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Sum m ary

The research tha t is described in this thesis is based upon the formulation and anal­

ysis of mathematical models of railway vehicle and track systems. The objective of 

the research carried out is to compile, and then apply, these models to gain a greater 

understanding of the nature of the wheel-rail contact forces tha t are generated due 

to irregularity of the wheel and track geometry. The response of the vehicle and 

track system is considered under a number of different types of vehicle wheel and 

railway track defects. The nature of the different defects require that different types 

of analysis are used. The modelling of the system response due to random track 

irregularity lends itself to the use of spectral techniques due to the fact tha t the 

dynamic input to the system may be described by spectral functions. Frequency do­

main analysis is used to calculate the response due random irregularity. The effects 

of discrete irregularity are more suited to analysis in the time domain. Numerical 

analysis in the time domain is used to calculate the response due to discrete sys­

tem defects. Initially, frequency domain analysis was used to examine the effect of 

random railway track irregularities on the wheel-rail contact forces. Two different 

types of vehicles were considered, a locomotive and a passenger vehicle. The effects 

of the various vehicle parameters, and vehicle velocity, were also considered. The 

random irregularities considered were those tha t are described by the FRA empirical 

spectral functions. The effects of these irregularities were found to be small in most 

cases. However, under some parametric combinations the probability of excessive 

peak ix forces was observed to increase significantly. A similar model and further
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frequency domain analysis was used to observe the different contact force process 

characteristics at the front and rear wheelsets of a flatbed wagon vehicle model. 

Similar random irregularities were considered in this model. The analysis of the 

contact forces in the frequency domain involved the linearisation of the Hertzian 

contact spring at the wheel-rail interface. The validity of this linearisation is ex­

amined by comparing the results obtained using a non-linear and linear spring in 

a numerical time-domain analysis. It was determined that the linearisation is valid 

when the random irregularities applied are of low frequency content while at higher 

frequency, there is greater divergence between the sets of data obtained using the 

different spring characteristics. The effects of a number of different discrete type ir­

regularities on the wheel-rail contact forces were also considered. A numerical finite 

element track model was formulated and the effects of a wheel flat, unsupported 

sleeper and a dipped joint were examined. The results obtained were compared 

with empirical formulae for the system response. These formulae were found to be 

of limited value in some of the cases considered. The final study was focussed upon 

the effect of random track irregularities on the response of railway bridges. Dynamic 

bridge impact factors were calculated numerically for a range of bridge and vehicle 

properties. The mean impact factor was generally found to be equal to the equiva­

lent impact factor when no track irregularity was input to the system. However, in 

some cases, high velocities combined with random irregularities did generate large 

impact factors. The effect of incorporation of a track model into the system was 

also investigated, x
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Abstract

The modelhng and accurate calculation of dynamic wheel-rail contact forces are of 

critical importance in the field of railway engineering. The nature of these contact 

forces is a function of both the vehicle and track system properties. The forces are 

resultant from the dynamic excitation that occurs between the railway vehicle and 

track systems. This dissertation details the development of a ninnber of mathem at­

ical models tha t a,re applied for the purpose of calculation of the dynamic response 

of both the railway vehicle and track. The system response is considered with par­

ticular emphasis placed upon the resulting wheel-rail contact forces. Both frequency 

domain and time domain (transient) analysis techniques are applied.

A parametric analysis of the wheel-rail contact forces generated as a vehicle 

wheel moves across a track profile with random vertical irregularity is detailed. The 

frequency domain approach tha t is applied is dependent upon assumed linearity of 

the Hertzian contact spring. The spring linearisation is carried out with respect 

to the static wheel load. The mathematical model and analysis methodology is 

described and the influence of the vehicle and track parameter values is assessed. A 

similar mathematical model and technique is then used to investigate the stochastic 

contact forces tha t are generated at two wheels of the same bogie.

The validity of the Hertzian spring linearisation is tested by means of a numerical 

time domain analysis of an interactive vehicle and track system. The finite difference 

method (FDM) is used to formulate a quasi-infinite beam on elastic foundation 

model for the railway track. A moving vehicle model similar to that applied in the
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frequency domain analysis is applied to the beam and the system equations of motion 

are solved numerically. Different specifications of random track irregularities and 

their effect on the wheel-rail contact forces are also investigated using this model.

A number of discrete vertical track irregularities are investigated using a track 

system model formulated using the finite element method (FEM). This model differs 

from the previous quasi-infinite beam model in tha t it is finite in space and is 

discretely supported by sleepers, which are in turn  supported by a discretised ballast 

medium. The beam on elastic foundation model is not suitable for the analysis of 

discrete type irregularities due to their high frequency characteristics. Using the FE 

track model the effect of wheel flats, unsupported sleepers, and dip joints on the 

system response was calculated.

Finally, the effect of random vertical track irregularity on the dynamic response 

of railway bridges is considered. FE beam models for a number of different bridge 

structures are subjected to vehicular loading for different grades of random track 

profiles. The effect of incorporation of random track irregularities on the dynamic 

bridge impact factors is calculated using numerical analysis. The effect of the inclu­

sion or otherwise of a track model is also considered.
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Chapter 1

Introduction

1.1 Pream ble

Railway track systems are essentially comprised of tw'o separate, but dynamically 

interactive, subsystems; the railway vehicle and the railway track itself. The safe and 

efficient design of railway vehicle and track systems requires a rigorous understanding 

of the wheel-rail contact forces that occur at the physical interface between the two 

dynamic systems. It is these contact forces that constitute the major excitatory 

inputs to both the vehicle and the track.

Geometrical irregularity of the railway track profile and imperfections of the 

railway vehicle wheels give rise to peak dynamic contact forces th a t exceed the 

quasi-steady state force conditions. The quasi-steady state refers to the dynamic 

system response when the geometry of both the vehicle wheels and the railway 

track is perfect. It is referred to as such because, despite the similarity of this 

response to the static response in that they are both constant at any position along 

the railway track relative to the wheel, it differs in magnitude due to the Coriolis 

effect (complementary acceleration) and the effect of path curvature (centripetal 

acceleration). The extent of both of these effects is dependent only upon the railway 

vehicle velocity in the quasi-steady state. In practical instances the effects of path

1



curvature and, in particular, Coriolis effects, are much smaller than the static effects 

(Fryba 1999).

The quasi-steady state response referred to here is described on the assumption 

that track foundation is perfectly uniform. In Ireland this is generally not the 

case and there exists a recognisable periodicity in the response of both the vehicle 

and track. Both the system displacements and contact forces fluctuate significantly 

about their respective quasi-steady state conditions. The degree of the response 

fluctuation in the quasi-steady state is dependent upon both the vehicle and the 

track parameters. This fluctuation results from the non-uniformity of the track 

foundation stiffness in the case of discretely supported track, and also from the 

resulting pitching and bouncing of the vehicle system’s inertial components. For 

ballasted track with sleepers the track is discretely supported upon the sleepers 

whilst between the sleepers, vertical support to the vehicle is provided only by the 

moment and shear resisting stiffness of the rail.

Defects in the track and wheels generate dynamic effects that are supplementary 

to these quasi-steady state effects. However, as will be observed at various points 

throughout this thesis, track profile and wheel defects can result in system responses 

that are significantly greater than the equivalent quasi-steady state responses, and 

in some cases dynamic forces tha t are multiples of the static. There are many 

different types of irregularity tha t can occur in the wheel-rail contact area. The 

range of defects show vastly different characteristics, both in terms of frequency and 

magnitude.

The work presented in this thesis is based upon investigation of the dynamic 

effects of various types of track and wheel defects. For this purpose, it has been found 

tha t different types of analytical techniques are suited to different types of problems. 

In addition to these different techniques, a range of different model formulations are 

applied to the various problems encountered. The railway vehicle and track systems 

are highly interactive and complex. The application of frequency domain analysis
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can, in some cases, greatly reduce the computation time required to determine 

the system response. This analysis technique lends itself very conveniently to the 

analysis of effects occurring due to random track irregularity. Standard spectral

techniques, however, require the linearisation of all vehicle and track components.

When this is not possible time domain analyses are used. In such cases numerical 

solutions are obtained by ‘time-stepping’ through the equations of motion for the 

time required to obtain an accurate time-history solution. Both approaches are 

adopted at various points in this thesis.

1.2 Scope o f W ork

The objective of the work carried out in the research detailed in this thesis is the 

development of mathematical models of railway vehicle and track systems. These 

models are then applied for the purpose of calculating the dynamic wheel-rail contact 

forces tha t occur as a result of different types of vertical railway track irregularities 

and defects.

The range of the different types of defects considered required tha t different 

types of models and analysis approaches be considered. In the case of perfectly 

random track irregularity a frequency domain technique was applied to a suitable 

system model. Using this model the effect of random irregularities on the contact 

forces generated by different types of railway vehicles was observed. The effect of 

varying the vehicle parameters on the contact force characteristics is calculated, as 

are the optimum combination of vehicle parameters for minimising the contact force 

variance.

Also investigated using a similar frequency domain technique are the different 

contact force characteristics generated at individual axles of the same railway vehicle 

model. This effect is investigated for the case of a random vertical track profile.

The linearisation of the Hertzian contact spring that is required for the purpose
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of frequency domain analysis is validated by means of applying the vehicle model 

to a track model formulated using the Finite Difference Method. The equations 

of motion of the coupled systems are solved numerically and the contact forces 

calculated. The same model is applied to investigation of the effects of different 

specifications of random track irregularity Power Spectral Density functions on the 

wheel-rail contact forces.

The dynamic effects of a number of discrete irregularities are calculated using a 

finite element track model. Wheel flats, an unsupported sleeper, and a dipped joint 

are all considered. Particular attention is given to the effect, on the dynamic impact, 

of the position of occurrence of the wheel fiat, and the effect of two consecutive 

unsupported sleepers.

The effect of random track irregularity on dynamic bridge impact factors is cal­

culated. The bridge impact factors are defined as the ratio of the maximum dynamic 

bridge response to the maximum static response.Three different bridge models are 

formulated and analysed, of spans 10m, 35m and 70m respectively, and random 

track profiles are generated from irregularity PSD functions using trigonometric 

series. These profiles are then applied at the wheel-bridge or wheel-rail contact 

interface.

1.3 T hesis O rganisation

A review of previous research in the field of railway system dynamics is presented in 

Chapter 2. A number of different specific research areas are reviewed. Each of these 

areas are encompassed by the work tha t is carried out in this thesis. The application 

of frequency domain techniques in a number of different fields are included, with a 

specific focus upon application of these techniques to vehicle and beam dynamics. 

Previous studies of the dynamic vehicle-track interaction and the resultant wheel- 

rail contact forces are presented. Both the steady-state response and the influence
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of track irregularities on the response are considered. This thesis is focussed upon 

the effects of vertical track irregularities and, for this reason, emphasis is placed 

upon studies of a similar nature. Research into the dynamic response of railway 

bridges as a result of moving vehicles is also considered. In all cases the emphasis 

is upon the effect of various types of wheel and rail defects and irregularities on the 

dynamic response of vehicle, track and bridge, and the resulting contact forces that 

are generated in the wheel-rail contact area.

Chapter 3 includes a parametric study of the wheel-rail contact forces generated 

as a railway vehicle wheel runs along a railway track with a randomly irregular 

vertical track profile. The equations of motion of a simplified vehicle model are 

formulated in the time domain, then converted to the frequency domain by applying 

a Fourier transform. The sole source of dynamic excitation to the vehicle and track 

system is the random vertical track irregularity which is characterised by one-sided 

power spectral density (PSD) functions. The frequency domain approach allows 

for the efficient calculation of contact force spectra under various combinations of 

parametric values. These spectra contain valuable information about the random 

processes they represent. One of the assumptions when applying this type of analysis 

is that the system is linear. The wheel-rail contact spring does not behave linearly 

but, for the purpose of this study, is linearised about the static wheel load.

In Chapter 4 a frequency domain approach is applied to a vehicle bogie model 

with two axles. Once again, spectra of the contact force processes are generated; 

however, in this instance two spectra are generated for each analysis, one for each 

wheelset. Over a range of different velocities the calculated spectra at each wheelset 

are found to be non-identical. As a result of this, the mean-square contact force 

values of the contact forces at each wheelset are also non-identical.

Chapter 5 details the development of a track model for the purpose of calculat­

ing wheel-rail contact forces in the time domain. A numerical analysis is applied to 

the track model equations of motion, which is formulated using the finite difference
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method (FDM). Random irregularity of the track is input to the model. This ir­

regularity function is generated using trigonometric series based on various random 

profile power spectral density functions. The track model is formulated as a quasi­

infinite beam. One shortcoming of this type of continuous model is the assumption 

of the track foundation as a continuously elastic medium. The model is also used to 

validate the hnear Hertzian contact spring model used in Chapters 3 and 4.

Chapter 6 is focussed upon the effect of a number of discrete type irregularities 

on the wheel-rail contact forces and the resulting track deformation and stresses. 

The case of a wheel flat impacting the track, the presence of an unsupported sleeper 

and a dipped joint are investigated. Also observed is the influence on the dynamic 

response of the track ballast stiffness. The track model is formulated using the finite 

element method (FEM) with Timoshenko beam elements. This model was used in 

preference to the model of Chapter 5 due to its ability to model more accurately the 

high-frequency response tha t is generally generated by discrete type defects.

Dynamic impact factors for bridges traversed by moving vehicles in the presence 

of a randomly irregular vertical track profile are calculated in Chapter 7. The bridge 

models are formulated using the FEM with Euler beam elements. Short, medium 

and long span bridge models are considered. The effect of including a track model in 

the analysis is also investigated. As in Chapter 5, the random profiles are generated 

from trigonometric series derived from empirical one-sided PSD functions.

Finally, the work presented in this dissertation is summarised and conclusions 

arrived at are presented in Chapter 8. The main findings of the research are discussed 

and areas of possible further research are suggested.
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Chapter 2

R eview  of Vehicle-Track-Bridge 

Interactive D ynam ics

2.1 Introduction

2.1.1 Background

l l i e  essential physical basis of any railway network is formed by two dynam ic and 

interactive subsystems: the mechanical railw'ay vehicle system and the railway track 

structure, which supports and guides the  vehicle. W hen a vehicle moves on railway 

track, contact forces are transm itted  between the two subsystem s via the m ulti­

ple contact interfaces th a t are situated  a t the w'heel-rail contact points a t intervals 

along the entire length of the vehicle. In the ideal case, where the vehicle wheel 

and the track profile are perfectly rounded and sm ooth respectively, these contact 

forces approach a condition referred to throughout the literature as the  quasi-steady 

state. The quasi-steady sta te  contact forces are not identical to the sta tic  forces. 

Furtherm ore, the effect of sleeper spacing and oscillation of the discrete supports 

generate force fluctuations of approxim ately 5% above and below the  quasi-steady 

sta te  in the present tra in  velocity range (Dong, Sankar Sz D ukkipati 1994). How­

ever, under idealised track and wheel conditions and at sufficiently low velocities, it
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has been shown tha t the contact forces approach those of the static case (Jenkins, 

Stephenson, Clayton, Morland &: Lyon 1974).

Perfect geometry of the wheel-rail contact area would minimise the contact force 

oscillation; however, in practice, geometric imperfections in the wheel-rail contact 

region constitute a major source of dynamic excitation to both the railway vehicle 

and the railway track systems. Deviations from a geometrically perfect contact area 

give rise to additional oscillations in the dynamic contact forces tha t alter both the 

amplitude and frequency characteristics of the contact forces. The magnitude and 

frequency of variations in the contact forces dictate the characteristics of the dynamic 

input to both the vehicle and track systems. Significant deviations in the contact 

forces from the quasi-steady state condition may result in excessive stresses being 

imparted to both systems. In addition, the riding comfort of passenger vehicles 

may be negatively affected (Demic, Lukic & Milic 2002, Karakasis, Skarlatos 

Zakinthinos 2005).

The safe and efficient engineering design of both the vehicle system and the track 

structure requires a comprehensive understanding of the dynamic characteristics of 

the contact forces. Inherent in this understanding is an appreciation of the many 

problems that can arise due to the presence of contact area irregularity. These 

problems include excessive wear of both vehicle and track components, resultant 

poor ride quality, induction of corrugation and, in the worst case, potential derail­

ment of the vehicle or damage to the track structure to the extent tha t the track 

is unusable. Therefore, it is clear tha t both experimental and theoretical studies of 

such geometrical irregularity, and its effects, are of great practical interest to railway 

engineers.

The work presented in this thesis is focussed upon the development of various 

mathematical models tha t are used to predict the effects of different types of wheel 

and track irregularities upon the wheel-rail contact forces. The types of track and 

wheel irregularities tha t can distort contact forces from their quasi-steady state are



many and varied. The subsequent dynamic effects are a function of the particular 

type of irregularity and, as such, vary greatly also. However, all types of irregularities 

may be broadly categorised as periodic, isolated or random.

Rail corrugations are an example of a periodic excitation source to the vehicle- 

track system, as are both the sleeper and cross-beam (in the case of bridges) effects. 

Wheel fiats are also periodic given their cychcal characteristics but are modelled as 

a series of repeating discrete irregularities. In direct contrast, isolated irregularities 

such as a dipped or poorly welded joint in the track structure may occur at any 

point over a given section of track, or not at all. Entirely irregular deviations from 

the ideal railway track profile can be considered random, or stochastic, in nature. 

Such irregularities are of additional theoretical and mathematical interest due to 

the fact that they can be described by their statistical characteristics. It is possible 

to apply frequency domain techniques in the analysis of random track irregularity 

effects upon the dynamic wheel-rail contact forces.

One particular aspect that is common to each of the aforementioned categories 

of irregularity is the general increase of the dynamic effect magnitude in line with 

increasing vehicle velocity (see Figure 2.1 from Eisenmann (1981)). Instances of this 

general effect are prevalent throughout the literature in various analyses of different 

types of irregularities at working velocities. Examples include the effects of wheel 

flats (Fermer Sz Nielsen 1995, Hou, Kalousek & Dong 2003, Nielsen Sz Igeland 1995), 

dipped track joints (Jenkins et al. 1974, Zhai & Cai 1997), random track profile irreg­

ularity (Lei & Noda 2002), rail corrugation (Nielsen & Igeland 1995), and local loss 

of sleeper support (Nielsen & Igeland 1995). Railway administrations allow for this 

effect by specifying tolerances for track irregularity that are dependent on vehicle 

velocity. A condensed version of the USA’s Federal Railroad Administration (FRA) 

tolerances is provided by Garg & Dukkipati (1984). The imposition of additional 

speed limits is far from an ideal solution given the current traffic demands placed 

upon modern railway services in addition to large projected demand increases into
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the foreseeable future (Johnson 2000). It does, however, provide the single most 

simplistic answer to the problem of excessive dynamic loads. An adequate main­

tenance and repair regime, tha t minimises the imposition of such limits, is a much 

more effective solution (Profillidis 2000).

F ig. 2.1 : Distribution of rail stress and deflection as a function of vehicle velocity

(Eisenmann 1981)

2.1.2 O rganisation o f L iterature R eview

The following literature review has been divided into a number of distinct, but 

fundamentally related aspects, in the general research area of vehicle-track and 

vehicle-bridge interactive dynamics. The need to address both of these topics, and 

the vast quantity of literature available in both fields, has required tha t the review be 

sub-divided into these two individual sections with emphasis upon these topics. Also 

included is a section on frequency domain analysis and its applications, a technique 

which was applied in the research described in this thesis. Therefore, the three topics 

reviewed are frequency domain systems analysis, the dynamics of the vehicle-track 

interaction, and the dynamics of the vehicle-bridge interaction.
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The apphcation of frequency domain, or spectral, techniques to the analysis 

of the dynamic vehicle-track interaction forms a very significant portion of this 

research work. Section 2.2 is focussed upon some of the previous applications of 

these techniques to the solution of problems of the dynamic response of mechanical 

systems.

Section 2.3 contains a review of the literature in the specific area of the dy­

namic interaction between the railway vehicle and the track. This topic includes a 

review of the literature detailing the individual dynamic responses of vehicle and 

track. The fluctuating contact forces tha t arise between the two subsystems are also 

included. The section is divided into three sub-topics, the first (Section 2.3.1) is 

based upon studies of the idealised vehicle track interaction, ie. the quasi-steady 

state response; while the second (Section 2.3.2) concentrates upon literature with 

an emphasis upon the effect of track and wheel defects upon this interaction. An 

understanding of the wheel-rail contact mechanism is critical prior to formulating 

an accurate mathematical model. For this reason. Section 2.3.3 concludes Section 

2.3 with a review of some of the research tha t has been undertaken in studying the 

behaviour of the interactive wheel-rail contact mechanism. This also comprises a 

review of some of the mathematical models that have been used to simulate this 

interaction.

This thesis also includes some work based on studying the effect of wheel-rail 

contact area irregularity upon the dynamic response of railway bridges. Section 2.4 

reviews previous research undertaken in the field of railway bridge dynamics, with 

particular emphasis placed on the effects of track and wheel irregularities on the 

bridge dynamic response.

Section 2.5 concludes the review with a brief overview of the reviewed material.
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2.2 Frequency D om ain  M odels

2.2.1 Introduction

Irregularity of the wheel-rail contact area geometry, be it in the wheel or track 

profile, is cited as one of the essential vibration sources to vehicle and track (Dong 

et al. 1994, Lei &: Noda 2002, Mastinu, Gobbi &: Pace 2001, Nielsen & Igeland 1995). 

The analysis of the dynamic response of railway vehicle and track systems as a result 

of random track profile irregularity can be approached in both the time domain 

or the frequency domain. Time domain analysis can involve the application of 

analytical or numerical methods. Cai, Cheung &: Chan (1988) and Sun (2001a) 

have detailed exact analytical solutions to different types of beam dynamics problems 

tha t are related to railway engineering applications. Cai et al. (1988) detailed an 

exact method for calculating the dynamic response of a beam resting on discrete 

roller supports to a moving force while Sun calculated a closed form solution for a 

continuously supported beam subjected to a moving line load. Note tha t for both 

of these solutions, the problem is solved on the basis tha t the beam excitation force, 

while moving in space, is of constant magnitude. This is a limitation in applications 

to railway systems as the wheel-rail forces are not of constant magnitude.

In the event tha t closed form analytical solutions are not possible, as is the 

case for the more complex problem of moving sprung masses, numerical integration 

techniques such as the Runge-Kutta, Newmark (3 or Wilson 6 (Hart & Wong 1999) 

methods, can be applied to solve the equations of motion of both the vehicle and 

the track systems. Examples where this approach has been applied to solving for 

the dynamic response of the interactive systems of railway vehicle and track are 

common in the literature (Hou et al. 2003, Lei & Noda 2002, Lin & Trethewey 1990, 

Tham biratnam  h  Zhuge 1996, Yang, Yau & Hsu 1997).

Non-linearities in the interactive vehicle-track system, such as the force-displacement 

relationship of the wheel-rail contact indentation, can easily be implemented in such
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numerical tim e dom ain analyses (Fermer & Nielsen 1995). Non-uniformities, such as 

the discretely spaced railway sleepers, can also be conveniently incorporated (Fermer 

& Nielsen 1995, Nielsen & Igeland 1995). However, tim e domain analysis, though 

robust and useful, is generally com putationally  expensive (H artnett 2000a). In ad­

dition, the physical system of differential equations of motion, whose solution forms 

the basis of tim e-dom ain analysis, are not easily interpreted in the  m anner of a 

frequency dom ain transfer function.

In contrast to  tim e dom ain analyses, frequency dom ain, or spectral, techniques 

are relatively com putationally inexpensive. The dynam ic input to the  vehicle-track 

system, in this case the random  vertical irregularity of the track profile, can be input 

to the model, not as a tim e history, bu t as a Power Spectral Density (PSD) function 

th a t is representative of the random  process (Fryba 1996). Frequency dom ain analy­

sis involves the calculation of system ou tpu t spectra from the known track displace­

ment input spectra  via the system frequency response functions (Newland 1993). 

Non-linearities in the system  are required to  be linearised in order th a t the frequency 

domain technique can be applied to th is particular type of problem (Esveld 1989). 

There is a large range of tex ts available th a t provide broad fundam ental explanations 

of frequency dom ain techniques (Crandall &: M ark 1963, Newland 1993, Piszczek k .  

Niziol 1986, Robson 1963, W irsching, Paez &: Ortiz 1995).

The m ost fundam ental concept of frequency dom ain analysis is th a t, for a linear, 

single degree of freedom (SDOF) system, given the spectral density function of an 

input signal to  the system as a function of circular frequency w, Sj(a;), the spectral 

density of the ou tpu t S o { u j )  may be calculated using the  relation

S o (u ; )  =  | H ( u ; ) | 2 S i ( u ; )  ( 2 . 1 )

H(li;) is a characteristic of the system  param eters and is known as the system  fre­

quency response function, or transfer function. The frequency response function is 

defined such th a t its m agnitude is equal to  the amplitTide ratio  and the ratio  of its
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im aginary to  its real part is equal to  the tangent of the phase angle (Newland 1993). 

The constituent com ponents of the frequency response function for a  SDOF system 

with mass, dam ping and stiffness param eters 100kg, 500Nsm“  ̂ and lOOONm^^ re­

spectively are illustrated  in Figure 2.2. This fundam ental SDOF frequency domain 

theory can be expanded to  the  analysis of multi-degree of freedom systems such as 

the railway vehicle and track system.

O.B

Re(H)

Im(H)
- 0.4

-O.B

Circular frequency, w [rad/s]

F ig . 2.2: Sample frequency response functions real and im aginary constituent parts

Frequency dom ain analysis is applicable to  a large num ber of diverse fields of 

research. Aside from its application to  the  analysis of mechanical systems, which is 

reviewed in Section 2.2.2, frequency dom ain techniques are prevalent in the recent 

literatu re  in the  fields of digital signal processing (Koh k . Sarkar 2005), physiol­

ogy (Bartels, Jelic, Ngai, Gates, Newandee, Reisman, Basner & Meersman 2004) 

and economics (Pakko 2003), in addition to  m any others. Some examples of other 

s truc tu ra l engineering applications include the  analysis and subsequent design of off-
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shore lattice structures (Hartnett 20005, H artnett 2000a, Kawano & Venkataramana 

1999), and earthquake engineering (Bhattacharyya & Chakraborty 2002, Takewaki 

20056, Takewaki 2005 a).

Fourier theory (Newland 1993) forms the basis of spectral analysis; if x(t) is a 

periodic function of time t, with period T, then x(t) can be expressed as an infinite 

trigonometric series (a Fourier series) of the form:

/  27rkt 27rkt\
x(t) =  ao +  2 ^  ( a k c o s ^ ^ + b k s m ^ |^  j  (2.2)

k=l ^ ^

While Equation 2.2 assumes tha t x(t) is periodic, a stationary random process 

can also be represented by an infinite number of constituent waves of different wave­

lengths. By manipulating the Fourier series equation for the limiting case when 

T —> oc the random signal x(t) is given by the following equation:

0 0  OC

x(t) =  2 /  A(cj)cos(i^t) da; 4 2 J  B(a;)sin(u;t) da; (2.3)
0 0 

This equation is a representation of x(t) by means of a Fourier integral. A(o;) and

B(a;) are the components of the Fourier transform  of x(t) and are given by:

OO

A(a;) =  —  I  x(t)cos(a;t) dt (2.4a)
27T J

— OO 

OO

B(^) = ^  f  x(t)sin(o;t) dt (2.4b)27t j
— OO

The study of the effect of random track roughness lends itself to frequency domain 

analysis due to the fact that irregularity in the vertical track profile can be modelled 

as a stationary, ergodic, Gaussian random field. A study of data obtained from 

Indian railways confirmed this characteristic (Iyengar & Jaiswal 1995). As such, 

these irregularities can be defined in terms of their Power Spectral Density (PSD) 

function, denoted S{lo). It can be shown (Robson 1963) that the PSD function is
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equivalent to A(a;) from Equation 2.4a, ie.

S(o;) =  A(u;) (2.5)

The PSD function can be used to develop track quality standards and to spec­

ify the dynamic input im parted to the railway vehicles as a result of these irreg­

ularities. In addition, it is possible, with an appropriate mathematical vehicle 

model, to generate PSD functions defining the vehicle motion (Andersen, Nielsen & 

Kirkegaard 2001, Sun & Kermedy 2002). If the vehicle system parameters are linear, 

ie. the displacement and velocity are linearly proportional to the applied force, the 

dynamic response is also Gaussian (Robson 1963).

Various additional properties of the PSD function allow the calculation of peak 

vehicle amphtudes and other useful statistical data (Nigam 1983). Iyengar & Jaiswal 

(1995) apply classical level-crossing and peak statistics theory to calculate the the­

oretical number of peaks and zeroes of the railway track irregularity process. These 

numbers, calculated using standard unevenness PSD functions, are then compared 

with, and found to correspond to, measured data.

The calculation of the Probability Density Function of a Gaussian process re­

quires only that the variance and mean value of the response be known. The pro­

cess variance is obtained by direct integration of the PSD function for the process 

(Piszczek & Niziol 1986), while a zero-mean input process and a linear system model 

will ensure that the output is zero-mean also.

2.2.2 M echanical System s Analysis in the Frequency D o­

main

In the broad field of mechanical transport system vibrations, spectral analysis has 

frequently been used to investigate the effects of various vehicle parameters on the 

spectral density functions of the pavement loads (Sun &; Kennedy 2002). These loads
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are analogous to the wheel-rail contact forces in railway engineering. A quarter vehi­

cle model of a passenger vehicle is analysed, the results of this analysis are applicable 

to the optimisation of vehicle suspension systems. The deformation of the underly­

ing pavement was not included in the model. The pavement roughness is described 

by a double-sided PSD function proposed by the ISO (International Organisation 

for Standardisation). In Sun (20016), field measurements of the dynamic pavement 

loads generated by an IVECO  vehicle are compared with theoretical results obtained 

using a frequency domain dynamic simulation. The computer simulation results are 

found to accurately match the field measurements.

The application of frequency domain techniques is prevalent in many studies of 

wheel-rail contact forces. Lei & Noda (2002) implement a numerical time domain 

analysis of the vehicle-track interaction using the finite element method (FEM) 

with Euler beam elements to model the railway track and a 10 degree-of-freedom 

(DOF) planar vehicle. An Euler beam model is one in which the beam’s rotational 

inertia and shear deformation are disregarded (Esveld 2001). Random vertical track 

profile irregularity is input to the mathematical model and the simulation results 

are presented for analysis in both the time and frequency domains. The frequency 

domain presentation allows easy identification of the critical frequencies. Esveld 

(1989) and Jenkins et al. (1974) use transfer functions to characterise the nature of 

the various vehicle displacements and wheel-rail contact forces. A transfer function 

represents the contribution made by a geometry component to a vehicle reaction 

in the frequency domain. Jenkins et al. (1974) use the various transfer functions 

to demonstrate the influence of the different vehicle and track parameters on the 

wheel-rail contact forces over some broad frequency ranges.

At low frequency excitation (less than lOHz) suspension force variations are the 

main source of track loading. In the intermediate frequency range between 20Hz and 

lOOHz the suspension and track system itself are the main sources of influence. The 

wheelset masses and the wheel-rail contact stiffness are critical in the high frequency
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range of 500Hz to  2000Hz (Jenkins et al. 1974).

The incorporation of the pavement response, or, in the case of railwaj^ vehi­

cles, the track response, into the model, greatly increases the complexity of a fre­

quency domain calculation of the contact force (Esveld 1989). Andersen, Nielsen 

& Iwankiewicz (2002) have formulated a method of calculation of the frequency re­

sponse function of a SDOF mass moving across a beam with a randomly irregular 

vertical upper profile supported by a Kelvin elastic foundation. A moving coordi­

nate system is implemented and, initially, the response is calculated for harmonic 

beam surface irregularities. This model is then extended and the solution is derived 

for the case of a random beam surface profile. Both the vehicle mass response and 

tha t of the underlying beam are determined as a function of the PSD of the random 

irregularities. For a linear system the solution for any number of uncorrelated single 

degree of freedom systems may be superposed. It is, however, noted by Andersen 

et al. in the same study tha t a more realistic vehicle model would require additional 

degrees of freedom and multiple beam contact points. An analytical approach to this 

problem is inconvenient. Indeed, for a moving vehicle with more than two degrees 

of freedom only a numerical solution may be found (Andersen et al. 2002). As a 

complete vehicle model requires multiple (greater than two) degrees of freedom and 

also multiple wheel-rail contact points, a frequency domain approach to the coupled 

infinite beam and vehicle system is not possible.

Spectral methods have also been applied to the problem of track vibration due 

to variations of the foundation stiffness (Andersen & Nielsen 2003). The vertical 

foundation stiffness springs are assumed to be a stochastic field with a small random 

variation about a mean value. Again, a SDOF vehicle model is considered. Both 

the moving vehicle and continuous beam responses are shown to increase with both 

vehicle velocity and the correlation length of the stiffness variation. The correlation 

length is a measure of the range over which fluctuations in one region of space are 

correlated with (or influence) those in another region.
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The steady state response of a beam on an elastic foundation subject to moving 

point loads (Sun 2002) and to moving line loads (Sun 2001c, Sun 2001a) has been 

solved using frequency domain techniques. Fourier transforms are applied to convert 

the system equations of motion from the time to the frequency domain.

2.3 D ynam ic V ehicle-Track Interaction  

2.3.1 Q uasi-S teady S ta te  Interaction

In the absence of geometrical irregularity of the wheel-rail contact area, the dy­

namic interaction between railway vehicle and track attains a quasi-steady state 

condition (Nielsen &: Abrahamsson 1992). The dynamics of vehicles and track under 

such idealised conditions are usually studied separately as two independent dynamic 

problems. This division within the field may be due in part to the corresponding 

global engineering divide between the roles of the mechanical and civil/structural 

engineer. The study of railway vehicle vibration has, historically, been a mechani­

cal engineering topic while civil engineering encompasses the areas of railway track 

construction and design.

The modelling and simulation of the dynamic response of railway systems with 

a view to predicting the ‘real’ system response has been an engineering objective for 

almost as long as railway vehicle and track systems have existed (Garg &: Dukkipati 

1984). The importance of railway networks to the global transport infrastructure 

ensures that this area of research will continue as long as the demand for greater 

vehicle velocities and capacities remains.

The vehicle system includes wheelsets, car bodies and flexible intermediate struc­

tures which are connected by components such as springs and dampers. In many 

cases, investigation of railway vehicle dynamics is undertaken under the assump­

tion that the underlying track system is rigid or behaves in a similar manner to a 

beam set upon a continuous elastic foundation (Esveld 1989, Nishimura, Perkins
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& Zhang 2004, Stichel 1999). For the beam model, the foundation stiffness and 

damping are continuously distributed along the length of the beam. Many of the 

models introduced by Garg & Dukkipati (1984) are based on the assumption of rigid 

track. The various theoretical assumptions regarding the track system dynamics, 

such as the assumption of a uniformly continuous foundation of discretely supported 

track, are discussed by Profillidis (2000). Frequently however, when commercial soft­

ware such as NUCARS (Blader, Elkins, Wilson k. Klauser 1989) or VAMPIRE 

(Gilbert 2001) are utilised in the analysis of vehicle dynamics, the analysis is per­

formed under one of the two basic assumptions of ‘rigid track’ or ‘continuous elastic 

foundation’.

The railway track system comprises the rails, rail-pads and sleepers, w'hich are 

supported by ballast and connected by fastenings. In many cases, the ballast bed 

lies on a sub-ballast layer which forms the transition layer to the formation. This 

multi-layered system is often approximated as the simple beam on elastic foundation 

structure described previously (Hetenyi 1946). A common approach throughout the 

literature has been to model the track system as a theoretically infinite beam on 

elastic foundation. Engineers solved for the static deflection of an infinite beam on 

elastic foundation during the 19th century, this has become a landmark solution in 

the field of railway track design. This type of model was considered representative 

of a railway track where the sleepers are assumed to be so close together that the 

track foundation forms a continuous resilient support to the rail. The equations 

derived are sometimes called the Zimmerman equations after one of the pioneering 

researchers in the field (Hetenyi 1946).

The dynamics of the railway track system is generally studied using the simple 

beam model, supported by an elastic foundation, and traversed by either a single 

wheel or bogie (Nielsen & Oscarsson 2004, Lee 1998, Thambiratnam Sz Zhuge 1996). 

Solutions to dynamics problems involving beams on elastic foundations are of in­

terest to applied mathematicians and engineers involved in a broad spectrum of
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practical and theoretical applications. The solutions to these problems have regu­

larly been adopted and developed by researchers of railway track dynamics (Chen 

&: Huang 2003, Fryba 1999, Hetenyi 1946, Jenkins et al. 1974, Thambiratnam & 

Zhuge 1996, Warburton 1976).

The advent of high speed computers and the ensuing development of the finite 

element method (FEM) has greatly impacted upon the research methods applied in 

the field of railway track dynamics. The FEM has been applied to such problems by 

Dong et al. (1994), Lin &: Trethewey (1990) and Nielsen & Igeland (1995), amongst 

many others. The FEM allows additional characteristics of the track system to be 

easily applied to the simple continuous beam model. An example is the implemen­

tation of the periodically spaced sleepers in the track structure model. Closed form 

solutions for the dynamic response of a beam resting on sleepers to a moving force 

are possible (Cai et al. 1988, Jezequel 1981, Mead 1970, Mead 1986), but more real­

istic vehicle models render the solution much more complex and beyond the realm 

of closed form solutions. In contrast, the corresponding numerical FEM model is 

increased in terms of both matrix size and computational requirements, but it will 

always be capable of producing a solution for the system behaviour as a function of 

time.

The FEM also allows the numerical simulation of more complex beam models 

that can be developed to include the influence of the track sleepers or ballast on the 

beam response. Hou et al. (2003), Lei & Noda (2002) and Zhai Sz Cai (1997) are 

examples of numerical studies where the sleepers are discretised as a layer of sprung 

point masses beneath the rails. Interestingly, the sleeper layer itself may also be 

modelled as a beam (Esveld 1989). In this case the track system is schematised as 

a double beam where the lower beam, ie. that representing the sleepers, has zero 

bending stiffness.

While the fundamental simplification of the entire railway track system as a 

single beam on elastic foundation is a natural progression, modelling the beam end
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conditions can be problematic. Hetenyi (1946) has presented the derivations of the 

analytical formulae for the displacement, rotation, bending moment and shear force 

at any distance from a point force applied to an infinite beam on a continuous 

elastic foundation. Each equation is given as a function of the distance from the 

point of application of the force, the beam bending stiffness, and the foundation 

stiffness parameter. The characteristic length of the beam, j, is an important factor 

influencing the deflected shape of such a beam, and is a function of both the flexural 

rigidity of the beam and elasticity of the supporting medium (see Equation 2.6).

For completeness, Hetenyi also details an investigation of the effect of discretising 

the continuous foundation into a series of periodic supports representing sleepers. 

In this static application the differences between the beam bending moment due to 

static vehicle loading with the continuous and discrete foundations are found to be 

insignificant (less than 2% at the point of load application and less than 7% 2m 

away from the same point where the deflections are small).

The solution to the dynamic infinite beam problem is much more complex. 

Closed form solutions are available only under certain, simple, loading conditions. 

The solution for the quasi-steady state beam response under the action of a moving 

constant force was first solved by Timoshenko (1926). Fryba (1999) has detailed a 

solution that includes a study of the effect of varying speeds in addition to different 

levels of viscous foundation damping. Andersen et al. (2001) applies a convected 

(moving) coordinate approach to derive a solution for the beam response to moving 

harmonic excitation. A moving harmonic load case was also considered by Sheng, 

Jones &: Petyt (1999) and Jones, Sheng & Petyt (2000) in a study of ground vibra­

tions induced by railway vehicles travelling at various velocities. The characteristics 

of harmonic loading enable the analytical solution of the governing beam differential 

equation. More complicated load cases such as real railway vehicle systems, how-
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ever, do not lend themselves to  such solutions. These cases are more easily solved 

using num erical techniques in conjunction w ith suitable m athem atical models for 

both  vehicle and beam  (Hou et al. 2003).

The application of suitable transm itting  boundary conditions to  a quasi-infinite 

beam  system  is required in order to  solve for problems with greater load complexity 

than  constant moving or harm onically varying forces. An example of such a load 

case is a more realistic vehicle model w ith multiple degrees of freedom such as the 

vehicle models th a t are applied in analysis by Lei & Noda (2002) and Nielsen k . 

Igeland (1995). Andersen et al. (2001) compared analytically derived results with 

those obtained using a quasi-infinite FEM  form ulation of the infinite beam  on elastic 

foundation for the moving harmonic load case. The results generated by means of 

applying transm itting  boundary conditions to  the FEM  model are shown to  agree 

w ith the analytical solution for the single frequency excitation tested.

The loading of the track structu re  a t more than  one single loading point generates 

interaction effects. The solutions for sta tic  interaction effects are readily derived 

from static  elastic beam  theory (Hetenyi 1946) and the  principle of superposition. 

The dynam ic effects are more complex due to  wave propagation and reflection w ithin 

the track structure. The effect of m ultiple wheels on the rail is investigated by 

Wu & Thom pson (20016) who determ ined th a t when solving for a high frequency 

excitation, the individual loads and subsequent effects can be treated  independently 

using the superposition principle, provided th a t the rail vibration is considered as a 

frequency band average. For the track param eters th a t were considered it was also 

found th a t the  wheel-rail interaction effect on the  contact force could be neglected 

at spacing distances of more than  10m. The high frequency wheel response of a 

passenger wagon will therefore have no effect on the response of o ther wheels more 

th an  10m away. The same authors also investigate the  effect of the presence of 

m ultiple wheels on railway rolling noise (Wu & Thom pson 2001a). It is found th a t 

the influence of the wave reflection on track vibration and noise radiation is limited.
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Generally, vehicle-track interactive studies have predominantly used numerical 

models. The vehicle cannot, under normal circumstances, be modelled as a constant 

moving force or series of forces, due to the presence of the dynamically varying 

wheel-rail contact forces. The representation of the vehicle as a series of sprung 

masses is also of limited usefulness as the interaction between vehicle components is 

not considered. The wheel-rail contact force, in the quasi-steady state, contains two 

distinct periodic waves (Dukkipati & Dong 1999). The first wave occurs as a result of 

track stiffness variation due to sleeper spacing. This force wave reaches a maximum 

when the sleeper passing frequency is equal to the wheel-track resonant frequency 

or the loaded track frequency. The wheel travelling motion and the oscillation of the 

discrete supports result in the second contact force wave. As the wheel approaches 

a support, the loading forces the sleeper downwards. If the sleeper motion is not in 

phase with the motion of the rail over the sleeper, a support oscillation occurs and 

results in a fluctuating contact force. It is reported also that, in the conventional 

train speed range, the steady state  is attained after the vehicle has travelled 4 to 5 

sleeper spacings. Significantly, the model employed by Dukkipati & Dong showed 

that, for this idealised vehicle-track interaction, the wheel-tack interactive forces 

caused due to vehicle acceleration, are insignificant.

Previously, Dong et al. (1994) had formulated a simplified, SDOF vehicle model, 

and applied this model to a similar track model to tha t of Dukkipati Sz Dong (1999). 

The sprung mass is representative of a perfect wheel and, as with Dukkipati & 

Dong (1999), the track profile is idealised as being perfectly smooth. The time 

histories of rail and wheel displacements, in addition to tha t of the dynamic contact 

force, are obtained from the model. These results are later compared with results 

from another study of higher model complexity (Sun & Dhanasekar 2002). Sun 

& Dhanasekar apply a more theoretically advanced track model, where the rail is 

modelled as an infinitely long continuous Timoshenko beam (Timoshenko 1921). 

This is in contrast to the more robust truncated beam model that was applied by
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Dukkipati & Dong. The vehicle system used by Dukkipati & Dong was modelled as 

a ten degree of freedom wagon with four wheelsets, two bogies and a wagon body. 

Initially however, a single degree of freedom moving sprung mass was applied as 

the loading to the infinite beam model. The period of vibration predicted by both 

models is identical. This reflects tha t the dominant period of the contact force time 

history for discretely supported track is obtained by dividing the sleeper spacing 

by the vehicle velocity. Difference in the wheel and rail displacement and contact 

force peak factors, which differ by 5.6% for displacement and 1.95% for contact 

force, were partly explained by the different methods of calculating the damping 

coefficients for the pad and ballast. This acceptable agreement was used by Sun 

&: Dhanasekar (2002) to validate their more advanced approach to modelling the 

track and the multi-body wagon model. This model was then applied in interactive 

studies involving defects in the wheel and rail geometry (see Section 2.3.2).

The quasi-steady state response of the wheel and rail calculated by Dong et al. 

(1994) is illustrated in Figure 2.3. Note tha t the dominating wavelength of the 

periodicity in the dynamic response is equal to the sleeper spacing. It should be 

noted once again that the vehicle model in this case was a single DOF sprung mass. 

More complex vehicle models can impose additional frequencies on the response. 

However, in the absence of wheel or track defects, the dominating wavelength is 

always the sleeper spacing distance.

2.3.2 Interaction with Contact Area Irregularity

Previously, in Section (2.3.1), the focus was upon railway engineering studies tha t did 

not take into account geometric irregularity of the wheel-rail contact area. The area 

in which the wheel and rail come into contact was assumed to be perfectly smooth 

with the result that the variation of the contact forces is minimised. Minimisation 

of the contact force variation results in minimal track and vehicle system vibration 

as it is the contact forces tha t provide the dynamic excitation to both. This section
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(Dong et al. 1994)
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concentrates upon studies where irregularity of both the wheel and rail is considered 

as a source of dynamic excitation to both the vehicle and track systems and these 

irregularities are incorporated into the mathematical models.

The types of geometric irregularity of the contact area that cause the vehicle- 

track interaction to deviate from the quasi-steady state vary greatly (Dong et al. 

1994, Jenkins et al. 1974, Lei & Noda 2002, Nielsen & Igeland 1995). Track and 

wheel profile defects give rise to periodic (Hou et al. 2003), isolated (Thompson, Wu 

& Armstrong 2003, Tanabe, Wakui, Matsumoto, Okuda, Sogabe & Komiya 2003), 

and random (Kalker & Periard 1996) fluctuations supplementary to the quasi-steady 

state vehicle-track interaction. The frequency-dependent nature of the vehicle-track 

interaction is described by Harvey, Gosling & Cope (1993):

“Where two or more mass-spring system s are superimposed on one 

another, the combined system  will possess two or more natural frequen­

cies, and hence i f  the input (ie., the shape o f the wheel-rail interface, 

seen as a function o f tim e) is a complex periodic one containing m any  

frequencies, resonances may occur at several interfaces within the sys­

tem. This happens in the vehicle-track system , and several im portant 

sets o f interactions can be identified. ”

Geometric irregularities have the potential to generate sharp peak responses in 

the interaction (Iyengar &: Jaiswal 1995). It is possible to minimise the occurrence 

of track and wheel defects by imposing a suitable maintenance and repair regime 

(Harvey et al. 1993). However, the occurrence of geometrical irregularity, of both 

the vehicle and track systems, is unavoidable. Therefore, the nature of these irreg­

ularities and their dynamic effects are a topic of great interest to railway engineers.

Jenkins et al. (1974) outline the fact tha t it is imperfections in the wheels and 

rail that supplement contact forces tha t would, otherwise, be close to the static 

wheel loads. However, the concept of a perfect contact area is a theoretical as­

sumption tha t can never be attained in practice. This reality is no different to
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many structural engineering applications, where idealistic assumptions are used to 

simplify theoretical calculation of stresses and deflections.

The major causes of these vertical wheel-rail force increases are identified by 

Jenkins et al. (1974) as follows;

1. isolated irregularities in the running surface, which occur by default at joints 

and welds and by design at points and crossings;

2. periodic irregularities, such as corrugation on the rail surface or the repetitive 

effect of sleeper spacing;

3. random variations of longitudinal profile (track top roughness);

4. defects in the vehicle such as wheel flats and wheel eccentricity;

5. random variations in sleeper support stiffness such as hard spots and voids.

Each of these types of irregularity occurs for a particular reason. While the causes of 

the occurrence of irregularity at a rail joint or weld are elementary, as is the periodic 

effect of sleeper spacing, other mechanisms tha t give rise to irregularity are more 

complex, an example being rail corrugation.

The different types of irregularities that induce increased wheel-rail contact force 

magnitudes may alternatively be classified according to their frequency content 

(Harvey et al. 1993). The various frequency ranges give rise to excitation of different 

components of the interactive vehicle-track system. Low frequency irregularities, in 

the 0.5 to  lOHz range, will generally be found to excite only the vehicle body on 

its primary suspension in addition to the vehicle bogies. The medium frequency 

range, 20 to lOOHz, of irregularities can excite the unsprung mass to oscillate on the 

track spring. Track and wheel defects are generally manifest in this frequency band. 

Higher frequency excitation, at 500Hz and above, is associated with the natural 

frequency of the track mass on the Hertzian contact spring.
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Wheel flats are among the contact area defects that cause periodic contact ef­

fects. Flats are created by sliding/skidding of the wheel upon application of the 

brakes. The effect of sliding causes wearing of the steel wheels at the point of con­

tact and results in a flat spot on the rolling surface of the wheel. Jergeus (1997) 

has provided an overview of the technical and economical problems caused by wheel 

flats. The same author has been involved in the testing of railway vehicles with 

wheel flats (Jergeus 1999). These experimental results were used to verify and cal­

ibrate a numerical model for wheel flat prediction. Fryba (1996) incudes a brief 

discussion of the eff'ects of wheel flats on the interactive force between a railway 

bridge and a vehicle wheel. The largest dynamic effect is found to occur at approxi­

mately 30kmhr“  ̂ when the wheel loses contact with the rail and on contact recovery 

generates an impact.

The dynamic efl'ect of a wheel flat can be simulated by modelling an indentation 

in the rail surface (Sun &; Dhanasekar 2002). Alternatively, a modification of the 

contact spring as an adaptive contact model has also been applied (Dong et al. 1994). 

At the point in time where the wheel flat comes in contact with the rail the spring 

is represented as a set of uniformly distributed springs along the length of the wheel 

flat. The relationship between the total vertical force and the total deformation for 

the adaptive contact model is equivalent to tha t of the single Hertzian contact spring 

model. The two models, applied respectively in the two aforementioned studies, 

each gave very similar results in terms of the dynamic contact force increments. 

The general effect on the contact force is a large drop-off followed by a high peak 

force, the magnitude of the peak being dependent upon the extent of the wheel flat.

The effect of wheel flats on the vehicle-track interaction at varying velocities 

has also been investigated (Nielsen & Igeland 1995). There is a general increase in 

the maximum vertical contact force w’ith velocity at higher velocities (greater than 

80km/hr). Interestingly however, the calculated maxima are of a similar magnitude 

between 20 and 80km/hr, this magnitude equates to an increase approximately equal
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to the static axle load. The minimum contact force resulting from the wheel flat does 

decrease with velocity, at velocities greater than 80km/hr these is loss of contact 

between wheel and rail resulting in zero minima. Hou et al. (2003) considered the 

effect of a wheel flat on the response of a three dimensional vehicle model. It was 

reported th a t a wheel fiat on one side of the vehicle significantly affects the wheel- 

rail interaction at the opposite side where the wheels oscillate on the rail. The wheel 

without the fiat on the same side of the vehicle as the fiat wheel displays an impact 

and subsequent vibration in its contact force history.

The periodic characteristic of the excitation generated by a wheel fiat is de­

pendent upon the wheel radius and vehicle velocity. The time between impact is 

equivalent to the w’heel circumference divided by the vehicle velocity. For example, 

a Im diameter wheel travelling at 30kmhr“  ̂ will give rise to an impact force at a 

frequency of approximately 2.65Hz.

Sleeper effects can also generate periodic effects in the dynamic response (Fryba 

1996). This particular effect was investigated by Fermer &: Nielsen (1995) who found 

that the resulting maximum dynamic response generally increased with increasing 

vehicle velocity. The dynamic contact forces were found to be largely dependent 

upon the rail pad stiffness. Soft rail pads yielded smaller contact forces for low 

vehicle speeds but larger contact forces for higher speeds. However, it is also noted 

that softer rail pads are favourable to sleeper and ballast loading. The sleeper effect 

on the dynamic contact force is clearly illustrated by Dong et al. (1994) where the 

predominant contact force fluctuation is a sinusoid with wavelength equal to the 

sleeper spacing. The standard sleeper spacing distance of approximately 0.6m gives 

rise to a harmonic with a frequency of 68Hz for a vehicle velocity of 148kmhr~^ (see 

Figure 2.3).

Random irregularities are imperfections in the track profile that are entirely 

devoid of periodic content, ie. they are entirely irregular (Fryba 1996). The occur­

rence of this type of irregularity is inevitable and can be due to wear, subsidence
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or insufficient m aintenance of the perm anent way (Fryba 1996). PSD functions can 

be used to represent the displacem ent of such random  processes statistically  (see 

Section 2.2). The statistical characteristics of linear dynamic system s subjected to 

sta tionary  random  excitation may be analysed by implem enting spectral techniques. 

M athem atical linearisation of any non-linear vehicle and track com ponents allows 

analysis of the system response to  random  irregularity in the frequency domain 

(Esveld 1989, Jenkins et al. 1974, O ’Dwyer, Hegarty k, Basu 2002).

Andersen et al. (2002) have derived a solution, using frequency dom ain tech­

niques, for the system response of an infinite beam  with a random ly irregular upper 

profile being traversed by a moving sprung mass. An analysis of th is beam  model 

under a more realistic vehicle model loading is far more complex, and only numerical 

solutions may be found. Even for the relatively simple case of a two degree of free­

dom vehicle w ith two separate contact points, though possible to  solve analytically, 

is more convenient to solve numerically.

The incorporation of random  irregularity into numerical vehicle-track analyses 

is prevalent in the literature (Lei &: Noda 2002). The relatively complex vehicle 

models th a t are used in these studies prohibit the derivation of an analytical solu­

tion using im plem entations of fundam ental random  vibration theory techniques tha t 

have been presented by Robson (1963) and Newland (1993) among others. Random  

irregularities are generated numerically from appropriate PSD functions. T he track 

and vehicle systems are modelled using the FEM  and numerical solutions are cal­

culated. Lei & Noda (2002) applied a generalised FE  Euler beam  element to  model 

the track, and included the effect of the sleepers and ballast stiffness. O ther studies 

involving random  track roughness have included the effects of the irregularities on 

the dynamic response of railway bridges (Song, Noh & Choi 2003, Au, W ang k. 

Cheung 2002, Wu & Yang 2003, W iriyachai, Chu k. Garg 1982) (see Section 2.4).

Discrete, or transient, irregularities of the railway track are isolated deviations 

from the ideal profile. These can occur a t any particular point along the railway
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track but especially a t rail joints, rail switches and bridge approaches, amongst many 

others. The response of the  system  to  transient type irregularities is most readily 

suited to  calculation by analytical m ethods (Harvey et al. 1993). However, in many 

instances, to ob tain  a more accurate and complete prediction of the dynamic system 

response it is necessary to  use num erical analysis. A sum m ary of the general effects 

of some discrete track defects is provided by Harvey et al. (1993). In particular, the 

peak contact forces resulting from a single ram p in the track profile are calculated 

analytically. This idealised profile irregularity can be used to  model a number of 

different types of discrete irregularity, including a dipped rail joint or a  wheel. The 

ram p gives rise to  two readily distinguishable dynam ic increments, the  first of high 

frequency acting over a very short tim e span, and the  second of medium frequency. 

The forces are denoted the P i and P 2 forces respectively. The forces are given by 

the following fornmlae:

P - -  -  4 V K r £ .  M „ ) )  ^

where Pq is the steady s ta te  contact force (in kN), c is vehicle velocity (m s“ ^), a  is 

the  ram p angle (radians), M ti is the  effective track mass for the P i calculation and 

M t2 the  effective track mass for the P 2 calculation (kg), h is the effective H ertzian 

contact stiffness (M Nm “ ^), C t  is the track dam ping (kNm “  ̂ per sleeper end). My 

is the unsprung m ass (kg) and K x2 is the track spring stiffness (M Nm“ ^).

D ipped joints are an example of transient type irregularities and can be modelled 

as a simple ram p w ith angular deflection equal to  the  sum of the running on and 

running off railheads (Harvey et al. 1993, Jenkins et al. 1974, O ’Dwyer, Hegarty 

& Basu 2004). T he presence of an unsupported  sleeper also constitutes a discrete 

irregularity and its effect has also been investigated (Nielsen & Igeland 1995, Sun 

& D hanasekar 2002). This situation  m ight occur due to  erosion of the track ballast
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bed. In jointed track in particular, the increased dynamic forces at the joint can 

cause the ballast to deteriorate. At low vehicle velocities (less than 100kmhr“ )̂ the 

effect is an additional imposition of load on the neighbouring sleepers. However, 

higher velocities may lead to cracking of the sleeper as a result of fatigue under 

abnormally high loading.

2.3.3 Contact M echanism Characteristics and M odels

An understanding of the physical nature of the interactive wheel-rail contact mecha­

nism is critical to all research based upon modelling the dynamic interaction between 

railway track and vehicles. An understanding of the wheel-rail contact characteris­

tics is therefore vital from a railway engineer’s point of view. The points of inter­

action between the vehicle wheels and the rails provide the sole locations of energy 

transfer between the two systems, and as such, are the major sources of excitation 

of both systems. An understanding of the wheel-rail contact characteristics is vi­

tal from a railway engineer’s point of view. One significant factor that eases the 

task of understanding the contact mechanism is the fact that the running of a steel 

wheel on a steel rail is the original feature of all railway systems. This charac­

teristic is a rare constant in a research topic that involves a significant number of 

variables. In conjunction with this universal feature, also of huge benefit is the fact 

that the metallurgical properties of the steels used have no appreciable effect on the 

wheel-rail contact characteristics (Moreau 1992). It should be noted, nonetheless, 

tha t while these factors do not affect the dynamic response, the resultant damage 

to both the wheel and track is highly dependent upon the metallurgical properties 

(Murakami 2002).

The steel wheel and rail are, in effect, two elastic bodies that are pressed against 

one another (see Figure 2.4). The shapes of these two steel bodies have been contin­

uously adapted to maximise the dual functions of vehicle guidance and support. The 

Hertz theory, which was first proposed around 1880, is frequently used to calculate
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F ig . 2.4 : E lastic bodies in compressive contact
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the pressures that arise in such contact areas. This theory postulates tha t the contact 

area between two curved elastic bodies is generally ellipsoidal, and tha t the corre­

sponding stress distribution is semi-ellipsoidal. Hertz demonstrated (Moreau 1992) 

tha t the intensity of unit stresses, cr was represented by an ellipsoid bounded by the 

contact ellipse

The semi-axes of the ellipse, a and b, are determined as functions of the radii of 

curvature of the contact bodies, the material Young’s modulus, and the tracking 

force of the bodies. Q is the normal load exerted by the wheel on the track.

F ig. 2.5 : Contact stress boundary ellipse

Esveld (1989) demonstrates a simplified calculation for the wheel-rail contact 

problem. It has been proven that, for wheel diameters between 0.6m and 1.2m, 

this two-dimensional calculation of Esveld suffices. It is assumed tha t all of the 

curve radii, except for the wheel radius, are infinite, and that the wheel load is 

evenly distributed over the contact area. The mean contact stress, T, may now be
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calculated from

where r is the  wheel radius, 1 is the  half-width of the contact area, E is the Youngs 

m odulus, and u  is Poisson’s ratio.

The m ean stress calculation of Equation 2.9 has been form ulated on the basis 

th a t wheel-rail contact stresses occur in the vertical direction only. W hile this 

assum ption is necessary for the purpose of two-dimensional planar analyses, the 

reality is th a t the interaction generally possesses bo th  a vertical and horizontal 

com ponent. Traditionally, Q is used to  denote the  vertical force and Y the lateral.

Kurek (1981) includes a concise description of the natu re  of these forces (see 

Figure 2.6). Under equilibrium conditions their m agnitude is dependent upon the 

to ta l force exerted by the wheel on the rail while their proportion is a function of 

the slope of the inside wheel flange surface. This slope is defined with respect to  the 

horizontal and is generally denoted by the symbol /?. A lateral force im balance causes 

the wheel to  move laterally until an equilibrium value of the angle j3  is a tta ined .

T he lim iting values of the Q and Y forces th a t can be supported by the  rail­

way track system  w ithout im pairing its serviceability are investigated in a  report 

published by the Office for Research and Experim ents of the In ternational Union 

of Railways (ORE) (1978). W hile the loading lim its of the rail structu re  are in­

vestigated in this report, the ratio  of these forces is critical from the point of view 

of vehicle derailm ent probability  calculations. A sum m ary of derailm ent criteria 

is provided by Wickens (2003). It is shown th a t derailm ent is most likely when a 

large lateral Y force occurs sim ultaneously w ith a reduced Q force. N adal’s for­

m ula (Harvey et al. 1993) s ta tes  th a t for derailm ent to  be prevented the  following 

inequality m ust be satisfied,

( 2 . 10)
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Fig. 2.6 : Wheel flange forces vertical and lateral forces 

(Kurek 1981)

where /u is the friction coefficient across the contact area. Another mode of failure 

discussed by Wickens (2003) is the lateral failure of the track due to excessive vehicle 

forces. An empirical criterion for this particular mode of failure has been given by 

P rud’honnne and is

Y = 1 0 + y  (2.11)

where W is the axle load and all forces are measured in kN.

The means by which the contact mechanism is represented in computational 

models, in addition to the chosen magnitudes of the Hertzian stiffness parameters, 

are of great importance in calculating the dynamic wheel-rail contact forces. The 

Hertzian contact theory described previously is generally used to model the dynamic 

interaction. The idealised Hertzian contact spring through which wheel-rail forces 

are transm itted is non-linear in compression and does not store tensile energy. The 

non-linearity is accounted for by the spherical and cylindrical geometry of the re­

spective contact surfaces. The condition of zero tensile capacity is significant only



in the event of loss of contact between wheel and rail.

Throughout the literature, the modelled element through which the interactive 

contact forces are transmitted is represented by means of a compressive spring, 

ie. a mechanical entity that can store compressive energy. Mathematically, the 

characteristic stiffness of the contact spring, kh, is expressed by

Xr are the respective wheel and rail displacements (Nielsen & Igeland 1995). It is 

clear that the spring stores zero energy in the event of loss of contact between wheel 

and rail. However, compressive energy is stored in the spring due to the indentation 

of the wheel into the rail surface when the relative displacement is positive.

The application of Equation 2.12 to railway engineering analysis is prevalent 

in studies throughout the literature. In particular, studies that apply numerical 

techniques to model the two-dimensional dynamic response of either railway ve­

hicle, track or both, use this relation as the basis of the system interaction (Sun 

& Dhanasekar 2002, Nielsen & Igeland 1995, Zhai & Cai 1997, Lou 2005, Lei & 

Noda 2002). The choice for the magnitude of the Ch value varies between the stud­

ies, while there is also variation within the study of Sun &; Dhanasekar (2002). 

Nielsen & Igeland apply a value of 93GNm“ /̂  ̂ while Sun & Dhanasekar take val­

ues of 100GNm“ /̂  ̂ and 87GNm“ /̂  ̂ respectively. The Hertzian coefficient can be 

deduced analytically from Equation 2.13 (Johnson 1985). The particular value of 

87GNm“ /̂  ̂ was obtained by substitution of the appropriate parameters into this

where Ch (with units Nm /̂^) is the non-linear Hertzian spring stiffness, and x„ and

equation.

4 G v ^
(2.13)

3(1 -  „)
where G is the shear modulus, r is the rolling wheel radius, and is the Poisson’s
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ratio. R is obtained from the following equation (2.14) in which r^ and Rt are the 

wheel profile and rail profile radii respectively.

R = ^ ^  (2.14)
T w  -  r

Figure 2.7 illustrates the compressive contact force tha t is stored in the Hertzian 

contact element as a function of the relative wheel-rail displacement for a number of 

values of Ch- The force values are calculated from the positive condition of Equation 
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Fig. 2. 7: Hertzian contact force versus relative wheel-rail displacement for three 

different values of Ch [GNm“ /̂ ]̂

The application of the Hertzian model for the contact area is frequent in a 

number of other different applications in the literature. Guagliano &: Vergani (2005) 

and Jin, Wen &: Wang (2005) analysed the subsurface cracking of railway wheels 

and the corrugation of rails respectively, in both cases the loading was modelled as 

a Hertzian type contact force. Ertz & Knothe (2002) compared different analysis 

methods for the calculation of temperatures in the wheel-rail contact area, again

39



the system input proposed was based upon the Hertzian contact mechanism.

Frequency domain studies require tha t the non-linear Hertzian spring be hn- 

earised. The compressive relationship between the applied wheel force F and the 

contact surface indentation y is given by Esveld (1989)

F =  Chy /̂2 (2.15)

in which Ch is the Hertzian spring stiffness with dimensions The linearised

Hertzian spring stiffness is found by examination of the force-displacement relation­

ship around the static wheel load. The linear stiffness kh is given by the relation:

kh = ^  -  ^ c f  F'/3 (2.16)

The Ch value for old and new wheels was determined as a function of wheel 

diameter by Jenkins et al. (1974). For a static wheel load of 7.5t the kh values for 

old and new wheels are 1.6x10® and 1.4x10® Nm“  ̂ respectively.

2.4 V ehicle-B ridge Interaction

The study of railway bridge dynamics is generally concerned with the calculation and 

analysis of bridge deflections and stresses. The most im portant factors influencing 

the dynamic response of railway bridges are the bridge frequency characteristics, 

the crossing vehicle’s frequency characteristics, the damping parameters of both 

systems, and the vehicle velocity. These particular parameters have been identified 

by Fryba (1996), one of the pioneering researchers in the field, who has has provided a

comprehensive review of the literature in the specific area of railway bridge dynamics.

Fryba does however, state that track irregularities also represent an important source 

of excitation of bridges during the passage of railway vehicles.

As the number of miles of high-speed railway lines increases steadily around 

the globe, the vehicle-bridge interaction, and its potential effects upon the dynamic
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response, has come sharply into focus. The simplest possible model for a railway 

vehicle is as a series of moving constant forces. Lin & Trethewey (1990) used this 

type of model to verify a finite element model formulation of a simply supported 

beam. However, analysis of railway bridge dynamics should not, in general, be 

simplified by the assumption of a train model comprising a series of moving constant 

forces. An exception to this generalisation is the case where the bridge self-weight 

is considerably higher than that of the vehicle weight (Fryba 1996). The moving 

force model is also limited in that the effect of irregularities in the wheel-rail contact 

area cannot be modelled. A more realistic vehicle model is required to take account 

of the dynamic interaction between the vehicle and the bridge itself. These models 

are generally multiple DOF systems comprising masses supported by springs and 

dampers representing the vehicle suspension system (Delgado & dos Santos 1997, 

Tan, Brameld & Tham biratnam 1998). The contact element applied between the 

vehicle model wheelsets and the track is generally modelled using the Hertzian spring 

theory described previously in Section 2.3.3 (Tan et al. 1998), or alternatively as an 

inertial mass element in contact with the track (Biondi, Muscolino &: Sofi 2005, 

Lou 2005, Cheng, Au & Cheung 2001). It is this contact element that determines 

the dynamic forces imparted to both the vehicle and bridge systems. The complex 

interaction is affected, to different degrees depending upon their severity, by the 

presence of imperfections in the railway track and wheel profiles.

The quasi-steady state dynamic response of railway bridges modelled as simple 

beams, ie. the response when the wheel-rail interface is assumed to be geometrically 

prefect, is considered by Yang et al. (1997). An interesting observation from this 

study was tha t the inertial effects of moving vehicles tends to elongate the period 

of vibration of the beam, causing the resonant peaks to shift to smaller veloci­

ties. Resonant vibration of railway bridges results in passenger comfort deteriora­

tion, reduction of traffic safety, and destabilisation of the ballast bed (Fryba 2001). 

The steady state response of railw^ay bridges is comprehensively reviewed by Fryba
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(1996). Steady state in this case refers to the bridge response when the occurrence 

of track and wheel defects is not considered. The analysis of the characteristics of 

dynamic bridge response to moving loads is complicated further by the presence of 

such wheel-rail geometric defects.

Frequently throughout the literature, the effect of random roughness of the track 

profile has been incorporated into vehicle-bridge interactive models (Wiriyachai et al. 

1982, Au et al. 2002, Wu & Yang 2003, Song et al. 2003, Zhang, Vrouwenvelder 

& Wardenier 2001, Lou 2005). Smoothed empirical PSD functions representative 

of different quality track profiles are used to numerically generate random sample 

profiles with the required statistical properties.

Wiriyachai et al. (1982) calculated the impact factors in a selection of members 

from a mathematical model of a single track, open deck, riveted truss bridge of 53.4m 

span. A Class 6 track roughness spectrum was used to generate track profiles with 

random irregularities. These profiles were then applied to the rail track in the bridge 

model. Deviations in alignment, cross-level and gauge, in addition to vertical track 

roughness, were considered in this particular study. The specified track roughness 

was found to cause up to 40% of the impact in the members selected for analysis 

(Wiriyachai et al. 1982).

Impact factors were also calculated by Au et al. (2002) for a cable-stayed bridge 

with random vertical track irregularity. Once again, impact factors were calculated 

for a number of the member stresses, a selection of the cables’ tensile stresses, 

towers’ bending moments and also the deck bending moment at various locations. 

Six different track roughness classes were tested in this study. It was observed that 

the impact factors for the bending moment at the midspan were minimal. It was 

also found tha t the impact factors generated were not proportional to the magnitude 

of the roughness.

Wu & Yang (2003) also considered random irregularities in an analysis of the var­

ious dynamic responses of vehicle, rail and bridge due to a train moving over a series
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of simply-supported bridges. Different classes of vertical roughness PSD functions 

were considered. It was found that the riding comfort of the train was significantly 

affected by the presence of random irregularity. Song et al. (2003) applied a FEM 

model to the analysis of high speed vehicle-bridge interaction. A three-dimensional 

model was formulated tha t allowed the incorporation of both vertical and lateral 

track irregularities. It is noted tha t dynamic impact factors should be evaluated 

considering not only span length but also the vehicle velocity and the grade of track 

irregularities. It was also found that, for the bridges evaluated in the study, there 

were no problems in terms of the bridge serviceability. However, it seemed tha t in 

this study only Class 6 roughness, which is the mildest class, was applied.

Zhang et al. (2001) fornmlated a space model for the bridge-train interaction 

including the influence of track roughness. The vertical and lateral roughness applied 

to the track model was found to have an im portant influence on the wheel motion. 

However, it is stated that the influence of the rail roughness on bridge deflections is 

less important when compared with these w'heel motions. A planar model was also 

considered, to which only vertical roughness could be applied. No large difference 

was found between the response of the space and planar models.

Physically measured track roughness rather than randomly generated series’ of 

vertical coordinates may also be applied to similar models to those tha t have been 

described (Xia & Zhang 2005). This approach was taken to verify a mathematical 

model of a real bridge. The track irregularity input to the model, although deter­

ministic in that is has been physically measured, appears to be random in both 

the vertical and lateral directions with no obvious discrete features or dominant 

wavelengths.

Studies of discrete or periodic imperfections and their effect upon railway bridge 

dynamics are less frequent than those of random irregularities in the literature. In 

some instances, however, the modelling of both types of imperfections are combined 

(Wiriyachai et al. 1982). In this particular case a vehicle wheel flat and its influence
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on the bridge impact factors was investigated in addition to the effect of random 

roughness. Interestingly, the effect on the bridge member impact factors generated 

by a single, isolated, wheel fiat was quite small. However, two wheel flats on the 

same side of the vehicle were found to approximately double the effect. As one might 

have expected, increases in the vehicle velocity caused a corresponding increase in 

the impact factors.

Fryba (1996) graphically illustrates the variation in the wheel-bridge contact 

force for a wheel with a flat defect over a range of velocities. At low velocities (less 

than 18kmhr“ )̂ the wheel remains in contact with the rail. The highest dynamic 

effect occurs between velocities of approximately 30kmhr“  ̂ and 48kmhr“ .̂ At these 

velocities the wheel loses contact with the rail and generates an impact on contact 

recovery. For greater velocities, an impact is also generated, but the bridge dynamic 

effects decrease. Fryba (1996) also makes the point tha t another type of discrete 

track defect, rail joints, should not occur on bridges because of their potentially 

large dynamic effects. Most railway administrations have regulations to this effect.

Lou (2005) considered discrete, or local, irregularity of the vertical track profile 

in a FE vehicle-bridge interaction study with particular emphasis upon the pitching 

effect of the vehicle system. The irregularity function applied is tha t proposed by 

Fryba (1999) was used for this purpose:

where a is 1mm and L is Im. While the emphasis of the study was upon the vehicle 

pitching effect, it was observed tha t the effect of this pitching on the bridge and 

track can generally be neglected when the track is assumed to have no irregularities.

(2.17)
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2.5 C onclusions

The above sections have detailed some of the research undertaken to date in the 

field of railway vehicle-track and vehicle-bridge interaction. The research has been 

carried out in order to calculate a number of different aspects of the dynamic sys­

tem response, including the response of railway vehicles, railway track and railway 

bridges under a variety of different conditions. There is considerable scope for fur­

ther research in each of these three areas.

The frequency domain techniques reviewed in Section 2.2.2 are applied in Chap­

ter 3 to a parametric analysis of the contact forces generated by a railway vehicle 

wheel moving along a rail with random irregularity of vertical profile. A similar 

frequency domain analysis is also applied to a railw'ay vehicle bogie model in Chap­

ter 4 in an investigation of the relationship between the dynamic response at the 

individual axles.

A model with similar characteristics to the track models review^ed in Section 2.3 

is developed in Chapter 5. The model is similar to some of the review'ed ‘beam on 

contiimous elastic foundation’ models tha t have been discussed above. How'ever, the 

numerical model developed by the author is adapted as a quasi-infinite beam and is 

formulated in a convected coordinate system. The validity of the Hertzian contact 

spring linearisation for the purpose of frequency domain analysis is also examined 

using this model.

A finite numerical beam model similar to the models of Hou et al. (2003), Lei 

& Noda (2002) and Zhai & Cai (1997) is applied to the analysis of the effects of a 

number of discrete wheel-rail interface irregularities in Chapter 6.

Finally, Chapter 7 details an investigation into the effect of random track profile 

irregularities on bridge dynamic impact factors. This study is similar in objective 

to some of the material reviewed in Section 2.4. However, in this case three bridge 

models are considered, one short, one medium and one long span. In addition,

45



two different classes of track irregularities are considered by the author, one of 

intermediate quahty and one of poor quaUty.
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Chapter 3 

Parametric Study of Stochastic 

W heel-Rail Contact Forces

3.1 Introduction

This chapter details a parametric study of the stochastic wheel-rail contact forces 

that result from random irregularity of the vertical railway track profile. The sta­

tistical characteristics of these forces are investigated using a frequency domain 

approach. The overall objective of the study is to investigate the influence of the 

various railway vehicle and railway track parameters on the Power Spectral Den­

sity (PSD) functions of the contact forces. The type of information obtained could 

be utilised by both railway vehicle and railway track engineers in the design and 

maintenance of both systems.

Two different types of railway vehicles are considered, a locomotive vehicle and a 

passenger coach. The contact forces resulting from both vehicle models are included 

so tha t a comparison may ultimately be made between the calculated PSD functions 

for a relatively heavy (locomotive) and a relatively light railway (passenger coach) 

vehicle. The static load per axle varies greatly over the range of different types of 

railway vehicles and, in addition to the nominal vehicle weight, is dependent upon
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the number of axles supporting the vehicle and the load conditions imposed on 

the vehicle at any particular time. Other parameters, such as suspension damping 

and stiffness values, vary from vehicle to vehicle and also change over time due to 

material wear. This natural variation can be a restriction in a specific theoretical 

analysis. However, analyses such as this one, where a range of parameter values are 

considered, are useful in investigating the effect of large parametric variation.

The analysis is undertaken using a frequency domain, or spectral, approach. The 

irregularity of the vertical track profile is assumed to be the single source of dynamic 

excitation to the moving railway vehicle system. A perfectly smooth track profile 

traversed by a perfectly round wheel gives rise to contact forces that approach the 

steady state case (Jenkins et al. 1974). Random irregularity of the vertical railway 

track profile gives rise to corresponding random fluctuations in the wheel-rail contact 

forces at each of the contact points between vehicle and track. These random profile 

irregularities are one of the essential dynamic vibration sources to both the vehicle 

and track systems (Lei Sz Noda 2002).

Frequency domain analysis can be a useful mathematical tool in situations such 

as this where the dynamic system input is Gaussian random in nature (Iyengar 

& Jaiswal 1995, Sun & Kennedy 2002). In general, the equivalent time domain 

analysis would be computationally more expensive because a series of random track 

profiles would be required. These profiles could be generated numerically from 

the appropriate track roughness PSD function before being applied as the dynamic 

input to a mathematical system model in a numerical time-stepping routine (Lei 

&: Noda 2002). A corresponding series of time histories of the dynamic system 

response, and hence of the wheel-rail contact forces which are a subset of the global 

system response, could then be calculated. The Gaussian random nature of the track 

irregularity that is considered here allows us to present the results in a statistical 

framework. This can be achieved most succinctly in the frequency domain (Hartnett 

20006). While the time domain solution produces a series of individual time histories,
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the frequency domain approach allows us to calculate im portant random process 

characteristics such as the variance of the contact forces and the probabilities of 

peak values exceeding arbitrary limits.

In addition to the fluctuating dynamic contact forces that are produced by a 

moving railway vehicle and underlying track structure there is also a constant static 

force present due to the gravitational force exerted by each of the vehicular compo­

nents. This static load varies greatly depending upon the vehicle in question and its 

particular load conditions, ie. tare or fully laden. For the purpose of ease of analysis 

in the frequency domain it is a prerequisite tha t all spring and damper components 

of the system behave linearly. This requires a linearisation of any non-linear com­

ponents of the physical vehicle and track model, and also of the wheel-rail contact 

relationship. It should be noted, however, that the linearised Hertzian spring con­

stant is calculated based on an assumed constant axle load, ie. the static axle load. 

The resulting linearity of the dynamic vehicle system model allows the static load 

to be neglected during the analysis process. If required, the constant static com­

ponents of the contact forces may be added to the calculated stochastic dynamic 

load attributes upon calculation of the random process properties. For example, a 

zero-mean process variance of x units is calculated and on completion of the analysis 

is added to the static load component, Fg. The result is a process with variance x 

but now distributed about a mean value Fg rather than zero.

Resultant contact force PSD functions are calculated for ranges of different values 

of the various model parameters including velocity and the degree of underlying 

vertical profile roughness. Prior to commencement of the parametric analysis, a set 

of default values is applied to each of the model variables. The values are chosen so 

that their value is representative of the mid-range of the range of parametric values. 

All subsequent analyses are carried out with respect to these initial default values.

In all, eight different parameters are varied. The initial parametric investigation 

examines the effect of varying the quality of the railway track profile. The various
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quality levels applied are based on a series of empirical PSD functions derived by 

the FRA (Federal Railroad Administration of the United States) on the basis of 

extensive measurement of railways in that country (Fryba 1996) (see Section 3.2.2). 

The effect of varying the vehicle models’ velocity, from 10ms“  ̂ to 60ms“  ̂ (36km/hr 

to 216km/hr), is subsequently examined. The influence of some of the various 

physical parameters of the vehicle model itself are then tested. The bogie and 

wheelset masses, and the suspension stiffness and damping constants, are each varied 

individually and the effects of these variations upon the resulting contact force PSD 

functions are observed. The final parametric variation considered is that of the track 

foundation stiffness and damping parameters.

3.2 System  M odel  

3.2.1 V ehicle M odel

The railway vehicle and track models that are formulated for the purpose of this 

study are illustrated in Figure 3.1. The vehicle model is a simplified representation 

of a single bogie and wheelset in isolation from a carriage or an engine vehicle. 

The two degree-of-freedom vehicle model is planar and is simplified such that its 

degrees of freedom are exclusively translational in the vertical direction, ie. bogie 

pitching, a real effect that also occurs in the vertical plane, is not considered. In the 

study of automotive vehicle dynamics, similar vehicle models are often referred to as 

quarter-vehicle models (Sun k. Kennedy 2002). This rigid body model is planar and, 

therefore, the three dimensional system masses of both the bogie and wheelset are 

discretised in the vertical plane. The stiffness and damping values of the suspension 

components from the two sides of a real railway vehicle are also discretised in a single 

plane. These suspension stiffness and damping parameters are denoted kb and Cb 

while the bogie and wheelset masses are denoted mb and m„ respectively. The 

linearised Hertzian spring stiffness is denoted kh as is conventional in the literature.
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Fig. 3.1 : Two degree of freedom bogie model on BEF track model with upper 

profile random irregularity
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The bogie model is dynam ically coupled to  the track model via the linearised 

H ertzian wheel-rail contact mechanism (Esveld 1989). The Hertzian spring stiffness 

is dependent upon the relative wheel-rail displacem ent and has previously been 

described by Equation 2.12 in Section 2.3.3.

The railway track system  is simplified as a planar beam  on a continuous elas­

tic foundation (BEF). The m athem atical model is form ulated using the standard  

Euler finite element (FE) beam  model with d istribu ted  mass. This track model 

has continuously d istribu ted  uniform foundation stiffness, Kt [Nm“ ^], and damping, 

7t [Nsm“^]. The beam  has a constant Young’s m odulus Et, second moment of area 

It, and mass per unit length j i t .  The beam model has an irregular upper surface rep­

resentative of the vertical railway track irregularity. This profile irregularity function 

^(t) deviates from a m ean surface displacem ent th a t is assum ed to  be zero.

A physical railway vehicle would traverse the track at its running velocity c. 

However, for the purpose of th is particular model, the irregular vertical surface 

profile, and not the vehicle itself, is modelled so th a t it moves at velocity c, relative 

to  both  the vehicle and beam  models, a t the vehicle-track interface. In doing so, 

the track profile provides a source of dynamic excitation to  bo th  systems. Under 

th is modelling assum ption the profile moves in a direction opposite to  th a t of the 

originally assum ed vehicle model motion.

The vertical m otion of bo th  the  bogie, wheelset, and track are defined by the 

absolute coordinates Xb, x„ and Xt respectively. All coordinates are defined in the 

vertical direction with a ‘downwards positive’ convention adopted. The track surface 

irregularity  is represented by the  coordinate ^(t). An additional relative coordinate, 

Zw, is introduced to  denote the relative displacem ent between the wheelset and the 

underlying track surface. This coordinate is convenient in th a t  the wheel m otion is 

now defined relative to  the position of the  surface of the beam  model at the con­

tac t point. The wheel-rail contact force may be deduced directly from this relative 

displacem ent. Tensile contact spring forces are assum ed positive throughout this
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analysis. Equation 3.1 defines this relative coordinate.

Z w ( t )  =  X t ( t )  + C(t) -  X w ( t )  (3.1)

It can now be seen, from the following Equation 3.2 that it is upon this relative 

displacement, and also relative velocity, that the wheel-rail contact force, P (t), de­

pends.

P(t) =  khZw(t) +  Ck^Zw(t) (3.2)

As this Hertzian contact spring is undamped (ie. Cki, =  0) the relative velocity 

between wheel and rail, z^(t) has no effect on the contact force.

3.2.2 Railway Track M odel

Throughout this chapter the vertical railway track profile is assumed to possess 

different degrees of random irregularity that can be characterised by various PSD 

functions. This random irregularity, which has been measured and analysed by 

Iyengar Sz Jaiswal (1995), is Gaussian, stationary and ergodic in space time and, as 

such, a one-sided PSD function can correctly be used to describe the irregularity. 

Many different empirical spectra are available (Fryba 1996). These spectra have 

been devised by means of the statistical smoothing of measured track data. A 

result of this smoothing is tha t these PSD functions yield only averaged information 

on track quality. However, the smoothed functions remain useful for comparative 

studies such as this one.

The FRA have devised an empirical formula for random track irregularity based 

on extensive measurements of the American railway network (Fryba 1996). Six 

different classes of track have been defined by means of smoothed PSD functions. 

The classification is based upon the degree of the track irregularities. Class 6 is the 

profile with the least deviation from an average level while Class 1 is the roughest, ie.
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greatest variance from the m ean and hence the  lowest quality. The one-sided FRA 

PSD functions for vertical track irregularity are given by the  empirical formula,

(3.3)

where is a param eter known as the route frequency and has units equivalent to  

m “ ^ This frequency param eter is directly proportional to  the circular frequency 

of the irregularity function with the vehicle velocity, c, being the constant of pro­

portionality. A is a constant dependent on the track quality. The route frequency 

is used regularly as an alternative to  tim e-based frequency units in moving vehicle 

analytical applications as it defines the random  process in space ra ther than  in time. 

This description enables the  process PSD function to  be represented independently 

of the vehicle velocity. Were the PSD function to  be expressed as a function of cir­

cular frequency, a different PSD would be required for each different vehicle velocity 

considered. The relationship between circular and route frequency is given by,

where L is the irregularity w'avelength (in m etres). It is the constant A th a t defines 

the track class and this param eter ranges from 0.98 x 10~® (Class 6) to  15.53 x 10“®

13.1 X 10“^m“  ̂ respectively. These constants do not vary in the case of the vertical 

profile irregularity which is being considered here. For the purpose of this particu lar 

study th is expression for the  PSD function is defined between upper and lower

applied different frequency hm its. Au et al. (2002), for example, used the  same 

empirical FRA PSD function but applied an upper lim it of 27rm“ ^ However, a t the 

higher frequencies the  m agnitude of each of the FR A  PSD function is negligible.

characteristics. High frequency events do occur but their analysis is be tte r suited

(3.4)

(Class 1). and 0.2 are also constants and are equal to  23.3 x 10 ^m  ̂ and

route frequency lim its of 0.01m  ̂ and 7r/5m ^  O ther studies in the literature  have

This does not imply th a t  random  track irregularity does not possess high frequency
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to the separate use of time-domain techniques due to the unpredictability of their 

occurrence.

The PSD function of the vertical track irregularities for Class 4 track is illustrated 

in Figure 3.2 on a log-log scale. It is this intermediate level track irregularity of Class 

4 tha t is assumed as the default profile irregularity throughout this study.
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Fig. 3.2: PSD of random vertical track irregularities (FRA class 4)

The track irregularity PSD function is a very im portant quantity in the cal­

culation of wheel-rail contact forces as it contains a large amount of information 

regarding the average track profile deviation from its mean. It should be noted once 

again, however, tha t this function does not represent discrete irregularities, such as 

a single dipped rail joint, or high frequency periodic roughness components such 

as corrugations, that may be present in the track profile. Only the response to 

a smoothed average of random irregularities from a population of track profiles is 

considered in this study.
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One of the properties of a PSD function for a given process is that the mean 

square value (or variance) of the process is equal in magnitude to the integrated area 

beneath the PSD curve for tha t process. For example, the variance of the roughness 

about the mean for a Class 4 FRA PSD track roughness function is 7.35 x 10~®m .̂ 

Aprori knowledge of the PSD function of the random input signal to the system, 

and of the dynamic system properties, allows for the PSD function (or functions, 

in the case of multiple output systems) of the resultant random vibration of the 

system to be calculated. Further mathematical techniques then allow the variance 

and other statistical properties of the random process to be determined (Iyengar 

& Jaiswal 1995). The calculation of some of these properties is detailed in Section

3.3.3 and Appendix A.

3.3 M athem atica l Form ulation  

3.3.1 Frequency R esp on se Functions

This study is focussed upon the calculation of the interactive wlieel-rail contact 

force PSD functions. However, the method employed here also allows calculation 

of spectra for each of the bogie, wheelset and track displacements, velocities and 

accelerations. The initial step in the process of calculating the PSD function for the 

contact forces is to calculate the system frequency response functions (sometimes 

referred to as transfer functions). The derivation of the frequency response func­

tions will be presented here under the assumption tha t the BEF track model is of 

infinite stiffness, ie. does not deform under loading. This assumption is applied so 

tha t the description of the mathematical formulation described here is more con­

cise. The subsequent addition of a flexible beam modelling the track system to the 

mathematical model is trivial and was used to generated the results presented.

From Figure 3.1 it can be seen tha t the vehicle model motion is described in terms 

of the two translational coordinates Xb(t) and x„(t). The track roughness is denoted
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by ^(t). The new coordinate Zw(t) is introduced at this point; this coordinate has 

been described previously before the previously explained assumption of zero beam 

deformation was applied (see Equation 3.1).

Zw(t) =  C(t) -  Xw(t) (3.5)

This coordinate describes the relative displacement between the wheel and rail. 

Equation 3.5 is similar to Equation 3.1 but the beam deformation term is included 

in ^(t). The contact force is directly proportional to this relative displacement as a 

result of the linearisation of the Hertzian contact spring. The equation of motion 

of the vehicle model whose characteristics have been described previously (Section 

3.2.1) is now given by;

1
cr O

1

f x b ( t ) | [ x b ( t ) |

11

\ ^ \ r +

1 o 3
I [Zw(t) J ^̂b '̂b “1“ ^kh [Zw(t) J kb kb + kh

Cb̂ (t) + kbC(t) 

n i w ^ ( t )  +  C b ^ ( t )  +  k b ^ ( t )

(3.6)

This system equation of motion can be manipulated to calculate the frequency 

response functions relating the absolute bogie displacement and relative wheel-rail 

displacement to the surface irregularity PSD function.

A Fourier transform (Newland 1993) is applied to both sides of Equation 3.6 to 

give Equation 3.7, which describes the system as a function of circular frequency 

(units rads“ ^). This is in contrast to the original time domain Equation 3.6, which 

is expressed as a function of time, t. The transform of Equation 3.6 is relatively 

straightforward and is based on the mathematical property tha t the Fourier trans­

form of the process f(t), is equal to (io;)'‘F(a;) where F(c<;) is the Fourier

transform of f(t).
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Xb(‘̂ )

Zw  W

kb kb 

kb kb +  kh

ia;Cb +  kb 

— +  iwCb +  kb
(3.7)

Xb(w), Zy, (c j )  and ( ( l j ) denote the  Fourier transform s of the translational processes 

Xb(t), Zw(t) and ^(t) respectively. The mass, dam ping and stiffness m atrices are 

combined to  give E quation 3.8.

—uj^mb +  icî cb + kb io;Cb + kb

ia;Cb +  kb -o;^mw +  iw(cb +  CkJ +  (kb +  kh)

i(x)Cb +  kb
a ^ )  (3.8)

—a;^m„ ICoJCb

It is now possible to  obtain the  two system  frequency response functions Hxb(<x’) 

and Hz^(tj). These functions m ay be used to  relate the  vertical displacem ents of 

the bogie and wheelset to  the roughness of the underlying track profile. The fre­

quency response functions relate  the  two vehicle model displacem ents, ie. bogie and 

wheelset, to  the profile irregularity and are equivalent to  ^ (w )  and respec­

tively.

Hz„(^)

-1
— w ^ m b  +  i w c b  - I -  k b  i o ; C b  +  k b

ic j c b  -t- k b  + i w ( c b  +  c ^ J  +  ( k b  +  k h )

ia;Cb +  kb

+  io;Cb +  kb
(3.9)

Note again th a t  Hz„(li;) describes the relative, and not absolute, wheelset-track 

displacement. B oth frequency response functions can now be evaluated over the
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required frequency range, the extent of this range is dependent upon the input 

frequency characteristics.

3.3.2 C ontact Force Power Spectral D en sity  Function

The frequency response functions have now been formulated for displacements of the 

bogie model. These function describe the frequency domain response of the vehicle 

model masses to the random input to the model. Of particular interest to this study 

is the response function describing the relative wheelset-track displacement, Hz„(o;). 

The contact force between the vehicle wheelset and the track is directly proportional 

to this relative displacement, and is quantified in the time domain by Equation 3.2.

The random track irregularity has been assumed to be a zero-mean process that 

is stationary and ergodic in space, an assumption validated by Iyengar & Jaisw'al 

(1995) by means of an experimental study of Indian railway lines. All components of 

the vehicle system model possess linear force-displacement properties; therefore the 

system response is also stationary and ergodic with zero mean. The mean contact 

force is given by calculating the expectation of both sides of Equation 3.2.

nip(t) =  E[P(t)] =  khE[zw(t)] +  Ck,^E[zw(t)] =  0 (3.10)

The damping of the Hertzian contact spring is negligible and assumed to be zero; 

the velocity-proportional component of the righthand side of equation 3.10 is hence 

zero.

The autocorrelation contact force, referring to the definition of the autocorrela­

tion function (Newland 1993), is given by

R p ( r )  =  E [P(t)P (t +  r)] =  k^R ^Jr) (3.11)

The Fourier transform of the autocorrelation function of a random process is, by 

definition (Newland 1993), the PSD function of the process. Applying the Fourier
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transform to Equation 3.11, an expression for the PSD of the contact force process 

is obtained.

Sp(o;) =  k^Sz„(o;) (3.12)

From stochastic process theory

S.„(a;) = (3.13)

Combining the two previous equations an expression for the PSD function of the 

stochastic contact forces is obtained. This expression allows calculation of the PSD 

function for the contact force process over the range of frequencies for which the 

PSD function of the track roughness spectrum is defined.

3.3.3 R andom  P rocess S tatistics

From statistical physics, it is known tha t the integral of the PSD function for a 

particular stationary random process is equal to the mean square value, or the 

variance, of tha t process (Yang 1986). For this reason the PSD function is sometimes 

referred to as the Mean-Square Spectral Density function. Therefore, the variance, 

cTj, of the stationary process P (t), E[P(t)^], is expressed mathematically as

As the FRA PSD fucntions of the vertical profile irregularities are defined over a 

finite range, it is possible to numerically integrate the output PSD function rep­

resenting the contact force process over this range to obtain the variance of the 

process.

Sp(o;) =  k^|H,„(a;)pSj^(u;) (3.14)

(3.15)
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Classical level-crossing and peak-statistics theory (Nigam 1983) can now be ex­

ploited to  relate the variance to the highest peak value (Iyengar Sz Jaiswal 1995). 

Before proceeding it is necessary to calculate the variance of the first and second 

derivatives, cr| and a l ,  of the contact force process P (t) . These are given by the 

following equations as functions of the route frequency Q.

OO

= J  n‘̂ Sp{n)dn 
0

OO

= J  O^Sp(Q) dn

(3.16)

(3.17)

The average num ber of zero crossings, No, and process peaks, Np, per unit distance 

travelled are functions of the process variances and are respectively given by

No =  -  (3.18)
CTl

Np =  — (3.19)
0-2

Finally, the probability of a peak being greater than  a  level ap where o;=(ap/cri) 

at any point is

P (a )  =  0.5{1 -  a i \ a l ^ / W ) \ }  +  0-5(1 -  /3^)"'“ex p (-0 .5 a^ )

{l + e r f |a ( l - / 3 " ) " V ( \ / ( ^ ) | }  (3,20)

where /? is a bandw idth param eter defined by

0  =  \ l - a \ { a \ l a l ) r  (3-21)

The peak level probability estim ate is a particularly  valuable tool in quantifying 

the effect of the fluctuating dynamic contact forces on the track structure. This
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estimate allows for estimation of the probability of the wheel-rail force exceeding an 

arbitrary maximum value over a predefined distance of travel.

3.4 Param etric Study  

3.4.1 Default System  Param eters

Prior to proceeding with the parametric analysis a set of default values are assigned 

to the properties of both the vehicle and track models. The default vehicle proper­

ties are based upon the locomotive vehicle and passenger coach that were modelled 

by Xu, Zhang k. Xia (2004) in a study of the dynamic effects of cross winds on 

a coupled vehicle-bridge system. These particular parameter values are chosen as 

their values are close to the average parameter values for a range of locomotive vehi­

cles. Different studies do, however, apply different values to the vehicle parameters. 

For this reason, throughout the parametric study, the respective parametric values 

are varied both above and below' their default values. The Rail Technology Unit 

of Manchester Metropolitan University have attempted to address the problem of 

parametric variation in simulations by publishing standard ‘benchmark’ values for 

railway vehicle and track parameters (Iwnicki 1998).

A railway track with Class 4 irregularity is assumed as the default track pro­

file, along with default velocity of 40ms“  ̂ (144kmhr“  ̂ or 90mph), as outlined in 

Section 3.2.2. The default parameter values for both the locomotive and passen­

ger coach models are given in Table 3.1. All suspension parameters have linear 

force-displacement characteristics. Modelling railway vehicle suspension systems is 

difficult due to their complexity and non-linearity. However, the spring and damper 

elements used to model the vehicle suspension may be linearised over certain ranges 

of suspension travel (Garg h  Dukkipati 1984). Throughout the reviewed litera­

ture the suspension elements of railway vehicles are linearised as such (Dukkipati 

&: Dong 1999, Lou 2005, Xu et al. 2004, Yoshimura, Nakaminami, Kurimoto &:
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Hino 1999). The parametric values for the BEF track model are based on values 

provided by Esveld (2001) specifically for the purpose of a BEF railway track model. 

These values are given in Table 3.2.

Param eter Sym bol U nit Locom otive Passenger Coach

Bogie mass mb kg 15,000 3,000

Wheelset mass mw kg 2,700 1,700

Suspension stiffness kb N m -i 3.0 X 10^ 1.5 X 10^

Suspension damping Cb Nsm“ ^ 2.0 X 10^ 2.0 X 10^

Table 3.1: Locomotive and passenger coach default parameters

Param eter Sym bol U nit Value

Mass per unit length kgm“ ^ 119

Young’s Modulus E t Nm-2 2.07 X 10'̂

Second Moment of Area It m'̂ 2.174 X 10-®

Foundation Stiffness Kt Xm-2 4.0 X 10^

Foundation Damping 7t Nsm“^ 1.2 X 10®

Table 3.2: BEF default model parameters

The linearised Hertzian spring constant is assigned a value of 1.96 x 10®Nm“  ̂

for the locomotive and 1.72 x lO^Nm"^ for the passenger coach. These values are 

calculated by considering the static force, Eg, at each wheelset and applying the 

following approximation for the linearised Hertzian spring stiffness.

¥
3
2 '

(3.22)

The value of Ch, the non-linear Hertzian spring constant is assumed throughout to 

be 1.0 X 10^^Nm“^/  ̂ (Sun & Dhanasekar 2002). These calculations of the linearised 

Hertzian spring stiffness are carried out under the assumption of static axle loads
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of 22.8kN and 15.3kN for the locomotive and passenger vehicle respectively (Xu 

et al. 2004).

The variations in the parametric values tha t are considered throughout the study 

are given in Table 3.3. In general, the parametric changes are applied in equal 

increments. However, both the vehicle suspension and track stiffness and damping 

increments are scaled by an order of magnitude.

Frequency response functions were initially calculated for the vertical displace­

ment of both the bogie and wheelset at the default param eter values. The absolute 

values of these respective frequency response functions, |Hxij(a;)| and |Hz^(w)|, for 

the bogie and wheel masses are illustrated on a log scale in Figure 3.3. These fre­

quency response functions will subsequently be used to relate the stochastic contact 

forces to the underlying track profile irregularity.

1.E+03
loco'
w h e e lse t p assen g er

w h e e lse t
~  1E+01

1.E-01

1.E-03
loco' bogie

O ' p assen g er bogie1.E-05
u.

1.E-07
0 4 7 22 25 2911 14 18

route frequency [1/m]

Fig. 3.3: Frequency response functions for vehicle model vertical displacements 

with default parameters

The frequency response functions show peaks at frequencies equal to the two 

natural frequencies of vibration of the vehicle model. The high frequency peaks
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P a ra m e te r U n it R an g e In c re m e n t

Track class n /a 1 -  6 n /a

Vehicle velocity ms“ ^ 1 0 - 6 0 10

L ocom otive

Bogie mass kg 10,000 -  20, 000 2,500

Wheelset mass kg 1,700 -  3,700 500

Suspension stiffness Nm“ ^ 3.0 X 10^ -  3.0 X lO'̂ xlO

Suspension damping Nsm“ ^ 2.0 X 10  ̂ -  2.0 X 10^ xlO

P assen g er C oach

Bogie mass kg 2,000 -  4,000 500

Wheelset mass kg 1,200 -  2,200 250

Suspension stiffness N m -' 1.5 X 10® -  1.5 X 10*̂ XlO

Suspension damping Nsm'^ 2.0 X 10' -  2.0 X lO'̂ XlO

T rack  S ystem

Foundation stiffness Nm^^ 4.0 X 10^ -  4.0 X 10® XlO

Foundation damping Nsm*'^ 1.2 X 10^ -  1.2 X 10^ XlO

T ab le  3.3: Individual vehicle and track parameter ranges
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occur at approximately 850Hz and 1005Hz, which correspond to the frequency of 

wheelset vibration upon the Hertzian spring. The large Hertzian spring stiffness 

results in the high frequency characteristic of this peak. The lower frequency peaks, 

at approximately 45Hz and 71Hz, are due to the bogie masses vibrating upon the 

suspension spring between the wheelset and bogie. It should be noted that these 

functions are illustrated here over a frequency range tha t greatly exceeds the range 

of the FRA roughness PSD functions. Even the location of the relatively low fre­

quency bogie peaks is, at the default parameter values, above the upper limit of the 

smoothed FRA PSD irregularity function.

The frequency response functions give valuable visual information regarding the 

critical frequencies of vibration of the vehicle system. These functions display a 

similar shape for the locomotive and passenger vehicles. However, the function 

peaks occur at different frequencies due to the different physical vehicle parameters. 

For example, the initial peaks occur at lower frequency values for the locomotive 

vehicle than for the passenger vehicle model. This is due to the ratio of the bogie 

mass to the suspension spring being low’er for the locomotive than for the passenger 

vehicle.

3.4,2 Param etric Variation

The results of the previously described mathematical calculations are presented in 

this section. The section comprises an overview of the effect of the parametric 

variation on the contact force PSD functions for both the locomotive and passenger 

vehicle models. The variation of each vehicle and track parameter is presented in 

turn. The individual contact force process PSD functions are illustrated graphically, 

compared and commented upon briefly. The parametric values are varied both above 

and below their default values so tha t the effects of both parametric value increase 

and decrease maybe observed.
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Track quality variation

The initial part of the parametric study focusses upon variation of the track profile 

PSD function between Classes 1 and 6. The resulting PSD functions for the wheel- 

rail contact forces are illustrated in Figure 3.4. One of the initial observations tha t is 

drawn, bearing in mind that the variance of the contact force process is equivalent to 

the integrated area under the PSD curve, is that the contact force variation about its 

mean value is clearly greater for the locomotive model than for the lighter passenger 

vehicle model. This characteristic can also be gleaned from the respective frequency 

response functions where the locomotive curve is more concentrated towards zero 

frequency. The input PSD function is also concentrated at low frequencies and 

this coincidence of higher function magnitudes results in higher contact force PSD 

magnitude for the locomotive model. This effect will be observed throughout each 

of the parametric variations. Additionally, this greater variation in the locomotive 

model contact forces is supplementary to a larger pre-imposed static axle load.

The Class 1 track, which is of the lowest ciuality, is seen, as one would intuitively 

expect, to generate higher contact force variances. The contact force PSD function 

variation between track classes is significant. For both models the contact force 

mean-square value is approximately sixteen times greater over Class 1 track than 

over Class 6 track. At 40ms“ ,̂ the default velocity at which all of these particu­

lar tests were carried out, the frequency response peak corresponding to the bogie 

bouncing frequency occurs outside the FRA PSD function frequency band. The 

result is that no large peaks are observed in the resulting series of contact force PSD 

functions.

The cause of the increasing mean-square force with decreasing track quality 

is elementary. The frequency response function is constant throughout; it is the 

increasing value of the constant A (see Equation 3.3) that gives rise to the difference 

in mean-square contact force with track quality. The class 1 track results in a 

higher energy input to the bogie model. This energy is dissipated by the spring and
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damper elements of the bogie suspension and the Hertzian contact spring through 

the vertical motions of both the bogie and wheelset masses. Greater energy input 

results in greater process energy in the contact force process and also in the bouncing 

motion of the wheelset.

V ehicle velocity  variation

The vehicle velocity, c, is varied between 10ms“  ̂ and 60ms“  ̂ at 10ms“  ̂ increments, 

for a constant track quality of Class 4 (the chosen default value). The resulting 

wheel-rail contact force PSD functions are illustrated in Figure 3.5.

The contact force variance increases with velocity. At 10ms“  ̂ the contact force 

variance is close to negligible for the passenger vehicle and is also quite small for the 

locomotive model. Unlike the previous parametric variation of the track quality, the 

position of the PSD function peak at the bogie resonant route frequency is seen to 

change at different velocities. This occurs due to the fact that the route frequency is 

proportional to circular frequency, the constant of proportionality being the inverse 

of the vehicle velocity (see Equation 3.4). For this reason, increasing velocity causes 

the frequency response function peak to move in the direction of zero route frequency, 

where the input track roughness PSD function is of greatest magnitude. This effect 

increases the variance of the contact force process with increasing velocity.

The effect is especially significant for the locomotive model where, at 60ms“ \  the 

bogie resonant peak is encompassed by the FRA PSD function limits. This results in 

a greatly increased mean square force at this particular velocity. The large variation 

in the PSD function curves necessitated the use of a log scale in the case of the 

locomotive PSD function. The passenger vehicle model did not require the use of a 

log scale due to the fact th a t the peak in the frequency response function for this 

model was not encompassed by the FRA limits for any of the velocities tested.
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B ogie m ass variation

The first physical vehicle parameter variation is of the bogie mass, mb, which is 

varied in two increments both above and below its default value. The magnitude 

of the increments used for the two vehicle models is not identical. Figure 3.6 il­

lustrates the increase in contact force variance with bogie mass over the range of 

masses considered. As was the case for the track class variation, peak frequencies 

are not encompassed for any of the considered values. The peak contact force fre­

quency response function value for varying bogie mass occurs at lower frequencies 

for greater masses. As before, decreasing the natural frequency increases the contact 

force process variance due to the low frequency dominance of the roughness PSD 

function. Though the frequency response function peaks remain outside the FRA 

PSD function limits the effect of the peak moving closer to the upper limit with 

increasing bogie mass is clear to see for both models.

W h eelset mass variation

The wheelset mass, mw, is also varied about its default value. Figure 3.7 illustrates 

the small changes in the contact force variances over the range of values of m^ con­

sidered. This is due to the similarity of the respective frequency response functions 

over the range of the input track PSD function. The wheelset mass does not have a 

very significant effect on the frequency response function. The natural frequency of 

vibration of the wheelset mass, which is dependent upon the wheelset mass value, 

occurs at high values of route frequency. The roughness PSD magnitude is assumed 

to be zero at frequencies of these magnitudes. At the lower frequencies over which 

the FRA PSD functions are defined, the wheel-rail displacement frequency response 

function magnitude is not affected to a large extent by different wheelset masses. 

This results in similar contact force variances for all wheelset masses considered.
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Suspension  stiffness variation

A wide range of suspension stiffness values are considered. In addition, the in­

crements are apphed using a ‘times ten ’ scahng factor in contrast to the previous 

variations where increments of equal magnitude were added. The variations in the 

suspension stiffness considered give rise to dramatic differences in the contact force 

PSD functions. Figure 3.8 illustrates the effect of these variations.

The two smaller values of spring stiffness considered, for both the locomotive and 

the passenger vehicle models, give rise to frequency response function peaks tha t 

occur within the input PSD range. Large contact force PSD function peaks result 

in these cases, with greater variance for the larger of these spring stiffness values. 

As the suspension stiffness value is increased above these two lower values the PSD 

functions tend to converge as the natural bogie frequency is pushed outside the range 

of the FRA PSD. The change in the position of bogie mass resonant frequency is 

more dram atic in this case than for the previous parameters considered, due to the 

larger differences between the stiffnesses considered. Once again, the low frequency 

content of the input frequency is coincident with only the two lower suspension 

stiffness frequency response peaks for the values tested. As a result, the contact 

force variances are higher for these two parametric values.

Suspension  dam ping variation

The suspension damping is varied in a similar manner to the damping. However, the 

effect on the contact force PSD function of varying the vehicle suspension stiffness 

is found to be negligible, (see Figure 3.9). Increasing the suspension damping 

slightly decreases the variance of the contact forces over the range of damping values 

considered here. The four lower suspension damping values tha t were considered 

produced almost identical contact force PSD functions.
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Track foundation stiffness

The PSD contact force functions for varying track foundation stiffness are ilhistrated 

in Figure 3.10. The track foundation stiffness value of 4.0 x 10®Nm“  ̂ is found to give 

rise to the greatest contact force variance for the locomotive model. The frequency 

response peak occurs outside the PSD limits for higher values of foundation stiffness 

and this results in almost constant variance for the three highest values tested. For 

the lowest foundation stiffness tested, 4.0 x lO^Nm” ,̂ the frequency response peak is 

within the PSD limits. However, the magnitude of the peak is very small in relation 

to the corresponding values for higher track foundation stiffness values.

The PSD functions curves do not show such a dramatic effect for the passenger 

vehicle model. However, the same foundation stiffness as for the locomotive, 4.0 x 

10®Nm“ ,̂ is found once again to result in the highest contact force variance.

Track foundation dam ping

The PSD contact force functions for varying values of track foundation damping are 

illustrated in Figure 3.11. In general the effect of varying the damping within the 

range considered here is small. At the three lowest values the PSD functions are 

almost identical while, above these three values, the contact force variance decreases 

slightly with increasing track foundation damping.
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3.4.3 C ontact Force P rocess R M S V ariations

The mean value of the contact force process is the static axle load, about which 

the stochastic contact force processes vibrate randomly. The static axle load is 

greater for the locomotive model and, as been shown in the previous section, the 

contact force variance is also greater for this model. As a means of illustrating the 

physical results of this analysis, Figure 3.12 contains the random distribution of 

the contact force for both models under the default conditions. Both are distributed 

normally about the static axle load. The assumed profile roughness input is Gaussian 

random and so the contact force distribution shows the characteristic, bell-shaped, 

normal distribution curve. The wider distribution of the contact forces for the 

locomotive model is in evidence whilst the passenger vehicle contact forces are more 

concentrated aroimd the static load. Despite the greater contact force variance 

for the locomotive model it is the passenger vehicle axle which has the greater 

probability of unloading.

0.004 1

passenger 
vehicle model0.003 -

5  0.002  -

locomotive
model

0.001  -

0.000
24.514.5 17.0 19.5 22.0

contact force [kN]

Fig. 3.12; Contact force probabihty density functions for vehicle models with de­

fault parametric values
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The parametric variations in the root-mean-square (RMS) values for the contact 

force processes are illustrated in Figures 3.13 and 3.14 for the locomotive model and 

Figures 3.15 and 3.16 for the passenger vehicle model. While the PSD functions are 

useful in tha t critical frequency values and limits are easily observed, these RMS 

value plots give further information regarding the dependence of the variance of the 

contact force upon the particular parameter in question. The process RMS values 

are equivalent to the square root of the variance. The implications of these results 

are discussed in Section 3.5.1.

The purpose of the following two sections is to present a calculation of the prob­

ability of the wheel-rail contact force exceeding a particular, critical, value over a 

given distance of vehicle travel. The means by which the PSD functions for the 

contact forces, under the respective sets of parametric conditions, can be used to 

generate further statistical data regarding the contact forces is illustrated. The two 

individual sections are focussed upon the two individual bogie models for locomotive 

and passenger vehicles. The eight individual parametric values that have resulted 

in the highest contact force variances are considered.

3.4.4 Locom otive Peak Force Probabilities

The static axle load for the locomotive vehicle specification is 22.8kN. The ‘critical’ 

force threshold that is considered here is selected as 120% of the static force, which is 

27.36kN, while a vehicle running distance of 100m is chosen. The statistical method 

used is described in Appendix A and requires an initial solution of Equation 3.20. 

This technique facilitates the calculation of the probability tha t the order peak 

among Np peaks in a track length L will exceed a given level. The method is applied 

here whereby the respective probabilities tha t a single peak, ie. the first order peak, 

in the contact force process exceeds 27.36kN over a running distance of 100m, are 

calculated. It should also be noted that the probability of the contact force attaining 

a value of 80% of the static (18.24kN) is identical to the probability of occurrence
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of a force reaching 120% of the static. This is due to the normal distribution curve, 

which spreads symmetrically about the static axle load.

At the default parametric values the probability of a peak contact force exceeding 

120% of the static is effectively zero (ie. less than 10“^°. However, parametric 

variation of the type investigated in this study results in far greater probabilities in 

some cases.

A number of the individual parameters tha t resulted in the highest variances over 

their respective ranges also resulted in negligible probabilities of exceeding 120% 

of the static force. These system parameters included wheelset mass, 0 (1 0 “ ^^)^ 

suspension damping 0 (1 0 “ ^ )̂, track foundation stiffness 0(10~^®) and track foun­

dation damping 0 (1 0 “ ^ )̂. These results illustrate that, over the individual ranges 

of variation of these parameters, the wheel-rail contact forces are not affected to 

any significant extent. The equivalent bogie mass calculation also resulted in a rel­

atively small probability value for its largest contact force variance. A bogie mass 

of 20,000kg gives a probability of exceeding 120% times the static of approximately 

0.1%. The values of the three remaining parameters however, track class, vehicle 

velocity and suspension stiffness, tha t generated the highest process variances, had 

significant probabilities of exceeding the specified 120% ‘cut-off’ force over 100m of 

railway track.

The Class 1 vertical track irregularity profile resulted in a contact force variance 

of 1.97kN^. Under these track profile conditions and with a calculated expected 

number of process peaks per metre, Np, of 0.53, the probability of a single peak 

exceeding the ‘cut-off’ over 100m is 22%. A 0.1% probability contact force value for 

this track class is 29.3kN over the same distance, 100m.

The vehicle velocity tha t gives greatest variance is 60ms~^ and at this velocity 

the probability of exceeding 120% is close to 100% over 100 metres distance. In 

essence, this means tha t typically, at least one peak will be greater than 27.36kN. In

^The notation 0 (x ) is used to abbreviate “of the order of x”
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addition, further manipulation of Equation A.5 showed that, for the same distance, 

there is an approximately 0.1% probability that an average of at least 49 peaks will 

exceed 27.36kN. This large number of peaks over the running distance generally 

results in a greater value for the highest single peak. For a 0.1% probability, the 

contact force for a single peak exceeding gives 48.15kN over the same 100m distance, 

more than twice the static axle load. Thus, it is obvious tha t the highest velocity 

value, 60ms“ ,̂ results in contact forces tha t are significantly in excess of the static. 

The equivalent 0.1% probability for 50ms“  ̂ is greatly reduced. This effect can be 

observed by inspection of Figure 3.13(b) where the 60ms~^ rms value is almost three 

times the 50ms“  ̂ equivalent.

A suspension stiffness parametric value of 3.0 x 10^Nsm“  ̂ results in a proba­

bility value close to 100% of a single peak exceeding 120% of the static force. The 

contact force tha t gives a 0.1% probability of occurrence of a single peak is 38.75kN, 

approximately 1.7 times the static. As was the case for the velocity, where one sin­

gle tested value resulted in much more significant effects than for the other values, 

the remaining suspension stiffness values tested result in negligible probabilities of 

reaching this magnitude (see Figure 3.14(a)).

3.4.5 P assenger V ehicle Peak Force P robabilities

An identical mathematical analysis to tha t of Section 3.4.4 was performed on the 

data obtained from the passenger vehicle model. The static axle load for the pas­

senger vehicle is 15.3kN. As for the locomotive model, a force threshold of 120%, or 

80%, of the static force is considered. This equates to 18.36kN (or 12.24kN). Once 

again a vehicle travel distance of 100m is chosen.

The results of the parametric analysis of the passenger vehicle are in contrast to 

the locomotive vehicle results in that for all of the parametric variations considered, 

the probabihty of exceeding 120% of the static load is negligible.
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3.5 O bservations and C onclusions

3.5.1 D iscussion of R esults

This frequency domain analysis of a simple railway vehicle model has provided some 

statistical information about the wheel-rail contact force characteristics. The input 

to the system, random vertical track irregularity, is concentrated in the 0.01 to 

0.628m“  ̂ route frequency range. This equates to wavelengths of between 10 and 

628m. Real vertical track irregularity is not constrained as such and is distributed 

over a much larger range of wavelengths. High frequency events, such as discrete 

irregularities or rail-head corrugations, are not considered here.

The analysis carried out is useful to both railway vehicle and track engineers. 

The effect of each of the systems’ parameters upon the wheel-rail contact forces 

in the wavelength range considered is estimated. A number of the parameters are 

show'n to have little or no effect on the resultant contact forces, but others generate 

markedly different contact force PSD functions dependent upon their magnitude. 

In addition to the parametric variation there are also significant differences between 

the PSD functions generated for the locomotive and the passenger vehicle models. 

The locomotive model, in general, resulted in higher contact force variances about 

the static load. It should also be noted that, in addition, this higher variation is 

centred about a greater static load.

Despite the lower static load generated by the passenger vehicle model, the prob­

ability of unloading of a wheel is negligible due to the relatively small variance of 

the contact forces under the influence of the random irregularities specified in this 

study. The probability of a locomotive vehicle wheel unloading is smaller, hence is 

it concluded tha t unloading of the wheels will not occur due to the sole effect of 

FRA specified random irregularities.

In all, eight parametric variations were considered. All variations affected the 

resultant contact force PSD functions to  some extent. However, the parametric



variations considered in the case of wheelset mass, suspension dam ping and track 

foundation dam ping proved to be minimal,ie. the contact forces were significantly 

independent of these param eters. Increasing the wheelset mass resulted in slightly 

greater contact force variances for both  models. The larger masses cause the  wheelset 

hop natu ral frequency to  lower, pushing the corresponding resonant peak towards 

the low frequency input. This effect, however, is not especially significant and 

results in 12% and 24% RMS increases over the respective ranges considered for the 

locomotive and passenger vehicles. The effect of increasing dam ping of bo th  vehicle 

suspension and track foundation was to  slightly lower the contact force variance. In 

fact, the suspension dam ping did not affect the RMS values to  any significant extent 

w'hile track dam ping was significantly effective only a t the two higher dam ping values 

considered for the locomotive model.

The variation of the bogie mass and the track foundation stifl’ness had a greater 

influence upon the contact forces th an  the three param eters discussed previously. 

Increasing the bogie mass increases the contact force variance. The effect is simi­

lar to th a t of the wheelset mass. However, in this case the bogie bounce natural 

frequencies are in close proximity to  the input frequencies and the contact PSD 

function m agnitude is more pronounced. The track foundation stiffness is of partic­

ular interest in the study  of wheel-rail contact forces. The Kt  value of 4 x 10®Nm~^ 

generates the highest contact force variance. Above and below this particular value 

the contact force RMS values decrease for both  models.

W hile both the bogie mass and the track foundation stiffness affect the  contact 

force PSD function significantly, their effect is not of the same m agnitude as the final 

three param eters. The tested param etric variations of track class, vehicle velocity 

and vehicle suspension stiffness each had a relatively dram atic effect on the contact 

force PSD functions. One would expect the track quality param eter to  affect the 

contact force characteristics. This proves to  be the case. As the only variable in this 

case is the track quality param eter A, the variance of the contact force is proportional
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to A throughout. The extreme values of A are 0.98 and 15.53; it follows tha t the 

contact force variance for track class 1 is approximately sixteen times tha t for class 

6. The contact force RMS for class 1 track irregularity is approximately 1.4kN for 

the locomotive model. However, in practice, on such track vehicle velocities would 

be required to be restricted to a lower limit than the default velocity of 40ms“  ̂ tha t 

is considered here.

The vehicle model velocity also has a very significant effect upon the wheel-rail 

contact forces. Increasing the velocity has the effect of decreasing the track irregular­

ity wavelength relative to the moving vehicle. The contact force frequency response 

functions are also highly concentrated towards higher frequencies and this results 

in the higher variances. This effect is especially magnified at 50 and 60ms“ \  the 

highest velocities tested, where the frequency response peaks coincide with the ir­

regularity PSD frequency band. The contact force RMS at 60ms“  ̂ is approximately 

6kN for the locomotive model, the highest RMS observed throughout any of the 

parametric variations carried out in this study. 60ms“  ̂ (216km/hr) is a very high 

velocity for standard rolling stock, and these types of velocities are rarely achieved 

in practice. The exceptions to this are modern high speed trains tha t have advanced 

suspension characteristics and run on railway track of extremely high quality. How­

ever, for the models investigated here it should be noted tha t the default class 4 

track profile was assumed. In general, a higher quality track would be necessary for 

all vehicles achieving speeds of this magnitude.

The suspension stiffness values considered also show large variation in contact 

force RMS values. However, unlike the track class or vehicle velocity, the contact 

force RMS values do not increase in line with the suspension stiffness. The variation 

in this case is similar to th a t of the track foundation stiffness, where a single inter­

mediate value resulted in a significantly greater variance. A suspension stiffness of 

3 X 10®Nm“  ̂ for the locomotive and 1.5 x 10®Nm~^ for the passenger vehicle gener­

ate significantly higher contact force variances than for any other values considered.

90



Interestingly, it is stiffness values of this magnitude that are most frequently quoted 

for primary suspensions of railway vehicle. The reasons that these values are cho­

sen in design is related to consideration of ride safety and comfort rather than the 

generation of lower wheel-rail contact forces. Examination of the RMS values for 

the locomotive bogie displacement reveals tha t 3.0 x 10®N is the optimum value at 

which this displacement RMS approaches the RMS of the underlying railway track 

profile, ie. the minimum value at which the bouncing of the bogie approaches the 

underlying profile displacement.

3.5.2 C om m ent

Railway track geometry deteriorates under the influence of dynamic track loads 

(Esveld 2001). The frequency and magnitude characteristics of the dynamic track 

loads, as has been illustrated by the analysis contained in this chapter, are functions 

of the track geometry itself. The deterioration process, therefore, is iterative, with 

the rate of track deterioration increasing progressively over time. The armual dete­

rioration of railway track is illustrated in Figure 3.17, which is taken from Nielsen 

(2003). The roughness variance is clearly seen to increase on average from year to 

year. This particular spectrum contains higher frequency irregularities than those 

that have been considered.

The investigation of the effects of the various vehicle parameters detailed in 

this chapter provides an overview of some of the basic relations between wheel-rail 

contact forces and vehicle, and track, parameters. These relations may facilitate 

optimising vehicle design from the point of view of minimising contact forces. It 

should be noted tha t the minimisation of the wheel-rail contact forces is not the sole 

objective in railway vehicle design, and other considerations such as ride quality 

and material property restrictions are of critical importance in vehicle design. In 

addition to the parametric observations, the characteristics of the stochastic dynamic 

track loading are determined, which is useful in studies concerned with the dynamic
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response of the railway track system itself.

An further study was carried out whereby the optimum combinations of bo­

gie mass, suspension stiffness and damping, and wheelset mass were determined. 

This optimum combination was calculated with a view to minimising the wheel-rail 

contact force energy. The optimal parameter values for both the locomotive and 

passenger vehicle models are given in Table 3.4. A Class 4 track and velocity of 

40ms~^ was assumed for the purpose of this optimisation exercise.

Param eter Sym bol U nit L ocom otive Passenger Coach

Bogie mass nib kg 10000 2000

Wheelset mass mw kg 1700 1200

Suspension stiffness kb Nm"^ 3.0 X 10^ 1.5 X 10^

Suspension damping Cb Nsm“ ^ 2.0 X 10^ 2.0 X 10^

Table 3.4: Locomotive and passenger coach optimal parameters

For each of the parameters, bogie mass, wheelset mass and suspension stiffness, 

the optimum parametric values were the low'est possible from the range of v^alues in­

cluded in the analysis. The optinmm suspension damping was close to the maximum 

value in both cases. These findings agree with the parametric study carried out in 

this chapter, despite the fact that the previous parametric variation was performed 

with all other parameters held constant. While the calculated optimised parameters 

do minimise the wheel-rail contact forces it should be noted that vehicle design is 

concerned with other aspects of vehicular vibration such as wagon bounce, the ver­

tical motion of the wagon body. The equivalent bogie bounce optimum parameters 

were also calculated and a different set of values was obtained. In particular, it 

w'as found that while minimisation of contact forces required as low a suspension 

stiffness value as possible, the minimisation of bogie bounce requires a suspension 

with maximum stiffness.

The vehicle model that is considered in this study is highly simplified. A full
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representation of tlie vehicle system would obviously provide a more accurate re­

sponse prediction. However, as both vehicle dimensions and loads vary greatly, it is 

often quite difficult to select suitable parameter values for a more complex vehicle 

model. This can increase the difficulty of comparing computer simulation results 

conducted by different research groups (Sun Sz Kennedy 2002).
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C hapter 4

W heelset C oupling Effects on 

Stochastic C ontact Forces

4.1 Introduction

The couphng between two axles forming part of the same vehicle system, and the 

effect of this coupling upon the contact forces generated at each axle, is investigated 

in this chapter. The method by which the wheel-rail contact forces are calculated 

is similar to tha t applied in the previous chapter. Once again, the dynamic input 

to the model is random irregularity of the vertical track profile. The statistical 

characteristics of the random input are identical to the characteristics described 

previously in Chapter 3.

A vehicle model based upon a laden two-axle freight railway vehicle is considered. 

The model is necessarily more complex than that described in Chapter 3 because it 

is desired to observe the contact force processes at two wheelsets of the same vehicle. 

For this reason a vehicle model with two wheel-rail contact points is required. The 

previous two-degree of freedom model had a single wheel-rail contact point and 

considered only the vibration of a single wheelset and bogie. While the previous 

vehicle model is useful for the purpose of parametric investigation of both the vehicle
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and track response to random irregularity, it is also extremely simplified in that 

it does not take into account the interaction between multiple wheelsets of the 

same vehicle. The multiple wheel-rail contact model provides a more complete 

description of the stochastic contact forces generated by a railway vehicle running 

along a random, irregular vertical track profile. Some of the two-degree of freedom 

model’s shortcomings are identified immediately upon examination of the contact 

force data generated by the new model tha t will be introduced here.

This chapter introduces a simple model whereby this coupling effect may be ob­

served. The new model is used to investigate the effect of axle-spacing upon the 

stochastic wheel-rail contact forces generated by random roughness in the vertical 

railway track profile. In particular, the difference between the statistical character­

istics of the contact force processes at the two different wheelsets of the same vehicle 

model is investigated.

Section 4.2 describes the vehicle model physically and then details the develop­

ment of the system equations of motion and frequency response functions. Upon 

determination of the frequency response functions the track irregularity PSD func­

tion is applied as before and contact force PSD functions are calculated.

Section 4.3 commences with an application of some default vehicular parameters 

to the system and observation of the contact force spectra under these parametric 

conditions. The effect of varying velocity upon the relationship between the contact 

force PSD functions at the front and rear wheelsets is then observed. This section 

concludes with an analytical comparison of the two frequency response functions.

4.2 M athem atica l Form ulation  

4.2.1 Physical M odel D escription

As in the previous chapter, the railway vehicle model is planar and all degrees of 

freedom are in the vertical plane. However, the model is now more representative
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of a complete vehicle system in th a t it possesses a ro tational degree of freedom, as 

opposed to  the previous two-degree of freedom (both vertical) simplification. The 

vehicle model is based upon a flatbed wagon railway vehicle chosen because of the 

relative simplicity of this type of vehicle and its widespread use. A flatbed wagon 

vehicle consists of a wagon supported directly upon two wheelsets, w ith no bogies 

or secondary suspension systems situated  between the wagon and its wheelsets.

Unlike the single point surface contact model, the vehicle model th a t will be 

formulated here has two wheelset-rail contact points. Critically, these wheelsets are 

not independent of one another bu t are physically interconnected by means of the 

rigid body wagon mass. It will be seen, as this chapter progresses, th a t the wagon’s 

physical param eters, such as its mass, ro tational inertia  and the wheelset spacing 

have an effect upon the contact force spectra th a t are generated at each of the 

wheelsets. The wagon itself can move in the  vertical direction as did the bogie in 

the previous chapter, ie. bouncing motion, bu t it now has an additional rotational, 

or pitching, degree of freedom. The wagon is supported  upon the two wheelset 

masses, each of w'hich can bounce vertically. The vehicle model is illustrated in 

Figure 4.1.

The particular model used here is based upon the M anchester Benchmarks Vehi­

cle 2 specified by Iwnicki (1998). These particu lar prescribed param eters are based 

upon a simplification of a laden two-axle freight vehicle model. The vehicle is m od­

elled as a two-axle m ass-spring-dam per system and consists of a car body and two 

axles. The car body is modelled as a rigid body with mass me and a mass moment 

of inertia Ic about the transverse horizontal axis through its centroid. Each axle and 

car body is coimected by a spring of stiffness kb and a dashpot of dam ping coefficient 

Cb- These linear elements are representative of the vehicle’s suspension system. Fur­

ther subscripts are used to  denote their physical position w ithin the system, front 

(f) or rear (r). The car body is assumed to  be rigid, therefore its motion may be 

described by the translational displacem ent coordinate x,-, and the ro tational coor-
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dinate 9c about its centroid. The m otions of the front and rear axles are described 

by the vertical displacement coordinates Xwf and x^r respectively. Therefore, the 

to ta l num ber of degrees of freedom for this vehicle model is four.

The vehicle axle-spacing distance is given by a + b  where a and b are the respective 

distances from the axles to the centre of ro tation  of the bogie mass. Finally, the 

linearised H ertzian contact springs are denoted ki, w ith the  further subscripts, f or r, 

denoting position as for the suspension elements. The linearisation of the non-linear 

Hertzian spring is performed by applying Equation ?? where the non-linear Hertzian 

spring constant, Ch, is 1.0 x as before.

The vehicle model is supported upon two discrete sprung masses representing the 

track system. In this case the track mass has been discretised into two point masses, 

in contrast to  the finite element BEF th a t was applied in the previous chapter. The 

mass, dam ping and stiffness values, mg, Cg and kg, assigned to the discretised track 

model are also based on suggested M anchester Benchm ark param eter values. The 

default param etric values for both the vehicle and the discretised track models are 

given in Table 4.1.

4.2.2 Equation of M otion

In the previous chapter a relative coordinate was introduced to  describe the dis­

placement of the wheel relative to  the track profile. Two such coordinates, z^f and 

Zwr, are introduced here to describe the motion of the two wheelset masses relative 

to the underlying track at the respective wheel-rail contact points. These coordi­

nates are described, as follows, as functions of the wheelset displacem ent, the track 

displacement and the track irregularity function at the positions of the front and 

rear wheelsets respectively:
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^ w f ( t )    ^ g f ( t )  “1“  ^ f ( t )  ^ w f ( t )

Z \ v r ( t )  ^ g r ( t )  ^ r ( t )  ^ w r ( t )

(4.1a)

(4.1b)

The equation of motion of the vehicle model is given by

[ms]{xs(t)} +  [cs]{xs(t)} +  [ks]{xs(t)} =  {4(t)} (4.2)

where the system displacement vector, Xs(t), is

| x s ( t ) |  =  | x c ( t )  9c{t) Z w f ( t )  Z w r ( t )  X g f ( t )  X g r ( t ) |  (4-3)

The details of the specific entries in the mass, damping and stiffness matrices are 

provided in Appendix B. Also included in Appendix B is the complete system forcing 

function vector.

4.2.3 Contact Force Spectra

The first step in calculating the PSD functions for the dynamic contact forces at 

both wheelsets of the bogie model is to generate frequency response functions for 

the relative displacements of each of the wheelsets. The methods applied here are 

identical to the analysis carried out in the previous chapter. A Fourier transform

is applied to the system equation of motion. The transform of the left-hand side

of Equation 4.2 is straightforward. The forcing function on the right-hand side of 

Equation 4.2, however, is a function of the two time dependent inputs, ^f(t) and i^r(t), 

and the Fourier transformation is more complex. Before the transform is applied 

the profile displacement from its mean at the rear wheel is expressed as a function of 

the equivalent displacement at the front wheel. This expression effectively reduces 

the problem from a dual input to a single input dynamic problem. The relationship 

between the two inputs is equivalent to a time delayed realisation of an identical
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signal. As the vehicle is moving at constant velocity, c, and the two wheelsets are 

separated by the horizontal axle spacing distance (a+ b), the rigidity of the irregular 

profile ensures th a t this expression reduces to:

C r( t )  =  C f(t  -  To) (4.4)

where Tq is the signal time-delay and is given by

a +  b
(4.5)

The transform ed forcing function is calculated based on the m athem atical prop­

erty  th a t the Fourier transform  of a tim e delayed signal is equal to the  transform  

of the signal neglecting the tim e delay m ultiplied by an exponential function th a t is 

a function of the delay (Jordan & Sm ith 2002). The exponent is equivalent to  the 

complex num ber —\ujrQ. The transform ed forcing function, {fs(^^)} is now expressed

as

fs(o;)

k b f  +  ii.<.^Cbf +  ( k b r  +  ii- ^ C b r )e  

—bkbf — icjbcbf +  (akbr +  iu;acbr)e“‘"'̂ °

+  iwCbf +  kbf
> Cf(^)

( —W^mwr +  +  k b r ) e

khf 

khre-'*""®

and the transform ed equation of motion for the system  takes the form

(4.6)

(-o;^[ms] +  iw[cs] +  [ks]){xs(w)} =  {fs(w)} (4.7)

where {xg(a;)} is the Fourier transform  of the system displacem ent vector.

It is now possible to define a vector containing the complex frequency response 

functions for each of the degrees of freedom of the vehicle. This vector, {Hs(u;)}, see
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Equation 4.8, relates the transform ed displacem ents of each of the vehicle compo­

nents, and the  two track masses, to  the transform  of the  profile irregularity a t the 

front wheel. The Fourier transform  of is now abbreviated to ^ and so,

(4.8)

It has been shown (Newland 1993) th a t the  various spectral densities of the 

model response Ss(u;) can be determ ined given th a t the spectral density of the profile 

irregularity S^(i.j) is known, where there is a single input, ^(t), to  the system. The 

relationship between the spectra is dependent upon the system  frequency response 

function, { H s ( a ; ) } .  As it is the contact force spectra th a t are required here it is the 

individual frequency response com ponents (w) and Hz^^(o;) th a t are of interest 

in this case. The spectral densities for the displacem ents of each of the wheelsets 

relative to  the  profile are given by

The two equations (4.9a and 4.9b) give the expression for the spectra  of the relative 

displacem ents of the  wheelset masses. Sun & Kennedy (2002) implement a param ­

eter known as a load transfer function (LTF), A{oj) ,  which is used to  describe the 

direct relationship between the spectra  of the contact forces and track irregularity. 

LTFs are also used here and are functions of the respective wheel-rail contact el­

ement properties. The LTF expressions for the  front and rear wheelsets are given

S.„,(o;) =  |H ,„,(u;)|2S ,(.;) (4.9a)

(4.9b)

by
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Awf(t )̂ =  |(khf +  iwchf)H2„,(a;)|‘ 

A w r ( ^ )  | ( k h r  “ 1“  ( c j )  I

(4.10a)

(4.10b)

In this particular case, ie. the idealised hnear Hertzian contact model, the spring 

damping is assumed to be zero. The spectral densities for the contact forces are 

then calculated for each of the respective model wheelsets directly via these LTFs.

Sp„f(<^) =  Awf(<^)S^(a;) (4.11a)

Sp„,(u;) =  Aw,(a;)S^(u;) (4.11b)

4.3 C ontact Force Spectra A nalysis  

4.3.1 D efault P aram eter Spectra

The system frequency response functions for the default vehicle parameters (Table 

4.1) are illustrated as a function of route frequency (units m “ )̂ in Figure 4.2. These 

particular illustrated functions were calculated for a vehicle velocity of 40ms“ ^ 

Figures 4.2(a), 4.2(b) and 4.2(c) show the functions for the wagon body bounce 

and pitch, the wheelsets’ hop, and the track model displacement respectively. The

frequency range considered here is identical to the range for the FRA irregularity

PSD function.

The freight wagon frequency response functions display peaks at the damped 

natural frequencies of vibration for wagon bounce and pitch. The wheelset and track 

mass natural frequencies occur at much higher frequency levels tha t are above the 

upper limit of the track roughness PSD function. The individual wheelset frequency 

response functions are not identical. This characteristic is a result of the coupling 

effect of the wheelsets.
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Fig. 4.2: Frequency response functions for freiglit vehicle on discretised track masses
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Param eter Sym bol U nit Value

Wagon mass me kg 40.77 X 10^

wagon rotary inertia Ic kgm^ 220.0 X 10^

Wheelset mass n i\v f ,  m^^,I■ kg 1.925 X 10^

Suspension stiffness kbf) kbr N m -i 3.6 X 10®

Suspension damping Cbf 1 Cbr Nsm^^ 1.0 X 10^

Contact spring stiffness kh N m -i 1.95 X 10®

Axle spacing a,b m 2.6

Discretised track mass n ig kg 119.0

Discretised track damping kg Nsm“ ^ 2.0 X 10^

Discretised track stiffness • 6̂ N m -i 5.0 X 10^

Table 4.1: Parametric values for vehicle and discretised track model

Further inspection of the wagon bounce and pitch frequency response functions, 

over a broader frequency interval on a log scale, reveal an undulating pattern between 

maxima and minima at constant intervals (see Figure 4.3). The wagon bounce

response minima occur at wavelengths corresponding to metres for x = l,2  n,

while the corresponding maxima occur at metres for x = l,2  n. The maxima

and minima for the bogie pitch correspond to the minima and maxima respectively, 

for bogie bounce, ie. maximum bounce corresponds to minimum pitch and vice- 

versa. The initial peaks in the bouncing and pitching responses do not comply with 

these formulae. The position of these peaks are distorted by the presence of the 

adjacent natural frequencies of vibration.

The PSD functions for the wheelset contact forces are illustrated in Figure 4.4 

for a vehicle velocity, c, of 40ms“  ̂ and a track profile with FRA Class 4 random 

vertical irregularity. The RMS values, equivalent to the square root of the vari­

ances, for the random contact force processes at the front and rear wheelsets are 

approximately 655.3N and 876.2N respectively. The variances are tabulated along
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Fig. 4.3: Wagon frequency response functions over zero to 10m“  ̂ route frequency 

range

with the derivative process variances in Table 4.2. Finally, the probability density 

functions of the individual contact force processes are illustrated in Figure 4.5. The 

distributions are centred about the static contact axle load which is 218.86kN for 

both wheelsets.

W h ee lse t CT? [N2] a i  [N^s-2] [N^s-^]

front

rear

429.442 X 10  ̂

767.742 X 10^

45.355 X 10  ̂

85.125 X 10^

6.934 X 1Q3 

11.964 X 10^

T ab le  4.2: Contact force process statistics

The existence of a difference in variance between the second wheelset contact 

force process and that of the front wheelset is obvious by means of visual inspection 

of their respective PSD, and frequency response, functions. This effect is a  result of 

the dynamic coupling between the wheelsets via the rigid body wagon mass itself. 

In order to verify this discrepancy a number of numerical simulations of the freight 

vehicle model were undertaken. A fourth order Runge-Kutta approximation was
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applied to  solve the differential equation of m otion for the bogie model. A series of 

1000m long random  track profiles were generated using the following trigonom etric 

series (Au et al. 2002):

N

«=<) =  E  akCos(QkX +  (f) )̂ (4-12)
k=l

where ak is the am plitude of the cosine wave, Qk is a route frequency within the 

interval [Qi, Qu] in which the PSD of the random  irregularities is defined, (̂ k is a 

random  phase angle in the interval [0, 27t], x  is the  global coordinate m easured from 

the  origin and N is the to ta l num ber of term s used to  build up the rail irregularities. 

The param eters ak and fik are com puted respectively by

ak =  ^4G ^^(Q k)A f] k = l , 2 , . . . . , N  (4.13)

Qk =  +  (k -  ^ ) A Q k =  l , 2 , . . . . , N (4.14)

=  (4.15)

The contact force variances w^ere calculated for five different track profiles of 

100m length. The results are presented in Table 4.3. In all cases the contact force 

variances a t the second wheelset were found to  be significantly greater than  those a t 

the  first, thus verifying the  results of the frequency dom ain analysis. The variances 

of the  individual roughness profiles th a t were generated are also included.

The different random  process characteristics for the  two contact force processes 

also affects their respective peak value statistics. For the param eter values consid­

ered here the probabihty  of a single peak force exceeding the  sta tic  by 3kN over a 

distance of 100m is 0.000912 for the  front wheel. The equivalent probability for the  

rear wheel is 0.089436, approxim ately two orders of m agnitude greater. For a two
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T est P ro file wheelset 1 [N] wheelset 2 [N] profile roughness variance [m̂ ]

1 6 7 0 .2 9 2 4 .4 1 .8 5  X 1 0 -^

2 6 4 7 .5 8 8 9 .1 6 .7 1  X 10-®

3 6 7 3 .6 9 3 7 .7 7 .6 4  X 10-®

4 6 2 1 .9 8 9 9 .5 7 .3 3  X 10-®

5 6 6 9 .1 9 2 8 .3 1 .2 3  X 10-®

m ean 6 5 6 .5 9 1 5 .8

T able 4.3: Numerically calculated contact force RMS values

DOF model of the flatbed wagon model similar to the model applied in Chapter 3, 

the equivalent probability was 0.047675.

4.3 .2  V elocity  variation

The velocity chosen as the default is relatively high (at 40nis~\ or 144km/hr) for a 

freight vehicle and was chosen so as to illustrate clearly the coupling effect between 

the two contact force processes. The effect is visible at lower velocities also but not 

to the extent of the 40ms“ ' considered. Figure 4.6 illustrates the variation of the 

ratio of the two contact force RMS values as the vehicle model velocity increases. 

As velocity increases above 40ms“  ̂ the two RMS values begin to converge.

This can be explained mathematically by considering the third and fourth forcing 

function components from Equation 4.6 which differ only by the multiplier expo­

nential function e“ “̂ '̂ °. These components represent the dynamic excitation to the 

fornt and rear wheelsets of the vehicle model. As velocity increases the quantity 

To becomes smaller, hence the exponential function tends towards unity and the 

frequency response functions get closer in magnitude. By this reasoning, the respec­

tive RMS contact forces also converge as the axle spacing distance is minimised. 

It should be noted that, for this particular axle-spacing distance, the contact force
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RMS is greater at all of the velocities considered (10ms 'tolOOms )̂.

135 n
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100
10 20 30 40 50 60 70 80 90 100

velocity [m/s]

Fig. 4.6: Ratio of rear contact force process RMS to front equivalent, expressed as 

a percentage, as a function of vehicle model velocity

4.3.3 C om parison o f Frequency R esp on se Functions

The expressions for the frequency response functions in terms of the system parame­

ters are extremely complex. Appendix B contains the expressions for these functions 

for the front and rear wheelsets respectively. It was assumed in the calculation of 

these functions tha t the vehicle model was perfectly symmetrical. This assumption 

was required in order to observe the functions because maintaining separate vari­

ables for the front and rear vehicle parameters generates unfeasibly long expressions 

for these functions.

The expressions, though simplified, remain highly complex. The input spectrum 

to each wheelset is identical, therefore the different responses calculated at the front 

and rear wheelsets are due entirely to the difference in the squared modulus of their 

frequency response functions. The frequency response functions may be expressed
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more concisely as follows:

^  (-A (c^) -  B (.;) -  C(a;) -  D (a;)e--^°) (4.16a)

Hz„.(u;) =  ^  i - A i ^ )  +  B(a;) -  C (a;)e--"« -  D(o;)) (4.16b)

(4.16c)

The m agnitude of the contact force process PSD a t any given frequency is pro­

portional to  the  square of the frequency response function moduli. It therefore

follows th a t the  difference in PSD m agnitude between the front and rear wheelset

processes can be expressed as a proportion of

X(a;: (-A (o ;)  -  B{uj) -  C{uj) -  D (a;)e-‘"'"°)

X(a;; (-A (a ;)  +  B((j) -  C (u;)e-‘“ '̂’ -  D(cj))

(4.17)

which is equivalent to the difference between the squares of the frequency response 

functions. Despite the complexity of the difference expression it can be seen th a t the 

frequency response functions are identical when the  following equality is satisfied.

-B (a ;)  -  C{io) -  D(o;)e-'“ °̂ =  B{lo) -  D(t^) -  C (w )e-‘"̂ "° (4.18)

It can be seen from this expression th a t the condition of zero axle spacing is not 

the  only condition whereby the the frequency response function m oduli are identical.

4.4  O bservations and C onclusions

The frequency content of the random  dynamic input, specified by the FRA, to 

th e  vehicle and track systems is such th a t the peak excitation of the random  con­

tac t forces are not significantly greater than  the quasi-stationary  forces. This was
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previously observed by means of the analysis described in Chapter 3. The quasi- 

stationary vehicle-track interaction study of Dukkipati & Dong (1999) illustrates a 

variation, in the absence of irregularities, of between approximately 95% and 105% 

of the static load. This small dynamic increment is not surprising, given tha t the 

minimisation of both wheel hop and track vibration is a primary objective in the 

design of both systems.

This particular analysis is of more interest in tha t the difference between the 

contact force PSD functions at the front and rear wheelsets is illustrated. The 

relationship between the respective responses is complex and is dependent upon the 

properties of the wagon such as axle-spacing, body mass and moment of inertia, and 

suspension stiffness and damping.
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Chapter 5 

N um erical Track M odel w ith  

A pplication to R andom  Track 

Irregularity

5.1 Introduction

The previous chapters (3 and 4) have been based upon analysis of wheel-rail con­

tact forces resulting from random track irregularities using a frequency domain ap­

proach. A number of assumptions were applied in the mathematical formulation of 

the models. The track system was modelled as either a single sprung mass or as a 

finite length beam supported by a continuous elastic foundation. In addition, the 

non-linear Hertzian contact spring was linearised, as is required for simplified fre­

quency domain analyses. This chapter details the formulation of a numerical track 

model tha t can be applied to a transient analysis of the vehicle-track system. Ran­

dom irregularity profiles similar to those used in Chapters 3 and 4 are considered in 

this chapter. However, in this case the profiles are generated numerically from the 

PSD functions, then subsequently used to calculate the systems’ time history out­

puts, whereas previously the spectra were applied directly to the frequency domain
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equations and output spectra were calculated.

The new track model is formulated and subsequently validated using a number of 

different tests. These tests are carried out by comparing the numerically generated 

results with closed form analytical solutions. The model is then used, by means 

of applying a numerical time-domain technique to solve its dynamic equation of 

motion and obtain the time-history response, to generate the coupled response of a 

railway vehicle and track system. The effect of random track irregularities on the 

response of both the railway vehicle and track systems is observed and the nature 

of the resultant dynamic interaction between the two systems is investigated.

The railway track structure is modelled in this analysis as a single infinite beam 

founded upon a continuous elastic foundation. The model is abbreviated henceforth 

as BEF (beam on elastic foundation). The conceptual model is infinite in length, 

ie. of unlimited length in both the positive and negative directions. However, as 

the numerical Finite Difference Method (FDM) is used to model the beam mathe­

matically, and an infinite system cannot be perfectly modelled numerically, a quasi­

infinite beam model is derived here. The new quasi-infinite beam model, though 

an approximation, is based upon the mathematical assumptions of a theoretically 

infinite beam.

The static deflection under loading of a theoretically infinite beam has been 

well documented. The analytical Zimmermann equations (Hetenyi 1946) detail the 

exact static response of such a beam to constant point loads as a function of the 

distance from the point of load application. The assumption of a uniform beam 

and continuous elastic foundation is advantageous because it allows the use of these 

static solutions in formulating the dynamic FDM equations of motion. However, the 

main advantage of the assumption of a BEF quasi-infinite model is that it allows for 

the differential equation of motion for the beam to be solved using a convected, or 

moving, coordinate formulation (Andersen et al. 2001). This formulation allows the 

response of the vehicle and beam system models to be solved over a theoretically
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infinite time (and hence distance of travel). This is possible because, despite the 

fact tha t the track model is finite, it is formulated using a convected coordinated 

system as a quasi-infinite beam model.

Representing the railway tack system as a BEF is a simplification. Conventional 

railway track consists of two parallel continuous beams, the rails, which are fixed 

at regular intervals onto sleepers supported from below and from the side by the 

ballast bed medium (Esveld 2001). The presence of the discretely placed sleepers 

means tha t the track support is not uniform along its length. Investigations have 

shown tha t an equivalent continuous elastic foundation can be substituted with good 

approximation for the combined sleeper and ballast support (Hetenyi 1946). The 

track is modelled here as a single infinite Euler beam resting upon a continuous 

elastic foundation. The application of BEF models to railway dynamics problems is 

not uncommon in the literature (Chen & Huang 2003, Andersen &: Nielsen 2003).

The derived quasi-infinite beam model is initially validated for a number of cases 

where a comparison with exact analytical solutions is possible. Once this validation 

is completed, random irregularity of the vertical track profile is included in the 

calculations of the wheel-rail contact forces w'hich are a function of track profile 

irregularity and effectively determine the overall system response.

A frequency domain approach to the problem of discrete irregularities in the 

vertical profile, though useful, is not suitable in many cases. A frequency domain 

approach to the wheel-rail contact interaction involves a linearisation of the Hertzian 

contact spring about the nominal static wheel load. For low levels of surface rough­

ness this linearisation gives satisfactory prediction. Larger defects may give rise 

to contact forces of sufficient magnitude tha t the linearisation deviates excessively 

from the real Hertzian spring behaviour. In the worst case, a loss of contact be­

tween wheel and rail cannot be modelled by the linearised spring. In general, for 

the larger discrete defects, such as wheel flats or rail joints, the non-linear effects 

are found to be significant (Thompson et al. 2003). This study concentrates upon
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random irregularity, the effects of which do not in general cause the contact forces 

to vary greatly from the static case. However, a number of different random irregu­

larity spectra were considered, some of which contain relatively high frequency and 

high magnitude displacements. For this reason a time domain approach was deemed 

appropriate.

It was found tha t this track model did not produce accurate results when discrete 

irregularities such as wheel flats were applied to the contact area geometry. This 

effect was also observed by Dong et al. (1994), whose elastic BEF model produced 

contact force results tha t were in excess of twice tha t obtained from experimental 

data. It is suggested tha t lumping the sleeper mass to the rail largely overestimates 

the impact load. At high frequencies only a small amount of sleeper mass takes 

part in the impact. It is concluded by Dong et al. tha t the equivalent track mass 

(sleeper and rail mass combined) for BEF models should be taken as a function 

of the response frequencies. Because the frequency content of the input irregularity 

considered in this study is spread over a range of values a compromise value is chosen. 

The response to the lower frequency random irregularities is not as dependent on 

the equivalent mass.

Section 5.2 details the mathematical formulation of the finite difference beam 

model. The beam equation of motion is converted from an expression in terms of a 

cartesian coordinate to one in terms of a convected coordinate. This equation is then 

used as the basis of the finite difference beam model, which comprises appropriate 

mass, damping and stiffness matrices, and system forcing vector.

Before the beam model is applied to the calculation of contact forces arising 

from random track irregularity, the model is validated in Section 5.3. A number of 

tests are carried out to test the numerical beam model response against previously 

derived analytical solutions.

Calculation of the wheel-rail contact forces generated by the beam model are 

presented in Section 5.4. The rms values of the contact force processes are calculated
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for track profiles with various degrees of random irregularity.

Section 5.5 includes a comparison of the contact force values obtained using 

numerical analysis of the finite difference beam model with values obtained from 

the spectral approach using the model applied in Chapter 4.

5.2 Track M odel Form ulation

5.2.1 Equation of M otion in Convected Coordinates

The initial step in formulating the quasi-infinite beam model is to determine the 

equation of motion of an infinite beam. This equation is initially expressed in terms 

of a cartesian coordinate, and is then converted so that its expression is in terms of 

a moving coordinate.

The railway track system is modelled here as an infinite plane Euler beam with 

uniform Young’s modulus Eb and constant second moment of area Ib. The mass 

per unit length of the beam, which is also constant, is denoted /Jb- The beam 

is supported by an elastic Kelvin foundation with constant spring stiffness Kf and 

viscous damping 7f per unit length. Axial deformation of the beam is assumed not 

to take place.

A fixed coordinate X is assigned to the system where X is measured along the 

length of the beam axis. For the purpose of this initial formulation the beam is 

considered to be free of external loading with the exception of a moving and time- 

varying point force with magnitude P(t), which is located at the coordinate Xp(t). 

The point force moves at constant velocity c along the beam in the positive direction 

of the coordinate X (see Figure 5.1).

The equation of motion of the beam in the fixed coordinate system is

E I ^ ^  +  KU +  7U -H /iii =  P(t)d'(Xp(t) -  ct) 
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X Xp(t)

0 0 ^

Fig. 5.1: Infinite Euler beam on Kelvin elastic foundation

where u(X,t) is the displacement field. u(X, t) and ii(X, t) denote the beam velocity 

and acceleration. In terms of the fixed coordinate X, these are defined as

9u(X ,t) 9^u(X,t)
u(X ,t) =  u(X ,t) =  (5.2)

In applied mechanics, the Dirac function S{x) characterises the action of a unit force 

concentrated at the point x=0 (Ginsberg 2001). Referring to Equation 5.1, the 

moving force P(t) acts only at the point where Xp(t) is equal to the product of 

velocity and time, ct.

In the limiting case where the velocity is equal to zero, ie. a stationary load 

case, absorbing boundary conditions may be applied to a finite element or finite 

difference discretisation of Equation 5.1. However, in the general case the force is 

moving over an infinite continuum. Hence, this particular problem is better suited to 

analysis using a convected, or moving, coordinate system (Andersen et al. 2001). The 

equation of motion of the beam in convected coordinates is obtained by application 

of the Galilean transformation

X =  X — ct (5.3)
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This equation relates the newly defined moving coordinate x to the previously de­

fined fixed coordinate X in terms of both velocity and time. The partial derivatives 

of the respective coordinate systems are related as follows (Andersen et al. 2001):

d d

at2

dt

~~ at2

dt

-2c

'ax

9x9t
+c"

dy?

(5.4a)

(5.4b)

(5.4c)

The beam equation of motion in terms of the convected coordinate x is hence given 

by

„  T ( ■ ■  o  T D X f  \  / t :  r ^E b l b ^  + «,u + 7, (u  -  c -  j  + -  2 c ^  + c ^  j  =  P»(x) (5^5)

The Dirac function is now activated only at the point w'here the moving coordinate 

X is equal to zero. This is, at all times, the point of application of the moving point 

force. The displacement field is identical in fixed and moving coordinates as long 

as X and X describe the same material point, which is the case when the Galilean 

transformation. Equation 5.3, is applied.

5.2.2 F in ite  D ifference A daptation

The FDM is a numerical technique tha t is commonly applied in structural analysis. 

The theoretical basis of the method is described in detail by Ghali & Neville (1978). 

This technique allows the calculation of a numerical solution of the differential equa­

tion for the displacement or stress resultant for chosen points on a structure (Ghali 

& Neville 1978). These points are referred to as nodes, pivotal points or points of 

division. The numerical solution for the nodal displacements and stresses is obtained 

from differential equations which are applicable to the actual continuous structure.
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The m ethod of solution by finite differences generally requires replacing the 

derivatives of a function by difference expressions of the functions a t the nodes. 

The individual nodal difference equations relate the displacem ent a t th a t  node and 

nodes in its vicinity to  the external applied load.

Complex structures, such as the interactive railway vehicle and track  systems, 

often require th a t num erical analysis techniques be applied. In th is case the  finite 

difference m ethod was used to  generate appropriate  mass, dam ping and stiffness 

m atrices for the track model. The order of these m atrices is dependent on the  chosen 

num ber of nodes. Upon calculation of these system  m atrices the vehicle model was 

applied to  the track model and a tim e-stepping routine was used to  calculate a tim e 

history of the  dynamic response of bo th  system s under the assum ption th a t  the 

interactive relationship between the system s is modelled by the non-linear Hertzian 

spring .

Any num erical approach to  the solution of E quation 5.5 requires th a t  only a 

finite part of the beam  be considered. It is impossible to form ulate an exact model 

of a struc tu re  th a t is infinite in space. The model th a t is form ulated in th is chapter 

is therefore a quasi-infinite representation of a theoretically infinite s tructu re . For 

th is particular purpose, this finite region will be defined by the moving interval 

[x{ ,̂ x ^ ] where x characterises the convected coordinate system defined previously 

(see Equation 5.3). x^ and x^ are the term inal points of the  num erical quasi­

infinite beam  model. These beam  extrem es move at an identical velocity to  th a t of 

the  applied moving force.

In summary, it can be seen th a t, for the purpose of finite difference num erical 

modelling, the  beam  is separated into three d istinct regions. These regions are 

[ - 00, x^ ], [x ^ ,x + ] ,a n d  [x+,-hoo] (see Figure 5.2).

In order for the  model beam ’s dynam ic behaviour to  approach th a t  of a  theore t­

ically infinite beam, suitable boundary conditions m ust be applied to  the  num erical 

beam  model. These transm itting  boundary conditions, a t the extrem es of the  beam
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model, x,  ̂ and x j ,  are calculated so that the contributions of the two infinite half 

beams [—oo,x,^] and [x^,+oo] to the modelled beam, [x,^,xjj'], response are ap­

proximated as accurately as possible (see Figure 5.2).

/ / / / V / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

Fig. 5.2: Quasi-infinite beam reactions

The objective is to solve the differential equation of motion of the quasi-infinite 

beam (Equation 5.5) numerically. For the initial formulation of the numerical beam 

model, the loading is assumed to be a single time-varying moving point force (as in 

Figure 5.1). However, the complex dynamic loading induced by a moving railway 

vehicle requires tha t a model for the vehicle system be formulated also. In order for 

the governing differential equation of the beam model to be solved using the finite 

difference method it is necessary to adjust the beam stiffness matrix to allow for the 

influence of tha t part of the beam outside the modelled region. The overall system 

consists, not only of the beam which is to be modelled, but also the two infinite half 

beams outside the modelled region. Appropriate reactive forces must be applied at 

the interfaces between the respective regions.

The reaction forces, moment resisting and M+, and shear resisting and 

Q^, are modelled at the interfaces. The calculations for the reaction expressions 

for the beam boundary at the left hand extreme of the modelled beam, ie. at 

are described in Section 5.2.3. The beam stiffness matrix terms for the right hand 

boundary will be symmetrical to those at the left hand side.
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5.2.3 F in ite  D ifference B eam  M atrices

The finite difTerence stiffness matrix for a beam is based on the following static 

equation, where the deflection of a centrally located node, Uj, is related to the 

apphed load at tha t node, Fj (Ghali &: Neville 1978).

Fi =  ^ ^ ( u i _ 2  -  4ui_i +  6ui -  4ui+i +  Ui+2 ) (5.6)

Consider the discretised beam depicted in Figure 5.3. The beam nodes are 

denoted ni, U2 , ..., n„ where n is the total number of nodes assigned to the numerically 

modelled part of the beam. The vertical displacement at the node Uj is denoted Ui. 

From the third node inwards the standard finite difference expressions are adequate 

(see Equation 5.6). This is due to the fact tha t the finite difference force-deflection 

relation for a centrally located beam node requires the terms for the deflection at 

the node in question and of the two immediately adjacent nodes at either side (Ghali 

& Neville 1978). However, the first two nodes, nodes ni and n 2 , not having pairs of 

two adjacent nodes, require that special force-deflection relations be derived. This 

also applies to the nodes n„-i and n„ at the right hand extreme of the quasi-infinite 

beam.

.............................

TOP
777//7/////////////////y/ / / / / / / / / / / / / / / / / / / / / /

Fig. 5.3 ; Discretisation of infinite beam into nodal masses

The key observation here is tha t both M“ and Q“ , the moment and shear re­

sistance applied by the external infinite half-beams, are functions of the slope, 6 *1 , 

and deflection, ui, of the beam at the point x^ (see Equation 5.7). This discrete
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end-point is common to  both  the modelled finite difi^erence beam  and the infinite 

half-beam [—o c ,x ^ ]. The quantities and Q7  can be expressed approxim ately 

in term s of the vertical displacem ent of the first two nodes of the modelled section 

of the beam. This approxim ation is key to  the modelling of the quasi-infinite beam.

Q r =  f(u i,0 i)  (5.7a)

M r =  f (u i,^ i)  (5.7b)

If h is the distance between the equally spaced nodes then  9 \  may be approxim ated

by

9, =  ^  (5.8)

The node a t the left hand extreme of the  beam  model is considered in isolation 

initially (see Figure 5.4). We consider P i to  be a hypothetical constant force, ap­

plied vertically, at the first node nj. The continuously sprung foundation has been

discretised so th a t the node ni is supported  by a single spring kn. The equilibrimn

equation at th is node is given by

P 1 +  Q i+ i  — Qr +  rifi (5-9)

where Rn is the force in the discretised foundation spring approxim ating to the 

continuous foundation stiffness, and is given by

R„ =  kfiui (5.10)

Q, , 1 is the  internal beam  shear force between the nodes ni and i \ 2 - The finite
l i -  2

difference fornm lation requires an expression for the nodal force in term s of the 

nodal displacem ent and so Equation 5.9 is rearranged to  give

P i  — Qr +  P-fi “  Q i+5 
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F ig . 5 .4  : Forces at first finite difference node at left-hand extreme

Rfi is a known function of Ui (see Equation 5.10) and does not require further 

manipulation. T he analytically derived expression for QjT as fmiction of the beam  

end displacement and rotation (Hetenyi 1946) is modified by applying Equation 5.8 

and now takes the following form

where k is the foundation stiffness per unit length. The final com ponent of Equation  

5.11 is the term containing the shear force between the first two nodes, Qi +i -  This 

force is approxim ated as a linear function of the bending moment at the first two

(5.12)

A is the inverse of the beam ’s characteristic length and is given by

(5.13)

nodes, Mi and M2 . The expression for the shear force between the nodes is given



The bending moment at the first node is equal to the restraining moment at the 

beam end, M“ . Using the analytical formula derived by Hetenyi and Equation 5.8 

Ml is given by

Ml =  M ; =  ( 2\^El +  2 ^ ^  U i  -  ( 2^ ^  U2 (5.15)

It is possible to describe M2 using the standard finite difference equation.

FT
M 2  =  ( ' * 1  ~  2u2 +  U3 ) (5.16)

Substituting Equations 5.15 and 5.16 into Equation 5.14 the following finite differ­

ence expression for Q i+i is obtained

/  ^A^EI ^AEI E I \  /  AEI ^ E I \  /  E l ', ,

All of the terms on the righthand side of Equation 5.11 have now been ex­

pressed in terms of vertical nodal displacements. The final finite difference force- 

displacement eqTiation for the first node is as follows:

.A^EI ^AEI E I \  
P i =  ( kfi +  4A El +  4 ^ ^  +  2 ^

, ^A^EI ^AEI ^ E I \  / E l ' ,  ,
+  ( _ 2 — (5. 18)

The nominal force has been described in terms of the first three beam displacements. 

A similar procedure based on the same approximations is followed for the second 

node, the resulting force-displacement relationship is a function of the first four 

beam node displacements and is given by
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The finite diflference stiffness m atrix  for the quasi-infinite beam, [kb], is thus 

calculated using the standard  finite difference expressions for the centrally located 

nodes and the derived expressions (Equations 5.18 and 5.19) for the two nodes at 

the extrem e ends of the beam. The m atrix  is most clearly expressed as the sum of 

three com ponent m atrices (see Equation 5.20). The first m atrix  in the expression is 

the standard  finite difference m atrix  for a  beam  structure. The second comprises the 

contribution of the  foundation stiffness to  the overall beam  stiffness while the th ird  

m atrix  contains the contributions due to  the effect of the two infinite half beams 

a t each end of the  modelled beam. This th ird  m atrix  contains term s relating only 

to  the first and last two beam  nodes. It should be noted th a t the spring stiffnesses 

kfi and kf„ are equivalent to while kf2 and kfa_i are equivalent to  ftfh. These 

springs are simply spring elements calculated as a discretised approxim ation of the 

continuous foundation stiffness.



kb
Ebib
h3

1 - 2 1 0 . . .  0

- 2 5 - 4 1 0

1 - 4 6 - 4 1 0

0 1 - 4 6 - 4 1 0

0 1 - 4 6 - 4 1 0

0 1 - 4 6 - 4  1

0 1 - 4 5 -5

0 1 - 2 1

Kfh 0

0 Kfh 0

: 0 Kfh 0

: 0 Kfh 0

0 Kfh 0 :

0 Kfh 0 :

0 Kfh 0

Ebib

4A3 +  4 f + 2 j ^  _ 2 ^ - 2 j ^  0

o o A

o Â  o

' h

(5.20)
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The finite difference mass m atrix for the beam structure, [nib], is a diagonal 

matrix with each entry equal to the total mass of the beam divided by the number 

of nodes. If the nodal mass is denoted m„ then the mass matrix takes the form of 

Equation 5.21. The mass matrix is not adjusted but is a simple discretisation of the 

beam mass at the beam nodes.

n ib

m„ 0 . . .  0 

0 m„ . . .  0
(5.21)

0 0 . . .  m„

The formulation of the damping matrix [cb] beam system is dependent on the 

nature of the beam damping. Equation 5.5 can now be written in terms of the beam 

mass, damping and stiffness matrices, and the appropriate system vectors, as

[kb] {u} +  [cb] ( ~  c }  ) +  l“ b] ( {ii} -  2c

(5.22)

The vector {P} has value zero at all nodes bar the node of application of the point 

force. As the equation of motion is formulated in terms of the moving coordinate 

X, the particular node of application of this force does not change over time. The 

partial derivatives are calculated as functions of the beam ’s nodal deflections and 

velocities and are given by the following relations:

5u

du 
dxdt 

d^u 
dx^

—  ( - U i _ i  +  Ui+i)

— ^  ( - U i _ i  +  Ui+i) 

= ^  (ui_i -  2ui + Ui+i)

(5.23a)

(5.23b)

(5.23c)

Equation 5.22 can be solved numerically if the initial conditions of the beam model 

are known.
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5.3 M odel V alidation

The objective of the analysis was to calculate the wheel-rail contact forces that 

are generated by a railway vehicle as its moves along a length of randomly irregular 

railway track. The forces are a function of the relative wheel-rail non-linear Hertzian 

spring displacement. The results obtained are compared with the corresponding 

linear spring results that were calculated in Chapter 4. The effect of linearising the 

contact spring was thus observed.

A number of preliminary analyses were carried out as a means of validating 

the convected coordinate quasi-infinite numerical track model formulated in Section 

5.2. Initially, the static beam response was considered. These static tests were 

followed by analysis of the beam response to a moving constant force. The dynamic 

system response was calculated throughout by implementing a numerical fourth 

order Runga-K utta routine which generates a time-history of the dynamic response 

of the beam, and later the vehicle, models.

The beam model parameters used are based upon values for a single BEF railway 

track model used by Esveld (2001). The mass per unit length of the beam, //b, 

is 119kgm~^ which accounts in the model for both the mass of the rails and the 

discretely spaced sleepers. The product of the beam material Young’s modulus and 

the section 2"^ moment of area, Ebib, is 4.5 x 10®Nm .̂ The foundation stiffness, Kf, 

is 4.0 X 10^Nm“  ̂ and the foundation damping, 7f, is 1.2 x  lO^Nsm"^.

The initial beam model validation tests were carried out under a static force load 

case. This type of test is relevant only to the stiffness matrix. The results of these 

tests are compared to the analytical solutions that have been detailed by Hetenyi 

(1946). The total length of the finite difference part of the infinite beam that was 

modelled was 20m. The quasi-infinite beam mass was discretised into 201 equally 

spaced nodes equating to a nodal spacing of 0.1m.

The static response of quasi-infinite beam was found to match accurately the
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theoretical deflection of an infinite beam to within 0.5%. Larger percentage discrep­

ancies occurred only close to the theoretical points of zero deflection, rotation and 

bending moment. The comparison is illustrated graphically in Figure 5.5.

The initial dynamic test involved numerically solving the beam response for a 

single moving point force. The force is initially situated at the mid-span of the 

finite difference quasi-infinite beam. The force then commences its movement from 

‘at rest’ initial conditions. The static deflection of the beam under the equivalent 

bogie mass is calculated and apphed to the system prior to commencement of the 

numerical computation process. The nature of the convected coordinate solution 

ensures that, in effect, the force does not move from the central node throughout 

the numerical simulation. A detailed analytical solution for the problem of an infinite 

beam traversed by a moving point force is presented by Fryba (1999). For this type 

of problem there comes into existence a quasi-stationary state in which the beam is 

at rest relative to the moving coordinate system. In the quasi-stationary state the 

solution for the beam deflection is given by

where x is the moving coordinate defined previously in Equation 5.3, Uq is the static 

beam deflection, and u(x) is the dimensionless deflection of the beam. Fryba also 

defined two additional dimensionless parameters, a and /?, the dimensionless velocity 

and damping parameters respectively.

The dimensionless beam deflection, u(x), was calculated numerically over a prac­

tical range of velocities using the quasi-inflnite beam model formulated previously.

u(X, t) =  uou(x) (5.24)

(5.25)

(5.26)
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These deflections were then  com pared w ith their analytical equivalents. For the 

track model param eters specified the value of the constant j3 is 0.8697. One initial 

observation is th a t this particu lar dam ping value generates dimensionless deflections 

a t the force contact point, ie. where x =  0, th a t are smaller than  unity. This im­

plies th a t the quasi-stationary  deflection of the beam  a t the contact point is smaller 

th an  the static  deflection. This characteristic applies to  all force velocities for these 

particular beam  model param eters. However, it should be noted th a t the maximum 

track deflection does not necessarily occur a t the contact point. Over the range of 

velocities considered here the  m aximum  deflection takes place ju st behind the point 

of contact.

The point force was initially a t a s ta tionary  initial condition, and was accelerated 

instan tly  to the velocity required. The initial beam  deflection was its sta tic  position 

under the point force. T he instantaneous acceleration of the force to  a non-zero 

velocity gives rise to  a sta rting  transien t which takes some tim e to be dissipated. 

Once the transient has been dam ped out the beam  a tta ins its quasi-stationary state. 

The dynamic quasi-stationary  s ta te  response of the finite difference numerical model 

was found to  approxim ate to  the analytically predicted response. This comparison is 

illustrated  in Figure 5.6 for a  point force velocity of 60ms“ ^ Both the dimensionless 

defiection and velocity are considered.

It should be noted th a t  the agreement between the analytical and numerical 

solutions was validated for the 201 noded model only a t realistic railway vehicle ve­

locities. At higher velocities the num erical quasi-stationary beam  response diverges 

from the analytical solution. Figure 5.7 illustrates th is divergence for a point force 

moving at 250ms“ ^ Further expansion of the beam  model to 40m length and 401 

nodes resulted in convergence of the  respective solutions. This indicates th a t a t 

higher velocities sufficient wave reflection occurs a t the beam  extremes to  distort 

the numerical analysis results.

The next step in checking the validity of the convected coordinate model was the
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application of a moving sprung load model to the beam system. The application 

of a moving vehicle model adds complexity to the dynamic solution because the 

equations of motion of both coupled systems must be solved interactively. In effect 

the vehicle model is subjected to vertical forces at each of its wheelsets while the 

beam model is subjected to equal and opposite time-varying vertical point forces. 

Fryba (1999) draws the im portant conclusion that, for the infinite BEF in the quasi- 

stationary state, the load exerts no inertia effects on the system response.

A railway vehicle possesses multiple wheels as opposed to the single point contact 

models tha t have been tested thus far. If we consider a single two-axle bogie model 

and model the individual axle loads as point forces the beam deflection will not, 

according to the analytical solution, be identical at each contact point in the quasi- 

stationary state. This is due to non-symmetry of the beam deflection about the 

point of action of the load at non-zero velocities. Two individual point forces, 3m 

apart and each of magnitude lOOkN, were applied to the numerical beam model. 

The 20m, 201 node beam was used for this purpose. The response was calculated 

over the same range of realistic railway vehicles as previously (0 to 60ms“ ^). The 

results were found to be in good agreement with the analytical predicted response. 

The comparison is illustrated for a force velocity of 60ms'^ in Figure 5.8. As before, 

when the vehicle velocity was increased significantly the analytical and numerical 

sets of results were found to diverge for the 201 node model.

For the purpose of the final beam model verification, a four degree-of-freedom 

bogie model was applied to the numerical beam model (see Figure 5.9). The bogie 

properties are based upon those of a locomotive railway vehicle. The bogie mass is 

15,260kg and its moment of inertia is 13,665kgm^. The two wheelsets each have a 

mass of 2670kg. A pre-load of 250kN, representing the gravitational weight of the lo­

comotive body, is also applied vertically to the bogie mass. The mathematical model 

of the contact mechanism between wheel and rail is characterised by the non-linear 

relationship of equation 5.27 (Nielsen &: Igeland 1995). The relationship between
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tlie  linearised Hertzian spring stiffness kn, and the relative wheel-rail displacement 

is given by

{
C H ( x w - X r ) 5 ,  f o r x w - x r > 0 ;

(5.27)

0, else.

where ch is the non-linear Hertzian spring stiffness w ith  units [Nm“ ^/^], x^ and 

Xr are the respective wheel and ra il displacements. The value of 93 x 

is assigned to the non-linear stiffness, ch, in this case. This model for the spring 

contact is easily interpreted physically. The spring stores zero energy in the event 

of loss of contact between wheel and rail. However, compressive energy may be 

stored in the spring due to the indentation of the wheel in to the ra il surface when 

the relative displacement is positive.

As expected, the beam model’s quasi-stationary response (once all of the starting 

transients had been damped out) to  the moving bogie model was identical to the 

equivalent response to two moving point forces in the zero to  60ms“  ̂ velocity range.
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Fig. 5.9 : Beam on elastic foundation traversed by four-degree of freedom vehicle 

model

This quasi-stationary simulation dynamic response provides validation of the 

finite difference beam model formulation prior to further use of the model in the 

investigation of random vertical track profile irregularities.

5.4 Effect o f R andom  V ertical Profile Irregularity  

5.4.1 Introduction

The coupling between the vehicle and track systems has been accomphshed through 

the calculation at each time-stepping iteration of the interactive forces between the 

wheelsets of the vehicle model and nodal contact points of the the beam model. 

Guassian random irregularity of the vertical profile of the railway track system is 

now considered. Random profiles are generated numerically from smoothed PSD 

functions using trigonometric series. An identical vehicle model to that considered 

previously in Section 5.3 is applied.

The trigonometric series used to generate the random profiles is expressed in 

Equation 5.28, where <̂ (x) is the profile deviation from its mean value at the coor-
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dinate x and Sxx(^) is the one-sided PSD function characterising the irregularities.

N

^(x) — v^2Sxx(^i)AQiCos(QiX — (3) (5.28)
i = l

where f3\ is a phase angle randomly distributed between zero and 27t and Q. is the 

route frequency. An value of N of 2000 was chosen based on a previous study by Au 

et al. (2002).

The profiles generated were 1500m in length. This particular distance was cho­

sen because profile variances of 1000m were found to match, within less than 5%, 

the variances of the parent PSD functions. Shorter profile lengths resulted in vari­

ances that deviated excessively from the PSD function variances. While 1000m was 

satisfactory to obtain an acceptable profile variance, 50% extra distance was con­

sidered for the simulations to allow starting simulation transients time to damp out 

sufficiently. The initial parts (20 metres for every ms“^velocity) of the time-histories 

were not considered in the calculation of the contact force rms values for the same 

purpose.

5.4.2 Comparison of Empirical PSD  Functions

Initially, railway track profiles with FRA Class 4 and Class 1 random vertical irreg­

ularity were considered. The vehicle model velocity was 40ms“^ The time-histories 

of the Hertzian spring contact forces at the front and rear wheelsets are recorded. 

The contact forces are illustrated in Figure 5.10 in their quasi-stationary state, ie. 

after the initial starting transient in the numerical simulation has been damped out. 

The static contact force per wheelset for this vehicle model is approximately 226kN.

Different PSD functions representing random railway track irregularity have been 

applied in the various analyses of railway vehicle-track interaction in the literature. 

The FRA PSD functions are the most prevalent (Au et al. 2002, Wu & Yang 2003). 

Lei k. Noda (2002), in their study of the vehicle-track coupling system, took their 

PSD function from America Railway Standard (ARS) where line grades from one
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to six are specified. Once again, like the FR A  functions, Grade 1 is the worst line 

and 6 the best. The APlS PSD function is given by

S x x ( n )  = (5.29)
( f i 2  +  Q 2 ) Q 2

where k and Qc are constants equal to 0.25 and 0.131m~^ respectively. The upper 

and lower frequency boinids over which the PSD is defined are 0.02 and 2m “ ^ It is 

the variation Ay th a t controls the line standard . The two irregularity PSD functions, 

FRA and ARS, are illustrated  in Figure 5.11.

A sample of the  contact force variation resulting from this particular PSD func­

tion (Grades 1 and 4 once again) is ihustrated  in Figure 5.12. The ARS PSD 

functions give rise to  much greater contact force m agnitudes and higher frequency 

content than  the FRA functions. This result is expected due to  the greater rms 

value obtained through integration of the ARS curve. However, it does illustrate 

the discrepancies th a t exist between diff^erent track roughness PSD functions.

The ARS Grade 1 profile results in a contact force rms of 12.36kN while the
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Fig. 5.12: Contact force variation at velocity of 40ms  ̂ for ARS PSD functions
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Grade 4 profile equivalent is 7.88kN. The values for the FRA Class 1 and 4 profiles 

are 0.459kN and 0.218kN respectively, significantly smaller than the ARS irregular­

ities. In addition to the higher variance the frequency characteristics of the contact 

force waveforms differ greatly. Figures 5.13, 5.14, 5.15 and 5.16 illustrate the PSD 

functions for the wheel-rail contact forces for the four characteristic profiles consid­

ered.

The contact force PSD frequency distributions are all concentrated in a low fre­

quency range. This concentration is due to the track irregularity input frequency 

characteristics which are low frequency. Note once again that the continuous BEF 

model does not include the effect of discretely supported sleepers which would gen­

erate harmonic impulses at higher frequency levels (Lei S z  Noda 2002).

In the case of the ARS profiles it is noticeable that there is a visible peak in 

the contact force PSD at approximately lOHz. This equates approximately to the 

natural frequency of vibration of the bogie mass itself. There is also a lesser peak at 

a slightly higher frequency corresponding to the natural frequency of bogie rotation 

about its centre of mass.

The effect of velocity is significant upon considerations of contact force process 

response. A similar series of analyses was carried out for a vehicle velocity of 70ms“ ^ 

The contact force rms values for the Class 1 and 4 FRA profiles increased to 2.43kN 

and 1.1 SkN respectively. The maximum contact force observed for the 40ms“  ̂ ve­

locity analysis was approximately 227kN while this value increased to over 230kN for 

the case of 70ms“  ̂ velocity. This effect is more pronounced for ARS PSD generated 

profiles. The maximum observed contact force exceeded 300kN for the Class 1 track 

while the maximum for the Class 4 track was approximately 286kN. All variance in 

contact forces takes place relative to a static force of 226kN.
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5.5 Effect o f N on-linear H ertzian  Spring

A comparison is made here between the mean square contact forces calculated using 

the finite difference beam model and the equivalent forces calculated by applying the 

frequency domain approach of Chapter 4. The obvious difference between the two 

model formulations is in the modelling of the wheel-rail Hertzian contact. The pur­

pose of this is to determine the validity of the Hertzian contact spring hnearisation 

for applications involving random rail irregularity.

The frequency domain model is hnear. However, the hnearisation of the Hertzian 

contact spring is dependent upon the static contact force Fgtat- The linear spring 

constant, kn is calculated from the equation ((Esveld 2001):

kn =  ^  =  (5.30)

It follows from Equation 5.30 tha t the application of the 250kN preload that 

was applied to the bogie model in this Section 5.4 results in a different kn value. 

The frequency domain analysis was therefore carried out for two different kn values, 

1.43 X 10®Nm“  ̂ and 1.88 x 10®Nm“ ,̂ corresponding to models without and with 

the preload applied respectively (Fgtat values of 101.043kN and 226.043kN, ie. tare 

and fully laden). The transient analysis of the quasi-infinite beam model was also 

carried out with and without the application of the preload.

While the analyses described in Chapter 4 were based on a similar mathematical 

model, the model parameters were based on a flatbed wagon vehicle. In this case, 

the model parameters are those of a single bogie. The difference between the contact 

force process variances at the front and rear wheelset is negligible at the velocities 

tested for these bogie model parameters. This is in contrast to the contact forces 

for the flatbed wagon model, which showed significant differences between contact 

forces at the respective wheelsets.

The comparison was carried out using FRA and ARS Class 4 profiles and bogie
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models with and without the 250kN preload. The FRA data showed good agree­

ment both between the frequency and time domain analyses and regardless of the 

imposition or otherwise of the 250kN preload (Figure 5.17(a)). This is especially 

true at the lower velocities while at higher velocities there is small deviation. Note 

tha t the frequency domain results are, as expected, identical, due to the linearity of 

the system.

From Figure 5.17(b) however, it is observed that there is a more significant 

effect for the ARS profile. The numerically calculated rms values deviate from the 

equivalent frequency domain results. This deviation is greater when the 250kN 

preload is not included in the numerical analysis. Comparison of the numerical 

results as a percentage of the equivalent frequency domain results shows that the 

error in the assumption of a linearised Hertzian contact spring is more significant 

for the higher frequency ARS profile.

It is thus concluded that the linearisation of the Hertzian spring is less valid for 

higher frequency random excitation. The greater deviations of the numerical analysis 

results from the frequency domain results in the case of the higher frequency FRA 

profiles demonstrates this, as does the general trend of greater deviation at higher 

velocities.
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5.6 O bservations and C onclusions

The track profiles tested throughout this chapter have been numerically generated 

based on smoothed PSD functions described by empirical formulae. The resultant 

contact force time-histories varied greatly depending upon the profile PSD tha t was 

applied in a particular instance. Figure 5.18 illustrates the significant differences 

between the Class 4 profiles generated using the FRA and ARS PSD functions over 

a 100m track length. The rms displacements for the two functions vary between 

2.764mm (FRA) and 9.164mm (ARS), which is significant. However, also significant 

is the different frequency content of the PSD functions which is readily observed 

by inspection of the numerically generated profiles. The ARS profile contains a 

significantly greater higher frequency content. The interaction between wheel and 

rail, being of high frequency characteristic, is more susceptible to the ARS PSD 

function excitation, hence there is greater variance of the contact force process for 

the ARS function.

40

— FRA Class 4

E
E

-10

-20

-30
70 80 900 10 20 30 40 50 60

Distance [m]

Fig. 5.18: Sample vertical track profiles 100m in length

The study has shown that random irregularities can generate contact forces that
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are significantly in excess of the static forces. This was not the case for the FRA 

spectra. However, there are a great number of PSD functions tha t have been used 

in analysis of the wheel-rail interaction. Fryba (1996) cites a number of these em­

pirical functions including those used by the Czechoslovak State Railways (CSD) 

and French National Railways (SNCF). When the ARS PSD function was applied 

to the finite difference quasi-infinite beam model the contact force variation was 

significantly greater than for the FRA PSD function.

It has been shown tha t the assumption of a linearised Hertzian spring for the 

frequency domain analysis of Chapter 4 is valid for low frequency random profile 

irregularity. However, the assumption is not valid for higher frequency irregularity. 

This is especially true for lower static wheel-rail contact forces where the Hertzian 

linearisation of the Hertzian contact spring is more sensitive to varying force (see 

Figure 5.19).
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O.OOE+00
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Fstat [kN]

Fig. 5.19: Variation of linearised kn value with static load

The primary drawback of the quasi-infinite beam model is tha t it does not in­

clude the effect of discrete sleeper spacing. The assumption of a continuous elastic
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foundation, though sufficient for the investigation of the system response to random 

irregularities of relatively low frequency, is not suitable for application to  high fre­

quency input at the wheel-rail interface. However, the model is advantageous in that 

the non-linearity of the Hertzian spring can be easily incorporated and the system 

response calculated over any desired length of railway track.
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Chapter 6 

Finite Element Track M odel with  

Applications to D iscrete Defects

6.1 Introduction

The analyses detailed in the previous three chapters (3, 4 and 5) have considered only 

the specific effects of random railway track irregularity on the dynamic vehicle-track 

interaction. This chapter moves on from the investigation of these random track 

defects to consider discrete irregularities in the wheel-rail contact geometry. The 

effect of a number of different types of geometric imperfections on the interactive 

wheel-rail contact process are considered in this study. The particular irregularities 

considered are vehicle wheel flats, unsupported sleepers, and dipped joints. These 

imperfections considered may both be categorised as discrete, or isolated, irregu­

larities. One of the defects considered, the wheel flat, may be further categorised 

as periodic. This periodicity occurs due to the constant repeated rolling of the flat 

part of the wheel over the track surface, the frequency of excitation is dependent 

upon the wheel radius and the vehicle velocity. However, when the effect of a single 

impact is considered the defect may be classified as isolated. The effect of soft and 

stiff ballast beds on the system response is also investigated.
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The FDM quasi-infinite beam track model developed in Chapter 5 has proved 

adequate for the purpose of modelling the wheel-rail contact forces tha t occur as a 

result of low frequency track irregularity. The empirical PSD functions that have 

been specified by the FRA and ARS for random irregularity can be categorised as 

such. For higher frequency events, however, it is found tha t the resultant modelled 

contact forces deviate substantially from previously published results (Dong et al. 

1994). In the specific case of wheel flats the impact factors numerically calculated 

were found to be far in excess of previously published estimates (Dong et al. 1994, 

Thompson et al. 2003). This deviation may be due to a number of reasons, but is 

primarily a resultant of the simplification of the multi-layer track-sleeper system as 

a single beam. Dong et al. (1994) suggest that only a small part of the sleeper mass 

can take part during impact at these types of high frequency events. As a result, 

the lumping of the sleeper mass with the rail largely overestimates the impact loads. 

Hence, a new track model, incorporating separate rail and sleeper components, is 

developed here for the purpose of investigating the effect of high frequency discrete 

type irregularities.

I 'he  finite element method (FEM) is used as the mathematical basis for mod­

elling the railway track system. The track is modelled as a continuous beam using 

I ’imoshenko beam elements supported at discrete intervals. According to a review 

completed by Knothe &: Grassie (1993) such a model is appropriate for a frequency 

range up to about 2.5kHz, a range that is adequate for modelling the dynamic effects 

of wheel fiats. Positioned at the aforementioned discrete intervals are lumped point 

masses representative of track sleepers. The track is supported above the sleepers 

by means of railpads; these components are modelled as discrete spring-damper ele­

ments. The track ballast bed is assumed to lie upon an underlying rigid foundation. 

The ballast itself is discretised by a series of spring-dampers, with characteristics 

similar to the pad elements, situated directly below the sleepers (see Figure 6.1).

All results generated throughout the chapter are derived using time domain
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analyses. Numerical solutions of the governing differential equations of motion of 

both vehicle and track systems are obtained by means of a time-stepping technique. 

The fourth order Runge K utta method is applied for this purpose throughout.

6.2 Track S ystem  M odel Form ulation

6.2.1 M odel A ssum ptions

Prior to proceeding with the formulation of the computational models of the railway 

track a number of assumptions are made regarding the dynamic system models of 

both the track and vehicle.

1. The entire system model is planar and the dynamic responses of both the track 

and vehicle models are calculated solely in the vertical plane, ie. only one half 

of the vehicle and track structures are modelled. Hence, an initial assumption 

of symmetry of the system is made and the respective mass, damping and 

stiffness parameters from both sides of a three-dimensional vehicle are added 

appropriately;

2. The dynamic responses of both the track and vehicle models are calculated 

as unique functions of the wheel-rail contact forces tha t occur at the wheel- 

rail coupling interface. As a result the dynamic load input to both systems 

takes place in the vertical direction only, ie. only vertical dynamic loads are 

considered in the model;

3. The standard Hertz expression for two elastic cylinders in perpendicular con­

tact is applied to calculate the magnitude of the interactive contact forces. 

A non-linear Hertzian spring stiffness, ch, of 100 x 10®N/m^/^ is assumed 

throughout;

4. The track rail is considered as a finite series of individual beams of finite length. 

The rail is supported at regular intervals by massless spring damper elements
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modelling the rail pads. These elements are, in turn, supported upon discrete 

sleepers. The railway track ballast is represented by discrete, massless springs 

at each of the sleepers. The model is formulated such that the positions of the 

sleepers coincide with the Timoshenko beam element nodes. The sleepers are 

therefore placed at appropriate nodes of these beam elements;

6.2.2 Finite Elem ent M atrices

Unlike the previous chapter’s quasi-infinite beam model this structure is finite in 

space. This conceptual track model is illustrated in Figure 6.1. The rail model 

boundary conditions are such tha t the nodes at both beam model extremities are 

free in both translation and rotation. It is ensured throughout the analyses tha t 

the dynamic response is considered at a sufficient distance from the beam extremes. 

This is achieved by keeping the track model boundaries at a sufficient distance from 

the load application points.

Et, It,At, Pt

m

Fig. 6.1: Railway track model

The track model is made up of plane Timoshenko beam elements with bending 

stiffness Erir and shear stiffness TrGfAf. Bending and shear strains are continuous at 

all points within this beam model. The Timoshenko beam element differs from the
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Bernoulli-Euler element in that, while both have identical degrees of freedom, the 

Timoshenko model includes a first order correction for transverse shear flexibility. 

The extent of this flexibility is dependent upon the rail steel shear modulus Gr and 

the shear area of the rail section, TrAr (Tr is the shear coefficient). The Timoshenko 

beam element is a four degree of freedom element with nodal coordinates described 

as follows:

=  (131)

where u® and are the elemental vertical displacement and rotation of the beam 

at node n.

The elemental stiffness matrix for the Timoslienko beam element, [ k ] e ,  is given

by

12 6Le -1 2 6Le

E r i r 6Le L2(4 +  $) -6Le L2(2 -
L 3 ( l + $ ) -1 2 -6Le 12 —6L

6Le Ll{2 -  $) -6Le L2(4 +

where Le is the elemental length and <J> is a constant given by

^  (6 .3)
T.G,A,L2

The Timoshenko mass matrix, [ m ] e ,  is composed of the standard Bernoulli-Euler 

beam mass matrix and an additional component tha t allows for the rotary inertia 

under the Timoshenko beam assumptions regarding shear.
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mL Pr Aj-Le
420

156 22Le 54 -13L ,

22Le 4L^ 13Le -3Le^

54 13Le 156 -22L ,

-13Le -3L^ -22Le 4L2

+ P r i r

30Lp

36 3Le -1 2  3Le

3Le 4L2 -3L e -L 2

- 1 2  -3L e 36 -3L e

3Le - L l  -3L e 4L2

(6.4)

An equivalent Bernoulli-Euler beam model stiffness matrix may be derived from 

this matrix by taking a very large value for the shear modulus. Similarly, the 

Bernoulli-Euler mass matrix is obtained by dropping the rail rotational inertia, Ir 

in the mass matrix.

The spring-damper elements of the track model behave linearly in compression. 

However, provision is required to be made in the model, in some cases, for rail lift-off 

from the sleeper and sleeper lift-off from the ballast (Dong et al. 1994). When either 

of these situations occur the track system matrices are adjusted accordingly so tha t 

the appropriate damping and stiffness values are set to zero. The track and sleeper 

displacements are checked and the appropriate values of the spring and damping 

constants applied at every time-step for this purpose.

For reference purposes, the values for the track system parameters are similar to 

those applied by Lei &: Noda (2002). The properties of the rail section and other 

applicable parameters are listed in Table 6.1. These properties are based on the 

CEN design rail section 56 E 1 (previously RT113A).

6.2.3 Steady State R esponse

The so-called steady state interaction is an idealised situation in which the rails are 

perfectly smooth, the wheels have no defects, the track structure is uniform and the
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P a ra m e te r Sym bol U n it V alue

Rail cross-section area A, m^ 7.17 X 10“^

Rail second moment of area I r m^ 2.35 X 10“^

Young’s modulus E r Nm-2 2.07 X 10“

Shear modulus G, Nm-2 81.0 X 10*̂

Shear coefficient Tr - 0.34

Rail mass per length Mr kgm“ ^ 56.0

Rail material density P r kgm“^ 7.810 X 10^

Rail pad stiffness K Nm“ ^ 2.8 X 10*

Ballast spring stiffness kb Nm“ ^ 4.66 X 10'

Rail pad damping Cp Nsm“ ' 3.0 X 10^

Ballast spring damping Cb Nsm“ ^ 4.0 X 10^

Sleeper mass m s kg 250

T ab le  6.1; Track model parameter values
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vehicle structure is perfectly symmetric (Hou et al. 2003). The latter condition does 

not apply to this analysis due to the planar nature of both the track and vehicle 

models. The steady state system reaction provides information on the minimum 

variation in the dynamic forces generated as a railway vehicle moves along a track. 

The steady state response of the railway-track vehicle system is analysed here ini­

tially as a means of vahdating the system model prior to incorporating geometric 

contact area defects. It is also important to observe the steady state response as the 

steady state dynamics can influence the effect of these defects.

The total length of the railway track model is 42m (or 70 sleeper spacings). How­

ever, in order to minimise boundary effects within the track system model, the track 

and vehicle responses are recorded only over the central section of the beam, at a 

minimum of 15m (25 sleeper spacings at 0.6m each) from the track model extremes. 

Dukkipati & Dong (1999) suggest that the steady state interaction is usually ob­

tained after the vehicle has travelled about 4 to 5 sleeper spacings in the conventional 

train speed range. At higher speeds it requires a longer distance to reach the steady 

state. Further, Lei & Noda (2002) state that previous computation experience has 

shown that a 20m distance from the rail ends is required for the boundary effects of 

the finite track model to be considered negligible. As this 42m long track model is 

not of sufficient length to fulfill this criterion a number of comparative preliminary 

tests were carried out using progressively shorter track models. Although 20m was 

suggested by Lei k, Noda (2002), these tests showed that 15m was adequate for this 

purpose. At this distance, significantly different results were not observed in com­

parison to longer track models. This reduction in size of the track model matrices 

enabled the simulations to be carried out in a significantly shorter length of time. 

It is assumed throughout this study that all starting transients that may have been 

induced by initialising the vehicle motion have been sufficiently damped out, and 

that boundary effects are negligible, by the time the vehicle has travelled to the 15m 

point along the track model.
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The FE  Timoshenko beam  elements are, for this purpose, form ulated such th a t 

their length is equal to  one half of the sleeper spacing, 0.3m. This is the minimum 

num ber of elements th a t can accurately describe the track deflection at interm ediate 

points between sleepers as a function of the nodal deflections and rotations. W hen 

a model w ith a single element between each sleeper, similar to  the model of Lei &: 

Noda (2002), was tested, it is found th a t the correct displacem ents a t interm ediate 

points in the element cannot not be determ ined from the shape functions.

The track model response is initially calculated under the action of a single 

moving constant force equivalent to a 15,192kg mass. This is the simplest possible 

moving load case. Figure 6.2(a) illustrates the track  displacement response a t the 

point of application of the force. Rail lift-off from sleepers and sleeper lift-off from the 

ballast are not considered here, ie. the  spring dam per elements of the track  system 

model behave perfectly linearly in both  tension and compression. The dom inant 

periodic w'ave (ie. th a t of largest m agnitude) in the response is equal in wavelength 

to the sleeper spacing. This characteristic is in agreement w ith previous studies 

in the h tera tu re  (Dong et al. 1994, D ukkipati & Dong 1999, Hou et al. 2003, Lei 

Ki Noda 2002, Nielsen &: Igeland 1995, Wu &: Thom pson 2004). Further frequency 

characteristics of the response vary throughout the literature due mainly to  different 

applied loading conditions, bu t also due to  varying track model fornmlations.

Figure 6.2(b) shows the respective variations in the rail-pad and the idealised 

ballast spring forces a t the  central sleeper as the moving force passes above it. The 

peak forces created by the  passage of the moving force are approxim ately 65kN for 

both the pad and the ballast spring, the ballast force being slightly greater due to 

the additional sleeper weight. This figure is approxim ately 2.3 tim es smaller than  

th a t of the sta tic  wheel-rail contact force. Hou et al. (2003) calculated corresponding 

values of approxim ately 3.0 tim es smaller than  the  sta tic  force. However, the vehicle 

modelled by Hou et al. was a double wheel-rail H ertzian contact model where the 

interaction between two wheelsets was taken into consideration, which has not been
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the case here. Effectively, the load was shared between tow sleepers.

The loading function is now developed further from a constant force to a system 

of sprung masses representing a vehicle bogie. The vehicle model is developed so that 

is has two track contact points (wheelsets) and possesses four degrees of freedom in 

the vertical plane. Three point masses are representative of a vehicle bogie and two 

wheelsets. The total mass of the bogie itself is 3,000kg, to which a further static force 

of 250kN is applied vertically. The wheelset masses are each 950kg. The combination 

of these masses and forces results in static wheel loads of 149.0345kN, which was 

the equivalent magnitude of the single point force considered previously. The bogie 

model suspension spring elements each have stiffness values of 1.5 x lO^Nm”  ̂ and 

damping values of 3.2 x 10^Nsm“ .̂ The rotary inertia of the bogie itself about 

its centre of mass is 2,900kgm^. These parameter values are based on the vehicle 

parameters applied by Nielsen k. Igeland (1995). The wheel-rail contact force, a 

function of the relative displacement between wheel and rail, is based on the non­

linear Hertzian contact theory with a Ch value of 100 x lO^N/m^^^.

At this point in the analysis of the steady state response the effect of applying rail 

lift-off from the sleepers and sleeper lift-off from the ballast are also considered. This 

non-linearity incorporated into the track model allows for the fact that the sleepers 

are not heavy enough to remain in contact with the ballast throughout and that the 

pads do not always hold the rail to the sleepers. This particular part of the steady 

state analysis was carried out in a similar manner to the study of Dong et al. (1994). 

The wheel-rail contact force variations in the steady state are illustrated for both 

track models in Figure 6.3. The responses are quite similar but the non-linear track 

model does generate slightly higher maximum and lower minimum peak forces, the 

difference being less than 1% in both cases. There are two distinct periodic waves in 

both of the contact force histories. The major wave is caused by the sleeper spacing 

effect. The dynamic peak force occurs at approximately two third’s distance along 

the sleeper spacing.
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Fig. 6.3: Wheel-rail contact forces comparison

Figure 6.4 illustrates the pad and ballast force variations for both track models. 

The peak forces are once again similar with very slightly higher magnitudes for the 

non-linear model, although the difference is negligible. The two peaks in the force 

histories are due to the two bogie wheels (passing at a time interval).

Because the comparison of the linear and non-hnear track system model yielded 

information tha t showed that the wheel-rail contact, rail pad and ballast forces 

obtained were similar for both, it was decided to proceed with the linear track 

model, which has been the more prevalent model in the literature (?, Lei &; Noda 

2002, Nielsen & Igeland 1995). The wheel and rail displacements at the point of 

wheel-rail contact are illustrated in Figure 6.5. The rail displacement, as previously 

identified for the constant force load case, displays a predominant wavelength equal 

to the sleeper spacing. The wheel displacement also displays the sleeper spacing 

characteristic wavelength.

The time histories of these displacements appear identical but this is not the 

case and there are fluctuations in the wheel-rail contact force histories. The peaks
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obtained in the  steady sta te  contact force variation compares well with the study 

of D akkipati &; Dong (1999), from whose model the param eter values applied in 

this analysis were obtained. The contact force varies between app rox im ate^  5% 

above and 5% below the sta tic  value. O ther studies have shown greater am plitudes 

in the extent of this variation. Sun Sz Dhanasekar (2002) and Dong et al. (1994) 

have obtained steady s ta te  contact force factor values of approxim ately 5% and 7% 

respectively. The different model param eters, and indeed physical characteristics, 

applied throughout the literature  give rise to  large variations in the reported steady 

sta te  contact force factors.

6.3 W h eel F lat 

6.3.1 W heel Flat M odel

The first type of geometric defect in the wheel-rail contact area considered is a wheel 

fiat. A railway vehicle wheel flat is a flat part of the w'heel circumference caused
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by unintentional sliding of the wheel under braking. Wheel flats generally result 

in a severe out-of-roundness of the wheel profile and give rise to potentially large 

dynamic vehicular effects. In addition, the influence of out-of-roundness of a railway 

vehicle wheel on the dynamic train-track interaction is often considerable (Nielsen & 

Igeland 1995). Wheels with flats produce high levels of impact loading to the track, 

which can lead to extensive damage of the various track components. Typical wheel 

flats are around 50mm in length but in extreme cases may measure up to 150mm 

(Thompson et al. 2003).

Figure 6.6 depicts a schematic representation of this type of wheel deformation. 

L represents the length of the wheel flat, while d is it’s depth (alternatively described 

as the maximum decrease in wheel radius). The radius of the wheel is referred to as 

r throughout and ip is the angle subtended at the centre of the wheel by two radial 

lines extending to the extremes of the wheel flat length.

Fig. 6.6 ; Idealised wheel flat

The flats considered in this particular study are based upon idealised represen­

tations of the geometrical profile of a wheel with a flat (as in Figure 6.6). In reahty,
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flats do not have definite extents, but following their initial formation become worn 

at their corners due to the high load concentrations at these points. While the

forward dip in the vertical track profile, the effect of a worn flat requires a more 

complex irregularity function.

Figure 6.7 illustrates the movement of the wheel during rotation through the flat 

point on the circumference. The shape of the flat wheel can be seen to correspond to 

a circular arc dip in the railhead. An expression for the profile irregularity function 

for a wheel flat is given by Dong et al. (1994) (see Equation 6.5). This cosine function 

has been found to provide a good approximation (Tunna 1988) and will be applied 

in this study.

This particular irregularity as a function of distance is illustrated in Figure 6.8.

illustrated idealised geometric shape could be modelled by implementing a straight-

(6.5)

Fig. 6.7: Rolling of wheel with idealised flat
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distance [mm]

Fig. 6.8: Typical profile irregularity function for a wheel flat 

6.3.2 Dynam ic R esponse to W heel Flat

The wheel flat that is considered here is 90mm in length and 0.93mm depth. These 

values are applied in the following numerical analyses to Equation 6.5 as the variables 

L and d respectively. The wheel flat is applied only to the front wheel of the bogie 

model, the rear wheel geometry is assumed to be perfect. Assuming a wheel radius 

of 400mm, the wheel passes through the flat part of its circumference approximately 

every 2.5m of travel. If it is initially assumed tha t the first wheel flat impact occurs 

directly above a sleeper then it follows tha t the five subsequent impacts will occur 

at 0.1m, 0.2m, 0.3m, 0.4m and 0.5m distance along the sleeper bays (the sleeper 

spacing is assumed to be 0.6m). In this way the effect of the wheel flat impact 

occurring at various distances along the sleeper spacings may be observed.

A previous study (Nielsen & Igeland 1995) has demonstrated tha t a dynamic 

impact factor of approximately four times the static contact force is observed at 

40ms~^ for a wheel flat of these particular characteristics. A similar value was 

obtained in this study (see Figure 6.9). The damaged wheel is seen to lose contact 

with the rail on encountering the wheel flat at this particular velocity as the contact



force attains a zero value. This results in the rail accelerating upwards (see Figure 

6.10), free from vehicle loading. The large impact factor is generated when the wheel 

and rail recover contact.

700 n

600 -

^  500

o  400 -

200  -

100  -

17.4 18.0 18.6 19.2

W heel position  [m]

Fig. 6.9: Contact force resulting from wheel flat at velocity 40ms ^

The effect of the wheel flat impact was observed over a range of different vehicle 

velocities. The time histories of the individual contact forces at the leading wheel 

are illustrated in Figure 6.11. It should be noted that this particular figure features 

the contact forces due to the flat occurring directly over a sleeper. At the lower 

velocity, 10ms“ \  loss of contact between wheel and rail does not occur. However, at 

all higher velocities loss of contact does occur. As expected, the maximum observed 

contact force increases with velocity.

The contact forces were calculated for six consecutive wheel flat impacts, each 

impact occurring at a different distance along the sleeper spacings. The maximum 

contact forces for each wheel flat impact are illustrated in Figure 6.12. At the two 

lower velocities tested the difference in impact factors was relatively small regardless 

of distance from sleepers. However, at the three higher velocities a pattern emerges. 

In all cases, the impact factors are greater when the wheel flat impacts at a sleeper
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Fig. 6.10: Wheel and rail displacements at 40ms ^
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Fig. 6.11: Contact forces due to wheel flat impacting over sleeper
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than when impact occurs at the midpoint between two sleepers, which is in agree­

ment with the previous study of Nielsen & Igeland (1995). However, at each velocity 

the maximum impact occurs when the flat impacts at a distance of 0.2m before a 

sleeper while the minimum impacts occur 0.2m beyond the sleepers.

This observed dependence of the impact factor upon the position of impact of the 

wheel flat may be explained by observing the quasi-steady state contact force time 

history between two sleepers (see Figure 6.3). There are two contact force minima 

and maxima tha t occur within each sleeper spacing. The minima are observed 

at distances of approximately 0.2m and 0.5m beyond the initial sleeper while the 

maxima are at distances of 0.05 and 0.4 respectively (see Figure 6.3). These points 

correspond closely to the positions of minima and maxima in Figure 6.12.

700 60m/s

50m/s
40m/s
30m/sZ  600

20m/s
500

400

300

10m/s

200
0.0 0.1 0.2 0.3 0.50.4

Distance of impact beyond sieeper [m]

Fig. 6.12; Contact force variation with distance beyond sleeper

The ballast and pad forces at the point of impact of a wheel flat are illustrated 

in Figure 6.13. It is observed that the dynamic impact factor is significant only 

for the pad. The effect of a wheel flat upon the ballast spring force is quite small 

in comparison to the pad eff^ect though the impact factor is greater than 1.5. The 

impact factor for the pad is approximately 5.2. The illustrated pad and ballast
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impact forces were generated for the case of a flat hitting directly over the sleeper 

located at 18m from the model’s leftmost extremity.
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Fig. 6.13: Pad and ballast forces due to wheel flat impact over sleeper for 40nis  ̂

velocity

The pad and ballast forces generated by a wheel flat are maximised for the case 

shown in Figure 6.13. For wheel flats hitting halfway across a sleeper spacing the 

dynamic effects on these components of the model are not as severe, mainly due 

to the energy of the impact force being absorbed by the two adjacent pad and 

ballast springs. Figure 6.14 illustrates the pad and ballast forces at a centrally 

located (18m) sleeper as a vehicle passes over. The three cases considered are a flat 

impacting 0.3m before, 0.3m after, and exactly above, this sleeper. The pad impact 

that occurs before the sleeper results in the higher pad force (290kN compared to 

240kN for 0.3m after). Neither of these figures is as high as the impact force (361kN) 

generated when the impact occurs directly over the sleeper. Similarly, a higher peak 

ballast spring force is generated when impact occurs before the sleeper. However, 

in the case of the ballast, the impact force for a wheel flat hitting directly over the 

sleeper is approximately identical to the case of inrpact before the sleeper.
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Fig. 6.14: Pad and ballast forces at 18m located sleeper due to wheel flat impacts 

0.3m before and after sleeper a t 40 ms“ ^
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6.4 U nsupported  Sleeper

6.4.1 U nsupported  Sleeper M odel

The second defect tha t is considered is not strictly a track geometrical defect but 

a defect of the track structure. A non-uniformity of the track support given to 

the vehicle where a single track sleeper is unsupported upon the ballast bed is 

applied to the FE track model. This particular structural irregularity can occur 

due to excessive degradation of the ballast medium. Poor ballast drainage, and the 

resulting erosion, is the general source of this problem (Nielsen & Igeland 1995). In 

order to implement and observe the effect of this type of structural track defect, the 

centrally located sleeper ballast spring in the track model is assigned zero numerical 

values of stiffness and damping. In effect the sleeper is modelled as hanging from 

the track with its pad spring in tension under the gravitational weight of the sleeper, 

hence the term ‘hung’ sleeper which is sometimes used to describe this situation.

6.4.2 D ynam ic R esponse to  U nsupported  Sleeper

The ballast support spring is removed from the sleeper located at the midpoint of the 

track model, ie. at 21m. Figure G.15 illustrates the variation in the displacement at 

the point of contact between wheel and rail as the wheel encounters this lack of track 

support. The results of the unsupported sleeper are track maximum displacements 

equal to almost twice the steady state displacements at the highest velocity tested 

of 60ms“ ^ The maximum deflections were lower at the lower velocities, however 

at 10ms“  ̂ the maximum deflection is still 1.8 times greater than the steady state 

equivalent. Over these velocities therefore, the effect of the hung sleeper on the 

maximum track deflection is found not to vary greatly with velocity. The absence of 

the ballast support does, however, cause a substantial increase in track deflection of 

the order of twice the steady state maximum deflection, ie. when no hung sleepers 

are considered.
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Fig. 6.15: Track model displacement at wheel-rail contact point due to hung sleeper 

at 21m

The resulting wheel-rail contact force process is significantly different from the 

steady state response as the hung sleeper is encountered. Figure 6.16 illustrates the 

contact force responses at 20, 40 and 60ms“ ^ At 60ms“  ̂ the peak contact force is 

close to 190kN, 25% greater than the static contact force. The peak forces are less 

at the lower velocities a t 9% greater than the static at 40ms“ * and only 3% greater 

at 20rns“ ^

The excessive deflections tha t have been observed result in higher track bending 

moments. In the steady state the maximum track sagging bending moment observed 

at the wheel rail contact points is approximately 29kNm. For the CEN design rail 

section 56 E 1 this equates to a tensile stress at the the extreme fibre of the rail foot 

of approximately 92MPa. As was the case for the displacements these steady state 

stress maxima do not vary significantly with velocity over the range considered. The 

unsupported sleeper generates larger bending moments which result in maximum rail 

foot tensile stresses of 134MPa, which occur at the midspan of the run-on and run­

off sleepers. As was the case for the steady state, velocity does not greatly affect
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Fig. 6 .16; Wtieel-rail contact forces due to hung sleeper at 21m

the magnitude of these stresses.

The bending moments in the rail at the run-on and run-off sleepers were also 

recorded, ie. the sleepers located at 20.4m and 21.6m. Unlike the bending moment 

histories at the wheel-rail contact points, the bending moment histories at these 

sleepers show tensile stresses at the top fibre of the rail. Maximum hogging moments 

of approximately 12kNm w'ere observed, equating to 43MPa tensile stresses at the 

top of the rail. These maxima occurred, in the case of the both the run-on and run­

off sleepers, when the wheel is just beyond the sleeper bay midspan. In the steady 

state the maximum tensile stress at the top of the rail is 36MPa, the maximum for 

the hung sleeper situation is more than 11% greater.

The effect of two consecutive unsupported sleepers is now considered. For this 

purpose the sleepers at locations 21m and 21.6m are given zero ballast support in the 

mathematical track model. While the dynamic effects generated by a single isolated 

sleeper were relatively small, the absence of two consecutive sleeper supports is found 

to be more dramatic. As one might expect the track displacements are greater again 

in this situation. As before, while the deflections do become slightly larger with
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increasing velocity, this effect is small. However, the  maximum track displacement 

a t 60ms~^ is now 2.7mm, more than  three tim es the  steady sta te  maximum. The 

maximum  contact forces also increase, once again th is effect is more pronounced at 

the higher velocities (see Figure 6.17).

The maximum tensile stresses in the rail foot are significantly higher th an  for the 

case of a  single hung sleeper. At 40ms“  ̂ a m aximum  of 177MPa is observed, 30% 

greater th an  the m aximum  for the  previous case. The maximum tensile stresses at 

the top of the rail are approxim ately 77M Pa a t the  run-on sleeper and 53M Pa at 

the run-off sleeper. These values are 114% and 47% greater respectively than  the 

maximum tensile stress observed at the  top of the rail in the steady sta te . Once 

again, the  m aximum  stresses observed are approxim ately constant over the range of 

velocities considered.

6.5 D ipped  Joint 

6.5.1 D ipped Joint M odel

The next discrete irregularity considered is a rail jo in t, a relatively common discrete 

discontirmity in the  track profile th a t causes an im pact force to  occur. Indeed, rail 

joints are the m ost severe of all track discontinuities (Wu & Thom pson 2003). The 

rail commonly dips in the  vicinity of a joint, even in the  case of welded rail.

A dipped joint gives rise to  two readily distinguishable dynamic increments 

(Harvey et al. 1993). The first, high-frequency, increm ent acts over a  very short 

tim e span and is denoted the P i force. The second force, which is known as the 

P 2 force, acts a t m edium  frequency. The P i force is generated as a result of track 

mass oscillation upon the  Hertzian wheel-rail contact spring. The peak of th is force 

occurs a few centim etres beyond the joint. The P 2 force occurs due to  the  wheel 

mass oscillating on the track spring. This force reaches its peak value later th an  the 

P i force, typically over the running on sleeper.
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Both force increm ents can cause deterioration of the  track structure. The P i 

force contributes to  rail-end and fishplate damage, and also to  bolt hole fatigue 

cracks. The P 2 force causes rail-end b a tte r  and s ta r  cracks. This force increment 

also damages sleepers in the vicinity of the joint.

A dipped rail jo int with a gap and height difference can be described using 

quadratic  functions (Wu & Thom pson 2003), similar to  the wheel flat model; the 

technique th a t is applied here to  calculate the effect of a joint on the dynamic system 

response is based on this type of quadratic  representation. In th is case a sinusoidal 

downward ram p of 1:100 over a  distance of 0.3m was considered and is followed by 

a sym m etric upward ram p. The jo int apex is assum ed to  occur a t the m idpoint 

between two railway sleepers.

6.5.2 Dynam ic R esponse to D ipped Joint

The system  response to  the bogie model was observed over the same velocity range as 

in Sections 6.3 and 6.4. The wheel-rail contact force history a t the leading wheelset 

is illustrated  in Figure 6.18 for a vehicle velocity of 40ms“ ^ The wheel initially 

loses contact w ith the rail as the  profile dips before the apex of the joint. W hen 

the wheel regains contact a t the  apex a large contact force is generated. The initial 

peak is due to  the P i force while a second peak, the  P 2 increm ent, is seen to  occur 

ju st before the following sleeper. It should be noted th a t 40m s“  ̂ was the  lowest 

velocity a t which the wheel loses contact w ith the rail. At lower velocities the  wheel 

rem ained in contact throughout. O ther studies have shown loss of contact a t these 

lower velocities (Dong et al. 1994, Hou et al. 2003). The results calculated here may 

be due to  the  sinusoidal shape of the dip, which results in a more gradual fall away 

from the m ean track profile level.

The track bending moment h istory a t the sleepers before and following the  dipped 

jo int are illustrated  in Figure 6.19. W hen the wheel encounters the jo int apex 

the track shows large hogging m om ents a t both  sleepers. A t 40m s“ \  the  moment
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F ig . 6.18: W heel-rail contact forces due to  3mm dipped joint in track at vehicle 

velocity of 40m s“ ^

at the sleeper before the joint is greater at approxim ately 15kNm compared to  a 

maximum quasi-steady sta te  hogging rail moment of approxim ately 6kNni. The 

dynamic im pact factor for hogging moment is therefore not as great as th a t for the 

wheel-rail contact force, bu t is significant nonetheless. The rail at the  sleeper beyond 

the dipped joint shows a very high sagging moment as the wheel moves beyond the 

joint apex. At 40m s“  ̂ a 61kNm m aximum  value is observed. This compares to  a 

steady sta te  m axim um  of 29kNm, an equivalent im pact factor of 2.1. Once again, 

the P i and P 2 increm ents are visible in the rail response.

The analytical formulae for these force increments are given in Section 2.3.2 

(Equation 2.7). The results obtained by substitu tion  into these formulae are now 

compared w ith the  numerically calculated response (see Figure 6.20). There is sig­

nificant variation between the two sets of data. One explanation for this is th a t 

the analytical P i and P 2 contact forces calculation is carried out on the assum ption 

th a t the track profile is a linear ram p rather than  the sinusoidal hollow dip th a t is 

modelled here. In addition, the analytical calculation does not consider the effect of
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Fig. 6.19; Track bending moments at vehicle velocity of 40ms  ̂

the sprung mass inertia or bogie rotary inertia as in the numerical bogie model.

6.6 B allast Stiffness Effects

The effect of different degrees of ballast spring stiffness in the track model is now 

considered. The ballast is modelled as a series of discrete springs, with each spring 

located at one of the sleepers. The default linear spring constants for these ballast 

springs is 4.66 x 10^Nm“ ^ The values observed here are varied above and below with 

this as the mean value. Values of 0.25, 0.5, 2.0 and 4.0 times this mean value are 

considered. A bogie model velocity of 40ms~^ is assumed throughout this particular 

analysis.

The recorded model track displacement, contact forces and track bending mo­

ments at the front wheel of the bogie model are illustrated in Figure 6.21. These 

time histories are shown over two complete sleeper spacings from 21m to 21.2m 

and, as such, are representative of the steady state. As one would expect, the lower 

ballast spring stiffness values result in greater track deflections. However, higher
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ballast stiffness values result in greater variation in the deflections at and between 

the sleepers because greater resistance is given to the vertical sleeper movement as 

the wheelset passes above (see Figure 6.21(a)).

Unlike the displacement histories the contact force histories vary dramatically 

with varying ballast stiffness (Figure 6.21(b)). It is observed that the characteristic 

shape of the contact force time history is greatly dependent on the ballast stiffness. 

This may account for some of the differences in the steady state contact force time 

histories that have been observed in the literature. The two lower spring stiffness 

values produce similar results while the default value and four times the default 

generate maximum forces of similar magnitude (approximately 155kN). However, at 

twice the default ballast stiffness value the maximum steady state contact forces are 

in excess of 162kN. The smallest minimum steady state contact forces are observed 

at the two higher ballast stiffness values tested (these are approximately 138kN).

Greater track bending moments at the wheel-rail contact point are observed 

when the ballast stiffness is at its minimum value. This pattern is consistent over
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the vahies tested (see Figure 6.21(c)). However, unhke the track displacement and 

wheel-rail contact force processes, the point of wheel-rail contact is not the point at 

which maximum bending moment is observed. For this reason the bending moments 

are also observed at two stationary points on the track, one directly over a sleeper 

and one at the midspan of two sleepers (see Figure 6.22).

A maximum track bending moment of 37kNm was observed at the wheel-rail 

contact point in the steady state. This was maximised for the minimum ballast 

stiffness value. When the time history of the bending moment at a single point over 

a sleeper is considered a maximum of 40kNm is observed. Once again this value is 

a maximum for minimum ballast stiffness. A similar situation is observed at the 

midspan of two sleepers, the maximum in this case, however, is increased to in excess 

of 42kNm. These peaks occur just prior to the wheel passing the particular point 

in question.

Only peak sagging rail bending moments have been considered up to this point. 

Hogging moments also occur, although not at the wheel-rail contact point. The 

largest hogging moments observed are 16.5kXm and 14.5kXm for the sleeper and 

midspan points respectively. Were only a single vehicle wheel considered the max­

imum hogging moment would be approximately half of these values. However, the 

two-wheel bogie model, with wheels in close proximity, induces a significantly larger 

rail hogging moment at the midpoint between the wheels.

6.7 O bservations and C onclusions

The FE track model was found to be suitable for the purpose of monitoring the 

effect of the discrete irregularities that were applied. The beam was modelled using 

Timoshenko beam elements because a previous study (Dong et al. 1994) had shown 

tha t this beam element was better suited to high frequency analysis than the Euler 

beam element. While the track was modelled using Timoshenko beam elements the
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Fig. 6.22: Track bending moments at fixed points (variation with ballast stiffness)
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model can easily be adapted as an Euler beam by adjusting the shear modulus and 

rotary inertia. The FE model was formulated because the FD model of Chapter 

5 was found to be ineffective when modelling these types of defects due to the 

modelling assumption of a continuous elastic foundation.

The first application of the FE track model was to the dynamic effect of a wheel 

flat. The model was initially validated by means of comparison with another study 

(Nielsen &: Igeland 1995). The position of impact of the wheel flat in relation to 

the two adjacent sleepers was shown to influence the magnitude of the maximum 

resultant contact force. When the wheel flat impacted at the midpoint between 

two sleepers the maximum contact force was found to be smaller than when impact 

occurred close to the sleepers themselves.

The effect of a wheel flat impact on the rail pad and ballast forces was also 

considered. As one w'ould expect, these forces are smaller when the impact occurs 

between two sleepers. This is due to the fact tha t the impact force is distributed 

between two pads, two sleepers and two ballast springs, and also the resulting smaller 

inertial effect of the sleeper mass. When the impact occurs directly betw-een two 

sleepers the rail pad in front of the wheel shows a higher force impact factor than 

the rail pad that the wheel has just passed. When the impact occurs directly over 

a sleeper, a considerable peak is observed in the rail pad contact force history. The 

ballast force impact factors are small by comparison with those of the pad.

The second application of the model was to the case of an unsupported, or ‘hung’ 

sleeper. The track displacement directly above the position of the hung sleeper 

increases to approximately double its previous value due to vehicle loading. There 

is also an increment in the wheel-rail contact force of approximately 1.3 times the 

static. The dynamic effect of two consecutive unsupported sleepers was to more 

than treble the maximum track displacement at the wheel-rail contact point. The 

maximum contact force was also increased in this instance to approximately 1.4 

times the static force.
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The presence of a dipped joint causes a large dynamic impact factor to be ob­

served in the wheel-rail contact force time history. In addition, an excessive rail 

hogging bending moment is observed at the adjacent sleeper as the wheel encoun­

ters the joint. The rail sagging moment generated at the sleeper before the joint does 

not rise above its steady-state value due to the impact. However, a large rail sagging 

moment is observed at the sleeper beyond the joint. The analytical solutions for 

calculation of the peak contact forces caused by a dipped joint (Harvey et al. 1993) 

do not correspond to the numerically calculated values observed in this study. A 

number of factors may be responsible for this, but primarily the sinusoidal shape 

of the joint considered here is imlike the linear ramp assumed for the analytical 

derivation.

Finally, the effect of the ballast medium stiffness was observed. The maximum 

ballast spring stiffness is shown to cause the minimum track deflection under vehicle 

loading, but also minimises the track bending moment. The maximum wheel-rail 

contact force is observed for a ballast stiffness of twice the mean value, which is 

equivalent to 9.32 x 10^Nm“ ^ At all other values, including the maximum ballast 

spring stiffness, the maximum contact forces observed were similar in magnitude.
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Chapter 7 

Effect of R andom  Track 

Irregularities upon Bridge Im pact 

Factors

7.1 In trod u ction

Analyses based upon the dynamic response of railway bridges to moving loads have 

been extremely prevalent in the literature. Less common, however, are studies that 

focus specifically upon the bridge system response when the additional dynamic 

input of random vertical track irregularity is considered. The paper of Au et al. 

(2002) is an example of such an investigation. In tha t particular case the dynamic 

bridge impact factors generated by a railway vehicle moving across a cable-stayed 

bridge with vertical track profiles of varying quality were calculated numerically. 

The study (Au et al. 2002) was specific to the case of a particular cable-stayed 

bridge with a main span of 430m. The particular study presented here is based 

upon the analysis of the response of simplified plate girder bridge models to vehicles 

running over randomly irregular vertical track profiles. The objective of the study 

is to determine whether the effect of random track irregularity is significant in the
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calculation of bridge impact factors and, if so, what is the degree to which these 

factors are influenced.

The study of the wheel-rail dynamic interaction due to random irregularities 

lends itself to a spectral approach (see Chapters 3 and 4). However, while the 

vertical track irregularity profiles considered in this study may be characterised by 

one-sided PSD functions, the objective of the study is to calculate bridge impact 

factors. A deterministic approach is more suitable for this purpose. Random profiles 

associated with the FRA PSD functions are generated using trigonometric series and 

applied to the bridge and vehicle models in numerical analyses.

This study, as a parametric analysis, is focussed upon the effect of random track 

irregularities upon the dynamic impact factors for three different plate girder bridges. 

The three bridges considered in Section 7.2 are of short (10m), medium (35m) and 

long (70m) span. The bridge parameters chosen do not relate to any specific struc­

tures but are given typical values based on a study of 113 railw'ay bridges undertaken 

by Fryba (1996). The bridges are idealised throughout as simply-supported beams. 

The vehicle model considered here is a single locomotive model with two bogies and 

four axles, comprising ten degrees of freedom in all. Two different characteristic 

random profiles are considered, one of medium quality (Class 4) and one of poor 

quality (Class 1).

Section 7.3 involves an analysis of the impact factors generated due to the passage 

of a more complete vehicle model with a number of coaches following the same 

locomotive model as before. The effect of varying track quality on the wheel-bridge 

contact forces is also considered in this section. Finally, in Section 7.4, the influence 

of the railway track structure on the dynamic bridge response is investigated. Prior 

to this section the vehicle models are considered to be directly in contact with the 

beam model with no track structure included in the system model.
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7.2 R andom  Profile Irregularity Effect on D ynam ic  

Im pact Factors

7.2.1 Finite Elem ent M odel Validation

The response of a typical short span bridge is considered initially for the purpose of 

model validation. The steel plate-girder bridge is modelled as a simply-supported 

beam. Railway bridges are often idealised as beams, the dynamic stiffness of which 

is a function of the bridge stiffness and mass per unit length. This dynamic stiffness 

B is calculated by means of regression coefficients calculated by Fryba (1996) on the 

basis of an experimental study of a large number of railway bridges. B is calculated 

directly from the equation

The dynamic stiffness constant B for the type of bridge considered here with a 

span of 10m, as defined by Fryba (1996), is approximately equal to 500m^s“ ^ It 

should be noted tha t the bridge is, for the purpose of this investigation, considered 

to be ballasted. The distinction between ballasted and non-ballasted bridges is 

required in this case due to the differing regressive coefficients suggested by Fryba 

for the two specific cases. As the bridge models used in this section are not based on 

existing or proposed bridge data, B was used to calculate a suitable second moment 

of area on assuming a suitable mass per unit length and Young’s modulus. The 

bridge model Young’s modulus (E), second moment of area (I) and mass per unit 

length (/i) are equal to 210 x 10^Nm“ ,̂ 0.014m^ and 1.2 x 10^kgm“  ̂ respectively. 

These parametric values give a fundamental beam period, Tf, of 0.1286s, ie. is 

48.86rads“  ̂ (7.78Hz).

Initially, for the purpose of validating the finite element beam model, the mov­

ing vehicle load is simplified as a single point force. Exact solutions have been
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determined for problems of this nature, ie. a simply-supported beam traversed by a 

constant force moving at constant velocity along the beam surface. Such a solution 

is detailed by W arburton (1976), where it is assumed tha t the beam displacement 

is dominated by the contribution from the first mode of vibration. A more rigorous 

exact solution has been developed by Fryba (1999) where the beam response is cal­

culated as the sum of an infinite series of modal responses. In effect, the solution 

of W arburton is equivalent to tha t of Fryba with only the first term in the same 

infinite series considered.

At practical railway vehicle velocities the maximum mid-span deflection of a 

simply-supported beam occurs during the load traverse. A critical velocity exists 

at which the dynamic maximum is not attained until the load departs the beam. 

Fryba (1999) defines this critical velocity as a function of the beam’s material, 

section properties, and its length. For the plate girder beam model considered 

in this case the critical velocity is approximately 155ms“  ̂ (660km/hr), while the 

maximum vehicle model velocity considered in this study is 60ms~^ The calculation 

of dynamic impact factors is therefore confined to consideration of the beam response 

prior to departure of the vehicle. For this reason the beam ’s free response following 

departure of the railway vehicle is not required to be considered for the case of a 

single moving force or single moving mass.

The dynamic impact factors generated using three different analysis methods 

are presented graphically in Figure 7.1. The first series of factors is based on the 

fundamental modal solution of W arburton, the second on the multi-modal solution 

of Fryba with the initial 100 response modes considered, and the third series results 

from a numerical finite element method (FEM) analysis. The 10m beam consists, in 

the case of the FE model, of 24 identical Euler beam elements. Sufficient simulation 

convergence was obtained a t this level of elemental discretisation. The dynamic 

impact factors are defined as the ratio of peak dynamic mid-span deflection of the 

beam to the static mid-span deflection with the force placed at mid-span. These
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factors are calculated at 5ms“  ̂ intervals over the 5 — 60ms“  ̂ range. The W arburton 

series shows the smallest impact factor values for all velocities. As expected, the 

Fryba impact factors are higher due to the consideration of the contributions from 

higher order modes. The FEM analysis generates values tha t are consistently in 

the interval between the two analytical values over the velocity range considered. 

One of the fundamental constraints of the FE technique is the fact tha t finite nodal 

spacing is such tha t higher order frequencies, whose contribution is added using the 

Fryba solution, cannot be incorporated into the FE numerical model at the levels of 

elemental discretisation considered. However, it should be noted that the analytical 

solution is an infinite series itself and, as such, is an estimation also.

 W arburton
 Fryba

FEM Analysis
^ 1.5

“ 1-4

o  1.3

5540 45 50 6025 30 3510 15 205
Velocity [m/s]

Fig. 7.1: Impact factors variation with velocity for moving point force (Short span 

bridge model)

It should be noted that the exact analytical solutions of W arburton and Fryba 

do not consider the initial static deflection of the beam under i t ’s own gravitational 

self-weight. For this reason and due to the comparative nature of this particular ex­

ercise the beam’s initial displacement due to i t ’s own self-weight was not considered
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in the FEM solution. Inclusion of this factor would distort the results obtained as 

the relative dynamic displacement of the beam would be smaller due to i t’s addi­

tional initial gravitational displacement. Physically, the exclusion of the self-weight 

gravitational displacement may be valid, especially in the case of ballasted track, 

due to the probable levelling during placement of the ballast medium upon the 

gravitationally displaced bridge deck.

While the illustrated data has been presented here for the case of the short- 

span beam only, a similar model validation procedure was followed for both the 

medium-span and long-span span bridges. A Bernoulli-Euler FE beam model with 

24 elements was found to give adequate convergence in all three cases. This constant 

number of elements applied to the three bridge models results in longer beam FE 

elements for the longer-span models.

The vehicle tha t is being considered for the purpose of this initial testing is a 

single 181 locomotive. This locomotive is a four axle ‘BoBo’ vehicle possessing indi­

vidual static axle loads of 159.3kN. These four axle loads were previously combined 

into a 637.2kN point force for the purpose of validating the numerical FE bridge 

model. Henceforth, however, the four individual vehicle contact points are consid­

ered. A bridge model identical to tha t validated for a single moving constant force is 

subjected to four moving constant forces w^hich modelled a 181 locomotive travelling 

at a constant velocity. This particular analysis does not consider the bridge-vehicle 

interaction.

The maximum static mid-span deflection is smaller in this case than for the 

single moving force model due to the dispersion of the load along the bridge length, 

the dispersion resulting from the axle spacing. This maximum static deflection 

is calculated as the maximum mid-span deflection considering all locations of the 

vehicle along the span. This is not identical to the static mid-span deflection with 

the locomotive positioned symmetrically over the mid-span point. This clarification 

is required as the maximum static deflection for all spans considered does not occur
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with the vehicle placed symmetrically about the mid-span. The dynamic impact 

factors are calculated with respect to the maximum mid-span static deflection for 

all vehicle positions along the beam.

The linearity of the simply supported beam system allows the system response, 

calculated using the analytical Fryba solution, for four individual forces to be su­

perimposed. However, unlike the previous analysis, where free vibration was not 

considered, the free vibration response of the beam is required to be calculated until 

the point when all four forces have completely traversed the beam. This solution 

is then compared to a numerical FE analysis with an identical loadcase, ie. four 

constant moving point forces. A 181 locomotive vehicle system model was then 

incorporated into the FE beam numerical analysis. The vehicle model possesses the 

same static properties as the four forces (ie. its static wheel loads are identical) 

but, in the dynamic case, allows for fluctuation of the contact forces as the vehi­

cle wheelsets oscillate on the Hertzian contact spring and the other vehicle masses 

vibrate on the primary and secondary suspension springs. Track irregularity is ini­

tially not included in the case of the vehicle model and so this particular response 

is henceforth referred to as the quasi-steady state response. The dynamic impact 

factors are illustrated in Figure 7.2 for the three bridge models (short, medium and 

long spans) and for the three different vehicle model formulations (analytical-moving 

forces, numerical-moving forces and numerical-moving vehicle). The properties of 

the three individual bridge models are given in Table 7.1.

The constant force models, ie. the Fryba formulation and the FEM analysis 

with constant forces, display results that have very similar characteristics. This is 

to be expected as the FEM analysis is a numerical solution for the beam response 

to loading that is identical to that for the analytical Fryba solution. However, the 

Fryba solution gives consistently higher impact factors. This effect was previously 

observed in the bridge model vahdation under the loading of a single force.

The factors obtained for the locomotive vehicle model on the FEM beam model
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F ig . 7.2 : Variation of impact factors with velocity for various beam and vehicle 

models
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P a ra m e te r S h o rt sp an M ed iu m  sp an Long sp an

Span , L

Dynamic Impact Factor, B 

Mass per unit length, /u 

Second Moment of Area, I 

Young’s Modulus, E

10m 

500m^s_i 

1.2 X 10^kgm~^ 

O.OUm^

210 X 10® N m -*2

35m 

3000m^s_i 

1.2 X lO^kgrn-i 

0.514m^

210 X 10®Nm“2

70m 

7500m^s_i 

1.2 X 10^kgm“  ̂

3.214m^

210 X lO^Nm-2

T ab le  7.1: Plate girder bridge models parameters

do not display the same pattern of variation with velocity. In the case of the short 

span bridge model the impact factors for the locomotive model are consistently lower 

than for four equivalent constant forces. For the medium-span and long-span bridge 

models the locomotive impact factors fluctuate above and below the constant force 

model. It has been shown (Delgado & dos Santos 1997) that the extent of this 

effect is dependent upon the suspension stiffness and mass ratio values. For higher 

suspension stiffness values greater impact factors would generally be observed.

The impact factors are significantly higher for the locomotive vehicle over the 

short-span bridge model than for the medium-span and long-span. The maximum 

factor for the locomotive and short-span model is 1.340 while the equivalent maxima 

for the medium-span and long-span models are 1.067 and 1.080 respectively. While 

the maximum impact factor for the short span model occurs at the highest velocity 

(60ms“ ^), the largest factors for the medium-span and long-span models occur at 

50 and 55ms“  ̂ respectively, while the impact factors at 60ms“  ̂ actually drop off. 

Lin & Trethewey (1990) showed that the maximum mid-span deflection response 

to a moving force occurs when the ratio of the bridge’s fundamental period to the 

force’s crossing time is 1.234. When a vehicle model such as this is applied the 

response is more complex due to the interaction effects between the multiple axle 

loads. However, as for the single force, threshold velocities are found to exist, beyond 

which the mid-span response decreases.
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7.2.2 Effect o f R andom  Irregularities

The next step in the analysis is the incorporation of random irregularity in the 

vertical track profile into the FE model so that the effect of such irregularity upon 

the impact factors may be observed. Random profiles with statistical properties 

equivalent to the Federal Railroad Administration (FRA) power spectral density 

(PSD) functions are generated numerically. The vertical profiles are then applied 

to the contact force calculations at the wheel-bridge contact interface. The FRA 

specifies six track classes. A Class 4 track, of intermediate quality, is initially applied 

to the model. Five different Class 4 sample track profiles are generated numerically 

and impact factors are calculated for each of these samples. The same procedure is 

then followed for the case of a Class 1 track, which is of the poorest quality specified. 

The track irregularity has the eflFect of shifting the wheel-bridge contact forces from 

their quasi-steady state and hence altering the bridge impact factors from their 

steady state values. The PSD functions are defined over the route frequency band 

0.01m~^ to 0.628m“ .̂ The vast majority of the PSD energy is concentrated towards 

the lower end of the spectrum at route frequency 0.01m“ ^ In the velocity range 

considered in this study (5 to 60ms“ )̂ this equates to a random profile periodic 

range of approximately 10s to 125s.

Five random profiles are generated and tested at the same vehicle velocity in­

crements previously described. It is found tha t the mean of all the impact factors 

for each model equate to the the factors generated for a perfectly smooth contact 

area, ie. the quasi-steady state. The individual impact factor values, however, var­

ied about the mean with varying standard deviations for each velocity. Figure 7.3 

illustrates the variation in these standard deviations with increasing velocity.

The standard deviations do not vary greatly between the short, medium and long 

span bridge models, especially at the lower velocities, but do increase with increas­

ing vehicle velocity. The largest impact factor standard deviation value, 0.026, is 

obtained for both the short and long span bridges at 60ms“ ^ The largest standard
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F ig . 7.3: Impact factor standard deviations
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deviation for the medium span bridge model is 0.012. Upon calculating the standard 

deviations it is im portant to bear in mind tha t the quasi-steady state impact factors 

are very low for both the medium and long span models. The fluctuation of the 

impact factors about the mean for different profiles does not generate excessively 

large impact factors.

The quasi-steady state factors are higher for the short span bridge model. It 

has been illustrated that, for this particular model, the dynamic impact factor, as 

defined above, is not independent of the track quality. At 60ms“  ̂ the impact factor, 

neglecting any track profile irregularity, was equal to 1.340. The incorporation of 

random track irregularity in to the model causes the impact factors to fluctuate 

about this mean value. In the worst case, and assuming that the impact factors 

are normally distributed, it may be concluded that, while the mean impact factor 

is 1.340 for Class 1 track and vehicle velocity 60ms“ \  for 1% of profiles the factor 

will exceed 1.400.

7.3 Case Study  

7.3.1 Background

Previously, the impact factor variances for a simply supported beam bridge model 

traversed by a single moving vehicle model have been considered. The dynamic im­

pact factors resulting from varying quahty track profiles were calculated for short- 

span, medium-span and long-span bridge models. The results obtained have shown 

that the low frequency content of the FRA PSD functions for vertical random track 

irregularity do not greatly affect the dynamic impact factors for the bridges con­

sidered. The sole impact factor tha t was considered previously was the ratio of 

dynamic to static deflections at mid-span. The equivalent mid-span bending mo­

ment ratio is also considered here. In addition to the dynamic impact factors, the 

varying wheel-bridge contact forces are also considered in this section.
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The vehicle model consists of a 181 locomotive as before but now being followed 

by four Mark 3 coaches. These five individual components of the vehicle are assumed 

to move completely independently of one another. A concrete bridge is modelled 

as a simply supported beam of 30m span with the two approaches supported upon 

rigid embankments. For preliminary comparative purposes an identical bridge to 

a bridge modelled by Lou (2005) is modelled here. The beam Young’s modulus is 

2.943 X 10^°Nm~^ and i t ’s second moment of area is 3.81m^. the mass per unit length 

of the bridge is 3.4088 x lO'^kgm"^ Bridge damping is not considered which means 

that the numerical analysis gives a conservative result for the calculated impact 

factors. During the FE analysis the bridge is divided into 26 elements of equal 

length (approximately 1.154m).

The FE bridge model was initially tested in the quasi-steady state. The mid­

span response is illustrated in Figure 7.4. Both the deflection and bending moment 

at the beam mid-span are shown. The impact factors for the deflection and moment 

are found to be in agreement with one another to within less than 1% at all of the 

velocities considered. The maximum mid-span response occurs when the centre of 

gravity of the locomotive is situated approximately at mid-span. Peak responses 

do occur, but to a lesser degree, during the passage of each of the trailing coaches. 

Indeed, the magnitude of the successive peaks decreases significantly as the vehicle 

traverses the bridge.

The contact force variation at each of the four locomotive axles is illustrated 

in Figure 7.5. The forces are illustrated during and beyond the passage of these 

axles over the bridge model. No profile irregularity has been assumed here and, as 

a result, there is little variation in the observed contact forces.

As the axles initially encounter and leave the beam model there is excitation of 

the axle as the axles move from the rigid approach to the flexible beam and vice- 

versa. However, these transients quickly damp out. It should be noted once again 

that the vehicle axles are in direct contact with the upper surface of the FE beam,
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Fig. 7.4: Quasi-steady response at bridge mid-span
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ie. no track model is included in this analysis. Were a track model included the 

approach-beam transition would be smooth. Neglecting these transitional transients 

the contact forces whilst the axles are in contact with the beam vary between ap­

proximately 157.5kN and 161.5kN. This is equivalent to a variation above and below 

the static contact force of 1.2%.

180 n
— Leading axle
—  Second axle 

Third axle
— Fourth axle170

I Iz
oo
o

LL 160 -
u
c
Ou

150 -

140 1
35 4020 25 300 10 155

Distance [m]

Fig. 7.5 : Wheel-bridge contact force variation at leading locomotive axle in quasi- 

steady state at 40ms"^

The minimum axle contact forces occur when the axle is located at approximately 

one quarter the beam span while the maximum is observed at three quarters of the 

span. This fluctuation can be linked to the pitching motion of the locomotive body 

and the two bogies. The time history of the leading bogie rotation (or pitch) is 

illustrated in Figure 7.6. The contact force drops off initially as the beam moves 

downwards under the action of the first moving axle. The bogie itself rotates in a 

clockwise direction but its lower natural frequency dictates tha t this process lags 

behind the beam and axle displacements resulting in a contact force reduction. The 

beam begins to move upwards as the bogie moves beyond the mid-span point. This
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motion, in addition to the clockwise position of rotation of the bogie, generates a 

large contact force tha t pushes the bogie into anticlockwise rotation.

3.0E-04

2.0E-04

T  1.0E-04

-1.0E-04

-2.0E-04
0 5 10 15 20 25 30

Distance [m]

Fig. 7.6: Leading bogie rotation in quasi-steady state at40ms ^

The contact forces are illustrated for the case where the vehicle velocity was 

40ms“ ^ The bridge model dynamic impact factors at this velocity were 1.078 for 

deflection and 1.079 for bending moment.

7.3.2 Profile Irregularity Analysis

Having observed the quasi-steady state response of this bridge model the Class 4 

track vertical profile is now applied to the upper surface of the beam. The same 

vehicle system (181 locomotive with four trailing Mark 3 coaches) is considered, 

moving at 40ms~^ across the bridge span. A sample of ten random profiles is nu­

merically generated in this case, and the resulting bridge model dynamic impact 

factors resulting from each profile are calculated. The total running time for each 

individual simulation is 3.3856s, which is the time required for the entire vehicle to 

traverse the bridge. The wheel-bridge contact forces are also recorded, in addition
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to mid-span deflection and bending moment. As before, the dynamic impact factors 

vary about a mean value which is found to approximate to the quasi-steady state 

dynamic impact factor. The standard deviation of this variation is extremely small 

at 0.003.

Class 1 irregularity profiles were then generated and applied to the model. In 

contrast to the Class 4 results, the dynamic impact factors generated by the Class 

1 random irregularity profiles differed in tha t the mean impact factor was greater 

than that observed in the quasi-steady state. The variance was also greater with 

a standard deviation of 0.005. The normal distribution functions for the impact 

factors for Class 4 and Class 1 track profiles are illustrated in Figure 7.7. The quasi­

steady state impact factor is 1.078. A Class 1 track will, on average, generate a 

dynamic impact factor greater than 1.093 for approximately 1.5% of crossings while 

the Class 4 equivalent probability of this occurring is neghgible at approximately 

10“®% of crossings.

160 -I

.2 120

— Class 4
—  Class 1

1.101.091.07 1.081.06
Dynamic Impact Factor

Fig. 7. 7: Estimate of distribution of dynamic impact factors (assuming normal 

distribution)
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The maximum contact forces observed at each axle, though varying individually 

for each random profile, also converge to a mean value approaching the quasi-steady 

state maximum value to within 1% in the case of the Class 4 track profile. As was 

the case for the impact factors however, the mean maximum contact force exceeds 

the quasi-steady state maximum force for the Class 1 profile (see Figure 7.8).

6.E-02 n

— Seriesi
—  Series23  4.E-02 -

E 2.E-02 -

143 168 193 218 243 268 293
Contact Force [kN]

Fig. 7.8: Distribution of maximum front axle contact forces (assuming normal 

distribution)

7.4 Influence o f Track Structure  

7.4.1 B ackground

The effect of incorporating a track structure into the finite element model is ex­

amined in this section. The previous models assumed that the vehicle models ran 

directly along the upper surface of a simply supported beam. The track structure, 

which is in effect a second beam lying upon the bridge deck, was not included in the 

analytical nor the FE models.
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The railway track is now modelled as a Bernoulli-Euler beam of finite length 

and extends beyond the simply supported beam bridge model in both directions. 

The track sleepers are spaced at intervals of 0.6m and are each 250kg in mass. 

The track is supported above the sleepers by discrete spring elements with linear 

spring constant values of 4.0 x 10*Nm“ ^ These elements model the effect of the rail 

pads. The ballast medium below the sleeper layer is also modelled by discrete linear 

springs. These springs are situated below the sleepers and their spring constant value 

is 6.32 X 10^Nm“ ^ The track parameter values are taken from Dong et al. (1994). 

Both springs are once again conservatively assumed to be undamped. The FEM 

model for the track structure is 49.2m in length and extends beyond the extents 

of the bridge model a distance of 9.2m in both directions. The vehicle system 

considered here is again a single 181 locomotive vehicle model.

7.4.2 A nalysis R esu lts

The quasi-steady state system response is considered for a vehicle velocity of 40ms^^ 

The dynamic impact factor for the original simply supported beam bridge model is 

1.078. The calculated equivalent factor for the beam with track model is identical 

to three decimal places of precision. Note tha t the impact factor for the track- 

bridge is defined in terms of the bridge, and not the track, deflection. This finding 

is in agreement with the study of Lou (2005), where it is stated tha t the track 

structure effect on the bridge deflection is insignificant in the quasi-steady state. 

However, random rail irregularity was not considered by Lou. Figure 7.9 illustrates 

the central response of both beam models. The maximum central displacements are 

almost identical though their peaks are slightly out of phase with one another. The 

mid-span displacement of the model inclusive of the track peaks fractionally earlier. 

It is assumed tha t this is due to the additional dispersion of the vehicle load along 

the track structure. The vehicle load is applied to the beam via the 0.6m spaced 

ballast springs rather than directly from the Hertzian contact springs. The dynamic
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impact factors over the same range of velocities (5 to 60ms are in agreement with 

the previous analyses where the track structure was not modelled.

0

— SS beam model
—  SS beam with track model■1

■2

o.

■3

-4

0.24 0.34 0.44 0.54 0.64 0.74 0.84 0.94

Time [s]

Fig. 7.9: Mid-span response of beam models

While the dynamic impact factors are not affected by the integration of the track 

model into the analysis, the contact forces characteristics are influenced. Figure 7.10 

illustrates both the contact force history for the leading wheelset with and without 

the track model. There is greater high frequency oscillation (approximately 188Hz) 

of the Hertzian contact spring when the track model is present. The bogie pitching 

effect on the wheel-rail contact forces is once again prominent. Another observation 

is the contact force variation as the wheelset leaves the bridge structure. For the 

simple beam model the effect of leaving the beam is an initial decrease in the contact 

force followed by damped oscillation of the contact force until the quasi-steady state 

force is attained. For the beam and track model, a force increase is observed as the 

wheelset approaches the end of the bridge span followed by a significant force drop 

off of almost 30kN. The force then gradually returns to its steady state.

The track also has the eflfect of slightly increasing the maximum contact force
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and decreasing the minimum (neglecting the effects as the vehicle leaves the bridge). 

The maximum and minimum observed contact forces are approximately 165kN and 

156kN. The equivalent values for the simple beam model were 161kN and 158kN 

respectively.

— No track Track
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Fig. 7.10: Contact force variations at leading axle

Class 4 and Class 1 vertical irregularity profiles were then applied to the track 

surface profile of the track-bridge model. Ten random profiles of each class were 

generated. The calculated dynamic impact factors for the Class 4 profiles were very 

similar to the quasi-steady state factors which resulted in a mean impact factor of 

1.078. The mean for Class 1 profiles was marginally higher at 1.080. This indicates 

tha t the presence of the track model at the interface between the vehicle and bridge 

negates to some extent the effect tha t was observed previously when the track model 

was not included.

The contact force histories for Class 4 and Class 1 irregularities were almost 

identical (see Figure 7.11). The forces display identical frequency characteristics 

with some minor differences in magnitude.

209



166 1

— Quasi-steady state
— Class 4 profile 

Class 1 profile
164 -

z
162oU.

£
owcoo

160 -

158 J

156
19 2015 16 17 18

Distance [m]
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Class 4 and Class 1 track profiles

7.5 C onclusions

W hile profile irregularity has been shown to influence the  m agnitude of the  bridge 

dynam ic im pact factors, the extent of this influence is relatively small. The m ost 

general observation th a t can be m ade is th a t the influence of random  track  irreg­

ularities causes the im pact factors to  fluctuate above and below the  quasi-steady 

sta te  im pact factors, the degree of th is fluctuation being proportional to  bo th  the 

vehicle velocity and the classification of irregularity. T he short span bridge im pact 

factors however, showed fluctuation about a value in excess of the quasi-steady sta te  

im pact factor.

As a  means of investigating the relationship between the random  im pact factor 

variance and the quasi-steady sta te  im pact factor a new variable is defined here. 

This variable, Nr, is equal to the  ratio  of the  variance, a ,  to  the quasi-steady s ta te  

im pact factor, IFss (see Equation 7.2). This factor is introduced for the reason th a t 

the quasi-steady sta te  im pact factors do not increase w ith velocity over the  velocity
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range considered in this study. It is hoped th a t by calculating the quasi-steady sta te  

im pact factor, the variance might be calculated for a given class of vertical track 

profile.

The values of Nr are calculated for each of the three bridge spans and two track 

classes. The results of a linear regression analysis using Microsoft Excel of Nr are 

illustrated  in Figure 7.12 where the lines of best fit for each d a ta  set are plotted. 

T he plots display very similar characteristics despite the fact th a t the variance scale 

is much greater for the Class 4 profiles. The ranges of the respective x-axes are 

identical so th a t th is difference in the  individual variance ranges may be more readily 

observed.

The long span bridge models are more susceptible to large Nr values a t higher 

velocities while the  medium span bridge values are least affected by velocity. The 

Nr increase w ith velocity in all cases. The significance ‘F ’ value calculated by Excel 

was in all six cases smaller than  0.003. W hen th is value, which serves the same 

function as a  P-value, is less than  0.1, it may be said th a t the model is statistically  

significant.

Only the FRA PSD functions have been considered in this particular analysis. 

There are other empirical PSD functions available to  describe random  irregularities, 

each with different statistical characteristics. The poorest quality of track described 

by the FR A  PSD functions was used here so th a t the  worst case could be observed. 

One further observation th a t should be made is th a t bridges will generally have 

better aligned track than  a random  selected section of track. W hile the  effects of 

Class 1 irregularities were observed here it is unlikely th a t a section of track on a 

railway bridge will be of such poor quality.
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C hapter 8

Sum m ary and C onclusions

8.1 Sum m ary

The research undertaken in this thesis was concerned with the development of com­

putational models for the purpose of estimating the vertical dynamic response of 

both railway vehicles and track. The individual vehicle and track responses govern 

the characteristics of the contact forces generated between the two systems; the 

calculation of these forces is the main focus of this research. For a system w'ith 

perfect geometry the system response attains a quasi-steady state. The effect of 

different types of geometrical defects on the response was considered. The types of 

irregularities tha t were considered were categorised as random and discrete.

Frequency domain techniques were applied to determine the characteristics of 

the vertical contact forces generated when a railway vehicle travels along a railway 

track with a vertical profile tha t is randomly irregular. Two different types of 

vehicle models were analysed: a locomotive and a passenger vehicle. The vehicles 

were modelled as two-DOF systems. The linearisation of the non-linear Hertzian 

contact spring between wheel and rail was required prior to the frequency domain 

analysis.

The contact forces generated by a flatbed wagon model travelling on a similar
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random profile were also calculated using frequency domain techniques. The model 

in this case possesses four DOFs, which allowed the differences in the contact force 

process characteristics a t two different wheelsets to be observed.

The validity of the linearisation of the Hertzian contact spring was investigated 

using numerical analysis. A track model was formulated using the Finite Difference 

Method. Random profiles of similar characteristics to those applied in the frequency 

domain analyses were generated and implemented at the wheel-rail interface. A 

comparison of the contact forces generated by track profiles with characteristics 

specified by tw'o empirical PSD functions, FRA and ARS, was also carried out. 

The ARS contact forces were found to be of greater variance w'ith peaks of higher 

magnitude than those generated by FRA profiles.

In addition to the frequency domain analyses of random track irregularity, the 

effect of a number of discrete irregularities on the system response were investigated 

using numerical techniques. In this case how'ever, the track model was formulated 

using the Finite Element Method. The specific cases of a wheel-flat, an unsupported 

sleeper (and two consecutive unsupported sleepers), and a dipped joint have been 

considered. The position of impact of the wheel flat was found to be a factor in 

the impact magnitude. The results of numerical analyses were compared with the 

standard analytical formulae for the P i and P2, and divergence between the two was 

observed.

The effect of random vertical track irregularities on the bridge impact factors 

caused by a moving railway vehicle was investigated. The response of three different 

bridge models was calculated numerically for diflferent vehicle velocities and track 

proflle qualities. The effect of the inclusion or omission of the track structure from 

the model was also investigated.
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8.2 C onclusions

The work carried out in this research has led to the  following conclusions:

1. The suspension stiffness param etric variation showed the most dram atic in­

creases in contact force rms values for bo th  vehicle models. At values of 

3.0 X 10®Nm“  ̂ for the locomotive model and 1.5 x 10®Nm“ ' for the passen­

ger vehicle model, larger contact force rms values are observed. These larger 

rms values occur as a results of the natu ra l frequency of bogie bounce being 

encompassed by the frequency band of the FRA irregularity PSD function. 

These suspension stiffness values are sim ilar to  many of those quoted in the 

literature (Au et al. 2002, Hou et al. 2003, Nielsen & Igeland 1995, Sun & 

Dhanasekar 2002, Wu & Yang 2003). The apparent neglect of possible exces­

sive contact forces in the design of vehicle suspensions is due to  the fact th a t 

the stiffness properties are designed for the prim ary purpose of minimising 

carriage bounce and pitch. The stiffness values th a t minimise carriage bounce 

are coincident w ith those th a t maximise contact force rms values. However, 

the extent of the contact forces increase is seen as an acceptable ‘trade-off’; 

th is is shown in this research to be valid for the case of random ly irregular 

track as specified by the FRA.

2. The analytical formulae for the  P i and P 2 contact force increm ents were shown 

to  have lim itations when compared with the results obtained from dynamic 

FE  analysis of the vehicle and track systems. The are a num ber of reasons for 

this divergence of analytical and num erical results. The analytical formulae 

do not account for the curvature of the railway track in the vertical plane. 

An angular ram p is assumed. The effect of loss of contact between wheel and 

rail is not accounted for accurately in the analytical solution. In addition, 

the formulae are derived based on a single wheel while the F E  analysis was 

carried out using a vehicle model w ith m ultiple wheels. The inertial effect of
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the vehicle bogies and body has an effect on the response at the wheel-rail 

interface tha t is not accounted for by the analytical formulae.

3. When the dynamic excitation to a railway vehicle is random vertical profile ir­

regularity, the contact force process characteristics at the individual wheelsets 

are not generally identical. The extent of the difference between the various 

process characteristics is dependent upon a complex combination of the vehi­

cle velocity and parametric properties. For the flatbed wagon vehicle model 

tested, it was found that resonant effects do not occur due to the low frequency 

content of the track irregularities considered.

4. The wheel-rail contact force processes generated by the two random track 

irregularity PSD functions, FRA and ARS, vary greatly. The application of the 

ARS PSD function, it being of higher frequency content and greater variance, 

resulted in significantly greater contact force variance. The ARS function also 

resulted in higher peak forces. It was also observed that the linearisation of 

the Hertzian spring is a more valid assumption for the FRA random track 

profile irregularities; the assumption is more valid with irregularity functions 

of lower frequency content.

5. The position of occurrence of a wheel flat, relative to the adjacent sleepers, 

is an im portant factor in the resulting impact force magnitude. The maxi­

mum impact occurs when the impact takes place 0.4m beyond a sleeper. The 

minimum occurs when the flat impacts 0.2m beyond a sleeper. Rail pad and 

ballast force magnitudes due to wheel flat impacts are also a function of the 

position of occurrence of the impact and are maximised for impacts directly 

above a sleeper.

6. The influence of the random irregularities as specified by the FRA on dynamic 

bridge impact factors is small. The mean of the impact factor values generated 

by considering a large number of profiles is equal to the steady state impact
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factor. However, the variance of the im pact factors when tracl< irregularities 

are considered causes some larger im pact factors to  be observed, especially 

in the cases of high velocities on the short-span and long-span bridge models 

th a t were considered. W hile the short span model steady sta te  im pact factor is 

approxim ately 1.34 at 60ms“ \  for 1% of Class 1 profiles the  factor will exceed 

1.40.

7. The contact force variations th a t  are caused by random  vertical track irregu­

larities as specified by the FRA empirical PSD functions is of little significance 

for both of the vehicles modelled. The contact force variance increases with 

both  vehicle velocity and track quality deterioration. However, the extent of 

these increases is relatively small (ie. m aximum  rms of approxim ately 5.5kN 

about a sta tic  locomotive axle load of 22.4kN for 60ms“ )̂ and the probability 

of wheel unloading, or of contact forces exceeding twice their static  values, 

due to  random  track irregularity is negligible. The param etric variation of 

the various vehicle param eters, w ith the exception of the suspension stiffness 

variation, did not yield excessive contact force variance values.

8.3 R ecom m endations for Further R esearch

Based on the research detailed in th is thesis it is considered th a t the following topics 

be considered as areas of further study  of wheel-rail contact forces caused by railway 

track and wheel defects:

1. The form ulation of alternative formulae for the P i and P 2 contact force in­

crement th a t takes account of sleeper spacing and the interaction between 

multiple wheelsets of the same vehicle.

2. Extend the two-dimensional models th a t have been presented in this thesis 

to  three dimensions to  allow for lateral effects. The com bination of vertical
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and lateral random track irregularity may, in some instances, be a source of 

excessive wheel-rail contact force variance. Only vertical loads were considered 

in this thesis. Derailment involves a combination of excessive lateral loading 

and vertical unloading. A three-dimensional model is required to observe the 

interaction between vertical and lateral axle loads.

3. Apply the three-dimensional model to investigate the effects of random irreg­

ularity on ride quality in addition to contact forces.

4. Investigate the effects of discrete track irregularities on three-dimensional vehi­

cle models. The occurrence of such irregularities at a single side of the vehicle 

may result in large forces and stresses. The two-dimensional models presented 

in this thesis do not allow for the imposition of irregularity on a single side of 

a vehicle.

5. Investigate the effect of discrete track and wheel defects on railway bridge 

impact factors. Lateral bridge and vehicle response could also be included.
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Appendix A 

Order Statistics of Random  

Process Peaks

Consider th a t there are N peaks in the contact force random  process over a track

stretch of length L (Iyengar & Jaiswal 1995). The peaks are denoted as ai, a2 , ....., aN

and are arranged in descending order, ie.

ai >  a2 >  as > .....>  aN (A.l)

The probability th a t the order peak will exceed the level a  =  ^  is

Fj(o;) =  Prob(aj >  a) =  P rob(at least j num ber of aj are greater than  a )  (A.2)

Now, assuming th a t the peaks are statistically  independent equation A.2 is equiva­

lent to
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Fj(a) =  P(only j peaks > a )  + P(only (j + 1) peaks >  a)

+  P(only  (j +  2) peaks >  a)

+ .......+  P(only N peaks >  a )
N

— P{only i out o f  N  peaks > a )  (A .3)
t = j

From probability theory

P(only i out of N peaks > a)  — Ci,NP'(o^)[l ~  P (a )]^ “‘ (A.4)

where Cj,N =  and P (a )  is given by equation 3.20. Thus, finally

N

F j(a ) =  Ci,NP‘(a ) [ l  -  P(a)]'^’- ‘ (A.5)
i=j

is the probability th a t the order peak among the  N num ber of peaks over a  track 

length L will exceed a given level a  —
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A ppendix B

Four Degree of Freedom M odel

The equation of motion for the four degree of freedom vehicle model upon two 

discretised track masses (see Figure 4.1), with relative wheelset displacements, is as 

follows:

m s ] { X s ( t ) }  +  [ C s ] { X s ( t ) }  +  [ k , ] { x s ( t ) }  =  { f s ( t ) } (B.l)

The mass, damping and stiffness matrices, [nig], [cs] and [ k g ]  are given by the follow­

ing three equations:

me 0 0 0 0 0

0 Ic 0 0 0 0

0 0 mwf 0 -m w f 0

0 0 0 mwr 0 -m w r

0 0 0 0 mgf 0

0 0 0 0 0 mgr

(B.2)
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[ks] =

Cbf “f" Cbr aCbr bCbf Cbf Cbr Cbf Cbr

aCbr -  bcbf a^Cbr +  b^c bf - b c b f aCbr bCbf aCbr

[Cs] =
Cbf bcbf C bf+ 0 — Cbf 0

Cbr aCbr 0 Cbr 0 Cbr

0 0 0 0 Cgf 0

0 0 0 0 0 Cgr

kbf kbr akbr bkbf kbf kbr —kbf - k b

akbr - bkbf a^kbr +  b^kbf b k bf <ikbr bkbf —a k

ksf —bkbf kbf +  khf 0 —kbf 0

kbf akbr 0 kbr khr 0 - k b

0 0 khf 0 kgf 0

0 0 0 khr 0 kgr

br

(B.3)

(B.4)

The system forcing function, f s ( t ) ,  is as follows:

f s ( t ) (B.5)

C b f ^ f ( t )  +  C b r 6 ( t )  +  k b f ^ f ( t )  +  k b r 6 ( t )

- b C b f C f ( t )  +  a C b r 6 ( t )  -  b k b f ^ f ( t )  +  a k b r 6 ( t )  

mwf^f( t )  +  C b f 6 ( t )  +  k b f 6 ( t )

m w r C r ( t )  +  C b r 6 ( t )  +  k b r C r ( t )

khf6(t) 

khr6(t)

and are the track roughness coordinates at the points beneath the wheelsets 

m^f and niwr respectively. The vector describing the system displacement, {xs(t)} 

is given by

|x s ( t ) |  =  |x c ( t)  9c{t) Z wf ( t )  Z^r ( t )  X g f ( t )  X g r ( t ) |  (B.6)

where z^f and z^r are the relative wheelset-rail displacements.
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The wheel hop frequency response functions for the front and rear wheelsets of 

the freight vehicle model are given in Equations B.7 and B.8 as function of circular 

frequency w. These particular functions have been formulated on the assumption 

tha t track deformation does not occur, ie. the track mass springs are assume to be 

infinitely stifi .̂ Inclusion of these springs would serve only to increase the complexity 

of the response.
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H z  . ( a ; )  =  — — -  X f
 ̂ X(o;) V

{ —iw^IcniwCb — w ‘*IcCb +  it^^IcCbkh +  2iw^IcCbkb — w^IcKiwkb +  w^Ickhkb  

+  w^Ickb — 2<^^a^Cbmw +  2ct;^a^cbkh +  4io;^a^Cbmwkb — 4ia;a^Cbkhkb 

+  2a^k^a;^mw — 2a^kbkh}

X [iw cb  +  k b  +  ( iw c b  +  k b ) e “ '"'^°]

{ a ( a k h k ^  +  2 u j '^ c \;m ^  — 4 iu ;^ C b m w k b  — 2 a ;^ C b k h  +  4 iu ;C b k h k b  — iu ;^ m cC b k h

— 2io;^mcCbkb — o;^mckhkb +  ia;®mcinwCb +  o;^mcCb +  cj^nicmwkb

— w ^ n ic k b  — 2 u ;^ m w k b )}  

X [—a k b  ~  ia^ ac b  +  ( a k b  +  iu ;a C b )e “ “^'^°] 

{ —2 a ;^ m c a ^ k b k h  +  2 o ;^ m c a ^ k b m „  +  i(x;^m cIcC b +  w ^ n ic lc k b  +  c j^ n ic lc k h

^  o r t  t v O  0 Oi  o

— 2 \u j  n i c a  C bkh — uj r t ic lc m w  — 2\u) n i c a  C bkb  +  2iu> n i c a  C b m *  — uj n i c a  kb  

+  o;^mca^Cb +  4a^k^kh +  2u;^Icmwkb — 2a;^Ickhkb — 4a^k^u;^mw

+  4LJ â^Cbmw — 4o;^a^Cbkh — Siw^a^Cbmwkb +  Siwa^Cbkhkb +  2io;^IcmwCb

— 2ia;^IcCbkh -  2ia;^IcCbkb +  iO%cl -  w^Ickb)

X [ - w ^ n i w  +  ic<^cb +  kb]

{o;^(—w îrica^Cb +  2io;mca^Cbkb +  nica^kb +  <̂ ÎcCb — 2io;IcCbkb — Ickb)}

X [ ( - w ^ m w  +  io;Cb +  k b ) e “ “^’’°] 

) (B.7)
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"  X(a;) (

{ - ia ;^ Ic m w C b  -  ^^'^IcCb +  icJ^IcCbkh +  2 it^^IcC bkb -  c j'^ lcxn^kb  +  tJ ^ Ick h k b  

+  -  2a;^a^Cbmw + 2u;^a^Cbkh +  4ia;^a^Cbmwkb -  4iwa^Cbkhkb

+ 2a^kbu;^mw -  2a^kbkh}

X [iwCb +  kb +  (iw cb +  k b )e

+

{a(akhkb +  2cu'‘cbmw -  4io.’̂ Cbmwkb -  2a;^Cbkh +  4ia;cbkhkb -  ia;^mcCbkh

-  2io;^mcCbkb — a;^mckhkb +  ico>̂ nicmwCb +  oj'̂ va.cĈ  +  cj'^mcniwkb

— w^rtickb — 2a;^nvkb)}

X [—akb  — iw acb  +  (ak b  +  iu ;a c b )e “ ‘"̂ '̂ °]

{ -2 u ;^ m c a ^ k b k h  +  2a;‘̂ m ca^kbm w  +  icj'^nicIcCb +  o;‘‘m cIckb +  ai'^mclckh

— 2io;^m ca^Cbkh — u^^niclcinw — 2ia;^m ca^Cbkb +  2iu;^mca^Cbniw — o;^m ca^kb 

+ w^nica^Cb +  4a^kbkh + 2ci; Îcmwkb -  2a;^Ickhkb -  4a^kbO;^mw

“t“ 4:UJ a CbHiw — Auj a Cĵ kî  8ioJ a CbHi^kb ~l“ 8iua Cbk^kb ~1̂ ‘2 iuj Î niwCb

-  2io;^IcCbkh -  2iw^IcCbkb +  o^'^IcCb -  tu^Ickb}

X [(-o ;^ m w  +  iwCb +  k b )e “ “ '̂̂ °]

{u?{—uj^m.cS?c  ̂+  2ia;mca^Cbkb + Hica^k^ + ŵ IcCb — 2io;IcCbkb — Ickb)}

X [(-co>^mw +  ii^Cb +  kb)]

)  (B.8)

w h e re  t h e  p a r a m e te r  X  is a  f u n c t io n  o f  ui a n d  ta k e s  th e  fo llo w in g  fo rm :
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Xico)

— 4a^kbkfj +  16io;^Cba^kbmwkh +  2ia;^CbIckh +  2iw^CbIcin^ +  4a;^Cba^k^

+  2 iu ; 'm c Ic m w C b  — 2 ia ;^m cIcC bkh  — S iw C ba^kbk^  — 4iw ® CbIcniw kh

— 4 i a ; ^ C b I c m w k b  +  4 i w ^ C b I c k h k b  — S i w ^ C b a ^ k b i n ^  — 2 i u ; ^ m c I c C b k b

+  2io;^m ca^C bin^ — 4ia;^m ca^C bm w kh — 4iu;®mca^Cbmwkb +  2io;^m ca^Cbkh 

+  4itJ^mca^Cbkhkb — 8a;^Cba^mwkh +  Sa^kbix’̂ mwkh — 4kbo;‘*Icmwkh 

+  2a;^nica^kbk^ +  2w^m ca^kbkh +  2a/'®mclcmwkh +  2a;®mclcmwkb

— 2a;^mclckhkb +  2a;®mca^kbm^ — 2a;^mca^kbmw +  2a;®mca^Cbmw

— 2u;^mca^Cbkh +  a;®mcIcCb — w'^mclck^ — w^niclckb — w ^niclcm ^

— 2a;'*Icmwk'b +  2a;^Ickhkb — 4a^kbO;^m^ +  2kbo;^Ickh +  2kbW®Icm^

+  2u/®CbIcinw — 2Lj^CbIckh +  4u/’®Cba^m^ — 4tj'*mca^kbmwkh (B .9)

238



A ppendix C

Railway Vehicle Parameters

C .l 181 L ocom otive Param eters

P a ra m e te r U n it V alue

Vehicle body mass t 40.0

Bogie frame mass t 8.477

Wheelset mass t 2.0

Body moment of inertia tm^ 1255.159

Bogie moment of inertia tm^ 13.665

Secondary suspension spring stiffness kNm-* 500.0

Primary suspension spring stiffness kNm-i 1600.0

Secondary suspension spring damping kNsm“ ^ 100.0

Primary suspension spring damping kNsm“ ^ 200.0

Distance between two bogie frame centres m 3.429

Distance between axle centres m 1.235

Overall length of vehicle m 13.424

T ab le  C .l:  181 Locomotive model parameters
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c.2 M ark 3 C oach P aram eters

P a ra m e te r U n it V alue

Vehicle body mass t 33.992

Bogie frame mass t 3.0

Wheelset mass t 2.0

Body moment of inertia tm^ 2086.0

Bogie moment of inertia tm^ 3.47

Secondary suspension spring stiffness kNm -i 1000.0

Primary suspension spring stiffness kNm“ ^ 550.0

Secondary suspension spring damping kNsm'^ 100.0

Primary suspension spring damping kNsm“ ^ 200.0

Distance between two bogie frame centres m 13.4

Distance between axle centres m 1.3

Overall length of vehicle m 23.0

T ab le  C.2: Mark 3 coach model parameters
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