamically, at run-time?

16
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6. Semantic aid for automatic composition: how does the composition deal with semantic

overlap between MOPs?

7. Links between the meta-level and the middleware: in many cases, MOs of MOPs use a
middleware to provide their intended functionality. What is the relationship between

them?

This chapter also describes influentual reflective and non-reflective systems, that address

composition in some form or are relevant to our thesis.

2.2 The Common Lisp Object System Meta-object Protocol

The Common Lisp Object System (CLOS) defines an object-oriented Lisp programming
system. The CLOS Mcta-object Protocol (MOP) [37] has been added to allow customisation
of the CLOS system.

The CLOS MOP is a description of the CLOS system itself as an extensible CLOS program.
Fundamental elements of the CLOS language (e.g., classes, slot definitions, methods, generic
functions, and method combiners) are reified and available to programmers as first-class
objects, called metaobject (MO) classes. The basic MO classes are thus: class, slot-definition,
generic-function, method, and method-combination. A MO class is a subclass of exactly one of
these classes. A MO is an instance of a MO class.

The behaviour of CLOS is implemented by these MOs. Each MO represents one program
element and has information associated with it, which is required to serve its role. The MOs
are interconnected. This interconnection means that the role of a MO is always based on the
role of other MOs.

The essential features of CLOS are classes that define state and functionality and can
inherit from one or more classes; instances of classes that are created, initialised, and used in
programs; generic functions, whose behaviour depends on the classes of arguments supplied
to them; and methods that specialise generic functions for class-specific behaviour. The
programmer can qualify methods as before, after, or around: before and after methods are

executed before and after the primary method execution takes place, respectively, while
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around methods are executed around before, primary, and after methods. A method with no
qualifier is considered as primary.

In the remainder of the section we focus on the method combination aspect of the CLOS
MOP. CLOS divides generic function invocation into three parts: determining the applicable
methods (dictated by the method qualifiers such as before, after, and around and the classes of
arguments); sorting the applicable methods into decreasing precedence order; and sequencing
the execution of the sorted list of the applicable methods. This is often called the effective
method lookup. CLOS has a standard method combination mechanism, which combines the
around, before, primary, and after methods for each generic function invocation in order to
form the single effective method.

The generic function invocation uses the class precedence list' for sorting the applicable
methods, and it works as follows: the most specific around method is invoked first, which
should call the call-next-method CLOS function to invoke the next most specific around
method and so on. When there are no more around methods, the call-next-method runs
the combination of the remaining before, primary, and after methods: the applicable before
methods are executed first, from most specific to least specific. The most specific applica-
ble primary method is executed next, followed by the applicable after methods, from least
specific to most specific. The value(s) returned by the call to the generic function are the
value(s) returned by the primary method. Primary methods may use the call-next-method
if they want to invoke the next most applicable primary method. Around methods should
always call the call-next-method from within the body of a user-defined method. Primary
methods may call call-next-method. Finally, before and after methods must not call it.

The full CLOS MOP provides a mechanism for the user to replace the standard method
combiner with a customised one.

Note that the before, after, and around methods are not meta-methods as such, i.e., they
are base-level methods defined for application classes. However the concept of defining before

and after operations at the meta-level has been adopted in and used by many reflective

!The class precedence list contains all of the direct or indirect superclasses of the class. The precedence
list is calculated for each class such that it must satisfy the following two constraints: 1. a class precedes its
superclasses; 2. superclasses have their order given in class definitions.
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programming systems.

2.2.1 Ewvaluation and relevance to this thesis

The CLOS MOP can be considered as a fine-grain run-time MOP. MOP selection in CLOS is
implicit: there is only one MOP which is the collection of the above M0Os. Each MO class is a
subclass of exactly one base MO class.

The effective method lookup mechanism and the explicit call-next-method has influenced the

design of IGUANA version 2.

2.3 Open C++ version 1 and 2

Open C++ version 1 [10, 8], a reflective extension to the C++ language, supports run-time
behavioural reflection. The Open C++ version 1 MOP allows the behaviour of method invo-
cation, state read/write, and object creation to be reified and thus altered. The Open C++
MOP is defined by the MetaObj class. The methods defined in the MetaObj class implement
the default C++ mechanisms for method invocation, state access, and object creation. This
default behaviour can be altered by deriving subclasses of MetaObj, in which these methods
are redefined. Each reflective instance of a reflective base-level class is controlled at run-time
by an instance of its associated MO class, a MO. When a new reflective instance is created,
a new MO is also created to control that object. The relationship between the base-level
objects and MOs is one-to-one. The object-MO binding is created at object creation time and
cannot be modified or undone later. Open C++ version 1 does not provide support for MO
composition.

Open C++ version 2 [9, 11] uses a compile-time MOP to make the C++ programming
language extensible. The MOP consists of a class hierarchy that reifies the compiler’s parse
tree and is used to generate a specialised version of a C++ compiler. The specialised compiler
is subsequently used to perform code transformation to the base-level program. The Open
C++ version 2 MOP provides control over the compilation of class definition, state access,

virtual function invocation, and object creation. This is achieved by reifying the compiler’s
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parse tree as a collection of objects. The MOP supports behavioural reflection in the sense
that it can be used to change the objects’ behaviour by replacing or inserting code in an
application. The source-to-source translation of the program as well as structural aspects,
such as type information, are reified by the following MO classes: Class, Ptree, Typelnfo, and
Environment. MOs of type Class play a key role in the MOP as they represent class definitions
and control the source-to-source translation. Implementing a new MOP is accomplished by
subclassing Class and by redefining the appropriate member functions that control the source
translation.

A base-level class can select a MO class either by a metaclass declaration or by registering a
new keyword. Unlike in Open C++ version 1, in which non-reflective instances of a reflective
class can still be created, MOP selection in version 2 is class-based, i.e., all instances of a
reflective class are reflective. As the MOs exist during compile-time, the link between the

base-level and meta-level objects is not maintained during run-time.

2.3.1 Evaluation and relevance to this thesis

Open C++ version 1 is a coarse-grain run-time MOP with 3 elements of C++ that can be reified.
There is no support for MO composition in Open C++ version 1, apart from the ability to add
a MO to a MO thus resulting in multiple meta-levels (e.g., this approach is used in FRIENDS,
see section 2.15).

Open C++ version 2 is a coarse-grain compile-time MOP: 4 elements of C++ can reified. It
is not known whether more than one meta-level class can be used in the generation of code.
Therefore, it is assumed that Open C++ version 2 does not support dynamic MO composition.
Interesting to note that a MOP for fault-tolerant Common Object Request Broker Architecture
(CORBA) applications [41] uses Open C++ version 2 compile-time MOP to insert a run-time
MOP for supporting fault-tolerance. An interesting application of Open C++ version 2 is

implementing atomic data types [69].
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2.4 Composition of Before/After Meta-classes in SOM

In IBM’s System Object Model (SOM) [23], a class is a runtime object that defines the
behaviour of its instances by managing an instance method table. During the initialisation
of a class object, a method is invoked on it, that informs the class of its parent classes. This
allows the class to build an initial instance method table.

Because classes are objects, their behaviour is defined by other classes, called meta-
classes. SOMClass is the default meta-class, from which all other meta-classes are derived.
Instances of classes are classes. For example, a Before and After meta-classes can be used to
define the implementation of classes that arrange for each method invocation to be preceded
by execution of a “before” method, and followed by an “after” method, respectively. [25]
introduces and solves the problem of composing different Before/After Meta-classes in the
SOM context.

Interfaces to SOM objects are written in IDL, an object interface definition language,
defined by the Object Management Group (OMG) CORBA standard. SOM IDL extends IDL
with the ability to include SOM class descriptions in addition to object interface definitions.

The SOMMBeforeAfter meta-class introduces two methods, BeforeMethod and AfterMethod.
By default, these methods do nothing. The programmer derives from SOMMBeforeAfter
and overrides its methods with the desired behaviour. Examples of the use of before/after
methods are: method tracing, invariant checking, concurrency, persistence, and replication.
Before/After meta-classes are not useful unless they compose, because if not, the use of one
meta-class would preclude the use of others.

SOM encourages the definition and the use of explicit meta-classes. At the same time,
however SOM relieves programmers of the responsibility for getting the meta-class right when
defining a new class. SOM does this by introducing a concept called derived meta-class, which
deals with upward (binary) compatibility: given an instance of a SOM class, which inherits
from possibly multiple superclasses, how could someone ensure that the meta-class of the
derived class meets the expectations of the meta-classes of the superclasses? For example, if
class Y, and instance of MetaY and a subclass of X, which is in turn an instance of MetaX.

There is an upward compatibility problem because MetaY does not inherit from MetaX.

21



Chapter 2. Related Work

At run-time, SOM automatically determines an appropriate meta-class that supports this
compatibility. When necessary, SOM automatically derives by subclassing a new meta-class
called a derived meta-class. Thus, following the above example, SOM creates a Derived
meta-class, which inherits from both MetaA and MetaX. Thus, a SOM programmer never
needs to consider the meta-classes of a newly defined class’ ancestors. Instead, explicit meta-
classes should only be used to add in desired behaviour for a new class. Anything else is
performed by SOM automatically. Because class construction is a dynamic activity in SOM,
the appropriate meta-class derivation is done at run-time.

In SOM, the composition of Before/After meta-classes has the associative property: the
order of meta-classes depends on the search order, which is determined by the order of the

parent meta-classes.

2.4.1 Evaluation and relevance to this thesis

SOM with its SOMBeforeAfter meta-classes represents a coarse-grain run-time MOP support-
ing only the reification of invoking (remote) methods. The single SOM MOP is implicit as it
manifests in the derivation of the appropriate meta-class only. Nevertheless, the automatic
and dynamic composition of SOMBeforeAfter meta-classes makes SOM relevant to our work.

The order of executing the before and after methods from the combined meta-classes is
fixed. Also note that SOM may introduce semantic inconsistencies by automatically com-
bining semantically overlapping metaclasses at run-time. Since SOM objects implement IDL

interfaces, SOM itself is a middleware.

2.5 OedA

The CodA [51] meta-level architecture is based on an operational decomposition of meta-
level behaviour into objects and the provision of a framework for managing the resulting
components. In CodA, the meta-level is decomposed into seven so-called meta-components,

that reify different aspects of object behaviour such as:

Send Manages the sending of a message to an object. This can include supervision of the mes-
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sage transmission, synchronisation of the sender and the receiver, protocol negotiation,

and so on.

Accept Defines how the receiver of a message interacts with the message sender. Therefore it
has to deal with synchronisation and protocol negotiation. It also determines whether

the message should be placed in a queue or should be processed immediately.

Queue Organises and holds messages that have been accepted but not yet received or pro-

cessed.

Receive Responsible for fetching the next message to be processed. This may involve the

selection of a message from a queue.

Execution Specifiies how an object interacts with the system in order to execute one of its
methods. For example, it determines whether the method should be executed in debug
mode or not. It also controls where and when a method is executed, and is responsible

for actually executing the method.

Protocol Responsible for mapping a message to be processed onto a method to be executed.

This requires the specification of how messages and methods can be matched.

State Organises and maintains information on the object’s state, that is, its instance vari-

ables. It defines what instance variables an object has, and how they can be accessed.

Object behaviour is modified by explicitly associating meta-components with an object. A
certain combination of these seven meta-components makes an object model, which describes
a particular behaviour for a base-level object. The first six of these meta-components (also
called roles) provide the programmer with behavioural (intercessory) facilities, while the last
meta-component (State) implements structural reflection (introspection).

Although the CodA model can be applied to other systems, it is closely linked to the
SMALLTALK [26] language.

CodA programmers have to explicitly instantiate the meta-level for reflective objects

and insert the meta-components they want to use in order to implement a particular object
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behaviour. Dynamic reflection is achieved by allowing any of these seven meta-components
to be replaced at run-time.

The meta-level of a particular object is created by dynamically combining various object
models. Objects begin life behaving according to the default object model. Users apply their
own particular object models. When adding object models to a meta-level, the constraints
(i.e., meta-components) specified by the models must be combined. Since meta-components
are general objects and object models can be arbitrarily complex, their automatic composition
is difficult. Combining non-overlapping object models (i.e., the intersection of the meta-
components of the two object models is empty) is straightforward. The new model simply
contains the union of the meta-components from the original object models.

Combining overlapping object models may require programmer intervention. CodA does
not offer an automatic composition. Instead, it offers a simple property-based specification
that helps programmers resolve such composition conflicts. For example, if object models
X and Y both have their own Send meta-components (XSend and YSend, respectively), the
programmer has to create a new XYSend, that has the properties of both XSend and YSend.
Having resolved the conflict between XSend and YSend once by implementing XYSend, the
new meta-component is reusable in future combinations of other object models that require

XSend and YSend.

2.5.1 Evaluation and relevance to this thesis

CodA is a fine-grain run-time MOP with 7 meta-components (a MOP in CodA is called an
object model). Multiple object models can be combined but there is no support for automatic
composition of meta-components (e.g., Send). Thus, meta-components of overlapping object
models have to be combined by the programmer. Individual meta-components can be replaced
at run-time.

The fine-grain MOP of CodA has influenced the design of IGUANA version 1.
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2.6 DASCo: Separation and composition of overlapping and

interacting concerns

DASCo (Development of Distributed Applications with Separation of Concerns) [66] is an
approach to developing object-oriented concurrent and distributed applications using a sep-
aration of concerns strategy.

Separation of Concerns (SoC) approaches deal with abstraction and integration. The
former describes common concepts such as object synchronisation or concurrency separated
from functional (application) objects, while the latter deals with integrating abstractions
among themselves and with functional objects. The SoC approach integrates abstractions
only in the final program.

DASCo is based on design patterns, composition patterns and object-oriented frame-
works to, respectively, describe abstractions, describe composition of abstractions, and im-
plement/integrate abstractions and their composition with functional objects.

A design pattern is defined for each abstraction. Abstraction composition is obtained
from the composition of each concern’s design patterns. The composition of design patterns
also constitute an abstraction described by a design pattern, in which participants are built
by composing each involved pattern’s participants. In addition, the composition pattern’s
collaborations are built from the collaborations of each pattern participating in the compo-
sition.

There are two cases regarding concern composition: orthogonal (i.e., there is no semantic
overlapping between concerns) and non-orthogonal. The DASCo experiment indicated that
orthogonal composition is rather restrictive. In many situations, there is semantic overlapping
between different abstractions. Moreover, they verified that some composition abstractions
have their own policies that are not trivially inferred from each of the composed abstractions.
In order to deal with semantic overlap, the composition pattern should describe the new
policies that result from the composition. It should also describe what are the consistent
combinations of overlapping parts and what are the restrictions to policy composition. A

matrix can be used to identify new policies and the associated restrictions on policy combi-
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nation.

Design and composition patterns are implemented in a three-layer object-oriented frame-
work with separation of concerns. In this framework, classes implementing design and compo-
sition patterns are grouped within components. In the object-oriented framework’s concrete
case, components consist of classes implementing design and composition patterns, and are
instantiated either through instantiation of the explicit interface’s parameters or through
specialisation of some of their classes.

The three layers in the framework are as follows:

Concern layer : contains classes implementing each of the design patterns grouped into
concern components. Concern components provide an interface for composition with

other concern components and for customisation of the concern’s policies.

Composition layer : contains classes implementing composition patterns. They provide a

minimum interface for integration with the application.

Application layer : in this layer, composition components are integrated in the final pro-
gram and concern components are customised so that they provide the policies required
by the application’s functional objects.

2.6.1 Evaluation and relevance to this thesis

DASCo is based on design and composition patterns as well as on a framework. DASCo is a
non-reflective architecture, thus it does not have a MOP. We included in our review because

it addresses the combination of semantically overlapping non-functional concerns.

2.7 IGUANA version 1 and 2

This section summarises IGUANA, a reflective programming model developed in the Dis-

tributed Systems Group (DSG) of Trinity College Dublin.
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2.7.1 Metaobject composition in IGUANA version 1

The original IGUANA (we refer to it as version 1 in the text) reflective programming model
[29, 30, 28] supports multiple, fine-grained run-time MOPs with selective reification. The
compile-time reification process is static? and performed during the MOP definition.

The behaviour described by an object model for a programming language can be quite
complex. Consequently, a MOP that specifies the object model in terms of meta-level objects
(classes), interfaces and interaction will be equally, if not more complex. Dividing an object
model into fine-grained MOPs allows the implementation to be modular and benefit from
reuse of MO classes. IGUANA version 1 introduced the concepts of reification categories and
reification category lists. Each reification category reifies only a small part of the object
model, for example, method send, receive, dispatch, and invocation, that can be represented
by a MO. A reification category list groups a set of related reification categories.

There are 29 reification categories listed in IGUANA version 1 [28]. The 9 structural reifi-
cation categories are: Class, Identity, InheritanceTree, MethodAddress, MethodName, StateAd-
dress, StateName, Source, and Type. The 20 behavioural reification categories are: Creation,
Deletion, Dispatch, Invocation, MethodAccess, MethodBefore, MethodAfter, Reception, State-
BeforeRead, StateAccessRead, StateAfterRead, StateBeforeWrite, StateAccessWrite, StateAfter-
Write, ActFrame, Inheritance, Method, State, TypeSoft, and TypeSoftPlus.

The benefit of this fine-grained approach is that only those parts of the object model, that
are required to implement the derised object behaviour are reified. Thus selective reification
reduces the reflective overhead placed on the object model.

An IGUANA version 1 MOP is a specification of the behaviour of an object model. It is
also a first-class language entity in IGUANA: the protocol keyword can be used to specify a

MOP. The MOP specification consists of four main parts:

o List of reification categories and their related MO classes;

e List of other MO classes that are not related to reification categories;

2The IGUANA MOP defines the aspects of the object model that are reified. MOP definitions are processed
at compile-time by a preprocessor.
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e List of parent protocols (i.e., MOPs);
e Sibling MOP dependencies.

The distinction between base-level and meta-level objects is less well-defined in IGUANA
than in some other systems. The IGUANA MOP selection process causally connects base-level
and meta-level objects and allows meta-level objects in turn to be causally connected to a
further layer of meta-level objects to an arbitrary depth.

The IGUANA version 1 MOP supports introspection, intercession, and dynamic meta-level
reconfiguration. A call to a meta-level object may be implicit or ezplicit. Tmplicit calls occur
when a language component has been reified. Explicit calls can be made from normal base-
level objects by using either an IGUANA eztension protocol or calling public methods on MOs.
Dynamic adaptation is supported via explicit invocations to the meta-level.

IGUANA MOPs are associated with base-level objects through procotol selection. A base-
level object can select one or more MOPs. The selection process must be used somewhere in
the implementation phase. Although causal connections between base-level and meta-level
objects are made at compilation-time, this is not necessarily a limitation. It is a specific fea-
ture of the IGUANA version 1 meta-level architecture that meta-level objects can be replaced
dynamically, at run-time.

MOP selection is either behavioural or augmentary. Behavioural selection is the most
common and is used to describe or implement the behaviour of base-level objects. IGUANA
version 1 supports three forms of behavioural MOP selection: default, class, and instance.
They differ in their scope: default selection associates classes in a compilation unit (i.e., a
C++ source file) with the MOP(s), while class selection selects the MOP(s) for all instances of
that class. Instance selection binds the MOP(s) to that instance only, thus other instances of
the same class may select different MOPs or may not be reflective at all. Augmentary selection
is used to add to, or augment the behaviour of the base-level objects temporarily. There is
one augmentary selection form in IGUANA, called the ezpfession selection. The scope of an
expression selection is that of a single expression.

The IGUANA version 1 model facilitates dynamic adaptation of the program in the follow-

ing ways: the programmer can replace an entire MOP, or replace/modify individual meta-level
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and base-level objects.

IGUANA extension protocols provide controlled access to the meta-level from the base-
level. They abstract away from the specific features of a meta-level object to provide an
application-specific feature. They are written as standard C functions or C++ methods. The
reasoning for this is given in [28] as follows: “The functionality encapsulated by an extension
protocol can usually be encapsulated within a single function. If this is not the case, then
a C++ class can be used as the implementation medium.” Extension protocols provide the
building blocks, from which secure adaptable systems can be constructed. Methods in an
extension protocol simply group a number of calls to rearrange the meta-level in order to
adapt it according to the application’s changing needs. The base-level object invokes these
calls on an extension protocol when it wants to adapt the application. Extension protocols
thus can act as a coherent and concise abstract interface to a MOP.

For a given program or service, the number of extension protocols can be dynamically
changed over time as appropriate. The IGUANA version 1 model can support multiple ex-
tension protocols even over a single MOP. For example, when a thread scheduling policy
modification is requested by the client, an extension protocol can be dynamically put in
place and executed in response to the event. All the necessary security validations can be
implemented as a part of the extension protocol, thus separating the implementation (base-
level), the description of the implementation (meta-level), and the adaptation/specialisation
processing (interface between base-level and meta-levels) into three separate units.

Meta-level combination conflicts can arise as IGUANA allows more than one MOP to be
causally connected to the base-level object. The IGUANA case of having multiple MOPS
selected for a base-level object is quite complex, as these MOPs may have conflicting MOs
declared and use multiple MOP inheritance. To address this problem, IGUANA version 1 relies
on the programmer to specify the ordering of MOs in each of the reification categories. If
no order is specified, IGUANA MOPs have a default behaviour for sequential ordering (i.e.,
this is the chain of responsibility model mentioned in section 1.2). This is implemented by
the default meta-combiner. By inheriting from a meta-combiner interface, a programmer

can write his/her own combiner algorithm. This can be used by specifying the name of the

29



Chapter 2. Related Work

combiner class in the appropriate reify statement, which is part of the protocol definition.
For example, to use a special combiner class MyStateAccessCombiner for a distribution

MOP, one would write the following:

protocol Distributed {

shared:
reify StateRead (MyStateAccessCombiner) DistributedStateRead;
reify StateWrite (MyStateAccessCombiner) DistributedStateWrite;
Fesd

};

Although IGUANA version 1 is a generic model that can be tied/applied to any (object-
oriented) programming language, it has been implemented as IGUANA/C++, a reflective ex-
tension to the C++ language. IGUANA is a run-time MOP implemented as a source-to-source

translator.

2.7.2 Metaobject composition in IGUANA version 2

The second version of the IGUANA model [21, 64] is a simplification and an evolution of the
previous model. Simplifications include a reduction in the number of reification categories
(from 29 to 12), and streamlining of the meta-level structures.

In IGUANA version 2, there are only 12 reification categories, which can be classified as

structural and behavioural, namely:
Structural: Class, Method, Attribute, Constructor, and Array.
Behavioural: Creation, Deletion, Invocation, StateRead, StateWrite, Send, and Dispatch.

Dependencies between behavioural and structural reification categories have also been
identified in the thesis. For example, the Invocation behavioural MO needs the Class and
Method structural MOs to carry out its operations.

Similarly to IGUANA version 1, there are three ways of selecting a MOP: class, instance,

and default. The expression selection has however been removed from IGUANA version 2.
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IGUANA version 2 supports automatic and manual MO composition by means of multiple
MOP inheritance. Behavioural MOs reifying the same language element (e.g., method invoca-
tion or state read) are organised in a chain: each MO carries out its operation and is expected
to call the next MO in the chain. By convention, the last MO should be the default MO, which
reflects the operation at the base-level. The order of MOs in the list is deduced from the MOP
precedence list.

By default, control propagates through the list of MOs until it reaches the last MO, and
then it goes back. Should not the default composition work for some MOP combinations, a
MO positioned in the beginning of the chain can be coded as a combiner and it can either
override the order of the remaining MOs or call them in a particular order (e.g., a combiner
MO can implement the at-most-one semantics).

IGUANA version 2 introduced the concept of meta-types. The meta-type of a base-level
object captures the functionality offered by the reflective language extension. An object’s
meta-type can be static or dynamic. The static meta-type is the MOP that has been selected
for the object’s class using class MOP selection. The dynamic meta-type is the MOP that has

been (re)selected for the object, subject to the following rules:
1. Every object has a single meta-type.
2. The meta-type of an object can be changed dynamically.

3. A class inherits the meta-type of the superclass. The meta-type selected by a class must

be the same or a sub-type of the meta-type selected by its superclass.
4. The dynamic meta-type of an object must be a sub-type of its static meta-type.

In contrast with IGUANA version 1, which allows objects to select multiple MOPs, here an
object can have at most one MOP (meta-type) associated with it. The reason for this is given
in [64]: “Rules to combine MOs from meta-types that are written independently of each other
are technically possible, but unlikely to lead to meaningful combined behaviour when the
meta-types are unaware of each other. Thus, the current design only allows an object to have
a single meta-type. This meta-type in turn can be composed [of multiple meta-types], but it

is the meta-level programmer’s responsibility to provide a meaningful composition order.”
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In both IGUANA versions, an IGUANA/C++ to standard C++ pre-processor is used to

implement the model.

2.7.3 Evaluation and relevance to this thesis

Both IGUANA versions are fine-grained run-time MOPs, with 29 and 12 reification categories
in version 1 and 2, respectively. The main difference between them is in the MOP selection:
version 1 allows selecting multiple MOPs, while version 2 introduces the concept of meta-type,
which translates to single MOP selection. There is a single meta-level in version 2 versus the
meta-towers in version 1.

Both versions support changing the MOP(s) (the single meta-type in version 2) dynam-
ically. Also both versions use the chain of responsibility model for combining MOs in a
particular reificiation category. IGUANA version 1 has Combiner MOs, but it is difficult to see
how multiple combiner MOs are combined. IGUANA version 2 supports dynamic composition
of the Mos of the single meta-type.

Our work is an evolution of the IGUANA models, where we focus on solving the problem
of automatic and dynamic composition of multiple, indepenendently developed, and seman-
tically overlapping MOPs. We have identified the limitations of MOP composition in IGUANA

version 1 and 2, refer to section 1.4.

2.8 Towards a Methodology for Metaobject Composition

A methodology aimed at the design of composable MOs has been proposed in [53]. The basic
problem the paper attempts to solve is the reuse of existing MOPs: given two independently
developed language customisations (in the form of two MOPs), is it possible to compose them
into one combined customisation? Moreover, since the programmer wants to treat the MOPs
as black boxes, what are the least condiditions one has to impose on the MOPs in order for
this composition to work?

The paper points out that MOP composition in its full generality is a very hard problem

because of the interferences between the combined behaviours. Composing semantics is a
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general problem, that can be handled for MOs by including some constraints leading to a
specific methodology.

Practically, MOPs usually offer customisable functionalities as a set of elementary bricks,
which have to be assembled together to define the complete semantics. Assembly is easy if the
bricks do not have semantic overlap. However, assembling purely orthogonal functionalities
constrains the range of combinations, since several customisations of the same brick cannot be
composed unless an expert designer manually resolve conflicts between overlapping semantics.
The issue the paper deals with is the composition of non-orthogonal semantics. It advocates
the realisation of elementary M0s, having potentially overlapping semantics, and it attempts
to reuse them afterwards by automatic composition.

The paper associates MOs in pairs in an ordered relation; it distinguishes between left-
composed and right-composed MOs. A left-composed MO specialises or aggregates the right-
composed one. Composing MOs only means having the left-composed MO requesting explicitly
the functionality of the right-composed one, without knowing the internal details of it. The
resulting co-operation depends closely on the type of the composition link, which is either
specialisation (by means of inheritance or delegation) or aggregation (embedding). However,
since specialisation and aggregation are not expected to compose MOs, the programmer has
to design MOs that co-operate along the composition link.

Each composition solution (either specialisation or aggregation) induces particular con-
straints on the internal design of the MOs making use of it. In other words, MOs should be
cooperative and written with future composition in mind.

The following three design rules must be respected:

Exclusivity: when a meta-computation is performed on an object, its respective MO must
be activated to this aim, since it is assumed to be the only one capable of performing

this task.

Encapsulation: a MO is like a black box, those external interface corresponds to the protocol

specified by the MoP.

Independence: the implementation of a given MO must make no specific assumption on the
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implementation of the base-level object.

An application of this model to the MOOSTRAP language is given in the paper, which
demonstrates composition with trace and delegation. The generalisation of the above method-
ology is then applied to the CLOS MoP. In the CLOS MOP context, a cooperative MO must
foresee its future composition. Practically, FLAVORS inheritance already advocated the con-
cept of cooperative components, in the form of miz-ins. A mix-in defines a particular feature
of an object. A mix-in cannot be instantiated because it is not a complete description (there
are base “flavours” that are complete). Considering that mix-ins are required not to interfere
with other behaviour and their methods should explicitly invoke the call-next-method, the
composition is achieved when defining a concrete complex MO, incorporating several seman-

tics supported by mix-ins, and a final one, which is the base MO.

2.8.1 Evaluation and relevance to this thesis

We included this paper in the review because it addressed the composition of independently
developed, semantically overlapping MOPs and provided a methodology for writing compos-
able Mos. The generalisation of the methodology is applied to the CLOS MoOP, which is

described in section 2.2.

2.9 (Guarana

Guarand [56] allows MOs to be combined through the use of composers. Composers are MOs
that can be used to define arbitrary policies for delegating control to other MOs, including
other composers. They provide the glue code to combine MOs, and to resolve conflicts be-
tween incompatible ones. The use of composers encourages the separation of the structure of
the meta-level from the implementation of individual management aspects. The authors of

Guarana argue that the chain of responsibility model has some serious drawbacks:

e It is intrusive on the MO implementation, in the sense that a MO must forward operations

to its successor in the chain.
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It forbids two MOs concurrently handling the same operation.
e It forces MOs to receive the operation results from the successor MO.

e The order of presentation of results is necessarily the reverse order of the reception of

operations.

e It is impossible to mediate interactions between MOs and base-level objects with an
adaptor capable of resolving conflicts that might arise when multiple MOs are put to

work together.

These problems are solved in Guarana by splitting the meta-level processing associated with

a base-level object in the following steps:

1. The Guarand kernel intercepts operations on base-level objects that have MOs associated

with them.

2. A MO may produce the result for the operation. In this case, the meta-level processing
terminates by unreifying the result as if it had been produced by the execution of the

intercepted operation.

3. However, a MO is not required to reply with a result. The MO may reply with an
operation to be delivered to the base-level. In addition, the MO may indicate that it is

interested in receiving and/or modifying the result of the operation.

4. Finally, the operation is delivered to the base-level, and its result may or may not be

presented to the MO, depending on its previous reply to the operation.

Replacement operations can be created in the meta-level using operation factories. Oper-
ation factories allow MOs to obtain access to the base-level objects they manage. Stand-alone
operations can also be created with operation factories, and then performed, i.e., submitted
for interception, meta-level processing, and potential delivery for base-level execution.

Composers separate operation handling from result handling, implemented in two dis-

tinct methods, namely, handle operation and handle result. A composer is a MO that
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delegates operations and results to multiple MOs and then composes their replies in its own
replies. For example, a composer can implement the chain of responsibility model, but in
a way that MOs on the chain do not need to keep track of their successors. Another com-
poser implementation may delegate operations and/or results concurrently to mulitple MOs,
or refrain from delegation if it knows that those MOs are not interested in that operation.

In Guarand, there is at most one MO associated with a base-level object at any time. This
MO 1is called primary metaobject. The primary MO can be a composer, and it can delegate
operations/results to other composers, too.

Guarana presents two additional features that enforce the separation of concerns between
the base-level and the meta-level: the meta-configuration of an object is completely hidden
from the base-level, and even from the meta-level itself; and the initial meta-configuration
of an object is determined by the meta-configurations of its creator and of its class, a mech-
anism Guarand calls meta-configuration propagation. In Guarand, there is no way to find
out the primary MO of an object. It is possible, however, to send arbitrary messages and
reconfiguration requests to the components of the meta-configuration through the Guarana

kernel. The kernel supports the following operations:

Broadcast Messages can be used to extend the MOP, as they allow MOs to exchange infor-
mation. MOs that do not understand a message are supposed to ignore it. Composer

MOs are supposed to forward a message to their components.

Reconfigure A reconfiguration request message carries a pair of MOs, suggesting that the
first MO should be replaced with the second MO in the object’s meta-configuration. The
MO reference null can be used to refer to the primary MO. It is up to the existing
meta-configuration to decide whether the reconfiguration request is acceptable or not.
If the base-level object is not reflective, an InstanceReconfigure message is broadcast to
the meta-configurations of its class and superclasses. Their components can modify the

suggested new meta-configuration.

Object creation In many object-oriented programming languages, object creation has two

steps: first, storage is allocated for the new instance, then secondly, the constructor
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method is invoked. These steps are performed by the creator of the new object. In
Guarana, the creation of the meta-configuration for the new object takes place between
these two steps. The primary MO of the creator is responsible for providing a meta-
configuration for the new object. It may return null, a different MO or even itself (the
same MO can be shared between different meta-configurations). A composer is expected
to forward the creation request to the MOs returned by them. After meta-configuration
propagation, the kernel broadcasts a NewObject message to the meta-configuration of
the class of the new object, so that its MOs can try to reconfigure it. Finally, the object
is constructed, and the constructor invocation can be intercepted by the kernel if the

base-level object is reflective.

Proxy creation Guarana provides a mechanism that allows proxy object creation from the
meta-level, without invoking their constructor. When a proxy is created, the kernel
broadcasts a NewProzy message to the meta-configuration of the new proxy object’s
class. A proxy will usually be given a meta-configuration that prevents operations from
reaching it, but it may be transformed into a real object by its meta-configuration,

through constructor invocation or direct initialisation.

Guarand has been implemented using Kava, an open-source Java Virtual Machine (VM).
MoLDs [58] is a library of MOs for Guarand, which provides essential features for developing
reliable distributed systems. Meta-level services include persistence, replication, distribution,

caching, migration, logging, and atomic execution.

2.9.1 Ewvaluation and relevance to this thesis

Guarana is a fine-grained run-time MOP with Array Read, Array Write, Field Read, Field Write,
and Method Invocation Java operations reified. The MOs representing these reified concepts
can be composed by explicit composer MOs. If composition of multiple MOs is required, a
composer MO has to be instantiated. It is left to the (meta-level) programmer to design and

implement a dynamic composition algorithm.
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2.10 X-Kernel: an Architecture for Implementing Network

Protocols

The z-kernel [33] is an operating system kernel that provides an explicit architecture for
constructing and composing network protocols. It views a protocol as a specification of
a communication abstraction, through which a collection of participants exchange a set of
messages. Beyond this simple model, the z-kernel makes few assumptions about the semantics
of protocols.

The z-kernel provides three primitive communication objects to support this model: pro-
tocols, sessions, and messages. These objects are classified as static or dynamic, and passive
or active. Protocol objects are both static and passive. Each protocol object corresponds to
a conventional network protocol (e.g., IP, UDP, TCP), where the relationships between pro-
tocols are defined when the kernel is configured. Protocol objects are created and initialised
at kernel boot-time. Data global to the protocol is contained in the protocol state. Protocol
objects serve two main functions: they create session objects and they demultiplex messages
received from the network to one of their session objects.

Session objects are also passive, but they are dynamically created. A session object is an
instance of a protocol object that contains a protocol interpreter and the data structures that
represent the local state of some network connection. The two primary functions sessions
support are push and pop for passing messages down and up, respectively. Because sessions
represent connections, they are created and destroyed when connections are established and
terminated. The session-specific state includes capabilities for other session and protocol
objects as well as whatever state is necessary to implement the state machine associated with
a connection.

Although the kernel is written in C, the infrastructure enforces a minimal object-oriented
style on protocol and session objects, that is, each object supports a uniform set of operations.

Messages are active objects that move through the session and protocol objects in the
kernel. The data contained in a message object corresponds to one or more protocol headers

and user data. Messages either arrive at the bottom of the kernel (i.e., at a networking device)
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and travel upward to a user process, or they arrive at the top of the kernel (i.e., a user process
generates them) and flow down to a networking device. While travelling downward, a message
visits a series of sessions via their push operations. While flowing upward, a message visits
alternatively a protocol via its demux operation and then a session in that protocol’s class
via its pop operation. As a message visits a session on the way down, headers are added,
the message may fragment into multiple message objects, or the message may suspend itself
while waiting for a reply message. As a message visits a session on the way up, headers are
stripped, the message may suspend itself while waiting to re-assemble into a larger message,
or the message may serialise (re-order) itself with sibling messages.

The z-kernel also provides the programmer with highly-tuned, general purpose utility
routines. These routines include buffer, map and event management.

Usually a suite of protocols are configured into an instance of the z-kernel. When a pro-
tocol is initialised, it is given a capability for each protocol on which it depends, as defined by
the protocol dependencies graph. The relationships between communication objects (i.e., the
protocol dependencies) are defined using either a simple textual graph description language
or an X-Windows-based graph editor. A composition tool reads this graph and generates C
code that creates and initialises the protocols in bottom-up order.

The experience with z-kernel described in the paper shows that it is both general enough
to accomodate a wide range of protocols, yet it is efficient enough to perform competitively

with less structured operating systems.

2.10.1 Evaluation and relevance to this thesis

The z-kernel is a non-reflective operating system kernel. It has been included in this review
because of its notion of describing communication protocols in terms of capabilities and
requirements and its composition mechanism that reads this information and generates code

for the instantiated protocol stack.
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2.11 Secure Composition of Security Metaobjects

[63] outlines a MOP for secure composition of cryptography-aware M0Os. Cryptography-based
security services address confidentiality, authentication, data integrity, and non-repudiation,
and are usually implemented on basic security services (encryption, digital signatures, and
other types of electronic fingerprints). The composition of these mechanisms is often a means
for satisfying more complex security requirements. However, special care is needed when
combining these mechanisms, in order to avoid incorrect combinations.

Computational reflection can be used to implement security mechanisms in a transparent,
non-intrusive manner, that is, without interfering with the application’s original structure.
MOs can implement these cryptographic mechanisms.

The cryptographic mechanisms for data integrity. authentication, and digital signature

are mutually exclusive and relate to each other as follows:

e An authentication fingerprint supports both sender (origin) authentication and data

integrity;

e A digital signature supports non-repudiation as well as sender authentication and data

integrity;

e Encryption is orthonogal to other cryptographic mechanisms and can be combined with

any of them.

The ways cryptographic-aware MOs are composed are limited by the above relationships.
There are two kinds of composition: a simple composition permits orthogonal MOs to compose
their behaviours seqeuentially. On the other hand, a selective composition allows composition
of mutually exclusive MOs in such a way that when one is turned on, the others are turned off.
When a cryptography-aware MO is asked for recofiguration, it can follow either a conservative
or a non-conservative approach. In the first case, combinations resulting in weaker security
are not allowed. Thus, the meta-configuration can either remain the same or stronger. In
the non-conservative approach, weaker combinations are also allowed. The authors adopted

the conservative approach for meta-level reconfiguration: e.g., a MO for digital signature
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Candidate configuration

Encryption | Auth. checksum | Integrity code | Digital signature
Encryption 1 3 3 3
Auth. checksum 3 1 1 2
Integrity code 3 2 1 2
Digital signature 3 1 1 1

Table 2.1: Summary of rules for reconfiguring security MOs

cannot be replaced by authentication or data integrity MO. Similarly, a data integrity MO
cannot replace an authentication MO. Furthermore, MOs of the same type cannot replace each
other. For example, two MOs for encryption based on different algorithms cannot replace each
other. On the other hand, a single encryption MO can compose with any MO for signature,
authentication or data integrity.

The MO reconfiguration policy can be presented as a table (see Table 2.1).

The numbers in the table indicate composition rules regarding the current and candidate

meta configurations. They are as follows:

1 - the current meta configuration is not replaced;

2 - a selective composition of both current and candidate meta configurations replaces

the current one;

3 - a composition of both current and candidate meta configurations replaces the current

one;
4 - the candidate meta configuration replaces the current one.

Cryptographic services usually address non-functional requirements related to network
communication and persistence requirements, but are orthogonal to these. The tower of MOs
can be as high as the number of non-functional requirements. The decision concerning the
position of cryptography in this tower is not simple. Aspects such as requirements compo-
sition or chaining must be considered very carefully. For example, because cryptography

is orthogonal to persistence and communication, which can, in turn, be positioned at the
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meta-level, cryptography should be accomplished at the meta-level of these; that is at the
meta-meta-level. However, if fault tolerance (replication) is another requirement, it can be
accomplished either above or below encryption.

The a priori negotiation, concerning both usage of and agreement on cryptographic al-
gorithms (e.g., generation, exchange and storage of keys) may or may not be handled at the
meta-level. This decision depends on the degree of control over the cryptographic services
the application programmer intends to have. For example, application programmers may be
interested in the kinds of services are being used at a particular time, maintaining the ability

of turning the communication security on or off.

2.11.1 Evaluation and relevance to this thesis

We could not find information on the implementation of this MOP. However its approach
to composition of (security) MOs has influenced ours: we borrowed the notion of security
concern area and broadened it to cover other areas of non-functional concern. The notion of

exclusivity within a concern area is also drawn from here.

2.12 An Event-based Runtime Metaobject Protocol

Renaud Pawlak’s CNAM internship report [62] introduces a new approach to run-time MO
composition. The framework in this report is based on an event-based run-time Metaobject
Protocol (EB-RT-MOP), which is in turn based on the Open C++ version 2 MOP.

In order to allow automatic MO composition, MOs first need to be classified. The classes

are as follows:

Base-modificators: MOs that change the base-level object;
System-modificators: MOs that send messages to other objects;

Reflectors: MOs that reflect the base-level operation, but they do not change the base-level
object’s state and do not send messages to objects. Reflectors can be pure or conditional

(as described below) or obligatory;
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Pure reflectors: reflector MOs that always reflect the base-level operation;
Conditional reflectors: MOs that may (or may not) reflect the base-level operation;
Obligatory reflectors: reflector MOs that always have to be called;

Exclusive reflectors: reflector MOs that have to be called only if the base object is effec-

tively reflected;
Obligatory conditional reflectors: conditional reflector MOs that always have to be called;

Exclusive conditional reflectors: conditional reflector MOs that have to be called only if

the base object is effectively reflected.

Note that MOs may fall into more than one classes: e.g., a MO may be both base-level and
system-modificator. Ordering of MOs is achieved as follows: base-level or system-modificators
may need manual ordering performed by the meta-level programmer. For example, if two
system-modificators send one message each to the base-object and the messages are not
commutative, then the modificators have to be ordered in the way the programmer wants
them to be. In practice, this is a difficult issue, as the meta-level programmer is not always
aware of the kind of changes performed by all the modificator MOs and he/she may not be
able to say if a modificator has to be called before or after another one. All the modificators
could be regrouped into a family of orderable MOs. The number of obligatory conditional and
exclusive conditional reflectors is fixed as one. Orderable MOs are assumed to be manually
or automatically ordered thanks to an ordering key or an algorithm given by the meta-level
programmer. However, we can assume that non-commutative operations are performed by the
same MO so that modificator MOs do not need to be ordered. In this case, we do not need to
distinguish modificators from reflectors anymore. Thus, the assumption is that modificators
are programmed in a commutative way. Ordered modificators are defined as for future work.
Therefore when discussing the algorithm for ordering M0Os, we only speak about reflectors.

Next step of the classification is the definition of ordering relationships between M0Os. We

define four operators:
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M, ~ M, means that the two MOs are equivalent; their order can be changed in the

MOs list.

M, = M, means that the two MOs are equal; that is, of one is executed then the other

one is executed, and conversely.

M, > M, means that M, must be executed before M; (M, preceeds My in the MOs

list).

M, < M, means that M, must be executed after My (M, suceeds M, in the MOs list).

Operators ~ and = are symmetric, reflexive, and transitive. Operators > and < are
transitive. The MOs attached to a base-level object can be split into the six sub-lists (some

of them may be empty):

e L(r): list of reflectors with n, elements,

e L(or): list of obligatory reflectors with n,, elements,

L(er): list of exclusive reflectors with n, elements,

L(cr): list of conditional reflectors with n., elements,

L(ocr): list of obligatory conditional reflectors with n,., elements,

L(ecr): list of exclusive conditional reflectors with n.., elements.

The ordering relations between MOs of the same class can be written as:

Yi(i, §) € [1; m.J? vy oy

» X0, q) € nel® - on '~ ory

v (ia J) = [1:, ne'r]2 D er; ~ erj
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The two last cases are special. Because obligatory conditional reflectors must always be
executed, they are related by the = relation. However, if one of their conditions is evaluated
to be false, they break the chain: i.e., the following obligatory conditional reflection will
not be called (because the base-level will not be reflected). Thus, the only possibility to
respect obligatory conditional reflector properties is to fix their number to one. For exclusive
conditional reflectors, it is quite the same problem, therefore there is only one MOs of this
class allowed.

The final step in the classification algorithm is the ordering relations of MOs between any
elements of the above sub-lists (inter-class relation). Because of the transitive property of
the > relation, we can write:

VI ke ) Se S men] it in e 1] Sn e Rocil < i e
or; > r; > 0Cr; > Crg > €Cr; > er

This ordering relation between any kind of reflector allows automatic ordering of MOs, thus

when a new MO is added to the list, its position in the list can automatically be determined.

2.12.1 Evaluation and relevance to this thesis

The implementation of EB-RT-MOP is based on Open C++ version 2, see section 2.3. We find
the analysis and classification of different types of MOs important in designing a composition
mechanism. The limitation of this MOP is that the number of obligatory conditional reflectors
and exclusive conditional reflectors allowed in a MO set is limited to one.

The classification of reflectors (M0Os) has influenced the design of the IGUANA version 3 MOP

descriptors.

2.13 APERTOS: a reflective operating system with metaspaces

APERTOS [80, 79, 43, 73] is an object-oriented, reflective operating system developed at Sony’s
Computer Science Laboratory. The most significant contribution of APERTOS is its use of

metaspaces. A metaspace is a collection of MOs that provide the execution environment
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for a base-level object. MOs can describe features such as virtual memory management,
communication, disk management, fault handling, and other typical functionality that can
be found in operating systems.

Metaspaces exist in a hierarchy called a meta-hierarchy. Lower level metaspaces support
the execution of higher-level ones. Metaspaces with alternative implementations and inter-
faces can freely co-exist in order to facilitate dynamic adaptation. For a base-level object to
use an alternative metaspace, it has to migrate from the current metaspace to the new one.

The APERTOS MetaCore MO is at the bottom of the meta-hierarchy and can be considered
as a micro-kernel (it has no metaspace). MetaCore offers the basic execution environment,
upon which metaspaces can be built.

APERTOS allows an object to migrate between more than one version of an operating
system feature (implemented as a metaspace). During an object’s migration, a series of com-
patibility tests are performed. APERTOS does not allow the instantiation of new metaspaces
with different features at run-time. New metaspaces can only be created at design-time and

then need to be compiled.

2.13.1 Evaluation and relevance to this thesis

Apertos is a reflective operating system composed of a hierarchy of metaspaces. It is influen-
tial because it shows how a micro-kernel based operating system can be built using multiple

meta-levels.

2.14 Rewriting semantics of metaobject and composable dis-

tributed services

In distributed systems and communications software, there is great interest in modular and
dynamically composable approaches. According to [18], “services such as security and fault
tolerance and services intended for boosting performance should be installed dynamically and
selectively at run-time in those areas or domains of the distributed system where they are

needed.” Aspect weaving (see Section 2.17) is one mechanism that could be used to deal with
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this problem. The onion-skin, actor-based reflection [1] is another model.

Several of these approaches use reflection to achieve modularity and adaptability. But
all of these approaches recognise that the goal of achieving truly modular and composable
distributed systems, and ensuring good properties in compositions of such services is quite
subtle. According to this paper, no satisfactory formal semantics of what is meant by com-
posable distributed services has not yet been given, nor have the reflective aspects of such
compositions been adequately formalised.

This paper proposes a semantics-based approach to make precise the reflective concept
of composable service in a distributed system, and to reason about the properties of service
compositions. This approach is based on the executable formal semantics for distributed
object-oriented systems provided by rewriting logic and explicitly addresses the reflective

properties that are essential for having a truly modular notion of service.

2.14.1 Evaluation and relevance to this thesis

This work represents one of the first approaches to apply formal methods to the use of

reflection in composable distributed services.

2.15 FRIENDS: a Metaobject Architecture for Fault-Tolerant

Distributed Systems

In FRIENDS® [35], MOs are used recursively to add new properties to distributed dependable
applications. FRIENDS takes a multi meta-level approach in contrast to previous work [34]
with a single meta-level.

On the actual implementation of fault-tolerant services, the paper notes: “MOPs are not
the panacea and it is not claimed that they can be used on their own to build dependable
services. Several basic services must be implemented at the system level (e.g., group com-
munication, error detection, atomic multicast protocols, authentication and authorisation

servers).”

3FRIENDS stands for Flexible and Reusable Implementation Environment for the Next Dependable System.
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The FRIENDS architecture consists of kernel, system, and user layers. The system layer
builds upon the (micro)kernel services and provides applications and MOs with the following
services: security, group communication, and fault-tolerance.

The following three subsystems (middleware) comprise the system layer.

Fault-Tolerant Subsystem: implements error detection, failure suspectors, configuration,

and replication domains management facilities, as well as stable storage support.

Secure Communication Subsystem: contains authentication, authorisation, directory,

and audit servers.

Group Distribution Subsystem: provides group management and atomic multicast com-

munication services.

FRIENDS uses the Open C++ version 1 MOP for its implementation. A base-level appli-
cation object is bound to a MO for fault-tolerance, which is bound to a MO for security, which
is in turn bound to a MO for group communication. The position of these MOs is fixed: the
MO for group communication is always the last in the “protocol” stack. Depending on the
actual application requirements, the first two MOs can be left out.

The application object and MOs together form a run-time object. The interaction between
the application object and the MO is done through the MOP. FRIENDS uses a proxy server
model for distribution and replication.

FRIENDS defines a hierarchy of MO classes. The Fault-Tolerance (FT) M0s library provides
MO classes for various fault-tolerance strategies (based on stable storage and/or replication)
with respect to physical faults, considering fail-silent nodes. Fail-silent means that errors are
detected and dealt with by the underlying operating system. The Secure Communication
MO library provides MO classes for secure communication protocols, including encryption and
authentication. The Group-based Distribution MO library provide MO classes for handling

remote object interaction, which can be implemented with groups.

2.15.1 Evaluation and relevance to this thesis

FRIENDS is a meta-level architecture providing libraries of MOs for fault-tolerance, secure
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communication for group-based distributed application. It uses Open C++ version 1 MOP,
see section 2.3. As such, it provides a reflective language-based solution to address these
non-functional concerns.

FRIENDS has greatly influenced the design of IGUANA version 3 thus they have many

things in common:
e Proxy model for remote communication.
e MOs form a stack (although FRIENDS use different MOPs for proxy and server).

e Last MO is the one for group communication (e.g., the “remote” invocation MO in

IGUANA).

e Subsystems for providing security, fault-tolerance, and group distribution service (IGUANA

middleware components).

e Both FRIENDS and IGUANA are a language-based solution: the base-level programmer

writes simple C++ classes and selects the required MO set (MOP set in IGUANA) for them.

e MOs are chained (multiple meta-levels in FRIENDS, while one meta-level in IGUANA

version 3).

FRIENDS has recognised the importance of ordering the MOs: changing the order of MOs in
the stack can lead to different application properties. The limitations of FRIENDS are mainly

coming from that of Open C++ version 1:
1. The links between application objects and MOs are created at compilation time.
2. No support for application class inheritance.
3. No direct manipulation of the application object from the higher meta-levels.

Although FRIENDS defines a hierarchy of fault-tolerant and security MO classes, it does not

address dynamic composition: it is only mentioned as part of current/future work.
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2.16 Automatic Composition of Systems from Components

A mechanism has been proposed in [68], which can compose a system from components with
anonymous dependencies: i.e., a component, which provides certain services, depends on
other services in turn provided by some other components. Each software component has a
descriptor with semantic-unaware properties. Clients use an application domain independent
formalism for describing their configuration requests in terms of desired properties.

The composition algorithm has two phases: the optional first phase processes the appli-
cation domain-specific requirements, which results in the translation of them into semantic-
unaware domain independent properties. The second phase carries out the domain indepen-
dent composition.

Current work on composition considers composing an application as a layered architecture:
each layer encapsulates a primitive domain/feature. In this model, each layer is a component,
that provides a specific set of services, which can be used by other layers on top of it.
The composition process, which is intrinsically architecture-independent, expoits the layer
property of incremental enchancement of services. If the current layer does not provide
enough functionality for a given application, the service may be enhanced step-by-step by
adding other layers.

Components have two ports, UP and DOWN. A component descriptor includes the fol-

lowing information:

list of provided properties (property is a unique name so it ensures application domain

independence);

list of required properties (unique names) on the UP port;

list of required properties (unique names) on the DOWN port;

e list of roles (optional).

Downward requirements are defined as the requirements imposed by a component on its

DOWN port towards components that are in layers below. Similarly, upward requirements
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are defined as the requirements imposed by a component on its UP port towards components
above it.

Requirements can be specified as weak or strong in terms of their strictness. A strong
requirement must be fulfilled in order to yield a correct composition. A weak requirement
should only not be contradicted by the composition solution. For example, if component C
states property p as a weak upward requirement, then it is not allowed to have p provided
by a component below C, but it is not necessary to have p provided by a component above
C. A concrete example from the networking world would be a component that implements
the Internet Protocol (IP), which may have a weak upward requirement called “transport”.
This means that there might be a transport layer in the protocol stack, but if it exists it has
to be provided by a component above IP. Specifying immediate requirements is also possible,
meaning that those requirements apply only to the adjacent layers, i.e., directly above or
below.

The components may be complex building blocks that can have different functionality,
depending on the context of their usage. In order to handle this situation, a component can
be defined as being in a set of roles. Each role groups a list of related provided properties
that impose its requirements towards the environment. At any time, a component may play
a different role according to the context of its usage. There is one basic role for a component,
while there can be a number of alternative roles. Only one alternative role can be active at
a time. The component descriptors are stored in a component repository.

The composition algorithm tries to find a correct composition of components that fulfills
a set of requirements. Essentially, the algorithm performs a top-down search by matching the
requested properties with the provided ones. The match is only between current active roles
of components: i.e., requirements in non-active roles are ignored. The compostion algorithm
produces solutions as sequences of component descriptions. Assuming a set of client-specific
configuration requirements R=R;, Rs, ..., R, a succession of components C;, Cs, ..., Cn

(C) is in the top, Cy is in the bottom layer) represents a good composition, if:

1. All requirements R; (1<=i<=r) are met, being present in the union of the provided

properties list of all components C; in the sequence (1<=j<= N);
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2. Each component C; has its own downward requirements list DR; accomplished by some

components C; below it (i<j and j<=N);
J

3. Each component C; has its own upward requirements list UR; accomplished by some

components C; above it (i>j and j>=1);
4. Additional imposed ordering restrictions are met;

5. There are no contradictions with respect to weak requirements.

The composition algerithm uses a propagation of requirements during its search: it dele-
gates the responsibility for providing certain requirements posed on a component to other

components.

2.16.1 Evaluation and relevance to this thesis

The composition algorithm reviewed in this section represents a generic non-reflective ap-
proach to combining components with dependencies on each other. The notions of strong,
weak, and immediate UP and DOWN requirements are present in the MOP descriptors of

IGUANA version 3.

2.17 Aspect-Oriented Programming and Reflection

Aspect-oriented programming (AOP) [40, 39, 17] consists of a component language to program
functionality and one or more aspect languages to code concerns, and an aspect weaver, which
combines them and generates the final code. Programs are separately built using different
languages. AOP allows non-orthogonal composition (i.e., having overlapping concerns) and
delegates the resolution of conflicts to the aspect weaver.

AOP can use reflection for aspect weaving [71]. On the other hand, reflection “meshes well
with AOP in two main areas: first, reflective techniques appear amongst the most promising
to build aspect weavers that would be both general and extensible. Second, AOP appears

as a promising structuring tool for reflection as more and more aspects come into play in
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reflective descriptions of complex, distributed systems and programming languages.” - from
[48].

AspectS [32] for example, provides an environment to allow for experimental AOP. It
is based on Squeak/SMALLTALK and draws on AspectJ [38] and MethodWrappers [6]. As-
pectS supports coordinated meta-level programming, addressing the “tangled code” [40] phe-
nomenon by providing aspect-related modules. AspectS is realised without changing either
the syntax or the virtual machine of SMALLTALK: it uses MO composition instead of code
transformation. Aspects?, implemented as regular classes in AspectS, are units of modularity
that represent implementations of crosscutting concerns. Aspects associate code fragments
with join points by the use of advice objects. These code fragments are executed whenever a
join point is encountered. As a fundamental concept in SMALLTALK is message sending, an
aspect in AspectS may refer to a set of receivers, senders or sender classes. These objects are
added or removed by the client code and used by the woven/composed code at run-time.

Join points are well-defined points in the execution of the code. Join point descriptors
in AspectS name a target class and a target selector, which is then used by the weaving
process to apply computational changes to the base system. Join points of a pointcut can be
enumerated statically, or collected at run-time by queries.

Advice objects associate code fragments (blocks) with pointcuts and their respective join
points descriptors that describe targets for the weaving process to place these fragments into
the system. An advice has to be qualified to state whether the woven/composed code will be
receiver or sender, or class or instance aware. Call flow semantics can also be specified.

AspectS allows the execution of the following kinds of crosscutting concerns:
e before and after the execution of a method invocation;

e around method invocations (put in front of the actual compiled method);
e handle signalled exceptions (around a message send);

It is also possible to introduce new behaviour to the target clients.

“The AOP terminology used in this section is the one used by AspectS, not by the wider AOP community.
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AspectS employs a run-time weaver process to transform the base system according to
the aspects involved. The woven code is based on method wrappers and meta-programming.
Method wrappers allow the introduction of code that is executed before, after, or instead
(around) of an existing method. Method wrappers change the objects that the standard
method lookup process in SMALLTALK returns. A method wrapper replaces an entry in the
method dictionary of the class, adds behaviour to the method invocation, and eventually
invokes the wrapped method itself. AspectS coordinates the placement of block method
wrappers into method dictionaries of the receiver classes stated in various join points advised
by the aspect. The weaving process runs every time an aspect instance is installed. An
aspect can be installed by sending an install message to the aspect object. Similarly, an
aspect can be uninstalled by sending an uninstall message to the corresponding aspect object.
Thus, weaving and unweaving is completely dynamic in AspectS. Method wrappers are placed
around a compiled method in such a way that their activation will happen in the following

order ° (considering the kinds of wrappers and the hierarchy of their originating aspects):
e Around advice/wrappers (most specific first);
e Before parts of before-after advice/wrappers (most specific first);
e Handler advice/wrappers (most specific first);
e Compiled base method;
e Handler advice/wrappers (least specific first);
o After parts of before-after advice/wrappers (least specific first);
e Around advice/wrappers (least specific first).

It is important to note that weaving/unweaving process runs only once, not during actual
message sends. An advice is more specific than another if it is defined in an aspect that is
more specific than the aspect the other advice defined in. If two advices are either defined
in the same aspect, or if their aspects are not related directly or indirectly though class

inheritance relationship, the specificity between them is undefined.

®This is similar to the effective method lookup in CLOS
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2.17.1 Evaluation and relevance to this thesis

AOP presents a solution to the problem of dealing with cross-cutting non-functional concerns.
We selected AspectS as a representative of AOP because it uses run-time dynamic weaving
process based on Squeak/SMALLTALK.

However the paper does not specify how unrelated (in terms of aspect class inheritance)
advices are woven. Thus, it does not deal with the composition of semantically overlapping

aspects.

2.18 Reflective middleware

Fault-tolerant (FT) CORBA [41] is a specialised run-time MOP using compile-time reflection
(Open C++ version 2). It provides a mean to dynamically attach fault-tolerance strategies to
CORBA objects.

OpenCorba [44, 45] is a reflective open Object Request Broker (ORB), which enables
users to adapt dynamically the representation and execution policies of the software bus.
Reflection allows the extension of the initial OMG CORBA model with libraries of MOPs
customising mechanisms of distributed programming. Thus, it is possible to introduce in a
transparent way new semantics on the initial model such as concurrency, replication, security,
etc., including semantics currently not thought of. OpenCorba’s implementation is based
on NeoClasstalk, which is in turn a result of applying a MOP to the Smalltalk language.
NeoClasstalk presents an efficient solution for handling message sending and receiving as well
as a way of achieving dynamic behaviour of a class.

[61] summarises the research being done in the University of Lancaster on a reflective
component-based middleware, called OpenORB [3, 13, 4]. It uses OpenCOM, a component
technology that is closely based on Microsoft’s COM, but it is enhanced with richer reflective
facilities. OpenCOM avoids dependencies on features of COM such as distribution, persis-
tence, security, and transactions. OpenCOM is applied to both the application level and the
middleware infrastructure. In order to address the need for adaptability, the middleware is

reflective such that it helps facilitate and manage run-time changes in component configu-
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rations. It incorporates structures representing aspects of the middleware itself and offers
meta-interfaces for inspecting and adapting these reified aspects. Provides as well as requires
relationships between OpenCOM components are made explicit. The IReceptacles interface
is defined, through which required interface references can be passed, so that connections can
be established by a third component. Each OpenCOM component has an IMetaEncapsula-
tion interface providing meta-information about the interface types. This meta-information
1s used to support dynamic invocation of arbitrary interfaces. OpenCOM also supports in-
terception at specified interfaces. In particular, components implementing IMetaEnvironment
interface enable dynamic attachment/detachment of interceptors, that insert wrapping be-
haviour around method invocation.

The authors had found that designing these meta-interfaces was not easy. The approach,
in which components of the middleware configuration would be represented as a graph, and
manipulation of the graph would result in the reconfiguration of the middleware simply
would not be robust enough. Instead, they proposed the use of Component Frameworks
(CF), where a CF is a collection of rules and contracts that govern the interaction of a set
of components. CFs typically address a specific and focused problem domain (e.g., buffer
management, binding establishment), and thus many CFs may need to be integrated in a
component system. While CFs are design-level entities, they also have an explicit run-time
representation, called Component Framework Representative (CFR). Meta-interfaces exposed
by the different CFs are typically implemented by CFRs, which maintain information about
the current configuration and apply it to perform inspection and adaptation.

The CFs in the proposed architecture are organised in three layers, wherein components

are only aware of interfaces/CF's defined at layers below themselves. The three layers are:

Binding layer: This layer contains a binding CF, which defines a set of interfaces, rules,
and semantics that govern the collaboration between to-be-bound components, binder
components, and the CFR itself. Binder components are responsible for marshalling and
unmarshalling interface references, and producing the required proxy/stub/protocols

infrastructure.

Communication layer: This layer contains components/CFs that are used by binders to
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establish required communication paths. Minimally, it contains the protocol CF, which
defines an architecture for dynamically composing and reconfiguring protocol stacks
using lightweight protocols. The communication layer may contain additional CFs

depending on the needs of the binding layer.

Resource layer: This layer contains a collection of components/CFs that provide a uniform
application programming interface for using and controlling low-level resources. This
layer minimally contains the buffer management CF and the transport management
CF. The associated CFRs provide base interfaces for buffer allocation and operating
system-level transport services, respectively. An optional thread management CF can

handle user-level threads.

COM+, Enterprise JavaBeans, and CORBA Components all support similar container-
based models for building distributed applications. The significance of these architectures lies
in that they achieve a separation of concerns between the functional aspects of the application
and the non-functional aspects that are managed by the container (distribution, concurrency,
and transactions). The drawback is that the configurability of the non-functional aspects is
severely limited. The implementation of the container services is hidden and out of control

of the application developer.

2.18.1 Evaluation and relevance to this thesis

We reviewed representatives of reflective middleware solutions. We believe that IGUANA

version 3 is a strong candidate to be used for building reflective middleware.

2.19 Summary

This chapter described the related work on reflective programming languages and meta-level
architectures, as well as it reviewed various non-reflective approaches to automatic and/or
dynamic composition. We evaluated the reflective solutions according to a common set of
criteria and stated how is IGUANA version 3 related to all of the reviewed reflective and

non-reflective systems.
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Chapter 3

The IcuANA Model for Automatic

and Dynamic MOP Composition

“Only through hard work and perseverance can one truly suffer.” - source unknown

3.1 Iatroduction

This chapter presents the design of our reflective programming model, which provides a solu-
tion to the problem of automatic and dynamic MOP composition in a compiled programming
language.

Instead of defining a radically new reflective model for implementing automatic and dy-
namic MOP composition, the IGUANA version 3 model evolves the previous two IGUANA
models, versions 1 and 2. In IGUANA version 3, multiple, independently-developed MOPs can
be dynamically combined at run-time in order to provide reflective objects in a base-level ap-
plication with a composed (non-default) behaviour, provided that the MOPs were developed
according to the design rules (methodology) for composability, that we define shortly.

The motivation for IGUANA version 3 and a description of the previous two versions

together with their shortcomings can be found in section 1.5, and section 2.7, respectively.
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3.2 The Overall Approach

One objective for the design of the new IGUANA model was to come up with answers to
questions that had arisen when we attempted to combine our Persistent [31, 65] and Remote

MOP implementations, written in IGUANA/C++ version 2 (see section 2.7.2):

1. What if we do not want to “export” (i.e., to make them remotely accessible) certain

objects but still want to avail of object persistence for them?
2. What if we want to turn a persistent object into remote one on the fly? And then back?
3. What if we decide to make a selection of remote objects persistent but not all of them?

4. What if we want to miz in other MOPs that are known to be composable with Persistent

and Remote, for example, Synchronised?

5. What if we want to select other MOPs whose names are not known at compilation time?

IGUANA version 2 can answer some of these sample questions, but through its single MOP
selection policy it implies that the meta-level programmer has to write a new MOP for every
possible MOP combination, such as Persistent, Remote, PersistentRemote, PersistentSynchro-
nised, PersistentRemoteSynchronised, and so on. In case of a large number of MOPs, this might
lead to an explosion of MOPs; one for each possible combination. Thus, the IGUANA version
2 solution presents a static, design-time solution to combine MOPs. For system-level applica-
tions that must be capable of dynamically adapting to the changes in the environment, we
really need a dynamic solution, which can compose MOs of a set of independently-developed
but composable MOPs at run-time, when the actual content of the MOP set becomes known.

To answer the questions listed above, the new IGUANA model reintroduces’ the ability
to select multiple MOPs and it adds a mechanism that can automatically compose the MOs
of the MOPs at run-time, whenever it is possible. The set of MOPs currently selected (which

defines the current MOP set) can also be changed at run-time as MOPs can be selected and

'IGUANA version 1 had this feature, but version 2 opted for single MOP selection as a means of providing
meta-typing.
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deselected. Of course, certain conditions regarding what MOPs can dynamically be selected
or deselected need to be identified at design-time and enforced (monitored) at run-time.

In order to develop a composable MOP, the MOP designer (i.e., the meta-level programmer)
has to follow the design rules (methodology) that we outline in section 3.4.1. The MOP de-
signer needs to position the new MOP in the global and extensible hierarchy of non-functional
concerns, and he/she needs to know the set of middleware components the MO classes of the
MOP use. Knowledge of design and implementation details (e.g., the MO classes and their
inheritance relationships) of other MOPs are also required, but only in cases when the new
MOP extends or derives from them.

We have adopted a working method, suggested in [53], to solve the general MOP composition

problem:

1. Show simple example MOPs and their desired/meaningful combination(s). (See section

4 for details).
2. Propose a new composition model that works with the examples.
3. Study the inherent constraints of the model.
4. Elaborate a methodology for using it.

In summary, we take the following approach to constructing an algorithm for automatic
and dynamic MOP composition: behavioural MOs that comprise a MOP are semantically de-
scribed in MOP descriptor documents, that are available at run-time. The MOP descriptor
document characterises the before and after meta-computations (e.g., what happens in the
invoke method of an Invocation MO, or in the send method of a Send M0O) for MOs that comprise
a MOP.

The new Composer reification category is used to reify the composition itself: we define
a new abstract metaobject class Composer, which defines the interface for MOP composi-
tion. Any concrete Composer metaobject class has to derive from the Composer class, and
implement the methods defined for MOP composition.

We define an automatic MOP composition algorithm (see section 3.4.7), which we imple-

ment in the DefaultComposer class. If the application programmer decides to use the default,
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automatic composition, then an instance of the DefaultComposer class is created at run-time,
when the application starts up. As part of the start-up code for an IGUANA application, this
metaobject reads the MOP descriptor files of the MOPs that are present in the MOP sets of
reflective classes, and makes decisions on how to combine the behavioural MOs of a particular
MOP set. Upon changes to the MOP set for reflective (base-level) instances or classes, this
metaobject may read additional MOP descriptor files, re-run the composition algorithm, and
recompose the MOs. Unlike previous versions of IGUANA, the IGUANA version 3 run-time
can also load compiled MO class code (from a shared library specified in the MOP descriptor
file) dynamically by using the dynamic linking interface. MOP descriptors are written in the
eXtensible Markup Language (XML) by a meta-level programmer, who is either the author
of the MOP code or has reasonable knowledge about the MOP implementation details.

Automatic composition of metaobjects may not always be possible. In this case the model
also allows manual composition by supporting the use of purpose-built Composer metaobjects,
which can be used to replace the default, automatic composer. Composer metaobjects can
dynamically be added at run-time to the meta-level configuration of reflective objects in order
to switch metaobject composition from automatic to manual. They can also be replaced at
run-time.

Behavioural MOs within the same reification category are organised into a list and invoked
in a sequence (this is the chain of responsibility model, as described in section 1.2). In most
of the practical MOP implementations, behavioural metaobjects are inherently linked to pro-
prietary or standard middleware components that implement the non-functional behaviours,
e.g., they provide a persistent object store, a name service, or a reference manager. The MOP
descriptors have a section that specifies the links between the MOPs and the middleware com-
ponents they use. This information is then used at run-time to (re)configure the middleware.
Semantic interference between MOPs is detected when MOPs in the MOP set use common sets

of middleware components.

3.3 Assumptions

The following assumptions were made, when we designed the new IGUANA model:
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1. Component-based middleware The middleware, which is used by MOPs to imple-
ment their particular functionality (e.g., object distribution, transaction monitoring),
is component-based. This means that the middleware is either componentised or con-
structed from components; each component has a well-defined software interface. We
used our proprietary component-based middleware for this work. Part of our middle-
ware is based on the Tigger Generic Run-time (GRT) framework [7] for distributed
object services. Design of an extensive IGUANA MOP suite and the outline of the sup-

porting middleware can be found in Chapter 4.

2. Design rules for composable MOPs The meta-level programmer adheres to the rules
governing the design of new MOPs and their MOs; i.e., he/she writes a new MOP ac-
cording to the programming methodology outlined in section 3.4.1, which can ensure
composability with existing and future MOPs. For example, the source code of compos-
able MO classes of a MOP shall not refer explicitly to MOs of other MOPs. Instead, the
generic next reference should be used when referring to the next MO in the chain of MOs

within a particular reification category.

3. Accurate MOP descriptors The meta-level programmer also writes accurate descriptors
for his/her MOPs that will be used by the composition algorithm described below. The

definition of the MOP descriptor files can be found in section 3.4.6.

4. Seamlessly combining Extension Protocols IGUANA eztension protocols, which pro-
vide base-level programmers with an application programming interface (API) to work
with the functionality provided by MOPs, are expected to compose seamlessly: i.e., al-
though the extension protocols may not be orthogonal, they complement each other and
do not clash. Although this might be a strong assumption, we have made it in order to
simplify the problem, and to allow us to focus our attention on the MOP composition.
As an illustrutation to this issue, both Persistent and Remote extension protocols offer
a Name Service interface, in which names can be recorded/looked up for persistent and
remote objects, respectively. For persistent and remote objects, the base-level program-

mer should use one single extension protocol (implemented by the lguana class in our
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implementation), that unifies the two extension protocols for working with persistent

and/or remote reflective objects.

5. Proxy objects in remote clients MOPs related to object distribution (e.g., Remote,
Encryption, Authentication) use proxy objects in the client’s address space to represent
remote servers. Proxy objects interact with the server object over a communication
network. We provide two concrete MOPs, RemoteProxy and Remote for proxy and
server objects to select, but the meta-level programmer is free to provide his/her own
implementation. Both of our MOPs use the same set of MO classes, but have different
MOP descriptors to indicate to the Composer the proxy/server role they play in the
implementing remote communication. One has to notice that in order for the proxy
and server objects to communicate succesfully, the Composer has to build a “symmetric”

stack of MOs between the two sides.

Naturally, there are other MOPs, whose functionality is not related to object distribution.

We call them “local” MOPs.

6. One single meta-level The meta-level of an object consists of one single layer only,
in order to limit complexity. However, more than one MOP can be part of the single
meta-level. This model is different from the usual “meta-tower” [75, 50, 74, 49] or
“onion-skin” [1] model of reflection, where meta-layers can be built on top of other

meta-layers.

Whether an IGUANA MO class can select a MOP 1is an interesting question that is for

further study.

7. Composition of middleware components is out of focus A similar composition al-
gorithm could be designed to compose middleware components, however it is out of
scope for this thesis. Research has been done on component-oriented middleware and

architectural reflection, refer to [5, 14, 61].
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3.4 Description of IGUANA version 3

This section describes the design of the IGUANA version 3 reflective programming model in

detail and shows examples of how the base-level and meta-level programmer can use it.

8

Middleware components

Interface 20 iR i/ P AR e e bty - e A oy Meta—level programmer

Meta-level cl\ Ses

Interface 1 T e Y B O s e L el

Exténsion
Pyotocols

Base—level programmer

Base-level classes

Fig. 3.1: The new IGUANA model with three layers (repeated)

The main features of the new IGUANA model can be summarised as:

Three-layer architecture with an explicit middleware layer The IGUANA version 2
model provides only a single meta-level 2, i.e., there are no meta-towers in IGUANA/C++.
Although the new IGUANA model retains this restriction, it also adds an explicit mid-
dleware layer and an interface to interact with it from the base- and meta-levels. MOPs
specify links to components of the middleware in order to identify semantic overlap
between their metaobjects. The interface to the middleware layer is used to initiate

reconfiguration of the middleware components. The new IGUANA architecture can be

“This was an implementation restriction only.
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seen in Figure 3.1.

New reification categories Although the 29 reification categories of IGUANA version 1
were certainly an “overkill” [62] for the meta-level programmer, the reification cate-
gory list of 12 (Class, Method, Attribute, Creation, Deletion, Send, Receive, Invocation,
StateRead, StateWrite, Constructor, and Array) in IGUANA version 2 needed to be ex-
panded. We have added two new reification categories to the model: ObjectReference

and Composer.

The new ObjectReference is a structural metaobject class which reifies language point-
ers. This allows a MOP programmer to augment volatile language references to objects
with more complex MOP-specific references that store additional referential informa-
tion on reflective objects. For example, PersistentObjectReference used in our Persistent
implementation contains a class identifier, an object number®, and an offset value for
embedded persistent objects. Thus, PersistentObjectReference can uniquely identify a
persistent object regardless of its current location; i.e., whether it is in memory or in
the user’s Persistent Objects Store (POS). ObjectReference MOs are the only local (i.e.,
per-object) metaobjects; all the other MOs are shared between reflective instances of a
class. Typically, MOs in the Creation and Deletion reification categories are responsible
for creating and deleting ObjectReference MOs, respectively. In case of multiple MOP
selection, where a number of MOPs reify ObjectReference, the base-level reflective ob-
ject can have multiple ObjectReference MOs attached to it. The IGUANA run-time (the
Composer MO more precisely) automatically adds or removes ObjectReference MOs when

MOP selection or deselection happens, respectively.

The new Composer reification category reifies a meta-level concept: MOP composition
itself. It is interesting to note that the other reification categories reify base-level
concepts. Composer metaobjects allow the programmer to intercede in and control
the MOP selection or deselection operation. Custom Composer MOs can be used to
replace the default, automatic metaobject composition mechanism, implemented by

the DefaultComposer class.

3A sequence number generated by the Persistent Objects Store.
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Description (classification) of behavioural metaobject classes The behavioural MOs
(i.e., Send, Receive, Invocation, Creation, Deletion, StateRead, and StateWrite) have been
refined with the ability to describe what they do in their “before” and “after” meta-
computation. A particular “before” meta-computation might cause a problem with
the composition, for example, it may not call the next metaobject in the chain. Such
conditional metaobjects are difficult to compose, because they can break the chain of

responsibility model for composition, which is used in this work.

MOP selection The new model allows the programmer to select multiple composable MOPs
for base-level classes and instances. See section 3.4.1 for guidelines on writing compos-

able MOPs. For example, the following code excerpt shows class MOP selection:

class A ==> Remote, Persistent {...};

This code defines the initial MOP set for reflective class A and results in instances of class
A having the combination of Remote and Persistent MOPs selected. These MOPs have
been defined as composable and their constituent MOs can be composed automatically.

The names of the MOPs are known at compilation time.

The multiple MOP selection syntax in this example is identical to that of the IGUANA ver-
sion 1 model. Similarly to the previous IGUANA versions, programmers can select new
protocol(s) for instances of reflective classes. This is called instance protocol selection.

Section 3.4.3 gives more examples of default, class, and instance protocol selection.

Dynamic MOP selection The MOP set for a reflective class or instance can be enhanced at

run-time by selecting additional MOPs. For example, the following code excerpt:

Ax a= new A() ==> ++0OptimisticSync;

adds OptimisticSync MOP (which implements optimistic concurrency control) to the MOP

set of a new instance of class A, which already contained MOPs Remote and Persistent.
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Dynamic MOP deselection Previously selected (default, instance, or class) MOPs can also
be deselected. Attempting to deselect a MOP that has not been selected will result in a
null operation (i.e., there will be no exception raised). The MOP deselection syntax is

identical to that of IGUANA version 1. For example, the following code excerpt:

B* b ==> --Logging;

deselects the previously selected Logging MOP for a heap-allocated instance b of class
B, previously created.

\
/

Structural

Behavioral

ID="CA1"

Typelnfo e

Default Persistence Remote Logging Security Synchronisation (14
ID="CA2" ID="CA3" ID="CA4" ID="CAS5" ID="CA8" ID="CA9"
Uiy I = T L e Rl e IR R e WRLAI o LA E e ML)
Default Persistent Remote Logging OptimisticSync Replication
Pergistent2 RemoteProxy ) LockingSync ReplicationProxy
Persistent2Absent \
Authentication Encryption
ID="CA6" ID="CA7"
Authentication Encryption

Fig. 3.2: The hierarchy of non-functional concerns grouped into areas

MOP descriptors The automatic composition, which is implemented by the default Default-

Composer metaobject, is guided by the MOP descriptors. MOP descriptors are written
in XML, and explained in Section 3.4.6.

Non-functional concern hierarchy We place our MOPs implementing common non-functional

concerns in a hierarchy, see Figure 3.2. Placing any new MOP in this extensible structure
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is part of the methodology for writing composable MOPs. Figure 3.2 shows the position
of the MopPs from Chapter 4. For example, both OptimisticSync and LockingSync are
in the Synchronisation concern area, which is underneath the Behavioural concern area,
which is in turn underneath the root of the hierarchy. The hierarchy is extensible, i.e.,

new child concern areas can be added for new MOPs as needed.

3.4.1 Methodology for designing composable MOPs

This section describes the basic composition framework and design rules, which have to be
followed in order to write composable MOPs.

MOPs are implemented by a set of related MO classes and possibly other auxiliary (helper)
classes. Each MO class represents one of the 14 IGUANA reification categories. The MO classes
can be divided into two groups: structural and behavioural. The structural MO classes are

as follows:

e MClass maintains information on a base-level class such as its name, super-classes (if any),

size, virtual function table, attributes, constructor(s), and other methods.

MAttribute maintains information on an attribute of a base-level object such as the name,

type, address, size, “staticness”, and accessibility (i.e., public, protected or private).

MMethod maintains information on the name, signature, return type, address, “staticness”,

and accessibility of a method.

MConstructor maintains information on the signature, address, and accessibility of a con-

structor. Unlike IGUANA version 2, we support non-default constructors.

MArray maintains information on the type and size of elements, size, and address of an

array.

MObjectReference this class forms the basis, on which MOP-specific per-object referential
information can be maintained in subclasses. MObjectReference instances provide an
extensible object header, in which referential information is stored. Instances of the

MObjectReference class hold a pointer back to the reflective base-level object as well as
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the name of the related MOP. Reflective objects can have zero or many MObjectReference
MOs associated with them. The Composer metaobjects are responsible for inserting or
removing object references, created by the relevant Creation MOs, when a MOP is added
or removed, respectively. For example, a base-level object that selected both Persistent
and Remote MOPs, will have two object references, namely PersistentObjectReference

and RemoteObjectReference.

The behavioural MO classes are all abstract classes that are used to provide an interface
through which concrete subclasses can define how the operation should be performed at the
base-level. As our focus is the automatic and dynamic composition of the behavioural MOs at
run-time, each MO class has a pointer (next) to the next MO of the same reification category.
Composer metaobjects are responsible for combining MOs in each behavioural reification cat-
egory and setting their next pointers accordingly. The following behavioural MO classes can

be used by MOP designers:

e MCreation: concrete subclasses can define the way an instance of a reflective class is created.
e MDeletion: concrete subclasses can define how a reflective object is deleted.

e Minvocation: concrete subclasses can define how methods on a reflective object are invoked.
e MStateRead: concrete subclasses can define how attributes of a reflecive object are read.
e MStateWrite: concrete subclasses can define how attributes of a reflective object are written.

e MSend: concrete subsclasses can define how method invocation on an object (which is not

necessarily reflective) is initiated from within a method of a reflective class.

o MReceive: concrete subclasses can define the way an incoming method invocation is dis-

patched to the right method (interesting for virtual methods).

e MComposer: concrete subclasses can define the way MOPs are composed. We provide a
default implementation (i.e., the DefaultComposer MO class), which supports automatic

and dynamic MOP composition.
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Chapter 4 shows the design of an IGUANA MOP suite and illustrates how these MO classes
can be used to implement common non-functional concerns.
The automatic and dynamic MOP composition works only if the meta-level programmer

who implements a new MOP adheres to the following design rules:

MOP XML descriptor: this document should faithfully reflect the design of the MOP and
its MO classes. For example, the MOP designer must describe the composition charac-
teristics of each behavioural MO class with respect to whether it calls the next MO in

the chain (if any) or calls a middleware component.

Concern aera: the new MOP, which is being designed to implement a new non-functional
concern, has to fit into the global hierarchy of non-functional concern areas (see Figure
3.2). This means that either the new MOP has to fit into an existing concern area, or
a new concern area should be created and then placed somewhere in the global and
extensible hierarchy. The hierarchy is managed by meta-level programmers who design
MOPs. The current hierarchy in the Figure shows how the IGUANA MOPs described in

Chapter 4 are positioned.

Concern area exclusiveness: depending on the concern area, the new MOP should be de-
clared as either Singleton or Multi. The former means that this MOP is the “exclusive”
(sole) implementor of this non-functional concern, while the latter allows multiple im-

plementations of the same non-functional concern to co-exist.

Permitted base-level modifications only: Through the inherent links between MO classes,
a behavioural MO can in theory modify any aspects of the base-level objects. For exam-
ple, an Invocation MO could alter the way base-level objects are created. But in order
to make automatic composition work, we require that a behavioural MO performs only

the base-level modifications permitted for its reification category (see Table 3.1).

Chain of responsibilites model: composable behavioural MO classes must have their “be-
fore” and “after” logic separated. Within their code, explicit references to instances to

other MO classes must not be used. Instead, the generic next reference should be used.
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If a specific MO has to be the next MO in the chain of MOs, the MOP XML descriptor
should be used to specify the next MO as requirements on the “after” or “before” MoOs

(see BeforeRequirements and AfterRequirements elements of the DTD in Section 3.4.6).

“Remote” MOPs: the meta-level programmer should decide whether the new MOP is related
to object distribution or not (i.e., is local). If the MOP is “remote”-related, its design

has to fit in to the model of object distribution, which follows the proxy design pattern.

Middleware links: the meta-level programmer should (re)use as much of the IGUANA mid-
dleware component library as he/she can. Dependencies on middleware components

should be listed in the MOP XML descriptor.

Extensible object references: subclasses of the MObjectReference class should be used
to hold MOP- specific per-object referential information. For example, our RemoteOb-
jectReference carries sufficient information to identify the remote server object: object

identifier, creation time, IP address and TCP port number of the server application.

3.4.2 Automatic and dynamic MOP composition: Composer metaob jects

The automatic and dynamic MOP composition algorithm, as it is implemented by the De-
faultComposer class, is used for MOPs that are declared as automatically composable. The
composition algorithm is described in Section 3.4.7.

Figure 3.3 shows how the default, automatic and dynamic composer works: it reads the
MOP descriptor files, runs the composition algorithm, which arranges the MOs in each reifi-
cation category in a list, assuming that the selected MOPs are all automatically composable.
The intercepted (reified) base-level operations are directed towards the first MO in the chain,
which in its “before” operation may call related middleware component(s) and the next MO
in the chain. For example, the Remotelnvocation MO in the client calls the Communication-
Manager middleware component in the “before” part of the invoke method in order to send
a method invocation operation over the network.

By convention, the last MO in the chain is always the Default MO, which reflects the base-

level operation. For example, DefaultCreation::create method creates a new heap-allocated
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instance of the reflective class. This convention was adopted from IGUANA version 2. Please

note that the Default MO may not be called.

Secure Remote
‘ KeyMgr ’ [ RefMgr H CommMgr :
T T T middleware level
ObjectReference : :
orders/reorders
: """"" = Remote : S :
| orders/reorders ’ : :
PR o > Creation it U o :
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Logging { Remote ]—-‘> Default ‘
Automatic
Composer
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protocol change
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iMOP it intercepted operation gy
i i base—level

Fig. 3.3: Automatic MO composition example for combining Logging, Authentication, and
Remote at the client side.

The meta-level programmer is also free to write his/her own Composer metaobject, that
can be used by the base-level programmer in cases when the selected MOPs require manu-
al composition or the base-level programmer wants to achieve a non-default composition
semantics (e.g., concurrent invocation of MOs instead of the default sequential invocation).

The Composer MO is responsible for composing MOs from the (dynamically) selected MOPs.
The IGUANA run-time calls the Composer MO at run-time, whenever MOP selection or dese-
lection occurs at the base-level. The Composer MO is given information on the selected MOPs
(i.e., their MOP descriptors), and it is expected to arrange the behavioural MOs in chains
(one chain for each behavioural reification category) and set their next references according

to their order in the chain. It should also insert or remove MObjectReference MOs according
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to the MOPs selected or deselected, respectively. In case the MOs cannot be composed, the
Composer MO is expected to throw an exception (i.e., a CompositionException) back to the
base-level application.

In some cases, the next reference can refer to the user-defined Composer MO itself. Here
we give an example of a manual Composer MO implemented by the ManualComposer class,
which also acts as a “super” behavioural MO; i.e., the ManualComposer class not only inherits
from the MComposer abstract class, but it also inherits from MCreation and Minvocation MO
classes, virtually. Thus, an instance of ManualComposer can also insert itself (similarly to
Guarand) as the first MO in the chains for the Creation and Invocation reification categories.

Unlike the DefaultComposer MO, which is active during MOP composition only, the above
ManualComposer MO is involved in the intercepted creation and invocation operations. This
ManualComposer is also free to combine the results of these operations returned from the
Creation and Invocation MOs. This model is similar to Guarana composition with one main
difference: in IGUANA, there can be at most one Composer MO in operation for any base-level
object.

Figure 3.4 illustrates how the above ManualComposer MO may decide on an alternative
arrangement of MOs, resetting their next reference, and calling them in an order that is
different from the default one, calculated by the DefaultComposer MO.

A Composer MO can be replaced at run-time by calling the MObject::replaceComposer
method on the reflective object as each reflective class in IGUANA inherits from the MObject
class. State transfer between the old and new Composer needs to be coded by the meta-level
programmer. This can be done by providing an implementation of the MComposer::getState
and MComposer::setState pure virtual methods.

For example, the following code excerpt creates a new MyNewComposer MO, which then
replaces the DefaultComposer MO for a reflective class A. State transfer is arranged between
the two Composer MOs. The base-level programmer then selects MOP1 and MOP2 for this

class.

MyNewComposer* newComposer= new MyNewComposer () ;

newComposer-> setState(A::metaA-> mcomposer-> getState());
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Fig. 3.4: Manual metaobject Composer in operation for combining Logging, Secure, and
Remote at the proxy side.

A: :metaA-> mcomposer= newComposer;

class A ==> MOP1, MOP2;

If only the Composer MO needs to be changed, the programmer can write the following

statement in the source code:

YourNewComposer* yourComposer= new YourNewComposer () ;

a-> replaceComposer (yourComposer) ;

The “YourNewComposer” MO will replace the current Composer MO (represented by the
mcomposer field of MObject) for object referenced by a: this time without the explicit state
transfer.

IGUANA version 3 also allows a non-default Composer MO class, whose name is not known

at compilation time, to be loaded dynamically. The non-default Composer implementation
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does not have to be statically or dynamically linked with the application. This is done by
utilising the dynamic linking and loading interface provided by the UNIX operating system
(see dlopen(3ld), dlsym(3ld), and dlclose(3ld) manual pages). The dynamic loading of a new
composer from a shared library is implemented by the Meta::loadComposer method. This
method loads the Composer MO class based on the name of its class, and the name of the
shared library. We assume, that the shared library can be found on the LD_LIBRARY_PATH.
If the composer is no longer needed, the Meta::unloadComposer method can be used to explic-
itly unload it. This feature is useful for dynamically adapting and extending long-running
applications.

We make the MO composition an atomic operation: i.e., the reflective (base-level) object
is temporarily locked during the MO composition. This is needed to avoid dynamically rear-
ranging the behavioural MOs while the reflective object is being used (e.g., methods are being

invoked on it).

3.4.3 Rules for MmoP selection and deselection

This section revisits the MOP inheritance and selection rules of IGUANA version 2, and de-
fines rules for multiple MOP selection/reselection for IGUANA version 3. Issues that are not
addressed by IGUANA version 2 are put in to boxes.

The following rules govern MOP selection in IGUANA version 2:

§1. Every MOP defines a new meta-type. An object that selects a MOP is said to conform

to or implement the meta-type.

§2. Every object has an associated meta-type (called its current meta-type), which can be

changed dynamically.
§3. There are three ways of selecting a MOP: class, instance, and default.

§4. Class MOP selection results in a static meta-type. It means that all instances of the

class implement this meta-type.

§5. Class MOP selections are inherited: a subclass inherits the meta-type of its parent class.
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§6.

87.

§8.

§9.

§10.

gl

Subclasses can override the MOP selection of its parent class. However, in this case, the

specified meta-type must be the sub-type of the meta-type specified for the superclass.

Problem 1: what happens when we use multiple class inheritance and the superclasses

select different MOPs?

Default MOP selection allows the meta-type of all new instances of a set of classes
declared in a single source file to be selected. The default MOP selection can be changed

within the source file by repeating the

default ==> P1;

statement with a different MOP name, e.g., P2.

Instance MOP selection: the meta-type of a single object can be changed dynamically.
The new meta-type is called the object’s dynamic meta-type. The dynamic meta-type

of an object must be a sub-type of its static meta-type.

Problem 2: what happens if the object does not have a static meta-type (i.e., it is

not reflective)?

Protocol inheritance: the derived MOP includes the full set of reification categories

specified by both the base and the derived protocols.

There are two sharing modes for MOs in reification categories: local and shared.

Problem 3: there are no specific rules covering the effect of dynamic meta-type change
on local/shared metaobjects. For example, what happens if the reflective object has

a mizture of local and shared MOs?

IGUANA version 2 “supports automatic meta-level composition by means of multiple
MOP inheritance”. The chain of responsilities model is used. If there are multiple MOs
within the same reification category, MOs from the super-protocols are put towards the
end of the chain. Thus, the more specific behaviour (defined in the derived protocols)

is executed in preference to the more general behaviour (defined in the super-protocol).

Problem 4: the ezact way in which local/shared MOs are composed is not addressed

in the thesis.
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§12.

§13.

§14.

To prevent the same code executing multiple times, only one MO of a specific reification
category is added to the chain. This is similar to the C++ mechanism for handling

virtual multiple inheritance.

Manual/explicit composition: the meta-level programmer can manipulate the next MO

references in metaobject classes in order to combine MOs explicitly.

A MO composition algorithm is executed at run-time every time the meta-type for an
object changes. This algorithm automatically creates and/or deletes MOs according to

the old and new MOPs.

In IGUANA version 3, the following rules control MOP selection and deselection.

§1.

§2.

§3.

4.

There is no strong meta-typing in IGUANA version 3. In other words, multiple meta-
types are allowed simultaneously. Thus, a reflective object can be associated with
multiple MOPs, if and only if these MOPs were developed according to the composability
rules defined in section 3.4.1. MOPs must be accurately described by the meta-level

programmer in separate MOP descriptors.

Every object has an associated MOP set, which can be changed dynamically. Non-

reflective objects have an empty MOP set.
IGUANA version 3 retains all three forms of MOP selection: default, class, and instance.

Class MOP selection results in an initial MOP set. For example the following statement:
class A ==> Remote, Persistent {...};

results in instances of class A having the combination of Remote and Persistent MOPs
selected, assuming that these two MOPs are composable. If there is a default MmoP

selection, the above class MOP selection will override it.

The following example shows how a programmer would define the default MOP set such
that it contains Persistent and Remote and how the default MOP set could be extended

with a third composable MOP Authentication for instances of class A:
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§5.

§6.

§7.

default ==> Persistent, Remote;

class A ==> ++Authentication {...};

Furthermore, class MOP selection can also be changed: composable MOPs can be added
to, or previously selected MOPs can be deselected from the current MOP set of the class.
The scope for this change is the running application, i.e., the change in the MOP set will
only affect new instances of the class, created in the running application. The reason for
this restriction is that otherwise the IGUANA run-time would need to keep track of all
previously created instances of a reflective class. However the base-level programmer is
free to keep a list of reflective instances of a particular class and change the MOP set in a
loop iterating through the list. Furthermore, if object creation is reified in a MOP that is
being added to the MOP set, the Creation MO would not be called for existing objects as
they had already been created. Thus, it is problematic to re-initialise existing objects
(e.g., calling related middleware components, or extending their ObjectReference). To
overcome this problem, we added support the creation of ObjectReference MO, without

the creation of the base-level object, see §8.

A class inherits its MOP set from its super-class(es). Therefore all MOPs in the MOP set
must be composable. If MOPs are not composable, the Composer MO at run-time will

raise a Composition exception, that should be handled at the base-level.

Subclasses can override the initial MOP set: composable MOPs can be added, and re-

moved.

Default MOP selection allows the initial MOP set for all new instances of a set of classes
defined in a single source file to be defined. In the following example, classes of A and

B will have MOP1 and MOP2 selected:

default ==> MOP1, MOP2;
class AL e T
class B : publiEici AR T
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§8.

The default MOP set can be changed in the same source file, e.g., instances of class D

in the following code sample will have MOP1, MOP2, and MOP3 selected:

default ==> MOP1, MOP2;
classiA {0 k;

class B': public'A {...};

default ==> ++M0OP3;

classiDa{nesl .

default ==> MOP3;
cliassUE I
classiEi: publiilc PA R{C L.

Instances of class E will have only MOP3 selected. However, instances of class F will
have all of the three MOPs selected because a class inherits its MOP set from the parent

class(es). In this case, all members of the MOP set have to be composable.

Instance MOP selection: the current MOP set of a single object can be changed dynami-
cally. The change can be the addition, removal or replacement of MOPs. The condition
of a successful change to the current MOP set is that the MOPs in the new MOP set must

be composable with each other. This means that any pair of MOPs must be composable.

The following code excerpt creates a persistent instance of class B and dynamicaily
extends the meta-type for the instance by adding the composable Remote MOP to the

MOP set. Later in the code, the same MOP is removed from the MOP set.

class B ==> Persistent {...};
B* b= new B();

B* b ==> ++Remote;

B*x b ==> --Remote;
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§9.

§10.

A problem is that by the time we add the Remote MOP to the reflective object b,
the object has already been created, thus it is difficult to extend its persistent object
reference with remote object reference without calling the RemoteCreation MO, which is
expected to initialise the RemoteObjectReference. We need a mechanism that allows the
“late” insertion of object references to solve this problem. We overcome this problem
by adding a new MCreation::lateCreate method to the MCreation abstract class, which
is intended to create and insert the object reference. Furthermore, we need a second
mechanism, which allows the removal of RemoteObjectReference when the Remote MOP
is removed. This is done by the composer MO removing the object reference for the

reflective instance b.

Multiple MOP inheritance is allowed. Like in IGUANA version 2, the derived MOP in-
cludes the full set of reification categories specified by both the base and derived proto-
cols. Unlike in IGUANA version 2, the order of super-protocols is irrelevant. However,
it is the meta-level programmer’s responsibility to ensure that the MOPs are either

automatically-composable or there is a user-defined manual Composer MO provided.

All MOs instances are shared bewteen reflective instances of the same class, except
ObjectReference and Composer MOs. ObjectReference MOs are always local. Composer
MOs are either shared or local, depending on the selection context. Composer MOs are
usually shared between reflective classes and instances of reflective classes. However,
composer selection “inherits” the context of the MOP selection/deselection: e.g., if the
scope of the MOP selection was a particular instance, then the same instance will get its
local Composer MO associated and initialised. Thus, there is no need to specify locality

(i.e., whether a MO is local or shared) in the MOP definition.

Note that the notion of local and shared metaobjects found in IGUANA version 1 and
2 has been eliminated for two reasons: firstly, the explicit links between the MOs and
the components of the supporting middleware made the need for local MOs redundant
(i.e., it is assumed that per-object information is stored in the middleware, not in MOs,

with MObjectReference MOs being the only exception) and secondly, the resulting model
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§11.

§12.

§13.

§14.

simplified the MO composition problem.

Support for automatic meta-level composition is provided by means of writing com-
posable MOPs and relying on the default Composer metaobject. If the MOPs are not
automatically composable, a user-defined Composer MO can be used to compose the

MOs. Rules regarding the writing of composable MOPs are given in Section 3.4.1.

Similarly to the mechanism in IGUANA version 2, which prevents multiple instances of
the same MO class to be added to the list of MOs in a particular reification category,

only one MO of a particular MO class in a reification category can be added to the list.

Manual/explicit composition through manipulating next MO references in metaobject
classes is not recommended. Instead, explicit requirements on ordering of MOs is sup-
ported in the MOP descriptor document. A manual Composer MO can also be supplied

by the meta-level programmer.

Either the default (automatic) or the user-defined Composer MO is called every time the
MOP set of an object changes. The Composer MO is responsible for creating/deleting
and ordering MOs in their respective (behavioural) reification categories. Similarly,

ObjectReference structural MOs are added/removed by the Composer MO.

There are additional rules in IGUANA version 3 covering manual MO composition:

§15.

§16.

In case of manual MOP composition, the meta-level programmer (the author of a MOP)
has to delegate a Composer MO. This can be set in the Composer attribute of the MOP
element in the MOP descriptor XML document. When multiple manually-composable
MOPs are in the MOP set, it is the base-level programmer’s responsibility to ensure that
all of them have the same manual Composer MO specified in their MOP descriptors. In

other words, we do not attempt to compose Composer MOs.

In the case where multiple MOP inheritance is combined with manual MOP composition,

the most specific MOP “delegates” the manual Composer MO.

81



Chapter 3. The IGUANA Model for Automatic and Dynamic MOP Composition

§17. Unlike the previous versions of IGUANA, IGUANA version 3 allows the addition of a
MOP to the MOP set, whose name and definition is not known at compilation time.
Furthermore, the new MOP implementation does not have to be statically or dynamically
linked with the application. This is done by utilising the dynamic linking and loading

interface.

3.4.4 Multi-threaded reifed stack

The IGUANA version 2 introduced the concept of a reified stack implemented by the MStack
class, which was used during reified method sends/invocations as well as state read and write
access operations. The implementation of the stack allows pushing and popping arbitrary
elements on to and from the stack.

There is one single stack instance created as one of the first steps in the auto-generated
meta-level initialisation code inside the main method of every reflective IGUANA/C++ appli-
cation.

However, this single stack is ultimately thread-unsafe: IGUANA version 2 does not provide
any mechanism to synchronise access to the stack from multiple threads. Therefore, in
a multi-threaded application (which is the norm for any serious system-level application)
multiple threads sharing the same single stack without synchronisation can easily cause the
application to fail or crash: e.g., one thread might pop the stack, while another thread is
pushing an argument on to it.

Therefore we redesigned the reified stack in the new model and we have made it thread-
aware and thread-safe. We also introduced exception handling: the templated push and pop
methods throw exceptions to signal that the stack is over and underflown, respectively.

See section 5.5 for more information.

3.4.5 Base-level modifications

Table 3.1 summarises the base-level modification that can potentially be performed by dif-

ferent IGUANA behavioural MOs upon intercepting the operation at the base-level object.
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| Reification category | Reifies | Modifies

Invocation Method execution at receiver method address,
arguments (order, value, number),
method return value

Send Method execution at caller method address,
arguments (order, value, number),
method return value

Dispatch Selecting the method at receiver | method address,
arguments (order, value, number),
method return value

StateRead Member state read member (offset, subscript, value)

StateWrite Member state write member (offset, subscript, in-value),
member (out-value)

Creation object creation memory allocation, VFT init,
constructor call, object address

Deletion object deletion destructor call, memory release

Composer overwrites automatic composition | ordering of metaobjects

Table 3.1: Base-level modifications performed by IGUANA behavioural metaobjects

3.4.6 MopP descriptors

In the new IGUANA model, MOPs and their MO classes must be described by the meta-level pro-

grammer, who created and coded them according to the new MOP design rules/methodology

(see section 3.4.1).

The MOP descriptors are used by the IGUANA Composer metaobject to dynamically com-

pose metaobjects. They are also used by the IGUANA pre-processor, to generate standard C++

code for the reflective IGUANA/C++ application annotated (enhanced) with MOP selection,

deselection, and other IGUANA statements.

In IGUANA version 2, a MOP definition contains the following information:

e the name of the MOP;

e the list of super-MOPs (multiple MOP inheritance is allowed);

e the list of the reification categories used together with the name of the reifying MO class

(if it is different from the default), and the sharing mode of the MO (i.e., whether it is
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local or shared);

The IGUANA version 3 model retains the previous MOP definition detail (except the dis-

tinction between local and shared) as well as adding the following items:

e user-defined Composer MO can be delagated. If not specified, the Composer MO for the

MOP is the automatic DefaultComposer MO.

e dependencies on other MOPs(if any), in terms of non-functional concern areas. As was
explained in section 3.4.1, each MOP fits into a concern area, which is part of a global
and extensible hierarchy (see Figure 3.2). Note that the IGUANA version 1 model had

the notion of dependencies as references to other MOPs;
e reference to extension protocol(s), if any;

e reference to the shared library, that contains the MOP implementation. IGUANA version
3 supports dynamic loading and initialisation of MOPs, whose name and implementation

is not available when the base-level reflective application is compiled;
e links to proprietary (i.e., custom-developed) middleware components;

e ability to specify ordering constraints for before and/or after MOs. This lets the prog-

rammer specify different ordering in different behavioural reification categories.

The IGUANA version 3 MOP descriptor is XML (eXtensible Markup Language) based, and
it contains all of this information. It is required that the meta-level programmer specifies the
new MOP in XML. Figure 3.5 shows the XML Data Type Definition (DTD) defined for MmoP
descriptors. The new IGUANA/C++ pre-processor reads the XML-based MOP descriptors and
generates standard C++ code for a reflective application.

We assume that the MOP descriptors used by reflective IGUANA applications are stored
in one particular directory, e.g., SHOME/.iguana/mops. For simplicity, we also assume that
the name of the MOP file reflects the name of the MOP: e.g., DefaultMOP.xml file defines the

Default MOP.
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<?xml version="1.0" encoding="UTF-8"7>

<!-- Document Type Definition for Iguana version 3 MO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>