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Summary
Modem pemianent magnetic materials provide unique design opportunities as their 

low susceptibility makes them effectively transparent to external magnetic fields. This 

also simplifies the calculation of magnetic fields in devices incorporating them. We 

have developed two software programs to simulate the magnetic field fi’om arrays of 

such permanent magnets. The first is based on the magnetic charge model, and the 

second uses a magnetostatic finite element method. We have used this software to 

develop novel designs for three particular types o f application:

1. A design to improve the homogeneity within short length Halbach cylinders. We 

compared this new design to existing methods o f increasing the field homogeneity. 

Our design achieves an approximate twofold increase in the homogeneity in central 

plane o f a Halbach cylinder over the next best design.

2. Three designs producing a constant magnetic field gradient using only permanent 

magnetic material. In two of these designs the gradient is parallel to the field, and in 

one the gradient is orthogonal to the field. These designs can produce around 30 T/m 

in a working region of length 1cm.

3. Three designs producing a constant product o f magnetic field {B) and magnetic 

field gradient (dS) using only permanent magnetic material. In two o f these designs 

the gradient is parallel to the field, and in the other it is orthogonal to the field. We 

commissioned two scalings o f the design with gradient orthogonal to the field to be 

manufactured, and the field measured within the design is shown to be in excellent 

agreement with our simulations. The second design with the gradient parallel to the 

field can achieve a constant BdB o f magnitude 20T^/m over a working area o f length 

I cm, and the design with the gradient orthogonal to the field can achieve a constant 

B6B o f magnitude 30T^/m over a working region of length 1cm.

3



Computational Modelling o f  Novel Permanent Magnetic Designs

Acknowledgements

Acknowledgements seem to be the most tricky part o f writing a thesis, as there are so 

many people who have contributed both their time and effort to help me complete the 

work of the past few years, all of which have been condensed into this volume.

I would like to start by thanking my supervisor, Dr. Sara McMurry, to whom I am 

extremely grateful for giving me the opportunity to undertake this PhD in Trinity 

college, and whose guidance and encouragement throughout the past few years I 

could not have done without. I would also like to thank Enterprise Ireland for their 

strategic grant (ST/2000/025) for funding over the course o f the project.

I would like to thank all o f my friends in the computational lab (including the 

chemists!): Gary and Aengus for having to sit beside me during particularly difficult 

debugging sessions, Paul for keeping us all amused throughout the day, Gemma for 

being her kindly self and having to put up with us all, and Aron for bringing his 

version o f normality to the lab.

To my friends outside the lab, who have seen me through the past few years, Sarah 

and Johannes; thank you for everything, better friends I could not ask for. I am also 

grateful to all my other friends, who have made my time here so memorable and 

enjoyable.

Finally, I would like to thank my family for their constant love and support over these 

past few years.

4



Computational Modelling o f  Novel Permanent Magnetic Designs

Contents
D eclaration_______________________________________________________________ 2

Summary  _________________________________________________________________ 3

Acknowledgements_________________________________________________________4

Contents _________________________________________________________________ 5

1 Introduction____________________________________________________________9

1.1 Magnetism________________________________________________________ 9

1.1.1 Introduction_____________________________________________________ 9

1.1.2 Magnetic Materials______________________________________________14

1.1.3 Designs Exploiting Modem M aterials_____________________________ 18

1.1.4 Designs Producing Constant Force on Dipoles _____________________ 23

1.1.5 Proj ect O utline_________________________________________________2 7

2 Theoretical Background_________________________________________________ 28

2.1 Magnetic Fields___________________________________________________28

2.1.1 Maxwell Equations_____________________________________________28

2.1.2 Magnetic Vector Potential ______________________________________ 29

2.1.3 Magnetic Boundary Conditions__________________________________ 30

2.1.4 Magnetic D ipoles______________________________________________ 32

2.1.5 Forces and Torques on Magnetic Dipoles __________________________33

2.1.6 Magneti sation__________________________________________________3 3

2.2 Magnetostatic Field Calculations___________________________________ 35

2.2.1 Charge M odel__________________________________________________ 3 5

2.2.2 Current Model__________________________________________________ 37

2.2.3 Green Function Expansion_______________________________________ 38

2.3 Magnetic Structures______________________________________________ 40

2.3.1 One-Sided Flux_________________________________________________40

2.3.2 Infinite Length Halbach Cylinder_________________________________ 44

2.3.3 Finite Length Halbach Cylinder__________________________________ 47

3 Numerical Methods for Magnetic Field Calculations_______________________ 51

3.1 Surface Charge Model ____________________________________________ 51

3.1.1 2D Surface Charge Model _______________________________________51

3.1.2 2D Transformations   53

5



Computational Modelling o f  Novel Permanent Magnetic Designs

3.1.3 2D Computational Realisation___________________________________ 54

3.1.4 3D Surface Charge Model _______________________________________56

3.1.5 3D Transform ations____________________________________________ 57

3.1.6 3D Computational Realisation___________________________________ 60

3.2 Finite Element M ethod____________________________________________61

3.2.1 Weighted Residual Methods_____________________________________ 62

3.2.2 Finite Element M ethod_________________________________________ 66

3.2.3 Application to Magnetostatic Systems____________________________ 71

3.2.4 Solution o f the Matrix System ___________________________________76

3.3 Automated Mesh G eneration______________________________________ 86

3.3.1 Overview______________________________________________________ 86

3.3.2 Delaunay Incremental Insertion Algorithms________________________ 88

3.3.3 Geometric P rim itives___________________________________________ 90

3.3.4 Fast Point Location_____________________________________________ 93

3.3.5 Ruppert A lgorithm _____________________________________________ 94

3.3.6 Shewchuk A lgorithm ___________________________________________ 97

3.3.7 Boundary Recovery ___________________________________________ 100

3.3.8 Implementation_______________________________________________ 101

3.3.9 Computational Realisation______________________________________102

4 Improvement o f Homogeneity in Halbach Cylinders_____________________ 105

4.1 Introduction____________________________________________________ 105

4.1.1 Effects o f Cylinder Length on Field Homogeneity__________________ 105

4.1.2 Increasing Field Homogeneity__________________________________ 108

4.2 Split Halbach Cylinder___________________________________________ 110

4.2.1 Design Overview _____________________________________________ 110

4.2.2 Effect o f Split Width on Homogeneity___________________________ 113

4.3 Halbach Cylinder With Non-Uniform Inner Radius___________________115

4.3.1 Design Overview _____________________________________________ 115

4.3.2 Effect o f Increasing Central Bore Radius_________________________ 118

4.4 Halbach Cylinder With Soft Iron Insert____________________________ 119

4.4.1 Design Overview _____________________________________________ 119

4.4.2 Effect o f Insert Thickness on Homogeneity_______________________ 120

4.5 Comparison of the Methods o f Improving Homogeneity_______________122

6



Computational Modelling o f  Novel Permanent Magnetic Designs

5 Designs Producing a Constant Field Gradient_____________________________ 128

5.1 Introduction_____________________________________________________128

5.2 Halbach Cylinder With Linearly Varying Inner Radius________________128

5.2.1 Design Overview _____________________________________________ 128

5.2.2 Design Summary______________________________________________ 132

5.3 Halbach Cylinder With Offset B ore________________________________ 134

5.3.1 Design Overview _____________________________________________ 134

5.3.2 Design Summary______________________________________________ 135

5.4 Rolled Flux Sheet_______________________________________________ 13 7

5.4.1 Design Overview _____________________________________________ 137

5.4.2 Design Summary______________________________________________ 140

5.5 Comparison o f Designs Producing a Constant Field Gradient__________ 143

6 Designs Producing a Constant Product o f Field and Field Gradient__________ 145

6.1 Introduction_____________________________________________________ 145

6.2 Uniformly Magnetized Cylinder With Linearly Varying Inner R adius 146

6.2.1 Design Overview _____________________________________________ 146

6.2.2 Effect o f Segmentation_________________________________________ 149

6.2.3 Design Summary______________________________________________ 149

6.3 Halbach Cylinder With Linearly Varying Irmer Radius________________151

6.3.1 Design Overview _____________________________________________ 151

6.3.2 Design Summary______________________________________________ 153

6.3.3 Performance of Magnets Built According to D esign________________ 156

6.4 Rolled Flux Sheet_______________________________________________ 162

6.4.1 Design Overview _____________________________________________ 162

6.4.2 Design Summary______________________________________________ 164

6.5 Comparison of Designs Producing a Constant Product o f Field and Field

Gradient______________________________________________________________ 166

7 Conclusions__________________________________________________________168

Appendix_______________________________________________________________ 171

A.l Derivations_____________________________________________________ 171

A. 1.1 Rectangular Charge Sheet_______________________________________ 171

A. 1.2 Triangular Charge Sheet________________________________________ 173

A. 1.3 Cylindrical Halbach With Linear Inner B ore_______________________177

7



Computational Modelling o f  Novel Permanent Magnetic Designs

A. 1.4 Field From a Conical M agnet___________________________________ 180

A. 2 Effect o f Varying Parameters For Designs In Section 5_______________ 182

A.2.1 Design of Section 5 .2 __________________________________________ 182

A.2.2 Design o f Section 5 .3 __________________________________________185

A.2.3 Design o f Section 5 .4 __________________________________________186

A. 3 Effect o f Varying Parameters For Designs In Section 6_______________ 190

A.3.1 Design o f Section 6 .2 __________________________________________190

A.3.2 Design o f Section 6 .3 __________________________________________192

A.3.3 Design o f Section 6 .4 __________________________________________195

References 198

8



Computational Modelling o f  Novel Permanent Magnetic Designs

1 Introduction

1.1 Magnetism

1.1.1 Introduction

Magnets, although familiar and extremely common, continue to exert fascination due

to their seemingly magical properties. Since ancient times magnets, in the form of

lodestone, have been attributed supernatural powers and were often used in divination

and fortune telling. The Greek philosopher Thales even 

postulated that the magnet had a soul o f its own. Even 

so, the historical significance o f magnets would 

probably be very little had their use in navigation 

never been discovered. It is believed that around the

12*'’ century both the Chinese and (possibly

independently) the Europeans discovered that 

lodestone tends to align itself in a preferred direction. 

It was discovered soon after that an iron needle rubbed 

with loadstone exhibited the same effect. The 

discovery spread and was being used by the Arabs 

around the 13'*’ century and the Scandinavians by 

Figure I .I  -  Alive with magnetism. around the 14*’’ century. Magnets were therefore o f great 

importance to travel and trade and so instrumental to the spread o f knowledge and 

ideas in the early stages o f civilisation.

Magnets that immediately come to mind are the horseshoe magnet or fridge magnet, 

both examples of permanent magnets (with which this project is concerned). O f 

course, magnetic fields can also be generated by electric currents and time varying 

magnetic fields can generate electric currents; this is commonly put to use in devices 

such as electromagnets and electric motors, for either small electromagnetic actuators 

or larger industrial applications. Electromagnets currently provide the only source of 

very high magnetic fields, although resistive heating o f the current carrying wire 

becomes a problem past a certain point. Although designs such as the Bitter solenoid 

(in which a small fi'og was famously levitated at the Nijmegen magnet laboratory’) go 

some way to alleviating this problem the only practical way in which to achieve
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extremely high magnetic fields is by using superconducting material (although much 

higher fields than these can be created over very short timescales using destructive 

methods).

The main advantage of permanent magnets over electromagnets is that they provide a 

constant flux output for no energy expenditure (along with no need for maintenance, 

control circuitry and possibly heat dissipation systems). They are also extremely 

compact and can be engineered to any shape or size depending on the design. 

Furthermore, as Furlani points out , if  an electromagnet is shrunk by a factor L the 

current density o f the electromagnet must be increased by ML to give the same field 

strength at a rescaled observation point, which is not the case for a permanent magnet. 

Therefore, for small high flux systems, permanent magnets provide the only viable 

field source.

In this project we looked at designs that produce high uniform fields and designs that 

produce constant field gradients to provide a constant force on magnetic dipoles, 

constructed entirely from modem high-energy ferromagnetic materials. It may seem 

somewhat strange that permanent magnets can be arranged in ways to produce a 

uniform field as, for example, a bar magnet can be approximated as a magnetic point 

dipole with field H (given in polar co-ordinates relative to the dipole)

_ 2fflcos(6>) wsin(6>)
r  .  3 ■ 8  /I 3 [  ■ ■ 1

A w  Attt

Where m is the magnetic moment of the dipole. However, if  the length o f the bar 

magnet is much larger than both the height and width o f the magnet, it can be 

represented by a line dipole with field o f the form :

mcos{0) ^  wsin(^)
t i  = ------------. t i g  = ---------------- [ I -1.2]

InLr^ InLr^
Where L is the length o f the line dipole. It can be seen that the line dipole obeys a

inverse square rule as opposed to the inverse cube rule for the point dipole, but the

crucial difference is that the factor of two in the radial component disappears in the 

expression for the line dipole. This means that for the line dipole, H is orientated at a 

constant angle 20 Xo the dipole, whereas for the point dipole the orientation o f H 

relative to the dipole is not constant (in fact, the orientation is ^  + tan“‘(-^tan(0))). 

Also, the magnitude of H is independent o f 0 for the line dipole, whereas the point 

dipole has a cos^^ dependence. The fact that the orientation o f the field due to a line
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dipole is simply related to the orientation of the dipole itself can be then exploited in 

magnetic design. For example, a set of line dipoles can be arranged with orientation 

such that the components of H from the line dipoles cancel in all directions apart from 

one, giving rise to a uniform field.

Some examples of the application of high uniform magnetic fields include Faraday 

rotators. Magnetic Resonance Imaging (MRI) applications and spin-alignment in 

sputtering systems. Uniform fields are also used to rotate or guide electron beams in 

magnetrons and klystrons.

Faraday rotators

Faraday rotators rotate the polarisation angle of plane polarised light and are used in 

detectors and optical isolators. Plane polarised light can be expressed in terms of 

coherent left and right-handed circularly polarised light of equal amplitude; if one of 

these two components has a higher phase velocity than the other in the material (due, 

in this case, to an applied magnetic field) the plane of polarisation will rotate. This is 

called the Faraday or magneto-optical effect and was discovered by Faraday in 1845“*. 

The rotation angle, of the plane of the incident polarised light can be expressed as:

P  = vBd [1.1.3]

Where v is the Verdet constant for the material and d is the distance the light travels 

through the material. Modem optical materials such as terbium gallium garnet have 

high Verdet constants, making rotation of 45° or more possible, which is crucial for 

optical isolators.

Figure 1.2 -  A Faraday rotator rotates the polarization angle o f  plane polarized light by an angle p.

An optical isolator protects optical components from optical feedback, for instance in 

laser cavities. The rotation of the plane of polarization of the light beam is 

independent of propagation direction, so a Faraday rotator with a vertical polarizer at 

the input end and a 45° polarizer at the output end will prevent any feedback; light
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coming back through the output will be polarised at 45° to the vertical, rotated by a 

further 45° into the horizontal plane and then blocked by the vertical polarizer at the 

input end. A high field, B, is important to rotators as the length, d, should ideally be 

kept as short as possible for economic reasons.

Magnetic Resonance Imaging

High uniform fields are also used in Magnetic Resonance Imaging (MRI)^. This is a 

non-invasive imaging procedure that uses the principles o f Nuclear Magnetic 

Resonance^ to gather information about the molecular structure o f a given sample. A 

strong and highly homogeneous magnetic field is used to align nuclear magnetic 

moments within the sample. Some moments will align parallel to the field (the ‘low’ 

energy state) and some will align anti-parallel to the field (the ‘high’ energy state). 

Boltzmann statistics tells us that the number o f nuclear spins in the lower energy state 

will slightly outnumber those in the higher energy state, according to:

^ h ig h e r  ~^/kT
  -----  =  e  [1.1.4]
Mlower

Where E  is the energy difference between the spin states, k is the Boltzmann constant 

and T  is the temperature in Kelvin. This difference in spin population gives a net 

magnetization, M, to the sample which is initially aligned with the applied field B. 

The nuclear spins precess around the applied field direction at the Larmor fi-equency 

V ,

V  =  / | b 1  [1.1.5]

Where y  is the nuclear gyromagnetic ratio. Once the spins are aligned, the sample is 

given a pulse o f radio fi"equency radiation tuned to the Larmor fi'equency to produce a 

resonant transition fi'om the lower energy state to the higher energy state. The pulse 

duration is long enough to ensure that the spin population will approximately balance 

(i.e. Nhigher * Niower)- This effectively rotates the net magnetization vector, M, fi'om 

aligned with the applied field, B, into the plane orthogonal to the applied field. The 

applied field is defined to be in the z-direction, so that the orthogonal plane is the x-y 

plane. When the applied radio fi'equency field is then turned off, M relaxes back into 

alignment with B. Microscopically this involves the nuclei losing energy hv, with 

fi'equency v, and switching back into their original energy state. Macroscopically this 

involves the vector M spiralling upward out o f the x-y plane until it is fully re-aligned
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with B. The recovery of M to equihbrium is given by an exponential function, the 

parameter o f which varies depending on the type of molecule and is known as the 

time constant Tl.

Furthermore, the individual microscopic spins that make up M (initially all in phase) 

gradually de-phase in the x-y plane due to microscopic interactions between the 

individual spins. This de-phasing is also given by an exponential function with 

parameter T2.

Positional information in MRI is determined by superimposing static gradient fields 

on top of the uniform alignment field. Usually one field gradient parallel to an axis is 

used to select a slice within the sample whilst the sample is being radiated. Two 

further field gradients along the other axes are used, once the electromagnetic 

radiation has been turned off, to give positional information within the sample slice. 

The measured frequency responses can then be turned into an (2D slice) image by 

extracting positional data using Fourier transform methods. For medical MRI the 

nucleus under investigation is usually Hydrogen due to its abundance and large 

gyromagnetic ratio. The Tl and T2 parameters for hydrogen are different depending 

on the molecule o f which the hydrogen is a component and can be used to 

differentiate, for example, healthy tissue from diseased tissue.

The most common magnets in MRI machines are usually superconducting magnets, 

as conventional electromagnets require far more power to produce the required fields. 

A good alternative to superconducting magnets is provided by permanent magnets as 

they require no power, no maintenance once set up, have high homogeneity and also 

(in the case of Halbach design) produce little stray fields outside the region of interest. 

However, permanent magnets used on this scale are extremely heavy and provide only 

limited field strength and uniformity. Also, ambient temperature fluctuations cause 

field instability which can have a large effect on the sensitive MRI measurements. 

They are, though, a viable option for MRI as inhomogeneities in the field can usually 

be removed by careful placement o f small coils (‘active’ shimming) and placement of 

small amount o f soft ferromagnetic (‘passive shimming’) material to tune the field.
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Spin Alignment

Uniform fields are also of importance in controlling spin alignment in devices which 

exploit the spin o f electrons (know as spintronic applications). Modem spintronic 

materials require precise control o f spin-alignment during fabrication. This can be 

controlled using a uniform field source during the deposition (or sputtering) process 

as the spins align parallel to the applied field. Spintronics is a rapidly developing field 

and devices employing spin effects, such as the giant magnetoresistive effect (GMR), 

are just starting to be commercially exploited. Hard drive read heads now employ 

GMR tips for extreme sensitivity to the magnetic field of the disc, resulting in a great 

increase in storage capacity^. Magnetic RAM (MRAM)* is also currently on the 

horizon, promising a non-volatile, and therefore more energy efficient, alternative to 

conventional DRAM.

1.1.2 Magnetic Materials

Magnetisation in materials is caused by magnetic dipoles on an atomic scale. These 

dipoles are not necessarily fixed and constant; they can appear in response to an 

applied field (diamagnetism), be present but only weakly coupled and only align in 

response to an applied field (paramagnetism) or be present and strongly coupled 

giving rise to a bulk magnetisation (in, for example, ferromagnetism)^. 

Ferromagnetism is a special case in which individual microscopic magnetic domains 

within the material couple to each other. On the macroscopic scale it is not necessary 

to consider which mechanism gives rise to the presence o f these dipoles; we can 

simply take into account the bulk effect o f the individual microscopic contributions 

from all the dipoles by defining the magnetisation vector, M, as the net magnetic 

dipole moment per unit volume (with units amperes/metre). H is related to the 

magnetic field B and magnetization vector M by the definition:

H = — B - M  [1.1.8]
/̂ o

Where B has units o f Tesla and H units o f A/m. Therefore, in a magnetic material B 

and H are not necessarily parallel as the components of B normal to boundaries must 

be continuous (to obey the first Maxwell equation) whereas H has to obey the above 

relationship. In free space this relationship reduces to:

B =  /ioH [ I . I .9 ]
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The magnetic polarisation vector J, is defined by:

J = fi.i.ioj

and is measured in Tesla. Working in terms of the polarisation vector is sometimes 

more convenient as it has units of Tesla, the same as B.

In all ferromagnetic materials M depends on the history o f the sample under 

consideration due to the effect o f individual domains o f magnetization within the 

sample, giving rise to the phenomenon o f hysteresis. This can be visualised by 

plotting the applied field (H) against the magnetization (M), and takes the form o f a 

hysteresis loop (see figure 1.3, below).

H(A/m)

Figure 1.3 -  A typical hysteresis loop o f  a ferromagnetic material.

Initially, the domains within the sample are randomly orientated giving rise to zero 

bulk magnetic field (point A). As the applied field is increased the domains 

experience a torque that tends to align them parallel to the applied field. Within the 

domains each o f the individual dipoles constituting the domains tend to remain 

parallel to each other, but at the boundaries between the domains dipoles aligned less 

favourably with the applied field tend to rotate to match those aligned more 

favourably with the applied field. The net effect o f this is the movement o f the domain 

boundaries; domains parallel to the applied field enlarge whilst others decrease in 

size. This causes a rise in the bulk magnetization parallel to the applied field (dotted 

line). Eventually most o f the domain dipoles will be aligned with the applied field 

(point B). The value o f M at this point is called the saturation value M*. If  the applied 

field is then reduced the domains relax, but only to a point; when the applied field is 

zero some residual magnetization remains and the ferromagnet is now a permanent
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magnet (point C). The value of M at this point is called the magnetic remanence Mr. 

If the applied field is decreased past zero the domains will eventually relax to the 

point where the net magnetization over the sample is zero (point D). However, even 

though the magnetization is zero, the domain structure is not the same as the domain 

structure o f the material at point A. The value o f H at this point is called the coercivity 

He. Reducing the field further still results in saturation in the negative sense (point E). 

Increasing the applied field from this point causes the material to go through negative 

remanence (point F) and positive coercivity (point G). The loop is complete when 

saturation in the positive sense is achieved again (point B).

Magnetic materials are classified as hard or soft depending on the value o f their 

permeability and coercivity. The permeability of a material is a measure o f its 

response to an applied field (defined in section 2.1.6). A material with a large 

permeability is easy to magnetize and de-magnetize and is called a soft material. 

These typically have a coercivity He approximately less than 10  ̂A/m. Hard materials, 

which constitute all permanent magnets, have a low permeability and a high 

coercivity, typically greater than 10'* A/m. This makes them hard to magnetize and 

demagnetize, and these materials can be assumed (to a first order approximation) to 

be unaffected by any external magnetic fields. This property, known as magnetic 

transparency, greatly simplifies the design of magnetic structures incorporating only 

hard material, as the influence o f the magnetization of any component o f the design 

on itself and other hard components within the design need not be taken into account. 

On the other hand, if  soft materials are included in a magnetic design, their influence 

on themselves and other soft components must be calculated, making the calculation 

o f the field fi'om such a design a much more difficult task.
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Soft Material

Hard Material

Figure 1.4 - Schematic hysteresis curves fo r  both hard and soft materials.

Figure 1.4. shows schematic hysteresis curves for typical hard and soft materials^. 

Ideally, a soft material should have a curve as narrow as possible (making it as easy to 

magnetize and de-magnetize) and a hard material should have a curve as wide as 

possible (giving a constant Mr as possible over the largest range o f applied fields).

• Soft materials are used as magnetic flux conduits, as flux amplifiers to boost 

flux within a given region and as flux shields to prevent magnetic fields from 

entering a given region (this is the magnetic analogue of the shielding effect of 

a conducting surface in electrostatics). They are commonly used in 

transformers and electromagnets.

• Hard materials are employed as permanent magnetic flux sources in a wide 

variety o f applications such as data storage devices, biomedical equipment, 

computers and telecommunication equipment. Their main advantages over 

current-driven flux sources are their constant flux expenditure for no power 

consumption, their compact size (usefial, for example, in data storage 

equipment) and a lack o f need for cooling systems (which are necessary for 

high power electromagnets). The development o f magnetic material since the 

1950s has followed a path o f increasing energy product B.Hmax (a measure of 

how much energy is stored in the material and hence roughly a measure o f 

maximum achievable field), increasing remanence Jr (the intrinsic magnetic 

polarization of the material, see section 2.1.6) and increasing coercivity (which 

is a measure o f the difficulty with which the material can be magnetized and 

demagnetized). Some examples o f hard magnetic materials are shown in table
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1.1 below. At time of writing the material with highest coercivity and 

remanence is Neodymium-Iron-Boron (NdFeB) with a remanence o f around

1.2 Tesla, discovered in the 1980s. hi this project only magnetostatic designs 

assembled from this particular material were investigated.

Date Name Composition BHmax (kJm'^) J r (T )

-1 9 3 0 Alnico* Al, Ni, Co, Fe (Cu) -3 5 -0 .7 5

-1 9 5 0 Ferrites X 0 -6(Fe203); X=Ba/Sr/Pb - 3 0 -0 .4

- I 9 6 0 Samarium-Cobalt Sm, Co -1 9 0 -1 .0

-1 9 8 0 Neodymium-Iron-Boron Nd, Fe, B -2 5 0 -1 .2

Tai>le 1.1 Chronology o f  Magnetic Materials

*Although the development o f  Alnico dates from the 1930s and has impressive 

characteristics, the alloy unfortunately has poor physical qualities (it is very hard and 

brittle/. By contrast the other materials listed here can be ground into powder form  

and synthetically bonded, making working the material much easier.

1.1.3 Designs Exploiting Modern Materials 

Cylindrical Designs

A ferromagnetic cylinder with magnetization given by:

M = {sin(^^)p -  cos(A:^)9} [ i . i . i i ]

Where k is an integer and Mr the magnetic remanence o f the material, gives a cylinder 

with a magnetic field confined entirely to the bore o f the cylinder and zero external 

field for positive k, or field entirely external to the cylinder and zero field within the 

bore for negative li (see figure 1.5, below, for positive k  flux distributions).

-  t ^
No

Field

k=1 k=2k=0 k=3

Figure 1.5 -  One sided flu x  cylinder arrangements showing positive k  magnetization patterns and flux.
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For a cylinder of infinite length and k = 1 there is a uniform field within the bore 

given by:

H = M \ n
kRu

where the inner and outer cylinder radii are Ro and /?„ respectively. H is in the y  

direction (figure 1.5). This is the simplest form of the Halbach cylinder^^, and it can 

be seen that if  the ratio o f outer to inner radii is greater than e the flux inside the bore 

actually exceeds the remanence o f the magnetic material used to create the cylinder. 

Ideally, these structures would be created from a infinite length cylinder o f magnetic 

material with direction of magnetization continuously varying. The magnetic flux 

produced by this ideal design would be perfectly uniform and be entirely confined to 

the bore o f the cylinder. However the difficulty of manufacturing a cylinder with a 

continuously varying magnetization usually leads to segmentation of the ideal design. 

Furthermore, the ideal case o f infinite length is not realisable and in practice the finite 

length o f the cylinders produce ‘end effects’ which introduce non-uniformities in the 

field within the bore.

These cylindrical structures are used in devices such as brushless AC motors, 

magnetic couplings and high field cylinders. Brushless motors and magnetic coupling 

devices are not discussed in this thesis; high field structures are, however, covered in 

detail. Both brushless motors and coupling devices use multipole field arrangements. 

Brushless motors typically use cylindrical designs in which all the flux is confined to 

the centre of the bore (such as A: = 3 above, a six pole rotor) with the AC coils also 

contained within the bore. Such self-shielding motors designs are more efficient and 

produce higher torque than conventional motor designs” . Magnetic coupling devices 

transmit torque through magnetically transparent barriers (that is the barrier is non­

magnetic or is magnetic but is not affected an by applied magnetic field), for instance 

between sealed containers or pressurised vessels. The optimal torque couplings 

consists o f a pair o f coaxially nested cylinders with opposite +k and - k  flux 

magnetization patterns, as - k  magnetization patterns produce fields entirely external 

to the cylinder, hi the lowest energy state, the outer flux of the inner cylinder exactly

matches the internal flux o f the outer cylinder. Rotating one cylinder relative to the
1 ")other from this state results in a restoring torque .
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If the two dimensional magnetic distribution pattern o f the Halbach cylinder is 

extended to three dimensions, the result is the Halbach sphere^. These designs have 

an extremely uniform field within the interior of the design, as they are not affected 

by the ‘end effects’ prevalent in the finite length cylinder design. The magnitude of 

the uniform field for a sphere also increases to 4/3 the amount for a the ideal 

cylindrical design with the same irmer and outer radii. However, being spherical, 

access to the region of uniform field is usually restricted to a narrow hole at the top 

and bottom of the design. Higher fields are possible by optimising the spherical 

design to take account o f the fact that it is composed of point dipoles (and not line 

dipoles). This results in the stretching o f the sphere to an elliptical shape and having a 

non-uniform distribution o f magnetization over the component parts o f the sphere. 

Using this method, as well as soft pole pieces within the design, 4.5T in a working 

volume o f 20mm^ was achieved by Bloch et in 1998 and this was increased 

further to 5T in 2000, although over a smaller working area o f O.OSmm'"*. As hard 

materials are temperature dependent, refrigeration of the entire magnet array can 

increase the field within the working area further as shown by Kumada et al^^. This 

group also reported development of a 5.16T Halbach dipole cylinder in 2003’ .̂

Other Uniform Field Designs

The cylindrical design is only one class o f design which produces a uniform field 

inside a cavity within an array o f permanent magnets^. Other classes o f design include 

wedge designs, proposed by Abele and Jensen’’ in which wedges o f magnetized 

material are arranged to provide uniform field within cavities inside the design as 

shown in figure 1.6 (A).

A

0 © 
0 ^ 0  o

Soft Material

4
B

Figure 1.6 -  Three designs producing uniform magnetic fields within their central air gap.

The direction of magnetization o f the wedges can be calculated using a set o f rules
1 Q

given by Abele , and allows for great freedom in the shape of the cavity. Another
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class o f design is the magnetic mangle, proposed by Coey and Cugat'^, in which 

uniformly magnetized rods are arranged such that their magnetization matches that of 

a Halbach cylinder, as shown in figure 1.6 (B) for a six rod design. This design greatly 

increases access to the region o f uniform field, at the expense o f the volume of 

uniform field being smaller than in the cylindrical designs (although this area can be 

made larger by increasing the number o f component rods). Rotating the rods relative 

to each other results in many possibilities including a dynamically variable field and 

various dipolar configurations. Very simple designs for a uniform fields include 

designs with soft iron return paths, as shown in figure 1.6 (C).

One Sided Flux

Discovered by Mallinson in 1973^°, one sided flux structures were initially described 

as a ‘curiosity’ by Mallinson although he recognised at the time the potential for 

significant improvements in magnetic tape technology. A one sided flux sheet is a 

sheet o f magnetic material magnetised such that all magnetic flux from the sheet is 

confined to one side o f the sheet. Although this seems somewhat counter-intuitive to 

those familiar with, for example, bar magnets or solenoids, the reason for this flux 

distribution can be easily visualised and the theory is straightforward (see section 1.5). 

Mallinson shows that the criterion for the magnetization o f the infinite length sheet is 

simply that the components o f the magnetization in the plane o f the flux sheet (x) and 

normal to the flux sheet (y) are n il  out o f phase with each other. The mathematical 

transform which shifts the phase o f all components o f some function by ti/2 is called a 

Hilbert transform^'; the components o f the magnetization vector can therefore be any 

Hilbert transform pair (the simplest of which is sin{x}, cos(y}, shown in figure 1.7).

PHI

Figure 1.7 -  Magnetic fields from uniformly magnetized sheet (left) and one-sided flux sheet (right).
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The Halbach cylinder (which was found later and independently by Halbach^) can be 

thought o f as a ‘rolled up’ finite length flux sheet with sinusoidal magnetization. We 

have investigated the properties o f semi-rolled flux sheets in this project.

The advantages o f one sided flux distributions are twofold: First, the field is 

effectively twice as large on the side on which the flux is confined and secondly, no 

stray field is produced (in the ideal, infinite length case) on the opposite side. This 

helps with field confinement, usually a problem in the design o f magnetic structures. 

Although one sided flux distributions may seem somewhat abstract, they have a 

surprising number o f applications ranging fi'om the humble fiidge magnet through 

industrial applications such as the brushless AC motor and magnetic coupling, to 

high-tech applications such as wiggler magnets used in particle accelerators and fi"ee 

electron lasers. Furthermore, one-sided flux theory could also, surprisingly, explain 

the lack o f magnetic field on celestial bodies such as the moon and Mars^^, due to the 

cooling process after the formation of such planets ‘fi'eezing in’ a spherical internal 

one sided flux distribution giving rise to zero field external to the planet.

The simplest example o f a one sided flux magnet is a fiidge magnet. These are usually 

composed of powdered ferrite in a binder such as plastic or rubber. The extruded 

magnet is exposed to a rotating field giving the ferrite particles in the magnetic 

compound a magnetization resulting in a one-sided flux distribution. This distribution 

increases the holding force o f the magnet when placed on a permeable surface, 

compared to the holding force fi'om, say, a uniform magnetization of the magnetic 

compound.

V  - ►  t  ■ « -  i  - ►  f  ■ < -  ;  I

Figure 1.8- The magnetization and flux distribution o f  a fridge magnet.

Scaling up this design and adding a top sheet gives a wiggler magnet, used in 

synchrotrons^^ and fi-ee electron lasers. Wiggler magnets ‘wiggle’ or oscillate an 

electron beam perpendicular to the magnetic field. As the electrons are undergoing 

acceleration they radiate electromagnetic energy and these photons can be trapped 

between two parallel mirrors that form a resonant cavity similar to than of a 

conventional laser '̂*.
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Half-Silvered
Mirror

Mirror

e- Source

Figure 1.9- A wiggler magnet, used in a free electron laser, oscillates an electron 

beam creating electromagnetic radiation at a specific wavelength.

The design shown above is usually know as a Halbach wiggler. The magnetization 

vectors in the magnetized sheets rotate in the opposite senses to each other; above, the 

top sheet’s magnetization vector rotates clockwise and the bottom sheet’s 

magnetization vector rotates counter-clockwise. This design is chosen so that the x- 

components of the magnetic fields from the sheets cancel and the j;-components 

reinforce so that the field is given by Hy <x cos (kx) where k is the ‘wavenumber’ of 

the magnetic sheet given by the spacing between magnetic blocks with the same 

magnetization vector. If the electron velocity approaches the speed of light the 

radiation wavelength produced can be approximated by :̂

where = 2n/k and 7 is given by:

1

and P  is the fi'action of the speed of light at which the electron is travelling, v = /? c.

1.1.4 Designs Producing Constant Force on Dipoles

Magnetic field gradients produce a force on magnetic dipoles, and are used in a 

variety of applications. Magnetic latching, in which a magnet attaches to another 

magnet or a soft magnetic material (in which case the magnetic dipoles are induced in 

the soft material), and magnetic suspension are examples of forces produced by 

magnetic gradients. However, gradients such as these are often gradients created by 

magnetic dipoles and we looked at designs producing uniform gradients in this

7 = [1.1.14]
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project. The force on a permanent dipole with moment m in a magnetic field B is 

given by^^:

F = V(m-B) [1.1.15]

For a dipole with a constant moment, the field gradient then gives a force:

F =  m^VB^ +  m^.VBy +  m V B ^  [1 .1 .I6]

One application of a uniform magnetic gradient has been discussed in MRI, although 

MRI typically uses electromagnets to provide the field gradient. Uniform field 

gradients are also used for pure research purposes where a controlled magnetic 

gradient is necessary for a uniform force on permanent magnetized samples under 

investigation. They are also used in commercial devices such as magnetic separators 

which, for example, can separate ferromagnetic and paramagnetic materials from ore 

slurries.

Devices producing a constant field times field gradient, in which the product o f the 

field, B, and the gradient o f the field, dB, is uniform over a given region of space 

produce a constant force on paramagnetic and diamagnetic materials. This has a 

number o f applications, including Faraday balances and diamagnetic levitation 

devices. The foam physics group at Trinity college has shown that the bubble size in a
“7  f tferrofiuid foam is proportional to BdB in the region where the foam is created . 

Faraday Balance

Figure I . IO- A Faraday balance, used to measure magnetic moments: the vertical cylinder diameter is around 2cm. 

Picture taken from Dr. J. C. P. Klaasse, Van der Waals-Zeeman Institute

A common device producing a region of uniform field-field gradient product {BdB) is 

the Faraday balance^^, used to measure the magnetic moments o f samples. These are
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typically based on electromagnetic designs, such as the balance shown above, and we

magnetic design that requires no power input and occupies far less space than the 

conventional design. The balance shown has the field B in the x-direction only and the 

field gradient dB in the y direction only. This means for small samples (where we 

assume m is constant thought the sample volume) in a region of constant 5d5, the 

force on the sample is given by:

Hence the magnetic moment o f the sample can be obtained directly from the y  

component of the force on the sample if we know the gradient. However, if  BdB is 

constant we can measure the susceptibility o f diamagnetic samples as, for isotropic 

samples, the magnetic moment is directly proportional to the applied field. For small 

sample size:

Where M  ̂ is the x-component o f the sample magnetization and V is the sample 

volume. The magnetization vector M for linear, homogeneous and isotropic materials 

is given in terms o f B and the magnetic susceptibility by:

show that the same strength BdB (-10 T^/m) can be created using a novel permanent

dy
[ 1.1.17]

m, = M, V

1 11
M = —  1 + ----  B

Mo V Xm ^

So Xm can be determined from the force using:
- I

[ 1.1.20]
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Magnetic Levitation

Figure l . l  I - Stable diamagnetic levitation o f  a water droplet in the bore o f a Bitter solenoid.

Picture taken from'*: HFML, University o f  Nijmegen

Eamshaw’s theorem^^ forbids stable magnetic levitation o f a magnet by any 

arrangement o f other magnets but does not forbid diamagnetic levitation as the 

magnetic moment o f the diamagnetic sample appears in response to the applied field. 

Paramagnetic levitation is, however, unobtainable as no energy minimum exits for the 

paramagnetic case^®. The theory behind diamagnetic levitation is similar to the 

principles behind the Faraday balance; essentially, we seek to make Fy large enough 

to counteract gravitation forces. The gravitational force is given for an object of 

density pby:

F, =pVg

Which must be balanced by the diamagnetic force:

1

[ 1.1.21]

F , = V
Mo

1 1 -1

1 +  — [L I .22]

Xm > I  ^  J
So our field gradient product must obey:

B.
dy > M o P g 1 +  - [ 1.1.23]

Which means for Xm 10’̂  and « 10  ̂ kg/m^, BdB needs to be around 100 T^/m to 

achieve levitation; it can be noted that the expression does not involve the mass o f the 

sample, only the density.

O f course, this does not mean stable levitation can necessarily be achieved; the design 

must ensure that the levitation point is at a point where the gravitational and magnetic 

energy is a local energy minimum. Unfortunately, the strength o f BdB necessary for
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diamagnetic levitation is unachievable in designs involving only permanent magnets, 

but can be achieved in high power solenoid designs'.

1.1.5 Project Outline

In this project, we have used computer modelling to investigate novel designs for 

three particular types of application.

• We present designs with improved homogeneity in the bore o f Halbach 

cylinders. Finite length cylinders are subject to ‘end effects’ in which the stray 

field from the ends o f the cylinder reduces the uniformity o f the field in the 

centre of the cylinder. We present an overview of the problem, and compare our 

new design to two known methods o f increasing the homogeneity.

• We investigate designs for producing a uniform field gradient using structures 

composed entirely from permanent magnets, in which the field gradient is either 

orthogonal or parallel to the field.

• We investigate designs producing a region in which the product o f the field and 

field gradient is constant (as, for example, used in a Faraday balance). Again, 

the field gradient can be either orthogonal or parallel to the field. We have also 

had two “field times field gradient” designs constructed for two different 

scalings o f the design and compared its performance with our computational 

model.

We developed two computer programs for the modelling o f magnetic fields from 

magnetostatic designs. The first uses a method of determining the field by applying 

the magnetic charge model to three dimensional polygonal simplexes. This is only 

suitable for designs composed entirely o f modem high-strength permanent magnetic 

materials, as it uses their property o f magnetic transparency. The second uses a finite
•y

element method and allows more flexibility in designs as it can incorporate non­

linear ‘soft’ materials. Both o f these applications are intended to be used for fiiture 

work in magnetic design.
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2 Theoretical Background

2.1 Magnetic Fields

2.1.1 Maxwell Equations

Magnetic fields are created in some reference frame by electric charges moving 

relative to the frame. These electrodynamic relations can be summarised using the 

Maxwell equations, the first o f  which is:

V -B  = 0 [2.1.1]

This shows that the magnetic induction, B, does not diverge, i.e. no magnetic 

monopoles can exist in conventional electromagnetic theory. The second equation 

gives the magnetic fie ld  H, in the case o f  steady electric current density jf and 

electrostatic fields, as:

V X H =  j f  [ 2 . 1.2]

which takes into account the magnetization o f  any materials present; jf is the free 

electric current within the material. [2.1.2] is the differential form; the integral form 

can be obtained by applying Stokes’ theorem to the above, and shows that the line 

integral o f  H around a loop is dependent only on the free electric current enclosed by 

the loop, hi vacuum B is simply related to H by:

B = /ioH [2.1.3]

However, if  a material has an intrinsic magnetization, M, the total magnetic induction, 

B, is then due to the magnetic field, H, plus the magnetization, M:

B = //o(H + M) [2.1.4]

Taking the curl o f  both sides o f  [2.1.4] and using [2.1.2] gives:

V X B = (jf + V X M) [2.1.5]

If we consider the magnetization o f the material as being composed o f  a large number 

o f  microscopic current loops, the macroscopic effect o f  all these current loops can be 

thought o f  as giving rise to a fixed surface and volume current within the material. 

This bound current jb can be defined as:

V x M  = jb [2.1.6]

This bound current is simply an imaginary concept; there is no true bulk current flow 

due to the magnetization at the surface o f  the material. However, the bound current
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can be treated in exactly the same way as a real electric current for calculation 

purposes; this is the basis o f the current model, covered in section 2.2.2.

With this definition of the bound current, the right hand side o f [2.1.5] can now be 

expressed as the summation o f two separate ‘current’ parts. This leads to the 

introduction of the total current density j, composed o f the free electric current within 

the material, jf, and the magnetic bound current, jb, arising due the intrinsic 

magnetization o f the material:

j =  j f + j b

The curl o f the magnetic induction can then be expressed in terms of this total current 

density:

V X B = / / J  [2.1.8]

2.1.2 Magnetic Vector Potential

Since the divergence of B(x) is zero everywhere it can be expressed as the curl of 

some vector field. We can therefore introduce the magnetic vector potential A(x)^':

B = V X A [ 2 . 1.9]

A is, however, not unique; any function with zero curl added to A will leave B 

unchanged. If we express A in terms o f a second vector field. A’, and a scalar field, 

/l(x):

A = A'+VA [2.1.w]

and take the curl o f this, we have:

V X A = V X A’ [2.1.11]

as the curl of the gradient of an arbitrary scalar field, Vx[Vyl(x)], is always zero. This 

ability to add an arbitrary gradient to A is known as gauge invariance, and the act of 

adding an arbitrary gradient is known as a gauge transformation. Taking the 

divergence of [2.1.10] gives:

V -A  = V-A'+V^A [2-I-12]

So, we can chose the divergence o f A by choosing an appropriate scalar field. If we 

pick:

V^A = - V - A ’
This gives a particularly simple expression for the divergence of A:

V • A = 0 [ 2 .1.14]

Which is called the Coulomb gauge. [2.1.13] is simply a Poisson equation for yl(x), so

a vector potential satisfying [2.1.14] can be found provided a solution to [2.1.13]
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exists. For the magnetostatic situations we are considering, solutions o f [2.1.13] exist 

and we can use the Coulomb gauge. The usefulness o f this gauge becomes evident 

when we substitute [2.1.9] into [2.1.8], giving:

V x ( V x A )  = ; / J  [2.1.IS]

Using the vector identity for the curl o f a curl gives:

V ( V - A ) - V ^ A  = / / J  [ 2 . 1. 16]

Substitution of the Coulomb gauge into this expression reduces it to:

[ 2 .1.17]

which reduces to the magnetostatic Poisson equation in free space. The Poisson
-25equation can be solved using Green’s theorem

[ 2 . 1. 18]

where (f), ^ /̂are arbitrary scalar fields and h is the surface normal. Taking:

1
¥  =

X -  xi
[ 2 .1.19]

and using the property o f the Dirac delta function <5î x-x’̂ :

Ix -  xi
[ 2. 1.20]

Gives:

Att •’ x - x l  Att ■'
r 1 5^.  ̂ 5 ( 1

|x -  x*! dn' dn'
[ 2 . 1.2 ! ]

where we have taken, for example, the x  component o f A, (j) = Ax(x'). If the potential 

tends to zero as the surface becomes infinite (i.e. the source distribution is localised), 

this reduces to the familiar result:

X -  xi
[ 2 . 1.22]

2.1.3 Magnetic Boundary Conditions

Boundary conditions on B and H are important for constructing solutions to the field 

equations where one or more material interfaces lie within the domain o f interest. 

Applying the divergence theorem to [2.1.1] and Stokes’ theorem to [2.1.2] gives the 

integral form of the magnetostatic Maxwell equations^^:
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[2.1.23]

c S

Applying these to a Gaussian pillbox and an Amperian loop straddling an interface, 

we have:

(B3-B, ) -n = 0
[2.1.24]

(Hj  - H , ) x n  = //oO-,

Where n is the outward normal to the interface, the subscripts 1 and 2 refer to the 

inner and outer fields respectively and oi is the surface current density. If there is no 

free conduction current jf, these reduce to the simple expressions:

H , x n  = H j xn
[2.1.25]

B, n = Bj n

Showing that the normal component o f B is continuous and the tangential component 

o f H is continuous at an interface.

The scalar magnetic potential is introduced in section 1.4.1, but we will review its 

properties at interfaces within this section. If there is no free current density, [2.1.2] 

reduces to

V X H = 0 [2.1.26]

Allowing us to represent the magnetic field by a scalar magnetic potential cpm-

[2.1.27]

The condition on H leads to the simple condition on

nxV^„, =nxV^„2
At material interfaces this gives:

The condition on B leads to a slightly more complex expression, as fi"om [2.1.3]:

B = /7o(-V^^ + M ) [2.1.20]

Taking the normal in, for example, the z direction gives:

B n = //o

So that:

dz
[ 2 . 1.3 1]

M =  M [2. 1. 32]
oz dz
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2.1.4 Magnetic Dipoles

The term ‘dipole’ is something of a misnomer when applied to magnetism as [2.1.1] 

shows that no isolated magnetic monopoles are allowed to exist in electromagnetic 

theory. Also, a magnetic dipole cannot be thought about in the same terms as an 

electric dipole, i.e. two isolated point charges of opposite sign separated by some 

small distance. Nevertheless, if we take a multipole expansion of an arbitrary current 

distribution in [2.1.22] the vector potential of the dipole term in the expansion is given

Where x is the vector from the dipole to the observation point and m, the dipole 

moment, is given by:

where j(x’) is the current density. If the current distribution flows in a loop with line 

element dl’ and current I, this becomes:

Where Q is the vector area of the plane loop (Q = ^  n where n is the normal vector to 

the plane of the loop). From [2.1.33] the B field for a dipole at the origin aligned in 

the z-direction is given (in spherical co-ordinates) by:

Which is identical in form to the E field of an electric dipole. Microscopically a 

magnetic dipole will look very different from an electrical dipole, as a magnetic 

dipole is created by a current loop whereas an electric dipole is created by separated 

charges. However, it is possible to consider magnetic dipoles and, in fact, 

macroscopic magnetic objects in terms of magnetic charges. This will be discussed in 

a section 2.2.1 on the magnetic charge model.

by:

/Vg mxX
[ 2 . 1.33]

[ 2 . 1.34]

[ 2 . 1.35]

For a plane loop [2.1.35] reduces to the simple form:
[ 2 . 1.36]

— [(2 cos 0)r + (sin 6)0 [ 2 . 1.37]
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2.1.5 Forces and Torques on Magnetic Dipoles

For steady electric currents the lowest order contribution to the magnetic force on an 

infinitesimal magnetic dipole with permanent moment m in an external field B is 

given by:

F = V(m-B) [2.1.38]

The above holds for time-varying fields. We can expand [2.1.38] by using the 

identity;

V(m • B) = m X (V X B) + B X (V X m) + (m • V)B + (B • V)m [ 2.1.39]

If there is no free or bound current at the location o f the dipole the curl o f B is zero^^ 

and as the magnetic moment m is constant the force is then given by:

F = (m-V)B [2.1.40]

This shows that the force on a dipole depends on spatially varying B. The torque, N, 

on an infinitesimal dipole with moment m is given by:

N = m x B  [2.1.41]

such that dipoles attempt to align parallel to an external applied magnetic field.

2.1.6 Magnetisation 

Magnetization Vector M

The net magnetic dipole moment per unit volume, M, is given by:

AF

where Snii is the vector sum of the dipole moments in the infinitesimal volume AV. 

The magnetic field, H, is defined by:

H = — B - M  [2./.4S]
Mo

We adopt the Kennelly convection, which defines the magnetic polarisation J as:

B  =  /7oH  +  J [2.1.44]

where:

J = /igM [2.1.45]
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Linear Approximations to M

One way of relating M and H is using a simple linear approximation; in linear, 

homogeneous and isotropic media the magnetisation M can be assumed to be 

proportional to the applied field H:

M = / „ H  [2.1.46]

Where Xm is called the magnetic susceptibility. Substituting [2.1.46] into [2.1.4] we 

find that for linear, homogeneous and isotropic materials B is given by:

B = [2.1.47]

Where /Ur, the relative permeability, is given by:

=1 + 7 .
Equations [2.1.46] and [2.1.47] must be modified for nonlinear materials. Equation 

[2.1.47] becomes:

[2.1.49]

Where the relative permeability depends on H. The linear approximation is useful in 

materials which have no intrinsic magnetization, such as diamagnetic materials, or to 

approximate the initial magnetization curve of ferromagnetic materials (point A to B 

in figure 1.3), and is the simplest to deal with.

Figure 2.1 -  A linear approximation to a B-H hysteresis curve.

Another way of relating M and H is by splitting the magnetization term into two 

parts:

M = Mi+M^ [2.1.50]

Where Mi can be thought of as the induced magnetization in the material by the 

applied field H and Mr can be thought of as the intrinsic {remnant) magnetization of 

the material (which is given by a constant magnetization vector). This is effectively 

using a linear approximation for the demagnetization curve of a ferromagnetic 

material (points A, B and C in figure 1.3). The induced magnetization is related to H 

by the simple linear relationship above:

[ 2 . 1.5 1]

Which gives:

34



Computational Modelling o f  Novel Permanent Magnetic Designs

[2.1.52]

Figure 2.2 -  An approximation to a B-H hysteresis curve for hard materials.

This approximation is o f particular use for hard magnetic materials. In the Kennelly 

convection we define the induced polarization Jj and the remnant polarization Jr as:

Jr
[2.1.53]

2.2 Magnetostatic Field Calculations 

2.2.1 Charge Model

The charge model is especially useful for permanent magnets; in general it allows us 

to split the magnetization within a material into equivalent magnetic volume and 

surface charges^. If the regions under consideration are electric current-free, [2.1.2] 

becomes;

V x H  = 0 [2.2.1]

We can then use the fact that any irrotational vector field can be written as the

gradient o f some function (since an identity of vector calculus gives the curl o f the

gradient o f any function as zero), i.e.:

H = -V<^„ [2.2.2]

Where (p  ̂ is the magnetostatic scalar potential. This procedure corresponds to the 

formulation of potential for the electrostatic case (the scalar potential here is give the 

subscript m to differentiate it fi’om the electrostatic case). From [2.1.4]:

B = /io(H + M ) [2.2.3]

Taking the divergence o f both sides and using [2.2.2], gives:

V-B = / / o ( -VV„  + V - M )  [2.2.4]

B is divergenceless [2.1.1], so this reduces to:

V V „ = V - M  [2.2.5]
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Which is a magnetostatic Poisson equation. If the boundary surfaces are at infinity, we 

can solve [2.2.5] using the Green’s function [2.1.22], which gives:

Where r is  the source volume. If the magnetization is localised within some volume V 

and abruptly falls to zero outside the volume, we can modify [2.2.6] to include a 

surface potential caused by the discontinuity at the interface:

Where n is the unit outward normal from the surface. If the magnetization is uniform 

the magnetic volume charge density, pm, is zero causing the first term to disappear; 

only the surface term contributes, which is particularly useful for calculating the 

magnetic field o f structures containing only hard permanent magnets.

It can be seen that in terms o f the surface charge, the normal component o f H is 

discontinuous by an amount proportional to the surface charge:

Where H> and H< represent the radial components o f H above and below the surface, 

respectively.

Approximation for IHard IVIaterials

Typical modem hard magnetic materials have very low values o f magnetic

Physically, a low susceptibly value for a material means that the intrinsic 

magnetization vector of a material is very resistant to change by applied fields. By 

setting the susceptibility to zero we are assuming the material is unaffected by any 

applied field sources, and is therefore completely magnetically transparent. If the

[ 2 .2 .6]

[ 2 .2 . 7]

Where the magnetic volume charge density p„  is given by:

And the magnetic surface charge density is given by:

(T„ = M • nm

[ 2.2 .8]

[ 2 .2 .9]

[ 2.2. 10]

susceptibility, often around Xm 10'^. If we then make the approximation that Xm = 0,

Hr -  1 from [2.1.48] this gives [2.1.52] as:

b = //„(h + m J [ 2 .2 .11]
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material has a fixed, uniform, magnetization the charge volume density [2.2.8] is zero 

and the surface charge density [2.2.9] becomes:

( T „ = M ^ - n  [ 2 .2.! 2]

and the magnetic potential can be expressed in terms of only the constant remnant 

magnetization vector for the material; from [2.2.7]:

= p.2.m
Ak  J X -  x's I

2.2.2 Current Model

The current model makes use o f the fact that magnetization within a material can be 

reduced to equivalent surface and volume current densities, in a similar way to the 

charge model reducing the magnetization to equivalent surface and volume charge 

distributions. Using [2.1.9]:

B = V X A [ 2 . 1.9]

and from [2.1.4]:

gives:

V X A = (H + M) [ 2 .2 . 15]

Taking the curl o f both sides gives:

V ( V - A ) - V ^ A  = / i o ( j f + V x M )  [ 2 .2 . 16]

Using the Coulomb gauge [2.1.14] and the definition for the bound current [2.1.6] 

gives:

=  + j j  [ 2 .2 . 17]

This is a second magnetic Poisson equation (compared to [2.2.5]) involving bound 

and free currents. If there is no free current and we set our domain boundaries at 

infinity, we can express [2.2.17] in integral form using the free-space Green’s 

function:

A (X )  =  ^  [2-2-IS]
An •' x - x l

If the magnetization is confined to some volume V and falls abruptly to zero outside 

V, [2.2.18] can be expressed as^ :̂
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With volume current density jb:

= V X M [2.2.20]

And surface current density j*:

= M X n [2.2.2!]

Where n is the unit outward normal from the surface. As with the magnetic charge 

model, if  the magnetization is fixed and uniform only the surface second term in 

[2.1.19] contributes as the volume current density is zero.

2.2.3 Green Function Expansion

The problem can sometimes be re-cast into an easier form by using expansions o f  the 

Green’s function, for example in cylindrical magnetic designs. It is often convenient 

to use spherical harmonic expansions for the Green’s function; in spherical polar co­

ordinates, with boundary surfaces at infinity, the expansion o f  the Green’s function 

iŝ :̂

— 7  = 4;r
|x-

Where r< is the smaller value o f  r and r ’ and r> is the greater value o f  r and r Yim {0, 

(j>) are spherical harmonics. The expression [2.2.22] is useful as the Greens function 

can be expressed as the product o f spherical harmonics separately associated with 

both the point and the source (at the price o f  a double sum). Any arbitrary (spherical) 

function can be expanded in terms o f spherical harmonics as they form a complete set 

o f orthogonal functions over the unit sphere:
CO /

f { 9 ,  <z>) = X Z  Sin , Y,„ {0, (p) [2-2.23]
1=0 m = ~ l

Where gi„ are expansion coefficients given by:

s,.  =  \yLm )f(.04)ds
s

[2.2.22] is o f  particular use in the magnetic charge model; [2.2.7] with uniform 

magnetization (that is, with no volume charge density) gives:

s

Where a  is the magnetic surface charge density and (p the magnetostatic potential (we 

have dropped the ‘w ’ subscripts to avoid confusion with the sum o f  m later in the 

expansion). This can now be expressed as:
38
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1=0 ^
[2.2.26]

W hich m ay be easier to evaluate in the case o f certain geometries. If  we consider the 

potential for points where the distance to the observation point r  is less than the 

distance to the source point r ’, this can be expressed as:

( p ,{ r ,0 ,^ )  = X  Y .^m yY ,„ {e ,(t> ) [2.2.27]
1=0 m ~ - l

And for points where the observation point r  is greater than the source point r

(p^{r,e,(l)) =  ' ^ Y .  Pim îm <!>)
1=0 m = -l f

W here we have defined the expansion coefficients qim and pim as:

9 ,. 12.2.29,

p -  ,2 .2.10,
2/ + 1 J

It can be noted that this expression for the expansion coefficients is expressed entirely 

in terms o f  source coordinates. The potential is continuous at r  = r  so by  comparing 

[2.2.27] and [2.2.28] we can see that the expansion coefficients must obey:

P,m =

A further condition is given by the discontinuity o f H across a boundary (see section 

2.1.3); the normal component o f H across any boundary is discontinuous by an 

amount proportional to the surface charge on the boundary. In terms o f  the potential 

this gives (using [2.2.10]):

V q } ^ { r ,0 ,^ ) - S /  <p̂  (r , 9 , ^ )  = c r ( r ,0 ,^ )  [2.2.32]

If the boundary is a spherical surface at a radius rp, this becomes: 

d(p.(r,6 ,4> ) d(pAr,Q,<t>)^  = cr(r, e , ^ ) . r  = rp [2.2.33]
dr dr

as the normal is in the radial outward direction. Using this with [2.2.27] and [2.2.28] 

gives:

00  I

IX , /  ( / + 1) 
( J j f p  +  PmIm 1+2

1=0 m = -l_

Using [2.2.31] then gives us:
00  I

X  Z (2/  + 1) ' - / " ' =  [2.2.35]
1=0 m = -l
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As our surface charge is defined over a spherical surface with r = rp, we can expand it 

using [2.2.23]:
00 I

[ 2 .2 .36]

1=0 m = - l

We can compare this directly to [2.2.27] to ascertain the expansion coefficients gim 

(there is no need to use [2.2.24]); the comparison shows that:

O f course, the distribution o f surface charge will rarely be spherical, but we can use 

Dirac delta functions to define a point charge on a spherical surface^^:

a{rp ,0' ,(j)') = ^ 5  {(j>'-(j)p )d  {cos{0 ' )  -  cos{dp)) [2.2.38]
fp

The delta functions simply represent a point charge Q at the spherical coordinate 

angles 0 ’ and at a radius rp, this can be though o f as a charge distribution over a 

sphere o f radius rp with zero charge everywhere except in an infinitely small region at 

the angles 0 ’ and (/)’. The properties o f the delta function simplify our expression for 

the expansion coefficient qim to:

2/+1

With a similar expansion for pim- This gives the coefficients in the expansion of the 

potential gim as:

Sin, [2-2.40]
rp

We can now use this by treating each point on a surface carrying magnetic surface 

charge as a point charge Q, which contributes dcp to the potential. Integrating over all 

surfaces and summing these point charges will then give us the total potential cp, from 

which we can find the magnetic field H.

2.3 Magnetic Structures 

2.3.1 One-Sided Flux

In 1973 Mallinson discovered a ‘magnetic curiosity’ in which all the flux fi'om a 

planar magnetic structure magnetized according to a simple rule would be confined to 

one side o f the structure^^. This can be intuitively visualised using Mallinson’s
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original diagram (figure 2.3; this uses the negative y-component unlike the diagram in 

Mallinson’s paper, given below in [2.3.2], with ;c = 0 at the left edge and x = 2ti at the 

right edge):

Figure 2.3 The x  component (top left), y  component (top right) and resulting total magnetization o f  

Mallinson's flux sheet (bottom). The flux 'cancels' below the sheet and 'reinforces ’ above.

The key point is that the flux will cancel below the plane and reinforce itself above 

the plane. Mallinson shows that any magnetization pattern where the components of 

magnetization are n il  out o f phase with each other will result in a one-sided flux. If 

the x-component o f the magnetization is a real function o f x  it can be broken into 

Fourier components; shifting each of these components by n il  will give the y  

component o f the magnetization required for a one-sided flux. The mathematical 

transform that changes the phase o f all components is the Hilbert transform^’:

h x ) = - \ ~ - ] - d x '  [ 2 .3 .1 ]

A magnetization pattern based on any Hilbert transform pair (subject to physical 

constrains) will therefore give a one-sided flux.

The field from a flux sheet can be determined by considering the magnetic scalar 

potential above, inside and below an idealised infinite flux sheet. The magnetization, 

M, o f the sheet is given by:

M = M  ̂  (sin(Ax)i -  cos(Ax)j) P-3.2]

where A: is a chosen wavenumber. Using [2.2.5] the potentials satisfy:

^  =  0

=^r^COS(Ax) [2.3.3J

That is, a Laplace equation above and below the sheet and a Poisson equation inside

the sheet. A solution to the Poisson equation inside the sheet is given by:

cos(kx)
(Pinside =  - M r  ----^
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For the Laplace equations above and below the sheet we choose general solutions of 

the form:

(p = {K,e-'^ + K^e'^)cos{kx) [2.3.5]

The general solutions are:

(P abce  =  C O S (fc t)

^ inside  ̂Be-'^ +Ce'^’
k j

C O S (k x )  [2.3.6]

(pbeio. = De'^ cos{kx)

where we have used the requirement that the potential must approach zero as jk —» 

±0 0 . Using the conditions for the potential between interfaces given in section 2.1.3 

and taking the magnetization in the > -̂direction given by [2.3.2] above, we have:

= - \ ) .  B = ^ e - ' ^  ,C  = 0. D = 0 [2.3.7]
k k

Giving the potentials as:

<Pabove =  C O S (b r)
k

Vbelow ~  0

<Pinside -I)COS(A^)

and the fields (using [2.2.2]) as:

Habove - l)e‘*^ în(A:x)i + cos(A3c)j}

H inside = ~ 1) sin(fcc)i + cos(/b:) j} [2-3.9]

H  below ~  ^

Showing that for a flux sheet with magnetization given by [2.3.2], the field is confined 

to the upper side o f the sheet only.

Several Hilbert pairs are shown below for comparison, x = 0 is taken to be the centre 

of the block, and the length o f the block ranges from -ti to +n:
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Hilbert Pair Magnetization Notes

J^ -  sin(x) 

y,, = -co s(x )

\ + x^

1 2  '

..........................

This is a uniformly 

magnetized block included  

fo r  comparison purposes

This is the magnetization 

pattern given by [2.3.2]

This is a transform given  

by M allinson's original 

paper. The magnetization 

—>0 at the edges o f  the 

block

j is a hypergeometric 

function  o f  the firs t kind.

Table 2.1 -  A comparison o f  various Hilbert pa ir one-sided flu x  magnetization patterns.

Other Hilbert transform pairs exist, but many would correspond to non-physical 

distributions o f  magnetization, e.g. the Dirac delta function.
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2.3.2 Infinite Length Halbach Cylinder

We derive a Green function expansion for a infinite (and later finite) length Halbach 

cylinder. A perfect Halbach cylinder is an infinite length cylinder (see figure 2.4 for 

the finite length case) with magnetization given in cylindrical co-ordinates by:

M (^') = M  ̂  {sin(^')p -  cos(^')9 } [2.3.loj

Figure 2 .4 - A ferromagnetic cylinder o f length L magnetized with a flux distribution given by [2.3.10] 

with k = 1 will give a magnetized cylinder known as a Halbach cylinder.

The magnetic volume charge density pm is given by [2.2.8] (see section 2.2.1):

/ 9 „ = - V - M  [2.3.11]

Which gives the magnetic volume charge density of the cylinder as:

. . sin^'
PAP,<P) = ----T

P
The primed co-ordinates represent source points. The potential for points (in spherical 

co-ordinates) where the observation point r is less than the source point r ’ is given by 

equation [2.2.27]:

1=0 m=-l

With coefficient qim given by equation [2.2.39]:

Q K( ^ p ’<pp)
q ,„  = — ----- , [2.3.14]

2/ + 1 r‘;̂
Where P  is the location of the magnetic charge Q. Here, 0  is a infinitesimal volume 

charge in cylindrical volume element dV  at point p \  O’. The potential for a ring of 

infinitesimal thickness dp' at radius p ’ is then given by:

1- =
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Where the cylinder extent is from -L  to L (we will let Z ooat a later stage). To 

simplify this expression we use the relationship between spherical harmonics and the 

associated Legendre functions^^:

\  {l + m)\
[2.3.16]

The expression for spherical harmonics with negative m can be given by:

Y,_J9,</>) = { - \rY ,: ie ,< /> ).m > 0  [2.3.17]

We can then use [2.3.15] with the orthogonality relationship;
I t: n

where 5ij is the Kronecker delta, to express the coefficient qi„ as:

-   ̂  ̂ _  2;r M^ 1 l2l + l ( l - m ) i
9 /m - J | l  M . 2/ + i / ' " ‘ -y 4;r (l + m)l

The expression for the potential then becomes:

= f ( -1 )” - — ----- -̂----—    y _  - :̂/>/”(cos6>’)(J^ , ,) \d z 'd p ' [2.3.19]
J i 2/ + 1 V  4;r (l + m)\ ‘ ^

" i ^ [ 2 /  + l A-’'"'V  4;r (/ + 1)!
[2.3.20]

J[p; (cos 9' )Y„ p-^ (cos 0' )r,_, (9, ̂ )}iz' I

as all terms for m not equal to 1 or -1 drop out due to the Kronecker deltas (note that 

this also means / must be summed from 1 to 00 as 1=0 implies m=0). Using the 

relationship between spherical harmonics and associated Legendre functions [2.3.16], 

and the relationship^^:

Pr{C 0s9) = (-1)'" ^ ^ -^ ^ /^ ^ (c o s^ )  [2.3.21]
(/ + my.

[2.3.20] reduces to:

(p^{r,9,(j)) = - M ^ d p ' ' ^ r ‘ |^ 'P /(c o s^ )s in ^  j - ^ P / ( c o s ^ ') ( / z '  [2.3.22]
/= ] ( * + ! ) •

This expression, however, uses both z and p  from the cylindrical co-ordinate system 

and r, (f) and^ from the spherical co-ordinate system. We can convert cylindrical co­

ordinates to spherical with the following relationships:

p'=  r'sin(^')
[2.3.23]

z'= r'cos(9')

For an infinitesimally thin cylinder p ’ is constant, giving:
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z'= p'cot(^')

dz'= P' d9'
[2.3.24]

sm\G')

If we only consider points inside the bore of the cylinder where the observation point 

r is always less than p ’ (i.e. the observation point is within a sphere, centred at the 

origin, with radius less than the inner bore radius) we can express r ’ as:

P ’r= [2.3.25]
sin(6>’)

and we need only consider our expression for the potential (p< as for all source points, 

r the observation point r < r ’. This gives our expression for the potential as:

—|^ P /(c o s ^ )s in ^ -^  Jp ' j s i n ' ' (cos^ ')J^ ' [2.3.26]

Where we have defined the limit 9l as the value of 9 when z = Z (as the cylinder is 

symmetric, the limit at z = -Z, is simply n- 9l).

I n-e.

Cylinder Ci oss Section

Figure 2.5 -  The angle Oi from expression [2.3.26] used in the spherical harmonic Halbach cylinder model.

The integral can be evaluated by noticing that for Legendre functions with m = I:

Pl{cos9') = C,sm‘ 9', C, = ( - l) '(2 /- l ) ! !  [2.3.27]

Where C/ is constant for some particular I (the double factorial is intentional). The 

integral can then be expressed as:

D / / — zj.xDi/cos^')r .
[2.3.28]

Where we have split up the sin^'^(^’). This can be expressed in terms of cos(^  as:

“ se, r>i,—  ^ ’^ d ' ( c o s 6 > ' )
— -----------d{C0s9') [2.3.29]

1 -  COS 9

This integral is easy to evaluate for the case of infinite length; as I  -> ^  0 and

we can use the useful w-orthogonal property of associated Legendre functions:

1 ! P/(cosf?')P;(cose')

/ -cosd.
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\P r{c o s6 ')P ," '\c o s0 ')  „ \ { l  + m)\
^ ^ ------------C/(C0Ŝ -) = ^ [2.3.30]

1 -c o s  0  m { l - m ) \

To give:

i/(.U) =-------------------O ,. [2.3.31]
‘ C, ( / - I ) !  ''

This gives the expression for the potential as:

y
( p ^ { r , 0 , ^ )  = -M^/^'(cos^)sin^ — d p '  [2.3.32]

P'

due to the presence o f  the Kronecker delta dn causing all terms / 1 to drop out, and

also since C/ is simply 1, as P i'(cos d) = sin 6. Recognising that [(sin ^ (s in  ^  r\ is 

simply y  in Cartesian coordinates, and integrating over infinitesimal thickness 

cylinders from inner cylinder radius Ri to outer radius Rg, we have:

R ..

(p <  ^7^( r ,e , (!)) = - M ^ y  f - V p ' , r < R .  [2.3.33]

R,P
Giving:

r < R. [2.3.34]

And, taking the negative gradient o f this expression gives the H field as:

y  . r < R .  [2.3.35]

Which is a uniform field in the j^-direction inside the bore o f  the cylinder, the 

magnitude o f  which depends on the logarithm o f the ratio o f the outer to inner radii, as 

expected.

2.3.3 Finite Length Halbach Cylinder

Our expression for the potential [2.3.26] must be evaluated numerically for the finite 

length case, but some further reduction can be achieved due to the integral within the 

expression being symmetric:

\siW-\G')Pl{co%G')de' [2.3.36]

The associated Legendre functions can be given in terms o f  Legendre polynomials by 

the expression:

47



Computational Modelling o f  Novel Permanent Magnetic Designs

P r { x )  =  { - \ r { \ - x ^ y - ^  [2.337]

Using this for m =l the integral expression [2.2.36] becomes:

d P , { O O S O ' )
= -  I sin6»— [ 2.3.38]  

d{cos0')

The Legendre polynomials Pi(x) are polynomials o f degree I which contain only even 

powers o f X if / is even and only odd powers of x is / is odd. This means that the 

derivative will be give a polynomial with only odd powers if  / is even and vice-versa. 

For example:

P M ) Polynomial Derivative

Po(x) 1 0

P,(x) X 1

P,{x) i  (3x^-1 ) i(6 x )

P,{x) - 3 x ) ^{I5x^ - 3 )

P,{x) j(35x" - 3 0 x ' +3) 1(140x' -6 0 x )

Generally, the integral can be expressed as:
n - O i

jsin^'cos"' [ 2.3.39]

Where ki and «, depend on the terms in the derivative o f the polynomial and the sum is 

taken over the number o f terms in the derivative o f the polynomial Pi. The integral 

above gives:

i  n +1

Which disappears for all n odd. This means that the only contribution to the integral 

comes from terms where the derivative o f the polynomials has n even, i.e. the odd 

Legendre polynomials which occur for I odd. The result o f this is that the integral in 

the potential [2.3.26] is zero for all / even, and only the odd I terms contribute; this is 

a direct result o f the symmetry about the z-axis. The full expression for the potential 

o f the finite length cylinder is then given by [2.3.26], where we have also integrated 

p ’ from Ri to Rg.
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n.
K~d,

(/+ !)!
P /(co s0 )s in ^  r' J sin^

■‘-._dp,{cose')
dO' [2.3.41]

d{cos0')

and the summation is taken with / odd only. If we take 9 = 0  and <j) =ti/ 2, r is the 

Cartesian y-axis (and r from now on is expressed as y), giving:

( /-I)!

B,
n

V  * J  ̂ odd

n-6,
y  AL_LL/>>(i)y f sin̂ , dP, {cos 9 ')
- , ( /  + l)! I  d{cos9')

We define Si, the sum terms (without the factory), as:

[2.3.42]

(/-I)!  
(/ + !)!

P/(l) j  sin^^dP, (cos O') 
d{cos9')

d9' [2.3.43]

Giving [2.3.42] as:

\  J>odd=̂
Y.y's, [2.3.44]

Using numerical evaluation, we can plot each o f the Si terms to show their relative 

contribution to the entire potential for the range 9i = 0 (representing an infinite length 

cylinder) n/2 (representing a cylinder o f zero length):

Si

0.8

0.6

Si

0.2

0.5 0.75 1 .3 1.5

nn,/^
.sij

Figure 2.6 ~SI, S3, S5 and S7from expression [23.43] plotted together (top),

SI. S3 and S5 plotted separately (bottom: left to right, respectively) .

By inspecting the graph, we can see that the / = 1 term provides the only contribution

to the potential at infinite length, where the entire summation comes to unity and

agrees with our special case for the potential for infinite length derived above
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[2.3.35], The remainder o f the / terms can therefore be though o f as a series o f 

diminishing ‘corrections’ caused by the finite cylinder length. In cases where 

homogeneity is important, we seek to reduce all I terms apart from the / = 1 term as 

these are the terms that represent the departure from the ideal case and introduce 

inhomogeneities into the field. This is to try to make the field as close as possible to 

the ideal infinite length case.
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3 Numerical Methods for Magnetic Field Calculations

3.1 Surface Charge Model

For magnet arrays composed from uniformly magnetized segments o f hard, 

magnetically transparent, permanent magnetic material it is possible to calculate the 

field using the magnetic charge model (see section 2.2.1). Since the magnetization is 

fixed and uniform within each segment the calculation reduces to finding the field due 

to a scalar magnetic charge density on each surface o f every segment.

The surfaces o f each segment can be broken into simplexes in which the entire magnet 

array can be expressed. Our strategy for field calculation is to, firstly, find an 

analytical expression for the field created by an individual simplex then, secondly, to 

break the magnet array into simplexes and simply sum over all the simplexes to find 

the field at any required point.

3.1.1 2D Surface Charge Model
Rectangular 

Charge Sheets
Symmetrical 
About z-axIs

2D Template

Figure 3.J -  A magnetic design subdivided into rectangular charge sheets.

Designs based on a 2D template translational invariant about the z-axis, composed of 

segments with uniform magnetization M, such as a segmented cylinder, can be 

reduced into simplexes of finite length magnetically charged sheets (see figure 3.1). A 

general analytic expression can be derived for a charged sheet in the x-z plane. We 

can then use geometrical transformations to move the sheet to the ‘correct’ location 

within the design and find the field at any point by summing over all the charged 

sheets in the design.
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- a

Figure 3.2 A rectangular magnetic charge sheet 'simplex

We use a right handed co-ordinate system throughout the calculations. For derivation 

of the fields due to the sheet, please refer to the appendix A.I.  The component parallel 

to the plane of the sheet, is given by:

In

In

{z + L) + ^l{z + L f  + { x - a f

( z - L )  + ^ ] { z - L y  + ( x - a y  

(z + Z,) + -yJiz + L f  +{x + aY +y^

(z — Z-) + Ĵ{z — Ly  +(jc + a)^ + y 

Where L is the length of the sheet in the z-direction and cr™ is the magnetic charge 

density. The expression for Hz is similar:

HAP) = In
(;c + a) + -y/(x + a)^ + ( z -  L f  + 

(x -  a) + [̂{x -  aY + (z  -  LY +
- I -

In
(jc + q) + (x + <3) + (z + IS) + y  

(x -  a) + [̂{x -  aY + (z + LY + y^

\ [3.1.2]

The expression for the component normal to the sheet, Hy, is given by:

HA P)  = tan -1 (z -  L){x -  a)

'  \ y ^ j { x - a Y  +y^ ^ { z - L Y
/

(z + Z ,)(x-a)

^y^J ix-aY + y^ +{z + LY
/

(z -Z ) (x  + a)

^y'Jix + aY +

(z + L)(x + a)

\^y^|ix + aY + y^ + (z  + l Y

The magnetic surface charge density is given by:

a„ = M • nm
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Where n is the unit outward normal from the surface.

3.1.2 2D Transformations

Having derived the analytic solution for a sheet o f magnetic charge we can now find 

the field at any point P  in space created by a magnetic design o f the type shown in 

figure 3.1. This is carried out by breaking the design into charge sheets and computing 

the linear sum of fields from each of these charge sheet. However, we have derived 

expressions for Hy and for a charge sheet lying flat in the x-z plane and centred 

at the origin. To sum over the effects o f variously orientated and positioned sheets we 

need to use a global frame; we must first express the position of P  in terms o f axes 

translated and rotated relative to these the global {x, >>) axes o f this frame. This is 

fairly straightforward in 2D, we first express the position P(x,>') in terms o f coordinate 

axes x ’, y ’ related to x, by a translation. Then we express P(x \ y ') in terms o f the 

rotated coordinate system x ”, y ”, which is a rotation of the axes and not the point 

(figure 3.3 - the rotation shown here is +9, as the positive rotation sense is clockwise 

looking down the z-axis).
P(x,y)

e
x"

Figure 3.3 -  An arbitrary charge sheet in a magnetic design (thick line, left), 

expressing P in the local un-rotated sheet frame (right).

The expression derived above for Hy and can then be used to find the field at P 

due to the charge sheet with centre at {Sx, Sy) and parallel to the x ” axis. We can 

expresses the translation in homogeneous coordinates as:

ri 0
= 0 1 Py

1 0 .0 0 1 Jlu
Where x  ’ and y  ’ refer to the translated coordinate system and Sx and Sy refer to the 

midpoint of the 2D charge sheet. Homogeneous co-ordinates simply allow for 

translations to be easily included in the matrix expression; the last row of the co-
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ordinate vectors containing unity can be ignored after calculation. The rotation matrix 

which transforms x  ’ and y ' into the frame with x ’ ’ parallel to the sheet and y  ’ ’ normal 

to the sheet by a rotation through 0 is given by:

^cos(^) -  sin(^) 0" 'P . '

Pr - sin(^) cos(9) 0 Py
I  1 J . 0 0 K J

[3.1.6]

The full transformation is then given by the product of the two matrices [3.1.5] and 

[3.1.6]:

cos{9) -  sin(^) [-5^ cos(^) + sin(^)]
sin(^) cos(0) [-5'^ sin(^) -  cos(^)]

0 0 1
[3.1.7]

We can use [3.1.7] to transform the coordinates o f the point P  in the global frame to 

coordinates in the sheet frame. Using the expressions for H, we will calculate Hx” and 

H y” \n the sheet frame. The components Hx’’ and Hy’’ must be transformed back into 

the world frame by an inverse rotation, that is, [3.1.7] with 9= -0.

y

x" A

Figure 3.4 - The inverse rotation o f the components o f the magnetic field  vector H.

3.1.3 2D Computational Realisation

The first computational tool, called Magnetic Solver, created for this project summed 

the contributions from charge sheets o f equal length L in the z-direction (these are 

shown as black lines in figure 3.5). Setting z = 0 in the expressions given above gives 

Hx as:

HAP) = In

In

+ { x - a y  + L

+ { x - a f  - L

- / Z ^ " V ( x - l - " a p " + ^  +  Z, 
+(x + ay -L
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And Hy as:

H,{P)  =
Inn^y

tan'

tan'

L{x -  a) 

y ^ { x - a f  +y^  +L^ 

L(x + a)

+

[3.1.9]

y^lix + a)  ̂ +

To represent a physical magnet all surfaces enclosing each individual magnet segment 

must be considered. The surface charge on each o f these segment faces was calculated 

(using [2.2.12]) and stored prior to any calculation. The coefficients o f the transform 

matrix for each face were also stored prior to each calculation.

The user input was given in terms of primitives through a window user interface. 

Primitives included simple N-sided polygons blocks with user defined parameters 

being the fixed magnetization and length to more complex primitives such as Halbach 

cylinders with user-defined parameters including polarization, number o f segments, 

inner and outer radii and length. Data could be obtained by directly writing values 

along a line through the design to a file. Visualization was also included; either a 

vector plot or a colour slice through the z = 0 plane could be rendered, this was carried 

out using Windows GDI routines.

. ^

Figure 3 .5 -  Designs o f constant cross-section can be modelled with the first version o f  the Magnetic Solver tool.

The magnetic field  is represented by the blue arrows, the magnetization vector in each block by the green arrows.

Figure 3.5 shows two designs with constant cross section and finite length 

perpendicular to the plane o f the diagram: a magnetized bar with irregular cross 

section and a Halbach cylinder. Each o f the black lines in the designs represents a 

charge sheet, the magnetic charge on each o f these sheets is calculated by taking the
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dot product of the normal vector (shown in red) with the magnetization vector (shown 

in green); the H field is shown by the blue arrows.

This particular application was fairly simple and simply served as a step towards the 

next development, an application which could investigate fully three dimensional 

magnetostatic designs.

3.1.4 3D Surface Charge Model

The 2D charge model suffers from a number o f restrictions. First, it only allows us to 

calculate the field in the z = 0 plane; we would like to examine the field due to the 

magnetic segments at any point in space. Secondly, it only allows designs with a 

constant cross-section based on some 2D template, as shown in figure 3.1. We would 

like to explore fully three dimensional designs in which the design is not restricted in 

these ways.

Structures Triangulated
Polygons RA-Triangles

Figure 3.6- A magnetic design subdivided into righl-angle triangle surface simplexes

These restrictions led to the development of the second version o f the Magnetic 

Solver program, which can handle arbitrary sheets of magnetic charge in any 

orientation in 3D space. A simplex in 3D space is a triangle, and this can be broken 

further into two right-angled triangles (figure 3.6). Any design can then be 

represented in terms o f simplexes o f right-angled triangles.
P{x,y,z;

Figure 3.7 -  A right-angled triangular magnetic charge sheet 'simplex'.

The analytical expression for a right-angled triangle is much more complex than for 

that o f a charge sheet; please see appendix A.2 for derivations. The calculations are 

carried out for a triangle lying in the x-z plane, with the >>-axis normal to the surface of 

the triangle as shown in figure 3.7.

The component parallel to the sheet, Hx, is given by:
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H A P ) - Inn^
In

h + ^ { a - x ) ^  + + ( b - z y  -  z 

Ĵ(a - x y  + -  z
+

In
ax+bz

a{a~x)+b{b-z) + -,j{a -  x f  ->ry'^+{b- z f

[ 3 . 1. 10]

There is a similar expression for Ĥ '.

H A P )  =
2^/̂ o

In
r - x

a + ^ {a  + y^ + z^ -  x
+

In
a{a~x)+b(b-z)

+b̂ + ^j(a -  x y  + y^ + ( b -  z Y

r - ax+bz
4 7 ^

[ 3 . 1. 11]

Where:

r = +z^ [ 3 . 1. 12]

The component normal to the sheet, Hy,  is a sum of arctangents, in a similar way to 

the expression for the rectangular charge sheet in section 3.1.1:

H A P )  = tan'
(x -  a) + z + -^(x -  a y  + >̂  ̂ + z^

-  tan'

y tan -1

+

C + (/i + 5 ) J l  + ^ ^

[ 3 . 1. 13]

tan'
C +

1̂b ^-A^  - C '

Where:

And:

x + ^

1 + 3

A = - y  — . B = x j l  + ^  . C = z + P ~

[ 3 . 1. 14]

[ 3 . 1. 15]

3.1.5 3D Transformations

The transformations between local charge sheet frame and the global frame in 3D are 

similar to the 2D transformations, apart from the addition o f two extra rotation angles
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and the fact that each polygon consists o f two back-to-back right-angle triangle 

simplexes. The use o f three rotation angles means that care has to be taken about the 

order o f rotation; a rotation o f a point around the x-axis followed by a rotation around 

the Ĵ -̂axis is not the same as a rotation about the >^-axis followed by the rotation about 

the x-axis. We chose to rotate the frame and not the vectors, with the positive sense of 

rotation the clockwise direction looking down the positive axis at the origin.

We first translate our polygon to the origin, so that the point along the longest edge 

(edge AC) where the right angled triangles meet (point D) lies at the origin. We then 

rotate the polygon about the y-axis (by an angle /T) so the edge AC lies in the x-y 

plane, then rotate the polygon about the z-axis (by an angle a) so that edge AC lies 

parallel to the x-axis. Then we rotate about the final axis, the x-axis (by an angle /), 

such that point B is rotated into the x-z plane. The polygon then lies flat in the x-z 

plane.

Figure 3.8 - Positive rotations fo r  the transformations in a right-handed co-ordinate system.

z

X

Translation Rotation about y Rotation abou t z

y y

2

X

Rotation abou t x Polygon in x-z plane

Figure 3 .9 -  The various transformations required fo r transforming an arbitrary 

polygon from the global frame to the charge sheet frame.
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The polygon consists o f two back-to-back triangles; this means triangle ‘2 ’ must be 

flipped as it is ‘upside-down’ with respect to our standard right-angled triangle 

simplex (figure 3.10). If the polygon must undergo the rotations a, P  and y, triangle

undergo the rotations -a, t&P and n-y to flip it to the same orientation as the standard 

triangle. The component triangles must also be separately translated after the rotation;

The rotation matrix Rx(/)for a rotation clockwise around the x-axis by ^'is given by^^:

(1 0 0 0" 'P."

Pr 0 cos(/) sin(/) 0 Py
0 -  sin(/) cos{y) 0 P.

I  1 J Y .0 0 0 K J
The rotation matrix Ry(y0)for a rotation clockwise around the >^-axis by /? is given by:

'cos{P) 0 -  sin(/?) O' 'p."
Pr 0 1 0 0 Py
P.’ sin(/?) 0 COS(y3) 0 P.

I  1 J p I 0 0 0 h J
The rotation matrix R z(a)for a rotation clockwise around the z-axis by a  is given by:

‘1’ must undergo the same rotations and the second ‘upside-down’ triangle ‘2 ’ must

triangle ‘1’ must be translated so that the vertex A lies at the origin and triangle ‘2 ’ 

must be translated so that the vertex C lies at the origin.
y y

Z

y

z

Figure 3.10  -  The two triangles, triangle 1 (top) and triangle 2 (bottom), require different transformations.
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' p / '  cos(a ) sin («) 0 0" 'P."
Py -  sin («) cos(« ) 0 0 Py
P.’ 0 0 1 0 P.

[  1 J y . 0 0 0 Kl u
The rotation matrix Ri for triangle 1 is given by:

R A a , p , y )  =  R ^ { y ) R ^ { a ) R y { p )  [ s . i . i q j

And the rotation matrix R 2 for triangle 2 is given by:

( a ,  p ,  y )  = R M ~  y ) ^ z  + P )

The translations are omitted here, but are carried out in the same w ay as the 

translations on 2D charge sheet. A s with the 2D charge sheet model, the expressions 

for H will be in the local sheet frame and the components H x ” and H y ” must be 

transformed back into the global frame by an inverse transformation. To transform to 

H(x, the inverse rotation must be used: The components o f  H are rotated by an 

angle - /ab ou t the x-axis, by an angle - a  about the z-axis and by an angle - P  about the 

>^-axis. The inverse rotation matrix R"' is given by:

/?,■' (a , p , r )  = R y  ( - P ) R ,  ( - a ) R ^  { - / )  [3-i.2i]

3.1.6 3D Computational Realisation

The second application developed, called Magnetic Solver 2, was much more 

complex than the earlier 2D version. This version included very limited scripting 

support which allowed for design parameters to be automatically varied and field data 

to be written to a file, which could be examined and compared in detail later.

Figure 3.11- Magnetic Solver version 2 can simulate magnetic fields from arbitrarily shaped (closed) blocks 

o f  hard magnetic material. The field  is represented by the black arrows, the magnetization vector by the small green arrows.
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The final version allowed primitive creation both through a window user interface and 

through the scripting interface. Primitive construction objects included quadrilaterals, 

in which all eight vertices could be defined, and cylinders, in which radius and length 

could be defined. The construction objects also included complex primitives such as 

Halbach cylinders, in which many extra parameters could be defined such as the inner 

bore radius and inner and outer cylinder lengths and Halbach spheres, in which the 

inner and outer radii could be defined. Primitive input was controlled by Window.cpp 

and Scriptcpp.

All primitives are split into polygons, which were further split into right angled 

triangles. This is shown in figure 3.11; the grey lines define surface polygons, the 

magnetic charge on which is calculated fi*om the dot product of the surface normal 

vector (red arrow) and the fixed magnetization vector for each block (green arrow). At 

construction-time all possible pre-calculations for the more complex field calculation 

stage are carried out. This includes finding the correct rotation angle and charge for 

each polygonal face. The calculation stage consists o f finding, for a given point, the 

sum o f the magnetic fields fi'om all surface polygons in the design. During this stage 

each right angle triangle is rotated and translated to the correct position in 3D space, 

the field contribution calculated and the resulting field vector transformed to the 

global frame, this procedure is carried out in Magnet.cpp.

The resulting field can be rendered to a colour-coded or vector field slice in the x-y, x- 

z or y-z  planes. The graphics are handled using OpenGL routines in Graphics.cpp. 

The field values can also be determined at any point or along any straight line through 

the design and written to a file, for examination at a later stage or for plotting by some 

external application.

3.2 Finite Element l\/lethod

The methods in the previous section calculated magnetic fields by summing over the 

individual contributions fi'om field sources within a design. Designs were discretised 

into sources of magnetic surface charge and at the heart o f the calculations were 

general analytic solutions to surface simplexes (a sheet in the 2D case and a triangle in 

the 3D case). However, the programs developed using the charge model were based 

on the transparency property o f modem hard magnetic materials, and for designs
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incorporating materials which do not possess this property a totally different 

computational modelling strategy had to be adopted.

The fmite-element based program was therefore developed to allow the calculation o f 

fields from magnetic designs incorporating soft magnetic materials. In general, the 

finite element model allows for complete flexibility in the choice o f materials used in 

the design, whereas the charge model is restricted to only hard modem magnetic 

materials. The finite element method uses a totally different approach to the solution 

o f the problem; in general, the method approximates the exact solution to the Poisson 

equation for the fields [2.2.18] as a series o f independent functions and attempts to 

minimize the error or residual, which is the difference between the true solution and 

approximate solution^^.

3.2.1 Weighted Residual Methods

If we take the general differential equation:

L m ( x )  =  f { x )  [3.2.IJ

where L is a linear operator and^(x) is a known function, the solution o f [3.2.1] can be 

shown to be equivalent to the solution of:

( L m , v )  =  ( / , v )  [3.2.2J

where v(.x) is any continuous function and the inner product is given by:

{ p , g ) = \ pgdT ^̂ 2.3]

so:

|[Lm(jc) -  /  {x)\v{x)dV = 0 [3.2.4]

Equation [3.2.4] is called the weak form  of [3.2.1]. [3.2.4] will also be subject to the 

boundary conditions:

M m ( x )  =  g - ( x )  [3.2.5]

where M is a linear operator and g{x) is a known function. This expression can also be 

given in the weak form, and a residual expression for the whole domain can be 

obtained by summing both the boundary expression and the volume expression^*^:

|[Z,m(x) -  f{x )\v{x)dV  + <^[Mu{x) -  g ( x ) ] w ( x ) = 0 ^̂  .̂6]
y s

where v(;c) and w(a:) are two independent weighting functions. This is the form which 

we will attempt to solve, but for the time being we will only consider the first part o f
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the expression; the contribution of the boundary condition will be considered later. 

We introduce the approximation;
N

^ ' { x )  =  ^ a ^ ( ! ) ^ { x )  [3.2.7]
1=1

or, in vector notation:

u'{x) -  2H^{x) = {x)sJ [S.2.8]

where:

a = (a, -  n̂ )
[3.2.9]

(?{x) = {(/>,(x) (p^ix) ... (t>^{x)Y 

and (!>i{x) are a set of linearly independent functions and a, the set of coefficients in 

[3.2.7]. Using the approximation u [3.2.4] becomes:

\ [ L u ' { x ) - f { x ) ] v { x ) d V  = Q
V

But, in general:

[ L M ' ( x ) - / ( x ) ] - [ L M ( x ) - / ( x ) ] 5 t  0  [3.2.11]

Leading to the definition of the error (or residual) £(-̂ ) as the difference between the 

real solution and our approximate function:

S ( x )  = [Lm'(^) ~ / (-̂ )] “  [Lm(x) -  / (x)] [3.2.Z2]

From equation [3.2.1], this gives:

^(x) =  Lm'(x) -  f ( x )  [3.2.13]

Substituting our expression for u ’, this becomes:

£(x) =  a[L<p(x)] -  f i x )  =  [L(p(x)]^ -  f ( x )  [S-2.i4]

Equation [3.2.10] then becomes:

\ v { x ) e { x ) d V  = Q ^̂ 2.15]
V

where v(x) is still an arbitrary function. If we now represent v(x) by another set of 

linearly independent functions ii/i{x) with coefficients b i :
N

v { x )  =  Y , b j l f / j { x )  [3.2.16]

In vector notation:

V(x) =  bV|/(jc) [3.2.17]

Where:

b  =  (Z), ... b f ^ )  [3.2.18]
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=  ¥i{x)  . . .

and iiÂ x) is known as the weighting function. Substituting into equation [3.2.15] 

gives:

b j\j/(x )e(x)jr = 0 ^̂ 2.19]
V

This must hold for all b, so;

^yif{x)s{x)dV = 0 ^̂ 2.20]
V

[3.2.20] is the basic equation for all weighted residual methods. Substituting the 

transposed form of our expression for £(x) [3.2.14] gives:

Jv|/(x)[L(p(jc)]^c/K = |v|/(x)/(jc)c?F [ 3 .2 .21]

This is a matrix equation of the form Ax = b:

( a ,  ^
'  \W\ ( x ) f ( x ) "

V

V

V

|̂ 2̂WM2W •

V

V

■ \¥ i^x)h(t>^{x)
y

“ 1

=

y

y

^^/^{x)L(t),{x)
\V

\il/^{x)L<l)^{x) ..
V

. \ i t /^{x)L(t)^{x)
y y

IwNMf(x)
\y  y

[ 3 .2 .22]

This can then be solved for the unknown coefficients a.

Collocation Method

The simplest approach for minimizing the residual is to force it to be zero at N  

specified points x, within the domain. This approach is called the collocation method 

and simply involves setting the weighting function yÂ x) to a Dirac delta fiinction^^.

il/.{x) = 5 { x - x i ) .  i = {1,...,jV} [ 3 .2 .23]

For each component of [3.2.20] this gives:

( X  -  X,. )s{x)dV = 0 ^  ̂2.24]

V

So that:

e{x )̂ = 0 [ 3 .2 .25]

Substituting [3.2.23] into [3.2.21] gives:

[ L (p (x , ) f  = / ( x , )  [ 3 .2 .26]

Which are N  simultaneous equations, one for each jc,. These can be solved by using 

the matrix system:
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'L^zJ,(Xi) ■

L(/>̂ {x̂ ) L ^ 2  (-̂ 2 ) (^2 ) ai
= / (^ 2 )

L ^ 2  )

[ 3 .2 .27]

Subdomain Collocation Method

The collocation method is simple, but a better method is to divide the domain into a 

set o f subdomains and make the average o f the residual over these subdomains zero. 

This more closely approximates the requirement that the residual must be zero over 

the entire domain. This is known as the subdomain collocation method. To make the 

average o f the residual zero over a subdomain we require:

^e{x)dx = 0 [ 3 .2 .28]

Where the interval x, ;c,+l is the i'  ̂ subdomain. This means that the weighting 

function iiÂ x) must be of the form:

1 X :  < X <  X: ^
[ 3 .2 .29]

[0 otherwise

Substitution of this expression for yÂ x) into [3.2.21] gives the matrix form of this as:

= \f( .x )d x [ 3 .2 .30]

Which are N  simultaneous equations, one for each subdomain, and can be solved for 

in the same way as the collocation method.

Least Squares Method

A more accurate method is to minimize the square of the error in a global sense. This 

is called the least squares method, used for line-fitting in this project. We require^^:

Which is:

[ 3 .2 .31]

[ 3 .2 .32]

i

Giving our residual expression as:
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2 (x)
ds{x)
da,

dV = Q [3.2.33]

Comparing to [3.2.20], this gives the trial function as:

de{x)
y/i(x) =

da,

Differentiating [3.2.14] with respect to a,- gives this as:

i!/.{x) = L^.(x)

The matrix form [3.2.21] is then given by:

j[L(|)(x)][L(|>(x)]"^/r = j[L((>(x)]/(x)Jr

[3.2.34]

[3.2.35]

[3.2.36]

Galerkin’s Method

In Galerkin’s method the trial functions are the same as the weighing functions, i.e:

¥ i i x )  =  ^ i ( x )  [3.2.37]

Substituting this into [3.2.21] gives the matrix form o f Galerkin’s method as:

j(()(x)[L(p(x)]"c?F = lip(x)f(x)dV [3.2.38]

Expanding this gives:

1/ 1/ 1/ (ciA 1/V

|̂ Z>2(a:)[L^ ,̂(x)]
V

r

V

r

V

1

—

r

1̂ 2 (-^)/W
V

j<^ (̂jr)[L<zJ,(x)]
\y

(̂t>„{x)[L(t)̂ {x)\ .

V V

[3.2.39]

This is the weighting o f choice for the finite element method.

3.2.2 Finite E lem ent IVIetliod

In the finite element method, the domain o f interest is divided into a number of 

simply-connected separate elements, or mesh^^. At the vertices o f each element we 

would like a good approximation to the exact solution, then across the element we can 

interpolate the solution from the values at the vertices.
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Figure 3.12 - The subdomain o f  interest is divided into simply-connected triangular elements, here in 2D.

The approximate solution to our linear differential equation, u \  could then be 

expressed as the ‘stitched together’ approximations from the separate elements within 

the mesh.
N

u ' { x ) N i ( x )  [3.2.40]
(=1

where there are N  vertices in the mesh, m, ’ are the values o f m ’ at the vertices o f the 

mesh elements and Ni is some type o f interpolation function local to each vertex. If  we 

only consider linear interpolation in two dimensions (for now) we can use the 2D 

pyramid functions Nj(x,y). These have the property o f being one at x„ falling linearly 

to zero at the neighbouring nodes and being zero everywhere else in the domain^^.

Figure 3.13- A 2D pyramid function has the value one at a certain node and zero at all other nodes within the mesh.

Comparing [3.2.40] to [3.2.7] we can see that the unknown values o f ’ at the mesh 

vertices are the unknown constants a, in the weighted residual method and N,{x,y) is 

the trial function (pi{x,y). The Galerkin matrix therefore has the form:

'  J tv j i jv ,]  
1/

|7V,[LA^J .
1/ 1/ (u , ^

\N J { x ,y ) '^
1/V

|iV,[L7V,]
V

V

V

V

V
^2 —

V

\ N J { x ,y )
V

Vk V V y
\^N ) \N „ f{ x ,y )

yy y
This is a matrix equation of the form Ax = b; the matrix A is know in finite element 

nomenclature as the stiffness matrix, the vector x the solution vector and the vector b 

as the forcing vector. Each of the integrals in [3.2.41] are taken over the entire 

domain. However, each of the pyramid fiinctions is non-zero only over a limited
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region within the domain. This means that only terms where the pyramid functions 

overlap contribute to the matrix [3.2.41]. Due to this, the matrix is a sparse matrix 

(which will be important later when we choose by which method it will be solved) 

with terms clustered around the diagonal. Conversely, this means that we can build 

our matrix up step-by-step from the overlapping pyramid functions. This is 

straightforward as we know that, for example in 2D, each triangular element has three 

overlapping pyramid functions (that is, one for each vertex o f the triangular element) 

and we can therefore build up our matrix element-by-element.

S

Figure 3.14 -  An individual pyramid function(left), and one component shape function (right).

The form of N, within each element is a section of the pyramid function; in the 2D 

case this is a ftinction defined over a triangle equal to zero at two vertices o f the 

triangle and unity at the third. These special functions are known as linear shape 

functions, S, and depend solely on the geometry o f the triangle. In 2D there are three 

shape functions, S(x,>'), for each element (one associated with each o f the three
thvertices o f the triangle); these allow us to express u \x,y) within the n element as:

(■«>>') = u]S\ (x ,y)  + u]Sl {x , y )  + u lS] (x , y )  [3.2.42]

Some care has to be taken with the numbering system and definitions; in 2D the 

vertices have the global numbers i, j  and k  and the local numbers 1, 2 and 3. 

Superscripts refer to the local vertex number (of which, in 2D, there are 3) and the 

subscript refers to the global number (of which there are in a mesh with N  vertices); 

a subscript applied to the functions u\x ,y)  or S{x,y) refers to the global element 

number whereas a subscript applied to the constants u refers to the global vertex 

number. Each element has three vertex values o f u ’ and three local shape fianctions. 

The number o f shape functions that constitute the pyramid fiinction is the number of 

elements that surround the pyramid fiinction’s central vertex. The exact forms o f the 

pyramid functions therefore depend on the way the vertices are related to their 

surrounding elements within the mesh.
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u',(x,y)=Us'L,’+u,\,'+u/L,^

4

u ':(x ,y )= U , 'L ;+ U :l> U ,l3 "

3

Figure 3.15 -  A sample mesh showing shape functions fo r  the pyramid function o f  vertex I.

For example, the vertex in figure 3.15 (which is considered a boundary vertex) has 

a pyramid function given by:

= S\ {x, y )  + Sf {x, y )  [3.2.43J

That is, the 1*‘ shape function from the 2"̂  element plus the 2"̂ * shape function from 

the 1®’ element. The pyramid function for the 7'*’ node will have six terms, each being 

a shape function from one o f the six triangular elements surrounding it.

We can therefore build up the matrix from the shape functions within each element. 

As the pyramid fiinction TV, is the sum o f the shape functions incident on the i*’’ vertex, 

we can go through the mesh element by element adding the overlapping shape 

functions within each element to the global matrix. Each element will add the 

contribution:

n n n n

n n n
-

n

vn n
. Jsjis,]

n y
i s j (x )

In y
to the global matrix [3.2.41], Where n is the element volume and S is the shape 

function associated with the vertices o f  the element. The global vertex numbers are 

given by i j  and k. The stiffriess matrix is the sum o f these contributions from the 

elements within the mesh. The global vector on the right-hand side (known as the 

forcing vector) is also built up in a similar way by summing the contributions from 

each element. The matrix [3.2.44] is known as the local element matrix.

If the shape functions are linear, [3.2.41] can take a particularly simple form if  5',[LSy] 

is constant within the element (this occurs for the Poisson equation as shown in a later 

section). The integrals then simply reduce to the area o f each element and each o f the 

terms in [3.2.44] is constant and only depends on the geometry o f  the mesh. Each o f

the terms for each element can then be pre-calculated and stored.
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Shape Functions

In 2D the simplest elements are triangles; the linear 2D triangular shape functions

have the form37 38 .

2A y  y  
1 1

2A 2A

x X X

y' y
1 1 1

[ 3 .2 .45]

Where the superscripts refer to the local vertex numbers and A is the area o f  the 

triangle, given by:

A =
1

jc' x^

y' ŷ y
1

[ 3 .2 .46]

1 1

S is defined as zero outside the element.

In 3D, the simplest elements are tetrahedra. The expressions above can be extended to
■JO

cover the 3D case, and linear 3D tetrahedral shape functions have the form :

S ' { x , y , z )  =
J _

X X^ x^ X x^ x'

y
z

y^ /
z^ z'*

. 5^(x,>;,z) =  ^  
6A

y
z

y'
4z

ŷ
z'

1 1 1 1 1 1 1 1

X x'' x ' X x ‘ x^ x^

/
A

/
1

/ . S \ x , y , z ' )  =  ^ y y
1

/
z z* z z 6A z z z z

1 1 1 1 1 1 1 1

J_

Where the superscripts refer to the local vertex numbers and A is the area o f  the 

triangle, given by:

[ 3 .2 .47]

A = i 
6

x ' x ^ X ^
4

X

1 2 3 4
y

1 2 3 4
z Z Z Z

1 1 1 1

[ 3 .2 .48]

70



Computational Modelling o f  Novel Permanent M agnetic Designs

3.2.3 Application to Magnetostatic Systems 

Polsson Equation

The Hnear Poisson equation is given by:

k V ^ u  +  q  =  Q [3-2.49]

The boundary S  is divided such that S  = So + Sn, w^here on boundary So the Dirichlet 

boundary condition applies with us given:

M =  [3.2.50]

On the boundary Sn the Neumann boundary condition applies with un given:

du
k  = U f. [3.2.51]

dn

Taking the residual expression [3.2.6] (which includes the boundary conditions) and 

using the approximation [3.2.7] gives:

^ [h u '- f]v d V  + ^[M M '-g]W 5 = 0 [3.2.52]
V s

Using the Poisson operators for the volume and surface from [3.2.49] —> [3.2.51] and 

splitting the boundary contribution gives:

du' 
dn

If  we use the finite element method we can immediately satisfy the Dirichlet condition 

[3.2.50] by specifying the values o f  u on the boundary vertices directly^^. This means 

that the second (Dirichlet) surface term in [3.2.53] will drop out, as the minimization 

o f  this residual over that part o f  the boundary is exactly satisfied. This gives:

^  f

|[A:V^m']vc?F + jqvdF  + ij" k - ^ - u , ^  wdS + ^ ^ '- u ^ \v d S  = 0 [3.2.53]

j[ytV'M’]vJF+ \qvdV+  (|
V V

We can convert the first term using the Green identity:

, du'
k  u,

dn
wdS  = 0 [3.2.54]

|v (V 'm )JF  = j(V v • V u )d V  + ^ V  —  dS [3.2.55]

V V s ^

Where h is the outward normal from the boundary surface. This gives:

k  j(V v • V u ')d V  + —  vdS  + \qvdV  + —  wdS -  <^u^wdS = 0 [3.2.56]
V S  V S n  S n

Since our weighting function w is arbitrary, we can choose it to be -v , which removes 

all the normal terms in the Sn part o f  the boundary:

71



Computational Modelling o f  Novel Permanent Magnetic Designs

I

k^{VvVu')dV ^ <̂ k —  vdS ^ \qvdV + <^u v̂dS = Q> [3.2.57]

If we now restrict our choice o f the weighting function such that v is zero at the 

boundary So, the remaining part o f the normal term also disappears. This gives: 

k \ {V v -V u ' ) d V  + \qvdV + = 0 [3.2.58]

If we now use:

And:

[3.2.59]
1=1

[3.2.60]

[3.2.61]

y=i
This gives [3.2.57] as:

yt j(V\|/ V(p^)i/F = \\^qdV+ ^u^MfdS
.  y  ]  y  Sn

Hence, if  we set our Dirichlet boundary points explicitly and ensure that our 

weighting functions are zero at these points, the contribution from the Neumann part 

o f the boundary takes the form of an extra source term on the side o f the forcing 

vector. In the Galerkin formulation, with trial and weighting functions both equal to 

N, this becomes:

A: j ( V N - V N ^ ) J r  =  \ ^ q d V +  [3.2.62]

.  y  j  y  Sa,

with Ni at the Dirichlet boundary points equal to zero. If we ignore the Neumann term, 

we are effectively setting un to zero over that part o f the boundary. However, if  we 

completely specify the boundary conditions using only Dirichlet conditions this term 

also goes to zero as S = So + Sn , and S = So hence = 0. If we specify w = 0 over the 

entire boundary this results in the following system (in component form):

dN. dNj dNi dNj 8N, dNj
+  -

dx dx dy dy dz dz
dV a, = \N ,q ,dV [3.2.63]

Magnetostatics

Taking [2.2.16]:

V(V.A)-V^A = / / o a + V x M ) [3.2.64]

We apply the Coulomb gauge [2.1.14] giving
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J _ V^A + V x M  +j f  = 0 [3.2.65]

This is a vector Poisson equation with the source terms being the electric free current 

and the curl o f the magnetization. By formulating the equation in this way we are 

effectively using the current model and reducing the magnetization to current 

distributions. The free current has been included here, in the final expression it takes 

the form of an extra term in the forcing vector which can be easily set to zero if 

required. If we define A explicitly over all outer boundaries we can use [3.2.62] to 

give the finite element formulation o f [3.2.65] as;

—  J(ViV,. V7V, )dV  -  J t v ,  ([V X m ], + )dV
^ ^ 0  V V

[3.2.66]

With a similar expression for Ay and Az. The magnetization term in the forcing vector 

can be expressed as:

jAf,[VxM],rfF= J[Vx(Af,M)],,<r+ J[M x(v;v ,)irfr
V V V

And using the divergence theorem:

j[v X (.N ,M )\dV  = J [ w , ( ; i  X M)],rfS
y s

But we have defined the shape functions for Dirichlet conditions as zero on the 

boundary, and we have given Dirichlet boundary conditions over the entire boundary. 

This means that this term will disappear, giving:

—  J(VAf,. VAf, W  A„ = -  J[M X (VW,. ) i  -  j N J ^ ^ d V
Mo V

[3.2.69]

V V

Which is the system we will solve. In all magnetostatic designs within this project we 

define A to be zero over the entire outer boundary. In component form this gives:

yj dN, dN, dN, dN. dN, d N .

dx dx

= J dz dy

dy dy 

dN,

dz dz 

dV -  j N J ^ f d V

dV 4,-
[3.2.70]

Where M, the magnetization, and jf, the free current, is taken to be fixed within each 

element. It should be noted that the matrix part o f the system, S (the stiffness matrix), 

only depends on the geometry o f  the mesh and will not change for Ay and Az. The full 

expression for A then consists o f three matrix expressions:
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dz dy
d V - \ N J , , d V [ 3 .2 . 71]

H ,  =  I
dN. dN. 

M , — ‘- - M ,  '
dz dx

d V - j N J ^ / V [ 3 .2 . 72]

= J dN. dN. 
M ^ — ‘- - M ^ —  ̂

 ̂ dx " dy
dV- \NJ^^dV [ 3 .2 . 73]

These three matrix expressions must be evaluated and B can be determined on an 

element-wise basis by taking the curl o f A within the element. From [3.2.42] A within 

the n*’’ element is given (in 3D, with global vertex numbers i,j,  k and I) by:

= K i K  + + A],Si  + Al,Slx n  XI n  x j  n  x k  n x l  n

Ay„=Aix+4^n+KX + < x
A,. = A ls l + A lS: + A ls !  + A ts :

[ 3 .2 . 74]

" ' z j ' ^ n  ' ‘  zk n z l  n

Where S„‘ is the shape functions for vertex i of element n. Then, for example, is 

given by:

Al
dS dS

=_  V
^  + A

dS
zk dy

^ + a :
dS

A l  — ^  +  Ai. — ^  +  A l  — ^  +  A"

dy
dS

dz dz y k dz yi dz

[ 3 .2 . 75]

With similar expressions for By and B̂ .

Soft Materials in Magnetostatic Systems

The main advantage o f the finite element method over the charge model is the ability 

to handle soft materials within the magnetic design. Unlike the charge simplexes used 

in the charge model calculation analytic closed-form solutions for designs 

incorporating soft material can only be derived for extremely simple shapes. The 

difficulty lies in the fact that each infinitesimal element o f soft material in the design 

magnetizes and becomes magnetized by every other element o f soft material within 

the design. However, if  we assume that the magnetization o f the soft material within a 

given small area is constant the finite element method can provide a natural solution 

to the problem by iteratively computing the effects o f the soft iron parts.
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We assume that the magnetization within each o f the tetrahedral elements that 

compose the soft iron parts o f our design is constant at every iteration. We then 

update these magnetization vectors at each iteration by using the linear B-H 

relationship [2.1.47]:

B =  [ 2 . 1.47]

Where the relative permeability [Ur is a constant and taken to be, for example, around 

1000 in soft iron. Substituting into [2.1.4]:

B = /^o(H + M) [ 2 . 1.4]

We find that the magnetization M can be expressed in terms o f the magnetic field B:

V i ' B [ 3 .2 . 76]

We can use this relationship to define our iterative scheme:

V
B,. [ 3 .2 . 77]

M r

Where M,+/ is the new magnetization o f the tetrahedral element o f soft material and 

B, is the magnetic induction inside the tetrahedral element. This can be though o f in 

physical terms as solving over time; the applied field causes a resultant magnetization 

in each element o f the soft material at each time step. This resultant magnetization 

causes a different resultant magnetization at the next time step, and so on until the 

magnetization o f the entire system has stabilised. Another method which takes into 

account the reluctivity (the reciprocal o f the permeability) o f the material is given by 

Sykulski'^'. However, this method is much harder to implement due to the formulation 

requiring an integral to be performed for each entry in the stiffness matrix.

The iterative scheme is implemented in the project by repeatedly calculating the 

magnetization o f the design and updating the magnetization of the elements o f soft 

material until the maximum change in magnetization in any element is less than some 

(small) amount. At this point the system is assumed to have converged. However, 

simply updating the magnetization in each of the elements according to [3.2.77] at 

each step does not lead to the physically correct solution, as the magnetization within 

each segment is unbounded and can keep grow without limits. A very simple remedy 

to this is to cap the value o f the magnetization, so that [3.2.77] becomes:

=  - M s . M ,.^, <  - M ^  [ 3 .2 . 78]
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M , . . ,  = ■ 1-1 < M ,,, < M ,

M,., > M ,

Where M* is the saturation value o f the material. In soft iron this is around 2.15/^o  

A/m. This can be thought o f as the simplest approximation possible to the initial 

magnetization curve (curve A to B in figure 1.3) of a soft material (see figure 3.16).  

This method is very easy to implement, if  the new value o f the magnetization is above 

or below the saturation value the magnetization is simply set to the saturation value. 

More complex approximations to the magnetization curve are possible, for example, 

by using a table o f magnetization values and linearly interpolating between them^°.

^  U n-C apped 
M agnetization 

Curve
M(A/m)

 M atenaj____
Saturation Value

Tm e M agnetization 
Curve

B(T)

C apped
M agnetization

C urve

Material
Saturation Value

Figure 3 / 6  - A ‘capped ferromagnetic hysteresis curve takes into account the saturation o f  the material.

Unfortunately, convergence o f the above scheme is fairly slow. It is believed that the 

convergence speed could be increased using a minimization technique such as the 

Newton-Raphson method, although this was not attempted within the project'*^.

3.2.4 Solution of the Matrix System

The solution o f large matrix systems is fundamental in computational science; using 

suitable discretization, many physical systems can be reduced to expressions o f the 

following form:

Ax = b [3.2.79]

where A is the stiffness matrix, x is the solution vector and b the forcing vector. To 

solve for x, one can either find x using some iterative scheme, or directly invert A.
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If we split our matrix A in some way (for example, into diagonal and off-diagonal 

elements as in the Jacobi method, see the section on stationary iterative methods 

below), we can generally express [3.2.79] as:

X = BX + C [ 3.2.80]

where B is some combination o f the split parts of A, and c is some vector combination 

o f b and the split parts o f A. We can then form an iterative method"* :̂

X ,^, = B X ,  + C  [ 3.2.81]

Iterative methods are divided into stationary and non-stationary methods. Stationary 

methods have constant B and c for each i. We can define an error e, as'*'̂ :

e,- =  X; -  X [ 3.2.82]

which is a vector that points from our current iteration o f x, x„ to the true solution x. 

We can then express the error in terms of B:

e,.+, = Be, [3.2M]

If B is symmetric, a set o f n linearly independent eigenvectors exist for B. Since this 

set o f eigenvectors form a basis for 9?", the error can be expressed in terms of the 

eigenvectors o f B. If all the corresponding eigenvalues o f B are all less than one, all 

the components o f e will eventually decrease to zero (if B is non-symmetric and 

defective, this rule still holds, but for generalised eigenvectors). If we define the 

spectral radius o f B, p(B) as:

P(B) = max|A,| [ 3.2.84]

where A, are the set o f eigenvalues for B, it can be seen that the iterative scheme will 

only converge if /XB)<1.

The stiffness matrices arising from our particular formulation o f the finite element 

method (and indeed many forms o f the method) give rise to a symmetric positive 

definite matrix A. The definition o f positive definiteness for some matrix A is:

x " ' A x > 0  [i-2.S5]

for any non-zero vector x. This means that the quadratic form of the matrix has some 

minimum x that satisfies [3.2.79] where the quadratic form is given by'* :̂

/ ( j c )  =  j X ^ A x - b ^ X  +  C [ 3.2.86]

where A is a matrix, b is a vector and c a scalar constant. The gradient o f this (for 

symmetric A) is:

/ '  (x) = Ax -  b [ 3.2 .87]
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Hence the minimum of the quadratic form is the solution to [3.2.79]. We use the 

positive-definiteness o f our matrix to choose the best solution method for the matrix 

equation.

Direct Methods

Direct methods involve solving for x directly; this can be done by inverting A but a 

number o f other much more computationally efficient methods exist. The simplest 

method is Gaussian elimination with backsubstitution"**. The Gaussian stage o f this 

procedure results in a triangular matrix, and x can be easily calculated from this by 

direct evaluation of each coefficient \ \  (the backsubstitution stage).
/

a , i <3,2 ^\N

0 a  22 . . .  « 2 ^ X2 b2

0 0 ...

. 0 0

A more efficient means o f solving [3.2.79] is LU-decomposition (lower-upper 

decomposition). We can express A in two parts such that A = LU where L and U are 

upper and lower triangular matrices. This gives:

L(Ux) = b [3.2.89]

As the solution o f a triangular matrix is straightforward (as we know from Gaussian 

elimination, above) we can first solve by putting Ux = y (say), solving for Ly = b and 

then solving again for Ux = y. LU decomposition is achieved using a very efficient 

algorithm called Grout’s algorithm. According to Numerical Recipes" "̂*, LU- 

decomposition is a factor of 3 faster than Gaussian elimination with backsubstitution 

which in turn is a factor o f 1.5 times better than straight Gauss-Jordan elimination.

If the matrix is symmetric and positive definite, however, an even more efficient LU 

decomposition method exists called Cholesky factorization"*^. This simply expresses 

the lower and upper parts as the transpose matrix o f a single lower (or upper part), for 

example A = LL^ where L is the lower triangular matrix.

L(L^x) = b [s.2.90]

This can be solved more efficiently than standard LU decomposition due to the 

symmetry of the matrix; Cholesky factorization is about a factor o f two faster than 

LU-decomposition.

We use Cholesky factorization in this project for two purposes; the first is for a direct 

solution o f the finite element matrix as it can sometimes (depending on matrix size
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and problem) be faster when the stiffness matrix has to be repeatedly re-applied to 

different forcing vectors (which happens when soft materials are included in the 

design). Secondly, incomplete Cholesky factorization is used as a preconditioner for 

the conjugate gradient method as the factorization process will, in general, assign non­

zero values to L during the factorization process when the corresponding element in A 

is zero. These non-zero entries are known as the fill  entries and the idea behind 

incomplete factorization is to drop some o f these fill entries according to some 

strategy^*. The simplest strategy of all is to drop all fill entries o f L in which the 

corresponding entry o f A is zero; this saves considerable computation time (as we 

know which entries o f A we have and therefore do not need to calculate the entire L- 

matrix, furthermore if  we overwrite A we do not need to assign extra space to store 

elements). Other drop strategies include keeping the number o f row or column entries 

the same but re-assigning them so that they are the largest values o f all the row or 

column values (including the newly-completed entries fi'om the factorization), or 

keeping a set number of new entries and dropping the rest. Preconditioners will be 

discussed in a following section on the conjugate gradient method.

Stationary Iterative IVIethods

The main stationary methods are the Jacobi method, the Gauss-Seidel method and 

Successive-Over-Relaxation (SOR). The Jacobi method solves for each x, while every 

other Xi remains fixed throughout the process and assumes that the system will 

converge to the correct x after a certain number o f iterations. It can also be thought of 

as splitting the matrix A into two parts; the matrix D, the diagonal elements o f A, and 

E, all other off-diagonal elements o f A'*̂  This gives:

B = -D  'E  c = D ’b [i-2-9i]

This method is simple to implement as finding the inverse of a diagonal matrix is 

straightforward. However, the convergence rate is slower than other stationary 

methods^*  ̂(if the method converges at all).

The Gauss-Seidel method improves on the Jacobi method by solving for Xj using the 

results fi'om the values o f x up to i already computed by the algorithm'’̂ . It can be 

thought of as splitting the matrix into three parts; the matrix of diagonal elements o f 

A, D, the matrix o f the strictly upper triangular part of A, -U, and the strictly lower 

triangular part o f A, -L. This gives:
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B = ( D - L ) ‘'U, c = (D -L )- 'b  [ 3-2.92]

This process o f calculating x,+/ can be thought o f as adding an increment to x, of (x,+/ 

- X,). If  each increment is too small we can speed up the convergence o f the Gauss- 

Seidel method by multiplying the increment by an extrapolation factor o) ; effectively 

a weighted average between the last and current iteration. This is known as the 

successive-over-relaxation method:

B = (D -  tyL)“' [col] + (1 -  <u)D], c = co(D -  <uL)’' b [ 3.2.93]

The value of co must fall between {0,2} and, in theory, the optimal co can be 

calculated using the spectral radius o f the matrix. However, determining the spectral 

radius requires the calculation of all eigenvalues for the matrix and therefore possibly 

more computation effort than solving the entire matrix system itself. Heuristic 

approximations are therefore often used"*’.

Non-Stationary Iterative Methods

The main non-stationary method is the conjugate gradient method which can be 

introduced via a related method, the steepest descent method"* .̂ The steepest descent 

method is very intuitive; if  we are looking for an x that minimizes the quadratic form 

o f [3.2.79] and this form has a global minimum, we can just take a step in the 

direction in which byy(x) decreases by the greatest amount (this being the direction of 

steepest descent). We repeatedly take steps until the error (which represents distance 

between our current position and the true solution) becomes as small as we require. O f 

course, the step size is not constant for each step and the method o f computing the 

step size is to find the point at whichy(x) is minimized along our path.

If we define our residual as the direction o f steepest descent:

r,. = - / ’(x,.) [ 3 .2 .94]

Note that this means the residual is also given by -(Ax-b) fi’om [3.2.87]. Each step is 

then given by:

+«,r,. [ 3 .2 .95]

The parameter a, is minimised when the residual is orthogonal to the previous 

residual (this can be shown by minimising/{x,+/} with respect to a,). The parameter 

is given by"^:
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Where:

r,. = b  -  AX; [3.2.97]

A recurrence relation for the residual can be found by multiplying [3.2.95] by -A and 

adding b. This gives:

= r,.-«,.Ar,. [3.2.98]

Unfortunately the steepest descent algorithm is usually inefficient due to the fact that 

each step is orthogonal to the previous step, hi the worst case a bad starting point 

means the algorithm can very slowly converge as it zigzags in on the solution.

Figure 3.17 - In the method o f  steepest descent the starting position strongly affects the convergence time.

A much better solution would be if  we only moved in one of these orthogonal 

directions once. If we picked exactly the right step size each time we would only then 

need N  steps in N  dimensional space. Unfortunately as, Shewchuk points out"*̂ , if  we 

use orthogonal directions we have to know the error first to work out the step size, and 

if  we knew the error the problem would already be solved. The solution is to take an 

orthogonal step in A-space. Two vectors are A-orthogonal if:

vfAv^. = 0  [3.2.99]

We can then calculate the step size cd:
i T .

a , =
d ' rI  I [3.2.100]

d f A d ,

Where d, are our A-orthogonal search directions. This is the same as steepest descent 

if  we use the residuals r, as the search directions. We can construct a set o f A- 

orthogonal search directions using a process called Gram-Schmidt 

orthogonalization'^^. This takes a set o f TV-dimensional linearly independent trial 

vectors and creates a TV-dimensional orthogonal basis from them by starting with the 

first and subsequently subtracting all components from the following vectors that have 

already been covered by the process. For example, it uses the first trial vector as the
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first basis vector. It then removes all components in the direction o f the first trial 

vector from second trial vector, which then becomes the second basis vector. It then 

removes all components o f the first and second trial vectors fi-om the third trial vector, 

which becomes the third basis vector and so on until no trial vectors are left. This 

procedure is useful in 3D for creating a local co-ordinate system on some surface 

defined by two vectors (the resulting basis vectors must be normalised here). For 

example it is used in this project in to work out the perpendicular height o f a point 

above the plane defined by two vectors, and to calculate whether a point falls inside a 

2D contour on a plane defined by 3D vectors.

We can express our basis as:
/■ -I

d,- =V,. [3 .2 .I0 I]
k=0

Where d are the basis vectors and v are our trial vectors. The constant /?,* is given by:

vf  A d .
P i k  = -  ^d. Ad.

Unfortunately, all the old vectors must all be kept in memory and used to calculate the 

new vectors which makes calculating a full orthogonal basis set o f vectors a very 

computationally expensive task. However, it can be shown that the residuals have the 

very useful property;

dfr^. = 0 , /■ < _/■ [3.2.103]

That is, each residual is orthogonal to all prior search directions. This means that if  we 

use the residuals as the trial vectors (i.e. Vj = rj) we no longer have to subtract all non- 

orthogonal parts from the residuals to form each basis vector; all non-orthogonal parts 

are already zero and the only non-zero part is that o f the current residual. Herein lies 

the power o f the conjugate gradient method; the fact that we no longer have to process 

the entire set of basis vectors reduces the algorithm fi-om O(jV^) complexity (for a full 

Gram-Schmidt process in N  dimensions) to 0{m) complexity, where m is the number 

o f non-zero elements of Conjugate gradients are therefore especially useful for 

positive-definite sparse matrices, such as stiffiiess matrices in the finite element 

method.

Taking the vector product o f the residual and the recurrence relation for the residual 

[3.2.98] and re-arranging we have:
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[3.2.104]

«  ' ..................

Since our search direction are built from the residuals and each residual is orthogonal 

to all prior search directions, each residual is also orthogonal to each prior residual:

r,. Y j  =  0, i ^  j  [3 .2 .J05]

This means only the two terms i = j  and i = (/+l)contribute in the expression 

[3.2.104]. If we use [3.2.104] for p, we need only consider the i = (/+1) term as is 

defined only for i > j .  This means that the only non-zero term o f P  is:

1 r.̂ r.
P i j =  '  '  • ‘̂ =  >  +1 t s .2. l 06]

Using [3.2.100] for simplifies [3.2.106] to:
r  r

p y  =  [i-2.I07]

Using the identity:

dfr. =vfr,. [3.2.108]

Where v is a trial vector (This can be proved by taking the vector product o f r, and 

[3.2.101]) and putting Vj = ri gives [3.2.107] as:
Tr. r

P i  =  J ' [3-2.109]r-ir-i
Where Pi is defined as and the entire method is then given by:

Tr r.
a,- =  — r — -  dfAd,

[3 .2 .II0 ]

x,.„ =x,.+a,d,. [3.2.111]

*•/., =r, - a ,  Ad, [3.2.112]

n  _
P i-^\ T

r, r,
[3.2.113]

d,>i = [3.2.114]

The algorithm would terminate (in the ideal case) when the residual becomes zero 

after N  iterations, however, due to floating point roundoff error accruing in the 

iterative formulation and the fact that N  may be extremely large means that it is 

usually better to define a stopping criteria. This can be done by specifying some
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maximum number o f iterations and/or allowing the algorithm to terminate when the 

norm of the residual falls below a certain value or fraction o f the initial residual.

The conjugate gradient method was initially used in the project, but the slow speed of 

convergence led to the use of the preconditioned conjugate gradient method.

Preconditioning

The convergence o f the conjugate gradient method depends on the clustering o f the 

eigenvalues o f the matrix A. A measure o f the clustering of eigenvalues is given by 

the condition number o f a matrix, tc.

Where Xmax and Xmin are the largest and smallest eigenvalues o f the matrix. 

Preconditioning attempts to make the iterative method converge faster by warping the 

quadratic form into a ‘better’ shape, namely a more spherical one in which the 

eigenvalues o f A are closer in value to each other, by solving the alternative system:

M"'Ax = M '’b [^2.116]

If K for the alternate system is lower than k for the original system, we can solve 

[3.2.116] faster than for the original problem. The problem is in choosing an M that 

we can not only easily invert but which also produces better clustered eigenvalues. 

Full derivation o f the preconditioned conjugate gradient method is given in**̂ , and the 

form is presented below.

a ,  =  ----------  [3.2.! 17]
dfAd,

x,.^, =  X,. +  a , . d [3.2.118]

=r,.-ci;,.Ad,. [ 3 .2 .119]

P m  - — 1 [3.2.120]
r, r j

d / . i  = ( M ‘ ‘r . , , ) - ^ . , , d ,  [3.2.I2I]

Several choices of M exist; the simplest is a diagonal or Jacobi preconditioner which 

is just the matrix o f diagonal elements o f A. This preconditioner provides a reasonable 

improvement, is trivial to invert (the inverse o f a diagonal matrix is the reciprocal of 

the diagonal elements) and unconditionally stable.
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We have already mentioned the other most common type o f preconditioner, the 

incomplete Cholesky preconditioner. It should be noted that the process o f generating 

the incomplete conditioner is not, however, always stable, hi our application the 

process reverts to the diagonal conditioner if  the Cholesky factorization fails (which 

we found occurs very rarely). The matrix solution in the project used two drop- 

strategies; the first was a standard ‘no-fill’ strategy in which all the entries in L which 

corresponded to a zero element in A were dropped, which is the simplest drop 

strategy. The second was an ‘improved’ factorization proposed by Jones and 

Plassmann^’ in which the number o f non-zero elements per column of L was the same 

as the corresponding column of A and the values kept in each column was chosen 

from the highest values arising from the factorization. However, we saw no great 

improvement using the second method and, in fact, appeared to be more unstable than 

the first.
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Figure 3.18 - A comparison o f  solution methods fo r  matrix equation Ax = b with different preconditioners.

Figure 3.18 shows a comparison o f four solution methods for a magnetostatic system 

(meshed at different density levels) in which [3.2.79] was repeatedly solved for the 

same stiffiiess matrix A, but different forcing vectors b at each iteration (see section 

3.2.3, on the inclusion of soft materials). The four methods were the preconditioned 

conjugate gradient with a diagonal preconditioner (PCG/D), preconditioned conjugate
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gradient with an incomplete Cholesky preconditioner (PCG/C), a direct solution using 

Cholesky factorization (DC) and an un-preconditioned conjugate gradient method 

(CG). In systems such as this the cost o f generating the preconditioner is very small in 

comparison to the large benefits in terms of solution time.

It can be seen that even the simple diagonal preconditioner (PCG/D) performs much 

better than the un-preconditioned conjugate gradient method (CG). A direct solution 

o f the problem (DC) is almost as efficient time-wise as the incomplete Cholesky 

preconditioner (PCG/C), although at high N  it can be seen that the incomplete 

Cholesky preconditioner becomes the more efficient method. We therefore chose the 

incomplete Cholesky preconditioner as our default.

3.3 Automated Mesh Generation 

3.3.1 Overview

In order to use the finite element method, we need to break the problem domain into a 

large number of smaller elements, often the tetrahedron (being the simplex in 3D) or, 

for example, quadrilaterals or hexahedral elements; this subdivided domain structure 

is called the mesh. The purpose of meshing is to provide a description o f the problem 

domain in terms o f a set of basic blocks; this discretization o f the domain can then be 

used as a basis for calculations involving partial differential equations (PDEs). Here, 

we apply it to the Finite Element Method (FEM), but it can also be applied to other 

methods such as the Boundary Element Method (BEM). Mesh generation for PDEs is 

typically more complicated than mesh generation for other types o f applications (for 

example computer graphics) in that the mesh elements have to be ‘well shaped’. This 

is due to a number o f factors; large angles in an element will cause errors in 

derivatives across the element as a consequence o f interpolation, and small angles can 

also cause the matrix resulting from the discretization to be ill-conditioned^^. 

Therefore, we would like the elements to be as ‘round’ as possible, that is (in the 2D 

and 3D simplex cases) to have the edges o f any element as close in length to each 

other as possible.

Mesh generation is not straightforward. Approaches are broken into two distinct 

methods called structured and un-structured mesh generation^^. Structured mesh 

generation is, seemingly, the most straightforward way to generate a mesh; the basic
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idea is to take some simple structured mesh pattern and map it using some 

transformation to fit the design we are trying to model. This simple pattern will have a 

given element connectivity and is therefore more computationally straightforward to 

store and process. Frequently, however, the design is too complicated to be 

represented by a simple mapping and must be broken up into simpler sections, each 

with a different mapping transformation. The mesh is then constructed by patching 

these sections together such that the sections share boundary vertices (called a 

multiblock scheme). Even this method is not always satisfactory, however, and 

decisions also have to be made as to where and how to join these blocks. Unstructured 

mesh generation, on the other hand, can handle arbitrarily complex designs and, 

furthermore, the density o f the mesh can also be tailored to fit the problem, meaning 

regions of interest within the mesh can be refined to any degree desired. It is, 

however, much more difficult than structured mesh generation. Unstructured mesh 

generation a vast field and some approaches include:

• Octree methods, in which the domain is recursively subdivided into an octree 

grid (according to boundary curvature) and mesh vertices are either created or 

relaxed onto the grid to fit the design boundaries^'*. The octree generation is 

fairly straightforward, but problems occur for certain geometries and for 

decisions on whether to insert a vertex or move a grid boundary vertex to fit the 

boundary. A neat modem approach closely related to this is red-green mesh 

generation^^.

• Advancing fi'ont methods, in which tetrahedra are crystallised inwards fi'om the 

boundary^^. This approach gives excellent boundary surfaces, as the method can 

choose to pave the boundary with perfect or near-perfect simplexes. However, 

problems arise when boundary fronts meet and complex decisions have to be 

made about vertex insertion between opposing fronts.

• Incremental Delaunay point insertion, in which a Delaunay mesh is built up by 

inserting vertices to eliminate badly-shaped and/or large triangles. This is the 

method we will be considering here and forms the basis for Shewchuk’s 

algorithm^^.
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We decided to use adopt the incremental Delaunay approach over the octree method 

and advancing front method. The octree method proved to be difficult to implement in 

2D (as a quadtree method) due to the difficulties involved in resolving boundary/tree 

interfaces and we expected these difficulties to be exacerbated in 3D (although the 

building o f the tree itself was extremely straightforward). The advancing front method 

was more difficult than the quadtree method to implement in 2D due to the complex 

decisions to be made about vertex placement between colliding fronts and, similarly, 

we expected these difficulties to become worse in 3D. The incremental Delaunay 

approach, although difficult to implement in 2D, was attractive as many o f the 

algorithms used could be extended to 3D relatively straightforwardly and o f the three 

methods it has the least complex (and most elegant) set o f rules for the placement o f 

new vertices.

3.3.2 Delaunay Incremental Insertion Algorithms

A Delaunay triangulation o f a point set is a triangulation in which every triangle has 

no vertex inside the triangle’s circumcircle . The circumcircle o f a triangle is the 

unique circle which passes through each o f the triangle’s three vertices. The Delauney 

triangulation is the ‘best’ triangulation to choose for mesh generation as it minimises 

the minimum containment circle in all dimensions. In two dimensions only, this 

triangulation maximises the minimum angle in the triangulation and minimises the 

largest circumcircle. The minimum containment circle is the smallest circle that 

contains a triangle, which is not always the triangle’s circumcircle (for example, an 

isosceles triangle with a pair o f angles approaching zero has a circumcircle that 

approaches infinite radius, but we can always find a circle that will contain it based on 

its maximum edge length).

We can build up a Delaunay triangulation incrementally in the following manner (see 

Figure 3.19): First we find the circumball around the point we wish to insert where 

the circumball is the set o f triangles that would not have an empty circumcircle if  the 

point were inserted (2). Then, we delete these triangles from the mesh creating a 

cavity (3). Lastly, we re-connect the insertion vertex to the cavity vertices (4).
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1

43

Figure 3 .1 9 -  The stages o f an incremental Delaunay triangulation, point location (1) 

cavity construction (2), cavity deletion (3) and cavity processing (4).

There are some points are worth noting here: The cavity will always be free from 

other vertices as the triangles are Delaunay and therefore have no vertices within 

them. Also, all o f the newly created triangles are all Delaunay, which is somewhat 

counter-intuitive, but can be understood by noting that each of the newly created 

edges from the cavity vertices to the insertion vertex are Delauney (an edge is classed 

as Delaunay if any empty circumsphere passing through the two edge vertices can be 

found). In this case the sphere tangential to the original sphere circumscribing an 

original vertex and the insertion vertex will always be Delaunay (see figure 3.20, top). 

If we then ‘grow’ this Delaunay circumsphere in either direction orthogonal to the 

edge, the first vertex it will come into contact with will be a vertex on the cavity. The 

triangle formed in this way will be Delaunay and, since this holds for each edge, every 

new triangle formed by this vertex insertion method will also be Delaunay^^.

89



Computational Modelling o f  Novel Permanent Magnetic Designs

Figure 3.20 - The triangles created by an incremental Delaunay insertion algorithm will all be Delaunay.
57 58The above algorithm describes the Bower Watson algorithm and generalises to 

any dimension (an algorithm that produces the same result but is based on edge flips 

is the Lawson algorithm^^; however, this algorithm, although more robust in certain 

cases, only works in two dimensions and although there are 3D generalisations o f it, 

we will use this more intuitive and somewhat simpler algorithm).

The advantage of this process is that we are fully in control o f where to place the new 

vertices in the mesh. We can choose to eliminate a ‘bad’ triangle or tetrahedron by 

placing a new vertex at its circumcentre (The bad triangle or tetrahedron will then be 

deleted in the cavity creation phase). A bad triangle or tetrahedron can be either one 

with a sharp angle (so called skinny simplex) or one over a certain area or volume. 

One o f the first 2D refinement algorithms was Chew’s (first) algorithm^*’ which splits 

any triangle in the mesh with a circumradius greater than the smallest edge length in 

the mesh by placing a new vertex into the triangle’s circumcentre. This results in an 

extremely uniform mesh with well shaped tetrahedra, although unfortunately is does 

not guarantee that boundaries will survive the meshing process.

3.3.3 Geometric Primitives

The are two main geometric primitives we will use within this project, called the 

orientation test and the incircle test^'; both are crucial in building up the mesh 

correctly when using an incremental algorithm.
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/ B

A

Orientation Test Incircle Test

Figure 3.21 The two basic geometrical tests.

The orientation test determines whether a point Hes to the left, right or on a line and 

can be reduced to a test on a determinant (for the 2D case here):

Where a positive value indicates the point lies on one side o f the line, a negative value 

indicates the point lies on the other side o f the line and a zero determinant indicates 

that the point lies exactly on the line. It can be noted that the geometrical meaning o f 

[3.3.1] is related to the area o f the triangle ABP.

The incircle test determines whether a point lies inside, outside or on the circumcircle 

o f a triangle. This test can also be reduced to a determinant; if  the triangle vertices are 

given by the points ABC, this (again, for the 2D case) is:

A positive value indicates that the point lies outside the circle, a negative value 

indicates that the point lies within the circle and a value o f zero indicates that the 

point lies exactly on the circle.

Unfortunately, we cannot implement a naive evaluation using these determinants; if 

the point lies very close to the surface o f the circle a simple evaluation o f the 

determinants can lead to an incorrect result due to the limited precision o f the floating 

point calculations within the computer. A simple evaluation o f the determinants in 

order to incrementally build up a mesh using the Bower-Watson algorithm can 

therefore cause the algorithm to fail catastrophically due to the exclusion (or 

inclusion) o f triangles that should (or should not) be within the cavity; this failure 

occurs much more frequently than would be assumed.

a a \

Do=K ^ 1
P .  Py  1

D [3.3.2]
^y ^

Px Py  P I + p I  1

91



Computational Modelling o f  Novel Permanent Magnetic Designs

Therefore, we have to use exact methods o f evaluating the determinant which is one 

of the largest drawbacks to using the Bower-Watson algorithm. Shewchuk approaches 

this problem by writing a full floating point library which evaluates the determinant to 

increasing precision until the certainty o f the sign of the determinant is established^^. 

In this project, however, we use a much more modest implementation by clamping all 

values within the mesh to integers and using the Clarkson algorithm^^ to evaluate the 

exact sign on the determinant.

The Clarkson algorithm works by using the fact that if  we need to find the 

determinant o f the matrix A, |A|, we can decompose our matrix A into CR where R is 

the unit upper triangular matrix. The decomposition A = CR is simply a Gram- 

Schmidt decomposition, where our matrix C is composed of orthogonal basis vectors 

constructed from the vectors in A. Then |A| = |C|, so if  we can find C we can find the 

determinant o f our original matrix. The use o f floating-point calculations, however, 

gives us a matrix B where B C, and our Gram- Schmidt decomposition may fail if  a 

vector of B is very small, resulting in a near division by zero. The algorithm works by 

building up B making sure that each orthogonal component is ‘large enough’ to 

ensure correct determinant evaluation. If an orthogonal component is not ‘large 

enough’ it is multiplied by some scalar s and undergoes a second Gram-Schmidt 

orthogonalization to magnify the component in the orthogonal direction (the 

multiplication by a scalar does not affect the sign of the determinant). If this is done 

subject to certain bounds, we can be certain that the matrix B resulting from the 

process will give the same determinant as A. It should be noted that the Gram- 

Schmidt orthogonalizations should be ‘modified’ Gram-Schmidt orthogonaHzations 

which are numerically stable as they use linear combinations o f the input vectors (bi = 

ai + Sum[ai]) and not a linear combination o f the trial vectors (bi = ai + Sum[bi]); the 

repeated summation over calculated vectors can cause build-up o f floating point errors 

(although Bronnimann and Yvinec^^ claim that only the second orthogonalization 

needs to be o f the ‘modified’ variety and the first can be the classical 

orthogonalization). The details are complicated and presented in Clarkson’s original 

paper and undergo an even more comprehensive analysis by Brormimann and 

Yvinec^^.
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3.3.4 Fast Point Location

In order to proceed with Delauney triangulation we need to determine into which 

element in the mesh a point falls (called the query point); the most straightforward 

way to do this would be to simply go through all the elements and test whether the 

query point lies inside the element. This is obviously not optimal, at most it would 

take 0(M.) calculations for a mesh with M  elements. Furthermore, the test to see 

whether a point lies within an element is (relatively) computationally expensive as it 

requires 3 orientation tests in 2D (which requires evaluation of 3 determinants) or 4 

orientation tests in 3D. The determinant evaluations do not, however, have to be 

exact; if a point lies on the boundary between two elements it does not matter which 

element gets picked as the point will fall into the circumcircles of both elements and 

both elements will be removed anyway.

A more optimal way to locate the element is to use a jump and walk algorithm. In this 

algorithm, a number {M  ) of random elements are picked and the nearest element to 

the query point is chosen as the start element (this is the jump). The algorithm then 

walks through the mesh in a straight line towards the query point and terminates when 

it finds the element that contains the query point. This method is presented by Miicke, 

Saias and Zhu^ .̂

Figure 3.22 -  In the standard jum p and walk algorithm the distances from random M ’ elements are 

measured (left), and the algorithm proceeds to element containing the query point in a straight line(right).

This method, however, requires M ’ distance tests before it begins the walk stage. 

Furthermore, the walking part of the algorithm requires calculation of intercepts 

between the walk line and the mesh elements. An alternative method is presented as 

follows: We start at some element (this can be any element, although we can keep the 

jump part of the standard jump and walk algorithm) and take the dot products of the 

vector from the centre of the element to the query point (the search vector) and the 

normal vectors of the surface of the element. We then walk to the element through the 

surface that gives the highest value from these dot products. This means that we will 

always move towards the element that contains the query point (as element surfaces
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pointing away from the query point will always give us negative dot products). The 

algorithm terminates when all the dot products are less than zero, meaning we have to 

be inside the element that contains the point.

X ' '

Figure 3.23 -  In our normal walking algorithm the search vector is calculated (left), and the algorithm 

walks through the surface that gives the largest dot product o f search vector and element surface normal (right).

The algorithm has to make more steps than the standard jump and walk algorithm, but 

each step is much quicker than the standard algorithm. This is due to the fact that 

determination of the search vector is easy and each of the normals are already stored 

for each element (calculated during the meshing process). This algorithm is 

implemented in the project.

3.3.5 Ruppert Algorithm

The problem with incremental insertion algorithms lies in the processing o f 

boundaries in the design (in contrast to advancing front and octree methods in which 

the mesh is built around the boundary). This is due to the fact that the Delaunay 

triangulation o f a set o f vertices may or may not include boundary edges (figure 3.24).

1 2

Figure 3.24 - User-defined boundaries may not appear in a Delauney triangulation.

Ruppert was the first^^ (slightly before Chew introduced his second algorithm^’) to 

suggest a 2D algorithm which handles boundary segments. Furthermore, Ruppert’s 

algorithm automatically grades the mesh according to feature sizes o f the boundary 

whilst guaranteeing an angle bound of the triangles in the final mesh. The algorithm 

works by using the concept o f encroached edges (see figure 3.25). An edge is defined 

as encroached if a candidate vertex falls within its diametral circle (1) (the circle that 

passes through the two endpoints o f the edge with diameter equal to the length o f the 

edge). If any boundary edge is encroached the candidate vertex is rejected and the
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edge broken by insertion o f a new vertex at its midpoint (2). The cavity processing 

then goes ahead using this newly inserted vertex (3,4).

21

4

Figure 3.25 -  Stages fo r  boundary recovery in the Ruppert algorithm.

The mesh is incrementally constructed by taking a skinny triangle and attempting to 

insert a vertex in its circumcentre. If the candidate vertex encroaches any edges, these 

are split. The algorithm then takes a skinny triangle and repeats until there are no 

skinny triangles or encroached edges in the mesh. Breaking an encroached edge will 

sometimes remove the skinny triangle; if  not, the edge splitting will continue until 

either the circumcentre no longer encroaches any edges, at which point a vertex can 

be inserted into the circumcentre, or the triangle is removed by an edge break. 

Pseudocode for this algorithm is as follows:

while (Bad Triangle List Has Members) {
F i n d  t h e  C i r c u m c e n t r e  o f  t h e  C u r r e n t  B a d  T r i a n g l e ,  p  

Find Boundary Edges p Encroaches
Add Encroached Boundary Edges to Encroachment List

if (Encroachment Edge List Has Members) {
while (Encroachment List Has Members) {

Find Midpoint of Current Encroached Edge m 

Insert Vertex at m 

Process Cavity Around m

}
}
else {

Insert Vertex at p 
Process Cavity Around p

}
}
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Figure 3.26- 2D Meshes generated by a quadtree method (top). Chew's algorithm (middle) and Ruppert's algorithm (bottom). 

Figure taken from  "Lecture Notes on Delaunay Triangulation  ”  by Jonathan Shewchuk, p .55^\
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3.3.6 Shewchuk Algorithm

Mesh generation in 3D is much more comphcated than 2D, though most o f the 

algorithms covered previously can be extended to 3D with minor complications. The 

advantage o f using the Bower-Watson algorithm becomes apparent here as this 

immediately extends to three dimensions with no difficulty (of course, a circumcircle 

becomes a circumsphere and tests now involve the candidate point being inside or 

outside a sphere rather than a circle). The main difficulty lies in the fact that we now 

have to worry about two types o f boundary, boundary edges and boundary facets 

which both have to be recovered. The Shewchuk algorithm^^ is a 3D extension to the 

2D Ruppert meshing algorithm which introduces the concept o f an encroached 

subfacet. A subfacet is a triangular sub-face o f a boundary facet.

Bounclary

Boundary Facets

Figure 3.27- A sample mesh showing boundary facet and boundary sub-facets.

A subfacet is encroached if a vertex falls within its equatorial sphere. The equatorial 

sphere o f a triangle is the smallest sphere that passes through each o f the triangle’s 

vertices. Again, the diametral sphere is defined as the smallest sphere that passes 

through the endpoints o f a boundary edge and the circumsphere o f a tetrahedron is 

defined as the unique sphere that passes through the four points o f the tetrahedron 

(figure 3.28).

Diametral Sphere 
(Edge)

Equatorial Sphere 
(Triangle)

Circumsphere
(Tetrahedron)

Figure 3.28 -  The three types o f  sphere used in the meshing process.

The algorithm maintains three lists: A list o f tetrahedra to be split (these will be either

large or badly shaped tetrahedra), a list o f triangles to be split (these will be

encroached boundary subfacet triangles) and a list o f edges to be split (these will be
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encroached boundary edges). Edges have priority over triangles and tetrahedra, 

triangles have priority over tetrahedra.

The algorithm progresses by taking a large or skinny tetrahedron from the list and 

trying to insert a vertex at its circumcentre. If the candidate vertex encroaches any 

edges, the vertex is rejected and the edges are added to the edge list to be split (which 

may or may not eliminate the skinny triangle; if  not, the tetrahedron will remain in the 

list o f bad triangles and will be split at a later stage). If the candidate vertex does not 

encroach any edges, boundary subfacets are checked next; if  the candidate vertex 

encroaches any boundary subfacets the vertex is rejected and all the boundary facet 

triangles it encroaches are added to the triangle list for splitting. If the candidate 

vertex does not encroach any edges or facets, the vertex insertion goes ahead, 

eliminating the large or badly shaped tetrahedron. The next tetrahedron in the list is 

taken and the process repeats.

However, the process is complicated by the priority relationship. If any encroached 

subfacets are in the list, this list must be emptied before the processing o f any fiirther 

bad tetrahedra goes ahead. The process is illustrated by the following pseudocode:

while (Bad Tetrahedra List Has Members) {
Find the Circumcentre of the Current Bad Tetrahedron, q 
Find Boundary Edges and Boundary SubFacet q Encroaches 
Add Encroached Edges to Edge List 
Add Encroached SubFacet to SubFacet List

if (Edge List Has Members OR SubFacet List Has Members) { 
if (Edge List Has Members) {

while (Edge List Has Members) {
Find Midpoint of Current Encroached Edge m 
Find Boundary Edges m Encroaches 
Add Encroached Edges to Edge List 
Insert Vertex at m 
Process Cavity Around m

}
}
if (SubFacet List Has Members) {

while (SubFacet List Has Members) {
Find the Circumcentre of the Current Facet, p 
Find Boundary Edges and Boundary SubFacet p  Encroaches 
Add Encroached Edges to Edge List 
Add Encroached SubFacet to Facet List

if (Edge List Has Members) {
while (Edge List Has Members) {
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}
else {

Find Midpoint of Current Encroached Edge

Find Boundary Edges in Encroaches 
Add Encroached Edges to Edge List 
Insert Vertex at m 

Process Cavity Around m

Insert SubFacet Circumcentre Vertex at p 
Process Cavity Around p

}
}

}
else {

Insert Tetrahedron Circumcentre Vertex at g  
Process Cavity Around q

}

As Shewchuk points out, this algorithm generates the best positions for the vertices on 

the boundary facets rather than, as with some Delaunay algorithms, triangulation o f 

the boundaries as a prior stage to the 3D triangulation. As with the Ruppert algorithm, 

this process also guarantees both a quality and size bound on the tetrahedra in the final 

mesh. Furthermore, the mesh element size automatically adjusts to the feature size 

(see figure 3.29).

Figure 3.29 - The size o f the mesh elements automatically grade depending on the local feature size in Shewchuk's algorithm.
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3.3.7 Boundary Recovery

Unfortunately, boundary subfacets (and even boundary facets) may not appear in the 

final triangulation and have to be recovered. This boundary recovery process is 

complicated as it is difficult to quickly ascertain whether or not a facet is completely 

represented in the mesh by a set o f subfacets. Many meshing routines (including 

Shewchuk’s own process for boundary recovery^^) use the fact that a set o f vertices 

coplanar and within a boundary facet form a 2D Delaunay triangulation over the facet. 

By forming the 2D triangulation o f all vertices on the facet and then searching 3D 

mesh for the triangles within the 2D triangulation, the missing facets can be 

ascertained and recovered by insertion o f a vertex at their circumcentre. Shewchuk 

suggests using a 2D Delaunay triangulation for each boundary facet, and matching 

these 2D triangulations with the 3D mesh at each step to catch missing facets as they 

happen. This takes a large amount of processing, and is subject to co-circular 

degeneracies such that the 2D triangulations do not match the 3D mesh even for 

complete triangulations over the facet. Furthermore, Shewchuk does not cover thin 

boundary cases where two boundaries in close proximity interfere with each other. 

This is similar to the above case but can occur recursively; the two close boundaries 

can repeatedly remove subfacets in each other as they are processed. This can be seen 

in figure 3.30 below, which shows the effect o f interfering boundary facets on a 

cuboid of shrinking length.

Figure 3.30- As the length o f  the cuboid diminishes, the boundary faces increasingly interfere with each other 

(the back o f  boundary faces is coloured differently to highlight the effect).

We introduce a very straightforward way to recover boundary facets which relies on 

the cavity creation stage and the maintenance of a ‘ghost’ subfacet list. During the 

cavity processing stage we delete the interior elements o f the cavity, but we check 

whether we are about to remove a boundary subfacet (as these are marked as 

discussed later). If the boundary subfacet is about to be deleted by a vertex not on its
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own boundary, it is moved to a ghost subfacet Hst (if the algorithm is implemented 

with a list o f pointers to faces, this simply requires the addition of a pointer to the 

ghost list and the removal o f a pointer from the face list). At this stage the ghost 

subfacet is also added to the list of subfacets to be broken (if it isn’t included in this 

list already). Ghost subfacets and normal subfacets are then treated in the same 

manner in the subfacet break list; this means that a subfacet not physically present in 

the mesh can recover itself at a later stage (see figure 3.31).

Figure 3.3! - The interference o f  the boundary facets can be greatly reduced by using a ghost fa c e ' list.

Ghost subfacets are not checked for encroachment; this means that subfacets present 

in the mesh and the ghost subfacets can overlap (if, for example, the addition o f 

another vertex to the boundary by another ghost subfacet on the same boundary has 

partially patched the boundary already). Because o f this, we test whether vertex 

insertions for edges and facets on a boundary lie within a certain proximity o f all the 

ghost subfacet Delaunay centres on the same boundary. If the processing o f a ghost 

subfacet would introduce a vertex too close to another vertex on the boundary, the 

ghost subfacet is deleted from the list. The only remaining problem then is to choose a 

‘good’ proximity’ - if  the proximity value is too small, clustering occurs. If  it is too 

large, removing the ghost subfacet may cause a portion o f the mesh not to be 

recovered.

3.3.8 Implementation

We can deduce whether an edge is a boundary edge, or if  a face is a boundary 

subfacet using a simple vertex labelling procedure. Each vertex contains a list o f the 

IDs o f the boundaries to which it is attached; a vertex with no items in the list will be 

a ‘free’ vertex, a vertex with one item in the list will be a vertex on a boundary and a 

vertex with more than one items in its list will lie on a boundary edge. These vertex 

ID lists can be built incrementally as the only time we introduce a boundary vertex is
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when we break a boundary subfacet; the new vertex can then be marked with the 

boundary’s ID value. Similarly when an edge is broken the new vertex introduced at 

its midpoint is given the common HD values o f the two vertices on either end on the 

edge. Keeping to these simple rules as the mesh is built incrementally ensures that 

every vertex is correctly labelled.

Any face in the mesh can then be checked as to whether it is a subfacet by finding the 

common ID value over the three vertices of the face; if  the three vertices have a 

common ID, the face is a subfacet o f the boundary with the common ID value. If this 

is done as the face is created, each face can be immediately marked as to whether it 

lies on a boundary and, if  so, the ED value o f the boundary it lies on. If any face with a 

boundary ID value is deleted, we can then decide whether or not to move it to the 

ghost subfacet list.

3.3.9 Computational Realisation

The entire meshing, matrix assembly and matrix solution process was packaged into a 

single application named ‘Manifest’. In an advance on the previous versions of 

magnetic software (the Magnetic Solver packages), a fully programmable C syntax 

scripting interface was used with no predetermined shapes (unlike Magnetic Solver 

where, for example, a Halbach cylinder was a primitive construction object). 

Magnetic designs, including cylinders and flux sheets, can easily be created using 

scripts. Scripts also allow complex instruction flow which could work, for example, in 

a fully automated optimization algorithm. The script language also contains full file 

10, which allows large batches o f designs to be processed and compared efficiently 

later.

The current version only allows two primitives (although this could be extended very

straightforwardly); a quad object, which is a six sided object with quadrilateral faces

and user-defined vertices, and a cylinder object o f which the radius and length are

user-defined. The primitives are moved within the global bounding box by means o f a

local transformation, followed by a global translation, followed by a global rotation.

This allows rotationally symmetric designs to be built up very easily by simply

looping over the transformation and creation of the primitive whilst incrementing the

angular rotation at each step. The scripting interface is handled by Script.cpp.

Once the design is constructed (and environmental variables such as the global box

size and maximum mesh element volume have been set), the design is automatically
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meshed using Shewchuk’s algorithm as outlined in the previous section; this is by far 

the most complex part o f the application and uses Mesh.cpp. The mesh algorithm 

loops until no large or badly shaped elements are left in the design. Then, it further 

breaks elements which the user has requested be refined further; this is o f particular 

use in observation volumes where a higher mesh density is required or in parts o f the 

design containing soft materials, where high resolution is required for the flux. The 

mesh is then ‘painted’ using an algorithm that loops through every element and 

decides which material to assign it using the initial design building data. The 

elements, faces and vertices are stored in a doubly-linked list for efficiency.

Once the mesh is constructed, the matrix assembly begins and the application hands 

control to the FEMengine.cpp, which runs in a separate thread to the program shell. 

The matrix assembly is straightforward, although Manifest uses ‘compacted’ vectors 

(the class is contained in Matrix.cpp). Compacted vectors are fairly common. Here 

they are implemented by having a list o f vector indexes and a list o f vector values, 

with zero values in the vector not stored (see figure 3.32); this saves large amounts o f 

processing when dealing with sparse matrices, as in this project. Arithmetic operations 

between compacted vectors is, however, fairly tricky; a number o f routines were tried 

and those included in the project were found to be most efficient out o f all those 

tested.
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Figure 3.32  -  A fu ll  vector(left) and the resulting ‘compacted ’ vector.

After matrix assembly, the preconditioning matrix is constructed (or, the matrix is 

directly inverted using Cholesky factorization if desired). The conjugate gradient or 

direct solution is then carried out using compacted vector routines in Matrix.cpp. 

Once the solution is complete data can be extracted fi'om the system by routines that 

give the field at either any point or along any line through the design. If required, the
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field can be displayed as an arrow plot or a 2D slice; the graphics routines are carried 

out by using OpenGL routines in Graphics.cpp. The mean field and standard 

deviation in any observation volumes can also be determined and used by the 

scripting engine, for example, to be written to a file for plotting by an external 

application.
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4 Improvement of Homogeneity in Halbach Cylinders

4.1 Introduction

4.1.1 Effects of Cylinder Length on Field Homogeneity

An ideal, infinite length, Halbach cylinder produces a field which is constant and 

uniform within the bore (see section 1.1.3). Using [1.1.12] with [2.1.3] and the 

definition of magnetic polarization [2.1.53] gives the magnetic induction, B, in the 

bore o f a Halbach cylinder as:

where Jr is the magnetic remanence o f the material, Rg and i?, are the inner and outer 

cylinder radii and B is in the y direction. For a finite length Halbach cylinder stray 

fields are produced at the ends o f the cylinder; these end effects strongly affect the 

uniformity of the field within the cylinder as well as introducing small field 

components in the x and z directions. We seek to diminish these end effects whilst 

keeping the mean field as high as possible.

Sampino
VohjoAi Sam pling

Volume

Figure 4.1 -  A standard Halbach cylinder o f  length L and inner and outer radius RI and R2 respectively.

[1.1.4]
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Figure 4.2 - B vector field  and field  magnitude fo r  2cm long Halbach cylinder
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Figure 4.3 - B vector fie ld  and field  magnitude fo r  4cm long Halbach cylinder

Figure 4.4 - B vector field  and field  magnitude fo r  6cm long Halbach cylinder
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In practice a Halbach cylinder is segmented, as shown in figure 4.1, as opposed to 

having a circular ring-shaped cross section in the ideal case. The magnetic flux B in

Where N  is the number o f segments. Segmentation decreases and also affects the 

uniformity of the field within the bore, but both o f these effects can be reduced by 

increasing the number of segments. The effect o f segmentation on field uniformity is, 

however, minor in comparison to the end effects.

Figures 4.2 -  4.4, show the B field within the bore of an eight segment Halbach 

cylinder, calculated using the charge model, for three cylinders o f increasing length 

with dimensions Ri = 3cm, R2 = 6cm, Jr = 1.2T (the remanence o f NdFeB). The B 

field is shown on a slice through the central x-y plane o f the design, and also on the 

central x-z plane o f the design, z is the direction o f the cylinder axis and the central 

plane is z = 0. The B field direction is indicated by the black arrows and the B field 

magnitude by a colour scale. It can be seen immediately that the majority o f the flux 

produced by the design is confined to the bore o f the cylinder

The end effects can be seen as a ‘bowing’ o f the field towards the centre from the 

inner surface o f the cylinder in the x-y plane and a bowing outwards from the centre 

o f the cylinder in the y-z plane. The flux confinement is also affected by the length o f 

the cylinder; the stray field outside the cylinder can be seen to vary inversely with the 

length o f  the cylinder.

We measured the homogeneity by measuring the field values within a thin sampling 

volume; we choose this to be a cylinder o f very short length. Si, and a radius, Sr, 

centred on z = 0 and slightly smaller than the inner radius o f the Halbach cylinder 

under consideration, as shown in Figure 4.1. We sample the field on a regular grid o f 

points within the cylinder when using the charge model, and at each tetrahedral 

element within the cylinder when using the finite element model. Taking these values 

we calculated the standard deviation about the mean field;

Where x is the mean value of the sample set. Figure 4.5, below, shows a plot o f the 

mean field component By and its standard deviation ABy for Halbach cylinders o f

the bore of an infinite length segmented cylinder is given by^:

Zk . P
\ N J  J

[ 4 . 1.2]
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increasing length, calculated using the charge and finite element computer programs. 

The dimensions o f the cylinder are given above, Ri = 3cm, R2 = 6cm and remanence J  

= 1 .IT. The sampling volume is set to be a cylinder of radius Sr = 2cm and length Si = 

0.1cm (centred on z = 0) for the finite element calculation and Si = 0cm (sampled in a 

plane at z = 0) for the charge calculation.
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Figure 4.5 -  Mean field. By, and standard deviation AByfijr Halbach cylinders o f  varying length

The finite element calculations used large numbers of mesh elements resulting in a 

matrix system with large N  (around 40,000) and calculation time for any one design 

was typically be several orders of magnitude higher than the calculation for the same 

design carried out using the charge model.

The results from both programs can be seen to be in close agreement. It can be seen 

that the finite element model gives higher values for for each cylinder due to the 

slight difference in the sampling method. The maxima are, however, in the same 

location. It can be seen from figure 4.5 that iSBy for these particular dimensions has a 

maximum at a cylinder length o f around 2cm.

4.1.2 Increasing Field Homogeneity

Field homogeneity can be improved using shimming methods. Shimming is the 

placement o f small magnets (or current carrying coils) inside or outside the design 

(known as active shimming) or the placement of small pieces o f soft magnetic 

material inside the design (known as passive shimming). Active shims directly
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produce a field that compensates for the field inhomogeneities, whereas passive shims 

becom e magnetically polarized and the careful placement o f  these can then 

compensate for inhomogeneities. Typically shims are designed after fabrication o f  a 

design to smooth out any small inhomogeneities in the field. Apart from 

inhomogeneities caused by finite length and those due to the segmentation o f  the 

cylinder, inhom ogeneities can also arise from several other sources. The magnetic 

segments are assumed to have their magnetization aligned precisely in a given  

direction, but often small deviations from this true alignment can arise during 

manufacture. This is also true o f  the geometrical construction o f  the design; it is 

assumed that the magnetic blocks are perfectly joined, which may not always be the 

case after fabrication. The blocks are also assumed to be magnetically transparent; 

however, in reality, the blocks have a small susceptibly and furthermore are also 

slightly anisotropic.

Here, w e investigate two methods o f  increasing field homogeneity in short cylinders, 

which do not involve shimming. These are purely geometrical methods and do not 

affect any o f  the manufacturing considerations mentioned above. The first is to slice  

the cylinder into two parts and to separate the parts by a small distance S  in such a 

way that the 1=3 term o f  the spherical harmonic expansion for a Halbach cylinder is 

exactly cancelled^^ (see section 2.3.3). The second, which is a novel design, involves 

increasing the inner bore radius linearly from either end such that it reaches som e 

maximum inner radius R3 in the centre o f  the design. The main idea behind this 

design is to compensate for the ‘bow ing’ o f  the field in the central plane caused by the 

end effects by focusing the stray fields into the bore o f  the cylinder. W e also 

investigate a method o f  increasing field homogeneity by shimming a convectional 

Halbach cylinder by inserting a thin cylinder o f  soft iron into the bore.
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4.2 Split Halbach Cylinder 

4.2.1 Design Overview

45  d e g rees

Sam pling
Volume

Figure 4 .6 -  A split Halbach cylinder with split with S.

In the spherical harmonic expansion expression for a Halbach cylinder [2.3.45] the / = 

1 term gives a uniform field in the bore o f the cylinder, and the higher odd / terms add 

progressively decreasing distortion terms to this field (there are no even I terms due to 

the symmetry, see section 2.3.3). The 1 = 3 term represents the greatest distortion term
70and an ingenious way to remove this comes from considering the curve o f S3 

(defined in [2.3.42]) against Gc.

O.GB
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Figure 4.7 -  The Sj term in the spherical harmonic expansion fo r  a Halbach cylinder.

The value o f S3 can be seen to be the same at two values o f the angle Ol. If the inner 

radius o f the cylinder is fixed, these two angles represent two different points along 

the cylinder axis where S3 takes the same value. If cylinders o f these two lengths and 

opposite magnetization are superimposed on top o f one another, the contributions 

from their respective S3 will cancel as they will be o f equal value but opposite in sign, 

and the dominant distortion term of the superposition o f both cylinders will be zero.
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C y lin d er 1 C y lin d er 2  C y lin d er S u p e rp o s itio n

Figure 4 .8 -  Linear supposition o f  magnetic cylinders, shown in cross-section. The combination o f  

two magnets o f  opposite polarization results in a area o f  zero magnetization, or a void, in the design.

As magnetization is linear, the superposition on a block o f material on top o f a block 

of material magnetized in the opposite sense gives a material o f zero magnetization; 

this corresponds to a split in the cylinder, the separation o f the two parts o f which can 

be calculated from [2.3.42]. Further distortion terms can be cancelled in the same 

way, although the relative contribution to the distortion becomes very small as / 

increases.

Figures 4.9 - 4.11, below, show the B field within the bore o f an eight segment 

Halbach cylinder, calculated using the charge model, for three cylinders with different 

split widths S, o f dimensions Ri = 3cm, R2 = 6cm, Jr = 1.2T (the remanence of 

NdFeB) and length 5cm.
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Figure 4.9 - B vector fie ld  and field  magnitude fo r 0cm split (a regular 5 cm long cylinder).
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Figure 4.10 - B vector field and field  magnitude fo r I cm split
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Figure 4.11 - B vector field and field magnitude fo r  2cm split.
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4 .2.2 Effect of Split Width on Homogeneity

We measured the effect o f increasing the split distance, S, whilst keeping the total 

length o f the cylinder, L, and inner and outer radii, R/ and constant.
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Figure 4 .1 2  -Field mean By and standard deviation A B y fo r  a split Halbach cylinder with varying split width.

Figure 4.12 shows a plot o f the mean field By and its standard deviation ABy for a split 

Halbach cylinder with increasing separation, calculated using both the charge and 

finite element models. The dimensions o f each o f the cylinder parts are chosen to be L 

= 5cm, R/ = 3cm, R2 = 6cm, and the remanence J  = 1.2T. The sampling volume is 

again a cylinder o f radius Sr = 2cm and length Si = 0.1cm for the finite element 

calculation and 5/ = 0cm for the charge calculation. It can be seen fi'om figure 4.11 

that ABy for these particular dimensions has a minimum at a separation o f around 

8mm.

Also shown on figure 4.12 as a dashed vertical line is the separation needed to remove 

the / = 3 term from the harmonic expansion calculated using [2.3.42], For this 

calculation we chose the inradius o f the octagon (the distance fi'om the origin to the 

centre o f each inner face) and not the circumradius. For a cylinder with irmer 

circumradius o f 3cm this gives an inradius o f 3c o s ( t i /8) « 2.77 cm. 9l is then given by 

tan‘'(2/?//Z-) = tan''(2.77/5) so Gl ~ 0.84 radians. The second value o f 9l = 1.34 

radians, as can be seen fi'om inspecting figure 4.7. The second length (which is the
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separation distance, S) is then given by L 2 = 2x2.77/tan( 1.34), which gives L2 » 

1.3cm.

The minimum found differs from the minimum for the ideal case for two main 

reasons. The first is the effect o f the remaining I terms which are not cancelled by the 

cut; the separation distance found by the simulation represents an average minimum 

of all the harmonic distortion terms. The second reason is the effect o f segmentation. 

Figure 4.13 shows the effect of increasing N  on the A5 ,̂ curve for the 5cm long 

cylinders (note the axis has changed from the right to the left vertical axis in the 

plot). As N  becomes larger, the minimum moves closer to our ideal calculated cut 

width.
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Figure 4.13 -  Effect o f  increasing the number o f  component segments in the split Halbach design.

Figure 4.14 shows a family o f these graphs, to determine the trend o f the minima with 

respect to the total length o f the cylinder:
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Figure 4.14 -  Standard deviation as a percentage o f the mean for varying cylinder length o f  split Halbach design N=8

It can be seen from figure 4.14 that each cylinder length has a different optimum split 

width, as expected. Shorter cylinders can be seen to have a slightly higher ABy at 

optimum separation distance than longer cylinders.

4.3 Halbach Cylinder With Non-Uniform Inner Radius 

4.3.1 Design Overview
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Figure 4.15 - A Halbach cylinder with a non-uniform inner bore radius

We introduce a novel design in which the bore radius o f the Halbach cylinder 

increases linearly from both ends to a maximum central radius. This design was
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introduced to see whether we could reduce the ‘bow ing’ effect o f the field caused by 

the end effects by focusing the flux inwards by varying the inner face surfaces. We 

expect the homogeneity to be affected by the angle o f  slope, a ,  and in particular, we 

expect there to be a optimum value o f  this slope angle which gives us the best 

homogeneity over the sample volume for any chosen length o f  cylinder. Figures 4.16 - 

4.18, below, show the effect on the field within the bore o f  the cylinder for three 

different values o f  central radii (corresponding to three different slope angle values):
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Figure 4.16- B vector field  and field  magnitude fi)r inner radius o f  3 cm (a regular 5cm long cylinder).

I
-Iss-^j-

- ' / /  . 'T . ' I ■

- f - -

- f - r/, / / / y z / / - / /
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Figure 4.18 - B vector field and field magnitude fo r inner radius o f  5.5cm.
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4.3.2 Effect of Increasing Central Bore Radius

We vary Rcentrai (which changes the slope angle a), while keeping the length the 

cylinder, L, and the radii Ri and R2 fixed (see figure 4.15):

0.025

- FEM Mean 
— * — Charge Mean 
• • FEM Stdev

— •—  Charge Stdev

0.5
-■ 0.02

0.4

' •  0.015

• •  0.01

0.2

- -  0,005

0.04850.0335 0.0385 0.0435 
Central Radius (m)

0.0205 0.0535 0.0585

Figure 4.19 - By fie ld  mean and standard deviation fo r  a Halbach cylinder with varying central radius.

Figure 4.19 shows a plot of the mean field By and its standard deviation for a 

Halbach cylinder with increasing central inner radius, Rcentrai, calculated using both 

the charge and finite element models. The dimensions o f the cylinder is chosen to be 

L = 5cm, Rj = 3cm, R2 = 6cm, and the remanence J  = 1.2T. The sampling volume is 

once again a cylinder o f radius Sr = 2cm and cylinder Si = 0.1cm for the finite element 

calculation and Si = 0cm for the charge model calculation. In figure 4.20 we plot a 

family o f such curves to ascertain the trend o f the minima with respect to the length o f 

the cylinder:
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Length = 3cm

Length = 4cm

Lengths 5cm
Length = 6cm

Length = 7cm
Length = 8cm

Length = 9cm

Length = 10cm

0.04 0.045

C entral Bore Radius (m)

Figure 4.20 - Standard deviation as a percentage o f  the mean fo r  cylinder with non-uniform bore and varying length.

It can be seen that longer cylinders give an improved standard deviation as a 

percentage o f the mean in comparison to shorter cylinders.

4.4 Halbach Cylinder With Soft Iron Insert 

4.4.1 Design Overview

45 degrees

Iron

Front

4 Sam pling‘1 Volume

S oft lion

Figure 4.21  -  A Halbach cylinder shimmed with central soft iron cylinder o f  thickness t.

This design is composed of a Halbach cylinder shimmed with a second soft iron 

cylinder inserted inside its bore. The outer radius of the iron cylinder is the same as 

the inner radius o f the Halbach cylinder, and both cylinders are the same length (see
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figure 4.21). Initially it would appear that this design would give no great 

improvement in homogeneity and the addition of the soft iron cylinder would simply 

reduce the strength o f field in the central bore. This is due to the fact that soft iron is a 

flux conduit, and therefore the iron cylinder would simply channel all the flux around
C O

the central region, reducing the field. However, Brown showed experimentally that 

although the expected drop in the mean field occurs, the homogeneity is improved 

inside designs incorporating thin soft iron cylinders (of thickness o f around 1mm 

inside a Halbach cylinder o f Z, = 5cm, Ri = 3cm, R 2 -  6cm). As the Magnetic Solver 

program can only carry out calculations for designs composed o f hard materials, 

calculations for this design were carried out using Manifest (our finite element 

program).

Figure 4.22 - B vector field and fie ld  magnitude fo r  shim thickness o f  2.5 mm, calculated using Manifest: 

the magnetic field in the bore and external to the magnet (left), and the field  inside and outside the design (right).

4.4.2 Effect of Insert Thickness on Homogeneity

We investigated the effect o f increasing the thickness t o f the soft iron cylinder, whilst 

keeping the length of the cylinders and inner and outer Halbach radii, Rj and R2 , 

constant.
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F igure 4.23 -  By f ie ld  m ean and standard  deviation  f o r  a  Halbach cylinder with soft iron yoke  o f  varying thickness.

Figure 4.23 shows a plot o f  the mean field By and its standard deviation A5y for a 

Halbach cylinder shimmed with a soft iron cylinder. The dimensions o f  the cylinder 

are L  = 5cm, Rj -  3cm, R2 = 6cm, and the remanence J  = 1.2T. The relative 

permittivity o f the soft iron was chosen to be /Ur = 1000 and the saturation value o f  the 

iron, Ms, was chosen to be 2.15/|j^ A/m (see section 3.2.3). The sampling volume is a 

cylinder o f radius Sr = 1.2cm and cylinder Si = 0.5mm. The minimum thickness o f 

iron cylinder was 1mm due to difficulty in meshing extremely thin boundaries. 

However, without using the techniques in boundary recovery described in section 

3.3.7 this minimum thickness would have been approximately an order o f  magnitude 

higher.

The three points marked in green on figure 4.23 are the average values o f  By

measured by Brown^*. The reason that these points lie slightly above the calculated

values could be due to the soft iron cylinders in his experiment having some residual

magnetizafion; the field values calculated by M anifest use the method outlined in

section 3.2.3, which uses the initial magnetization curve o f  the soft material in the

simulations (curve A to B in figure 1.3). It can be seen fi’om figure 4.23 that the

standard deviation curve has a minimum at around 1.75mm. Brown quotes the

thickness o f  iron cylinder giving the best homogeneity in a Halbach cylinder with
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dimensions L = 5cm, Ri = 3cm, R2 = 6cm as just over Imm^*, although he takes the 

sampling area over a square o f side 1.4cm in the central plane o f the magnet.

4.5 Comparison of the Methods of Improving Homogeneity

To compare the designs we plot the mean By against its standard deviation as a 

percentage o f the mean. A regular eight sided Halbach cylinder with R/ = 3cm, R 2 = 

6cm and remanence 7  = 1.2T is included for reference.

Figure 4.24 -  Comparison o f  the three designs from  section 4.1, 4.2 and 4.3.

Figure 4.24 Shows the standard Halbach cylinder (section 4.1, blue line), the split

cylinder design (section 4.2, green lines) and the Halbach cylinder design with the

non-uniform inner radius (section 4.3, red lines). Each point on the blue line

represents a regular cylinder o f different length; moving along the line from the lower

right comer each point represents an increase in cylinder length by 0.5cm. The green

lines represent five split cylinders with varying split width. The point at which the

green and blue curves intersect represents a split distance o f zero; each point on the

green line moving away from the blue line then represents an increase o f 1mm of the

split width, up to a maximum split width of 2cm. The red curves represent five

cylinders with varying inner central bore radius. The red and blue curves intersect

where the inner radius for each cylinder is constant; each point along the red line then
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represents an increase in the inner radius at the centre by 1.5mm (keeping the inner 

radii at either end fixed), up to a maximum central bore radius o f 5.85cm.

The designs that produce the highest field with the best homogeneity are the designs 

with minima as close as possible to the bottom right of the graph: it can be seen that 

the best possible design is a very long cylinder. A cylinder with N =  S,Jr=  1.2 T and 

Ro/Ri = 2 and length approaching infinity has a value o f By in the bore o f 0.749 T, 

from [4.1.1]. The standard deviation o f the field ABy o f the ideal infinite length 

cylinder will approach zero, but segmentation will cause ABy to approach a value 

slightly above zero; this can be seen in figure 4.24.

The sample radius Sr for the design comparison in figure 4.24 is 2cm. To compare the 

split design and the Halbach cylinder design with the non-uniform inner radius with 

the shimmed cylinder design the sample radius must be decreased (due to the fact that 

the shim would otherwise overlap the sampling volume). Figure 4.25, below, shows 

the shimmed Halbach design in comparison the other three designs for a sampling 

radius Sr of 1.2cm and a total cylinder length of 5cm:

Standard 
Sec 4 .2 .5cm 
Sec 4 .3 .5cm 

Sec 4 .4 .5cm

0.5 -

0.780.3 0.350.2 0.25

Mean (T)

Figure 4.25 -  Comparison o f  the designs from section 4.1, 4.2, 4.3 and 4.4.

Figure 4.25 Shows the standard Halbach cylinder (section 4.1, blue line), the split

cylinder design (section 4.2, green line), the Halbach cylinder design with the non-

uniform inner radius (section 4.3, red line) and the Halbach cylinder with the soft iron

shim (section 4.4, yellow line). The points on the red, green and blue curves are
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generated using the charge model in the same way as for figure 4.24. Each point on 

the yellow curve moving to the left o f its intersection with the blue curve represents 

an increase in the shim cylinder thickness o f 0.25mm. There is a small difference 

between the point o f interception o f the red and green curves with the blue curve and 

the intercept o f the yellow curve with the blue curve. This is due to the sample being 

taken over a sampling volume with 5/ = 0 for the first three o f these designs and over a 

sampling volume with Si = 0.5mm for the shimmed design (which was calculated 

using the finite element method). It can be seen that the shimmed design provides a 

good increase in homogeneity over the standard Halbach cylinder and provides a 

much higher field at its minimum than either the split design or Halbach design with 

the non-uniform irmer radius.

The minimum of as a percentage o f the mean for the split design (section 4.2) and 

the design with the non-uniform inner radius (section 4.3), sampled over a volume 

with Sr = 2cm and Si = 0 is given in table 4.1:

L (cm) Stdev%Mean 
4.2 Min,

Stdev%Mean 
4.3 Min.

4.2 Mean 
(T)

4.3 Mean 
(T)

3 1.35 - 0.16 -

4 1.04 - 0.31 -

5 0.76 0.29 0.42 0.25

6 0.57 0.20 0.51 0.34

7 0.41 0.14 0.57 0.43

8 0.31 0.12 0.62 0.50

9 0.25 0.11 0.65 0.54

10 0.25 0.10 0.67 0.59
Table 4.1 -  Minima fo r  split and non-uniform bore designs.

O f these two designs, the design producing the highest mean field with the greatest 

homogeneity for any particular cylinder length is the split design. However, the 

design with the non-uniform inner radius produces better homogeneity than the split 

design, although this is achieved for lower fields. Also, as the length of a standard 

cylinder increases, the standard deviation as a percentage o f the mean converges to 

approximately 0.15, with a mean field o f approximately 0.74 T. It can be seen that the 

design with the non-uniform inner radius can approach this field homogeneity for 

cylinders of considerably shorter length. This design, therefore, can be put to use in 

applications in which low field strength with high field homogeneity is required.
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The Halbach design shimmed with the soft iron cyhnder produces a higher mean field 

at the minimum of the standard deviation than either of these designs, although the 

homogeneity achieved is not as good. The minimum of IsBy as a percentage of the 

mean for the split design (section 4.2), the design with the non-uniform inner radius 

(section 4.3) and the shimmed design (section 4.4) sampled over a volume with Sr = 

1.2cm is given in table 4.2:

L (cm) Stdev%Mean 
4.2 Min.

Stdev%Mean 
4.3 Min.

Stdev%Mean 
4.4 Min.

4.2 Mean 
(T)

4.3 Mean 
(T)

4.4 Mean 
(T)

5 0.094 0,035 0.779 0.36 0.21 0.47
Table 4.2 -  Minima fo r split and cut designs.

It should be noted that the width o f the split in the design o f section 4.2 and the value 

o f the central radius in the design of section 4.3 which gave the minimum value o f 

ABy as a percentage o f the mean is different in the case of a sample volume of radius 

2cm from that o f a smaller sample volume o f radius 1.2cm. This accounts for the 

difference between the values of the minimum mean field By for a cylinder o f 5cm 

length in table 4.1 and table 4.2.

It is also important to take into account the volume of hard material used in the 

design; rare earth alloys are typically very expensive and we would ideally like to use 

the minimum possible volume of material. Figure 4.26 gives a comparison of the 

volume o f the two designs from section 4.2 and 4.3 against the mean field. Soft 

materials are typically much cheaper than hard materials, and the shimmed design 

from section 4.4 is not considered here.
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Figure 4.26 -  Comparison o f  the volume o f magnetic material used fo r  the three designs.

The lines converge where the split width is 0cm in the split design and the central 

bore radius Rinner = in the design with non-uniform inner bore radius. Each point to 

the left o f this represents an increase in the split width by 1mm for the split cylinders 

(green lines) and an increase in the central radius by 1,5mm for the Halbach design 

with non-uniform inner radius (red lines). It can be seen that the split design achieves 

any given mean field strength with the lowest volume of material. Figure 4.27 shows 

ABy as a function of the volume.
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Figure 4.27- Standard deviation fo r  different volumes o f  material fo r  each o f  the three designs.
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It can be seen that for a minimum the designs of section 4.3 require the least 

volume of hard magnetic material when compared to the split designs o f the same 

length.

In summary, there is no ‘best’ design; each has advantages and disadvantages and in 

practice the design must be picked to match the requirements o f the particular 

application. If a high field is required and homogeneity is not important, a standard 

cylinder should be used as it provides the highest field strengths for any particular 

cylinder length. If homogeneity and field strength are both important, either the split 

cylinder or the shimmed cylinder should be chosen. The shimmed design provides 

high field with a good increase in homogeneity, whereas the split cylinder provides 

high homogeneity with lower mean field (see table 4.2). If field homogeneity is 

important and the fields required are low, the Halbach design with non-uniform inner 

radius should be chosen as it provides the best homogeneity for short cylinders out o f 

the three designs considered.
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5 Designs Producing a Constant Field Gradient

5.1 Introduction

We have investigated methods o f producing a uniform field gradient using cylindrical 

designs. Ideally, we required designs which produced the highest and m ost uniform 

field gradient over the largest possible working volume. We considered three designs; 

firstly, a design in which the bore o f  a Halbach cylinder increases down the length o f  

the cylinder giving a field gradient orthogonal to the field (figures 5.1, 5.2). Secondly, 

a design in which the bore o f a Halbach cylinder is offset giving a field gradient 

parallel to the field (figure 5.8). The final design considered was an ‘open’ design in 

which a sheet o f  one-sided flux is partially rolled, giving a field gradient parallel to 

the field (figure 5.12). The remnant magnetic polarisation Jr is fixed at 1.2 Tesla 

throughout all these simulations.

5.2 Halbach Cylinder With Linearly Varying Inner Radius 

5.2.1 Design Overview

45 degrees

Fro'nt

45 degrees

Back V

Figure 5.1 -  A Halbach design with linearly varying inner radius; front and back faces.
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Figure 5.2 - Halbach design with linearly varying inner radius: cross section.

In this design the inner radius o f  the bore o f  a Halbach cylinder increases linearly 

along the z-axis, as shown in figures 5.1 and 5.2. The idea behind this design is that 

the central field in a Halbach cylinder depends on the ratio o f  inner and outer radii and 

i f  w e consider the extremely simplified model o f  two semi-infinite Halbach cylinders 

placed end-to-end, shown in figure 5.3, we can see that the higher field at point A 

must change smoothly (though not necessarily linearly) to the lower field at point B. 

This is due to the fact that the field within the bore is given by a magnetostatic 

Laplace equation, and as there are no magnetic source terms between point A and B 

the field must be smooth along this path.

o
q:

Cylinder 1

Cylinder 2

q :
I

00 00

Cylinder 1

Cylinder 2

Figure 5.3 - A schematic view o f  two semi-infinite Halbach cylinders placed end-to-end.

The question arises as to whether w e can approximate a linear transition by some 

choice o f  Rji and Ri2. The same reasoning can be applied to a design incorporating 

any number o f  component cylinders with different radii, and in the design shown in 

figures 5.1 and 5.2 w e take the limit in which the length o f  each o f  each o f  these 

component cylinders becom es zero, producing a smoothly sloping inner surface. The
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question becomes whether we can obtain an approximately linear gradient along the z 

axis by some choice o f  6.

We found that a design with parameters Rj = 1cm, R2  = 3.3cm, R3  = 5cm and L = 

10cm achieves a constant uniform field gradient within a region along the z-axis. The 

vector field from a design with these parameters is shown in figure 5.4;
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Figure 5.4 -  The B vector field  and field  magnitude fo r  Halbach cylinder with linearly varying inner bore.

The main field component is in the y  direction and can be seen to decrease along the 

z-axis. The By field component and gradient d ff/dz (taken fi'om positive to negative 

z)is plotted for these parameters in figure 5.5;
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Figure 5.5 -  By and dBy/dz fo r  standard design fo r  Halbach with linearly varying inner bore; 

fie ld  is taken from -7cm to +7cm along the z~axis (black line in figure 5.4).
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The region o f approximately constant gradient is marked on figure 5.5 by the two 

vertical dashed lines and the ends of the cylinder by the unbroken vertical lines; we 

have defined this to be a 3cm long region from -1cm to +2cm along the z-axis in this 

design. The magnitude o f dB for this region for the parameters above is around 11 

T/m. This region o f approximately constant gradient will be referred to as the working 

region o f the design.

In an ideal Halbach cylinder the magnetization direction changes continuously in the 

plane perpendicular to its axis, according to [1.1.12]. Using the charge model (section 

2.2.1) we can derive an analytic expression for the field component By on the axis of 

such an un-segmented cylinder with irmer radius linearly varying along the axis and 

finite length L (see appendix, A. 1.3):

2
BAOfi,z) =

In
 ̂ +z^ - z

+ { L - z y  + L - Z  

■\J(̂ L + oi)̂  + L + cc
VT+lan̂ In

+y^ + a

[ 5 .2 . 1]

where;

a  =
tan9 - z  

1 + tan^ 9

Ir , -  z  tan ̂

[ 5.2 .2]

[ 5 .2 .3]

1 + tan^ 9

This field is shown in figure 5.6 for a design with parameters Rj = 1cm, R2 = 3.3cm, 

R} = 5cm and L = 10cm. Note that in the analytic expression z = 0 is the small end of 

the cylinder and not the centre.
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Figure 5.6  -  TTie analytic expression fo r  a cylinder giving a constant f ie ld  gradient.

The region of approximately constant gradient corresponding to figure 5.5 is marked 

by the two vertical dashed lines and the ends o f the cylinder by the unbroken vertical 

lines. When compared to figure 5.5 it can be seen that the expression gives a By 

profile that starts at a higher value at the smaller end o f the cylinder and the maximum 

is slightly lower than the segmented design. The gradient is, however, o f similar 

magnitude within the working area in the two cases, although the analytic expression 

predicts a slight increase in the gradient along the axis. The segmentation therefore 

has little effect on the maximum achievable value o f the gradient.

5.2.2 Design Summary

We chose cylinders with dimensions /?/ = 1cm, R 3  = 5cm, L = 10cm and tan(9) 

0.23, and examined the effects o f varying the slope angle 9 ,  the length L, and the 

outer radius Rj one at a time. Graphs of the field By and field gradient dS^dz as a 

function o f z for different tan (^ , L and R} are shown in appendix A.2.1. It should be 

noted that Bx and B2  are negligible in comparison to By (the mean value o f B^ is 

approximately less 10'^ the mean value of By and the mean value if Bx is 

approximately less than lO" the mean value o f By).We also calculated the standard 

deviation o f dBy/dz within the working area to asses its uniformity. We varied the 

slope angle 9  and found that the most constant field gradient is achieved for a value 

o f tan(9) = 0.23 corresponding to a gradient of magnitude approximately 11 T/m and 

a minimum standard deviation o f 0.063 T/m (figure A.2.3). Intuitively, we would
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expect the largest change of field along the z-axis to occur when R 2 » Rs as the field 

contribution from the wider end should then be close to zero. However, this does not 

give a constant field gradient (as can be seen from figure A.2.2).

We found that a larger region o f constant gradient cannot be achieved by simply 

changing the cylinder length (figure A.2.4). We also found that changing the outer 

radius of the cylinder does not increase the magnitude o f the gradient within the 

working region.

This design is the only one developed in this project which produces a field gradient 

orthogonal to the field. The standard design with parameters Rj = 1cm, R2 = 3.3cm 

(corresponding to tan(9) = 0.23), R 3 = 5cm and L = 10cm produces a constant field 

gradient of approximately 11 T/m within the working region, from -1cm to +2cm 

along the z-axis. The uniform gradient cannot be tuned by a simple variation of a 

single parameter, for example, the outer radius or slope angle. However, using scaling 

o f the design as a whole we can control the field gradient.

The length o f the region o f constant gradient varies as Ms where s, the scaling factor, 

is a constant multiplying the parameters /?/, R2 , R3 and L in the design. Scaling the 

entire design down increases the gradient which, although somewhat counter­

intuitive, has a straightforward explanation which can be visualised by scaling down 

the system shown in figure 5.3. The fields at points A and B depend only on the ratio 

o f inner to outer radii for both cylinders respectively, so this ratio and therefore the 

field at both o f these points does not change as the system is scaled. However, the 

distance between the points on the z-axis does change, and so the gradient d 5 /d z  

along the z-axis is inversely proportional to the scaling factor. Extremely high 

gradients are therefore possible in small cylinders, but the working region decreases 

correspondingly.
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Figure 5.7 -  The value o f  the field gradient in the linear region o f  the design scales as I/s.

Once the gradient for a particular application is chosen, figure 5.7 can be used to pick 

the appropriate scaling factor for the design.

5.3 Halbach Cylinder With Offset Bore 

5.3.1 Design Overview

f A

to Cross-Section
8 8
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Figure 5.8 -  A Halbach design with offset bore, the bore offset is given by Oy.

This design is a variation o f the standard eight segment Halbach cylinder in which the 

central bore is offset by an amount Oy with respect to the outer cylinder axis as shown 

in figure 5.8. A constant field gradient dByJdy is produced in the bore, depending on 

the inner radius, /?/, the outer radius, Rs, and the bore offset, Oy. The idea behind this 

design is that the higher volume o f magnetic material in the lower part o f the design
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and the lower volume o f magnetic material in the upper part o f the design will 

produce a gradient along the y-axis.

The B field from a design with Ri = 2cm, Ri = 6cm, Oy =3cm and L - 10cm is shown 

in figure 5.9. It can be seen that the design has good field confinement with little stray 

field outside the cylinder. The field gradient for this cylinder is approximately 25 T/m.

5.3.2 Design Summary

We chose a cylinder with dimensions L -  10cm, = 6cm, Rj = 1cm and examined

the effects o f varying the bore offset Oy and the length L individually. Graphs o f the 

field gradient as a function o f z for different Oy and L are shown in appendix A.2.2. 

We found that the magnitude o f the gradient is proportional to the bore offset and the 

gradient has good uniformity over most o f the bore (figure 5.10). Defining a working 

area o f length 0.6cm from 0.45cm to 0.15cm along the y-axis, we found that the value 

o f bore offset giving the lowest standard deviation is Oy = 2.5cm, which produces a 

field gradient of 44 T/m with a standard deviation o f 0.087 T/m (figure A.2.7). We 

investigated the effect of varying the length of the cylinder and found that the gradient 

is most uniform for long cylinders (figure A.2.8). This suggests that end effects 

caused by short cylinders strongly affect the region over which the gradient is 

constant.

This design is therefore slightly different to the other designs considered as the end 

effects have a significant influence on the constancy o f the field gradient (figure

>  \  V  N  >  ^  V  \ I i)a4 7  T  ^

V ' /  /  \

Figure 5.9 - The B vector field in Halbach cylinder with an offset bore.
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A.2.8). The cyHnders must be fairly long in comparison to their radii to overcom e this 

effect.
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Figure 5 .1 0 - The field gradient in the linear region is directly proportional to the bore offset.

Figure 5.10 shows the value o f  the gradient at the centre o f  the bore (which is the 

midpoint o f  the region o f  uniform gradient) calculated for a cylinder with R/ =  1cm, 

R2  =  15cm and L = 50 cm. If the entire design is scaled up or down by multiplying the 

parameters R/, R 3 , Oy and L by the scaling factor s, the magnitude o f  the gradient 

within the working area scales as I/5 :
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Figure 5.11 ~ The effect o f  scaling the Halbach design with offset bore.
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In summary, this design would suit applications in which a low uniform field gradient 

parallel to the field direction is required over a small working area.

5.4 Rolled Flux Sheet 

5.4.1 Design Overview
/  V I

bo X or

  b r x i r ------

Range

Figure 5.12- A design composed o f  a semi-rolled sheet o f  one-sided flux o f  length L.

This design is a novel ‘open’ cylinder design composed of a partially rolled one-sided 

flux sheet. Our motivation for this design came from the offset bore design covered in 

section 5.3. It can be seen that the gradient o f the field for the design with the offset 

bore is proportional to the size of the offset amount. If the offset for this design is 

increased the bore will, at some point, touch the outer surface of the cylinder. A 

design with the inner bore touching the outer surface of the cylinder would waste 

large amounts of magnetic material in the lower part of the cylinder and would also be 

difficult to manufacture due to the thin slivers of material in the top part of the 

cylinder. We therefore investigated whether a rolled flux sheet would give the same 

effect, but would produce the field more efficiently, that is, with a lower volume of 

magnetic material for the same gradient. All designs we considered had twelve 

segments (as shown in figure 5.12).
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Figure 5.13 -  A one-sided flux sheet being rolled. The flux is almost entirely confined within the fo ld  o f  the rolled sheet.

Figure 5.13 shows how the flux distribution changes as a one-sided flux sheet is rolled 

into a cylinder. As can be seen, the flux is concentrated within the fold and always 

confined to one side of the sheet. However, we found that an open cylinder with a 

semi-circular cross-section could not give a constant field gradient. After trying a 

number of different cross-sectional surfaces (such as parabolic and exponential) we 

found that a region of constant gradient could be achieved using a cylinder with an 

elliptical cross section.

The flux sheet was rolled into an open cylinder with elliptical inner and outer surfaces 

with different semi-axes. To make it easier to compare the rolled design with a 

standard circular cylinder, with inner and outer radii ir and or, the semi-minor and 

semi-major axes for the inner and outer elliptical surfaces were given as multiples o f 

ir and or.

The irmer ellipse has semi-major axis given by ai xir and semi-minor axis given by 

bi xir. The outer ellipse has semi-major axis given by ao xor and semi-minor axis 

given by bi xor, shown in figure 5.12. These dimensionless constants ai, ao, bi, bo 

can be thought of as elliptical distortions to a regular cylinder with inner radius ir and 

outer radius or, and have values around unity. The angular range o f the ellipse was 

defined as the angle from the position o f the centre of the first block to that o f the last 

block, shown in figure 5.12.

We investigated the effect o f varying the inner and outer ellipse parameters, as well as 

the range. The pattern o f magnetic polarization was set so that the outer surface o f the 

cylinder is the x-axis in an un-rolled frame o f reference:
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J^ =sin(x), J^ = -cos(x) [5.1.1]

Several magnetization patterns were investigated, and the highest field strength with 

lowest flux leakage was found to be the distribution [5.1.1] (see section 2.3.1). Shown 

in figure 5.14 is a design producing a region of constant uniform field gradient along 

the y-axis, with an angular range of 1.3:r radians, hi = 0.78, ho = 0.7, ai = 1.0, ao 

=1.0, L = 10cm and the inner and outer ellipse radial parameters ir = 4 and or = 8 

respectively.

/  . ' - . . V M M  V T T
\  X /

\  \  —

\ I 4oJ /
^  W  \ \ \ \ I
\ / / /1 w \ r

N !»
5  ̂X  A .

I 7 7

1 /» /

x k -  f

j ^  ^  ^  A /  1 >

Figure 5.14 -  The cross section o f  the B vector field fo r  the semi-rolled flux  sheet design.

The flux can be seen to have good confinement, with low flux leakage fi'om the open 

upper part of the design. The main field component is in the y  direction and can be 

seen to decrease along the >’-axis. The field component By and gradient dfi/dy (taken 

fi-om positive to negative>>)are plotted for this design in figure 5.23:
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Figure 5.15  -  By and dBy/dz fo r  standard flu x  sheet design: fie ld  is taken from  -3.5cm to +3.5cm 

along they-axis (black line in figure 5.14, above).

The region of linear field gradient is marked by the vertical dashed lines; it is 2cm 

long and is lies between -2cm and 0cm on the y-axis. The region o f uniform gradient 

shown in figure 5.15 has a magnitude o f approximately 17 T/m.

5.4.2 Design Summary

We chose a flux sheet with dimensions bi = 0.7, bo = 0.7 radial parameters ir = 4, or = 

8, length L = 10cm, and angular range o f 1.3;: radians, and examined the effects o f 

individually varying the parameters bi, bo, angular range and the length L. Graphs of 

the field gradient as a function o fz  for these parameters are shown in appendix A.2.3. 

We also calculated the standard deviation o f dByJAy within the working area to asses 

its uniformity. To measure the effects o f changing the semi-minor and semi-major 

axes o f the inner and outer ellipses we fixed the semimajor parameters ai and ao at 1 

and varied only the semi-minor parameters bi and bo.

We investigated the effect o f the inner ellipse on the field by varying bi (figure A.2.9). 

We found that minimum value of the standard deviation within the working area is at 

bi = 0.78, with a value of 0.062 T/m (figure A.2.10), corresponding to a uniform 

gradient close to 17.2 T/m over a length of approximately 2 cm. We also investigated 

the effect o f the outer ellipse on the field gradient by varying bo (figure A.2.11). and 

found, somewhat surprisingly, there is a second configuration o f the inner and outer 

ellipse parameters which gives rise to a uniform gradient within the design with a 

minimum value of standard deviation at bo = 0.58 (figure A.2.12). However, the field
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gradient for the configuration bo = 0.58, bi =  0.7 is approximately 17 T/m with a 

standard deviation o f  0.125 T/m, whereas field gradient obtained with the 

configuration bo =  0.7 and bi =  0.78 is higher, 17.2 T/m, and has a lower standard 

deviation o f  0.062 T/m. Consequently, the following investigations were based on the 

configuration with bo =  0.7 and bi =  0.78.

W e then investigated the effect o f  changing the angular range for a flux sheet with bo 

= 0.7 and bi =  0.78 and found that the angular range o f  the ellipse strongly affects the 

field within the cylinder and a uniform field gradient only exists for a range o f  

approximately 1.3:r radians (figure A.2.13). Finally, w e investigated the effect o f  

changing the length using parameters bi =  0.7, bi -  0.78 and found that short flux 

sheets destroy the uniformity o f  the field gradient (figure A .2.14). It should also be 

noted that the effect o f  changing the length is similar to the effect produced in the 

offset bore design o f  section 5.3: short lengths cause the region o f  uniform field 

gradient to decrease, suggesting a similar mechanism distorts the field in both designs 

The rolled flux sheet with parameters bi =  0.78, bo  = 0.7, ai =  1.0, ao  =1.0, L =  10cm  

and angular range 1.37i radians, provides an uniform field gradient o f  around 17 T/m  

with a standard deviation o f  0.062 T/m over a working area o f  2cm. A s with the 

Halbach design with the linearly sloping inner bore (section 5.2), this design has a 

region o f  constant field gradient only for these parameters. However, this ‘standard’ 

design can be scaled to give the field gradient required by multiplying the radial 

parameters ir, or  and the length Z by a constant scaling factor s. The ellipticity  

parameters ai, ao, bi, bo  and the angular range are not scaled. The field gradient in 

this design then scales as I/5 , as shown in figure 5.16:
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Figure 5.16 - The value o f  the field  gradient in the linear region o f the design scales as 1/s.

Extremely high field gradients are therefore achievable for flux sheets with small 

dimensions.

Figure 5.17 shows the field gradient dByJdy on the plane z = 0. The field gradient can 

be seen to be approximately uniform (between 17 and 17.2 T/m) over a region 

measuring 1 cm on the x-axis by 2 cm on the y-axis.
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Figure 5.17 - The region o f  approximately linear field gradient covers a 

wide area in the central plane o f the semi-rolled flux sheet design

5.5 Comparison of Designs Producing a Constant Field 

Gradient

The design of section 5.2 achieves a constant uniform field gradient orthogonal to the 

field, while those o f sections 5.3 and 5.4 can achieve constant uniform field gradients 

parallel to the field. We have shown that the field gradient can be tuned by scaling the 

design, and that extremely high gradients are achievable if  the working area is very 

small. Table 5.1, gives a comparison of the designs considered in section 5.2, 5.3 and 

5.4. The magnitude o f the gradient achieved within a working region of 1cm is given, 

as well as the standard deviation within the region, using the optimum values of 

relevant parameters:
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Design Gradient dB over 

1cm

Stdev Notes

5.2 d B y /d z 32 0.063 Segmentation has little effect

5.3 d B y / d y 26 0.088 Strongly affected by short lengths

5.4 d B y / d y 34 0.062 Open Design
Table 5.1 -  Design summary.

Both the Halbach design o f section 5.2 and the flux sheet design o f section 5.4 

produce field gradients o f similar magnitude and similar constancy within the working 

region.
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6 Designs Producing a Constant Product of Field and 

Field Gradient

6.1 Introduction

We investigated methods of creating a regions within a permanent magnetic design 

where the product o f the field (B) with the field gradient (dB) is uniform. Ideally, we 

require as large a value o f the product BdB as possible over the largest possible 

volume. To achieve a uniform BdB, the field within the region has to fall off with the 

square of the distance (for example, z), so that the field magnitude must be o f the 

form:

5  =  Va + t e  [6-I-I]

Where a and b are constants; Taking the derivative of [6.1] shows that 5(d5/dz) is 

constant:

odB bB  = -  [6.1.2]
dz 2

Slight variations in the designs o f section 4.2 and 4.3 which produce a constant field 

gradients transform them into magnets which generate regions o f constant 5d5. We 

considered three designs; The first is a cylinder with a linearly sloping inner bore, 

uniformly magnetized parallel to the cylinder axis (figures 6.1, 6.2), giving a field 

gradient parallel to the field. The second is a Halbach cylinder with a linearly 

increasing bore, similar to the design o f section 4.2, where the field gradient is at right 

angles to the field (figure 6.8, 6.9). The final design, similar to that o f section 4.3, is a 

partially rolled flux sheet design (figure 6.24). This produces a field gradient parallel 

to the field.
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6.2 Uniformly Magnetized Cylinder With Linearly Varying 

Inner Radius

6.2.1 Design Overview

Fro'ut

Back '

Figure 6.1: A uniformly magnetized cylinder with linear varying inner radius: front and back faces.
I  I

I ^  i

Figure 6.2: A uniformly magnetized cylinder with linearly varying inner radius: cross section.

This design, unlike the other designs, can be manufactured as an un-segmented 

cylinder and subsequently given a uniform magnetization. This fabrication process is 

much easier than manufacturing separate segments which must be individually 

magnetized and then bonded together. For this design we use an analytic expression 

derived from the current model (see appendix A. 1.3). However, it will also be 

modelled in a segmented version, using Magnetic Solver, for comparison.

The cylinder is uniformly magnetized in the z-direction, and an analytic expression for 

the ideal, non-segmented cylinder can be derived by considering a truncated cone
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magnetised along the symmetry axis, with a surface current distribution j ,  shown in 

Figure 6.3.

z

Figure 6.3  -  The current distribution o f  a truncated cone magnetised parallel to cone axis.

The current model is easier to use here than the charge model, as the charge model 

replaces the cone by three charged surfaces, whereas the current model only needs a 

current on one surface, as shown in figure 6.3. The design can then be modelled as 

two such cones with opposite magnetisation superimposed on top o f each other (The 

outer surface has constant radius, so [6.2.1] can be applied with 0 =  0). Along the 

symmetry axis, the field in the z direction, B^, is given by:

^ ta n ^  + z tan^ + Z(tan^ ^ -1) + z
5 ,(z )  =

sec 0

+
tan̂  9
sec  ̂6

In RidnaO + L(sec^ 6 ) - z
S Q C 0

- I n

Y

R iand  - z  
sec0

■ + yfR
[6 .2 .J]

where R is the smaller radius o f the cone, L is the length, 9 is the angle o f slope o f the 

cone (see figure 6.3) and yis  given by:

r  = ^l(R + L ta n 9 y  + {L -  z y  

For 9 = 0 ,  this reduces to:

[ 6.2 .2]

fiz(0,0,z) =
J^ cos(^) z -  L

[6.2.3]

V/?' + z '  -^R^ + { z - L f

A similar design constructed using a large number o f segments (N = 128) instead of a 

continuous cylinder was modelled using magnetic solver. The field on a cross-section 

of this design is shown in figure 6.4 in the case of a magnet with dimensions L = 6cm, 

Ri = 1cm, tan(9) =0.3 (defining R2 = 2.8cm) and R}=^ 6cm.
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Figure 6 .4 -  The cross section o f  a uniformly magnetized cylinder with linearly varying inner radius.

As can be seen, the flux leakage around the cylinder is considerable. The field within 

the bore is anti-parallel to the magnetization, and the gradient falls off from the 

narrow end o f the cylinder to the wide end. Figure 6.5 shows the z component o f the 

field and the product Bz{6£Jdz) (with the gradient taken from negative to positive z) 

on the z-axis for this design:
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Figure 6.5 - Bz and Bz(dBz/dz) fo r  uniformly magnetized cylinder with linearly varying inner radius on the z-axis.
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The region of uniform BdB is marked by the vertical dashed lines at 2.5cm and 4cm 

and has magnitude of approximately 4T^/m. The ends o f the cylinder are marked by 

the solid vertical lines.

6.2.2 Effect of Segmentation

The field calculated from the analytic expression [6.2.1] matches closely the field 

produced by the segmented version o f the design. This is because all the surfaces on 

which two segments touch are parallel to the magnetisation vector, and so the 

magnetic charge on them is zero.

0 .02{-O.Ol •0.015 0.005 0.045 0.065•0.075 -0.055
- 0.1 -

N=16
 N=32

N=64
N=128

•0:6-

z(m)

Figure 6 .6 -  Uniformly magnetized cylinder with linearly varying inner radius:

Bz on z-axis fo r  various numbers o f segments, N.

As can be seen from figure 6.6, segmentation has little effect on the field along the 

bore o f this design; the field fi’om a cylinder with eight segments is very similar to a 

cylinder with 128 segments.

6.2.3 Design Summary

For a magnet with dimensions Rj = 1cm, tan(d) =0.3 (defining R 2 = 2.8cm), Rs = 6cm 

and L = 6cm,we investigated the effects o f varying the slope angle 0 , the length L, 

and the outer radius R3  one at a time. Graphs o f the field By and field and field 

gradient product 5z(d5z/dz) as a function o f z for different Xm{G), L and R 3 are shown 

in appendix A.3.1. We also calculated the standard deviation o f Bz{dBJdz) within the 

working area to asses its uniformity. We varied the angle ^(figure A.3.1, A.3.2) and 

found the minimum value of the standard deviation o f the product 5 d 5  over the
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working region falls at X?tn(6 )  = 0.3, with a standard deviation o f  0.015 T^/m (figure 

A .3.3) and magnitude o f BdB  o f  4T^/m. We also found that the magnitude o f  B dS  

increases as the length, L, o f  the cylinder becomes shorter (figure A.3.4), although the 

only length giving constant BdB  within the working region is Z = 6cm. Finally, we 

investigated the effect o f  changing the outer radius, R 3 (figure A.3.5), and found the 

product 5z(dSz/dz) is only constant for R 3 = 6cm within the working region.

For constant BdB  with field and field gradient in the same direction, the design with 

linear sloping inner bore and uniform magnetization is the simplest design to 

manufacture, due to the fact that the magnet can be fabricated and magnetized in one 

piece. This design scales as Ms (in the same way as the other gradient designs 

considered in section 5) where s, the scaling factor, is a constant multiplying Ri, R 2 ,

Rs and L, shown in figure 6.7:
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Figure 6.7- The effect o f  scaling on uniformly magnetized cylinder with linear varying inner bore.
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6.3 Halbach Cylinder With Linearly Varying Inner Radius 

6.3.1 Design Overview

45 degrees

Fro'nt

45 degrees

Back V

Figure 6.8: A Halbach design with linear varying inner radius: front and back faces.

Figure 6.9: Halbach design with linearly varying inner radius: cross section.

The design o f section 4.2 successfully produced a region o f uniform field gradient for 

a particular choice o f  angle 0. We investigated the possibility o f  producing a region o f  

uniform BdB by varying the design parameters R2, R3, 9  and L and found that a region 

o f constant BdB can be achieved in a design with parameters tan(O) = 0.23 

(corresponding to R2 = 2.6cm), =  5cm, R\ = 1cm and L = 7cm, which we will call

the standard design. Figure 6.10 shows the field By and the product By{dBylAz) (with 

the gradient taken fi"om positive to negative z) on the z-axis for a magnet with these 

parameters:
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Figure 6.10 - By and By(dBy/dz) fo r  Halbach cylinder with linearly varying inner radius on the z-axis.

The working region in which BdB  is approximately uniform is marked above by the 

two vertical dashed lines at 0cm and 2cm; The magnitude o f  BdB is approximately 13 

T^/m in this region. This design was modelled using Magnetic Solver (based on the 

charge model).

The analytic expression for the field on the axis o f  an un-segmented Halbach cylinder 

with a linearly increasing inner bore radius is given in section 5.2.1, equation [5.2.1]. 

Figure 6.11 shows a plot o f  this expression as a function o f  z for the parameters values 

tan(G) = 0.23 (corresponding to R2 =  2.6cm), Ri =  5cm, Rj = Icm  and L =  7cm:
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Figure 6.11 - Halbach cylinder with linearly varying inner radius; 

closed form expression fo r standard design fo r  By and BydBy/dz on z axis.
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Comparing figure 6.11 to the field plot o f  the segmented cylinder, figure 6.10, it can 

be seen that the segmentation has a beneficial effect on the constancy o f  BdB  in this 

design. The segmentation appears to increase the length o f  the region in which 5 d 5  is 

constant.

6.3.2 Design Summary

For a standard cylinder with dimensions Ri =  1cm, tan(6)  = 0.23 (corresponding to R2 

= 2.6cm), R} = 5cm and L =  7cm, w e examined the effects o f  varying the slope angle 

0 , the length L, and the outer radius R 3 individually. Graphs o f  the field By and field 

and field gradient product 5^(d5ydz) as a function o f  z for various values o f  these 

parameters are shown in appendix A.3.2. W e also calculated the standard deviation o f  

5y(dfi^/dz) within the working area to asses its uniformity.

We found that the minimum value o f  standard deviation o f  5dff within the working 

area occurs for a length o f  L »  7cm and has a value o f  0.084 T^/m (figure A .3.7) with 

magnitude o f  BdB approximately 13 T^/m. W e also found that only the value tan(0) =  

0.23 gives an approximately constant BdB  within the working region. Finally, we  

found that a region o f  constant gradient can only be achieved for an outer radius R 3 =  

5cm although the maximum  value o f  BdB  increases for larger outer radii. This can be 

explained by the fact that although the gradient does not increase for larger outer radii 

(as found in section 5.3, see figure A .2.5) the field B does increase as the outer radius 

increases

From our results we found that as tan (^  or the length, L, increases, BdB decreases 

along the axis, but as the outer radius increases BdB increases along the axis. We 

investigated whether, by appropriate choice o f  parameters, we could balance these 

effects by scaling all o f  these three variables linearly. This turns out to be the case, 

scaling the parameters according to [6.3.1] increases the working region, although it 

has only a small effect on the value o f  BdB within this region.

=  ^'+4

yZ  = 0.55'+3 [6 .}.!]

R  ̂ =  0 .27375’+2.3363 

Here 5 ’  is a dimensionless scaling parameter and Rj =  1cm is unchanged. BdB  is 

shown in figure 6.12 for various values o f  this scaling parameter. The constants in 

[6.3.1]are chosen such that 5 ’ =  1 gives the standard design o f  R3 =  5cm, L =  7cm and
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R2 = 2,61cm (giving tan(9) as 0.23), with a region of constant BdB, The constants 

given in [6.3.1] were found by trial and error by examining the 5dS curves for a large 

number of parameter sets.
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Figure 6.12- Halbach cylinder with linearly varying inner radius:

By(dBy/dz) on z axis fo r  a range o f scaling parameters.

The line corresponding to 5 ’ = 1 in figure 6.12 corresponds to the standard design. As 

the scaling parameter s ’ is increased the region o f constant BdB increases in length 

and the magnitude of BdB within the region also increases very slightly. Scaling the 

design using the expression [6.3.1] therefore provides a way o f tuning the region of  

uniform BdB. Figure 6.13 shows the standard deviation over a working region from 

0cm to 2cm for the scaling parameters corresponding to figure 6.12:
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Figure 6. IS - Halbach cylinder with linearly varying inner radius;

Standard deviation over working region fo r range o f  scaling parameters.

It can be seen that a minimum occurs for a scahng parameter s ’ =  3.5, which is a 

cyHnder with R3 =  7.5cm, L =  9.5cm  and R2 = 3.29cm. These parameters greatly 

improve the uniformity o f  BdB within the working region with a standard deviation o f  

0.013 T^/m and magnitude 14 T^/m for 5 ’  = 3.5, in comparison to 0.087 T^m  and 

magnitude 13 T^/m for the 5  ’ =  1 standard design.

The standard design produces a constant BdB o f  approximately 13 T^/m, with the field 

gradient orthogonal to the field, within the working region. W e can also scale the 

entire design by multiplying the parameters i?/, R2 , R3 and L o f  the standard design by 

some constant scaling factor s  (which is a different scaling parameter to s ’) to tune the 

magnitude o f  BdB. The effect o f  scaling the design in this w ay is shown in figure 

6.14:
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Figure 6.14  -  The effect o f  scaling the Halbach cylinder with a linearly varying inner radius.

The scaUng behaves in the same way as the constant gradient design (section 5.2): 

scaHng the entire design (including the length) affects the magnitude o f d6 but not the 

magnitude of B. A high 5d 5  is achievable if the design is scaled down, but this 

reduces the working region.

6.3.3 Performance of Magnets Built According to Design

We commissioned two cylinders to be manufactured according to the design of 

section 6.3.1, one {design 1) with the standard dimensions /?/ = 1cm, R 2 = 2.6cm, R3  = 

5cm and length L = 7cm (shown in figures 6.15 -  6.16) and the second {design 2) 

scaled to double the standard dimensions, Rj = 2cm, R2 = 5.2cm, R3  = 10cm and 

length L = 14cm (shown in figures 6.17 -  6.18). The magnets were manufactured 

according to our specifications by the China National Electronics Import and Export 

Ningbo Company, Ningbo, People’s Republic of China.

Photographs and plans for the two ends o f design 1 are shown in figures 6 .15-6 .16:
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45 degrees

Figure 6.15 -  A comparison o f  the manufactured and planned design I; front. 7cm length

45 degrees

Figure 6 .1 6 - A comparison o f  the manufactured and planned design ]; front. 7cm length.

Slight imperfections arising during the manufacturing process can be seen in the 

photographs; there are several chips around where the blocks meet. These 

manufacturing imperfections do not seem to affect the field, however. The entire 

magnet was cased within an aluminium cylinder.

Design 2 has double the dimensions o f the first design. Photographs and plans for the 

two ends o f this design are shown in figures 6 .17-6.18:

45 degrees

Figure 6.17- A comparison o f  the manufactured and planned design 2; front, 14cm length.
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Figure 6 .18 - A comparison o f  the manufactured and planned design 2; front. 14cm length.

Design 2 was constructed from three section o f equal length which did not fit together 

to give a completely smooth inner surface to the cylinder, as can be seen in figure 

6.18 (left). Although we were concerned this would distort the uniformity o f 5d6 , the 

actual effect o f this ‘stepping’ seems to be negligible. The magnet has a thick 

aluminium shell which completely encases the design.

Measurements

The fields o f both designs were measured using a mounted Hall probe, shown in 

figure 6.19. The probe was mounted on the vertical (z) axis and the field measured at 

a range of points along the >^-axis. Steps were taken in the z-direction using the 

winding mechanism shown, and the field recorded at each interval.
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Vertical Scale

Winding Mechanism

Transverse Hall Probe

Sloping Bore BdB Halbach Design

Hall Probe Display

Figure 6 .19 - The experimental set up fo r  measuring the field  from the sloping bore Halbach design.

The measurements on design 1 and 2 are compared with the predictions o f Magnetic 

Solver in the following graph. The error in the Hall probe measurement was 2% of the 

measured field value.
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Figures 6.20 and 6.21 show the measured and predicted field By and B l̂B  product for 

design 1:

1.3-| r---------- ----- ------ -------

/Js /
ge Futodel R’ediction 
uredX By Mea

-3,5 3 -2,5 2 -1 .5 1 -0.5 ( 0

z (cm)

5 1 5 : 2 5 ) 3 5 4

Figure 6.20 -  The comparison ofpredicted and measured field By fo r  design I.

-  46-

 By(dBy/dz) Charge

■ By(dBy/dz) Measured
■26-

-30-

z (cm )

Figure 6.21 -  The comparison o f  predicted and measured By(dBy/dy) fo r  design 1.
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Figures 6.22 and 6.23 show the measured and predicted field By and BAB product for 

design 2:

^ ^ 1 r  - .... -------

f
p /
// N\

' i — By Charge Ntodel R'ediction 

i X By Measured N
-8 7 6 5 4 3 -2 1 ( 
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) ; 

m )

> J 3 ( f  8

Figure 6.22  -  The comparison o fpredic ted  and measured fie ld  By fo r  design 2.

 By(dBy/dz) C harge

■ By(dBy/dz) M easured

z ( c i t i )

Figure 6.23 -The comparison o f  predicted and measured By(dBy/dy) fo r  design 2.
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Discussion

It can be seen from figures 6.20 and 6.23 that the measurements on the manufactured 

design are in excellent agreement with the field and BdB product predicted using the 

charge model {BdB was calculated from the experimental data using forward 

differencing). The tail o f the field, at high positive z values, appears to be slightly 

higher than predicted and the reason for this is unclear, although it could be due to the 

uncertainty in the exact position o f the sampling tip o f the Hall probe. A value of 

4mm fi-om the end of the probe housing to a mark indicating the position o f the Hall 

sensor was measured. This mark was drawn onto the probe at a later stage, so the true 

position of the Hall sensor could be a slightly smaller distance fi'om the end of the 

probe housing, meaning that the measured values could refer to points slightly shifted 

along the z-axis.

6.4 Rolled Flux Sheet 

6.4.1 Design Overview

  bo  X o r

-  bi X ir -

Rang I

Figure 6.24 - A design composed o f  a semi-rolled sheet o f  one-sided flux o f  length L

This design is similar to that in section 5.4, which produced a constant field gradient. 

Parameters ai, ao, bi, bo, ir, or and the angular range are defined as before (see figure 

6.24). We investigated whether we could produce a region o f constant BdB within the 

design by altering the extent to which it is rolled, and the eccentricity o f the elliptical 

cross-sections. Figure 6.25 shows the field produced by a design with parameters bi = 

0.52, bo=0.5, ir =4, or =8, angular range 1.2 t t radians and L = 10cm:
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/  / .  j ,  V 
' i  /  V N

>» ̂  / ' \ r —|— /  \  ^  * | | |

Figure 6.25 -  The cross section o f the standard flux sheet design producing uniform BdB.

The field on the plane z = 0 is shown, and was calculated using Magnetic Solver. As 

can be seen, most of the flux is confined within the fold o f the rolled flux sheet. 

Within the bore the field is mainly in the y-direction, and falls off from the centre 

towards the opening. The field B y  and the product B y { 6 B y l d y )  (with the gradient taken 

from positive to negative z) in the region from +1.5 to -3.5 cm (black Une in figure 

6.25) is shown in figure 6.26:

 By

 By(dB/dy)
- •  14

1 0K

- 0.010  -0.005 0.000
y (m)

- 0.035  - 0.030 • 0.025 - 0.020  -0,015 0.005 0.010 0.015

Figure 6.26 - By and By(dBy/dz) fo r  standard flux sheet design.
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The working region, where 5d5 is approximately constant, is marked by the black 

dashed vertical lines at -3cm and -1.5cm and has a length o f 1.5cm. For the design 

with parameters given above the magnitude of BdB in the working region is 

approximately 12 T^/m.This design was modelled using Magnetic Solver, based on 

the charge model.

6.4.2 Design Summary

For a flux sheet with parameters bi = 0.52, bo=0.5, ir =4, or =8, angular range 1.2 7t 

radians and L = 10cm we investigated the effect of changing each o f these parameters 

one at a time. Varying the inner ellipse parameter bi (figure A.3.11), we found that the 

minimum of the standard deviation within the working region occurs at bi = 0.52 with 

a value of 0.070 T^/m and magnitude o f BdB of approximately 12T^/m (figure 

A.3.12). We also found that, as for the rolled flux sheet design which produced a 

constant field gradient (section 5.4), there is a second combination o f inner and outer 

ellipticity that gives rise to a region of constant BdB (figure A.3.13) with bo = 0.48. 

However, the minima in standard deviation occur at 0.116 T^/m for the design with bi 

= 0.5, bo = 0.48 and at 0.070 T^/m for the design with bi = 0.52, bo = 0.5. Also, the 

magnitude of the product By{dByJdy) at the minimum standard deviation is 11.5 T^/m 

for the first case and 12 T^/m.in the second. We therefore used the parameters bi = 

0.52, bo = 0.5 in our further investigations.

We found that a larger angular range reduces the magnitude of Bd£  and also causes it 

to increase slightly over the working region from within the bore to the opening, 

whereas a smaller angular range increases the magnitude of Bd£, but causes it to 

decrease from within the bore to the opening (figure A.3.15). It is likely that the 

reason for the reduced magnitude o f BdB in the flux sheets with larger angular range 

is due to the fact that the flux sheets are almost closed, providing a high field but low 

field gradient (a ftilly closed flux sheet is a cylinder which has zero gradient). As the 

main contribution to BdB comes from the gradient, reducing the gradient will 

significantly reduce the magnitude o f BdB.

Lastly, we found that as the length, L, of the design increases the curve o f variation o f 

BdB with y  approaches a limiting curve; this curve has a slight linear increase in BdB 

in the working region from inside the bore to the opening (figure A.3.16). However, 

By{dBy!dy) is only constant with the working region for L « 10cm.
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This rolled flux sheet design provides another design which produces a field in the 

same direction as the field gradient. A uniform BdB of approximately 12 T^/m is 

obtained for the parameters ai = 1.0, ao = 1.0, bi = 0.52, bo=Q).5, ir =4, or =8, angular 

range 1.2 ti radians and L = 10cm over a working region of 1.5 cm with a standard 

deviation within this region of 0.07. The magnitude of can be changed by scaling 

the entire design, which scales the same way as the rolled flux sheet designed to 

produce a constant field gradient (section 5.4) as B is not affected by scaling. As with 

the design o f section 5.4, scaling is carried out by multiplying the radial parameters ir, 

or and the length Z, by a constant scaling factor s and the ellipticity parameters ai, ao.

bi, bo and the angular range are not scaled.

70

ffi 50 --------- 5

 Uniform BdB

Length of Uniform Region

0.00 0.26 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4,25 4.50 4.75 5.00

S c a lin g  F a c to r

Figure 6.27  -  The effect o f  scaling on rolled flu x  sheet producing constant BdB.

Figure 6.28 shows the field and field gradient product, By{ dByJdy) on the plane z = 0:
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BdB for Flux Sheet; z=O.Ocm
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Figure 6.28  -  The region o f  uniform BdB within the central plane o f  the rolled flu x  sheet design.

It can be seen that a region of uniform BdB extends from x -  -0.5cm to +0.5cm on the 

x-axis and = -1cm to -2.5cm on the >>-axis, and product BdB has a magnitude of 

approximately 12 T^/m over this region.

6.5 Comparison of Designs Producing a Constant Product of 

Field and Field Gradient

We have examined three designs capable of producing a uniform product BdB over a 

region of space. Table 6.1, below, gives a comparison of the three designs. The 

magnitude of BdB which can be achieved within a working region of length 1cm is 

given, as well as the standard deviation of BdB for the optimum parameter values.
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Design B Gradient fidBfor

1cm

Stdev Notes

6.2 d B J d z 5.8 0.015 Low flux confinement

6.3 B y d B y / d z 26.0 0.084 Standard deviation can be 

improved using scaling 

relationship [6.3.1]

6.4 B y d B y / d y 17.9 0.070 Open design
Table 6.1 -  Design summary.

The standard deviation of 0.07 T^/m within the working area o f the flux sheet design 

(section 6.4) is an improvement on the Halbach design of (section 6.3), which has a 

minimum standard deviation of 0.084. The rolled flux sheet design therefore gives a 

more uniform BdB, although over a slightly smaller working region (1.5cm for this 

design as opposed to 2cm for the Halbach design.). The magnitude o f BdB is also 

lower within the working region o f the flux sheet design compared to the Halbach 

design.
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1 Conclusions
Modem permanent magnetic materials provide opportunities for completely new 

design strategies, as their magnetic transparency property can be used to greatly 

simplify the calculation o f the fields in devices incorporating them. Much work has 

been done on magnetic designs based on the geometrical arrangement o f magnetic 

segments in order to produce a uniform field inside some cavity (such as the Halbach
Q 18cylinder or designs based on rules given by Abele ), but most o f these designs are 

based on the 2D ideal infinite length case. As this ideal infinite case could never be 

realised in practice, it is important to consider these designs in the case o f finite 

length, which typically introduces inhomogeneities into the uniform field within the 

cavity. Little work has been done on compensating for these inhomogeneities purely 

through geometrical modification of the design. Furthermore little, if  any, work has 

been done on modifying these designs to produce a uniform field gradient, or a 

uniform field times field gradient product, within the cavity.

In this project we looked at new designs tailored to produce:

• Improved homogeneity o f the field within a cavity.

• A constant and uniform field gradient within a cavity.

• A constant and uniform field times field gradient product within a cavity.

We developed two computational tools allowing us to model the fields from magnetic 

designs involving both hard and soft magnetic materials. The first o f these tools 

allowed us to simulate the fields from magnetic designs involving only permanent 

magnets in which the material susceptibility was assumed to be zero. The second of 

these tools allowed much more freedom in the design, as soft materials could be 

incorporated. This second program. Manifest, also had a number o f advantages over 

the only commercial magnetic finite element program available to us, MagNet v6, as 

it allowed for the creation o f any shape in 3D space. The MagNet application only 

allows designs based on a 2D template and extruded linearly or around a circular axis 

whereas Manifest allows the creation o f any closed surface and uses true Delauney 

meshing. Manifest also uses a method developed by us (see section 3.3.7) for 

handling thin boundaries in meshes. This allowed us, for example, to investigate the 

properties of thin cylinders of soft material inside Halbach cylinders. We used these 

tools to investigate a number o f designs composed from modem permanent magnets
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using computational techniques, and new designs were presented for the three design 

classes given above.

For the first of these, the generation of a homogeneous uniform magnetic field within 

a cavity, we provided a new class of design which gave greatly improved 

homogeneity over a known design, the split Halbach cylinder, for short length 

cylinders. This design involved shaping the inner bore of a Halbach cylinder to better 

confine the flux within the bore. This new design is compared to existing designs in 

tables 4.1 and 4.2.

For the second design category, involving magnetostatic designs producing a uniform 

field gradient, we presented three new classes of design. These were the Halbach 

design with the linearly sloping inner bore, the Halbach design with the offset bore 

and the semi-rolled flux sheet design. To our knowledge, these designs are all novel; 

existing classes of designs producing a field gradient usually involve pairs o f 

permanent magnets with opposing faces bridging the working region. In a set-up of 

this type the magnetic field becomes zero in the centre of the working region. 

However, in all the designs presented by us this zero value of the field is avoided 

within the working region. The field gradient magnitude and standard deviation o f the 

gradient over the working region for each of the three new designs are compared to 

each other in table 5.1.

For the final category of design, involving magnetostatic designs producing a uniform 

field and field gradient product (5dfi), three classes of design were presented. These 

were the Halbach with a linearly sloping inner bore, the uniformly magnetized 

cylinder with a linearly sloping inner bore and the semi-rolled flux sheet design. 

Again, to our knowledge, all designs are novel. Regions of constant BdB are typically 

produced using electromagnets with shaped pole pieces, and our designs provide a 

clear improvement over these in terms of power consumption, size and weight. Two 

scalings o f the Halbach design with the sloping inner bore were constructed and it was 

shown that our predictions closely matched the measured fields fi"om the designs. The 

magnitude of the product of the field and field gradient, 5dS, and standard deviation 

o f BAB over the working region for each o f these three designs are compared in table 

6 . 1.

The designs are summarised in the table below. The offset bore design and the 

uniformly magnetized cylinder have both been omitted fi'om the table. These designs
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both have disadvantages over other designs presented which produce the same field 

patterns; the offset bore design requires a cylinder of long length to produce a high 

constant gradient, and the uniformly magnetized cylinder has a low magnitude BdB 

with a large stray field.

Application Requirement Design Section

High Field Homogeneity Halbach Cylinder With Non-Uniform Inner 

Radius

4.3

Field Gradient Orthogonal to 

Field

Halbach Cylinder With Linearly Sloping 

Inner Bore

5.2

Field Gradient Parallel to 

Field

Gradient Flux Sheet 5.4

BdB, Field Gradient 

Orthogonal to Field

Halbach Cylinder With Linearly Sloping 

Inner Bore

6.3

BdB, Field Gradient Parallel to 

Field

5dS Flux Sheet 6.4

Table 7.1 -Summary o f all designs.

This work provides a reference point for anyone constructing an application requiring 

any o f the field configurations covered above. The computational tools developed are 

also intended to be used for future work in magnetic design and can be developed 

further, for example, we intend include a fiill non-linear curve for soft materials in the 

Manifest program. Furthermore, the mesh-generation and matrix manipulation 

routines used in Manifest are stand-alone C++ modules and can be used in any 

computational application requiring the use of triangulation or linear algebra routines. 

We also intend to investigate various geometrical designs further and attempt to 

develop a mechanical variable field gradient design based on our design using the 

semi-rolled flux sheet.
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Appendix

A. 1 Derivations

A.1.1 Rectangular Charge Sheet

The expression for a charged sheet in the x-z plane is derived:

Figure A.I.I - The rectangular charge sheet used in the analytic model.

The general form of the potential is given by; 

With:

A k /Uq ' pr-xj
4S' [A.I.I]

cr  ̂ = M - n  [A. 1.2]

Where n is the unit outward normal from the surface. For the charged sheet described 

above, [A.1.1] becomes:

1a L

rdz'dx' [A.1.3]
+:>;' + { z - z ' Y

Where a is the half-width of the sheet and L the half-length o f the sheet (see figure 

2.1). We can make the integral in [A. 1.3] easier by operating with the del operator, 

since from [2.1.27]:

H  =  [2-1-27]

Giving:

{ x - x ' )

-  x ' f  + { z -  z ' f  ]
-dz'dx' [A. 1.4]
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a L

dz'dx'

H A P )  =
a L

JJ ( z - z ')

-  x ' f  + >;' + (z -  z ' f  p
dz'dx'

These give:

H XP) = - ^  j-
A w  11 •' ^|(x + a y  + y ^ + { z - z ' )

=dz'

We use:

J ,  ̂ =<iM = ln(« + + <3^)+ C
"V <2^ +

Which gives:

4;r/io
In

\z + L) + ̂ {z + Ly +(x-ay
( z - L )  + - ^ ( z - L y  + ( x - a f  

{z + L) + ^ ( z  + L f  +(jc + a ) ' +:>;' 

{ z - L )  + ^ { z - L f  +{x + a f  + ;; ' 

With a similar expression for

In

4;r/io
In

In

(x + q) + (x + fl) + (z — Z<) + ^ 

(x -  a) + ^ J { x - a y  + { z - L f  + 

(x + fl) + -\J(̂ x + a')  ̂ + (z + Z<)̂  + 

(x -  a) + -^{x-aY + { z + LY + 

The expression for is slightly more difficult to evaluate:

+

H^{P) = - ^  
Atih^

( x - a )

We use:

1:

L,

[ {y ^  + { z - z ' f  ) ^ { x - a f + y ^ + { z - z ' ) -  
(x + a)

i ( /  + { z - z ' f ) 4 { x  + a f  +y^ + { z - z ' f

u^Jb- a

zdz'+

dz'

=du = ■tan'
(a + u^)ylb + u^ yja(b-a)  ^yja{b + u^) 

Which gives:

+ C

[A .1.5]

[A.1.6J

[A. 1.7]

[A. 1.8]

[A. 1.9]

[A. 1.10]

[A. 1.11]

[A. 1.12]
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HAP) = tan"

tan"

(z + L){x -a )

tan - 1

tan -1

y ^j { x - a f  +y^ +{z + L f  

(z -  L ){x -a )  

y ^ | i x - a y  +y^ + ( z - L f  

(z + L){x + a) 

y^Jix + a)^ + y^ +{z + L,y 

{z -L ){x  + a)

+

A.1.2 Triangular Charge Sheet

y

Figure A.1.2 - The right-angled triangular charge sheet used in the analytic model.

The general form of the potential is given by;

(P, ™ dS'

[A.1.13]

[A.2.1]
4 ; r / /o  * | j c - x ' |

With:

cr„ = M • n [A .2.2]

Where n is the unit outward normal from the surface. For the triangular sheet 

described above, [A.2.1] becomes:
b

— X
a a 1

0 0 -J(x-x'y + ŷ  +{z-z'y
Where a and b are the triangular dimensions, shown in figure A.2 above.

Hx and Hz Field Com ponents

The field components for Hx and H2 can be found by using: 

on [A.2.3] before evaluating the integral. For H^, this gives:

[A.2.3]

[A.2.4]
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HAP) =
u a

^dx' I  dz'
( z - z ' ) [A.2.5]

^ ^ ^ 0  0 0 K x - x ' ) "  +  >>‘ +  I

The first integral over z ’ can be evaluated straightforwardly to give:

1 1
HAP) = ^dx'

y l ( x - x ' y  +y^ +z^ ^ { x - x ’f  + { z - ^ x y
[A.2.6]

The integral in this expression was evaluated using Mathematica, giving:
/ \

H AP)  =
I ttMo

In
r - X

a + ^ J ( a - x y  + +z ^ - x
+

+b^
In

a(a-x)+ b(b-z) -\-^J{a-xY + y^ -\-{b -zy

r — ax-̂bz
+b̂

[A.2.7]

Where r is given by:

=  +y^ +z^ [A.2.8]

The expression for Hx can be evaluated in a similar way by changing the order of 

integration in [A.2.3]:

b 1
(Pn,{P) =  I  d x ' -  -- ^ - -- =

0 .  ^ { x - x ' f  +y^ + { z - z ' f

Using [A.2.4] and taking the integral over x ’ gives:

1 1

[A.2.9]

HAP) = jdz'
4 { a - x f  + { z - z ' Y  ^ ( x - f z f + y ^ + i z - z ' y

[A .2.I0J

The integral in this expression was also evaluated using Mathematica, giving:

HA P )  = In
b + ^l {a-  x Y  + y^ + ( b -  z)  ̂ -  z 

^ { a - x Y  +_y  ̂ +z^ - z
+

+b‘
:ln

r - ■Jâ+b̂

+b

[A .2 .IIJ

Hy Field Com ponent

It is more difficult to determine the Hy field component as Mathematica does not give 

a simple expression for the integral of the >^-component of the gradient of [A.2.3]. In 

this case, we must evaluate the integral over z’ in [A.2.3] first, then take the gradient 

of the result. The integral over z ’ in [A.2.3] is:
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ln(z + ^ ( x - x ' Y  + +z^  ) -

Inf z - 1 x ' + ^ ( x - x ' f  + { z - ^ x \
[A .2.I2]

The >^-component of the gradient o f this expression gives Hy as:

HA P )  = y^dx'
0

1

. [z + ^ J { x - x ' y  +y^  + ^ ) \ / 0x'Y +y^ +z^ ]^j{x-x'y +y^ + z  ̂

1

■ +

z - f  x ' + y j i x - x ' f  + ( z - ^ x ' Y  y { x - x ' y  + ( z - f x ')

The first of these integrals can be evaluated by using the substitutions: 

( x - x ' )  = p s in h ^ , = y^ + z^

The integral then becomes:

^dx' ^
[z + ^ j { x - x ' f  + 7

. . . .  : = -  {d0--------i-------
x ’y + y ^ + z ^   ̂ z + p co sh 0

[A .2.I4]

[A .2.I5]

Using:

Gives:

\dO

|d!x'

tan
 ̂ R ^pe  + z

z + pcoshO yjp^ +z^ [ylIp^ + Z ^

[A .2.I6J

{z + ^J{x-x'y + y^ + l ^ ^ ( x - x'Y +y^ +z^

2= — tan
y

{ x - x ' )  +  ^ J { x - x ' y  +  y^ + z ^  + z

y

[A.2.17]

Putting in the limits a, 0 gives:

°r 1
0 {z + -J^x — x')^ + y^ +  z  ^^(x —jc') + y  + z^

( x - a )  +  ^ { x - a y  +  y^ + z^ + z2

y y

\ f  \
- t a n ’' x + r +  z I

) I ;

[A.2.J8]

Where r is defined in [A.2.8]. The second integral in [A.2.13] is more difficult to 

evaluate, first we look for a form:

(;c-x')^ + y ^  + [ z - ^ x ' f  = a ’̂ { x ' - p f  + a ^ y ^  [a.2.i9]

Which gives a , p, and y as:

[A.2.13]
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a  = A\ + —  . p  = - -
X + t Z

■ y
. 1 + 4a

The second integral in [A.2.13] then becomes:

I

1 +
[A.2.20J

\ d x ' j   ------------------------------------- -------------------------------------
[z - f y+V(x - x ' y + y ^ + { z - i x ' f  JV(X - x ' y + y ^ + ( z  - ^ x ' f

(z-A x-+aV (x’-y0)^ + /)o (^ |{ x '- /3 y  + /

We can then use the same form of substitution [A.2.14] as before:

x' - f i  = y s in h 0

This gives:

\dx' ^

[A.2.21]

[A.2.22]

[z-^^x'+a4{x'-pf +r^ \x^{x'-pf  +7̂
1

[A.2.23]

a  •’ A sinh 0 + B cosh 0 + C

where:

[A.2.24]

The using hyperbolic functions in the denominator o f the integral can be expressed as:

1 f 1\dG-----
A sinh 9 B cosh 0 + C

= j M -
(B -  A)e~^ + U A  + B)e^ + C

[A.2.25]

Which can be evaluated using Mathematica (although it is fairly easy to evaluate by 

multiplying top and bottom by e ,̂ using the substitution u = and taking the integral 

over u):

1
jd d

\ { B - A ) e ~ ^ + U A  + B)e^ +C

tan
^B^ - A ^  - C ^  [ ^ | B ^ - A ^ - C ^

C + (A + B)e^ ^
[A.2.26]

So:

^dx'
z -  f x’+Vu - x ' f + y ^ + ( z - ^ ^  x'Y U(x -  + >;̂  + (z -  f x')

C + (A + B) + 1
fA.2.27J

a ylB̂  -A^ - C
tan'

^B ^ - A ^ - C ^
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Putting in the limits a, 0 into this expression and putting all the parts [A.2.6] together 

gives the full expression for Hy as:

H,XP) = tan'
{ x - a )  + z + - ^ { x - a Y  +y^ + z '

y
- A ^  - C '

y

tan'

-  tan +

C + (A + B y i  + ^ + ^

[A.2.28]

tan'
C + (A + B) 1 + 4 + ^y '  r

ylB̂  -A^  - C '

A.1.3 Cylindrical Halbach With Linear Inner Bore

Figure A.1.3 - A  Halbach cylinder with linearly varying inner bore.

The magnetization of an ideal Halbach cylinder, in cylindrical co-ordinates, is given 

by:

M (^') = M ^{sin(^ ')p-cos(^ ')9} [a .3.i]

where the magnetic volume charge density pm is given by [2.2.8] (see section 2.2.1):

= -V  • M [A.3.2]

The magnetic volume charge density is therefore:

sin^ '
[A.3.3]

where the primed co-ordinates represent source points. Using the expression for 

magnetic potential from a volume charge distribution (see section 2.2.1):

(P, [A.3.4]
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gives:

j j j P ' |r-r' |

Where we have used [2.1.52b] for Jr, the magnetic remnant polarization of the 

material, in Tesla. We are interested in the magnetic field in the j^-direction within the 

cylinder bore, Hy. Using:

[A.3.6]

gives:

H ,(x ,y ,z )  = jdz' jdx' — - - ■  ̂ [A.SJ]
2^/^o ■' •' P ^ + { y - y ' Y + { z - z ' f

which becomes:

H {x ,y ,z ) = - ; ^  ^ d z ' ^ d x ' --------------- i j L - l } --------------
•' •’  ̂ P [ ( x - x ' y + { y - y ' f + ( z - z ' y f

In cylindrical co-ordinates:

x'= p 's in ^ ', y'= p'cos(f>' [a .s .9]

So:

{ x - x ' y + { y -  y ’y  + { z - z ' y  = p^+ p ’̂ -2pp'cos{^-^')+(z-z'y [A.3.10]
which gives:

Hy{x, y , z )  = ~------ \dz \dx \d y  ^
P + p '^ -2 p p 'c o s (^ -^ ')  + ( z - z ') ^ f

On the z-axis, p  = 0 (andjF = 0). Therefore the expression [A.3.11] for the field Hy on

the z-axis is:

//, (0,0,z) = ^  f&' f<fc' W-----
■’ ■’ [ p '= + ( z - z ') 7

Converting to cylindrical co-ordinates gives:

/ / /0 ,0 ,z )  = ^  \dz' \dp '---------^ --------  U ’sin^ <!>'

For a Halbach cylinder with a variable inner bore, this is:

//^(0,0,Z) = ^ U -  I  dp '---------^ ------   [A3J4J
2/^ 0  0 R ( z ' )  [p'^+(z -  z')^]^

Taking the integral over p  gives:
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J  ^
H^{QAz) = ^ \ d z '

4 R { z ' f + { z - z ' Y  ^ R , ^ + { z - z ' y

The second integral can be solved straightforwardly, giving:

In + \dz'
+ { L - z y  + L - Z  

For a linear increase in the inner radius:

R(z') = + z 'tan^

The second integral in [A.3.16] can then be expressed as:

y j R i z ' y + i z - z ' y

------------= ]dz ' - —
0 yjRiz'y + { z -  z ' y  VI + tan^ « ^{z'+ a^ + y

where:

and:

a  =
/?, tan ̂  -  z 
1 + tan^ 6

R, -  z tan ̂
1 + tan^ 6

The integral in the expression [A.3.18] can be solved to give:

1
;0 -J(z '+ay+/^

= ln
■\J(̂ L + ocy + L + cc

 ̂ +y^ +a

This gives:

J.

H(0 ,0 , z )  =

In ■JR:  ̂ +z^ - z

^ R , ^  + ( L - z y  + L - Z

+ L + oc
V l  +  t a n ^

in
+y^ +a

[A.3.15]

[A.3.16]

[A .i. 17]

[A.3.18]

[A .3.I9]

[A.3.20]

[A .3.2I]

[A.3.22]
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A.1.4 Field From a Conical Magnet

Figure A. 1,4 -  A truncated conical magnet with uniform magnetization.

The current model gives the field B from a uniformly magnetized permanent magnet 

as:

4;t • ' >1 [A.4.1]
s |x -  x'l

Where the surface current density jm is given by:

j„(x') = M x n  [A.4.2]

Where n is the unit outward normal from the surface and M the fixed magnetization. 

For the conical block shown in figure A .l, the surface current, in cylindrical co­

ordinates, is then given by:

jm(x') = — cos(6»)(p
Mo

[A.4.3]

Where we have used [2.1.52b] for Jr, the magnetic remnant polarization o f the 

material, in Tesla. The vectors x and x’ are given by:

X =  z z

x'= {R + z 'tan ^ )f + ^ '9  + z 'z

Giving:

|x -  x*! = + z'tan^)^ + ( z - z ' ) ^

Substituting into A.x gives:

[A.4.4]

[A.4.5]

L I n

B{x) = —  [ [j^ cos(6*)9 X 
An •’ ■’

(R + z'tan 0)r + '̂<f> + (z '-z)z
(R + z'\m9)d(j)' dz' [a.4.6]

0 0 [(/? + z 'tan 6»)' + ( z - z ' y f  

Where the extra term (R + z ’ im9)  comes from the extra radial term when using 

cylindrical co-ordinates. The cross product gives:
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L I k  

0 0

{R + z 'tan^)

[{R + z'tanOy + ( z - z ’) 'P
-d(l>'dz' [A.4.7]

r 9  z
0 cos{0) 0

(/? + z 'tan^) (j)' (z '-z)

We expect the field along the symmetry axis to be mainly confined to the z-direction 

(especially for our application o f the expression which involves cavities inside 

cylinders). Therefore, we can concentrate on the z-component o f the above 

expression, which is:

5 ,(x ) =
Ĵ cos{6) \  {R + z'XanOy

J -dz' [A.4.8]

2 o[(/? + z’t a n 6 ') '+ ( z - z ’) 'p

Where we have also evaluated the integral over The above expression can be 

solved to give:

5 ,(z )  =

tan 0

J  ̂cos(^) 1

1 + tan^ 6
RidccvO + z /? tan^ + L ( ta n ^ 0 - l)  + z

ylR^+z^

(1 + tan^^)^ 

Where:

In r +/?tan^ + Z,(l + tan^ 0 ) - z

Vi + tan 6
- I n

r
Rtan0 - z  

Vl+"tan^
+ + z '

[A.4.9J

r = l̂(R + Lt anef +{L- z f [A.4.I0J
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A. 2 Effect of Varying Parameters For Designs In Section 5 

A.2.1 Design of Section 5.2

We chose a cyhnder o f dimensions L = 10cm, R 3 = 5cm, Ri = 1cm and the angle 0, 

defining R 2  (see figure 5.2), was varied. Figure A.2.1 shows By on the cylinder axis 

for a range o f tan(9). The solid lines at +5cm and -5cm show the position o f  the ends 

o f  the cylinder, and the working region o f approximately constant gradient is 

corresponding marked by the two vertical dashed lines.

 0.17
0.19
0.21

 0.23
 0.25

0.18
0.20

 0.22
 0.24
 0.26

K

OD

0.4 -

0.2 -

1---------------   1-^ --------------- ---------- f---- 0:0-1----------------  (-----.----------.---------- 1---------- ,---------- 1
- 0.07  - 0.06 - 0.05  - 0.04 -0.03  -0.02  - 0.01 0.00  0.01 0.02  0.03  0.04  0.05  0.06  0.07

z ( m )

Figure A.2.1 -  Halbach design with linear inner bore o f  varying slope; By on z axis within bore.

Figure A.2.2 shows d sy d z  on the z-axis for a section fi'om z = -1.5 cm to z = 2.5 cm 

within the cylinder bore(taken from positive to negative z):
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13.00

42.00

Figure A.2.2 - Halbach design with inner bore o f  linearly varying slope; dBy/dz on the z axis within bore.

The standard deviation o f the field gradient with the working region is plotted as a 

function o f tan(G) in figure A.2.3:

0.6

0.5

0.19 0.2 0.21 0.23 0.250.16 0.17 0.18 0.22 

tan (th e ta )

0,24 0.26 0.27

Figure A .2 .3 - Halbach design with inner bore o f  linearly varying slope: standard deviation o f  dBy/dz over working region.

We examined how changing the length o f the design affected the field gradient over 

the working region, taking L = 10cm, Rs = 5cm, R; = 1cm, tan(d) = 0.23 and varying 

the length:
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A2A
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 14.0

i------ / — U----- #----- 4----- 1---- 4----- ------ -------------k — 9tOG-I------------ 1------------ A--------------------------------  i ----- 1
-0.060  - 0.050  - 0.040 - 0.030 - 0.020  - 0.010 0.000  0.010  0.020  0.030  0.040  0.050  0.060

z (m)

Figure A.2.4 - Halbach design with linear sloping inner bore o f  varying length: dBy/dz on the z axis within bore.

It can be seen that a long region of uniform gradient only exists for a particular length 

(Z, = 10cm). We then varied the outer radius of the cylinder taking tan(O) = 0.23, L 

= 10cm and Rt = 1cm:

42.0 0 -B

N
■o

CO
■D

 4.0
5.0

 6,0
 7.0
 8,0

4.5
5.5

 6.5
 7.5
 8.5

- 0.005 0.000 0.005 0.010- 0.010 0.015 0.020 0.025- 0.015

z ( m)

Figure A .I.5 - Halbach design with linear sloping inner bore o f  varying Rj; dBy/dz on the z  axis within bore.

Figure A.2.5 shows the gradient of the By component of the field for Rs ranging from 

4 to 8.5cm.With the parameters L = 10cm, Ri = 1cm and tan(9) = 0.23 a uniform field 

gradient is achieved only for = 5cm.
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A.2.2 Design of Section 5.3

For a cylinder with L = 10cm, Ri = 6cm, Ri -  1cm the bore offset, Oy was varied and 

figure A.2.6 shows how the field gradient d5^/djF varies in the y  direction within the 

bore:

 0.00
1.00

0.50 
1.50

 2.00  2.50
 3,00  3.50

4 . 0 0 -------- 4.50

- 0 .0 ( 7 5 x ^ 0 0 6 0  -0.0045 -0.0030 -0.0015 0.0 WO 0.0015 0.0030 0.0045 0.0060 0.0 )75

y ( m)

Figure A.2.6 - Halbach design with offset bore; dBy/dy on they axis within bore fo r  various bore offsets.

Defining a working area o f length 0.6cm from -0.45cm to 0.15cm within the bore 

(marked above in figure A.2.6 as the dashed vertical lines), we assessed the constancy 

o f the gradient within this working region by taking the standard deviation o f the 

gradient over it:

0.2

2.5 

Oy (cm )

3.50.5 4.5

Figure A.2.7-Halbach design with offset bore: standard deviation within working region fo r  various bore offsets.
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The bore offset which gives the lowest standard deviation is Oy = 2.5cm. For a 

cylinder with Oy = 2.5cm, R3 = 6cm, /?/ = 1cm the length was varied and figure A.2.8 

shows how the field gradient AByldy varies in the^^ direction within the bore:

60.00

E
h-
> .5
> .m

• o

 2.00  2.50
3.00  3.50

 4.00  -------------4.50
5.50

6.00  -------------6.50
 5.00

i - | - - - - - - - - - - - - - - - - - - - -     10.00 I- - - - - - - - - - - - - - - - - - - - - - - 1- - - - - - - -

- 0.0075 -0.0060 -0.0045  - 0.0030  - 0.0015  0.0000 0.0015 0.0030 0.0045 0.0060 0.0075

y (m)

Figure A.2.8  -  Halbach design with offset bore: dBy/dy on th e y  axis within bore fo r  various cylinder lengths.

A bore offset o f 3cm could also have been chosen, as this gives a higher gradient of 

around 53 T/m with only slightly larger standard deviation of 0.1 T/m, as can be seen 

from figure A.2.7.

A.2.3 Design of Section 5.4

We investigated the effect of the inner ellipse on the field, taking a range of I.Stt 

radians, with bo = 0.7, L = 10cm, inner and outer ellipse radii as ir = 4, or = 8 

respectively and varying bi. The field gradient is shown as a function of z in figure 

A.2.9:
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40 .00--

Figure A.2.9 - Rolled flux sheet design with varying inner ellipse parameter bi: dBy/dy fie ld  gradient on y  axis.

Figure A.2.10 shows the standard deviation o f the gradient over the working region 

against the ellipticity parameter bi\

>
■o

m
-o
o
c  0.8 
o
10
>
O 0.6
■E
(0

(0 0.4

0.2

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.90.68

Figure A.2.10 -  Standard deviation over working area fo r  flux sheet design fo r various values ofbi.

The minimum value of the standard deviation is at bi = 0.78. We investigated the 

effect o f the outer ellipse parameter bo on the field gradient, with range 1.3ti radians, 

bi = 0.7, L = 10cm, inner and outer ellipse multipliers ir -  4 and or = 8 respectively:
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 0.62   0.64
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Figure A.2.11  -  Rolled flu x  sheet design with varying outer ellipse parameter bo: dBy/dy fie ld  gradient on y  axis.

Figure A.2.12 shows the standard deviation of the gradient over the working region 

against the elhpticity parameter bo\

1.2

0.8

0.6

0.4

0.2

0.48 0.5 0.54 0.560.52 0.58 0.6 0.62 0.64 0.66 0.68 0.7

bo

Figure A.2.12 - Standard deviation over working area fo r  flu x  sheet design fi?r various values o f  bo.

The minimum value of standard deviation is at bo = 0.58. We investigated the effect 

of changing the angular range on a flux sheet with parameters hi = 0.78, bo -  0.7, L = 

10cm, ir = 4 and or = 8:

188



Computational M odelling o f  Novel Permanent M agnetic Designs
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Figure A.2.13 - Rolled flux sheet design with varying range parameter; dBy/dy fie ld  gradient on y  axis.

The range is given in units o f  71. We then investigated the effect o f  changing the 

length using parameters bi =  0.7, bi =  0.78, ir = 4 and or  =  8, with angular range 1.3n 

radians:
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• o -40:00-
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Figure A.2.14 - Rolled flux sheet design o f varying length: dBy/dy field  gradient on y  axis.

It can be seen that short lengths destroy the uniformity o f  the field gradient.
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A. 3 Effect of Varying Parameters For Designs In Section 6 

A.3.1 Design of Section 6.2

W e chose parameters L = 6cm, Ri = 1cm, R} = 6cm and allowed tan(d) (defining R2) 

to vary. Figure A.3.1 shows By for a range o f  tan(^; the dotted lines at 0cm and 6cm  

show the ends o f  the cylinder:

- 0.01 0.01 0.02 0.03 0.04 0,05 0.07•0103 - 0.02 0.08

-0.:

- 0.40  -

 0.200
0.250
0.300   0.325

 0.350   0.375
 0.400   0.425

0225
0.275

-OtTO-
2( m)

Figure A .S .h  Uniformly magnetized cylinder with linearly varying inner radius: Bz on z axis fo r  a range o f  tan(O).

The product o f  the field Bz and field gradient dBJdz is shown in figure A .3.2 below:
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 0.20 0.23
0.25  -------------0.28
0.30  ------------ 0.33

0.38
- 0.40 ------------ 0.43

6.00  ■ —

 0.35
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2.00

1.00

0.00
0.015 0.025 0.030 0.035

z ( m )

0.040 0.0450.010 0.020 0.050 0.055 0.060

Figure A.3.2 -  Uniformly magnetized cylinder with linearly varying inner radius: Bz(dBz/dz) on z axis fo r  a range o f  tan(O).
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Taking the standard deviation o f the product 5y(d5^,/dz) within the working region 

from 2.5cm to 4cm on the z-axis, we can assess the constancy o f BdB\

0.25 -r

0.2

0.15

0,05

0,15 0.175 0.2 0.225 0,25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45

tan(theta)

Figure A.3.3 - Uniformly magnetized cylinder with linearly varying inner radius; Standard deviation o f Bz(dBz/dz) over working

area as a function o f  tan(6).

The minimum value falls at tanf"^ = 0.3, with a standard deviation o f 0.015.

We took Ri = 1cm, Rs = 6cm and allowed L to vary. As tanf'^^ is fixed at 0.3, the 

length defines R2 '.
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2.00

0.00
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0.040 0.045 0.050 0.055 0.0600.010

Figure A.3.4 - Uniformly magnetized cylinder with linearly varying inner radius; Bz(dBz/dz) on z axis fo r  various lengths.

Taking a cylinder with L = 6cm, Rj = 1cm, tan(9) =0.3 (defining R 2 = 2.8cm) we 

allowed R 3 to vary. Figure A.3.5 shows 5d 5  along the z-axis for a range o f outer radii:
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Figure A.3.5 -  Uniformly magnetized cylinder with linearly varying inner radius; Bz(dBz/dz) on z axis fo r  various outer radii.

Changing the outer radius causes the magnitude o f BdB to decrease with increasing z 

for small outer radii, and increase with increasing z for large outer radii.

A.3.2 Design of Section 6.3

Using parameters tan(9) -  0.23, with Rj = 5cm and Rj = 1cm, we investigated the 

effect o f changing the cylinder length, L:

5.0 5.5 .
6.5
7.5 .
8.5
9.5

 7.0
 8.0

2.00-----

0.0150 0.0250 0.0350 0.04500.0050

z (m)

Figure A.3.6 - Halbach cylinder with linearly varying inner radius: By(dBy/dz) on z axis fo r  a range o f  lengths.

Figure A.3.7shows the standard deviation within the working region (defined in the 

previous section as the region o f the z-axis from -2cm to 0cm) for a range o f cylinder 

lengths:
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0.4

0.3

■S 0 . 2  -

6.80 7.00 7.20 7.40 7.60 7.806.00 6.20 6.40 i.60 8.005.80
Length

Figure A.3 . 7  -  Halbach cylinder with linearly varying inner radius; Sldev over working region fo r  a range o f  lengths.

For a cylinder with parameters L = 7cm, Rs = 5cm and R} = 1cm, we allowed tan {0) 

to vary. Figure A.3.8 shows By for a range o f idsi(0)\ the black vertical lines at +3.5cm 

and -3.5cm show the positions of the ends o f the cylinder:

 0.20
0.22

0.21 
0.23

0.24  0,25
0.26 -------- 0.27

0.29 0.28

0.80

>.
C Q

0 .6 0 -

 ----------------      1-------1---------  1 0.00 i ------------ ---------------- A--------------- 1-------i------- ----------------------------------------------------1
•0.070 -0.060 -0.050 -0.040 -0.030 -0.020 -0.010 0.000 0.010 0.020 0,030 0.040 0.050 0.060 0.070

2 ( m )

Figure A.S.8  -  Halbach cylinder with linearly varying inner radius; By on z  axis fo r  a range o f  tan(O).

The product o f the field and field gradient, By(dBy/dz) is shown in figure A.3.9:
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Figure A.3.9 - Halbach cylinder with linearly varying inner radius: By(dBy/dz) on z  axis fo r  a range o f  tan(O).

It can be seen that BdB  decreases along the z-axis if  isn(O) is less than 0.23 and 

increases with z  for values o f \.din(6 )  greater than 0.23 (figures A.3.8, A.3.9).

For a cylinder with parameters L = 7cm, Ri = 1cm, tan(O) = 0.23 (defining R 2 ) we 

allowed the outer radius {R3 ) to vary. Figure A.3.10 shows By for a range o f  outer 

radii:

 4.0
5.0

 6.0
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4.5
5.5

 6.5
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I
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N5
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- 0.010 - 0,005 0.000 0.005 0.010 0.015 0.020- 0.015 0.025
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Figure A.S. 10 -  Halbach cylinder with linearly varying inner radius: By(dBy/dz) on z  axis fo r  a range o f  outer radii R3.

Changing the outer radius, Rs, destroys the region o f constant BdB.
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A.3.3 Design of Section 6.4

Using flux sheet parameters bo = 0.5, ir =4, or =8, L = 10cm, range of X.ln radians, 

we varied bi. As with the flux sheet design of section 5.4, we fixed ai and ao at 1.0 

and changed the ellipticity by varying bi and bo only. Figure A.3.11 shows By{dByldy) 

against for a range of bv.

>>5>.ffl3 .
>ffl

 0.40
0.44

 0.48
 0.52
 0.56

0.42
0.46

 0.50
 0.54
 0.58

- 0.020 - 0.015 - 0.010- 0.035 - 0.030 •0.025 - 0.005 0.000

y (m)

Figure A.3.11 - Rolled flux sheet design with varying inner ellipse parameter bi: By(dBy/dy) field  on y  axis.

Figure A.3.12 shoes the standard deviation of By(dBy/dy) within the working area:

4.5

3.5

2.5

0.5

0.520.38 0.4 0.42 0,44 0.46 0,48 0.5 0.54 0.56 0,58 0.6

Figure A.3.J2 - Rolled flux  sheet design with varying inner ellipse parameter: standard deviation over working region.

We took a flux sheet with ir =4, or =8, length = 10cm, range = 1.271 radians with bi 

0,5 and varied bo. Figure A.3.13 shows By(dBy/dy) against y  for a range o f outer 

ellipses parameters bo:
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Figure A .3.13 - Rolled flu x  sheet design with varying outer ellipse parameter: By(dBy/dy) on y  axis.

We examined the standard deviation within the working region to assess the 

uniformity o f BdB:

2.5

0 .5 --------

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.60.38
bo

Figure A.3.14  -  Rolled flu x  sheet design with varying outer ellipse parameter; standard deviation over working region.

The value o f the standard deviation at this minimum is sUghtly higher than that found 

when varying the inner elHpse (figure A.3.12); the minima in standard deviation occur 

at 0.116 T^/m for the design with bi = 0.5, bo = 0.48 (varying the inner ellipse) and at 

0.070 T^/m for the design with bi = 0.52, bo = 0.5 (varying the outer ellipse).

For a flux sheet with parameters bi = 0.52, bo = 0.5, ir = 4, or = 8, length = 10cm, 

figure A.3.15 shows By{dBy/dy) as a function of>^ for varying angular ranges (in 7t 

radians):
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Figure A .3.15  -  Rolled flu x  sheet design with varying range: By(dBy/dy) on y  axis.

We allowed the length to vary in a flux sheet with parameters bi = 0.52, bo = 0.5, ir = 

4, or = 8, and range 1 .In radians.
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Figure A .3.16 - Rolled flu x  sheet design with varying length; By(dBy/dy field) on y  axis.

Figure A.3.16 shows By(dBy/dy) as a function ofĴ  ̂for varying design lengths.
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