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Sum m ary

In this thesis we study various aspects of the mathematical theory of water waves.

In Chapter 2 some qualitative results for two recently-derived nonlinear models for shallow 
water waves are presented. In the first part of the chapter we examine the solutions 
of a family of nonlinear differential equations which initially have compact support, and 
investigate whether they retain this property over a nontrivial tim e interval. In the second 
section of Chapter 2 we particularise to  the Degasperis-Procesi equation and conduct a 
more detailed analysis of the propagation speed of solutions for a larger class of initial data, 
achieving results on the persistence properties of solutions and the unique continuation of 
solutions.

In Chapter 3 we study a recently-derived linear model equation for edge waves. This model 
equation is a self-adjoint second order ordinary differential equation with coefficients tha t 
depend on the topography of the seabed, the longshore speed of the current and the celerity 
of the wave. We present a  definition of edge-wave solutions for the equation, and rigorously 
establish the existence of edge-wave solutions using results for self-adjoint second order 
ordinary differential equations concerning the monotonicity and asym ptotic behaviour of 
solutions from the literature. We conclude the chapter by proving the existence of a large 
family of edge-wave solutions for the model equation, given a wide range of coefficients for 
the model equation, the coefficients depending on the particular environmental data  for 
the wave.

Finally in Chapter 4 we present results concerning particle trajectories in water waves. 
The first section is concerned with linear periodic capillary and capillary-gravity waves, 
in both the shallow water and the deep water settings. In the final part of the chapter 
we then work with the fully-nonlinear governing equations for the case of the deep water 
Stokes wave.
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A spects of the m athem atical theory of water waves 
David Jarlath Patrick H em y

A bstract

In this thesis we study various aspects of the mathematical theory of 
water waves. In Chapters 2 and 3 we analyse certain qualitative properties 
of some model equations, while in Chapter 4 we work with the nonlinear 

governing equations and their linearisation. In Chapter 2 some qualitative 
results for two recently derived nonlinear models for shallow water waves 
are presented. In the study of edge waves in Chapter 3 we investigate a 

linear model equation and present some results relating to the existence of 
edge-wave solutions. Finally, in Chapter 4, we present results concerning 

particle trajectories in water waves, both in the linear setting as well as for
the nonlinear governing equations.
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Chapter 1 

Introduction



In this thesis we study certain aspects of the mathem atical theory of water waves. 

The m athem atical theory of water waves has a long history, dating as far back as Newton’s 

attem pts to construct a rigorous theory in 1687 [39]. We can view the m athem atical theory 

of water waves as essentially consisting of two branches: in the first instance the aim is 

to construct model equations which represent the wave motion as accurately and, ideally, 

as elegantly as possible; in the second instance the task for the m athem atician consists of 

trying to glean information, either qualitative or quantitative, from the model equations by 

using tools from pure or applied mathematics. In the best-case scenario we would obtain 

explicit solutions for the model equations.

It is inevitable in the course of constructing model equations th a t certain assumptions 

or simplifications must be utilised. In the work presented in this thesis the fluid is assumed 

to be a continuous medium, the so-called continuum  hypothesis. We also adopt the simpli

fying assumptions th a t the water is vnviscid (no internal friction forces) and homogenous 

(constant density). Under these assumptions the governing equations of hydrodynamics 

were derived in the 1750’s [39] by Leonhard Euler and are known as Euler’s equation.

Other than  the nonlinear governing equations we analyse some recently-derived model 

equations for shallow water waves. Since Euler’s equation is highly nonlinear it is appro

priate as a first study to analyse the equations in a linear setting (see Chapter 4). However 

much of the recent work in the modelling of hydrodynamics has seen a departure from the 

various linearisations of Euler’s equations and instead the focus has shifted to the study 

of various nonlinear model equations which approximate Euler’s equations and which also 

have interesting structural properties (see Chapter 2).

The layout of this thesis is as follows. In Chapter 2 we present some qualitative aspects 

of two recently-derived nonlinear models for shallow water waves. The model equations 

are approximations of the full Euler equations and are also members of a general family of 

equations which have interesting properties inherent to their structure.

In C hapter 3 we present some results for edge waves. Edge waves are confined to the 

nearshore area of a sea or ocean and propagate in the longshore direction. Edge waves are 

commonly generated by sea-storms and it is believed th a t they have a significant role to
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play in the transport of seashore sediment. However it is difficult to  observe edge waves and 

perhaps it is for this reason th a t they have been somewhat neglected in the mathem atical 

literature on water waves. In Chapter 3 we investigate a linear model equation and present 

some results relating to the existence of edge-wave solutions.

Finally in C hapter 4 we present results concerning particle trajectories in water waves. 

We work both  within the linear framework as well as with the nonlinear governing equa

tions, and will deal with both  deep water and shallow water waves.
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Chapter 2

QuaHtative aspects of som e nonUnear 

water-wave m odels



2.1 Evolution of com pactly supported solutions for 

the 6—equations

2.1.1 The 6—equations

In this section we study a parameterised-family of nonhnear partial differential equations 

— the so-called 6—equations (2.1). Two members of this family model the unidirectional 

propagation of waves in shallow water over a flat bed. Each member of the family in 

general possess interesting structural properties. In this section we are interested in the 

evolution of solutions of the equations which are initially compactly supported. We relax 

this condition in the course of the analysis in section 2.2. Here we aim to ascertain if any 

nontrivial solutions u ,m  to equations (2 .1) and (2 .2) respectively retain the property of 

being compactly supported over time. The results we obtain enable us to provide concrete 

answers to this question with regard to solutions of (2.2) for any 6 e  R, and for a restricted 

range of equations in the 6—family for solutions of (2 .1).

The 6—equations are the family of nonlinear partial differential equations of the form

Ut '^^txx (^ l)^^^x ^ '^ x '^ x x  ' ^ ' ^ X X X }  ^  ^   ̂ ^  0) (^'^)

where 6 G R parameterises the family. These 6—equations can also be re-expressed in the 

form

rrit + bUxTn -\- um^ =  0, x G R,  ̂ > 0, (2-2)

where m = u — u^x- The 5—equations (2.1) belong to the more general family of nonlinear 

dispersive partial differential equations

111 ^ ' ^ x x x  ^  '^ 'txx  (^l"^ ^ 2 '^ x  X

where '^,a,Ci,C2 and C3 are real constants. Degasperis and Procesi [43] found that, up 

to rescaling, there are only three equations that are integrable within this family: the 

Korteweg-de Vries (KdV) equation

Ut '^xxx  0 )
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the Camassa-Holm equation

'^ tx x  S u U x  ■ ^ '^ x '^ x x  '^ '^xxx -i

and the Degasperis-Procesi equation

Xll U txx  ^ U U x  ^ ' ^ x ' ^ x x  ‘̂ ' ^ x x x '

The Camassa-Holm (CH) [9] equation arises in a variety of different contexts. It has 

been widely studied since 1993 when Camassa and Holm [9] proposed it as a model for the 

unidirectional propagation of shallow water waves over a flat bed. The CH equation has 

an interesting background. The derivation of the CH equation followed in [9] suppresses 

the role played by the vertical y—coordinate. Furthermore, the CH equation can not 

obtained via the standard asymptotic approach, cf. KdV. However, in the 2002 paper 

by Johnson a y—dependence is derived whereby, in the shallow water setting, the CH 

equation is a model equation where u{x, t) represents the horizontal velocity component 

of the fluid motion at a certain depth over a flat bed in nondimensional variables [68, 66]. 

We note that the equation was originally derived in 1981 as a bi-Hamiltonian equation 

with infinitely many conservation laws by Fokas and Fuchssteiner [49]. Furthermore, the 

CH equation is also a re-expression of geodesic flow on the diffeomorphism group of the 

line [15, 75, 83] and it models axially symmetric waves in hyperelastic rods [40]. The CH 

equation is integrable [9, 16, 31, 49, 76], models wave breaking in the shallow water regime 

as well as the propagation of permanent waves [15, 22, 23, 84], and its solitary waves are 

stable solitons [9, 34]. There is in fact a whole hierarchy of integrable equations associated 

with the CH equation, cf. [52],

The Degasperis-Procesi (DP) equation was derived in 1999 by Degasperis and Procesi 

[43]. This equation has a physical derivation similar to the CH equation modelling the 

unidirectional propagation of shallow water waves over a flat bed c.f. [68, 66]. It is formally 

integrable [42] and has infinitely many conservation laws, however it has not currently been 

afforded any geometrical interpretation. Certain classical solutions of the DP equation exist 

for all times, whereas others blow up in finite time [48, 93, 94]— a situation which occurs 

for the CH equation [15, 22] but not for KdV (where all classical solutions are global).
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This section is arranged as follows. Before proving results relating to solutions of the 

6—equations we firstly present in Section 2.1.2 the local well-posedness of (2.1) and of (2.2) 

for all 6 G R based on K ato’s semigroup approach [72]. In Section 2.1.3 we address our 

main point of our interest, th a t is we investigate for which values of 6 G R the classical 

solutions m , u  of (2.2) and (2.1) respectively will have compact support for all times t in 

a nontrivial interval if their initial da ta  has this property. We prove tha t this holds for 

any 6 G M throughout the maximal time interval of existence for classical solutions m  of 

(2.2), whereas for b in the range 0 < b < 3 any nontrivial classical solution u of (2.1) 

loses instantly the property of being compactly supported. Particularising to 6 =  2 and 

6 =  3 in our results we recover the recent results obtained in [19, 56, 57, 84] for the CH 

and for the DP equation respectively, the two equations of importance which motivate our 

investigation.

2.1.2 Local W ell-Posedness

To prove the local existence of solutions for (2.1) one can implement K ato’s semigroup 

approach [72], following the example of the CH equation [23]. If p(x) = for all

a; G R, and * denotes convolution, then for all /  G L^(R) we have

(1 -  dl) (p * / )  (x) =  i ( l  -  d̂ ) ey-^f{y)dy + e^~yf{y)dy 

2 I-oo + /r  e^-yf{y)dy -  ey~^f(y)dy -  e^-yf(y)dy + f ( x )  + f ( x )

= fi )̂,

and therefore p * m  = u. Using this identity we rewrite (2.1) as

Ut + uux + dxP * ~  X G R, t > 0. (2.3)

As was shown in Y in’s paper [93], for any 6 G R equation (2.3) is suitable for applying 

K ato’s theory [72], using a framework similar to those provided in [23, 85] for the case of 

the CH equation — see also [54] for the general case. For s >  0, let IHÎ (R) be the Sobolev 

space of functions /  G L^(R) with the property th a t the Fourier transform /  satisfies

7



J jj( l  +  1̂ 1)̂  ̂ Let us now state [93, Theorem 1], which we adapt to the

present situation:

Theorem  2.1.1 For all b E M, given uq G H^(R),5 > | ,  there exists a maximal T= 

T{b,Uo) > 0, and a unique solution u to (2.1)^ such that

u = u{-,uo) e  C([0,T),]HI"(R))nC'^([0,T),]HI"-^(R)).

Moreover, the solution depends continuously on the initial data, and if Uq G IH[̂ (R), then 

u e  C2([0,T),H2(R)).

Remark The lower bound 3/2 which is stated for a in Theorem 2.1.1 is the optimal 

lower bound resulting from Kato’s theory. In the case where we require a higher level of 

differentiability of our solution u we will assume Uq G H'®(R) for a higher value of s.

Given the Sobolev embedding 1HI’'+^(R) C C^(R) for r > 0, we have, in view of Theorem 

2.1.1, that u G C'([0,T),C^(R)) nC 'H [0 ,r),C 2(R )) if uq G H^(R). Thus, if «o G M \R ) ,  

we get a corresponding classical solution m  G C^([0,T) x R ,R) of (2.2) with initial data

^ 0  ^ 0  ^0 , xx -

2.1 .3  M ain  R esu lts

Knowing the existence of classical solutions to (2.2) for all 6 G R, we now set about 

examining the propagation speed of these solutions. The following proposition says that, 

for any 6 G R, a classical solution m  of (2.2) with compactly supported initial data mo will 

remain compactly supported on some finite time interval.

Proposition 2.1.2 Assume that u q  G 1HÎ (R) is such that mo = U q  —  has compact 

support. I f  T  = T{b,Uo) > 0 is the maximal existence time of the unique solution u{x, t)  

to (2.1) with initial data u q { x ) ,  then for any t G [0,T) the function x m{x, t )  has 

compact support.

8



P roof We associate with the solution m  the family t)}fg[o,r) of increasing diffeo-

morphisms of the line defined by

t e [ 0 , T ) ,  (2,4)

with

(p{x, 0) — X ,  X 6 M. (2.5)

The claimed smoothness of the functions ip follows from classical results on the dependence 

on parameters of the solutions of differential equations [1].

Using (2.2) and (2.4)-(2.5), the fact that > 0 (see (2.7)), and then differentiating 

with respect to t, we can check that the following identity holds:

m{(p{x,t), t) ■ ipl.{x,t) = m{x,0),  x e R , t e [ 0 , T ) .  (2.6)

Note that if we are dealing with the case 6 =  0, then (2.6) gives

m(-, t) — mo X 6 M, i G [0, T),

and so is automatically compactly supported. For the other cases, we infer from

(2.4)-(2.5) that

(fx{x,t) = exp (̂J u^{(p{x,s),s) ds^ , x e M , t e [ 0 , T ) .  (2.7)

It follows that if mo is supported in the compact interval [a,P], then since ipx{x,t) > 0 on 

R X [0, T)  from (2.7), we can conclude from (2.6) that has its support in the interval

[ip{a,t),cp{p,t)]. I

It is interesting to note that this result holds for all 6 G M. We now show that the 

propagation speed of a classical solution u of (2.1) is infinite for h in the range 0 <  6 < 3.

Theorem  2.1.3 Fix 0 < 6 < 3. Assume that the function U q  G H'^(R) has compact 

support. Let T  > 0 he the maximal existence time of the unique solution u{x, t)  to (2.1) 

with initial data U q { x ) .  I f  at every t G [0,T) the function x i—>• u{x, t)  has compact 

support, then u must be identically zero.

9



For (x , t )  G M X [0,T), let m {x , t )  =  (1 — dl)u{x,t ) .  Clearly m (-,0) has compact support 

since Uq does. By Proposition 2.1.2 the function x  i— m {x , t )  has compact support for 

all t G [0,T). By means of taking Fourier transforms we arrive at the following exphcit 

formula for u  in term s of m,

^ Jr

th a t is,

/ X ro o

e'^m{y,t) dy + / e~'^m{y,t) dy. (2.8)
•oo j  X

In order to prove Theorem 2.1.3 we use the following result [56] which holds true for all of 

the 6—equations (2.1).

P ro p o s it io n  2 .1 .4  L e t u E  C ^(R )nH ^(R ) be such that m  = u — u^x has compact support. 

Then u has compact support if  and only i f

I  e^m{x) dx = I e~^m{x) dx = 0. (2-9)
jR J r

P ro o f  Assume th a t u has compact support. Let 0 < Nm G R be a positive constant large 

enough th a t m{x) = 0 for all |x| > Nm, and let Nu be defined accordingly with respect to 

the compactly supported function u. Let N  =  max{A^m, N^}  and consider firstly the case 

X  > N.  W riting (2.8) as the sum of three integrals as follows

/  — X p x  poo

e^m{y) dy +  e~^ /  e^m{y) dy e~'^m{y) dy,
■OO J  —X J  X

it is obvious th a t the first and third integrals are both identically zero since m{y)  =  0 for

\y\ > |x| > N . It follows th a t u{x) = 0 for all x > if and only if e~^ e^m{y) dy = 0

for all x  > N ,  th a t is, if and only if e^m{y) d^ =  0 for all x  > N . Since u{x) has 

compact support we infer tha t

I e^m{y) dy = 0.
R

Upon considering the case —x > N  it follows similarly th a t J^e~^m{x) dx  =  0 if u has 

compact support, proving the second relation in (2.9).

10
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To prove the converse we know that m  has compact support, which means that there is

a constant > 0 such that m{x) = 0 for all |x| > N.  Assume that (2.9) holds. Therefore

[  e^m{x) dx = f  e^m(x)  dx =  0 (A)
J m. J - n

f  e~^m{x)dx =  j  e~^m(x) dx =  0. (B)
J u  J - N

Pick x > N . We can now write equation (2.8) as

/ N  poo
e^m{y) dy + /  e^^m{y) dy =  0 ,

■N J x

if we take into account (A) and the fact that m{y) =  0 for all y > x > N .

Similarly, for x < —N,  equation (2.8) becomes

/ X n N

e^m{y) dy /  e~'^m{y) dy ~  0.
■oo J - N

So u has compact support. |

P ro o f  of T h eo rem  2.1.3 We assume u has compact support and show that this implies 

u = 0. Using (2.2) and differentiating (2.9) with respect to t we get:

— I e ^ m { x , t ) d x =  I  e^rritdx = —b f  e ^ m u ^ d x — j  e^m^udx
d i  ./TiJ ./iif ./lu

= —b e^mUxdx+  / e^mUxdx+  / e^mudx
J u  7m 7 r

=  (1 — 6) / e^rnuxdx+  / e^mudx
J r  J r

=  (1 — 6) / e^uuxdx — {1 — b) / e^UxUxxdx+ / e ^ u ^ d x — / e^uuxxdx
J r  J r  J r  J r

=  (1 —  6)  f  e ^ u U x d x - \   —  f  e ^ u l d x +  f  d x  +  f  e ^ U x { u  +  U x ) d x
J r  2  jjK 7 k

b  f  x  2 J  3- 6 / '  2 j= -  e u dx -----  — / e dx,
2 7r ^ J r

where all boundary terms after integration by parts vanish since both and, by

assumption, u{-,t) have compact support for all t G [0,T). Therefore,



Similarly, for the sake of completeness we note th a t upon differentiating the second integral 

in (2.9), we get

 ̂j  e~^m{ x , t ) dx  = J i e [ 0 , T ) .  (2.11)

We will use relation (2.10) to  complete the proof — the same result can be proved by 

following a similar reasoning with (2.11). Relations (2.10) and (2.11) are equivalently 

useful for our purposes. Since u{x, t )  has compact support, relation (2.9) implies tha t 

(2.10) =  (2.11) =0. In particular for fixed b in the range 0 < b < 3 the condition tha t the 

integral on the right hand side of (2.10) must be identically zero implies th a t either u or 

Ux is identically zero. Since u  is compactly supported both of these situations imply u = 0. 

The proof is complete. |

R em ark We note th a t 0 <  6 < 3 includes the two main cases of our interest, namely 

b = 2 (CH) and 6 =  3 (DP). However the relation derived above in equation (2.10) seems 

to offer us no results relating to any values of b outside of this range, which suggests th a t 

perhaps another approach is necessary in order to prove Theorem 2.1.3 for the entire family 

of 6—equations.

R em ark If uq ^  0 is a function in IHI (̂R) with compact support, then for b in the range 

0 < 6 <  3 the classical solution u{-,t) of (2.1) loses instantly the property of having compact 

support. To see this we go through the same argument as above, this time restricting our 

attention to an arbitrarily small time interval [0,e).
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2.2 Persistence properties for the D egasperis-Procesi 

equation

In this section we focus on the Degasperis-Procesi (DP) equation with the intention of 

improving on the results obtained in the previous Section 2.1. In Section 2.1 we showed 

that if a solution of the DP equation was initially supported on a compact interval then 

it would instantly lose this property [57]. In the theorems that follow we admit solutions 

which belong to a less restrictive class (the initial data decays exponentially or faster at 

infinity). We derive results concerning the persistence of these asymptotic properties as 

the solutions evolve. Analogous results for the Camassa-Holm equation were previously 

obtained in [63]. The Degasperis-Procesi (DP) equation takes the form

~  Utxx +  4'U'Ui =  +  uUxxx, t  > 0, X €  M, (2.12)

or equivalently,

rrit + ‘iUxTTL -V urrix =  0, x G R, i >  0, (2.13)

where m = u — Uxx- If p{x) =  x G R, then (1 — =  p * /  for all /  G L^(R)

and so p * m = u, where * denotes convolution. Using this identity we rewrite (2.12) as
3

Ut -I- uux -H -dxP = 0, X e  R, t > 0, (2.14)

this form of the DP equation will be convenient for what is to follow.

N o ta tion

(a) We write \f{x)\ ~  0{g{x))  as x —> oo if hmi_K3o = C,  for a constant C.

(b) We write |/(x ) | o{g{x)) as x ^  oo if limi^oo = 0.

We will allow the constant C to be zero, in which case (a) <=» (6). For s > 0 and 

p > 1 we denote by ||-||jjs the norm in the Sobolev space and by ||-||p the norm in I / .  

Furthermore, in what follows we employ subscripts to represent the partial differentiation 

of strong solutions with respect to the variables, while partial differentiation in the sense 

of distributions is represented by the d̂ yariabie" operator.
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2.2.1 P ropagation  speed  of the D egasperis-P rocesi equation

If we assume th a t uq E H^(R) then (see Section 2.1.2 and [94]) there is a maximal time 

T  =  T(uo) > 0 such th a t (2.12) has a unique solution with

UG C '([0 ,T ),tf)n C ^ ([0 ,r) ,M ^ )n C ^ ([0 ,T ),]H l2 ). (2.15)

Accordingly,

m  e  C ([0 ,T ) ,H 2 )n C ^ ([0 ,T ) ,tf )n C 2 ([0 ,T ) ,L 2 ) . (2.16)

Given the Sobolev embedding HI^'^^(R) C C'^(R) for A: > 0, we have th a t u  e  C^([0,T) x 

M,1R) and m  e  (7^([0,T) x R, R), thus ensuring the local existence of strong solutions to 

the DP equation (2.12). If we express the DP equation as (2.14), then it was shown in 

[93] (see Section 2.1.2) th a t applying K ato’s theory ensures the local existence of strong 

solutions to equation (2.14) for u q  £  with s having the strict lower bound s > 3/2. In 

general these are weak solutions to the DP equation (2.12). Throughout the remainder of 

this section we assume the local existence of strong solutions to equation (2.14) for T  > 0. 

It is known (see [84, 93]) th a t T  =  oo or T  < oo. The latter situation occurs if the solution 

“blows-up” , in which case the solution remains bounded but the spatial-derivative becomes 

infinite, th a t is,

limt_^TSup ||u 3;(i)||oo =  oo. (2.17)

Our first theorem tells us th a t a solution u  of (2.14) which initially has a weighted-

exponential decay ra te  a t infinity will retain the same decay rate at all later times of

its existence. Compactly supported functions are obviously included in this class of initial 

data, and we saw in Section 2.1 th a t nontrivial solutions of (2.14) which initially have 

compact support lose instantaneously the property of being compactly supported: they 

have an infinite propagation speed. The following theorem provides some information on 

the asym ptotic behaviour of these solutions throughout their evolution.

T h eorem  2.2.1 For s > 3 /2 , let T  > 0 be the maximal existence time of the strong 

solution u G C([0,T),H® (R)) to equation (2.14) with initial data uq =  u{x,0). Suppose

14



there zs a 0 e  (0,1) such that both

|uo(2^)| and |'Uo,i(x)| ~  0 (e  1̂̂ )̂ as |x| oo.

Then both

\u{x,t)\ and \ux{x,t)\ 0{e  as |x| ^  oo,

uniformly in [0, T  — e] with e 6 (0, T).

(2.18)

(2.19)

P ro o f  We begin by multiplying equation (2.14) by  ̂ for any q e Z" .̂ Then integrating 

the result in the x —variable we obtain

/ OO 3

u^‘̂ ~^uuxdx +  ;̂  /  * u^dx =  0 ,
• rso ^  - /  — rv^

and so it follows that

f  u '̂ -̂^utdx < f
J — OO J —

^uu-rdx + ^dxP * u^dx

Using the identity

together with the estimates

/OO

u^‘̂ ~^uuxdx

•OO

u ^ ^ ~ ^ d x P  * w^dx

we obtain from (2.21) the inequality 

d

/  H o l d e r ' s  \
inequality I 

<

2g

Il«(0ll2g <  l | W x ( i ) | | o o i k ( 0 l l 2 9 + 2  

Multiplying both sides of (2.25) by e“ -̂ oli“ (̂'̂ )Hood'r and integrating we get

(2 .20 )

(2 .2 1 )

(2 .22 )

(2.23)

(2.25)

|5iP * ti^(r)||2^dr^ e-̂ o t e [ 0 , T  —e], (2.26)
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where if T =  oo we define [0, T —e] := [0, oo). We remark tha t any function /  e L^(R) n  L°°(R) 

is contained in U { R )  for all 1 <  r  <  oo and furthermore

hm

Since dxP G and G L^nL°°, we have by Young’s inequality th a t dxP^u^ir) G L^r\L°°. 

Thus we can let g oo in the norms in (2.26) to get

ll^ (̂Olioo ^  (̂ ll“ (0)lloo +  \ \dxP*u^{r)\ \^dT^ t e  [0,T -  e], (2.27)

On the other hand, if we differentiate equation (2.14) with respect to the x —variable we 

get
3

u tx+uuxx  + u l  + - d l p * u ^  = 0. (2.28)

We work with this equation in a similar manner as in steps (2.20)-(2.27), the only difference 

being th a t we multiply equation (2.28) by before we integrate in the x —variable.

Applying integration by parts in the second term and then taking estimates we finally 

arrive a t the differential inequality

d t
U x { t ) \ \ 2g <  2  | | u ^ ( i ) | l o o  I i « x ( t ) | l 2 g  +  2 P I p  *  ^ ^ ( 0 129 ■ (2.29)

As above we get 

ll'̂ 3:(̂ ) Il2g — ( H’̂2 3
2g +  2

| |a ^ p * u 2 (r) ||2 g d r)  e"-^oll^x(r)|iocdr  ̂ (2.30)

Because d^p * u ^  = d x P  * d x U ^  and d x U ^  =  2 u u x  G f l  L°° we can take limits of the norm 

on each side to get

I K W I L <  ( l l - . ( 0 ) I L  +  ^ ‘ | i a J p * « " { r ) | L d T ) e = ' / . ' l “ - M « » “ - ,  ( € l O , r - e | .  ( 2 . 3 1 )

For each G we define the weight function, for 9 G (0,1), by

0 i v ( x )  =  <

1, X <  0,

e®  ̂ x G(0,A^), (2.32)

X  > N.

16



It follows from direct exam ination th a t  for each N  G Z"*" we have

0 <  0jv(^) ^  4>n {'^) f o r  all x  G K\{0 ,  Â }. (2.33)

U pon m ultiplying equation (2.14) and  equation (2.28) by (pN we get

(û Af)* +  {u 4>n )ux + - (Pn OxP * u  ̂ =  0,

3
(2.34)

Let us m ultiply the  second equation in (2.34) by {ux({>n ) ‘̂ ‘̂ ~^ and  in tegrate w ith respect to  

the  x —variable. T he second term  of the resulting expression, after integration by p arts  

and  using (2.33), can be estim ated  as follows

UUxx(Pn {Ux<Pn )' ‘̂̂ ^dx u { U x 4) n )   ̂ { { U x ^ n ) x  -  U x <I>'n )

{Ux4>n Y ‘̂ \  
29 A

u  <; 1 ^ _ ' I -  Ux4>N{ux<i)Nf‘̂  ̂ dx 

<  C  ( l l u ( t ) l l ^  +  | | u ^ ( t ) | U )  \\Ux(t>N\\ll  ■ (2.35)

W orking as before, after adding up the equations resulting from (2.34), we eventually arrive 

a t the  following inequality for th e  weighted function:

+ II''̂ x(O0n |Ioo < I  ll“ (0)< /̂v|loo+ ll'f̂ x(O)07v||

+  {{{(pNdxP * u ^{t ) \ \ ^ +  \ \ ( f>Ndlp*u^ iT) \ \J  d r

i 0 1̂0 T  — e]

(2.36)

This expression requires further m anipulation before we are in a position to apply Gron- 

w all’s inequality, and we will use the fohowing result.

L e m m a  2.2.2 Given any x G R and any 0 < 9 < 1, we have

ro o  g - | i - y |  Q

I  =  (j)N{x) I ■■■— 7:~ d y  <  2 +
1 - 9

C  >  0. (2.37)
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P ro o f  We express the integral as

I  = e -dy +  e'
oo g - y

' - 0 0  J x  </>iv(2/)

Since is increasing, the second integral is bounded by

roo
/2 <  /  e“^dy =  1.

X

To estimate / i ,  we integrate by parts to get

dy =  / i  +  /2

/ i  =  e

When X <  0, this gives / i  =  1 and we are done. For x > 0, then

j ' T n \ n ( x , N )

I\ — \ 9e ^(p{ /̂[x)
Jo

=  2 _|_ ^g -3 :g ^ 'rn in (i,iV )

Q̂ mm{x,N)—x

g ( l  ^)ydy 

g ( l —0) mi n( x , N)  _

< 1

< 1

i - e
e

I

We now use Lemma 2.2.2 to derive estimates for the terms in (2.36) which involve convo

lutions. For a solution u of (2.14) we have

\(pNdxP*u^{x)\ =
1
-0Af(x) / sgn{x -  y)e~^^~^^u‘̂ {y)dy
^ J — OO-O O

r*oo

< ^ 4> n { x )  I  e y ^ j ^ j ^ c j ) N { y ) u { y ) u { y ) d y

< -  I 0iv(x) f  ii</>AfUlloo||liiic
4>N{y)

—  ^  I I  oo l l^ l l  OO) (2.38)

with the constant C  given by equation (2.37). By the definition of convolution it follows 

that

d^p = dxP * {u^)x = * (wtix),
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so following the m ethod of (2.38) we get

\(})Ndlp*u^{x)\ <  2C'||(/);vWx||ooll«IU- (2.39)

Using the relations (2.38) and (2.39) in (2.36) it follows th a t

s  I +  ll“ i ( 0 ) ' < ’i v l L  ( 2 - 4 0 )

+  3C f  | |« |L  (I |u (t)^» |L  +  l|xx{T)felL) t € (0, r  -  f)-loo  
'0

Taking into account the boundedness of ||u(r)||oo and ||ux(T')j|oo on the interval [0,T — e] 

(see the blow-up pattern  described by (2.17)), and applying Gronwall’s inequality, we have

+ ll«x(t)0ivlL < (ll̂ (̂o)</>/vlL + II«x(o)</)n IIoo)

< (||u (0 )m ax (l,e^ ^ ) ||^  +  ||ti^(0) m ax(l, ê "̂ ) ||^ )  , (2.41)

where is a constant depending on e. This obviously holds for any G Z"*" so we let

N  —> oo. The proof of the theorem now follows for x —> cx) since we deduce that, for all 

t E [0, T  — e],

[\u{x,t)e^^\ +  |ux(a:,i)e®^|) <  (||u(0) m ax(l, e'’"')||oo +  ||uj:(0) m ax(l, e^^)||co) •

The proof for x  —> —oo follows in a similar fashion. We define for each —N  e  Z ’'", and for 

9 E (0,1), the auxiliary weighted function

n̂ {x ) = <

1, X >  0,

x e { 0 , N ) ,  (2.42)

x > N .

This auxiliary function 4> is the reflection of 4> in the x —axis, and following steps analogous 

to  (2.33)-(2.40), with some minor modifications, we arrive a t the inequahty

[\u{x,i)e~^'"\ -f |wj;(x,t)e“^^|) <  (||u(0) m ax(l, e'^'')||oo +  ||u i(0) m ax(l, e“ "̂̂ )||oo) ,

where is a constant depending on e. The proof of the theorem now follows. |
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The next theorem generahses Theorem 2.1.3 and shows th a t nontrivial solution of (2.14) 

which initially decay faster than  exponentially at infinity cannot, at any later time in its 

existence, have a similarly rapid decay rate.

T h eorem  2 .2 .3  For s > 3 /2 , let T  > 0 be the maximal existence time of  the strong 

solution u  € C([0, T), HI^(R)) to equation (2.14) with initial data Uq =  u{x,0). Suppose 

there is a 5 G (1 /2 ,1) such that

|uo(x)| ~  o(e“ '^l) and |uo,i(x)| ~  0{e~^^^'^) as |x| —>• oo. (2-43)

I f  there is a ti E (0, T) such that

|w(a:,ti)| ~  o(e“ l̂ l) as |x| —> oo, (2.44)

then u = 0.

P ro o f We prove this result by examining the asymptotic order of the terms in the equation

rt i  rti
u{x ,t \)  — u{x,0) + / uux(x, r ) d r  +  3 /2  / dxP*u^dr  = 0, (2-45)

Jo  J o
as |x| —> oo: this equation follows simply from equation (2.14) after integration on [0,ti]. 

W ithout loss of generality, let us focus on the hmit x —> oo. We first note tha t from (2.43) 

and (2.44) we have

u{x, ti)  — u{x, 0) ~  o{e~^) as X —> oo. (2-46)

Furthermore, relation (2.43) combined with the result of Theorem 2.2.1, imply th a t

rh
/ ««x(x, r ) d r  ~  0 (e “ ‘̂̂ '̂ ) as X ^  oo, (2-47)

Jo

which means

/ 'uux(x ,r)d r ~  o(e ^) as x —> oo. (2.48)
J o

We now claim th a t if u ^  0 then the last integral in (2.45) does not decay faster than Ce^^

for a constant C  ̂  0, which gives us a contradiction. If we define X(x) =  ii^ (x ,r)d r

then we have
rt \
/ dxP = dxP *1{x).  (2.49)

Jo
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As in relation (2.47), (2.43) together with Theorem 2.2.1 imply th a t, as x —> oo,

0 < I { x )  -  0(e-2^^). (2.50)

Expanding we get

d:cP * J e^J(y)dy +  y e~^I{y)dy,  (2.51)

with the second integral being of the order o(e“ ^), as re ^  oo, by (2.50) and so we must 

look at the contribution of the first integral. Suppose u ^  0, then I{y)  ^ 0  and therefore

f  e^T{y)dy > K  > 0, for large x,
J  — OO

where K  is a constant. Thus for large x  we have

>kX(x) >  (2.52)

and so the last term  in (2.45) is of order 0 ( e “^), with positive limiting constant greater

than ^  > 0: this is incongruous with the orders of the first two terms expressed in

(2.46)-(2.48), giving us a contradiction. Therefore u =  0. |

T heorem  2 .2 .4  For s > 3/2, let T  > 0 be the maximal existence time of the strong 

solution u G C([0, T), Hl^(R)) to equation (2.14) with initial data uq =  u{x,0).  Suppose 

there is a 5 E (1 /2 ,1 ) such that

|uo(a;)| ^  0 ( e “ ^̂ ') and |'Uo,x(2̂ )| ~  as |x| ^  oo. (2.53)

Then

\u{x,t)\ ~  0 ( e “ '^l) as |x| —> oo, (2.54)

uniformly in [O,!^ — e] with e G (0 ,T ).

P ro o f The proof follows in a similar fashion to Theorem 2.2.1. |

It was proven in [57] th a t the function m defined in (2.13) remains compactly supported 

if its initial d a ta  mo = uq — Uq̂xx has compact support. This parallels a similar result for
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solutions of the Camassa-Holm equation [19, 56]. In the case of the DP equation this result 

follows a t once from the following relation, geometrically motivated for the Camassa-Holm 

equation [30], but which holds nonetheless for the DP equation [84, 57],

m{(p{x, t), t) ■ (pl{x, t) = m{x,  0), (2.55)

where ip{x, t) is an increasing difTeomorphism of the line which solves the Cauchy problem

(p{x, 0) =  X.

Let us now prove the following generalisation of this result.

T h eorem  2.2.5 Let u be a nontrivial solution of equation (2.14) with maximal tim.e of  

existence T  >  0 and u  e  C([0, T), (R)) for s > 5/2.

(a) I f  the initial data Uo{x) = u{x,0) is initially compactly supported on [a, 0] then for  

t e  [0, T) we have

i \  f o r  X > ip{p,t),
u[x, t ) = (  (2.56)

l /2E^{t )e^  f o r  X < ip{a,t),

where E+ > 0 and < 0 are continuous nonvanishing functions with E+ strictly 

increasing and i?_ strictly decreasing for t G [0,T).

(b) Suppose for some constant fj, > 0 we have

uq, uq,x, uq,xx ~  as \x\ -> oo, (2.57)

then for  t G [0, T) we have

m{x , t )  ~  as [x] —> oo, (2.58)

and

lim e"^^u[x,t) = l /2E±{t ) .  (2.59)
I —>±oo
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P ro o f Since u = p * m l e t  us re-express u in the form

1 r  1 r°°
u { x , t ) ^ - e ^ J  eym{y,t)dy + -e^ J  e ym{y,t)dy.  (2.60)

Notice equation (2.55) tells us that if uq is initially supported on the compact interval

[a,/?] then, for any t E [0,T), our function is supported on the compact interval

[(fi{a,t), To prove (a) we define

E+{t) = / e^m{y, t)dy SLud E^i t )  = / e~'^m{y,t)dy, (2.61)

with

u{x, t)  = p{x) * m{x, t )  — - e ~ ^ x  >
/Li

u{x, t)  =  p{x) * m{x, t )  = -e^E_{t) ,  x < (2.62)

It follows from the relations in (2.62) that

u { x , t )  =  - U : , { x , t )  =  U:^x{x,t) =  ^e~"^E+{t),  X > ( f i { P , t ) ,

u { x , t )  =  u ^{ x , t )  =  U:,j:{x,t) =  ^ e ^ E ^ { t ) ,  x < ( p { a , t ) .

Now mo is compactly supported and therefore [57, Lemma 2.3] we have i?+(0) =  0. Since 

m((p{a,t)) = m{ip{P, t)) =  0, for fixed t we have

dE+{t)
e^mt{y, t)dy = /  e^mt(?/, i)dy. (2.6?)

Therefore from (2.13) and integration by parts, and using the fact that both u and cor- 

sequently m  have compact support, we get

dE^it) f*oo  /* o o

= —3 / e^Uxmdy — / e^urrixdy
J  _ o o  -y — 0 0

/ o o  r o o  2  r o o

e^u^mdy +  /  e^umdy =  x /  e^v?dy > 0. (2.64)
•OO J  — OO ^  J  — o o

Thus Ej^(t) is initially zero and strictly increasing for all t G [0,T). In a similar manner

one can show that is also initially zero but strictly decreasing for t G [0, T).  This proves
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part (a) of the theorem.

To prove (b) we write equation (2.13) in the form

?nt(x,t) + u(x,t)mj:(x,t} = —3ux(x, t )m(x, t ) ,  x g R ,  t G[ 0 , T) ,  (2.65)

and proceeding as in Theorem 2.2.1 we find that

sup < c(e)||m(0)e^^+'^^'^l||oo, e G (0,T), (2.66)
tG [0 ,T -e ]

where c(e) is a constant depending on supjg[o,T-e](ll^a:('r)||oo + ||w('^)||oo)- We note that for 

any 0 E (0,1)

u { t ) , u x { t ) , u x x { t )  ~  as |a;| —> oo, (2.67)

meaning that all of the mtegrals in the computations above are well-defined. The property

(2.59) follows by an approach similar to the one performed before, taking into account

(2.60) and defining E± as in (2.61) but with a = —oo, (3 =  oo. |
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Chapter 3

Solutions for a class of edge-wave 

equations
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3.1 T he edge-wave problem

While classically considered to be a mere curiosity, edge waves have recently become a 

subject of great interest in the geophysical research literature [74] due to the fact th a t they 

play an essential role in the nearshore sediment transport. Edge waves are curious water 

waves: they propagate along the shoreline and have maximal amplitude near the shore 

with a rapid offshore decay [67]. This explains their role in sediment transport. Indeed, 

while the water waves coming in from the far sea lose most of their energy due to wave 

breaking th a t occurs mostly offshore, edge waves propagate along the shoreline and may 

reach, in certain circumstances, amplitudes th a t exceed 0.5 m; cf. the discussion in [18]. 

M athematically, the edge waves are modelled by the Euler equations with appropriate 

kinematic and dynamic boundary conditions [67]. The resulting free-boundary problem 

is very complicated and apparently only one non-trivial explicit solution is known for the 

special case of a plane beach [18]. This edge-wave solution can be regarded as a natural 

correspondent of G erstner’s explicit solution for deep water waves [17, 51]. Due to the lack 

of large families of explicit solutions for the nonlinear governing equations, the linearisation 

procedure was pursued [67], mostly for seabeds with a special profile (e.g. planar beaches). 

For a general seabed, the equation

[h{x)r]\x)]’ +  ------k'^h{x)
9

r]{x) =  0, X >  0 (3.1)

was recently derived [65]. Of interest is the existence of monotonous, convergent to zero (as 

X  increases indefinitely) solutions r]{x) of this equation, classically describing the propaga

tion of edge waves in the absence of a current [64], but also found recently to model the 

same problem in the presence of longshore currents and a variable seabed depth profile [65]. 

Following [65, eq. (11)], the seabed depth profile h{x) and the mean longshore current V{x)  

interplay via the formula
ho{x)



h(x)

h(x)

Sketch of a typical edge wave with wave profile rj{x) and seabed h{x). The wave is 

confined to the nearshore and moves in the longshore direction.

is the wave celerity, k and a are the longshore radial wave number and wave frequency 

respectively. Various formulas have been given for the functional coefficient ho{x), e.g. (3x 

(beach with plane sloping profile [46]) or (1 — (the exponential sloping profile case

[5]). As for longshore currents, researchers have focused on currents constantly increasing 

in the offshore direction {V{x) = i&x) that remain very small in comparison with the 

celerity of the edge wave [73]. The detailed account of the literature regarding edge waves 

in [65] shows that no mathematically rigorous investigation has been done up to this 

day about the existence of edge-wave solutions to (3.1). By an edge-wave solution of 

the equation (3.1) we understand a solution t] { x )  that is defined for all positive values of 

X  > X  — for some appropriately large A” > 0 — which is monotonic sufficiently far out 

(it does not oscillate indefinitely) and which tends to zero as x  increases indefinitely. This 

will allow, loosely speaking, for any entrapments (under appropriate hypotheses) in the 

interval X that precedes the existence domain of the edge wave solution, the interval being 

X = {x \ Q < x < X } .  The present section is devoted to establishing, in a rigorous way, 

the existence of edge wave solutions for the equation (3.1) when the seabed depth profile 

belongs to a large class of continuously differentiable functions. In this thesis we do not 

present an analysis of the behaviour of the edge-wave solutions on the interval J .
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3.2 A sy m p to tic  beh av io u r of m ono ton ic  so lu tions

T he equation  (3.1), after the  convenient rescahng x  i— > k~^x,  can be w ritten  as

[(A + a (x ) )T ] '( x ) ] '=  a(x)T](o;), x >  X  >  0, (3.2)

where
c,2

A -
9

and we have chosen X  sufficiently large to  ensure th a t a  is a positive continuously differ

en tiab le function. Here, h{x)  =  A +  a{x)  for all x >  0. In th is way, the equation (3.2) 

belongs to  the  larger class of second order self-adjoint equations

where p{x),  q{x)  > 0, th e  function p  is continuously differentiable and th e  function q 

is continuous on the  nonnegative half axis. A com plete classification of solutions to  the 

equation  (3.3) from the asym ptotic-behaviour viewpoint has been perform ed in the papers 

by Cecchi, M arini and Villari [10] and M arini and Zezza [80]. T he dual case of p{x) > 0, 

q{x) < 0 was investigated in full detail by Cecchi, M arini and Villari [11].

Following [80, Theorem  1], th e  equation (3.3) always has a solution ri{x) enjoying the 

so-called B  —class property which reads as

for all sufficiently large x. It is obvious th a t such a solution is bounded (which means th a t

every solution r/(x), where x  > X  > 0, w ith  th e  S —class p roperty  tends to  zero if and only

[p{x)r]'(x)]' =  g(x)?7 (x), x >  0 (3.3)

r]{x)rj'{x) < 0

it exists a t all fu tu re times) and is m onotonic. Further, according to  [10, Theorem  2(i)],

if

(3.4)

U nder a  com plem entary restric tion, nam ely



it was established in [92] (see the pioneering paper by Weyl [91] for the case p{x), q{x) > 0)

to + 00. More detailed asymptotic characterisations of the solutions in this case are given 

in [10, 80],

3.3 Edge-wave solutions

Prom the preceding section we know that a necessary and sufficient condition for the 

existence of edge-wave solutions of the equation (3.2) is

We are interested here in some simple conditions to be satisfied by the function a  that will

bounded from below by a positive constant for all large x, say x > 2X.  This means that 

(3.5) is implied by the simpler but more restrictive condition

^ + o o

/ a{x)dx = + 00. (3.6)
Jx

A  pre-eminent example of such a function is given by a  with

that all nontrivial solutions r]{x) of the equation (3.3) tend to a nonzero limit as x  tends

(3.5)

lead to (3.5). The function a  being positive, it is obvious that the inner integral in (3.5) is

l im in fx _ + o o Q :(a ;)  >  0. (3.7)

This includes the depth profiles investigated in [46, 5], namely:

h(x) = Qx h(x)=ho( 1 -  )

Sketch of the two depth profiles classically featured in the literature.
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In the dual situation when
r-\ oo

/ a{x)dx  < +00 (3.8)
J x

we proceed as follows. For x > X ,  using the Cauchy-Schwarz inequality we get

s  [Ĵ  )  ■ ( 3 - 8 )

Furthermore,

i  r  {A  + a(r)) i r  =  X ( l - ^ ) +  r ^ d r < X +  r  ^ d r ,
X Jx X J x  X J x  r

and using this relation together with (3.9) it follows th a t

1 -  -  r  d r
 ̂ { x - X ) <  / (3-10)

A +  / ;  ^ d r  7x A +  a{r)

Since a  is nonnegative we have

Jx A +  a ( r )  A 

and putting relations (3.10) and (3.11) together we get

*  <  (3.11)

A +  ^ d r  7x  A +  a{r) ~  A

This means th a t (3.5) is equivalent to

r+(x>

/ xa{x)dx  = + 00. (3.12)
J x

A summary of these considerations is given below.

T h e o re m  3.3.1 Let a  be a positive, continuously differentiable function defined on the

nonnegative half axis. Then equation (3.2) has an edge-wave solution i f  and only i f  one of

the following sets of conditions holds: (i) (3.6); (ii) (3.8) and (3.12).
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3.4 Edge-wave representation

An interesting mathematical problem can be introduced which is closely related to the 

Cecchi-Marini-Villari hypothesis (3.5). Precisely, we ask which are the positive, continu

ously differentiable functions w, defined on the nonnegative half axis, that satisfy the 

integral restriction
f  +  OO

/ w{x)dx =  +00 (3.13)
J o

and for which there exists an X  > 0 such that the integral equation below

dv
\ I ( 3 ; > X ,  (3.14)J o  A +  a(r)

has at least one solution? Such a function a  will be called an edge-wave representation of 

w in the sequel. Although in its entire generality the problem remains unsettled, certain 

particular cases lead to nontrivial results. For example, in many common situations it is 

difficult to compute the edge wave representation. The next example illustrates this fact. 

Consider w{x) = x for x > X . By denoting the integral factor in (3.14) as y{x),  we obtain 

the first order differential equation

y'i^) = ! f y  x > X .  (3.15)w{x) +  Xy{x)

The equation (3.15) is homogeneous and has the solution in an implicit form

Cy  =  e ^ ,  x > X,

X
where C = Here, a{x) = A particular class of functions a  that satisfy (3.6),

namely the a  for which
/•+°° dx 

Jo  A +  a(x)
have a large family of edge wave representations, as we show in Section 3.4.1.

3.4.1 E xistence of edge-w ave solutions

We shall establish here that every function a  in the class (3.6), with (3.16), has a large 

family of edge wave representations. To this end, assume that the positive, continuously
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differentiable function w  defined on the  nonnegative half axis satisfies (3.13) and th a t

dx
Jo  X + w{x)

Let a  > 0. Introduce also X  >  0 such th a t

dx
4 /  ,  , < f c < l  (3.18)

for a  fixed k. The set

D = {z  E C{[X,  +oo), R) : a < z{x)  < 2a for all x >  X }  , 

endowed w ith  the distance below

d{zi,  Z2 ) =  sup 1^1 (x) -  Z2 {x) \ , 2:1,2 e  D,
x > X

is a  com plete m etric space. In troduce further the operator T  : D D  hy

r+°° z'^(s)
T{z) {x)  = a +   ------- 7 - ^ , d s

Jx  X + w{s)z{s)

for all X >  X  and z E D.  Since, for any Zi_2 G D,  we have

X[zi{x) + z 2 { x ) ] +w{ x ) z i { x ) z 2 {x) ^  4

+  i t ; ( x ) { A [ z i ( x )  +  2:2(3:)] +  i « ( x ) 2 i ( x ) z 2 ( a ^ ) }  ~  ^ +  w{ x ) '  

it follows directly th a t

r  +  0 0  A

\ T{z i ) {x)  - T { z 2 ){x)\  <  /  y — —  l^i(s) - Z 2 ( s ) | d 5

< k-d{zi,z2)

and, correspondingly

d{T{zi),T{z2)) < k ■ d(2i, 2 2 ), 1̂,2 e D.

T he operato r T  being a contraction, th e  Banach contraction principle implies the existence 

of a unique fixed point Za of T  in L> th a t can be com puted th rough  successive approxim a

tions; see [45]. We now have the  following result.
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T heorem  3.4 .1  Let w satisfy (3.13), (3.17) and a > 0 be given. Then there exists a 

positive, continuously differentiable function a  defined on the non-negative half-axis such 

that (3.14) holds for all x  > X  and

y «(^)lim —^  =  a. 
a:-»+oo w[x)

P ro o f Given the fixed point Za of operator T  in D, we introduce a{x) — w{x)za{x) for all 

X > X ,  where X  satisfies (3.18). Then, a  is a solution of the differential equation

/  w ( x ) \ '  1
( “ 7 ^  ) ■;----------- T T >  X > X.\  a{x) J  A +  a{x)

The proof is completed by noticing th a t Za{x) tends to a as a; tends to +oo. |

For any function a  in the class (3.6), with (3.16), the function w  given by (3.14) belongs 

to the same class. We can backward-continue w appropriately towards 0. Then Theorem 

3.4.1 shows th a t the edge-wave representations {tw i—> Oq : a > 0} act as bijections on this 

class.
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Chapter 4

The m otion of fluid particles in water 

waves
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4.1 In troduction  to  th e  w ater-w ave problem

The goal of this chapter is to  perform  an analysis of w ater particle trajectories in three 

different wave-motion settings. We will first deal in Section 4.2.1 w ith linear periodic 

capillary and capillary-gravity waves in w ater flowing over a  flat bed, and following th a t in 

Section 4.2.2 we deal w ith these waves in the  deep-w ater setting  (where the fluid is of an 

infinite depth). In b o th  cases we will construct linearised versions of E uler’s equations of 

m otion. T he transition  from th e  finite- to infinite-depth problem  involves changes to the 

boundary  setting  of th e  problem  which lead to  some differences in th e  trajectories of the 

particles. Finally in Section 4.3 we perform  an analysis of particle m otion in deep-water 

Stokes waves. Analysis of the  particle m otion in Stokes waves presents inherent challenges 

due to  the nonlinear na tu re  of th e  governing equations, and some results from harmonic 

analysis such as m axim um  principles and properties of level sets will be employed to this 

end.

4.1.1 G overning equations for water wave m otion

In keeping w ith general practice we adopt th e  c o n t in u u m  h y p o th e s is ,  which presumes 

th a t  water is a continuous medium. T hroughout this chapter we assum e h o m o g e n e ity  of 

the  water, th a t is, the  constan t density p of th e  liquid. W hile it is true  th a t th e  density 

of a liquid varies w ith the dep th  of the  liquid, or w ith the presence of dissolved solids, it 

tu rn s  out th a t in the context which m ost concerns us— the propagation of waves on the 

surface of w ater— hom ogeneity is a  reasonable simplification for us to  make. Furtherm ore 

throughout the following we assum e th a t w ater is in v isc id , th a t  is, there is no internal 

friction in the liquid. Discussions on the  ra tionale  behind such simplifications can be found 

in Johnson [67, 77].

In this chapter we will deal w ith  waves th a t  are two dim ensional, th a t is, the motion is 

identical in any direction parallel to  th e  crest line. Let consider a cross section of the  flow in 

the direction perpendicular to  the  crest line w ith  C artesian  coordinates ( x, y) ,  the  r —axis 

being in th e  direction of wave propagation  while the  y —axis points vertically upwards. As
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such, let U =  {u{t ,x,y) ,v{t ,x,y))  be the velocity field of the flow. In the case of water of 

finite depth we set the flat bed to be ^ =  0 and let y = ho + r]{t, x) be the water’s free 

surface, where /iq > 0 is the mean water level. In the case of water of infinite depth we 

let y =  0 denote the mean water level and y = r]{t, x) is the water’s free surface. The 

homogeneity assumption yields the equation of mass conservation

V -U  =  Ux + fy =  0, (4.1)

also known as the continuity equation. The equations of motion are given by Euler’s 

equation

^  =  - i v P  +  F (4.2)

where P  is the pressure function, F is the body force of the liquid and ^  represents the 

total or material derivative with respect to U. The total derivative of a scalar function H  

with respect to a velocity field U is defined to be the rate of change of the H  when H  is 

associated to a particular fluid particle, with the particle moving about according to U: 

explcitly, in the case above, this is described by

=  Ht  +  U -  V H .
DT

In order to decouple the motion of the air from that of the free surface particles [67] we 

introduce the dynamic boundary condition

P  =  ^  (4,3)

on the surface of the water, where Pq is the constant atmospheric pressure, the parameter 

r  is the coefficient of surface tension, possibly zero in the absence of surface tension, and 

1/R  is the curvature in the x —direction given by

1   Vxx
fl" (T npS '

Furthermore, since the free-surface, given by S{t ,x ,y)  := y — T^it.x) =  0, is always com

posed of the same particles, we have the kinematic boundary conditions



or

V =  r]t + ur]x

on the water surface, while for water of finite depth we use

(4.4)

=  0 on y = 0, (4.5)

so we assume th a t the rigid bed is impenetrable; for water of infinite depth we have

(u, v) —>■ (0, 0) as y —oo, uniformly for x G R,  ̂ >  0, (4.6)

cf. [67], expressing the fact th a t a t great depths there is no motion. In this chapter we 

make the further assumption th a t the water is irrotational giving us the equation

U y  = V x ,  (4.7)

a simplification which is justified in the problems th a t we are concerned with since Kelvin’s 

Circulation theorem assures us th a t water initially in a state of rest will remain irrotational 

a t all later times [67, 77].

The equations (4.1)-(4.7) encompass the two-dimensional equations of motion for an 

idealised (homogeneous and inviscid) fluid lacking vorticity. For a complete derivation of 

the equations of motion see Johnson [67].
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4.2 Particle trajectories for linear periodic capillary 

and capillary-gravity water waves

Wind forces are the single largest factor in the generation of water waves. Ripples (waves 

of small amplitude and wavelength) are formed when the friction between the air and 

the water deforms the originally flat water surface resulting in what is known as capillary 

waves. Surface tension is the dominant restoring force for these capillary waves. The 

presence of ripples enables the wind to ‘grip’ the agitated surface, thus increasing the 

amplitude and wavelength of the waves, reaching a stage where gravity plays a significant 

role as a restoring force in addition to the surface tension. The resulting waves are known 

as capillary-gravity waves. W ith ever-increasing amplitude, the influence of surface tension 

on the motion of the wave diminishes to the point where it is negligible and the resulting 

waves are known as gravity water waves. The three main types of water waves (capillary, 

capillary-gravity, and gravity waves) have generally difi^erent properties; in Sections 4.2.1 

and 4.2.2 we are interested in the particle trajectories of linear periodic capillary and 

capillary-gravity waves. In Section 4.2.1 we focus on the propagation of waves over water of 

finite depth, while in Section 4.2.2 we deal with deep-water waves (propagating over water 

of infinite depth). In both cases we work within the framework of linear theory. Since the 

nonlinear governing equations are highly intractable (while there exist some results for the 

nonlinear governing equations — see [25, 26, 35, 36, 33, 38, 47, 53, 70, 88, 89, 90] — the 

information available is not sufficiently detailed as to enable a study of the particle paths 

in the fluid), it appears th a t the linear framework is appropriate for a flrst study of the 

particle trajectories in capillary and capillary-gravity water waves. Furthermore, imposing 

periodicity is not too much of a restriction in this context since, when we observe waves 

th a t are not near breaking, they appear to be two-dimensional periodic wave trains.

Previously, formal considerations have suggested th a t particle trajectories in the fluid 

are closed (see [8, 41, 77, 86]) and, while there are special solutions to the nonfinear 

governing equations with all particle trajectories closed (see [17, 18]), what we will show is
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tha t, over water of finite and of infinite depth, within hnear capillary and capillary-gravity 

theory for steady waves, this is not the case: if the surface is not flat there are no closed 

orbits in the fluid — see Theorems 4.2.1 and 4.2.3. It is anticipated th a t further studies 

will permit the extension of these results to the nonlinear governing equations (for gravity 

waves the features observed within the linear theory in [37] were recently proven [20, 60] 

to hold true for the nonlinear governing equations; see Section 4.3).

4.2.1 Particle trajectories in water of finite depth

G overning equations

We use Cartesian coordinates (x, y) with the x —axis in the direction of wave propagation 

and the y —axis pointing vertically upwards. We let y =  0 represent the flat bed and let 

y = ho + r](t, x) be the w ater’s free surface, where /iq > 0 is the mean water level. As

0

Sketch of a periodic water wave propagating over a flat bed.

detailed in Section 4.1.1, the following equations govern the motion of the water 

the equation of mass conservation

'^x '^y ■ 0 )
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together with Euler’s equation (written in component form)

Ut +  UUx+VUy =  - P x ,

Vt  +  UVx  +  VVy = - P y  -  g,

throughout the fluid, where P{ x , y , t )  denotes the pressure and g is the gravitational con

stan t of acceleration. Decoupling the motion of the air from th a t of the free surface particles 

we have the dynamic boundary condition

P  =  P o - ^  on y = / lo+ ?7 (t ,x),  (4.10)

where Pq is the constant atmospheric pressure, and here the coefficient of surface tension 

r  will be strictly positive, with \ / R  the curvature of the surface

1 Vxx

We have the kinematic boundary condition at the free surface

(4 .1 1 )

v =  T]t-\-U7}  ̂ o n y  =  ho +  ri(t,x), (4 1 2 )

and the kinematic boundary condition on the flat bed

=  0 on y =  0, (4-13)

which tells us th a t the rigid bed is impenetrable. Thus the nonlinear free boundary problem 

(4.8)-(4.13) governs the capillary and capillary-gravity water wave problem in water of 

finite depth, cf. [67] and Section 4.1.1. In addition we shall impose the condition of 

irrotational flow

Uy = v^. (4-14)

L in ea ris in g  th e  g ra v ity -c a p illa ry  w^ater-wave p ro b le m

We now begin by nondimensionalising the problem (4.8)-(4.14) using a typical wavelength 

A and a typical amplitude a of the wave. Define the set of nondimensional variables

\  h  ̂ nrX Ax, y  I— ao2/ ,  t . .r, u  i—> uyjgriQ, v v  r-------- , 771—> ar],
V 9 ^ 0  A
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where, for exam ple, we replace x  by Xx,  w ith the  variable x  now being nondim ensional, 

thus avoiding new no ta tion . Setting the  constan t w ater density p =  1, for convenience, the 

pressure in th e  new nondim ensional variables is given by

P  =  Po +  5^0 (1  - y )  +  ghoP,

where the  nondim ensional pressure variable p  m easures the  deviation from the hydrostatic  

pressure d istribu tion . This gives us the  following boundary-value problem  in nondim en

sional variables
/

Ut  +  UUx  +  VUy =  - p ^ ,  

+  UV^  +  VVy )  =  - P y ,  

U x + V y  =  0 , Uy =

< (4.15;
V = e{r]t + urjx) o n y  = l  + er],

V  = 0 on y =  0,

where e = a/ho is th e  am plitude param eter and 5 = ho/X is the shallowness param eter. It 

is conventional to  w rite r / {pgX^)  =  w ith = T/{pghQ) being the W eber number.

T his nondim ensional param eter m easures the  size of the  surface tension contribution. From 

th e  fourth  and  six th  equations in (4.15) it is obvious th a t b o th  v  and p, if evaluated on 

y = 1 + erj, are essentially proportional to  e. hideed, physically as e ^  0 we m ust have 

f  > 0 and p —> 0. This leads us to the scaling of the nondim ensional variables

p ^ e p ,  ( u , v )  e { u , v ) ,

avoiding again the  in troduction  of new variables. Now problem  (4.15) becomes

Ut + e{uux + VUy) =  - px ,

S ' ^ { v t  +  e { u v x  +  V V y ) }  =  - p y ,

< U:, +  Vy =  0 ,  Uy  =  5 ‘̂V:c, (4-16)

p = T ] -  5'^We (i_^//2"̂ 2 )3 / 2  and  v = T]t + eurj^ on y  = 1 + erj,

V = 0 on y  = 0.



(4 .17)

T he Unearised problem  is obtained by letting  e —> 0 in (4.16). The resulting equations are

u t  =  - P x ,  =  - P y ,

v =  T]t and p = T} -  6'^We'nxx on y =  1 ,

V = 0 on y = 0.

We will seek travelling-wave solutions of (4.17), th a t is waves for which the  {t, x )—dependence 

of u, v ,p ,  77 is in th e  form of a periodic dependence in x — Cot, where cq > 0  represents the 

nondim ensionalised speed of the wave. W ith  the  ansatz  Fourier mode

r]{t,x) =  cos[27r(a; — cot)],

m anipulating the  various equations in (4.17) we see th a t

''■̂yyt '^xyt Pyxx ^ '^xxti

and so

'^yy ^  '^xx  y(^) ?/))

for some function f ( x , y )  which we choose for sim plicity to  be equal to  0. For a fixed t, 

and under the change of variables x  =   ̂ we get

'^yy '^xx O ’ (4 . 18)

We solve th is using the  m ethod of separation of variables. Assuming

v{ t , x , y )  = X { x ) Y { y ) ,  (4.19)

and upon substitu ting  th is form of v  into (4.18) we obtain , whenever X  0 ^  Y ,

X"{x) Y"{y)
X { x )  Y ( y )  '

where th e  prim e denotes differentiation. As the  left hand  side is independent of the  y  

variable, and th e  right hand  side is similarly independent of the  x  variable, it im m ediately 

follows th a t
^"(x) _  Y''{y)
X { x )  Y{ y )  ’
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for some real constant K . Due to the required periodicity in the x-variable, we must have 

K  =  [2-KaY for some o; € R. Thus

X"{x)  =  ^ {2 ^ a Y X( x)  

y''{v) = (2ira)^Y{y),

the solutions of which are

X ( x )  =
 ̂ ’ (4.21)

Y[y)  =

where A, B,  C, D  are constants to be determined using the initial conditions. On y =  0 we 

have t; =  0, and so it follows th a t C = —D  (as we cannot have A — B  = Q unless t> =  0 — 

and t> =  0 in (4.17) is not admissible since it forces p to be constant which is incompatible 

with our choice of rj). Equation (4,19) now becomes

v{x,  y) =  2D sinh(27rai/) } . (4.22)

For y = 1, i> = Tjt becomes

2Z? sinh(27ra) +  Be^^'^°‘̂ j  =  27tco sin(27r5x).

The functional part of the left hand side must be equal to the functional part of the right

hand side, and this can only happen if A  = —B  and a  — 5. Equating the constants on

each side, it follows th a t 4 D 5  sinh(27r5) =  27tco. Thus

, , sinh(27rdy) . r_ , ^
v(t,  X, y) = 27TC0— sm[27r(x -  Cot)\.

It is a straightforward exercise in integration of the equations in (4.17) to show tha t,

consistent with this v{t , x , y) ,

, , - cosh(27r5j/)
u{ t , x , y)  = 2-jTdco . ■ cos 27t(3: -  Cot)\,

smh(27T())

p{ t , x , y )  = (l +  (2 7 rd )W e)^ ^ ^ Y ^ ^ co s[2 7 r(x -C o i)] ,
cosh(z7roj

provided
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We return  to the original physical variables, using the change of variables

^  y  ^ ^ \ Z g h o  u  X  7]
y  ^  ^  “ 7 = ^ ’ ^  - ■A fiQ A \ / 9^0 ^ o v 9 ^ o  ^

A linear wave solution, written in the physical variables, is

r]{t, x)  =  eho cos{kx — ujt), 

u{t ,  X, y)  =  ecv /io42gg^  cos{kx -  u t ) ,  

v{ t ,  X, y)  =  e u jh o ^ l^ ^  sin{kx -  ujt),

P{t,  x, y) =  Po +  g{ho ~  y) +  egho( l  + {27rS)'^W^  ̂'̂ t{kho) cos(/cx -  u>t),

of amplitude eho >  0 and wavelength A > 0, propagating over the flat bed y  =  0 and with

mean water level ho > 0. Here

2 t t

(4.23)

A ’
u! = ^ g k ( ^ l  + {2n5)'^We^ tanh (kho),

are the wavenumber and the frequency respectively, and the dispersion relation is

=  +  (4.24)

which determines the speed c of the linear wave for right-travelling waves (c > 0). The 

period of this wave is

T  =  —  =  
u

^ g k ( ^ ( 2 7 r S ) ' ^ W e ^  tanh(/c/io)

The two main classes of waves of interest in linear wave theory are shallow water waves 

and deep water waves [77]. The case (5 =  /iq/A —> 0 corresponds to long waves, or shallow 

water waves, whereas the deep water (or short wave) limit is given by 5 ^  cx). In the case 

of long waves (where kho —> 0: see area B  of Figure 4-1) and the dispersion relation for 

capillary-gravity waves yields

c ^ /^ o ,

which is independent of both the wavelength A (so in the long wave limit the waves are 

non-dispersive) and of the coefficient of surface tension F (capillary-gravity waves become
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2
C

Minimum of c

Figure 4-1: A sketch of the relationship described by equation (4.24) (plotted here for a 

fixed value of W^) between the speed, represented by c^, and the wavelength A.

pure gravity waves in the long wave limit). In the short-wave limit (where kho oo\ see

area A  of Figure 4-1) we obtain

c ~  y / l ^  =

This displays, for capillary-gravity waves, a strong relationship between the wavelength 

A, the coefficient of surface tension F, and the wavespeed c. Also, as we decrease the 

wavelength for capillary-gravity waves the wavespeed becomes independent of the coef

ficient of gravity g, leading us to pure-capillary waves where surface-tension is the sole 

restoring-force. In deep water, the shorter the capillary-gravity wave the faster it travels, 

and so the wave speed is proportional to the square root of the coeeficient of surface ten

sion. It is interesting to note the contrast in this aspect of the capillary-gravity waves with 

th a t of pure gravity waves: in deep water the longer gravity waves propagate faster than 

shorter ones (see the discussion in [37, 67]).

A summary of some properties of the dispersion relation is shown in Figure 4-1 above. 

Interestingly, a t any given speed above the minimum there can coexist a capillary and a 

gravity wave travelling with the same speed — the capillary wave is “generated” in A 

while the gravity wave is generated in B. This is often seen in reality, when an observer 

may notice many smaller capillary waves ‘riding’ on a larger gravity wave as they travel at 

the same speed.
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T h e ev o lu tio n  o f w ater particles

If {x(t) ,y{t))  is the path of the particle below the linear wave (4.23), then

dx dy

so th a t the motion of the particle is described by the system

% =  M  cosh(fcv) cos k(x  — ct)dt y yj K j ^  ̂ 25)
^  = M  sinh(A:j/) sin k{x — ct),

with initial da ta  (xo,yo), where we denoted

The right-hand side of the differential system (4.25) is smooth so th a t the existence of a 

unique local smooth solution is ensured [55]. Also, since y  is bounded, the right-hand side 

of (4.25) is bounded and therefore this unique solution is defined globally [55].

If we now consider the case of pure capillary waves by letting g —> 0, the equations 

in (4.23) remain unchanged except for the last equation describing the pressure. This 

becomes

P{ t , x , y )  = Po + ehok'^T I  cos{kx -  cut), (4.27)
cosn(/cAio)

and we have

27T
u! =  k^r  tanh (kho); c =  y / kT  tanh  (kho); T  =

\ /k'^T tanh  [kho)

Therefore, the system (4.25) describes perfectly-well the motion of particles in pure capil

lary waves with no gravity foces, but with different c and M  due to the different dependence 

of c and to on F. If we let F tends to zero then the hydrostatic pressure becomes constant 

and the wavespeed vanishes, which makes perfect physical sense since is this case there are 

no outside forces disturbing the system from a position of inertia. An examination of the 

pure capillary wavespeed c, in the case F > 0, shows us tha t, in the deep water limit, we 

obtain the same wavespeed as the capillary-gravity waves. This fact is consistent with our
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previous observation th a t in waves with relatively small wavelength the surface-tension 

effects dominate over gravity forces. Also in the long wave, or shallow water, limit the 

wave speed becomes zero: gravity plays an im portant role in the motion of waves with 

long wavelength.

Q ualitative analysis of solutions

We now proceed to an analysis of the solutions of (4.25). Since the right hand side of 

(4.25) is nonlinear, we will not try  to solve this system of equations explicitly. Instead, we 

use phase plane analysis to examine the qualitative features of the solutions. Our aim is 

to  show th a t there are no water particles travelling in closed orbits. In fact, we will see 

th a t every water particle experiences a forward drift as the wave progresses. We use the 

following transformation,

X{t )  — kx{t) — Lut, Y{t )  = ky{t),  (4.28)

to  give us the new system

^  =  k M  cosh(y) cos(X) — kc,

< ^  = k M  smh{Y)  sm{X) ,  (4.29)

 ̂ (X (0 ),y (0 )) =  (xo,yo).

Since (4.29) is periodic in X , we need only consider the strip

{ ( X , r )  G  : - 7 T  <  X  <  7t } .

Furthermore, as (4.29) is a description of our physical model we can restrict our attention 

to  the values K > 0.

The 0-isocline is defined to be the set where d Y / d t  =  0, and the oo-isochne is the set 

where d X / d t  =  0. Therefore the 0-isocline is given by

{ ( X , r )  G : X  G { 0 , ± 7 t} } ,

and the cxD-isochne is given by the curve (X, o;(X)), for X  G ( —f , f ) ,  ot{X) G [y*,oo), 

where Y* = cosh“ ^ (^ )  and a  is defined as follows: on [0, | )  we set a  to be the inverse of
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the  function Y  arccos (^Mcosh(y)} defined on \Y*, oo), and extend it by m irror sym m etryM co sh iy) ^

to  th e  interval ( —f , f ). Now, by (4.26) we have

, , euho
k M  = k-— — ——r =  €U!-

kho
< kc = u , (4^30)

sinh(A:^o) sinh(/c/io) 

since s < sinh(s) for s >  0 and we assume th a t  e <  1 w ithin the  confines of hnear theory. 

It follows for Y  > Y*  th a t -rj— <  1, and  so a  is well-defined. Furtherm ore the even— M  c o s n ( r ) — ’

function a  is sm ooth, it takes on its infimum Y* at X  =  0, and satisfies

lim a ( X )  =  oo.
X -* ± o o

Now, for X  6  (f,7r) we have d X / d t  < 0, d Y / d t  > 0 .  If X  e  (0, | )  then  d X / d t  < 0 

below the  curve of a { X )  and is positive above it, while d Y / d t  rem ains positive in this region. 

We obtain  the  corresponding signs for X  G (—tt, 0) by using the  sym m etric definition w ith 

respect to  the F-axis.

The only singular point of the  system  (4.29) in our region is P  =  (0 ,y * ). In order to

saddle node
O) -  isocline

sepa ra t r i x

7T / i0/I /I

Figure 4-2: Phase p o rtra it for system (4.29).
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show th a t P  is a saddle point we rewrite (4.29) as a Hamiltonian system

d X  __ TT
— j T  —

(4.31)
dY  u

with the Hamiltonian function H { X , Y )  = /cM sinh(y) cos(X) — k c Y . Now F  is a critical 

point of H,  and as the Hessian of H  ai P  is

—k M  sinh{Y*) 0

0 k M  sinh{Y*)

it follows th a t P  is a nondegenerate singular point. By Morse’s lemma [82] in a neighbour

hood of P  there exists a diffeomorphic change of coordinates which sends the level lines of 

H  to hyperbolae. Thus P  is a saddle point for H.  If { X , Y )  is a solution of (4.29) then

and so H  is constant along the phase curves. Away from the critical point P  the separatrix 

=  {(X, y )  : H { X , Y )  = H{P) }  is a smooth curve, since we can apply the 

implicit function theorem [55]. It intersects the vertical line X  = tt aX the point (tt,/?) if

- k M s \n \ i { p )  -  kcp = =  H{P) .

Suppose we have another point Q =  (tt, Y)  on this line. If Y  > P, then the positive 

trajectory  of the phaise curve is unbounded, whereas 7^(Q ) will intersect the line

X  =  - 7 T  a t (-7T ,y) if y  G (0,/?).

Once we have plotted the phase diagram Figure 4-2 for the system (4.29) we obtain the 

particle trajectories for the linear wave (4.23) by applying the transformations

x { t ) ^ ^ + c t ,  =  (4^32)

At this point we should take note of the restrictions necessary to ensure th a t solutions are 

compatible with our physical model. Namely, from the above discussion it is clear th a t we 

require

+  ,4.33)
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This condition is ensured if ecosh(/io(l +  e)) <  1 (see [37]), a  relation which gives a 

q u an tita tiv e  m eaning to  the  notion th a t “e <  1 is smaU” . Let { X { t ) , Y { t ) )  be a solution 

of (4.29) w ith  (X (0 ) ,y (0 ) )  =  (tt, Yq), Vq € [0,/3). We denote by t--^{Yo) th e  tim e it takes 

for th e  phase curve {X{ t ) , Y { t ) )  to  intersect the hne X  =  —tt. C onsiderations sim ilar to

7T 7T0 7T  /  I

2 2

D iagram  of the paths of particles w ith respect to  the  moving frame.

those m ade in the  case of pure gravity w ater waves [37] show th a t  the only possible period 

r  for a  periodic particle p a th  {x{t ) ,y{t ) )  is r  =  ^  and, conversely, if t^Tj{Yo) =  ^  then  

th e  corresponding particle p a th  is periodic. We now prove our m ain result.

T h e o r e m  4 .2 .1  The system (4.25) has no periodic solutions.

P r o o f  As a consequence of the  previous considerations, it suffices for us to  show th a t 

t_ 7r(yo) >  ^  for Yq 6 [0,/5) in order to  prove the  theorem.

We s ta r t  w ith the case Yq =  0. Prom (4.29), it follows th a t  th e  phase curve of 

{ X{ t ) , Y { t ) )  w ith (X (0 ) ,y (0 ))  =  (tt, 0) rem ains on the  hne F  =  0, and  it can be obtained 

explicitly by solving the differential equation



Keeping in mind M  < c, we integrate to get

Therefore
n  ds 27t I i 27t

^ kc — k M  cos{s) k \  ^  ck ’
proving the theorem in the case Yq =  0.

For the case Yq G (0,/3), we work as follows. Since d Y / d t  > 0 in the region X  6 (0,7t),

and d Y / d t  < 0 when X  G (—tt, 0), then if Yi £ (Iq) Y*)  is the value where the phase curve

{X{t),  Y( t ) )  intersects the line X  =  we have the phase curve lying below the hne Y  = Y\

if X{t )  e  [—7T, —| )  U ( f  jTi"] and lying above it if X( t )  e  (—f , f)- Thus,

=  k M  cosh(y) cos(A'’) — kc > k M  cosh(Yi) cos(X) — kc, t > 0. (4.35)

Let us introduce the differential equation

=  k M  cosh(Yi) cos(X) — kc, X (0) =  tt.

It follows immediately from (4.35), and the fact th a t A'(O) =  X (0) =  tt, th a t X{t )  > X{t )  

for t > 0, and thus t_^(Yo) > where t* is the time when X[t*)  =  —tt. However, we can 

now compute t* explicitly as being

* 2vr I 1 27t
k c? — cosh^(Yi) ck ’

in a m anner similar to th a t of the solution of (4.34). Thus t_ 7r(Vo) >  completing the 

proof. I

The qualitative analysis performed above for the system (4.29) lets us describe the particle 

trajectories in linear capillary and capillary-gravity waves. We have, in view of (4.25) and 

(4.32),
dx
dt < 0 , dt < 0 for X { t ) e { - T T ,  -7 t /2 )
dx
dt > 0 , dy

dt < 0 for X { t ) e ( - tt/2 ,0 ) .
dx
dt > 0 , dt > 0 for X { t ) e (0,7t/2) ,
dx
dt < 0 , dt > 0 for X { t ) e { n / 2 , n ) .
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So, if we assume th a t  a t t =  0 and ^ ( 0 )  =  vr a particle is a t its greatest possible depth  

w ith  y{0) =  yo, th en  (see Figure 4-3) the particle moves backw ard and  up, then  forward 

and  up, then  forw ard and  down, and finally backward and down reaching th e  level y — yo 

in th e  tim e t_ 7r(lo ) >  ~  w ith

x{t_^{Yo)) -  x{0) =  ^  >  0.

Figure 4-3: T rajectories of particles in linear capillary and capillary-gravity waves p ropagat

ing above the flat bed.

4,2.2 Particle trajectories in water of infinite depth  

G overning equ ation s

T he governing equations for two-dim ensional capillary-gravity and pure capillary waves in 

w ater of infinite dep th  are sim ilar to  those of the  finite dep th  case in Section 4.2,1 with, 

however, some m odifications which have a significant bearing on th e  particle m otion in 

the  fluid.The governing equations for the  capillary-gravity deep-w ater wave problem  are 

encom passed by equations (4.8)-(4.12) together w ith the  k inem atic boundary  condition 

expressing the  fact th a t  a t g reat depths there is practically no m otion

( u ,  v)  —> (0, 0) as ?/ —> — GO, uniformly for a; G R, t  >  0, (4-37)
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cf. [67]. As in the previous section the equations for pure capillary water waves follow 

upon setting g = 0. We again assume th a t the flow is irrotational and so (4.14) holds. 

Following the m ethod used in the case of water of finite depth, except this time we use

Figure 4-4; A periodic wave propagating in water of infinite depth.

a typical wavelength A and a typical amplitude e of the wave, we nondimensionalise the 

variables using

X I—> Ax, y ^  y, t ^  — t, u t—> u^Jg, v r] i—̂ £??•
y/g A

Following the scaling p  i—> ep, {u, v) ^  e.{u, v) we obtain the boundary-value problem in 

nondimensional variables

Ut  +  t { U U x  +  V U y )  =  -Pa;, 

j ^ i v t  +  e { u V x  +  V V y ) }  =  - P y ,

Ux  +  Vy = 0 ,  (4.38)

P =  v = T]t + eur]^ on y =  er?,

(u, v) —̂ (0, 0) as y ^  —oo, uniformly for x e  R, t >  0.
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By letting e — 0 in (4.38) we get the hnearised problem

Px-}

'^x '^y 0 )

v = 7)i and p =  t; -  on 9 =  0,
(4^39)

{u, v) —> (0, 0) as y ^  —oo, uniformly for x e  M, t >  0.

As before we look for traveUing wave solutions for which the {t, x )—dependence of u, v,p,  rj 

is in the form of a periodic dependence in x — cqI, where Cq >  0 represents the nondimen- 

sionalised speed of the wave. Choosing the Fourier mode

we obtain the solution

where

T]{t, x)  = cos (27t (x  — Cot)) ,

rj{t, x) = cos (27t(x  — Cot)), 

u{t ,  X, y) = cos (27t (x  — Co^)), 

v{t ,  X, y) = F{y)  sin (27t(x -  Cot)) , 

p(t ,  X, y) = cos (27t (x  -  Cot)),

2 A 2'kT /  27t
Cq =  ^  +  - ^ ,  F(y)  =  2 7 T C o e x p  ( y ? /

(4.40)

Returning to the original physical variables by means of the change of variables

X
X y ^ y , t t - . u

u A
V V- V

A A €y/g

if we define the wavenumber k and the frequency u  by

27T

P
P
e

k =
A ’

to = \ /  gk + k^r, (4.41)

then the linear wave solution in the physical variables is

T]{t, x) =  e cos{kx — Lot), 

u{t,  X, y) = eu) exp{ky) cos{kx — cot), 

v{t ,  X, y) = eu exp{ky) sm{kx — uit), 

p{t ,  x , y )  Po -  gy + e{g + k'^F) exp(fcy) cos{kx -  ut ) .

(4.42)
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Notice th a t in the physical variables the wavespeed in (4.23), for right-travelling waves, is 

given by the dispersion relation

Lo gX 2-kT .o \

If the coefficient of surface-tension F is 0, then we retrieve the usual result for gravity waves 

in deep water, which is th a t longer waves propagate faster than  shorter waves. If now we 

ignore the effects of gravity altogether, by setting g = 0, and focus solely on pure capillary 

waves, th a t is, waves acted upon by surface tension forces alone, then we find th a t in fact 

waves of shorter wavelength will move faster than waves of longer wavelength.

D escription of particle trajectories

If {x{t),y{t))  is the path  of the particle below the hnear wave (4.42), then

dx dy
d t ^ ' ^ '

so th a t the motion of the particle is described by the system

^  = M  exp{ky) cos{kx -  ujt)

^  =  Me xp ( ky )  sin(A;x — cut),

with initial position (xo,yo)> where

M  =  ecu. (4.45)

The right-hand side of the differential system (4.44) is smooth so th a t the existence of a

unique local smooth solution is ensured [55]. Also, since y is bounded from above, the

right-hand side of (4.44) is bounded and therefore this unique solution is defined globally 

(55].

In the case of pure capillary waves, th a t is ^ =  0, the equations in (4.42) remain 

unchanged except for the last equation describing the pressure. This becomes

P{t,  X, y) = Pq-\- ek^r exp{ky) cos{kx — tot ) ,  (4.46)

and we have

LO =  Vk̂ T', c = V l ^ .
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Therefore, the system (4.44) provides a suitable description for the motion of particles in 

pure capillary deep-water waves, but now with a different c and M  due to the different 

dependence of c and u  on F. If we also have P tending to zero, the hydrostatic pres

sure becomes constant and the wavespeed vanishes — a m athem atical result which is in 

accordance with the physical situation.

Q ualitative analysis o f so lu tions

In performing an analysis of the solutions of (4.44) we will not try  to solve the system of 

equations explicitly, since the right hand side of (4.44) is nonlinear. Rather, using phase 

plane analysis to examine the qualitative features of the solutions c.f. [37], it will be shown 

th a t there are no water particles travelling in closed orbits. In fact, we will see th a t every 

water particle experiences a forward drift as the wave progresses. We use the following 

transformation,

X{t )  = kx{t) — u>t, Y{t )  = ky{t),  (4-47)

to give us the new system

^  =  k M  exp(y) cos{X) — kc,

< ^  = /cM exp(y) sin(X ), (4.48)

(X(0) ,y(0))  =  (xo,yo).
\

Since (4.48) is periodic in X ,  we need only consider the strip

{ ( X , y )  e  ; - 7 T  <  X  <  7t } .

This system corresponds directly to the system considered in [21] for pure-gravity deep- 

water waves, therefore we now present the following results obtained therein. Firstly, we 

present a necessary condition for the wave particles to be periodic.

L em m a 4.2 .2  [21] I f  the particle path (x{t),y{t)) is periodic, with period r , then t  = ^ .

Our main result now follows with a proof tha t is entirely along the lines of the proof of 

Theorem 4.2.1.

T h e o re m  4.2 .3  The system  (4.44) has no periodic solutions.
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O rb ita l  p ro p e r t ie s

We finally note two results from the paper [21], which tell us th a t as we reach greater 

depths the orbits become nearly closed circles.

L em m a  4 .2 .4  [21] Let { X , Y )  be a solution of (4.48) with (X (0 ),F (0 )) =  Then

9 =  0{Yt̂ ) defined by X{9)  =  —tt is a strictly increasing function ofY-jr, and 9{Y)  —> 2tt/ u) 

as Y  —oo.

If {x,y)  is the pa th  of a particle we can consider the orbit traced by the particle as it 

goes from its point of greatest height until it reaches the same height again in the finite 

time 9, as defined in Lemma 4.2.4. Defining the forward drift of a fluid particle to be the 

horizontal distance x{9) — x(0), we have the result

C o ro lla ry  4 .2 .5  [21] The forward drift of a fluid particle is strictly decreasing with greater 

depth and vanishes as y —oo.

It is possible to present a qualitative description of the motion of water particles. Namely

f < 0 ,  f < O f o r  X ( t) e ( - 7 r ,-7 T /2 ) ,

f > 0 ,  S < O f o r  X (t)G (-7 T /2 ,0 ) ,

f > 0 ,  | > O f o r  X (t) G (0,7t/2 ),

f < 0 ,  | > O f o r  X (i)e(7T /2 ,7 r).

This tells us th a t the water particles move in an clockwise manner, and if starting at 

the point of greatest depth then (see Figure 4-5) they first move backward and up, then 

forward and up, then forward and down, then backward and down, until they again reach 

the point of greatest depth after the time of 0 ^  with x{9) — x(0) =  > 0.
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Figure 4-5: Particle trajectories in linear deep-water capillary and capillary-gravity waves.
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4.3 The trajectories of particles in deep-water Stokes

waves

4.3.1 T he Stokes-w ave problem

We have mentioned in previous discussions that within water wave theory it has long 

been conjectured that in shallow-water motion the trajectories of fluid particles take the 

form of closed ellipses, while in deep-water the paths more closely resemble circles (see 

[41, 67, 77, 86]). Recently it was proved that this conjecture is false for linear water waves 

propagating both over a flat bed [37, 62] and in water which is infinitely deep [21, 61] (see 

the previous Section 4.2 for some of these results). A proof of the fact that within the fully 

nonlinear framework of the governing equations for Stokes waves travelling over a flat bed 

there are no closed particle paths for nontrivial waves was recently achieved in [20]. In 

the course of this section we will prove the corresponding result for Stokes waves travelling 

over water of infinite depth. Our methods rely on results from the theory of harmonic 

functions, namely maximum principles and uniqueness properties of level sets.

4.3.2 G overning equations for Stokes waves

A deep-water Stokes wave is a two-dimensional periodic wave with a symmetric profile that 

rises and falls exactly once per wavelength and which is acted on by gravity, travelling at 

constant speed on the surface of irrotational water which is infinitely deep. To formulate 

the governing equations we will use Cartesian-coordinate axes with the F —axis pointing 

vertically upwards and the axis perpendicular to the crestlines of the waves, the flow 

being in the positive X —direction. We let F  =  0 denote the mean water level and we 

assume the water domain is infinitely deep, that is K ^  —oo. The velocity field of the 

water flow is given by {u{t, X,Y) , v{t ,  X , Y) )  with the water’s free surface Y  = rj{t,X)\ 

see Figure 4-6. Assuming that the water is both homogeneous (constant density) and 

inviscid (no internal friction forces) we obtain within the fluid domain the equation of
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y

y=0

Figure 4-6; A deep-water Stokes wave.

mass conservation

u x  +  v y  =  0 , 

together with Euler’s equation in component form

Ut + u u x  + vuy = —Px,

Vt + U V x  + VVy = - P y  — g,

(4.49)

(4.50)

where P{t,  X ,  Y )  denotes the pressure and g is the gravitational constant of acceleration. 

In order to decouple the motion of the air from th a t of the free surface particles [67], we 

introduce the dynamic boundary condition

P  = Po o n Y  = v { t , X) , (4.51)

where Pq is the constant atmospheric pressure and we have neglected the effects of surface 

tension. Since the free surface is always composed of the same particles we get the kinematic 

boundary condition

v = rjt + urjx on Y  = r]{t, X ) .  (4-52)
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The boundary condition for the bottom of the water domain which expresses the fact that 

at great depths there is practically no motion in the fluid is given, for a lH  > 0, by the 

limiting condition

In a Stokes wave we assume the water to be irrotational: this is actually the case in the 

motion of water which starts from rest, since it is a consequence of Kelvin’s Circulation 

theorem (that water which is irrotational at any instant remains so for all further times); 

therefore

The equations (4.49)-(4.54) are the governing equations for irrotational water waves [67] 

acting under the influence of gravity in water of infinite depth.

We look for steady periodic waves travelling at speed c > 0, i.e. for solutions which 

are periodic in X  (of, say, period A) and for which u, v, rj, P  depend on (X, t) only in the 

combination {X — ct). We now pass to a reference frame moving with speed c in the 

positive X —direction, where the constant c > 0 is the speed of the wave, thus eliminating 

time from the problem. This is equivalent to the change of variables

Experimental evidence suggests that for waves which are not near the breaking or spilling 

state, the speed of an individual particle is generally appreciably smaller than the wave 

propagation speed. In accordance with this we shall assume that u  <  c  throughout the 

fluid except possibly at the wave crest, where u =  c for the wave of greatest height— see 

[88]. Under the transformation to the moving reference frame, (4.50) and (4.52) become

(u,v)  —>• (0,0) as y  —> —oo uniformly for X G R. (4.53)

U y  =  Vx- (4.54)

(X -  ct ,Y)  ^  {x,y). (4.55)

In this new frame of reference the wavefront 77 is stationary and the flow {u, v) is steady.

{ U  -  C) U^ + V U y  =  - P x ,

{u -  c)vx +  vvy = - Py  -  g,
(4.56)

with

V =  { u  — c)rj'  on y  =  r] {x) . (4.57)
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Let Drj =  { {x , y )  G : —oo < y < rj{x)} represent the  closure of the  fluid domain. Thus 

a Stokes wave is a  solution of (4.56)-(4.57) satisfying + Vy = 0 th roughout w ith 

P  = Pq on y = rj{x) and w ith (u,v )  —> (0 ,0 ,)  as y ^  —oo uniform ly for x G R, and for 

which (7 7 , u, V,  P)  G C^(Dr^) x  C'^{Drj) x C'^{Dr^) X C^{Dn)  are all periodic in the x —variable. 

Furtherm ore, we require the functions 7 7, u, P  to  be even and the  function v  to  be odd in 

the  X—variable. U pon in tegrating (4.56) we derive Bernoulli’s law which sta tes th a t the 

expression
(u — c)^ — v'^

E  ■ = ---------------   + g y  +  P

is constan t th roughou t We define the  stream  function 7p{x,y) G C^{Drj) up to  a 

constant by

ipy = u -  c, ipx = -V-  (4.58)

The irro ta tiona l flow assum ption, Ux + Vy = 0 th roughout tells us th a t is harm onic, 

and the  explicit integral formula

r x  ry
i j { x , y ) = i j 0 -  v { ^ , - d ) d ^ +  [u (x ,0 - c ] d ^ ,  y <r}{x),

J o  J - d

where -0o G R is a constan t and  the line y = —d lies beneath  the  wave trough-level shows 

th a t Ip is periodic in x.  Furtherm ore, we have u  — c = 'ipy < Q th roughout W riting 

(4.57) in term s of ip we get ipx +  'ijjyri' = 0 on y  = r]{x), which tells us th a t the stream  

function is constan t along the free surface y  =  r]{x) — it will be convenient to  choose - 0  =  0  

as the  constan t value for the free surface. If we now express B ernoulli’s law in term s of ip 

we obtain

E ■= — +gy  + P.

and so the dynam ic boundary  condition (4.51) is equivalent to

\V  ip\^ + 2gy = E q on y = r]{x), (4.59)

where Eq =  2{E  — Pq). Since r/ >  0 for a t least some x G R it follows from (4.51) th a t
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£̂ 0 > 0. T hus for Stokes waves the  governing equations can be sum m arized as 

✓
A'lp =  0 in —oo < y <

+ 2gy = Eo on y = r]{x),

-0 =  0 on y =  r]{x),

V -0 —> (0, —c) as y  —oo uniform ly for x 6  R,

where r] G (7^(1?) and  ip £ are periodic in the  x —variable, w ith wavelength A as the

period, and  rj rises and  falls exactly once per period w ith r]'{x) 7̂  0 except a t the m axim um  

or minimum .

Now suppose yQ and d  are fixed depths below the  wave trough, such th a t yo < d  < r]. 

T he divergence theorem  applied to  the vector field {'ipx, '’Py) on the  rectangular box enclosed 

by the hnes x =  0, x =  A, y = d,  y = yo gives

0 = /  /  ii^xx +  4’y y ) d y d x
•Jo Jyo

r \  rd nO ryo
= / ' i p y { x , y o ) d x  +  / ' 4 > x { \ A j ) d y +  / ' i p y { x , d ) d x - \ -  / '>px{0 ,y)dy

Jo J yo J d

= / i p y { x , y o ) d x  -  / Tpy{ x , d )dx ,
Jo Jo

and  so th e  m ean horizontal velocity com ponent per wavelength A, a t any fixed dep th  below 

th e  wave trough, is constan t th roughout A natu ra l consequence of this is S tokes’ 

definition of the  wave speed as the m ean horizontal velocity com ponent in the  moving 

fram e of reference for which the wave is stationary , i.e.

1
c = - - J  'tpy{x,yo)dx > 0, (4-61)

where yo is any fixed depth  below the  level of th e  wave trough.

4.3.3 Results for the velocity field

W ithout any loss of generality, we restrict our attention to Stokes waves of period 2ir w ith 

the crest at (0 , 77(0 )) and the trough at (7r,7](7r)).
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L em m a 4.3.1 The following strict inequalities hold

^px{x ,y )<0,  -^u{x,7]{x)) < 0 for x G (0, t t ) ,  y G ( - 00, t7(x)]. (4.62)
ax

P r o o f  Note th a t =  0 on the half-hnes x  = 0 and x =  tt since v is periodic and an odd 

function in the x variable. Also by (4.60) is harmonic in Drj and —> 0 as y —> —00. 

Since 'ipx =  —'4’y l ' on y =  r]{x) and by assumption both rj'{x) < 0 and i j j y{x, - )  <  0 for 

X G (0,7t), it follows th a t -ipx < ^ along the upper boundary t] of when x G (0,7r). 

Defining the bounded water domain

Dr,,k = {{x,y)  G : X G (0 ,7t), - k  < y < ??(x)},

for k G M"*" sufficiently large tha t y = —k is below the trough level, we suppose th a t

there is a  point (xo,yo) in the interior of D t̂ for which 'ipx{xo,yo) =  e > 0. Let k G R'*"

be large enough th a t (xo,yo) E and < e uniformJy in x  for —00 < y < —k,

and also —fc <  ri{x): it follows from the fourth equation in (4.60) th a t such a k exists. 

Then ipx{xo,yo) = e contradicts the strong maximum principle for harmonic functions [50] 

applied to the domain D^j^. Therefore we must have -0i < 0 on Suppose th a t ipx = 0 

at an interior point of D, .̂ Then we can choose ko so th a t the point is contained in 

we can apply the maximum principle on this bounded domain and get 'ipx = 0 on £>rj,fco) 

which contradicts ipx < 0 on the upper boundary of Dr,. Therefore •0̂  < 0 in

To show the second inequaltity in (4.62) we note tha t, from (4.50) and (4.51), we have 

P  — Pq on y — rj{x) and Py —g as y  —00. Differentiating (4.50) we see th a t P  is 

superharmonic,

A P  =  -  2 C  < 0-

First suppose th a t the minimum of P  is attained on the side boundary of the water domain 

Drj at the point (0,yo)> say. Considering now the bounded water domain = {{x,y)  ■ 

X G (—e,7r), y G {—k,r]{x))} for —k < yo and e > 0, it follows from the periodicity of 

the function th a t P  attains its minimum in D^k also at the interior point (0,yo)- The 

maximum principle [50] then implies th a t P  is constant on De,k and since this holds for 

any —k < yo we must have P  constant on Dr, which is a contradiction. Since at great
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depths the  pressure function P  increases w ith increasing depth, which is a result of the 

Umiting condition Py —g as y  ^  —oo, we m ust have P  > Pq below the  free surface 77. 

Also, from (4.51) we get P^ +  Pyi]' =  0 on y =  t]{x ) for x  € (0,n) ,  and since r/'(x) < 0 and 

Py(x,7](x)) < 0 (by H opf’s lem m a [50]) it follows th a t  Px (x , tj(x )) <  0 for x  G (0,7t) .  B ut 

from (4.56) and (4.57) we have P^ = (c — u)[ux + 'r]''^y\ on y =  r]{x), and  so the  sum  of 

the  term s in th e  square brackets is stric tly  less th a n  zero for x  G (0 , 7r), which proves the 

second inequality in (4.62). |

L e m m a  4 .3 .2  The function  y  1-^ u(0, y) is strictly decreasing as we move down the vertical 

half-line [(0 , r](0 )), (0 , —0 0 )], whereas it is strictly increasing along [(tt, ry(7r)), (tt, —0 0 )] as 

we m ove downwards.

P r o o f  Prom Lem m a 4.3.1 we know th a t V'x < 0 in  ̂ for k  G M+, —k < rj. Furtherm ore, 

since "ipx =  =  0 on x =  0 and x =  tt we can apply H opf’s m axim um  principle [50] on

to  get

^ x : r ( 0 , y ) < 0 ,  y e  {-k, r]{0)) ,  (4.63)

'ipxx{Tr,y) > 0, y  e  {-k,r](7r)).  (4.64)

Since Uy =  'ipyy Ai/) =  0 the s ta tem en t follows a t once. |

R e m a r k  P rior to  th is we have assum ed th a t  u  <  c in As a result of Lem m a 4.3.1 and 

Lem m a 4.3.2 we can now s ta te  th a t u <  c in the  closure Dn of except in the  case of 

a  Stokes wave of g reatest height, in which case, a t th e  crest (0,r/(0)), we have u  = c w ith 

u  <  c a t all o ther points of cf. [88].

We now present some properties of th e  zero-level set {u  =  0} of a nontriv ial harm onic 

function u. Let u {xq, yo) =  0, and let us define the  analy tic  function

f { z )  = u(z)  +  i {v{z) -  v { z o ) ) , z  = x  + iy,  zq = xo + iyo,

where v  is th e  harm onic conjugate of u. Since f  ^  0 and  f{zo)  =  0 there exists a  unique 

positive integer n  > 1 such th a t f { z )  = {z —zq)'^f i { z )  in some neighbourhood of Zq where / i
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is analy tic  and  f \{zo) =  w 7  ̂ 0. Choosing a single-valued branch of zn  in a  neighbourhood 

of w  we can define a function / 2  which is analytic in a neighbourhood of zq by / 2  =  ( / i ) " ,  

th a t is

f { z )  = [ { z -  Zo)f2 {z)]^

in th is  neighbourhood. Now the  analy tic  function (p\{z) = {z — zo ) f 2 {z) is a  local diffeo- 

m orphism  in a  neighbourhood M'{zq)  of zq as a resu lt of the  inverse function theorem . Let 

If be the  analy tic  inverse of <fi in a neighbourhood M{zq)  of zq su itably  defined so th a t 

(/?{A/’(zo)} C J\f'{zo), w ith  ipi{(fi{z)) = z  for z  e  M{zq).  T hen /  o (p[z) =  [ipi{ip{z))Y =  2 " 

and so u o ip[z) =  5R (z"). Let 7 ^, for j  =  0 , . . . ,  n  — 1, be a  conformal hom eom orphism  of 

a line segm ent in the neighbourhood M{zo)  defined as follows: 7 j ( r )  =  

with each Sj a function w ith the p roperty  th a t Sj{r)e'‘̂  ) G A/’(zo) for r  G (—1,1), and

5 j ( 0 ) =  0. Thus, for j  =  0 , . . .  , n  — 1, the  j j  m ap n  line segments contained in N { zq) 

passing th rough  the point (0 , 0 ), w ith  adjacent line segments separated  by the angle ^ 

a t (0 , 0 ), conform ally into n  curves contained in N ' { zq) and intersecting only a t the  point 

(xo, Uo) ■ T hus for a nontrivial harm onic function u  we have a  unique positive integer n  >  1 

such th a t

(i) {u  =  0 } n M { x o ,y o )  =  where 7 -̂ =  : r G ( -1 ,1 )} ;

(ii) 7 j ( 0 ) =  (xo,yo) and the  angle a t (xo,yo) between j j  and j j+i  is 

We are now in a position to  prove th e  following.

L e m m a  4 .3 .3  The zero-level set {u =  0} of the func tion u  is a maximal non-self-intersecting 

infinite curve C originating at some point {xc,rj{xc)) on the free surface fo r  xc G (0 , 7r), 

and has the property that any streamline ip = tpo intersects C in exactly one point  for  

Tpo e  y)  : (x, y) G =  R+.

P r o o f  T here cannot be a  zero point of u  located along a; =  0 or x =  tt as Lem m a 4.3.2 tells 

us th a t u  decreases stric tly  tow ards zero along x  = 0 as y  tends to  minus infinity, whereas 

it increases stric tly  tow ards zero as y —> — 0 0  along x  = n. T he m onotonicity of u  on rj,
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ensured by Lem m a 4.3.1 together w ith th e  fact th a t u{0,r]{0)) > 0 and u (7t, 77(71)) <  0, 

im ply th e  existence of a unique point xc  G (0, tt) such th a t  u{xc,rj{xc))  =  0. Let C be a 

m axim al extension of the local curves 7 j ( r )  of the  level set {u =  0} which pass through 

(xc,ri{xc))-  We will show th a t C is a unique non-self-intersecting curve which descends 

tow ards th e  infinitely deep seabed in such a way th a t any stream line -ip = ipo intersects 

C in exactly one point. Let {x ,a{x) )  be the  equation of a stream line -0 =  V'o for any 

'ipo G {'fp{^,y) ■ i ^ , y )  G Drj} =  M'*'. T hen  +  '4’y(j'{x) = 0 and so 0 >  <j'{x) =  —^  

for X G ( 0 , 7t ).  Also u(0,cr(0)) >  0 >  u{n,a{TT)) and  so each stream line intersects C in at 

least one point. We need to  show th a t  C does not self-intersect and th a t each stream line 

intersects C a t ju s t one point.

F irs t we show th a t a t no point (xo,yo) does the  curve C furcate into m ultiple branches. 

Supposing otherwise, let (xo,yo) be the  first point of C where branching occurs ( th a t 

is, yo is the largest possible value w ith  th is property) w ith  Ci and C2  any two branches 

em anating  from th is point. T hen we have two possible scenarios: (a) th e  curves Ci and 

C2 in tersect a t some further point ( x i , y i )  w ith yi < yo] (b) bo th  curves head tow ard the 

infinitely deep seabed y = —00 w ithout ever m eeting again. In case (a) C\ and  C2 form 

the  boundary  of a com pact dom ain on which u  is harm onic and  where u  =  0 on the

boundary  C\ U C 2- T he strong m axim um  principle then  d ictates th a t u =  0 on In

case (b) the  curves C\ and C2 form the  boundary  of an infinite dom ain on which u

is harm onic and having u =  0 on the  infinite boundary  C\ U C2, w ith  u —> O a s j / —̂ —00 

in £)zn/ Therefore u  =  0 on as a  consequence of the  Phragm en-L indelof principle. 

In b o th  cases (a) and (b), we have ti =  0 on some open set Q of Therefore, for any 

point z  =  {x^y)  in Vt, there exists a neighbourhood N { z )  of z  contained in and for 

any integer n  G N we can construct n  curves 7 i(t), for ? =  0 , . . . ,  n  — 1 and  t G (—1,1), 

on which u  =  0, 7 (0 ) =  ( x , y )  and th e  angle a t z  between 7 ; and 7 i+i is Since u 

is harm onic, th is  s ituation  violates conditions (i) and (ii) unless u  is the  triv ia l solution 

u =  0 on which is a contradiction. This rules ou t the  possibility of th e  curve C 

forking ou t a t any point; a  consequence of th is is th a t th e  m axim al curve C of {u =  0 } 

is unique. We now show th a t C in tersects each stream line -ip = ipo E [0, 00) in exactly
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one point. This follows once we dem onstrate tha t, in a certain sense, the curve C cannot 

bend or change direction too dramatically as it heads towards the bottom  of the water 

domain. We can parameterise the curve C locally in either of two ways, by (s, / ( s ) )  or by 

( /( s ) , s), for s in some real interval I .  Suppose th a t C has a local maximum or minimum 

near a point Q which is parameterised by Q =  {so,f{so)).  Then as u  is constant along 

C we get Ux { s , f { s ) )  +  Uy{s, f { s ) ) f ' { s )  =  0 for all 5 G J .  Thus Ux(so,/(so)) =  0 since 

/'(so ) =  0. Along streamlines we get Ux { x , a { x ) )  + Uy{x,a{x))a' {x) =  0 and, since a t least 

one stream hne passes through (sq, f (so)),  we must also have Uy =  0 at (sq, /(so))- It follows 

from Taylor’s formula th a t at the point Q the function u has a zero of order at least two 

and accordingly we get at least two branches of C =  {u =  0} intersecting all streamlines 

sufficiently close to Q, which contradicts the earlier result th a t C does not fork out into 

multiple branches. This completes the proof. |

4.3 .4  Particle trajectories in deep-w ater Stokes waves

The unique solution {X{t ) ,Y{ t ) )  of the differential system

=  u ( X - c t , Y )
 ̂  ̂ (4.65)

=  v { X - c t , Y ) ,

with initial position (X (0 ),y (0 )) describes the trajectory of a particle in the fluid [55]. 

Correspondingly, in the moving reference frame we have the Hamiltonian system

X = u(x,  y) — c
 ̂ ’ (4.66)

y  =

with the Hamiltonian function the stream function ■0(x, y). Solutions of (4.65) are mapped 

into solutions of (4.66) by the change of variables (4.55). Unless we are dealing with a  wave 

of greatest height, then it follows from the remark in the previous section th a t u — c < —e 

on Dri, for some e > 0. Therefore each solution of (4.66) originating in will intersect 

the line x = —tt at a finite time in the future, having intersected the line x =  tt a  finite 

length of time in the past. This also holds for a Stokes wave of greatest height. In this
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case, since a solution of the Hamiltonian system (4.66) will remain on the same level set 

for all times — a property characteristic of Hamiltonian systems in general — a particle 

starting  at some point in will have u — c <  — e for some e >  0 (in view of the Remark in 

the previous section). For a solution of (4.66) starting on the boundary r]{x), x  E (0, tt), of 

we know tha t, since rj'{x) is bounded away from zero in the case of a wave of greatest 

height, we get

(c — u (x ,ri{x)))^ < Eq — 2gr]{x) = 0{x )  as a; J. 0,

from (4.60) and the mean-value theorem. Therefore c — u{x,r]{x)) — 0( ^ / x )  as x J. 0 and 

so
dx

Jo c -u{x ,7]{x ) )  ^

For a solution of (4.66) with initial d a ta  (0, t](0)) we get x(0) =  y{0) =  0, and so the solution 

is not unique. The constant solution is not physically reasonable as this would mean th a t 

other particles from the top boundary rj would colhde with it at the crest. Therefore we 

can say tha t, in the moving frame, any solution which starts on the boundary r] reaches 

(0 , 77(0 )) in finite time but does not stay there, rather it continues moving in the negative 

X—direction.

Lem m a 4 .3 .4  Foryo e  (—00, ^̂ (Tr)] let 6 =  0{yo) > 0 be the time necessary for  the solution 

{x{t),y{t)) of  (4.66), with initial data (Ti,yo), to intersect the line x  =  —tt. This solution 

represents a closed particle path i f  and only i f  6 = ^ .

P r o o f  The solution will intersect the line x  =  —tt at the point (—7r,yo) =  (2 (̂ )̂> ?/(^)) by 

symmetry of the wave. If 0 ^  then

X{6) -  X{0) = [x{e) -  c9] -  x{0) = 0

with

{X{6) -  C0) =  -7T  = X { 0 )  -  27T =  X (0) -  27T

and so sufficiency follows from the periodicity of (4.65). Conversely if ( X{ t ) , Y{ t ) )  is a 

closed path  of (4.65) with period r  >  0 then y{0) = y{T) and so r  = nO for some n  G Z.
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But then x { t )  = a:(0) — 2mr so that X(0) =  X { t ) imphes that

0 =  X (r) — X(0) =  [ x { t )  +  cr] — a;(0) =  x(r) — x(0) +  cn9 = —2mr +  cn6, 

and so ^ ^  is necessary. |

We can now prove the following result.

Proposition  4.3.5 There are no closed particles in a deep-water Stokes wave.

P roof We aim to show that 0{yo) > ^  for all yo G (—0 0 , 77(71)]. Let y = a(x)  denote the 

equation of the streamhne xp =  ip{T ,̂yo) and let /c G R'*' be such that —k < a{x) < r]{x) 

for X  G [0 , 7t ]. If we apply the divergence theorem to the vector field {'ipx,'4̂ y) in the strip

{{x,y)  G : X G ( - 7r ,7r), - k  < y < a{x)},

we find that

[ '  (c -  «(x, -k) )  dx = r
J-^  J-TT c - u { x , a { x ) )

and so from (4.61) we deduce that

[c — u{x,  (j(x))]^ +  v'^{x, cr(x))f —--------  1  ̂ V - " / /  _  2 7 T C .

J — 1 c-u{x , a{x) )  

It follows from Lemma 4.3.1 that
/*7r

/ [c — u{x,a{x))]dx < 2'nc. (4-67)
J —7T

Since u — c < Q along y = cr(x), except maybe at the point (0, cr(0)) in the case of a wave

of greatest height where yo =  7?(7r), we have

dx  ̂ , ,
/  -------- ^ =  0. 4.68J_^ c -  u{x,a{x))

Using the Cauchy-Schwarz inequality together with (4 .68) we get

r  r  dx n
6 / \c ~  uix,a{x))\dx = /  ;----- 7- ^  / \c — u{x,oix)) \dx >

J-^  J - ^ c - u { x , a { x ) )

and so from (4.67) we have

47t  ̂ 2n
~ I l j c - u { x ,  a{x ) ) ]dx^  c ’

and the proof is complete. |
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We can summarise the motion of water particles in deep-water Stokes waves as follows. 

Along each streamline y  = a { x )  we have

u ( —7T, a ( —7t) )  =  u(7T,  cr(7r))  <  0  <  ^ ( 0 ,  a - (O) ) ,  

v { x , a ( x ) )  =  —v { —x , a { —x) )  >  0,  x G ( 0 , 7 t ) ,

with the function x  i—> u{ x ,  cr(x))  changing sign when it reaches the infinite curve C located 

in both  regions x  E (—vr, 0) and x  e  (0, t t ) ,  the streamhne y  = a { x )  intersecting each curve 

in a unique point. Let X{ t )  be a solution of (4.65) with initial value ^ (0 )  =  tt and let 

0 > 0 be the first time when Y{9)  =  1^(0). Then the wave period is ^  and we have shown 

in Proposition 4.3.5 th a t
‘2,71

9 >  ------, x{9) =  c9 —  TT >  T T ,
c

for any solution X{t )  of (4.65). Thus a water particle located initially at some point 

{xQ,yo) with xq G (0, tt] always stays above the line y =  yo. Its trajectory is composed (see 

Figure 4-7) of the following distinct motions; it first moves backwards and upwards; then 

while continuing upwards it moves forwards; then while moving forward it begins to go 

downwards; then at a certain point in the downward motion it begins to move backwards 

until it hits the line y = yo at a. point (xi,yo)  with xi > Xq and the cycle repeats itself as 

before.

Figure 4-7: Particle trajectories in deep-water Stokes waves.
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Chapter 5

Conclusions and further work
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In Chapter 2 we study the propagation speed and persistence properties for solutions of 

the 6—equations, expressed in the forms (2.1) or (2.2). The first section of this chapter is 

restricted to the solutions of these equations which are initially compactly supported. We 

addressed the question as to whether such solutions retain this property for any nontrivial 

length of time throughout its existence. The work contained in this section extends the 

results contained in Constantin [19] for the case of the Camassa-Holm (CH) equation 

(given by 6 =  2) and M ustafa [84] for the Degasperis-Procesi (DP) equation (given by 

b = 3). It is assumed in [19, 84] th a t the initial data  is smooth, uq G C°°(1R). As a result of 

Proposition 2.1.4 we lessen this restricion and merely require Uq G HI^(R). Furthermore, we 

expand on the cases 6 =  2, 3 (presented in [19, 84]) and prove th a t for all values 6 G R the 

initially compactly supported solutions m  to  equation (2.2) remain compactly supported 

for all times in their existence, and th a t for b in the range 0 <  6 <  3 all solutions u of 

equation (2.1) which are initially compactly supported instantly lose this property.

A future ambition would be to obtain results on solutions to equation (2,1) for values 

of b outside the range 0 < b < 3 — however it seems such a hope may be beyond the 

capabilites of the approach presented in this thesis. Of course, the results we present in 

Chapter 2 do cover the two most im portant cases h — 2,3 which represent the CH, DP 

equations, respectively.

The second section of Chapter 2 develops the results detailed above for the case of the 

DP equation. This extends and clarifies some results obtained in Himonas et al. [63] for 

the CH equation. The class of initial data  for the DP equation is now expanded to include 

solutions with an asym ptotic decay no slower than the inverse exponential function with 

constant weight less than  or equal to one. For a variety of conditions on the asymptotic 

behaviour of the derivative of the initial data, we present results in Theorems 2.2.1 -2 

-3  -4  relating to  the persistence of these decay conditions throughout the evolution of 

the solutions over its interval of existence. A thorough description of solutions to the DP 

equation which are initially compactly supported is provided in Theorem 2.2.5.

We envisage th a t in the course of future work these results might be generalised to the 

entire family of 6—equations, or a t the very least to the equations in the range 0 < b < 3.
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In C hap ter 3 we delve in to  the  subject of edge waves. Edge waves are ocean waves which 

propagate  in th e  longshore direction and are trap p ed  in th e  nearshore — they  betray  little  

sign of activ ity  far ou t from  the  shore. In 1846 Stokes found an edge-wave solution for 

the  linear water-wave equations on a  beach w ith a constan t slope. U nfortunately for edge 

waves, they  have long been regarded by many as a  mere curiosity and consequently they 

have been relatively ignored in the  literature. However, recent geophysical studies sug

gest th a t  edge waves play a m ajor role in sedim ent tra n sp o rt in th e  nearshore, and in 

th e  p ast half cen tury  or so a concerted effort has been m ade to  place the  study of the 

problem  m athem atically— th e  work of Ursell (1952), Stoker (1957), W hitham  (1976,77) 

and  M inzioni (1976,77) being am ong the more notable early  contributions. In 2001, Con

s tan tin  [18] presented an  exact solution for th e  nonlinear edge-wave problem  in the case of 

ro ta tional w ater flowing over a  constantly  sloping beach. In 2005, Johnson [69] obtained 

a  fully nonlinear edge-wave description for an  a rb itra ry  dep th  profile which has an exact 

solution which is irro ta tional. Results incorporating a  longshore current into the  depth  

profile producing an effective dep th  profile have also been ob ta ined  in [69].

In C hap ter 3 we present a  m athem atically  rigorous s tu d y  of th e  linear edge-wave equa

tion derived by Howd et al. [65] in 1992. This linear self-adjoint second order differential 

equation describes th e  p ropagation  of edge waves over a  bed  of variable depth; a longshore 

current can also be incorporated  into the effective dep th  profile. We define edge-wave solu

tions to  be solutions which are m onotonous and tend  to  zero far out, and in the course of 

our analysis we s ta te  in tegral conditions on th e  effective dep th  profile which are necessary 

and sufficient for the  existence of edge waves, adap ting  resu lts from Cecchi et al. [10]. We 

use fbced point theorem s to  show th e  existence of edge-wave solutions for a  large class of 

suitable dep th  profiles which have an elem entary description.

A ntic ipated  fu tu re work in the area of edge waves would consist of the analysis of the 

nonlinear edge wave problem . Indeed, the work of Johnson [69] presents a num ber of 

nonlinear edge-wave m odel equations, which adm it some exact solutions; these would be 

w orthy candidates for fu tu re  study. Analysis of th e  edge-wave problem  in the nonlinear 

milieu is considerably m ore challenging than  the linear case.
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In Chapter 4 we study the trajectories of fluid particles in a number of water-wave 

settings. The behaviour of individual water particles during the passage of a water wave 

is a fundamental question, and one of no-httle practical importance when it comes to the 

design of oil rigs, submarines and for providing a qualitative insight into the transport 

of sediment through the motion of waves. The question has long occupied the curiosity 

of researchers, and a consensus seems to have been reached in the literature, apparently 

backed up by photographic and empirical evidence, th a t particle trajectories, in general, 

describe closed orbits which decrease with the depth [8, 67, 78, 79]. However, recent results 

from the last couple of years by Constantin et al. [37, 21, 20] showed th a t in the linear 

setting for irrotational gravity waves, in water of both finite and infinite depth, and in the 

fully nonlinear setting for finite depth Stokes water waves, water particles do not in fact 

trace out a closed orbit but rather they experience a forward drift.

The results we present in Chapter 4 consists of two sections. In the first section we 

generalise results obtained in the literature above for the linear setting. We introduce the 

efi'ect of surface tension on the development of the water waves and then prove th a t the 

particle paths are also not closed in linear periodic capillary and capillary-gravity waves — 

in the case of irrotational motion with both finite and infinite depth. Similar to the linear 

pure-gravity-wave-case, the particles experience a forward drift. In the second section we 

generalise the results of Constantin [20] for the finite-depth Stokes-wave to the deep water, 

i.e. the infinite-depth, Stokes-wave. Here the transition from the finite depth case to the 

deep water Stokes wave case is nontrivial — we must employ maximum principles and 

carefully use the intrinsic properties of level sets of harmonic functions in order to obtain 

results on the now semi-infinite domain. The end result shows, again, a forward drift for 

the water particles.

Future work concerning particle trajectories might consist of introducing the effects of 

surface tension on the classical Stokes wave. This would be a significant complication of the 

problem, introducing the curvature of the surface into the nonlinear boundary conditions.
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