
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Towards A utom atic and D ynam ic M eta-O bject Protocol

C om position in a Compiled, R eflective Program m ing

Language

P eter H araszti

A thesis submitted to the University of Dubhn, Trinity College

in fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

October 2003

i^TRINITYCOUEGE''

1 3 NOV ^006

lll^LIBRARYDUB^

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or any

other University, and that unless otherwise stated, it is entirely my own work.

Peter Haraszti

Dated: 31 October, 2003

Perm ission to Lend and /or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Peter Haraszti

Dated: 31 October, 2003

A cknow ledgem ents

I could never have finished this thesis without the help and support of many peoi>le.

First and foremost, thanks are due to my supervisor Vinny Cahill for his great support

and endless patience over the long years while he was supervising me.

Thanks to Tilman Schafer, Barry Redmond, and Jim Dowling of the Distributed Systems

Group (DSG) for working with me on the Coyote project.

A special thanks has to go to my former and current employers Broadcom Eireann Re

search Ltd. and CAPE Technologies Ltd., respectively, for their generous funding of my

Ph.D. studies and for providing me with a flexible work arrangement.

To my loving wife, Monika; without her encouragement and sacrifice I would never have

completed my research and submitted this thesis.

I am grateful to my CAPE colleagues and friends Declan O ’Shanahan and Michael Slevin

for proof reading the thesis and suggesting improvements in readability.

Last but not least, I am very grateful to my children Petra and Aron for their under

standing during the immeasurable time, that I spent working on my thesis and not playing

with them. Now, I shall have much more time to play with them!

P eter Haraszti

University of Dublin, Trinity College

October 2003

IV

Sum m ary

This thesis describes a reflective programming model that provides a solution to the problem

of automatic and dynamic metaobject composition in a compiled reflective i)rograrnmiiig

language, Ig uana /C++.

Meta-object protocols (m o p s) reify elements of an object-oriented programming language

and are used to alter the behaviour of the language’s default object model in order to trans-

]>arently implement common non-functional concerns such as object state persistence, syn

chronisation, remote invocation, authentication, encryption, fault-tolerance (replication), and

logging at the rneta-level. The use of MOPs in this manner facilitates the separation of con

cerns.

In many eases, applications have to address multiple non-functional requirements simulta

neously. Thus, these MOPs and their constituent metaobjects need to be combined. Common

approaches to m o p composition are static (composition happens at design time, requiring

the programmer’s intervention), or dynamic (composition happens at run-time). A dynamic

solution may compose independently developed MOPs automatically. A few solutions exist to

compose MOPs automatically, but they do not address semantic overlap between MOPs and

provide little or no practical real-life examples.

The thesis attacks the problem of reusing already existing m o p s and combining their

metaobjects meaningfully such that, where possible, interference in semantics is detected

and taken care of. The main contribution of the thesis is the design ajid implementation

of the automatic and dynamic metaobject composition algorithm. We define a reflective

programming model called IGUANA, which supports autom atic and dynamic MOP composi

tion. Using this model, the application programmer at the base level may select one or many

MOPS from a lil>rary, which contains im plem entations addressing the above non-functional

requirements.

The key to the automatic composition mechanism, implemented by a default composer

metaobject, is that separate m ops have descriptors containing information on the compos-

ability of the mop. The descriptors define the non-functional concern area^ in which the

MOP is intended to be used (exclusively or in a shared manner), specify metaobject ordering

requirements and constraints, indicate the explicit links between behavioural metaobjects

and middleware components, and list base level modifications that constituent metaobjects

in each behavioural reification category perform. The composer metaobject uses these MOP

descriptors to automatically compose MOPs. In case the default composer metaobject caimot

be used, the programmer can supply his/her own composer metaobject.

The thesis also defines a methodology for writing composable MOPs. The methodology is

based on the distinction between local and remote-related MOPs, where remote-related MOPs

conform to the proxy/server model. Metaobjects of remote-related MOPs are composed in

such a way such that metaobjects in the client (server j)roxy) and server address spaces form

a symmetric “])rotocol stack” .

The new reflective programming model is derived from and retains many features of pre

vious versions of the IGUANA model, but adds major new features such as a reified stack, that

works in multi-threaded applications, support for dynamic multiple MOPs selection, extensible

object references for reflective objects, an explicit middleware layer, which supports common

MOP implementations, and a new composer metaobject with a default implementation that

attem pts to automatically combine behavioural metaobjects of several MOPs based on their

semantic descriptors.

Similarly to its predecessors, the new version of IGUANA/C++ is implemented by a pre

processor, which parses the reflective C++ code and XML MOP descriptors and generates

standard C++ code, which can be compiled using a standard C++ compiler.

We evaluate our model and implementation by designing, implementing, and dynamically

combining a suite of MOPs that address some of the most conmion non-functional concerns

’We refer to these areas of concerns a.s “concern areas” in the text.

that can be found in real-life applications and use a common middleware. Our implementation

provides a platform for the exploration of reflective software composition in the context of

dynamic systems.

Publications Related to this Ph.D .

[1] Jim Dowling, Tilman Schafer, Vinny Cahill, Peter Haraszti, and Barry Redmond: “Us

ing Reflection to Support Dynamic Adaptation of System Software: A Case Study

Driven Evaluation” , In Walter Cazzola, Robert J. Srtoud, and Francesco Tisato, edi

tors, Reflection and Software Engineering, volume 1826 of Lecture Notes in Computer

Science, pages 171-190. Springer-Verlag, Heidelberg, June 2000.

[2] Peter Haraszti, Tilman Schafer, Jim Dowling and Vinny Cahill: “The Iguana Expe

rience: Meta-Level Programming in a Compiled Relfective Language” , Presentation,

Workshop on Experience with Reflective Systems, Reflection 2001 - The Third In

ternational Confer(!nce on Mcta-Level Architectures and Separation of Crosscutting

Concerns, Kyoto, Japan, September 2001.

V lll

C ontents

A cknow ledgem ents iv

Sum m ary iv

List o f Tables xiv

List o f F igures xv

C hapter 1 Introduction 1

1.1 Preface .. 1

1.2 The Problem s of M etaobject C om])O sition ... 4

1.2.1 An example of composing m o p s .. 5

1.3 Previous Work on M eta-O bject Com position .. 9

1.4 I g u a n a version 1 and 2 ... 10

1.5 O ur A p p ro ach .. 11

1.6 R oadm ap to this T h e s i s ... 14

C hapter 2 R elated Work 16

2.1 In tro d u c tio n ... 16

2.2 The Common Lisp O bject System M eta-object P r o to c o l 17

2.2.1 Evaluation and relevance to this th e s i s ... 19

2.3 O pen C4--I- version 1 and 2 .. 19

2.3.1 Evaluation and relevance to th is th e s i s ... 20

ix

2.4 Composition of Before/After Meta-classes in S O M ... 21

2.4.1 Evaluation and relevance to this th e s is ... 22

2.5 CodA ... 22

2.5.1 Evaluation and relevance to this th e s is ... 24

2.6 DASCo: Separation and composition of overlapping and interacting concerns 25

2.6.1 Evaluation and relevance to this th e s is ... 26

2.7 I g u a n a version 1 and 2 ... 26

2.7.1 Metaobject composition in I g u a n a version 1 ... 27

2.7.2 Metaobject composition in I g u a n a version 2 ... 30

2.7.3 Evaluation and relevance to this th e s is ... 32

2.8 Towards a Methodology for Metaobject C om position .. 32

2.8.1 Evaluation and relevance to this th e s is ... 34

2.9 G u a ra n a .. 34

2.9.1 Evaluation and relevance to this th e s is ... 37

2.10 X-Kernel: an Architecture for Implementing Network P ro to co ls 38

2.10.1 Evaluation and relevance to this th e s is ... 39

2.11 Secure Composition of Security M etaob jects .. 40

2.11.1 Evaluation and relevance to this th e s is ... 42

2.12 An Event-based Runtime Metaobject Protocol .. 42

2.12.1 Evaluation and relevance to this th e s is ... 45

2.13 A p e r t o s : a reflective operating system with m etaspaces................................... 45

2.13.1 Evaluation and relevance to this th e s is ... 46

2.14 Rewriting semantics of metaobject and composable distributed services . . . 46

2.14.1 Evaluation and relevance to this th e s is ... 47

2.15 F r i e n d s : a Metaobject Architecture for Fault-Tolerant Distributed Systems . 47

2.15.1 Evaluation and relevance to this th e s is ... 48

2.16 Automatic Composition of Systems from C o m p o n e n ts 50

2.16.1 Evaluation and relevance to this th e s is ... 52

2.17 Aspect-Oriented Programming and R eflection ... 52

X

2.17.1 Evaluation and relevance to this th e s is ... 55

2.18 Reflective m id d le w a re ... 55

2.18.1 Evaluation and relevance to this th e s is ... 57

2.19 S u m m a ry .. 57

C hapter 3 The IGUANA M odel for A utom atic and D ynam ic MOP C om position 58

3.1 In troduction ... 58

3.2 The Overall A p p ro a ch .. 59

3.3 Assumptions .. 61

3.4 Description of Iguana version 3 .. 64

3.4.1 Methodology for designing composable M O P s.. 68

3.4.2 Automatic and dynamic MOP composition; Composer metaobjects . . 71

3.4.3 Rules for MOP selection and d e se le c tio n .. 75

3.4.4 Multi-threaded reifed s t a c k ... 82

3.4.5 Base-level m odifications... 82

3.4.6 MOP descriptors ... 83

3.4.7 Algorithm for the DefaultComposer M O... 92

3.5 S u m m a ry ... 99

C hapter 4 D esign of an IGUANA MOP Suite 101

4.1 In troduction ... 101

4.2 Structural reflection: the Typelnfo MOP.. 101

4.3 Design of the Default M O P.. 102

4.4 Design of the Logging MOP.. 104

4.5 Design of the Persistent MOP... 105

4.5.1 Adaptation of P ers is ten t... 107

4.6 Design of the Remote and RemoteProxy M O P s... 108

4.7 Design of mops for atomic objects ... I l l

4.7.1 Optimistic concurrency c o n t ro l .. 112

4.7.2 Using strict 2-phase locking for concurrency control 114

4.8 Design of a Replication M O P ... 115

4.9 S u n an ia ry .. 117

C hapter 5 Im plem entation 118

5.1 Introduction ... 118

5.2 Implementing the new Iguana m eta-lev el... 118

5.2.1 The meta-level class l ib r a r y .. 119

5.2.2 Multiple mop in h e r ita n c e .. 120

5.2.3 The DefaultComposer MO .. 122

5.2.4 On building a symmetric protocol s t a c k .. 123

5.3 Dynamically loadable M O P s... 126

5.4 The new Iguana preprocessor ... 128

5.4.1 The Iguana/C + + sy n ta x .. 129

5.4.2 Source code transformations by the Iguana/C + + preprocessor 131

5.4.3 Working with Iguana/C + + c o d e .. 139

5.5 Multi-threaded Reified Stack .. 140

5.6 S u m m a ry .. 141

C hapter 6 Evaluation 143

6.1 In troduction ... 143

6.2 Combining Persistent and Remote MOPs .. 144

6.3 Applying a Logging MOP to a ruiming app lica tion .. 150

6.4 Using a manual Composer M O .. 154

6.5 The computational overhead in IGUANA version 3 .. 156

6.6 S u m m a ry .. 159

C hapter 7 Sum m ary and Conclusions 160

7.1 In troduction ... 160

7.2 Summary and Conclusions... 160

7.3 Contribution of this th e s is ... 162

7.4 Future w o rk ... 162

xii

B ibliography 164

A p p en dix A XM L MOP descriptors 173

A .l MOP descriptor for the Typelnfo M O P ... 173

A .2 MOP descriptor for the Default M O P ... 173

A .3 MOP descriptor for the Persistent M O P .. 174

A .4 MOP d e s c r ip to r fo r th e Persistent2 M O P .. 175

A .5 MOP descriptor for the Persistent2Absent M O P .. 175

A .6 MOP d e s c r ip to r for th e Logging MOP ... 176

A .7 MOP d e sc r ip to r for th e Remote MOP ... 177

A .8 MOP descriptor for th e RemoteProxy MOP ... 178

xiii

List of Tables

2.1 Suminaxy of rules for reconfiguring security MOs 41

3.1 Base-level modifications performed by IGUANA behavioural rnetaobjects . . . 83

5.1 Sum m ary of the I g u a n a code transform ations for M OP s e le c t io n s 132

5.2 Sum m ary of the IGUANA reflective code tra n s fo rm a tio n s 138

6.1 M easurem ents indicating the relative and absolute overhead of reified C + +

language operations using the Default M O P .. 157

6.2 M easurements indicating the absolute overhead of autom atic and dynam ic MOP

com position by the DefaultComposer M O ... 158

xiv

List of Figures

1.1 Example of combining the invocation MOs of Logging, Autlientication, and Re

mote MOPS at client and server sides.. 7

1.2 The new IGUANA model with three l a y e r s .. 14

3.1 The new I g u a n a model with three layers (re p e a te d) .. 64

3.2 Tlie hierarchy of non-functional concerns grouped into a r e a s 67

3.3 Automatic MO composition example for combining Logging, Authentication,

and Remote at the client side... 72

3.4 Manual metaobject Composer in operation for combining Logging, Secure, and

Remote at the proxy side... 74

3.5 Elements, attributes, containment relationships in the MOP descriptor XML

D TD .. 87

4.1 Meta-level configuration for the Persistent M O P .. 107

4.2 Meta-level configuration for the Remote MOP ... 110

4.3 Meta-level configuration for Synchronisation m o p with an optimistic concur

rency c o n t r o l 113

4.4 Meta-level configuration for Synchronisation MOP with strict 2-phase locking . 115

4.5 Meta-level configuration for Replication and IRP m o p s implementing leader/follower

replication ... 117

5.1 Iguana meta-object c lasses... 120

XV

5.2 Working with Iguana/C + + files; the compilation process from Iguana-extended

source to e x e c u ta b le .. 139

XVI

Chapter 1

Introduction

“The use of anthropomorphic terminology when dealing with computer system s is a sym ptom

of professional im m aturity. ” - Edsger Dijkstra

1.1 Preface

Tlie complexity of .system-level applications has increased many times over the last decade

and is constantly increasing as new and higher-level requirements are being defined for them.

A few years ago, application requirements such as logging (for traceability purposes or for de

bugging), distribution, state persistence, security, and fault-tolerance were specified only for

a small set of highly specialised applications, examples being industrial process control and

banking systems. The widespread, global use of the Internet and distributed computing has

dramatically increased the need for security and availability. Application developers nowa

days face a difficult challenge when meeting these ever-increasing requirements for flexible

distributed deployment, security, persistence, fault-tolerance, and so on, which have become

standard.

W ith the advent of object-oriented programming (OOP) technologies and application

frameworks, support for these requirements, usually implemented as a hierarchy of appli

cation classes, has become more available for use by application programmers. The use of

object-oriented frameworks has helped application programmers to focus more on their ap-

1

C h apter 1. In troduction

plication’s primary business logic, while using the appropriate (often specialised) components

of the framework for implementing non-functional requirements. However, in order to meet

new unanticipated and dynamically changing requirements, the framework may need to be

extended and /o r dynamically adapted at run-time.

The problem with frameworks is that, in most cases, the application programmer has to

know the details of how different components of the framework implement their functionality

and how they interact with each other, as well as w'hat the required steps are to change the

framework dynamically in order to address the changes in the envirormient. Also it requires a

significant code refactoring effort to fit an existing (legacy) application into a new framework.

Furthermore, a framework for persistence may not work well (or at all) with a framework for

distribution.

The component-based architecture from Sun known as Enterprise Java Beans (EJB) [72] is

widely considered as a move in the right direction when it comes to tackling application com

plexity, as it relieves the burden on application developers by providing a container for EJBs

that implements and manages commonly found non-functional concerns such as persistence

(in the case of Container Managed Persistence or CMP), distribution, security, and transac

tion management. Containers in application servers use structural reflection to find methods

and members of EJBs. Containers also use intercession in order to carry out additional tasks

such as transaction handling, authentication, encryption/decryption, and resource pooling,

for example. This model insulates EJB developers from the details of the implementation of

these non-functional concerns. Deployment descriptors allow convenient deployment of the

same EJB in a container under different conditions. However, the implementation of the

non-functional concerns is hidden from the EJB programmer and there is no control given

to change/adapt these concerns in a running application. Microsoft’s Component Object

Model-f- (COM-f-) [52] and OMG CORBA Components [55] support similar container-based

models.

Computational reflection and rneta-level architectures [67, 47, 46] on the other hand have

been gaining popularity and are often used because of the ability to separate functional and

non-functional concerns. The application functionality (i.e., its business logic) is implemented

2

C h apter 1. In troduction

by base level objects, while m eta-object protocols (m o p s) im plem ent these non-functional

concerns.

One of the benefits of using reflection is that once an experienced programmer has imple

mented and tested a recurring non-functional concern such as persistence of object state in

the form of a MOP, it can easily be utilised by relatively inexperienced programmers in many

applications. If an application has to persist its state between invocations, the base level or

application programmer selects the MOP, that implements persistence for classes or objects

that need it. Since meta-level programming is still regarded as a complex and difficult task

[78], while using MOPs in base level applications is not as complicated, this distinction between

the two programming roles in terms of programming skills required is very important. State

persistence, fault-tolerance, and distribution (i.e., remote method invocations) for example

can all be implemented as separate MOPs, with eadi MOP having its own set of metaobject

(m o) classes. Base level and meta-level are causally connected through the process of MOP

selection.

In a reflective programming model with multiple, fine-grained MOPs (e.g., IGUANA version

1 [30, 28] and version 2 [64]), each MOP consists of a set of structural and behavioural MO

classes, which reify certain elements (e.g., method invocation or state read) of the object

model of a typical object-oriented]:>rogramming language such as C++ [70] or Java [27], and

interact with each other in order to provide an implementation for the desired, alternative

object model.

For system-level apjjlications, that have to meet multiple non-functional requirements,

the base level programmer should simply be able to select the corresponding MOPs ̂ that

implement them. Also, they should be able to deselect and reselect MOPs dynamically, at

run-time, in order to adapt to changes in the requirements. This implies that these MOPs

and their constituent MOs need to be combined.

The two common approaches to MO composition are static and dynamic. The static ap

proach requires that the programmer manually combines MOPs when designing the applica

tion. Static composition is not useful for applications tha t have to respond (i.e., dynamically

'in our model, we consider the MOP as the unit of composition, although this is not a restriction.

3

Chapter 1. Introduction

adap t) to unanticipated changes in the operating environm ent. W ith the dynam ic, run-tim e

approach, the program m er rehes on the meta-level architecture to m eaningfully combine

the MOs of the m o p s autom atically, i.e., w ithout prior knowledge of the set of MOPs to be

combined. However, autom atic and dynam ic MOP com position in a compiled language is a

difficult task.

1.2 The Problem s of M etaobject C om position

A num ber of problems axises when one a ttem p ts to combine MOPs im plem enting different

non-functional concerns:

1. Except in the sim plest ca.scs, such a-s, logging and persistence, non-functional concerns

and hence m o p s may overlap semantically. For example, a synchronisation MOP overlaps

sem antically with a MOP for object persistence, because the former provides atom ic

read /w rite access to persistent objects, provided by the latter.

2. Different MOPs follow different im plem entation models or guidelines. For example, MOs

of one MOP may be shared between instances of base-level objects, while in another

MOP, each base-level object may have its own (local) set of MOs. A methodology for

w riting composable MOPs needs to be defined.

3. MOPs may not have been w ritten w ith fu ture com position in m ind. This means th a t

MO classes of a MOP may not partic ipa te in the com position model, which is most

commonly the chain of responsibility model. In th is model, MOs responsible for reifying

a base level operation axe ordered and inserted into a chain. The base level operation

in question is intercepted a t the meta-level, which activates the first MO in the chain.

Each MO carries out its own before operation and is then responsible for calling the next

MO in the chain. The last MO is supposed to reflect the operation a t the base level and

then re turn . This is followed by the execution of the after operations in a reverse order

to th a t of the before operations. This chain may be broken by uncooperative MOs, th a t

sim ply do not call the next MO in the chain.

4

C h apter 1. In troduction

4. A meta-level program m er may need the source code of a MOP, if he /she wants to

combine it w ith another MOP or evolve it. However, as is often the case w ith system-

level software, the source code of a MOP may not be available for o ther program m ers

to study and extend.

5. In many cases, MO classes of a m o p rely on standard or p roprie tary middleware com po

nents (e.g., the Common O bject Request Broker A rchitecture (COR.BA) [41] from the

Object M anagem ent G roup (OMG) ̂ for object d istribu tion or a R elational D atabase

M anagem ent System (RDBMS) for object persistence). An exam ple of using p ropri

etary m iddleware can be found in [22]. However the relationshij) between MO classes

and m iddleware com ponents is often blurred. This can lead to difficulties when com bin

ing m o p s because it may recjuire combining or reconfiguring m iddleware com ponents,

unless the m o p s are unrelated and they use non-overlapping sets of m iddleware com

ponents. The relationships between MOPs and middleware com ponents are hidden in

the im plem entation.

T he next section gives a m o p composition example which dem onstrates some of these prob

lems.

1.2.1 A n exam p le o f com p osing MOPs

Let us imagine th a t a program m er wants to im plem ent secure rem ote m ethod invocations,

combined w ith the logging of events, whenever such secure and rem ote m ethods are invoked.

Rem ote m ethod invocations are carried out between client and server, th a t reside in different

address spaces. By security in th is example we m ean th a t messages exchanged between client

and server are authenticated .

There are four MOPs (Remote, RemoteProxy, Authentication, and Logging, respectively)

needed to intercept m ethod invocations a t the client and server sides and carry out the ir ad

ditional com putation before a n d /o r after the actual m ethod has been invoked on the server.

For this reason, the above mentioned four MOPs reify m ethod invocation (i.e., the Invocation

^CORBA i.s a registered trademark of OMG, see h t tp : / /wwtv’.omg.org

5

Chapter 1. Introduction

reification category in Ig u a n a) and declare three MO classes: Remotelnvocation^, Authenti-

cationlnvocation, and Loglnvocation, respectively. For a detailed description of these MOPs,

see Chapter 4.

Let us take an implementation of these MOPs, which uses proxy objects at the client side:

i.e., a proxy object represents a remote server object in the client object’s address space.

Note that care must be taken when Remote is involved in a MOP composition: a symmetric

communication protocol stack must be formed between the proxy and the server, otherwise,

similarly to a misaligned network protocol staci, communication would not be possible.

Ideally, the base level programmer would just select these MOPs for his/her application

classes and objects, and the language run-time would automatically take care of composing

the invocation MOs at the client and server sides such that it yields a system with the desired

combined functionality. Assuming that the chain of responsibility model is used, we show why

the ordering of MOs is im portant. We also show how the MO classes interact with middleware

components.

First, let the order of the invocation MOs be: Loglnvocation, Authenticationlnvocation,

Remotelnvocation, and Defaultlnvocation at the client side (see Figure 1.1). Upon invoking

a method on the proxy object in the client, the meta-level intercepts this call and activates

the first MO in the chain. The Loglnvocation MO creates a temporary data record with the

name of the operation being invoked, the identities of the client and server objects, and the

current time. Then it passes control to the next MO Authenticationinvocation, which creates

the client’s digital signature for authentication. The next MO in the chain is Remotelnvoca

tion, which finds out whether the server object is remote or local. If the server is remote,

Remotelnvocation MO marshalls the argument(s) together with the client’s digital signature,

and activates the communication middleware, which sends the method invocation request

over the network to the server object. The last MO in the chain is Defaultlnvocation by

convention, bu t it will not be called for remote servers.

In order to make the server side interwork with the client side, the order of MOs must be the

reverse to tha t of the client side: Remotelnvocation, Authenticationlnvocation, Loglnvocation,

®The same MO class is used b y both the Remote and RemoteProxy protocols

6

C h apter 1. In troduction

Client-side: the combined protocol for proxies (invocation)

Before; log request Before: create signature Before: if target remote, marshal! args, send request over the net
otherwise, call next

Logging
nexl

Authentication
nexl

Remote
next

Default

After: log result After: check signature After: unmarshall result

Server-side: the combined protocol for servers (invocation)

Before: unmarshall args Before: check signature Before: log request

Remote
next

Authentication
nexl

Logging
nexl

Default

After: if caller remote, After: create signature
marshall result, send reply over the net;

After: log result

F ig . 1 .1: E xam j)le of com bining th e invocation MOs of Logging, A uthentication, an d Remote
MOPS a t c lien t an d server sides.

an d Defaultlnvocation (see F igu re 1.1).

A t th e server side, the com m unication m iddlew are receives th e rem ote m e th o d invocation

request from th e clien t, finds th e server o b jec t, an d passes contro l to th e Remote!nvocation

MO bo im d to th e server. T h e Rem otelnvocation MO unm axshalls th e m e th o d a rg u m en ts and

th e d ig ita l s ig n a tu re , an d it calls th e n ex t MO in th e chain. T h u s, A uthenticationlnvocation MO

au th e n tic a te s th e rem o te caller ob jec t by checking its o b je c t iden tifier an d d ig ita l s ig n a tu re

w ith th e help of an a u th en tica tio n server (p art o f th e m iddlew are) and , u p o n a successful

au th e n tic a tio n , it passes con tro l to n ex t MO, w hich is Loglnvocation. T h e Loglnvocation MO

crea tes a log en try an d records in it th e nam e of th e o p e ra tio n being invoked, th e iden tities

o f th e clien t an d server ob jec ts , an d th e cu rren t tim e. I t passes con tro l to th e la s t MO in the

chain , w hich is Defaultlnvocation (as recom m m ended in [64]). T h is MO reflects th e base level

op era tio n .

7

Chapter 1. Introduction

After the base level method has been effectively executed, the Loglnvocation MO records

the result of the operation and writes the new log entry to the application’s log. Control

goes back through Authenticationlnvocation to the Remotelnvocation MO, which marshalls the

return value of the method executed and returns control to the comnmnication middleware,

which in turn sends the result back to the remote client side.

When the reply arrives at the client side, the middleware passes control to the Rennoteinvo

cation MO, which unmarshalls the result, and passes control back to Authenticationlnvocation,

which in tu rn passes control to Loglnvocation. Loglnvocation logs the event at the client side

and returns to the client.

The basic assumption throughout this example was that either the meta-level or a mid

dleware component triggers the activation of the first MO in the chain: i.e., either a local

client invokes a method on the proxy object, or a method invocation request arrives from a

remote client over the network.

Now let us change the order of MOs at the server side from Remotelnvocation, Authentica

tionlnvocation, and Loglnvocation to Remotelnvocation, Loglnvocation, and Authenticationln

vocation. This implies that the order of MOs at the client side is the opposite, i.e., Authenti

cationlnvocation, Loginvocation, and Remotelnvocation. This MO combination would possibly

log method arguments together with the client’s digital signature and return values, which

may not be of any use.

However, if we reorder the MOs by putting Authenticationlnvocation MO first a t the server

side, followed by Remotelnvocation and Loglnvocation MOs, then we would break the compo

sition because the Authenticationlnvocation MO cannot work until the Remoteinvocation MO

has immarshalled the method arguments.

This simple example shows that the order, in which the behavioural MOs are executed,

is vital for correclty implementing any combined behaviour at both client and server sides.

Different orderings may result in completely different and/or undesired behaviour. Our goal

is to come up with a MO combination mechanism, that can calculate the “correct” order of

MOs for a MOP combination at run-time, if possible.

C h apter 1. In troduction

1.3 Previous Work on M eta-O bject C om position

A few reflective programming models (e.g., the IGUANA version 1 [28] and the model in

[53]) support multiple MOP selection, which means that the base level programmer can select

multiple MOPS for the base level classes or objects that comprise his/her application.

Other reflective models (e.g., Open C++ version 1 [10] and 2 [9] as well as IGUANA version

2 [64]) restrict the programmer to selecting only one MOP at any time for base level classes

or objects. In this case, the single MOP has to combine and implement all of the selected

non-functional concerns by means of multiple MOP inheritance: two or more MOPs, each

implementing a certain non-functional concern, are manually or semi-automatically combined

in the derived MOP. By manual combination, we mean tha t the meta-level prorgrarnrner has

to write code (i.e., that of the MO classes) for the new, combined MOP, while in the semi

autom atic combination case the meta-level programmer writes the MOP declaration only; the

code from overlapping MO classes are combined at run-time, according to a fixed, pre-defined

MO combination algorithm. In both cases, conflicts arising from the overlap must be resolved

by the meta-level programmer.

Both Iguana models support dynamic mop re-selection, that is, the MOP associated with

base level objects can be changed at run-time. In both models, easy composition of non

functional concerns, either at design-time or at run-time, needed to be properly investigated.

Ideally, independently developed MOPs and their constituent MOs should automatically be

composable, without requiring any additional effort (e.g., coding or code refactoring) from

the programmer.

Some reflective programming languages support manual and /o r automatic MOP com

position. For example, the manual composition in Guarana [57] requires the application

programmer to write code (i.e., the composer metaobject) that explicitly combines the MOs

of the selected mops. MOs tha t are being composed can be composers themselves. Although

this approach is simple and performance efficient, it is inflexible as it requires rewriting the

composer MO for each possible combination.

Reflective programming systems such as the Common Lisp Object System (CLOS) [36]

MOP [2, 37], and IBM’s System Object Model (SOM) with Before and After Meta-classes

9

Chapter 1. Introduction

[16, 25, 24] sujjport some form of automatic composition. The CLOS MOP is a description of

the CLOS system itself as an extensible CLOS program. Fundamental elements of CLOS such

as classes, slot definitions, methods, generic functions, and method combination are reified as

first-class entities and available to programmers as MOs. The standard method combination

(implemented by the standard-method-combination) combines the primary, around, before,

and after methods for each generic funtion invocation in order to form a single effective

method. Although around, before, and after methods are not meta-methods, the concept has

been adopted by many MOPs, including SOM and IGUANA. At run-time, SOM automatically

determines an appropriate meta-class for an instance of a class, even if the class inherited

from multiple parent classes and the parent classes specified different meta-classes. However

the order of meta-classes depends on the class precedence list. Neither CLOS nor SOM deals

with semantic overlap between meta-classes.

Many of the reflective j)rogramming languages (e.g., CLOS, Igu an a) use a variant of the

simple chain of responsibility model, explained above. The chain of responsibility model for

composition works well if the MOPs are orthogonal (i.e., their fimctionahty is unrelated). But

in practice, orthogonality is only an exception [53]. Even worse, the chain might be broken

by some non-co-operative MO: e.g., a m o may conditionally break the chain by not passing

control to the next MO.

It is clear that in most cases, automatic composition brings up problems with semantic

interference between MOs. In this thesis we show that the interference can be detected and

handled by describing the MOs semantics.

1.4 Iguana version 1 and 2

In summary, IGUANA version 1 supports fine-grain, run-time MOPs, where a MOP can reify

up to 29 aspects of the host object-oriented programming language, C++ for example. The

programmer can select multiple mops for base-level classes and their iiLstances. Through

an explicit (i.e., using the meta pointer from base-level objects) or an implicit (i.e., us

ing Iguana extension protocols) mechanism, the base-level programmer can dynamically

change/restructure the meta-level. Rudimentary support for combining MOs is provided in

10

Chapter 1. Introduction

th e fo rm o f th e ch a in o f re sp o n sib ility m odel.

I g u a n a v e rs io n 2 h a s evo lved th e p re v io u s m o d e l by re d u c in g th e n u m b e r o f re if ic a tio n

c a te g o rie s to 12, s t re a m lin in g th e ru n - t im e m e ta -le v e l s t ru c tu r e , a n d by in tro d u c in g th e

c o n c e p t o f m e ta -ty p in g , w h ich c o n s tra in s th e b ase -lev e l p ro g ra m m e r su ch t h a t h e /s h e can

se lec t one s in g le m o p fo r a b ase -lev e l c la ss o r o b je c t . T h e sin g le m o p se lec ted fo r th e o b je c t

r e p re se n ts i ts m e ta - ty p e . T h is m e ta - ty p e c a n b e d y n a m ic a lly ch a n g e d (s u b je c t to c e r ta in

c o n d itio n s re g a rd in g th e re la tio n s h ip b e tw een th e o ld a n d th e new m e ta - ty p e s) , a n d th e

I g u a n a r u n - t im e sy s te m a u to m a tic a lly r e s t ru c tu re s th e m e ta -lev e l a n d co m b in es b e h a v io u ra l

MOs in th e a ffec ted re if ic a tio n ca te g o rie s , fo llow ing th e sa m e ch a in o f re s p o n s ib i li ty m o d e l.

1.5 Our A pproach

T h e I g u a n a v e rs io n 2 re f lec tiv e p ro g ra m m in g m o d e l a n d i ts im p le m e n ta t io n a d d re s se d a u

to m a tic m o p c o m p o s it io n in a v e ry lim ite d w ay:

S in g le MOP se lec tio n : th e b a se level p ro g ra m m e r c a n se lec t a t m o s t o n e MOP a t a tim e

for h is o r h e r c lasses o r in s ta n c e s o f c lasses . This im p lie s t h a t th e se le c te d s in g le M O r

m u s t im p le m e n t a ll o f th e d e s ire d n o n -fu n c tio n a l co n ce rn s , fo r e x a m p le , b o th o b je c t

p e rs is te n c e a n d d is tr ib u t io n . This c a n b e d o n e a t d e s ig n tim e o n ly b y m e a n s o f m u ltip le

MOP in h e r ita n c e . For ex a m p le , th e MOP PersistentRemote e x te n d s b o th Persistent a n d

Remote MOPs. Meta-object cla sses in PersistentRemote a re d e riv ed fro m th e o n es in

Persistent a n d Remote, in th a t p a r t ic u la r o rd e r . Should we n eed to c o m b in e a la rg e r

n u m b e r o f MOPs, we w ou ld n eed to w rite a n ew MOP fo r each d e s ired c o m b in a tio n o f

th e m . This is a d e s ig n -tim e so lu tio n to MOP c o m p o s itio n a n d a s m o re a n d m o re n o n

fu n c t io n a l c o n c e rn s w ill b e im p le m e n te d a s MOPs over tim e , i t w ill lead to a n e x p o n e n tia l

“ex p lo s io n ” in th e n u m b e r o f MOPs.

M u ltip le MOP in h eritan ce: loUANA v ers io n 2 a llow s th e u se o f m u ltip le MOP in h e r ita n c e .

W h e n th e d e riv e d (m etc io b jec t) p ro to c o l’s su p e r -p ro to c o ls re ify th e sa m e la n g u a g e c o n

c e p t, th e c o n flic tin g MOs axe o rg a n ise d b y d e fa u l t in to a lis t (one lis t fo r each b e h a v io u ra l

re if ic a tio n c a te g o ry) , fo llow ing th e c h a in o f re s p o n s ib i li ty m o d e l. T h e o rd e r o f th e MOs

11

Chapter 1. Introduction

in the list is fixed and derived from the MOP precedence list The only simple way

to change the order of MOs in the list is to change the MOP precedence list, i.e., by

re-ordering the list of super-protocols. Even in this case, the new order may not be

correct in all of the reification categories. For example, MOs for the Send and Receive

reification categories in certain “remote”-related^ MOs may have to be in reverse order

of each other in order to form a symmetrical communication protocol stack between

the remote client and server.

O rd e rin g o f th e MOs; MOs reifying the same language concept ;\xe ordered according to the

calculated MOP precedence list. If this order does not work for a particular new MOP,

the Iguana version 2 model allows the meta-level programmer to explore the MOs on

the list in terms of next MO references. This solution works for single MOP selection

only, where it is known at design time what MO the next references will refer to. W ith

dynamic MOP selection, the selection or deselection of MOPs will result in a meta-level

reconfiguration (i.e., MOs are inserted or removed). A meta-level reconfiguration can

easily invalidate the next references, for instance they may refer to a wrong or null MO.

This thesis defines a new IGUANA model - we call it version 3 - supporting a flexible, automatic

and dynamic MOP composition, that overcomes the above limitations.

The following design objectives are addressed in the new model:

E volution: the new IGUANA model should address the problems and limitations of the

previous two versions, instead of defining a radically new model.

Sim plicity: the new IGUANA model should be intuitive to use for both base level and meta

level programmers.

R eusability: the new IGUANA model should facilitate MOP reusability through its framework

for dynamic and automated MOP composition.

Our approach to automatic and dynamic MOP combination is based on the fact that

the MOPs and their constituent MO classes are better specified (e.g., by clear separation of

‘‘mop precedence list is the mop inheritance tree flattened out bj' a left pre-order walk.
'"’mops that are related to object distribution.

12

Chapter 1. Introduction

around, before, and after meta-computation in behavioural MOs and by the categorisation of

MOs with respect to their relationships with each other and with the causally connected base

level object), so that the mop composer, which is itself a MO, can calculate the appropriate

ordering of MOs in different reification categories at run-time, with certain limitations.

We also define a methodology for developing composable MOPs and MO classes by speci

fying simple design rules that nieta-level programmers can and should follow. For example,

only one MO in the chain should reflect the base level operation the way it is done by the

default object behaviour (in IGUANA version 3, this MO is an instance of a MO class called

e.g., DefaultCreation for creating a new instance of a reflective class, and should be the last

MO in the chain).

T he characterisation (description) of the MOPs and th e ir MO classes w ith respect to their

com posability w ith o ther MOPs and their MO classes is key in solving the au tom atic and

dynam ic MOP com position problem. In IGUANA version 3, this inform ation is captured as a

set of MOP descriptor files, w ritten in the ex tensib le M arkup Language (XML). We devise a

D ocum ent Type Definition (DTD) for specifying the sem antics of IGUANA MOP descriptors.

Moreover, in m any cases MOs are inherently linked to com ponents of the middleware th a t

actually im plem ent the desired non-functional behaviour. In the above example. Remoteln-

vocation uses d istribu ted object middleware to com m unicate rem ote m ethod invocation re

quests and replies over the network. Therefore we also express the MOPs and their links to

com ponents of s tandard or proprietary m iddleware in the MOP descriptor, which guides the

au tom atic MOP com position and middleware (re)configuration.

Figure 1.2 shows the new proposed IGUANA model, which adds a second interface to the

model to deal w ith the connections between MOs of IGUANA MOPs and the supporting middle

ware com ponents. T he new model also refines the existing interface (i.e., the first interface)

between the base-level and the meta-level. See section 3 for a more detailed description of

the new model and interfaces.

As our research interest is system-level program m ing, we im plem ent IGUANA version

3 by extending a compiled object-oriented program m ing language, C++. Similarly to its

predecessors, we im plem ent our IGUANA/C++ as a preprocessor, which parses the reflective

13

Chapter 1. Introduction

Middleware components

- o

Interface 2

M eta-level c lo s e s

Interface I

Extension
Protocols□ □□□

B ase-level classes

M eta -leve l program m er

B a se-leve l programmer

F ig . 1.2: The new IGUANA model with three layers

Ig u a n a /C++ code and XML-based MOP descriptors and generates standard C++ code, which

is compiled using a standard C++ compiler.

Finally, we evaluate our thesis by designing, implementing, and dynamically combining

a suite of MOPs that address the most common non-functional concerns and use a common

proprietary middleware. Our implementation provides a platform for exploring dynamic

software composition through reflection in a compiled proramming language, C++.

1.6 Roadm ap to th is Thesis

After this introduction to the problem of MOP composition and the outline of our approach to

solving it, we review a number of reflective programming languages, meta-level architectures,

and techniques to compose software components dynamically in Chapter 2. W ithin this

Chapter, we describe IGUANA version 1 and 2 in more detail as our new model derives

14

C h apter 1. In troduction

from them. In Chapter 3, we describe the design of IGUANA version 3, primarily focusing

on the new extension that solves the automatic and dynamic MOP composition problem.

We also define a methodology for writing composable MOPs and MO classes. Chapter 4

outlines the design of a immber of automatically composable IGUANA MOPs that address

the most common non-functional concerns. Chapter 5 describes the implementation of the

I g u a n a model for C++, called I g u a n a / C + + . Chapter 6 evaluates the model and composition

mechanism through examples of combining the some of above MOPs by using the default and

a customised Composer MO. Chapter 7 summarises the work presented in this thesis, draws

conclusions, and specifies areas for future research.

15

Chapter 2

R elated Work

“W hatever you do will be insignificant, but it is very im portant that you do it. ” - M ahatma

Gandhi

2.1 Introduction

A number of reflective programming languages and extensions has been defined that address

some form of metaobject (m o) composition. This chapter provides a brief overview of them

and evaluates them according to the following criteria:

1. Cornpile-time or run-time MOP: when is the customisation of the reflective base-level

program performed?

2. Fine-grain or coarse-grain MOP: what aspects of the language can be reified?

3. Single or multiple MOP selection: can multiple MOPs representing difl'erent behaviours be

selected?

4. Support for manual or automatic MOP composition: are the MOs of MOPs combined by

the programmer? Or are they combined by a composer object at run-time?

5. Static or dynamic composition: if multiple MOPs can be selected, is it possible to change

them dynamically, at run-time?

16

Chapter 2. R elated Work

6. Semantic aid for au tom atic composition: how does the com position deal w ith sem antic

o v e r la p b e tw e e n M O Ps?

7. Links between the meta-level and the middleware: in m any cases, MOs of M OPs use a

middleware to provide their intended functionality. W hat is the relationship between

them ?

T his chapter also describes influentual reflective and non-reflective systems, th a t address

com position in some form or are relevant to our thesis.

2.2 The Common Lisp Object System M eta-object Protocol

T he Common Lisp O bject System (CLOS) defines an object-oriented Lisp program m ing

system . The CLOS M cta-object Protocol (m o p) [37] has been added to allow custom isation

of the CLOS system.

T he CLOS m o p is a description of the CLOS system itself as an extensible CLOS program.

Fundam ental elements of the CLOS language (e.g., classes, slot definitions, m ethods, generic

functions, and m ethod combiners) are reified and available to program m ers as first-class

objects, called inetaobject (m o) classes. The basic MO classes are thus: class, slot-definition,

generic-function, method, and method-combination. A MO class is a subclass of exactly one of

these classes. A MO is an instance of a MO class.

T he behaviour of CLOS is implemented by these M Os. Each MO represents one program

element and has inform ation associated w ith it, which is required to serve its role. The MOs

are interconnected. This interconnection means th a t the role of a MO is always based on the

role of o ther MOs.

T he essential features of CLOS are classes th a t define sta te and functionality and can

inherit from one or more classes; instances o f classes th a t are created, initialised, and used in

programs; generic functions, whose behaviour depends on the classes of argum ents supplied

to them ; and methods th a t specialise generic functions for class-specific behaviour. The

program m er can qualify m ethods as before, after, or around: before and after m ethods are

executed before and after the prim ary m ethod execution takes place, respectively, while

17

Chapter 2. ReJated Work

around m ethods are executed around before, primary, and after m ethods. A m ethod with no

qualifier is considered as primary.

In the rem ainder of the section we focus on the m ethod com bination aspect of the CLOS

MOP. CLOS divides generic function invocation into three parts: determ ining the apphcable

m ethods (d ictated by the m ethod qualifiers such as before, after, and around and the classes of

argum ents); sorting the applicable m ethods into decreasing precedence order; and sequencing

the execution of the sorted list of the applicable m ethods. This is often called the effective

method lookup. CLOS has a standard m ethod com bination mechanism, which combines the

around, before, primary, and aft.er m ethods for each generic function invocation in order to

form the single effective m ethod.

The generic function invocation uses the c/a«s precedence list^ for sorting the applicable

m ethods, and it works as follows: the m ost specific around m ethod is invoked first, which

should call the call-next-method CLOS function to invoke the next most spccihc around

m ethod and so on. W hen there are no more around m ethods, the call-next-method runs

the com bination of the rem aining before, ptim ary, and after m ethods: the applicable before

m ethods are executed first, from m ost specific to least specific. The m ost specific a]>plica-

ble prim ary m ethod is executed next, followed by the applicable after m ethods, from least

specific to m ost specific. The value(s) returned by the call to the generic function are the

value(s) re tu rned by the prim ary m ethod. Prim ary m ethods may use the call-next-method

if they want to invoke the next most applicable prim ary m ethod. Around m ethods should

always call the call-next-method from w ithin the body of a user-defined m ethod. Prim ary

m ethods may call call-next-method. Finally, before and aft.er m ethods m ust not call it.

The full CLOS m o p provides a mechanism for the user to replace the standard m ethod

combiner w ith a custom ised one.

Note th a t the before, after, and around m ethods are not m eta-m ethods as such, i.e., they

are base-level m ethods defined for application classes. However the concept of defining before

and after operations a t the meta-level has been adopted in and used by many reflective

*The class precedence list contains all of the direct or indirect superclasses of the class. The precedence
list is calculated for each class such that it must satisfy the following two constraints: 1. a class precedes its
superclasses; 2. superclasses have their order given in class definitions.

18

Chapter 2. Related Work

programming systems.

2.2.1 Evaluation and relevance to this thesis

The CLOS MOP can be considered a.s a fine-grain run-time MOP. MOP selection in CLOS is

implicit: there is only one MOP which is the collection of the above MOs. Each MO class is a

subclciss of exactly one ba.se MO class.

The effective method lookup mechanism and the explicit ca l l -n ex t -m eth o d has influenced the

design of I g u a n a version 2.

2.3 O pen CH—h version 1 and 2

Open C++ version 1 [10, 8], a reflective extension to the C++ language, supports run-time

behavioural reflection. The Open C++ version 1 MOP allows the behaviour of method invo

cation, state read/w rite, and object creation to be reified and thus altered. The Open C++

MOP is defined by the MetaObj class. The methods defined in the MetaObj class implement

the default C++ mechanisms for method invocation, state access, and object creation. This

default behaviour can be altered by deriving subclasses of MetaObj, in which these methods

are redefined. Each reflective instance of a reflective base-level class is controlled at run-time

by an instance of its associated MO class, a MO. When a new reflective instance is created,

a new MO is also created to control that object. The relationship between the base-level

objects and MOs is one-to-one. The object-MO binding is created at object creation time and

cannot be modified or undone later. Open C++ version 1 does not provide support for MO

composition.

Open C++ version 2 [9, 11] uses a compile-time MOP to make the C++ programming

language extensible. The m o p consists of a class hierarchy that reifies the compiler’s parse

tree and is used to generate a specialised version of a C++ compiler. The specialised compiler

is subsequently used to perform code transformation to the base-level program. The Open

C++ version 2 MOP provides control over the compilation of class definition, state access,

virtual function invocation, and object creation. This is achieved by reifying the compiler’s

19

Chapter 2. Related Work

parse tree as a collection of objects. The MOP supports behavioural reflection in the sense

th a t it can be used to change the objects’ behaviour by replacing or inserting code in an

application. The source-to-source transla tion of the program as well as s truc tu ra l aspects,

such as type inform ation, are reified by the following MO classes: Class, Ptree, Typelnfo, and

Environment. MOs of type Class play a key role in the MOP as they represent class definitions

and control the source-to-source translation. Im plem enting a new MOP is accomplished by

subclassing Class and by redefining the apjjropriate m em ber functions th a t control the source

translation .

A base-level class can select a MO class either by a metaclass declaration or by registering a

new keyword. Unlike in O pen C++ version 1, in which non-reflective instances of a reflective

class can still be created, MOP selection in version 2 is class-based, i.e., all instances of a

reflective class are reflective. As the MOs exist during compile-time, the link between the

base-level and meta-level objects is not m aintained during run-tim e.

2.3.1 E valuation and relevance to th is th esis

O pen C++ version 1 is a coarse-grain run-tim e MOP w ith 3 elements of C++ th a t can be reified.

There is no support for MO com position in O pen C++ version 1, apart from the ability to add

a MO to a MO thus resulting in m ultiple meta-levels (e.g., th is approach is used in F r i e n d s ,

see section 2.15).

Open C++ version 2 is a coarse-grain com pile-tim e MOP: 4 elements of C++ can reified. It

is not known w hether more th an one meta-level class can be used in the generation of code.

Therefore, it is assum ed th a t Open C++ version 2 does not support dynam ic MO com position.

In teresting to note th a t a MOP for fault-to lerant Common O bject Request Broker A rchitecture

(CORBA) applications [41] uses Open C++ version 2 compile-time MOP to insert a run-tim e

MOP for supporting fault-tolerance. An interesting application of O pen C++ version 2 is

im plem enting atom ic d a ta types [69].

20

Chapter 2. Related Work

2.4 C om position of B efore/A fter M eta-classes in SOM

In IBM ’s System O bject Model (SOM) [23], a class is a runtim e object th a t defines the

behaviour of its instances by m anaging an instance m ethod table. D uring the initialisation

of a class object, a m ethod is invoked on it, th a t informs the cla-ss of its parent classes. This

allows the class to build an initial instance m ethod table.

Because classes are objects, their behaviour is defined by o ther classes, called m eta

classes. SOMCIass is the default meta-class, from which all o ther meta-classes are derived.

Instances of classes are classes. For example, a Before and After meta-classes can be used to

define the im plem entation of classes th a t arrange for each m ethod invocation to be preceded

by execution of a “before” m ethod, and followed by an “after” m ethod, respectively. [25]

introduces and solves the problem of composing different Before/A fter M eta-classes in the

SOM context.

Interfaces to SOM objects are w ritten in IDL, an object interface definition language,

defined by the O bject M anagement G roup (OMG) CORBA standard . SOM IDL extends IDL

w ith the ability to include SOM class descriptions in addition to object interface definitions.

The SOM MBeforeAfter meta-class introduces two m ethods, BeforeMethod and AfterMethod.

By default, these m ethods do nothing. T he program m er derives from SOM MBeforeAfter

and overrides its m ethods w ith the desired behaviour. Exam ples of the use of before/after

m ethods are: m ethod tracing, invariant checking, concurrency, persistence, and replication.

B efore/A fter meta-classes are not useful unless they compose, because if not, the use of one

m eta-class would preclude the use of others.

SOM encourages the definition and the use of explicit meta-classes. At the same tim e,

however SOM relieves program m ers of the responsibility for getting the m eta-class right when

defining a new class. SOM does this by introducing a concept called derived meta-class, which

deals w ith upw ard (binary) com patibility: given an instance of a SOM class, which inherits

from possibly m ultiple superclasses, how could someone ensure th a t the m eta-class of the

derived class m eets the expectations of the meta-classes of the superclasses? For example, if

class Y, and instance of MetaY and a subclass of X, which is in tu rn an instance of MetaX.

T here is an upw ard com patibility problem because MetaY does not inherit from MetaX.

21

Chapter 2. Related Work

At run-tim e, SOM autom atically determ ines an appropria te m eta-class th a t supports this

compatibility. W hen necessary, SOM autom atically derives by subclassing a new m eta-class

called a derived meta-class. Thus, following the above example, SOM creates a Derived

meta-class, which inherits from both MetaA and MetaX. Thus, a SOM program m er never

needs to consider the meta-classes of a newly defined class’ ancestors. Instead, explicit m eta

classes should only be used to add in desired behaviour for a new class. A nything else is

performed by SOM autom atically. Because class construction is a dynam ic activity in SOM,

the appropriate m eta-class derivation is done a t run-tim e.

In SOM, the composition of Before/A fter meta-cla.sses has the associative property: the

order of m eta-classes depends on the search order, which is determ ined by the order of the

parent meta-classes.

2.4.1 E valuation and relevance to th is th esis

SOM with its SOMBeforeAfter meta-classes represents a coarse-grain run-tim e MOP support

ing only the reification of invoking (remote) m ethods. T he single SOM m o p is im plicit as it

m anifests in the derivation of the appropriate m eta-class only. Nevertheless, the autom atic

and dynam ic com position of SOMBeforeAfter m eta-classes makes SOM relevant to our work.

T he order of executing the before and after m ethods from the combined meta-classes is

fixed. Also note th a t SOM may introduce sem antic inconsistencies by autom atically com

bining sem antically overlapping metaclasses a t run-tim e. Since SOM objects imj)lement IDL

interfaces, SOM itself is a middleware.

2.5 CodA

T he CodA [51] m eta-level architecture is based on an operational decom position of m eta

level behaviour into objects and the provision of a framework for m anaging the resulting

components. In CodA, the meta-level is decom posed into seven so-called rneta-components,

th a t reify different aspects of object behaviour such as:

Send Manages the sending of a message to an object. This can include supervision of the mes-

22

Chapter 2. E.elated Work

sage transmission, synchronisation of the sender and the receiver, protocol negotiation,

and so on.

Accept Defines how the receiver of a message interacts with the message sender. Therefore it

has to deal with synchronisation and protocol negotiation. It also determines whether

the message should be placed in a queue or should be processed immediately.

Queue Organises and holds messages that have been accepted but not yet received or pro

cessed.

Receive Responsible for fetching the next message to be jirocessed. This may involve the

selection of a message from a queue.

Execution Specifiies how an object interacts with the system in order to execute one of its

methods. For example, it determines whether the method should be executed in debug

mode or not. It also controls where and when a method is executed, and is responsible

for actually executing the method.

Protocol Resi)onsible for mapping a message to be processed onto a method to be executed.

This n;quires the specification of how messages and methods can be matched.

State Organises and maintains information on tlie object’s state, that is, its instance vari

ables. It defines what instance variables an object has, and how they can be accessed.

Object behaviour is modified by explicitly associating meta-components with an object. A

certain combination of these seven meta-components makes an object model, which describes

a particular behaviour for a base-level object. The first six of these meta-components (also

called roles) provide the programmer with behavioural (intercessory) facilities, while the last

meta-component (State) implements structural reflection (introspection).

Although the CodA model can be applied to other systems, it is closely linked to the

S m a l l t a l k [26] language.

CodA programmers have to explicitly instantiate the meta-level for reflective objects

and insert the meta-cornporients they want to use in order to implement a particular object

23

Chapter 2. Related Work

behaviour. Dynam ic reflection is achieved by allowing any of these seven m eta-com ponents

to be replaced at run-tim e.

The meta-level of a particu lar object is created by dynam ically combining various object

models. O bjects begin life behaving according to the default object model. Users apply their

own particu lar object models. W hen adding object models to a meta-level, the constraints

(i.e., m eta-com ponents) specified by the models m ust be combined. Since m eta-cornj)onents

are general objects and object models can be arb itrarily complex, the ir au tom atic com position

is difficult. Combining non-overlapping object models (i.e., the intersection of the meta-

com ponents of the two object models is em pty) is straightforw ard. The new model simply

contains the union of the m eta-com ponents from the original object models.

Com bining overlapping object models may require program m er intervention. CodA does

not offer an au tom atic composition. Instead, it offers a simple property-based specification

th a t helps program m ers resolve such com position conflicts. For example, if object models

X and Y b o th have their own Send m eta-com ponents (XSend and YSend, respectively), the

program m er has to create a new XYSend, th a t has the properties of both XSend and YSend.

Having resolved the conflict between XSend and YSend once by im plem enting XYSend, the

new m eta-com ponent is reusable in future com binations of other object models th a t require

XSend and YSend.

2.5.1 Evaluation and relevance to this thesis

CodA is a fine-grain run-tim e MOP w ith 7 m eta-com ponents (a MOP in CodA is called an

object model). M ultiple object models can be combined b u t there is no support for autom atic

com position of m eta-com ponents (e.g., Send). Thus, m eta-com ponents of overlaj^ping object

models have to be combined by the program m er. Ind iv idual m eta-com ponents can be replaced

a t run-tim e.

The fine-grain MOP of CodA has influenced the design of IGUANA version 1.

24

Cha,pter 2. Related Work

2.6 DASCo: Separation and com position of overlapping and

interacting concerns

DASCo (Development of Distributed Applications with Separation of Concerns) [66] is an

approach to developing object-oricnted concurrent and distributed applications using a sep

aration of concerns strategy.

Separation of Concerns (SoC) approaches deal with abstraction and integration. The

former describes conmion concepts such as object synchronisation or concurrency separated

from functional (application) objects, while the latter deals with integrating abstractions

among themselves and with functional objects. The SoC approach integrates abstractions

only in the final program.

DASCo is based on design patterns, composition patterns and object-oriented frame

works to, respectively, describe abstractions, describe composition of abstractions, and im

plem ent/integrate abstractions and their composition with functional objects.

A design pattern is defined for each abstraction. Abstraction composition is obtained

from the composition of each concern’s design patterns. The composition of design patterns

also constitute an abstraction described by a design pattern, in which participants arc built

by composing each involved pattern’s participants. In addition, the composition pattern ’s

collaborations are built from the collaborations of each pattern participating in the compo

sition.

There are two cases regarding concern composition: orthogonal (i.e., there is no semantic

overlapping between concerns) and non-orthogonal. The DASCo experiment indicated that

orthogonal composition is rather restrictive. In many situations, there is semantic overlapping

between different abstractions. Moreover, they verified tha t some composition abstractions

have their own policies that are not trivially inferred from each of the composed abstractions.

In order to deal with semantic overlap, the composition pattern should describe the new

policies that result from the composition. It should also describe what are the consistent

combinations of overlapping parts and what are the restrictions to policy composition. A

m atrix can be used to identify new policies and the associated restrictions on policy combi-

25

Chapter 2. R elated Work

nation.

Design and composition patterns are implemented in a three-layer object-oriented frame

work with separation of concerns. In this framework, classes implementing design and compo

sition patterns are grouped within components. In the object-oriented framework’s concrete

case, components consist of classes implementing design and composition patterns, and are

instantiated either through instantiation of the explicit interface’s parameters or through

specialisation of some of their classes.

The three layers in the framework are aii follows:

C o n cern layer : contains classes implementing each of the design jjatterns grouped into

concern components. Concern components provide an interface for composition with

other concern components and for customisation of the concern’s policies.

C o m p o sitio n layer : contains classes implementing composition patterns. They provide a

minimum interface for integration with the apf)lication.

A p p lica tio n layer : in this layer, composition components are integrated in the final pro

gram and concern components are customised so tha t they provide the policies required

by the application’s functional objects.

2.6.1 E valuation and relevance to th is th esis

DASCo is based on design and composition patterns as well as on a framework. DASCo is a

non-reflective architecture, thus it does not have a MOP. We included in our review because

it addresses the combination of semantically overlapi)ing non-functional concerns.

2.7 I g u a n a version 1 and 2

This section summarises IGUANA, a reflective programming model developed in the Dis

tributed Systems Group (DSG) of Trinity College Dublin.

26

Chapter 2. Related Work

2 .7 .1 M etaob ject com p osition in I g u a n a version 1

T he original IGUANA (we refer to it as version 1 in the tex t) reflective program m ing model

[29, 30, 28] supports m ultiple, fine-grained run-tim e MOPs w ith selective reification. The

compile-time reification process is static^ and perform ed during the MOP definition.

The behaviour described by an object model for a program m ing language can be quite

complex. Consequently, a m op th a t specifies the object model in term s of meta-level objects

(classes), interfaces and interaction will be equally, if not more complex. D ividing an object

model into fine-grained MOPs allows the im plem entation to be m odular and benefit from

reuse of MO classes. IGUANA version 1 introduced the concepts of reification categories and

rcification category lists. Each reification category reifies only a small p a rt of the object

model, for example, m ethod send, receive, dispatch, and invocation, th a t can be represented

by a MO. A reification category list groups a set of related reification categories.

There are 29 reification categories listed in Ig u a n a version 1 [28]. The 9 structu ra l reifi

cation categories are: Class, Identity, InheritanceTree, MethodAddress, MethodName, StateAd-

dress, StateName, Source, and Type. The 20 behavioural reification categories are: Creation,

Deletion, Dispatch, Invocation, MethodAccess, Method Before, MethodAfter, Reception, State-

BeforeRead, StateAccessRead, StateAfterRead, StateBeforeWrite, StateAccessWrite, StateAfter-

Write, ActFrame, Inheritance, Method, State, TypeSoft, and TypeSoftPlus.

The benefit of this fine-grained approach is th a t only those p arts of the object model, th a t

are required to implement the derised object behaviour are reified. Thus selective reification

reduces the reflective overhead f>laced on the object model.

An Ig u a n a version 1 m o p is a specification of the behaviour of an object m odel. It is

also a first-class language entity in IGUANA: the protocol keyword can be used to specify a

MOP. The m o p specification consists of four main parts:

• List of reification categories and their related MO classes;

• List of o ther MO classes th a t are not related to reification categories;

^The Iguana mop defines the a-spects of the object model tha t are reified, mop definitions are processed
a t compile-time by a preprocessor.

27

Chapter 2. Related Work

• List of parent protocols (i.e., m o p s);

• Sibling MOP dependencies.

T he distinction between base-level and meta-level objects is less well-defined in I g u a n a

th an in some other systems. The IGUANA MOP selection process causally connects base-level

and meta-level objects and allows meta-level objects in tu rn to be causally connected to a

fu rther layer of meta-level objects to an a rb itra ry depth.

T he I g u a n a version 1 m op supports introspection, intercession, and dynam ic meta-level

reconfiguration. A call to a meta-level object may be im plicit or explicit. Im plicit calls occur

when a language com ponent has been reified. Explicit calls can be m ade from norm al base-

level objects by using either an IGUANA extension protocol or calling public m ethods on MOs.

D ynam ic adap ta tion is supported via explicit invocations to the meta-level.

I g u a n a m o p s are associated w ith base-level objects through procotol selection. A base-

level object can select one or more MOPs. T he selection process nm st be used somewhere in

the im plem entation phase. A lthough causal connections between base-level and meta-level

objects are made a t com pilation-tim e, this is no t necessarily a lim itation. I t is a specific fea

tu re of the I g u a n a version 1 meta-level architecture th a t meta-level objects can be replaced

dynam ically, at run-tim e.

MOP selection is either behavioural or augm entary. Behavioural selection is the most

common and is used to describe or im plem ent the behaviour of base-level objects. IGUANA

version 1 supports three forms of behavioural MOP selection: default, class, and instance.

They differ in their scope: default selection associates classes in a com pilation unit (i.e., a

C++ source file) w ith the MOP(s), while class selection selects the m op(s) for all instances of

th a t class. Instance selection binds the MOP(s) to th a t instance only, thus o ther instances of

the same class may select different m ops or may not be reflective a t all. A ugm entary selection

is used to add to, or augm ent the behaviour of the bcuse-level objects tem porarily. T here is

one augm entary selection form in IGUANA, called the expression selection. The scope of an

expression selection is th a t of a single expression.

T he I g u a n a version 1 model facilitates dynam ic adap ta tion of the program in the follow

ing ways: the program m er can replace an entire MOP, or replace/m odify individual meta-level

28

Chapter 2. Related Work

and ba.se-level objects.

Ig u a n a extension protocols provide controlled access to the meta-level from the base-

level. They abstract away from the specific features of a meta-level object to provide an

application-specific feature. They are written as standard C functions or C++ methods. The

reasoning for this is given in [28] as follows: “The functionality encapsulated by an extension

protocol can usually be encapsulated within a single function. If this is not the case, then

a C++ class can be used as the implementation medium.” Extension protocols provide the

building blocks, from which secure adaptable systems can be constructed. Methods in an

extension protocol simply group a number of calls to rearrange the meta-level in order to

adapt it according to the application’s changing needs. The base-level object invokes these

calls on an extension protocol when it wants to adapt the application. Extension protocols

thus can act as a coherent and concise abstract interface to a MOP.

For a given program or service, the number of extension protocols can be dynamically

changed over time as appropriate. The IGUANA version 1 model can support nmltiple ex

tension protocols even over a single MOP. For example, when a thread scheduling policy

modification is requested by the client, an extension protocol can be dynamically pu t in

place and executed in response to the event. All the necessary security validations can be

implemented as a part of the extension protocol, thus separating the implementation (base-

level), the description of the implementation (meta-level), and the adaptation/specialisation

processing (interface between base-level and meta-levels) into three separate units.

Meta-level combination conflicts can arise as IGUANA allows more than one MOP to be

causally connected to the base-level object. The Ig u a n a case of having multiple m o p s

selected for a base-level object is quite complex, as these MOPs may have conflicting MOs

declared and use multiple MOP inheritance. To address this problem. I g u a n a version 1 relies

on the programmer to specify the ordering of MOs in each of the reification categories. If

no order is specified, IGUANA MOPs have a default behaviour for sequential ordering (i.e.,

this is the chain of responsibility model mentioned in section 1.2). This is implemented by

the default meta-combiner. By inheriting from a meta-combiner interface, a programmer

can write his/her own combiner algorithm. This can be used by specifying the name of the

29

Chapter 2. Related Work

combiner class in the appropriate reify statement, which is part of the protocol definition.

For example, to use a special combiner class MyStateAccessCombiner for a distribution

MOP, one would write the following:

p r o t o c o l D i s t r i b u t e d {

s h a r e d ;

r e i f y S ta teR ead (MyStateAccessCombiner) D i s t r i b u t e d S ta t e R e a d ;

r e i f y S ta te W r i te (M yStateAccessCombiner) D i s t r i b u t e d S t a t e W r i t e ;

[. . .]

};

A lthough Ig u a n a version 1 is a generic m odel that can be tied /ap plied to any (object-

oriented) program ming language, it has been im plem ented as IGUANA/C++, a reflective ex

tension to the C++ language. IGUANA is a run-tim e MOP im plem ented as a source-to-source

translator.

2.7.2 M etaobject com position in I g u a n a version 2

The second version of the IGUANA model [21, 64] is a simplification and an evolution of the

previous model. Simplifications include a reduction in the number of reification categories

(from 29 to 12), and streamlining of the meta-level structures.

In I g u a n a version 2, there are only 12 reification categories, which can be classified as

structural and behavioural, namely;

S tru c tu ra l: Class, Method, Attribute, Constructor, and Array.

B eh av io u ra l: Creation, Deletion, Invocation, StateRead, StateWrite, Send, and Dispatch.

Dependencies between behavioural and structural reification categories have also been

identified in the thesis. For example, the Invocation behavioural MO needs the Class and

Method structural MOs to carry out its operations.

Similarly to IGUANA version 1, there are three ways o f selecting a MOP: class, instance,

and default. The expression selection has however been removed from IGUANA version 2.

30

Chapter 2. Related Work

I g u a n a version 2 supports automatic and manual MO composition by means of multiple

MOP inheritance. Behavioural MOs reifying the same language element (e.g., method invoca

tion or state read) are organised in a chain: each MO carries out its operation and is expected

to call the next MO in the chain. By convention, the last MO should be the default MO, which

reflects the operation at the base-level. The order of MOs in the list is deduced from the m o p

precedence list.

By default, control propagates through the list of MOs until it reaches the last MO, and

then it goes back. Should not the default composition work for some MOP combinations, a

MO positioned in the beginning of the chain can be coded as a combiner and it can either

override the order of the remaining MOs or call them in a particular order (e.g., a combiner

MO can implement the at-most-one semantics).

I g u a n a version 2 introduced the concept of meta-types. The meta-type of a base-level

object captures the functionality off'ered by the reflective language extension. An object’s

meta-type can be static or dynamic. The static meta-type is the MOP that has been selected

for the object’s class using class MOP selection. The dynamic meta-type is the MOP that has

been (re)selected for the object, subject to the following rules:

1. Every object has a single meta-type.

2. The meta-type of an object can be changed dynamically.

3. A class inherits the rneta-type of the superclass. The meta-type selected by a class must

be the same or a sub-type of the meta-type selected by its superclass.

4. The dynamic meta-type of an object must be a sub-type of its static meta-type.

In contrast with IGUANA version 1, which allows objects to select nmltiple MOPs, here an

object can have at most one MOP (meta-type) associated with it. The reason for this is given

in [64]: “Rules to combine MOs from meta-types that are written independently of each other

are technically possible, but unlikely to lead to meaningful combined behaviour when the

meta-types are unaware of each other. Thus, the current design only allows an object to have

a single meta-type. This meta-type in turn can be composed [of multiple meta-types], but it

is the meta-level programmer’s responsibility to provide a meaningful composition order.”

31

Chapter 2. Related Work

In both Iguana versions, an Ig uana /C++ to standard C++ pre-processor is used to

implement the model.

2.7 .3 E valuation and relevance to th is th esis

Both Iguana versions are fine-grained run-time MOPs, with 29 and 12 reification categories

in version 1 and 2, respectively. The main difference between them is in the MOP selection:

version 1 allows selecting multiple MOPs, while version 2 introduces the concept of meta-type,

which translates to single MOP selection. There is a single meta-level in version 2 versus the

meta-towers in version 1.

Both versions support changing the MOP(s) (the single meta-type in version 2) dynam

ically. Also both versions use the chain of responsibility model for combining MOs in a

particular reificiation category. Ig u a n a version 1 has Combiner MOs, but it is difficult to see

how multiple combiner MOs are combined. IGUANA version 2 supports dynamic composition

of the MOS of the single mcta-type.

Our work is an evolution of the IGUANA models, where we focus on solving the problem

of automatic and dynamic comj>osition of multiple, indepenendently develojjed, and seman

tically overlapping MOPs. We have identified the limitations of MOP composition in IGUANA

version 1 and 2, refer to section 1.4.

2.8 Towards a M ethodology for M etaobject C om position

A methodology aimed at the design of composable MOs has been })roposed in [53]. The ba.sic

problem the paper attempts to solve is the reuse of existing mops: given two independently

developed language customisations (in the form of two MOPs), is it possible to compose them

into one combined customisation? Moreover, since the programmer wants to treat the MOPs

a.s black boxes, what axe the lea.st condiditions one has to impose on the MOPs in order for

this composition to work?

The paper points out that MOP composition in its full generality is a very hard problem

because of the interferences between the combined behaviours. Composing semantics is a

32

Chapter 2. Related Work

general problem, that can be handled for MOs by including some constraints leading to a

specific methodology.

Practically, MOPs usually offer customisable functionalities as a set of elementary bricks,

which have to be assembled together to define the complete semantics. Assembly is easy if the

bricks do not have semantic overlap. However, assembling purely orthogonal functionahties

constrains the range of combinations, since several customisations of the same brick cannot be

composed unless an expert designer manually resolve conflicts between overlapj^ing semantics.

The issue the paper deals with is the composition of non-orthogonal semantics. It advocates

the realisation of elementary MOs, having potentially overlapping semantics, and it attem pts

to reuse them afterwards by automatic composition.

The paper associates MOs in pairs in an ordered relation; it distinguishes between left-

composed and right-composed MOs. A left-composed MO specialises or aggregates the right-

composed one. Composing MOs only means having the left-comj)osed MO requesting explicitly

the functionality of the right-composed one, without knowing the internal details of it. The

resulting co-operation depends closely on the type of the composition link, which is either

s])ecialisation (by means of inheritance or delegation) or aggregation (embedding). However,

since specialisation and aggregation are not expected to compose MOs, the programmer has

to design MOs that co-operate along the composition link.

Each composition solution (either specialisation or aggregation) induces particular con

straints on the internal design of the MOs making use of it. In other words, MOs should be

cooperative and written with future composition in mind.

The following three design rules nmst be respected:

E x c lu siv ity : when a meta-computation is performed on an object, its respective MO must

be activated to this aim, since it is assumed to be the only one capable of performing

this task.

E n c a p su la tio n : a MO is like a black box, tho.se external interface corresponds to the protocol

specified by the mop.

In d e p en d en c e : the implementation of a given MO must make no specific assumption on the

33

Chapter 2. R.elated Work

implementation of the base-level object.

An application of this model to the M O O ST R A P language is given in the paper, which

demonstrates composition with trace and delegation. The generalisation of the above method

ology is then apphed to the CLOS MOP. In the CLOS M OP context, a cooperative MO must

foresee its future composition. Practically, FLAV ORS inheritance already advocated the con

cept of cooperative components, in the form of mix-ins. A mix-in defines a particular feature

of an object. A mix-in cannot be instantiated because it is not a complete description (there

are base “flavours” that are complete). Considering that mix-ins are required not to interfere

with other behaviour and their methods should explicitly invoke the call-next-method, the

composition is achieved when defining a concrete comi>lex MO, incorporating several seman

tics supported by mix-ins, and a final one, which is the base MO.

2.8.1 E valuation and relevance to th is th esis

We included this jjaper in the review because it addressed the composition of independently

developed, semantically overlapping m o p s and provided a methodology for writing compos-

able MOs. The generalisation of the methodology is applied to the CLOS M OP, which is

described in section 2.2.

2.9 Guarana

Guarana [56] allows MOs to be combined through the use of composers. Composers are MOs

that can be used to define arbitrary policies for delegating control to other M Os, including

other composers. They provide the glue code to combine M Os, and to resolve conflicts be

tween incompatible ones. The use of composers encourages the separation of the structure of

the meta-level from the implemev.tatior). of individual management aspects. The authors of

Guarana argue that the chain of responsibility model has some serious drawbacks;

• It is intrusive on the MO implementation, in the sense that a MO must forward operations

to its successor in the chain.

34

Chapter 2. R elated Work

• It forbids two MOs concurrently handling the same operation.

• It forces MOs to receive the operation results from the successor MO.

• The order of presentation of results is necessarily the reverse order of the reception of

operations.

• It is impossible to mediate interactions between MOs and base-level objects with an

adaptor capable of resolving conflicts that might arise when multiple MOs are put to

work together.

These problems are solved in Guarana by splitting the meta-level processing associated with

a base-level object in the following steps:

1. The Guararia kernel intercepts operations on base-level objects that have MOs associated

with them.

2. A MO may produce the result for the operation. In this case, the meta-level }>rocessing

terminates by unreifying the result as if it had been produced by the execution of the

intercepted operation.

3. However, a MO is not required to reply with a result. The MO may reply with an

operation to be delivered to the base-level. In addition, the MO may indicate that it is

interested in receiving and/or modifying the result of the operation.

4. Finally, the operation is delivered to the base-level, and its result may or may not be

presented to the MO, depending on its previous reply to the operation.

Replacement operations can be created in the meta-level using operation factories. Oper

ation factories allow MOs to obtain access to the base-level objects they manage. Stand-alone

operations can also be created with operation factories, and then performed, i.e., submitted

for interception, rneta-level processing, and potential delivery for base-level execution.

Composers separate operation handling from result handling, implemented in two dis

tinct methods, namely, handle o p e ra tio n and handle r e s u l t . A composer is a MO that

35

Chapter 2. Related Work

delegates operations and results to multiple M Os and then composes their replies in its own

replies. For example, a composer can implement the chain of responsibility model, but in

a way that M Os on the chain do not need to keep track of their successors. Another com

poser implementation may delegate operations and /o r results concurrently to mulitple MOs,

or refrain from delegation if it knows that those M Os are not interested in that operation.

In Guarana, there is at most one MO associated with a base-level object at any time. This

MO is called primary metaobject. The primary MO can be a composer, and it can delegate

operations/results to other composers, too.

Guarana presents two additional features that enforce the separation of concerns between

the base-level and the meta-level: the meta-configuration of an object is completely hidden

from the base-level, and even from the meta-level itself; and the initial meta-configuration

of an object is determined by the meta-configurations of its creator and of its class, a mech

anism Guarana calls meta-configuration propagation. In Guarana, there is no way to find

out the primary MO of an object. It is possible, however, to send arbitrary messages and

reconfiguration requests to the comi>onents of the meta-configuration through the Guarana

kernel. The kernel supports the following oijerations:

B ro a d c a s t Messages can be used to extend the M O P, as they allow MOs to exchange infor

mation. MOs that do not understand a message are supposed to ignore it. Composer

MOs are supposed to forward a message to their components.

R eco n fig u re A reconfiguration request message carries a pair of M Os, suggesting that the

first MO should be replaced with the second MO in the object’s meta-configuration. The

MO reference null can be used to refer to the primary MO. It is up to the existing

meta-configuration to decide whether the reconfiguration request is ax;ceptable or not.

If the base-level object is not reflective, an InstanceReconfigure message is broadcast to

the meta-configurations of its class and superclasses. Their components can modify the

suggested new meta-configuration.

O b je c t c re a tio n In many object-oriented programming languages, object creation has two

steps: first, storage is allocated for the new instance, then secondly, the constructor

36

Chapter 2. Belated Work

m ethod is invoked. These steps are perform ed by the creator of the new object. In

G uarana, the creation of the m eta-configuration for the new object takes place between

these two steps. The prim ary MO of the creator is responsible for providing a m eta

configuration for the new object. I t may re tu rn n u l l , a different MO or even itself (the

same MO can be shared between different m eta-configurations). A composer is expected

to forward the creation request to the MOs re tu rned by them . After m eta-configuration

propagation, the kernel broadcasts a NewObject message to the m eta-configuration of

the class of the new object, so th a t its MOs can try to reconfigure it. Finally, the object

is constructed, and the constructor invocation can be intercepted by the kernel if the

base-level object is reflective.

P ro x y c re a t io n G uarana provides a mechanism th a t allows proxy object creation from the

meta-level, w ithout invoking their constructor. W hen a proxy is created, the kernel

broadcasts a NewProxy message to the m eta-configuration of the new proxy ob jec t’s

class. A proxy will usually be given a m eta-configuration th a t prevents operations from

reaching it, bu t it may be transform ed into a real object by its m eta-configuration,

through constructor invocation or direct initialisation.

G uarana has been im plem ented using Kava, an open-source Java V irtual Machine (VM).

M o l d s [58] is a library of MOs for G uarana, which provides essential features for developing

reliable d istribu ted systems. Meta-level services include persistence, replication, d istribution,

caching, m igration, logging, and atom ic execution.

2.9.1 Evaluation and relevance to this thesis

Guaxana is a fine-grained run-tim e MOP w ith Array Read, Array W rite , Field Read, Field W rite,

and M eth od Invocation Java operations reified. The M Os representing these reified concepts

can be composed by explicit composer MOs. If com position of m ultiple MOs is required, a

composer MO has to be instan tiated . It is left to the (meta-level) program m er to design and

im plem ent a dynam ic com position algorithm .

37

Chapter 2. Related Work

2.10 X-Kernel: an A rchitecture for Im plem enting Network

Protocols

The i-kernel [33] is an operating system kernel th a t provides an explicit architecture for

constructing and composing network protocols. I t views a protocol as a specification of

a com m unication abstraction, through which a collection of partic ipan ts exchange a set of

messages. Beyond this simple model, the x-kernel makes few assum ptions abou t the sem antics

of protocols.

The i-kernel provides three prim itive com m unication objects to support th is model: pro

tocols, sessions, and messages. These objects are classified as static or dynam ic, and passive

or active. Protocol objects are bo th sta tic and passive. Each protocol object corresponds to

a conventional network protocol (e.g., IP, UDP, T C P), where the relationships between pro

tocols are defined when the kernel is configured. Protocol objects are created and initialised

a t kernel boot-tim e. D ata global to the protocol is contained in the protocol sta te . Protocol

objects serve two m ain functions: they create session objects and they dem ultiplex messages

received from the network to one of their session objects.

Session objects are also passive, bu t they are dynam ically created. A session object is an

instance of a protocol object th a t contains a protocol in terpreter and the d a ta struc tu res th a t

represent the local sta te of some network connection. The two prim ary functions sessions

support are push and pop for passing messages down and up, respectively. Because sessions

represent connections, they arc created and destroyed when connections are established and

term inated . The session-specific sta te includes capabilities for o ther session and protocol

objects as well as whatever sta te is necessary to im plem ent the s ta te m achine associated with

a connection.

A lthough the kernel is w ritten in C, the in frastructure enforces a m inim al object-oriented

style on protocol and session objects, th a t is, each object supports a uniform set of operations.

Messages are active objects th a t move through the session and protocol objects in the

kernel. The d a ta contained in a message object corresponds to one or more protocol headers

and user data . Messages either arrive a t the bo ttom of the kernel (i.e., a t a networking device)

38

Chapter 2. Related Work

and travel upward to a user process, or they arrive at the top of the kernel (i.e., a user process

generates them) and flow down to a networking device. While travelling downward, a message

visits a series of sessions via their push operations. While flowing upward, a message visits

alternatively a protocol via its demux operation and then a session in that protocol’s class

via its pop operation. As a message visits a session on the way down, headers are added,

the message may fragment into multiple message objects, or the message may suspend itself

while waiting for a reply message. As a message visits a session on the way up, headers are

stripped, the message may suspend itself while waiting to re-assemble into a larger message,

or the message may seriahse (re-order) itself with sibling messages.

The ar-kernel also provides the programmer with highly-tuned, general purpose utility

routines. These routines include buffer, map and event management.

Usually a suite of protocols are configured into an instance of the x-kernel. When a pro

tocol is initialised, it is given a capability for each protocol on which it depends, as defined by

the protocol dependencies graph. The relationships between comnmnication objects (i.e., the

protocol dependencies) are defined using either a simple textual graph description language

or an X-Windows-ba.sed graj)h editor. A composition tool reads tins graph and generates C

code that creates and initialises the protocols in bottom-up order.

The experience with x-kernel described in the j>aper shows that it is both general enough

to accomodate a wide range of protocols, yet it is efficient enough to perform competitively

with less structured operating systems.

2.10.1 E valuation and relevance to th is thesis

The x-kernel is a non-reflective operating system kernel. It has been included in this review

because of its notion of describing communication protocols in terms of capabilities and

requirements and its composition mechanism that reads this information and generates code

for the instantiated protocol stack.

39

Chupter 2. Related Work

2.11 Secure C om position of Security M etaobjects

[63] outlines a m o p for secure composition of cryptography-aware MOs. Cryptography-based

security services address confidentiality, authentication, data integrity, and non-repudiation,

and are usually implemented on basic security services (encryption, digital signatures, and

other types of electronic fingerprints). The composition of these mechanisms is often a means

for satisfying more complex security requirements. However, special care is needed when

combining these mechanisms, in order to avoid incorrect combinations.

Computational reflection can be used to implement security mechanisms in a transparent,

non-intrusive manner, that is, without interfering with the application’s original structure.

MOs can implement these cryptographic mechanisms.

The cryptographic mechanisms for data integrity, authentication, and digital signature

are mutually exclusive and relate to each other as follows:

• An authentication fingerprint supports both sender (origin) authentication and data

integrity;

• A digital signature supports non-repudiation a-s well as sender authentication and data

integrity;

• Encryption is orthonogal to other cryptographic mechanisms and can be combined with

any of them.

The ways cryptographic-aware MOs are composed are limited by the above relationships.

There are two kinds of composition: a simple composition permits orthogonal MOs to compose

their behaviours seqeuentially. On the other hand, a selective composition allows composition

of mutually exclusive MOs in such a way that when one is turned on, the others are turned off.

When a cryptography-aware MO is asked for recofiguration, it can follow either a conservative

or a non-conservative approach. In the first case, combinations resulting in weaker security

are not allowed. Thus, the meta-configuration can either remain the same or stronger. In

the non-conservative approach, weaker combinations are also allowed. The authors adopted

the conservative approach for meta-level reconfiguration: e.g., a MO for digital signature

40

Chapter 2. R elated Work

Candidate configuration
Encryption Auth. checksum Integrity code Digital signature

Encryption 1 3 3 3
Auth. checksum 3 1 1 2
Integrity code 3 2 1 2
Digital signature 3 1 1 1

T able 2.1: Summary of rules for reconfiguring security MOs

cannot be replaced by authentication or data integrity MO. Similarly, a data integrity MO

cannot replace an authentication MO. Furthermore, MOs of the same type cannot replace each

other. For example, two MOs for encryjjtion based on different algorithms cannot replace each

other. On the other hand, a single encryption MO can compose with any MO for signature,

authentication or data integrity.

The MO reconfiguration policy can be presented as a table (see Table 2.1).

The numbers in the table indicate composition rules regarding the current and candidate

nieta configurations. They are as follows:

1 - the current meta configuration is not replaced;

2 - a selective composition of both current and candidate meta configurations replaces

the current one;

3 - a composition of both current and candidate m eta configurations replaces the current

one;

4 - the candidate meta configuration replaces the current one.

Cryptographic services usually address non-functional requirements related to network

communication and persistence requirements, but are orthogonal to these. The tower of MOs

can be as high as the number of non-functional requirements. The decision concerning the

position of cryptography in this tower is not simple. Aspects such as requirements compo

sition or chaining must be considered very carefully. For example, because cryptography

is orthogonal to persistence and communication, which can, in turn, be positioned at the

41

Chapter 2. Related Work

meta-level, cryptography should be accomplished at the meta-level of these; that is at the

meta-meta-level. However, if fault tolerance (replication) is another requirement, it can be

accomplished either above or below encryption.

The a priori negotiation, concerning both iLsage of and agreement on cryptographic al

gorithms (e.g., generation, exchange and storage of keys) may or may not be handled at the

meta-level. This decision depends on the degree of control over the cryptographic services

the application programmer intends to have. For example, application programmers may be

interested in the kinds of services are being used at a particular time, maintaining the ability

of turning the communication security on or off.

2.11.1 Evaluation and relevance to this thesis

We could not find information on the implementation of this MOP. However its approach

to composition of (security) MOs has influenced ours: we borrowed the notion of security

concern area and broadened it to cover other areas of non-functional concern. The notion of

exclusivity within a concern area is also drawn from here.

2.12 A n Event-based R untim e M etaobject Protocol

Renaud Pawlak’s CNAM internship report [62] introduces a new approach to run-time MO

composition. The framework in this report is ba.sed on an event-based run-tirne Metaobject

Protocol (EB-RT-MOP), which is in turn based on the Open C++ version 2 MOP.

In order to allow automatic MO composition, MOs first need to be classified. The cla.sses

are as follows:

B ase-m odificators: MOs that change the base-level object;

System -m odificators: MOs that send messages to other objects;

Reflectors: MOs that reflect the base-level operation, but they do not change the base-level

object’s state and do not send messages to objects. Reflectors can be pure or conditional

(as described below) or obligatory;

42

Chapter 2. Related Work

P ure reflectors: reflector MOs that always reflect the base-level operation;

C onditional reflectors: MOs that may (or may not) reflect the base-level operation;

O bligatory reflectors: reflector MOs that always have to be called;

E xclusive reflectors: reflector MOs that have to be called only if the base object is eff’ec-

tively reflected;

O bligatory conditional reflectors: conditional reflector MOs that always have to be called;

E xclusive conditional reflectors: conditional reflector MOs that have to be called only if

the base object is efi'ectively reflected.

Note tha t MOs may fall into more than one classes: e.g., a MO may be both base-level and

system-modificator. Ordering of MOs is achieved as follows: base-level or system-modiflcators

may need maimal ordering performed by the meta-level programmer. For example, if two

system-modificators send one message each to the base-object and the messages are not

commutative, then the rnodiflcators have to be ordered in the way the programmer wants

them to be. In practice, this is a difficult issue, as the meta-level programmer is not always

aware of the kind of changes performed by all the modiflcator MOs and he/she may not be

able to say if a rnodificator has to be called before or after another one. All the modiflcators

could be regrouped into a family of orderable MOs. The number of obligatory conditional and

exclusive conditional reflectors is fixed as one. Orderable MOs are assumed to be manually

or automatically ordered thanks to an ordering key or an algorithm given by the meta-level

programmer. However, we can assume that non-commutative operations are performed by the

same MO so that inodificator MOs do not need to be ordered. In this case, we do not need to

distinguish modiflcators from reflectors anymore. Thus, the assumption is tha t rnodificators

are programmed in a commutative way. Ordered modificators are defined as for future work.

Therefore when discussing the algorithm for ordering MOs, we only speak about reflectors.

Next step of the classification is the definition of ordering relationships between MOs. We

define four operators;

43

Chapter 2. Related Work

• M „ ~ M() m eans th a t th e two MOs are equivalen t; th e ir o rd er can b e changed in th e

MOs list.

• Mfl = M;, m eans th a t th e two MOs are equal; th a t is, of one is execu ted th e n th e o th e r

one is execu ted , an d conversely.

• M a > m eans th a t m u st be execu ted before (^ a preceeds in th e MOs

list).

• Mfl < M(, m eans th a t M„ m ust b e executed afte r Mft (M„, suceeds M(, in th e MOs list).

Oj)erators ~ and = are sym m etric, reflexive, and transitive. O perators > and < are

transitive. The MOs attached to a base-level object can b e split into the six sub-lists (some

of them may be em pty);

• L (r) : lis t o f reflectors w ith n,. elem ents,

• L (o r) : list o f ob liga to ry reflectors w ith n^r elem ents,

• L (er); list of exclusive reflectors with U er elem ents,

• L (cr): list o f conditional reflectors with U cr elem ents,

• L (o c r) : lis t of ob liga to ry co n d itio n a l reflec tors w ith n,^r elem ents,

• L (e c r) ; lis t o f exclusive co n d itio n a l reflectors w ith i i e c r elem ents.

T he ordering relations between MOs of the sam e class can be w ritten as:

• V (i, j) 6 [1; nr]^ : r̂ ~ r̂ -

• V (i, j) e [1; nor]^ or, ~ or^

• V (i, j) G [1; l i e r f ■■ er, ~ er^

• V (i, j) G [1; ncr]^ : cr̂ ~ cr^

• V (i, j) e [1; n„cr]^ : ocr^ = ocr^

44

Chapter 2. Related Work

• V (i, j) e [1; Hecrf ■■ ecri = ecr^

T he two last cases axe special. Because obligatory conditional reflectors m ust always be

executed, they are related by the = relation. However, if one of their conditions is evaluated

to be false, they break the chain: i.e., the following obligatory conditional reflection will

not be called (because the ba.se-level will not be reflected). Thus, the only possibility to

respect obligatory conditional reflector properties is to fix their im m ber to one. For exclusive

conditional reflectors, it is quite the sam e problem , therefore there is only one MOs of this

class allowed.

T he final step in the classification algorithm is the ordering relations of MOs between any

elem ents of the above sub-lists (inter-class relation). Because of the transitive property of

the > relation, we can write:

^ (i, j, k, 1) G [1; nor] x [1; iv] x [1; n^r] x [1; n „] :

ori > i j > o cri > cr*. > ecri > er;

This ordering relation between any kind of reflector allows au tom atic ordering of MOs, thus

when a new MO is added to the list, its position in the list can autom atically be determ ined.

2.12.1 E valuation and relevance to th is th esis

T he im plem entation of EB-RT-MOP is based on Open C++ version 2, see section 2.3. We find

the analysis and classification of different types of MOs im portan t in designing a composition

m echanism. The lim itation of this MOP is th a t the num ber of obligatory conditional reflectors

and exclusive conditional reflectors allowed in a MO set is lim ited to one.

T he classification of reflectors (MOs) has influenced the design of the IGUANA version 3 MOP

descriptors.

2.13 A pertoS: a reflective operating system w ith m etaspaces

A p e r t o s [80, 79, 43, 73] is an object-oriented, reflective operating system developed a t Sony’s

C om puter Science Laboratory. The m ost significant contribu tion of A p e r t OS is its use of

metaspaces. A m etaspace is a collection of MOs th a t provide the execution environm ent

45

Chapter 2. Related Work

for a base-level object. MOs can describe features such as v irtual memory m anagem ent,

com m unication, disk m anagem ent, fault handling, and other typical functionality th a t can

be found in operating systems.

M etaspaces exist in a hierarchy called a meta-hierarchy. Lower level m etaspaces support

the execution of higher-level ones. M etaspaces w ith alternative im plem entations and inter

faces can freely co-exist in order to facilitate dynam ic adap ta tion . For a base-level object to

use an alternative m etaspace, it has to m igrate from the current m etaspacc to the new one.

T he A p e r t o s MetaCore MO is a t the bottom of the m eta-hierarchy and can be considered

as a micro-kernel (it has no m etaspace). MetaCore offers the ba^ic execution environm ent,

upon which inetaspaces can be built.

A p e r t o s allows an object to m igrate between more th an one version of an operating

system feature (im plem ented as a m etaspace). During an o b jec t’s m igration, a series of com

patib ility tests are perform ed. A p e r .t o s does not allow the instan tia tion of new metaspaces

w ith difi'erent features a t run-tim e. New metaspaces can only be created a t design-tim e and

then need to be compiled.

2.13.1 E valuation and relevance to th is th esis

A pertos is a reflective operating system composed of a hierarchy of m etaspaces. I t is influen

tial because it shows how a micro-kernel based operating system can be built using m ultiple

meta-levels.

2.14 R ew riting sem antics of m etaobject and com posable dis

tributed services

In d istribu ted system s and com m unications software, there is great interest in m odular and

dynam ically composable approaches. According to [18], “services such as security and fault

tolerance and services intended for boosting perform ance should be installed dynam ically and

selectively a t run-tirne in those areas or domains of the d istribu ted system where they are

needed.” Aspect weaving (see Section 2.17) is one m echanism th a t could be used to deal w ith

46

Chapter 2. Related Work

th is problem. The onion-skin, actor-based reflection [1] is another model.

Several of these approaches use reflection to achieve m odularity and adaptability . But

all of these approaches recognise th a t the goal of achieving tru ly m odular and composable

d istribu ted systems, and ensuring good properties in com positions of such services is quite

subtle. According to this paper, no satisfactory formal sem antics of w hat is m eant by com

posable d istribu ted services has not yet been given, nor have the reflective aspects of such

com positions been adequately formalised.

This paper proposes a sem antics-based approach to make precise the reflective concept

of composable service in a d istribu ted system , and to reason about the properties of service

com positions. This approach is based on the executable formal sem antics for d istribu ted

object-oriented systems provided by rewriting logic and explicitly addresses the reflective

properties th a t are essential for having a tru ly m odular notion of service.

2.14.1 E valuation and relevance to th is thesis

T his work represents one of the first aj)proaches to apply formal m ethods to the use of

reflection in composable d istribu ted services.

2.15 F r i e n d s : a M etaobject A rchitecture for Fault-Tolerant

D istributed System s

In F r i e n d s ® [35], MOs are used recursively to add new properties to d istribu ted dependable

applications. F r i e n d s takes a m ulti meta-level approach in contrast to previous work [34]

w ith a single meta-level.

On the actual im plem entation of fault-to lerant services, the paper notes: “m o p s are not

the panacea and it is not claimed th a t they can be used on their own to build dependable

services. Several basic services m ust be im plem ented a t the system level (e.g., group com

m unication, error detection, atom ic m ulticast protocols, authentication and authorisation

servers).”

^ F r i e n d s stands for Flexible and Reusable Implementation Environment for the Next Dependable System.

47

Chapter 2. Related Work

T he F r ie n d s architecture consists of kernel, system , and user layers. The system layer

builds upon the (micro)kernel services and provides applications and MOs w ith the following

services: security, group com m unication, and fault-tolerance.

The following three subsystems (middleware) comprise the system layer.

F a u lt-T o le ra n t S u b sy stem : implements error detection, failure suspectors, configuration,

and replication domains management facilities, as well as stable storage support.

S ecu re C o m m u n ica tio n S u b sy stem : contains authentication, authorisation, directory,

and audit servers.

G ro u p D is tr ib u tio n S u b sy stem : provides group management and atomic multicast com

munication services.

F r ie n d s ases the Open version 1 mop for its implementation. A base-level appli

cation object is bound to a MO for fault-tolerance, which is bound to a MO for security, which

is in turn bound to a MO for group communication. The position of these MOs is fixed: the

MO for group communication is always the last in the “i>rotocol” stack. Depending on the

actual apjjlication requirements, the first two MOs can be left out.

The application object and MOs together form a run-time object. The interaction between

the application object and the MO is done through the MOP. FRIENDS uses a proxy server

model for distribution and replication.

F r ie n d s defines a hierarchy of MO classes. The Fault-Tolerance (FT) MOs library provides

MO classes for various fault-tolerance strategies (based on stable storage and/or replication)

with respect to physical faults, considering fail-silent nodes. Fail-silent means that errors are

detected and dealt with by the underlying operating system. The Secure Communication

MO library provides MO classes for secure communication protocols, including encryption and

authentication. The Group-based Distribution MO library provide MO classes for handling

remote object interaction, which can be implemented with groups.

2.15.1 Evaluation and relevance to this thesis

F r ie n d s is a m eta-level architecture providing libraries o f MOs for fault-tolerance, secure

48

Chapter 2. Related Work

communication for group-based distributed application. It uses Open C++ version 1 MOP,

see section 2.3. As such, it provides a reflective language-based solution to address these

non-functional concerns.

F riends has greatly influenced the design of Iguana version 3 thus they have many

things in common:

• Proxy model for remote communication.

• MOs form a stack (although FRIENDS use different MOPs for proxy and server).

• Last MO is the one for group communication (e.g., the “remote” invocation MO in

I g u a n a) .

• Subsystems for providing secvirity, fault-tolerance, and group distribution service (IGU A N A

middleware components).

• Both F r i e n d s and I g u a n a are a language-based solution; the base-level programmer

writes simple C++ classes and selects the required MO set (MOP set in I g u a n a) for them.

• MOs are chained (multiple meta-levels in F riends, while one meta-level in IGUANA

version 3).

F riends has recognised the importance of ordering the MOs: changing the order of MOs in

the stack can lead to difi'erent application properties. The limitations of F riends are mainly

coming from that of Open C++ version 1:

1. The links between application objects and MOs are created at compilation time.

2. No support for application class inheritance.

3. No direct manipulation of the application object from the higher meta-levels.

Although F riends defines a hierarchy of fault-tolerant and security MO classes, it does not

address dynamic composition: it is only mentioned as part of current/future work.

49

Chapter 2. Belated Work

2.16 A utom atic C om position of System s from C om ponents

A mechanism has been proposed in [68], which can compose a system from components with

anonymous dependencies: i.e., a component, which provides certain services, depends on

other services in turn provided by some other components. Each software component has a

descriptor with semantic-unaware properties. Clients use an apphcation domain independent

formahsm for describing their configuration requests in terms of desired properties.

The composition algorithm has two phases: the optional first phase processes the appli

cation domain-specific requirements, which results in the translation of them into semantic-

unaware domain independent properties. The second phase carries out the domain indepen

dent composition.

Current work on composition considers composing an application as a layered architecture:

each layer encapsulates a primitive dom ain/feature. In this model, each layer is a component,

that provides a specific set of services, which can be used by other layers on top of it.

The composition process, which is intrinsically architecture-independent, expoits the layer

property of incremental enchancement of services. If the current layer does not provide

enough functionality for a given application, the service may be enhanced step-by-step by

adding other layers.

Components have two ports, UP and DOWN. A component descriptor includes the fol

lowing information:

• list of provided properties (property is a unique name so it ensures application domain

independence);

• list of required properties (unique names) on the UP port;

• list of required properties (unique names) on the DOW N \>OTi\

• list of roles (optional).

Downward requirements are defined as the requirements imposed by a component on its

D OW N port towards components that are in layers below. Similarly, upward requirements

50

Chapter 2. R elnted Work

are defined as the requirem ents imposed by a com ponent on its UP port towards com ponents

above it.

R equirem ents can be specified as weak or strong in term s of their strictness. A strong

requirem ent m ust be fulfilled in order to yield a correct com position. A weak requirem ent

should only not be contradicted by the com position solution. For example, if com ponent C

sta tes property p as a weak upward requirem ent, then it is not allowed to have p provided

by a com ponent below C, bu t it is not necessary to have p provided by a com ponent above

C. A concrete example from the networking world would be a com ponent th a t im plem ents

the In ternet Protocol (IP), which may have a weak upward requirem ent called “tran sp o rt” .

This m eans th a t there might be a transpo rt layer in the protocol stack, b u t if it exists it has

to be provided by a com ponent above IP. Specifying immediate requirements is also possible,

m eaning th a t those requirem ents apply only to the adjacent layers, i.e., directly above or

below.

T he com ponents may be complex building blocks th a t can have difi'erent functionality,

dei>ending on the context of their usage. In order to handle this situation , a com ponent can

be defined as being in a set of roles. Each role groups a list of related provided properties

th a t impose its requirem ents towards the environm ent. At any tim e, a com ponent may play

a different role according to the context of its usage. There is one basic role for a corni)onent,

while there can be a num ber of alternative roles. Only one alternative role can be active at

a tim e. T he com ponent descriptors are stored in a com ponent repository.

T he com position algorithm tries to find a correct com position of com ponents th a t fulfills

a set of requirem ents. Essentially, the algorithm perform s a top-down search by m atching the

requested properties w ith the provided ones. T he m atch is only between current active roles

of com ponents: i.e., requirem ents in non-active roles are ignored. The com postion algorithm

produces solutions as sequences of com ponent descriptions. Assuming a set of client-specific

configuration requirem ents R = R i, R 2 , ..., Rp, a succession of com ponents Ci, C2 , ...,

{Cl is in the top, Cn is in the bo ttom layer) represents a good com position, if:

1. All requirem ents Ri (l< = i< = r) are m et, being present in the union of the provided

properties hst of all com ponents Cj in the sequence (K = j < = N);

51

Chapter 2. Relnted Work

2. Each component Ci has its own downward requirements hst DRi accomplished by some

components Cj below it (i<j and j< = N);

3. Each component Ci has its own upward requirements list UR, accomplished by some

components Cj above it (i>j and j> = l) ;

4. Additional imposed ordering restrictions are met;

5. There are no contradictions with respect to weak requirements.

The composition algorithm uses a propagation of requirements during its search: it dele

gates the responsibility for providing certain requirements posed on a component to other

components.

2.16.1 E valuation and relevance to th is th esis

The composition algorithm reviewed in this section represents a generic non-refiective ap

proach to combining components with dependencies on each other. The notions of strong,

weak, and immediate UP and DOWN requirements are present in the MOP descrij)tors of

I g u a n a version 3.

2.17 A sp ect-O rien ted P rogram m ing and R eflection

Aspect-oriented progranmiing (AGP) [40, 39,17] consists of a component language to jjrogram

functionality and one or more aspect languages to code concerns, and an aspect weaver, which

combines them and generates the final code. Programs are separately built using difi'erent

languages. AGP allows non-orthogonal composition (i.e., having overlapping concerns) and

delegates the resolution of conflicts to the aspect weaver.

AGP can use reflection for aspect weaving [71]. Gn the other hand, reflection “meshes well

with AGP in two main areas: first, reflective techniques appear amongst the most promising

to build aspect weavers that would be both general and extensible. Second, AGP appears

as a promising structuring tool for reflection as more and more aspects come into play in

52

Chapter 2. Related Work

reflective descriptions of complex, distributed systems and programming languages.” - from

[48].

Aspects [32] for example, provides an environment to allow for experimental AOP. It

is based on Sqiieak/Swa l l t a l k and draws on AspectJ [38] and MethodWrappers [6]. As

pects supports coordinated meta-level programming, addressing the “tangled code” [40] phe

nomenon by providing aspect-related modules. AspectS is realised without changing either

the syntax or the virtual machine of SMALLTALK; it uses MO composition instead of code

transformation. Aspects'*, implemented as regular classes in AspectS, are units of modularity

that represent implementations of crosscutting concerns. Aspects associate code fragments

with join points by the use of advice objects. These code fragments are executed whenever a

join point is encountered. As a fundamental concept in S m a l l t a l k is message sending, an

asi>ect in AspectS may refer to a set of receivers, senders or sender classes. These objects are

added or removed by the client code and used by the wovon/c:omposed code at run-time.

Join points are well-defined points in the execution of the code. Join point descriptors

in Aspects name a target class and a target selector, which is then used by the weaving

process to apply computational changes to the base system. Join points of a j)ointcut can be

enumerated statically, or collected at run-time by queries.

Advice objects associate code fragments (blocks) with pointcuts and their respective join

points descriptors that describe targets for the weaving process to place these fragments into

the system. An advice has to be qualified to state whether the woven/composed code will be

receiver or sender, or class or instance aware. Call flow semantics can also be specified.

Aspects allows the execution of the following kinds of crosscutting concerns:

• before and after the execution of a method invocation;

• aroimd method invocations (put in front of the actual compiled method);

• handle signalled exceptions (around a message send);

It is also possible to introduce new behaviour to the target clients.

''The AOP terminology used in this section is the one u.sed by AspectS, not by the wider .AOP community.

53

Chapter 2. R elated Work

Aspects employs a run-time weaver process to transform the base system according to

the aspects involved. The woven code is based on method wrappers and meta-programming.

Method wrappers allow the introduction of code that is executed before, after, or instead

(around) of an existing method. Method wrappers change the objects that the standard

method lookup process in S m a l l t a l k returns. A method wrapper replaces an entry in the

method dictionary of the class, adds behaviour to the method invocation, and eventually

invokes the wrapped method itself. AspectS coordinates the placement of block method

wrappers into method dictionaries of the receiver classes stated in various join points advised

by the aspect. The weaving process runs every time an aspect instance is installed. An

aspect can be installed by sending an install message to the aspect object. Similarly, an

aspect can be uninstalled by sending an uninstall message to the corresponding as{)ect object.

Thus, weaving and unweaving is completely dynamic in AspectS. Method wrappers are placed

around a compiled method in such a way that their activation will liajjpen in the following

order ® (considering the kinds of wrappers and the hierarchy of their originating aspects):

• Around ad vice/wrappers (most specific first);

• Before parts of before-after advice/wrappers (most specific first);

• Handler advice/wrappers (most specific first);

• Compiled base method;

• Handler advice/wrappers (least specific first);

• After parts of before-after advice/wrappers (least specific first);

• Around ad vice/wrappers (least specific first).

It is im portant to note that weaving/unweaving process rims only once, not during actual

message sends. An advice is more specific than another if it is defined in an aspect that is

more specific than the aspect the other advice defined in. If two advices are either defined

in the same aspect, or if their aspects are not related directly or indirectly though class

inheritance relationship, the specificity between them is undefined.
‘''This is similar to the effective method lookup iu CLOS

54

Chapter 2. Related Work

2.17.1 Evaluation and relevance to this thesis

AOP jjresents a solution to the problem of dealing with cross-cutting non-functional concerns.

We selected AspectS as a representative of AOP because it uses run-time dynamic weaving

process based on Squeak/SMALLTALK.

However the paj^er does not specify how unrelated (in terms of aspect class inheritance)

advices are woven. Thus, it does not deal with the composition of semantically overlapping

aspects.

2.18 Reflective middleware

Fault-tolerant (FT) CORBA [41] is a specialised run-tinie m o p using compile-time reflection

(Open C++ version 2). It provides a mean to dynamically attach fault-tolerance strategies to

COR.BA objects.

OpenCorba [44, 45] is a reflective open Object R.equest Broker (ORB), which enables

users to adapt dynamically the representation and execution policies of the software bus.

Reflection allows the extension of the initial OMG CORBA model with libraries of m o p s

customising mechanisms of distributed programming. Thus, it is possible to introduce in a

transparent way new semantics on the initial model such as concurrency, replication, security,

etc., including semantics currently not thought of. OpenCorba’s implementation is based

on NeoClasstalk, which is in turn a result of applying a MOP to the Smalltalk language.

NeoClasstalk presents an efficient solution for handling message sending and receiving as well

as a way of achieving dynamic behaviour of a class.

[61] summarises the research being done in the University of Lancaster on a reflective

component-based middleware, called OpenORB [3, 13, 4]. It uses OpenCOM, a component

technology th a t is closely based on Microsoft’s COM, but it is enhanced with richer reflective

facilities. OpenCOM avoids dependencies on features of COM such as distribution, persis

tence, security, and transactions. OpenCOM is applied to both the application level and the

middleware infrastructure. In order to address the need for adaptability, the middleware is

reflective such that it helps facilitate and manage run-time changes in component conflgu-

55

Chapter 2. Related Work

rations. I t incorporates structures representing aspects of the middleware itself and offers

m eta-interfaces for inspecting and adapting these reified aspects. Provides as well as requires

relationships between O penCOM com ponents are made explicit. The I Receptacles interface

is defined, through which required interface references can be passed, so th a t connections can

be established by a th ird com ponent. Each OpenCOM com ponent has an IMetaEncapsula-

tion interface providing m eta-inforrnation about the interface types. This m eta-inform ation

is used to support dynam ic invocation of a rb itra ry interfaces. OpenCOM also supports in

terception at specified interfaces. In particular, com ponents im plem enting IMetaEnvironment

interface enable dynam ic a ttachm ent/detachm ent of interceptors, th a t insert w rapping be

haviour around m ethod invocation.

The au thors had found th a t designing these m eta-interfaces was not easy. T he ap])roach,

in which com ponents of the middleware configuration would be represented as a graph, and

m anipulation of the graph would result in the reconfiguration of the m iddleware simply

would not be robust enough. Instead, they proposed the use of Component Frameworks

(CF), where a CF is a collection of rules and contrac;ts th a t govern the interaction of a set

of com ponents. CFs typically address a specific and focused problem dom ain (e.g., buffer

m anagem ent, binding establishm ent), and thus many CFs may need to be integrated in a

com ponent syst(;m. W hile C Fs are design-level entities, they also have an explicit run-tim e

representation, called Component Framework Representative (CFR). M eta-interfaces exposed

by the different CFs are typically im plem ented by CFRs, which m aintain inform ation about

the current configuration and apply it to perform inspection and adaptation .

T he CFs in the proposed architecture are organised in three layers, wherein com ponents

are only aware of in terfaces/C Fs defined a t layers below themselves. The three layers are:

B in d in g lay e r: This layer contains a binding CF, which defines a set of interfaces, rules,

and sem antics th a t govern the collaboration between to-be-bound com ponents, binder

com ponents, and the C F R itself. Binder com ponents are responsible for m arshalling and

unm arshalling interface references, and producing the required p roxy /stub /p ro toco ls

infrastructure.

C o m m u n ic a t io n lay e r: T his layer contains com ponents/C Fs th a t are used by binders to

56

Chapter 2. Related Work

establish required communication paths. Minimally, it contains the protocol CF, which

defines an architecture for dynamically composing and reconfiguring protocol stacks

using lightweight protocols. The communication layer may contain additional CFs

depending on the needs of the binding layer.

R eso u rce layer: This layer contains a collection of components/CFs that provide a uniform

application programming interface for using and controlling low-level resources. This

layer minimally contains the buffer mari,agement CF and the transport management

CF. The associated CFRs provide base interfaces for buffer allocation and operating

system-level transport services, respectively. An optional thread management CF can

handle user-level threads.

COM-I-, Enterprise JavaBeans, and CORBA Components all support similar container-

based models for building distributed applications. The significance of these architectures lies

in that they achieve a separation of concerns between the functional aspects of the application

and the non-functional aspects that are managed by the container (distribution, concurrency,

and transactions). The drawback is that the configurability of the non-functional aspects is

severely limited. The implementation of the container services is hidden and out of control

of the application developer.

2.18.1 E valuation and relevance to th is th esis

We reviewed representatives of reflective middleware solutions. We believe that IGUANA

version 3 is a strong candidate to be used for building reflective middleware.

2.19 Summary

This chapter described the related work on reflective programming languages and meta-level

architectures, as well as it reviewed various non-refiective approaches to autom atic and/or

dynamic composition. We evaluated the reflective solutions according to a common set of

criteria and stated how is IGUANA version 3 related to all of the reviewed reflective and

non-reflective systems.

57

C h a p te r 3

T h e I g u a n a M odel for A u to m a tic

an d D ynam ic MOP C om posit ion

“O n ly ihnm gh hard w ork an d perseveran ce can one tru ly suffer. ” - source unknow n

3.1 Introduction

This chai)ter presents the design of our reflective programming model, which j^rovides a solu

tion to the problem of automatic and dynamic MOP composition in a compiled programming

language.

Instead of defining a radically new reflective model for implementing autom atic and dy

namic MOP composition, the IGUANA version 3 model evolves the previous two IGUANA

models, versions 1 and 2. In IGUANA version 3, multiple, independently-developed MOPs can

be dynamically combined at run-time in order to provide reflective objects in a base-level ap

plication with a composed (non-default) behaviour, provided that the MOPs were developed

according to the design rules (methodology) for composability, that we define shortly.

The motivation for IGUANA version 3 and a description of the previous two versions

together with their shortcomings can be found in section 1.5, and section 2.7, respectively.

58

Chapter 3. The I g u a n a Model for Automatic and Dynamic MOP Composition

3.2 The Overall Approach

One objective for the design of the new IGUANA model was to come up with answers to

questions th a t had arisen when we attem pted to combine our Persistent [31, 65] and Remote

MOP implementations, written in IGUANA/C++ version 2 (see section 2.7.2):

1. W hat if we do not want to “export” (i.e., to make them remotely accessible) certain

objects but still want to avail of object persistence for them?

2. W hat if we want to turn a persistent object into remote one on the fly? And then back?

3. W hat if we decide to make a selection of remote objects persistent but not all of them?

4. W hat if we want to mix in other m o p s that are known to be composable with Persistent

and Remote, for example, Synchronised?

5. W hat if we want to select other MOPs whose names are not known at comi)ilation time?

Iguana version 2 can answer some of these sample questions, but through its single MOP

selection policy it implies that the meta-level progranmier has to write a new MOP for every

possible MOP combination, such as Persistent, Remote, PersistentRemote, PersistentSynchro-

nised, PersistentRemoteSynchronised, and so on. In case of a large number of MOPs, this might

lead to an explosion of MOPs; one for each possible combination. Thus, the Iguana version

2 solution presents a static, design-time solution to combine MOPs. For system-level applica

tions that must be capable of dynamically adapting to the changes in the environment, we

really need a dynamic solution, which can compose MOs of a set of independently-developed

but composable MOPs at run-time, when the actual content of the MOP set becomes known.

To answer the questions listed above, the new IGUANA model reintroduces^ the ability

to select multiple MOPs and it adds a mechanism that can automatically compose the MOs

of the MOPS at run-time, whenever it is possible. The set of MOPs currently selected (which

defines the current MOP set) can also be changed at run-time as MOPs can be selected and

’Iguana version 1 had this feature, but version 2 opted for single mop selection as a means of providing
meta-typing.

59

C h apter 3. T he IGUANA M odel for Autom a.tic and D yn am ic MOP C om position

deselected. O f course, certain conditions regarding w hat MOPs can dynam ically be selected

or deselected need to be identified at design-tim e and enforced (monitored) at run-tim e.

In order to develop a composable MOP, the MOP designer (i.e., the meta-level program m er)

has to follow the design rules (methodology) th a t we oxitline in section 3.4.1. T he MOP de

signer needs to position the new MOP in the global and extensible hierarchy of non-functional

concerns, and he/she needs to know the set of middleware com ponents the MO classes of the

MOP use. Knowledge of design and im plem entation details (e.g., the MO classes and their

inheritance relationships) of o ther MOPs are also required, bu t only in cases when the new

MOP extends or derives from them.

We have adopted a working m ethod, suggested in [53], to solve the general MOP composition

problem:

1. Show simple example MOPs and their desired/rneaningful com bination(s). (See section

4 for details).

2. Propose a new composition model th a t works w ith the examples.

3. S tudy the inherent constrain ts of the model.

4. E laborate a methodology for using it.

In summary, we take the following approach to constructing an algorithm for autom atic

and dynam ic MOP com position: behavioural MOs that com prise a MOP are sem antically de

scribed in MOP descriptor docum ents, that are available at run-tim e. T he MOP descriptor

docum ent characterises the before and after m eta-com putations (e.g., what happens in the

invoke m ethod of an Invocation MO, or in the send m ethod o f a Send MO) for MOs that comprise

a MOP.

T he new Composer reification category is used to reify the com position itself: we define

a new abstrac t m etaobject class Composer, which defines the interface for m op composi

tion. Any concrete Composer m etaobject class has to derive from the Composer class, and

im plem ent the m ethods defined for MOP com position.

We define an au tom atic m op com position algorithm (see section 3.4.7), which we imple

m ent in the DefaultComposer class. If the apphcation program m er decides to use the default,

60

Chapter 3. The I g u a n a M odel for Autom atic and Dynamic M O P Composition

automatic composition, then an instance o f the D e f a u l t C o m p o s e r class is created at run-time,

when the application starts up. As part of the start-up code for an IGUANA application, this

metaobject reads the MOP descriptor files of the MOPs that are present in the m o p sets of

reflective classes, and m aies decisions on how to combine the behavioural MOs of a particular

MOP set. Upon changes to the m o p set for reflective (base-level) instances or classes, this

metaobject may read additional MOP descriptor files, re-run the composition algorithm, and

recompose the MOs. Unlike previous versions of IGUANA, the IGUANA version 3 run-time

can also load compiled MO class code (from a shared library specified in the MOP descriptor

file) dynamically by using the dynamic linking interface. MOP descriptors are written in the

extensible Markup Language (XML) by a meta-level programmer, who is either the author

of the MOP code or has reasonable knowledge about the MOP im]>lementation details.

Automatic comj)osition of metaobjects may not always be possible. In this case the model

also allows manual composition by supj)orting the use of purpose-built C o m p o s e r metaobjects,

which can be used to replace the default, automatic composer. C o m p o s e r metaobjects can

dynamically be added at run-time to the meta-level configuration of reflective objects in order

to switch metaobject composition from automatic to manual. Tliey can also be replaced at

run-time.

Behavioural MOs within the same reification category are organised into a list and invoked

in a sequence (this is the chain of responsibility model, as described in section 1.2). In most

of the practical MOP implementations, behavioural metaobjects are inherently linked to pro

prietary or standard middleware components that implement the non-functional behaviours,

e.g., they provide a persistent object store, a name service, or a reference manager. The MOP

descriptors have a section that specifies the links between the MOPS and the middleware com

ponents they use. This information is then used at run-time to (re)configure the middleware.

Semantic interference between M OPs is detected when M O Ps in the MOP set ase common sets

of middleware components.

3.3 A ssum ptions

The following assumptions were made, when we designed the new IGUANA model:

61

Chapter 3. T he I g u a n a M odel for A utoniatic and Dyncimic m o p Composition

1. C o m p o n e n t-b a s e d m id d le w a re The middleware, which is used by MOPs to imple

ment their particu lar functionality (e.g., object d istribu tion , transaction m onitoring),

is com ponent-based. This means th a t the m iddleware is either com ponentised or con

structed from components; each com ponent has a well-defined software interface. We

used our proprietary com ponent-based m iddleware for this work. P a rt of our m iddle

ware is based on the Tigger Generic R un-tim e (GRT) framework [7] for d istribu ted

object services. Design of an extensive IGUANA MOP suite and the outline of the sup

porting middleware can be found in C hapter 4.

2. D e s ig n ru le s fo r c o m p o s a b le MOPs The meta-level program m er adheres to the rules

governing the design of new MOPs and their MOs; i.e., he /she writes a new MOP ac

cording to the program m ing methodology outlined in section 3.4.1, which can ensure

com posability with existing and fu ture MOPS. For exam ple, the source code of compos-

able MO classes of a MOP shall not refer explicitly to MOs of o ther MOPs. Instead, the

generic next reference should be used when referring to the next MO in the chain of MOs

w ithin a particu lar reification category.

3. A c c u ra te MOP d e s c r ip to r s The meta-level program m er also w rites accurate descriptors

for h is /h e r MOPs th a t will be used by the com position algorithm described below. The

definition of the MOP descriptor files can be found in section 3.4.6.

4. S e a m le ss ly c o m b in in g E x te n s io n P ro to c o ls IGUANA extension protocols, which pro

vide base-level program m ers w ith an application program m ing interface (API) to work

w ith the functionality provided by MOPs, are expected to compose seamlessly; i.e., al

though the extension protocols may not be orthogonal, they complement each other and

do no t clash. A lthough this might be a strong assum ption, we have m ade it in order to

simplify the problem , and to allow us to focus our a tten tion on the MOP com position.

As an illustru ta tion to this issue, bo th Persistent and Remote extension protocols offer

a Name Service interface, in which names can be recorded/looked up for persistent and

rem ote objects, respectively. For persistent and rem ote objects, the base-level program

mer should use one single extension protocol (im plem ented by the Iguana class in our

62

Chapter 3. T he I g u a n a M odel for A utom atic and D ynam ic m o p Com position

im plem entation), th a t unifies the two extension protocols for working w ith persistent

an d /o r rem ote reflective objects.

5. P ro x y o b je c ts in r e m o te c lie n ts MOPs re la te d to o b je c t d is tr ib u t io n (e .g ., Remote,

Encryption, Authentication) use proxy objects in the client’s address space to represent

rem ote servers. Proxy objects interact w ith the server object over a com m unication

network. We provide two concrete MOPs, RemoteProxy and Remote for proxy and

server objects to select, bu t the meta-level program m er is free to provide h is/her own

im plem entation. Both of our MOPs use the same set of MO classes, bu t have diflferent

MOP descriptors to indicate to the Composer the proxy/server role they play in the

imj^lementing rem ote comnmnication. One has to notice th a t in order for the proxy

and server objects to com m unicate succesfully, the Composer has to build a “sym m etric”

stack of MOs between the two sides.

N aturally, there are o ther MOPs, whose functionality is not related to object d istribution .

We call them “local” MOPs.

6. O n e s in g le m e ta - le v e l The meta-level of an object consists of one single layer only,

in order to lim it complexity. However, more th an one MOP can be p a rt of the single

meta-level. This model is different from the usual “m eta-tow er” [75, 50, 74, 49] or

“onion-skin” [1] model of reflection, where m eta-layers can be built on top of other

meta-layers.

W hether an IGUANA MO class can select a MOP is an interesting question that is fo r

fu rther study.

7. C o m p o s it io n o f m id d le w a re c o m p o n e n ts is o u t o f fo c u s A sim ilar composition al

gorithm could be designed to compose middleware com ponents, however it is out of

scope for this thesis. Research has been done on com ponent-oriented middleware and

arch itectural reflection, refer to [5, 14, 61].

63

Chapter 3. The I g u a n a M odel for Automa,tic and Dynam ic m o p Composition

3 . 4 D escription of I g u a n a version 3

This section describes the design of the IGUANA version 3 reflective programming model in

detail and show^s examples of how the base-level and meta-level programmer can use it.

Middleware components

— o

Interface 2

□ □ □
Meta-level classes

Interface I

Extension
Protocols

Base-level classes

M eta -leve l program m er

B ase-level program m er

Fig. 3.1: The new IGUANA model with three layers (repeated)

The main features of the new IGUANA model can be summarised as:

T h re e -lay e r a rc h ite c tu re w ith an exp lic it m id d le w are layer The IGUANA version 2

model provides only a single meta-level i.e., there axe no meta-towers in I g u a n a / C + + .

Although the new IGUANA model retains this restriction, it also adds an explicit mid

dleware layer and an interface to interact with it from the ba.se- and meta-levels. MOPs

specify links to components of the middleware in order to identify semantic overlap

between their metaobjects. The interface to the middleware layer is used to initiate

reconfiguration of the middleware components. The new IGUANA architecture can be

^This wa.s an im plem entation restriction only.

64

Chapter 3. The I g u a n a Model for Autom atic and Dynamic MOP Composition

seen in Figure 3.1.

N ew re if ic a tio n ca teg o ries Although the 29 reification categories of I g u a n a version 1

were certainly an “overkill” [62] for the meta-level programmer, the reification cate

gory list of 12 (Class, Method, Attribute, Creation, Deletion, Send, Receive, Invocation,

StateRead, StateWrite, Constructor, and Array) in I g u a n a version 2 needed to be ex

panded. We have added two new reification categories to the model: ObjectReference

and Composer.

The new ObjectReference is a structural rnetaobject class which reifies language point

ers. This allows a MOP programmer to augment volatile language references to objects

with more complex MOP-specific references that store additional referential informa

tion on reflective objects. For examj)le, PersistentObjectReference used in our Persistent

implementation contains a class identifier, an object nimiber^, and an offset value for

embedded persistent objects. Thus, PersistentObjectReference can uniquely identify a

persistent object regardless of its current location; i.e., whether it is in memory or in

the user’s Persistent Objects Store (PCS). ObjectReference MOs are the only local (i.e.,

per-object) metaobjects; all the other MOs are shared between reflective instances of a

class. Typically, MOs in the Creation and Deletion reification categories arc responsil)le

for creating and deleting ObjectReference MOs, respectively. In case of multiple MOP

selection, where a number of MOPs reify ObjectReference, the base-level reflective ob

ject can have multiple ObjectReference MOs attached to it. The IGUANA run-time (the

Composer MO more precisely) automatically adds or removes ObjectReference MOs when

MOP selection or deselection happens, respectively.

The new Composer reification category reifies a meta-level concept: MOP composition

itself. It is interesting to note that the other reification categories reify base-level

concepts. Composer metaobjects allow the programmer to intercede in and control

the MOP selection or deselection operation. Custom Composer MOs can be used to

replace the default, automatic metaobject composition mechanism, implemented by

the DefaultComposer class.
®A sequence number generated by the Persistent Objects Store.

65

C h apter 3. The IGUANA M odel for A u to m a tic and D yn am ic MOP C om position

D e s c r ip t io n (c la s s i f ic a t io n) o f b e h a v io u r a l m e t a o b j e c t c la s s e s The behavioural MOs

(i.e., Send, Receive, Invocation, Creation, Deletion, StateRead, and StateWrite) have been

refined with the ability to describe what they do in their “before” and “after” ineta-

coini)utation. A particular “before” meta-computation might cause a problem with

the composition, for example, it may not call the next metaobject in the chain. Such

conditional metaobjects are difficult to compose, because they can break the chain of

responsibility model for composition, which is used in this work.

MOP s e l e c t i o n The new m od el a llow s the program m er to se lect m u ltip le com p osab le MOPs

for b ase-level c lasses and in stan ces. See section 3.4.1 for gu id elin es on w ritin g C0m j)0s-

able MOPS. For exam p le , th e fo llow ing cod e excerp t show s class MOP selection:

c la s s A ==> Remote, P e r s is te n t

T h is cod e defines th e in itia l MOP set for reflective class A and resu lts in in sta n ces o f class

A h av in g th e com b in a tion o f R em ote and P ers is ten t MOPs se lected . T h e s e MOPs have

been defined as com p osab le and their co n stitu en t MOs can b e com p osed au tom atica lly .

T h e n am es o f th e MOPs are know n at co m p ila tion tim e.

The multi])le MOP selection syntax in this example is identical to that of the IGUANA ver

sion 1 model. Similarly to the previous IGUANA versions, programmers can select new

protocol(s) for instances of reflective classes. This is called instance protocol selection.

Section 3.4.3 gives more examples of default, class, and instance protocol selection.

D y n a m ic MOP s e l e c t i o n The MOP set for a reflective class or instance can be enhanced at

run-time by selecting additional MOPs. For example, the following code excerpt:

A* a= new A() ==> ++ O ptim isticSync;

adds O ptim is ticSync m op (w hich im p lem en ts o p tim is tic concurrency control) to th e MOP

set o f a new in stan ce o f class A, w hich already con ta in ed MOPs R em ote an d Pers is tent.

66

Chapter 3. The IGUANA Model tor Autom atic and Dynam ic MOP Composition

D y n a m ic MOP d e s e le c tio n Previously selected (default, instance, or class) MOPs can also

be deselected. A ttem pting to deselect a m o p th a t has not been selected will result in a

null operation (i.e., there will be no exception raised). The MOP deselection syntax is

identical to th a t of IGUANA version 1. For example, the following code excerpt:

B+ b ==> — L o g g in g ;

deselects the previously selected Logging MOP for a heap-allocated instance b of class

B, previously created.

root

StrucWral Behavioral

Default Persistence Remote Logging Security Synchronisation FT

Persistant Logging OptimisticSync Replication
Loc)cingSync Rep1icationProxyRemoteProxy

Authentication Encryption

Authentication Encryption

F ig . 3.2; The hierarchy of non-functional concerns grouped into areas

MOP d e s c r ip to r s The au tom atic com position, which is im plem ented by the default Default-

Composer m etaobject, is guided by the MOP descriptors. MOP descriptors are w ritten

in XML, and explained in Section 3.4.6.

N o n - fu n c t io n a l c o n c e rn h ie ra rc h y We place our MOPs im plem enting common non-functional

concerns in a hierarchy, see Figure 3.2. Placing any new MOP in this extensible structure

67

Chapter 3. The IGUANA Model for Autom atic and D ynam ic MOP Composition

is p a rt of the methodology for w riting cornposable MOPs. Figure 3.2 shows the position

of the MOPS from C hapter 4. For example, b o th OptimisticSync and LockingSync are

in the Synchronisation concern area, which is underneath the Behavioural concern area,

which is in tu rn underneath the root of the hierarchy. The hierarchy is extensible, i.e.,

new child concern areas can be added for new MOPs as needed.

3.4.1 M ethodology for designing com posable MOPs

This section describes the basic com position framework and design rules, which have to be

followed in order to w rite coniposable MOPs.

MOPS are im plem ented by a set of related MO classes and possibly other auxiliary (helper)

classes. Each MO class represents one of the 14 IGUANA reification categories. T he MO classes

can be divided into two groups: s truc tu ra l and behavioural. The structu ra l MO classes are

as follows:

• MClass m aintains information on a base-level class such as its name, super-classes (if any),

size, v irtual function table, a ttribu tes, constructor(s), and other m ethods.

• MAttribute m aintains inform ation on an a ttr ib u te of a base-level object such as the name,

type, address, size, “staticness” , and accessibility (i.e., public, protected or private).

• MMethod m aintains inform ation on the name, signature, re tu rn type, address, “staticness” ,

and accessibility of a m ethod.

• MConstructor m aintains inform ation on the signature, address, and accessibility of a con

structor. Unlike IGUANA version 2, we support non-default constructors.

• MArray m aintains inform ation on the type and size of elements, size, and address of an

array.

• MObjectReference this class forms the basis, on which MOP-specific per-object referential

inform ation can be m aintained in subclasses. MObjectReference instances provide an

extensible object header, in which referential inform ation is stored. Instances of the

MObjectReference class hold a pointer back to the reflective base-level object as well as

68

Chapter 3. The I g u a n a M odel for A utom atic and Dynam ic m o p Composition

the name of the related MOP. Reflective objects can have zero or many MObjectReference

MOs associated with them. The Composer metaobjects are responsible for inserting or

removing object references, created by the relevant Creation MOs, when a MOP is added

or removed, respectively. For example, a base-level object that selected both Persistent

and Remote m o p s , will have two object references, namely PersistentObjectReference

and RemoteObjectReference.

The behavioural MO classes are all abstract classes that are used to provide an interface

through which concrete subclasses can define how the operation should be performed at the

base-level. As our focus is the automatic and dynamic composition of the behavioural MOs at

run-time, each MO class has a jiointer (next) to the next MO of the same reification category.

Composer metaobjects are responsible for combining MOs in each behavioural reification cat

egory and setting their next pointers accordingly. The following behavioural MO classes can

be used by MOP designers;

• M Creation; concrete subclasses can define the way an instance of a reflectivc class is created.

• MDeletion; concrete subclasses can define how a reflective object is deleted.

• Mlnvocation: concrete subclasses can define how methods on a reflective object are invoked.

• MStateRead; concrete subclasses can define how attributes of a refiecive object are read.

• MStateWrite: concrete subclasses can define how attributes of a reflective object axe written.

• MSend; concrete subsclasses can define how method invocation on an object (which is not

necessarily reflective) is initiated from within a method of a reflective class.

• M Receive: concrete subclasses can define the way an incoming method invocation is dis

patched to the right method (interesting for virtual methods).

• MComposer; concrete subclasses can define the way MOPs are composed. We provide a

d e fa u lt im p le m e n ta t io n (i .e ., th e DefaultComposer MO c la s s) , w h ic h su p p o r ts a u to m a t ic

a n d d y n a m ic MOP c o m p o s it io n .

69

Chapter 3. The IGUANA Model for A utom atic and D ynam ic MOP Composition

Chapter 4 shows the design of an IGUANA MOP suite and illustrates how these MO classes

can be used to implement common non-functional concerns.

The autom atic and dynamic MOP composition works only if the meta-level programmer

who implements a new MOP adheres to the following design rules:

MOP X M L d e sc rip to r : this document should faithfully reflect the design of the MOP and

its MO classes. For example, the MOP designer must describe the composition charac

teristics of each behavioural MO class with respect to whether it calls the next MO in

the chain (if any) or calls a middleware component.

C o n ce rn ae ra : the new MOP, which is being designed to implement a new non-functional

concern, has to fit into the global hierarchy of non-functional concern areas (see Figure

3.2). This means that either the new MOP has to fit into an existing concern area, or

a new concern area shoxild be created and then placed somewhere in the global and

extensible hierarchy. The hierarchy is managed by meta-level programmers who design

MOPS. The current hierarchy in the Figure shows how the I g u a n a m o p s described in

Chapter 4 are positioned.

C o n cern a re a exclusiveness: depending on the concern area, the new MOP should be de

clared as either Singleton or Multi. The former means that this MOP is the “exclusive”

(sole) implementor of this non-functional concern, while the latter allows multiple im

plementations of the same non-functional concern to co-exist.

P e rm it te d base-level m o d ifica tio n s only: Through the inherent links between MO classes,

a behavioural MO can in theory modify any aspects of the base-level objects. For exam

ple, an Invocation MO could alter the way base-level objects are created. But in order

to make automatic composition work, we require th a t a behavioural MO performs only

the base-level modifications perm itted for its reification category (see Table 3.1).

C h a in o f re sp o n sib ilite s m odel: composable behavioural MO classes must have their “be

fore” and “after” logic separated. W ithin their code, explicit references to instances to

other MO classes must not be used. Instead, the generic next reference should be used.

70

Chapter 3. The I g u a n a Model for Autom atic and Dynam ic m o p Composition

If a specific MO has to be the next MO in the chain of MOs, the MOP XML descriptor

should be used to specify the next MO as requirements on the “after” or “before” MOs

(see BeforeRequirements and AfterRequirements elements of the DTD in Section 3.4.6).

“R e m o te ” MOPs: the meta-level programmer should decide whether the new MOP is related

to object distribution or not (i.e., is local). If the MOP is “remote”-related, its design

has to fit in to the model of object distribution, which follows the proxy design pattern.

M id d lew are links: the meta-level programmer should (re)use as much of the IGUANA mid

dleware component library as he/she can. Dependencies on middleware components

should be listed in the MOP XML descriptor.

E x te n s ib le o b je c t re ferences: subclasses of the MObjectReference class should be used

to hold MOP- specific per-object referential information. For example, our RemoteOb-

jectReference carries sufficient information to identify the remote server object: object

identifier, creation time, IP address and TCP port number of the server application.

3.4 .2 A u to m a tic and dynam ic MOP com position: Composer m etaob jects

The autom atic and dynamic MOP composition algorithm, as it is implemented by the De-

faultComposer class, is used for MOPs that are declared as automatically cornposable. The

composition algorithm is described in Section 3.4.7.

Figure 3.3 show s how th e defau lt, au to m a tic and d yn am ic com poser works: it reads the

MOP d escrip tor files, runs th e com p osition a lgorith m , w h ich arranges th e MOs in each reifi

ca tion ca tegory in a list, a ssu m in g th a t th e selected MOPs are a ll a u to m a tica lly com p osab le .

The in tercep ted (reified) base-level op eration s are d irected tow ards th e first MO in th e chain,

w h ich in its “b efore” op eration m ay call re lated m iddlew are com p o n en t(s) and th e next MO

in th e chain . For exam p le , th e Remotelnvocation MO in th e clien t ca lls the Communication-

Manager m iddlew are com p on en t in the “b efore” part o f th e invoke m eth o d in order to send

a m eth od in voca tion op eration over the netw ork.

By convention, the last MO in the chain is always the Default MO, which reflects the base-

level operation. For example, DefaultCreation::create method creates a new heap-allocated

71

Chapter 3. The I g u a n a Model for Autom atic and Dynam ic m o p Composition

instance of the reflective class. This convention was adopted from IGUANA version 2. Please

note th a t the Default MO may not be called.

Secure Remote

middleware level

ObjectReference

orders/reordeis
Creation

next next

Invocation

nextnext next

protocol change

intercepted operation
base-level|_d_escr _ • i

BLO

- Default

Remote

Key Mgr

Auth.

Default

Remote

Auth.

Remote

Logging
Automatic
Composer

RefMgr CommMgr

F ig . 3.3: A utom atic MO com position example for combining Logging, Authentication, and
Remote a t the client side.

T he meta-level program m er is also free to w rite h is /h e r own Composer m e ta o b je c t , th a t

c a n b e used b y the base-level program m er in cases when the selected MOPs require m anu

al C0m{)0siti0n o r the base-level program m er wants to achieve a non-default com position

sem antics (e.g., concurrent invocation o f MOs instead o f the default sequential invocation).

T he Composer MO is responsible for composing MOs from the (dynam ically) selected MOPs.

The I g u a n a run-tim e calls the Composer m o a t run-tim e, whenever MOP selection or dese

lection occurs a t the base-level. The Composer MO is given inform ation on the selected MOPs

(i.e., their MOP descriptors), and it is expected to arrange the behavioural MOs in chains

(one chain for each behavioural reification category) and set their next references according

to their order in the chain. I t should also insert or remove MObjectReference MOs according

72

Chapter 3. The Ig u a n a M odel for Autom atic and Dynamic m o p Composition

to the MOPS selected or deselected, respectively. In ca.se the MOs cannot be composed, the

Composer MO is expected to throw an exception (i.e., a CompositionException) back to the

base-level application.

In some cases, the next reference can refer to the user-defined Composer MO itself. Here

we give an exam ple of a m anual Composer MO im plem ented by the ManualComposer class,

which also acts as a “super” behavioural MO; i.e., the ManualComposer class not only inherits

from the MComposer abstrac t class, bu t it also inherits from MCreation and Mlnvocation MO

classes, virtually. Thus, an instance of ManualComposer can also insert itself (similarly to

G uarana) as the first MO in the chains for the Creation and Invocation reification categories.

Unlike the DefaultComposer MO, which is active during MOP com position only, the above

ManualComposer MO is involved in the intercepted creation and invocation operations. This

ManualComposer is also free to combine the results of these oj)erations retu rned from the

Creation and Invocation MOs. This niodel is sim ilar to G uarana com position w ith one main

difference: in IGUANA, there can be a t m ost one Composer MO in operation for any base-level

object.

Figure 3.4 illustrates how the above ManualComposer MO may decide on an alternative

arrangem ent of MOs, resetting their next reference, and calling them in an order th a t is

difi'erent from the default one, calculated by the DefaultComposer MO.

A Composer MO can be replaced a t run-tim e by calling the MObject;:replaceComposer

m ethod on the reflective object as each reflective class in IGUANA inherits from the MObJect

class. S tate transfer between the old and new Composer needs to be coded by the meta-level

program m er. This can be done by providing an im plem entation of the MComposer::getState

and M Com poser: rsetState pure v irtual m ethods.

For exam ple, the following code excerpt creates a new MyNewComposer MO, which then

replaces the DefaultComposer MO for a reflective class A. State transfer is arranged between

the two Composer MOs. T he base-level programmer then selects M O Pl and M 0P2 for this

class.

MyNewComposer* newComposer= new MyNewComposer();

newComposer-> setState(A::metaA-> mcomposer-> getStateO);

73

Chapter 3. The I g u a n a Model for Autom atic and Dynam ic MOP Composition

Sxure Remote

KeyMgr RefMgr
1
t CommMgr

middleware level

ObjectReference

orders/reorders

orders/reorders

Remote

Creation

Auth.
n a a

Remote
next >

Default

orders'reorders
• Invocation

Manual
Composer

 1--------

next
Logging Auth. Remote•> Default

m eta-level

protocol change

, MOP
! descr

intercepted operation
BLO

base-level

F ig . 3.4: M anual inetaobject Composer in operation for combining Logging, Secure, and
Remote a t the proxy side.

A::metaA-> mcomposer= newComposer;

class A ==> MOPl, M0P2;

If only the Composer MO need.s to be changed, the program m er can w rite the following

sta tem ent in the source code:

YourNewComposer* yourComposer= new YourNewComposer();

a-> replaceComposer(yourComposer);

T he “YourNewComposer" MO will replace the current Composer MO (represented by the

mcomposer field of MObject) for object referenced by a: th is tim e w ithout the explicit s ta te

transfer.

I g u a n a version 3 also allows a non-defaTilt Composer MO class, whose nam e is not known

a t com pilation tim e, to be loaded dynamically. The non-default Composer im plem entation

74

Chapter 3. T he I g u a n a M odel for A u tom atic and D ynam ic MOP Composition

does not, have to be statically or dynam ically linked w ith the application. T his is done by

utilising the dynam ic linking and loading interface provided by the UNIX operating system

(see dlopen(3ld), dlsym(3ld), and dlclose(3ld) m anual pages). The dynam ic loading of a new

composer from a shared library is im plem ented by the Meta::loadComposer m ethod. This

m ethod loads the Composer m o class based on the nam e of its class, and the nam e of the

shared library. We assume, th a t the shared library can be found on the LD_LIBRARY_PATH.

If the composer is no longer needed, the Meta::unloadComposer m ethod can be used to explic

itly unload it. This feature is useful for dynam ically adapting and extending long-running

applications.

We make the m o composition an atom ic operation: i.e., the reflective (base-level) object

is teinjiorarily locked during the MO com position. This is needed to avoid dynam ically rear

ranging the behavioural MOs while the reflective object is being iLsed (e.g., m ethods are being

invoked on it).

3.4.3 R u les for m o p se lection and d eselection

T his section revisits the MOP inheritance and selection rules of IGUANA version 2, and de

fines rules for m ultiple MOP selectiori/reselection for IGUANA version 3. Issues th a t are not

addressed by IGUANA version 2 are pu t in to boxes.

T he following rules govern MOP selection in IGUANA version 2:

§1. Every M OP defines a new m eta-type. An object th a t selects a MOP is said to conform

to or im plem ent the m eta-type.

§2. Every object has an associated m eta-type (called its current m eta-type), which can be

changed dynamically.

§3. There are three ways of selecting a MOP: class, instance, and default.

§4. Class MOP selection results in a static m eta-type. It means th a t all instances of the

class im plem ent this m eta-type.

§5. Class M OP selections are inherited: a subclass inherits the m eta-type of its parent class.

75

Chapter 3. The I g u a n a M odel for A u tom atic and D ynam ic m o p Composition

§6. Subclasses can override the MOP selection of its parent class. However, in th is case, the

specified nieta-type m ust be the sub-type of the ineta-type specified for the superclass.

Problem 1: what happens when, we use multiple class inheritance and the superclasses

select different MOP.s?

§7. Default m o p selection allows the nieta-type of all new instances of a set of classes

declared in a single source file to be selected. The default MOP selection can be changed

w ithin the source file by repeating the

d e f a u l t ==> P I ;

statem ent w ith a different MOP name, e.g., P2.

§8. Instance MOP selection: the m eta-type of a single object can be changed dynamically.

The new m eta-type is called the ob jec t’s dynamic m eta-type. The dynam ic m eta-type

of an object m ust be a sub-type of its s ta tic m eta-type.

Problem 2: what happens i f the object does not have a static meta-type (i.e., it is

not reflective)?

§9. Protocol inheritance: the derived MOP includes the full set of reification categories

specified by both the base and the derived protocols.

§10. There are two sharing modes for MOs in reification categories: local and shared.

Problem 3: there are no specific rules covering the effect of dynamic meta-type change

on local/shared metaobjects. For example, what happens i f the reflective object has

a mixture of local and shared M O s ?

§11. I g u a n a version 2 “supports au tom atic meta-level com position by means of m ultiple

MOP inheritance” . The chain of responsilities model is used. If there are m ultiple MOs

w ithin the same reification category, MOs from the super-protocols are pu t towards the

end of the chain. Thus, the more specific behaviour (defined in the derived protocols)

is executed in i>reference to the more general behaviour (defined in the super-protocol).

Problem 4-' the exact way in which local/shared M O s are composed is not addressed

in the thesis.

76

Chapter 3. The Ig u a n a Model for A utom atic and Dyimrnic MOP Composition

§12. To prevent the same code executing m ultiple times, only one MO of a specific reification

category is added to the chain. This is sim ilar to the C++ m echanism for handling

v irtual m ultiple inheritance.

§13. M anual/explicit composition: the meta-level program m er can m anipulate the next MO

references in m etaobject classes in order to combine MOs explicitly.

§14. A MO com position algorithm is executed at run-tim e every tim e the m eta-type for an

object changes. This algorithm autom atically creates an d /o r deletes MOs according to

the old and new MOPs.

In Ig u a n a version 3, the following rules control MOP selection and deselection.

§1. There is no strong m cta-typing in Ig u a n a version 3. In other words, m ultip le rneta-

types are allowed sim ultaneously. Thus, a reflective object can be associated with

nuiltiple MOPS, if and only if these MOPs were developed according to the composability

rules defined in section 3.4.1. MOPs m ust b e accurately described by the m eta-level

programmer in separate MOP descriptors.

§2. Every object has an associated MOP set, which can be changed dynamically. Non-

reflective objects have an em pty MOP set.

§3. Ig u a n a version 3 retains all three forms of MOP selection: default, class, and instance.

§4. Class MOP selection results in an initial MOP .set. For example the following statem ent:

class A ==> Remote, Persistent

results in instances of class A having the com bination of Remote and Persistent MOPs

selected, assum ing th a t these two MOPs are composable. If there is a default MOP

selection, the above class m o p selection will override it.

The following exam ple shows how a program m er would define the default MOP set such

th a t it contains Persistent and Remote and how the default MOP set could be extended

w ith a th ird composable MOP Authentication for instances of class A:

77

Chapter 3. The I g u a n a M odel for Autom atic and Dynamic MOP Composition

default ==> Persistent, Remote;

class A ==> ++Authentication

Furtherm ore, cla-ss MOP selection can also be changed: cornposable MOPs can be added

to, or previously selected m o p s can be deselected from the current m o p set of the class.

The scope for this change is the running application, i.e., the change in the MOP set will

only affect new instances of the class, created in the running application. The reaison for

this restriction is th a t otherwise the IGUANA run-tim e would need to keep track of all

previously created instances of a reflective class. However the base-level program m er is

free to keep a list of reflective instances of a particu lar class and change the MOP set in a

loop iterating through the list. Furtherm ore, if object creation is reified in a MOP th a t is

being added to the MOP set, the Creation MO would not be called for existing objects as

they had already been created. Thus, it is i)roblem atic to re-initialise existing objects

(e.g., calling related m iddleware com ponents, or extending their ObjectReference). To

overcome this problem , we added support the creation of ObjectReference MO, w ithout

the creation of the base-level object, see §8.

§5. A class inherits its MOP set from its super-class(es). Therefore all MOPs in the MOP set

nm st be composable. If m o p s are not com posable, the Composer MO a t run-tim e will

raise a Composition exception, th a t should be handled a t the base-level.

§G. Subclasses can override the initial MOP set: com posable MOPs can be added, and re

moved.

§7. Default MOP selection allows the initial MOP set for all new instances of a set of classes

defined in a single source file to be defined. In the following example, classes of A and

B will have M OPl and M 0P2 selected:

default ==> MOPl, MDP2;

class A

class B : public A

78

Chapter 3. The I g u a n a Model for Autom atic and Dynam ic MOP Composition

The default MOP set can be changed in the same source file, e.g., instances of class D

in the following code sample will have MOPl, M0P2, and M0P3 selected:

default ==> MOPl, M0P2;

class A {...};

class B : public A

default ==> ++M0P3;

class D {...};

default ==> MOPS;

class E

class F : public A

Instances of class E will have only MOPS selected. However, instances of class F will

have all of the three MOPs selected because a class inherits its MOP set from the parent

class(es). In this case, all members of the MOP set have to be composable.

§8. Instance MOP selection: th e current MOP se t o f a sin g le o b ject can b e changed d yn am i

cally. The change can b e th e a d d itio n , rem oval or rep lacem ent o f MOPs. The con d ition

o f a successfiil change to th e current MOP se t is th a t th e MOPs in th e new MOP se t m ust

be cornposable w ith each otlier . This m eans th a t any pair o f MOPs n m st b e com posab le.

The following code excerpt creates a persistent instance of class B and dynamically

extends the meta-type for the instance by adding the composable Remote MOP to the

MOP set. Later in the code, the same MOP is removed from the MOP set.

class B ==> Persistent

B* b= new B();

B* b ==> ++Remote;

B* b ==> — Remote;

79

Chapter 3. The IGUANA M odel for Autornatic and Dynam ic MOP Composition

A problem is th a t by the tim e we add the Remote MOP to the reflective object b,

the object has already been created, thus it is difficult to extend its persistent object

reference w ith remote object reference w ithout calling the RemoteCreation MO, which is

expected to initiahse the RemoteObjectReference. We need a mechanism th a t allows the

“late” insertion of object references to solve this problem . We overcome this problem

by adding a new MCreation::lateCreate m ethod to the MCreation abstrac t class, which

is intended to create and insert the object reference. Furtherm ore, we need a second

mechanism, which allows the removal of RemoteObjectReference when the Remote MOP

is removed. This is done by the composer MO removing the object reference for the

reflective instance b.

§9. M ultiple MOP inheritance is allowed. Like in IGUANA version 2, the derived MOP in

cludes the full set of reification categories specifi(;d by bo th the base and derived proto

cols. Unlike in Ig u a n a version 2, the order of super-protocols is irrelevant. However,

it is the riieta-level i)rogranim er’s responsibility to ensure th a t the MOPs are either

autom atically-com j)osable or there is a user-defined m anual Composer MO provided.

§10. All MOs instances axe shared bewteen reflective instances of the same class, except

ObjectReference and Composer MOs. ObjectReference MOs are always local. Composer

MOs are either shared or local, depending on the selection context. Composer MOs are

usually shared between reflective classes and instances of reflective classes. However,

composer selection “inherits” the context of the MOP selection/deselection: e.g., if the

scope of the MOP selection was a particu lar instance, then the same instance will get its

local Composer MO associated and initialised. Thus, there is no need to specify locality

(i.e., w hether a MO is local or shared) in the MOP definition.

Note that the notion of local and shared m etaobjects found in Igu an a version 1 and

2 has been eliminated for two reasons: firstly, the explicit links between the MOs and

the components of the supporting middleware made the need for local MOs redundant

(i.e., it is assumed that per-object information is stored in the middleware, not in MOs,

with MObjectReference MOs being the only exception) and secondly, the resulting model

80

Chapter 3. The I g u a n a M odel for A utom atic and Dynam ic MOP Composition

s i m p l i f i e d t h e MO c o m p o s i t i o n p r o b l e m .

§11. Support for autom atic meta-level com position is provided by means of w riting com-

posable m o p s and relying on the default Composer rnetaobject. If the M O Ps are not

autom atically composable, a user-defined Composer MO can be used to compose the

MOs. Rules regarding the w riting of com posable M OPs are given in Section 3.4.1.

§12. Similarly to the mechanism in IGUANA version 2, which prevents m ultiple instances of

the sam e MO class to be added to the list of MOs in a particu lar reification categorj',

only one MO of a particu lar MO class in a reification category can be added to the list.

§13. M anual/explicit composition through m anipulating next MO references in m etaobject

classes is not recommended. Instead, explicit requirem ents on ordering of MOs is sup

ported in the MOP descriptor docum ent. A m anual Composer MO can also be supplied

by the meta-level program m er.

§14. E ither the default (autom atic) or the user-defined Composer MO is called every tim e the

MOP set of an object changes. T he Composer MO is responsible for creating /deleting

and ordering MOs in their res])cctive (behavioural) reification categories. Similarly,

ObjectReference structu ra l MOs arc added/rem oved by the Composer MO.

T here are additional rules in I g u a n a version 3 covering m anual MO composition:

§15. In case of m anual MOP com position, the m eta-level program m er (the au tho r of a MOP)

has to delegate a Composer MO. T his can be set in the Composer a ttr ib u te of the MOP

element in the MOP descriptor XML docum ent. W hen m ultiple m anually-com posable

MOPS are in the MOP set, it is the base-level program m er’s responsibility to ensure th a t

all of them have the sam e m anual Composer MO specified in their MOP descriptors. In

o ther words, we do not a ttem p t to compose Composer MOs.

§16. In the case where m ultiple MOP inheritance is combined w ith m anual MOP com position,

the m ost specific MOP “delegates” the m anual Composer MO.

81

Chapter 3. The IGUANA Model for A utom atic and D ynam ic MOP Composition

§17. Unlike the previous versions of IGUANA, IGUANA version 3 allows the addition of a

MOP to the MOP set, whose name and definition is not known at compilation time.

Furthermore, the new MOP implementation does not have to be statically or dynamically

linked with the application. This is done by utilising the dynamic linking and loading

interface.

3.4 .4 M ulti-th read ed reifed stack

The I g u a n a version 2 introduced the concept of a reified stack implemented by the MStack

class, which was Tised during reified method sends/invocations as well e l s state read and write

access operations. The implementation of the stack allows i)ushing and poi)j)ing arbitrary

elements on to and from the stack.

There is one single stack instance created as one of the first steps in tlie auto-generated

meta-level initialisation code inside the main method of every reflective I g u a n a / C + + appli

cation.

However, this single stack is ultimately thread-unsafe: IGUANA version 2 does not provide

any mechanism to synchronise access to the stack from nuiltiple threads. Therefore, in

a multi-threaded application (which is the norm for any serious system-level application)

nniltiple threads sharing the same single stack without synchronisation can easily cause the

application to fail or crash: e.g., one thread might pop the stack, while another thread is

I^ushiiig an argument on to it.

Therefore we redesigned the reified stack in the new model and we have made it thread-

aware and thread-safe. We also introduced exception handling: the templated push and pop

methods throw exceptions to signal that the stack is over and underflown, respectively.

See section 5.5 for more information.

3.4.5 B ase-level m odifications

Table 3.1 summarises the base-level modification tha t can potentially be performed by dif

ferent I g u a n a behavioural MOs upon intercepting the operation at the base-level object.

82

Chapter 3. The Iguana Model for Autom atic and Dynam ic MOP Composition

Reification category Reifies Modifies
Invocation Method execution at receiver method address,

arguments (order, value, number),
method return value

Send Method execution at caller method address,
arguments (order, value, number),
method return value

Dispatch Selecting the method at receiver method address,
arguments (order, value, number),
method return value

StateRead Member state read member (offset, subscript, value)
StateV\/rite Member state write member (offset, subscript, in-value),

member (out-value)
Creation object creation memory allocation, V FT init,

constructor call, object address
Deletion object deletion destructor call, memory release
Composer overwrites automatic composition ordering of metaobjects

T a b le 3.1: Base-level m odifications perform ed by IGUANA behavioural m etaobjects

3 .4 .6 MOP d e s c r i p t o r s

In the new I g u a n a model, m ops and their MO classes m ust be described by the rneta-level pro

gram m er, who created and coded them according to the new MOP design rules/m ethodology

(see section 3.4.1).

T he MOP descriptors are used by the IGUANA Composer inetaobject to dynam ically com

pose m etaobjects. They are also used by the IGUANA pre-processor, to generate standard C++

code for the reflective IGUANA/C++ application annotated (enhanced) w ith MOP selection,

deselection, and other IGUANA statem ents.

In I guana version 2, a MOP definition contains the following information:

• the nam e of the MOP;

• the list of super-MOPs (m ultiple MOP inheritance is allowed);

• the list of the reification categories used together w ith the nam e of the reifying MO class

(if it is difi'erent from the default), and the sharing mode of the MO (i.e., w hether it is

83

Chapter 3. The IGUANA Model for Autom atic and D ynam ic MOP Composition

local or shared);

The I g u a n a version 3 model retains the previous MOP definition detail (except the dis

tinction between local and shared) as well as adding the following items:

• user-defined Composer MO can be delagated. If not specified, the Composer MO for the

MOP is the automatic DefaultComposer MO.

• dependencies on other MOPs(if any), in terms of non-functional concern areas. As was

explained in section 3.4.1, each MOP fits into a concern area, which is part of a global

and extensible hierarchy (see Figure 3.2). Note that the IcUANA version 1 model had

the notion of dependencies as references to other MOPs;

• reference to extension protocol(s), if any;

• reference to the shared library, that contains tlie MOP implementation. IGUANA version

3 supports dynamic loading and initialisation of MOPs, whose name and implementation

is not available when the base-level reflective application is compiled;

• links to proprietary (i.e., custom-developed) middleware components;

• ability to specify ordering constraints for before and /o r after MOs. This lets the prog

rammer specify different ordering in different behavioural reification categories.

The I g u a n a version 3 MOP descriptor is XML (extensible Markup Language) based, and

it contains all of this information. It is required that the meta-level progranmier specifies the

new MOP in XML. Figure 3.5 shows the XML D ata Type Definition (DTD) defined for MOP

descriptors. The new I g u a n a / C + + pre-processor reads the XML-based MOP descriptors and

generates standard C++ code for a reflective application.

We assume that the MOP descriptors used by reflective IGUANA applications are stored

in one particular directory, e.g., SHOME/.iguana/mops. For simplicity, we also assume that

the name of the MOP file reflects the name of the MOP: e.g., DefaultMOP.xml file defines the

Default MOP.

84

Chapter 3. The I g u a n a Model for Autom atic and Dynam ic MOP Composition

< ?xil1 v e r s i o n * " ! .0 " •n co d in g * "U T F -8 "? >

< ! — DocuswDt Type D e f i n i t i o n f o r Ig u a n a v e r s io n 3 NOP D e s c r i p t o r s - - >

<?ELEMBNT MOP (S u p erH O P s? , C o n c e rn A re a , H e ta O b je c t^ , B x t e n s i o n P r o t o c o l ? , H id d le w a r e L in k s ?) >

<!ATTLIST MOP

Name ID tREQUIRED

C < M D posability (M anual | A u to) SREQUIRED

C om poser CDATA SIHPLIED

S b a r e d L ib r a r y CDATA tlK PLIED

D i s t r i b u t i o n (L o c a l I D i s t r i b u t e d I Comnton) SREQUIRED

L o c a l i t y (P ro x y I S e r v e r | Conmon | N o tA p p l ic a b le) SREQUIRED

>

<!ELEMENT SuperM OPs (MOPR«f*)>

< ! ELEMENT MOPRef EMPTY)

<!ATTLIST MOPRef

Nane IDREF tREQUIRED

>

< lELEMENT C o n c e rn A re a (C o o c e m A re a E l* a ie n t*)>

<!ATTI.IST C o n c e rn A re a

Id ID tREQUIRED

E x c lu s iv e n e s s (S i n g l e t o n I M u l t i) tREQUIRED

>

< 'ELEMENT C o D c e rn A re a E le n e n t (tPCDATA)>

< (ELEMENT M e ta O b je c t (B e f o r e B e h a v io u r ? , A f te r B e h a v io u r ? , B e f o r e R e q u i r e n e n t s ? ,

A f te rR e q u ire m e n ts ? (M id d le w a re C o ff lp o n e n tR e f*)>

< ‘ATTLIST M « ta O b j* c t

C lassN am e ID tREQUIRED

R e i f i c a t i o n C a t e g o r y (C la s s I O b je c tR e f e r e n c * I A t t r i b u t e I M ethod I C o n s t r u c t o r I S end |

I n v o c a t io n I D is p a tc h I C r e a t io n I D e le t io n I S ta te R e a d I S t a t e W r i t e |

A rra y) tREQUIRED

>

< lELEMENT B e f o r e R e q u i r e to e n ts (C o n c e m A re a R e f+)>

< !ELEMENT A f te r R e q u i r e m e n t s (C oncernA r«aR ef-*)>

< • ELEMENT C o n c e rn A re a R e f EHPTY>

< fATTLIST C o n c e rn A re a R e f

Id CDATA tREQUIRED

S t r e n g t h (S t r o n g I Weak I I im e d i a t e) tREQUIRED

L o c a l i t y (P ro x y I S e r v e r I C om on I N ot A p p l ic a b le) tREQUIRED

>

<!ELEMENT E x te n s io n P r o to c o l EMPTY>

< f ATTLIST E z t e n s i o n P r o t o c o l

C la s sN a n e ID IREQUIRED

>

< !ELEMENT H id d le w a re L in k s (M id d lew areC om ponen t-f) >

<?ELEMENT M id d le w a re C o n p o n e n t EMPTY>

< tATTLIST M id d lew areC om ponen t

C lassN am e ID IREQUIRED

>

<!ELEMENT B a f o r e B e h a v io u r ((I n v o c a t io a H o d s I S ta te R e a d H o d s I S ta te W r ite H o d s I C re a tio n M o d s I

D e le t io n M o d s)?)>

< !ATTLIST B e fo re B e h a v io u r

C a l lN e x t (U n c o n d i t io n a lN e x t I C o o d i t io n a lN e x t | A c t iv a te s M id d le w a r e) tREQUIRED

C a lle d B y (M id d le w a re | M e ta l e v e l) tREQUIRED

>

<!ELEMENT A f t e r B e h a v io u r ((In v o c a t io n M o d s | S ta teR ead M o d s | S ta te V lr ite M o d s I C re a t io n H o d s I

D e le t io n H o d s) ?)>

< 5ATTLIST A f t e r B e h a v io u r

C a l lN e z t (U n c o n d i t io n a lN e x t I C o n d i t i o s a lN e x t | A c t iv a te s M id d le w a r e) tREQUIRED

C a lle d B y (M id d le w a re I M e ta l e v e l) tREQUIRED

>

85

Chapter 3. The I g u a n a M odel for Autom atic and Dynam ic MOP Composition

< !ELENENT M id d law ar«C om pon«n tR af EKPTY>

<!ATTLIST M id d l« v a reC o m p o n « n tH ef

Nane IDREF SREQUIED

>

<!ELEKENT In v o c a tio n M o d s (In v o c a t io n H o d *)>

<!E1,EMBNT In v o c a tio n M o d EMPTY>

<!ATTLIST In v o c a tio n M o d

Mod (A rgiim axitO rdar I A rgum «ntV alu« I ArguiM RtNo I A rg u o an tT y p e I A rg u n « D tS iz « | R a tu rn V a lu e I

R a tu m T y p a) SREQUIRED

>

<!EL£HENT SandH ods (SandM od*)>

<!ELEMENT SandMod EMPTY>

<!ATTLIST SandMod

Mod (A rg u m an tO rd a r I A rgum an tV alue I A rginoantN o 1 A rgum antT ypa I A rgu iD an tS iza I R e tu rn V a lu a [

R a tu rn T y p a) tREQUIRED

>

< ICLEMENT S ta ta R a a d K o d s (S ta ta R a a d H o d *)>

<• ELEMENT S ta taR aad M o d EHPTY>

<*ATTLIST S ta taR aad M o d

Hod (A t t r i b u t a O f f s a t I A t t r i b u t a V a lu a I A t t r i b u t a T y p a I A t t r i b u t a S i z a I

A t t r i b u t a S u b s c r i p t) SHEQUIRED

>

< lELEMENT S ta ta W rita M o d s (S ta ta W rit* M o d «)>

< ‘ELEMENT S ta ta W rita M o d EMPTY>

<!ATTL1ST S ta ta W rita M o d

Mod (A t t r i b u t a O f f s a t | A t t r i b u t a V a l u a I n I A tt r ib u ta V a lu a O u t | A t t r i b u t a T y p a I A t t r i b u t a S i z a I

A t t r i b u t a S u b s c r i p t) fREQUIRED

>

<!ELEHENT C ra a tio n M o d a (C ra a tio n M o d *)>

< lELEMENT C ra a tio n M o d EMPTY>

<!ATTLIST C raa tio n M o d

Hod (M a n o ry A llo c a t io n T y p a I M a n o ry A l lo c a t io n S iz a I M a m o ry A llo c a t io n L o c a t io n I V F T L o ca tio n I

V F T E n tr ia e | C o D S tru c to rA rg u in a o tO rd a r I C o n s tru c to rA rg u m a n tV a lu a I C o n B tru c to rA rg u n a n tN o I

C o n a tru c to rA rg u n a D tT y p a I C o n s t r u c to r A r g u n a n tS iz a I C o n s t r u c to r R a tu m V a lu a) tREQUIRED

>

<fELEMENT D a la tio n M o d s (D a la t io n N o d *)>

<!ELEHENT D a la tio n M o d EMPTY>

<!ATTLIST D a la tio n H o d

Mod (O b ja c tV a lu a I D a a tru c to rA rg u n ia n tV a lu a | D a s tru c to r A r g u a a n tT y p a | D a s tm c to r A r g u n a n tS iz a I

H a m o ry R a la a a a S iz a | N am o ry K a la a B a L o c a tio n) SREQUIRED

>

A metaobject can have “before” and/or “after” meta-comi)utation.

The base-level modifications specified in the DTD are the ones that can be performed by a

behavioural metaobject in its reification category on the causally-connected base-level object

during its “before” and “after” meta-operations (also refer to Table 3.1). However, through

the current referential links (i.e., pointers) between different MO classes, a behavioural MO can

acquire any information about the base-level object, which can be used to change additional

aspects of the base-level object that is not intended for that behavioural metaobject class.

Currently, there is no security mechanism in place to prevent a MO in one reification category

86

Chapter 3. The I g u a n a M odel for A utom atic and D ynam ic MOP Composition

from performing additional changes to the base-level object, i.e., other than the ones listed

above. Instead, in order to make the automatic and dynamic MO composition work, we rely on

the meta-level programmer to respect the design rules. If additional base-level modifications

are required for a MO class, the meta-level programmer should declare a new’ MO class within

the appropriate reification category.

Figure 3.5 shows attributes and containment relationships between elements in the MOP

descriptor DTD.

- N a m e
- C o m p o sa b H ity
- C o m p o s e r
■ S h a re d L ib ra ry
- D istribu tion
- L o c a lity

MOP

SuparM O P SuperM O PRaf

<no attr.> - N a m e

Conc»rnAr0 a

■ Id
- E x c lu s iv e n e s s

C oncem A reaE lem en t

..M ods
- C a llN ex t
- C a lle d B y < R C —s p e c i f ic attr.>

B e1onR »qu ifem en tB ConcBrnAraaRa!

C la s s N a m e
R e ific a tio n C a te g o ry - Id

-■ S tre n g th
- L o c a lity

<no attr. >

A tterSahB viour
..M ods

- C a llN ex t
< R C —s p e c i f ic attr.>~ C a lle d B y

B efo feR aqu iram an ts

** C la s s N a m e <no attr. >

M iddlawaraLinks M iddlaw areC om ponenI

N a m e
C tB s s N a m e

<no attr. >

F ig . 3.5: Elements, attributes, containment relationships in the MOP descriptor XML DTD.

The MOP descriptor DTD defines the following elements;

MOP e lem en t: This element is the root in an XML-based MOP description. Note that each

MOP must be accompanied by a separate MOP description document, which must

have one and only one MOP element in it. This element has the following mandatory

attributes;

87

Chapter 3. The Ig u a n a M odel for Autom atic and D ynam ic MOP Composition

Name: the unique nam e of this MOP. Type is ID.

Composability: indicates w hether the MOP can be composed by the default, autom atic

DefaultComposer MO. The value is set to either Manual or Auto. M anually com-

posable MOPs m ust declare a m anual Composer MO, th a t is capable of combining

the MOs of this MOP w ith other (maimally or autom atically composable) MOPs.

Composer: If the value of the Composability a ttr ib u te is Manual, th is a ttr ib u te specifies

the user-defined Composer MO.

Shared Library: the name of the UNIX shared library that contains the im plem entation

of this MOP. For exam ple, the libFTMOP.so file contains the im plem entation o f a

MOP which provides a form of fault-tolerance. N ote that there is no specific re

quirement to link the IGUANA base-level application dynam ically w ith this library;

the Ig u a n a run-tim e can load this shared library dynam ically and initialise the

MOP.

Distribution: this a ttr ib u te (value is one of Local, Distributed or Both) indicates w hether

the MOP is related to object d istribu tion or not. In the Local case, the MOP is

intended to perform local operations only (i.e., w ithin a single address space). In

o ther words, MOs of the MOP work w ithout the presence of a “rem ote” MOP (e.g.,

Remote). The Distributed option means th a t a “rem ote” MOP m ust be present. In

th is case, the Ig u a n a run-tim e in different address spaces needs to co-ordinate

meta-level activities such as dynam ic MOP selection and deselection in order to

m aintain a balanced (i.e., sym m etric) conm m nication stack between servers and

the ir proxies in address spaces of rem ote clients. Finally, the Both option indicates

the MOP can work w ith or w ithout the presence of a “rem ote” MOP.

Locality: th is a ttr ib u te indicates the locality of the MOP, w ith respect to object dis

tribu tion . The value has to be one of the following: Proxy, Server, Common, or

NotApplicable. It should be set to NotApplicable in descriptors of m ops, th a t are

intended to be local (i.e., the Distribution a ttr ib u te described above is set to Local).

For MOPs related to object d istribu tion , th is a ttr ib u te suggests the side, a t which

the MOP is designed to be used: Proxy for the client side, Server for the server side.

Chapter 3. The IGUANA M odel for A utom atic and D ynam ic MOP Composition

The Common vahie can be used for MOPs th a t have been designed to work a t both

sides.

The MOP element contains an optional SuperM OPs element, one ConcernArea element,

one or more MetaObject, Extension Protocols, and MiddlewareLinks elements.

SuperM OPs e l e m e n t : This element is used to refer to one or more parent MOPs, from which

this MOP is derived. Only the direct parent MOPs need to be listed here, as the default

com position algorithm will find and load the MOP descriptors of indirect paren t MOPs

a-s needed. There are no a ttrib u tes defined in this eleinc;nt. This element contains one

or more SuperM OPRef elements.

SuperM OPRef e le m e n t: this element is used to refer to parent MOPs. It has one a ttr ib u te

called Name, which refers to the parent MOP. Its type is ID. This element does not

contain o ther elements.

ConcernArea e le m e n t: this element defines a particuhir non-functional concern area th a t this

MOP im plem ents. As explained in section 3.4, non-functional concerns are organised

into a global and extensible hierarchy. There is a ’’ro o t” concern area w ith child concern

areas such a-s Structural and Behavioural positioned im derneath. Furtherm ore, concern

areas such as Persisten,ce, Remote, Security are positioned underneath the Behavioural

concern area. As an example, MOPs related to object persistence should be arranged

in the Persistence concern area. A concern area can be fu rther divided into smaller

areas. For instance, the broad Security concern area can be divided into sub-areas

such as Encryption, and Authentication. I t is im portan t to note th a t each MOP should

preferably fit into an existing concern area in the hierarchy. If this is not possible, then

the MOP designer needs to extend the hierarchy by creating a new concern area.

There are two a ttrib u tes defined in the ConcernArea element:

Id: the unique identifier of the concern area w ith which this M OP deals. Its type is ID.

Exclusiveness: this a ttr ib u te (value is either Singleton or Multi) indicates w hether this

MOP is a singleton: it is the single MOP allowed to im plem ent/deal w ith this

89

Chapter 3. The I g u a n a Mode] for A utom atic and Dynam ic m o p Composition

jjarticiilar concern area or not. T he la tte r case means th a t m ultiple MOPs can

share the responsibility of im plem enting this concern area.

The Concern Area element contains one or more ConcernAreaElement elements.

ConcernAreaElement e l e m e n t : this element contains the name of the concern area element

as character d a ta (PCDATA).

MetaObject e le m e n t: this elem ent describes a m etaobject class, which falls into one of the

14 I g u a n a reification categories (see Section 3.4.1 for the com plete list of them). There

are two a ttrib u tes defined:

ClassName: the unique nam e of this m etaobject class. The tyj)e is ID.

ReificationCategory: the nam e of one of the 14 I g u a n a reification categories.

The MetaObject elem ent contains the following optional elements; BeforeBehaviour,

BeforeRequirements, AfterBehaviour, AfterRequirements, and MiddlewareComponentRef.

Structu ral MOs do not contain these four elements.

BeforeBehaviour a n d AfterBehaviour e l e m e n t s : these elements are used for describing be

havioural MO classes, i.e., characterising w hat they do in their ’’before” and ’’after”

meta-comi>utations. There are two a ttrib u tes defined for these elem ents (both are

m andatory):

CallNext: this a ttr ib u te (value is one of UnconditionalNext, ConditionalNext, or Acti-

vatesMiddleware) reflects the chaining behaviour of the before/after m eta-operation,

i.e., w hether this MO always or conditionally calls the next MO in the chain or it

calls a middleware com ponent instead, and by doing so breaks the chain. This

classification criterium is sim ilar to PawlaJc’s model [62], which characterised MOs

as excplicit, conditional, etc.

CalledBy: this a ttr ib u te (value is either Middleware or MetaLevel) reflects the caller of

th is MO, i.e., it is either called by a m iddleware com ponent, or another m etaobject

in the chain, respectively.

90

Chapter 3. The IG U A N A M odel for A utom atic and Dynamic MOP Composition

The BeforeBehaviour and AfterBehaviour elements can optionally contain one of the six

elements, that describe the actual base-level modification(s) performed by the MO class.

For instance, if an Invocation MO class modifies the state of the causally linked base-

level object (s) in both the “before” and “after” meta-operations, then it must have two

InvocationMods elements describing these modifications, specified in its BeforeBehaviour

and AfterBehaviour elements, respectively.

BeforeRequirements an d AfterRequirements e lem en ts : these elements contained optionally

in MetaObject elements of behavioural MO classes are used for listing optional order

ing requirements (contraints) on ”before” and "after” composition in terms of non

functional concern areas. This model is similar to what is described in the ” Automatic

comj)osition of software components” paper [68] with requirements on UP and DOWN

ports. There are no attributes defined for these elements. These elements contain one

or more ConcernAreaRef elements.

ConcernAreaRef e lem en t: This empty clement has three attributes defined:

Id: it refers to the concern area, for which the rejjresentative MO nmst be present before

or after this MO. Type is ID.

Strength: this a ttribute (value is one of Strong, Weak, or Immediate) indicates the

strength of the requirement: strong requirements must be satisfied, i.e., a rep

resentative MO of a MOP in the referenced concern area must be present before or

after this MO. Weak requirements do not have to be met, but they shall not be

violated, e.g., if there is a weak before requirement for a particular concern area,

then a representative MO of a MOP in that concern area shall not be placed after

this MO. Finally, immediate requirements imply that the representative MO must

be placed directly before or after this MO.

Locality: this a ttribute is set to one of the following values: Proxy, Server, Common, or

NotApplicable and it indicates the applicability of the requirements with respect

to object distribution. For example, depending on the intended side of this MOP,

91

Chapter 3. The Ig u a n a Model for Autom atic and Dynam ic MOP Composition

there can be two different before requirem ents specified; one for the proxy side

and another for the server side.

B a se -lev e l m o d ifica tio n (e .g . InvocationMods) e lem en ts: these elements describe the base-

level modificiations performed by the MO. See Table 3.1 for more inform ation about

the perm itted base-level modifications.

Extension Protocol e lem en t: This em pty element has only one a ttr ib u te defined:

ClassName: it refers to the class th a t im plem ents the extension protocol. We expect

th a t the im plem entation of the extension protocol is contained either w ithin the

shared library of the MOP, or it is dynam ically linked w ith the IGUANA base-level

application.

MiddlewareLinks e lem en t: this element has no a ttrib u tes defined. It contains one or more

MiddlewareComponent elements.

MiddlewareComponent elem en t: this em pty elem ent has two a ttribu tes defined;

Name: the unique nam e of the middleware com ponent. Type is ID.

ClassName: it refers to class th a t im plem ents the middleware com ponent interface.

MiddlewareComponentRef elem en t: th is em pty element is used in MetaObject elem ents to

refer to com ponents of the middleware (MiddlewareComponent element defined above)

th a t are actually used by the MO class. This element has only one a ttrib u te

Name: the imique nam e of the middleware com ponent. Type is IDREF.

3 .4 .7 A lg o r i th m fo r t h e D efa u ltC o m p o ser MO

This section describes the way default, au tom atic and dynam ic MO com position works.

T he default MOP composition algorithm is implemented by the DefaultComposer MO class.

An instance of th is composer MO is created when an IGUANA application starts . T his MO is

92

C h apter 3. T he Ig u a n a M odel for A u to m a tic and D yn am ic MOP C om position

then invoked to compose MOs of the MOPs specified in the MOP sets of reflective base-level

classes.

T he algorithm is ba.sed on processing all the MOP descriptor files of the selected MOPs, and

making decisions on how to compose the MOs of MOPs in each behavioural reification category.

Please note that depending on the before and after requirements, the calculated order of MOs

can differ in different reification categories. T his is in contrast with IGUANA version 2, where

the same order was imposed on MOs in all the behavioural reification categories. The default

comjjoser MO also inserts/removes MOP-specific object references.

Before defining precisely (algorithm ically) how the default Composer MO works, we describe

the way it solves som e interesting com position problems.

1. Problem: how does the default Composer build a sym m etric protocol stack between re

m ote clients and servers?

Solution: The Composer MO d etects that the MOPs selected are at the client or the

server side. As we described in section 3.3, we assum e that the proxy design pattern is

used for im plem enting object d istribution at the rneta-level.

This is done by selecting a rem ote proxy MOP (e.g., the RemoteProxy from our MOP

suite) directly or indirectly (i.e., by selectiug a MOP that depends on it) at the client side.

Our RemoteProxy MOP is different from our Remote only in that it specifies different

locality i.e.. Proxy and Server, respectively. Otherwise, they use exactly the sam e MO

classes and middleware com ponents.

The MObject has a callback method onProtocolSetChange which is called by the De-

faultComposer MO upon changes to the MOP set of a particular instance. The MOP

descriptor for Remote may specify that the IGUANA run-time running in the client’s

address space will need notifications from its peer running in the server’s address space

in order to maintain the symmetric stack of non-local MOPs (represented by MOs of the

mops), every time the current MOP set changes at either side.

T he DefaultComposer MO detects “rem ote”-related MOP in the MOP set and uses the

locality information to com pose them differently depending on the side i.e., w'hether

93

C hapter 3. T he Igu an a M odel for A u to m a tic and D ynam ic MOP Composition

the MOPS are for the j^roxy or the server.

The composition algorithm defined below is deterministic in the sense that it selects

“remote”-related MOs for the proxy side in an order that is the reverse that of the MOs

for the server side. This ensures that these MOPs form a symmetric protocol stack.

The following code excerpt shows how the client can create a proxy:

// Select the remote proxy protocol

A* proxy= new A()==> RemoteProxy;

// Lookup the server in the name service

Iguana;: lookupC‘‘MyServer’’, ‘‘A ' ’, feproxy);

// Invoke the setValue method

proxy-> setValue(lO);

Code excerpt for the server side is as follows:

// Select the remote protocol and create a server object

A* server= new A() ==> Remote;

1 1 Record the server in the name service

Iguana:; record(‘‘MyServer’’, ‘ ‘ A ’ ’ , server);

// Wait for client requests

Iguana:: wait();

2. Problem: how does the base-level programmer select an additional MOY>(s)?

Solution: the assumption is that the code at server side initiates the change to the

MOP set and the negotiations (regarding what MOPs should be added or removed at

both sides) between the two sides happen out of band; i.e., the client and the server

communicate directly with each other. The server side can receive a notification event

from the Composer MO if it subscribed to them. It can then contact the connected

proxies to tell them of the changes in the MOP set.

In the following code excerpt, the code at the server adds a new Encryption MOP to the

current set of i)rotocols:

94

C hapter 3. The IGUANA M odel for A u tom atic and D ynam ic MOP Composition

I I Add a secure protocol (e.g. encryption) to the server
A* server ==> ++Encryption;
// Initialise the cypher through the Security extension protocol
Security:: init(server, ‘‘theSECRETkey’’);

Let us assum e th a t the server com m unicated w ith the connected clients the nam e of

the MOPS such th a t the client code can add the sam e Encryption MOP to the MOP set of

the reflective proxy object, as shown below:

char* name= ‘‘Encryption'’;
char* sharedKey= ‘‘theSECRETkey’’;
// Get the Encryption protocol
MProtocol* protocol= Meta:: getProtocol(name);
// Add a secure protocol for encryption
proxy-> mcomposer-> addProtocols(protocol);
// Initialise the cypher through the Security extension protocol
Security:: init(proxy, sharedKey);

F irst, the MOP is looked up then the DefaultComposer MO of the proxy object reruns

the com position algorithm and rearranges the ineta-level configuration and inserts the

Encryption object reference and behavioural MOs in their respective lists according to

the MOP descriptors.

3. Problem: how does the composition cater fo r possible co-location of client and server

objects?

Solution: MOs in MOPs like Remote and Secure have to be w ritten keeping possible

co-location of client and server in m ind. For exam ple, an encrypted invocation MO

should not encrypt the argum ents if the proxy and server objects axe co-located. Any

“rem ote”-related MO can test w hat side the MO is on: i.e., w hether it is in a proxy or a

server o b jec t’s m eta-configuration. This test simplifies MOP program m ing because it is

possible to use one MO class (e.g., Encryptedlnvocation) for doing argum ent encryption

95

Cha,pter 3. T he I g u a n a M odel for A u tom atic and D ynam ic MOP Composition

or decryption in the “before” meta-level operation and exactly the o ther way around

in the “after” meta-level operation, depending on the outcom e of the co-location test.

Convenient macros provided by the Ig u a n a /C ++ run-tim e library can be used to check

for proxy/server side and possible co-location:

ISJPR O X Y (o) this macro re tu rns 1 (defined by the PROXY constant) if the object o

is a t the proxy side and has selected a rem ote-related MOPit re tu rns 2 (SERVER)

if the object o is the rem ote server. Otherwise, it returns 0 (LOCAL).

IS_COLOCATED(o) this macro re tu rns 1 (defined by TRUE) if object o specified as

an argum ent is in this address space and it is not a proxy. O therwise it re tu rns 0

(FALSE).

4. Problem: how does the default Composer check i f a m op is intended to be used with

object distribution (i.e., related to “rem ote”)?

Solution; the MOP descriptor indicates th a t a MOP is related to object d istribu tion or

not. T he Distribution a ttrib u te in the MOP element can be set to one of Distributed,

Local and Common. Also, the BeforeRequirements or the AfterRequirements element

should refer to Remote concern area for MOPs th a t are related to object d istribu tion .

The Locality a ttr ib u te (possible values are: Proxy, Server, Common, and NotApplicable)

indicates the “side” on which the MOP is intended to be used. For example, RemoteProxy

has the Locality a ttrib u te set to Proxy.

The default MO com position algorithm , im plem ented by the DefaultComposer MO works as

described in the following steps:

1. The Composer MO reads in and parses all the MOP descriptor files. It may additionally

read in the XML descriptors of the super MOPs (if any). Note th a t the XML descriptors

are assum ed to be in the same directory for simplicity.

2. It checks if all o f the MOPs are auto-com posable: that is, if the MOP::Composability at

trib u te in the XML docum ents is set to Auto. If not, the default composer MO stops

and raises an exception.

96

Chapter 3. The I g u a n a Model for A utom atic and Dynamic m o p Composition

3. It, checks w hether the non-functional concern areas for the selected MOPs overlap. This is

indicated by the ConcernArea elements. If there is more than one MOP in an exclusive

concern area (i.e., the ConcernArea;:Exclusivity is set to Exclusive), the Composer MO

stops and raises an exception.

4. It forms two groups of MOPs: local and rem ote. Rem ote MOPs are related to object

d istribu tion and m ust conform to our proxy MOP design pattern . “Local” or “remote-

related” MOs are handled difierently: the Composer MO distinguishes between local

and rem ote-related MOPs because rem ote-related MOs need to form a sym m etric stack

between the client (more precisely the proxy object in the client address space) and

the server objects, while local MOs can be inserted in the list more freely, where it is

appropria te (sĉ e below).

An interesting example is the task of combining MOs of a MOP set, th a t contains Logging,

Replication, Authentication, and Encryption: Logging MOP is the only local MOP. In this

exam ple, a Login vocation MO could be placed before bo th au thentication (performed

by Authlnvocation) and encryption (])erformed by Encryptlnvocation) take place a t the

proxy side. This would result in logging unencrypted (clear-text) argum ents. However,

if the Loglnvocation MO is positioned after Authlnvocation and Encryptlnvocation MOs,

it would log the client’s digital signature as well as the encrypted argum ents. The con

clusion is th a t the meta-level program m er, who also writes the XML MOP descriptor,

should specify the intention of how h is /h er MOP should be used in com bination w ith

o ther MOPS. This can be done by using the BeforeRequirements or AfterRequirements

elem ents and specifying Weak, Strong, or Immediate ordering requirem ents (relative to

concern areas) for the behavioural MOs. For exam ple, there could be two Logging MOP

derivatives using exactly the same MO classes for im plem entation, bu t having two dif

ferent MOP descriptors (e.g., CleartextLogging and CryptoLogging) w ith two alternative

ordering constraints.

5. For each behavioural reification category, the default composer MO places the Default MO

at the end of the chain. Then it orders the o ther related MOs according to the following

97

Chapter 3. The I g u a n a M odel for A utom atic and Dynamic MOP Composition

rules:

• Declared behavior of the before/after meta-computation of MOs with respect to

chaining with other MOs or the middleware (CallNext attribu te of the BeforeBe-

haviour and AfterBehaviour elements in the MOP descriptor): the DefaultComposer

MO can combine MOs that unconditionally call the next MO in the chain and there

can be at most one MO that breaks the chain by calling a middleware component

instead of the next MO. For example, the Remotelnvocation MO of the RemoteProxy

MOP is a MO that breaks the chain. If there are more than one such MOs, then

the composer MO raises an exception. MOs that call the next MO conditionally are

also difficult to combine automatically as they might break the chain. Thus, the

default composer MO raises an exception if it encounters conditional MOs.

• Base-level modification(s) performed by the MO may conflict, in which case the

composition may fail: the DefaultComposer MO raises an exception.

• Declared ordering requirements (for both “before” and “after” nieta-com])utation)

relative to other non-functional concerns. Similarly to the solution in [68], where

REQUIRES/PROVIDES rules can be described for UP/DOWN ports, the Befor-

eRequirements and AfterRequirements elements contain information that imply the

order in which required MOs can be positioned relative to each other. As explained

above in section 3.4.6, the requirements can be strong, weak, or immediate. If the

requirements cannot be met or are violated, the DefaultComposer raises an excep

tion.

It is possible that there is more than one combination that meets these require

ments. In this case, the DefaultComposer MO will pick one “good” combination

according to the following logic: if the MOP set contains “local” MOPs only, the De

faultComposer MO picks the first combination. If the MOP set contains a “remote”

MOP, e.g., RemoteProxy, or Remote, the DefaultComposer MO picks symmetric com

binations of MOs for the proxy and server sides.

6. If no exception was thrown in the previous steps, the DefaultComposer MO builds the

98

C hapter 3. T he IGUANA M odel for A u tom atic and D ynam ic M O P Composition

ineta-layer for the reflective object(s).

We give com position examples in C hapter 6, where we evaluate our thesis.

3.5 Summary

T h is chapter defined th e d esign IGUANA version 3 reflective p rogram m ing m odel.

T h e m ain con trib u tion o f th e new m od el can b e sum m arised as follow s: th e IGUANA version

3 supp orts:

1 Autom atic and dynamic MOP composition, which can combine M O s o f a compasable

MOP set, where some MOPs may overlap semantically. By automatic and dynamic

com position we mean th a t independently developed MOPs th a t were designed accord

ing to our com posability rules can be dynam ically selected for rcflcctive instances of

classes, and the selected MOPs will continue to provide their intended non-functional

behaviour. The actual MOP set selected for any reflective object may not be known un

til run-tim e: comijosable MOPs can be added to the meta-level a t any tim e facilitating

dynam ic adaptation . Similarly, MOPs can be removed from the MOP set a t run-tim e.

A utom atic and dynam ic com position can be used to deal w ith unanticipated changes

in the requirem ents of applications.

2 Interlinking MOPs and component-based middleware. We have found th a t rnetaobject

cla-sses th a t comprise a MOP often use one or more middleware com ponents (e.g., a

NameService com ponent for d istribu ted objects) to im plem ent their intended function

ality. These links between MO classes of the MOP and com ponents of the middleware

are explicitly sta ted in the MOP descriptor, which helps the com position mechanism

detect sem antic overlap between MOPs th a t are to be combined.

3 Supporting practical, real-world meta-level programming via a programming methodolo

gy. We have defined a m ethodology for meta-level program m ers, which if followed

leads to the design of com posable MOPs. These rules were derived from our experience

of combining MOPS th a t im plem ent common non-functional behaviours, such as rem ote

99

Chapter 3. The I g u a n a M odel for Autom atic and Dynamic MOP Composition

method invocation, object persistence, synchronisation, security, and fault-tolerance.

W ithin our programming methodology, these and similar MOPs can be composed and/or

adapted to meet the needs of changing application requirements.

100

C h a p te r 4

D esign of an I g u a n a m o p Suite

“Nof.hing e v e r becomes real un ti l it is exprerienced. ” - John K ea ts

4.1 Introduction

This chapter describes the design of a number of automatically composable IGUANA MOPs

that will be used to evaluate IGUANA version 3.

These MOPs range from the sim ple Typelnfo MOP for structural reflection through MOPs

for object distribution to mops for im plem enting fault-toleraiice at the m eta-level. Due to

their volum e, the MOP descriptor XML files have b(«^n moved to the A ppendix A.

We have imjilemented the following MOPs together with their extension j)rotocols and

middleware components: Typelnfo, Default, Logging, Persistent, Persistent2, Persistent2Absent,

Remote, and RemoteProxy. We also outlined the design of MOPs for Synchronisation (atomic

persistent objects with optimistic and pessimistic concurrency control) and Replication (fault-

tolerance through leader and follower replicas).

4.2 Structural reflection: the Typelnfo M O P

T he Typelnfo MOP defines the following MO classes:

• M Class

101

C hapter 4. Design o f an IGUANA MOP Suite

• MAttribute

• M Method

Selecting the Typelnfo MOP allows structural inform ation to be retained about classes.

T his inform ation includes a description of the class, its attributes, and its m ethods in the

form o f the above MOs. The roles o f these structural MOs are:

C lass: the M Class MO maintains information on a class: name of the class, size of an instance

of the class, reference to the class’ table of virtual fimction pointers, references to MOs

that describe parent classes (if any), attributes, methods (including constructor and

destructor) declared by the class.

A tt r ib u te : the MAttribute MO stores information about an attribute of a class such as the

name, type and size of the attribute, its offset within the object (for non-static a t

tribute), or its address (for static attribute), its accessibility (private, protected, or

public), and whether or not it is static.

M e th o d : tlie M Method mo stores information about a m ethod such as the nam e of the

m ethod, its signature, and return type, its address, accessibility (]>rivate,])rotected, or

public), and whether or not it is static.

T he Typelnfo MO is used by the Default MOP and other MOPs described in the subsequent

sections as a base MOP.

4.3 Design of the Default MOP

T he Default mop inherits from the Typelnfo MOP and defines the following MO classes:

• DefaultCreation

• DefaultDeletion

• Defaultlnvocation

102

Chapter 4. Design o f an IGUANA MOP Suite

• DefaultStateRead

• DefaultStateWrite

• DefaultSend

T he Default mop im plem ents the default C++ object model for object creation, deletion,

m em ber sta te read and w rite, m ethod invocation, and m ethod send. The main purpose of

the Default mop is th a t it reflects the reified operation a t the base-level, therefore its MOs

can be used in MOP com position as the last MO in chaiiLS for difTerent behavioural reification

categories.

T he Default MOP inherits from the Typelnfo MOP, which retains struc tu ra l inform ation on

class, a ttrib u te , and m ethod definitions. Note th a t the ObjectReference has not been reified

because by default the host language C++ uses pointers to refer to rfiflective objects. We

outline the role of each MO class being used:

C r e a t io n : the DefaultCreation MO reflects the object creation operation by allocating mem

ory for the base-level instance or array of instances and executing its constructor

m ethod, which might possibly take argum ents.

D e le tio n : the DefaultDeletion MO reflects the object deletion operation by executing the

destructor m ethod for the reflective instance or array of instances and releasing the

allocated memory.

In v o c a tio n : the Defaultlnvocation MO reflects the method invocation operation by executing

the selected method and returning the results.

S ta te R e a d a n d S ta te W r i te : the DefaultStateRead and DefaultStateWrite MOs reflect the

member state read and write operations at the base-level.

S e n d : the DefaultSend MO reflects sending m ethod invocations to o ther reflective objects.

There are no extension protocol and middleware com ponent classes defined for the Default

MOP.

103

Cha.pter 4. Design o f an IGUANA MOP S uite

4.4 D esign o f the Logging MOP

The Logging MOP inherits from the Typelnfo MOP and defines the following MO classes:

• LogCreation

• LogDeletion

• Loglnvocation

• LogStateRead

• LogStateWrite

• LogSend

The Logging MOP enhances the default C++ object model for object creation, deletion,

member state read and write, method invocation, and method send by adding logging audit

information whenever these events happen. The Logging MOP is a “local” MOP, i.e., it does not

require the presence of a “remote” MOP. Thus, MOs of this MOP can more freely be combined

with MOs of other MOPs. As we have already pointed out in section 1.2.1, depending on

the requiiements on what information should be logged, the meta-level programmer should

specify ordering constraints to indicate the required position of logging MOs in the chains of

behavioural MOs. This is done in the MOP descriptor file for Logging. We outline the role of

each MO class being used:

C re a tio n : the LogCreation m o logs the object creation event.

D e le tio n : the LogDeletion MO logs the object deletion event.

In v o ca tio n : the Loglnvocation MO logs the method invocation event.

S ta te R e a d a n d S ta te W rite : the LogStateRead and LogStateWrite MOs log the state read

and write events, respectively.

S end : the LogSend MO logs the event of sending method invocations to other reflective

objects.

104

Chapter 4. Design o f an IGUANA MOP Suite

The Logging MOP impleiiieiitation uses the logging extension protocol (LEP) and a LogManager

middleware component to log these events to a file locally. Other implementations could log

events to a central log server.

4.5 Design o f the Persistent MOP

T h e P ersistent M O P sinherits fro m th e Default MOP a n d d efines th e fo llow ing MO classes:

• PersistentC lass

• PersistentObjectReference

• PersistentC reation

• PersistentD eletion

• Persistentlnvocation

• P ersistentS tateR ead

• Persisten tS tateW rite

The Persistent MOP extends the behaviour of the default C++ object model for object

creation, deletion, member state read and write, and method invocation. It uses its own

structural MO classes for object references and classes. We outline the role of each MO class

being used:

C lass: PersistentClass MO class extends MClass to include methods for reference swizzling

and unswizzling (i.e., switching between volatile language pointers and persistent object

references) and counting the number of references a class contains (including references

inherited from parent classes).

O b je c tR e fe re n c e : the local (per-object) PersistentObjectReference MO is used as a persis

tent object reference. The persistent object reference consists of an object number, a

class number, and an offset value, which is used when referencing persistent objects

embedded in other persistent objects.

105

ChApter 4. Design o f a n I g u a n a m o p Suite

C rea tio n : when creating a persistent object, the PersistentCreation checks whether the ob

ject’s claiss has been installed in the persistent class register (implemented as part of

the proprietary IGUANA middleware for object persistence). If not, it installs the class.

Then it calls the next creation MO. It is expected required that eventually the base-

level operation will be reflected by the DefaultCreation MO at the end of the chain. The

PersistentCreation MO then allocates a persistent object reference for the newly created

object.

D e le tio n : when deleting a persistent object, the PersistentDeletion checks if the object has

been recorded in the persistent name service. If so, it removes the name service entry,

and passes control to the next MO. It is required that the DefaultDeletion at the end

of the chain will reflect the base-level operation. The PersistentDeletion MO then re

moves the allocated persistent, object reference from the reference manager middleware

component.

In v o ca tio n : when a method is invoked on a proxy object, control is passed to the shared

PersistentClass MO, wdiich handles the object fault and loads the object from the Per

sistent Object Store (POS) (part of the I g u a n a middleware). All persistent object

references in the object’s state are then unswizzled. Control is passed to the next MO.

It is required that the Defaultinvocation MO at the end of the chain will reflect the

base-level method invocation.

S ta te R e a d an d S ta te W rite : like method invocation, control is passed to the shared Per

sistentClass MO, which is responsible for handling the object fault, and loads the object

from POS, if it was not already loaded. State read and write are expected to be carried

out by the last MO in the chains, DefaultStateRead and DefaultStateWrite, respectively.

Figure 4.1 shows the meta-level configuration for the Persistent MOP with the middleware

comj)onents. The IGUANA extension protocol is called Common and provides an application

programming interface for initialising the POS, recording, looking up, and deleting persistent

root objects, and closing down the POS.

106

Chapter 4. Design o f an I g u a n a m o p Suite

C lass Regist a Ref. M anager

persisten t/language refs, m appings

N am e S erv iceStorage Manager

Persistent MO s

m id /ilfyvare~ l evel

oo oo oo
persistent objects clients to persistent

(proxies fo r absent)

Fig. 4.1 : Meta-levcl configuration for the Persistent MOP

4 .5 .1 A d a p ta t io n o f Persistent

A problem with the implementation outlined above is that all language operations on poten

tially persistent objects are intercepted and carried out via the (slower) meta-level, even if

the object is already present in memory and could be treated as an ordinary C++ object. To

overcome this problem, the Persistent MOP can be refined in a way, that takes advantage of

dynamic MOP selection. The refined Persistent MOP hierarchy is defined as follows: the Per-

sistent2 MOP inherits from the Default MOP, while the Persistent2Absent MOP in turn inherits

from the Persistent2 MOP. The definition of the MO classes they use remains the same as in

the Persistent MOP above.

The Persistent2 MOP uses the following MO classes:

• PersistentObjectReference

• PersistentCreation

• PersistentDeletion

The Persistent2Absent in addition uses the following MO classes:

• PersistentClass

• PersistentStateRead

107

Chapter 4. Design o f an IGUANA MOP Suite

• PersistentStateW rite

• Persistentlnvocation

As in the design of the Persistent MOP, the base-level program m er selects the above Per-

sistent2 for classes or objects he/she wants to re ta in after the application has term inated .

This MOP reifies only object references, creation, and deletion. T he roles of these MOs are

the same as above. The Persistent2Absent MOP inherits from the Persistent MOP and reifies

class, s ta te read /w rite , and m ethod invocation. This MOP is dynam ically selected by the

Persistent2 im])lementation for proxy objects, th a t represent absent objects (i.e., those th a t

have not been loaded from the POS yet) and for which object faults need to be detected.

A fter an absent object is loaded from PO S and the persistent references it may contain are

unswizzled, the meta-level re-selects the Persistent MOP, which results in the sta te access and

m ethod invocations by-passing the meta-level thus im proving the perform ance. The IGUANA

extension protocol and m iddleware com ponents are the sam e as in the Persistent m o p .

4.6 D esign o f th e Remote and RemoteProxy m o p s

T he Remote and RemoteProxy MOPs im plem ent rem ote access to (public) m em ber sta te and

m ethod invocations. Both M OPs inherit from the Default MOP. The two MOPs define and use

the sam e MO classes as follows:

• RemoteObjectReference

• RemoteStateRead

• RemoteStateW rite

• Remotelnvocation

• RemoteCreation

• RemoteDeletion

108

C h apter 4. Design o f an I g u a n a m o p Suite

These m o p s override the behaviour of the default C++ object model (represented by the

Default m o p) for creation, deletion, sta te read and w^rite, and m ethod invocation. They use

their own structu ra l MO class for object references. The im plem enation uses i)roxy model;

proxy server objects th a t represent rem ote server objects in the client’s address space.

T he role of each m o class is outlined below:

O b je c tR e fe re n c e : the per-object RemoteObjectReference MO is used as a global rem ote

object reference. I t contains sufficient inform ation to find and com m unicate w ith the

remote server object. The rem ote object reference consists of the IP address^ address

and the T C P po rt num ber of the server object, the unique object identifier, class num

ber, and a tim estam p, which indicates the tim e the server process was started .

C re a t io n : when creating a rem ote object, the RemoteCreation MO cliecks w hether the ob

je c t’s class has been installed in the class register (im plem ented as p a rt of the IG U A N A

middleware). If not, it installs the class. It calls the next creation MO in the chain. It

is required by our model th a t the DefaultCreation MO at the end of the chain will refltxt

the base-level operation. After this, RemoteCreation allocates a rem ote object refer

ence for the newly created object. The ReferenceManager com ponent of the middleware

m aintains the m appings betwecin rem ote and language object references.

D e le tio n : when deleting a rem ote object, the RemoteDeletion checks if the object has been

recorded in the nam e service com ponent. If so, it removes the nam e service entry, and

passes control to the next MO. It is required th a t the DefaultDeletion MO at the end

of the chain will reflect the base-level operation. T hen it removes the allocated rem ote

object reference and the m apping between the rem ote/language object references, which

is m anaged by the ReferenceManager component.

In v o c a tio n : when a m ethod is invoked on a proxy object, the Remotelnvocation MO creates a

rem ote m ethod invocation reqiiest and m arshalls the m ethod argum ents. The request is

passed to the Communication com ponent of the middleware, which handles the network

comm unication between the client (proxy) and the server. Communication blocks until

'W e support IP version 4 only.

109

Chapter 4. Design o f an I g u a n a m o p Suite

it receives a reply from the peer Communication component. Upon receiving a reply,

Remotelnvocation unmarhals the return value of the remote method call (if any).

S ta te R e a d ; similarly to method invocation, the RemoteStateRead MO builds a remote state

read request and passes it to the Communication component, which interacts with the

remote peer. The Communication component blocks until it receives the reply to the

state read request. Upon receiving a reply, control goes back to RemoteStateRead MO,

which unmarshalls the value.

S ta te W rite : similarly to method invocation, the RemoteStateWrite MO builds a remote state

write request, marhsalls the new value and passes the request to the Communication

component. The Communication component blocks until it receives an acknowledgement

to the state write request. Upon receiving an acknowledgement, control goes back to

the RemoteStateWrite MO.

The current imjileinentation suj)ports synchronuous communication only. We use the

Common IGUANA extension j)rotocol for initiahsing the comnninication middleware, waiting

for incoming client requests, recording, looking up and deleting remote objects in the name

service, and closing the supporting middleware components. Figure 4.2 shows the meta-level

configuration for Remote.

rcm otc/ianguagc refs, mappmgs

C lass Register

Communicat»on N am e Service m iJtU fw are ~ lew !

oo oo oo
rem ote objccts rem ote proxies rem ote clienK

F ig . 4.2: Meta-level configuration for the Remote MOP

110

Chapter 4. Design of an IGUANA MOP Suite

4.7 D esign of m o p s for atom ic objects

The Synchronisation MOP enhances the object state persistence (e.g., the Persistent MOP is in

this concern area) with transaction support. When the Synchronisation MOP is selected, one

MOP in the Persistence concern area must also be selected. The Synchronisation MOP inherits

from the Default MOP and defines the following MO classes;

• SyncObjectReference

• SyncStateRead

• SyncStateWrite

• Synclnvocation

• SyncCreation

• SyncDeletion

Objects that select this MOP will become atomic: i.e., atomic objects provide “all or

nothing” execution for concurrent transactions on persistent objects. A transaction grouj)s

client calls on atomic objects. A transaction is executed as a whole unit; if the transaction

commits, then all of its changes are recorded in persistent storage or if it aborts, none of

its changes are visible. Transactions have the “ACID” properties: atomicity, consistency,

isolation, and durability.

The base-level programmer uses the synchronisation extension protocol (SEP) as the pro

gramming interface to work with transactions. The SEP provides the programmer with three

methods to begin, commit and abort a transaction. The SEP and the shared Synchronisation

MOs together co-ordinate the transactions and implement (local) concurrency control. In

case of distributed transactions (there are servers distributed at a number of nodes involved

in a transaction), the SEP co-ordinates transactions between the client and the distributed

transactional servers.

In the following two sections, we outline how one would implement the Synchronisation

MOP using two concurrency control mechanisms: an optimistic and a pessimistic solution.

I l l

Chapter 4. Design o f an I g u a n a m o p Suite

4.7 .1 O ptim istic concurrency control

This section describes how the optimistic concurrency control algorithm [42] with backward

validation could be used for an Synchronisation MOP implementation. The 2-phase Commit

Crotocol [15] is used for co-ordinating distributed transactions. For atomic objects, state

read/w rite and method invocation are reified. State write and method invocations are con

sidered as read-write, while state read operations are considered as read-only operations on

an atomic object. The first time an atomic object is accessed within a transaction’s context,

the relevant state read/w rite or invocation MO registers the atomic object as a participant

in the transaction and creates a shadow copy of the atomic object. All subsequent oi>er-

ations (including the first one) within the same transaction context are performed on the

shadow copy and will be validated against operations of other concurrent transactions when

the transaction wants to commit. Each transaction operates on its own set of shadow copies

of the atomic objects that are involved in the transaction. For each transaction, the meta-

level records the transaction identifier together with a read and write sets, which contain the

identifier of the object the operation was invoked on. This information will be used later to

validate tha transaction: i.e., to check if the transaction performed an operation that violates

the rules for executing concurrent transactions in a serially equivalent order.

The transaction’s oj>erations invoked on atomic objects within one process are called the

transaction component. The execution of a transaction component consists of two or possibly

three phases: a read phase, a validation j^hase, and possibly a write phase. During the read

phase, read or write operations are executed on the atomic object’s shadow copy. In order

to commit a transaction, the base-level programmer calls the SEP::commit method. The SEP

plays the transaction co-ordinator role. The SEP requests the meta-level (one of the shared

Synchronisation MOs) to validate the transaction being committed. This is the validation

phase.

If the atomic object is accessible only locally (i.e., a “remote” m o p such as our Remote

MOP has not been selected), this shared m o validates the transaction and depending on the

result, commits or rolls back the transaction. Figure 4.3 shows the meta-level configuration

for Synchronisation MOP.

112

C h apter 4. Design o f an IGUANA MOP S uite

Tx records
T ransaclionC oordinaior

Svnc m eia-ob iects

00 00 00
atom ic objects Tx A: shadow objects Tx B shadow objects

m iddlew are-level

mela-level

Tx client threads

F ig . 4 .3; M eta-level configuration for Synchronisation MOP w ith an optim istic concurrency
control

There are two well-known algorithm s for validation: backward or forward. We would

im plem ent the sim pler backward validation. The backward validation comi)ares the read

set o f the transaction being validated w ith the write sets o f the previous transactions that

have not com m itted before the validating transaction started. If the validation succeeds, the

shadow copies of the participating atom ic objects are written back to the persistent store

(write])hasc) and the shadow copies are destroyed. If the validation fails, the shadow copies

are sim ply discarded (no write phase).

W hen the set o f selected MOPs include both a “rem ote” (e.g., our Remote MOP) and

Synchronisation, one o f the shared Synchronisation MO (e.g. Synclnvocation) becom es the

local transaction co-ordinator (one w ithin each process) while the SEP acts as the global

transaction co-ordinator, executing the 2 -P C jirotocol to reach a global decision regarding

the outcom e of the transaction at different participating nodes.

The transaction identifier is im plicitly (via the rem ote call) passed from client to the

server: the calling thread identifier (e.g., result o f the pthread_self call) can be used to identify

a transaction.

113

Chapter 4. Design of an IGUANA MOP Suite

4 .7 .2 U sing str ict 2-phase locking for concurrency control

T he second im plem entation sketch for a Synchronisation MOP is th a t of the well-known stric t

2-phase Locking Protocol [15]. There are read and w rite locks on atom ic objects, and a

transaction m ust acquire the appropriate lock for an object before it can j^erform a read or

w rite operation on it.

For atom ic objects, sta te read /w rite and m ethod invocation are reified. State w rite and

m ethod invocations are considered as read-w rite, while sta te read oj>erations are considered

as read-only operations on an atom ic object. The first tim e an atom ic object is accessed

w ithin a transaction ’s context, the relevant s ta te read /w rite or invocation MO registers the

atom ic object as a partic ipant in the transaction and r(;qnests a read or w rite lock on the

atom ic object. The Synchronisation MOs share a singleton (i.e., one instance per process) lock

m anager object, which enforces the above lock com patibility rules. Thus, in case of locking

conflicts, the transaction requesting a lock will have to wait.

All subsequent ojierations (including the first one) w ithin the same transaction context

can be carried out only if the transaction has acquired the required lock on the atom ic object.

Locks are released when the transaction client calls the SEP::commit or SEP:;abort m ethod.

As locking m ight lead to deadlocks, a deadlock detection mechanism is needed. If the

atom ic object is accessible only locally (i.e., the “rem ote” MOP such as our Remote has not

been selected), the singleton lock m anager is used to dctect and resolve deadlocks. I t m ain

ta ins a “wait-for” graph and regularly checks the grai>h for cycles th a t represent deadlocks.

W hen it finds a cycle, it makes a decision on w hat transaction it should abo rt in order to

resolve the deadlock. The SEP plays the transaction co-ordinator role.

Figure 4.4 shows the meta-level configuration for the Synchronisation.

W hen the set of selected m o p s include b o th Remote and Synchronisation, the SEP plays

the transaction co-ordinator as well as the global deadlock detector roles. Each lock m anager

sends a copy of their local “wait-for” graph to the global deadlock detector, which am al

gam ates them in order to construct a global “w ait-for” graph. Then the global deadlock

detector checks for cycles in the graph. W hen detecting a cycle, it mai:es a decision on how

to resolve the situation and it informs the lock m anagers abou t the transaction to be aborted.

114

C hapter 4. Design o f an IGUANA MOP Suite

L ocks, w a i i - fo r graph

middleware-level

/
/

/ -

/
/

Sync m e ia -o b jec ts

/\

m eta-level

00 00 base-level

atom ic ob jec ts Tx clien t threads

F ig . 4.4; Meta-level configuration for Synchronisation MOP w ith stric t 2-phase locking

Similarly to the optim istic concurrency control solution, the transaction identifier is im

plicitly passed from client to the server: the calling th read identifier (e.g., result of the

p th read -se l f call) is used to identify a transaction.

4 . 8 D e s i g n o f a Replication m o p

Similarly to the approach of FRIENDS (see section 2.15), IGUANA MOPs could be used to

im plem ent fault-tolerance at the meta-level. In th is section we outline how one would imi)le-

m ent a Replication m o p . The Replication m o p is “rem ote”-related: i.e., when the base-level

progranm ier selects this MOP, a rem ote MOP in the D istribution concern area m ust also be

selected. The Replication MOP inherits from the D efault MOP and defines the following MO

classes:

• ReplicationObjectReference

• ReplicationStateRead

• ReplicationStateWrite

• Replicationlnvocation

• ReplicationCreation

115

Chapter 4. Design o f an IGUANA MOP Suite

• ReplicationDeletion

O bjects th a t select this MOP will become fault-tolerant to some extent: the rem ote server

objects are replicated a t a different node. T he semi-active replication mechanism is used in

this design; there is one leader server object th a t sends every client request to one or more

follower server replicas running on separate nodes.

T he base-level program m er uses the Fault-Tolerance IGUANA extension protocol (FTEP)

as the program m ing interface to work w ith replicated objects. The FTEP provides the pro

gram m er w ith m ethods to initialise the error detector, define the group of nodes where replicas

can be laimched (im plem ented as separate com ponents).

R.eplication is transparen t to the rem ote clients. B oth leader and follower servers execute

the request, re tu rn the result, bu t only the leader re tu rns to the client. Should the leader or

any of the followers fail, an error detection mechanism will detect it and create a new leader

or follower server. The client com m unicates w ith the leader server, and the leader server

selects the inter-replica MOP (see the IRP MOP below) to synchronise sta te read /w rite and

m ethod invocation requests w ith the follower replicas.

T he IRP MOP also requires the present of a rem ote MOP (e.g., our Remote MOP) and it

inherits from the Default MOP. The IRP m o p defines the following MO classes:

• ReplicationObjectReference

• IRPStateRead

• IRPStateWrite

• IRPInvocation

T he ErrorDetector middleware com ponent detects leader/follower server errors by regularly

“pinging” them. Upon a leader server crash, it invokes the recover m ethod on one of the alive

followers, which becomes the new leader. It also creates a new follower on a free node w ithin

the replication domain.

Figure 4.5 shows the meta-level configuration for the Replication and IRP MOPs.

116

C hapter 4. Design o f an IGUANA MOP Suite

Etror D e ta io r

Middleware for Remote Middleware for Remole

Error Deiecior

miMwarc-lev^

Middleware for Remote

ReplicatioD MOs j Replication MOs IRP MOs IRP MOs

- — —

0 0 0 00 0
client proxy server leader server proxies for follower se rv e s follower server

==>Replication ==>Replication =*>IRP ==>IRP

C lia it host H ost w ith the leader serocr Host w ith a follower sew er

F ig . 4.5: M eta-level configuration for Replicat ion and IRP MOPs im plem enting leader/follower
replication

4.9 Sum m ary

T his chapter described the design of a MOP suite, which contains autom atically composable

I g u a n a /C + + MOPS. These MOPs im plem ents some of the m ost common requirem ents for

real-world applications.

T he im plem entation of these MOPs follow the methodology for w riting com posable MOPs,

which was defined in section 3.4.1. We use some of the im plem ented MOPs to help us eval

uate the I g u a n a version 3 model and its im plem entation. T he MOP descriptors for the

im plem ented MOPs can be foimd in A ppendix A.

117

Chapter 5

Im plem entation

“K e ep it. s im ple: as s im ple as possible, but no sim pler . ” - A lber t Einstein.

5.1 In trod uction

This chapter describes the implementation of the IGUANA version 3 reflective programming

model as it is applied to C++.

We have implemented Iguana/C + + on a Pentium III PC running RedHat Linux 7.0 with

a 2.2 kernel. We used the open source GNU C++ (g + +) com})iler version 2.96.

5 .2 Im plem enting th e new I g u a n a m eta-level

Similarly to its predeccessors, we implemented Iguana/C++ as a source-to-source preproces

sor, which translates iGUANA-extended C++ code to standard C++. By extended, we mean

that the base-level application is augmented with meta-level directives (e.g., MOP selection).

Meta-level programmers implement MOPs by using and extending the IGUANA meta-level

class and middleware library.

118

Chapter 5. Implementation

5.2.1 The m eta-level class library

The I g u a n a meta-level and middleware classes are written in C++ and some of these classes

in turn use reflection (e.g., the NameService middleware component selects the Persistent and

Remote m o p s).

Classes in the I g u a n a meta-level library reify elements of the C++ language and have to

be subclassed by the meta-level programmer who wants to implement a new MOP. Each of

the structural and behavioural reification categories are represented by a class. Figure 5.1

shows the main C++ meta-level classes expressed in the Unified Modelling Language (UML).

Method attributes, return types and exceptions thrown are omitted for simplicity.

As in the I g u a n a version 2 implementation, we did not explicitly reify Array and Con

structor. However they are supported implicitly: they are part of MAttribute and MMethod.

Altough the reification category Receive is part of the model, we did not use it in our imple

mentation of the I g u a n a m o p suite described in Chapter 4.

Class MObject serves as the common base class for every reflective class. I t provides

the interface to the ineta level as well as containing the methods for handling intercepted

calls from the base level. Template class Deque^ in Figure 5.1 is used in many IGUANA

classes to hold multiple ordered pointers to MOs. For example, pointers to MObjectReference

and behavioural MOs are stored in them. The order in which behavioural MOs are stored

is decided by the delegated MComposer MO (e.g., the DefaultComposer MO). Whenever the

MOP set changes for a rcflective object, the delegated MComposer m o is called and it re

arranges the above Deques in the MObject base of the reflective object: it may add or remove

MObjectReference and behavioural (e.g. Mlnvocation) MOs. We further reduced the overhead

due to reflection compared to I g u a n a version 2. This is mainly because we eliminated local

MOs with MObjectReference MOs being the only exception. We evaluate the performance

overhead in Chapter 6.

Please note that the SingleStack and MultiStack MO classes are not shown in Figure 5.1

because they are discussed separately in Section 5.5.

'Deque is similar to the vector class in the C++ standard template library, but much simpler.

119

Chapter 5. Implementation

i M O b je c t
[-m c lass : l^ C la s s *
l-m re fe re n c e : D e q u e < M O b je c tR e fe re n c e * >
j-m c o m p o s e r : M C o m p o se r*
i-m crea tio n : D e q u e < M C re a t io n “>
l-m deie tion : D e q u e < M D e le tio n ">
i-m in v o catio n : D e q u e < M ln v o c a tio n * >
-m re a d : D e q u e < M S ta le R e a d * >
-m w rite ; D e q u e < M S la te W rite * >
m s e n d ; D e q u e < M S e n d * >
•m protocol : D e q u e < M P ro to c o l* >
M O b)ect()
•M O bjectO
a d d S u p e r C la s s O

■^addCreaU onO
■^addD eletionO
■ ^addlnvocationO
'•■ a d d S ta te R e ad O
■ ^addS ta teW rlte()

a d d S e n d O
a d d P ro to c o K)
d e ie te C r e a t io n O

■ ^dele tdD eletionO
■•■detotelnvocationO
• ^ d e le te S ta te R e a d ()
■ ^ d e te teS ta teW rlteO
■•■deleteSendO
"►delete P ro to c o l ()
♦ a d d A ttrlb o te O

g e tA ttn b u te O
■*-setAttr1bute()
+ a d d M e th o d ()

g e tM e th o d O
■►setMethodO

a d d O b j» c tR e fe r e n c « ()
■**getO b)ectR eference()
■ •^ • ie te O t^ ^ c tR e le re n c e O
■•"CreateO
■•■dastroyO
•Hnvoke()
•*^M d()

■*^and()
•copy()

M C re a tio n
-n e x t : M C re a tio n '
-p ro to c o l ; ch a r*
■►MCreatlonO
•►MCreationO
•►callNextO
■•>create()
■K»py()

M O e le tio n
-n e x t ; M D e le tio n ’
- p r o to c o l ; c h a r”
■•■MDeletlonO
■►MD©letion{)
■•'callNextO
♦O ostroyO
■K »py()

I_______________ M C la s s
-n a m e : ch a r*
- m s u p e r ; O e q u e< M C Ia ss* >
-m a ttr ib u te : D eq u e< M A ttrib u te* >
-m m e th o d : D e q u e< M M e th o d * >
-v tta b le : void*
-s iz e : int
-ty p e ln fo : c h a r"
-m c o n s tru c to r : D e q u e< M M e th o d * :
-m d e s tn jc to r ; M M eth o d "
*«*MCIass()
>^M CIassO
■► addSuperC lassO
♦addC onstructorO
+ a d d M e th o d ()
-*-addD estructor()
^ a d d A ttr lb u te O
♦ g e tC o n s tru c to rO
4 -g e tD es tru c to r()
••-getM ethodO
■•■getAttiibuteO
■•■createO
♦ d e s tro y O
■►copyO

M P ro to c o l
-n a m e : c o n s t ch a r*
- m s u p e r ; D e q u e < M P ro to c o l*>
• ^ c o m p o s e r : M C o m p o se r*
-m c la s s : M C lass*
-m re fe r e n c e ' M O b Je c tR e te re n c e *
-m c re a tlo n : M C rea tio n *
-m d e te tio n : M D eletion*
-m in v o c a tlo n : M ln v o catio n *
-m re a d : M S ta le R e a d *
-m w rite : M StateNM 'tte*
-m ser>d : M S en d *
-p ro to c o l : M P ro to co l*
♦M P ro to co lO
■*-MProtocol()
♦InJtO
■►destroyO__________________

M ln v o c a t io n
-n e x t : M in v o ca tio n *
-p ro to c o l ; ch a r*
♦ M ln v o ca tio n O
♦M lnvocaW onO
•►callNextO
•HnvoKeO
♦ c o p y ()

M A ttr ib u te
- a c c e s s S p e c i f ie r : int
- s iz e : int
-o f fs e t : int
t-p o in tsT o S lz e : int
- a d d r e s s ; void*
- n a m e : ch a r*
-ty p e : ch a r*
- is S ta t ic : txK>l
-IsA rra y : t>ool
- a r r a y s ize : int
■•■MAttrtbuteO
> M A ttrlb u te ()
,-^ g e tA d d ress ()
!-^read()
'•♦•readO
l-nvrHe()
•►copyO

I M S ta te R e a d
[-next : M S ta te R e a d
[-p ro toco l : cha r*
[^MS’ta te R e a d C l
{■•■MStateRaadO
l'*-callN©xt()
|+ r e a d ()l+copŷ)______

M S ta ta W r lte
'-n e x t : MStateWA'ite*
|-p ro to c o l : cha r*
^+MStat©Wrtt©<)
^•►MStateWrtteO
l-^callNext(>
|^ d e s tro y ()
l^ co p y O

M S e n d
-n e x t : M S en d *
-p ro to c o l : char*
+M SerK i()
i-*-MSendO
•• 'ca ilN e)^)
•►sendO

M M e th o d
‘- a c c e s s S p e c i f ie r : int
- a d d r e s s ; void*
'S ta t ic A d d re s s : void*
-n a m e : ch a r*
- s ig n a tu re : c h a r*
-re tu rn T y p e : c h a r"
- J sS ta tic : boo l
l+ M M © lh ^)
l+MMethodO
i-*^etA ddress{)
;-^execut© ()
i^copyO_____________

I M O b J e c tR e f e r e n c e
-p r o to c o l ; char*
-o b je c t : M O bject*
^ M O b je c tR e fe re r ic e ()
■•‘M O t^ e c tR e fe re n c e C)
■►getProtocolO
■ * ^ e tG lo t)a lR e fe ren c e()
■ ^ e tO b Jec tO
■►getObJectO
■ * ^p y ()

M C o m p o s e r

l-^M C o m p o ser()
^■►MComposdrO
k c o m p o s e O
l^ c o m p o s e O
I ■► addProtocolsO
♦ re m o v e P r o to c o ls O

 1 c l a s s T

D e q u e

♦ p u s h _ fro n t()
■► push_back()
■►operator 0 ()
■►gotSlzeO

Fig. 5.1: Iguana meta-object classes

5.2.2 M ultiple m o p inheritance

The I g u a n a version 3 model retains multiple MOP inheritance as a meta-level programming

feature. This section specifies the rules governing MOP inheritance and analyses its impact on

structural and behavioural MO classes primarily, as well as on concern areas and middleware

components.

Since multiple MOP inheritance is a design-time concept, it is the meta-level programmer’s

responsibility to ensure that the parent MOPs are composable.

As defined in Section 3.4.6, each MOP definition includes the parent MOP(s) (optional),

120

C hapter 5. Implementation

its concern area, MO classes with compositional constraints, an optional extension protocol,

and middleware components. For a derived MOP, the meta-level programmer may specify

multiple parent MOPs. There is no restriction on the concern area specification of the derived

MOP: it can be in the same or different concern area as its parent MOP(s). Because concern

area specification is mandatory, the concern area specification of the derived MOP, if different,

overrides that of the parent MOP(s).

Regarding MetaObject specifications in the MOP descriptor, which are there to declare the

MO classes for reification categories, the following rules apply:

1. If the derived MOP specifies its own MO class for a given reification category then

MO classes of the parent MOP(s) in the same reification category will not be used by

the DefaultComposer mo. For example, AMOP has an Alnvocation MO class and its

derived MOP BM OP has Blnvocation MO class specified, then Blnvocation will be used

in combining MOPs in a set that contains BMOP. However it is recommended but not

required that the meta-level j)rogrammer use C++ class inlieritance when he/she defines

Blnvocation; i.e., class Blnvocation inlierits from Alnvocation. The DefaultComposer MO

uses the Before/AfterBehaviour and Before/AfterRequirements specifications from the

descriptor of the derived MOP.

2. If the derived MOP does not specify a certain MetaObject in its MOP descriptor, but one

or more parent MOPs do, then those MO classes will be combined by the DefaultComposer

MO. For example, if A M O P and BMOP have an ACreation and BCreation MO classes

defined, but CMOP, which derives from both AM OP and BM OP does not have a Creation

MO, then ACreation and BCreation MOs will be combined whenever a MOP set contains

CMOP. In case the same MO class is specified in parent MOPs more than once, the

DefaultComposer MO uses it only once.

The first rule above is different from the route taken by IGUANA version 2, which sj>ecifies

the following: “In the case where a reification category is repeated in a derived protocol,

the resulting meta-type will include multiple implementations of that reification category. In

Other words, rather than overriding or replacing the metaobject class specification in the base

121

CIiAptcr 5. Implementation

protocol, derived protocols accumulate new metaobject class definitions which are combined

with those of the base protocol. As a result, multiple metaobjects control the behaviour of a

specific reification category.”

This difference is explained by our understanding of the role of MOP inheritance: it is to

override m o class behaviour where necessary.

5 .2 .3 T h e DefaultComposer MO

The DefaultComposer MO inherits from the MComposer abstract class. Class MComposer is

defined as follows:

class MComposer {

public:

MComposer0 ;

MComposer(MComposer* src) ;

virtual "MComposer();

virtual bool compose(MObjact* object, MProtocol* inSet[], \

MProtocol* outSet[]) throw(CompositionException)= 0;

virtual bool compose(MObject* object, MProtocol* newSet []) \

throw(CompositionException)= 0;

virtual bool addProtocols(MDbject* object, MProtocol* inSet []) \

throw(CompositionException)= 0;

virtual bool removeProtocols(MObject* object, MProtocol* outSet[]) \

throw(CompositionException)= 0;

};

Thus DefaultComposer provides an implementation for the above four composition meth

ods. The first argument of each is always a pointer to the base-level object for which dynamic

composition is requested.

The four composition methods can be described as follows:

1. compose m e th o d : This method is used when there is a request for modification to the

122

Chapter 5. Implementation

MOP set w ith incoming and outgoing MOPs. O bject headers and behavioural MOs of

incoming and outgoing MOPs need to be added and removed respectively once the order

of behavioural MOs has been recalculated.

2. compose m ethod (overloaded): This m ethod is used when the new mop set is intended

to replace the current one.

3. addProtocols m e th o d : This m ethod is used when there a je new additions to the current

MOP set o f the object.

4. removeProtocols m e th o d : This m ethod is used when MOPs are to be removed from the

current MOP set of the object.

Upon receiving one of the four m ethod invocations, the DefaultComposer MO recalculates

the order of behavioural MOs in the involved reification categories and rearranges them in

the corresponding Deque in the MObject base of the reflective object. It also adds/rem oves

MObjectReference instances in the mreference Deque of the reflective object.

The DefaultComposer MO may also request loading/un load ing of IGUANA m iddleware ob

jects that are specified in the MOP descriptor.

N ote that it is the ba.sc-level programmer’s responsibility to initialise and shut down the

Ig u a n a middleware, which is usually done through Ig u a n a extension protocols.

The im plem entation of DefaultComposer MO class uses libxm l++ developed by Ari John

son, an open source XML D ocum ent O bject Model (DOM) parser library for C++.

5.2.4 On building a sj^mmetric protocol stack

This section describes how the DefaultComposer MO combines behavioural MOs of “rem ote”-

related MOPs in an a ttem p t to build a sym m etric “stack” of MOs between proxy and server,

sim ilarly to a stack of network protocols between clients and servers.

• MO of the Default MOP (if present) is always the last MO.

• MO of the “rem ote” MOP (i.e., the concern area is called “D istribu tion”) will be the

first MO on the server side and the one before the last on the proxy side. T his is needed

123

Chapter 5. Implementation

to place the “rem ote” MO (e.g., the Remotelnvocation MO from our RemoteProxy and

Rennote MOPs) a t the bo ttom of the stack^.

• The remaining “rem ote”-related MOs are ordered. F irst, the DefaultComposer MO orders

the behavioural MOs according to the locality of the “remote” mop. If there is more

than one “good” composition, then it “swaps” sides temporarily (i.e., it switches the

locality from Server to Proxy, or vice versa) and re-runs the composition in an attempt to

find two “good” compositions (one for the real side, and the other for the “anticipated”

peer side) of MOs where the order of the “remote”-related MOs is reverse to that of each

other.

For example, Alnvocation and Blnvocation MOs are followed by Remotelnvocation and

Defaultlnvocation MOs a t the proxy, and Remotelnvocation, Binvocation, and Alnvocation

MOs followed by Defaultlnvocation MO at the server side.

In order to faciliate a deterministic outcome from selecting the same “good” composition

for a particular side, the DefaultComposer MO preorders the behavioural MOs derived

from the ini>ut MOP set according to the alphabets: it uses ascending order for the

Proxy, and descending order for the Server side. T h e n this preordered set of MOs is

presented to the composition, which analyses the MOP descriptors and orders the MOs

according to the contraints specified in the descriptors.

The im i)lem entation of steps 1, 2, and 3 of the com position algorithm (see section 3.4.7)

is straigthforw ard. Steps 4, 5, and 6 are im plem ented as a variant of the recursive

algorithm of perm utating the input MOs. The recursive newCompose (not shown in

Figure 5.1) m ethod takes the initial preordered set of MOs together w ith their before

and after requirements as well as two sets: front and back. W hen starting , the front set

is em pty while the back contains the same set of MOs as the initial set of MOs. Inside

the newCompose m ethod, the code selects the first candidate from the back set th a t

satisfies the strong after requirem ents of the MOs in the front set. Before proceeding, it

also checks w hether the candidate’s strong a n d /o r im m ediate before requirem ents are

^Note th a t in I g u a n a version 3 th e Remotelnvocation MO on th e proxy side calls th e CommunicationService
m iddleware com ponent, which calls its peer on th e server side, which in tu rn calls the Remotelnvocation MO.

124

Chapter 5. Imp]ementa.tion

met by the MOs in the front set. Im m ediate requirem ents have to be m et by the last MO

in the front set. Similarly, the last MO in the front set may also have an im m ediate after

requirem ent th a t the candidate mtist satisfy. The candidate should not violate any weak

before requirem ents of the MOs in the front set. If the candidate is OK for all the above

criteria, the newCompose m ethod is called again w ith the candidate MO moved from the

back to the front set. Otherwise, the next candidate is exam ined from the back set. The

recursion “bottom s ou t” when the front contains all of the initial MOs w ith all of the

before and after requirem ents (including Weak, Strong, and Immediate requirem ents)

satisfied. The satisfying com bination is added to a list of “good” com binations and the

newCompose m ethod re tu rns to allow the search for o ther “good” com binations (only

when a “rem ote” MOP is in the set of M O Ps).

Let us see an exami)le w ith two “rem ote”-related M OPs AMOP and BM OP w ith Locality

set to Common. AMOP is in concern area CA-a, while BM OP is in CA-b. B oth m o p s have

an Invocation MO Alnvocation and Blnvocation, respectively. The ordering requirem ents for

Alnvocation specifies th a t if a MOP in concern area Ca-b is present (weak requirem ent), then

its Invocation MO should be placed before Alnvocation at the proxy side, and after Alnvocation

a t the server side. The following is the excerpt from the MOP descriptor of AMOP:

<BeforeRequirements>
<ConcernAreaBef Id=’’CA-b’’ Strength=’'Weak’’ Locality=’’Proxy’V >

</BeforeRequirements>
<AfterRequirements>

<ConcernAreaRef Id=’’CA-b’’ Strength=’’Weak’’ Locality=’’Server’’/>
</AfterRequirements>

A lthough the above a ttem p t to find two “good” com binations works in most cases, it might

not always be fruitful: for exam ple, the MOP set for the proxy and server may not be identical.

For this reason the out-of-band com m unication (e.g., driven by the Remotelnvocation MO)

between the client and the server is still needed to ensure th a t the two sides can com m unicate

successfully w ith all the behavioural MOs in place.

125

Chapter 5. Implementation

5.3 Dynamically loadable M OPs

W ith the help of dIopen, disym, and diclose system calls on most UNIX system s, it is possible

to dynam ically load C++ class code from a shared library. These functions provide access to

the dynam ic linker. The full description of these functions can be found in the appropriate

man pages. Briefly, dIopen can be used to open a shared object file, such th a t the symbols

defined in th a t file can be accessed by dIsym. dIsym re tu rns the address of the symbol (which

can be NULL). If a symbol cannot be resolved, dIerror can be used to get the error message.

Finally, diclose closcs an open shared library.

A lthough dynam ic class loading is not new (see [54]), and our reflective BufferManager

example [21] has dem onstrated its use in IGUANA version 2, its direct support a t the I g u a n a

version 3 meta-level is extrem ely useful as it enables full dynam ic adap ta tion , because the

C++ im plem entation of a MOP (containing MO classes and m iddleware com ponent classes) not

kiKJwn at com j)ilation-tim e can be dynam ically loaded into the running ai^plication.

Because liandling of C++ symbols (constructors and class m ethods) is not straightforw ard

compared to C m ethods, we show th a t through a simple C factory interface and the IGUANA

MProtocol C++ class it is possible to do.

Each I g u a n a version 3 m o p has a corresponding C++ class, which is derived from the

MProtocol abstrac t class. T he IGUANA j)reprocessor autom atically generates source code

for each MOP based on its XML MOP descriptor file. Note th a t this code should not be

m istaken for the code of the MO classes which im plem ent the MOP. For example, a MOP

called Distributed Logging has a corresponding DistributedLoggingProtocol class, for which an

instance is created a t run-tim e.

The M Protocol abstrac t class is defined as follows:

class MProtocol {

protected:

const chair* name;

public:

virtual bool init (MComposer* composer, NVPair* peirams []) = 0 ;

126

Chapter 5. Implementation

v ir t u a l bool d e s t r o y () = 0;

};

The init pure virtual method allows to pass in a pointer to the delegated MComposer MO

as well as an array of generic name-value pairs (simple string pairs), which can be interpreted

accordingly by the derived concrete MOP.

In order to overcome the j)roblems of C++ name mangling and calling the constructor

method of a derived MProtocol class that would not be known in advance, we require that

the meta-level programmer defines the following C-style factory methods in each shared

library (therefore each shared library should contain only one MOP implementation);

ex tern "C" ■[

MProtocol* c r e a t e O ;

void destroy(M Protocol* o b je c t) ;

}

Simply, the implementation of the create method should create and return an instance

of the derived MProtocol (e.g., DistributedLoggingProtocol). This MProtocol instance can be

initialised by calling the above init method on it with a pointer to the MComposer MO, and

the array of pointers to NVPair objects. When a MOP is no longer needed, its implementation

classes can be unloaded from the running application by calling the above destroy method.

The Iguana/C ++ Meta class provides the base-level programmer with methods for loading

and unloading of a named MOP, whose implementation has previously been compiled into a

shared object, with the above C-style factory methods defined.

c l a s s Meta ■[

p u b l i c :

s t a t i c MProtocol* lo a d P r o to c o l(c o n s t char* name, con st char* l ib raryP ath)

throw (L oad ingE xception);

s t a t i c vo id unloadProtocol(M Protocol* p r o to c o l)

127

Chapter 5. Implementation

throw (U n L o a d i n g E x c e p t i o n) ;

};

T he Meta::loadProtocol m ethod can be used to dynam ically load a m o p from a shared

library. If the nam ed MOP cannot be loaded from the named file, a LoadingException is raised.

Once the MOP is loaded, it can be initialised by calling the init m ethod on it. If the MOP is

no longer needed, it can be destroyed and unloaded by calling the destroy and unloadProtocol

m ethods, respectively, on it.

5.4 The new IGUANA preprocessor

The I g u a n a version 3 preprocessor is im plem ented by reusing much of the version 2 imple

m entation (see C hap ter 6 in [64]). Its im plem entation is ba.sed on the A N TLR and DLG,

com ponents of the public dom ain Purdue Com piler C onstruction Tool Set (PC C TS) version

1.33. DLG provides DFA (D eterm inistic F in ite-sta te A utom ata) Lexical Analyser Genera

tion, while A N TLR (Another Tool for Language Recognition) is a comjjiler comiiiler th a t

we use for building up and modifying the A bstrac t Syntax Tree (AST) of an I g u a n a / C + +

I)rogram.

T he m ajor differences between Ig ua na /C++ preprocessor version 3 and 2 can be listed

as:

H a n d lin g o f MOP d e s c r ip to r s (X M L): T he new Ig u a n a /C + + preprocessor handles XML

files validated to our Com position Docum ent T ype Definition (D TD), which is defined

in Section 3.4.6. In contrast, I guana version 2 used lGUANA/C++-specific m o p syntax

(resembling the C++ class definition syntax) to define protocols.

M u lt ip le c o m p ila t io n u n its ; M ultiple com pilation units are b e tte r handled by IGUANA

version 3. IGUANA version 2 relies on the s tan d ard C++ preprocessor to include all the

C and C++ header files (including relfective ones) in each com pilation unit, then it runs

the I gu a n a /C++ preprocessor to transform the code to standard C++. O ur approach

is more subtle: see Section 5.4.3 below.

128

Chapter 5. Implementation

E x ce p tio n han d lin g : because automatic and dynamic composition of independently devel

oped MOPS may not result in a good combination, IGUANA version 3 adds exception

handling. The meta-level code defines a number of exceptions and various methods

in Iguana meta-level classes raise exceptions. The IGUANA/C++ preprocessor retains

the base-level programmer’s try/catch blocks around the transformed MOP selection

statements.

5 .4 .1 T h e Ig u a n a /C H —|- s y n t a x

The way IGUANA/C++ extends the standard C++ language is minimal: only the MOP selection

syntax is really new, and a few other rules have been extended to allow MOP selection.

The following lexical tokens are defined (only the MOPSELECT token is new, the others

are from standard C++):

• MOPSELECT = ==>

• COMMA = ,

• PLUSPLUS = ++

• MINUSMINUS = --

• DEFAULT = default

• SEMICOLON = ;

• LCURLYBRACE = {

• RCURLYBRACE = {

• COLONCOLDN = : :

• NEW = new

The new IGUANA/C++ syntax in Extended Backus-Naur Form (EBNF) can be seen below.

T he scope of MOP selection can be default, class, and expression. Square brackets indicate

129

Chapter 5. Implementation

optional constructs (lexical tokens or grammar rules). Lines starting with pipe symbol indi

cate a valid alternative in expanding the grammar rule. Finally, the backslash (\) breaks a

long line.

mop-selection:

MOPSELECT mop-set

mop-set:

mop-expr COMMA mop-set

I mop-expr

mop-expr:

[PLUSPLUS I MINUSMINUS] mop-name

mop-neime:

identifier

default-mop-selection-statement:

DEFAULT mop-selection SEMICOLON

class-specifier:

class-head [mop-selection] [LCURLYBRACE [member-specification] RCURLYBRACE]

assignment-expression:

conditional-expression

I logical-or-expression assignment-operator assignment-expression

I throw-exception

I identifier mop-selection

new-expression:

130

Chapter 5. huplementation

[COLONCDLON] NEW [new-placement] new-type-id [new-initialiser] \

[mop-selection]

The rules identifier, class-head, member-specification, conditional-expression, logical-or-expression,

assign ment-operator, throw-exception are that of the standard C++ grammar definition as hsted

in Appendix A of the C++ book [70]. We have modified the assignment-expression, class-

specifier, and new-expression grammar rules to accomodate class and instance MOP selection.

5.4.2 Source code transform ations by th e Iguana/CH —|- preprocessor

The I g u a n a / C + + preprocessor can parse programs written in iG U A N A -extended C++. After

successfully j)arsing an IGUANA program, the prej)rocessor performs AST transformations in

order to implement reification in the form of causal connection between reflective base-level

objects and their meta-objects. The preprocessor analyses the source code and modifies the

AST in order to intercept (direct) reified operations to the IGUANA meta-level.

The full list of AST code transformation rules is listed in Table 5.2 and Table 5.1 below.

Before we start elaborating on the code transformation rules, it is im portant to know that

each reflective class in Iguana/C++ inherits publicly from the MObject cla.ss, which provides

the base-level programmer wit h methods to access and manipulate the meta-level.

D e fau lt MOP se lec tion : The scope for default MOP selection is the translation unit in which

it is defined. It defines the default MOP set for classes that are declared after this

statement, however a class MOP selection can override it. A subsequent default MOP

selection changes the default MOP set: it either overrides (when there is no or -

- specified in front of m o p identifiers) it or it adds/removes particular MOPs from it

(when using -H-f- or - - in front of the MOP identifiers). The actual MOP set for the class

is reflected in the transformed initMetaLevel method definition (see below).

C lass MOP selec tion : The programmer can specify the MOP set for a class by using the

class MOP selection syntax and/or having a default MOP selection. The actual MOP set

for the class is reflected in the transformed initMetaLevel method definition (see below).

131

Chapter 5. Implementation

Code
Case IG U A N A /C + + Standard C++
Default
MOP
selection

defau lt= = > AMOP;
class A;
class B;

class A : public M Object;
class B : public MObject;

Class
MOP
selection

class A = = > AMOP;
class B = = > BMOP;

class A : public MObject;
class B : public MObject;

Instance
MOP
selection
(before
creation)

A* a=
new A ()= = > AMOP;

A* a= 0;
{ MProtocol* inSet[2] =

{ AMOP;:protocol, 0 };
A* tm p= (A*) A::metaA-> copy();
tm p-> mcoriiposer->
compose(tmp, inSet);

a= (A*) tm p-> create(2, 0, 0);
delete tmp;

}
Instance
MOP
selection
(after
creation)

a = = > ++BM O P; {
MProtocol* inSet[2]=

{ BMOP::protocol, 0 };
a-> mcomposer->

coinpose(a, inSet, 0);
}

Multiple
class
MOP
selection

class A = = >
AMOP, BMOP

class A : public MObject;
void A;:initMetaLevel(MComposer* c) {
metaA-> mcomposer= c;
MProtocol* set[3]=
{ AMOP::protocol,
BMOP::protocol, 0 };

metaA-> mcomposer->
compose(metaA, set);

} '

T able 5.1: Summajy of the IGUANA code transformations for MOP selections

132

C h apter 5. Im plem entation

In s ta n c e MOP se lec tio n w h en c re a tin g a new in s tan ce : The MOP set defined for a class

can be modified when creating a new instance of the class. For example, the following

code:

A* a = new A()==> AMOP;

is transformed into the following (the use of a code block prevents a potential identifier

name clash):

A* a= 0;

{
MProtocol* inSet [2] = { AMOP::protocol, 0 };

A* tmp = (A *) A::metaA->copy();

tmp->mcomposer->compose(tmp, inSet);

a = (A*) tmp->create(2, 0, 0);

delete tmp;

}

First, a temporary instance with the initial MOP set for cla-ss A (e.g.. Default) is created,

then the delegated M Com poser MO replaces the MOP set, and then an instance of class

A is created. Finally, the temporary instance is deleted. This new instance will have

only AMOP in its MOP set.

In s ta n c e MOP se lec tio n a f te r c re a tin g an in s tan ce : The actual MOP set for an instance

of a class can be dynamically modified even after the instance has been created. For

example, the following code:

a==> ++BMDP;

is transformed into the following:

MProtocol* inSet [2] = { BMOP::protocol, 0

133

Chapter 5. Implementation

a->mcomposer->compose(a, inSet, 0);

}

The transform ed code adds BMOP to the MOP set of instance a. If the delegated

MComposer MO cannot compose BMOP then it raises a CompositionException. It is

recommended th a t the base-level program m er uses try/catch statem ent in h is /h e r code

in order to handle exceptions raised at the meta-level.

G e n e ra t in g th e initMetaLevel m e th o d o f a re f le c tiv e c lass: For each rcflective class the

preprocessor inserts an additional initMetaLevel m ethod, which is then called once when

the main finiction of the application is called (see boo tstrapping below). The structu re

of the generated initMetaLevel m ethod is as follows in i)seudo-code;

1. Create the static (shared) MObject* X::metaX object, which will be used in creating

other instances of class X.

2. Set the X:;metaX->mcomposer reference to the delegated MComposer MO.

3. C reate the shared MClass m o .

4. Add MClass MOs of su p e r-c la s se s (if any).

5. C reate the shared MAttribute MOs.

6. C reate the shared M Method MOs.

7. Add the listed MOPs to the MOP set.

8. Call the delegated MComposer MO to compose the MOP set and initialise the MOs.

The following example shows the generated initMetaLevel m ethod for a class A w ith a

default constructor, an int mem ber called a, and a getA() m ethod, which re tu rns w ith

an int. The class A selected AMOR only;

void A:: initMetaLevel(MComposer* composer) throw(CompositionException) {

metaA = new MObjectO;

metaA->mcomposer = composer;

134

Chapter 5. Implementation

metaA->mclass = new MClass("A", sizeof(A), typeid(A).nameO, 0);

metaA->addAttribute(new MAttribute(Protected, "a", "int", offsetof(A, A), \

sizeof(int), 0, 0));

MMethod* constructor = new MMethod(Public, "A", (MSAddress) &A;: refl_A,

"()", "A*");

metaA->addMethod(constructor); // 0

metaA->addConstructor(constructor);

metaA->addMethod(new MMethod(Public, "getA", (MAddress) &A:: refl_getA,

"()", "int")); // 1
// Compose the protocol(s) selected for this class

MProtocol* inSet[2] = { AMOP:: protocol, 0 >;

metaA->mcomposer->compose(metaA, inSet, 0);

}

W ra p p e r m e th o d s a ro u n d reflective m e th o d s : In addition to the initMetaLevel method,

the prc!i)rocessor adds wrapper methods tha t intercept calls to the original method in

the reflective class.

For example, the wrapper methods refLA and refLgetA are defined as:

void A:: refl_A(MObject *meta, int numObjs) {

A* newobj;

if(numObj s)

newobj= new A[numObjs](meta);

else

newobj= new A(meta);

stack-> push(newobj);

>

voif A:: refl_getA() {

int tmp= A:: getA();

135

Chapter 5. Iwplcmentation

stack-> push(tmp);

}

In itia lis in g th e m eta -lev e l (b o o ts tra p p in g) : The preprocessor generates code inside the

main function in order to initialise the meta-level. The structure of the generated code

is as follows in pseudo-code:

1. A pointer to the reified multi-threaded stack MultiStack is declared a.s a global

variable outside of the main function.

2. For each MComposer MO delegated in MOP descriptors of reflective classes (de

fined in this translation unit or in included header files), there is a global variable

(pointer). In most cases, the delegated composer is the DefaultComposer MO.

3. Inside the main function create the reified stack.

4. Create the delegated MComposer MO(s).

5. Initialise the MOPs vi îth their delegated MComposer.

6. Inil.ialise the meta-level of the reflective classes.

Let us see a concrete example, in which two base-level classes A and B selected Typelnfo

and Default MOPs, respectively:

MultiStack* stack= 0;

MComposer* composer= 0;

int mainO {

// Auto-generated by the Iguana version 3.0 pre-processor

stack= new MultiStack(1024);

coraposer= new DefaultComposer();

Typelnfo:: init(composer);

Default:: init(composer);

A:: initMetaLevel(composer);

136

Chapter 5. Im plem entation

B : : initMetaLevel(composer);

Note th a t it is the base-level program m er's responsibility to initialise the IGUANA m id

dleware, which is usually done through IGUANA extension protocols.

S h u t t in g d o w n th e m e ta - le v e l: The preprocessor also inserts code a t the end of the main

function in order to shut down the meta-level. T he s tructu re of the generated code is

as follows in pseudo-code:

1. Delete the sta tic (shared) MObject* X::metaX objects, which were used in creating

o ther instances of class X.

2. Destroy the MOP(s) in reverse order.

3. Delete the MComposer MO(s).

4. Delete the reified stack.

Let us see tlie continuation of the above concret(! exam ple, in which two base-level

classes A and B selected MOPs Typelnfo and Default, resj)ectively:

// Clean-up code auto-generated by the pre-processor

delete B : : raetaB;

delete A :: metaA;

Default:: destroy();

Typelnfo:: destroy();

delete composer;

delete stack;

}

Note that it is the base-level programmer’s responsibility to shut down the IGUANA

middleware, which is usually done through IGUANA extension protocols.

137

Chapter 5. Implementation

Code
Feature Case Iguana /C + h- Standard C++
Creation Single object,

default constructor
class A = = > MOPl;
A* a = new A();

A* a=
(A*) A ::m etaA -> create(0, 0, 0);

Single object,
non-default
constructor

class A = = > M O Pl;
A* a= new A(x, y);

A* a =
(A*) A ::m etaA -> create(0, 1,
(stack- > push (x), stack- > p u sh (y)));

Array,
default constructor

class A = = > M O Pl;
A* a = new A[2];

A* a=
(A*) A ;;m etaA -> create(2, 0, 0);

Array,
non-default
constructor

class A = = > M O Pl;
A* a = new A[2](x, y);

A* a =
(A*) A ::m etaA -> create(2, 0,
(stack->push(x), stack->pusli(y)));

Deletion Single object delete a; a-> destroyO;
Array delete [] a: a-> destroy (true);

S tate read N on-array
element

int i= a-> i; int i= *(int*) a -> read(O);

Array element int i= a-> j[2]; int i= *(int*) a-> re a d (l, 2);
S tate write N on-array

element
a-> i= 2; a-> write((), (stack->pusli(2)));

Array element a-> j[2]= 2; a-> w rite (l, (stack->push(2)), 2);
Invocation No argum ents,

no re tu rn value
a-> m(); a-> invoke(l);

Argum ents,
no re tu rn value

a-> rn(12); a-> invoke(2,
(stack- > push (12)));

No argum ents,
re tu rn value

int i= a-> n(); int i= *(int*)
a-> invoke(3);

Send =* No argum ents,
no re tu rn value

a-> m(); a-> send (l);

Argum ents,
no re tu rn value

a-> m(12); a-> send(2,
(stack->push(12)));

No argum ents,
re tu rn value

int i= a-> n(); int i= *(int*)
a-> send(3);

Table 5.2: Sum m ary of the IGUANA reflective code transform ations

138

C h apter 5. Im plem entation

Table 5.2 summarises how intercession is added to the reflective IGUANA/C++ code. The

preprocessor analyses the AST of a reflective program and identifies parts that perform a

reified C++ operation and transforms them with code that transfer control to the IGUANA

meta-level. The code transformation in IGUANA version 3 is only marginally different from

that of version 2 (see Chapter 4 of [64]). The difference is in the way that version 3 sup

ports the creation of reflective objects using non-default constructors which version 2 did not

support.

5.4.3 W orking w ith Iguana/CH —h code

Figure 5.2 shows th e process of compiling iG U A N A -extended source files.

Protocols.ig Protocols.hpp

Proiocols-o

Protocols.cpp

X.hpp ref_X .hpp

X.o

refl_main.q>pm ain.cpp

libOthcrM OP.i

Iguana

preprocessor

C++
com piler

C-H-
com piler

Iguana
preprocessor

C++
com piler

Fig. 5.2: Working with Iguana/C-I--t- files: the compilation proce.ss from Iguana-extended
source to executable

First, the file Protocols .ig lists the IGUANA MOPs that the base-level programmer wants to

use in his/her application. This list does not have to be exhaustive, as unlisted MOPs compiled

139

Chapter 5. Implementation

into a shared hbrary can be loaded into, and used in a running IGUANA application. As a

convention, for each name on this hst there should be a corresponding MOP descriptor XML

file. The IGUANA/C++ preprocessor parses the XML files of the corresponding MOPs and

creates Protocols.hpp and Protocols.cpp; tvi'o standard C++ files, that contain the declaration

and the definition of the MOPS (derived from the MProtocol class, see above).

Reflective base-level class definition files (i.e., X.cpp file in Figure 5.2 - which include

X.hpp and Protocols.ig header files) have to be run through the IGUANA/C++ preprocessor,

too. The preprocessor reads in the X M L MOP descriptors as it processes the MOP selection

statements and translates the Iguana/C ++ source file into a standard C++ files (i.e., refl_X.cpp

and refLX.hpp). If the preprocessor encounters an included header file for a reflective class or

classes, it will substitute it with its refL equivalent.

Every base-level application has a translation unit with a main function (i.e., main.cpp

in Figure 5.2). The prej)rocessor parses this main.cpp file and generates a refLmain.cpp file,

which is a standard C++ file. This file includes the initialisation and finalisation code inserted

by the preiirocessor.

From this point, a standard C++ comjuler and linker is used to comj)ile the above C++

files into objects and link them with the Iguana/C + + shared library (i.e., libiguana.so which

contains the implementation of the IGUANA meta-level library, extension protocols, and mid

dleware components) and possibly others depending on the application.

5.5 M ulti-threaded Reified Stack

The IGUANA version 2 design introduced the concept of a reified stack in form of the MStack

class, which is used during reified base-level operations e.g., method sends/invocations and

state read/write accesses. The implementation of the stack allows pushing and popping of

arbitrary elements, as it uses C++ push and pop template methods. There is one single stack

instance created as one of the first steps in the main method of the reflective application.

However, this single stack is ultimately thread-unsafe: IGUANA version 2 did not provide

any mechanism to synchronise access to the stack from nmltiple threads.

Therefore we redesigned the reified stack in the new model; we use the facade and sin-

140

C h apter 5. Implementa.tion

gleton design patterns, in which we create a singleton in the form of an instance of the

SingleStack class for pushing elements on to and popping elements from multiple stacks. The

SingleStack manages instances of the MultiStack class: each thread is associated with one

MultiStack. Our implementation is based on POSIX threads, where the pthread_self call re

turns the current thread identifier, which is used as a key in SingleStack to find the associated

MultiStack instance.

We also introduced exception handling: the templated push and pop methods throw

exceptions to signal that the stack is over or underflown, respectively.

class MultiStack {

public:

template<class T>

void push(T data) throw(StackOverflowException);

template<class T>

void pop(T& data) throw(StackUnderflowException);

};

5.6 Sum m ary

The chapter described the implementation of IGUANA/C++, which is a mapping of our IGUANA

model to the C++ language.

Similarly to its predessesors, IGUANA/C++ has been implemented as a preprocessor.

IGUANA/C++ is an non-obstrusive extension to the standard C++ language: only one ad

ditional token (m o p selection symbol: = = >) has been added, and the Igu an a/C + + syntax

extends the current C++ grammar with default, class, and instance MOP selection rules.

The preprocessor parses the iGUANA-extended code as well as the specified MOP descriptor

XML files, and translates them into standard C++ source files. The Abstract Syntax Tree of

the parsed IGUANA source code is transformed to include structural information as well as

the causal connection for reified operations at the base-level, but only for reflective objects.

141

Chapter 5. Implementation

The source code of iion-refiective classes is not transformed.

We also described the operation of the nnilti-threaded reified stack and dynamic MOP

loading, which is an essential reflective feature in supjjorting imanticipated changes.

142

C hapter 6

Evaluation

‘'Nothing succeeds like success. ” - Alexandre D um as

6.1 Introduction

This chapter demonstrates ineta-level and base-level programming with I g u a n a version 3

and evaluates its implementation throngh three real-world programming examples. These

examples show the expressive power of the IGUANA version 3 reflective mocJel.

The emphasis is on the separation of concerns, the distinction between the roles of simple

base-level programming and more complex meta-level and middleware programming, and the

automatic and dynamic composition of MOPs that have been written following our method

ology. Once a more experienced programmer has implemented a MOP, possibly adding new

middleware components, relatively inexperienced programmers can compose these MOPs in

their applications in order to meet challenging non-functional requirements. The separately

available MOP descriptors define the MOP in terms of MOP inheritance, positioning in a con

cern area, structural and behavioural MOs, extension protocol^, and middleware component

classes th a t together implement it. Furthermore, the specification of behavioural MO classes

in terms of before and after compositional behaviour, base-level modifications performed by

the MO, constraints on the presence of other MOPs in a different concern area, and links to

'Extension protocols are an I g u a n a concept used to provide a stnictured and secured interface for manip
ulating the meta-level

143

Chapter 6. Evaluation

middleware components. These MOP descriptors guide the automatic and dynamic compo

sition in finding semantic overlap between MOPs to be composed and making decisions on

the ordering of the behavioural MOs in each reification category as well as iiLscrting and re

moving MOP-specific object references (object headers). The automatic and dynamic MOP

composition is implemented by the DefaultComposer MO.

T he MOP descriptors also help base- and m eta-level programmers who want to understand

and extend MOPs: they can im m ediately see the names of im plem entation classes for MOs,

extension protocols, and middleware com ponents w ithout looking at the source code.

Iguana version 3 facilitates dynamic adaptation: comj)osable MOPs whose implementa

tion may not be available when the rcflective application was designed and implemented can

be dynamically added to a running application.

In case an alternative MOP composition is needed (for example, to implement a composi

tion different from the chain of responsibility model used by the IGUANA version 3 reflective

model), the DefaultComposer MO can be replaced by another suitable MComposer MO. We

also show an example of implementing a Guarana-style composer MO.

However the separation of conceriLS through reflection com es with a price: it introduces a

perform ance overhead that rcflective applications must carry. Selective reification and shared

MOs help reduce the burden. In section 6.5 we quantify and analyse the overhead introduced

by IGUANa/C++.

6.2 C om bining Persistent and Remote m o p s

T his section shows how the Persistent and Remote MOPs can be com bined.

As described in sections 4.5 and 4.6, object state persistence and distribution have been

im plem ented as IGUANA MOPs. B oth MOPs inherit from the Default MOP, which in turn

inherits from the Typelnfo MOP (see sections 4.3 and 4.2).

Base-level application classes, whose instances the programmer wants to make persistent

and rem otely accessible, must select the Persistent and Remote MOPs as shown in the following

code excerpt for two sim ple classes:

144

Chapter 6. Evahmtion

class Person ==> Persistent, Remote {
protected;

char name[MAX_NAME_LENGTH];
int age;

public;
Person();
Person(char* name, int age);
virtual "PersonO ;
void setName(char* neune) ;
char* getNameO;
void setAge(int age);
int getAgeO;

};

class Parent : public Person {
protected;
Parent* spouse;
Person* children[MAX_CHILDREN];

public;
Parent();
Parent(char* name, int age);
Parent(Parent* spouse. Person* children []);
virtual "ParentO;
void setSpouse(Parent* spouse);
Parent* getSpouseO;
void setChildren(Person* children []);
Person** getChildrenO ;

};

Note th a t the child class Parent im plicitly selects the Persistent and Remote MOPs because

145

Chapter 6'. Evaluation

it inherits the MOP set from the Person superclcuss.

Instances of class Person and Parent can be used to model families. Let us see how

reflective instances of these classes can be created at the client and server sides. The notion of

persistence is apjilicable only to the remotely accessible servers, while the clients communicate

w ith the servers using proxies: in the client-side code, the Person and Parent classes have to

select RemoteProxy instead of Remote and Persistent.

Because full separation of concerns is rarely a tta inab le (i.e., there are always some con

figuration issues related to the non-functional conccrns), the main m ethod for the server side

code m ust take a few argum ents:

• coldstart flag indicates w hether persistent objects should be crcated from scratch and

stored in the Persistent O bject Store (POS) upon term inating the application or should

be recreated by retrieving them from the POS. O ur Persistent MOP im plem entation pro

vides persistence for heap-allocated objects th a t are transitively reachable (via pointers)

from name service recorded persistent objects (i.e., persistent roots).

• directory defines the directory in which the PO S files are located (which defaults to the

user’s HOME directory).

• hostname specifies the host name or IP address to be usc;d. For the server, it is rel

evant only if the com puter is nm lti-hom ed (i.e., it has m any network interface cards

configTired).

• port specifies the T C P j)ort number. In order to initialise rem ote conm iunication, the

I g u a n a middleware needs to know the host nam e or IP address and the T C P po rt

rmmber to be used when listening to client requests.

These argum ents are presented to the IGUANA extension protocol Common, which in tu rn

uses them to initialise the relevant com ponents of the IGUANA middleware. The following

excerpt shows the server m ainline code (for shortness, we om it the processing of the above

com m and line argum ents):

in t mainCint a r g c , void** argv) {

146

Chapter 6. Evaluation

try {

11 Use the extension protocol to initialise conmon middleware

Common;:init(directory, hostname, port);

if(coldstart) {

// Create a family

Person* child = new Person(‘‘Eve'', 4);

Parent* father = new Pcirent (‘ ‘ John’’ , 25);

Person* kids [] = { child, 0 };

Parent* mother = new Parent(father, kids);

mother->setName(‘‘Marie’');

mother->setAge(24);

father->setSpouse(mother, kids);

// Record ‘‘John’’ in the name service

Common::record(‘‘John’’, ‘‘Parent’’, father);

}
else {

Parent* father = 0;

// Look up ‘‘John’’ in the name service

Common::lookup(‘‘John’’, ‘‘Parent’’, (void**) &father);

}
// Wait for client requests

Common::wait();

Common::close();

}
catch(...) {

}
return 0;

147

Chapter 6. Evaluation

First, throxigh the Common IGUANA extension protocol we initialise the IGUANA middle

ware, such that it creates/opens the POS files, launches the communication service, the class

register, the name service, and the reference manager. The name service component is both

remote and persistent, using the very same MOPS. If the coldstart flag is set, it creates an

exemplary family which is the couple and one child and records one of the parents as a remote

and persistent object. Otherwise, it looks up a previously created persistent Parent object

in the name service. Note that this operation results in a persistent proxy being created, on

which the meta-level detects object faults, loads the state from the POS, swizzle references,

see 4.5. Finally, the server waits for incoming client requests and upon receiving a TERM signal

saves persistent objects in the POS and closes the POS and communication middleware.

As persistence is required at the server side only, the main method for the client side code

takes even less arguments:

• hostname specifies the host name or IP address for the server we want to use.

• port specifies the TCP port rmmber the server is listening on.

In the client side implementation, the Person and Parent classes select the RemoteProxy

MOP only. The client mainline code is shown bekw (again, we omit the handling of command

line argimients):

i n t mainCint a r g c , void** argv) {

c l a s s Person ==> RemoteProxy;

c l a s s Pcirent ==> RemoteProxy;

t r y {

/ / Use the e x te n s io n p r o to c o l to i n i t i a l i s e remote middleware

Common: : i n i t () ;

/ / Create a URL

s p r in t f (l i r l , ‘ ‘ iguana: 7,s:7.u/John’ ' , hostname, p o r t) ;

Parent* fa th e r = 0;

148

Chapter 6. EvaJimtiou

// Look up '‘John’’ in the remote name service

Common::lookup(url, ‘‘Parent’’, (void**) fefather);

cout << ‘‘Father’s age=’’ << father->getAge() << endl;

cout << ‘‘Mother’s age=’’ << father->getSpouse()->getAge0 << endl;

Person** kids = father->getChildren();

while(*kids) {

cout << ‘‘Child’s age= ‘‘ << (*kids)->getAge() << endl;

kids++;

}
Common:;close();

}
catch(...) {

}
return 0;

}

First we initialise tlie IGUANA middleware for remote communication using the Common

extension protocol. We use an iGUANA-style Unified Resource Locator (URL) to look up

one of the Parent remote objects in the remote name service, then we invoke some of its

methods remotely to explore the attributes of the family. Finally, we close the communication

middleware and terminate the client application.

Because the Pers is ten t, R em ote , and R em oteProxy MOPs are automatically composable,

the D efau ltC om poser MO composes the behavioural MOs in the Creation , Deletion, Invoca

tion , S ta teR e ad , and S ta te W ri te reification categories as well as inserting the O bjectR eference

per-object MOs. For example, the order of Invocation MOs at the server side is: R emotelnvo-

ca tion , Pers is ten tlnvoca tion , and D efault lnvocat ion . T h e order of Invocation MOs at the client

(proxy) side is; R em ote lnvoca tion and D efault lnvoca t ion . R em ote lnvoca t ion uses the IGUANA

middleware to transport method and state access requests from the client to the server and

back.

149

Chfipter 6. Evaluation

6.3 Applying a Logging M O P to a running application

In th is section, we show how a logging MOP can be dynam ically loaded and added to a ruim ing

application.

Suppose we want to log rem ote access to our mother and father objects (bo th are instances

of class Parent) on the server side. In order to in itia te the dynam ic ad ap ta tion of the server

program , the base-level program m er has to im plem ent an internal or external com m unication

m echanism th a t can be used to request the change to the MOP set for certain reflective objects.

We have modified the above server code to include a new class Adaptation, for which we

select the Remote m o p . Thus, when an external client invokes the Adaptation;:adapt m ethod,

w'hich takes the name of the m o p and the shared library to be loaded a-s well as its initialisation

param eters, the definition of this m ethod uses the IGUANA Meta class to load the named MOP

dynam ically from the shared library, and apply it to the two previously created instances of

the Parent class. Subsequent rem ote requests (invocation and sta te read /w rite) addressed to

these objects will be logged to the nam ed file on the server host.

The definition of the Adaptation class is as follows:

c l a s s Adaptation ==> Remote {

p u b l i c :

A daptationO {}

"AdaptationO {}

vo id adapt(char* name, char* l ib r a r y , NVPair* params []) {

tr y i

Parent* p a ren t1 = 0;

Parent* parent2 = 0;

Common:;lookupC‘ ‘ John’ ’ , ‘ ‘P a r e n t’ ’ , (void**) feparentl);

parent2 = p a r e n t l -> g e tS p o u se () ;

MProtocol* mop = M eta::loadProtocol(nam e, l ib r a r y) ;

/ / I n i t i a l i s e the named MOP u s in g the paorents’ composer MO

m op->init(parentl->m com poser, param s);

150

Chapter 6. Eva.Iua.tion

// Add the named MOP to the MOP sets

MProtocol* mops[] = { mop, 0 };

parentl->mcomposer->addProtocols(parent 1, mops);

parent2->mcomposer->addProtocols(parent2, mops);

}
catchCconst MetaExceptionft e) {

// Handle loading and composition exceptions

}
}

>;

The server mainline code differs from the one shown in the previous section only in that

it creates an instance of class Adaptation, which is then recorded in the name service;

int main(int argc, void** argv) {

try {

// Use the extension protocol to initialise common middleware

Common::init(directory, hostname, port);

Adaptation* adaptation = new AdaptationO;

Common;:record(‘‘Adapt!’', ‘‘Adaptation'', adaptation);

if(coldstart) {

// Create a family

Person* child = new Person(‘‘Eve’', 4);

Parent* father = new Parent(‘‘John'’, 25);

Person* kids [] = { child, 0 };

Parent* mother = new Parent(father, kids);

mother->setName(‘‘Maxie'');

mother->setAge(24);

father->setSpouse(mother, kids);

151

Chapter 6. EvaIua,t.ion

II Record ‘‘John’’ in the name service
Common::recordC‘‘John’’, ‘‘Parent’’, father);

}
else {
Parent* father = 0;
// Look up ‘‘John’’ in the name service
Common::lookup(‘‘John’’, ‘‘Parent’’, (void**) fcfather);

>

// Wait for client requests
Common::wait();
Common::close();

}
catch(...) {

}
return 0;

}
We use a modified version of the client code (shown in the previous section) to remotely

trigger dynamic adaptation. Note that ideally, dynamic adajitation should be initiated from

the meta-level as a result of some fault detection or changes in some mea-sured software met

rics. The client mainline code is shown below (again, we omit the handling of the command

line arguments):

int mainCint argc, void** argv) {

class Person ==> RemoteProxy;
class PcLrent ==> RemoteProxy;
class NVPair ==> Typelnfo;
class Adaptation ==> RemoteProxy;
try {

// Use the extension protocol to initialise remote middleware

152

Chapter 6. Evaluation

Common: : i n i t () ;

11 C re a te a URL f o r ‘ ‘ Jo h n ’ ’ (a p a r e n t)

s p r i n t f (n r l l , ‘ ‘ ig u a n a : 7.s;*/.u/John’ ’ , hostnam e, p o r t) ;

11 C re a te a second URL f o r a d a p t a t i o n

s p r i n t f (u r l2 , ‘ ‘ ig u a n a :7,s; 7,u / A d a p t , hostnam e, p o r t) ;

A d ap ta t io n * a d a p t a t i o n = 0;

/ / Look up ‘ ‘A d a p t ! ’ ’ i n t h e rem ote name s e r v i c e

Common:: l o o k u p (u r l2 , ‘ ‘A d a p ta t io n ’ ’ , (vo id**) f e a d a p ta t io n) ;

/ / I n i t i a t e dynaraic a d a p t a t i o n (add Logging MOP)

NVPair* param= new NVPair(‘ ‘ l o g f i l e ’ ’ , ‘ ‘ i g u a n a . l o g ’ ’) ;

NVPair* params [] = { param, 0};

a d a p t a t i o n - > a d a p t (‘ ‘L ogg ing ’ ’ , ‘ ‘ libLoggingMOP. s o ’ ’ , pa ram s) ;

P a re n t* f a t h e r = 0;

/ / Look up ‘ ‘ J o h n ’ ’ i n t h e rem ote name s e r v i c e

Common:: l o o k u p (u r l , ‘ ‘P a r e n t ’ ’ , (vo id**) & f a t h e r) ;

cou t << ‘ ‘F a t h e r ’ s ag e= ’ ’ << f a t h e r - > g e tA g e () << e n d l ;

co u t << ‘ ‘M other’ s ag e= ’ ’ << f a th e r - > g e tS p o u s e () - > g e tA g e () << e n d l ;

Person** k id s = f a t h e r - > g e t C h i l d r e n () ;

w h i le (* k id s) {

c o u t << ‘ ‘C h i l d ’ s age= ‘ ‘ << (* k id s) -> g e tA g e () << en d l ;

k id s + + ;

>

Common: : c l o s e () ;

}
c a t c h (. . .) {

}
r e t u r n 0;

As a result of calling the adapt method from the client, the two instances of the persistent

153

C h apter 6. Eva,lua.tion

and remote Parent class become logged too: invocation, state read/write and delete operations

will be logged to a local text file on the server machine. N ote that although the Logging MOP

reifies object creation, the LogCreation MO will be combined with the other three Creation

MOs, but it will not actually be used for the two Parent objects as they have already been

created.

Because Logging is an autom atically com posable MOP, the DefaultComposer MO combines

its behavioural MOs w ith the existing MOs. For exam ple, the order of Invocation MOs is:

Remotelnvocation, Loglnvocation, Persistentlnvocation, and Defaultlnvocation.

6.4 U sing a m anual Composer m o

The DefaultComposer MO im plem ents the au tom atic and dynam ic MOP com position algorithm

described in Scction 3.4.7. The DeafultComposer MO reads in MOP descriptor files w ritten

in XML and uses them to make decisions on com bining the MOs in different behavioural

reification categories. The com position is triggered by a change in the MOP set o f reflective

classes and their instances. A fter the DefaultComposer has finished arranging the behavioural

m eta-objects, it is not involved in the intercession o f reified operations at the base-level (e.g.,

invocation or s ta te read).

Because composing semantically overlapping MOPs is difficult, there may be a need to

use an alternative Composer MO. In IGUANA version 3, the meta-level program m er has the

freedom to w rite h is/her own Composer MO in order to im plem ent an a lternative com position

algorithm . For example, an alternative Com poser can act as a “sw itchboard” and be involved

in the intercession as well as in the com position. This is in line w ith the com position mecha

nism of G uarana [50, 57, 59], in which Com poser MOs delegate the intercepted base-level calls

to different (behavioural) MOs, possibly including o ther Composer MOs.

In th is section, we show the im plem entation of such a G uarana-style m anual Composer

MO. We define the GuaranaComposer MO class as follows:

c l a s s GuaxajiaComposer : p u b l i c MComposer, M C rea tion , M D eletion,

M lnv o ca t io n , M StateRead, M StateW rite {

154

Chapter 6. Evaluation

public:

GuaranaComposer0;

GuaranaComposer(MComposer* src);

virtual ■'GuaranaComposer ();

virtual bool compose(MObject* object, MProtocol* inSet[], MProtocol* outSet[])

throw(ComposerException);

virtual bool compose(MObject* object, MProtocol* newSet [])

throu(ComposerException);

virtual bool addProtocols(MObject* object, MProtocol* inSet [])

throw(ComposerException);

virtual bool removeProtocols(MObject* object, MProtocol* outSet[])

throw(ComposerException);

virtual void* create(MObject* meta, int index= 0, int numDbjects= 0);

virtual void destroy(MDbject* object, bool isArray= 0);

virtual void* invoke(MObject* object, MMethod* mmethod, MClass* mclass,

int index= 0);

virtual void* read(MObject* object, MAttribute* mattribute, MClass* mclass,

int subscript= -1);

virtual void* write(MObject* object, MAttribute* mattribute, MClass* mclass,

int subscript= -1);

>;

Through multiple inheritance, the GuaranaComposer M O is able to act as a MComposer

MO as well as a behavioural MO for object creation, deletion, invocation, and state access. It

acts as a primary MO and such it has the task to delegate operations to other behavioural

MOs or indeed to other composer MOs. Our simple implementation uses a separate thread to

handle reified operations for logging.

155

Chapter 6. Evaluation

6.5 The com putational overhead in I g u a n a version 3

T h e I g u a n a /C ++ p reprocessor tran sfo rm s iGUANA-extended source code to s ta n d a rd C++.

It in se rts th e neccessary code req u ired to in itia lise an d m a in ta in th e rneta-level as well as

in te rcep t reified op era tio n s a t th e base-level an d d ivert th e m to th e m eta-level. T h is incurs

an overhead in form of MOs th e base-level o b jec ts are associa ted w ith an d a perfo rm ance

pena lty paid for intercession.

In th e I g u a n a version 3 m odel an d its C++ im p lem en ta tio n we have revised th e version

2 m odel an d e lim ina ted local beh av io u ra l MOs as d u rin g ou r experim en t w ith im plem enting

and com bin ing th e Persistent an d Remote MOPs we found th a t m ost of th e p e r-o b jec t MOP-

si)ecific s ta te can b e sep ara ted o u t an d m a in ta in ed in th e new ly in tro d u c ed ObjectReference

MO a n d /o r in new exp lic it IGUANA m iddlew are com ponen ts (e.g., th e ReferenceManager ob ject

we use for Persistent an d Remote). T h u s, b ehav iou ra l MOs are sh a red betw een instances of

reflective classes.

The DefaultComposer MO is also shared between instances of reflective classes.

The exact overhead due to rim-time reflection is difficult to quantify because it depends

on a number of factors:

N u m b er o f re ifica tion ca teg o r ies used in a MOP: selective reification helps reduce the

ovcirhead by allow ing th e m eta-level p ro g ram m er to reify th e necessary language fea tu res

only. F eatu res th a t have no t been reified will no t in cu r any a d d itio n a l overhead , a p a r t

from a ru n -tim e check, im i>lemented as a m acro (see below).

E fficien t im p lem en ta tio n o f th e m o p : multiple MOP selection allow the base-level pro

grammer selecting the MOPs for reflective classes and their instances that actually need

them. Dynamic MOP deselection of one, more, or all of the MOPs can reduce the over

head. The support for dynamic loading and selection of a MOP means that a MOP

implementation in a particular concern area can be replaced by another MOP with a

more efficient implementation.

F req u en cy and ty p e o f u sin g th e reified op era tio n s: if a reified o p era tio n (e.g., m e thod

invocation) is used m ore frequen tly th a n a n o p era tio n , w hich has n o t been reified (e.g.,

156

Chapter 6. Evaluation

O peration Relative overhead
in version 3
(version 2)

Ab.solute tim e
in version 3

P lain C++ 1 (1) n /a
Creation 17 (27) 10.2
Deletion 10 (n /a) 6.6
Creation -I- Deletion 14 (31) 13.1
Invocation (no argum ents) 21 (12) 0.54
Invocation (1 int argum ent) 30 (18) 0.84
StateRead 12 (9) 0.12
StateW rite 48 (22) 0.56

T a b le 6.1: M casurenients indicating the relative and absolute overhead of reified C + +
language operations using the Default M OP

sta te read) then it incurs a higher run-tim e penalty. Furtherm ore the num ber of ar-

gimients to a reified m ethod send or invocation makes a difference; the reified stack

operations are significantly slower than the native C++ ones.

We took m easurem ents to quantify (he perform ance overhead of reified ojjerations im

plem ented by the Default MOP as com pared to the plain C++ of>erations w ith and w ithout

rim -tim e checks.

Table 6.1 shows the relative overhead for IGUANA/C++ version 3 and 2 (in parentheses) as

well as the actual tim e taken in microseconds (version 3 only). We carried out the measure

m ents on an Intel Mobile Pentium III 500 MHz PC w ith 192 MB of physical memory, running

RxjdHat 7.0 operating system w ith Lirmx 2.2 kernel and the GNU C++ (g-l--l-) compiler version

2.96.

Reified creation and deletion shows an improved perform ance, m ainly due to the shared-

only behavioural MOs in version 3. The reified invocation, sta te read and w rite operations

however are slower in IGUANA/C++ version 3 because the additional level of indirection in

the new m ulti-threaded stack im plem entation (i.e., the MultiStack class).

O ther m easurem ents (see table 6.2) quantify the tim e in microseconds taken when execu

ting the compose m ethod on the DefaultComposer MO w ith six different MOP sets. Com pared

157

C hapter 6. EvaIua,tion

MOP set A bso lu te tim e (m icroseconds)

Typelnfo 1700
Default 3200
Persistent 8100
Remote 7800
Persistent an d Remote 10700
Persistent, Remote, an d Logging 14000

Table 6.2: M easurem ents in d ica tin g th e ab so lu te overhead o f au to m a tic an d dy n am ic MOP
com position by th e DefaultComposer MO

to th e ab so lu te figures o f reified o p era tio n s, th e resu lts show th a t com position is ten th o u san d

tim es m ore expensive on average. T h is can m ain ly be a t tr ib u te d to th e cost o f j^rocessing

th e XM L MOP descrip to r files an d th e com plex ity of th e com position a lgo rithm .

O nce th e MOP d esc rip to r files have been p arsed , th e ad d itio n a l tim e taken to com pose

th e MOPS depends on a num ber of factors:

T he num ber o f MOPs in the m op set: th e com position a lg o rith m is based on te s tin g dif

ferent p e rm u ta tio n s of beh av io u ra l MOs in search of a good com bination w hich satisfies

all th e co n s tra in ts (see th e descri{)tion o f th e newCompose m eth o d in section 5.2.4).

T he behavioural reification categories used: th e com position a lg o rith m com bines th e

behav iou ral MOs sep ara te ly in each b eh av io u ra l reification category.

W hether MOPs are “rem ote” -related: th e com position a lg o rith m uses h eu ris tic (see sec

tion 5.2.4) to b u ild a sy m m etric MO “s tack ” for th e proxy an d server sides, if a “rem o te”

MOP is p resen t in th e MOP set.

T he num ber o f before and after requirem ents: ordering co n s tra in ts can significantly

reduce th e num ber of possib le p e rm u ta tio n s to te s t in th e recursive newCompose m eth o d

im p lem enta tion .

However, au to m a tic an d dy n am ic MOP com position does n o t occu r very frequen tly in a

carefully designed IGUANA ap p lica tio n . W e believe th a t th e benefits o f ou r ap p ro ach (flexi

b ility , sep ara tio n of concerns, an d ease of use) ou tw eights th e p rice of perfo rm ance decrease.

158

Chapter 6. Evaluation

6.6 Summary

This chapter evaluated the I g u a n a version 3 model and its im plem entation.

Com position of complex MOPs is handled by the DefaultComposer MO, provided th a t the

MOPS were w ritten according to our methodology. As a m ajor advantage com pared to o ther

architectures, including G uarana, base-level program m ers do not need to deal w ith composing

MOPS and their related MOs. However if they want, they can replace the DefaultComposer

MO w ith their own Composer MO. IGUANA version 3 was designed to further simplify the

m eta-level by elim inating the notion of local and shared MOs. T he perform ance overhead

introduced by the I g u a n a / C + + version 3 model is com parable to th a t of version 2.

159

Chapter 7

S um m ary and Conclusions

“An optim ist is a guy that has never had much experience. ” - Don Marquis

7.1 Introduction

This chapter siinimarises tlie thesis, draws conclusions, and suggests areas for future work.

7.2 Summary and Conclusions

In this thesis, we have explored computational reflection as an effective means of dealing

with rapidly increasing application requirements and, as a consequence, increased software

complexity. R.eflection is favoured because of its property of separating of functional (business

logic of the application) and non-functional (requirements independent from the business

logic) concerns; business logic is implemented at the base level of the application while the

non-functional requirements are implemented at the m eta level, in the form of meta-object

protocols (m o p s), where each MOP addresses a particular non-functional concern (e.g., object

state persistence, or remote object invocation).

As programmers of today have to meet multiple recurring non-functional requirements

for most of their applications, where some of these requirements may change dynamically at

run-time, the automatic and dynamic composition of non-functional concerns is an important

160

Chapter 7. Summary and Conclusions

issue to address.

However, au tom atic and dynam ic MOP com position is a difficult task. We identified the

main problem s hindering MOP composition as:

1. Non-functional concerns may overlap.

2. Lack of methodology for w riting coniposable MOPs.

3. MOPs may not have been written with composition in mind.

4. The source code of a m o p may not be available for use when w riting another composable

MOP or evolving it.

5. MOP so u rce c o d e m ay h av e h id d e n lin k s to m id d le w a re c o m p o n e n ts .

We have designed and im plem ented a solution th a t addresses the above problems. O ur

solution is based on having MOP descriptors (XML files) th a t are available to the MOP compo

sition a t run-tim e in order to make decisions on o rdering /arranging MOs for reflective objects.

I 'hese MOP descrii)tors describe the MO classes th a t com prise a MOP together with their se

m antics and their links to a com ponent-based I g u a n a middleware th a t supports common

non-functional concerns. MOP descriptors are also used to express constrain ts on the com

position. MOPS are positioned in to a hierarchy of concern areas, where each area specifies a

particu lar area of non-functional concern.

The MOP com position itself is reified and im plem ented as a MO class. We provided a

default im plem entation (i.e., the DefaultComposer MO), which can combine composable MOPs

th a t have been w ritten according to the m ethodology th a t we defined. T he DefaultComposer

MO parses the MOP descriptor files in order to m ake decisions regarding the com position of

behavioural MOs. N aturally, the program m er is free to use h is /h er non-default M Com poser

MO in order to im plem ent an alternative MOP com position. In case the source code of p artic

u lar MOPS is not available to a meta-level program m er, the MOP descriptor file gives useful

inform ation abou t the sem antics of the MOP, thus sem antic overlap between MOPs can be

detected. We have m ade the links between MO classes and m iddleware com ponents explicit,

161

Chapter 7. Summary and Conclusions

w hich h elps th e m eta-level program m er reason a b o u t d ep en d en cies and sem an tic overlap

b etw een MOPs.

7.3 Contribution of this thesis

The main contrilnitions of this thesis are;

A m ech an ism for a u to m a tic a n d d y n am ic MOP co m p o sitio n : composition of MOPs with

overlapping semantics is a complex task. Guided by MOP descriptors, the DefaultCom-

poser MO in IGUANA version 3 can detect and deal with semantic overlaps. Automatic

and dynamic comj)osition can be used to deal with unanticipated changes in the re-

cjuirements of ai^plications.

In te r lin k in g MOPs an d m id d lew are co m p o n en ts : most reflective architectures use mid

dleware to imi)lement a particular non-functional concern. These links betwe(;n MO

class(3s of the MOP and components of the middleware are explicitly stated in the MOP

descri])tor, which lielps the composition mechanism detect semantic overlap between

MOPs that are to be combined.

M eth o d o lo g y for w ritin g a u to m a tic a lly co m p o sab le MOPs: th e m eth od o logy presented

in th is th es is , if follow ed, lead s to th e design o f a u to m a tica lly com p osab lc MOPs.

R eal-w o rld exam ples: w e described a su ite o f IGUANA version 3 MOPs th a t im p lem en ts

th e som e o f th e m ost com m on ly found n on -fu n ction a l concerns faced by ap])lication

l>rogrammers o f today, and we show how th ey can b e a u tom atica lly com bined .

7.4 Future work

I g u a n a version 3 is a result of ongoing research in the Distributed Systems Group. Although

this thesis has described the solution to the problem of autom atic and dynamic composition

of MOPS, there are a number of open issues that remain:

162

Chdpter 7. Summary and Conclusions

1. Not all of the language features can be reified. Currently, there is no support for reifying

C-style functions and C++ tem plates.

2. All or nothing reification of class m ethods and a ttribu tes: currently, if Invocation is

reified then invocations of any m ethod of the reflective class are intercepted.

3. This thesis used a proprietary middleware for im plem enting some aspects of the non

functional concerns. Experim ents w ith stan d ard m iddleware would be desirable.

Areas th a t rem ain for fu ture work include;

1. Research the im ification/com bination of arch itectural (e.g., K -Com ponent architecture

[20, 19]) and behavioural (i.e., IGUANA version 3) reflection.

2. Analyse the source code of MOPs, so MOP descriptors could be (partially or in whole)

generated.

3. A G raphical User Interface (GUI) th a t helps w ith composing large num ber of]>roto-

cols. This GUI could show how the DefaultComposer m o would compose MOs of m o p s

in a particu lar MOP set under exam ination. This could be used to verify if certain

m o p sets defined at run-tim e could achieve the overall effect the base- and meta-level

program m ers intended.

4. In I g u a n a version 3, the adap ta tion is in itia ted from the base-level, preferably through

extension protocols. Ideally, a rneta-meta-level should be constructed to m onitor the

base- and meta-level behaviours and in itia te adap ta tion .

163

B ibliography

[1] Gill A. Agha. A bstracting interaction patterns: A program m ing paradigm for open

d istribu te systems, 1997.

[2] G. A ttard i, C. Bonini, and M. Boscotrecase. Metalevel program m ing in CLOS. In

Stei>hen Cook, editor, Proceedings of the European Conference on Object-Oriented

Programming, B ritish C om puter Society W orkshop Series, pages 243-256. Cambridge

University Press, July 1989.

[3] Gordon Blair, Fabio Costa, Geoff Coulson, Fabien Delj)iano, Hector D uran, Bruno Du-

m ant, Francois Horn, Nikos Parlavantzas, and Jean-B ernard Stefani. The design of a

resource-aware reflective middleware architecture. In Cointe [12], pages 115-134.

[4] Gordon Blair, Geoff Coulson, P. Robhi, and M. Papathom as. An architecture for next

generation middleware. In Proceedings o f Middleware ’98-

lb] G ordon S. Blair, G. Coulson, P. Robin, and M. Papathom as. An architecture for next

generation middleware. In Proceedings o f the IF IP International Conference on Dis

tributed System s Platforms and Open Distributed Processing, London, 1998. Springer-

Verlag.

[G] J. B rant, B. Foote, R,. Johnson, and D. R oberts. W rappers to the rescue, 1998.

[7] Vinny Cahill. Tigger: A framework supporting d istribu ted and persistent objects. In

Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson, editors. Im plem enting

164

B ibliography

Application Frameworks: Object-oriented Frameworks at Work, pages 485-519. Wiley,

1999.

[8] Shigeru Chiba. A m etaobject protocol for C + + . In W ilpolt [77], pages 285-299. Also

SIGPLAN Notices 30(10), O ctober 1995.

[9] Shigeru Chiba. O pen C + + program m er’s guide for version 2. Technical R eport SPL-

96-024, XEROX Palo Alto Research Center, 1996.

[10] Shigeru C hiba and Takashi M asuda. Designing an extensible d istribu ted language w ith

a meta-level architecture. In Proceedings o f the 7*'̂ Exiropean Conference on Object-

Oriented Programming, volume 707 of Lecture Notes in Computer Science, pages 482-

501. Springer-Verlag, 1993.

[11] Shigerii C hiba and Takashi M asuda. Open C + + and its optim ization (Extended ab

strac t). In Proceedings of the O O PSLA ’93 Workshop on Reflection, Septem ber 1993.

[12] P ierre Cointe, editor. Reflection ’99 Proceedings o f the 2"' ̂ International Conference

on M eta-Level Architectures and Refiection, volume 1616 of Lecture Notes in. Computer

Science. Springer-Verlag, July 1999.

[13] Fabio Costa, Gordon Blair, and Geolf Coulson. Experim ents w ith reflective middleware.

In Proceedings of the EC O O P ’98 Workshop on Reflective Object-Oriented Programming

and Systems.

[14] Fabio M. Costa, Hector A. D uran, Nikos Parlavantzas, K atia B. Saikoski, Gordon S.

Blair, and Geoff’ Coulson. The role of reflective middleware in supj^orting the engineering

of dynam ic applications. In OORaSE, j)ages 79-98, 1999.

[15] George Coulouris, Jean Dollimore, and T im K indberg. Di.stributed System s, Concepts

and Design. Addison-Wesley, th ird edition edition, 2001.

[16] Scott D anforth and Ira Forman. Reflections on m etaclass program m ing in SOM. In

W ilpolt [76], pages 440-452. Also SIGPLAN Noticcs 29(10), O ctober 1994.

165

Bibliography

[17] John Dempsey and Vinny Cahill. Aspects of System Support for D istribu ted Com puting.

In E C O O P ’97 Workshop on Aspect-Oriented Programming, 1997.

[18] G. Denker, Meseguer J, and C. Talcott. R ew riting sem antics of m eta-objects and com-

posable d istribu ted services, 1999.

[19] Jim Dowling and Vinny Cahill. Dynamic software evolution and the k-com ponent model.

[20] Jim Dowling and Vinny Cahill. The k-com ponent architectiire m eta-m odel for self-

adaptive software. In Reflection 2001 - The Third International Conference on Meta-

Level Architectures and Separation o f Crosscutting Concerns, Kyoto, Japan, pages 81-88,

2001 .

[21] Jim Dowling, T ilm an Schafer, Vinny Cahill, Peter H araszti, and Barry Redm ond. Using

reflection to support dynam ic adap ta tion of system software; A case study driven eval

uation. In W alter Cazzola, R obert J. S troud, and Francesco T isato, editors, Reflection

and Software Engineering, volume 1826 of Lecture Notes in Computer Science, pages

171-190. Springer-Verlag, Heidelberg, Germany, June 2000.

[22] Jean-C harles Fabre, Tanguy Perennou, and Laurent Blain. M eta-object protocols for im-

I)lementing reliable and secure d istribu ted apj)lications. Laas rei>ort 95037, Laboratoire

d ’Analyse et d ’A rchitecture des Systemes (LAAS), 1995.

[23] I. R.. Form an and S. H. D anforth. Putting Metaclasses to Wor'k: A New D im ension in

Object-Oriented Programming. Addison-Wesley, O ctober 1998.

[24] Ira R. Form an and Scott H. D anforth. Putting Metaclasses to Work. Addison-Wesley,

1998. A new dimension in object-oriented program m ing.

[25] Ira R,. Form an, Scott H. D anforth, and Hari M adduri. Com position of before/after

metaclasses in SOM. In W ilpolt [76], pages 427-439. Also SIGPLAN Notices 29(10),

O ctober 1994.

[26] A. Goldberg and D. R.obson. Smalltalk-80, the language and its im plementation.

Addison-Wesley, 1983.

Bibliography

[27] Jam es Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison

Wesley, 1st edition, 1996.

[28] B rendan Gowing. A Reflective Programming Model and Language fo r Dynamically Mod

ifying Compiled Software. PhD thesis. D istributed Systems Group, D epartm ent of Com

pu ter Science, Trinity College Dublin, University of Dublin, 1997.

[29] B rendan Gowing and Vinny Cahill. Making m eta-object protocols practical for oper

ating system s. In Luis-Felipe C abrera and M arvin Theim er, editors. Proceedings of the

4^^'In ternational Workshop on Object-Orientation in Operating Systems, pages 52-55.

IE E E C om puter Society, IE E E C om puter Society Press, August 1995. Also technical

report TCD-CS-95-21, Dept, of C om puter Science, Trinity College Dublin.

[30] B rendan Cowing and Vinny Cahill. M eta-object protocols for C-I--I-: The Iguana ap

proach. In Pivceedings of Reflection ’96, pages 137-152. XEROX Palo Alto Research

Center, April 1996.

[31] Peter H araszti, T ilm an Schafer, Jim Dowling, and Vinny Cahill. The iguana experience:

Meta-level program m ing in a compiled relfective language. Presentation , W orkshop on

Experience w ith Reflective Systems, Reflection 2001 The T hird In ternational Conference

on M eta-Level A rchitectures and Separation of C rosscutting Concerns, Kyoto, Jaj)an,

Septem ber 2001.

[32] R obert Hirschfeld. Aspect-oriented]>rogramming w ith as]>ects, 2002.

[33] N. C. H utchinson and L. L. Peterson. The x-kernel: An ar5chitecture for im plem enting

network protocols. IE E E Transactions on Soft/ware Engineeiing, 17(l):64-76, 1991.

[34] Jean-C harles Fabre and and V. N icom ette and Tanguy Perennou and R obert J. Stroud

and Zhixue Wu. Im plem enting fault-tolerant applications using reflective object-oriented

program m ing. In Proceedings of the 25 '̂ ̂International Symposium on Fault-Tolerant

Computing, 1995.

167

Bibliography

[35] Jean-C harles Fabre and Tanguy Perennou. FRIEN D S - a flexible architecture for imple

m enting fault-tolerant and secure d istribu ted applications. In Proceedings of the 1996

European Dependable Computing Conference, O ctober 1996.

[36] Sonya E. Keene. Object-Oriented Programming in Common Lisp: a Programmer’s Guide

to CLOS. Addison-Wesley, 1989. ISBN 0-201-17589-4.

[37] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The A rt o f the Metaobject

Protocol. M IT Press, Cam bridge, MA, 1991.

[38] Gregor Kiczales, Eric Hilsdale, Jim Hugimin, Mik K ersten, Jeffrey Palm , and W illiam G.

Griswold. An overview of aspect]. Lecture Notes in Computer Science, 2072:327-355,

2001 .

[39] Gregor Kiczales, John Irwiii, John Lam ping, Jean-M arc Loingtier, C ristina Lopes, Chris

M aeda, and Aiiurag Meiidhekar. Aspect-oriented jjrogram m ing: A position paper from

the Xerox PARC aspect-oriented program m ing project. Unpublisluod, 1997.

[40] Gregor Kiczales, John Lami)ing, Anurag M endhekar, Chris M aeda, C ristina Lopes,

Jean-M arc Loingtier, and John Irwin. A spect-oriented program m ing. In Proceedings

o f the European Conference on Object-Oriented Programming, volume 1241 of Lec

ture Notes in Computer Science, pages 220- 242. Springer-Verlag, 1997.

[41] M ajc-O livier Killijian, Jean-Charles Fabre, J. C. Ruiz-G arcia, and Shigeru Chiba. A

m etaobject protocol for fault-tolerant CORBA applications. In Proceedings o f the

Sym posium on Reliable Distributed System s, pages 127-134, Septem ber 1998.

[42] H. T. K ung and J. T . Robinson. O ptim isitic m ethods for concurrency control. A C M

Transactions on Database Systems, 6(2):213-226, 1981.

[43] Rodger Lea, Yasuhiko Yokote, and Jun ichiro Itoh. A daptive operating system design

using reflection. In Proceedings o f the 5*̂ Workshop on Hot Topics in Operating Systems,

pages 95-100. IEEE Com puter Society, IE E E C om puter Society Press, May 1995.

168

Bibliography

[44] Thom as Lcdoux. Imi^leinenting proxy objects in a reflective ORB. In Proceedings o f the

E C O O P ’97 Workshop on. CO RBA: Im plem entation, Use and Evaluation, June 1997.

[45] Thom as Ledoux. O pciiCorba a reflective open broker. In Cointe [12], pages 197-214.

[46] P a ttie Maes. C om putational reflection. Technical R eport 87.2, Vrije U niversiteit B rus

sels, Artificial Intelligence Laboratory, January 1987.

[47] P a ttie Maes. Concepts and experim ents in com putational reflection. In Norm an Mey-

rowitz, editor. Proceedings of the 1987Conference on Object-Oriented Programming Sys

tems, Languages and Applications, pages 147-155. Association for C om puting M achin

ery, ACM Press, O ctober 1987. Also SIGPLAN Notices 22(12), December 1987.

[48] Jacques M alenfant and Pierre Conte. A spect-oriented program m ing versus reflection: a

first draft, 1997.

[49] Hidehiko M asuhara, Satoshi M atsuoka, Kenichi Asai, and Akinori Yonezawa. Compil

ing away the meta-level in object-oriented concurrent relective languages using partia l

evaluation. In W ilpolt [77], pages 300-315. Also SIGPLAN Notices 30(10), O ctober

1995.

[50] Hidehiko M asuhara, Satoshi M atsuoka, Takuo W atanbe, and Akinori Yonezawa. Object-

oriented concurrent relective languages can be im plem ented efliciently. In Paepcke [60],

pages 127-144. Also SIGPLAN Notices 27(10), O ctober 1992.

[51] Jeff McAffer. A M eta-Level Architecture For Prototyping Object Systems. PhD thesis,

T he G raduate School of The University of Tokyo, 1995.

[52] Microsoft. Com home page on the internet. URL, A ugust 2002.

[53] P hilippe M ulet and Jacques M alenfant arnd P ierre Cointe. Towards a m ethodology for

explicit com position of m etaobjects. In W ilpolt [77], pages 316-330. Also SIGPLAN

Notices 30(10), O ctober 1995.

[54] Jam es Norton. Dynam ic class loading for c-t--f on linux. Linux, May 2000.

169

Bibliography

[55] Object M anagement Group. CORBA Components, February 1999.

[56] A lexandre Oliva and Luiz E duardo Buzato. Com position of m eta-objects in C uarana.

Technical report, Institudo de Com putacao, U niversidade E stadual de Cam pinas, Brazil,

1998.

[57] A lexandre Oliva and Luiz E duardo Buzato. T he im plem entation of G uarana on Java.

Technical report. In s titu te de Com putacao, Universidade E stadual de Cam pinas, Brazil,

1998.

[58] A lexandre Oliva and Luiz E duardo Buzato. An overview of molds: a m eta-object library

for d istribu ted systems, 1998.

[59] A lexandre Oliva, Islene Calciolari Garcia, and Luiz E duardo Buzato. The reflective archi

tecture of G uarana. Technical report, Institudo de Com putacao, U niversidade Estadual

de C am pinas, Brazil, 1998.

[GO] Andreas Paepcke, editor. Proceedings of the 1992 Conference on Object-Oriented Pro

gramming System s, Languages and Applications. ACM Special Interest Grou]) on P ro

gram m ing Languages, ACM Press, O ctober 1992. Also SIGPLAN Notices 27(10), Oc

tober 1992.

[61] N. Parlavantzas, G. Coulson, M. Clarke, and G. Blair. Towards a reflective component

based middleware architecture, 2000.

[62] Renaud Pawlak. In ternship report; M etaobject protocols for d istribu ted ijrogramming.

Technical report. Laboratories CNAM -CEDRIC, 1998.

[63] A lexandre Braga Ricardo. A m eta-object protocol for secure com position of security

mechanisms, 2000.

[64] Tilm an Schaefer. Supporting Meta-Types in a Compiled, Reflective Programming Lan

guage. PhD thesis, D istributed Systems Group, D epartm ent of C om puter Science, Trin

ity College Dublin, U niversity of Dublin, 2001.

170

B ibliography

[65] Tilman Schafer, Peter Haraszti, and Vinny Cahill. Experiences with meta-level program

ming in a compiled reflectivelanguage; Implementing object persistence. Rejected paper

from Reflection 2001 - The Third International Conference on Meta-Level Architectures

and Separation of Crosscutting Concerns, Kyoto, Japan, September 2001.

[66] A. R. Silva. Separation and composition of overlapping and interacting concerns. In

Proceedings of the ACM?, pages 215-225, 1999.

[67] Brian C. Smith. Reflection and semantics in Lisp. In Proceedings of theSymposium on

Principles of Programming Languages, pages 23 35. Association for Computing Machin

ery, 1984.

[68] Iona Sora, Frank M atthijs, Yolande Berbers, and Pierre Verbaeten. Automatic composi

tion of systems from components with anonymous dependencies si)ocified by semantics-

unaware j)roperties. In Proceedings of TOOLS Eastern Europe, March 2002.

[69] Robert J. Stroud and Zhixtie Wu. Using metaobject protocols to im]ilement atomic

data types. In Walter Olthoff, editor. Proceedings of the 9^^European Conference on

Object-Oriented Programming, volume 952 of Lecture Notes in Computer Science, pages

168-189. Springer-Verlag, August 1995.

[70] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, third edition

edition, 1997.

[71] Gregory T. Sullivan. Aspect-oriented programming using reflection and metaobject pro

tocols. Communications of the ACM, 44(10):95~97, 2001.

[72] Sun Microsystems. Enterprise Java Beans Specifications Version 2.1, August 2002.

Proposed Final Draft.

[73] Takao Tenma, Yasuhiko Yokote, and Mario Tokoro. Implementing persistent objects in

the Apertos operating system. In Luis-Felipe Cabrera and Eric Jul, editors, Proceedings

of the 2' '̂̂ International Workshop on Object-Orientation in Operating Systems, pages

66-79. IEEE Computer Society, IEEE Computer Society Press, September 1992.

171

Bibliography

[74] Takuo W ataiibe and Akiiiori Yonezawa. An actor-ba.scd metalevel architecture for group-

wide reflection. In In Proceedings of the R E X School/W orkshop on Foundations of

Object-Oriented Languages (R E X /F O O L).

[75] Takuo W atanbe and Akinori Yonezawa. Reflection in an object-oriented concurrent

language. In N orm an M eyrowitz, editor, Proceedings o f the 1988 Conference on Object-

Oriented Programming System s, Languages and Applications, pages 306-315. Associa

tion for C om puting Machinery, ACM Press, Septem ber 1988. Also SIGPLAN Notices

23(11), November 1988.

[76] Carrie W ilpolt, editor. Proceedings of the 1994 Conference on Object-Oriented Program

ming System s, Languages and Applications. ACM Special Interest G roup on Program

ming Languages, ACM Press, O ctober 1994. Also SIGPLAN Notices 29(10), O ctober

1994.

[77] C arrie W ilpolt, editor. Proceedings o f the 1995 Conference an Object-Oriented Program

ming System s, Languages and Applications. ACM Special Interest G roup on Program

ming Languages, ACM Press, O ctober 1995. Also SIGPLAN Notices 30(10), O ctober

1995.

[78] Zhixue Wu and R obert .1. S troud. Using rueta-objects to provide flexible system software.

In Proceedings o f the O O PSLA ’94 Workshop on Flexibility in System Software, O ctober

1994.

[79] Yasuhiko Yokote. T he A pertos reflective operating system: T he concept and its imple

m entation. In Paepcke [60], pages 414-434. Also SIGPLAN Notices 27(10), O ctober

1992.

[80] Yasuhiko Yokote, Gregor Kiczales, and John Lamping. Separation of concerns and

operating system s for highly heterogeneous d istribu ted com puting. In Proceedings of the

6^ ̂S IG O P S European Workshop, pages 39-44. ACM Special In terest G roup on O perating

System s, Septem ber 1994.

172

Appendix A

X M L MOP descrip to rs

A . l MOP d e s c r i p t o r fo r t h e Typelnfo MOP

<?iml v«rBion*"I.0" •ncoding*"UTF”8"?>

<!— This MOP r*tain* typ« information about th« clas>«s that salact it. — >

<'DOCTYPE MOP SYSTEM "compoiition.dtd">

<MOP Naine>"Typ«Info‘' Cooiposabilit7>"Auto“ Difltribution*"C«n&on" Locality*"Co«ui»on''>

<Conc«mAr«a Ida"CAl" Exclusivaoas■■"Singleton">

<Conc«mAr*aEl«n)«nt >Structural Information</Conc*rnAr*aEl«iD«nt>

</Conc«rnAr*a>

<M«taObj«ct ClassNaio«c"HClast" R«ificationCategory*''Class"/>

<M*taObj«ct Cla88NaiD«>’"HAttribut»" R«ificat ionCat«gory*“Attribut«"/>

<MetaQbj«ct Clas8NaiD0="KM«thod" R«ificationCat«goryB"H«tbod"/>

</MOP>

A .2 MOP d escr ip to r for th e Default MOP

<? i i l1 varBion*"! .0" •ncoding“"UTF-8"?>

<!— Dafault C++ objact behaviour — >

<!DOCTYPE MOP SYSTEM "compoBition.dtd">

<MOP Name*"Default" Composability*"Auto" Distribution*"Local" Locality*"NotApplicable">

<SuperMOPB>

<MOPRef Name*"TypeInfo"/>

</SuperM0?8>

< ConeemAraa Id*"CA2" Ezclu8iveDe8 8-'*Singleton">

<ConcemAr«aEletnent>BahaviourB</ConcemAreaElement>

<Co&cernAreaEleinent >Def ault</ConcernAreaEletDent>

</ConcemArea>

<MetaObject ClassName*"DefaultGreation" ReificationCategory-"Creation"/>

<MetaObject ClaBBName*"DefaultDeletion" ReificationCategory*"Deletion"/>

<MetaObject ClaBBName*"DefaultInvocation" ReificationCategory*"Invocation"/>

<MetaObject ClaBsNaiDe*"DefaultStateRead" ReificationCategory*"StateRead"/>

<MetaObject ClaB8NaAe*''DefaultStateWrite" ReificationCategory*"StateWrite"/>

<MetaObject ClassNaffle*"DefaultSend" ReificationCategory*"Send”/>

173

A p p e n d ix A. X M L mop descriptors

</HOP>

A .3 MOP descriptor for the Persistent MOP
<?iml vcrsion^^ ”1.0" •ncoding»"UTF-8'' ?>

<!DOCTYPE MOP SYSTEM "composition.dtd">

<HOP NaiD«-"P«rsist«nt" Compo8abilitjrB''Auto'' Dietribution^"Local" LocalityB“KotApplicabl«">

<Sup»rMOPs>

CMOPRef Naffi«="D«fault'7>

</Sup«rMOPs>

<Conc«mAr«a Id>"CA3" EzcluBiv«D*sB>'‘SingletoD">

<CoDC«rnAraa£l«nent >B*baviouT8</Conc«nAr*a£l«io«nt>

<CoDC«rnAr*aEl«iD«nt>P«rsi st«nc«</Conc«rnAr«aEl«Mnt>

</Conc«mArea>

<M«taObj»ct ClasBNana*''P«r8iBt«ntClass" R«ificationCat«gory>"Class">

<Middl»war«Coaipon«otR«f Names"ClassR«gist«r"/>

</H«taObj*ct>

<M«taObj*ct Clas8Nam«~"P«Tsist*ntObjectRefarenc*" R«ificationCat«gorjr*”Obj«ctR«f•r*nce"/>

<HetaObj»ct ClassNamaK"Parsi8tentCr«ation" RaificationCat«gorjr*"Cr«ation''>

<B«foraBabaviour CallNazt>"UncoDditionalNazt" CalladBy*"M«talev«l"/>

<AftarBahaviour CallNaxt>"UnconditioaalN«xt" CalladBys"Matalaval"/>

<HiddlawaraComponantRaf NamaB"ClassRagistar"/>

<Hiddl«var*ConponantRaf NaBa*''Obj*ctManagar''/>

</HataObjact>

<M«taObjact ClassNam«>‘'PersistantDelation" ReificationCatagory■"Deletion”>

<BeforeBehaviour CallMeztB"UnconditionalNezt" CalledBy«"Metalevel"/>

<AfterBebaviour CallNezt>"UnconditionalNext" CalledBy>‘'Metalevel"/>

<MiddlewareComponentRef Name*"ObjectManager"/>

</HetaObject>

<MetaObject ClassNama*"PersistentInvocation" ReificationCategory■"Invocation">

<BeforeBehaviour CallNezt>"UnconditionalNext'' CalledBy*"Matalaval"/>

<AfterBebaviour CallNezt>"UnconditionalNezt" CalledBy^"Metalevel"/>

<HiddlewareCoiaponentRef Name*"ObjectManager"/>

<Middle«areCoiiiponantRef NaaM«"StorageHanager"/>

</MetaObject>

<MetaObject ClassNane*”Persi8tentStateRead" ReificationCategory*"StataRead">

<BeforeBehaviour CallNezt>"UnconditionalNezt" CalledBy^"Metalevel"/>

<AfterBebaviour CallNezt*"UnconditionalNezt" CalledBy>"Metalevel”/>

<MiddlevareComponentRef Name*"ObjectManager"/>

<HiddlevareComponentRef NameB"StorageManager"/>

</MetaObject>

<MetaObject ClassNan««"PersistentStateWrite” ReificationCategory*"StateWrite">

<BeforeBebaviour CallNeztB"UnconditionalNezt" CalledBy=”Metalevel"/>

<AfterBebaviour CallNezt>"UnconditioDalNext" CalladBy*"Hetalevel"/>

<HiddlevareComponantRef Name*"ObjactManager"/>

<MiddlewareComponentRef Names"StoragaManager"/>

</MataObject>

<EztensionProtocol Cla8sNaffle>"Comaon"/>

<HiddlewareLinks>

<HiddlavareComponent ClassNames"NameService"/>

<MiddlavaraComponent ClassName*"ReferenceNanager"/>

<MlddlavareComponent ClassNames"ClassRegi8ter"/>

<MiddleviireComponeDt Cla88Name>"ObjectManager"/>

<HiddlevareC^ponent ClaasNajDe3"StorageManager"/>

174

Appendix A. XM L MOP descriptors

< /H id d l» w a r« L in k B >

</MOP>

A .4 MOP d e s c r i p t o r f o r t h e Persistent2 MOP

<?xm l v « r 8 i o n * " l .0 " • n c o d in g » ”U T F-8"?>

<!DOCTYPE MOP SYSTEM " c o m p o s i t i o n .d td " >

<MOP N azD « °" P e rs iB t« iit2 '' C o m p o s a b i l i t " A u t o " D i s t r i b u t i o n ® “ L o c a l" L o c a l j t y * ‘’N o tA p p l ic a b l« ''>

<Sup«rMOP»>

<MOPR«f N * m « » " D e fa u lf7 >

</Sup«rM 0P8>

< C o n c« m A r« a Id«"C A 3" E x c lu B iv « n * * B '* ''S iD g l« to R ">

< C o D c « rn A r« a E l« m * n t> B e h a v io u rs< /C o n c « rn A re a E l« D « Q t>

< C oD c«m A r*aE l« iB ent > P a r s i B taac«< /C onc«rz>A r«a£l* ii>«Q t>

< /C o a c « m A r« a >

< M « taO b j« c t Cla8sNan>e=” P « r s is t« n tO b j« c tR « f a r B n C B " R a if iC B t io Q C a t« g o r y * " O b j* c tR a f • r « n c « " />

< M « taO b j« c t C lasBN aiM =‘'P « r s i B t « o t C r « a t i o o " H « i f i c a t i o n C a tB g o r y * ''C r « a t io n ' '>

< B « fo r« B « b a v io u r C a l lN « x t> " U n c o R d it io n a lN * x t" C a l l* d B y ~ " H id d l« y a r« ' '/>

< A f t« rB « b a v io u r C a l lN e z t> '* U n c o n d i t io n a lN a x t" C a ll* d B y * ''M id d l« v a re ' '/>

< H id d l« w ar* C o m p o n * n tR « f N aM « ” C la s B R « g iB t« r " />

< K id d l«w ar*C om pon* iitR «f NaiMB” O b j* c tH a n a g « r" />

< /M « ta O b j« c t>

< M « taO b j* c t C la B B N a n e > " P a r s i s ta n tD e la t io n " R a i f i c a t i o n C a ta g o r y * " D a la t io n " >

< B « fo ra B a h a v io u r C a l lN a x t^ " U n c o n d i t i o n a lN a x t " C a l l a d S y * " H a ta l« v a l " />

<A f ta r B a h a v lo u r C a l lN a x t '* " U n c o n d i t io n a lN a x t" C a l la d B y - " M a ta la v a l" />

< H id d la w a ra C o a p o n a n tR a f N a n a * " O b ja c tN a n a g a r" />

< /M a ta O b ja c t>

< E z ta n B io n P r o to c o l ClaBsNaBa~"ConBDon''/>

< M id d law araL in lts>

< M iddlaw araC oiD ponant C laB B N anta>"N aB)aSarv ica"/>

< M id d la w a ra C o n p o n a n t C laB B N affla* "R afa ran caH an ag a r" />

< M id d la w a ra C o n p o n a n t C laB B N aiea» "C laB B R ag iB tar"/>

< H id d lav a raC o ff lp o n an t C la sB N a D a s" O b ja c tM a n ag a r ''/>

< K id d la v a ra C o n p o n a n t C laB B N affla> * 'S toragaM anagar"/>

< /H id d la w a ra L in k B >

</MOP>

A .5 MOP descriptor for th e Persistent2Absent MOP

<?XHil v a r « i o n “ " 1 .0 " a n c o d in g “ "U T F-8"?>

<!DOCTYPE MOP SYSTEM ''compoBition.dtd'’>
<MOP N a iD « s" P a rB iB ta n t2 A b 8 a n t" C o m p o s a b i l i ty > " A u to '' D i s t r i b u t io n ® " L o c a l " L o c a l i ty ® " N o tA p p l ic a b la " >

<SuparMOPs>

<HQPRaf N a iD aK "P arB is taD t2 "/>

</SuparH O Ps>

< C o n ca rn A raa Id*"CA 3" E x c lu 8 iv a o a 8 * ® " S in g la to n ''>

< C o D c a m A ra a £ la iD a n t> B a h a v io u rB < /C o n c a rn A ra a £ la a ian t>

<C oQ cariL A raa£ leioan t > P a rB i B tan c a < /C o n c a r& A ra a E la B ta n t>

< /C o n c a rn A ra a >

< M a ta O b ja c t ClaBsN aiaa>” P a r 8 i B t a n t I n v o c a t i o n " R a i f i c a t i o n C a t a g o r y ® " I n v o c a t i o n ">

< B « fo ra B a h a v io u r C a l lN a x t® " U n c o n d i t io n a I N a x t" C a l la d B y ® " H a ta la v a l ’‘/>

< A f ta r B a h a v io u r C a l lN a x t^ " U n c o n d i t i o n a lN a x t ’' C a l la d B y ® " M a ta la v a l" />

175

Appendix A. XM L MOP descriptors

< H id d l« v a r« C o m p o n * n tR « f N a]M > "O b j» c tH an ag « r" />

< H id d l« v a r« C o io p o n * n tK ef N ajD «> "S torageM aD ag«r"/>

< /M e ta O b j« c t>

< H a ta O b j« c t C la s a N a n i« - " P * r s i s t« D tS ta te H « a d " R « i f i c a t i o n C a t * g o r 7 > " S ta t« R « a d ''>

< B « fo r» 6 « h a v io u r C a l lN e x t* " U n c o n d i t i o n a lN « x t " C a l l* d B y > " N * ta Ie v « l" />

< A f t« rB « b a v io u r C a lX N « z t* " U n c o n d it io n a IN a z t" C a l le d B y > " M « ta l* v « l" />

< H idd l» w ar« C o m p o n * n tR « f N a ii> a> ''O b j* c tH an ag er"/>

< H id d l« w ar*C oD po ii«n tR «f N a iM > "S to rag « M aiiag « r" />

< /H e ta O b j« c t>

< M etaO b j« c t C la s s N a f f l« » " P e r B is t* n tS ta t« W r i t« '' R e i f i c a t i o n C a t« g o r y > " S ta t* W r i t« " >

< B a fo r« B « h a v io u r C a l lN 8 z t* " U n c o n d i t io n a lN « x t" C a ll* d B y ‘= " H « ta l« v « l" />

< A f ta rB « b a v io u r C a l lN « z t> " U n c o n d i t io n a lN e x t" C a l l* d B y « " H * ta l« v « l" />

< K id d l« v a r* C o n p o n e n tR « f N a iM > "O b je c tH a n a g « r" />

< M id d l« w ar* C o n p o n « n tR * f N a s« B " S to ra g « M a a a g * r" />

< /M e ta O b j« c t>

< E z ta n s io n P r o to c o l C lassN ani«> ” Common" />

<M idd law ar«L inkB >

< H id d le v a ra C o n p o n « n t C la ssN a m a ^ "N a iM S « rv ic « " />

< N id d l*w ar«C oD pon«n t C lassN aoieB "R af • r« n c * M a jta g « r " />

< H id d l*w aT «C onponan t C la saN affl« B "C la8 B R » g iB ta r" />

<K id d law ar« C o m p o n an t C la s8 N a n > « * "0 b je c tH a n a g a r ''/>

< H id d la v a r« C o n p o n * n t C la s 8 N a m « > ''S to ra g « H a a a g a r ''/>

< /N id d l« w a r« I .in k s>

</MOP>

A . 6 MOP descriptor for the Logging MOP
<?xm l v a r t i o D " " ! .0 " • n c o d in g “ "U TF-8"7>

<?DOCTYPE MOP SYSTEM " c o m p o « i t io n .d td " >

<HOP N an)eB ''L ogging '‘ C o m p o s a b i l i ty * " A u to " D is trib u tio n B "C o m D O D ‘' L o ca lity * " C o m m o n ” >

<SuparMUPs>

<MOPR«f N ajD «*"D afault'* />

< /Sup«rH O Ps>

<C onc«rnA r«a Id""C A S " E z c lu B iv « n « s s * " M u l t i“ >

< C o D C « m A r« a£ l« m * n t> B « b av io u rB < /C o n cam A r* B E l •m an t>

< C o n c T n A ra a E la m a n t> L o g g in g < /C o n c T n A ra a E la n > a n t>

< /C oncarnA r« a>

< M a ta O b ja c t C laB sN am « B "L o g g iD g C raa tio n '' R « i f i c a t i o D C a ta g o r y ^ " C r « a t io o " >

< B « fo ra B a h a v io u r C a l lN a x t> ''U n c o n d i t io n a lN a x t" C a l la d B y E " H a ta le v a l" />

< A f ta rB « b a v io u r C a l lN a x tB ''U n c o D d it io n a lN « x t" C a l l« d B y > ''M a ta la v a l '‘/>

< H idd law ar«C offlpon«n tR «f N am « > "L o g H asag ar" />

< /h a ta O b ja c t>

< M ataO b j« c t C lB S 8 N am « > "L o g g iD g D ala tio n '' R « i f i c a t i o n C a ta g o r y B " D a la t io n " >

< B « fo ra B a h a v io u r C a l lN a x t« " U n c o n d i t i o n a I N a x t " C a I la d B y ~ " M e ta la v a l" />

<A f ta r B a h a v lo u r C a l lN a x t« ’' l l n c o n d i t i o n a lN a x t " C a l la d B y ^ ''M a ta la v a l ’' / >

< H id d la v a ra C o m p o n a n tR a f N a m a" ''L o g H an ag a r" />

< /H a ta O b ja c t>

< H a ta O b ja c t C la 8 s N a a a B " L o g g in g ln v o c a t io n " R e i f i c a t i o a C a t a g o r y " ' 'I n v o c a t i o n ”>

< B a fo ra B a h a v io u r C a lI .N a x t" " U i ic o n d i t io n a lN a x t" C a l l a d 6 y ' ' 'M a t a l a v a I “ />

< A f ta rB « h a v io u r C a l lN a z t " " U n c o n d i t i o n a lN e x t '‘ C a l la d B y > " M « ta l« v a l" />

< H idd l«w araC om poD an tR ef Naiii«*‘'L o g H a n a g a r" />

< /H a ta O b ja c t>

< M ataO b jac t C laB B N am « E "L o g g in g S ta taR ead " R a i f i c a t i o n C a te g o r y * ''S t a t a R e a d " >

< B « fo ra B a h a v io iir C a l lN a x t ‘> " U n c o n d i t io n a lN a x t" C a l la d B y ° " H a ta l« v a l" />

176

A p p e n d ix A . X M L MOP descriptors

< A f t e r B « b a v io u r C a l lN « x t> " U n c o n d i t io n a lN « x t "

< H id d l*w a r« C o ff lp o n « n tR « f N a n « ~ ''L o 2 H a n a g e r“ />

< /H « ta O b j« c t>

< M « ta O b j* c t C la e s N a a) e 3 " L o g g in g S ta t • W r it * " R e i f i c a t i o n C a t * g o r y » " S t a t e M r i t e ” >

< B a fo r« B » b a v i.o u r C a l lN e x t> " U n c o D d i t io D a lN a z t " C a l I « d 6 y - " H « t a l9 v « l" / >

< A f t « r B « h a v io u r C a l lN « z t '^ ' 'U n c o n d i t io n a lN « x t " C a l la d B y > " M e t a l« v « l ' ' / >

< H id d le w a r« C o m p o n « n tR « f N a iM = "L o g M a n a g « r 'V >

< /K » ta O b j« c t>

< £ x t« n B io n P r o to c o l C la s s N a iM « ''L E P "/>

< M id d l« v a r * L ix ik s >

< M id d la w a re C o m p o ii« n t C la s s N a m e -‘’ L o g M a n a g « r" />

< /K id d l« w a r « L in k s >

</MOP>

A .7 MOP descriptor for th e Remote MOP

< ? x m l v « r » io n “ " l . 0 '' • n c o d in g “ "U T F -8 "? >

<'DOCTYPE MOP SYSTEM " c o n ^ > o s i t io n .d td ' ‘ >

<HOP N a iM * "R « D o t« " C o o p o B a b i l i t] r > " A u t o " D i s t r i b u t j o n « ' 'D i a t r i b u t * d ' ' L o c a l i t y ' " S * r v * r " >

<SuperMOPa>

<HO Ptl«f N a n « « " D * fa u l t '7 >

< /Sup»rM O P s>

< C o n c « m ilr« B Id > "C A 4 " E z c lu a iv * n « B B > ' 'S in g l« t o n '’ >

< C o o c« rn A r« a iE l« iD a n t > B * h a v io u r B < /C o n c a r n A r« a £ l am e n t >

< C o n c a m A r a 8 £ la n a n t > R a m o t« < /C o n c « rn A ra a £ la D a n t>

< /C o n c a rn A r« a >

< H « ta O b j* c t C la s s N a m *B * 'R a iD o t« O b ja c tR a fa ra n c a " R a i f i c a t i o n C a t a g o r j ' * “ O b ja c tR a f a r a n c a " />

< M a ta O b ja c t C la s s N a o a * " R a m o ta C ra a t io a " R a i f i c a t i o n C a t a g o r y - " C r a a t io n ' '>

< B a fo r a B a h a v io u r C a l lN a x t> " U n c o n d i t io n a lN a x t " C a l la d B y > " H a ta la v a l “ />

< A f t a r B a b a v io u r C a l lN a x t* ' 'U D C o n d i t io n a lN a x t * ' C a l la d B y ~ " M a t a la v a l " />

< M id d la w a ra C o n p O D a n tR a f N < u iia B "R a fa ra n c a K a iia g a r“ />

< N id d la w a ra C o is p o n a n tR a f N a n)a - "O b ja c tH a n a g a r '' />

< /K a ta O b ja c t>

< M a ta Q b ja c t C la B s N a js a * "R a ff lo ta D a la t io i i" R a i f ic a t io n C a t a g o r y > ' 'D a la t io n ' '>

< B a fo r a B a h a v io u r C a l lN a z t« " U o c o n d i t io n a lN a x t " C a l la d B y > ''H a ta la v a I " />

< A f t a r B « b a v io u r C a l lN a x t * ” U n c o a d i t io n a lN a x t “ C a l la d B y > " H a ta la v a l ' ' / >

< M id d Ia w a ra C o m p o n « n tR a f N a iD a = "R a fa ra n c a H a n a g a r" />

< H id d la w a i'a C o m p o n a n tR a f N a n ie c "O b ja c tH a n a g a r " />

< /H a ta O b j* c t>

< M a ta O b ja c t C la a s N a n a = ‘'R a n o ta In v o c a t io n " R a i f i c a t io n C a t a g o r y > " I n v o c a t io n " >

< B « fo r a B a h a v io u r C a l IN a z tB " U n c o n d i t io n a lN a x t " C a l la d B y « " M id d la v a r a " />

< A f t a r B a b a v io u r C a I lN a x t« " A c t iv a ta s M id d la w a r a " C a l la d B y B " H a ta la v a l ' ' / >

< M id d la w a ra C o m p o n a D tR a f N a i i ie = "C o ii i in u n ic a t io n S a r v ic a " />

< /H e ta O b j* c t>

< M a ta O b ja c t C la s B N a iD « s "R a D O ta S ta ta R a a d " H a i f ic a t io n C a ta g o r y * " S ta te R a a d " >

< B « fo r a B a h a v io u r C a l lN a x tK " U n c o n d i t io n a lN a z t '' C a l la d B y > " H id d le w a r a " />

< A f t a rB a b a v l o u r C a l lN a x t * " A c t iv a ta B H id d la w a r a " C a lla d B y = ‘'H a t a la v a l ' ' / >

< M id d la v a ra C o m p o n a n tR a f N a i i ia = "C o m iin u iic a t lo n S a rv ic a " />

< /H a ta O b ja c t>

< M e ta O b ja c t C la 8 s N a m « > "R a m o ta S ta ta W r ita '' R a i f i c a t io n C a t a g o r y s " S t a t a W r i t a " >

< B a fo r a B a h a v io u r C a l lN a z t * ' 'U n c o n d i t i o a a lN a z t '' C a l la d B y > " M id d la w a r a " />

< A f t a r B a b a v io u r C a l lN e z t * " A c t i v a t « s K id d la w a r a " C a l l« d B y = ''M a ta la v a l ' ' / >

< M id d la v a ra C o m p o n a n tR a f N a!ne> "C om nnin ica t l o n S a r v i c a " / ^

< /H a ta O b ja c t>

177

Appendix A. XM L MOP descriptors

< £ z t« n 8 io n P r o to c o l C lasB N am «°"C onaaon"/>

< M id d lew ar« L in k s>

<K iddl«w ar*C offlpon«nt C la s6 N a n i« s" R « fa ra n c « M an a g « r" />

< K idd l«w ar«C orapon«n t C la s sN a a i« = " O b ja c tH a n a g « r" />

< H idd l«w ar«C om ponen t C la ssN am e= "N am eS 0 rv ic« ''/>

< K idd l«w ar«C om pon«n l Cla8BNaiii«='‘C o n n u iiic a t io n S * r v i c a " />

< /H id d l» w a r« L ir ik 8 >

</MOP>

A .8 MOP descriptor for th e RemoteProxy MOP

< ?» b1 v e r a i o n * " ! .0" • n c o d in g * ”U TF-8"?>

<!DOCTYPE MOP SYSTEM " c o m p o s i t i o n .d td " >

<MOP C o m p o s a b i l i t7 ^ " A u to " D i8 t r i b u t i o n > ' 'D i B t r i b u t * d " L o c a l i t y * " P r o x y ">

<Sup«rMOP>>

<MOPRef N aro«= "D «fau lt " />

</Sup«rHOPB>

<C oD c*m A r«a Id*"CA4" E x c lu s iv a n « a s > ''S in g l« to n " >

< C onc«rnA r«aE leB ian t > B « h av io u T B < /C o n c« raA r« aE l* n)« n t>

< C o n c* rn A ra a £ l« m « n t> R * n)o t« < /C o n c « m A r« a £ la n e n t>

< /C o n c« rn A rea>

< M « taO b j« c t C la s sN a n « * " R « B o t« O b j« c tR « f« r« D c e " R « i f ic a t io n C a t« g o ry > * " O b j« c tR « f« ra n c « " />

< H » ta O b j« c t C laB sN aaM ~ "R «iD o t*C r*a tion" R « i f i c a t i o n C a t« g o r y ~ " C r * a t io a " >

< E « fo r« B « h a v io u r C a l lN a z t* " U n e o n d i t i o n a lN « z t '' C a l l« d B y » " H * ta l« v « l" />

< A f t a r B a h a v io u r C a l lN a i tB " U n c o n d i t io n a lN « x t" C a lla d B y > "M a t«1a v a l " />

< H id d la v a ra C o n ip o n a n tR a f N aii> eB "R afarancaM aaagar" />

<M id d law araC o D p o n an tR af N a B a > "O b ja c tH a n a g a r" />

< /M a ta O b ja c t>

< M a ta O b ja c t C la s8 N a iD « ~ "R aao taD a la t i o n " R a i f i c a t i o n C a ta g o r y « " D a la tx o n ' '>

< B « fo ra B e h a v io u r C a llN a z t> ‘‘'U n c o n d i t io n a lN a x t" C a lla d B y ‘:" M a ta l« v a l " />

< A f ta rB a b a v io u r C a l lN a z t> " U n c o n d i t io n a lN a x t" C a l la d B y * " M a ta la v a l" />

<M id d law araC o m p o n an tR af N a a a - " R a fa ra n c a M a n a g a r " />

< H id d la v a ra C o m p o n a n tR a f N a iM B " O b ja c tH a n a g ar" />

< /H a ta O b ja c t>

< M ataO b jac t C la sB N a n « > "R aB O ta in v o c a tio n " R a i f i c a t i o n C a t a g o r y * " I n v o c a t i o n ” >

O a f o r a B a h a v io u r C a l lN a x tB " U n c o D d it io n a lN a x t" C a lla d B y * '" M id d la w a ra " />

< A f ta rB a b a v io u r C a l lN a x t« " A c tiv a ta B M id d l« w a ra “ C a l la d B y ^ " M a ta la v a l" />

<H id d law araC o fflp o n an tR af N a sM = "C o n iB u n ic a tio n S a rv ic a " />

< /H a ta O b ja c t>

< M ataO b jac t C lassN am a«‘'R a n o ta S ta te R a a d " R « i f i c a t i o n C a ta g o r y > " S ta t a R a a d " >

< B a fo ra B a h a v io u r C a l lN a z t> " U n c o n d i t io n a lN a z t" C a l la d B y > " H id d la v a re " />

< A f ta rB « b a v io u r C a l lN a z t> " A c t iv a t a s M id d la v a r a " C a l l a d B y s " M a ta la v a l" />

<M iddlaw axaC offlponantR af N a m a s" C o a B m m ic a tio n S a rv ica " />

< /M a ta O b j* c t>

< M a ta O b ja c t C la s8 N a iD a > "R a ff lo ta S ta ta H rita " H a l f i c a t i o n C a ta g o r y B " S ta t a W r i t e " >

< B e fo ra B a h a v io u r C a l lN a x t* " U n c o n d i t io n a lN a z t" C a l la d B y * " M id d la tf a r a ’'/>

< A f ta rB a b a v io u r C a l lN a z tK " A c t iv a ta s M id d la w a r a " C a l l a d B y * " N a ta l a v a l ’'/>

< H id d la u a ra C o m p o n a n tR a f Nas«°‘"C o o » n u iica t i o n S a r v i c a " />

< /M a ta O b ja c t>

< E x ta a s io n P r o to c o l ClassN aiD e="Cocim on''/>

< H id d Iav ax aL iB k s>

< M idd lavaraC offlponao t C la ssN a n)« B " R e fe ra n ce M a n a g a r" />

< H id d la v a ra C o o p o n a n t C la s s N a n a ^ " O b ja c tM a n a g e r " />

<M iddlaw araC ozoponant C la s s N a is a - ’'N a n ia S a rv ic a " />

178

Appendix A. XM L m o p descriptors

< K id d lav a reC o fflp o n « n t C la B sN a io e * " C o iiin u n ic a tio n S « rv ic « ''/>

< /K id d l« v & r« L in k B >

</MOP>

179

