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Summary

A Markov chain Monte Carlo (MCMC) algorithm is proposed for the evaluation of a pos-
terior distribution. The posterior distribution is from a model that has a spatial structure
and exhibits many characterisics which are typically cumbersome to MCMC algorithms.
The algorithm is construct with the purpose of conquering or significantly reducing these
difficulties. The performance of this algorithm is then investigated for a diversity of cir-

cumstances.
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Chapter 1

Introduction

Latent spatial process models are useful in many applications of spatial data. Bayesian
inference, and indeed other forms of likelihood-based inference, must often be implemented
by MCMC, but latent spatial process models combine features that make traditional
MCMC methods perform poorly. This inadequate performance is manifest as poor mixing
within the posterior distribution of parameters of the model. Addressing this issue within
MCMC methods and incorporating possible solutions is a natural step.

In this thesis we propose an MCMC scheme for exploring the posterior distribution of
a spatial model that involves two principal ideas to combat the mixing problems caused
by high dimensionality and strong posterior correlation between parameters. The scheme
combines the approach of coupling and blocking, using coarse and fine scale MCMC chains.
The algorithm is applied to a latent spatial Gaussian model, within a Bayesian framework
and under various experimental conditions. Particular attention is given to the efficiency

with which the posterior distribution is explored.



1.1 Review of Spatial Models

Chapter 2 gives a broad background to spatial modeling, where the more commonly used
approaches are described in some detail. There is a diversity of potential approaches, from
variograms to spatial autoregressive models. The first half of the chapter is concerned with
defining some standard terminology and introducing the approaches which have dominated
spatial analysis until recent times. The latter part is dedicated to the modeling based
approaches which have become more prevalent with the advent of widespread usage of
Bayesian methods. The models to be used in Chapters 4 and 5 are also described here, as

are their methods of simulation.

1.2 Statistical Methodology

It is the Bayesian framework that is embraced in this dissertation, the background and
principals of which are outlined in Chapter 3. The Bayesian method and the previously
mentioned model-based approaches of Chapter 2 have only in relatively recent times gained
popularity. This is primarily due to advances in computing power, which have made
Bayesian models more tractable. Computation of the posterior distribution, and useful
functions of it such as expectations, is achieved through sampling from it. In order to
sample from the posterior distribution of a Bayesian model, Markov Chain Monte Carlo
(MCMC) is used. The particulars of this method are described and an emphasis has been
given to its application to spatial models. The last section provides specifics on measuring
an MCMC algorithm’s efficiency and general diagnostics for measuring the success with

which the algorithm explores the posterior distribution.



1.3 Blocking Algorithm

An MCMC algorithm for inference with a spatial model is proposed in Chapter 4. This
model assumes that observations are a function of a latent Gaussian field. In this thesis
the observations are count data, but the latent idea is easily extended to other data types.
Two versions of the algorithm are compared to a standard algorithm. The main difference
between these approaches is a blocking scheme, that samples blocks of variables jointly,
rather than each variable singly. The proposed algorithms have two alternative blocking
schemes, where the original method of Diggle et al. (1998) does not. There is also a useful
proposal function used within the blocking scheme to enhance its efficiency. The behaviour
of all three algorithms is investigated under a number of circumstances using four datasets

with different characteristics.

1.4 Coupling Algorithm

The spatial setting has been extended to require a more complex model where the ob-
servations are multivariate count data, that display both within and between location
correlations. The model is taken to be a function of a number of latent processes. With
increased complexity of model comes the need for a more sophisticated MCMC approach
in order to successfully sample from its posterior distribution. The approach chosen is
that of a coupling technique. There are many factors which may affect the performance of
such an algorithm and it is the influence of these factors that are investigated in Chapter
5. This approach was greatly influenced by a palaeoclimatology dataset with a complex

correlation and aggregation structure.



1.5 Overall Framework and Major Contributions

This research is carried out within the Bayesian paradigm and its focus of interest is the de-
velopment of efficient MCMC algorithms in the context of spatial models and with specific
attention given to the effective exploration of a target distribution. The main contribution
is the extension of two MCMC techniques, with an investigation of their properties under
a selection of conditions. Specifically, the following are the main contributions made by

this research:

e In Chapter 4, a detailed comparison of three MCMC schemes for sampling from the

posterior distribution in the case of univariate spatial count data.

e The development of an MCMC method, based on the ideas of aggregation and cou-
pling, for sampling from the posterior distribution in the complex case of multivariate

spatial count data, where both within and between location correlations are modeled.

e A study of the performance of this coupled chain approach with respect to various

factors that affect its ability to explore the posterior distribution.



Chapter 2

Spatial Models

There are a large number of spatial models; see Ripley (1988), Cressie (2001), Mgller and
Waagerpetersen (2003). Here, we concentrate on one type, the latent spatial Gaussian

model.

2.1 Spatial Data

As the name suggests, spatial data has the property that each observation is associated
with a geographical region or spatial location. Data points that are closer together in
space are often likely to have more similar attributes than those that are far apart. By
taking note of their spatial location and calculating the distance between points, a spatial
model incorporates this relationship (or local variation). But depending on the setting, an
alternative measure may be more sensible. Spatial data may be more formally described

as a form of stochastic process.

Definition 2.1 (Stochastic Process). A stochastic process is a set of random variables
{Y(s) : s € S}, where S is referred to as the indexing set and Y (s) € D, where D is called

the state space.

A spatial stochastic process has indexing set S representing a set of locations. In our



context we will have S € R?. We will always use the usual Euclidean metric when talking

about distances between points in S.

The spatial variation associated with this process is described by its covariance structure.
Let C be a covariance function and p be the correlation between Y (s1) and Y (s2) for two

points s1, 89 € S, where
C(s1,82) = E[(Y(s1) — E(Y(51)))(Y (s2) — E(Y (s2)))],

and

- C(s1,82)
p(s1,s2) \/0(51,31)6'(82,52).

This covariance and correlation structure can be modelled in many ways.

2.1.1 Correlation Function

The correlation function controls the smoothness and the extent of dependence in the

spatial process. Some of the more commonly used correlation functions arise from the

G —)

where u = d(s1, s2) is distance between two points, £ > 0 and ¢ > 0 are parameters, and

Matérn Family:

K, denotes a Bessel function of order k. Two well known members of the family are the

) =exp (-3).

setting x to 0.5 and the Gaussian correlation function

p(u) = exp (— (%)2) ,

as Kk — oo and ¢A$ = 2v/u+ 1¢. Another correlation function family is the powered expo-

w=en(-(2))

6

exponential correlation function

nential:



Correlation function

Figure 2.1: The powered exponential correlation function on a unit square with (¢, k)
variable. Here (¢,x) = (0.1,1) is the solid line, (0.1,2) is the dotted line, (0.5,1) is the

dot-dash line and (0.5, 2) is the long dash line.

where ¢ > 0 and k& < 2 (these values are discussed further in chapter 4). For these
functions ¢ can be interpreted as a scaling (or range) parameter for dependence between
points, and the x parameter can be viewed as a smoothness parameter or a parameter
which describes the relative rate of change in the correlation between points; small &

implies higher spatial correlation at larger distances.

Two other important features in describing a spatial process are homogeneity and

isotropy.

Definition 2.2 (Homogeneity). A homogeneous process is one where E(Y(s)) and
var(Y (s)) are constant in s and that C and p only depend on the vector h from s to

s2, that is they are independent of absolute location.

Definition 2.3 (Isotropy). An isotropic process is one where C and p are only dependent

on d(s1,82), where d is distance between the points s1 and sa.

The natural extension of the latter definition is that if the spatial correlation between



Y (s1) and Y (s2) depends not only on the length of the separation vector h, but also on
the its direction, then Y is said to be anisotropic. Similarly, if the mean or variance
of the covariance structure changes over the space, then the process is said to exhibit

heterogeneity or non-stationarity.

The correlation functions given above are examples of isotropic processes. Observe that
they are valid definitions for a correlation function since the covariance matrix of any set

of points so defined will be positive definite, see Matern (1986).

2.2 Spatial Processes

Spatial data can have various attributes and take a number of different forms:

e Discrete or continuous;

Individual points in space or spatially aggregated into regions;

Located at regular or irregular points in space;

Randomly distributed or clustered/patterned locations;

Individual measures or measure taken repeatedly over time.

An extensive framework for categorizing and modelling spatial data is given by Cressie
(2001). Using the notation given above, we will outline the general classifications and
approaches he suggests. Let s € R? be a location in d-dimensional space, and Y (s) be a
data value (or possibly a vector) observed at s. The full dataset can then be modeled as

the multivariate random process

{Y(s):s€8},

where s varies over an index set S C R%. Cressie (2001) then categorizes spatial data into

three cases.



e geostatistical data (also sometimes referred to as point source data), where Y (s) is a
random vector at a location s which varies continuously over S, a fixed subset of R¢

that contains a d-dimensional rectangle of positive volume;

o lattice data (or alternatively named regional summary data), where S is again a fixed
subset (of regular or irregular shape), but now containing only a countable number

of sites in R%, normally supplemented by neighbour information.

e point pattern data, where now S is itself random; its index set gives the locations
of random events that are the spatial point pattern. Y (s) itself can simply equal 1
for all s € S (indicating occurrence of the event), or possibly give some additional

covariate information (producing a marked point pattern process).

An example of the first case might be a collection of measured oil reserves at various
fixed source points s, with a primary goal being to predict the reserve available at some
unobserved location s*. For the second category, observations may correspond to pixels
making up an image, each of which has four neighbors (above, below, left and right).
Point pattern data often arise as locations of disease occurrence or existence of a certain
species of plant (supplemented with rainfall, temperature or other covariate measurements

to produce a marked point pattern).

Our interest is in geostatistical data or rather model based geostatistics, a term which
was introduced by Diggle et al. (1998), who combine traditional geostatistical methods
with those of generalised linear models. Naturally, depending on the type of spatial data,
different methods may be used for modeling the events or measurements. Some of the

techniques commonly used for estimation, inference and prediction are given below.




2.3 Spatial Modeling

Two key ideas have dominated the analysis of spatial data (or at least geostatistics) until
recent times. These are the variogram (and its associated measures) and kriging. With the
advent of widespread usage of Bayesian methods, this has changed somewhat and more

strongly modeling based approaches have come to the forefront.

2.3.1 Variograms, Covariograms and Correlograms

Suppose Y (s) satisfies the following definition:

Definition 2.4 (Second-Order Stationarity). Y(s) is a second-order (or weak) sta-

tionary process if

EY(s)] = m

ClY(81),Y(s2)] = Co(s1 — 82) < 00.
for some function C,.

That is firstly, the expectation at s does not depend upon s or alternatively viewed, the
expectation is invariant over the study area. Secondly, the covariance depends only on the
separation vector; if the covariance is dependent on the separation distance u = |s; — sg|
alone, then the resulting measure is said to be isotropic, as defined earlier. When the
stochastic process is Gaussian, second-order stationarity and homogeneity are equivalent
properties of teh process, see Cressie (2001). C, is called the covariogram (or stationary
covariance function) and is analogous to the autocovariance function in time series analysis.

Suppose then that
var(Y(s1) = Y(s2)) = 2v(s1 — s2) Vsi,82 €T

2v(h) = 2(C,(0) — Co(h))

10




for some function . The quantity 27(-), which is a function of the separation vector h is
called a variogram (and v(-) a semivariogram) by Cressie (2001) and previously by Math-
eron, but has also had many appearances under different names. Lastly, a correlogram is

defined as

N} = /
it R
which is referred to as an autocorrelation function by time series analysts. The classical

estimator of the variogram proposed by Matheron is

3" (Y(s1) - Y(s2))% heR?
seN(h)

N
letting N(h) = {s = (81,82) : 81 — 82 = h}, where |[N(h)| is the number of distinct pairs of
N (h). This is in fact not a particularly robust estimator, but there are many others, such

as the linear, spherical and exponential variograms, which are more suitable in various

settings.

Measures defined on the variogram are the sill, which is 2C,(0), where if C,(h) — 0
then

lim 2y(h) = 2C,(0).
h—oo

The other measure is the nugget, which is limp_,o 2y(h). The latter need not be zero (i.e.
the variogram may have a discontinuity at the origin) due to microscale variability or
measurement error. For a monotonic variogram that reaches its sill exactly, the distance
at which the sill is reached is called the range. If the sill reaches zero, then observations
further away than the range are uncorrelated. If the sill is reached asymptotically and is
less than 0.05, the distance such that p(s1,s2) = 0.05 is called the effective range. Also it

is noted that, y(h) = y(—h) and that y(0) = 0.

In statistical inference, the idea is to search for a valid variogram that, as a measure of

spatial dependence, is closest to that given by the data. Variogram estimators cannot be

11



used directly for spatial prediction (kriging), but are commonly used in spatial analysis.

2.3.2 Kriging

Kriging refers to a method of spatial prediction for the process at a point s*, given data
y = {y(s1),...,y(sn)}. Ordinary kriging is the prediction of Y (s*), under the following

assumptions.

Model:
Y(s) =p+9d(s), peR, uunknown
iid

where §(s) ~ N(0,02) or a spatial zero-mean process.

Predictor:
n n
Y(@') = Z/\,—y(si), forZ)\i =l
i=1 i=1
This latter condition, that the coefficients of the linear predictor sum to 1, guarantees

uniform unbiasedness:

E(Y(s*)) =p=E(Y(s*), YpeR.

The optimal linear unbiased predictor for kriging is generally (at least in a classical

setting) taken to be that which minimizes the mean-squared prediction error
2=B([v(s") - V(s)]P)

over Ai,...,An. This optimization problem is solved using a series of equation, involving
Lagrange multipliers (to ensure the coefficient constraints above are fulfilled) and vari-
ogram estimates. Methods for appropriately choosing kriging predictors and solving them

are detailed in Chapter 3 of Cressie (2001).

12




There are several variants of this:

o Simple kriging is the case in which p is known and the coefficients are not constrained

to sum to 1;

e Robust kriging, which deals with situations where the data are not normal and there

are isolated outliers;

e Universal kriging, which is probably more useful in real settings. Universal kriging

includes the use of explanatory variables, and assumes a model for Y (s) of the form:
k
Y(s) =) BiXj(s) +(s),
i=1

and a predictor for Y (s*) of the form

n
Y(s*) = Z Aiy(si), for N X(s) =z,
i=1
where X (s) are known functions and z = X(s*). Again this latter condition is

necessary for a uniformly unbiased predictor, that is E(Y (s*)) = E(\'Y) = A X (s)3.

e Bayesian kriging, where Bayesian principles (as discussed formally in Chapter 3) are
used to model an unknown, deterministic process, by way of a random process. For

a non-stationary mean, the model is
Y(s) = u(s) + 6(s)

where §(.) is a zero-mean stationary random process. This model is useful for
analysing physical processes that are spatially heterogeneous. Assuming that u(.)
is a random process with parameter # with prior 7(6), one could estimate the pa-
rameters of the random process y(.) based on the marginal distributions of y(s) =
(y(s1),...,y(sn)). Given the marginal posterior distribution of the parameters and

the joint distribution of 7(Y (s),Y (s*)), by marginalizing over the parameters of the
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conditional distribution m(Y (s*)|y(s)), the predictive distribution is given by

(Y (s")[y(s) = / 7(Y (5 Y 1 6,8)7 (1 6,6ly) dps 5 df.

Typically this integral is evaluated by Monte Carlo integration (see Chapter 3, Sec-

tion 3.2.3). If p™ 5 and (™ are samples from the posterior distribution then:

(Y (s*)|y(s)) Z 5*)|y(s), ™, 6, 6).

That is, substitute the posterior draws into the conditional distribution of the target
values Y (s*). A Bayesian implementation of kriging is presented by Diggle et al.
(1998).

2.3.3 Spatial Autoregressive Models

The previous spatial methods which have been described lend themselves to geostatistical
settings. Autoregressive models are used to characterize the spatial dependencies observed
in lattice and regional data, that is they model each location as a linear combination of
its neighbouring locations.

There are two principle specifications of these models: conditional autoregressive (CAR)
models and simultaneous autoregressive (SAR) models, that is CAR models are defined by
full conditionals, whereas SAR are defined by autoregressive equations. These autoregres-

sive models are derived from those in time series, defined as
X;=aX;_1+¢€, €~ N(0,0%) independent

or equivalently

E(X|past values) = aX;_;, var(X;|past values) = o*

where the X; is assumed to have a Gaussian distribution. The extension of these to allow
symmetry of dependency and further dependencies gives the CAR and SAR models. The

CAR and SAR Gaussian processes can be specified as follows.
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CAR models:

N 2
P(zilz;,j #1) = \/2;763@ (—2}7 (wz — (i+ ) Bij(z; - Mj))) )
j=1

Letting X be the N x 1 matrix of variables X;, u the N x 1 matrix of means p;, and

B, the N x N matrix whose diagonal elements are zero, and whose element (i, j) is

Bi; and the X; are Gaussian. The random field is then given by:
X = p+Be(X - p)+1,
where 7 is called the noise vector, is normal and satisfies
cov(n) = o?(I-B,) and cov(n,X) = o’L

The necessary and sufficient conditions for a valid formulation are that (I — B.) be

symmetric and positive definite, see Ripley (1981).

SAR models: Consider the process defined by the set of N simultaneous autoregressive

equations
N
Xi =M1+Zﬂl](xj _ou]) +é&i, 1= 1""’N7
j=1
where the noise sequence ¢ is Gaussian and

cov(e) = 0?1 and cov(e,X) = o*(I - BT)~1,

where By = f3;; for i # j and has zero diagonal elements. Then the necessary
and sufficient condition for this to exist is that (I — B;) be non-singular, see Ripley

(1981).
The joint probability density function for these Gaussian processes is then given by
LN 1
P(X) = (2n0%) ¥ QI exp |~ 55X — QX - ).

where |Q| denotes the determinant of Q. That is, X has a multivariate normal distribution

with mean vector y, and covariance matrix 02Q~!. For a CAR model Q = (I — B,) and
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for a SAR model Q = (I — BT)(I — B,). With the CAR scheme the covariance matrix for
X; determines B, whereas with a SAR process many B can give X;’s covariance matrix,
see Ripley (1981). Also, it is to be noted is that any SAR process is a CAR process with
B. = B; + BT — BT B;. The reverse is also true, taking B; = (I — LT) where LL7 is the

Cholesky decomposition of (I — B.). This form of decomposition is discussed later.

2.3.4 Latent Gaussian Models

The data in which we are interested in modeling is geostatistical in nature. Often with
geostatistical data the phenomenon itself is not directly observable or may be controlled
by unobservable variables. Hence, we will assume a model where there exists an unob-
served latent stochastic process X(s) and that a relationship exists between Y (s) (the
observed process) and X(s). The joint distribution of the observed and latent pro-
cesses is the distribution of interest and can be specified by the marginal distribution
of X = (X(s1),...,X(sy)) and the conditional distribution of Y = (Y (s1),...,Y(sn))
given X;
n(Y, X) = n(Y|X)7(X),

We need to model n(Y|X) and m(X). To do this there are a few assumptions commonly
made. The first is that X is a Gaussian process and the second is that conditional on
X, the Y’s are independent. Given a Gaussian process X ~ N(u,X) with correlation
function p(u) as described in Section 2.1.1, then modeling a Y process conditional on a

latent Gaussian process X is commonly presented as Gaussian, ie
YIX ~ N(X. 0%

or

Y(s) =X(%) + «,
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where i = (1,...,n) indicate locations and €y,...,¢, are iid N(0,02). The marginal

distribution of Y is the multivariate Gaussian,
Y ~ N(ul, R),

where 1 is a row vector of size n of ones, R is an n x n matrix with R = ¥ + ¢%] and

¥i; = var(z)p(||z; — z;]|), thus

p(yi,y;) = bt © p(xs, ;).

var(z) + var
Other models which extend from this view Y as a function of X and some other known

covariates.

2.3.5 Latent Spatial Model for Univariate Count Data

In many cases, such as those mentioned in Section 2.2, one is dealing with count data,

which are assumed to follow a Poisson distribution;
Yi| X ~ Poisson(A(s;))

where A(s;) = exp(X(s;)) or A(s;) = c;exp(X(s;)). The additional location specific pa-
rameter ¢; may be useful in accounting for varying amounts of time in measuring Y (as in

the Rongelap Island data considered later) or proportional population size for an area.

In the univariate model, data have a mean that is a function of a Gaussian field. The
model can take many forms. The one presented here is quite common in disease oriented
applications, due to its count nature.

Let s1,...,8n be spatial locations and the data (yi,...,yn) be observed at si,...,sn.

Assume that

Y (s;) ~ Poisson(exp(8 + X (s:))),

for i =1,...,n. The latent variable X = (X(s1),...,X(sn)) is multivariate normal

Lt




X ~ MVN(0, £(8)),

where 0 = (a,0?,6), and
Tij(0) = o exp(—(ad;;)°), (2.1)

for distance d;; between s; and s;. In our model the distance has been scaled by the
maximum distance over the region so that 0 < d;; < 1. The correlation matrix for this
model could be parameterized to have any of a number of forms, for example a simplified
version is:

pij(0) = exp(—ady)
which is achieved by letting § = 1, alternatively any of the functions mentioned in Section

2.1.1. Here « is equal to % for the functions described in Section 2.1.1.

In the above model there may be a number of quantities of interest. If we are concerned
with disease mapping, then the underlying distribution of the field is our key concern, but
in other circumstances evaluation of any one of the individual parameters or the nature

of the spatial correlation may be the structure of interest.

When conducting Bayesian inference the evaluation of the posterior is the element of

import. The joint posterior for the univariate model above is given as:

p(X,B,0ly) o p(y|X,B)p(X|0)p(8)p(B)
x exp(z yi(B + X;) — z e(B+X0))
X[Z(O)] exp(~3 XTS(0) X)p(O)p(6).

We assume uniform priors. For § the range is [-100,1000], for a the range is [0, 100],
for o2 the range is [0,1002], while for 4 it is [0,2]; § must lie in this range, see Chapter

4, Section 4.1.1 for details. The ranges for # and a are very large and in practice their
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values are always well within them. In particular circumstances one would often have
prior information that could lead to a more informative prior being used. In particular,

one often uses inverse-gamma or lognormal for o2

2.3.6 Latent Spatial Model for Multivariate Count Data

Another form of data which we are interested in examining is multivariate. Here the data
are observed at n spatial locations, whose mean is a function of a linear combination of T’
independent latent spatial Gaussian processes.

Let s1,..., s, be spatial locations. We assume that
Y;(s;) ~ Poisson(exp(Xij)), j=1,...,r

are observed at each location s;, for ¢ = 1,...,n, i.e. there are r response variables.

Further, we assume

T
Aij = Bjo + Z Bjt Xit

t=1

where X; are independent latent Gaussian processes
X ~ MVN(0,3(6:)),
with 6; = (a, af) and
Sik(6:) = of exp(—(udix)),

where d;; is the distance between s; and s;. This is the multivariate extension of the
model described by Diggle et al (1998). It allows correlations both between and within
locations. We fix 02 to avoid problems of identifiability with 3;;; see Chapter 5.

To conduct Bayesian inference with such a model, we must compute the posterior distri-
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bution:

p(X,B,0Y) o p(Y|X,B).p(X1]60).p(6).p(B)

r n
B L Ny
o [T [T]exp®s (exp=®™") | p(8;)
j=1 Li=1
A : 1
x [112(6)17% exp(—5 X S(6:) ™" Xo) p(6r)-
t=1

where X = (X1,...,X7), 8= (B1,...,B:), 0 = (61,...,07) and \ij = Bjo + L L, BitXit-

See Appendix A.2.1 for details on the priors for this model.

2.3.7 Simulation of a Gaussian Process

In what follows we make extensive use of the simulation of a multivariate normal distri-
bution. To simulate an n-dimensional Gaussian process, whose joint probability density

function is MVN(m, X), the following properties are useful. Let

<= (Clac2,"~)<n)

be independent N(0,1) random variables and thus ( ~ MV N(0,I). By properties of the
Gaussian distribution, L ~ MV N(0, LLT), for any matrix L. Thus, one can simulate X

by finding a matrix L such that,
LI =%

then L ~ MVN(0,LLT) and so m + L{ ~ MVN(m,X). This L can be found using
Cholesky decomposition. Cholesky decomposition states that there is a lower triangular
matrix L with LLT = %, if ¥ is symmetric positive definite, see Press et al. (1986) for

details. The probability density function of the Gaussian process is,

7(X) & exp(—%XTE_lX)
= exp(—%XT(LLT)‘lX)

= exp(—5(L XTI X)
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and the standard multivariate Gaussian density function is,
1.7
7(¢) ox exp(~5¢TIC)

where I is the identity matrix. Hence, L~ X is standard Gaussian, so we can sample from

X using the relationship L=!X = ¢ and thus X = L(.

As regards computation time, this process is O(n®), see Press et al. (1986), or in the
case of Markov random fields, if ¥ is spare then it will be O(n?), see Rue (2001); further
computational approaches of this variety are outlined by Rue (2001). These techniques
are found in most numerical linear algebra texts. This decomposition also turns out to be

one of the dominant characteristics utilised in calculations of Chapters 4 and 5.
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Chapter 3

Statistical Methodology

3.1 Statistics

Statistical inference is concerned with drawing conclusions about unknown quantities of
interest from data and other information. Usually, the data are not sufficient to determine
the unknown quantities exactly, or are themselves observed with uncertainty leading to
uncertainty in the values of the unknowns. Statistical inference quantifies this uncertainty
by probability. Inference from data takes one of two main approaches: the Frequentist
(or Classical) approach or the Bayesian approach. These differ in the way in which they

interpret probability as the measure of uncertainty:

Long-run frequency probability: Frequentist inference interprets the probability of
an event as the proportion of the time it would occur in a long sequence of observations

(i.e. as the number of trials tends to infinity).

Subjective probability: Bayesian inference has the probability of an event as a number
between 0 and 1 that measures a particular person’s subjective opinion as to how likely

that event is to occur.
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The Frequentist approach is based solely on the observation of the occurrence of events,
i.e. utilising the former definition of probability. Bayesian statistics uses probability sub-
jectively, and can incorporate prior knowledge about the event, that may change as more
information becomes available. Thus the posterior becomes the new prior when new in-
formation becomes arises. Motivations for utilising the Bayesian framework are that it is
a conceptually simple method, it has a strong axiomatic foundation, the interpretation of
its conclusions are intuitive and it lends itself to complex probability models, which allow
for more realistic modelling. It is the approach that we follow in this dissertation. It does
have drawbacks, notably computational complexity. This dissertation concerns itself with

tracking one aspect of these difficulties in the context of spatial models.

3.2 The Bayesian Framework

Bayesian inference is founded on the notion that probability, interpreted subjectively, is
the only way to describe uncertainty. In practical terms, this can be thought of in a
similar way to carrying out a survey or experiment. Before the experiment is carried out,
there is usually some prior knowledge or degree of belief about an unknown quantity (or
random variable) of interest, denoted #. This can be expressed in the form of a probability
statement. Lets us refer to the knowledge or background information as H. For example,
if we were to do a survey on the number of students who wear reading glasses, we might
believe it to be in a certain range. This belief may derive from exposure to the population
of interest, a previous study of a subset population, eg. maths students, or some other
useful observation. A Bayesian will quantify this uncertainty about 6 using subjective
probability. This will be a function of two arguments: the unknown 6 and the known H.

This probability P(f|H), as a function of § must obey the three Laws of Probability:
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1. Convexity: 0 < P(0|H) < 1, where if an event is certain P(f) = 1 and if an event

is impossible P(6) = 0.
2. Additivity: P(6, or 62|H) = P(61|H)+P(62|H), if 6; and 6, are mutually exclusive.
3. Multiplicativity: P(0; and 6;|H) = P(6,|H).P(62|0:,H)

The P(6|H) may vary from person to person, given that their experience of H may vary.
Given that some amount of prior knowledge often exists, assigning prior probability is
the most reasonable approach to employ. In the case where there is no prior knowledge
available, a uniform or flat prior maybe used ,i.e. m(f#) = 1. The formal approach and
implications in applying this idea are given below. For convenience, we do not write H in

any further probability statement.

3.2.1 Bayes Theorem

This theorem was established by Reverend Thomas Bayes, an English minister and part-
time mathematician. Bayes theory of probability was the first to invert the probability
statement (“inverse probability” or Bayesian inference). That is obtain probability state-
ments about 6, the parameter of interest, given the observed data y. Stigler (1986) de-
scribes the historical development of inverse probability, as does Dale (1991) and many
others. Bayes famous paper was published posthumously in 1763 in the “Philosophical
Transactions of the Royal Society”, and was entitled “Essay towards solving a problem
in the doctrine of chances”. Suppose y = (y1,...Yn) is a vector of n observation, whose
probability density 7(y|6) depends on the value of k parameters 6 = (61,...6k). Suppose

also that 6 itself has a probability density mw(#). Then by the multiplicativity law
7 (y|0)m(0) = m(y,0) = 7(6ly)7(y),

hence
m(y|6)m(6)

(o) = TLT

k)
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where

b | Y m(y|6)m(8), 0 discrete,
Q) = Halne) = { [ m(y|@)m(6) db, 6 continuous,

is taken over the admissible range of #. Given that the variable is  and y is a known

constant, the above equation can be written in its more familiar form:

m(0ly) o< m(y|0)m(6).

There are three components to Bayes theorem.

Prior

The 7(0) is referred to as the prior distribution of # and reflects the knowledge known

about @ a priori, before the data are observed.

Likelihood

The 7(y|f) may be regarded as a function not of y, but of #, in which case it is referred
to as the “likelihood” (or sometimes the Model) for # given y and can be written [(6|y).
Note that the likelihood is a conditional probability statement, as to how likely it is for y

to be observed if the parameters take the value 6.

Posterior Distribution

In Bayesian analysis, it is the conditional distribution of # given the data (y) which is of
interest, i.e. m(@|y). This is called the posterior distribution, thus Bayes Theorem can be

written less formally as:
posterior distribution o likelihood x prior distribution.

This distribution describes the state of knowledge about 6 having observed y.
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3..2.2 Posterior Expectations

Alll measures of interest within Bayesian inference are functions of the posterior distri-
buition. Posterior expectations for functions of # is the way in which most quantities of

intterest are expressed, for example, mean values

[ f(O)n(y|6).7(8)do
-~ [7(y|6).x(0)do (3.1)

- / £(6)m(Bly)do

E[f(0)ly]

or' regions of highest density. To compute the normalising constant, find marginals or
cailculate posterior expectations and thus integration is required. This integration is the
sowirce of most practical difficulties for Bayesian inference, especially in high dimensional

prcoblems.

3.:2.3 Methods of Evaluation of the Posterior Distribution

Thhe principal obstacle to implementing Bayesian inference, particularly for complex mod-

elss, is the evaluation of integrals. There are several approaches:

1. Analytical evaluation, although this is possible for only a few models and in low
dimensions of §. Conjugate priors may be used to assist in enabling analytical or
partially analytical solutions to integrands such as the denominator of expression

3.1; (see Carlin and Louis, 1996, Chapter 2 for elaboration of this approach).

2. Numerical evaluation (also called numerical integration or quadrature) methods such
as Simpson’s Rule and Gaussian quadrature. These tend to be difficult to apply and

inaccurate for high dimensional (> 3) problems, see Press et al. (1986).

3. Asymptotic methods include the Laplace approximation, normal approximation (Gel-
man et al., 1995a) and Monte Carlo integration. Asymptotic methods rely on results

obtained when the sample size n gets large.
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The Laplace Method and Normal Approximation To evaluate the integral
in Equation 3.1, the Laplace Method involves expressing the integrand in the form
exp [log (f(6)7(8|y))], then expanding log[f(6)m(6|y)] as a function of # in a quadratic
Taylor series around the mode. The resulting approximation is proportional to a

normal density in € and its integral is:
1 " W
f(0o)m(6oly)(2m)2 | — u (6,)]2,

where d is the dimension of 8, u(#) = log(f(8)7(6|y)) and 6, is the point at which
u(#) is maximised e.g. the maximum of the integrand of 3.1, which we can find by
maximising log(f(6)m(y|6)m()), from Gelman et al. (1995a) Chapter 10. This is an
approximation to the integrand of 3.1. The Normal approximation is a more basic
version of the Laplace method that performs poorly in multimodal or asymmetrical
situations; (see Carlin and Louis, 1996, Chapter 5 for a description of these methods

applied to posterior distribution estimation) .

Monte Carlo integration Monte Carlo integration is the method of approximat-
ing integrals using samples from a probability distribution. Having drawn samples
from the required distribution, it then forms sample averages to approximate expec-

tations.

/f(z) ds = %p(m) dx

il A
. E(mm>
1A f(w)
N ng(wi)

where z; is a sample from the probability density function p(z). Monte Carlo integra-

tion uses samples that have been obtained by a Monte Carlo method. These methods
divide into two categories: non-iterative and iterative methods. On the non-iterative

side there are methods such as rejection sampling and importance sampling, while

27




the iterative approach generally refers to a group of methods collectively known as

Markov Chain Monte Carlo (MCMC).

Monte Carlo integration is the most common approach to take in evaluating the
above integrals. Both iterative and non-iterative Monte Carlo methods are discussed
in the next section. It is however iterative methods that are the primary source of
interest in this dissertation and as such are examined in greater detail. The methods

are introduced by way of some historical background.

3.3 Monte Carlo Methods

In the past, complex data have often been modelled using overly simple models in
order that the inference could be implemented, which was not always entirely sat-
isfactory. While Bayesian methods are theoretically reasonably simple, being the
application of the laws of probability, they require evaluation of complex integrals,
such as constants of proportionality and expectations with the form of those men-
tioned above. Only in the most rudimentary of cases are these integrals analytically
tractable. It is with the advent of modern numerical techniques and advanced com-
puting power that these problems have become accessible. MCMC (Markov chain
Monte Carlo) in particular has provided a method which allows for inference with

much more complex models.

The method is named after the city of the same name in Monaco, due to its as-
sociation with gambling and specifically roulette, the roulette wheel itself being a
simple random number generator. The name and the method’s systematic develop-
ment date from 1944, but many isolated incidences of its informal use exist prior

to that (Comte de Buffon, Lord Kelvin and Student (1908) to name but a few).
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The origins of the method as a research tool stems from work on the Manhattan
project during World War II. It was also at around this time, that the first electronic
computer (the ENIAC) was completed. Ulam and von Neumann suggested its use
in simulation of the probabilistic problems concerned with random neutron diffusion
in fissile materials, via random samples. Metropolis and Ulam published a paper
in 1949 detailing the idea behind this and thus opening up a new field of research

(Metropolis and Ulam, 1949).

The Monte Carlo method is, in general terms, any technique used for obtaining
solutions to (deterministic) problems using random numbers. Presented below are
some of the more popular approaches of the method. The approaches have been

subdivided into the categories of iterative and non-iterative.

Non-iterative Monte Carlo For Importance Sampling, to approximate the pos-

terior expectation given by Equation 3.1, let

9(0) = en(y|6)m(6)

for some easily sampled density ¢g(#) and the normalizing constant c¢. Then defining

a weight function w(6) = 7(y|0)m(0)/9(8),

f!0!1r!y0!g!92d0
E(f(O)ly) = f,,yo",,o,,g,, = (3.2)
9(9)

IRiC w(0 (6) do

Jw(8)g(6) do

b Tl £000) A8
& Tir, w(6:) '

X

where 6; i, g(6) and g(0) is know as the importance function. How closely g(6)
resembles cr(y|6)7(6) determines how good the approximation given by Equation

3.2 18
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For the method of Rejection Sampling, instead of trying to approximate the nor-

malized posterior

_ (o))
"OW) = Tatuioye(o) @b’

a probability density function g(#) is introduced. Suppose then there exists a con-
stant M > 0, such that w(y|0)7(6) < Mg(6) for all 8. The rejection method then
proceeds as follows:
(a) Generate 8; ~ g(6).
[ (b) Generate U ~ Uniform(0,1).
(c) If MUg(6;) < m(y|0;)7(6;), accept 6;, otherwise reject 6;.
(d) Return to step (a) and repeat until the desired sample of #;’s has been obtained.

The accepted 0;’s are random variables from 7(6|y). M should be chosen such that

as few as possible samples are unnecessarily rejected.

Iterative Monte Carlo Markov chain Monte Carlo is Monte Carlo integration com-

bined with the use of Markov chains. MCMC draws samples from a Markov chain whose

stationary distribution is the distribution of interest (also referred to as the target distri-

bution). The distribution of interest is the posterior distribution in the case of Bayesian
statistics. When the chain has reached its stationary distribution, an adequate sample
from the support of the distribution can then be obtained. The reason for using Markov
chains is that with Monte Carlo integration, when the target distribution 7 (z) is not a
standard one, it may be difficult to draw samples from it directly, i.e. it may not have
a closed form and importance or rejection sampling can be difficult. Some underlying
theory as to why MCMC works is more formally detailed in the next two sections, as are

its primary algorithms.

30




3.3.1 Markov Chains

The idea of Markov dependence is a concept attributed to a Russian mathematician Andrei
Andreivich Markov. At the start of the 20th century, he investigated the sequence of vowels
and consonants in the poem “Onegin” by Puskin. He developed a probabilistic model
where successive letters depended on all their predecessors only through the immediate
predecessor. The model allowed him to obtain good estimates of the relative frequency
of vowels in the poem. The French mathematician Henri Poincare studied sequences of
random variables that were in fact Markov chains, at around the same time.

For a stochastic process as given by Definition 2.1, we think of T" as discrete time, then
the stochastic process X; can be thought of as the path of a particle moving randomly in

(state) space D, observed at discrete times and its position at time ¢ being X;.

Definition 3.1 (Markov Chain). A Markov chain is a stochastic process {X; : t € N},
for which the conditional distribution of Xi4+1 is independent of X1,..., X1 given X;.

Thatis ¥ 1y, 10, o Tes1 € B
P(Xir1 = 11| Xt = 74, Xo1 = 71, .., Xo = 10) = P(Xip1 = 41| X = 7).
This is referred to as the Markov property.

Definition 3.2 (Stationary in time). A Markov chain X, is said to be stationary
(or homogeneous) in time if the conditional probabilities are independent of t. That is

Vi,j€ D and Vt € {0,1,...},
P(Xi41 = j|X¢ = 1) = P(X1 = j|Xo = 9).

A matrix of these probabilities is known as a transition matriz for the discrete finite
case (or transition kernel, in the continuous case) and is denoted P;'-, i.e the probability
of transition from one state i to another state j. For simplicity the definitions that follow

are given with regard to the discrete case. The entries in the matrix are in [0,1] and
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2 P;- = 1 since:

YP = ) P, = = 1),
J 2
= P(X: € D|X;—1 =1),

e | for a finite statespace.

Key concepts, especially in the context of simulation, are that of a stationary distribution

¢ and the asymptotic behaviour of the chain as the number of steps or iterations t — oo.

Definition 3.3 (Stationary Distribution). A distribution ¢ on S is said to be a sta-

tionary distribution of a chain with transition probability P if:
¢ = ¢P

Once a chain reaches a stage where ¢ is the distribution of the chain, the chain retains

s

this distribution ¢ for all subsequent stages. This distribution is also known as the “in-
variant” or “equilibrium” distribution. It is the existence of this stationary distribution
in a Markov chain that allows us to sample from a target distribution 7. The conditions
necessary to orchestrate such a chain with the required stationary distribution are outlined
in the next section, however there are some further constraints on the chain which need to
be mentioned here. For a Markov chain to converge in distribution to a unique stationary

distribution, it is sufficient to exhibit the following properties: irreducibility, recurrence

and aperiodicity.

Definition 3.4 (Irreducibility). Let C C D, (i,j) € C and i # j. Then C is said to be

irreducible if 3 n < oo such that:
(PH" >0, V(,j)eC

where (P%)™ = P(X¢4n = j|X¢ = i).

32




Definition 3.5 (Recurrence). A state j € D is said to be recurrent if the Markov chain
starting in position j returns to j with probability 1. (Or positive recurrent if in addition

the mean time to return is finite.)

Definition 3.6 (Aperiodic). The period d; of a state j is the largest common divisor of

the set fn 2. 1.: (P;:)” > 0}. A state j is aperiodic if d;j = 1.

Definition 3.7 (Ergodic). If all states of a chain are positive recurrent and aperiodic,

then it is said to be ergodic.

Definition 3.8 (Limiting Distribution). If the stationary distribution ¢ ezists and
lim P"¢g = ¢,
n—oo

independent of the initial distribution ¢o of the chain, ¢"(= P"¢y) will approach ¢ as

n — 0o. This is referred to as the Limiting Distribution.

Theorem 3.1 (Ergodic). For an irreducible ergodic Markov chain, a limiting distribution

¢(j) = limp 0 (P%)" exists such that:

¢(j) =) _ P}

1=0

i.e. ¢(j) is the unique limiting distribution, which is the chain’s stationary distribution.

A proof for this is found in many places, for example Grimmett and Stirzaker (1982).

3.3.2 Metropolis-Hastings Algorithm

Many methods have been proposed to construct Markov chains having a given stationary
distribution, but all of them are special cases of the Metropolis et al. (1953) and Hastings
(1970) general framework. This was proposed by Hastings (1970) as a general form of the
Metropolis algorithm. The algorithm works as follows to produce a Markov chain whose

stationary distribution is m(s).
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1. Pick a starting value xg € D.

2. For t = 0,1,... choose a candidate point 2 from a distribution q(z|z;), where q is
called the proposal distribution. The proposal distribution is arbitrarily chosen, but

generally depends on the current point z¢, e.g. q(.|z:) = N(x¢,02), where o2 is fixed.

3. The computation of the acceptance probability for z’ is given by a(z;,z') where

ol 2') = min [ 1. F€e1z)
el (1’ W(wt)q(w’lrt)>

4. The next state of the chain is then:

z  with probability a(xt,w'),
Ti+1 = §
x; otherwise,

. / . . . . . . . .
i.e. 441 = x if the candidate point is accepted, or the chain maintains its current

value, if the candidate point is rejected.

Justification Suppose that the chain has already reached equilibrium at iteration ¢ —1,
i.e. ¢;—1 = m. Then we need to choose a transition probability P(z¢, m') to maintain the
equilibrium distribution, i.e. ¢; = w. Consider moving between any two states x; and z.

To go from z; to = the transition probability is:
P(z1,2") o (2 )q(a |z0)o(r, 7

and conversely if going from 2’ to z;. To maintain equilibrium, it is sufficient that these

densities be equal:
W(xl)q(xl|zt)a(xt,ml) = 7r(xt)q(a:t|x,)a(arl,mt)

a condition that is referred to as “detailed balance”. To see this, taking P(xt,x') as

the elements of P, given that detailed balance exists and ¢;—; o ™ we can verify that
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equilibrium is preserved, since

dilms) = dpoyizg) [1—/Sq(mt|xl)a(a:t,a:')d:c/] +/S¢t_1(ml)q(xl|mt)a(xl,wt)da:'
= ¢t—1($t)+/s[(i’t-l(wl)Q(wllfUt)a(ﬂ?I,xt)—¢t—1($t)0($t|$’)a(wt,113’)] da’

= ¢¢—1(x¢)  (due to detailed balance);

see Gilks et al. (1996), Chapter 1, Section 1.3 for details. Given that 7 is fixed and ¢(.|.)
is chosen arbitrarily, the acceptance probability must be the element which allows us to
control the distribution of the chain. There are in fact many acceptance functions which
may be chosen to ensure the correct stationary distribution of the chain. According to the
accept probability given above, the expected number of moves will be the same in each
direction. This is the optimal accept probability with respect to reaching equilibrium as

quickly as possible and traversing the distribution, as shown by Peskun (1973).

Metropolis Algorithm

The Metropolis algorithm is a special case where the proposals are symmetric, i.e. they

have the form ¢(z'|z) = g(z|z"). Hence the accept probability reduces to:

a(z,z’) = min (1, :—%3) ;

Metropolis-within-Gibbs

The Single-Component Metropolis is a variation of the Metropolis algorithm, and is more
commonly referred to as “Metropolis-within-Gibbs”. Instead of updating the whole of
X together, X can be divided up into a number of components Xi,..., Xk, then these

components are updated individually. It samples as follows:

1. Let X_; = (Xi1,...,Xi-1, Xit1,...,Xk), so that there are k — 1 components (the

size of each component need not be the same).

35



2. Let z! denote the state of X; at the end of iteration ¢ and g¢;(.|.) proposes a point

for the i* component only.

3. For m(z;|z_;), (this is called the full-conditional distribution of X;), the accept prob-

ability for z; is then:

, RN AR
b Lt (1, w(lex_oqz(lez,,x-z))

: 7T(73f|$—z‘)%(93;|-’13§,$—i)

The idea is each updating step produces a move in the direction only of the element in X;

(if the candidate is accepted).

Gibbs Sampler

The Gibbs Sampler is a special case of Metropolis-within-Gibbs. The Gibbs sampler, as
introduced in a statistical inference context by Geman and Geman (1984), and popularized
by Gelfand and Smith (1990), is largely responsible for the introduction of MCMC to
Bayesian statistics and for the increased popularity of Bayesian statistics. In turn this has
lead to the increased popularity of Bayesian statistics.

For the Gibbs sampler, the proposal distribution for X; is its full conditional distribution
(see below for details). This leads to an accept probability of 1, i.e. the proposal value is
always accepted. An iteration of the algorithm is:

X ~ w(z|ath)

t i b
X ~ m(zglat, 2L, ... 2t

o m(zn |2t )

Note: This requires that the full conditionals are available for sampling.

Full Conditional By the term full conditional of X; is meant

wflxi 2 )

Ty L—1)y 3.4
7!‘((1),',.’12_1') dil)i 5 ’ﬂ'(.’L‘ = z) ( )

W(:EiliL'_i) - f
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where z_; denotes a vector 2 without the i* component and in the present context 7(z) is
our stationary distribution, partitioned into n components. The full conditional is derived
from the joint distribution of the variables. In the case of the posterior distribution, where

Y is observed, the joint posterior distribution for X is:

n(z) = n(zly) = % (3.5)

From Equations 3.4 and 3.5, the full conditional for X; can be found by noticing that:

(i, —ily)
raidy)

(23, T_i,Y)
m(z—s,y) '

o8 ﬂ(xi) T, y)’

xlz) =

since the denominator of expression 3.6 does not depend on X;. Thus to construct a
full conditional for X;, we are only required to take the terms in the joint (posterior)

distribution that involve Xj.

3.4 MCMC Mixing

For a Monte Carlo method to work well, it is important that it produces a good representa-
tive sample from the target distribution. If this has not happened then the approximations
computed using the sample may not be reliable. When one uses MCMC, this property is

called mizing.

3.4.1 Why is Mixing Important?

Mixing is a property of a Markov chain that has attained its stationary distribution. It
refers to the speed with which the chain explores the support of the stationary distribution.
It is a qualitative concept, but “good mixing” occurs when the simulated chain traverses

the entire parameter space rapidly, spending short periods of time in the extremes of the
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distribution and being predominantly in the body of the distribution. This is desirable

because rapid mixing means fewer iterations of the Markov chain are required to have a
good representative sample of 7. One thing to note is that sometimes there is a trade-off
between rapid mixing and speed with which a sample is obtained. For example, if a very
sophisticated algorithm mixes better per iteration than a simple one, but its CPU time
per iteration is much larger, then it may not be a practical improvement.

Slow mixing obviously means that we have to run the chain for longer to get a reliable
sample. One of the main causes of slow mixing is strong correlation between the variables.
An example of a badly mixing Markov chain is the Gibbs sampler for a bivariate normal
density with strong correlation. That is, since the target distribution 7(.) is concentrated
around a diagonal, the proposal X;;; will be concentrated close to X}, hence the chain
will move slowly. Such a situation is illustrated in Figure 3.1 (a). Multimodality within

7(.) is also a cause of slow mixing.

3.4.2 Why is Mixing a Problem in Spatial Models?

Spatial models tend to have a combination of attributes which cause problems for mixing.
They are usually of high dimension, with many of the parameters being strongly correlated.
The posterior distribution may also be multimodal, especially in the case of mapping
disease incidence. They are a difficult class of problems, but the techniques below may

help in finding suitable schemes with which to implement them.

3.4.3 Approaches to Improving Mixing
Careful Choice of Proposals

Take for example a random walk proposal:

a(X,X') = q(IX - X|).
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It may take the form X' ~ N(X,o2), where it is indexed by a scale parameter o, which

needs to be chosen carefully:

e A small o creates a conservative proposal distribution that generates small steps. In
this case X' will generally have a high acceptance rate, but will move slowly through

the support. An example of this undesirable behaviour is shown in Figure 3.2 (c).

e A large o generates large steps and will propose moves from the body to the tails
of the distribution. This gives a low accept rate, i.e. the chain will frequently not

move, also resulting in slow mixing, as seen in Figure 3.2 (b).

Theoretical justification for aiming to have the proportion of times that a proposal is

accepted to be in the range [0.15,0.5] is provided by Gelman et al. (1995b).

Reparameterization

If there is strong correlation among the X;’s, appropriate reparameterization should reduce
it and improve mixing. This involves transforming X to new variable Y, so that there is
less correlation between the components. In the case of the Metropolis algorithm, another

strategy would be to transform the proposals, which is equivalent to reparameterizing.

Coupling

When multimodality is the cause of slow mixing, reparameterization will not help much.
A better solution might be Metropolis-Coupled MCMC (Geyer, 1991) or a similar hybrid
MCMC. MCMCMC requires the running of m MCMC chains in parallel, with different
stationary distributions m;(x), for i = 1,...,m, where 71 (z) = 7(z) and {m;(x),7 > 1} are

chosen to improve mixing, for example:

(@) o (@) D, A > 0
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theta 2 g(theta 2)

theta 1 gltheta 1)

Figure 3.1: Plot(a) depicts the contour lines of a bivariate posterior density with com-
ponents that are highly correlated. Also shown is a possible chain trajectory illustrating
slow movement within the distribution. In plot (b), a transformation of the parameters
has been performed, which reduces the dependence between the components and allows

the posterior to be explored much more efficiently.
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After each iteration an attempt is made to swap the states of two of the chains using a
Metropolis-Hastings step. Heuristically, swapping states between chains will confer some
of the rapid mixing of the modified chains to the unmodified chain. If 7(z) is multimodal
and if a modified chain moves freely among these modes, the swap will hopefully result
in the unmodified chain changing modes, thus improving mixing. Proposed swaps will
seldom be accepted if there is much of a gradient between chains, thus it is necessary to

have many chains which differ only gradually with 3.

The obvious disadvantage of MCMCMC is that while you have run m chains, only
the output from one is used. Other methods with similar motivation that improve slow
mixing due to multimodality are: simulated tempering, (Geyer and Thompson, 1995) and
the Langevin-Hastings algorithm, (Roberts and Tweedie, 1996). Simulated tempering is
closely related to MCMCMC. It uses one chain, switching distributions within that chain
rather than between several parallel chains. The Langevin-Hastings algorithm proposes
points based on local properties, such as the gradient of 7(.), thus the chain is encouraged
to move in the directions of the local modes. A more recent example of a coupling algorithm
comes from Higdon et al. (2002), where there are two chains run in parallel, one a version
that uses a smaller dataset, that is a simpler version of the original, and hence it is hoped
that the chain mixes better for Bayesian inference. Potential proposals for each chain are
constructed from the other, allowing greater traversing of the original chain, especially in

multimodal situations.

Blocking

If Gibbs or Metropolis-within-Gibbs are being used and some of the components are highly
correlated (i.e. between chain correlation is high) in the stationary distribution ¢(z), then
the mixing tends to be slow. One way of reducing this correlation and hence improving

the mixing is to update some of the highly correlated parameters in a block. This means
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that the values for the correlated parameters are chosen not conditional on each other.

Updating Order

Although typically the components are updated in a fixed order, this is not necessary.
They could be updated in a random fashion and furthermore each component need not
be updated on each iteration. The components to be updated on each iteration could be
selected randomly. It has been suggested that to improve mixing, it might be appropriate
to update highly correlated parameters more frequently than the others (Zeger and Karim,
1991). If the probability with which the parameters are updated is not fixed, but depends
on X;, then the accept probability has to be altered. Specifically, let S(i) be the probability

with which component ¢ is updated, then

1 m(@zle:) S (@il ey, @ i) g(wilzy, @)
P (i) S ()i, z-i)g (x| i, i)

a(z_;, i, ;) = min (

Given the current values of z;, the probability with which a component is updated may
change from iteration to iteration, i.e. S(i|.). Random updating also has some good the-
oretical properties in terms of convergence. More recently, optimal ordering for efficiency

and convergence of MCMC algorithms has been investigated by Mira (2001).

All of the above ideas for improving mixing are those most widely used. There are
many adaptations of these and research in this area is still active, see Green (1995),

Kendal (1997), Rue (2001) and Higdon et al. (2002) for recent examples.

3.5 Diagnostics and Measures of Efficiency

Diagnostics are the methods employed to monitor the appropriateness of a chosen analyt-
ical approach, given the output produced by the approach. Again, there are a number of
problems associated with MCMC, particularly assessment of convergence and the num-

ber of samples needed beyond this to gain a reliable estimate of the target distribution
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and summaries there of. However, our interest lies in assessing the mixing and detecting

structures in the data which may be causing poor mixing, i.e.

e High correlation between the components of the target distribution;
e Multimodality.

Some of the approaches to assess mixing and detecting its associated causes are outlined
below. For a more formal development and extensive review of basic MCMC diagnostic

and ideas for variance reduction, the reader is refered to Neal (1993) and Ripley (1987).

3.5.1 Basic Diagnostics

The most basic diagnostic approach to take when running an MCMC chain is to monitor
the output visually. This can be done via trace plots (sequence of z¢ against t) or even just
numbers to the screen (to confirm that none of the components are stuck at one value).
The latter three trace plots seen in Figure 3.2 illustrate some of the more likely problems
to be encountered when examining the output. In high dimensional cases, it is not possible
to do this for all of the components, so one chooses any fixed effect type parameters and

perhaps a few random effects - say locations on a map or individuals in a population.

The next step is to look at histograms for the parameters of interest. If for example
one of the parameters had a very skewed distribution, it may need to be transformed in
some way. If the user is satisfied to move forward at this point, one would look at the

autocorrelation (acf) plots of the parameters being monitored.

Autocorrelation Function An autocorrelation plot consists of a plot of values for 4(s)

versus s, for s = 1,2,..., where p(s) is correlation coefficient at lag s. The autocorrelation

function is given as:

e

©(0)




100
80
60
40
20
0 200 400 600 800 1000 00 200 400 600 800 1000
(a) (b)
100 100
80 80
60 60
20 20
00 200 400 600 800 1000 00 200 400 600 800 1000

(c) (d)

- Figure 3.2: Plot(a) shows an ideal trace plot, i.e. one which appears to be mixing well.
Plot(b) has many moves rejected, it exhibits poor mixing qualities and the movement of
the chain is stunted and may be missing entire parts of the distribution. Plot(c) shows a
chain which is traversing the distribution too slowly. Plot(d) presents a chain that has not
converged and a model which may be over-parameterized, possibly with an identifiability

problem or the plot may be indicative of multimodality.
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and the autocovariance ¢(s) is
o(s) = E (¥ - 2)(at+ - 3)|.

A popular summary measure related to this plot is lag 1 autocorrelation for each param-
eter. If the acf plot is not reducing “rapidly” or the lag 1 autocorrelation is high, this is
indicative of strong within-chain correlation. By within-chain correlation is meant that
for a particular parameter in the model, its chain exhibits correlation from one move to
the next. If there is high within-chain correlation, then this is often associated with high
between-chain correlation. High between chain correlation is when the behaviour of one
component (or parameter) in the chain is influenced by the behaviour of another compo-
nent, for example if a large value is taken by one of the parameters, then it may be followed
by a small value being accepted by another parameter. High between-chain correlation
would need to be reviewed using some cross-correlation plots or even just scatter plots
for any parameters suspected of such. Reparameterization or blocking may need to be

implemented to overcome this.

Kernel Density Estimate In the Bayesian framework a kernel density estimate is
usually applied to estimate a posterior density for a parameter of interest, from samples
from the posterior. More generally, density estimation entails the construction of an
estimate of the density function from a set of observed data points, assumed to be a
sample from an unknown probability density function. Formally, if X = (X;,...,X,) € R

is a sample, then the density estimate is given as:

where h is a smoothing parameter (also refered to as a bandwidth or window width) and

K is called the kernel function. The kernel function will satisfy:
o0
/ Kiz)dz = 1.
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Usually K will be a symmetric probability density function, such as the normal density,

but this is not necessary. The normal kernel function is given as:

Kig)= # exp(—%xz).

The kernel density estimate could be likened to the histogram, the kernel estimate is the
sum of a series of densities placed at each of the observations, where a histogram is the
sum of observations between fixed points and put in a series of boxes. The estimate f is
of course a density, since the kernel is a probability density function. Choice of kernel and
size of smoothing parameter are discussed in Silverman (1986). Kernel density estimation
is a standard method of examining posterior densities of parameters and functions of the

parameters.

It has to be admitted that most users do not use anything more sophisticated than
the above procedures, when assessing convergence and mixing of the MCMC algorithm.

However, more sophisticated diagnostics are available.

3.5.2 Reviews of Specialized Diagnostics

There is a wealth of specialized MCMC diagnostics available. It is noted at this point
that most of the available diagnostics investigate the rate at which the chain converges or
whether the chain has reached convergence. There are also a number of methods that are
not tailored towards convergence but attempt to measure the performance of the sampler.
These methods can be used in themselves or in conjunction with convergence oriented

diagnostics.

There have been a number of comparative reviews of MCMC diagnostics — Cowles
and Carlin (1996), Brooks and Roberts (1998) and Mengersen et al. (1999) — each with
slightly different emphasis. Cowles and Carlin (1996) compare the performance of several

convergence diagnostics in an applied setting, also giving guidance on implementation.
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They conclude that many MCMC diagnostics proposed in the statistical literature are
fairly difficult to use, often requiring problem-specific coding and perhaps analytical work.
Also, although many of the diagnostics often succeed at detecting the flaws they are
designed to identify, they can also fail in this role, even in idealized cases. Hence, Cowles
and Carlin (1996) advocate the use of a variety of diagnostic tools rather than any single
plot or statistic. Brooks and Roberts (1998) offer a similar review and conclusions, focusing

on the mathematical characteristics of the various approaches.

3.5.3 Maeasures for Mixing Performance

Given these comparative reviews and our particular field of interest, i.e. mixing, this
greatly reduces the number of diagnostics which would be of practical interest. The two
we consider are the Gelfand and Rubin statistic (Gelfand and Rubin, 1992) and Yu and
Mykland’s cusum path plots (Yu and Mykland, 1998), with a supplemental quantitative
statistic based on the cusum by Brooks (1998). Both of these approaches effectively

measure mixing of the chains.

Gelfand and Rubin Statistic

The Gelfand and Rubin statistic is one of the most popularly used in MCMC diagnostics.
The statistic is a measure of how well the target distribution has been traversed, i.e.
when the statistic has a value close to 1, the target distribution has been fully explored.
The emphasis of the approach is in detecting slow mixing and hence reducing bias in the

estimation. The method is as follows:

e Run a small number (m) of parallel chains with different starting points. These
chains must be initialised in an overdispersed fashion with respect to the true pos-

terior. Run the chains for 2n iterations.
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The “shrink factor” for the parameter of interest is:

o IR

where B is the variance between the means from the m parallel chains, W is the

average of the m within-chain variances and df is the degrees of freedom of the
approximate t density to the posterior distribution. The authors suggest estimating
the degrees of freedom by the method of moments,

V2
var(V)

df = 2

where V = ( "T_l + mm—tllB), but many similar competing estimates for the degrees of

freedom can be devised.

The authors show that for a Markov chain with stationary distribution, VR — 1 as
n — oo. The difference from 1 for the R of the chain of interest is then a measure

of convergence.

This value should be close to 1 for all the parameters. Slow mixing samplers will
initially have much larger B than W. This is because the chain starting points are

overdispersed relative to the target density.

Values close to 1 show good convergence. A large GR statistics may arise as a result

of slow mixing or multimodality.

The obvious disadvantage of this method is the requirement to find overdispersed distri-

butions to start with, in order to account for the possibility of multiple modes. However

the method does not detect the existence of unexplored modes in the target distribution.

Cusum Path Plots

A quite simple and potentially useful method for measuring the quality of the mixing of

the chain was proposed by Yu and Mykland (1998). It is a graphical procedure based
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on cusum path plots, applied to a univariate summary statistic or a single component of
the chain. They suggest that the speed with which the chain mixes is indicated by the

smoothness of the plot. It takes the following form:
e Take n iterations (after burn-in) of the parameter of interest, say 6.
e Let /2 be an estimate of the mean of 6, from 6(1), ... ().

e Then the observed cusum (or partial sum) is

t
B3 B en, =1 m
=1

e The cusum path plot is a plot of S, verses t, connecting successive points.

e Smoother plots, wandering further away from zero indicate slower mixing chains,
while jagged plots which cross back and forth about zero regularly, indicate fast

mixing chains.

¢ Yu and Mykland suggest comparing the plots to a benchmark plot, got from an iid
variate generated from a normal distribution with its mean and variance matched

to those of the sample iterates, to reduce the subjectivity of the method.

Brooks (1998) proposes an additional measure that could be implemented in conjunc-
tion with these cusum plots, which allows for a more objective interpretation of the plots.
It involves ascribing some formal measure to the terms used to describe the plots, i.e.
“smooth” and “hairy”. Simply, a completely smooth plot would remain travelling in the
same direction, while a completely hairy plot will alternate direction. Thus an index is
created by counting the number of times the cusum plot changes its direction.

Define
1, if S; < min(S;_1,S¢+1),

& or S; > max(S¢—1, St+1),
0, otherwise.
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Then
1 n—1
D,, takes values between 0 and 1, 0 indicating total smoothness and exceptionally poor

mixing and 1 indicating maximum hairiness and much movement of the in the chain, but

not necessarily rapid mixing. When n is large, D,, should lie within the bounds:

q
4n

(by the Law of Large Numbers) for the behaviour of the plot to be considered reasonable.

+

0|R

1
2

The above two approaches are the ones that we consider most useful, beyond those that

are normally used.

There are however a number of statistics which approach the diagnosis from a rigorous
mathematical perspective. The convergence rate of an MCMC algorithm is dictated by
how close to 1 the absolute value of the second largest eigenvalue of its transition kernel
(or transition matrix) is. Roberts (1992) and Garren and Smith (2000) propose estimating
this eigenvalue from the sample output and thus comment on the rate of convergence. In

practice, it is usually too difficult to obtain a useful estimate of this value (Roberts, 1995).

Effective Sample Size

Another way of thinking about the property of mixing is in terms of the way in which
it affects the number of samples required to represent the distribution of interest. The
number of samples required depends on the level of error in the Monte Carlo estimate
obtained from the data generated by the MCMC method. Assessing this error leads to

quantifying the quality of the MCMC sample data. To assess this, recall the basic Monte
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Carlo estimation formula:

R
e
=
8
Il
My

where the z() are samples from 7(z). The above average is an unbiased estimate of
f(X). If the ® are independent, the Law of Large Numbers guarantees that the average
converges almost surely to E(f(X)), as N increases. A Markov chain simulation at its

stationary distribution produces a series of dependent values;

but f will still be an unbiased estimate of E(f(z)), but because of the dependence of these
values,
- o2
Var(f) #
To account for this dependence, we need to calculate how much it affects the variance
and hence the number of samples we require to equate with a corresponding number of
iid samples. The samples which are generated can be thought of as having a smaller
relative value to iid samples. This relative measure is particularly useful when comparing
MCMC methods. The theory for quantifying this relative measure (or error assessment) as
outlined by Ripley (1987) and Neal (1993) is as follows. An estimate for 02 = Var(f(X))
is given by;
2 1 ¢ g
o~ oy LU - PP
On substitution, an estimate for the variance of the Monte Carlo estimate of E(f(z)) is
then obtained, .
Var() ~ oy =3y U@ - P
The variance of f can also be expressed in terms of the autocovariance function, defined
as:

1(s) = E [(f(a) - B@X))(f(z*+) - B(F(X)))]

51



and the autocorrelation function p(s), defined as p(s) = la(gl, where p(0) = o2. The

variance of f is then given by:

Var(f) E(f-E(f)’] = E

N ’ A

= 7 2 B[69) - DUE®) - 7

: t,tN=1 I
= N2 Z (it —1t)

tt'=1

1
= = (1—Isl/N)~(s)

N —N<s<N :

For N large,
Var(f) = —[0 +2Z7(s]—N—/T

where 7 = 1+ 25 p(s), and p(s) is the autocorrelation function at lag s. The value 7
can be thought of as the number of dependent sample points from the Markov chain that
are required to give the equivalent to one independent sample. Another way of viewing
this measurement is that the “effective sample size” (ESS) generated by the simulation is
N/7. This is going to be less than N when Y p(s) > 0, which will generally be the case.
Methods (such as those mentioned in Section 3.4.3) reduce Var(f) and hence increase the

ESS, thus essentially improving mixing and contributing to the efficiency of the algorithm.

The diagnostics which we have embraced are: trace plots, autocorrelation plots, kernel

density estimates, and effective sample size.
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Chapter 4

Blocking Algorithm for Univariate

Latent Spatial Models

Although many inference methods have been proposed for spatial data (Cressie, 2001), we
will concentrate on the Bayesian approach. In this chapter we look at the performance of
MCMC methods for implementing Bayesian inference for a univariate Poisson model with
a latent Gaussian field. The joint posterior distribution for the latent spatial Gaussian

model already presented in Chapter 2, Section 2.3.5 is given by:

p(z,B,0ly) o p(ylz, B)p(z|6)p(6)p(5)
o exp(}_ui(B+mi) — Y ety
i 1 i
12(6)]| 2 exp(—EwTE(o) tz)p(0)p(B).
The priors for # and 3 that we choose are proper uniform priors, the ranges used are
detailed in Chapter 2, Section 2.3.5. The details for each of the algorithms given below

will be with respect to this model. Here we present three MCMC schemes for simulating

from the above posterior:

e Sequential Update, Diggle et al. (1998);

53



e Partial Block Update, Rue (2001);
e Total Block Update.

The first two use Metropolis-within-Gibbs (see Chapter 3, Section 3.3.2) and the last one
uses a Metropolis update. From the latter sections of Chapter 3 it may be apparent that
a comparison of these algorithms with regard to the efficiency with which they explore
the target distribution is of interest. In what follows, we use the powered exponential

correlation function as given in Chapter 2, Section 2.3.5, Equation 2.1.

4.1 MCMC Algorithms for the Univariate Latent Spatial

Model

4.1.1 Sequential Update

The sequential update, as proposed by Diggle et al. (1998), samples each of the parameters
individually. The «,d,0% and 3 are sampled from their full conditionals, using random
walk proposals. A random walk proposal is one which proposes a new point dependent
on the previous point, with equal probability of being larger or smaller than the previous
point, i.e. g(z,2") = p(|z — 2'|). This proposal may be uniform in an interval centred at
the current point, normal with mean as the current point or any other symmetric distri-
bution. It may also be either an additive or multiplicative function of the current value;
multiplicative moves are achieved by working on a log scale. The amount by which the
proposed point differs from the previous point depends on a scale parameter, which is
carefully chosen, as discussed in Section 3.4.3. The X;’s are also sampled from their full
conditionals using a conditional univariate Gaussian proposal. Details of the proposal
and the acceptance probabilities are given in Appendix A, Section A.1.1. The computa-
tional efficiency in calculation of the conditional univariate Gaussians is improved by using

Cholesky decomposition in combination with partitioning properties of the conditional-
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variance, (Whittaker, 1990).

We note that an alternative sampling approach that could be used is to define Z; =
Xi+ 3, then proceed to sample 3 and 6 given Z;. This approach may be applied to all the
updating schemes presented and makes the sampling of 3 simpler, see Gammerman (1997).
We do not adopt this approach here, because this does not generalise straightforwardly to
the multivariate case of Chapter 5, i.e. Y;; ~ Poisson(exp(8jo+ Z;.r:l BjtXit)) and we want

to allow for as close as possible a comparison of the results here with those of Chapter 5.

The values of both a and 2 must be strictly positive. In theory, zero is an absorbing
state of the Markov chain for each parameter, (Besag et al., 1991). At the boundaries
0 = 0 and § = 2 the resulting correlation matrix becomes positive semi-definite and hence

singular, so § will be constrained to take values 0 < § < 2.

4.1.2 Partial Block Update

In the partial block update, the set of parameters is partitioned into three blocks z,6
and 3, where 6 = (a,8,0?). All the parameters in each block are updated jointly. The
parameters within each block are strongly correlated, hence the choice of blocks. There
can also be problems with mixing as a result of correlation between the hyperparameters
and the latent variable X, to lessen this between chain correlation a complete block update
is applied, as describes in the next section. The partial block MCMC scheme takes the

form below:

e Update 6 (the parameters in ¥) from its full conditional,

p(Blz) o [£(6)|2. exp(~ 52T 5(6) '),

using three independent random walk proposals, i.e. a, 02 and § are updated simul-

taneously.
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e Update 3, from its full-conditional:

p(Bly, z) o< [ [ exp(—eP+%). exp(8 + i)V

as for the sequential method of the previous section.

e Update X = {X;, Xa,...,X,} in one block, from its full conditional:

p(zly, B,0) x H exp(—eP 1% 4 yizy). exp(—%acTEw)_lx)

using the multivariate Gaussian proposal distribution:

p(z'16, 6,) o exp(~ 52T (£(0) ™ + O)a’ + (u — B)a).

This distribution arises as a result of making an approximation (Rue, 2001) to the

joint posterior at the current point X;. The approximation takes the form:

- C = eﬂdiag(cl, ’Cn);

— B=éA(By,...,Bn).

where B; and C; are obtained from the approximation

4 1 ’
exp(z;) ~ A; + Biz; + ECimiz,

By replacing exp(z) in the full conditional of z with this quadratic approximation, we

produce the multivariate normal distribution given above. Samples for  are drawn from

this Gaussian proposal distribution and thus the block update of the x;’s becomes very

natural. The approximation could be made using a Taylor expansion, but Rue (2001)

suggests a more global and also accurate approach to improve the accept probabilities. He

proposes that an “overall” good fit to the full conditional for X in the region where X "is
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expected to be located is more important than a precise fit around X. The approximation

is given by:

zi+A

. * * 1 * *
(A;, B;, C;) = arg min [/ {exp(z}) — (A; + Bixz] + ECia:f)}Q dz;
X

i—A

where A is a crude guess of the step length of z; to z; Full details of the calculations are

given in Appendix A, Section A.1.2.

4.1.3 Total Block Update

This is a Metropolis-Hastings algorithm that uses Rue’s approximation to the X;’s proposal
function. The total block update algorithm works much the same as that above, except
everything is updated concurrently. As before, propose new (8',a’,0'%,8') using some
random walk proposals. Then using the proposed " and 3, propose a new vector of w;

using Rue’s method, such that:

p(a'16,8,3) o exp(~ 52T ((0) = + O)’ + (y - BYT),
where
.. — eﬂldiag(Cl, ROk, 5%
sBa .  HLE

as defined before. The (9/, ﬁ',x') are accepted or rejected all together; see Appendix A,

Section A.1.3 for details of the acceptance probability.

4.2 Mixing Properties of Algorithm

There are two issues that have arisen in the previous sections:

e the effect of blocking on mixing;
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Figure 4.1: A map of Rongelap island and the locations of the measurements taken.

e the effectiveness of Rue’s approximation (as a proposal for X ) as a method to improve

acceptance probabilities within a block update and hence improve the overall mixing.

“Blocking” has been shown to be a useful approach in aiding MCMC convergence by Liu
(1994) and Liu et al. (1994), but they have also given counterexamples. The performance of
Rue’s approximation (Rue, 2001) combined with the above two blocking schemes, relative
to the basic sequential update method (Diggle et al., 1998) is viewed here using a number
of datasets, each with different attributes. The chosen attributes are those characteristics

of the data which may affect the performance of the algorithms, namely:
e correlation level within the data;
e size of 3.

The schemes are applied to a popular historical set of spatial data, the “Rongelap Island”
data and three simulated datasets, which exhibit varying levels of these properties. The
performance is viewed using a number of visual representations and effective sample size.

Effective sample size as described in Section 3.5.3 can be thought of as a response variable.
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4.3 Description of Data

The Rongelap island dataset consists of radioactive counts taken from 157 locations on
Rongelap island. The measures are taken at point locations, for a stated period of time. An
illustration of the island and the location at which the measurement were taken are given in
Figure 4.1. The study arose as a result of the island being evacuated, due to experiencing
contamination from the fall-out from the Bikini Atoll nuclear weapons testing programme
during the 1950’s. The levels of contamination have since been under investigation to

establish risks involved for possible re-habitation.

The three simulated datasets comprise of 200 locations that are randomly positioned
on a square. The maximum distance between points is taken to be 1. Two of the datasets
have points that are very strongly correlated, the first with a mean of e and the second
with mean 1. The third dataset has much less correlation. This is quite close to being iid
and has a mean value of 3. The exact values of the parameters used to simulate the data
are given in Table 4.1. The behaviour of the three schemes on the four datasets has been

monitored and the findings outlined below.

4.4 Results

All the algorithms have been programmed in C and run on Unix machines. In the case
of simulated datasets 2 and 4 the algorithms were initialised to their true values and run
for 100,000 iterations. For dataset 3, two further replicate datasets (i.e. with the same
parameterizations) were created and the algorithms run on each of them to check for
posterior bias. Also, the runs on dataset 3 and its replicates used various initial values
for each of the parameters and were run for 100,000 iterations post burn-in. Similarly,
the Rongelap island dataset was run for 100,000 iterations after burn-in. For each of the

algorithms and datasets, the samples from the runs have been thinned to include every
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100" iteration, so our actual sample size is 1,000.

The speed with which the blocking algorithms produce an iteration is much faster than
that of the sequential algorithm, it is of the order of 4 times faster for the size of datasets
considered here. The algorithms are order O(n?); the Cholesky decomposition is the
most expensive operation. The algorithms were run on a variety of UNIX machines and
the actual length of the run time for each of the algorithms varied and depended on
what other processes were being run on the processor. Also, the total block update and
the partial block update show substantially better mixing properties then the sequential
update. Using effective sample size as a measure of mixing efficiency, the improvement
in effective sample obtained is between 20 and 1.2 times that achieved by the sequential,

depending on the dataset and parameters viewed.

As a separate experiment, we have run the partial block update algorithm on a number
of datasets of varying size to assess how increasing dataset size affects run time. The
algorithm was run on a Intel Pentium 4 with 3GHz CPU and 1GB RAM. The results
are as follows: n = 50 took 0.005 sec/iter, n = 100 took 0.018 sec/iter, n = 200 took
0.09 sec/iter, n = 400 took 0.85 sec/iter and n = 800 took 31.4 sec/iter. From this we
observe that the relationship between sample size and iterations per seconds is not a linear
one. As sample size increases the speed of the algorithm decreases disproportionately and
so there may be some limitations with regard to the sample size for which this type of
algorithm maybe considered suitable. There have been some ideas put forward for dealing
with larger datasets such as those found in geostatistics, see Rue and Tjelmeland (2002)
and Whiley and Wilson (2004). Rue and Tjelmeland (2002) advocates the discretisation
of the values of the unknown parameters in the covariance structure and approximate
the Gaussian field by a Gaussian Markov random field while Whiley and Wilson (2004)

suggests a variety of parallelising routines for computations on the covariance matrix.
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Acceptance Rates For the sequential update each of the parameters are updated in-
dividually and so each has an acceptance rate. The acceptance rates for the sequential
updates are as follows: the X;’s have an average acceptance rate of 0.16 — 0.31; 3 is be-
tween 0.12 — 0.17; « is between 0.06 — 0.12; § is between 0.02 — 0.08 and o2 is between
0.06 — 0.11. These acceptance rates are lower than may be considered desireable (see
Gelman et al. (1995b)), and could be improved by reducing the variance of the random
walks used. A number of scaling for the random walk were tried for this scheme, some
with more favourable acceptance rates but all of which showed a slow traversing of the
chain. The partial block update proposes updates of all the X;’s together, next the 3 and
then the remaining 6’s. The acceptance rates for the partial block updates are as follows:
the X;’s are between 0.55 — 0.73; the 3 is between 0.14 — 0.28 and the #’s are between
0.09 — 23. The total block update simply updates all of the parameters together and the
acceptance rate for this is between 0.22 — 0.47. The acceptance rates for the sequential
algorithm are a little low but are within a reasonable range. The acceptance rates are a

little more favourable for the blocking algorithms.

4.4.1 Rongelap Island Data

In the output from the sequential update as seen in Figure 4.2, the trace plots show strong
evidence of correlation between the parameters and quite slow mixing of the chain. This
is especially the case for a and 02, i.e. if a takes a very low value close to 1, then o2
will increase in value to compensate. It is the presence of this correlation between the
parameters that is causing such poor mixing within the sequential update. There is also
quite high correlation present within the chains, as seen in the autocorrelation plots, which
further indicates the poor quality of mixing within the chains.

The two block updating schemes give very similar results for this dataset. The trace plots
show the chains to be mixing very well, with no apparent between chain correlation present,

i.e. the blocking has removed this undesirable property. The within chain correlation has
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more or less died away by the 10" effective sample, with the exception of the o2 parameter
in the partial block update. On inspection of a plot of o2 kernel density (see Figure 4.6),
the density estimates are very similar for each of the parameters, with the exception of
the a’s. The sequential method in particular gives a slightly different density estimate
for . This reflects the evidence produced by the other diagnostics. Lastly, the effective
sample size gives very conclusive evidence that the blocking scheme improves mixing many
fold, see Table 4.3. The estimates found for parameters are not the same as those given
by Diggle et al. (1998), but are consistent with those obtained by colleagues, Whiley and
Wilson (2004).

4.4.2 Dataset 2

This dataset has quite high spatial correlation, see Table 4.1. The two blocking schemes
show worse mixing, compared with the previous dataset (particularly obvious in the ess)
and there is also evidence of some between-chain correlation. The acf plots in Figure 4.3
show that the within-chain correlation is quite high, particularly for a and o2, which is
why the mixing of the chains is suffering so much. The effective sample sizes associated
with the total block update are substantially better than those for the sequential and the
partial update. The effective sample size for the partial and sequential updates vary with
respect to which parameters behave best within each scheme.

The sequential update struggles a great deal with these data. After an extensive number
of runs of the algorithm, it was observed to regularly get “stuck” and only sometimes
returns to exploring the posterior distribution at all. From the trace plot shown, it can
also be seen that there is high correlation between the o and o2 parameters. The acf
plots are indicative of the extremely high correlation present within the parameters, again
particularly within o and o2, hence the exceptionally poor mixing. This dataset illustrates
that although blocking is capable of greatly reducing the effects of correlation, it is not

immune to its effects in extreme cases.
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Datasets
Parameters | 2 | 3 | 4
1] 3.0: 1 0.0 {#8.0
o 10.0 | 10.0 | 20.0
0 0.8 | 108 4108
o’ 0.75 1 0.75 | 0.75

Table 4.1: Parameter values used in the construction of the three simulated datasets.
4.4.3 Dataset 3

This dataset has the same high level of correlation as dataset 2, but now the mean count is
1. The sequential update suffers from much the same difficulties as it did for the previous
dataset, due to extremely high correlation present in the data. High correlation is no
longer the main issue for the blocking schemes. The performance of the blocking schemes
relies on the accuracy of Rue’s normal approximation to the Poisson likelihood. This
approximation worsens as the Poisson mean gets small (where the Poisson distribution is
more skewed) and the number of points increase. So, with a Poisson mean of 1, Rue’s
approximation breaks down and the proposals are never accepted. This obstacle may be
overcome in a number of ways: an alternative proposal function could be used — Rue et al.
(2004) has put forward some ideas on this — the mean of the Poisson could be artificially
increased to allow the current proposal for the X’s to be usable or a sampling method
such as that described by Gammerman (1997) could be applied. Rue et al. (2004) uses a
sequential representation of the latent variables, then constructs univariate approximations
at each location and joins them together to sample from the posterior. The univariate
approximations are made by using log-quadratic splines, but the authors also suggest some
other approaches for getting the univariate approximations. This approach appears to be
very efficient and accurate when the posterior density is unimodal and less accurate when
it is not. We have chosen to increase the Poisson mean and thus continue with the current

blocking proposals.
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Using an inflated Poisson mean (3 = log(10)) the two blocking schemes traverse the
support of the posterior distribution, but do intermittently get stuck, as is seen in the
trace plots of Figures 4.4 and 4.7. Visually the mixing would not appear to be as good
as that seen for the Rongelap data or dataset 4; the autocorrelation function in Figure
4.4 and the effective sample sizes given in Table 4.3 reflect the less than perfect mixing
for both of the blocking schemes. The total block shows better ess values than either the
sequential or the partial block schemes. The sequential scheme showed quite poor mixing
in the trace plots of Figures 4.4 and 4.7, this is reiterated in the associated acf plots and ess
values. The performance of each of the algorithms is similar to that for dataset 2, which
had the same quite high level of spatial correlation and hence much the same reasoning

applies as to why each of the schemes perform poorly or at less well.

Posterior bias Two replicate datasets have been produced with the same properties as
those of dataset 3. Each of the algorithms have been run on these replicate datasets to
check for posterior bias. There would appear to be some posterior bias when using the
sequential update, particularly in the alpha parameter estimate, but to some extent in all
of the parameters, see Table 4.2 and Figure 4.7. The partial block algorithm exhibit a
small to negligible amount of bias and this appears to disappear in the total block update,
see Table 4.2 and Figure 4.7. Knorr-Held and Rue (2002) show similar findings using a
variety of blocking schemes. They claim that estimates based on single-site algorithms
or even blocks of parameters without the hyperparameters maybe biased, even for very
long runs. They also note however that such bias was not present for all of the datasets

examined and thus the results may be data dependent.

Convergence To check for the convergence properties of the algorithms, each of the
algorithms have been initialised from a number of different starting points, while being

run on dataset 3 and its replicate datasets. Each of the algorithms appears to have
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succeeded in finding convergence, however the length of burn-in required varies. In the
case of the sequential algorithm often convergence is slow, given that only one in every
hundred iterations is kept. Given the poor mixing that is observed in Figures 4.4 and 4.7
is unsurprising. The rate of convergence is much faster for the blocking algorithms, see

Figure 4.7.

4.4.4 Dataset 4

The last dataset has a log-mean of 3.0 and quite low correlation. It can be seen from
the trace plots in Figure 4.5 and Table 4.3 that all three algorithms perform much better
than in the previous datasets. The characteristics of this dataset (low correlation and high
Poisson mean) are relatively suitable for MCMC methods.

The performance of the two blocking schemes is very similar, but the trace plot for the
sequential scheme shows that its mixing is not quite as rapid. Also, there is evidence
in the sequential trace that there is correlation between a and o2, which as mentioned
previously is one of the causes of the slower mixing in this method. The acf plots support
these conclusions. The within-chain correlation dies away rapidly using the block updating
schemes, but not to the same extent for the sequential method. This indicates that the
mixing for the blocking schemes is better than that for the sequential update. Again this
is supported quantitatively by the effective sample size, which is much smaller (better)
for the blocking schemes. The consistent difference between the total and partial schemes
could be attributed to less good mixing in X’s of the partial scheme, which itself maybe

caused by poorer mixing of its a and § parameters.

4.5 Conclusions

Our main interest in these algorithms is the efficiency with which they explore the target

distribution, with the obvious constraint being the time it takes them to do so. After
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Model Dataset 3
Parameters | Algorithm True |Run1 (p,0) | Run 2 (y,0) | Run 3(p,0)
Sequential | 0.0 (0.03,0.19) | (0.05,0.07) | (0.13,0.17)
3 Partial | log(10.0) | (2.30,0.16) | (2.26,0.23) | (2.17,0.33)
Total | log(10.0) | (2.31,0.21) | (2.28,0.27) | (2.26,0.19)
Sequential (7.62,2.95) | (7.69,3.80) | (6.84,2.42)
a Partial 100 | (9.68,3.42) | (9.49,3.17) | (9.65,3.57)
Total (9.95,2.74) | (10.06,2.97) | (9.71,2.89)
Sequential (0.89,0.19) (0.88,0.32) | (0.92,0.15)
) Partial 0.8 (0.83,0.20) | (0.84,0.17) | (0.84,0.21)
Total (0.82,0.15) | (0.80,0.17) | (0.82,0.18)
Sequential (0.70,0.25) | (0.69,0.21) | (0.57,0.24)
o? Partial 0.75 (0.72,0.09) | (0.75,0.11) | (0.70,0.13)
Total (0.74,0.08) | (0.76,0.06) | (0.72,0.10)

Table 4.2: These are the mean and standard deviation for each of the parameters in the
model, for each algorithm and for each of the dataset 3 runs. Also given is the true

parameter values for the model, the closer the mean is to this value the less biased the

estimate.
Datasets
Parameter | Algorithm || Rongelap | Dataset 2 | Dataset 3 | Dataset 4

Sequential 12.41 31.51 44.91 39.59

5} Partial 2.57 42.82 o181 6.46
Total 4.49 19.68 22.36 5.28

Sequential 57.15 58.33 46.32 23.78

« Partial 5.09 48.11 45.67 2011
Total 2.35 37.20 33.64 157

Sequential 49.38 24.41 55.32 13.80

) Partial 16.91 30.69 30.79 2.01
Total 2.62 20.95 26.81 1.96

Sequential 55.34 63.59 73.65 15162

o? Partial 8.86 52.97 52.96 2.91
Total 2.19 32.46 34.97 1.21

Table 4.3: These are the 7 values of the effective sample size (ess = N/7, where N is sample
size) for the parameters of the model, for each of the three algorithms. The smaller the 7

value the better the algorithm’s performance.
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Figure 4.2: Trace plots and autocorrelation plots for the Rongelap Island data.
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Total Update - High Correlation, beta = 3.0
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Figure 4.3: Trace plots and autocorrelation plots for the high correlation data, g = 3.0.
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Figure 4.4: Trace plots and autocorrelation plots for the high correlation data, 8 = 0.0

for the sequential algorithm and 3 = log(10.0) for the blocking algorithms.
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Total Update - Low Correlation, Beta = 3.0
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Figure 4.5: Trace plots and autocorrelation plots for the low correlation data, 5 = 3.0.

70



Rongelap Island High Correlation
T

1 1 1 1

.
2 25 3 35 4 45 ) 2 25 3 35 4 45
var var

Low Correlation High Correlation, beta = 0.0

15 T T T T T T T T T 15 T T T T T T T T

05 &
\
0 L i 5279
0.5 25 3
0.1 T T
0.05-
0 _ 1 1
0 40 45
15 T T
1+ ‘."/ o e v oy B :‘\\
Pl .., s )
051 L e 1 e e, ™

25 3 35 4 45
var var

Figure 4.6: Kernel density plots for the Rongelap Island data (top left), high correlation
data, B = 3.0 (top right), low correlation data (bottom left) and high correlation, 3 = 0.0
(bottom right). The solid line represents the sequential output, the dash-dot line the
partial update output and the dotted line the total update output. The estimates of 3 in
the bottom right dataset differ due to the use of an inflated Poisson of 3 = log10.0 for the
two blocking algorithms and a 8 = 0.0 for the sequential algorithm. A Gaussian kernel

and optimal bandwidth have been used in the construction of these kernel density plots.
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Dataset 3, original Dataset 3, replicate 1
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Figure 4.7: Trace plots of the a variable with various initializing values for each of the
algorithms (total update, partial update and sequential). They are run on dataset3 (high
correlation, 3 = 0.0) and two additional replicate datasets with the same parameteriza-
tions. The results for the original dataset3 are given in top left, replicatel dataset top

right and replicate2 dataset bottom left.
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assessing their performances on the given datasets, the main conclusions are:

1. The speed per iteration with which the blocking algorithms run is much faster than
that of the sequential algorithm. They complete an iteration in approximately a

quarter of the time it take the sequential algorithm.

2. The main drawback of the blocking schemes is that the coding required is more
complex and thus there is an initial investment of time. This complexity is mostly

due to the details in Rue’s approximation of the X;’s.

3. Mixing is generally better with blocking schemes than with a sequential scheme.
In particular, mixing will improve using blocking when between-chain correlation is
high, and will improve many fold when the between-chain correlation is average to
low. However, blocking will not make the associated difficulties disappear entirely,

as can be seen in their effective sample size measures.

4. Rue’s approximation for the X;’s appears to work well (i.e. quite high acceptance
probabilities were observed) under certain conditions. Rue’s method requires that
the Poisson distribution be well approximated by the normal, if this is not the case,
other measure need to be take such as using an artificially increased Poisson mean

or an alterative proposal function for the X;’s.

5. There is some bias present in the estimates attained from the sequential algorithm.
This is substantially reduced using the partial block algorithm and completely elim-
inated with the total block algorithm. All of the algorithms succeed in converging

when initialised from various starting values.

6. The blocking algorithms work well on the dataset sizes considered here, however were
the dataset size to increase dramatically, there would be practical issues with regard
to their speed of computation and hence the time required to obtain an adequate

sample from the support of the posterior distribution.
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In summary, the blocking schemes are more efficient in their traversing of the target

distribution, but their coding requires an investment of time at the outset.
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Chapter 5

Coupling Algorithm for

Multivariate Latent Spatial
Models

The model adopted in this chapter is a multivariate extension of the one utilized in Chapter
4. The main difference is that there are now r response variables (y;) at each of the s;
locations, rather than just one, to allow correlation both within and between locations.
These correlations are modelled by increasing the number of latent processes to 7. While
a univariate latent field will model spatial correlation, it cannot induce cross-correlations
between observations at a single location. By introducing more than one latent field, cross-
correlation can be modelled. This poses the question; how many latent fields 7' should
one have? For identifiability, T < r. In this work we restrict ourselves to 7' = 2. For
ease of computation, 7" should be as small as possible and yet allow sufficient fitting of
the correlation structure. Usual model choice methods, such as Bayes factors, can be used
to select the best value of T. A fully Bayesian treatment would allow 7" to be a random

variable, and its value to be inferred. This could be implemented by dimension-changing
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Metropolis methods, such as reversible jump (Green, 1995).

The model construction is described in detail in Chapter 2, Section 2.3.6. Using this
model each latent process is given var(z;;) = 1 to avoid overparameterisation. The joint

posterior distribution for the model is given by:

p(z,B,6ly) o p(ylz, B)p(x|0)p(0)p(B)
e [H eMiiVii o~ exP(’\ij):l p(B))
=]

3

=1
8 1 1l
i le(ot)|_5 exp (—593?2(90_13&) p(6r),
t=1
where y = (y1,..., e 2 = (21,...,27), B = (B1,...,5), 0 = (01,...,07), Bs =
(Bjos - - -, Bjr) and Nij = Bjo + S, (Bjetit)-

Motivation This model has been motivated by fossil pollen data that has been observed
at many locations throughout Europe in lakebed sediment. The underlying concept at-
tached to the data is that ecological behaviour is directly related to climate. Thus, if
there is knowledge about the ecology of an area, as inferred from pollen counts, then in-
ference can be made with regard to its climate. Furthermore, knowing how present day
ecology (pollen counts) relates to climate, it is then possible to predict what past climate
might have been like given the fossil pollen. The data comprise of pollen counts y;(s;)
for j = 1,...,r different species of plant at each of i = 1,...,n locations. These pollen
samples are taken from cores of lake sediment, spanning a time period of 10, 000 years (i.e.
back to the last ice age). For each location s;, the pollen samples are taken from a sediment
sequence at intervals, that are irregular in time due to variation in sediment accumula-
tion rate. Radiocarbon dating determinations are made on samples from the sediment
sequence, and interpolation is used to estimate the remainder. An important feature of
the data is that the counts display spatial correlation and across species correlation at the

same location. Difficulties attached to the data are that there is an indeterminate amount
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of both spatial and temporal aggregation. A further issue is that climate during the last
glacial age would have been much more extreme, and that climatic conditions over the
past 10,000 years would have been much more variable than present day conditions. This
mismatch of information makes it difficult to model past ecology, Whiley et al. (to appear)

have given an approach for these data.

There are two attributes of the pollen data which have been instrumental in our ap-
proach: spatial correlation and aggregation. The model which we have chosen is based on
these data but without the temporal element, hence it uses a spatial correlation structure.
Also, the natural occurrence of spatial aggregation has been key in inspiring the concept
of utilizing its benefits via artificially aggregating the data, as is seen by the method given

later in this chapter.

5.1 Coupling

MCMC algorithms can be very slow both to converge and explore the target distribution
thereafter; potential reasons for this are discussed in Chapter 3, Section 3.4. Many different
methods have been proposed for the improvement of their rate of convergence and mixing,
see Chapter 3, Section 3.4.3 in this text and also Gilks and Roberts (1996). The approach
which we have taken in what follows of this chapter comes under the category of coupling;
some details of this have already been discussed in Chapter 3, Section 3.4.3. Essentially,
a coupled MCMC method runs several chains in parallel that are allowed to exchange
information. At least one of the chains, but not necessarily all of them, has stationary
distribution that is the target. The nature of this exchange is such that the chain or chains
whose stationary distribution is the target are able to be explored quicker. We combine
the ideas of coupling and blocking to create a new algorithm, whose aim is to improve the

exploration of a target distribution.
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Coupling algorithms have many purposes and come in many forms. That is to say,
there are a number of MCMC techniques which fall under the umbrella of coupling and
depending on the problem being resolved the approach will differ. Here we give a brief

description of some of those which have been presented.

The first method to introduce an alternative update of MCMC was the Swendsen and
Wang (1987) algorithm for the Ising model (this was not strictly coupling, but more aug-
mentation), this lead to the introduction of many other algorithms of this type. A more
general algorithm was proposed by Geyer (1991) — Metropolis-coupled MCMC (MCM-
CMC). Details of this algorithm have already been given in Chapter 3, Section 3.4.3.
Many MCMC methods have arisen from or were derived from ideas in physics and sta-
tistical physics, particularly multi-resolution problems which are discussed at the end of
this section. One example is due to Geyer and Thompson (1995) referred to as “simu-
lated tempering”, which is based on simulated annealing, an optimization technique from

physics.

Both MCMCMC and tempering use a one parameter family of probability distribu-
tions (hi(x),i = 1,...,m), indexed by a parameter i called temperature, ranging from
the distribution of interest, which is the coldest temperature (hi(z)), to the hottest dis-
tribution (hm,(x)), which is easy to simulate. If h(x) is the unnormalised density for the
distribution of interest, then h(z)!/? for # > 1 are the “heated” unnormalised densities,
where 3 generally includes a scaling effect of the temperature. The h;(z) is known as an
“energy” function and the form of movement between states is referred to as “powering
up” in simulated annealing. Unlike annealing, simulated tempering does not impose a
monotonically decreasing schedule of temperatures, but rather it moves in a random walk.
The stationary distribution of the sampler is proportional to h;(z)7 (i), where the 7 (i) are

artificial weighting terms chosen in advance. These are intended to approximately equalize
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the time spent at each temperature. The algorithm takes the form:
1. Update z using Metropolis-Hastings or Gibbs update for h;.

2. Set j =i+ 1, where ¢(1,2) = g(m,m — 1) =1 and g(i,i +1) = g(i,i — 1) = },1 <

i<

3. Accept transition with probability min(1,r), where

hi(@)7(5)q(, 1)

T hi(@)r(i)aling)

Tempering has the advantage over MCMCMC that it keeps only one copy of state x rather
than m copies, so the chain uses less storage and mixes better. The disadvantage is that it
requires good choice of (7). Details of the number of distributions to use and the choice

of 7(i) are given in Geyer and Thompson (1995).

Other developments have come from Basseville et al. (1992). They examine “multi-
scale stationarity” and fusion of data from different resolutions, with application in signal
and image processing. Frantz et al. (1990) also introduced a method of coupling, which
proposed jumping (called J-walking) between low and high temperature random walks,
using Boltzmann distributions to allow full exploration of a region. Their motivation is
to avoid quasi-ergodicity and reduce the time required in running Metropolis algorithms.
Propp and Wilson (1996) tackle the problem of identifying when the Markov chain has
reached the target distribution using coupling. They present an algorithm, which uses
monotone coupling from the past and samples exactly from the distribution of interest
rather than approximately, which is the case with standard MCMC. The coupled chains,
rather than running from the present into the future, run from a point in the past until the
present. The distance into the past that the algorithm needs to go is determined during
the running of the algorithm itself. The algorithm is however not particularly universal,

as it relies on the Markov chain having a special structure.
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More recent contributions to the area have come from: Barone et al. (2002), Pinto
and Neal (2001), Holloman et al. (2002) and Higdon et al. (2002). Barone et al. (2002)
present an algorithm which combines ideas from coupled Markov chain methods and from
existing algorithms based on over-relaxation. Over-relaxation is a technique used to help
speed the chains progress through the parameter space by ensuring that each new value in
the chain is negatively correlated with its predecessor. Adler (1981) provides a standard
over-relaxation method when the full conditionals are Gaussian, this approach has been
generalised by many authors. Barone et al. (2002) present examples in which the proposed
algorithm converges faster than the existing over-relaxation algorithm and the Gibbs sam-
pler. They also look at the efficiency of the algorithm by viewing the asymptotic variance
for various parameters. The algorithm essentially has two different two parameter families
(g9y and f;) of algorithms, whose output converges to a random vector from the product
density g,(y)fz(z). Both chains (X' and Y") are updated using a linear combination of
all the current values from each of the random vectors X and Y. This approach differs
from that given by Geyer (1991), where the updating of the chains is followed by swap-
ping between chains. With respect to the asymptotic variance, they conclude that once

equilibrium has been reached, passing information from X to Y is no longer an advantage.

Similarly, Pinto and Neal (2001) propose passing information between two chains, X and
Y. Here, Y the chain of interest, samples from the posterior and X is a chain that samples
from a Gaussian approximation of the posterior. These chains will be highly correlated
and Pinto and Neal (2001) utilize this correlation to constructing a more accurate MCMC

estimate for posterior expectations.

Holloman et al. (2002) extend the Genetic algorithm (a maximization technique for
functions defined on multi-dimensional space) by making use of related solutions of differ-

ent dimensions. Again this approach utilises the transfer of information between scales of
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varying resolution to obtain more accurate results.

5.2 A Coupling Algorithm for Multivariate Latent Spatial

Models

Some issues with MCMC for simulating from the posterior distribution of this type of

model are:

e multimodality in the posterior, causing chains to “get stuck” at one mode and not

fully exploring the distribution;
e mixing;
e large scale problems tend to be computationally very demanding.

The latter issue may be aided to some extent by blocking, such as that implemented
in Chapter 4, given that blocking algorithms generally run more quickly. However the
improvement will not be huge since the main computational issue is that Cholesky fac-
torization is O(n3). Blocking can also be used to combat multimodality, if the spatial
locations were blocked into regions with similar attributes. In the multivariate case, this
would not be a trivial task, so multimodality can pose a real problem with spatial data. A
chain may even appear to have converged, when in fact it is just exploring an area around

a mode. Multimodality has not been detected with the data used in this thesis.

One possible solution to both of these issues would be to reduce the size of the data set,
by aggregating it. Aggregating the data or using a coarsened version of the data would
allow faster runs and reduce the probability of chains being trapped in local maxima.

Naturally, this approach would come at a price, the probable cost of aggregation being:

» loss of information;
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e and “ecological fallacy” i.e. conclusions on relationships between variables at coarse

scale not necessarily true at original scale.

One possible way in which the benefits of aggregation may be enjoyed, without the ill
effects, might be to use coupled chains. Coupled MCMC chains as discussed earlier are
not a new MCMC method, but combining the idea with coarse and fine-scaling of the

chains is a relatively recent development, Higdon et al. (2002).

With the model described in Chapter 2, Section 2.3.6 in mind, an implementation
of coupled MCMC, with coarse and fine scale chains could take the form given below.
The notation will be as before, letting y be the observed count data, z represents the
latent variables and € the hyperparameters in the model. A tilde (eg ) above a variable
indicating that it is aggregate data or that it is a variable associated with the coarse chain.
The intended effect of the coupled MCMC algorithm is that the coarse chain mixes better;
then swapping information with the fine chain allows the fine chain to mix better as well.
The coupled MCMC algorithm proceeds as follows. Let C' be a coarsening operation, such
that

Cead=(8,... Bhf<n.

We have chosen C' to be a summation of counts within certain regions, see Section 5.4 for
details. Then the original and the coarse chain alternate (to some degree) between each
being updated with their usual MCMC proposals, to being updated letting their proposal

depending on the current value(s) of the other chain.

(z,0)0 M (2,0)® (z,00® M2 0@ ... (2,0
SMP
7,60 Y (7,6)@ 560® YU @00 ... (3§W

where N indicates the number of iterations, g o represents a regular MCMC iteration
and 4P represents a swapping of information between the two chains. The next thing

to consider is the order of updating or proposal for the parameters and how to propose

82



a swap between the chains. The order of updating the parameters is: first the latent
variables, then the #’s. In the case of the swapping proposals, all the parameters in both
chains are updated concurrently (i.e. Xi,..., X7 and the 6’s), and the proposals are made

in the same order as the standard MCMC updates.

5.2.1 Fine to Coarse Swapping Proposal

The swapping proposal kernel for the coarse-scale, generated from the fine is:

/ !

q((z,8) — (&,6)) = I[F' = C(z)] x I[¢' = h(6)]

or

.o !

a((z,0) > (&,0)) = I[§' = C(z)] x 7(8 |z, 7)

where I[.] is the indicator function and h() is some deterministic function. That is, the
proposal for Z is a deterministic function of z. In this case, we use the coarsening function
C on z to get a suitable proposal i, the Z are given the same location as their associated
j. The candidate value for 6, given the newly proposed # , could be generated from
some deterministic function of @ or could be simulated from its full conditional, under
the coarse posterior distribution. When choosing a function A(.) to propose g, it too
will reflect the degree of coarsening in the aggregate data. Depending on which of the
6"s is being proposed, h(.) may be an empirical guess or could be aided by the use of a
correlogram, see Chapter 2, Section 2.3.1. We have chosen the deterministic approach,
the selected h(#) is based on empirical observations, the value taken depends on both the
specific # parameter concerned and the coarse dataset involved. For example, for the 1 —2

coarsened dataset, the & = h(a) ~ 6a.
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5.2.2 Coarse to Fine Swapping Proposal

The proposal kernel that generates a fine-scale proposal from the coarse chain is more

problematic, and takes the form
q((z,0) — (z',0) =n(z'|0",2 = C(z)).n(0 |2, y),

where 61 is generated using some deterministic function of §. Then z’ is simulated such
that Cz’ = Z. z has a distribution with (n —n) degrees of freedom. Thus, if we generate

x;l_ﬁ from the marginal distribution of z, the remaining 7 values of z' can be found using

the coarsened data, like so:
xl_k = I — Zz;,where k indicates a region k, k = (1,...,7).

Hence, we have an z  with the desired distribution. Then either simulate 8’ from its
full conditional given 2’ or use an appropriate deterministic proposal function h(.), i.e.
the reciprocal of the function used in the fine to coarse proposal for 6. We have taken
h(0) = ¢, for a some constant ¢ that depends on the amount of aggregation used in the
coarse chain. The c is chosen from empirically observation, for example o = éd. The
non-swapping, MCMC updates can take any form, such as the blocking schemes described

in Chapter 4.

By exchanging information between the fine-scale parameter space and the coarse-scale
parameter space, this coupled chain has stationary distribution 7 (z,8|y) x #(, 0|7), i.e.
all T' spatial field are updated jointly. Then by taking the fine-scale realisations, we have
a chain with stationary distribution 7(z,6|y). Higdon et. al. (2002) proposed a similar

implementation to this for a Markov random field model, with univariate observations.

5.3 Investigation of Algorithms’ Properties

Some of the factors which affect the algorithm’s performance are:
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Data size;

Amount of correlation present in the data;

Levels of coarsening;

e Number of coarse chains;

Rate of swapping between coarse and fine scales;

Relative number of coarse and fine scale iterations;

Choice of h(#);

Size of [’s.

The idea is to evaluate the performance of the coupled MCMC algorithm under various
conditions, such as those listed above. Concerning the above factors, there are three which
we consider to be paramount in investigating the behaviour of the coupling algorithm:
coarsening, correlation and rate of swap. Each of these elements and the form of the

experiment as a whole, is elaborated upon below.

5.3.1 Latin Square Design

Blocking (in the sense of experimental design) in an experiment is a way to reduce residual
error, by removing the variability due to a known variable. Blocking was first introduced by
R.A.Fisher in the 1940’s during the experiments at Rothamsted, as a method to counteract
spatial variability. A Latin square is a particularly efficient block design. As the name
suggests, it is a square design. A Latin square for 3 factors each with p levels (a p x p Latin
square) is a square containing p rows, p columns and p? cells. Usually, the variables rows
and columns of the square are regarded as nuisance parameters, which may otherwise lead
to variability in assessing the effects of the variable of interest. The rows and columns of

the square are both orthogonal to the third factor. Table 5.1 gives an example of a Latin
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Variable (a)
Noaziable (W) | 3. 2. 3.4 D
1 P el L
2 BG DR
3 Ol A B
4 Ak R
5 B B0

Table 5.1: This is an example of a 5x5 Latin square, but there are many other possible

arrangements which could be used.

square design. Note, each of the variables needs to have the same number of levels, also,

each of the letters occurs once only in each row and column.

The statistical model for a Latin square with 3 factors is:

Yijk = i+ Ti + B + Mk + €ijk

where there is an underlying mean value of p, then 7;, 3; and 7y, represent the three factors
(for a three factor Latin square) at levels 4,j and k respectively and €;;, represents the
error. Using analysis of variance, an appropriate statistic to test the various hypothesis of
interest is an F-test, i.e. to test for a difference in effect between any levels of the factors.
One possible disadvantage of a Latin square design is it provides few degrees of freedom
for error in a small square, eg in a 3 x 3 square, there are 2 error degrees of freedom. So

replication of the square is desirable.

Given the number of factors and levels of each that we wish to investigate, the Latin
square is an appropriate and efficient experimental design to employ. The factors that
we have selected for investigation are those which we feel are most likely to influence the
behaviour of this type of coupling approach. The factors which we have chosen are: level
of coarsening applied to data, frequency of proposed swaps and amount of correlation

present in the data. Although correlation level in the data is not directly related to the

86



High Correlation | Medium Correlation | Low Correlation
Coarsening Level 1 swap 1 swap 2 swap 3
Coarsening Level 2 swap 2 swap 3 swap 1
Coarsening Level 3 swap 3 swap 1 swap 2

Table 5.2: The Latin Square design employed by the experiment.

process of coupling, it has proved to be an important factor in the blocking experiment
of Chapter 4. It also introduces the possibility of investigating possible interaction effects
between correlation levels in the data and the degree to which the data is coarsened. Each

of the factors will have three levels:
e Levels of correlation will be high, medium and low;
e Coarsening factors are 1 — 2,1 — 4 and 1 — 6;
e Swapping rates are 1 — 10,1 — 25 and 1 — 100.

The Latin square to investigate if these factors have an effect on the outcome of our MCMC
is given in Table 5.2. Our measurement of interest (or response) is effective sample size.
This Latin square allows us to examine if any of these variables significantly affect the

effective sample size. There are two further hypothesis which interest us, these being:
e Is there a relationship between correlation level and degree of coarsening?
e Is there a relationship between degree of coarsening and swapping rate?

To investigate these hypotheses, the model needs to be extended. The statistical model

for this is then given as:
Yijk = 1+ Ti + Bj + mk + (78)i5 + (Tn)ik + (BN)jk + €ijk

where p, 7;, 3j, Mk and € are as previously given. The (73)45, (7n)i and (8n);x represent

the interactions between the variables; coarsening-by-correlation, coarsening-by-swapping
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High Correlation | Medium Correlation | Low Correlation
Coarsening Level 1 swap 3 swap 1 swap 2
Coarsening Level 2 swap 1 swap 2 swap 3
Coarsening Level 3 swap 2 swap 3 swap 1

Table 5.3: A replicate Latin square to that of Table 5.2 to allow for examination of

interactions.
High Correlation | Medium Correlation | Low Correlation
Coarsening Level 1 swap 2 swap 3 swap 1
Coarsening Level 2 swap 3 swap 1 swap 2
Coarsening Level 3 swap 1 swap 2 swap 3

Table 5.4: A replicate Latin square to that of Table 5.2 and 5.3 to allow examination of

interactions.

and correlation-by-swapping respectively. To investigate this model, some further replica-
tion in the experiment is required. The replication needs to be chosen carefully, so as to
allow the interactions to be examined. The specifics of the replication for the additional

two replicate Latin squares is given in Tables 5.3 and 5.4.

5.4 Description of Data

To investigate the factors mentioned above, we have three datasets, which are simulated
to have the desired properties. Each dataset comprises of three response variables and
two latent processes. Level of correlation is the only factor in the experiment governed by

the data. The levels of correlation chosen for the three datasets are:
e High (a1 =5, az = 10);
e Medium (a; = 30 , ag = 40);

e Low (a; =50, ag = 100).
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Figure 5.1: Plot (a) shows the distribution of the fine points on the unit square. Plots
(b), (c) and (d) show the coarse points derived from the fine, in the ratio of 1-2, 1-4, 1-6

respectively.

where a; and ag are the levels of correlation associated with the first and second latent
variables respectively, for each of the three datasets. The values taken by [ are small,
but not small enough to cause difficulty with mixing such as that described in Chapter
4. Our experience with this model is that mixing performance is more sensitive to the
a; and hence its selection as a experimental factor. The data are randomly located on
a square map. There are many methods of generating spatial locations, some such as
the Strauss process would give a smoother, more even dispersal of locations (Mgller and

Waagerpetersen, 2003). The approach taken to produce coarsened data is as follows.

1. Taking the outermost locations of each side as the boundary of the area, then divide

this into regions of equal size.

e The number of regions will approximately relate to a factor of coarsening.
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e For example, when n = 100, coarsening by 4, we create a 5 x 5 grid and expect

=20,
2. Sum the Poisson counts within each region.

3. Use center point of each region as the location reference for coarse data.

Naturally, there are many alternative coarsenings.

5.5 Results

We have not directly compared our algorithm with the uncoupled alternatives. This is
because one can run the fine and coarse chains in parallel on separate processors, handing
over to one of the processors for swap moves. Thus the coupled algorithm run on two
processors, will be almost as fast as any single chain MCMC method on the fine chain
only. We have run the algorithm in sequence. Our expectation of the algorithm is that by
introducing a coarsened dataset (which we have coarsened by summing), its posterior will
be less “peaked”, although possibly still somewhat multimodal. Exchanging information
between the potentially less modal coarsened process and the ordinary process may thus

create better mixing in the latter.

For each experiment, the algorithm was run for 500, 000 iterations. The fine chains were
initialized to their true values, hence burn-in was generally not required. To check that
convergence was not an issue, a subset of the algorithms were run from various starting
values. Posterior bias was also considered, the same subset of algorithms were run on a
number of replicate datasets. These subsets were run for 100,000 iterations. The coarse
chain was run for 10, 000 iterations, allowing it to converge prior to beginning the coupling
algorithm. This assists in reducing the overall algorithm run time, as the coarse chain runs
substantially faster than the fine. Also, it is easier to choose suitable swapping proposals,

once both chains have reached convergence. The samples have been thinned to include
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every 100" iteration, so the actual sample size is 5,000 for the main experiment or 1,000
for the subset of checking algorithms. All the algorithms have been programmed in C and
run on UNIX machines. The algorithms take a comparable amount of time to run, taking
an average of 0.0632 sec/iter. The main source of variation in run time arises from the
number of other tasks assigned to the processor. In Chapter 4, Section 4.4 we detailed
a sample size experiment, where as the sample size increased, so too did the time per
iteration, but disporportionately and by a far greater amount than the sample size. Given
that this algorithm has the same underlying mechanism as the partial blocking algorithm
of Chapter 4, it would be affected in a similar way by increasing the sample size. We
would thus expect the time per iteration to increase substantially if the sample size were

increased.

The diagnostics used to monitor the results are as before: trace plots, histograms, au-
tocorrelation plots, kernel density plots and effective sample size (as defined in Chapter
3, Section 3.5.3). The visual diagnostics were all examined and all showed satisfactory
results. However, the effective sample size measure proves to be more useful in distin-
guishing differences within the results. Given the additional parameters involved in this
model and the large number of experiments, it would not be constructive to present all of
the plots or estimates. We have chosen a selection of trace plots to view general behaviour
of the algorithms. A concise but full representation of the results is given using main ef-
fects plots (Figures 5.4 - 5.7) and their associated p-values (Table 5.6). These diagnostics
use the response variable 7, i.e. where effective sample size = N/7, and N is number of
samples obtained. Further diagnostics such as the interaction plots are given in Appendix

5.1

Posterior bias Two replicate datasets have been produced with the same properties as

those of dataset 3, i.e. high levels of correlation, where a; = 5.0 and ag = 10.0. A subset
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of the algorithms has been run on these replicate datasets to check for posterior bias.
The subsets considered are the following combination of factors: coarsening level 1 with
swapping rate 1, coarsening level 1 with swapping rate 3, coarsening level 3 with swapping
rate 1 and coarsening level 3 with swapping rate 3. There appears to be very little bias
in the algorithms. Coarsening level 3 with either of the swapping rates exhibits a small
to negligible amount of bias in the 3 parameters. The mean and standard deviation are
given for a selection of the parameters for each of the runs and each of the algorithms in

Table 5.5, with traces for the a; parameter given in Figure 5.2.

Convergence To check the convergence properties of the algorithms, we have taken the
same subset of the algorithms as those mentioned with respect to the posterior bias check.
Each of the algorithms has been initialised from a number of different starting points,
while being run on the high correlation dataset (dataset 3) and its replicate datasets.
Each of the algorithms are run for 100, 000 iterations, keeping one in every 100 iterations.
All of the algorithms converge to the same values. The length of burn-in required was
minimal. Given the large number of parameters involved, we have selected the trace plots
of a to give an indication of the behaviour of the algorithms, see Figure 5.2. Since the
model is invariant to relabelling, results for each of the two fields and their associated
parameters should be the same if the algorithm has converged, e.g. (311 and ;2 should
be the same and so on. Looking at each of Figures 5.5-5.7 in turn, we see that the 3
parameters associated with the latent fields (274 and 3" plot in each figure) are broadly

the same, except for Figure 5.5, where there appears to be some difference.

Acceptance rates The acceptance probabilities for the parameters are similar for all
of the algorithms. The a; and ay have an acceptance rates in the region of 0.42 — 0.58,
the (’s which are all updated together have an accept rate between 0.13 — 0.18 and the

latent variables have an acceptance rates of 0.78 — 0.87. So, the acceptance rates for each
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of the parameters is quite reasonable. There is also the proposed swaps between coarse
and fine chain, the acceptance rates for these vary. For a proposed swap of 1 in 10 the
acceptance rate was 0.00016 — 0.00022, for a proposed swap of 1 in 25 the acceptance
rate was 0.0004 — 0.0005 and for a proposed swap of 1 in 100 the acceptance rate was
0.001 — 0.0016. These actual number of swaps between the coarse and fine algorithms
works out at 8 — 11, 8 — 10 and 5 — 8 for proposed rates of 1 in 10, 1 in 25 and 1 in 100

respectively.

For ease of notation we use the terms [, ..., 39 to represent (19, 511, (12, 520, P21, B22,

B30, 331, (32 respectively for graphs and tables in this section and its associated appendix.

5.5.1 Degree of Coarsening

The level of coarsening appears to be a significant factor, as indicated by the p-values from
an analysis of variance test. Specifically, the effective sample size for the 3 parameters
is affected by the degree of coarsening imposed. This is not so much the case for the 6
parameters; even viewing early trace and autocorrelation plots, the § parameters would
appear much less impacted by change. From the main effects plots given in Figures 5.5,
5.6 and 5.7, it can be seen that generally levels 1 and 3 provide better results than level 2,
in terms of the ESS values for the ’s. This is complicated somewhat by the fact that the
level of coarsening strongly interacts with correlation level, as seen by the relevant plots
shown in Appendix B.1 and confirmed by the p-values given in Table 5.6. The opposite is

more or less the case for the 6’s, but it is not significant in terms of its p-value.

5.5.2 Level of Correlation

Correlation did not appear to have a significant effect on the effective sample size for
the 3’s, but from observed significance levels the #’s would appear to be somewhat more

sensitive to the level of correlation present in the data. This may also be the most likely
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Figure 5.2: These are trace plots of the a; variable with various initializing values for two
levels or coarsening and two rates of swapping, i.e. level 1 and swap 1, level 1 and swap
3, level 3 and swap 1, level 3 and swap 3. They are run on dataset3 (high correlation)
and two additional replicate datasets with the same parameterizations. The results for
the coarse level 1 and swap 1 are given in top left, coarse level 1, swap 3 are top right,

coarse level 3, swap 1 are bottom left and coarse level 3, swap 3 are bottom right.
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Figure 5.3: These are trace plots of some parameters for runs on the dataset with corre-
lation level 2 and varying levels of coarsening and proposed swaps. The a parameters are
on the right-handside and some (3 parameters are on the left-handside. The top two rows
are from coarsening 1, swap 1, the middle two rows are from coarsening 2, swap 2 and the

last two rows are from coarsening 3, swap 3.
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Model

Dataset 3

Parameters | Algorithm || True | Run 1 (4,0) | Run 2 (4,0) | Run 3(y,0)
o, C1,51 (4.98,4.04) | (5.04,3.98) | (4.83,4.10)
C1,83 | 50 | (5.02,4.49) | (5.00,3.87) | (5.09,4.19)

C3,51 (5.12,4.83) | (4.96,4.06) | (4.99,3.10)

3,53 (4.99,5.32) | (5.01,5.16) | (5.01,6.30)

b CLS1 (10.33,4.35) | (9.35,3.93) | (9.67,4.62)
C1,83 | 100 | (9.684.61) | (9.77,3.17) | (10.05,3.57)

03,51 (9.45,3.94) | (9.86,4.47) | (10.31,5.09)

3,3 (10.25,4.64) | (9.66,7.97) | (10.43,4.79)

B C1,51 (1.45,0.09) | (1.49,0.05) | (1.53,0.04)
CL,S3 | 1.5 | (1.43,0.05) | (1.54,0.07) | (1.58,0.03)

3,51 (1.62,0.15) | (1.61,0.17) | (1.62,0.13)

3,53 (1.42,0.15) | (1.61,0.14) | (1.47,0.18)

5, C1,51 (2.59,0.00) | (2.58,0.07) | (2.42,0.0)
CLS3 | 25 | (243,0.03) | (2.54,0.07) | (2.54,0.06)

3,51 (2.52,0.05) | (2.58,0.07) | (2.62,0.08)

3,93 (2.62,0.05) | (2.51,0.03) | (2.63,0.07)

B C1,81 (3.59,0.00) | (3.52,0.04) | (3.47,0.05)
C1,83 | 35 | (3.43,0.05) | (3.74,0.12) | (3.54,0.07)

3,51 (3.62,0.10) | (3.71,0.07) | (3.52,0.08)

3,53 (3.52,0.12) | (3.61,0.11) | (3.52,0.08)

B CL,S1 (1.59,0.00) | (1.48,0.06) | (1.62,0.08)
C1,83 | 1.5 | (1.53,0.04) | (1.64,0.07) | (1.44,0.07)

3,51 (1.62,0.15) | (1.51,0.17) | (1.52,0.18)

03,53 (1.52,0.09) | (1.61,0.12) | (1.52,0.13)

Bo C1,51 (359,0.10) | (3.48,0.12) | (3.62,0.15)
C1,83 | 35 | (3.49,0.09) | (3.64,0.12) | (3.51,0.14)

3,51 (3.52,0.15) | (3.61,0.19) | (3.55,0.18)

3,53 (3.52,0.23) | (3.71,0.21) | (3.52,0.18)

the less biased the estimate.
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Table 5.5: These are the means and standard deviations for a selection of the parameters
in the model, run on a combination of coarse level 1 and 3 and proposed swap rate 1 and
3 and for each of the replications of dataset 3. C1,S3 indicates coarse level 1 and proposed
swapping rate 3, the other abbreviations in the table are constructed in the same way.

Also given is the true parameter values for the model, the closer the mean is to this value




place to find an effect with correlation, as « is the variable which is used to control
correlation in the data or to explain the correlation in the data. This is also consistent
with the results found in Chapter 4, i.e. the a parameter was the most sensitive to
correlation levels. Although it is not significant, as a broad observation, correlation level 2
did appear to generate the best mixing properties. Also, as already mentioned in Section
5.5.1, there is an interaction between the amount of correlation present in the dataset and
the degree to which the coarse chain is aggregated. This reflects the non-linear relationship
between correlation and aggregation in the data. The other possible interaction here is
the level of correlation with the rate of proposed swaps between chains. This interaction
does not have a particularly intuitive interpretation, thus it is not of immense interest,

and conveniently it is not at all significant.

5.5.3 Rate of Proposed Swapping

The proposed rate of swapping between chains does not appear to be significant for either
the ’s or the §’s. There was however a significant (or close to significant) interaction effect,
between the proposed rate of swapping and the level of coarsening for the 6 parameters,

see Table 5.6.

5.5.4 Interaction: Degree of Coarsening by Level of Correlation

The main observations here (wrt the 3 parameters) are that level 2 coarsening generally
gives the poorest performance, but there is an interaction, whereby at correlation level 2 it
performs best or at least comparably to the other coarse levels, see Appendix B. That is,
at a medium level of coarsening (1 —4) and with a medium level of correlation in the data,
we get the best results. Generally, coarsening 1 behaves better than coarsening level 3, but
there is also some interaction here. With regard to the €’s, these again are not actually
significantly affected, see Table 5.6, but it is observed that coarsening 1 and 2 behave

similarly, i.e. both behave best at correlation level 2, where as coarsening 3 behaves worst
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Variable || Coarsening | Correlation | Swap | Coarsening | Coarsening | Correlation
x Correlation x Swap x Swap
a1 0.174 0.005 0.837 0.480 0.088 0.156
a9 0.115 0.104 0.201 0.725 0.055 0.092
51 0.004 0.200 0.492 0.054 0.424 0.383
B2 0.019 0.795 0.370 0.774 0.679 0.833
B3 0.328 0.961 0.889 0.861 0.805 0.596
Ba 0.017 0.140 0.151 0.026 0.529 0.646
Bs 0.007 0.038 0.055 0.013 0.210 0.094
B 0.182 0.082 0.253 0.051 0.219 0.423
Br 0.030 0.152 0.127 0.065 0.209 0.894
B 0.063 0.324 0.317 0.101 0.482 0.917
B 0.082 0.202 0.150 0.145 0.239 0.935

Table 5.6: The p-values for the effective sample size of each of the main parameters in the

model, given the factors of interest and their interactions.

at correlation 2.

5.5.5 Interaction: Rate of Proposed Swapping by Degree of Coarsening

With respect to the €’s, level 1 and 2 coarsening behave best or comparably at swapping
rate 2, whereas level 3 coarsening sees its worst results at swapping level 2, see Appendix
B. However, given that neither coarsening level or swapping rate have shown themselves
to be significant for the #’s, this observation has little bearing on the findings, see Table

5.6.

5.5.6 Interaction: Rate of Proposed Swapping by Level of Correlation

There was no significant interaction effect present between the level of correlation in the
dataset and the proposed rate of swapping between coarse and fine chains for either the 6

or (3 parameters, see Table 5.6.
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Figure 5.4: These are main effects plot with 7 as the response variable, i.e. they show the
maximum likelihood estimates of 7, where ess = N/7 and N is sample size. The smaller
the 7 value the better the estimate. The plots are for the # parameters, i.e. a; on the
left-hand side and ay on the right-hand side. Positions 1,2 and 3 on each of the graphs
indicate increasing levels of coarsening or proposed rate of swap and decreasing levels of

correlation.
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Figure 5.5: These are main effects plot with 7 as the response variable, i.e. they show
the maximum likelihood estimates of 7, where ess =
smaller the 7 value the better the estimate. The plots are for the 3 parameters, i.e. 3; on
top, B2 in the middle and (33 on the bottom. Positions 1,2 and 3 on each of the graphs
indicate increasing levels of coarsening or proposed rate of swap and decreasing levels of

correlation.
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Figure 5.6: These are main effects plot with 7 as the response variable, i.e. they show
the maximum likelihood estimates of 7, where ess = N/7 and N is sample size. The
smaller the 7 value the better the estimate. The plots are for the 3 parameters, i.e. 34 on
top, s in the middle and (s on the bottom. Positions 1,2 and 3 on each of the graphs
indicate increasing levels of coarsening or proposed rate of swap and decreasing levels of

correlation.
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the maximum likelihood estimates of 7, where ess
smaller the 7 value the better the estimate. The plots are for the 3 parameters, i.e. 37 on
top, (s in the middle and 9 on the bottom. Positions 1,2 and 3 on each of the graphs
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correlation.

Main Effects Plot - Data Means for beta7

Corr

L RWED

Main Effects Plot - Data Means for beta8

/

/

SIS A Bt R0 50

Corr

SOTIENGED L S

Main Effects Plot - Data Means for beta9

AL e

Corr

102

8 LIRS U LTS O S OSE

o

R

N/t and N is sample size. The




5.6 Conclusions

Coarsening [t is difficult to draw exceptionally clear conclusions from the results. In
theory, we would have expected improved mixing properties as the level of coarsening in
the data increased. One reason for a diminished effect or a confusing result may be that
the relationship between correlation in the coarse data relative to the fine data is different
for each dataset, therefore the effect of coarsening is not linear for different correlations.
If this association is not linear, then the effective sample size may not be a linear function
of the coarsening either. Also, there may be a kind of trade-off for increased aggregation,
where the coarser the data the better the mixing, but also the less relevant or related it

may be to the fine data.

Correlation Correlation has not shown itself to be of significance. This is not too
surprising, as the blocking scheme with Rue’s approximation would have eliminated many
of the mixing problems due to correlation. There was interaction with coarsening level,
which again may relate to the non-linear relationship between these two variables. Also,
at level 3 correlation (the lowest level), the data is very close to being iid in nature, so
one would not expect to see an effect from the coupling. That is to say, when there is no

correlation in the data, then coarsening will have no effect.

Swapping Rate of proposed swapping between the fine scale and the coarse scale chain
did not appear to have an effect. The reason for this is that, the proposed rate of swap
and the actual rate of swap are different. The actual rate of swapping has remained
approximately the same (adjusted itself to being almost constant) within the series of
experiments, that is, the rate of swaps would be the same for each experiment and thus

not a real factor.
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Additional observations Whether significant or not, from inspection of the main ef-
fects and interaction plots (see Figures 5.5 - 5.7 and Appendix B.1), the 6’s generally
behave best in the situations where the 3’s struggled most and vice versa. A possible
explanation for this may be, that if the #’s are mixing or moving very efficiently, the (3’s
in some sense may be finding it difficult to “keep up” and similarly when the situation is
reversed. The (’s are updated in a block and so exhibit very similar behaviour to each

other; as is the case for the #; and 65.
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Chapter 6

Summary and Conclusions

6.1 Summary of Blocking Algorithm

The performance of an MCMC method for implementing Bayesian inference for a univari-
ate spatial Poisson model has been examined. The data that the model are applied to
utilizes a latent Gaussian field. The MCMC method presented is a blocking scheme, which
also introduced a proposal for the latent variables (X;), using a Gaussian approximation
of the full conditional of the X;’s. This proposal allows very favourable acceptance proba-
bilities for the X;’s. Two versions of the method are compared with a standard algorithm
on various datasets. Evaluation of its performance is with respect to mixing and measured
by effective sample size. Levels of correlation in the datasets appear to substantially affect

the output.

6.2 Summary of Coupling Algorithm

A new MCMC method is introduced, primarily based on a coupling technique. This
method utilises data with varying levels of resolution. The model upon which the MCMC
method is applied is a multivariate spatial Poisson model, which incorporates a number

of latent Gaussian fields. The data is spatial, but now has a number of responses at each
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location.

The MCMC method utilises the benefits of aggregating data without loss of information.
There are two phases to the algorithm; a standard MCMC mode, which is quite similar to
the previously investigated algorithm, and a swapping mode, which attempts to exchange
information between the aggregated and fine Markov chains. The method is examined
under a number of circumstances which would be expected to effect its performance. The

experiment is carried out using a Latin square design.

6.3 Conclusions

Time is a constraint in running MCMC algorithms, and is a motivation for improving
their efficiency. For the blocking algorithm, the time taken per iteration on the size of
dataset considered is substantially less than that of a corresponding sequential approach.
Efficiency with respect to mixing is also significantly improved using the blocking scheme.
The approximation used in the latent variable proposal contributes to this efficiency, but

is time consuming to program initially.

The combination of the coupling and blocking has been seen to resolve many of the asso-
ciated difficulties when we move to the more complex multivariate count model. Blocking
also improves mixing in the multivariate model. We have tried to further improve mixing
by running coupled chains. The performance of the coupling as a function of various fac-
tors was investigated. However, the relationship between the factors involved is not always
straight-forward or even intuitive. Factors have an effect, but it is complex and almost
certainly problem dependent. The degree of aggregation applied was the main influencing
factor. Aggregation appeared to have a non-linear relationship with the level of correlation
present in the data, which manifest itself correspondingly with the measure of efficiency.

The effect of aggregating data has long been one of interest, and would certainly lend itself
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to further investigation within this framework.

6.4 Further Work

There are many elements of the MCMC algorithms which have been presented that could

be extended or further investigated, a few of these are described below.

6.4.1 Parallel Algorithm

The current structure of the coupling algorithm is a fine MCMC chain run for a number of
iterations, followed by a coarsened chain running for the same number of iteration. This
structure lends itself entirely to a parallel program rather than the present sequential one.
If the program was parallelised, the most obvious difference would be in its run time.
Such a coupled algorithm would not be much slower than a simple non-coupled MCMC
approach in terms of iterations/sec. It would also become much easier to change or control

many of the other elements of the algorithm.

One possibility would be that there could be any number of chains run in parallel, with
different levels of aggregation. This would allow a much more sophisticated exchange of
information. It would also eliminate some very convoluted notation currently used in the
coding of the coupling algorithm. Also, the more aggregated the dataset, the faster its
cycle time. This may or may not be of advantage because of the trade-off between speed
and relevance to the fine chain. If it were favourable for the more aggregated chains to be
run for longer, then a parallel environment would be advantageous, and conversely there

would be no drawback.

6.4.2 Other Factors

There are many other factors which are likely to effect the performance of the coupling

algorithm and hence would be desirable to examine. MCMC algorithms can be sensitive
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to data size, but specific to the coupling algorithm would be the number of chains, the

relative number of chain iterations between swaps and choice of proposals for swaps (h(6)).

6.4.3 Swapping Rate

One of the difficulties encountered during the coupling experiment was that the proposed
swapping rate did not appear to have an effect. Effectively the accept rates for the proposed
swaps neutralised swapping as a factor, i.e. swapping was constant regardless of the
proposed swap rate. Pursuing this factor and establishing its real effect, especially its

relationship with aggregation level, would be of interest.

6.4.4 Other Algorithms

Although we have already seen that in many circumstances the blocking algorithm out-
performs other standard algorithms, it may be worthwhile comparing the coupling method
to other such algorithms. In particular, it may be useful to compare the coupling algorithm

with the blocking algorithm, for a number of datasets with varying degrees of correlation.

6.4.5 More Complex Models

There is the possibility of increasing the number of latent processes, which may lend itself
to better modeling of the response variables. There could also be a more sophisticated
correlation structure used in the model, to more accurately describe the relationship with

the data.
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Appendix A

Acceptance Probabilities

A.1 Univariate Count Model Accept Probabilities

Let P(.) denote an accept probability, 7(.) and (.|.) denote marginal and conditional
distributions respectively and ¢(.|.) denote a proposal distribution. Let y = (y1,...,¥n)
be the observed values, y; being observed at location s;, where i = 1,...,n and Y; be
Poisson distributed with mean \; = exp(8 + z;). The X;’s are multivariate normal with
covariance matrix £(6), § = (a,0?,§), which has a structure as described in Chapter 2,

Section 2.3.5.

A.1.1 Sequential Algorithm

In the sequential algorithm described in Chapter 4, Section 4.1.1, 3 is updated first, then
a,0?,6 and each of the X;’s, to be consistent we give the acceptance probabilities for each

of the parameters in accordance with the ordering of that in the main text.

Accept for 3 The accept probability for 3 is given as:

©(810,z,y)a(B18) _ 7(Blz,y)a(8I5)

POD) = 2 @0,2.9a818) ~ 7(Ble.v)aB1B)
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Then

7(B|z,y) x 7(y|z, B)7(B), by Bayes Theorem,

SO
(8 |z,y)7 (8 )q(BIB)
m(Blz,y)m(B)a(B'18)

Given that the same uniform prior is used, 7(3') and 7(3) do not appear in the probability.

Pig .8) =

Details of the range for this prior are given in Chapter 2, Section 2.3.5. The proposal prob-

ability g(.|.) is an additive random walk, so this further reduces the acceptance probability

50
/ i W(;Bllxa y)
P(ﬂ?ﬂ)— '/T(ﬂll',y)’
where ;
: n [ exp(ef +*)exp ((B + zi)us
n(61z9) =] (— y,,( )) .
i=1 L

For ease of calculation and notation, we have used and will give the log accept probability:

n

logP(8,8) = Y (— exp(8' + @) + exp(8 + ) + By — B )

i=1
Alternatives to the above proposal probability are an independent Gaussian proposal that

approximates 7(f3|z,y) at the modes.

Accept for 6 Similarly for 6, where o, 0? and § are updated individually using random
walk proposals and flat priors, details of these priors are given in Chapter 2, Section 2.3.5.

Given the posterior distribution for 6:
m(0|lz) < w(z|0)m(6)

1
x |E|_% exp (—ExTZ—lx)

The log accepts for a,0? and § are then given by:

1 ' § 1 ’
logP(.) = 5 (log|%| — log|Z'[) + 5(acT gy el g
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where

¥ o= a2exp(—(aldij)5)
or alQexp(—(adij)‘s)

/

or o%exp(~(ady)®)
for P(a',a), P(c'2,02) and P(§',6) respectively, and £ = o exp(—(ad;;)?).

Accept for X; Lastly the acceptance probability for the latent values (X;’s), each of

which is updated individually is given by:

7 (z;|z_i0)m (yi|z;8)m(0)m(B)q(xi|z;)

Pl m) = e OB O)r (B)a(a )

where ' = Sy, . ,x;, vayn) N X; . A proposal for X; is generated from the conditional
univariate Gaussian — MVN(u;_;, X;—;), where the conditional mean and variance are
calculated using p;—; = X; — Z;_; (2?21((2‘1),~ij)) and ¥;_; = o:_—liﬁ respectively,
see Whittaker (1990) for details of these formulae. The posterior distribution for X; is
then given by:

1 1
m(zi|r—i0) = —F— exp <——xT2_1a:>
T e e 2

and
exp(— )

r(wilaif) = ZES

Given that the proposal for X; is its conditional distribution, the proposal probabilities and
the conditional Gaussian part of the posterior will cancel within the acceptance calculation.

The log of the acceptance probability then reduces to:
logP(z;, z:) = (Ai — yiloghs) — (/\; - yilog’\;)

where )\; is as defined earlier.
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The computational cost for this method will be: low for the update of the 3’s, as this is
just a vector multiplication; quite high for the €’s, i.e. there will be a matrix inversion for
a, o and J; the z;’s are updated using one matrix inversion and some matrix multiplication

between them, so a little less computationally intensive than the 6’s.

A.1.2 Partial-Block Algorithm

These are the accept probabilities for the MCMC procedure of Chapter 4, Section 4.1.2.

Accept for X They are given in the form of their log accept probabilities for conve-
nience. There is much cancellation in the accept probability for the latent variables, after
which the below accept probability is arrived at:

1 7 1 1.y Pl

3% Cz - 32 Cz+B'z —B :1:+Zexp(,3+xi)

=1

logP(z ,z) =

n
' 1 1 '
- exp(B + ;) — 5108|2_1 +Cl+ 5108|2_1 gt of

i=1

+3 =B (" +0) - B) - 5y~ B (S + )y - B),

where C' = exp? diag(C{, e ,C,',), B = expﬂ(B;, L B;l). These are found by solving:

& ’ / z:‘+A
(4. B,C)) = argmin| [

Finet

! / j ’
A

= arg min /Tﬁ: exp(2z;) + A2 + B’z? + %C’?m? — 2A; exp(z;)
z
—2B;z; exp(x;) — C;z? exp(;) + 2A;B;z; + A;Cix? + B;C;z? dx;
= arg min %exp(2xi) + A% %B;Zz? + 5}60’{%? - 2A; exp(z;) + A;B;:rf
%A;C;xf' + -LliB,'-C;a:‘f — 2B; exp(zi)(zi — 1) — C; exp(z;)(x? — 2z; + 2) |i:tﬁ

My

-

Setting this equation equal to zero and differentiating with respect to A;, B; and Cj,

then solving the resulting series of simultaneous equations gives the required minimised
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values for A;, B; and C;. Only B; and C; are used in the proposal of :1:; and appear in
the acceptance probability. The A parameter relates to the size of proposed movement

between z and z . .

Accept for 3
n

logP(8', 8) = (exp(8) — exp(4)) Zexp z)+ B8 -8 u,

i=1

Accept for 6

4 1 i /
logP (0 ,6) = 3 (—a:TE e+ 2T8 1z — log|T | + 10g|2|)

where &' = o2 exp(—(a’d,-j)‘sl). The log accept probabilities for the 3’s and 8’s given, use
independent random walk proposals and uniform priors, see Chapter 2, Section 2.3.5 for

details.
A.1.3 Total-Block Algorithm

The accept probability for the MCMC algorithm of Chapter 4, Section 4.1.3 is:

/

m(ylz'8)m (2|0 )m(B )7 (6 )q(z|z")q(BI8 )q(6]6")

P(z,B,0y,z,8,0) = m(y|lzB)m(z]0)m(B)m(0)q(z’|z)q(8'|8)a(6'16)

where
w8 450 exp(g] + o
y;!

n(yle’,8) =
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and

1 ’ ! / ’
g(z'|z) o« exp (—533 T 1+C)z +(y+B)z )

1_1 l
1 / 4 / ’
%= lz—ic—P exp (—533 TE-1+0)z +(y-B)'z )

21?2

i (%(y ~BT(S +0) (g - B)) |

Given that 7(/3) and 7(6) are flat priors (see Chapter 2, Section 2.3.5 for details of their
ranges), and the proposal functions ¢(43'|3) and q(6'|6) are random walks, these values will

cancel out in the overall calculation. The log accept probability is then given as:
log(P(z', 4,0 |y,z,B3,0)) = : (_1og|z:'| +loglS| =& T8 s ¥ xTE”lm)

+Z (exp B+ z;) — exp(8 + 371)) o Z (yz B +x;) — y(B + Iz‘))

=1

+%( loglx ! + C| + 2’ (}3_1+C)x)
%( logl=~! +C'| +x (2—1+C')x)
+5(6-B7E" 40 w-B) - w- B
-5 (6-BY "+ )@= B)) + - Bz

With some cancellation, this reduces to:

/ /4 / 1 /
log(P(«,,6'ly,2,8,0)) = 3 (—logl='| +log|=])

% Z (exp(ﬂ +x;) —exp(B + ;) + yi(B — ﬁ))

i=1

+% (~logl="1C +log|=™ + C'| + 2TCx' — 27 C'z)
1 / /

+; (6-B7E +0) - B)) +BTx
1 ’ 6 Ll ’ ’

-5 (5-BY' (= +C) 'y~ B)) - BTx.
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A.2 Multivariate Count Model Accept Probabilities

Let yij = y;(s1),...,y;(sn) be Poisson distributed, with means exp(J;;), observed at loca-
tions s; = (81,...,8n). Then define A;; to be Bjo + Zthl Bjtxit using t to index the latent
variables z;, for t = 1,...,T. Also, z; ~ MV N(0,%;) with X;(i,j) = o exp(—a.d(i, j))
for o? = 1 and d(i, j) is the distance between locations s; and s;. The accept probabilities
for the multivariate latent Gaussian model described above and used in Chapter 5 are
given below. Depending on the cycle of the program, the accept probability being calcu-
lated will take one of two forms, that of a block update for the model described or that of
a swapping update. The calculation involved in the latter is substantially more complex.
We shall give the accept probabilities for the block update applied to the fine and coarse
chains first. Details of updating order and the algorithm as a whole are found in Chapter

5, Section 5.2.

A.2.1 Blocking

Accept for X; Each latent variable X; = (214,...,2,¢) is updated by conditioning on

the other T'— 1 latent variables. The accept probability for each of the latent variables is:

it it m(zg|z—)g(24|7,)
P(z;,zt) = min (1, w(lex_t)q(xglmz))

where
n(xy)as) o< w(ylzy, B)m (s |6s)m(B)m(6y).

The full conditional for y is:

j=11i=1 I=1

Yij
log(7 (y|z¢, B) Z Z l exp(B(; _y) + Bjexit) + (B(j—¢) + Bjeit)yij — Zlogf}

and

1 1 b
log(m(x¢|0)) = —§log|2t| - Emfﬂt 12,.

115



The full conditional of z; is:

¥ n

log (m(z¢|y, B,64)) Z Z [( G-ty + ﬂgt%t) Yji — €Xp (ﬁz},_t) i Bjtxt)] —% (x{Z[lxt) .

3=11i=1
for :3(*]',- 5y = (ﬂjo + ZZZI B(j’_t)m(i,_t)> , where z_; denotes vector z without component
t,ie. -t=(1,...,t—1,t+1,...,T). The z;’s are proposed from their full conditional
distribution, using the approximation exp(8;:z;) ~ A; + B;j(Bjixt) + %Cj(ﬂjtl't)2, and

solving for A, B,C as described in Section A.1.2. So X; is proposed from

r

1 C* S *
log(m(z:(8,6:)) = Z [__xt (Zi' + Gz + Z (yi5 — Bj:) Bitit |
g=1 i=1

where

o Cj; = exp(f; _y))diagC;;

o B = apiOn 00

Then
s n ’
logP(zy,zt) = Z [ﬂjtyzj (zit — it) » exP(:B(*j,_t)) exp(Bjtzit — ﬁjtmit)}
7=1 =1
1 ’ /
1 d ' !
Tk ( log|Q:| + log|Qy| + z," Qe — 2 tmt) Z (b“'Txit i ng“)
i
where
« Q=% (57 +C;8) and Q) = Thy (57 - CjiBl);

® by = Z;;l(yij o B;t)ﬂjt and b;i 5= Z;~=1(yz’j B B;‘;)ﬁjt'

With some cancellation this reduces to:
i /4 n
logP(zy,20) = 33 [exp(8;-1)) (exp(Biewly) — exp(Biewar)) |
j=1i=1

1 / o i
+3 (~1ogl@d] +loglQ;] + b7 Q7 b — 57 Qb

+(BBje) Ty — (BB Tz — 2,7 (ChB83), + 27 (Cj B3yt
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Accept for § The accept probabilities for the 8 and # parameters are very similar to
those for Chapter 4, Section 4.1.2. The (’s are all updated together, using random walk
proposals and a normal priors. The priors for the 3’s are given as:
il ke N
1 e (Br ~2ﬂr) ’
V2o, 207

where i, and G2 are the sample mean and variance of log(Y;). This is like an empirical

™(Br) =

Bayes approach. The variance of 3 should be small relative to 2 as it is the mean of the
log(X;). We also find that this improves the convergence for 3 over using a less informative
prior. The log-accept probability is then given as:

i
logP (8, B) Z Z ([3;0 ﬂ]o) Yij + (Z(ﬁjt o ,B;t)xit) Yij + exp (ﬂ;o Ao ,B;tafit)

j=1li=1 t=1

T
—exp </Uj0 +y° 5jt$it) o % (Z(ﬂ;t — fig)? — (Bje - ﬂj)z) :
t=1 j

t=0
Accept for 6; The 6,’s are updated separately using random walk proposal kernels and

a uniform prior:
1
Oy — 0,

m(0:) =

where the range for the uniform prior is (61,60y) = (0,500). The range for the 6, priors is
quite large and in practice their values fall well within them. In some circumstances, one
may have a priori information that could lead to a more informative prior. The log-accepts

for the 6;’s are then given as:

logP(6,,0,) = (log|9t|—log|9t|+:ct9 Lo, — 270, a)

DO =

where 6, is taken to mean o7 exp(—a;d; ;) and o2 = 1.

A.2.2 Swap Between Coarse And Fine Chains

The proposal for the coarse chain and the fine chain is created by swapping their values.

All of the values are proposed together. Notationally, the coarse chain parameters are
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differentiated from the fine chain parameters by use of a tilde over the parameter (eg Z).

The accept probability for this proposed swap of information is detailed below. Let
9((z,0,,6),(%,6,7,6)) = q((=,0), (&,0)) x a((&,0), («,6)),

where ¢((z,6), (Z',0')) generates a coarse scale proposal (Z',6') from the current fine scale
state (z,6). Similarly, the kernel q((Z,8), (z',0')) generates a fine scale proposal (z,6’)
from the current coarse scale state (Z,). Then denoting the posterior distributions for

the coarse and fine chains as:

m(z,0ly) = m(y|lz)w (x|, ) (B)=(6)

and

The accept probability can then be written as:

/ ’ ’ ! ~

P(z,6,%,0§,%,0,y,2,0) =

0 )@, 819) x a((2,6,3,0), 30,5, 6))
dl5)m(,6ly) % a((«,¥ ,az',e'),(f:,e,x,f)))

(z,
#(&,
The proposal distributions ¢ are all deterministic except for the proposal of the fine latent
Gaussians from the coarse latent Gaussians, i.e. ¢(#,z ). The latent variables z are
generated from the marginal distribution x(z'|61), subject to the constraint that Cz = Z,
where 01 is a deterministic function of . This is achieved by first generating (n — 7) z'’s
from the 7r(x' |67), where 7 is the number of coarse locations, then producing the remaining
i  values such that

5

-3 s

=1

where [ indexes the fine values in each section of the coarse grid. This satisfies the con-

straint Cz' = &. Also, the z’s are proposed using the usual approximation within the

marginal distribution, i.e. exp(Bjiz:) & A;j + B;(Bjex¢) + 3C;(Bjeze)?.

118




Given that the entire update for both the coarse and fine chains is done in one step,
the accept probability is then derived as follows:

Yij

log(m(y|z B)) ZZ —exp(B;_yy + Byemir) + (B _py + Byei)yis — Y logf

j=1i=1 f=1

T
log(m Z (——longI | — —xt Ek—lx;>

t=1
T

log(m(8)) =Y [—-;-log(%r&j) - 5% ( (B¢ - ﬁj)2)}
t=0

j=1 J

NG

log(m(6)) = —log(fu — 0L).
The B* parameter is as given in the previous section, as are &]2- and fi;. The probability
distributions will take the same form for the coarse chain, and are indicated as such using
a tilde. Then proposing x; from its full conditional and using the approximation given in
the previous section, the proposal probabilities are as follows:

- 111

t=1 j=1

xexp< ; (ET L3O ft> )

X exp ((yz'jﬂjt - B},B;r)" »’C;t)

X exp (% (v — B3)" (2171 +. 3, ?t) (v3B5e — Bﬁﬂjt))

|z* 43 ftlé

and

'* 2|1
o) = T

t=1j=1 (2m)>
X exp (—Exlt (2 + C' ﬁjz-t) Iz‘t)
. 7
X exp ((yi]ﬂjt - Bj:ﬂjt) xit)
X exp <% (yijﬁjt = B;:>T <2t—1 2 C;?ﬂ?,:) i (yijﬂjt o B;-*t‘,@jt)) y
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where

/

e (= exp(ﬂ(“j’_t))diag(CU, ¢y Ond)red C’;;‘ % exp(ﬁZ‘j’_t))diag(C’;j, ISR i

’

* B}, = exp(ﬁ&_t))(Blj, ..+, Bnj) and B;, = exp(ﬂz‘j’_t))(Bij)y .+ Brg).

Note that for the g(.|.)’s just given above, i = (1,2,...,n —n). To avoid confusion, let us
use 1 to denote the reduced i index of the proposal function. Also, the order of the i index
does not correspond to that of the original ¢ index. The remaining 7 latent values are
generated deterministically, to fulfil the linear constraint Cz' = % as mentioned earlier.

Then using the log of the proposal probabilities and reducing the notation by letting:
o Q=0 (B 400 ) and G =30, (1S Clots
o bui =5 1(vij — B)Bje and by = 71 (vij — Bji)Bie.

The proposal kernels for the #’s and #’s are random walk proposals, so log(q(ﬂw/) —
q(8'18)) = 1 and log(q(6t|6') — q(#'|6")) = 1. Another possibility is to use the conditional
distribution of the field, i.e. conditional on the other z;, rather than the marginal as we

have used here.
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The part of the log acceptance probability associated with the fine chain, using a pro-

posal from the current coarse can then be written as:

Lt = ann s A ﬂ-(y|x/ndl)7r(xl|6/aﬁ,)'ﬂ(ﬂ,)ﬂ'(gl)Q(i‘feT‘I/ael)
CEPE IS0 = T Gla, ByrCele, AP B, )

Z Zexp (:8(] L ,Bgtl'zt) — €xp (5(_1 e ﬁ;t%t)

J=1 i=1

A (5(;',4) + 5jtf’7z‘t) Yij — (B(*j,—t) g 5J't$it> Yij

Lie . 8 = \2
+ 523 > (B — i3)* — (Bje — iis)

J \t=0

3
1 ’ 1 ’ Ja: / s
+ Z (—5 (log|2t| - log|2t|) Ty (%?Et 'z — 2% 15”#))

t=1

]. ! 1 ! ’ ]. ’
+§ (10g‘Qt| B IOgIQtl) g <§(xt{thti) & §($£Qt$tg))
/7 / ]_ ’ b
+ (b — buziy) + 5 (6@l — beQubr)

There is little cancellation between the proposal and the probability distributions in this
case. The proposal distribution arises from a marginal distribution of size n — 7, whereas
the probability distribution is of dimension n. The log accept probability associated with
the coarse part of the chain is derived in the same fashion as the fine, except the proposals

are deterministic. This part of the log accept is then given as:

logP(& 0 |y,z,0) = (1%, 8w (%16, 8 )w(8)n(0')q(z,01% ,6')
e, W(?{Ii,ﬁ)W(i\é,B) (D)@ 8 12,)

= Z ex ( txzt) — exp (BE; S E ﬁ;tzfc;t)

=] =1

o+ (BE; == ﬁ;ﬁ%t) yzj (ﬁ(] =) + ﬁ]txzt) yz]
o AL 2§

B 2: (Z(ﬁjt — )% = (Bje — ﬁj)2>

% =0
Z(—-(xog|z1—1og|2t|)- ( S sden D xt)>

(SR
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Then the overall acceptance probability for the proposed swap of information between the

coarse and fine chain will be the product of the probabilities just derived

log(P(:rl, 9/, :'c’, él\y, x,@,i,é)) = logP(:t/, 9'|y,:i, é,x, ) + logP(a':’, éllgj,z, 6).
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Appendix B

Additional Diagnostics

B.1 Interactions

In an experiment (such as that carried out in Chapter 5) the difference in response between
levels of a factor may not be the same at all levels of the other factors in the experiment.
When this occurs, there is said to be an “interaction” between factors. The graphs given
below are useful in interpreting significant interactions. Note that when an interaction
is large, the corresponding main effect have little practical meaning. Also, a significant

interaction can often mask the significance of main effects.
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Interaction Plot - Data Means for alpha1
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Figure B.1: Positions 1,2 and 3 on each of the graphs indicating the various levels of
coarsening, correlation and proposed rate of swap. The scale on the right-hand side is a
maximum likelihood estimate for 7, i.e. effective sample size = N/7 and N is the number

of sample taken. The smaller the value of T the better.
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Interaction Plot - Data Means for beta1
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Figure B.2: Positions 1,2 and 3 on each of the graphs indicating the various levels of
coarsening, correlation and proposed rate of swap. The scale on the right-hand side is a
maximum likelihood estimate for 7, i.e. effective sample size = N/7 and N is the number

of sample taken. The smaller the value of T the better.
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Interaction Plot - Data Means for beta3
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Figure B.3: Positions 1,2 and 3 on each of the graphs indicating the various levels of
coarsening, correlation and proposed rate of swap. The scale on the right-hand side is a
maximum likelihood estimate for 7, i.e. effective sample size = N/7 and N is the number

of sample taken. The smaller the value of 7 the better.
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Interaction Plot - Data Means for beta5
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Figure B.4: Positions 1,2 and 3 on each of the graphs indicating the various levels of
coarsening, correlation and proposed rate of swap. The scale on the right-hand side is a
maximum likelihood estimate for 7, i.e. effective sample size = N/7 and N is the number

of sample taken. The smaller the value of T the better.
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Interaction Plot - Data Means for beta7
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Figure B.5: Positions 1,2 and 3 on each of the graphs indicating the various levels of
coarsening, correlation and proposed rate of swap. The scale on the right-hand side is a
maximum likelihood estimate for 7, i.e. effective sample size = N/7 and N is the number

of sample taken. The smaller the value of 7 the better.
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Interaction Plot - Data Means for beta9
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Figure B.6: Positions 1,2 and 3 on each of the graphs indicating the various levels of
coarsening, correlation and proposed rate of swap. The scale on the right-hand side is a
maximum likelihood estimate for 7, i.e. effective sample size = N/7 and N is the number

of sample taken. The smaller the value of 7 the better.




Bibliography

Adler, S. L. (1981). Over-relaxation method for the Monte Carlo evaluation of the partition

function for multiquadratic actions. Physical Review D 23, 2901-2904.

Barone, P., G.Sebastiani, and J. Stander (2002). Over-relaxation methods and coupled

Markov chain for Monte Carlo simulation. Statistics and Computing 12, 17-26.

Basseville, M., A. Benveniste, K. Chou, S. Golden, R.Nikoukhan, and A. Willsky (1992).
Modeling and estimation of multiresolution stochastic processes. IEEE Transactions on

Information Theory 38, 766-784.

Besag, J., J. York, and A. Mollie (1991). Bayesian image restoration, with two applications

in spatial statistics (with discussion). Ann. Inst. Statist. Math. 43, 1-59.

Brooks, S. (1998). Qualitative convergence diagnostics for MCMC via cusums. Statistics

and Computing. 8, 267-274.

Brooks, S. and G. Roberts (1998). Convergence assessment techniques for Markov chain

Monte Carlo. Statistics and Computing. 8, 319-335.

Carlin, B. P. and T. A. Louis (1996). Bayes and emprirical Bayes methods for data

analysis. London: Chapman and Hall.

Cowles, M. and B. Carlin (1996). Markov chain Monte Carlo convergence diagnostics: A

comparative review. J. Amer. Statist. Assoc. 91, 883-904.

130




Cressie, N. (2001). Statistics for spatial data. New York: Wiley.
Dale, A. M. (1991). A history of inverse probability. New York: Springer.

Diggle, P. J., J. A. Tawn, and R. A. Moyeed (1998). Model-based geostatistics (with
discussion). Applied Statistics 47, 299-350.

Frantz, D., D. L. Freeman, and J.D.Doll (1990). Reducing quasi-ergodic behaviour
in Monte Carlo simulations by J-walking: applications to atomic clusters. J.Chem.

Phys 93, 2769-2784.

Gammerman, D. (1997). Sampling from posterior distribution in generalized mixed mod-

els. Statistics and Computing 7, 57-68.

Garren, S. and R. Smith (2000). Estimating the second largest eigenvalue of a Markov

transition matrix. Bernoulli 6, 215-242.

Gelfand, A. E. and D. Rubin (1992). Inference for iterative simulation using multiple

sequences. Statist. Sci. 7, 457-472.

Gelfand, A. E. and A. F. M. Smith (1990). Sampling based approaches to calculating

marginal densities. J. Am. Statist. Assoc. 85, 398-409.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (1995a). Bayesian data analysis.

London: Chapman and Hall.

Gelman, A., G. Roberts, and W. Gilks (1995b). Efficient Metropolis jumping rules. In
J. Bernardo, J. Berger, A. Dawid, and A. Smith (Eds.), Bayesian Statistics 5. Oxford

University Press.

Geman, S. and D. Geman (1984). Stochastic relaxation, Gibb’s distributions and the
Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell. PAMI-6,

721-741.

131




Geyer, C. (1991). MCMC maximum likelihood. In Computing Science and Statistics: Pro-
ceedings of the 23rd Symposium on the Interface, Fairfax Station: Interface Foundation,

pp. 156-163.

Geyer, C. J. and E. Thompson (1995). Annealing Markov chain Monte Carlo with appli-

cations to ancestral inference. J. Amer. Statist. Assoc. 90, 909-920.

Gilks, W. and G. Roberts (1996). Strategies for improving MCMC. In W. R. Gilks,
S. Richardson, and D. J. Spiegelhalter (Eds.), Markov chain Monte Carlo in practice,

Chapter 6, pp. 89-114. Chapman and Hall.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996). Markov chain Monte Carlo

in practice. London: Chapman and Hall.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika 82, 711-732.

Grimmett, G. and D. Stirzaker (1982). Probability and random processes. New York:

Oxford University Press.

Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their

applications. Biometrika 57, 97-109.

Higdon, D., H. Lee, and Z. Bi (2002). A Bayesian approach to characterizing uncertainty in
inverse problems using coarse and fine-scale information. IEEE Transactions on Signal

Processing 50, 389-399.

Holloman, C., H. Lee, and D. Higdon (2002). Multi-resolution Genetic algorithms and
Markov chain Monte Carlo. Technical report, Duke University, ISDS, Box 90251, Duke

University, Durham, NC 27708, USA. Email: chris@stats.duke.edu.

Kendal, W. (1997). Perfect simulation for the area interaction point process. In C. Heyde

and L. Accardi (Eds.), Probability Towards 2000, pp. 218-234. Springer.

132




Knorr-Held, L. and H. Rue (2002). On block updating in Markov random field models for

disease mapping. Scand. J. Stat. 29, 597-614.

Liu, J. S. (1994). The collapsed Gibbs sampler in Bayesian computions with applications to

a gene regulation problem. Journal of the American Statistical Association 89, 958-966.

Liu, J. S.;, W. H. Wong, and A. Kong (1994). Covariance structure of the Gibbs sam-
pler with application to the comparisons of estimators and augmentation schemes.

Biometrika 81, 27-40.
Matern, B. (1986). Spatial Variation. Heidelberg: Springer-Verlag.

Mengersen, K., C. Robert, and C. Guihenneuc-Jouyaux (1999). MCMC convergence di-
agnostics: A reviewww (with discussion). In J. Bernardo, J. Berger, A. Dawid, and

A. Smith (Eds.), Bayesian Statistics 6, pp. 415-440. Oxford University Press.

Metropolis, N., A. Rosenbluth, M. N. Rosenbluth, A. Teller, and E. Teller (1953). Equa-
tions of state calculations by fast computing machines. J. Chemical Physics 21, 1087—

1092.

Metropolis, N. and S. Ulam (1949). The Monte Carlo method. J. Amer. Statist. Assoc. 44,
335-341.

Mira, A. (2001). Ordering and improving the performance of MCMC. Statistical Sci-
1ence 16, 340-350.

Mpgller, J. and R. Waagerpetersen (2003). Statistical inference and simulation for spatial

point processes. London: Chapman and Hall.

Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods.
Technical Report CRG-TR-93-1, Department of Computer Science, Toronto, E-mail:

radford@cs.toronto.edu.

133




Peskun, P. (1973). Optimum Monte Carlo sampling using Markov chains. Biometrika 60,
607-612.

Pinto, R. and R. Neal (2001). Improving Markov chain Monte Carlo estimators by cou-
pling to an approximating chain. Technical Report 0101, University of Toronto, Depart-
ment of Statisitcs, University of Toronto, Toronto, Canada, M5S 3G3. Email: ruxan-

dra@utstat.toronto.edu.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1986). Numerical

recipes: the art of scientific computing. New York: Cambridge University Press.

Propp and Wilson (1996). Exact sampling with coupled markov chains and applications

to statistical mechanics. Random Structures and Algorithms 9, 223-252.
Ripley, B. D. (1981). Spatial statistics. New York: Wiley.
Ripley, B. D. (1987). Stochastic Simulation. New York: Wiley.

Ripley, B. D. (1988). Statistical inference for spatial processes. New York: Cambridge

University Press.

Roberts, G. (1992). Convergence diagnostics of the Gibbs sampler. In J. Bernardo,
~J. Berger, A. Dawid, and A. Smith (Eds.), Bayesian Statistics 4, pp. 775-782. Oxford

University Press.

Roberts, G. (1995). Chapter 3. In W. Gilks, S. Richardson, and D. Spiegelhater (Eds.),

Markov chain Monte Carlo in Practice, pp. 48-49. Chapman and Hall.

Roberts, G. and R. Tweedie (1996). Exponential convergence of Langevin diffusions and

their discrete approximations. Bernoulli 2, 341-364.

Rue, H. (2001). Fast sampling of Gaussian Markov random fields. J. R. Statist. Soc. B 63,
325-338.

134




Rue, H., I. Steinsland, and S. Erland (2004). Approximating hidden Gaussian Markov
random fields. J. R. Statist. Soc. B 66, 877-892.

Rue, H. and H. Tjelmeland (2002). Fitting Gaussian Markov random fields to Gaussian

fields. Scand. J. Statist. 29, 30-48.

Silverman, B. (1986). Density estimation for statistics and data analysis (First ed.). New

York: Chapman and Hall.

Stigler, S. M. (1986). The history of statistics: The measurement of uncertainty before

1900. Cambridge Massachusetts: Harvard University Press.
Student (1908). The probable error of a mean. Biometrika 6, 1-25.

Swendsen, R. and J. Wang (1987). Nonuniversal critical dynamics in Monte Carlo simu-

lation. Physical Rewiew Letters 58, 86—88.

Whiley, M., J. Haslett, S. Bhattacharya, M. S. Townshend, S. Wilson, J. Allen, B. Huntley,
and F. Mitchell (to appear). Bayesian palaeoclimate reconstruction. J. Roy. Statist.

Soc. A.

Whiley, M. and S. P. Wilson (2004). Parallel algorithms for Markov chain Monte Carlo

methods in latent spatial Gaussian models. Statistics and Computing 14, 171-179.

Whittaker, J. (1990). Graphical Models in applied multivariate statistics. New York:
Wiley.

Yu, B. and P. Mykland (1998). Looking at Markov samplers through cusum path plots:

A simple diagnostic idea. Statist. Comp. 8, 275-286.

Zeger, S. and M. Karim (1991). Generalized linear models with random effects: A Gibbs

sampling approach. J. Amer. Statist. Assoc. 86, 79-86.

135



