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Summary

A Markov chain Monte Carlo (MCMC) algorithm is proposed for the evaluation of a pos­

terior distribution. The posterior distribution is from a model that has a spatial structure 

and exhibits many characterisics which are typically cumbersome to MCMC algorithms. 

The algorithm is construct with the purpose of conquering or significantly reducing these 

difficulties. The performance of this algorithm is then investigated for a diversity of cir­

cumstances.
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Chapter 1

Introduction

Latent spatial process models are useful in many applications of spatial data. Bayesian 

inference, and indeed other forms of likelihood-based inference, must often be implemented 

by MCMC, but latent spatial process models combine features that make traditional 

MCMC methods perform poorly. This inadequate performance is manifest as poor mixing 

within the posterior distribution of parameters of the model. Addressing this issue within 

MCMC methods and incorporating possible solutions is a natural step.

In this thesis we propose an MCMC scheme for exploring the posterior distribution of 

a spatial model that involves two principal ideas to combat the mixing problems caused 

by high dimensionality and strong posterior correlation between parameters. The scheme 

combines the approach of coupling and blocking, using coarse and fine scale MCMC chains. 

The algorithm is applied to a latent spatial Gaussian model, within a Bayesian framework 

and under various experimental conditions. Particular attention is given to the efficiency 

with which the posterior distribution is explored.
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1.1 Review of Spatial Models

Chapter 2 gives a broad background to spatial modeling, where the more commonly used 

approaches are described in some detail. There is a diversity of potential approaches, from 

variograms to spatial autoregressive models. The first half of the chapter is concerned with 

defining some standard terminology and introducing the approaches which have dominated 

spatial analysis until recent times. The latter part is dedicated to the modeling based 

approaches which have become more prevalent with the advent of widespread usage of 

Bayesian methods. The models to be used in Chapters 4 and 5 are also described here, as 

are their methods of simulation.

1.2 Statistical M ethodology

It is the Bayesian framework that is embraced in this dissertation, the background and 

principals of which are outlined in Chapter 3. The Bayesian method and the previously 

mentioned model-based approaches of Chapter 2 have only in relatively recent times gained 

popularity. This is primarily due to advances in computing power, which have made 

Bayesian models more tractable. Computation of the posterior distribution, and useful 

functions of it such as expectations, is achieved through sampling from it. In order to 

sample from the posterior distribution of a Bayesian model, Markov Chain Monte Carlo 

(MCMC) is used. The particulars of this method are described and an emphasis has been 

given to its application to spatial models. The last section provides specifics on measuring 

an MCMC algorithm’s efficiency and general diagnostics for measuring the success with 

which the algorithm explores the posterior distribution.
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1.3 Blocking Algorithm

An MCMC algorithm for inference with a spatial model is proposed in Chapter 4. This 

model assumes that observations are a function of a latent Gaussian field. In this thesis 

the observations are count data, but the latent idea is easily extended to other data types. 

Two versions of the algorithm are compared to a standard algorithm. The main difference 

between these approaches is a blocking scheme, that samples blocks of variables jointly, 

rather than each variable singly. The proposed algorithms have two alternative blocking 

schemes, where the original method of Diggle et al. (1998) does not. There is also a useful 

proposal function used within the blocking scheme to enhance its efficiency. The behaviour 

of all three algorithms is investigated under a number of circumstances using four datasets 

with different characteristics.

1.4 Coupling Algorithm

The spatial setting has been extended to require a more complex model where the ob­

servations are multivariate count data, that display both within and between location 

correlations. The model is taken to be a function of a number of latent processes. With 

increased complexity of model comes the need for a more sophisticated MCMC approach 

in order to successfully sample from its posterior distribution. The approach chosen is 

that of a coupling technique. There are many factors which may affect the performance of 

such an algorithm and it is the influence of these factors that are investigated in Chapter 

5. This approach was greatly influenced by a palaeoclimatology dataset with a complex 

correlation and aggregation structure.
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1.5 Overall Framework and Major Contributions

This research is carried out within the Bayesian paradigm and its focus of interest is the de­

velopment of efficient MCMC algorithms in the context of spatial models and with specific 

attention given to the effective exploration of a target distribution. The main contribution 

is the extension of two MCMC techniques, with an investigation of their properties under 

a selection of conditions. Specifically, the following are the main contributions made by 

this research:

• In Chapter 4, a detailed comparison of three MCMC schemes for sampling from the 

posterior distribution in the case of univariate spatial count data.

• The development of an MCMC method, based on the ideas of aggregation and cou­

pling, for sampling from the posterior distribution in the complex case of multivariate 

spatial count data, where both within and between location correlations are modeled.

•  A study of the performance of this coupled chain approach with respect to various 

factors that affect its ability to explore the posterior distribution.
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Chapter 2

Spatial Models

There are a large number of spatial models; see Ripley (1988), Cressie (2001), M0ller and 

Waagerpetersen (2003). Here, we concentrate on one type, the latent spatial Gaussian 

model.

2.1 Spatial Data

As the name suggests, spatial data has the property tha t each observation is associated 

with a geographical region or spatial location. D ata points tha t are closer together in 

space are often likely to have more similar attributes than those that are far apart. By 

taking note of their spatial location and calculating the distance between points, a spatial 

model incorporates this relationship (or local variation). But depending on the setting, an 

alternative measure may be more sensible. Spatial data  may be more formally described 

as a form of stochastic process.

D efin itio n  2.1 (S to ch as tic  P ro cess). A stochastic process is a set o f random variables 

{F(s) : 8 € S}, where S  is referred to as the indexing set and y (s )  G D, where D is called 

the state space.

A spatial stochastic process has indexing set S  representing a set of locations. In our
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context we will have 5  C We will always use the usual Euclidean metric when talking 

about distances between points in S.

The spatial variation associated with this process is described by its covariance structure. 

Let C  be a covariance function and p be the correlation between F (s i)  and ^ ( 52) for two 

points S i, S2 € S,  where

C (si, S2) =  £ ;[(y(si) -  E{Y{s , ) ) ){Y{s2) -  E{Y{s 2) )) i

and
C(S1,S2)

P(S1,S2) =
V^C(si,si)C(s2,S2)

This covariance and correlation structure can be modelled in many ways.

2.1.1 Correlation Function

The correlation function controls the smoothness and the extent of dependence in the 

spatial process. Some of the more commonly used correlation functions arise from the 

Matern Family:

where u =  d(si,S2) is distance between two points, k >  0 and 0 > 0 are parameters, and 

K k denotes a Bessel function of order k . Two well known members of the family are the 

exponential correlation function

p{u) = exp ,

setting K to 0.5 and the Gaussian correlation function

p W  =  exp ( I )  )  ,

as K —> 00 and ^  =  2\/u  +  10. Another correlation function family is the powered expo­

nential:



C orrela lion  function

I

Distance

Figure 2.1: The powered exponential correlation function on a unit square with (0, k) 

variable. Here ((/>,«) =  (0.1,1) is the solid line, (0.1,2) is the dotted line, (0.5,1) is the 

dot-dash hne and (0.5,2) is the long dash hne.

where (f) > 0 and k < 2 (these values are discussed further in chapter 4). For these 

functions 0 can be interpreted as a scaling (or range) parameter for dependence between 

points, and the k parameter can be viewed as a smoothness parameter or a parameter 

which describes the relative rate of change in the correlation between points; small k 

implies higher spatial correlation at larger distances.

Two other important features in describing a spatial process are homogeneity and 

isotropy.

D efin itio n  2.2 (H om ogeneity ). A homogeneous process is one where E{Y{s)) and 

var{Y{s)) are constant in s and that C and p only depend on the vector h from  s i to 

S2 , that is they are independent of absolute location.

D efin itio n  2.3 (Iso tro p y ). An isotropic process is one where C and p are only dependent 

on d{s i , s 2 ), where d is distance between the points s i and S2 -

The natural extension of the latter definition is tha t if the spatial correlation between
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y ( s i )  and F (s 2) depends not only on the length of the separation vector h, but also on 

the its direction, then Y  is said to be anisotropic. Similarly, if the mean or variance 

of the covariance structure changes over the space, then the process is said to exhibit 

heterogeneity or non-stationarity.

The correlation functions given above are examples of isotropic processes. Observe that 

they are valid definitions for a correlation function since the covariance matrix of any set 

of points so defined will be positive definite, see Matern (1986).

2.2 Spatial Processes

Spatial data can have various attributes and take a number of different forms:

•  Discrete or continuous;

•  Individual points in space or spatially aggregated into regions;

•  Located at regular or irregular points in space;

•  Randomly distributed or clustered/patterned locations;

•  Individual measures or measure taken repeatedly over time.

An extensive framework for categorizing and modelling spatial data is given by Cressie 

(2001). Using the notation given above, we will outline the general classifications and 

approaches he suggests. Let s G be a location in d-dimensional space, and Y{ s )  be a 

data value (or possibly a vector) observed at s. The full dataset can then be modeled as 

the multivariate random process

{ ¥ { s )  : s € S } ,

where s varies over an index set S  C M'̂ . Cressie (2001) then categorizes spatial data into 

three cases.
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• geostatistical data (also sometimes referred to as point source data), where ^ (s )  is a 

random vector at a location s which varies continuously over S, a fixed subset of 

tha t contains a d-dimensional rectangle of positive volume;

• lattice data (or alternatively named regional summary data), where S  is again a fixed 

subset (of regular or irregular shape), but now containing only a countable number 

of sites in normally supplemented by neighbour information.

• point pattern data, where now S  is itself random; its index set gives the locations 

of random events that are the spatial point pattern. Y(s)  itself can simply equal 1 

for all s € 5  (indicating occurrence of the event), or possibly give some additional 

covariate information (producing a marked point pattern process).

An example of the first case might be a collection of measured oil reserves at various 

fixed source points s, with a primary goal being to predict the reserve available at some 

unobserved location s*. For the second category, observations may correspond to pixels 

making up an image, each of which has four neighbors (above, below, left and right). 

Point pattern  data  often arise as locations of disease occurrence or existence of a certain 

species of plant (supplemented with rainfall, temperature or other covariate measurements 

to produce a marked point pattern).

Our interest is in geostatistical data or rather model based geostatistics, a term  which 

was introduced by Diggle et al. (1998), who combine traditional geostatistical methods 

with those of generalised lineaj models. Naturally, depending on the type of spatial data, 

different methods may be used for modeling the events or measurements. Some of the 

techniques commonly used for estimation, inference and prediction are given below.
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2.3 Spatial M odeling

Two key ideas have dominated the analysis of spatial data (or at least geostatistics) until 

recent times. These are the variogram (and its associated measures) and kriging. With the 

advent of widespread usage of Bayesian methods, this has changed somewhat and more 

strongly modeling based approaches have come to the forefront.

2.3.1 Variograms, Covariograms and Correlograms

Suppose Y(s)  satisfies the following definition:

D efin ition  2.4 (Second-O rder Stationsirity). Y(s) is a second-order (or weak) sta­

tionary process if

£;[y(5)] = 

c[r(si),r(s2)] = a(si-s2)<oo.

for some function Co-

That is firstly, the expectation at s does not depend upon s or alternatively viewed, the 

expectation is invariant over the study area. Secondly, the covariance depends only on the 

separation vector; if the covariance is dependent on the separation distance u =  |si — S2 I 

alone, then the resulting measure is said to be isotropic, as defined earlier. When the 

stochastic process is Gaussian, second-order stationarity and homogeneity are equivalent 

properties of teh process, see Cressie (2001). Co is called the covariogram (or stationary 

covariance function) and is analogous to the autocovariance function in time series analysis. 

Suppose then that

var(F(si) -  F ( s2)) =  27(51 -  S2) Vsi,s2 e T

2j (h)  =  2(Co(0) -  Co{h))

10



for some function 7 . The quantity 2y(-), which is a function of the separation vector h is 

called a variogram (and 'y(-) a semivariogram) by Cressie (2001) and previously by Math- 

eron, but has also had many appearances under different names. Lastly, a correlogram is 

defined as

Co(0) C„(0)’

which is referred to as an autocorrelation function by time series analysts. The classical 

estimator of the variogram proposed by Matheron is

2 7 ( / i ) = | ^  E  ( m ) - > ^ ( « 2 ) ) ^  h € R ^
'  ̂ 3€N(h)

letting N(h)  = {s = (si, S2) : — •§2 =  where |iV(/j)| is the number of distinct pairs of

N{h).  This is in fact not a particularly robust estimator, but there are many others, such 

as the linear, spherical and exponential variograms, which are more suitable in various 

settings.

Measures defined on the variogram are the sill, which is 2Co(0), where if Co{h) 0 

then

lim 27 (h) =  2Co{Q)- 
h—>oo

The other measure is the nugget, which is lim/j_>o 27 (̂ 1). The latter need not be zero (i.e. 

the variogram may have a discontinuity at the origin) due to microscale variability or 

measurement error. For a monotonic variogram that reaches its sill exactly, the distance 

at which the sill is reached is called the range. If the sill reaches zero, then observations 

further away than the range are uncorrelated. If the sill is reached asymptotically and is 

less than 0.05, the distance such tha t p (s i ,s 2) =  0.05 is called the effective range. Also it 

is noted that, 'y(h) = 'y{—h) and tha t 7 (0) =  0 .

In statistical inference, the idea is to search for a valid variogram that, as a measure of 

spatial dependence, is closest to tha t given by the data. Variogram estimators cannot be

11



used directly for spatial prediction {kriging), but are commonly used in spatial analysis.

2.3.2 Kriging

Kriging refers to a method of spatial prediction for the process at a point s*, given data 

y =  ■ • • )J/(^n)}- Ordinary kriging is the prediction of F(s*), under the following

assumptions.

Model:

F(s) =  /i +  5{s), /X € M, /i unknown 

where 5{s) A (̂0, cr̂ ) or a spatial zero-mean process.

Predictor:
n n

y { s * )  =  ' ^ \ y { s i ) ,  f o r ^ A i  =  l.
i=l i=l

This latter condition, that the coefficients of the linear predictor sum to 1, guarantees 

uniform unbiasedness:

E{Y{s*)) = n = E{Y{s*)), y  f i e R .

The optimal linear unbiased predictor for kriging is generally (at least in a classical 

setting) taken to be that which minimizes the mean-squared prediction error

al = E { [ Y { s * ) - Y ( s * )? )

over Ai, . . . ,  A„. This optimization problem is solved using a series of equation, involving 

Lagrange multipliers (to ensure the coefficient constraints above are fulfilled) and vari- 

ogram estimates. Methods for appropriately choosing kriging predictors and solving them 

are detailed in Chapter 3 of Cressie (2001).
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There are several variants of this:

•  Simple kriging is the case in which /j, is known and the coefficients are not constrained 

to sum to 1;

•  Robust kriging, which deals with situations where the data are not normal and there 

are isolated outliers;

•  Universal kriging, which is probably more useful in real settings. Universal kriging 

includes the use of explanatory variables, and assumes a model for Y(s )  of  the form:

k
Y{s)  =  Y , / 3 j X j { s )  +  5{s), 

j=i

and a predictor for F(s*) of the form

n

^(^*) =  for A'X(s) =  X ,
i=l

where X{ s )  are known functions and x =  X{s*) .  Again this latter condition is 

necessary for a uniformly unbiased predictor, that is E{Y{s*))  — E { \ 'Y )  =  X'X{s)f3.

•  Bayesian kriging, where Bayesian principles (as discussed formally in Chapter 3) are 

used to model an unknown, deterministic process, by way of a random process. For 

a non-stationary mean, the model is

y ( s )  =  /i(s) +  (5(s)

where S(.) is a zero-mean stationary random process. This model is useful for 

analysing physical processes that are spatially heterogeneous. Assuming that /x(.) 

is a random process with parameter 0 with prior 7r(0), one could estimate the pa­

rameters of the random process //(.) based on the marginal distributions of y( s )  =  

( y ( s i ) , . . .  , y(sn)) -  Given the marginal posterior distribution of the parameters and 

the joint distribution of 7t ( Y ( s ) ,  Y ( s * ) ) ,  by marginalizing over the parameters of the
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conditional distribution n{Y{s*)\y{s)), the predictive distribution is given by

7t(1 (̂s*)|2/(s)) = jn{Y{s*)\y,n,6,e)'K{t i ,S,e\y)  d/j. d6 de.

Typically this integral is evaluated by Monte Carlo integration (see Chapter 3, Sec­

tion 3.2.3). If and 0^") are samples from the posterior distribution then:

1 ^

n = l

That is, substitute the posterior draws into the conditional distribution of the target 

values F(s*). A Bayesian implementation of kriging is presented by Diggle et al. 

(1998).

2.3.3 Spatial Autoregressive Models

The previous spatial methods which have been described lend themselves to geostatistical 

settings. Autoregressive models are used to characterize the spatial dependencies observed 

in lattice and regional data, tha t is they model each location as a linear combination of 

its neighbouring locations.

There are two principle specifications of these models: conditional autoregressive (CAR) 

models and simultaneous autoregressive (SAR) models, tha t is CAR models are defined by 

full conditionals, whereas SAR are defined by autoregressive equations. These autoregres­

sive models are derived from those in time series, defined as

X t = a X t- i  + C(, €t ~  -^(0, (7̂ ) independent

or equivalently

£ '(X i|past values) =  a X t- i ,  var(Xt|past values) =

where the X t  is assumed to have a Gaussian distribution. The extension of these to allow 

symmetry of dependency and further dependencies gives the CAR and SAR models. The 

CAR and SAR Gaussian processes can be specified as follows.
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CAR models:

P { x i \ x j J ^ i )  = =  exp + -  Mj))^ j
\/27ra^

Letting X be the TV x 1 matrix of variables Xi, n the x 1 matrix of means fii, and 

Be the N  X N  matrix whose diagonal elements are zero, and whose element (i, j)  is 

(Hij and the Xi  are Gaussian. The random field is then given by;

X = // +  Bc(X -  /i) +  r/,

where rj is called the noise vector, is normal and satisfies

cov{ri) =  a^(I — Be) and cov{r], X) =  a^l.

The necessary and sufficient conditions for a valid formulation are that (I — Bg) be 

symmetric and positive definite, see Ripley (1981).

SA R  models: Consider the process defined by the set of N  simultaneous autoregressive 

equations
N

Xi  — Hi +  ^   ̂^ij {Xj fij ) +£ j ,  i — 1, . . . ,  N,
j = l

where the noise sequence e is Gaussian and

cov{e) = aH  and cov{e,X) = —

where B^ =  j3ij for i ^  j  and has zero diagonal elements. Then the necessary 

and sufficient condition for this to exist is that (I — B^) be non-singular, see Ripley 

(1981).

The joint probability density function for these Gaussian processes is then given by

1P(X) =  (27T(7^)-T|Q|2exp

where |Q| denotes the determinant of Q. That is, X has a multivariate normal distribution 

with mean vector fx, and covariance matrix For a CAR model Q =  (I — Be) and
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for a SAR model Q =  (I -  BJ){1 -  B J .  With the CAR scheme the covariance matrix for 

Xi  determines Be, whereas with a SAR process many B^ can give X j’s covariance matrix, 

see Ripley (1981). Also, it is to be noted is that any SAR process is a CAR process with 

Be =  Bs +  BJ’ — B f  Bg. The reverse is also true, taking B^ =  (I — L^) where LL^ is the 

Cholesky decomposition of (I — Be). This form of decomposition is discussed later.

2.3.4 Latent Gaussian Models

The data in which we are interested in modeling is geostatistical in nature. Often with 

geostatistical data the phenomenon itself is not directly observable or may be controlled 

by unobservable variables. Hence, we will assume a model where there exists an unob­

served latent stochastic process X{s)  and that a relationship exists between F(s) (the 

observed process) and X(s).  The joint distribution of the observed and latent pro­

cesses is the distribution of interest and can be specified by the marginal distribution 

of X =  (X (s i) ,. . .  ,X (s„)) and the conditional distribution of F  =  (y ( s i ) , . . . ,  y(s„)) 

given X;

7r iY,X)=niY\X)n{X) ,

We need to model 'k{Y\X) and 7t(X). To do this there are a few assumptions commonly 

made. The first is that X is a Gaussian process and the second is that conditional on 

A", the y ’s are independent. Given a Gaussian process X  ~  with correlation

function p{u) as described in Section 2.1.1, then modeling a Y  process conditional on a 

latent Gaussian process X  is commonly presented as Gaussian, ie

Y \ X  ~  N{X,a'^)

or

y(si) =  X(si)-j-ei,
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where i =  ( l , . . . , n )  indicate locations and are iid N{Q,a'^). The marginal

distribution of Y  is the multivariate Gaussian,

where 1 is a row vector of size n of ones, i? is an n x n matrix with i? =  S +  cr^/ and 

Sjj =  var(a;)p(||xi -  Xj||), thus

var(x)p{yi,yj) = —  TTp{xi,xj).var(x) +  vax(e)

Other models which extend from this view y  as a function of X  and some other known 

covariates.

2.3.5 Latent Spatial Model for Univariate Count Data

In many cases, such as those mentioned in Section 2.2, one is dealing with count data, 

which are assumed to follow a Poisson distribution;

Poisson (A (sj))

where A(sj) =  exp(X(si)) or A(5i) =  Ciexp(X(sj)). The additional location specific pa­

rameter Ci may be useful in accounting for varying amounts of time in measuring Y  (as in 

the Rongelap Island data considered later) or proportional population size for an area.

In the univariate model, data have a mean that is a function of a Gaussian field. The 

model can take many forms. The one presented here is quite common in disease oriented 

applications, due to its count nature.

Let s i , . . . , sn  be spatial locations and the data (yi, . . . , j /n) be observed at s i , . . . , sn-  

Assume that

y(si) ~  Poisson(exp(/3 +  X(si))), 

for I =  1 , . . . ,  n. The latent variable X  =  (X(s i ) , . . .  ,X{sn))  is multivariate normal
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X  ~M VN (O,E(0)),

where 6 =  (q,ct^,5), and

T,ij{9) =  o -^ exp (-(ad ijy ), (2.1)

for distance dij between Sj and S j .  In our model the distance has been scaled by the 

maximum distance over the region so tha t 0 < dij < 1. The correlation matrix for this 

model could be parameterized to have any of a number of forms, for example a simplified 

version is:

pij{9) = e x p ( - a d i j )

which is achieved by letting =  1, alternatively any of the functions mentioned in Section 

2.1.1. Here a  is equal to ^ for the functions described in Section 2.1.1.

In the above model there may be a number of quantities of interest. If we are concerned 

with disease mapping, then the underlying distribution of the field is our key concern, but 

in other circumstances evaluation of any one of the individual parameters or the nature 

of the spatial correlation may be the structure of interest.

When conducting Bayesian inference the evaluation of the posterior is the element of 

import. The joint posterior for the univariate model above is given as:

p{X,l3,e\y)  (X p{y\X,l3)p{X\9)p{e)p{P)

(X e x p ( ^  y i ( P  +  X i )  -  ^  e (/3 + X i)^

x\E{9)\--  ̂exp{~X^E{e)-^X)p{9)p{f3).

We assume uniform priors. For (3 the range is [—100,1000], for a  the range is [0,100], 

for the range is [0,100^], while for 5 it is [0,2]; 5 must he in this range, see Chapter 

4, Section 4.1.1 for details. The ranges for (3 and a  are very large and in practice their
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values are always well within them. In particular circumstances one would often have 

prior information tha t could lead to a more informative prior being used. In particular, 

one often uses inverse-gamma or lognormal for

2.3.6 Latent Spatial Model for Multivariate Count Data

Another form of data  which we are interested in examining is multivariate. Here the data 

are observed at n spatial locations, whose mean is a function of a linear combination of T  

independent latent spatial Gaussian processes.

Let s i , . . .  ,Sn) be spatial locations. We assume that

Yj{ s i )  ~  Poisson(exp(Aij)), j  =  1 , . . . ,  r

are observed at each location Sj, for i =  l , . . . , n ,  i.e. there are r  response variables. 

Further, we assume
T

t=l

where X t  are independent latent Gaussian processes

X t ~ M V N ( O , E ( 0 f ) ) ,

with 0t =  {at,(T^) and

=  (Tt exp{-{atdik)),

where djfe is the distance between Si and s^. This is the multivariate extension of the 

model described by Diggle et al (1998). It allows correlations both between and within 

locations. We fix to avoid problems of identifiability with Pjt; see Chapter 5.

To conduct Bayesian inference with such a model, we must compute the posterior distri-
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bution:

p{X,(3,0\Y)  oc piY\X,0) .p{X\e) .p{e) .p{0)
r

oc n
j=i U=i 

T

PWj)

X n i s ( 0 o r ^  ^ M - \x jT . { e t ) - ^ X t ) p { e t ) .  
t=i

where X  = {X i , . . . , X t ), P =  (/?i,. . .  ,^r), 0 = (Oi, ■ ■ ■ ,0t ) and Xij = /3jo +  J2t=iPjtXit-

See Appendix A.2.1 for details on the priors for this model.

2.3.7 Simulation of a Gaussian Process

In what follows we make extensive use of the simulation of a multivariate normal distri­

bution. To simulate an ra-dimensional Gaussian process, whose joint probability density

function is MVN(m, E), the following properties are useful. Let

C (C l) C2) • • ■ ) Cn)

be independent A^(0,1) random variables and thus C ~  MVN{0,I ) .  By properties of the 

Gaussian distribution, L(  ~  M VN(0 ,LL^) ,  for any matrix L. Thus, one can simulate X  

by finding a matrix L such that,

LL^ =  E

then L(  ~  MVN{0,LL'^)  and so m -I- ~  MVN{m,'£).  This L can be found using

Cholesky decomposition. Cholesky decomposition states that there is a lower triangular 

matrix L with LL ^  =  E, if E is symmetric positive definite, see Press et al. (1986) for 

details. The probability density function of the Gaussian process is,

1
7r(J>!:) oc e x p ( - ^ X ^ E - ^ X )  

1
=  exp{- -X^{LL^)-^X)

=  e x p ( - i ( L - ' x f l ( L - 'X ) )
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and the standard multivariate Gaussian density function is,

7t(C) ocexp(-ic^/C)

where I  is the identity matrix. Hence, L~^X is standard Gaussian, so we can sample from 

X  using the relationship L~^X =  ^ and thus X  — L<̂ .

As regards computation time, this process is 0{n^), see Press et al. (1986), or in the 

case of Markov random fields, if E is spare then it will be O(n^), see Rue (2001); further 

computational approaches of this variety are outlined by Rue (2001). These techniques 

are found in most numerical linear algebra texts. This decomposition also turns out to be 

one of the dominant characteristics utilised in calculations of Chapters 4 and 5.
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Chapter 3

Statistical Methodology

3.1 Statistics

Statistical inference is concerned with drawing conclusions about unknown quantities of 

interest from data and other information. Usually, the data are not sufficient to determine 

the unknown quantities exactly, or are themselves observed with uncertainty leading to 

uncertainty in the values of the unknowns. Statistical inference quantifies this uncertainty 

by probability. Inference from data takes one of two main approaches: the Prequentist 

(or Classical) approach or the Bayesian approach. These differ in the way in which they 

interpret probability as the measure of uncertainty:

Long-run frequency probability : Prequentist inference interprets the probability of 

an event as the proportion of the time it would occur in a long sequence of observations 

(i.e. as the number of trials tends to infinity).

Subjective probability : Bayesian inference has the probability of an event as a number 

between 0 and 1 that measures a particular person’s subjective opinion as to how likely 

that event is to occur.
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The Prequentist approach is based solely on the observation of the occurrence of events, 

i.e. utilising the former definition of probability. Bayesian statistics uses probability sub­

jectively, and can incorporate prior knowledge about the event, tha t may change as more 

information becomes available. Thus the posterior becomes the new prior when new in­

formation becomes arises. Motivations for utilising the Bayesian framework are tha t it is 

a conceptually simple method, it has a strong axiomatic foundation, the interpretation of 

its conclusions are intuitive and it lends itself to complex probability models, which allow 

for more realistic modelling. It is the approach that we follow in this dissertation. It does 

have drawbacks, notably computational complexity. This dissertation concerns itself with 

tracking one aspect of these difficulties in the context of spatial models.

3.2 The Bayesian Framework

Bayesian inference is founded on the notion that probability, interpreted subjectively, is 

the only way to describe uncertainty. In practical terms, this can be thought of in a 

similar way to carrying out a survey or experiment. Before the experiment is carried out, 

there is usually some prior knowledge or degree of belief about an unknown quantity (or 

random variable) of interest, denoted 6. This can be expressed in the form of a probability 

statement. Lets us refer to the knowledge or background information as H.  For example, 

if we were to do a survey on the number of students who wear reading glasses, we might 

believe it to be in a certain range. This belief may derive from exposure to the population 

of interest, a previous study of a subset population, eg. maths students, or some other 

useful observation. A Bayesian will quantify this uncertainty about 9 using subjective 

probability. This will be a function of two arguments: the unknown 9 and the known H.  

This probability P{9\H),  as a function of 9 must obey the three Laws of Probability:
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1. Convexity: 0 < P(6\H) < 1, where if an event is certain P{0) = 1 and if an event 

is impossible P{6) =  0.

2. Additivity: P{6 i or 6 2 \H) = P{6 i\H)+P{6 2 \H), if 0\ and 6 2  are mutually exclusive.

3. M ultiplicativity: P(0i and ^2 !^) =  P{di\H).P{62\ex,H)

The P{6\H) may vary from person to person, given that their experience of H  may vary. 

Given that some amount of prior knowledge often exists, assigning prior probability is 

the most reasonable approach to employ. In the case where there is no prior knowledge 

available, a uniform or flat prior maybe used ,i.e. ■k{9) = 1. The formal approach and 

implications in applying this idea are given below. For convenience, we do not write H in 

any further probability statement.

3,2.1 B ayes T heorem

This theorem was established by Reverend Thomas Bayes, an English minister and part- 

time mathematician. Bayes theory of probability was the first to invert the probability 

statement ( “inverse probability” or Bayesian inference). That is obtain probability state­

ments about 0, the parameter of interest, given the observed data y. Stigler (1986) de­

scribes the historical development of inverse probability, as does Dale (1991) and many 

others. Bayes famous paper was published posthumously in 1763 in the “Philosophical 

Transactions of the Royal Society”, and was entitled “Essay towards solving a problem 

in the doctrine of chances”. Suppose y — (?/i,.. .yn) is a vector of n observation, whose 

probability density 7r(y|0) depends on the value of k parameters 6 = (0i , .. .9k)- Suppose 

also that 9 itself has a probabiUty density 'k{9). Then by the multiplicativity law

'K{y\9)'K{9) = Tr{y,9) = 7r(6>|y)7r(i/),

hence

my) = Ay)
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where

7r(v) =  EM vW )]  =  f ^  ^ discrete,
I  /  ■K{y\9)'K{6) do, 6 continuous,

is taken over the admissible range of 6. Given that the variable is 9 and y is a known

constant, the above equation can be written in its more familiar form:

n{e\y) oc Tr{y\e)TT{e).

There are three components to Bayes theorem.

Prior

The tt{6) is referred to as the prior distribution of 6 and reflects the knowledge known

about 6 a priori, before the data are observed.

Likelihood

The n{y\0) may be regarded as a function not of y, but of 9, in which case it is referred 

to as the “likehhood” (or sometimes the Model) for 9 given y and can be written l{9\y). 

Note tha t the likelihood is a conditional probability statement, as to how likely it is for y 

to be observed if the parameters take the value 9.

Posterior Distribution

In Bayesian analysis, it is the conditional distribution of 9 given the data (y) which is of 

interest, i.e. n{9\y). This is called the posterior distribution, thus Bayes Theorem can be 

written less formally as:

posterior distribution oc likelihood x prior distribution.

This distribution describes the state of knowledge about 9 having observed y.
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3..2.2 Posterior Expectations

Alll measures of interest within Bayesian inference are functions of the posterior distri- 

bmtion. Posterior expectations for functions of 6 is the way in which most quantities of 

intterest are expressed, for example, mean values

or- regions of highest density. To compute the normalising constant, find marginals or 

cailculate posterior expectations and thus integration is required. This integration is the 

so>urce of most practical difficulties for Bayesian inference, especially in high dimensional 

prroblems.

3.:2.3 M ethods of Evaluation of the Posterior Distribution

Tlhe principal obstacle to implementing Bayesian inference, particularly for complex mod- 

els5, is the evaluation of integrals. There are several approaches:

1. Analytical evaluation, although this is possible for only a few models and in low 

dimensions of 0. Conjugate priors may be used to assist in enabling analytical or 

partially analytical solutions to integrands such as the denominator of expression 

3.1; (see Carlin and Louis, 1996, Chapter 2 for elaboration of this approach).

2. Numerical evaluation (also called numerical integration or quadrature) methods such 

as Simpson’s Rule and Gaussian quadrature. These tend to  be difficult to apply and 

inaccurate for high dimensional (> 3) problems, see Press et al. (1986).

3. Asymptotic methods include the Laplace approximation, normal approximation (Gel- 

man et al., 1995a) and Monte Carlo integration. Asymptotic methods rely on results 

obtained when the sample size n gets large.

(3.1)
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T h e Laplace M eth o d  and N orm al A p p ro x im a tio n  To evaluate the integral 

in Equation 3.1, the Laplace Method involves expressing the integrand in the form 

exp [log {f{9)Tr{0\y))], then expanding log[/(0)7r(^|y)] as a function of 0 in a quadratic 

Taylor series around the mode. The resulting approximation is proportional to a 

normal density in 6 and its integral is:

where d is the dimension of 6, u{6) =  log(/(0)7r(0|y)) and 9o is the point at which 

u{9) is maximised e.g. the maximum of the integrand of 3.1, which we can find by 

maximising \og{f{9)n{y\6)Tr{9)),  from Gelman et al. (1995a) Chapter 10. This is an 

approximation to the integrand of 3.1. The Normal approximation is a more basic 

version of the Laplace method that performs poorly in multimodal or asymmetrical 

situations; (see Carlin and Louis, 1996, Chapter 5 for a description of these methods 

applied to posterior distribution estimation) .

M o n te  C arlo in tegra tion  Monte Carlo integration is the method of approximat­

ing integrals using samples from a probability distribution. Having drawn samples 

from the required distribution, it then forms sample averages to approximate expec­

tations.

where Xi is a sample from the probability density function p{ x) . Monte Carlo integra­

tion uses samples that have been obtained by a Monte Carlo method. These methods 

divide into two categories: non-iterative and iterative methods. On the non-iterative 

side there are methods such as rejection sampling and importance sampling, while

/(6'o)7r(0o|2/)(27r)2|-ii"((9o)| 2 ,
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the iterative approach generally refers to a group of methods collectively known as 

Markov Chain Monte Carlo (MCMC).

Monte Carlo integration is the most common approach to take in evaluating the 

above integrals. Both iterative and non-iterative Monte Carlo methods are discussed 

in the next section. It is however iterative methods that are the primary source of 

interest in this dissertation and as such are examined in greater detail. The methods 

are introduced by way of some historical background.

3.3 Monte Carlo Methods

In the past, complex data have often been modelled using overly simple models in 

order that the inference could be implemented, which was not always entirely sat­

isfactory. While Bayesian methods are theoretically reasonably simple, being the 

application of the laws of probability, they require evaluation of complex integrals, 

such as constants of proportionality and expectations with the form of those men­

tioned above. Only in the most rudimentary of cases are these integrals analytically 

tractable. It is with the advent of modern numerical techniques and advanced com­

puting power that these problems have become accessible. MCMC (Markov chain 

Monte Carlo) in particular has provided a method which allows for inference with 

much more complex models.

The method is named after the city of the same name in Monaco, due to its as­

sociation with gambling and specifically roulette, the roulette wheel itself being a 

simple random number generator. The name and the method’s systematic develop­

ment date from 1944, but many isolated incidences of its informal use exist prior 

to that (Comte de BufFon, Lord Kelvin and Student (1908) to name but a few).
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The origins of the method as a reseaich tool stems from work on the M anhattan 

project during World War II. It was also at around this time, tha t the first electronic 

computer (the ENIAC) was completed. Ulam and von Neumann suggested its use 

in simulation of the probabilistic problems concerned with random neutron diffusion 

in fissile materials, via random samples. Metropolis and Ulam published a paper 

in 1949 detailing the idea behind this and thus opening up a new field of research 

(Metropohs and Ulam, 1949).

The Monte Carlo method is, in general terms, any technique used for obtaining 

solutions to (deterministic) problems using random numbers. Presented below are 

some of the more popular approaches of the method. The approaches have been 

subdivided into the categories of iterative and non-iterative.

N o n -ite ra tiv e  M o n te  C a rlo  For Importance Sampling, to approximate the pos­

terior expectation given by Equation 3.1, let

g{9) ^  CK{y\e)Tr{e)

for some easily sampled density g{9) and the normalizing constant c. Then defining 

a weight function w{9) = -K{y\6)n{9)/g{6),

Eim\y)  =

where 9i g{9) and g{9) is know as the importance function. How closely g{9) 

resembles CK{y\9)7r{9) determines how good the approximation given by Equation 

3.2 is.

j
f  n{yl0)n{0)g{d)d0

f f (9 )w(9)g(9)  d9 
Jw(9)g{9) d9

^ Eili HOi)
N  (3.3)
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For the method of Rejection Sampling, instead of trying to approximate the nor- 

mahzed posterior

/ 7 r ( y |6 ') 7 r ( 6 ')  d6»’

a probability density function g{9) is introduced. Suppose then there exists a con­

stant M  > 0, such that n{y\d)w{6) < Mg{6) for all 9. The rejection method then 

proceeds as follows:

(a) Generate 6i 9(0).

(b) Generate U ~  Uniform(0,1).

(c) If MUg{9i) < ’n{y\9i)'K{0i), accept otherwise reject 6i.

(d) Return to step (a) and repeat until the desired sample of OiS has been obtained.

The accepted OiS are random variables from ■K{9\y). M  should be chosen such tha t

as few as possible samples are unnecessarily rejected.

I te ra t iv e  M o n te  C arlo  Markov chain Monte Carlo is Monte Carlo integration com­

bined with the use of Markov chains. MCMC draws samples from a Markov chain whose 

stationary distribution is the distribution of interest (also referred to as the target distri­

bution). The distribution of interest is the posterior distribution in the case of Bayesian 

statistics. When the chain has reached its stationary distribution, an adequate sample 

from the support of the distribution can then be obtained. The reason for using Markov 

chains is tha t with Monte Carlo integration, when the target distribution 7t (x ) is not a 

standard one, it may be difficult to draw samples from it directly, i.e. it may not have 

a closed form and importance or rejection sampling can be difficult. Some underlying 

theory as to why MCMC works is more formally detailed in the next two sections, as are 

its primary algorithms.
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3.3.1 M arkov C hains

The idea of Markov dependence is a concept attributed to a Russian mathematician Andrei 

Andreivich Markov. At the start of the 20th century, he investigated the sequence of vowels 

and consonants in the poem “Onegin” by Puskin. He developed a probabilistic model 

where successive letters depended on all their predecessors only through the immediate 

predecessor. The model allowed him to obtain good estimates of the relative frequency 

of vowels in the poem. The French mathematician Henri Poincare studied sequences of 

random variables that were in fact Markov chains, at around the same time.

For a stochastic process as given by Definition 2.1, we think of T as discrete time, then 

the stochastic process Xt can be thought of as the path of a particle moving randomly in 

(state) space D, observed at discrete times and its position at time t being Xt-

Definition 3.1 (Markov Chain). A Markov chain is a stochastic process {X t : t  € N}, 

for which the conditional distribution of Xt+i is independent of X i , . . .  ,X t - \  given Xt. 

That is V Ti, T2 , . . . , Tt+\ 6 D:

P ( X t + l  =  Tt+l\Xt =  T t,X t-l - = Tt_l, . . . , Xq — T q )  =  P{Xt+l =  Tt+l\Xt =  T t ) .

This is referred to as the Markov property.

Definition 3.2 (Stationary in tim e). A Markov chain X t is said to be stationary 

(or homogeneous) in time if the conditional probabilities are independent of t. That is 

y i , j e D  and Vi e  {0,1 ,...} ,

P{Xt+i = j\X t = i)=  P(Xi =  j\Xo  =  i).

A matrix of these probabilities is known as a transition matrix for the discrete finite 

case (or transition kernel, in the continuous case) and is denoted P®-, i.e the probabihty 

of transition from one state i to another state j. For simplicity the definitions that follow 

are given with regard to the discrete case. The entries in the matrix are in [0,1] and
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Pj =  1 since:

Y^P] = Y,P{Xt^j\Xt-i = i),
3 j

=  P{XteD\Xt - i  = i),

=  1 for a finite statespace.

Key concepts, especially in the context of simulation, are that of a stationary distribution 

( j ) and the asymptotic behaviour of the chain as the number of steps or iterations i —> oo.

Definition 3.3 (Stationary Distribution). A distribution ^  on S  is said to be a sta­

tionary distribution of a chain with transition probability P if:

(p = (pP

Once a chain reaches a stage where 4> is the distribution of the chain, the chain retains 

this distribution ( j ) for all subsequent stages. This distribution is also known as the “in­

variant” or “equilibrium” distribution. It is the existence of this stationary distribution 

in a Markov chain that allows us to sample from a target distribution tt. The conditions 

necessary to orchestrate such a chain with the required stationary distribution are outlined 

in the next section, however there are some further constraints on the chain which need to 

be mentioned here. For a Markov chain to converge in distribution to a unique stationary 

distribution, it is sufficient to exhibit the following properties: irreducibility, recurrence 

and aperiodicity.

Definition 3.4 (Irreducibility). Let C C D ,  (i, j) G C and i /  j .  Then C is said to be 

irreducible i f 3 n < o o  such that:

(P})^>0, ^ { i , j ) e c  

where (Pj)” = P(Xf+„ =  j \X t = i).
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D efinition  3.5 (R ecurrence). A state j  €  D  is said to be recurrent if  the Markov chain 

starting in position j  returns to j  with probability 1. (Or positive recurrent if in addition 

the mean time to return is finite.)

D efinition  3.6 (A period ic). The period dj of a state j  is the largest common divisor of 

the set {n > 1 : (P^)” > 0}. ^  state j  is aperiodic if  dj =  1.

D efin ition  3.7  (Ergodic). If all states of a chain are positive recurrent and aperiodic, 

then it is said to be ergodic.

D efinition  3.8 (L im iting D istribution). If the stationary distribution (j) exists and

lim P”0o =  4>,
n —►00

independent of the initial distribution 4>o of the chain, </>"'(= P^<po) will approach (f> as 

n —+ oo. This is referred to as the Limiting Distribution.

Theorem  3.1 (Ergodic). For an irreducible ergodic Markov chain, a limiting distribution 

(f){j) =  Hirin—oo(Pj)" exists such that:

00

i=0

i.e. 4>(j) is the unique limiting distribution, which is the chain’s stationary distribution.

A proof for this is found in many places, for example Grimmett and Stirzaker (1982).

3.3.2 M etropolis-Hastings Algorithm

Many methods have been proposed to construct Markov chains having a given stationary 

distribution, but all of them are special cases of the Metropolis et al. (1953) and Hastings 

(1970) general framework. This was proposed by Hastings (1970) as a general form of the 

Metropolis algorithm. The algorithm works as follows to produce a Markov chain whose 

stationary distribution is 7t ( s ) .
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1. Pick a starting value xq € D.

2. For < =  0 ,1 ,... choose a candidate point x  from a distribution q{x\xt), where q is 

called the proposal distribution. The proposal distribution is arbitrarily chosen, but 

generally depends on the current point Xt, e.g. q{.\xt) = N{xt,  a^), where is fixed.

3. The computation of the acceptance probability for x' is given by a{x t , x )  where

a{xt, x )  =  min ( 1,
\ n{xt)q{x |a:t) /

4. The next state of the chain is then:

=  1"I Xt

with probability a(x(, a ;),
’ Xt otherwise,

i.e. Xt+i = X if the candidate point is accepted, or the chain maintains its current 

value, if the candidate point is rejected.

Justifica tio n  Suppose that the chain has already reached equihbrium at iteration t — \, 

i.e. 0t_i =  7T. Then we need to choose a transition probabihty P{ x t , x )  to maintain the 

equilibrium distribution, i.e. 4>t = tt. Consider moving between any two states Xt and x . 

To go from Xt to x  the transition probability is:

P { x t , x )  oc T̂ ix )q{x \xt)a{xt,x )

and conversely if going from x  to Xt- To maintain equilibrium, it is sufficient that these 

densities be equal:

' n { x ) q { x \ x t ) a { x u x )  =  ■K{xt)q{xt \x)a{x ,Xt)

a condition that is referred to as “detailed balance”. To see this, taking P { x t , x )  as 

the elements of P,  given that detailed balance exists and (j)t-\ oc tt we can verify that
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equilibrium is preserved, since

- /  q{xt\x)a{xt ,x' )dx +  /  (pt-i{x )q{x \xt)a{x ,xt)dx 
Js  J Js

= ^(pt-i ix' )q{x\xt)a{x,xt) -  cl)t-i{xt)q{xt\x)a(xt,x) dx
I S

=  (f>t-i{xt) (due to detailed balance);

see Gilks et al. (1996), Chapter 1, Section 1.3 for details. Given that tt is fixed and 9(.|.) 

is chosen arbitrarily, the acceptance probability must be the element which allows us to 

control the distribution of the chain. There are in fact many acceptance functions which 

may be chosen to ensure the correct stationary distribution of the chain. According to the 

accept probability given above, the expected number of moves will be the same in each 

direction. This is the optimal accept probability with respect to reaching equilibrium as 

quickly as possible and traversing the distribution, as shown by Peskun (1973).

M etropolis A lgorithm

The Metropolis algorithm is a special case where the proposals are symmetric, i.e. they 

have the form q{x'\x) =  q{x\x).  Hence the accept probability reduces to:

, u . {  7t (x )\a{ x , x )  = mm 1, — .
V 7T X y

M et ropolis-w it hin- G ibbs

The Single-Component Metropolis is a variation of the Metropolis algorithm, and is more 

commonly referred to as “Metropolis-within-Gibbs”. Instead of updating the whole of 

X  together, X  can be divided up into a number of components X \ , . .. ,Xk,  then these 

components are updated individually. It samples as follows:

1. Let X - i  =  (X i,. . .  ,X i_ i,X i+ i,. . .  ,Xfc), so that there are fc -  1 components (the 

size of each component need not be the same).
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2. Let x\ denote the state of Xi  at the end of iteration t and q'i(.|.) proposes a point 

for the component only.

3. For n{xi\x^i), (this is called the full-conditional distribution of Xi), the accept prob-

The idea is each updating step produces a move in the direction only of the element in Xi  

(if the candidate is accepted).

G ibbs Sam pler

The Gibbs Sampler is a special case of Metropolis-within-Gibbs. The Gibbs sampler, as 

introduced in a statistical inference context by Geman and Geman (1984), and popularized 

by Gelfand and Smith (1990), is largely responsible for the introduction of MCMC to 

Bayesian statistics and for the increased popularity of Bayesian statistics. In turn this has 

lead to the increased popularity of Bayesian statistics.

For the Gibbs sampler, the proposal distribution for Xi  is its full conditional distribution 

(see below for details). This leads to an accept probability of 1, i.e. the proposal value is 

always accepted. An iteration of the algorithm is:

ability for x^ is then:

a{x\xi) = min j 1

~  irixnlx^-n)
Note: This requires that the full conditionals are available for sampling.

Full C onditional By the term full conditional of Xi  is meant

7r(xi,x-i) oc Tr{xi,x-i), (3.4)
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where X - i  denotes a vector x  without the component and in the present context tt{ x ) is 

our stationary distribution, partitioned into n components. The full conditional is derived 

from the joint distribution of the variables. In the case of the posterior distribution, where 

Y  is observed, the joint posterior distribution for X  is:

Prom Equations 3.4 and 3.5, the full conditional for X{ can be found by noticing that:

ir{xi,x-i\y)
7r(a:) =  / i n >

Tt{xi,x^i,y)
T^{x-uy) 

oc -Kixux-i^y),

since the denominator of expression 3.6 does not depend on Xi.  Thus to construct a 

full conditional for Xi,  we are only required to take the terms in the joint (posterior) 

distribution that involve Xi.

3.4 MCMC Mixing

For a Monte Carlo method to work well, it is important that it produces a good representa­

tive sample from the target distribution. If this has not happened then the approximations 

computed using the sample may not be reliable. When one uses MCMC, this property is 

called mixing.

3.4.1 W hy is Mixing Important?

Mixing is a property of a Markov chain that has attained its stationary distribution. It 

refers to the speed with which the chain explores the support of the stationary distribution. 

It is a qualitative concept, but “good mixing” occurs when the simulated chain traverses 

the entire parameter space rapidly, spending short periods of time in the extremes of the
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distribution and being predominantly in the body of the distribution. This is desirable 

because rapid mixing means fewer iterations of the Markov chain are required to have a 

good representative sample of tt. One thing to note is that sometimes there is a trade-off 

between rapid mixing and speed with which a sample is obtained. For example, if a very 

sophisticated algorithm mixes better per iteration than a simple one, but its CPU time 

per iteration is much larger, then it may not be a practical improvement.

Slow mixing obviously means that we have to run the chain for longer to get a reliable 

sample. One of the main causes of slow mixing is strong correlation between the variables. 

An example of a badly mixing Markov chain is the Gibbs sampler for a bivariate normal 

density with strong correlation. That is, since the target distribution 7t ( . )  is concentrated 

around a diagonal, the proposal Xt+i will be concentrated close to Xt,  hence the chain 

will move slowly. Such a situation is illustrated in Figure 3.1 (a). Multimodality within 

7t ( . )  is also a cause of slow mixing.

3.4.2 W hy is M ixing a Problem  in Spatial M odels?

Spatial models tend to have a combination of attributes which cause problems for mixing. 

They are usually of high dimension, with many of the parameters being strongly correlated. 

The posterior distribution may also be multimodal, especially in the case of mapping 

disease incidence. They are a difficult class of problems, but the techniques below may 

help in finding suitable schemes with which to implement them.

3.4.3 Approaches to  Im proving M ixing  

Careful Choice of Proposals

Take for example a random walk proposal:

q{X, X' )  = q { \ X - X ' \ ) .
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It may take the form X '  ~  N{X,a'^), where it is indexed by a scale parameter a, which 

needs to be chosen carefully:

• A small a creates a conservative proposal distribution that generates small steps. In 

this case X '  will generally have a high acceptance rate, but will move slowly through 

the support. An example of this undesirable behaviour is shown in Figure 3.2 (c).

• A large a generates large steps and will propose moves from the body to the tails 

of the distribution. This gives a low accept rate, i.e. the chain will frequently not 

move, also resulting in slow mixing, as seen in Figure 3.2 (b).

Theoretical justification for aiming to have the proportion of times that a proposal is 

accepted to be in the range [0.15,0.5] is provided by Gelman et al. (1995b).

Reparameterization

If there is strong correlation among the Xi's, appropriate reparameterization should reduce 

it and improve mixing. This involves transforming X  to new variable F , so that there is 

less correlation between the components. In the case of the Metropolis algorithm, another 

strategy would be to transform the proposals, which is equivalent to reparameterizing.

Coupling

When multimodality is the cause of slow mixing, reparameterization will not help much. 

A better solution might be Metropolis-Coupled MCMC (Geyer, 1991) or a similar hybrid 

MCMC. MCMCMC requires the running of m  MCMC chains in parallel, with different 

I  stationary distributions 7Ti(x), for i =  1 , . . . ,  m, where 7ri(a:) =  n(x) and {ni{x),i > 1} are 

chosen to improve mixing, for example:

7Ti (x)  OC 7t{x )  , A > 0
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Figure 3.1: Plot(a) depicts the contour lines of a bivaxiate posterior density with com­

ponents that are highly correlated. Also shown is a possible chain trajectory illustrating 

slow movement within the distribution. In plot (b), a transformation of the parameters 

has been performed, which reduces the dependence between the components and allows 

the posterior to be explored much more efficiently.
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After each iteration an attempt is made to swap the states of two of the chains using a 

MetropoHs-Hastings step. Heuristically, swapping states between chains will confer some 

of the rapid mixing of the modified chains to the unmodified chain. If 7t ( x )  is multimodal 

and if a modified chain moves freely among these modes, the swap will hopefully result 

in the unmodified chain changing modes, thus improving mixing. Proposed swaps will 

seldom be accepted if there is much of a gradient between chains, thus it is necessary to 

have many chains which differ only gradually with i.

The obvious disadvantage of MCMCMC is that while you have run m  chains, only 

the output from one is used. Other methods with similar motivation that improve slow 

mixing due to multimodality are: simulated tempering, (Geyer and Thompson, 1995) and 

the Langevin-Hastings algorithm, (Roberts and Tweedie, 1996). Simulated tempering is 

closely related to MCMCMC. It uses one chain, switching distributions within that chain 

rather than between several parallel chains. The Langevin-Hastings algorithm proposes 

points based on local properties, such as the gradient of 7t ( . ) ,  thus the chain is encouraged 

to move in the directions of the local modes. A more recent example of a coupling algorithm 

comes from Higdon et al. (2002), where there are two chains run in parallel, one a version 

that uses a smaller dataset, that is a simpler version of the original, and hence it is hoped 

that the chain mixes better for Bayesian inference. Potential proposals for each chain are 

constructed from the other, allowing greater traversing of the original chain, especially in 

multimodal situations.

B locking

If Gibbs or Metropolis-within-Gibbs are being used and some of the components are highly 

correlated (i.e. between chain correlation is high) in the stationary distribution (f>(x), then 

the mixing tends to be slow. One way of reducing this correlation and hence improving 

the mixing is to update some of the highly correlated parameters in a block. This means
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that the values for the correlated parameters are chosen not conditional on each other.

Updating Order

Although typically the components are updated in a fixed order, this is not necessary. 

They could be updated in a random fashion and furthermore each component need not 

be updated on each iteration. The components to be updated on each iteration could be 

selected randomly. It has been suggested that to improve mixing, it might be appropriate 

to update highly correlated parameters more frequently than the others (Zeger and Karim, 

1991). If the probability with which the parameters are updated is not fixed, but depends 

on Xt, then the accept probability has to be altered. Specifically, let S{i) be the probability 

with which component i is updated, then

. r -  -  min ( }  x ^ i ) q { x j \ x \ ,  X - j )  \
C L \ x - i , x % , x ^ )  —  i m i i  \ ^ 5  /  I  / . . o /  / ,  \  /  ' I  \  I

y  7 r ( X i l x ^ ) S ( x ^ l x i ,  x - i ) q ( x i j x i ,  X - i )  J  

Given the current values of Xi ,  the probability with which a component is updated may 

change from iteration to iteration, i.e. 5(j|.). Random updating also has some good the­

oretical properties in terms of convergence. More recently, optimal ordering for efficiency 

and convergence of MCMC algorithms has been investigated by Mira (2001).

All of the above ideas for improving mixing are those most widely used. There are 

many adaptations of these and research in this area is still active, see Green (1995), 

Kendal (1997), Rue (2001) and Higdon et al. (2002) for recent examples.

3.5 Diagnostics and Measures of Efficiency

Diagnostics are the methods employed to monitor the appropriateness of a chosen analyt­

ical approach, given the output produced by the approach. Again, there are a number of 

problems associated with MCMC, particularly assessment of convergence and the num­

ber of samples needed beyond this to gain a reliable estimate of the target distribution
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and summeiries there of. However, our interest Hes in assessing the mixing and detecting 

structures in the data which may be causing poor mixing, i.e.

•  High correlation between the components of the target distribution;

• Multimodality.

Some of the approaches to assess mixing and detecting its associated causes are outlined 

below. For a more formal development and extensive review of basic MCMC diagnostic 

and ideas for variance reduction, the reader is refered to Neal (1993) and Ripley (1987).

3.5.1 Basic Diagnostics

The most basic diagnostic approach to take when running an MCMC chain is to monitor 

the output visually. This can be done via trace plots (sequence of x*- against t) or even just 

numbers to  the screen (to confirm tha t none of the components are stuck at one value). 

The la tter three trace plots seen in Figure 3.2 illustrate some of the more likely problems 

to be encountered when examining the output. In high dimensional cases, it is not possible 

to do this for all of the components, so one chooses any fixed effect type parameters and 

perhaps a few random effects - say locations on a map or individuals in a population.

The next step is to look at histograms for the parameters of interest. If for example 

one of the parameters had a very skewed distribution, it may need to be transformed in 

some way. If the user is satisfied to move forward at this point, one would look at the 

autocorrelation (acf) plots of the parameters being monitored.

A u to c o rre la tio n  F u n c tio n  An autocorrelation plot consists of a plot of values for p{s) 

versus s, for s =  1 ,2 , . . . ,  where p{s) is correlation coefficient a t lag s. The autocorrelation 

function is given as:

ip{s)
p{s) =

¥’(0) 
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(a)

Figure 3.2; Plot(a) shows an ideal trace plot, i.e. one which appears to be mixing well. 

Plot(b) has many moves rejected, it exhibits poor mixing qualities and the movement of 

the chain is stunted and may be missing entire parts of the distribution. Plot(c) shows a 

chain which is traversing the distribution too slowly. Plot(d) presents a chain that has not 

converged and a model which may be over-parameterized, possibly with an identifiability 

problem or the plot may be indicative of multimodality.
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and the autocovariance (p{s) is

ip{s) = E  — x)

A popular summary measure related to this plot is lag 1 autocorrelation for each param­

eter. If the acf plot is not reducing “rapidly” or the lag 1 autocorrelation is high, this is 

indicative of strong within-chain correlation. By within-chain correlation is meant tha t 

for a particular parameter in the model, its chain exhibits correlation from one move to 

the next. If there is high within-chain correlation, then this is often associated with high 

between-chain correlation. High between chain correlation is when the behaviour of one 

component (or parameter) in the chain is influenced by the behaviour of another compo­

nent, for example if a large value is taken by one of the parameters, then it may be followed 

by a small value being accepted by another parameter. High between-chain correlation 

would need to be reviewed using some cross-correlation plots or even just scatter plots 

for any parameters suspected of such. Reparameterization or blocking may need to be 

implemented to overcome this.

K e rn e l D en sity  E s tim a te  In the Bayesian framework a kernel density estimate is 

usually applied to estimate a posterior density for a parameter of interest, from samples 

from the posterior. More generally, density estimation entails the construction of an 

estimate of the density function from a set of observed data  points, assumed to be a 

sample from an unknown probability density function. Formally, if X  =  ( X i , . . . ,  X„) G M 

is a sample, then the density estimate is given as;

s = l

where h is a, smoothing parameter (also refered to as a bandwidth or window width) and 

K  is called the kernel function. The kernel function will satisfy:

/OO

K{x) dx = 1.
-OO
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Usually K  will be a symmetric probability density function, such as the normal density, 

but this is not necessary. The normal kernel function is given as:

The kernel density estimate could be likened to the histogram, the kernel estimate is the 

sum of a series of densities placed at each of the observations, where a histogram is the 

sum of observations between fixed points and put in a series of boxes. The estimate /  is 

of course a density, since the kernel is a probability density function. Choice of kernel and 

size of smoothing parameter are discussed in Silverman (1986). Kernel density estimation 

is a standard method of examining posterior densities of parameters and functions of the 

parameters.

It has to be admitted that most users do not use anything more sophisticated than 

the above procedures, when assessing convergence and mixing of the MCMC algorithm. 

However, more sophisticated diagnostics are available.

3.5.2 Reviews of Specialized Diagnostics

There is a wealth of specialized MCMC diagnostics available. It is noted at this point 

that most of the available diagnostics investigate the rate at which the chain converges or 

whether the chain has reached convergence. There are also a number of methods that are 

not tailored towards convergence but attempt to measure the performance of the sampler. 

These methods can be used in themselves or in conjunction with convergence oriented 

diagnostics.

There have been a number of comparative reviews of MCMC diagnostics — Cowles 

and Carhn (1996), Brooks and Roberts (1998) and Mengersen et al. (1999) — each with 

slightly different emphasis. Cowles and Carlin (1996) compare the performance of several 

convergence diagnostics in an applied setting, also giving guidance on implementation.
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They conclude that many MCMC diagnostics proposed in the statistical literature are 

fairly difficult to use, often requiring problem-specific coding and perhaps analytical work. 

Also, although many of the diagnostics often succeed at detecting the flaws they are 

designed to identify, they can also fail in this role, even in idealized cases. Hence, Cowles 

and Carlin (1996) advocate the use of a variety of diagnostic tools rather than any single 

plot or statistic. Brooks and Roberts (1998) offer a similar review and conclusions, focusing 

on the mathematical characteristics of the various approaches.

3.5.3 Measures for Mixing Performance

Given these comparative reviews and our particular field of interest, i.e. mixing, this 

greatly reduces the number of diagnostics which would be of practical interest. The two 

we consider are the Gelfand and Rubin statistic (Gelfand and Rubin, 1992) and Yu and 

Mykland’s cusum path plots (Yu and Mykland, 1998), with a supplemental quantitative 

statistic based on the cusum by Brooks (1998). Both of these approaches effectively 

measure mixing of the chains.

Gelfand and Rubin Statistic

The Gelfand and Rubin statistic is one of the most popularly used in MCMC diagnostics. 

The statistic is a measure of how well the target distribution has been traversed, i.e. 

when the statistic has a value close to 1, the target distribution has been fully explored. 

The emphasis of the approach is in detecting slow mixing and hence reducing bias in the 

estimation. The method is as follows:

• Run a small number (m) of parallel chains with different starting points. These 

chains must be initialised in an overdispersed fashion with respect to the true pos­

terior. Run the chains for 2n iterations.
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• The “shrink factor” for the parameter of interest is:

where B  is the variance between the means from the m parallel chains, W  is the 

average of the m within-chain variances and df is the degrees of freedom of the 

approximate t density to the posterior distribution. The authors suggest estimating 

the degrees of freedom by the method of moments,

of convergence.

• This value should be close to 1 for all the parameters. Slow mixing samplers will 

initially have much larger B  than W. This is because the chain starting points are 

overdispersed relative to the target density.

• Values close to 1 show good convergence. A large GR statistics may arise as a result 

of slow mixing or multimodality.

The obvious disadvantage of this method is the requirement to find overdispersed distri­

butions to start with, in order to account for the possibility of multiple modes. However 

the method does not detect the existence of unexplored modes in the target distribution.

Cusum Path Plots

where V = +  ^^^5), but many similar competing estimates for the degrees of

freedom can be devised.

• The authors show that for a Markov chain with stationary distribution, \ /R  —> 1 as 

n —» oo. The difference from 1 for the R of the chain of interest is then a measure

A quite simple and potentially useful method for measuring the quality of the mixing of 

the chain was proposed by Yu and Mykland (1998). It is a graphical procedure based
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on cusum path plots, applied to a univariate summary statistic or a single component of 

the chain. They suggest that the speed with which the chain mixes is indicated by the 

smoothness of the plot. It takes the following form:

• Take n iterations (after burn-in) of the parameter of interest, say 6.

• Let /X be an estimate of the mean of 6, from . . . ,

• Then the observed cusum (or partial sum) is

t
St = ~ A)> t = l , . . . , n .

i=\

• The cusum path plot is a plot of St verses t, connecting successive points.

• Smoother plots, wandering further away from zero indicate slower mixing chains, 

while jagged plots which cross back and forth about zero regularly, indicate fast 

mixing chains.

• Yu and Mykland suggest comparing the plots to a benchmark plot, got from an iid 

variate generated from a normal distribution with its mean and variance matched 

to those of the sample iterates, to reduce the subjectivity of the method.

Brooks (1998) proposes an additional measure that could be implemented in conjunc­

tion with these cusum plots, which allows for a more objective interpretation of the plots. 

It involves ascribing some formal measure to the terms used to describe the plots, i.e. 

“smooth” and “hairy”. Simply, a completely smooth plot would remain travelling in the 

same direction, while a completely hairy plot will alternate direction. Thus an index is 

created by counting the number of times the cusum plot changes its direction.

Define
1, if St < mm{St-i,  St+i), 

d t=< or St > max(5f_i,5t+i),
0, otherwise.
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Then
n —1

Dn =  - Y . d t .
"  2

Dn takes values between 0 and 1, 0 indicating total smoothness and exceptionally poor 

mixing and 1 indicating maximum hairiness and much movement of the in the chain, but 

not necessarily rapid mixing. When n is large, should lie within the bounds:

2 2 Y

(by the Law of Large Numbers) for the behaviour of the plot to be considered reasonable. 

The above two approaches are the ones that we consider most useful, beyond those that 

are normally used.

There are however a number of statistics which approach the diagnosis from a rigorous 

mathematical perspective. The convergence rate of an MCMC algorithm is dictated by 

how close to  1 the absolute value of the second largest eigenvalue of its transition kernel 

(or transition matrix) is. Roberts (1992) and Garren and Smith (2000) propose estimating 

this eigenvalue from the sample output and thus comment on the rate of convergence. In 

practice, it is usually too difficult to obtain a useful estimate of this value (Roberts, 1995).

E ffective Sam ple Size

Another way of thinking about the property of mixing is in terms of the way in which 

it affects the number of samples required to represent the distribution of interest. The 

number of samples required depends on the level of error in the Monte Carlo estimate 

obtained from the data generated by the MCMC method. Assessing this error leads to 

quantifying the quality of the MCMC sample data. To assess this, recall the basic Monte
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Carlo estimation formula:

E { f { X ) )  =  j  f {x)Tr{x)dx

where the are samples from 7t ( x ) .  The above average is an unbiased estimate of 

f { X ) .  If the are independent, the Law of Large Numbers guarantees that the average

converges almost surely to E { f { X ) ) ,  as N  increases. A Markov chain simulation at its 

stationary distribution produces a series of dependent values;

To account for this dependence, we need to calculate how much it affects the variance 

and hence the number of samples we require to equate with a corresponding number of 

iid samples. The samples which are generated can be thought of as having a smaller 

relative value to iid samples. This relative measure is particularly useful when comparing 

MCMC methods. The theory for quantifying this relative measure (or error assessment) as 

outlined by Ripley (1987) and Neal (1993) is as follows. An estimate for =  V a r { f { X ) )  

is given by;

but /  will still be an unbiased estimate of E{ f { x ) ) ,  but because of the dependence of these 

values.

V a r ( f )  ^  ^

On substitution, an estimate for the variance of the Monte Carlo estimate of E{ f { x ) )  is 

then obtained,

N { N - l ) -  / ) ' •

The variance of /  can also be expressed in terms of the autocovariance function, defined

as:

7 (5 ) =  E  [(/(xW ) -  S (x (X )) ) ( / (x ( ‘+^)) -  E { f { X ) ) ) ]

51



and the autocorrelation function p(s), defined as p{s) =  where p(0) =  a^. The 

variance of /  is then given by:

t=i /

N

t,t =1

= ]̂  E  (1-NW7W-
For N  large,

-N<s<N

1
Var i f )  = -

N / t
^̂  + 2 5 ^7 (5)

S = 1

where r  =  1 +  2 ^ p ( s ) ,  and p{s) is the autocorrelation function at lag s. The value r  

can be thought of as the number of dependent sample points from the Markov chain that 

are required to give the equivalent to one independent sample. Another way of viewing 

this measurement is that the “effective sample size” (ESS) generated by the simulation is 

N / t . This is going to be less than N  when > 0, which will generally be the case.

Methods (such as those mentioned in Section 3.4.3) reduce Var { f )  and hence increase the 

ESS, thus essentially improving mixing and contributing to the efficiency of the algorithm.

The diagnostics which we have embraced are: trace plots, autocorrelation plots, kernel 

density estimates, and effective sample size.
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Chapter 4

Blocking Algorithm for Univariate 

Latent Spatial Models

Although many inference methods have been proposed for spatial data (Cressie, 2001), we 

will concentrate on the Bayesian approach. In this chapter we look at the performance of 

MCMC methods for implementing Bayesian inference for a univariate Poisson model with 

a latent Gaussian field. The joint posterior distribution for the latent spatial Gaussian 

model already presented in Chapter 2, Section 2.3.5 is given by:

p{x,/3,e\y) <x p{y\x,l3)p{x\e)p{e)p{p)

(X e x p ( ^  yi{P +  X i) -  ^

|E(6>)rUxp(-ia;^S(6>)“^x)p(6')p(/3).

The priors for 9 and /3 that we choose are proper uniform priors, the ranges used are 

detailed in Chapter 2, Section 2.3.5. The details for each of the algorithms given below 

will be with respect to this model. Here we present three MCMC schemes for simulating 

from the above posterior;

• Sequential Update, Diggle et al. (1998);
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•  Partial Block Update, Rue (2001);

•  Total Block Update.

The first two use Metropolis-within-Gibbs (see Chapter 3, Section 3.3.2) and the last one 

uses a Metropolis update. Prom the latter sections of Chapter 3 it may be apparent that 

a comparison of these algorithms with regard to the efficiency with which they explore 

the target distribution is of interest. In what follows, we use the powered exponential 

correlation function as given in Chapter 2, Section 2.3.5, Equation 2.1.

4.1 M CM C Algorithms for the Univariate Latent Spatial 

M odel

4.1.1 Sequential Update

The sequential update, as proposed by Diggle et al. (1998), samples each of the parameters 

individually. The a, 6, and j3 are sampled from their full conditionals, using random 

walk proposals. A random walk proposal is one which proposes a new point dependent 

on the previous point, with equal probability of being larger or smaller than the previous 

point, i.e. q { x , x )  = p(\x — x'\). This proposal may be uniform in an interval centred at 

the current point, normal with mean as the current point or any other symmetric distri­

bution. It may also be either an additive or multiplicative function of the current value; 

multiplicative moves are achieved by working on a log scale. The amount by which the 

proposed point differs from the previous point depends on a scale parameter, which is 

carefully chosen, as discussed in Section 3.4.3. The X j’s are also sampled from their full 

conditionals using a conditional univariate Gaussian proposal. Details of the proposal 

and the acceptance probabilities are given in Appendix A, Section A. 1.1. The computa­

tional efficiency in calculation of the conditional univariate Gaussians is improved by using 

Cholesky decomposition in combination with partitioning properties of the conditional-
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variance, (W hittaker, 1990).

We note tha t an alternative sampling approach tha t could be used is to define Zi — 

Xi  + P, then proceed to sample P and 6 given Zj. This approach may be applied to all the 

updating schemes presented and makes the sampling of P simpler, see Gammerman (1997). 

We do not adopt this approach here, because this does not generalise straightforwardly to 

the multivariate case of Chapter 5, i.e. Yij ~  Poisson(exp(/3jo +  Z )^ i  Pjt^it))  and we want 

to allow for as close as possible a comparison of the results here with those of Chapter 5.

The values of both a  and must be strictly positive. In theory, zero is an absorbing 

state of the Markov chain for each parameter, (Besag et al., 1991). At the boundaries 

(5 =  0 and 6 = 2 the resulting correlation matrix becomes positive semi-definite and hence 

singular, so d will be constrained to take values 0 < 5 < 2.

4.1.2 Partial Block Update

In the partial block update, the set of parameters is partitioned into three blocks x, 0 

and /?, where 9 =  {a,S,a^).  All the parameters in each block are updated jointly. The 

parameters within each block are strongly correlated, hence the choice of blocks. There 

can also be problems with mixing as a result of correlation between the hyperparameters 

and the latent variable X ,  to lessen this between chain correlation a complete block update 

is applied, as describes in the next section. The partial block MCMC scheme takes the 

form below:

• Update 9 (the parameters in S) from its full conditional,

p(9\x) oc |S(l9)|“ iex p (-^ a ;^E ((9 )“ ^x),

using three independent random walk proposals, i.e. a , cr̂  and <5 are updated simul­

taneously.
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•  Update /9, from its full-conditional:

p{(3\y,x) oc J]^exp(-e^+^‘).exp(^-|-a;i)^' 

as for the sequential method of the previous section.

•  U pdate X  =  { X \ , X 2 , . X^ }  in one block, from its full conditional:

p{x\y, /3,6>) oc J Je x p (-e ^ + ^ ‘ +  yjXi). e x p (-^ x ^ S (0 )“ ^x) 

using the multivariate Gaussian proposal distribution:

p{x' \0,P,y)  oc exp (-ix "^ (S (6 ')“  ̂+ C )x ' + {y -  B) '^x) .

This distribution arises as a result of making an approximation (Rue, 2001) to the 

joint posterior at the current point Xi.  The approximation takes the form:

-  C  =  e^ d iag (C i,...,C „);

-  B  =  e ^ { B i , . . . , B n Y .

where Bi and C{ are obtained from the approximation

exp(x-) At +  Bix'i +  ^Cix[^,

By replacing exp(a;) in the full conditional of x  with this quadratic approximation, we 

produce the multivariate normal distribution given above. Samples for x  are drawn from 

this Gaussian proposal distribution and thus the block update of the X{S becomes very 

natural. The approximation could be made using a Taylor expansion, but Rue (2001) 

suggests a more global and also accurate approach to improve the accept probabilities. He 

proposes tha t an “overall” good fit to the full conditional for X  in the region where X '  is
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expected to be located is more important than a precise fit around X.  The approximation 

is given by:

{Ai,Bi,Ci) -  arg min f {exp(a;*) -  {Ai +  BiX* +  ^Cixf ) }^  dx-
J x i - A  ^

where A is a crude guess of the step length of Xi to x^. Full details of the calculations are 

given in Appendix A, Section A.1.2.

4.1.3 Total Block Update

This is a Metropolis-Hastings algorithm that uses Rue’s approximation to the X iS  proposal 

function. The total block update algorithm works much the same as that above, except 

everything is updated concurrently. As before, propose new (/3',a using some

random walk proposals. Then using the proposed 9' and 0  , propose a new vector of x\ 

using Rue’s method, such that:

p{x'\e,(5,y) a  exp(-^x'^(S(0)'“  ̂+  C)x +  {y -  B f ' x ) ,

where

• C =  diag{C\ , . . . ,  Cn)',

.  B = e0\Bu...,Bn)\

as defined before. The {9',f3' ,x)  are accepted or rejected all together; see Appendix A, 

Section A. 1.3 for details of the acceptance probability.

4.2 M ixing Properties of Algorithm

There are two issues that have arisen in the previous sections:

• the effect of blocking on mixing;
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•  •  •  •

Figure 4.1: A map of Rongelap island and the locations of the measurements taken.

• the effectiveness of Rue’s approximation (as a proposal for X) as a method to improve 

acceptance probabilities within a block update and hence improve the overall mixing.

“Blocking” has been shown to be a useful approach in aiding MCMC convergence by Liu 

(1994) and Liu et al. (1994), but they have also given counterexamples. The performance of 

Rue’s approximation (Rue, 2001) combined with the above two blocking schemes, relative 

to the basic sequential update method (Diggle et al., 1998) is viewed here using a number 

of datasets, each with different attributes. The chosen attributes are those characteristics 

of the data which may affect the performance of the algorithms, namely:

• correlation level within the data;

• size of p.

The schemes are applied to a popular historical set of spatial data, the “Rongelap Island” 

data and three simulated datasets, which exhibit varying levels of these properties. The 

performance is viewed using a number of visual representations and effective sample size. 

Effective sample size as described in Section 3.5.3 can be thought of as a response variable.
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4.3 Description of Data

The Rongelap island dataset consists of radioactive counts taken from 157 locations on 

Rongelap island. The measures are taken at point locations, for a stated period of time. An 

illustration of the island and the location at which the measurement were taken are given in 

Figure 4.1. The study arose as a result of the island being evacuated, due to experiencing 

contamination from the fall-out from the Bikini Atoll nuclear weapons testing programme 

during the 1950’s. The levels of contamination have since been under investigation to 

establish risks involved for possible re-habitation.

The three simulated datasets comprise of 200 locations that are randomly positioned 

on a square. The maximum distance between points is taken to be 1. Two of the datasets 

have points that are very strongly correlated, the first with a mean of and the second 

with mean 1. The third dataset has much less correlation. This is quite close to being iid 

and has a mean value of . The exact values of the parameters used to simulate the data 

are given in Table 4.1. The behaviour of the three schemes on the four datasets has been 

monitored and the findings outlined below.

4.4 Results

All the algorithms have been programmed in C and run on Unix machines. In the case 

of simulated datasets 2 and 4 the algorithms were initialised to their true values and run 

for 100,000 iterations. For dataset 3, two further repHcate datasets (i.e. with the same 

parameterizations) were created and the algorithms run on each of them to check for 

posterior bias. Also, the runs on dataset 3 and its replicates used various initial values 

for each of the parameters and were run for 100,000 iterations post burn-in. Similarly, 

the Rongelap island dataset was run for 100,000 iterations after burn-in. For each of the 

algorithms and datasets, the samples from the runs have been thinned to include every
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100*  ̂ iteration, so our actual sample size is 1,000.

The speed with which the blocking algorithms produce an iteration is much faster than 

that of the sequential algorithm, it is of the order of 4 times faster for the size of datasets 

considered here. The algorithms are order O(n^); the Cholesky decomposition is the 

most expensive operation. The algorithms were run on a variety of UNIX machines and 

the actual length of the run time for each of the algorithms varied and depended on 

what other processes were being run on the processor. Also, the total block update and 

the partial block update show substantially better mixing properties then the sequential 

update. Using effective sample size as a measure of mixing efficiency, the improvement 

in effective sample obtained is between 20 and 1.2 times that achieved by the sequential, 

depending on the dataset and parameters viewed.

As a separate experiment, we have run the partial block update algorithm on a number 

of datasets of varying size to assess how increasing dataset size affects run time. The 

algorithm was run on a Intel Pentium 4 with 3GHz CPU and 1GB RAM. The results 

are as follows: n =  50 took 0.005 sec/iter, n =  100 took 0.018 sec/iter, n =  200 took 

0.09 sec/iter, n =  400 took 0.85 sec/iter and n =  800 took 31.4 sec/iter. Prom this we 

observe that the relationship between sample size and iterations per seconds is not a linear 

one. As sample size increases the speed of the algorithm decreases disproportionately and 

so there may be some limitations with regard to the sample size for which this type of 

algorithm maybe considered suitable. There have been some ideas put forward for dealing 

with larger datasets such as those found in geostatistics, see Rue and Tjelmeland (2002) 

and Whiley and Wilson (2004). Rue and Tjelmeland (2002) advocates the discretisation 

of the values of the unknown parameters in the covariance structure and approximate 

the Gaussian field by a Gaussian Markov random field while Whiley and Wilson (2004) 

suggests a variety of parallelising routines for computations on the covariance matrix.
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A ccep tan ce  R a te s  For the sequential update each of the parameters are updated in­

dividually and so each has an acceptance rate. The acceptance rates for the sequential 

updates are as follows: the X i's  have an average acceptance rate of 0.16 — 0.31; (3 is be­

tween 0.12 — 0.17; ct is between 0.06 — 0.12; 5 is between 0.02 — 0.08 and is between 

0.06 — 0.11. These acceptance rates are lower than may be considered desireable (see 

Gelman et al. (1995b)), and could be improved by reducing the variance of the random 

walks used. A number of scaling for the random walk were tried for this scheme, some 

with more favourable acceptance rates but all of which showed a slow traversing of the 

chain. The partial block update proposes updates of all the X i's  together, next the j3 and 

then the remaining d's. The acceptance rates for the partial block updates are as follows: 

the X iS  are between 0.55 — 0.73; the 13 is between 0.14 — 0.28 and the 9's are between

0.09 — 23. The total block update simply updates all of the parameters together and the 

acceptance rate for this is between 0.22 — 0.47. The acceptance rates for the sequential 

algorithm are a little low but are within a reasonable range. The acceptance rates are a 

little more favourable for the blocking algorithms.

4.4.1 Rongelap Island Data

In the output from the sequential update as seen in Figure 4.2, the trace plots show strong 

evidence of correlation between the parameters and quite slow mixing of the chain. This 

is especially the case for a  and tr^, i.e. if a  takes a very low value close to 1, then 

will increase in value to compensate. It is the presence of this correlation between the 

parameters tha t is causing such poor mixing within the sequential update. There is also 

quite high correlation present within the chains, as seen in the autocorrelation plots, which 

further indicates the poor quality of mixing within the chains.

The two block updating schemes give very similar results for this dataset. The trace plots 

show the chains to be mixing very well, with no apparent between chain correlation present,

1.e. the blocking has removed this undesirable property. The within chain correlation has
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more or less died away by the effective sample, with the exception of the parameter 

in the partial block update. On inspection of a plot of cr̂  kernel density (see Figure 4.6), 

the density estimates are very similar for each of the parameters, with the exception of 

the a ’s. The sequential method in particular gives a slightly different density estimate 

for a .  This reflects the evidence produced by the other diagnostics. Lastly, the effective 

sample size gives very conclusive evidence that the blocking scheme improves mixing many 

fold, see Table 4.3. The estimates found for parameters are not the same as those given 

by Diggle et al. (1998), but are consistent with those obtained by colleagues, Whiley and 

Wilson (2004).

4.4.2 Dat£iset 2

This dataset has quite high spatial correlation, see Table 4.1. The two blocking schemes 

show worse mixing, compared with the previous dataset (particularly obvious in the ess) 

and there is also evidence of some between-chain correlation. The acf plots in Figure 4.3 

show tha t the within-chain correlation is quite high, particularly for a  and cr ,̂ which is 

why the mixing of the chains is suffering so much. The effective sample sizes associated 

with the total block update are substantially better than those for the sequential and the 

partial update. The effective sample size for the partial and sequential updates vary with 

respect to which parameters behave best within each scheme.

The sequential update struggles a great deal with these data. After an extensive number 

of runs of the algorithm, it was observed to regularly get “stuck” and only sometimes 

returns to exploring the posterior distribution at all. From the trace plot shown, it can 

also be seen tha t there is high correlation between the a  and cr̂  parameters. The acf 

plots are indicative of the extremely high correlation present within the parameters, again 

particularly within a  and hence the exceptionally poor mixing. This dataset illustrates 

that although blocking is capable of greatly reducing the effects of correlation, it is not 

immune to its effects in extreme cases.
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Parameters
Datasets

2 3 4
0 3.0 0.0 3.0
a 10.0 10.0 20.0
S 0.8 0.8 0.8

0.75 0.75 0.75

Table 4.1: Parameter values used in the construction of the three simulated datasets. 

4 .4 .3  D a ta s e t  3

This dataset has the same high level of correlation as dataset 2, but now the mean count is 

1. The sequential update suffers from much the same difficulties as it did for the previous 

dataset, due to extremely high correlation present in the data. High correlation is no 

longer the main issue for the blocking schemes. The performance of the blocking schemes 

relies on the accuracy of Rue’s normal approximation to the Poisson likelihood. This 

approximation worsens as the Poisson mean gets small (where the Poisson distribution is 

more skewed) and the number of points increase. So, with a Poisson mean of 1, Rue’s 

approximation breaks down and the proposals are never accepted. This obstacle may be 

overcome in a number of ways: an alternative proposal function could be used -  Rue et al. 

(2004) has put forward some ideas on this -  the mean of the Poisson could be artificially 

increased to allow the current proposal for the X ’s to be usable or a sampling method 

such as that described by Gammerman (1997) could be applied. Rue et al. (2004) uses a 

sequential representation of the latent variables, then constructs univariate approximations 

at each location and joins them together to sample from the posterior. The univariate 

approximations are made by using log-quadratic splines, but the authors also suggest some 

other approaches for getting the univariate approximations. This approach appears to be 

very efficient and accurate when the posterior density is unimodal and less accurate when 

it is not. We have chosen to increase the Poisson meein and thus continue with the current 

blocking proposals.
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Using an inflated Poisson mean (/3 =  log{10)) the two blocking schemes traverse the 

support of the posterior distribution, but do intermittently get stuck, as is seen in the 

trace plots of Figures 4.4 and 4.7. Visually the mixing would not appear to be as good 

as th a t seen for the Rongelap data or dataset 4; the autocorrelation function in Figure 

4.4 and the effective sample sizes given in Table 4.3 reflect the less than perfect mixing 

for both of the blocking schemes. The total block shows better ess values than either the 

sequential or the partial block schemes. The sequential scheme showed quite poor mixing 

in the trace plots of Figures 4.4 and 4.7, this is reiterated in the associated acf plots and ess 

values. The performance of each of the algorithms is similar to tha t for dataset 2, which 

had the same quite high level of spatial correlation and hence much the same reasoning 

applies as to why each of the schemes perform poorly or at less well.

P o s te r io r  b ias  Two replicate datasets have been produced with the same properties as 

those of dataset 3. Each of the algorithms have been run on these replicate datasets to 

check for posterior bias. There would appear to be some posterior bias when using the 

sequential update, particularly in the alpha parameter estimate, but to some extent in all 

of the parameters, see Table 4.2 and Figure 4.7. The partial block algorithm exhibit a 

small to negligible amount of bias and this appears to disappear in the total block update, 

see Table 4.2 and Figure 4.7. Knorr-Held and Rue (2002) show similar findings using a 

variety of blocking schemes. They claim tha t estimates based on single-site algorithms 

or even blocks of parameters without the hyperparameters maybe biased, even for very 

long runs. They also note however that such bias was not present for all of the datasets 

examined and thus the results may be data dependent.

C onvergence  To check for the convergence properties of the algorithms, each of the 

algorithms have been initialised from a number of different starting points, while being 

run on dataset 3 and its replicate datasets. Each of the algorithms appears to have
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succeeded in finding convergence, however the length of burn-in required varies. In the 

case of the sequential algorithm often convergence is slow, given that only one in every 

hundred iterations is kept. Given the poor mixing that is observed in Figures 4.4 and 4.7 

is unsurprising. The rate of convergence is much faster for the blocking algorithms, see 

Figure 4.7.

4.4.4 D ataset 4

The last dataset has a log-mean of 3.0 and quite low correlation. It can be seen from 

the trace plots in Figure 4.5 and Table 4.3 that all three algorithms perform much better 

than in the previous datasets. The characteristics of this dataset (low correlation and high 

Poisson mean) are relatively suitable for MCMC methods.

The performance of the two blocking schemes is very similar, but the trace plot for the 

sequential scheme shows that its mixing is not quite as rapid. Also, there is evidence 

in the sequential trace that there is correlation between a  and which as mentioned 

previously is one of the causes of the slower mixing in this method. The acf plots support 

these conclusions. The within-chain correlation dies away rapidly using the block updating 

schemes, but not to the same extent for the sequential method. This indicates that the 

mixing for the blocking schemes is better than that for the sequential update. Again this 

is supported quantitatively by the effective sample size, which is much smaller (better) 

for the blocking schemes. The consistent difference between the total and partial schemes 

could be attributed to less good mixing in X ’s of the partial scheme, which itself maybe 

caused by poorer mixing of its a  and S parameters.

4.5 Conclusions

Our main interest in these algorithms is the efficiency with which they explore the target 

distribution, with the obvious constraint being the time it takes them to do so. After
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Model
Parameters Algorithm

Dataset 3
True Run 1 (^, a) Run 2 (//, a) Run 3(/i, a)

P
Sequential

Partial
Total

0.0
log(lO.O)
log(lO.O)

(0.03,0.19)
(2.30,0.16)
(2.31,0.21)

(0.05,0.07)
(2.26,0.23)
(2.28,0.27)

(0.13,0.17)
(2.17,0.33)
(2.26,0.19)

a
Sequential

Partial
Total

10.0
(7.62,2.95)
(9.68,3.42)
(9.95,2.74)

(7.69,3.80)
(9.49,3.17)
(10.06,2.97)

(6.84,2.42)
(9.65,3.57)
(9.71,2.89)

S
Sequential

Partial
Total

0.8
(0.89,0.19)
(0.83,0.20)
(0.82,0.15)

(0.88,0.32)
(0.84,0.17)
(0.80,0.17)

(0.92,0.15)
(0.84,0.21)
(0.82,0.18)

(t 2
Sequential

Partial
Total

0.75
(0.70,0.25)
(0.72,0.09)
(0.74,0.08)

(0.69,0.21)
(0.75,0.11)
(0.76,0.06)

(0.57,0.24)
(0.70,0.13)
(0.72,0.10)

Table 4.2: These are the mean and standard deviation for each of the parameters in the 

model, for each algorithm and for each of the dataset 3 runs. Also given is the true 

parameter values for the model, the closer the mean is to this value the less biased the 

estimate.

Parameter Algorithm
Datasets

Rongelap Dataset 2 Dataset 3 Dataset 4

0
Sequential

Partial
Total

12.41
2.57
4.49

31.51
42.82
19.68

44.91
31.31
22.36

39.59
6.46
5.28

a
Sequential

Partial
Total

57.15
5.09
2.35

58.33
48.11
37.20

46.32
45.67
33.64

23.78
2.11
1.57

S
Sequential

Partial
Total

49.38
16.91
2.62

24.41
30.69
20.95

55.32
30.79
26.81

13.80
2.01
1.96

Sequential
Partial
Total

55.34
8.86
2.19

63.59
52.97
32.46

73.65
52.96
34.97

15.62
2.91
1.21

Table 4.3: These are the r  values of the effective sample size (ess =  iV/r, where N  is sample 

size) for the parameters of the model, for each of the three algorithms. The smaller the r  

value the better the algorithm’s performance.

66



alp
ha

 
t^

ta
 

alp
ha

 
t̂e

ta 
ai

p^
a

Total Block Updata -  Rongelap Data T otal U pdate  -  R ongelap  D ata

0 100 200 300 400 SOO 700 800 900 1000

0 100 200 300 400 500 600 700

jL
0 100 200 300 400 500 600 700

0 100 200 300 400 500 600 700 800 900 1000

Partial Block -  R ongalap Data Partial U pdate  -  R ongelap  D ata

0 100 200 300 400 000 700 800 900 1000 0.4

0 100 200 300 400 500 800 700 800 900 1000

0 1M 200 300 400 500 800 700 800 900 1000

0 100 200 300 400 500 800 700 800 900 1000
0  to  20 30 40 10 20 30 40

Sequanttal U pdate -  Rongelap Data Sequen tia l U pdate  -  R ongelap  D ata

Figure 4.2: Trace plots and autocorrelation plots for the Rongelap Island data.
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Figure 4.3: Trace plots and autocorrelation plots for the high correlation data, (3 =  3.0.
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Figure 4.4: Trace plots and autocorrelation plots for the high correlation data, (3 =  0.0

for the sequential algorithm and /3 =  log(lO.O) for the blocking algorithms.
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Figure 4.5: Trace plots and autocorrelation plots for the low correlation data, (3 —  3.0.
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Figure 4.6: Kernel density plots for the Rongelap Island data (top left), high correlation

data, /3 — 3.0 (top right), low correlation data (bottom left) and high correlation, P = 0.0

(bottom right). The solid line represents the sequential output, the dash-dot line the

partial update output and the dotted hne the total update output. The estimates of (3 in

the bottom right dataset differ due to the use of an inflated Poisson of /? =  loglO.O for the

two blocking algorithms and a /? =  0.0 for the sequential algorithm. A Gaussian kernel

and optimal bandwidth have been used in the construction of these kernel density plots.
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Figure 4.7: Trace plots of the a  variable with various initializing values for each of the 

algorithms (total update, partial update and sequential). They are run on datasetS (high 

correlation, jd =  0.0) and two additional replicate datasets with the same parameteriza- 

tions. The results for the original datasetS are given in top left, replicatel dataset top 

right and replicate2 dataset bottom left.
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assessing their performances on the given datasets, the main conclusions are:

1. The speed per iteration with which the blocking algorithms run is much faster than 

that of the sequential algorithm. They complete an iteration in approximately a 

quarter of the time it take the sequential algorithm.

2. The main drawback of the blocking schemes is that the coding required is more 

complex and thus there is an initial investment of time. This complexity is mostly 

due to the details in Rue’s approximation of the X j’s.

3. Mixing is generally better with blocking schemes than with a sequential scheme. 

In particular, mixing will improve using blocking when between-chain correlation is 

high, and will improve many fold when the between-chain correlation is average to 

low. However, blocking will not make the associated difficulties disappear entirely, 

as can be seen in their effective sample size measures.

4. Rue’s approximation for the X i ' s  appears to work well (i.e. quite high acceptance 

probabilities were observed) under certain conditions. Rue’s method requires that 

the Poisson distribution be well approximated by the normal, if this is not the case, 

other measure need to be take such as using an artificially increased Poisson mean 

or an alterative proposal function for the X j’s.

5. There is some bias present in the estimates attained from the sequential algorithm. 

This is substantially reduced using the partial block algorithm and completely elim­

inated with the total block algorithm. All of the algorithms succeed in converging 

when initialised from various starting values.

6. The blocking algorithms work well on the dataset sizes considered here, however were 

the dataset size to increase dramatically, there would be practical issues with regard 

to their speed of computation and hence the time required to obtain an adequate 

sample from the support of the posterior distribution.
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In summary, the blocking schemes are more efficient in their traversing of the target 

distribution, but their coding requires an investment of time at the outset.
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Chapter 5

Coupling Algorithm for 

M ultivariate Latent Spatial 

M odels

The model adopted in this chapter is a multivariate extension of the one utilized in Chapter 

4. The main difference is that there are now r response variables (yi) at each of the Si 

locations, rather than just one, to allow correlation both within and between locations. 

These correlations are modelled by increasing the number of latent processes to T.  While 

a univariate latent field will model spatial correlation, it cannot induce cross-correlations 

between observations at a single location. By introducing more than one latent field, cross­

correlation can be modelled. This poses the question; how many latent fields T  should 

one have? For identifiability, T  < r. In this work we restrict ourselves to T =  2. For 

ease of computation, T  should be as small as possible and yet allow sufficient fitting of 

the correlation structure. Usual model choice methods, such as Bayes factors, can be used 

to select the best value of T. A fully Bayesian treatment would allow T to be a random 

variable, and its value to be inferred. This could be implemented by dimension-changing
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Metropolis methods, such as reversible jump (Green, 1995).

The model construction is described in detail in Chapter 2, Section 2.3.6. Using this 

model each latent process is given var(a:jt) =  1 to avoid overparameterisation. The joint 

posterior distribution for the model is given by:

p{x,(5,e\y)  oc p{y\x,!5)p{x\e)p{e)p{(i)
r

oc n
j = i

p(Pj)
g 6xp(Aij)

_i=l 
T

X ^^|E(6>()|“ 5 exp p(6>t).

where y =  (y i , . . .  , ? / r ) ,  x = { x i , . . . , x t ) ,  I3 = {/3i,. . . ,  l3r), 9 = ( 6 / i , . . .  ,6»r), Pj = 

i P j O , ( 3 j T )  and =  /?jo +  ■

M otivation This model has been motivated by fossil pollen data tha t has been observed 

at many locations throughout Europe in lakebed sediment. The underlying concept a t­

tached to the data is that ecological behaviour is directly related to climate. Thus, if 

there is knowledge about the ecology of an area, as inferred from pollen counts, then in­

ference can be made with regard to its climate. Furthermore, knowing how present day 

ecology (pollen counts) relates to climate, it is then possible to predict what past climate 

might have been like given the fossil pollen. The data comprise of pollen counts yj{si)  

for j  =  1 , . . . ,  r  different species of plant at each of i =  1 , . . . ,  n  locations. These pollen 

samples are taken from cores of lake sediment, spanning a time period of 10,000 years (i.e. 

back to the last ice age). For each location Sj, the pollen samples are taken from a sediment 

sequence at intervals, tha t are irregular in time due to variation in sediment accumula­

tion rate. Radiocarbon dating determinations are made on samples from the sediment 

sequence, and interpolation is used to estimate the remainder. An im portant feature of 

the data is tha t the counts display spatial correlation and across species correlation at the 

same location. Difficulties attached to the data are that there is an indeterminate amount
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of both spatial and temporal aggregation. A further issue is that climate during the last 

glacial age would have been much more extreme, and that climatic conditions over the 

past 10,000 years would have been much more variable than present day conditions. This 

mismatch of information makes it difficult to model past ecology, Whiley et al. (to appear) 

have given an approach for these data.

There are two attributes of the pollen data which have been instrumental in our ap­

proach: spatial correlation and aggregation. The model which we have chosen is based on 

these data but without the temporal element, hence it uses a spatial correlation structure. 

Also, the natural occurrence of spatial aggregation has been key in inspiring the concept 

of utilizing its benefits via artificially aggregating the data, as is seen by the method given 

later in this chapter.

5.1 Coupling

MCMC algorithms can be very slow both to converge and explore the target distribution 

thereafter; potential reasons for this are discussed in Chapter 3, Section 3.4. Many different 

methods have been proposed for the improvement of their rate of convergence and mixing, 

see Chapter 3, Section 3.4.3 in this text and also Gilks and Roberts (1996). The approach 

which we have taken in what follows of this chapter comes under the category of coupling; 

some details of this have already been discussed in Chapter 3, Section 3.4.3. Essentially, 

a coupled MCMC method runs several chains in parallel that are allowed to exchange 

information. At least one of the chains, but not necessarily all of them, has stationary 

distribution that is the target. The nature of this exchange is such that the chain or chains 

whose stationary distribution is the target are able to be explored quicker. We combine 

the ideas of coupling and blocking to create a new algorithm, whose aim is to improve the 

exploration of a target distribution.
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Coupling algorithms have many purposes and come in many forms. That is to say, 

there are a number of MCMC techniques which fall under the umbrella of coupling and 

depending on the problem being resolved the approach will differ. Here we give a brief 

description of some of those which have been presented.

The first method to introduce an alternative update of MCMC was the Swendsen and 

Wang (1987) algorithm for the Ising model (this was not strictly coupling, but more aug­

mentation), this lead to the introduction of many other algorithms of this type. A more 

general algorithm was proposed by Geyer (1991) -  Metropolis-coupled MCMC (MCM- 

CMC). Details of this algorithm have already been given in Chapter 3, Section 3.4.3. 

Many MCMC methods have arisen from or were derived from ideas in physics and sta­

tistical physics, particularly multi-resolution problems which are discussed at the end of 

this section. One example is due to Geyer and Thompson (1995) referred to as “simu­

lated tempering” , which is based on simulated annealing, an optimization technique from 

physics.

Both MCMCMC and tempering use a one parameter family of probability distribu­

tions {hi{x), i  =  l , . . . , m ) ,  indexed by a parameter i called temperature, ranging from 

the distribution of interest, which is the coldest temperature {hi{x)),  to the hottest dis­

tribution {hm{x)),  which is easy to simulate. If h{x) is the unnormalised density for the 

distribution of interest, then /i(x)^/^ for /3 > 1 are the “heated” unnormahsed densities, 

where /? generally includes a scaling effect of the temperature. The hi{x) is known as an 

“energy” function and the form of movement between states is referred to as “powering 

up” in simulated annealing. Unlike annealing, simulated tempering does not impose a 

monotonically decreasing schedule of temperatures, but rather it moves in a random walk. 

The stationary distribution of the sampler is proportional to hi{x)'K{i), where the Tr{i) are 

artificial weighting terms chosen in advance. These are intended to approximately equalize
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the time spent at each temperature. The algorithm takes the form:

1. U pdate X using Metropolis-Hastings or Gibbs update for hi.

2. Set j  =  i ± l ,  where q (l,2 ) - q{m,m -  1) =  1 and q{i, i +  1) =  q{i, i  — 1) =  5 ,1 < 

i < m.

3. Accept transition with probability m in (l,r) , where

^ hj {xMj )q{ j , i )  
hi{x)n{t)q{i,j) '

Tempering has the advantage over MCMCMC that it keeps only one copy of state x rather 

than m  copies, so the chain uses less storage and mixes better. The disadvantage is tha t it 

requires good choice of n(i).  Details of the number of distributions to use and the choice 

of 7t (z) are given in Geyer and Thompson (1995).

Other developments have come from Basseville et al. (1992). They examine “multi­

scale stationarity” and fusion of data from different resolutions, with application in signal 

and image processing. Prantz et al. (1990) also introduced a method of coupling, which 

proposed jumping (called J-walking) between low and high temperature random walks, 

using Boltzmann distributions to allow full exploration of a region. Their motivation is 

to avoid quasi-ergodicity and reduce the time required in running Metropolis algorithms. 

Propp and Wilson (1996) tackle the problem of identifying when the Markov chain has 

reached the target distribution using coupling. They present an algorithm, which uses 

monotone coupling from the past and samples exactly from the distribution of interest 

rather than approximately, which is the case with standard MCMC. The coupled chains, 

rather than running from the present into the future, run from a point in the past until the 

present. The distance into the past that the algorithm needs to go is determined during 

the running of the algorithm itself. The algorithm is however not particularly universal, 

as it relies on the Markov chain having a special structure.
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More recent contributions to the area have come from; Barone et al. (2002), Pinto 

and Neal (2001), Holloman et al. (2002) and Higdon et al. (2002). Barone et al. (2002) 

present an algorithm which combines ideas from coupled Markov chain methods and from 

existing algorithms based on over-relaxation. Over-relaxation is a technique used to help 

speed the chains progress through the parameter space by ensuring that each new value in 

the chain is negatively correlated with its predecessor. Adler (1981) provides a standard 

over-relaxation method when the full conditionals are Gaussian, this approach has been 

generalised by many authors. Barone et al. (2002) present examples in which the proposed 

algorithm converges faster than the existing over-relaxation algorithm and the Gibbs sam­

pler. They also look at the efficiency of the algorithm by viewing the asymptotic variance 

for various parameters. The algorithm essentially has two different two parameter families 

{gy and fx) of algorithms, whose output converges to a random vector from the product 

density gy(y)fx{x)- Both chains {X' and Y') are updated using a linear combination of 

all the current values from each of the random vectors X  and Y.  This approach differs 

from that given by Geyer (1991), where the updating of the chains is followed by swap­

ping between chains. With respect to the asymptotic variance, they conclude that once 

equilibrium has been reached, passing information from X to T is no longer an advantage.

Similarly, Pinto and Neal (2001) propose passing information between two chains, X  and 

Y.  Here, Y  the chain of interest, samples from the posterior and X is a chain that samples 

from a Gaussian approximation of the posterior. These chains will be highly correlated 

and Pinto and Neal (2001) utihze this correlation to constructing a more accurate MCMC 

estimate for posterior expectations.

Holloman et al. (2002) extend the Genetic algorithm (a maximization technique for 

functions defined on multi-dimensional space) by making use of related solutions of differ­

ent dimensions. Again this approach utilises the transfer of information between scales of
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varying resolution to obtain more accurate results.

5.2 A Coupling Algorithm for Multivariate Latent Spatial 

Models

Some issues with MCMC for simulating from the posterior distribution of this type of 

model are:

• multimodality in the posterior, causing chains to “get stuck” at one mode and not 

fully exploring the distribution;

• mixing;

• large scale problems tend to be computationally very demanding.

The latter issue may be aided to some extent by blocking, such as that implemented 

in Chapter 4, given that blocking algorithms generally run more quickly. However the 

improvement will not be huge since the main computational issue is that Cholesky fac­

torization is 0{n^). Blocking can also be used to combat multimodality, if the spatial 

locations were blocked into regions with similar attributes. In the multivariate case, this 

would not be a trivial task, so multimodality can pose a real problem with spatial data. A 

chain may even appear to have converged, when in fact it is just exploring an area around 

a n.ode. Multimodality has not been detected with the data used in this thesis.

One possible solution to both of these issues would be to reduce the size of the data set, 

by aggregating it. Aggregating the data or using a coarsened version of the data would 

allcw faster runs and reduce the probability of chains being trapped in local maxima. 

Nalurally, this approach would come at a price, the probable cost of aggregation being:

• loss of information;
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• and “ecological fallacy” i.e. conclusions on relationships between variables at coarse 

scale not necessarily true at original scale.

One possible way in which the benefits of aggregation may be enjoyed, without the ill 

effects, might be to use coupled chains. Coupled MCMC chains as discussed earlier are 

not a new MCMC method, but combining the idea with coarse and fine-scaling of the 

chains is a relatively recent development, Higdon et al. (2002).

With the model described in Chapter 2, Section 2.3.6 in mind, an implementation 

of coupled MCMC, with coarse and fine scale chains could take the form given below. 

The notation will be as before, letting y be the observed count data, x  represents the 

latent variables and 6 the hyperparameters in the model. A tilde (eg x) above a variable 

indicating that it is aggregate data or that it is a variable associated with the coarse chain. 

The intended effect of the coupled MCMC algorithm is that the coarse chain mixes better; 

then swapping information with the fine chain allows the fine chain to mix better as well. 

The coupled MCMC algorithm proceeds as follows. Let C be a coarsening operation, such 

that

Cx = X = (x i , . . .  , X n ) ,  n <n.

We have chosen C to be a summation of counts within certain regions, see Section 5.4 for 

details. Then the original and the coarse chain alternate (to some degree) between each 

being updated with their usual MCMC proposals, to being updated letting their proposal 

depending on the current value(s) of the other chain.

(a;,^)(i) (rr,0)(2) (x,0)(3) (x,0)(4) . . .
S W A P

( x , 0 ) ( 2 )  ( x , 0 ) ( 3 )  . . .  ( £ , ^ ) ( ^ )

where N  indicates the number of iterations, represents a regular MCMC iteration

and represents a swapping of information between the two chains. The next thing

to consider is the order of updating or proposal for the parameters and how to propose
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a swap between the chains. The order of updating the parameters is: first the latent 

variables, then the 6>’s. In the case of the swapping proposals, all the parameters in both 

chains are updated concurrently (i.e. X i , . . . ,  X t  and the 0’s), and the proposals are made 

in the same order as the standard MCMC updates.

5.2.1 Fine to Coarse Swapping Proposal

The swapping proposal kernel for the coarse-scale, generated from the fine is: 

q{{x,9) —+ {x ,§')) = I[x = C(x)] X I[6' = h{9)]

or

q{{x,e) -> {x,e' ) )  = I[x =  C{x)] X 'K{e'\x\y)

where /[.] is the indicator function and /i() is some deterministic function. That is, the 

proposal for i  is a deterministic function of x. In this case, we use the coarsening function 

C on X to get a suitable proposal x , the x  are given the same location as their associated 

y. The candidate value for 0\  given the newly proposed x , could be generated from 

some deterministic function of 0 or could be simulated from its full conditional, under 

the coarse posterior distribution. When choosing a function h{.) to propose 6,  it too 

will reflect the degree of coarsening in the aggregate data. Depending on which of the 

0 '’s is being proposed, h{.) may be an empirical guess or could be aided by the use of a 

correlogram, see Chapter 2, Section 2.3.1. We have chosen the deterministic approach, 

the selected h{6) is based on empirical observations, the value taken depends on both the 

specific 6 parameter concerned and the coarse dataset involved. For example, for the 1 — 2 

coarsened dataset, the a  =  h{a) ~  6a.
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5.2.2 Coarse to Fine Swapping Proposal

The proposal kernel that generates a fine-scale proposal from the coarse chain is more 

problematic, and takes the form

q{{x,e) {x\e')) =  7̂ (x'|6>̂ x = C{x)).n{e'\x',y),

where 9  ̂ is generated using some deterministic function of 9. Then x  is simulated such 

that Cx  =  X .  X  has a distribution with (n — n) degrees of freedom. Thus, if we generate 

from the marginal distribution of x, the remaining h values of x' can be found using 

the coarsened data, like so:

x_i^ = Xk — ^ w h e r e  k indicates a region k, k = {1,...  ,h).

Hence, we have an x  with the desired distribution. Then either simulate 9' from its 

full conditional given x  or use an appropriate deterministic proposal function h{.), i.e. 

the reciprocal of the function used in the fine to coarse proposal for . We have taken 

h{9) =  c9, for a some constant c that depends on the amount of aggregation used in the 

coarse chain. The c is chosen from empirically observation, for example a = The 

non-swapping, MCMC updates can take any form, such as the blocking schemes described 

in Chapter 4.

By exchanging information between the fine-scale parameter space and the coarse-scale 

parameter space, this coupled chain has stationary distribution n{x,9\y) x n{x,9\y), i.e. 

all T  spatial field are updated jointly. Then by taking the fine-scale realisations, we have 

a chain with stationary distribution n{x,9\y). Higdon et. al. (2002) proposed a similar 

implementation to this for a Markov random field model, with univariate observations.

5.3 Investigation of Algorithms’ Properties

Some of the factors which affect the algorithm’s performance are:
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• D ata size;

• Amount of correlation present in the data;

• Levels of coarsening;

•  Number of coarse chains;

•  Rate of swapping between coarse and fine scales;

•  Relative number of coarse and fine scale iterations;

•  Choice of

•  Size of j3's.

The idea is to evaluate the performance of the coupled MCMC algorithm under various 

conditions, such as those listed above. Concerning the above factors, there are three which 

we consider to be paramount in investigating the behaviour of the coupling algorithm: 

coarsening, correlation and rate of swap. Each of these elements and the form of the 

experiment as a whole, is elaborated upon below.

5.3.1 Latin Square Design

Blocking (in the sense of experimental design) in an experiment is a way to reduce residual 

error, by removing the variability due to a known variable. Blocking was first introduced by 

R.A.Fisher in the 1940’s during the experiments at Rothamsted, as a method to counteract 

spatial variability. A Latin square is a particularly efficient block design. As the name 

suggests, it is a square design. A Latin square for 3 factors each with p  levels (a p x p Latin 

square) is a square containing p  rows, p  columns and p^ cells. Usually, the variables rows 

and columns of the square are regarded as nuisance parameters, which may otherwise lead 

to variability in assessing the effects of the variable of interest. The rows and columns of 

the square are both orthogonal to the third factor. Table 5.1 gives an example of a Latin
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Variable (a)
Variable (b) 1 2 3 4 5

1 A B C D E
2 B C D E A
3 C D E A B
4 D E A B C
5 E A B C D

Table 5.1: This is an example of a 5x5 Latin square, but there are many other possible 

arrangements which could be used.

square design. Note, each of the variables needs to have the same number of levels, also, 

each of the letters occurs once only in each row and column.

The statistical model for a Latin square with 3 factors is:

Vijk =  l̂ +  Ti + I 3 j +  'nk +  ei jk

where there is an underlying mean value of //, then Tj, P j  and represent the three factors 

(for a three factor Latin square) at levels i , j  and k  respectively and €i jk represents the 

error. Using analysis of variance, an appropriate statistic to test the various hypothesis of 

interest is an F-test, i.e. to test for a difference in effect between any levels of the factors. 

One possible disadvantage of a Latin square design is it provides few degrees of freedom 

for error in a small square, eg in a 3 x 3 square, there are 2 error degrees of freedom. So 

replication of the square is desirable.

Given the number of factors and levels of each that we wish to investigate, the Latin 

square is an appropriate and efficient experimental design to employ. The factors that 

we have selected for investigation are those which we feel are most likely to influence the 

behaviour of this type of coupling approach. The factors which we have chosen are: level 

of coarsening applied to data, frequency of proposed swaps and amount of correlation 

present in the data. Although correlation level in the data is not directly related to the
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High Correlation Medium Correlation Low Correlation
Coarsening Level 1 swap 1 swap 2 swap 3
Coarsening Level 2 swap 2 swap 3 swap 1
Coarsening Level 3 swap 3 swap 1 swap 2

Table 5.2: The Latin Square design employed by the experiment.

process of coupling, it has proved to be an important factor in the blocking experiment 

of Chapter 4. It also introduces the possibility of investigating possible interaction effects 

between correlation levels in the data and the degree to which the data is coarsened. Each 

of the factors will have three levels:

• Levels of correlation will be high, medium and low;

•  Coarsening factors are 1 — 2,1 — 4 and 1 — 6;

• Swapping rates are 1 — 10,1 — 25 and 1 — 100.

The Latin square to investigate if these factors have an effect on the outcome of our MCMC 

is given in Table 5.2. Our measurement of interest (or response) is effective sample size. 

This Latin square allows us to examine if any of these variables significantly affect the 

effective sample size. There are two further hypothesis which interest us, these being:

• Is there a relationship between correlation level and degree of coarsening?

•  Is there a relationship between degree of coarsening and swapping rate?

To investigate these hypotheses, the model needs to be extended. The statistical model 

for this is then given as:

Vijk =  fi +  Ti +  I 3 j +  T]k +  {T 0 ) i j  +  {T'n)ik +  {0'n)jk + ̂ijk

where )U, r^, l3j,r]k and €ijk are as previously given. The {Tj5)ij, {TT])ik and {l3r])jk represent 

the interactions between the variables; coarsening-by-correlation, coarsening-by-swapping
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High Correlation Medium Correlation Low Correlation
Coarsening Level 1 swap 3 swap 1 swap 2
Coarsening Level 2 swap 1 swap 2 swap 3
Coarsening Level 3 swap 2 swap 3 swap 1

Table 5.3: A replicate Latin square to that of Table 5.2 to allow for examination of 

interactions.

High Correlation Medium Correlation Low Correlation
Coarsening Level 1 swap 2 swap 3 swap 1
Coarsening Level 2 swap 3 swap 1 swap 2
Coarsening Level 3 swap 1 swap 2 swap 3

Table 5.4: A replicate Latin square to that of Table 5.2 and 5.3 to allow examination of 

interactions.

and correlation-by-swapping respectively. To investigate this model, some further replica­

tion in the experiment is required. The replication needs to be chosen carefully, so as to 

allow the interactions to be examined. The specifics of the replication for the additional 

two replicate Latin squares is given in Tables 5.3 and 5.4.

5.4 Description of Data

To investigate the factors mentioned above, we have three datasets, which are simulated 

to have the desired properties. Each dataset comprises of three response variables and 

two latent processes. Level of correlation is the only factor in the experiment governed by 

the data. The levels of correlation chosen for the three datasets are:

•  High (a i =  5, Q!2 =  10);

•  Medium (a i =  30 , a 2 =  40);

•  Low (qi =  50 , Q2 =  100).
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Figure 5.1: P lot (a) shows the d istribution of the fine points on the un it square. Plots 

(b), (c) and (d) show the coarse points derived from the fine, in the ra tio  o f 1-2, 1-4, 1-6 

respectively.

where a\ and a2 are the levels of correlation associated w ith  the first and second latent 

variables respectively, for each of the three datasets. The values taken by /3 are small, 

bu t not small enough to cause d ifficu lty w ith  m ixing such as tha t described in  Chapter 

4. Our experience w ith  this model is tha t m ixing performance is more sensitive to  the 

Qj and hence its selection as a experimental factor. The data are randomly located on 

a square map. There are many methods o f generating spatial locations, some such as 

the Strauss process would give a smoother, more even dispersal o f locations (M 0ller and 

Waagerpetersen, 2003). The approach taken to produce coarsened data is as follows.

1. Taking the outermost locations of each side as the boundary o f the area, then divide 

this in to  regions o f equal size.

•  The number of regions w ill approximately relate to a factor of coarsening.
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• For example, when n =  100, coarsening by 4, we create a 5 x 5 grid and expect 

h =  25.

2. Sum the Poisson counts within each region.

3. Use center point of each region as the location reference for coarse data.

Naturally, there are many alternative coarsenings.

5.5 Results

We have not directly compared our algorithm with the uncoupled alternatives. This is 

because one can run the fine and coarse chains in parallel on separate processors, handing 

over to one of the processors for swap moves. Thus the coupled algorithm run on two 

processors, will be almost as fast as any single chain MCMC method on the fine chain 

only. We have run the algorithm in sequence. Our expectation of the algorithm is tha t by 

introducing a coarsened dataset (which we have coarsened by summing), its posterior will 

be less “peaked” , although possibly still somewhat multimodal. Exchanging information 

between the potentially less modal coarsened process and the ordinary process may thus 

create better mixing in the latter.

For each experiment, the algorithm was run for 500,000 iterations. The fine chains were 

initialized to their true values, hence burn-in was generally not required. To check that 

convergence was not an issue, a subset of the algorithms were run from various starting 

values. Posterior bias was also considered, the same subset of algorithms were run on a 

number of replicate datasets. These subsets were run for 100,000 iterations. The coarse 

chain was run for 10,000 iterations, allowing it to converge prior to beginning the coupling 

algorithm. This assists in reducing the overall algorithm run time, as the coarse chain runs 

substantially faster than the fine. Also, it is easier to choose suitable swapping proposals, 

once both chains have reached convergence. The samples have been thinned to include
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every 100*  ̂ iteration, so the actual sample size is 5,000 for the main experiment or 1,000 

for the subset of checking algorithms. All the algorithms have been programmed in C and 

run on UNIX machines. The algorithms take a comparable amount of time to run, taking 

an average of 0.0632 sec/iter. The main source of variation in run time arises from the 

number of other tasks assigned to the processor. In Chapter 4, Section 4.4 we detailed 

a sample size experiment, where as the sample size increased, so too did the time per 

iteration, but disporportionately and by a far greater amount than the sample size. Given 

tha t this algorithm has the same underlying mechanism as the partial blocking algorithm 

of Chapter 4, it would be affected in a similar way by increasing the sample size. We 

would thus expect the time per iteration to increase substantially if the sample size were 

increased.

The diagnostics used to monitor the results are as before: trace plots, histograms, au­

tocorrelation plots, kernel density plots and effective sample size (as defined in Chapter 

3, Section 3.5.3). The visual diagnostics were all examined and all showed satisfactory 

results. However, the effective sample size measure proves to be more useful in distin­

guishing differences within the results. Given the additional parameters involved in this 

model and the large number of experiments, it would not be constructive to present all of 

the plots or estimates. We have chosen a selection of trace plots to view general behaviour 

of the algorithms. A concise but full representation of the results is given using main ef­

fects plots (Figures 5.4 - 5.7) and their associated p-values (Table 5.6). These diagnostics 

use the response variable r ,  i.e. where effective sample size =  A^/r, and N  is number of 

samples obtained. Further diagnostics such as the interaction plots are given in Appendix 

B.l.

P o s te r io r  b ias  Two replicate datasets have been produced with the same properties as 

those of dataset 3, i.e. high levels of correlation, where a \ = 5.0 and a 2 = 10.0. A subset
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of the algorithms has been run on these replicate datasets to check for posterior bias. 

The subsets considered are the following combination of factors: coarsening level 1 with 

swapping rate 1, coarsening level 1 with swapping rate 3, coarsening level 3 with swapping 

rate 1 and coarsening level 3 with swapping rate 3. There appears to be very little bias 

in the algorithms. Coarsening level 3 with either of the swapping rates exhibits a small 

to negligible amount of bias in the /3 parameters. The mean and standard deviation are 

given for a selection of the parameters for each of the runs and each of the algorithms in 

Table 5.5, with traces for the a \  parameter given in Figure 5.2.

C on vergen ce  To check the convergence properties of the algorithms, we have taken the 

same subset of the algorithms as those mentioned with respect to the posterior bias check. 

Each of the algorithms has been initialised from a number of different starting points, 

while being run on the high correlation dataset (dataset 3) and its replicate datasets. 

Each of the algorithms are run for 100,000 iterations, keeping one in every 100 iterations. 

All of the algorithms converge to the same values. The length of burn-in required was 

minimal. Given the large number of parameters involved, we have selected the trace plots 

of OL\ to give an indication of the behaviour of the algorithms, see Figure 5.2. Since the 

model is invariant to relabelling, results for each of the two fields and their associated 

parameters should be the same if the algorithm has converged, e.g. (i\\ and (5\2 should 

be the same and so on. Looking at each of Figures 5.5-5.7 in turn, we see that the (3 

parameters associated with the latent fields (2”*̂ and plot in each figure) are broadly 

the same, except for Figure 5.5, where there appears to be some difference.

A cce p ta n c e  ra tes The acceptance probabilities for the parameters are similar for all 

of the algorithms. The a \  and 0 :2  have an acceptance rates in the region of 0.42 — 0.58, 

the j3's which are all updated together have an accept rate between 0.13 — 0.18 and the 

latent variables have an acceptance rates of 0.78 — 0.87. So, the acceptance rates for each
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of the parameters is quite reasonable. There is also the proposed swaps between coarse 

and fine chain, the acceptance rates for these vary. For a proposed swap of 1 in 10 the 

acceptance rate was 0.00016 — 0.00022, for a proposed swap of 1 in 25 the acceptance 

rate was 0.0004 — 0.0005 and for a proposed swap of 1 in 100 the acceptance rate was 

0.001 — 0.0016. These actual number of swaps between the coarse and fine algorithms 

works out at 8 — 11, 8 — 10 and 5 — 8 for proposed rates of 1 in 10, 1 in 25 and 1 in 100 

respectively.

For ease of notation we use the terms /?i, . . . ,  to represent /3io, /3ii, /Si2 i lh.Qi P21 , P22 , 

/?30) f̂ Z2 respectively for graphs and tables in this section and its associated appendix.

5.5.1 Degree of Coarsening

The level of coarsening appears to be a significant factor, as indicated by the p-values from 

an analysis of variance test. Specifically, the effective sample size for the f3 parameters 

is affected by the degree of coarsening imposed. This is not so much the case for the 0 

parameters; even viewing early trace and autocorrelation plots, the 0 parameters would 

appear much less impacted by change. Prom the main effects plots given in Figures 5.5, 

5.6 and 5.7, it can be seen that generally levels 1 and 3 provide better results than level 2, 

in terms of the ESS values for the ;3’s. This is complicated somewhat by the fact that the 

level of coarsening strongly interacts with correlation level, as seen by the relevant plots 

shown in Appendix B .l and confirmed by the p-values given in Table 5.6. The opposite is 

more or less the case for the 0’s, but it is not significant in terms of its p-value.

5.5.2 Level of Correlation

Correlation did not appear to have a significant effect on the effective sample size for 

the /3’s, but from observed significance levels the 0’s would appear to be somewhat more 

sensitive to the level of correlation present in the data. This may also be the most likely

93



Coarse 3, Swagl Coarse 3. Swap 3

100 200 300 400 700 800 900 1000

100 200 300 400 500 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

jjlNUiJliii
100 200 300 400 500 600 700 800 900 1000

Li4
100 200 300 400 SOO 700 800 900 1000

Figure 5.2: These are trace plots of the qi variable with various initializing values for two 

levels or coarsening and two rates of swapping, i.e. level 1 and swap 1, level 1 and swap 

3, level 3 and swap 1, level 3 and swap 3. They are run on dataset3 (high correlation) 

and two additional replicate datasets with the same parameterizations. The results for 

the coarse level 1 and swap 1 are given in top left, coarse level 1, swap 3 are top right.

coarse level 3, swap 1 are bottom left and coarse level 3, swap 3 are bottom right.
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Figure 5.3: These are trace plots of some parameters for runs on the dataset with corre­

lation level 2 and varying levels of coarsening and proposed swaps. The a parameters are 

on the right-handside and some (3 parameters are on the left-handside. The top two rows 

are from coarsening 1, swap 1, the middle two rows are from coarsening 2, swap 2 and the

last two rows are from coarsening 3, swap 3.
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Model
Parameters Algorithm

Dataset 3
True Run 1 (/i, (t) Run 2 (/i, a ) Run 3(/x, a )

Q!l C1,S1
C1,S3
C3,S1
C3,S3

5.0
(4.98,4.04)
(5.02,4.49)
(5.12,4.83)
(4.99,5.32)

(5.04,3.98)
(5.00,3.87)
(4.96,4.06)
(5.01,5.16)

(4.83.4.10) 
(5.09,4.19)
(4.99.3.10) 
(5.01,6.30)

012 C1,S1
C1,S3
C3,S1
C3,S3

10.0
(10.33,4.35)
(9.68,4.61)
(9.45,3.94)

(10.25,4.64)

(9.35,3.93)
(9.77,3.17)
(9.86,4.47)
(9.66,7.97)

(9.67,4.62)
(10.05,3.57)
(10.31,5.09)
(10.43,4.79)

A C1,S1
C1,S3
C3,S1
C3,S3

1.5
(1.45,0.09)
(1.43,0.05)
(1.62,0.15)
(1.42,0.15)

(1.49,0.05)
(1.54,0.07)
(1.61,0.17)
(1.61,0.14)

(1.53,0.04)
(1.58,0.03)
(1.62,0.13)
(1.47,0.18)

02 C1,S1
C1,S3
C3,S1
C3,S3

2.5
(2.59,0.09)
(2.43,0.03)
(2.52,0.05)
(2.62,0.05)

(2.58,0.07)
(2.54,0.07)
(2.58,0.07)
(2.51,0.03)

(2.42,0.05)
(2.54,0.06)
(2.62,0.08)
(2.63,0.07)

A C1,S1
C1,S3
C3,S1
C3,S3

3.5
(3.59,0.09)
(3.43,0.05)
(3.62,0.10)
(3.52,0.12)

(3.52,0.04)
(3.74,0.12)
(3.71,0.07)
(3.61,0.11)

(3.47,0.05)
(3.54,0.07)
(3.52,0.08)
(3.52,0.08)

P7 Cl,SI 
C1,S3 
C3,S1 
C3,S3

1.5
(1.59,0.09)
(1.53,0.04)
(1.62,0.15)
(1.52,0.09)

(1.48,0.06)
(1.64,0.07)
(1.51,0.17)
(1.61,0.12)

(1.62,0.08)
(1.44,0.07)
(1.52,0.18)
(1.52,0.13)

/% C1,S1 
C l,S3 
C3,S1 
C3,S3

3.5
(3.59,0.10)
(3.49,0.09)
(3.52,0.15)
(3.52,0.23)

(3.48,0.12)
(3.64,0.12)
(3.61,0.19)
(3.71,0.21)

(3.62,0.15)
(3.51,0.14)
(3.55,0.18)
(3.52,0.18)

Table 5.5: These are the means and standard deviations for a selection of the parameters 

in the model, run on a combination of coarse level 1 and 3 and proposed swap rate 1 and 

3 and for each of the replications of dataset 3. C l,S3 indicates coarse level 1 and proposed 

swapping rate 3, the other abbreviations in the table are constructed in the same way. 

Also given is the true parameter values for the model, the closer the mean is to this value 

the less biased the estimate.
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place to  find an effect with correlation, as a  is the variable which is used to control 

correlation in the data or to explain the correlation in the data. This is also consistent 

with the results found in Chapter 4, i.e. the a  parameter was the most sensitive to 

correlation levels. Although it is not significant, as a broad observation, correlation level 2 

did appear to generate the best mixing properties. Also, as already mentioned in Section 

5.5.1, there is an interaction between the amount of correlation present in the dataset and 

the degree to which the coarse chain is aggregated. This reflects the non-linear relationship 

between correlation and aggregation in the data. The other possible interaction here is 

the level of correlation with the rate of proposed swaps between chains. This interaction 

does not have a particularly intuitive interpretation, thus it is not of immense interest, 

and conveniently it is not at all significant.

5.5.3 Rate of Proposed Swapping

The proposed rate of swapping between chains does not appear to be significant for either 

the /?’s or the O's. There was however a significant (or close to significant) interaction effect, 

between the proposed rate of swapping and the level of coarsening for the 9 parameters, 

see Table 5.6.

5.5.4 Interaction: Degree of Coarsening by Level of Correlation

The main observations here (wrt the (3 parameters) are tha t level 2 coarsening generally 

gives the poorest performance, but there is an interaction, whereby at correlation level 2 it 

performs best or at least comparably to the other coarse levels, see Appendix B. That is, 

at a medium level of coarsening (1 — 4) and with a medium level of correlation in the data, 

we get the best results. Generally, coarsening 1 behaves better than coarsening level 3, but 

there is also some interaction here. With regard to the 0’s, these again are not actually 

significantly affected, see Table 5.6, but it is observed tha t coarsening 1 and 2 behave 

similarly, i.e. both behave best at correlation level 2, where as coarsening 3 behaves worst
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Variable Coarsening Correlation Swap Coarsening 
X Correlation

Coarsening 
X Swap

Correlation 
X Swap

Oil 0.174 0.005 0.837 0.480 0.088 0.156
0-2 0.115 0.104 0.201 0.725 0.055 0.092
Pi 0.004 0.200 0.492 0.054 0.424 0.383
02 0.019 0.795 0.370 0.774 0.679 0.833

0.328 0.961 0.889 0.861 0.805 0.596
/?4 0.017 0.140 0.151 0.026 0.529 0.646
/?5 0.007 0.038 0.055 0.013 0.210 0.094
/?6 0.182 0.082 0.253 0.051 0.219 0.423
0 7 0.030 0.152 0.127 0.065 0.209 0.894
08 0.063 0.324 0.317 0.101 0.482 0.917
09 0.082 0.202 0.150 0.145 0.239 0.935

Table 5.6: The p-values for the effective sample size of each of the main parameters in the 

model, given the factors of interest and their interactions.

a t correlation 2.

5.5.5 Interaction: Rate of Proposed Swapping by Degree of Coarsening

W ith respect to the 9's, level 1 and 2 coarsening behave best or comparably a t swapping 

rate 2, whereas level 3 coarsening sees its worst results at swapping level 2, see Appendix 

B. However, given tha t neither coarsening level or swapping rate have shown themselves 

to  be significant for the 9's, this observation has little bearing on the findings, see Table 

5.6.

5.5.6 Interaction: Rate of Proposed Swapping by Level of Correlation

There was no significant interaction effect present between the level of correlation in the 

dataset and the proposed rate of swapping between coarse and fine chains for either the 9 

or (3 parameters, see Table 5.6.
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Figure 5.4: These are main effects plot with r  as the response variable, i.e. they show the 

maximum likelihood estimates of r , where ess =  N / t  and N  is sample size. The smaller 

the T  value the better the estimate. The plots are for the 0 parameters, i.e. q i  on the 

left-hand side and 0 :2  on the right-hand side. Positions 1,2 and 3 on each of the graphs 

indicate increasing levels of coarsening or proposed rate of swap and decreasing levels of 

correlation.
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Figure 5.5: These are main effects p lot w ith  r  as the response variable, i.e. they show 

the maximum likelihood estimates of r ,  where ess =  N / t  and N  is sample size. The 

smaller the r  value the better the estimate. The plots are for the (3 parameters, i.e. (5\ on 

top, P2 in  the middle and /S/3 on the bottom. Positions 1,2 and 3 on each o f the graphs 

indicate increasing levels of coarsening or proposed rate of swap and decreasing levels of 

correlation.
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Figure 5.6: These are main effects plot with r  as the response variable, i.e. they show 

the maximum likelihood estimates of r ,  where ess =  N / t  and N  is sample size. The 

smaller the r  value the better the estimate. The plots are for the f3 parameters, i.e. 4̂ on 

top, /3s in the middle and Pq on the bottom. Positions 1,2 and 3 on each of the graphs 

indicate increasing levels of coarsening or proposed rate of swap and decreasing levels of 

correlation.
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Figure 5.7: These are main effects plot with r  as the response variable, i.e. they show 

the maximum likelihood estimates of r ,  where ess =  N / t  and N  is sample size. The 

smaller the t  value the better the estimate. The plots are for the (3 parameters, i.e. on 

top, (3s in the middle and /3g on the bottom. Positions 1,2 and 3 on each of the graphs 

indicate increasing levels of coarsening or proposed rate of swap and decreasing levels of 

correlation.
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5.6 Conclusions

C oarsening  It is difficult to draw exceptionally clear conclusions from the results. In 

theory, we would have expected improved mixing properties as the level of coarsening in 

the data increased. One reason for a diminished effect or a confusing result may be that 

the relationship between correlation in the coarse data relative to the fine data is different 

for each dataset, therefore the effect of coarsening is not linear for different correlations. 

If this association is not linear, then the effective sample size may not be a linear function 

of the coarsening either. Also, there may be a kind of trade-off for increased aggregation, 

where the coarser the data the better the mixing, but also the less relevant or related it 

may be to the fine data.

C orre la tion  Correlation has not shown itself to be of significance. This is not too 

surprising, as the blocking scheme with Rue’s approximation would have eliminated many 

of the mixing problems due to correlation. There was interaction with coarsening level, 

which again may relate to the non-linear relationship between these two variables. Also, 

at level 3 correlation (the lowest level), the data is very close to being iid in nature, so 

one would not expect to see an effect from the coupling. That is to say, when there is no 

correlation in the data, then coarsening will have no effect.

Sw apping Rate of proposed swapping between the fine scale and the coarse scale chain 

did not appear to have an effect. The reason for this is that, the proposed rate of swap 

and the actual rate of swap are different. The actual rate of swapping has remained 

approximately the same (adjusted itself to being almost constant) within the series of 

experiments, that is, the rate of swaps would be the same for each experiment and thus 

not a real factor.
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A d d itio n a l o b se rv a tio n s  W hether significant or not, from inspection of the main ef­

fects and interaction plots (see Figures 5.5 - 5.7 and Appendix B .l), the 0’s generally 

behave best in the situations where the /?’s struggled most and vice versa. A possible 

explanation for this may be, that if the 9's  are mixing or moving very efficiently, the /?’s 

in some sense may be finding it difficult to “keep up” and similarly when the situation is 

reversed. The /?’s are updated in a block and so exhibit very similar behaviour to each 

other; as is the case for the 6\ and 62.
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Chapter 6

Summary and Conclusions

6.1 Summary of Blocking Algorithm

The performance of an MCMC method for implementing Bayesian inference for a univari­

ate spatial Poisson model has been examined. The data that the model are applied to 

utilizes a latent Gaussian field. The MCMC method presented is a blocking scheme, which 

also introduced a proposal for the latent variables (Xi), using a Gaussian approximation 

of the full conditional of the X i ' s .  This proposal allows very favourable acceptance proba­

bilities for the Xi's. Two versions of the method are compared with a standard algorithm 

on various datasets. Evaluation of its performance is with respect to mixing and measured 

by effective sample size. Levels of correlation in the datasets appear to substantially affect 

the output.

6.2 Summary of Coupling Algorithm

A new MCMC method is introduced, primarily based on a coupling technique. This 

method utilises data with varying levels of resolution. The model upon which the MCMC 

method is applied is a multivariate spatial Poisson model, which incorporates a number 

of latent Gaussian fields. The data is spatial, but now has a number of responses at each
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location.

The MCMC method utiUses the benefits of aggregating data without loss of information. 

There are two phases to the algorithm; a standard MCMC mode, which is quite similar to 

the previously investigated algorithm, and a swapping mode, which attempts to exchange 

information between the aggregated and fine Markov chains. The method is examined 

under a number of circumstances which would be expected to effect its performance. The 

experiment is carried out using a Latin square design.

6.3 Conclusions

Time is a constraint in running MCMC algorithms, and is a motivation for improving 

their efficiency. For the blocking algorithm, the time taken per iteration on the size of 

dataset considered is substantially less than that of a corresponding sequential approach. 

Efficiency with respect to mixing is also significantly improved using the blocking scheme. 

The approximation used in the latent variable proposal contributes to this efficiency, but 

is time consuming to program initially.

The combination of the coupling and blocking has been seen to resolve many of the asso­

ciated difficulties when we move to the more complex multivariate count model. Blocking 

also improves mixing in the multivariate model. We have tried to further improve mixing 

by running coupled chains. The performance of the coupling as a function of various fac­

tors was investigated. However, the relationship between the factors involved is not always 

straight-forward or even intuitive. Factors have an effect, but it is complex and almost 

certainly problem dependent. The degree of aggregation applied was the main influencing 

factor. Aggregation appeared to have a non-linear relationship with the level of correlation 

present in the data, which manifest itself correspondingly with the measure of efficiency. 

The effect of aggregating data has long been one of interest, and would certainly lend itself
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to further investigation within this framework.

6.4 P\irther Work

There are many elements of the MCMC algorithms which have been presented that could 

be extended or further investigated, a few of these are described below.

6.4.1 Parallel Algorithm

The current structure of the coupling algorithm is a fine MCMC chain run for a number of 

iterations, followed by a coarsened chain running for the same number of iteration. This 

structure lends itself entirely to a parallel program rather than the present sequential one. 

If the program was parallelised, the most obvious difference would be in its run time. 

Such a coupled algorithm would not be much slower than a simple non-coupled MCMC 

approach in terms of iterations/sec. It would also become much easier to change or control 

many of the other elements of the algorithm.

One possibility would be that there could be any number of chains run in parallel, with 

different levels of aggregation. This would allow a much more sophisticated exchange of 

information. It would also eliminate some very convoluted notation currently used in the 

coding of the coupling algorithm. Also, the more aggregated the dataset, the faster its 

cycle time. This may or may not be of advantage because of the trade-off between speed 

and relevance to the fine chain. If it were favourable for the more aggregated chains to be 

run for longer, then a parallel environment would be advantageous, and conversely there 

would be no drawback.

6.4.2 Other Factors

There are many other factors which are likely to effect the performance of the coupling 

algorithm and hence would be desirable to examine. MCMC algorithms can be sensitive
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to data size, but specific to the coupling algorithm would be the number of chains, the 

relative number of chain iterations between swaps and choice of proposals for swaps (h{8)).

6.4.3 Swapping Rate

One of the difficulties encountered during the coupling experiment was tha t the proposed 

swapping rate did not appear to have an effect. Effectively the accept rates for the proposed 

swaps neutralised swapping as a factor, i.e. swapping was constant regardless of the 

proposed swap rate. Pursuing this factor and establishing its real effect, especially its 

relationship with aggregation level, would be of interest.

6.4.4 Other Algorithms

Although we have already seen tha t in many circumstances the blocking algorithm out­

performs other standard algorithms, it may be worthwhile comparing the coupling method 

to other such algorithms. In particular, it may be useful to compare the coupling algorithm 

with the blocking algorithm, for a number of datasets with varying degrees of correlation.

6.4.5 More Complex Models

There is the possibility of increasing the number of latent processes, which may lend itself 

to better modeling of the response variables. There could also be a more sophisticated 

correlation structure used in the model, to more accurately describe the relationship with 

the data.
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Appendix A

Acceptance Probabilities

A .l Univariate Count Model Accept Probabilities

Let P{.) denote an accept probability, 7t ( . )  and 7t ( . | . )  denote marginal and conditional 

distributions respectively and g(.|.) denote a proposal distribution. Let y — (yi , . . . ,2/n) 

be the observed values, yi being observed at location Si, where i =  l , . . . , n  and Yi be 

Poisson distributed with mean Aj =  exp(/3 +  Xj). The X j’s are multivariate normal with 

covariance matrix S(0), 6 = which has a structure as described in Chapter 2,

Section 2.3.5.

A. 1.1 Sequential Algorithm

In the sequential algorithm described in Chapter 4, Section 4.LI ,  /3 is updated first, then 

a ,a ^ ,S  and each of the X j’s, to be consistent we give the acceptance probabilities for each 

of the parameters in accordance with the ordering of tha t in the main text.

A ccep t for (3 The accept probability for j3 is given as:

p,o' m ^  7r(/3'|g,x,y)g(/?|/?') ^  7r(/?> , j/)g(/?|/3')
7r(/3|6',x,y)9(/3'|^) 7r(^|x,j/)g(^'|^) '
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Then

n{P\x,y)  oa 7r(y|x,/3)7r(/3), by Bayes Theorem,

so
p / V  m  ^  T^{p'\x,y)n{/3')q{0\p')

TT{p\x,y)TT(l3)q{l3'\p) '

Given that the same uniform prior is used, n{p')  and n{P) do not appear in the probability. 

Details of the range for this prior are given in Chapter 2, Section 2.3.5. The proposal prob­

ability g(.|.) is an additive random walk, so this further reduces the acceptance probability 

to:

n{l3\x,y)

where
" /  exp(e^+^‘)exp((/3' +  Xi)i/i)

- ( f )  \ x, y) = n  ( - -- -- - -- - - ^ '

For ease of calculation and notation, we have used and will give the l o g  accept probability:

n

logP(^', /3) =  X ]  ( “  ~  /^2/i) •
i=l

Alternatives to the above proposal probability are an independent Gaussian proposal that 

approximates 'K{(3\x,y) at the modes.

A ccep t for 0 Similarly for 0, where a,cr^ and S are updated individually using random 

walk proposals and flat priors, details of these priors are given in Chapter 2, Section 2.3.5. 

Given the posterior distribution for 0:

- k { 0 \ x )  ( X  i r { x \ 6 ) n { 9 )

1
oc |E| 2 exp ( —- X  S  x

1

The log accepts for a,cr^ and S are then given by:

logP(.) =  i(lo g |E | -  logis'l) +  ^(x^E-^x -  x^E'-^x )
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where

E =  exp{—{a dij)^)

or a"  ̂exp{—{adij)^) 

or exp{-{adij)^ )

for P{a ,a),P{a"^,a‘̂) and P{6\S)  respectively, and E =  exp{—{adijY).

A ccept for Xi  Lastly the acceptance probabihty for the latent values (Xj’s), each of 

which is updated individually is given by:

p > ^  n{x[\x-ie)n{yi\x[p)TT{9)n{/3)q{xi\x[)
7r{xi\x-ie)n{yi\xil3)n{e)n{P)q{x^\xi)

where x — {x i , . . .  , x[ , . . . , Xn) for X[. A proposal for Xi  is generated from the conditional 

univariate Gaussian -  MVN(/Zi|_i, where the conditional mean and variance are

calculated using ^j|_j = Xi -  Ej|_j and Ei|_j =  respectively,

see Whittaker (1990) for details of these formulae. The posterior distribution for Xi  is 

then given by:

-K{xi\x^ie) = -------\  r e x p  f - ^ x ' ^ E - ^ x
(27t)2|E|2 V 2

and
exp(-Ai)Af

2/i!

Given that the proposal for Xi  is its conditional distribution, the proposal probabilities and 

the conditional Gaussian part of the posterior will cancel within the acceptance calculation. 

The log of the acceptance probability then reduces to:

logP(a;-,a;i) =  {Xi -  yJogAi) -  -  yJogA-j

where is as defined earlier.
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The computational cost for this method will be: low for the update of the /3’s, as this is 

just a vector multiplication; quite high for the 0’s, i.e. there will be a matrix inversion for 

a,  a and <5; the x^’s are updated using one matrix inversion and some matrix multiplication 

between them, so a little less computationally intensive than the 0’s.

A .1.2 Partial-Block Algorithm

These axe the accept probabilities for the MCMC procedure of Chapter 4, Section 4.1.2.

Accept for X They are given in the form of their log accept probabilities for conve­

nience. There is much cancellation in the accept probability for the latent variables, after 

which the below accept probability is arrived at:

/ 1 / 1 / I I  '
logP(j; ,x) =  - x '^ C x  — - x ^ C ' x  +  B^x — B ^ x  +  ^ exp(^ +  Xj)

i=l

+ + C| +  ilog|E “  ̂+  C'|
Z=1

+ i ( y  -  ( E - i  +  C r H y  - B ) -  \ { y  -  ( E - ^  +  C ' ) - \ y  -  b '),

where C' =  exp^ diag(Cj,. . . ,  C^), B' = e x p ^ { B [ , , J3 )̂. These are found by solving:

f f / /  I f  1 / \  ^
{A'i,Bl,C'i) = argmin j  ̂  (^exp(xj) -  (A-+  B-a;* + -C-x?) j  dxi

r Xf +A  ̂  ̂  ̂ ^
= arg min I exp(2xi) +  A'^ + B ^ x \  +  - C ^ x \  — 2A  ̂exp(xi)

J x [ - A  4
-2B'Xjexp(xj) — Cj-xf exp(xj) +  2A[B^Xi + A^Clx^ +  B^C[x\ dxj 

= arg min ^ exp(2xj) + ~ exp(xi) +  A-5-xf

+  \B'iC[xt -  2B[ exp(xi)(xi -  1) -  C- exp(xi)(xf -  2xi +  2)

Setting this equation equal to zero and differentiating with respect to Ai,Bi and Ci, 

then solving the resulting series of simultaneous equations gives the required minimised

:i+A
: < - A
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values for A{,Bi  and C,. Only Bi and Ci are used in the proposal of x[ and appear in 

the acceptance probability. The A parameter relates to the size of proposed movement 

between x  and x . .

Accept for /3

n n

logP (^ ', /?) =  (exp{/3) -  exp(/?')) ^  exp(xi) +  (/?' -  1 3 ) '^  yi,
i=l i=l

Accept for 9

\ogP{9',6) = ^  — log|S '| +  log|E|^

where =  a"^ exp{—{a dijY ). The log accept probabilities for the fi's and 9's given, use 

independent random walk proposals and uniform priors, see Chapter 2, Section 2.3.5 for 

details.

A . 1.3 T otal-B lock  A lgorithm

The accept probability for the MCMC algorithm of Chapter 4, Section 4.1.3 is:

P ( '  ^  a '^{y\x P^')T^{x\9')T^{0)T^{9')q{x\x')q{l3\0)q{9\e')
(X ,/? , T:{y\x(3)i:{x\9W)Tr{9)q{x\x)q{P^\(5)q{0'\0) ’

where
f  S e -« ’'P(^+^i)exp(^' +  Xi)s'*

7r(y |x , /?)  = ----------
yv-

t t {x \9') = ----- ^-----^exp(^-^x^E' ^x'^
( 2 7 r ) f | S ' | 5  V  2  J
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and

q{x \x) oc exp  ̂+ C)x + {y + 3)"^

= l ^ _ + ^ e x p f - ^ x ' ^ ( E ' ”  ̂+  C)a;' +  (y -B )^ a : ')
27T2 V /

X exp Q (y  -  5 )^ (E '-i +  C ) - \ y  -  B)^  .

Given that 7t(/3) and 7t(0) are fiat priors (see Chapter 2, Section 2.3.5 for details of their 

ranges), and the proposal functions q(/3'\P) and q(0'\d) are random walks, these values will 

cancel out in the overall calculation. The log accept probability is then given as:

log(P(x' ,p' ,d' ly,x,^,0))  = i  (^-log|E '|+  l o g | S | +
n n

+  ^  (expiP +  Xi) -  exp(0'  +  x'i)^ +  +  x ' i ) - y i ( P  +  Xi
i = l  i = l

(-log |E '-i +  C| + +  C)x')

(- lo g |E -i + C'\+  a:^(E-i +  C')x)

+ l  {(y -  5 )^ (E '- i  +  C ) - \ y  -  B)) - ( y -  B f x  

{ i v  -  (E -i +  C ' ) - \ y  -  b ' ) )  + { y -  B ' f x .

With some cancellation, this reduces to:

\og{P{x ,9'\y,x,p,e))  = ^ ( - lo g |E 'l+  log|S|)
n

+  ^  (exp(/3 +  Xi) -  expip' +  x-) +  yi{0' -  /?)) 
i = l

(- lo g |E '- iC | +  log|E-i + C'\ + x '^Cx -  x'^C'x^

+ \  {{y -  (E '- ' +  C ) - \ y  -  B))  +  B'^x

{(y -  B'f i^-^  + c ' r H y  -  b ')) -  b '^x.
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A .2 Multivariate Count Model Accept Probabilities

Let yij = , yj{sn) be Poisson distributed, with means exp(Ajj), observed at loca­

tions Si — (si, . . . ,  s„). Then define Ay to be (3jo + Ya = i using t to index the latent 

variables Xt, for t — Also, Xt ~  MVN{Q,T,t)  with exp{—atd{i , j))

for erf = 1 and d{i , j)  is the distance between locations S{  and S j .  The accept probabilities 

for the multivariate latent Gaussian model described above and used in Chapter 5 are 

given below. Depending on the cycle of the program, the accept probability being calcu­

lated will take one of two forms, tha t of a block update for the model described or tha t of 

a swapping update. The calculation involved in the latter is substantially more complex. 

We shall give the accept probabilities for the block update applied to the fine and coarse 

chains first. Details of updating order and the algorithm as a whole are found in Chapter 

5, Section 5.2.

A . 2.1 B lock ing

Accept for X t  Each latent variable X t  = {xu,  ■ • • ,Xnt) is updated by conditioning on 

the other T  — 1 latent variables. The accept probability for each of the latent variables is:

where

nix'tlxt) oc Tv{y\xt,(3)Tr{x't\0t)Tr{P)Tv{et).

The full conditional for y  is:

Vi j

\og{n{y\xt,/3)) = EE
j = i  j = i

-  e x p ( / ? 5  +  PjtXit) +  iP*j-t) +  0jtXit)yij -

/ = i

and

log(7r(xt|0)) =  - ^ lo g |S t l  -  ^xt.
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The full conditional of Xt is:
r n ^

log {Ti{xt\y, 13, dt)) =  X I X I  [(% -« ) ~  “  2 ’
J=1i=l

for /3(̂  -  (/?jo +  E - (= i %  -t)^(i,-t)) ) where a:_( denotes vector x  without component

t, i.e. —t =  (1 , . . . ,  t — 1, f +  1 , . . . ,  T). The x^’s are proposed from their full conditional 

distribution, using the approximation exp{f5jtxt) Aj  +  Bj(PjtXt) +  1

solving for A , B , C  as described in Section A.1.2. So Xt  is proposed from

\ o g { T r { x t \ P , e t ) )  =  X  
j= i

where
i=l

• C*t  =  exp(^(*j _j))diagCj;

• =  exp(/3*._j))Bj.

Then
r n

\ o g P { x ' , ^ , X t )  =  X X  ~  +  e x p ( / 3(  ̂_ J ))  e x p (^ j ta ; i t  -  f i j t x ' u )

j = i  t=i

+ \  -  x j E t ^ X t  +  b j Q t ^ b t  -

1 ^+ 2 (-loglQtl + loglQtl + ^7 Qtx't -  xjQ'tXt  ̂+ X  -  bux'it̂
i

where

• Qi =  E ;= i ( s ." ' +  q s )  and Q; =  E ; . i  ( E r ‘ -

•  hi = '^ j^ i iV i j  — Bp)l3jt and 6̂  ̂=  Ylj=iiyij ~

With some cancellation this reduces to:
r n

l o g P ( X t ,  X t )  =  X X  , - t ) )  -  e M P j t X i t ) )
j = l  i=l

( - l o g l Q t l  +  lo g lQ t l  +  b j Q ^ ^ b t  -  

+{B*tPjtfxt -  {B'*tPjtfxt -  x7(C*tP]t)xt + xj {C'*tP%)xt.
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A ccep t fo r /3 The accept probabihties for the /? and 9 parameters are very similar to 

those for Chapter 4, Section 4.1.2. The /3’s are all updated together, using random walk 

proposals and a normal priors. The priors for the /3’s are given as:

n{ pr )  =  ■■■■; - ,  exp '\  2a2

where j lr and are the sample mean and variance of log(Y’r)- This is like an empirical 

Bayes approach. The variance of P  should be small relative to as it is the mean of the 

log(Xj). We also find that this improves the convergence for (3 over using a less informative 

prior. The log-accept probability is then given as:

logP(/3', /?) =  X I X ]  ~  Vij +  ( ~  Vij +  exp ( l3'jo +  ^  P j t ^ i ^
j = i  1=1 \ t = i  /  V f = i  /

-  exp ^  ~ ~  ~  '

Accept for Ot The d t s  are updated separately using random walk proposal kernels and 

a uniform prior:

where the range for the uniform prior is {Ol ,Ou ) =  (0,500). The range for the 6t priors is 

quite large and in practice their values fall well within them. In some circumstances, one 

may have a priori information tha t could lead to a more informative prior. The log-accepts 

for the 0(’s are then given as:

logP{e' t ,6t)  =  ^  (log|6>(| -  log|6>t| +  x f e ^ ^ x t  -  ,

where 9[ is taken to mean e x p { —a [ d i j )  and =  1.

A .2.2 Swap Between Coarse And Fine Chains

The proposal for the coarse chain and the fine chain is created by swapping their values. 

All of the values are proposed together. Notationally, the coarse chain parameters are
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differentiated from the fine chain param eters by use of a tilde over the param eter (eg x). 

The accept probabihty for this proposed swap of inform ation is detailed below. Let

q{ {x , e ,x , e ) ,  (x ,B',x' ,0')) =  q{{x,e) ,  {x ,9')) X  q{{x,e),  {x ,6')),

where q{{x, 6), {x ,&')) generates a coarse scale proposal {x ,6') from the current fine scale 

sta te  (x ,0). Similarly, the kernel q [ {x , 0 ) , {x \ 6 ' )) generates a fine scale proposal [x \d ' )  

from the current coarse scale sta te  {x,6).  T hen denoting the posterior distributions for 

the coarse and fine chains as:

TT{x,e\y) ^ ■K{y\x)'R{x\f3,e)-K{l3)'K{d)

and

7t(x, e \ y )  =  7 f (y |x )T (J |/3 ,  0)TT0)TT{e).

The accept probability can then  be w ritten as:

P( x  ,s! . S \ y , i , e , V . x , 6 )  =  X
ir(x,«|i)7r{i,«|!,) x5((x',«',x',9').(f.9,a:.«))

The proposal distributions q are all determ inistic except for the proposal of the fine latent 

Gaussians from the coarse latent Gaussians, i.e. q { x , x ) .  The latent variables x are 

generated from the  marginal distribution ■k {x '\6 )̂, subject to  the constraint th a t Cx  =  x, 

where 6̂  is a determ inistic function of 9. This is achieved by first generating (n — h) x ’s 

from the Tr{x'\6 )̂, where h is the number of coarse locations, then  producing the remaining 

n X values such tha t
L

X =^x-~Y^ x'l,
1 = 1

where I indexes the fine values in each section of the coarse grid. This satisfies the con­

straint Cx  =  x. Also, the x ’s are proposed using the usual approxim ation w ithin the 

marginal distribution, i.e. exp(PjtXt) ~  Aj +  Bj{0j tXt)  +  \Cj{j3jtXt)^.
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Given th a t the entire update for both  the coarse and fine chains is done in one step, 

the accept probability is then derived as follows;

Vij

log (7r(y |x '/3 ')) =

j= i 1=1
-  exp(/3j*

/ = i

log(7r(xV ')) =
t=i

log(7r(^)) =
j= i

-ilog(27raj) -  ^
j  \t=0 /

log(7r(i9)) =  - lo g (6 l[ /  -  6l )-

The P* param eter is as given in the previous section, as are and jlj. The probability 

distributions will take the same form for the coarse chain, and are indicated as such using 

a tilde. Then proposing Xt from its full conditional and using the approxim ation given in 

the previous section, the proposal probabilities are as follows:

T r i v t - 1  I / 3 2  1 ^

q{x'\x) =  n n

and

{ 2 t t )2

X exp (^ -\x 'i[  ( s j   ̂ x[

X exp

X exp -  B '„ f  (s '- '  +  C'„Dl)~ '  -  S ’, f t , )

q{x\x)  =
t=i j= i (27T)f

x e x p  , l ; x l  +  XU

X exp yijPjt -  BjlPjt xu
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where

• C*̂  =  exp(^*^ _ jp d ia g (C ij ,. . . ,  C„j) and C'*̂  =  exp{P*^._^^)diag{C[j,. . . ,

• . . . ,  Bnj)  and 5*^ =  exp(/3*^__j))(5y),. . . ,  B'̂ )̂.

Note th a t for the  g(.l-)’s ju st given above, i =  ( 1 , 2 , . . . , n  — n). To avoid confusion, let us 

use i  to denote the  reduced i index of the proposal function. Also, the order of the i index 

does not correspond to  th a t of the original i index. The rem aining h latent values are 

generated deterministically, to  fulfil the linear constraint Cx'  =  £ as mentioned earlier. 

Then using the log of the proposal probabilities and reducing the notation  by letting:

• Qt = e ;= i (s!" ‘ + c;,0],) and q; = ;

•  bti =  Ylj=iiyij ~ t̂i ~ Ylj=\{yij ~

The proposal kernels for the P ’s and 9's are random walk proposals, so log(g(/3|/?') -  

q{P'\(3)) — 1 and log(g(0^l0') — =  1. Another possibility is to  use the conditional

distribution of the field, i.e. conditional on the other Xi, ra ther than  the marginal as we 

have used here.
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The part of the log acceptance probability associated with the fine chain, using a pro­

posal from the current coarse can then  be w ritten  as:

, p /  ' V, -  _  T^{y\x , p ' ) n{ x  \e' , f3' ) .n{p')nie')q{x,  6>t|x , 6>')
’ ■K{y\x,P)Tr {x\e , /3)Tv{l3)7r { e ) q { x ' , 9' \ x, e ' f )

r n

=  -  exp (/3j*
j=i i = i

+ { P ' u - t )  +  P' j t^' i t )  Vi j  -  { p * j , - t )  +  Vij

r  . 1  ̂ ^

+  ( “ 2  “  lo g |S t|)  -  2
t=i ^

+ \  ( l o g l Q t l  -  l o g l Q d )  +  ( \̂i '̂tiQtXti) -  {̂xJiQ'tXti)

+  ( b ' t i X u  -  b t i x ' t ^  +  ^  ( b ' t Q ' t b ' t  -  b t Q t b t ^  .

There is h ttle  cancellation between the proposal and the  probability distributions in this 

case. The proposal distribution arises from a  m arginal distribution of size n  — n, whereas 

the probabihty distribution is of dimension n. The log accept probabihty associated with 

the coarse part of the chain is derived in the same fashion as the fine, except the proposals 

are deterministic. This part of the log accept is then  given as:

\ ogP{x ,9 \ y , x , 9 )  =
TT{y\x, p')n{x\e' ,p')'K{p')TT{9')q{x,  e \ x , 9 ' )  

n{y\x,P)TT{x\9,P)TT{P)Tr{9)q{x ,9' \x,9)
I to

=  _t) +  PjtXit^ -  exp _f) +
j = l  i = \

Vi j  ~  Vi j+
/  T

+  2  = 2  (
j  \ t = 0

+ “ log|St|) -  i  (^xjt'-^x'it -  x l t - ^ x u
t = l  ^
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Then the overall acceptance probability for the proposed swap of information between the 

coarse and fine chain will be the product of the probabilities just derived

log(P(x', B' , x  , e ' \ y ,  X ,  6 ,  X ,  §)) = \ogP{x,  6>'\y, x, 0, x, 9) +  \ogP{x,§' \y,  x, 9).
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Appendix B

Additional D iagnostics

B .l  Interactions

In an experiment (such as that carried out in Chapter 5) the difference in response between 

levels of a factor may not be the same at all levels of the other factors in the experiment. 

When this occurs, there is said to be an “interaction” between factors. The graphs given 

below are useful in interpreting significant interactions. Note that when an interaction 

is large, the corresponding main effect have little practical meaning. Also, a significant 

interaction can often mask the significance of main effects.
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Interaction Plot - Data Means for a lpha l
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Interaction Plot - Data Means for alpha2
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Figure B.l: Positions 1,2 and 3 on each of the graphs indicating the various levels of 

coarsening, correlation and proposed rate of swap. The scale on the right-hand side is a 

maximum Ukelihood estimate for r , i.e. effective sample size = N / r  and N  is the number 

of sample taken. The smaller the value of r  the better.
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Interaction Plot - Data Means for beta1
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Interaction Plot - Data Means for beta2
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Figure B.2: Positions 1,2 and 3 on each of the graphs indicating the various levels of 

coarsening, correlation and proposed rate of swap. The scale on the right-hand side is a 

maximum likelihood estimate for r , i.e. effective sample size ~ N/ r  and N  is the number 

of sample taken. The smaller the value of r  the better.
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Interaction Plot - Data Means for betaS
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Figure B.3; Positions 1, 2 and 3 on each of the graphs indicating the various levels of 

coarsening, correlation and proposed rate of swap. The scale on the right-hand side is a 

maximum hkehhood estimate for r , i.e. effective sample size =  N / t  and N  is the number 

of sample taken. The smaller the value of r  the better.
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Interaction Plot - Data Means for betaS
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Figure B.4: Positions 1,2 and 3 on each of the graphs indicating the various levels of 

coarsening, correlation and proposed rate of swap. The scale on the right-hand side is a 

maximum hkehhood estimate for r , i.e. effective sample size — N / t  and N  is the number 

of sample taken. The smaller the value of r  the better.
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Interaction Plot - Data Means for b e ta /
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Interaction Plot - Data Means for betaS
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Figure B.5: Positions 1,2 and 3 on each of the graphs indicating the various levels of 

coarsening, correlation and proposed rate of swap. The scale on the right-hand side is a 

maximum likelihood estimate for r , i.e. effective sample size — N / t  and N  is the number 

of sample taken. The smaller the value of r  the better.
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Interaction Plot - Data Means for beta9
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Figure B.6; Positions 1,2 and 3 on each of the graphs indicating the various levels of 

coarsening, correlation and proposed rate of swap. The scale on the right-hand side is a 

maximum likelihood estimate for r ,  i.e. effective sample size — N j r  and N  is the number 

of sample taken. The smaller the value of r  the better.
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