LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH | TRINITY COLLEGE LIBRARY DUBLIN
Ollscoil Atha Cliath | The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin
Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, | accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

| have read and | understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

On Coordination Disambiguation in a Generative

Parsing Model, with Memory-Based Techniques for

Parameter Estimation

by

Deirdre Hogan

Dissertation
Presented to the
University of Dublin, Trinity College
in fulfillment
of the requirements

for the Degree of

Doctor of Philosophy

University of Dublin, Trinity College

May 2007

TRINITY COLLEGE

Declaration

I, the undersigned, declare that this work has not previously been submitted as an
exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

O
Deirdre Hog%n

May 20, 2007

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Donjp Ho—
Deirdre Hogan {

May 20, 2007

Acknowledgments

I would like first to thank my supervisors, Padraig Cunningham and Saturnino Luz,
for their feedback and good advice over the years and for always pointing me in the
right direction when things went awry.

Much thanks also to Jennifer Foster for her encouragement, for her help structuring
this thesis and for the valuable and in-depth feedback she gave on the individual thesis
chapters.

Thanks also to Carl Vogel for his support and encouragement, for always giving me
the sense he had confidence in my ability and for organising the computational linguis-
tics reading group. My gratitude also extends to those attending the reading group
sessions especially for their comments and thoughts on coordination disambiguation.

I would also like to thank Alexey Tsymbal and Joachim Wagner for their useful
feedback on parts of this work. Special thanks too to Libby and Suzie for their support
and much valued friendship throughout my PhD and before.

Finally, I would like to thank to my family, Sinéad, Peter, Rory and especially my
parents, for their love and support throughout my education and life. I must also
acknowledge my debt to my father for all that help with French and maths, which has
made such a difference, from the age of four until now! Last but certainly not least
thanks to Pepe, for coming to Ireland, for his love and care, and for putting up, in such

a charming way, with one stressed-out gringuita.

I gratefully acknowledge the financial support provided by the TCD Broad Curriculum

Fellowship initiative.

DEIRDRE HOGAN

University of Dublin, Trinity College
May 2007

vi

On Coordination Disambiguation in a Generative
Parsing Model, with Memory-Based Techniques for

Parameter Estimation

Publication No.

Deirdre Hogan, Ph.D.
University of Dublin, Trinity College, 2007

Supervisors: Saturnino Luz and Padraig Cunningham

vii

This thesis is concerned with improving existing generative history-based probabil-
ity models’ treatment of noun phrase coordination and the development of memory-

based techniques for model parameter estimation.

Lexicalised generative history-based parsing models have proven to be highly suc-
cessful at robust and accurate parsing. Although such models already achieve impres-
sive overall accuracy results there is nevertheless potential for improvement, particu-
larly in areas of difficulty for such parsers, such as coordination disambiguation and,

more generally, parameter estimation from sparse data.

Though coordination has long been known as an area of difficulty for natural lan-
guage parsing, coordination ambiguity is nevertheless a little studied area. Our aim is
to increase understanding of coordination ambiguity in generative history-based pars-
ing models. We seek to find ways of improving the model’s handling of noun phrase
coordination without removing coordination from the parsing framework. As well as
reducing noise in the data, we look at modelling two main sources of information for
disambiguation: symmetry in conjunct structure, and the likelihood of one lexical head
being conjoined with another. The latter step involves extending the modelling of co-
ordinate heads to include those found in base noun phrases and improving parameter
estimation by incorporating data from the BNC and using a word graph and a measure
of word similarity to decrease data sparsity. We also alter the head-finding rules for
base noun phrases so that the lexical item chosen to head the entire phrase more closely

resembles the head chosen for other types of coordinate noun phrase.

A difficulty in improving probabilistic generative models is how to incorporate into
the probability model features that will capture information in the data important for
disambiguation decisions within the limitations of feature selection in history-based
models. In addition, adding new features to the model increases the risk of the sparse
data problem and smoothing techniques which can overcome the sparse data problem

when estimating the model parameters are important. We study the use of memory-

viii

based techniques for parameter estimation and demonstrate that they are effective for

parameter estimation in a lexicalised generative parsing model, allowing for flexible
feature selection, good smoothing of data, and can achieve state-of-the-art results for

accuracy.

Contents

Acknowledgments
Abstract

List of Tables
List of Figures

Chapter 1 Introduction
1.1 Thesis Outline

1.1.1 Coordination Disambiguation

1.2 Generative Lexicalised History-based Parsing models

1.2.1 Generative
122+ LexicaliSed .o 2 o e i @ v e s 5w
1.2.3 History-Based
1.24 Markovised
1.3 Coordination in the Baseline Model

1.4 Parameter Estimation

1.4.1 Linear Interpolation and Witten-Bell Estimation

1.4.2 k-Nearest Neighbour Parameter Estimation
1.4.3 Similarity for Smoothing
1.5 Chapter by Chapter Guide to this Thesis

Chapter 2 Previous Work

2.1 Introduction

2.2 Developments in History-Based Statistical Parsing

vii

xiv

xvi

2.2.1 [Magerman and Marcus, 1991, Magerman and Weir, 1992, Black
Gl SRR s St & C e S) s U R e P el

2.2.2 [Jelinek et al., 1994, Magerman, 1994, 1995]
2.2.3 [Collins, 1996, 1997,1999]
2.2.4 [Charniak, 1996b, 1997,2000]
2.2.5 [Ratnaparkhi, 1997,1998a]
2.2.6 Henderson [2003]
2.2.7 Investigations into the Importance of Lexical Statistics

2.3 Ranking Algorithms
23T b o5 T TS AR M sy S e s M s

2.4 Memory-based Learning and Natural Language Processing

2.4.1 Advantages of Local Learning for Natural Language Learning

2.4.2 Memory-Based Parsing
2.5 Similarity for Smoothing
2:5:1 - BNNifor Smeothing” . ¢ ¢ o o & & o b & ot v s v e aom 555 5
2.5:2 Cooccurrence SMOothing . . : v & v v 5 s 0 ov vie 0 85 5w 5 sl

2.6 Previous Work on Coordination Ambiguity Resolution

Chapter 3 Memory-Based Parameter Estimation

ST ISR £ o 1 (o (o) MR- e S e e s) e e el e L
3:2 MOUIVEEION. = = & 5c & 55 s 5 5 % % 3.8 % & H 6 8 5 c B R EA S
3.3 The Baseline Model o oo
3.4 The Memory-Based Model
3.4.1 Constraint Features for Training Set Restriction
342 Smoothing e e e e
3.4.3 Lexical Statistics oo
3.0 DXPETITHENES &+ o« = & & o @ 8 2 5 5 = 0 & = 2 5 8 e e s e E s
3.5.1 Experimental Set up
3.5.2 Experimental Details
36 Results .« . oo o o oo e e e e e b e b s e m e e s E
3.7 Computational Costso
3.8 Relation to Previous Work 0.

xi

3.9 ConClUSION .« o o o & s w8 e s e e s e e e e 53
Chapter 4 Conjoined Lexical Head Nouns 55
b IS 1 oY 1 et o) s AR s S S S I SO 55
4.2 Measures of Word Similarity 0000 55
4.2.1 Similarity based on Coordination Cooccurrences 57
4.2.2 WordNet-Based Similarity Measures 58
4.2.3 Empirical Evaluation of Similarity Measures 59
4:2.4 DDISCUSSIOI o« o w0 o v o o o wm e w em me e e e e e e e 61
4.3 Modelling Coordinate Head Words 62
4.3.1 Extending P.,orawora to Coordinate NPBs 64
4.3.2 Estimating the P.,orawora Parameter Class from a Coordination
Word Graphi . o s v v s s 5 5 5 55 5 350 5 56 8 5 B EE B8 64
4.4 Relation to Previous Worko oL 67
A28 SUMMAEY o o e s o s 55 & 5 o & 3 = s e o w5k sl s 69
Chapter 5 Parallelism Across Conjuncts il
5.1 Introduction 71
5.2 Empirical Measurements of Parallelism 71
5.2.1 Methodology 2
5:2:2 Restlts o o ol s S G e s s e e e s e s s e b s 76
5.3 Modelling Symmetry in Conjuncts 79
5:4 Relation to PreviouSWorke = & . v o & ¢ w0 v o 5 s 4 e e 5w ow s s o s 80
DED N S UMNTATY R & o o i e @ s e e Rl o 81
Chapter 6 Noun Phrase Coordination Error Analysis 82
6.1 IDtTOdUCHON .+ & « o0 & = = & 5 s 5« & 5 5 5 & 5 45 @ w8 HE el e 82
6.2 Bracketing Guidelines for the Penn Treebank and Inconsistencies in WSJ
Coordinate Noun Phrase Annotation 83
6.3 NPB Head-Finding Rules. 85
6.3.1 Modifying the NPB Head-Finding Rules 88
6.4 Relation to Previous Work 0oL 90
o T Y e o 90

xii

Chapter 7 Experimental Evaluation - Coordination 91

Tl Nntroductionsemie: 81 s SRl B S Dol N e e 91
7.2 Experimental Evaluation, 91
7.3 Experimental Details and Results 93
7.3.1 Eliminating Noisy Data 93
7.3.2 Modelling Symmetry in Conjunct Structure 94
7.3.3 NPB Head-Finding Rule and New Features for NPBs 94
7.3.4 Modelling Conjoined Head Nouns 95
735 Results. 96

7 DI ETOTE o)) e Bt L s i o o s T S e 98
TC Y SATHTET I K 7l o8 o o e e st ot s Sy o e o B e e o e e A 99
Chapter 8 Conclusions and Future Work 101
Ce Ll R 0 7V e s I gt e e s S s e T I L R O 101
8.1.1 Memory-Based Parameter Estimation 102
8.1.2 Noun Phrase Coordination Disambiguation 103

82 Future Work 104
8.2.1 Feature Weighting 104
8.2.2 Constraint Features 104
823 Smoothing . . o . ¢ o o v 6 o v v & o5 w s s 8% 5w m s @ e h e 105
8.2.4 Word Graph and Similarity Function 105
8.2.5 Modelling Dependencies Across CCs 106
8.2.6 (Cleaning NoisyData . « 5 « s o 5 ¢ w0 s & s s ¢ b 5 55 55 & oo 107
8.2.7 Second-Pass Parsing and Discriminative Reranking 107

xiii

List of Tables

3.1

3.2

3.3

3.4

The parameter class for generating Cj, the non-terminal label of the
head child node. C, is the parent non-terminal label, w, and t, its
head word and part-of-speech respectively, and ¢, is the POS tag of the

STandparentmode. s s = & & 0 i s hw B v S E G e s R s e A

The parameter classes for the generation of modifier nodes. The notation
is that used throughout the thesis. dir is a flag which indicates whether
the modifier being generated is to the left or the right of the head child.
dist is the distance metric used in the Collins parser. ¢;_; and t;_, are the
POS tags for the previous two generated nodes. Cy, is the grandparent

non-terminal label. oL

The parameter classes used only when C, = NPB. The notation is
that used throughout the thesis. In addition, Cyg, and Cyygp, are the
great- and great-great- grandparent non-terminal labels respectively.
Ci_2,w;—3 and C;_3,w;_3 are the non-terminal labels and head words

of the second and third previously generated nodes.

Results for sentences of less than or equal to 40 words, from section 23
of the Penn treebank. LP/LR =Labelled Precision/Recall. CBs = the
average number of Crossing Brackets per sentence. 0 CBs, 2 CBs are
the percentage of sentences with 0 or < 2 crossing brackets respectively.
WB Baseline is our baseline emulation of Model 1 when tested on the
output of the Bikel n-best parser. CO99 M1 and M2 are [Collins, 1999]
Models 1 and 2 respectively. Bikel 1-best is [Bikel, 2004a]. NN is our
Anal v BNNmedel: & & & @ = i 5 s 5 6 ooe 85w B s e ks e e e s e

xiv

4.1

4.2

5.3

ot
N

7.1

i

Summary of the 9 different word similarity measures to be evaluated
empirically on WSJ cooccurrence data.
Summary statistics for 9 different word similarity measures (plus one
random measure):Nepord aNd Nponcoora are the sample sizes for the co-
ordinate and non-coordinate noun pairs samples, respectively; Tcoord,
SDcoora a0 Troncoords S Dnoncoora are the sample means and standard
deviations for the two sets. The 95% CI column shows the 95% con-
fidence interval for the difference between the two sample means. The

p-value is for a Welch two sample two-sided t-test.

Nodes aligned at level 1 for the trees in Figure 5.2
Contingency table for the head child non-terminal label T'O at conjunct
(o (=30 L G PO e S
Percentage Match(%M) of head event labels C}, in right-of-head con-
juncts with the corresponding label in the head conjunct, grouped by
Depth. Percentage match for head conjunct nodes collected in both a
left-to-right (L-R) traversal and head-first (H-F) traversal are shown.

Percentage Match(%M) of C; and ¢; labels of dependent events in right-
of-head conjuncts with the head conjunct, grouped by depth. Percentage
match for head conjunct nodes collected in both a left-to-right (L-R)
traversal and head-first (H-F) traversal are shown. The total number of
dependent events (|DepFEvents|) in post-CC conjuncts for each level is

displayedy o o et Sl e s o a Al e e B U e e e

Results on the Validation Set. 1064 coordinate noun phrases dependen-
cies. In the significance column > means at level .05 and > means at
level .005, for McNemar’s test of significance. Results are cumulative.

Results for Section 23. 416 coordinate noun phrase dependencies

XV

93
96

List of Figures

il

152

1.3

2.1

4.1

4.2

521
5.2
5.3

5.4

5.5

6.1

Tree 1. The correct noun phrase parse. Tree 2. The incorrect parse for

the ouniphrase: . = 5 s 0 e i v 5 v m B s s e e e

Tree 1. The correct noun phrase parse. Tree 2. The incorrect parse for

the NOUN PHEASE: + & i s v v w s s 5.5 o w0 o 5 8 6 50 5 ¢ & o o 5 5 4 s w5

The basic form of a coordinated phrase. coord refers to the coordination

] o e R e

Parser and Reranking F-score Results Comparison on Section 23 of the
A I e o e o e S

Tree 1. The correct noun phrase parse. Tree 2. The incorrect parse for

the noun phrase.

Graph of coordinations extracted from the BNC..

Example of symmetry in conjunct structure in a lexicalised subtree.
Trees that contain conjuncts with non-isomorphic structure.

Prior and posterior (positive adaption) probabilities for head child non-

terminal labels at conjunct depth 1

Prior and posterior (positive adaption) probabilities for head child non-

terminal labels at conjunct depth 5 0oL

Prior and posterior (positive adaption) probabilities for modifier POS
labels at conjunct depth 1,

Correct Parse tree bracketing according to the Penn Guidelines

xvi

13

27

56
65

72
73

75

75

76

85

6.2 Tree 1: The correct oracle coordinate NP. Tree 2: The incorrect coordi-
nate NP returned by the baseline model. Tree 3: The oracle tree aligned
Rl B S S S e B . s E A

xvii

Chapter 1

Introduction

1.1 Thesis Outline

Lexicalised generative history-based parsing models have proven to be highly success-
ful at robust and accurate parsing [Collins, 1999, Charniak, 2000]. Developed from
relatively simple Probabilistic Context Free Grammar (PCFG) models [Booth and
Thompson, 1973], they are now highly complex models which weaken the indepen-
dence assumptions of PCFGs by using information from previously generated parse
structure to help predict the remaining structure of the parse tree. Although these
models already achieve impressive overall accuracy results there is nevertheless poten-
tial for improvement. This is particularly true in areas of difficulty for such parsers,
such as, for example, coordination disambiguation, prepositional phrase (PP) attach-
ment, or, more generally, the estimation of parameters from sparse data.

Probabilistic parsing of natural language can be broken down into three main com-
ponents: defining a probability model, estimating the parameters of the model, and
efficiently searching for the most probable parse from the space of all possible parses
for the sentence. The work in this thesis is concerned with improving parameter esti-
mation in a generative model by using memory-based techniques as well as improving
the model’s handling of coordination disambiguation and so lies within the first two
areas.

A difficulty in improving probabilistic history-based models is how to incorporate

into the probability model features that will capture information in the data important

for disambiguation decisions within the limitations of feature selection in history-based

models. In addition, adding new features to the model increases the sparse data prob-
lem, one of the core difficulties in empirical NLP. Increasing the number of conditioning
features when predicting future structure can improve accuracy as the model has more
information on which to base its prediction. However, increasing the number of condi-
tioning features increases the number of parameters in the model, spreading the data
over more specific events, and often there is simply not enough training data to be able
to accurately estimate the probabilities of events. This is especially true when dealing
with features that involve individual words, features which nevertheless are important
as individual words tend to have good discriminating power. The method of estimating
the local distributions, therefore, plays a very important role in building a good model.

In this thesis we examine the use of memory-based techniques for parameter estima-
tion. Specifically, we use k-nearest neighbour (k-NN) for smoothing model parameters.
Essentially, this technique involves basing the estimation of a particular parameter,
or query instance, on the distribution of the class variable (or future) over the set of
k instances from the training data that are most similar to the query instance. k is
typically very large in probability estimation, compared to when A-NN is used for clas-
sification. Instances selected are weighted according to their similarity to the query
instance, so that instances from memory that are more similar to the query instance
will be given more weight in the prediction of the class value.

Memory-based learning is distinguished from other machine learning algorithms in
that it delays generalising beyond the training data until it must classify, or assign a
probability to, each new query instance. This sort of lazy learning avoids committing
to a single global approximation at training time but instead implicitly represents the
target function by a combination of many local approximations, which take into consid-
eration the query instance when deciding how to generalise. The specific advantages of
memory-based learning - the ability to model complex target functions by a collection
of local approximations and the fact that memory-based learning does not abstract
away from low frequency data - suggest, considering the irregularities and small sets
of exceptions in natural language, that memory-based learning algorithms should lend
themselves well to natural language learning [Daelemans et al., 1999a, Daelemans and
van den Bosch, 2005].

We show that memory-based learning works well for parameter estimation in a

2

generative parsing model. kNN is a very simple, but effective method, allows for
flexible feature selection and achieves state-of-the-art performance in accuracy.

We carry out our experiments within the framework of generative parse reranking.
We begin by describing a generative probabilistic model for parsing, based on Model 1
of Collins [1999], which re-estimates the probability of each parse generated by an initial
base parser (Bikel [2004a]’s implementation of the Collins parser) using memory-based
techniques to estimate local probabilities. We achieve an f-score of 89.4% for sentences
< 40 words on section 23 of the Penn Wall Street Journal (WSJ) Treebank [Bies et al.,
1995], which represents a significant increase over our baseline parser and the Collins
parser. Although the model effectively reranks the top-n parses output from the base
parser, insofar as it is generative the approach is more similar to a second-pass of a
generative parser than to the discriminative reranking approaches of [Collins, 2000,
Collins and Duffy, 2002, Shen et al., 2003, Henderson, 2004, Charniak and Johnson,
2005, Koo and Collins, 2005].

Discriminative approaches to parse reranking have recently become popular, moti-
vated to a large extent by the flexibility of discriminative techniques in terms of feature
selection compared to history-based models. Discriminative reranking approaches can
choose features which incorporate arbitrary aspects of the whole parse tree structure,
whereas in history-based models the choice of conditioning features when predicting
parse structure is limited to structure that has already been determined in the deriva-
tion of the tree. Although discriminative reranking tends to improve on the perfor-
mance generative models, there remain relatively small differences in accuracy between
generative and discriminative models when tested on the Penn Wall Street Journal
Treebank, despite the more restricted choice of features possible in history-based mod-
els.

Generative parsing models and discriminative rerankers are not competing strate-
gies to parsing, however, but are complementary. Discriminative rerankers rely on
history-based models to generate the n-best list of parses. In addition, the probabil-
ities generated by a base generative model for each of the parses in an initial n-best
parse ranking play an important role in several discriminative approaches to parse
reranking [Collins, 2000, Collins and Duffy, 2002, Shen et al., 2003, Henderson, 2004,
Charniak and Johnson, 2005, Koo and Collins, 2005]. Thus any improvements in the

base generative model are likely to improve the discriminative rerankers. Generative

history-based reranking models have also an advantage in that they can be applied

to the full output of the base parser and not just the n-best list to which discrimina-
tive rerankers are limited. This is because, unlike discriminative reranking approaches,
history-based models can take advantage of a packed representation of trees and can
use dynamic programming to search for the most probable tree according to the model.

The remainder of the thesis involves taking the memory-based model as the base-
line model and working on improving the area in which the model performs worst:

coordination disambiguation.

1.1.1 Coordination Disambiguation

As an example of the coordination disambiguation task, take the phrase people of all
ages and all classes. The coordinating conjunction (CC) and and the noun phrase all
classes could attach to the noun phrase all ages, as illustrated in Tree 1, Figure 1.1.
Alternatively, all classes could be incorrectly conjoined to the noun phrase people of all
ages as in Tree 2, Figure 1.1. This problem of whether to attach low (Tree 1) or attach
high (Tree 2) is a common source of error in coordinate noun phrase disambiguation.
Another common source of disambiguation error is illustrated with the alternative
bracketing of the slightly modified phrase people of all ages and classes shown in Fig-
ure 1.2. Here, the problem is whether all modifies both ages and classes as in Tree 1,
Figure 1.2, or whether all modifies ages but not classes as in Tree 2, Figure 1.2.
Although there has been a substantial body of work on other areas of difficulty
for parsers, such as PP-attachment, coordination ambiguity is a relatively little stud-
ied area. One reason for this could be that dependencies involving PP-attachment
tend to occur much more often than coordination constructions. Thus, improving
PP-attachment has perhaps greater potential to improve overall parser performance.
The correct bracketing of coordination constructions, however, remains one of the most
difficult problems for natural language parsers and parsers often perform worse at coor-
dination disambiguation than PP-attachment. In the Collins parser and our emulation
of his parsing model, dependencies involving coordination achieve by far the worst

performance of all dependencies.’

'For example, in [Collins, 1999] an error analysis shows that although dependencies involving
coordination conjunctions achieved fscores as low as 61.8%, the lowest of all dependency types,
compared to an fscore of 81.9% for PP modification, coordination accounts for only 1.9% of all

4

NPB

all ages all classes

/

NP and NP
/\ |
NPB PP NPB

peolple of NP all classes

NPB

TSN
all ages

Figure 1.1: Tree 1. The correct noun phrase parse. Tree 2. The incorrect parse for the
noun phrase.

As with PP attachment, most previous attempts at tackling coordination as a sub-
problem of parsing have treated it as a separate task to parsing. It is not always obvi-
ous, however, how to integrate the methods proposed for disambiguation into existing
parsing models, which presumably is the end goal of any work on PP or coordination
disambiguation. Therefore we approach coordination disambiguation, not as a sepa-
rate task, but integrated within the framework of a generative parsing model. Our
aim is to increase understanding of coordination ambiguity in generative history-based
parsing models and to improve the ability of a generative history-based parsing model

to make the correct coordination decisions in the context of parse reranking. As noun

dependencies whereas PP-attachments accounts for 11.2%

NP
NP PP

|

NPB /////\\\\\
| of NP

people |
NPB

all ages and classes

I
NPB NPB

e |
all ages classes

Figure 1.2: Tree 1. The correct noun phrase parse. Tree 2. The incorrect parse for the
noun phrase.

phrase (NP) coordination accounts for over 50% of coordination dependency error in
our baseline model we focus primarily on NP coordination.

We examine some of the types of error made in noun phrase coordination, showing
how Penn Treebank data for NP coordination is particularly noisy and how incon-
sistencies in the Penn Treebank WSJ annotation of coordinate NPs negatively affect
parser performance. We also show how the different head-finding rules for noun phrases
and non-recursive noun phrases (base NPs) affect disambiguation, suggesting slightly
modified head-finding rules for base NPs.

We look at the dependencies between two head nouns in coordinate noun phrases.
We first introduce our distributional word similarity measure and compare it with sev-
eral existing measures of word similarity, testing whether the various measures can

detect similarity between the head nouns in coordinate noun phrases. We then concen-

6

trate on modelling the likelihood of two nouns conjoining, designing a new parameter
class? for use in both coordinate noun phrases and coordinate base noun phrases. In
the estimation of this parameter class, data from the unlabelled British National Cor-
pus (BNC)[Burnard, 1995] are used in addition to WSJ data. We use a word graph to
store the training data and explore variations of k-nearest neighbour which incorporate
our measure of word similarity in the estimation of parameters in order to reduce data
sparseness.

There is often a considerable bias toward symmetry in the syntactic structure of
two conjuncts and most previous work on coordination disambiguation has attempted
to take advantage of this. We give empirical measurements of the extent to which
parallelism in the syntactic structure of conjuncts exists and then design new parameter
classes for the generative model which attempt to capture the parallelism effect and
thus allow the model to learn a bias toward symmetry in conjuncts.

The various changes to the baseline model in the handling of coordination result in
a rise in NP coordination dependency f-score from 69.9% to 73.9%, which represents a
relative reduction in fscore error of 13%.

We now summarise the contributions made in this thesis:
1. Parameter Estimation - Combating Data Sparseness

e We demonstrate that memory-based models, based on varieties of the k-
nearest neighbour algorithm, are effective for parameter estimation in a
lexicalised generative parsing model, allowing for flexible feature selection
and good smoothing of data, and can achieve state-of-the-art results for

accuracy.

e We introduce a novel technique for the estimation of certain types of bilexical
statistics, which makes use of both labelled and unlabelled data and incor-
porates, for the first time, a measure of word similarity into a generative

lexicalised parsing model.

2. Coordinate Noun Phrase Disambiguation

2We refer to a model space, such as, for example, the bigram model P(w;|w;—1), as a parameter
class. A particular parameter from that parameter class might be P(w; = cat|w;—1 = the).

7

e We investigate some of the causes for the errors in coordinate noun phrase

disambiguation, showing that the data used for such parsers are particularly
noisy with regard to NP coordination. We also demonstrate how head-

finding rules can negatively affect disambiguation.

e We give an empirical analysis of noun phrase coordination in the data - fo-
cusing on two salient characteristics of noun phrase coordination: symmetry

in conjunct structure and word similarity for coordinate head nouns.

e Based on the study of training data and parser errors we develop techniques
for improving the model’s ability to disambiguate coordinate structure, in-
cluding altering the parameterisation of the model and improving parameter

estimation.

An early version of the work on memory-based parameter estimation for generative
parsing was published in [Hogan, 2005]. Hogan [2007a] describes some of the work
on coordinate noun phrase disambiguation reported in this thesis and Hogan [2007b]
reports on the empirical measurements of lexical similarity in noun phrase conjuncts
presented in Chapter 4.

The remainder of this chapter is organised as follows: In Section 1.2 we outline the
generative history-based parsing model adopted in this thesis, introducing the notation
that will be subsequently used throughout the thesis. Then, in Section 1.3, we give
a brief overview of how coordination is handled in the Collins parsing model - our
baseline model. In Section 1.4 we outline the parameter estimation techniques used in
this thesis: linear interpolation and the Witten-Bell estimation of the baseline model
and k-nearest neighbour methods. Finally, Section 1.5 gives a chapter by chapter guide
to the rest of the thesis.

1.2 Generative Lexicalised History-based Parsing

models

1.2.1 Generative

Generative parsing models estimate the joint probability, P(t,s), for each candidate

parse tree t of a sentence s, where s € S, t € T, and S is the set of all sentences in the

8

language and T the set of parse trees. Each tree in 7" has a member of S as its yield

(i.e. its sequence of leaf nodes).

Generative probability models define a joint probability distribution, P(¢,s) over

the space of all possible sentence/parse tree pairs, which satisfies the constraint:

¥ Phhe=1 (1.1)

teT,seS

As probabilities are for the entire language, it is possible to find the overall probability

of a sentence:

Pla=)_ Plts] (1.2)

teT
Generative parsing models estimate P(¢|s) indirectly by making the observation that
maximising P(t, s) is equivalent to maximising P(t|s). The most likely parse tree, £, is

given by:

" Pt
t = argmax P(t|s) = argmax s 2} = argmax P(t, s) (1.3)
teT teT P(s) teT
(In (1.3) P(s) is constant so maximising I;SE‘;)) is equivalent to maximising P(t,s)).

The joint probability P(t,s) is simply P(t) where the yield of ¢ is equal to s, and
0 otherwise. Thus, from the space of all candidate parses for a particular sentence,

generative parsers choose the parse tree that maximises the probability P(t).

The probability of a tree is calculated as the product of all the rewrite rules from
which the tree is derived. In a PCFG, for a tree derived by n applications of context-free
rewrite rules LHS; — RHS;?1<i<n,

P(t)=][P(RHS,|LHS)) (1.4)

i=l..n

In PCFGs the context-free rewrite rules are so called because they are independent
of surrounding context in the tree - that is the probability of a rule expansion is
independent of where the rule occurs in the tree. The probability of a rewrite rule is

estimated using relative frequency estimates:

3LeftHandSide (LHS)— RightHandSide (RHS)

9

count(LHS; — RHS;)

P(RHS;|LHS;) = (1.5)

count(LHS;)

where count(LHS; — RHS;) and count(LH S;) return the frequency of LHS; — RHS;
and LH S; in the corpus respectively. This is the maximum likelihood estimate (MLE)
(see [Collins, 1999, p. 40] for proof on why, in this case, the relative frequency estimate
is the maximum likelihood estimate, and also for a fuller description of the generative

parsing model than is given here).

1.2.2 Lexicalised

Lexicalisation tends to improve parser accuracy because it allows the parser to use
crucial information about the words in the sentence when disambiguating the syntactic
structures of that sentence (see, for example, early work on lexical statistics for resolving
syntactic ambiguity in [Hindle and Rooth, 1991]).

A PCFG can be lexicalised by associating a word, w, and also a part-of-speech
(POS) tag, t, with each non-terminal in the tree. The key idea is that each constituent
has a ‘head’ which is its most important lexical item.

An unlexicalised PCFG rewrite rule can be written as:
Cp — Cin..C1iCrCra...Crm (1.6)

where, on the left hand side of the rule, C}, is the parent constituent label. The right
hand side of the rule consists of the children of C}: a sequence of n constituents to the
left of the head child constituent (left modifiers), followed by the head constituent, C,
followed by the m constituents to the right of the head constituent (right modifiers).

The lexicalised version of (1.6) is:
Cp(wpy tp) = Cln(wlm tln)---Cll(wlla tll)ch(wpv tp>C7‘l (wrl 5 trl)---crm('wrmy trm) (17)

where each constituent is associated with its head word, w; and head word POS tag t;.
Note that the head word and POS tag of C}, - the head child - are inherited from the
parent constituent.

The introduction of lexicalisation vastly increases the number of rules in the gram-
mar and makes direct estimation of constituent expansion rules unfeasible because

of sparse data problems. Using the chain rule of probabilities the probability of a

10

rule is decomposed into the product of more tractable probabilities and independence

assumptions are made to reduce the number of parameters in the model.

1.2.3 History-Based

In order to incorporate richer context in the probability model, in an attempt to over-
come the structural weaknesses inherent in the independence assumptions of probabilis-
tic context-free grammars, history-based models [Black et al., 1992] were developed.
In history-based models the probability of a derivation D of a parse tree is the product
of the probabilities of each step in the derivation of the tree. For example, for PCFGs,
each step, or decision, in the derivation of the tree is an application of a rewrite rule.
Unlike PCFGs, however, in history-based models the probability of a step d; in the
construction of a tree is conditioned on potentially all structure that has already been

determined in the derivation of the tree. For a tree derived by a sequence of n decisions:

P(D) = [] P(dilds, ... di-1) (1.8)

i=l.n
The sequence of previous decisions dy, ..., d; 1 is referred to as the history of d;. In
practice it is not practical to condition on the entire history as this would lead to a
vast number of parameters. Instead a history mapping function ® maps the history to

a finite set of history contexts, so that:

P(D) = [] P(dil®(dy,....di-1)) (1.9)
i=l.n
PCFGs are a special case of history-based model, where the history of a rule expansion

is taken simply to be the non-terminal label of the node being expanded.

How a tree is derived is important as it affects the choice of conditioning features
at each step in the generation of the tree. In PCFGs and in the models used in this
thesis there is a one-to-one mapping between a tree and its derivation. Thus P(D)
= P(t). This is not always necessarily the case however. Where multiple derivations
are possible for a tree, the probability of a tree is the sum of the probabilities of each

possible derivation (as with, for example, the parsing models of [Magerman, 1994, Bod,

1t

1998)):
Pit)=) P(D) (1.10)

1.2.4 Markovised

We use a generative model for parsing following the lexicalised history-based model
of Collins [1999] where the grammar rules are Markovised.

Take the lexicalised rule in (1.7). In a Markov grammar, instead of generating the
right-hand-side in one step, the generation process is broken down into three main
steps: first the head child C}, is generated, then Cj;(wj,t;1) through to Ci,(win, i),
then Cr1(wr1,tr1) through to Crp(Wrm, trm). At each step, the probability of generating
a particular child node can be conditioned on the children which have already been
generated. In a first order Markov grammar a modifier node is conditioned on the
previously generated node (as well as the parent node). In an m' order Markov
grammar the node is conditioned on the m previously generated siblings (and parent
node). The model also generates two special +STOP+ nonterminals as the leftmost
(In+1) and rightmost (rm+ 1) children of every parent. In a markovised grammar the
generation of the +STOP+ nonterminals is necessary if the model is to sum to 1, due
to the fact that constituents have a variable number of children. See [Collins, 1999, p.
46] for a discussion on the importance of generating the +STOP+ symbols.

An advantage of using a Markov grammar is that breaking down the generation
of the child nodes of a constituent into a series of steps helps combat data sparseness
because it makes it possible to generate rules which have not occurred in the training
data.

The term vertical markovisation is sometimes used when information from pre-
viously generated ancestor nodes is used as part of the local history in a parameter

class.

1.3 Coordination in the Baseline Model

In this section we give a brief outline of the handling of coordination in the Collins
parser - our baseline model. A more detailed description of coordination in the Collins
model can be found in Bikel [2004b].

12

Cp

Ch Crl(tr]:CC) Crz(coordzl)

Figure 1.3: The basic form of a coordinated phrase. coord refers to the coordination
flag.

In the Collins parsing model each node in a parse tree is annotated with a coordina-
tion flag, set to true if the node is conjoined to the head node of the phrase, and false
otherwise. The head node of a coordinate phrase always precedes the coordination
conjunction, and the coordinating conjunction followed by the second conjunct always
occur to the right of the head conjunct. A coordinating conjunction node, followed by
a conjunct, are generated together, unlike other constituents.

Take the tree fragment in Figure 1.3 where the POS tag t,; of the node following the
head node is a coordinating conjunction. In such case the node following the CC node
will have its coordination flag (coord) set to true. The CC node will not be generated
as with other modifier nodes. Instead, node C,o is generated after the head node C}.
Then the CC node is generated via a special CC parameter class, conditioned on the
two conjuncts Cj, and Cio

Coordination is handled differently for base noun phrases. A base, or non-recursive,
noun phrase (NPB) as defined in [Collins, 1999], is a noun phrase which does not
directly dominate another noun phrase, unless that noun phrase is possessive. For
nodes in base noun phrases all coordination flags are set to false and modifier nodes
are generated in the usual fashion with no special treatment of CC nodes. The reason
for the different handling of coordination in base NPs is not stated in Collins’ thesis.
However, NPBs are treated differently to other constituent types in several ways. For
all nodes, with the exception of NPBs, a modifier node to the left or right of the head
node is always conditioned on the head node. In contrast, for base noun phrases the
modifier node is conditioned on the previously generated node. As discussed in [Bikel,
2004b], the previously generated node in NPBs is treated as a head node for the purpose
of conditioning and it is as a consequence of this that coordinate NPBs are not handled
like other coordinate phrases.

The effect on disambiguation of the different handling of coordination in base NPs

13

is discussed in detail in §4.3.1, where we propose an alternative way of handling coor-
dination in NPBs.

1.4 Parameter Estimation

One of the core difficulties in empirical NLP is the sparse data problem - often there
is not enough data collected to enable accurate estimation of the probabilities of low-
frequency events. This is particularly true when collecting data on events which include
individual words. Due to the sparseness of NLP data, the method of estimating the
local distributions plays a very important role in building a good model.

Data sparseness makes the maximum likelihood estimate for lexicalised rule proba-
bilities unreliable, especially if we are to include more features from the history. With
maximum likelihood estimation there will be a very large number of cases of rules which
are given a zero probability, when in fact they should really have some non-zero proba-
bility. In this sense we can say that maximum likelihood estimation causes overfitting:
all the probability mass is distributed over the cases we have already seen, with no
probability mass left for a completely new case. Clearly there is a need to generalise,
and this is what smoothing does in effect. This is a crucial step in natural language
parsing where the aggregate probability of the unseen or low probability events can be
significant.

As maximum likelihood estimation is known to be unreliable for low or zero counts,
a variety of smoothing techniques has been developed to improve estimates. Chen
and Goodman [1996] present a useful survey of smoothing techniques for language
modelling as well as a comprehensive comparison of several techniques. Toutanova
et al. [2003] also compare different estimation techniques, including a memory-based
technique, in a HPSG parsing model. We focus here on the estimation techniques used
in this thesis: that of the baseline Collins parser - a type of linear interpolation using

Witten Bell smoothing - and then memory-based techniques.

1.4.1 Linear Interpolation and Witten-Bell Estimation

In linear interpolation the probability estimate of an event with history context X is

interpolated with an estimate which has a more general context. The different histories

14

are sometimes referred to as backoff levels. The idea is that when there is insufficient

data to estimate the more specific model, then the more general model might provide
useful information.

In linear interpolation estimates for the probability of a class y (the future), given
feature vector X; (the history), where X; is the history at backoff level i, are interpo-

lated as follows:

Pinterp(y|Xi) = /\X,PI\/ILE(y|Xi) o (1 e)‘X,)Ijinterp(y|Xi+1) (111)
f)interp(y|Xn) = PMLEP(y|Xn) (112)

where n is the number of backoff levels, 0 < Ax, <1 and X;;; is a feature vector
less specific than X; (i.e. with fewer features). That is, the smoothed model is de-
fined recursively as a linear interpolation of the MLE of the more specific model and
the smoothed estimate of the less specific model. The recursion ends by taking the
smoothed estimate of the most general level of backoff to be the maximum likelihood
estimate (alternatively, the uniform distribution could be taken as the final smoothed
model).

One simple but effective method for calculating the A values, which does not require
extensive training, is the method used in [Collins, 1999], which was adapted from [Bikel
et al., 1997] and the smoothing technique of [Witten and Bell, 1991].

Ax, is defined in terms of count(X;), which is the number of times context X; occurs
in the corpus:

{ 0 if count(X;) =0
Ax, =

t(Xs) .
mew if count(X;) > 0

where C is a constant which can be optimised using held-out data. D(X;) is the
diversity of the history X;, that is the number of distinct outcomes that have been
seen with context X; in the training sample. We can interpret these calculations
intuitively as follows: with probability Ax, we should use the higher order model and
with probability 1 — A, the lower order model. If the particular context X; has a high
frequency of occurrence then a high value for Ay, is suitable because the higher-order
distribution will be reliable. If the context has occurred very infrequently then a low
value for Ay, is appropriate. If the context is highly diverse then we have less trust in

the higher-order model and more in the lower-order one. This technique is sometimes

15

referred to as Witten-Bell interpolation.

1.4.2 [i-Nearest Neighbour Parameter Estimation

The probability of a class y, given feature vector X, can be estimated using the &~NN

algorithm as follows:

Poxrenx) WAX, X)é(y,y')
P xrenyx) WAX, X))

P(y|lX) = (1.13)

where A(X, X') is the distance function between feature vectors. §(y,y")=1 iff y = ¢/,
otherwise 0. w(A(X, X")) is the weight of neighbour X’ of X where the weight is a
function of the distance. Ny (X) is the set of k-nearest neighbours of X.

For categorical variables the distance function often used is the overlap metric which

simply counts the number of mismatching feature values between instances X and X'
AX,X") = d(z;, x}) (1.14)
i=1

where: d(z;,z}) = 0 iff z; = z} else 1. A(X, X’) is the distance between instances
X and X', represented by n features, and d is the distance per feature. In effect,
the weighting function w(A(X, X)) turns the distance into a measure of nearness, or

similarity. A popular weighting function is the inverse distance function:

1

A = EE I

(1.15)

for some constant m.

1.4.3 Similarity for Smoothing

In this thesis, as well as using k&-NN for parameter estimation as in (1.13), we use a
variation which calculates the similarity function directly, rather than calculating the
distance and then converting this to a similarity function:

2 EX'eNk(X) sim(X, X")é(y,y")

Py|X) = > vrer ooy 58X, X7 (1.16)

16

where sim(X, X') is a similarity score between instances X and X’.

If we group history samples together so that n; is the history type X; - that is, n;
refers to those history feature vectors which have the same values for each feature as
X, and where count(n;) is the number of history samples of type n; in the data set.

We can rewrite (1.16) as:

Y onzeN(ny) Sim(n;, ng)count(y, ng)

1ie117g
aneN(n]) sim(nj, ng)count(ng))

P(y[n;) =

where count(y,n;) is the number of times future y occurs with history type n, and
stm(n;, n,) is a similarity score between types n; and n, and N(n;) is the set of types
in the neighbourhood of n;. This is the form of our bilexical estimate in §4.3.2 where

we use a measure of similarity between words for smoothing.

1.5 Chapter by Chapter Guide to this Thesis

The work in this thesis began by replicating the state-of-the-art parser of [Collins,
1999] Model 1 and then altering this baseline model so that it used memory-based
learning for parameter estimation. We then focused our attention on coordinate noun
phrase disambiguation as this was the worst performing area of the parser. Our ex-
periments on noun phrase coordination disambiguation began with an analysis of the
errors produced by the memory-based model, leading us to look at inconsistencies in
treebank annotation as a source of error. Noticing also a marked tendency toward
parallelism across conjuncts, we then explored this area by first measuring empirically
the extent of symmetry across conjuncts and, based on positive evidence of the same,
we experimented with incorporating a bias toward symmetry in conjunct structure
into the probability model. Our analysis of errors also led us to experiment with new
head-finding rules for base noun phrases. We noticed too on inspection that many
conjoined nouns appeared to be semantically similar and this motivated us to carry
out experiments with different measures of similarity between conjoined nouns on the
training set. In our final set of experiments we focused on modelling the likelihood of
two nouns conjoining and reducing the sparsity for this parameter class, developing a
similarity-based parameter estimation technique.

For the sake of coherence, readability and because of some cross-referencing issues

17

we do not always present the work in the thesis in chronological order of experiments
carried out. The remainder of the thesis is arranged as follows.

Chapter 2 begins with an overview of history-based approaches to statistical nat-
ural language parsing, followed by a brief look at recent approaches to discriminative
reranking. This is followed by a summary of memory-based techniques in natural
language processing that are most relevant to the work in this thesis. We also look
at previous attempts to use similarity measures for smoothing bilexical probability
estimates. Finally, we discuss previous approaches to coordination disambiguation.

Chapter 8 presents our generative parsing model, with k-nearest neighbour param-
eter estimation. We describe a technique based on constraint features to reduce the
size of the training set for each parameter class which helps both with accuracy and
speed. We also show how we combine k-nearest neighbour with linear interpolation
for bilexical statistics and present results which achieve state-of-the-art accuracy for
generative models.

Chapter 4 begins our focus on coordinate noun phrase disambiguation and is divided
into two main parts. The first introduces our distributional word similarity measure
and compares it with several existing measures of word similarity, testing whether the
various measures can detect similarity between the head nouns in coordinate noun
phrases. The second part of this chapter concentrates on modelling the likelihood of
two nouns conjoining, designing a new parameter class for use in both coordinate noun
phrases and coordinate base noun phrases. In the estimation of this parameter, data
from the unlabelled British National Corpus are used in addition to WSJ data. We use
a word graph to store the training data and incorporate our word similarity measure
in the estimation of the parameter in order to reduce data sparseness.

Chapter 5 begins with empirical measurements of the extent to which parallelism in
the syntactic structure of conjuncts exists. We then design new parameter classes for
the generative model which attempt to capture the parallelism effect and thus allow
the model to learn a bias toward symmetry in conjuncts.

Chapter 6 gives an analysis of some of the reasons for the baseline model’s poor
performance in the area of coordinate noun phrase disambiguation. We look at how
inconsistencies in the Penn Treebank WSJ annotation of coordinate NPs negatively
affects parser performance and also show how the different head-finding rules for NPs

and NPBs affects disambiguation, suggesting a slightly modified head-finding rule for

18

base NPs.

Chapter 7 shows how we evaluate the experiments on coordination disambiguation
and gives the details of the experiments carried out. We outline the effects of each
different experiment and discuss the results.

Chapter 8 concludes on the work presented in the thesis and suggests avenues for

further research.

19

Chapter 2

Previous Work

2.1 Introduction

In this chapter we summarise previous work most related to the work in this thesis.
First, in Section 2.2, we trace the development of history-based parsing and the cur-
rent state-of-the-art parsers, upon which our baseline model is based. Unless otherwise
stated parser accuracy is reported on section 23 of the Penn WSJ treebank for sentences
< 100 words. In Section 2.3 we give a brief outline of recent work in discriminative
reranking and n-best parsing. Section 2.4 moves on to memory-based learning of nat-
ural language. We summarise previous work on why memory-based learning is suited
to natural language learning tasks and briefly outline previous work on parsing that
comes under the broad category of memory-based learning. In Section 2.5 we turn to
similarity for smoothing, first presenting previous work on smoothing with memory-
based learning algorithm k4NN, and then looking at somewhat related work in nearest
neighbour cooccurrence smoothing. Finally, in Section 2.6, we review previous work

on coordination disambiguation.

20

2.2 Developments in History-Based Statistical Pars-
ing

2.2.1 [Magerman and Marcus, 1991, Magerman and Weir,
1992, Black et al., 1992]

Some early work in overcoming the structural weakness inherent in the independence
assumptions of the PCFG was that of [Magerman and Marcus, 1991, Magerman and
Weir, 1992]. The Picky parser, and its predecessor Pearl, differed from previous work
on probabilistic parsing in that a hand-crafted context-free grammar was modelled with
context-sensitive conditional probabilities trained from a corpus. In the probabilistic

model the probability of each parse tree T given a sentence S was defined as:

P(T|S) =) P(A— a)|C — BAy,a0,a1,02) (2.1)
A€eT

where A is the non-terminal being expanded, C is the non-terminal node which imme-
diately dominates A, a; is the part-of-speech of the left-most word of constituent A,
and ag and as are the POS tags of the words to the left and right of a,, respectively.
Black et al. [1992] were the first to develop the concept of the history-based model
which is distinguished from the context-free model in that for each constituent struc-
ture the conditioning was extended to look at potentially all previously built structure,
rather than just the non-terminal being expanded as in PCFGs. As outlined in Sec-
tion 1.2.3, in history-based models history is interpreted as any element of the parse
tree which has already been determined and can include previous words, non-terminal
labels, constituent structure, and any other linguistic information which is generated as
part of the parse structure. In Black et al. [1992]’s generative model each constituent

in the parse tree was associated with the following probability:
P(Syna Sem, R, Hy, H2|Synp) Semp7 Rpa Ipcy H1p7 H2p) (2'2)

where Syn and Sem are syntactic and semantic labels associated with the constituent,
R is the constituent’s re-write rule, and H; and H, are two lexical heads associated with
the constituent. These are conditioned on the syntactic and semantic labels, re-write

rule and lexical heads of the constituent’s parent, as well as its index, I, as a child

21,

of R,. This probability is decomposed into the product of five probabilities, of which
all, bar one, are estimated using deleted interpolation. The other of the component
probabilities are estimated using decision trees. The introduction of lexical information
is noteworthy as most subsequent high-performing, broad coverage parsers use some
degree of lexicalisation. Words were not represented as individual tokens but rather as

bit strings via the clustering algorithm of [Brown et al., 1990].

2.2.2 [Jelinek et al., 1994, Magerman, 1994, 1995]

The parsing model developed by Jelinek et al. [1994] and extended in Magerman [1994]
framed the natural language parsing task as one of treebank recognition. Unlike pre-
vious parsing models, which depended on carefully hand-crafted grammars, the model
is presented with a treebank from which to learn and, given a sentence to parse, the
task is to recognise the parse tree for the sentence that would be given it by a tree-
bank annotator. The parsing model is a history-based conditional model. Unlike other
history-based models, where a tree is associated with just one unique derivation, multi-
ple derivations are possible and the probability of a tree is the sum of the probabilities
for the various derivations of the tree.

Each decision made when building a particular parse derivation is conditional on
decisions previously made within a certain window around the current node. Nodes
in a parse tree are associated with various features and a parse tree is constructed by
generating values for features of the tree nodes, bottom-up, one at a time, according
to the distributions assigned by statistical models. The features for terminal nodes
are the head word, head tag, and extension, where the extension feature connects the
nodes in the tree and encode the tree’s shaped. Internal nodes have the additional
feature of the non-terminal label.

Four main statistical models are used in the construction of a tree: a POS tag-
ging model, a non-terminal label model, an extension model, and a derivation model.
Model parameters are estimated using statistical decision trees. As with all history-
based models, where conditioning context is taken from the structure build so far, the
derivation of a tree affects the conditioning features. The derivation model was in-
troduced in order to allow more probability mass to be given to derivations in which

the context available in the derivation of the tree suggested the correct parse, than

22

to derivations for which the local context at the various decisions was inconclusive or

misleading. In the SPATTER parser of [Magerman, 1994] there was also a conjunction
model in order to help predict the scope of conjunctions. Each node in the tree was
associated with an additional boolean coordination flag, set to true for a particular con-
stituent when the constituent is part of a conjoined phrase. As in [Black et al., 1992]
words are represented as bit strings. The version of SPATTER described in [Mager-
man, 1994] is trained and tested on the IBM Computer Manuals domain. Magerman
[1995] gives results of a version of the SPATTER parser, which does not include the

derivation model, trained and tested on the WSJ corpus.

2.2.3 [Collins, 1996, 1997, 1999]

Collins [1996] presents a conditional parsing model where parse trees are lexicalised
and represented as a set of head-modifier dependency relationships and a set of base
noun phrases. Parameters are estimated using relative frequencies and a variation of
the deleted interpolation method for smoothing described in [Jelinek, 1990]. Though
a much simpler model than [Magerman, 1995] Collins’ dependency model achieved a
higher accuracy of 85.3%/85.7% labelled precision and recall on section 23. Mathemat-
ical shortcomings in the model, as well as some limitations due to parse representation,
led to the improved generative model of [Collins, 1997], with some extra refinements
reported in [Collins, 1999]. Collins [1997, 1999] presents three history-based genera-
tive models. The parsing model explored in this thesis is derived from Collins’ Model
1. All three models are generative, lexicalised parsing models with first-order Markov
grammar generation of nodes. Nodes in the parse tree are annotated with a coordi-
nation and punctuation flag, in addition to head word and head word part-of-speech
information. For a more detailed description of the handling of coordination in the
Collins generative model see §1.3. Model 2 adds a suffix ‘C’ to all non-terminals which
are complements. In addition, a new parameter class for the generation of subcate-
gorisation frames is introduced. Before the generation of a modifier non-terminal, its
subcategorisation frame is generated, which is then used as a conditioning feature for
the generation of the non-terminal label, head-word and so on. Finally, Model 3 inte-
grates a probabilistic treatment of traces and Wh-movement into the parsing model,

although this has little effect on the accuracy of the model. The parameter estimation

23

technique for all models is a simple but effective variation on linear interpolation, de-
scribed in more detail in 1.4.1. The best results for sentences less than or equal to 100
words in length were achieved by Model 2: 88.3%/88.1% labelled precision/recall.

2.2.4 [Charniak, 1996b, 1997, 2000]

Charniak [1996b] also moved from depending on a hand-crafted grammar to relying
solely on treebank parses. In [Charniak, 1996b] he describes treebank grammars, which
are made up of CFG rules extracted from Penn treebank trees. Statistics are then
collected from the treebank and associated with the rules for PCFG parsing. In his
experiments he found that, contrary to common wisdom at the time, a probabilistic
parser trained on treebank grammars outperformed those trained from hand-crafted
grammars associated with treebank statistics. This work was developed considerably
in Charniak [1997] by lexicalising the CFG rules and including more context in the
probability estimates. In Charniak [1997]’s model there are two parameter classes.
The probability of a rule expansion of the traditional PCFG is conditioned on increased

contextual information, namely its head-word w,, and its parent Cgp:
P(Cp — alwp, Cp, Cgp) (23)
The other parameter class is the probability of the head word of a constituent, w;:
P(wilwp, C;, Cyp) (2.4)

conditioned on its non-terminal label C; and the head word, w,, of its parent node,
with label C,,. Estimates were calculated using deleted interpolation, where the backoff
weights were calculated as described in [Charniak, 1996a]. Interestingly, for both pa-
rameter classes the estimate, though initially conditioned on a word token, is backed-off
to condition on a word class. For example, the second backoff term in the linear combi-
nation of the estimates in (2.4) is P(w;|classyy, Ci, Cp). Classes of words were induced
by a clustering method similar to [Pereira et al., 1993]. Charniak concludes that al-
though backing off to condition on word classes is worthwhile, statistics based on word
classes alone, as in [Magerman, 1995], rather than on individual words, harms perfor-
mance. At labelled precision/recall scores of 86.6%/86.7% on sentences less than or
equal to 100 words in length on section 23 of the WSJ, Charniak’s model outperformed
the earlier models of [Magerman, 1995, Collins, 1996].

24

In [Charniak, 2000], Charniak presents new developments in his generative parser
which result in the highest parsing accuracy to date for generative parsers. The
‘maximum-entropy-inspired’ parser achieves labelled precision/recall results of 89.5%/
89.6%. The most significant improvement in accuracy came from simply annotating
nodes with the head word’s POS tag as well as the head word and then in the top-
down derivation of the tree, generating the POS tag of a node before generating its head
word, which is then conditioned on its POS tag. The effectiveness of this particular
parameterisation was noted before in [Eisner, 1996, Collins, 1999]. Other improve-
ments to the model came from increasing the local conditioning context in the model’s
parameters to include, for example, such features as the label of the left sibling of the
node being expanded. Parameters were estimated using a novel technique inspired by
how features are handled in maximum-entropy estimation and which allowed increased
flexibility when experimenting with different conditioning events. Following Collins
[1999] the PCFG rules were markovised, with a third-order horizontal markovisation
giving the best results.

Finally, a small but significant improvement came from explicitly marking noun and
verb phrase coordinate structures. Unlike in [Magerman, 1995, Collins, 1999] where
the conjuncts themselves are marked, in [Charniak, 2000] it seems that the parents of
conjuncts are marked. A noun or verb phrase is marked as being a coordinate structure
if it has two or more children of the same type (i.e. children which are noun phrases
or verb phrases, respectively) as well as one or more of the constituents comma, CC,
CONJP, and nothing else.

2.2.5 [Ratnaparkhi, 1997, 1998a]

Ratnaparkhi [1997, 1998a] describes a conditional history-based model, where each
action taken by the parser is conditioned potentially on all actions taken thus far in
the parse derivation. The probability of a parse is the product of the probabilities of
the parser actions in the bottom-up generation of the parse tree. There is a one-to-one
mapping between a parse tree and a parse derivation. There are four main parameter
classes, based on parser actions, and which are estimated using maximum-entropy
models. Some features make use of bilexical statistics and, for each feature which looks

at pairs of head words there are one or more other features similar except that one or

25

more words will be omitted. This is a somewhat similar idea to linear interpolation
which backs off to less specific context due to the sparsity of data. Ratnaparkhi’s
parsing model achieved accuracy of 87.5%/86.3% on the standard test set.

2.2.6 Henderson [2003]

Henderson [2003] presents another highly accurate generative history-based model,
trained and tested on the WSJ. Rather than choosing by hand the conditioning features
for each parameter class in the model, a representation of the derivation history is
automatically induced using a form of multi-layered neural network. The parameters
of the model are estimated using standard neural network methods for probability

estimation, resulting in labelled precision/recall scores of 89.5%/88.8%.

2.2.7 Investigations into the Importance of Lexical Statistics

Although it is clear that modelling the dependencies between head words helps parsing,
the exact contribution of lexical statistics was perhaps initially overestimated. Gildea
[2001] describes experiments where, in a replication of Collins’ Model 1, removing all
bilexical statistics from the model® resulted in a mere 0.45% absolute reduction in f-
score. Bikel [2004a] reports similar findings in his duplication of Gildea’s experiments
for his replication of Collins” Model 2. The work of Klein and Manning [2003] showed
that an essentially unlexicalised history-based model could achieve accuracy rates as
high as 86.3% for sentences <= 40 words on section 23. Their parsing model is based on
a traditional PCFG but uses a Markov grammar and increases the amount of vertical
conditioning context. They also add extra annotation of nodes, such as marking any
nodes with unary productions with the suffix ‘-U’; and they split some of the original
Penn Treebank POS tags into several more fine-grained tags. In this latter step some
POS tags actually come to represent a single word. However, the authors argue that
this only occurs with functional word classes and so is not a lexicalisation of the model.

Bikel [2004a)’s investigation into the parameter classes of the Collins’ model showed
that, during parsing, for the P(w;|H (7)) parameter class the full context, that is the

conditioning context which includes the head word of the phrase, was used only 1.49%

1This was done by removing the maximal context level in the interpolated estimates of P(w;|H (1)),
where w; is the head word of the constituent ¢ and H (%) its history.

26

Authors <=40 | <=100 | Description Base Parser
Parsers Collins [1999] 88.6% | 88.2% Generative history-based
Charniak [2000] 90.1% | 89.5% Generative history-based
Bod [2001] 90.7% | 89.7% | DOP
Henderson [2003] 89.6% | 89.1% Generative history-based
Rerankers || Collins [2000] 90.2% | 89.7% Boosting Collins [1999]
Collins and Duffy [2002] 89.2% | 88.7% Tree kernel Collins [1999]
Shen et al. [2003] 90.3% | 89.8% | SVM LTAG Collins [1999]
Henderson [2004] 90.1% Neural Networks Henderson [2003]
Charniak and Johnson [2005] 91.0% MaxEnt Charniak [2000]
Koo and Collins [2005] 90.0% Hidden Variable Collins [1999]
McClosky et al. [2006a] 92.1% Self-Training Charniak [2000]

Figure 2.1: Parser and Reranking F-score Results Comparison on Section 23 of the
WSJ

of the time. The prevailing view at that point in time was that bilexical statistics are
too sparse to make that much of difference to parsing accuracy. In further experiments
Bikel found that although estimates were using bilexical statistics only 1.49% of the
time, these statistics were being used up to 28.8% of the time during the generation
of the top-scoring parse. The reason the bilexical statistics make such little difference
to overall accuracy, Bikel argues, is that the distributions of the parameters which in-
clude the head word in the conditioning context and the parameters which omit that
feature are so similar that it makes little difference which estimate is used. Although
bilexical statistics may have limited usefulness, monolexical, or lexico-structural, de-
pendencies, where syntactic structure is conditioned on the lexical head, appear to be

more important with regard to parsing accuracy.

2.3 Ranking Algorithms

Two of the most accurate and popular state-of-the-art broad coverage statistical parsers
are those of Collins [1999] and Charniak [2000]. They are very similar models - history-
based generative parsers - and achieve F-scores of 88.2% and 89.5% respectively on
the standard test set. Improvements in the accuracy of probabilistic parsers have
occurred in very small increments over several years. However, since the publication
of [Collins, 1999] and [Charniak, 2000] there have been no further improvements in
accuracy reported for these parsers. Instead there has been a shift towards n-best

parsing and discriminative reranking. In this approach the n-best list of parses for each

27

sentence output from a base parser are reranked using another, usually discriminative,
model.

The usefulness of reranking the output of a base parser, with a model which can
incorporate a richer feature set, was first demonstrated as early as [Ratnaparkhi et al.,
1994]. Using a maximum entropy model, they reranked the trees output by the decision
tree parser of Jelinek et al. [1994] and noted an improved score. Ratnaparkhi [1997]
notes the potential of reranking by commenting on how the oracle score?, taken from
as few as 20 top parses produced by a baseline parser, can be dramatically higher than
the base parser’s top-1 parse.

The recent shift towards discriminative reranking has been motivated to a large
extent by the flexibility of discriminative reranking techniques in terms of feature se-
lection compared to history-based models. Discriminative approaches can choose fea-
tures which incorporate arbitrary aspects of the whole parse tree structure, whereas in
history-based models the choice of conditioning features when predicting parse struc-
ture is limited to structure that has already been determined in the derivation of the
tree.

Collins [2000] introduced a discriminative reranking approach for parsing: a ranking
function is learned which assigns a ranking score to each candidate parse of a sentence
from the n-best list of parses. Parse trees are represented by m binary valued features,

h, for k = 1..m. The ranking function for a tree, z has the following form:
F(z,@) = aoL(z) + Y _ akhi(z) (2.5)

where L(z) is the original log probability assigned the tree by the baseline parser.
@ = {ag, a1, ..., } 1s a parameter vector of feature weights. The learning process
involves finding the parameter weights that minimise some loss function, where the
loss function is related to the number of ranking errors the ranking function makes on
the training set. A ranking error rate is defined as the number of times a lower scoring
parse (as measured against the gold standard parse) is incorrectly ranked above the
best parse in the list. Experiments with two loss functions, one based on conditional

Markov fields and another based on the boosting algorithm, are made in [Collins,

2The oracle score is the score that an ‘oracle’ would get were it to pick from each n-best list the
highest scoring parse according to measures of labelled precision/recall. The oracle score is less than
100% because the correct parse is not always among the top-n parses produced by a parser. The
oracle score marks the upper accuracy limit for rerankers.

28

2000] and presented in more detail in [Collins and Koo, 2005]. The baseline parser
used to produce the n-best lists is that of Collins [1999]. A rich feature set of over
500,000 binary features was used in the final model. The boosting algorithm approach
increases precision/recall accuracy from 88.3%/88.1% labelled precision and recall to
89.9%/89.6%.

The discriminative reranker of Charniak and Johnson [2005] follows the reranking
methodology of Collins [2000]. Feature weights are trained using a maximum entropy
estimator. The parser of Charniak [2000] is adjusted to output the 50-best parses
(see §2.3.1) for a sentence. A set of carefully hand-crafted features types are designed
and include features which, for example, capture a preference for parallelism across
conjuncts (see §2.6) and right-branching trees. In [McClosky et al., 2006a] the accuracy
of this reranker is further improved to an impressive 92.1% f-score through a self-
training method. The reranker of Charniak and Johnson [2005] was used to parse
sentences from an unannotated corpus of a similar newswire domain. The 1-best parse
trees produced by the reranker were then added to the original WSJ hand-parsed
corpus, and the resulting enlarged corpus used to re-train the original base parser
of Charniak [2000]. In this process events from WSJ trees were given more weight than
events from reranker-produced trees. Re-training the parser in this fashion increased
the accuracy of the base parser to 91.0%. Finally, a reranker which used this higher-
accuracy parser as a base parser achieved the highest accuracy to date on the WSJ
test set.

Reranking tree kernel approaches have also been developed such as that of Collins
and Duffy [2002], where features consist of all possible subtrees, as in [Bod, 1998], and
the voted perceptron algorithm is used to learn the feature weights. Another successful
tree kernel approach is that of Shen et al. [2003] who use support vector machines and
Lexicalized Tree Adjoining Grammar based features.

In an effort both to reduce data sparsity and to handle polysemous words, Koo
and Collins [2005] propose a conditional log-linear model with hidden variables which
represent the assignment of words to word clusters or word senses. The input to this
model is the n-best trees produced by Collins [1999]’s parser. When combined with the
base parser Collins [1999] and features from the Collins [2000] reranker the log linear
model gives a small improvement over Collins [2000].

In Henderson [2004] the accuracy of a neural network generative parser [Henderson,

29

2003] is improved on when its top 20 parses are reranked by a discriminatively trained
model. Instead of training the parameters of the generative model by maximising the
joint likelihood of the trees and the sentences of the training corpus, the parameters of
the joint model are training by maximising the conditional likelihood of the parses in
the corpus given the sentences in the corpus, resulting in improved performance.
Advantages of ranking algorithms as opposed to generative probabilistic approaches
are that rerankers are relatively straightforward to implement and, importantly, that
is it trivial to incorporate arbitrary features in a ranking setting whereas adding new

features to a generative parser can be difficult.

2.3.1 n-best lists

Generally, the better the n-best list of candidate parses produced by a base parser the
better a reranker will do, where the quality of a list can be measured by its oracle score.
A higher oracle score tends to be correlated with a higher reranker score. The n-best
lists for the experiments in [Collins, 2000] were produced by simply turning off dynamic
programming in the chart parser of [Collins, 1999](by not allowing any two edges to be
equal). This, of course, slows down parsing prohibitively and so the beam width® was
narrowed from 1074 to 1072 and a chart cell limit of 100 was imposed. In addition to the
n-best lists produced in this fashion, the 1-best output produced by the original Collins
[1999] parser was added to the mix. However, as demonstrated in [Huang and Chiang,
2005], restricting the search space in such a fashion affects the quality of the n-best
lists produced. Huang and Chiang [2005] develop new efficient algorithms for producing
high-quality n-best lists. Building on top of Bikel’s implementation of Collins’ parser
they could produce 10000-best lists in almost the same time as 1-best lists and in
experiments with n = 100 and a beam width of 10~ achieved an oracle fscore of
96.4%, compared to Collins’ 94.9%. This algorithm was adopted for the reranking
of McClosky et al. [2006a] over the original method used for the Charniak and Johnson
[2005] reranker which had simply kept the n-best edges, rather than the I-best, during
the second-pass of the parser.

3In [Collins, 1999] in order to increase efficiency, a beam width is used to prune the search space.
Any constituent whose probability is less than 1/10000 times the highest probability constituent for
the same word span is pruned from the search space.

30

2.4 Memory-based Learning and Natural Language

Processing

We now look at the learning technique adopted in this thesis - memory-based learning.
Learning techniques that come under the relatively broad category of memory-based
learning have been applied to a variety of language learning tasks. For example, nearest
neighbour techniques have been applied with some success to PP-attachment [Zavrel
et al., 1997, Zhao and Lin, 2004] and shallow parsing [Daelemans et al., 1999b, Sang,
2002]. In this section we begin by outlining the argument that memory-based learning
is particularly suited to natural language learning tasks. We then give a brief summary
of memory-based techniques applied to full parsing. The next section on similarity for

smoothing (Section 2.5) includes also previous work on kNN for smoothing.

2.4.1 Advantages of Local Learning for Natural Language Learn-

ing Tasks

There is evidence that in many natural language learning tasks the instance space tends
to be highly disjunctive [van den Bosch et al., 1997, Daelemans et al., 1999a, Daelemans
and van den Bosch, 2005]. That is, natural language data sets often contain many small
disjuncts, where a disjunct is a cluster of identically classified instances. In a highly
disjunctive instance space those disjuncts that correctly classify only a few training
examples collectively cover a significant portion of the text. Daelemans et al. [1999a],
for example, measure the degree of disjunctivity of several data sets (grapheme-to-
phoneme conversion, part-of-speech tagging, PP-attachment, and base noun phrase
chunking) in the following leave-one-out experiments: For each instance in a data set,
the 50 nearest neighbours to the instance are retrieved from the remaining data set
and ranked according to their distance to the left-out instance. The cluster size of
the left-out instance is measured as the rank (minus one) of the nearest neighbour to
the left-out instance that has a different class value to the left-out instance. Using
this method to measure disjunctivity, many different NLP data sets were shown to be
highly disjunctive.

Studies such as [Weiss, 2000] have shown that small disjuncts are much more error

prone than large disjuncts and contribute to a disproportionate number of the total

31

errors. Aha [1992]’s analysis shows how the k-nearest neighbour algorithm performs
well at highly disjunctive learning. The work of [Daelemans et al., 1999a, Daelemans
and van den Bosch, 2005] shows that variants of &-NN work well on several different
natural language learning tasks and relate this to the fact that lazy learning retains all
information concerning disjuncts, no matter how small, whereas eager-learning algo-
rithms such as decision trees implement pruning and tend to overgeneralise thus loos-
ing important disambiguating information contained in small disjuncts. Thus nearest
neighbour, because it learns locally, would seem to be an ideal candidate for natural
language learning.

The advantages of local learning for natural language learning are demonstrated
in Daelemans et al. [1999a] in a series of experiments which showed that editing excep-
tional instances from the training set tended to harm generalisation accuracy, although
similar experiments [Rotaru and Litman, 2003] on learning tasks in the area of spoken
dialog systems did not show such clear evidence for the harmful effect of editing excep-
tional instances (but see §2.5.2 for evidence of the importance of rare events in other
types of similarity-based learning). In another series of experiments in [Daelemans
et al., 1999a], k&-NN learning was shown to outperform decision tree learning, and de-
creases in the performance of the decision tree classifier were shown to be linked to the

degree of abstraction from exceptions (by pruning or the eagerness of the algorithm).

2.4.2 Memory-Based Parsing

Scha et al. [1999] show how Data-Oriented-Parsing (DOP) [Bod, 1998] relates to
memory-based learning techniques such as Case-Based Reasoning (CBR), noting that
although DOP differs from mainstream CBR methods, there are some similarities:
DOP is lazy as it does not generalise over the treebank until it starts parsing a new
sentence, and DOP defines a space of parses for a new input sentences simply by
matching and combining fragments from the treebank.

DOP models, instead of defining their probabilities on minimal syntactic rules as
with traditional probabilistic grammars, define probabilities over whole trees, and tree
fragments. The main motivation for this is the belief that syntactic constructions of ar-
bitrary size and complexity may be statistically important. DOP is not an extension of

PCFGs but is based on a grammar formalism known as Tree Substitution Grammar. In

32

theory, in the DOP framework all previously seen parse trees and parse tree fragments
can be used to construct and assign probabilities to a new parse tree. In practice, the
space of tree fragments used for training is restricted somewhat as this tends to increase
accuracy. Bod [2001] notes that whereas the parsing approaches of Collins [1999] and
Charniak [2000] limit the statistical dependencies beforehand (in that a limited set of
conditioning features are hard-coded in advance) and then extend the dependencies in
order to increase accuracy, DOP instead begins by taking into account all fragments
seen in the treebank and then experiments with restrictions in order to uncover the
optimal set of relevant fragments. As displayed in Table 2.1 a version of DOP [Bod,
2001] tested on the Penn treebank recorded high accuracy results.

Sang [2002] achieved state-of-the-art results for base noun phrase identification,
arbitrary base phrase recognition, and clause detection using combinations of &~NN
classifiers. However, when the cascaded memory-based approach (where the output of
one level of chunking is used as the input to the next level) was applied to full parsing
the results were below state-of-the-art parsers, receiving an f-score of 80.5% on section
23 of the Penn WSJ treebank.

Kiibler [2004] describes a parser based on memory-based learning, trained and
tested on the TiBaD treebank [Stegmann et al., 2000, Hinrichs et al., 2000], a tree-
bank made up of speech transcripts in several domains. A test sentence is first POS
tagged and divided into syntactic chunks using the chunk parser of Abney [1996]. The
memory-based parser then searches for the most similar sentence in the training set
based on sequences of words. Training instances are stored in a prefix trie of words and
the search for the most similar sentence is a search for the most similar sequence of
words in the trie. If no reasonably similar sentence is retrieved then a backoff module
searches for similarity based on chunk information. When searching for the most sim-
ilar sentence in the training set the search algorithm allows ignoring words or chunks
in both the new sentence and a training sentence when the exact match cannot be
found. The retrieved sentence, with its associated parse tree, is then adapted to the
test sentence, by omitting the words or phrases that were omitted in the search. The
parser gets a labelled precision/recall f-score of 84.78%. The data set for the experi-
ments contains sentences of average length 4.5 words which is very low compared to
the average length of WSJ treebank sentences (23 words) and, as discussed in [Kiibler,

2006], the parser, as is, would not be suitable for unrestricted newswire text because

33

of the extreme unlikelihood of finding the same or very similar sentence to the test
sentence in the training set. Dialog data, on the other hand, contains many repetitions

and has fewer words per sentence.

2.5 Similarity for Smoothing

We now turn to the area of probability estimation using similarity for smoothing. We
first look at previous work on kNN for smoothing and then to the related area of

nearest neighbour cooccurrence smoothing.

2.5.1 kNN for Smoothing

Although they do not apply NN to probabilistic estimation, Zavrel and Daelemans
[1997] explore the relationship between kNN and non-interpolated back-off smoothing.
They demonstrate that when k=1 and an unweighted overlap metric used, then &~NN
and the backoff model both specify similar hierarchies of abstraction of the context
features; that is, the ordering of the feature subsets in back-off smoothing is identical
to the ordering of buckets of neighbours in the &~-NN algorithm. Zavrel and Daelemans
argue that memory-based learning has advantages over backoff smoothing in that the
similarity metric and feature weighting scheme automatically specify a domain-specific
hierarchy between the most specific and most general conditioning information and do
so without the need for a large number of parameters.

Toutanova et al. [2003] report that nearest neighbour techniques outperformed de-
cision trees and other smoothing methods (Witten-Bell, Jelinek-Mercer, and log-linear
models) when used to estimate local probability distributions in history-based gen-
erative parsing models. As the Redwoods HPSG treebank was used, results are not
directly comparable with parsers based on the Penn Treebank. Nonetheless, results
are relevant to Penn Treebank parsing because of the use of similar generative models,
which have some conditioning features in common with typical Penn Treebank parsers.

Toutanova et al. [2003] also make explicit the relationship between deleted interpo-
lation models and a broad class of memory-based learning. Their analysis is based on
a nearest neighbour model which is restricted to a linear order among feature subsets,

and which uses the overlap distance function to measure distance between instances.

34

They show that memory based models of this type are a subclass of deleted interpola-
tion models, where the value of the backoff weights in the interpolated models is based
on counts of feature subsets and distance-weighting. In practice interpolated models
use strictly linear feature subsets for the various levels of conditioning feature backoff.
Similarly restricting the features in the &-NN algorithm allowed a direct comparison of
results. The &~NN model worked best at k=15,000, outperforming the other smoothing
techniques. Accuracy was again increased when the features were not restricted to a

linear order.

2.5.2 Cooccurrence Smoothing

The problem of estimating the probability of events from sparse data is particularly
severe when the events involve individual words. It comes as no surprise then that in the
area of language modelling for speech recognition, where it is necessary to estimate the
probability of a sequence of words, the smoothing of estimates has long been a major
focus. Several smoothing techniques have been developed (see for example [Jelinek and
Mercer, 1980, Katz, 1987, Church and Gale, 1991]), including class-based approaches
such as that of [Brown et al., 1990], where words are clustered into classes and the
probability of a cooccurrence is determined using the probability of class cooccurrences.
In this subsection we focus on cooccurrence smoothing because of its similarity with
one of the estimation techniques developed in this thesis (§4.3.2). We discuss how our
word similarity-based smoothing relates to cooccurrence smoothing in (§4.4).
Cooccurrence smoothing for language modelling was first introduced by Essen and
Steinbiss [1992]. The basic idea is that when estimating the conditional probability
of word bigram, P(ws|w,), cooccurrences of word wy with words similar to w; can be

useful. The cooccurrence-smoothed estimate takes the form:

Pco smooth 11)2le ZP(w2]w1 whwl (26)

where f(w;,w}) depends on the similarity of w; and w] and, in this case, is the confusion
probability. In [Essen and Steinbiss, 1992] the estimate in (2.6) is combined with
maximum likelihood estimates by way of linear interpolation to give the final smoothed

estimate. This technique was used in [Grishman and Sterling, 1993] for smoothing

35

models of selectional constraints; that is, smoothing probabilities of words occurring

together in specific syntactic relations.

In [Dagan et al., 1994] cooccurrence smoothing for language modelling is further

explored. Their similarity model has the following form:

sim(wy, w)

ZwiES(wl) sim(wy, wy)

Psiu(wolw) = > Plwsfw))

wi €S (w1)

(2.7)

where S(w;) is the set of nearest neighbours of w; and sim(ws,w]) is a similarity
function derived from the Kullback-Leiber (KL) distance between the probability dis-
tributions of w; and w]. This method of similarity-based smoothing is also called
distance-weighted averaging [Lee, 1999]. The smoothed estimate, Psrys(ws|wy), is a
combination of estimates for cooccurrences involving words similar to w;, where each
estimate is weighted by a normalised measure of similarity between w; and neighbour
wj. The nearest neighbour set S(w;) was chosen to be the set of, at most, k words
that were less than a certain distance t from w;. k and t were tuned experimentally.
Dagan et al. [1994] found the best results when combining the estimate in (2.7) with
the unigram probability P(w,) via linear interpolation. This interpolated estimate was
used only for the estimation of the probability of bigrams that had never before oc-
curred in the training data. Otherwise, in cases where a bigram had occurred before
in the training set, the maximum likelihood estimate, Py/pp(ws|w;), was used. These
two estimators were combined using a variation of Katz [1987]’s back-off model. The
estimation technique was found to be effective in the task of language modelling leading

to a reduction in perplexity and speech-recognition error.

In an continuation of this work [Lee, 1997, Dagan et al., 1999], experiments are
carried out with an additional three similarity functions (the confusion probability, the
L1 norm and the Jensen-Shannon divergence) and their success evaluated on a pseudo
word disambiguation task. The performance of the similarity-based methods were
found to be on the whole better than that of standard methods. Interestingly, they
found that when events which occurred only once in the data were omitted from the
training set, the similarity-based smoothing methods suffered noticeable performance
degradations. As noted in §2.4.1, a similar phenomenon - that rare events are useful

- was found in case editing experiments with the kNN algorithm [Daelemans et al.,

36

1999a).

Lee [1999] compares seven distributional similarity measures in a restricted version
of the distance-weighted averaging model to see which measure is best at returning
useful nearest neighbours. Based on an analysis of the results a new similarity function,
the a-skew divergence, is developed which performs better than the other functions.

More recent work on cooccurrence smoothing [Weeds, 2003a] (and in more de-
tail [Weeds, 2003b]) has experimented with how to choose the set of nearest neighbours
S(wy) in (2.7). The estimates P(ws|w}) were combined as in (2.7) as each neighbour wj}
was added to S(w;) until some stopping condition was met. Experiments with three
different stopping conditions were made and results showed all techniques gave an

improvement over maximum likelihood estimation and naive Add-one type smoothing.

2.6 Previous Work on Coordination Ambiguity Res-

olution

We now conclude this chapter with a review of previous work on coordination disam-
biguation.

Agarwal and Boggess [1992] present a deterministic algorithm for identifying the
conjuncts of coordinating conjunctions. Their conjunct identifier is a component of an
expert system for the automatic extraction of information from structured reference
manuals, in this case the Merck Veterinary Manual. The task is to identify conjuncts
which appear in text that has been part-of-speech tagged, as well as tagged with se-
mantic labels specific to the domain. The text has also been processed by a semi-parser
which identifies noun, verb, prepositional, gerund, adjective, and infinitive phrases in
the sentences. The algorithm makes the simplifying assumption that each coordinating
conjunction conjoins only two conjuncts. The post-CC conjunct is always taken to be
the first complete phrase that follows the CC. The identification of the pre-CC conjunct
is based on heuristics which essentially work from the CC backwards to the start of the
sentence and choose as the first conjunct the first word or phrasal component which
matches the second conjunct’s semantic and syntactic labels, relaxing the constraints
to match syntactic labels only if no such component is found. As the semi-parser

does not recognise clauses and some phrases the conjunct identifier was expected only

37

to correctly recognise the beginnings of clauses and phrases being conjoined but not
the right boundary of the components. Within this framework the system correctly
identified 81.6% of coordinations on a test set of some 544 cases.

In [Kurohashi and Nagao, 1994] coordination disambiguation is carried out as the
first component of a Japanese dependency parser using a technique which calculates
similarity between series of words from the left and right of a conjunction. Similarity
is measured based on matching POS tags, matching words and a thesaurus-based
measure of semantic similarity. The most similar two series of words is calculated
using a dynamic programming technique. Their method first identifies the coordinate
structures in a sentence and then performs a dependency analysis for each phrase in
the identified structures. Each conjunctive structure is then reduced to a single node
and a deterministic dependency analysis is carried out on the reduced sentence.

Resnik [1999] considers noun phrase coordinations of the form n! and n2 n8 and of
the form n1 n2 and n8 n4. The former has two possible structural analyses, for example
a (bank and warehouse) guard and a (policeman) and (park guard) while for the latter,
five alternate structural analyses are possible. The learning task was to determine which
nouns are the heads being coordinated. In the first example given above, nl:bank and
n2:warehouse are coordinated. In the second example nl:policeman and n3:guard are
the conjoined heads. In the Penn Treebank, following the guidelines [Bies et al., 1995],
both types of noun phrase would be given a flat structure. Thus for the validation and
test sets a selection of noun phrases of these forms were extracted from the Wall Street
Journal corpus and disambiguated by hand. There were 100 and 89 samples in the two
test sets respectively. To resolve the ambiguities automatically Resnik uses three main
sources of information: agreement in number of candidate conjoined nouns, similarity
of meaning between the nouns, and a measure of the appropriateness of noun-noun
modification. Experiments were carried out on various different ways of combining
these sources of information, including using a heuristic method as well as a decision
tree approach. For the noun phrases involving three nouns 80% of the coordinations
were disambiguated successfully with 100% coverage. For the second type of coordinate
noun phrase accuracy of 81.6% was achieved with 85.4% coverage.

In Goldberg [1999] an unsupervised statistical model for disambiguating coordinate
noun phrases of the form nl p n2 cc n3is presented. Here the problem is framed as an

attachment decision: does nd attach ‘high’ to the first noun, n1, or ‘low’ to n2? In the

38

noun phrase boz of chocolates and roses ‘roses’ attaches high to ‘box’ yielding: ((box (of
chocolates)) and roses)). In busloads of ezecutives and their wives ‘wives’ attaches low
to ‘executives’ giving the structure (busloads (of ((executives) and (their wives))). A
maximum entropy statistical model based on Ratnaparkhi [1998b] is used to estimate
the probability: Pr(a|nl, p,n2, cc,n3), where the variable a is either a high attachment
or low attachment. The model is trained from examples of unambiguous coordination
noun phrases, of the from n1 cc n2, extracted from the unannotated WSJ. The results
presented had not yet been tested on a separate test set, but achieved precision of 72%
on the 500-phrase validation set extracted from the WSJ Treebank.

Nakov and Hearst [2005] focus on disambiguating noun compound coordination of
the form n! cc n2 n3, where the CC is limited to and or or. They consider phrases
such as car and truck production where both car and truck modify the head noun
production. These phrases are given a flat structure: (car and truck production).
Alternatively, for phrases such as president and chief executive, a two-headed noun
phrase, they assign the following bracketing: ((president) and (chief executive)). The
task is to decide which of the two possibilities is the correct bracketing structure given
the four words. In the case where the nouns in a noun coordinate construction are
modified by non-nominal modifiers, these modifiers are used for disambiguation but
the final bracketing deals only with the four words outlined above. The Web is used
to get statistics on word cooccurrences such as counts on how often n! occurs with n8
compared with n2 cooccurring with n3. Counts from the Web of paraphrase patterns
are also used as an information source. For example if the pattern n2 cc nl n3, as in
truck and car production, is matched often enough then a flat structure is likely. The
Web based statistics are used to make decisions on which type of bracketing should be
employed. In addition, heuristics which take into account any adjectives or determiners
modifying the nouns as well as a number agreement heuristic all have a vote on the
correct bracketing. The final decision is based on a majority vote from all information
sources, with a default of flat structure when the various sources of information were

undecided as to the correct bracketing structure.

The system was tested on 428 examples apparently automatically extracted from
the Penn Treebank and achieves 80.6% accuracy. Officially, however the Penn Tree-

bank would assign a flat structure to both examples given above because they only

39

involve nominal modifiers?, although in practice this is often not the case (see discus-
sion in §6.2). If a non-nominal unshared modifier is introduced, as in president and
old chief executive then the phrase is given added structure: ((president) and (old chief
executive))®. The results of Nakov and Hearst might be obscured somewhat by not
accounting for flat structure often given to both types of noun coordination in the Penn
Treebank. Only when the noun phrases in their test set originally contained unshared
non-nominal modifiers should the treebank give the more structured bracketing.
Interestingly, the early discriminative parse reranker of Ratnaparkhi et al. [1994]
includes features to capture parallelism in conjuncts. The model has classes of boolean
features which return 1 if particular syntactic patterns occur in both conjuncts. The
discriminative reranker of Charniak and Johnson [2005] also included features to cap-
ture syntactic parallelism across conjuncts at various depths. One type of feature
indicated whether conjuncts had the same syntactic label at depth 0, whether they
had the same labels for all nodes at both level 0 and level 1 and so on. Another feature
type measured the difference in the number of preterminals dominated by two con-
juncts. An extra boolean flag indicated whether the two conjuncts in question were
the last two in the coordinated phrase. For both rerankers, results were not given for
the effect of the coordination-based features alone, but rather for the effect that these

and other features had on overall reranker scores.

4See, for example, page 138 of the Penn Bracketing Guidelines [Bies et al., 1995]. ‘In general, we
avoid showing either the internal structure or the extent of modification of noun modifiers, regardless
or the strength of the annotator’s intuition in a particular example...[In the case of an NP with multiple
heads] if the only unshared modifiers are nominal, we annotate with flat structure’.

5See page 139 of the Penn Bracketing Guidelines [Bies et al., 1995]. ‘When there are unshared
modifiers, added structure shows which modifiers go with which head...When there are unshared
adjectives, determiners, or possessives, we frequently end up showing structure for nominal modifiers
as well’.

40

Chapter 3

Memory-Based Parameter

Estimation

3.1 Introduction

In this chapter we describe a history-based generative parsing model which uses a k-
nearest neighbour technique to estimate the model’s parameters. Taking the output of
a base n-best parser we use our model to re-estimate the log probability of each parse
tree in the n-best list for sentences from the Penn Wall Street Journal treebank. By
further decomposing the local probability distributions of the base model, enriching
the set of conditioning features used to estimate the model’s parameters, and using
k-NN for estimation as opposed to the Witten-Bell estimation of the base model, we
achieve an fscore of 89.4%, representing a 6% relative decrease in fscore error over

the 1-best output of the base parser.

3.2 Motivation

As discussed in §2.4, previous work has shown memory-based learning to be effective
for natural language learning tasks. Of particular relevance to the work presented here
is the work of Zavrel and Daelemans [1997] and of Toutanova et al. [2003]. Zavrel and
Daelemans [1997] discuss the advantages of k-nearest neighbour for smoothing over

linear interpolation, and show how 4NN gives a convenient way of experimenting with

41

complex conditioning events. In the work of Toutanova et al. [2003] on parameter
estimation in a Head-Driven Phrase Structure Grammar (HPSG) parsing model [Pol-
lard and Sag, 1994], estimation using kNN outperformed other estimation techniques

(Witten-Bell, Jelinek-Mercer, decision trees and log-linear models).

Given the stated advantages of &~-NN over linear interpolation and motivated by the
success of &-NN for estimation in the HPSG parsing domain, we applied &NN to the
task of smoothing local probability distributions in a generative PCFG-derived history-
based parsing model. For a baseline model, we replicated the state-of-the-art generative
parsing model of Collins [1999] (hereafter the Collins parser). This high-accuracy parser
uses Witten-Bell linear interpolation for parameter estimation. Though the model is
history-based there are relatively few conditioning features in the parameter classes
of the model, presumably due to the limitations of linear interpolation for smoothing.
Estimating the parameter classes with &~-NN could potentially improve the model by
allowing for better smoothing of data and for more information from the history to be

used in predictions.

3.3 The Baseline Model

We replicated Model 1 of the Collins parser so that we would then have a baseline
against which we could test the effect of any subsequent alterations we made to the
model. Although Model 2 of [Collins, 1999] achieves more accurate results than Model
1, we chose to replicate Model 1 as our baseline model. Model 2 of [Collins, 1999]
introduces probabilities over subcategorisation frames in order to solve the problems
caused by the bad independence assumption in Model 1: that modifiers are generated
independently of each other. However, given that &NN estimation should allow for
greater freedom with conditioning features we anticipated increasing the conditioning
context for the generation of modifiers so that the history would include previously
generated sibling modifiers (i.e. by increasing the level of horizontal markovisation).
This could weaken the independence assumptions of Model 1 and yet avoid the added
complication of modelling subcat frames. Our replication of Model 1 is our first baseline

against which we compare the memory-based model. In our evaluation of results we

42

also compare the memory-based model with Collins Model 2.

Replicating Model 1 of the Collins parser proved to be a more complicated task than
originally anticipated. However, based on the details published in [Collins, 1999], as
well as those published in [Bikel, 2004b], we replicated parsing Model 1. We reproduced
all the preprocessing steps on the trees in the training and test sets necessary for the
model and then, given a preprocessed parse tree, our parsing model will estimate the
probability of the tree, following the parameterisation of the Collins parser.

As our research is concerned with the generative parsing model and the estimation
of its parameters, rather than the mechanisms of the parser itself, and given the avail-
ability of Bikel’s replication [Bikel, 2002] of the Collins Model 2 parser with its n-best
list producing option, it was not necessary to reproduce the actual parser.? Instead, we
rerank the output of Bikel’s n-best parser, first according to our replication of Collins
Model 1 and then according to our memory-based model. As Bikel’s parser is based
on Model 2, we would not expect our Witten-Bell Model 1 replication to give a better
ranking of parses. This step was necessary however in the development of the parsing

model in order to give us our own baseline parsing model mechanism.

3.4 The Memory-Based Model

The memory-based parsing model differs from the Collins parser (Model 1) in how pa-
rameters are estimated: instead of Witten-Bell estimation, we use kNN for estimation,
as described in §1.4.2. We return to the details of our estimation technique in the next
section. The memory-based model also differs from Model 1 in that it is parameterised
slightly differently, with increased conditioning features. History-based models allow
for conditioning on any previously built structure, therefore vertical markovisation,
where information from previously generated ancestor nodes is used as part of the
local history in a parameter class, can be employed to improve the predictive capac-
ity of a parameter class. In our model the feature sets for each parameter class are

expanded to include additional features from the parse history, specifically increasing

!Collins [1999] also presents a third parsing model, which models traces and Wh-movement, how-
ever it does not improve on the accuracy of Model 2.

2Initially, however, in a proof of concept experiment, we replicated the actual parser for Model
1, achieving similar results to Collins Model 1 results. This allowed us to test that we had correctly
replicated Model 1, though in subsequent experiments we did not use the actual parsing mechanism.

43

the n*-order assumption for both horizontal and vertical markovisation. Choosing n
greater than 1 in vertical markovisation has been shown to be useful in the parsing
models of [Johnson, 1998, Charniak, 2000, Klein and Manning, 2003]. In the latter
two works using a 3¢ and (variable) 2" order horizontal markovisation, respectively,
proved optimal. Another difference between our model and the Collins parser Model
1 is that where Collins estimates the constituent label of a dependent constituent, its
part-of-speech tag, and its punctuation and coordination flag in one step, we do so
in three steps: first the probability of the part-of-speech tag is estimated, then the
constituent label, and finally its coordination and punctuation flags. Details of the
parameter classes of the memory-based model are given in Section 3.5. See [Bikel,

2004b] for a detailed description of all the parameter classes in the Collins parser.

3.4.1 Constraint Features for Training Set Restriction

The number of training examples in the training set for a particular parameter class
can be quite high. For example, the number of head child generation events in the parse
trees of sections 02 to 21 inclusive of the Penn WSJ treebank is 947,715 and the number
of examples of the generation of a constituent to the right of a head child is 1,367,411.
In kNN estimation each time a conditional probability is estimated it is necessary to
calculate A(X, X'), that is the number of feature value mismatches between the history
of the probability we wish to estimate and the history of an instance from the training
set, for each distinct example in the training set for this parameter class.

We found that restricting the number of examples in the training set used in a
particular parameter estimation helped both in terms of accuracy and speed. We re-
stricted the training sets by making use of constraint features. Take, for example, the
head child generation parameter class which estimates the probability of head child
label C} given, say, a history Cp, wp, tp, tep, where C), is the parent non-terminal la-
bel, w, and t, its head word and part-of-speech respectively, and t,, is the POS tag
of the grandparent node. If we make C), a constraint feature then to estimate, say,
P(C, = IN|C, = PP,w, = at,t, = IN,t,, = NN) we would make our prediction
using only those training examples where C, = PP. This mechanism is somewhat
similar to the idea of the MAC/FAC model of similarity-based retrieval [Gentner and
Forbus, 1991], which is based on a two-stage process, where a computationally cheap

44

filter is used to retrieve a subset of similar examples which will undergo more ex-
pensive processing (similar also to the idea behind multiple-pass parsing [Goodman,
1997, Charniak, 2000]). Stanfill and Walz [1986] make use of constraint features which
they call predictor restriction in order to increase the accuracy of their memory-based
reasoning approach to word pronunciation. They use a feature weighting function to
determine the most important feature which they then use to restrict their training
set to only those examples which have the same value for that feature as the query
instance. Daelemans et al. [1997] also explore a constraint feature approach to &-NN.
Their TRIBL algorithm constrains the initial data set based on features chosen accord-
ing to their information gain and then classifies a query instance based on applying
k-NN to the reduced training set. TRIBL performed well on several non-linguistic data
sets achieving similar accuracy results to NN without data set restriction but with
considerable speed advantages over the standard A-NN algorithm. Our constraint fea-
tures were generally chosen to coincide with the features in the last level of back-off of
the parameter classes in the Collins parser.

We carried out experiments using different sets of constraint features, some more
restrictive than others. The mechanism we used is as follows: if the number of examples
in the training set, retrieved using a particular set of constraint features, exceeds a
certain threshold value then use a higher level of restriction i.e. one which uses more
constraint features. If, using the higher level of restriction, the number of samples
in the training set falls below a minimum threshold value then ‘back-off’ to the less

restricted set of training samples.

3.4.2 Smoothing

Although using kNN for parameter estimation is an effective way of smoothing a
probability estimate with many conditioning events, it is nevertheless still necessary to
smooth the &-NN estimate. This is in order to avoid a zero probability when the class
value of the query case does not occur in any of the events selected for the estimation of
the parameter. Following Toutanova et al. [2003], in order to avoid zero probabilities we
added artificial instances to the training set, one for each class value. These instances
are made to be at a certain distance from the query instance, a distance considerably

larger than the maximum distance of a ‘real’ training instance from the query instance.

45

3.4.3 Lexical Statistics

The word parameter class, P(w;|H(i)), where w; is the head word of the node being
generated and H(7) is its history, is distinguished from all others in the relatively
large number of class values possible (12,002 possible values). We found that the
estimation of this parameter class required a slightly different treatment to that of
the other parameter classes. The best results were obtained when the A~-NN estimate
was combined with the original Witten-Bell estimate of Model 1. Let X; be a feature
vector which is a particular instantiation of the history context of the parameter class
P(w;|H (7). P(w;]X;) is calculated as follows:.

Piterp(wi| X1) = Ay, Penn(wil X1) + (1 = Avy) Pw s (wi] X2) (3.1)

where Y] is a constraint feature vector, as described in §3.4.1. The constraint features
in Y] are a subset of the features in X;. X5 is a feature vector, less specific than X, to
which we back off. The calculation of the A weights is similar to the weight calculations
in the Witten-Bell interpolation, outlined in §1.4.1. The interpolation weights here are
derived from the count of the constraint feature values in the training set. We define

Ay, in terms of |Y;|, which is the number of times context Y; occurs in the corpus:

Sy =

i

{ 0 if count(Y;) =0

count(Y;) "
) rospwy i count(Yi) > 0

where C is a constant which can be optimised using held-out data. D(Y;) is the
diversity of the history Y;, that is the number of distinct outcomes that have been
seen with context Y; in the training sample. In practise, Ay, = 0 does not occur. The
constraint feature for this parameter class is chosen to be t;, the POS tag of w;. In the
training set there is no POS tag value for which we have no events. As in this case
the kNN estimate is smoothed by backing off to the Witten-Bell estimate it is not
necessary here to add the artificial instances to the training set, as described above in
Section 3.4.2.

46

3.5 Experiments

3.5.1 Experimental Set up

Following established methodology our model is trained on sections 02 to 21 inclusive
of the Penn WSJ treebank and tested on section 23. Initially we used section 24 as
the validation set. However we encountered overfitting problems with this data set
and subsequently switched to using sections 00, 01, 22 and 24 for validation. In order
to speed up the fine-tuning process we chose the set of top-n parses for every third
sentence in this set so that the final validation set contained sentences from each of the
four sections. As in this phase of experiments we test on sentences of length less than
or equal to 40 words, the validation set is also made up only of parses for sentences less
than 41 words. The validation set was used for development and parameter tuning.

For the validation and test sets we obtained a set of top-n parses from the Bikel
parser setting the beam width to 1073®, getting an average of 31 parses per sentence.
We then merged this with the 1-best output of the same parser run with a wider beam
of 107*. According to Huang and Chiang [2005], Collins [2000] uses a similar process
for producing such a merged k-best list. This gave us an oracle fscore of 96% for
section 23, on sentences < 40 words.

As discussed further in §2.3.1, Bikel’s implementation of the Collins parser includes
a ‘hack’ (which essentially turns off dynamic programming) to allow for n-best parsing.
As in [Huang and Chiang, 2005] we found that with the standard beam width of 107
the method was prohibitively expensive. We limited our experiments to sentences of
< 40 words because we found that for longer sentences we could not produce good
quality n-best lists. If we narrowed the beam width too much the oracle score for the
parses produced was not high - that is, the quality of the n-best lists was poor. Yet,
if we widened the beam width we either encountered memory problems or the time
taken to produce the list was prohibitively long. (See §3.7 for the specifications of the

machine we used).

3.5.2 Experimental Details

We re-estimated the probability of each parse using our own baseline model, which

is a replication of the Collins parser Model 1, with the same parameter classes, and

47

using the same Witten-Bell estimation technique. We tested kNN estimation first on
the head generation parameter class P(Cj|H (7)), while the other model parameters
were still estimated using Witten-Bell. We then extended the use of kNN to include
the parameter classes for generating modifying nonterminals. Collins treats the gen-
eration of nonterminals whose parent is a base noun phrase differently to all other
modifying nonterminal generation. For the generation of modifying nonterminals there
are therefore two different parameter classes, one for any constituent whose parent
is an NPB, P(C;,t;,punc|C, = NPB, H(i)), and another for all other constituents
P(C;, t;, coord, punc|H(i)).® Finally, we further decomposed these two modifying non-
terminal parameter classes.?

Tables 3.1, 3.2, and 3.3 outline the parameter classes estimated using NN in the
final model settings and shows the feature sets used for each parameter class as well as
the constraint feature settings. For the constraint feature columns, where a particular
parameter class has more than one set of constraint features, the more restrictive set,
that is the set containing more constraint features, will be used only when the training
set contains a number of examples exceeding a certain threshold. Where we used
more than one level of constraint features, we set the threshold over which the more
restrictive constraint feature set was employed to 5000, and the minimum training set
size threshold to 100. Table 3.1 gives the details of the parameter class for generating
the head child node. Table 3.2 gives the details of most of the parameter classes used
for the generation of modifier nodes. This table has a column dir which indicates that
the parameter class is used for modifiers to the left of the head child (left) or to the
right of the head child (right) or is used in both cases (left|right). The column C,
indicates which parameter classes are not used for nodes with NPB parents (INPB).
When there is no value for this column entry then the parameter class is used for all
values of C},. The final table, Table 3.3, gives the details of the remaining modifier
parameter classes, used only for nodes whose parent is a base noun phrase.

We did not extend the use of &~-NN estimation to include the other, minor, parameter

classes in the complete model, which continue to be estimated using Witten-Bell.

3coord and punc denote the coordination and punctation flags respectively.

4We found experimentally that decomposing the parameter classes seemed to work well for &-NN.
We can hypothesise that &NN for parameter estimation does better with class variables that have
fewer possible values. This might also explain why A&NN alone did not work well for the parameter
class P(w;|H (7)) which has a word class variable.

48

Head Nodes
Parameter Class | Future | History [Constraint Features
P(Ch|H (1)) [Cn [Cowp,tp.tep | {Cp}

Table 3.1: The parameter class for generating C},, the non-terminal label of the head
child node. C, is the parent non-terminal label, w, and ¢, its head word and part-of-
speech respectively, and t,, is the POS tag of the grandparent node.

Modifier Nodes
dir Cp Parameter Class Future History Constraint Features
left INPB | P(t:|H(3)) ti dir, Cp, Ch, wp, dist, ti—1,ti—2,Cqp dir, Cp},{dir,Cp,Cr}
Pw[H@) w; t:, Ci, Cp, Ch, wp, dist, ti—1,ti—2, Cp t:}
right INPB | P(t:|H(i) t; dir, Cp, Cr, Wp, tp, dist, ti_1,ti_2, Cap dir, Cp 11, Coy Cr)
P(wi[H (i) wi ti, Ci, Cp, Ch, Wp, tp, dist, ti—1,ti—2,Cgp ti}
. P(C;|H (i) Ci dir,t;, Cp, Ch,wp, tp,dist, t;_1,ti—2, C dir,t;},{dir,t;,Cp}
| yti, Up,y s Wp, p,) s »Lgp slify 3 i, Up
leftiright | INPB P(coord, punc|H(i)) | coord,punc | dir,Ci,ti,Cp,Ch, wp,tp {dir, Ci, ts}

Table 3.2: The parameter classes for the generation of modifier nodes. The notation
is that used throughout the thesis. dir is a flag which indicates whether the modifier
being generated is to the left or the right of the head child. dist is the distance metric
used in the Collins parser. t;,_; and t;_» are the POS tags for the previous two generated
nodes. Cy, is the grandparent non-terminal label.

Modifier Nodes, C;, =NPB
Parameter Class | Future | History Constraint Features
P(C;,t:|H(z)) Ci, ti dir, Cp, Ch, wp, Ci—2,wi—2,Ci—3,wi_3,Cgp,Cogp, Caggp | {dir,Cp,Chr}
P(punc|H(i)) punc dir, Cp, ti, Ci, Ch, Wp, tp, ti—1, ti—2 {dir, Cp, i}

Table 3.3: The parameter classes used only when C, = NPB. The notation is that
used throughout the thesis. In addition, Cyy, and Cyg, are the great- and great-great-
grandparent non-terminal labels respectively. C;_s, w;_s and C;_3, w;_3 are the non-
terminal labels and head words of the second and third previously generated nodes.

As noted earlier, we extend the original feature sets by increasing the order of both
horizontal and vertical markovisation. From each constituent node in the vertical or
horizontal history we chose features from among the constituent’s nonterminal label,
its head word and the head word’s part-of-speech tag. As outlined in [Bikel, 2004a] for
the modifying parameter classes where the parent node has an NPB label, the head
child is taken to be the previously generated modifier, so C}, is always C;_; for these
parameter classes.

As well as parameter class decomposition and feature selection for each parameter

class, fine-tuning the model involved choosing the best value for & for each of the pa-

49

< 40 Words(2245 Sentences), Section 23
Model LR LP CBs | 0 CBs | 2CBs

WB Baseline || 88.2% | 88.5% | 0.93 | 65.66% | 86.9%
C099 M1 87.9% | 88.2% | 0.95 | 65.8% | 86.3%
C0O99 M2 88.5% | 88.7% | 0.92 | 66.7% | 87.1%
Bikel 1-best | 88.7% | 88.7% | 0.92 | 67.2% | 86.95%
k-NN 89.2% | 89.6% | 0.84 | 68.0% | 88.2%

Table 3.4: Results for sentences of less than or equal to 40 words, from section 23 of
the Penn treebank. LP/LR =Labelled Precision/Recall. CBs = the average number of
Crossing Brackets per sentence. 0 CBs, 2 CBs are the percentage of sentences with 0
or < 2 crossing brackets respectively. WB Baseline is our baseline emulation of Model
1 when tested on the output of the Bikel n-best parser. CO99 M1 and M2 are [Collins,
1999] Models 1 and 2 respectively. Bikel 1-best is [Bikel, 2004a]. kNN is our final
kNN model.

rameter classes estimated with ~NN and the best distance weighting function. Initially
we experimented with different distant weighting functions. We tried both the inverse
distance weighting function w—Jrl—l)—m and exponential decay e hut found little dif-
ference between the two and settled on the inverse distance function, being marginally
better. In initial experiments we also used a grid search: for different values of F,
we kept k fixed and then altered the constant value in the inverse distance weighting
function. We found for all parameter classes k = 10,000 or k£ = 20,000 worked best.
The distance weighting function that worked best was the inverse distance weighting

function, with settings of either ((—dl—ﬁ)e or ((T}fﬁ)?'

3.6 Results

The results are shown in Table 3.4. The higher scores we achieve with our emulation of
Model 1 over Collins Model 1 are no doubt due to the fact that unlike Collins parser,
which starts with (POS tagged) sentences, we take as input a set of n-best parses
generated by a parser based on Model 2. Our Witten-Bell Model 1 scores are lower
than Bikel’s 1-best score, presumably because the Bikel parser uses Model 2. With
our kNN model we achieve LR/LP of 89.2%/89.6% on sentences < 40 words. These

results show an 9% relative reduction in f-score error over our Model 1 baseline and

50

a 6% relative reduction in f-score error over the Bikel parser which, as the parser we
used as our base parser, is the second baseline score against which we evaluate our
results. See Table 2.1 for a summary of the performance of state-of-the-art parsers and

discriminative rerankers on the same test set.

We compared the results of our &~NN model against the Bikel 1-best parser results
using the paired T test where the data points being compared were the scores of each
parse in the two different sets of parses. Following Collins [2000] the score of a parse,

x, is calculated as follows:

Score(z) = fs%rg(:v) x size(r)
where
Farae) —
~ .5(LR+ LP)

and size(x) is the number of constituents in the gold standard parse for this sentence.
It is a good idea to take into account the size of the parse tree because it is relatively
easy to get an f-score of, say, 100% on short sentences, and much harder on longer
sentences, so accounting for the size when scoring a particular parse gives a more
accurate picture of how well the model is doing. The mean scores for Bikel’s 1-best
and the &-NN model were 15.06 and 15.17 respectively. The mean difference between
the scores was 0.12, with standard deviation 1.57. The 95% confidence interval for
the mean difference between the scores of the paired sets of parses is [0.05,0.18] with
p < .0005.

Using kNN for parameter estimation, enriching the feature sets used for prediction,
in combination with a further decomposition of parameter classes produced significant
improvements in parser accuracy over the original model with Witten-Bell estimation.
These results show that using &NN to estimate local probabilities in the generative
parsing models presented in this chapter is highly effective for parameter estimation.
k-NN allows for flexible feature selection and good smoothing of data and can achieve

state-of-the-art results for accuracy.

51

3.7 Computational Costs

The kNN algorithm for probability estimation delays generalising beyond the training
data until it must assign a probability to a new query instance. While this lazy learning
has advantages insofar as an estimate is custom-built for a new query instance, it carries
with it the disadvantage that the computational cost of producing an estimate for a
new query instance can be high. This is because nearly all computation takes place
not when the training examples are first encountered but at run time. Though A&NN
allows for greater flexibility in terms of conditioning features, the computational cost
of estimating parameter classes with many features must be taken into consideration,
with each extra feature contributing significantly to slowing down the speed of the
parser.

All experiments in this thesis were carried out on a machine with a 1.7 GHz Intel
Pentium processor and 1 GB of memory. Due to memory limitations, we carried out
the experiments as follows: to rerank a set of n-best lists we calculated the estimates for
each parameter class in separate runs. When all parameter class estimates needed to
rerank the lists were calculated we ran the reranker with the pre-computed estimates.
To rerank the 2245 n-best lists for section 23, this process took in total 4 hours 10
minutes. All our experiments were focused on improving accuracy and we believe the
program could be speeded up considerably with more attention paid to efficiency, as
well as, obviously, a higher specification machine.

Given the computational cost of parameter estimation with A&NN, it would not
be feasible to apply the memory-based model directly in a one-pass parser like that
of Collins [1999]. However, applying the model as the second-pass of a two-pass parser,
along the lines of Charniak [2000]’s parser, would be a worthwhile area of future re-

search.

3.8 Relation to Previous Work

Our parsing model is related to previous work on history-based parsing, in particular
the generative approaches of Collins [1999] and Charniak [2000]. Our baseline model is
a direct replication of the Collins’ parsing model, Model 1. In the development of the

parsing model we depended on the details in Collins thesis as well as the previously

52

unpublished details outlined in Bikel [2004b]. Although our model is applied to the
parse reranking task, it is more similar to the second-pass of a parser, such as the
two-pass parser of Charniak [2000], than the discriminative rerankers of, for example,
Collins [2000]. Our model differs from previous work in generative history-based parsing
in the parameter estimation technique used (memory-based parameter estimation) and
in the parameterisation of the parsing model.

Our memory-based parameter estimation technique is similar that used in [Toutanova
et al., 2003]’s experiments with &NN for parameter estimation in a HPSG parsing
model. In their experiments they also train generative history-based models, but for
HPSG derivation trees. The work presented in this chapter, however, differs from that
of Toutanova et al. [2003], not only in our domain of application, but also in our use
of constraint features, as well as our combination of &~-NN estimates with Witten-Bell

estimates as a way of smoothing lexical probabilities.

3.9 Conclusion

This chapter describes a generative parsing model which uses k-NN for local probability
estimation. Taking the n-best output of a base parser and re-estimating the probability
of each parse, it achieves an f-score of 89.4% which is a 6% relative error reduction over
the 1-best output of the base parser. Although in our experiments we rerank the parses
output from a base parser, our model differs from other rerankers in that it is generative
and could conceivably be incorporated into a base parser as a second pass.
Discriminative rerankers have advantages over history-based approaches in that
they are not restricted to choosing features from the parse derivation history but instead
can use additional features which incorporate arbitrary aspects of the whole parse tree
to improve the initial ranking of the base parser. In the discriminative rerankers of
[Collins, 2000, Collins and Duffy, 2002, Shen et al., 2003], the log probability given by
the base parser for each of the n-best parses of a sentence is used in the computation of
the new score of a parse. Our generative model improves the ranking of an initial base
parser by recalculating the log probability of each parse produced by the base parser
and so produces a more accurate ranking of parses along with their log probabilities. It
is possible that improving the log probability ranking of a base parser therefore could

improve the scores of the discriminative reranker which uses these log probabilities in

53

its reranking algorithm. We discuss this further in Chapter 8 when we outline areas of

future work.

54

Chapter 4

Conjoined Lexical Head Nouns

4.1 Introduction

In this chapter we begin by discussing how a measure that captures similarity of con-
joined nouns might be useful for coordinate noun phrase disambiguation. This is our
motivation for developing a measure of distributional similarity based on coordination
patterns. We also look at other measures of word similarity based on WordNet and test
all similarity measures on WSJ data to see if they can detect similarity in conjoined
head nouns.

The second part of the chapter is devoted to modelling the likelihood of one noun
being conjoined with another. We show how the head-head dependencies of coordinate
noun phrases are not captured in the baseline model and develop a parameter class
for the estimation of coordinate nouns in both noun phrases and base noun phrases.
As this parameter class involves bilexical statistics, data is extremely sparse and the
remainder of the chapter is centred around improving the estimation of the parameter
class by building a word graph from BNC and WSJ data and incorporating our word

similarity measure into the parsing model.

4.2 Measures of Word Similarity

Some noun pairs are more likely to be conjoined than others. Take the trees in Fig-
ure 4.1 (the phrase is taken from the WSJ). The two head nouns coordinated in Tree 1

55

NP
PP

NP

|
NPB /\
! NP

busloads of

| |
NPB NPB

|
executives ghmves
2.
(i ives
Ll /\ their wives
l
NPB

executives

Figure 4.1: Tree 1. The correct noun phrase parse. Tree 2. The incorrect parse for the
noun phrase.

are ezecutives and wives, and in Tree 2: busloads and wives. Clearly, the former pair
of head nouns is more likely and, for the purpose of discrimination, the model would
benefit if it could learn that ezecutives and wives is a more likely combination than
busloads and wives. On inspection of noun phrase coordination in the data it seemed
clear that nouns cooccurring in coordination patterns were often semantically similar,

and therefore if a similarity measure could be defined so that, for example:
stm(executives, wives) > sim(busloads, wives)

then it could be useful for coordination disambiguation.

The idea that nouns cooccurring in conjunctions tend to be semantically related
has been noted in [Riloff and Shepherd, 1997] and used effectively to automatically
cluster semantically similar words [Roark and Charniak, 1998, Caraballo, 1999, Wid-
dows and Dorow, 2002]. The tendency for conjoined nouns to be semantically similar
has also been exploited for coordinate noun phrase disambiguation by Resnik [1999]
who employed a measure of similarity based on WordNet to measure which were the

head nouns being conjoined in certain types of coordinate noun phrase.

56

Semantic similarity can be defined in different ways, from a very narrow definition
of word similarity that would define words as similar only if they are synonyms, to
definitions of similarity based on membership of the same semantic category (e.g. ap-
ples, pears, and bananas are all members of the category fruit) or, even more generally,
similarity based on a more general notion of semantic relatedness, where words are
similar if they are related in meaning somehow (such as car and wheel).

A number of measures of semantic similarity have been developed which are based
on similarity in lexical taxonomies such as WordNet [Fellbaum, 1998]. Other measures
of word similarity are based on distributional similarity: the idea that words which are
semantically similar occur in similar contexts and with similar distributions. Context
can be defined in terms of grammatical dependency relations (such as conjunctions
or modifier-head dependencies), documents, or a window of context words around the
word under consideration.

We now look at different measures of word similarity in order to discover whether
they can detect empirically a tendency for conjoined nouns to be more similar than
nouns which co-occur but are not conjoined. In 4.2.1 we introduce our measure of
word similarity based on word vectors and in 4.2.2 we briefly describe some WordNet
similarity measures which, in addition to our word vector measure, will be tested in

our experiments in 4.2.3.

4.2.1 Similarity based on Coordination Cooccurrences

The potential usefulness of a similarity measure depends on the particular application.
An obvious place to start, when looking at similarity functions for measuring the type
of semantic similarity common for coordinate nouns, would be a similarity function
based on distributional similarity with context defined in terms of coordination pat-
terns. Our measure of similarity is based on noun co-occurrence information, extracted
from conjunctions and lists. We collected co-occurrence data on 82,579 distinct word
types from the BNC and the hand-annotated WSJ. The exact details of how the co-
occurrence data is extracted from the BNC and the WSJ and stored in a word graph is
described later in Section 4.3.2. From the co-occurrence data we construct word vec-
tors. Every dimension of a word vector represents another word type and the values

of the components of the vector, the term weights, are derived from the coordinate

57

word co-occurrence counts. We used dampened co-occurrence counts, of the form:
1+ log(count), as the term weights for the word vectors. We used no pruning of word
types, thus vectors had 82,579 dimensions. To measure the similarity of two words,
wy and wsy, we calculate the cosine of the angle between the two word vectors, @ and

Wy, as follows:

cos(wh, Ws) = AT (4.1)

4.2.2 WordNet-Based Similarity Measures

We also examine the following measures of semantic similarity which are WordNet-
based.! Wu and Palmer [1994] propose a measure of similarity of two concepts ¢; and
co based on the depth of concepts in the WordNet hierarchy. Similarity is measured
from the depth of the most specific node dominating both ¢; and ¢y, (their lowest
common subsumer), and normalised by the depths of ¢; and ¢;. In Resnik [1995]
concepts in WordNet are augmented by corpus statistics and an information-theoretic
measure of semantic similarity is calculated. Similarity of two concepts is measured
by the information content of their lowest common subsumer in the is-a hierarchy
of WordNet. Both Jiang and Conrath [1997] and Lin [1998] propose extentions of
Resnik’s measure. Leacock and Chodorow [1998]’s measure takes into account the
path length between two concepts, which is scaled by the depth of the hierarchy in
which they reside. In [Hirst and St-Onge, 1998] similarity is based on path length as
well as the number of changes in the direction in the path. In [Banerjee and Pedersen,
2003] semantic relatedness between two concepts is based on the number of shared
words in their WordNet definitions (glosses). The gloss of a particular concept is
extended to include the glosses of other concepts to which it is related in the WordNet
hierarchy. Finally, Patwardhan and Pedersen [2006] build on previous work on second-

order cooccurrence vectors [Schiitze, 1998] by constructing second-order co-occurrence

L All of the WordNet-based similarity measure experiments, as well as a random similarity measure,
were carried out with the WordNet::Similarity package, which is freely available for download from
http://search.cpan.org/dist/ WordNet-Similarity.

58

SimTest Authors Description

coordGraph | this work cosine similarity derived from coordination
CoOCcurrences

res Resnik, 1995] WordNet-based, information theoretic

lin Lin, 1998] ‘WordNet-based, information theoretic

jen Jiang and Conrath, 1997] ‘WordNet-based, information theoretic

‘WordNet-based, depth In WordNet hierar-

wup [Wu and Palmer, 1994] chy

Ich [Leacock and Chodorow, 1998] Worcht—based, P2tipleneth iy deptpin
%erz:irl%hy based hT h and ber of

hso [Hirst and St-Onge, 1998] ord Neb;basech pathilenglivand numberio
changes in direction

lesk [Banerjec and Pedersen, 2003] number of shared words in WordNet glosses

similarity of 2nd order cooccurrence vectors
derived from WordNet glosses

vectorGloss | [Patwardhan and Pedersen, 2006]

Table 4.1: Summary of the 9 different word similarity measures to be evaluated em-
pirically on WSJ cooccurrence data.

vectors from WordNet glosses, where, as in [Banerjee and Pedersen, 2003], the gloss of
a concept is extended so that it includes the gloss of concepts to which it is directly
related in WordNet.

4.2.3 Empirical Evaluation of Similarity Measures

We selected two sets of data from sections 00, 01, 22 and 24 of the WSJ treebank.
(The WSJ data used to train our vector similarity function is from sections 02 to 21.)
The first consists of all nouns pairs which make up the head words of two conjuncts
in coordinate noun phrases (detected when the coordination flag is set to true, and
therefore not including coordinate NPBs). We found 601 such coordinate noun pairs.
The second data set consists of 601 word pairs which were selected at random from
all head-modifier pairs in the same sections of the WSJ where both head and modifier
words are nouns and are not coordinated. We tested the 9 different measures of word
similarity just described and summarised in Table 4.1 on each data set in order to see
if, through using the measures, a significant difference could be detected between the
similarity scores for the coordinate words sample and non-coordinate words sample.
Initially both the coordinate and non-coordinate pair samples each contained 601
word pairs. However, before running the experiments we removed from the sets all
pairs where the words in the pair were identical. This is because identical words occur
more often in coordinate head words than in other lexical dependencies (there were 43

pairs where the two words in the pair were identical in the coordination set, compared

59

SimTest Neoord ZTcoord SDcoord | MnonCoord TnonCoord SDnoncCoord 95% CI p-value
coordGraph 503 0.11 0.13 485 0.06 0.09 [0.04 0.07) 0.000
res 444 3.19 2.33 396 2.43 2.10 [0.46 1.06] 0.000
lin 444 0.27 0.26 396 0.19 0.22 [0.04 0.11] 0.000
jen 444 0.13 0.65 395 0.07 0.08 [-0.01 0.11] 0.083
wup 444 0.63 0.19 396 0.55 0.19 [0.06 0.11] 0.000
Ich 444 1.72 0.51 396 1.52 0.47 [0.13 0.27] 0.000
hso 459 1.599 2.03 447 1.09 1.87 [0.25 0.76] 0.000
lesk 451 114.12 317.18 436 82.20 168.21 [-1.08 64.92] 0.058
vectorGloss 459 0.67 0.18 447 0.66 0.2 [-0.02 0.03] 0.545
random 483 0.89 0.17 447 0.88 0.18 [-0.02 0.02] 0.859

Table 4.2: Summary statistics for 9 different word similarity measures (plus one random
mMeasure):Nepord A0 Mponcoord are the sample sizes for the coordinate and non-coordinate
noun pairs samples, respectively; Teoord; SDeoord and Tnoncoord, SDnoncoora are the
sample means and standard deviations for the two sets. The 95% CI column shows the
95% confidence interval for the difference between the two sample means. The p-value
is for a Welch two sample two-sided t-test.

to 3 such pairs in the non-coordination set). If we had not removed them, a statistically
significant difference between the similarity scores of the pairs in the two sets could
by found simply by using a measure which, say, gave one score for identical words and

another (lower) score for all non-identical word pairs.

Results for all tests on the data sets described above are displayed in Table 4.2. The
similarity measures displayed are: (coordGraph) our vector similarity described above
in 4.2.1, and (res) [Resnik, 1995], (lin) [Lin, 1998], (jen) [Jiang and Conrath, 1997],
(wup) [Wu and Palmer, 1994], (Ich) [Leacock and Chodorow, 1998], (hso) [Hirst and
St-Onge, 1998],(lesk) [Banerjee and Pedersen, 2003] and (vectorGloss) Patwardhan and
Pedersen [2006]. In one final experiment we used a random measure of similarity. For
each experiment we produced two samples, one consisting of the similarity scores given
by the similarity measure for the coordinate noun pairs, and another set of similarity
scores generated for the non-coordinate pairs. The sample sizes, means, and standard
deviations for each experiment are shown in the table. Note that the variation in the
sample size is due to coverage: the different measures did not produce a score for all
word pairs. Also displayed in Table 4.2 are the results of statistical significance tests
based on the Welsh two sample t-test. A 95% confidence interval for the difference of

the sample means is shown along with the p-value.

60

4.2.4 Discussion

For all but three of the experiments (not including the random measure), the difference
between the mean similarity measures is statistically significant. Interestingly, the three
tests where no significant difference was measured between the scores on the coordina-
tion set and the non-coordination set [Jiang and Conrath, 1997, Banerjee and Pedersen,
2003, Patwardhan and Pedersen, 2006] were the three top scoring measures in [Patward-
han and Pedersen, 2006], where a subset of 6 of the above WordNet-based experiments
were compared and the measures evaluated against human relatedness judgements and
in a word sense disambiguation task. In another comparative study [Budanitsky and
Hirst, 2002] of five of the above WordNet-based measures, evaluated as part of a real-
word spelling correction system, Jiang and Conrath [1997]’s similarity score performed
best. Although performing relatively well under other evaluation criteria, these three
measures seem less suited to measuring the kind of similarity occurring in coordinate
noun pairs. One possible explanation for the unsuitability of the measures of [Pat-
wardhan and Pedersen, 2006] for the coordinate similarity task could be based on how
context is defined for the building of their context vectors. Context for an instance of
the the word w is taken to be the words (minus low frequency and stop words) that
surround w in the corpus within a given number of positions, where the corpus is taken
as all the glosses in WordNet. Words that form part of collocations such as disk drives
or task force would then tend to have very similar contexts, and thus such word pairs,

from non-coordinate modifier-head relations, could be given too high a similarity score.

Although the difference between the mean similarity scores seems rather slight in
all experiments, it is worth noting that not all coordinate head words are semantically
related. To take a couple of examples from the coordinate word pair set: work/harmony
extracted from hard work and harmony, and power/clause extracted from ezecutive
power and the appropriations clause. We would not expect these word pairs to get a
high similarity score. On the other hand, it is also possible that some of the examples of
non-coordinate dependencies involve semantically similar words. For example, nouns
in lists are often semantically similar, and we did not exclude nouns extracted from

lists from the non-coordinate test set.

Although not all coordinate noun pairs are semantically similar, it seems clear, on

inspection of the two sets of data, that they are more likely to be semantically similar

61

than modifier-head word pairs, and the tests carried out for most of the measures of
semantic similarity detect a significant difference between the similarity scores assigned
to coordinate pairs and those assigned to non-coordinate pairs. The measure of dis-
tributional similarity introduced in Section 4.2.1 also measured significant differences
between the two data sets.

It is not possible to judge, based on the significance tests alone, which might be the
most useful measure for the purpose of disambiguation. However, in terms of coverage,
the coordinate word graph measure clearly performs best (somewhat unsurprisingly
given it is part trained on data from the same domain). This measure of distributional
similarity is perhaps more suited to the task of coordination disambiguation because
it directly measures the type of similarity that occurs between coordinate nouns. That
is, the distributional similarity measure presented in Section 4.2.1 defines two words
as similar if they occur in coordination patterns with a similar set of words and with
similar distributions. Whether, or to what degree, the words are semantically similar
becomes irrelevant. A measure of semantic similarity, on the other hand, might find
words similar which are quite unlikely to appear in coordination patterns. For example,
Cederberg and Widdows [2003] note that words appearing in coordination patterns
tend to be on the same ontological level: ‘fruit and vegetables’ is quite likely to occur,
whereas ‘fruit and apples’ is an unlikely cooccurrence. A WordNet-based measure of
semantic similarity, however, might give a high score to both of the noun pairs.

In the next section, we look at how best to model the dependencies between co-
ordinate head words in the parsing model, and show how the coordinate word graph
similarity measure might be incorporated into the parsing model to aid noun phrase

coordination disambiguation.

4.3 Modelling Coordinate Head Words

Bilexical head-head dependencies of the type found in coordinate structures are a
somewhat different class of dependency to modifier-head dependencies. In the fat cat, for
example, there is clearly one head to the noun phrase: cat. In cats and dogs however there
are two heads, though in the parsing model just one is chosen, somewhat arbitrarily,
to head the entire noun phrase.

In the baseline model there is essentially one parameter class for the estimation of

62

word probabilities:

Pword(wi|H(i)) (42)

where w; is the lexical head of constituent ¢ and H (7) is the history of the constituent.
The history is made up of conditioning features chosen from structure that has already

been determined in the top-down derivation of the tree.

For certain types of coordinate NP, such as the coordinate noun phrases of Fig-
ure 4.1, the head-head dependency is captured in the model when one feature of the
history, the coordination flag, is set to true. Parses are generated top-down, head-first,
left-to-right. For the trees in Figure 4.1, discarding for simplicity the other features in

the history, the probability of the coordinate head wives, is estimated in Tree 1 as:

Pyora(w; = wives|coord = true, w, = executives, ...) (4.3)

and in Tree 2:

Pyora(w; = wives|coord = true, w, = busloads, ...) (4.4)

where w),, is the head word of the node to which the node headed by w; is attaching
and coord is the coordination flag. However, as we discuss further in the next section,
for NPBs this coordinate head-head dependency is not captured in the probability

model.

In Section 4.3.1 we look at how we might improve the model’s handling of coordinate
head-head dependencies by altering the model so that the common parameter class
in (4.5) is used for coordinate word probability estimation in both noun phrases and

base noun phrases.

Pcao‘rdWord(wi|wp7 H(Z)) (45)

In Section 4.3.2 we focus on improving the estimation of this parameter class by

including BNC data to reduce data sparseness.

63

4.3.1 Extending P.,orqword to Coordinate NPBs

As described in §1.3, coordination in base NPs is handled differently to coordination
in NPs in the Collins model. Unlike NPs, in NPBs (i.e. flat, non-recursive NPs) the
coordination flag is not used to mark whether a node is a coordinated head or not. This
flag is always set to false for NPBs. In addition, unlike other NPs, modifiers within
NPBs are conditioned on the previously generated modifier rather than the head of the
phrase.? This means that, in the baseline model, in an NPB such as (cats and dogs),

the estimate for the word cats will look like:
Pyord(w; = cats|coord = false,w, = and, ...) (4.6)

We alter the baseline model so that, for NPs, when the coordination flag is set to
true, we use the parameter class in (4.5) to estimate the probability of one lexical head
noun, given another. In order to capture head-head dependencies in coordinate NPBs,
if a noun is generated directly after a coordinating conjunction in an NPB then it is
taken to be a coordinate head, w;, and conditioned on the noun generated before the

coordinating conjunction (which is taken to be w,) and also estimated using (4.5).

4.3.2 Estimating the P.,,.qw.,-¢ Parameter Class from a Coor-
dination Word Graph

Building the Word Graph

Data for bilexical statistics are particularly sparse. In order to decrease the sparseness
of the coordinate head noun data, we extracted from the BNC examples of coordinate
head noun pairs. We extracted all noun pairs occurring in a pattern of the form: noun
cc noun, as well as lists of any number of nouns separated by commas and ending in cc
noun (note these are not the actual BNC tags). To the BNC data we added all head
noun pairs from the WSJ (sections 02 to 21) that occurred together in a coordinate
noun phrase, identified when the coordination flag was set to true. We did not include
coordinate head nouns from NPBs because the underspecified annotation of NPBs
in the WSJ means that the conjoined head nouns can not always be automatically

identified. We stored these coordinate head noun samples in a graph, where each vertex

2A full explanation of the handling of coordination in the model is given in [Bikel, 2004a].

64

in the graph represents a word and the edges between vertices indicate the number of
times two words have occurred together in a coordination pattern in the training set.
The graph is undirected; thus an occurrence, say, of ‘apples and bananas’ also counts
as an occurrence of ‘bananas and apples’. This further helps reduce sparseness. For
lists of nouns, each noun in the list is linked with every other noun in the list. Thus
for a list: ny, ng, and ng, there will be links between nodes n; and ns, between n; and
ng and between ny and nz. Therefore, for each list or coordinate pair extracted from

2

the corpora, containing m nouns, there are m* — m coordination events.

To illustrate, take the following examples extracted from the BNC:

teachers, nurses, engineers and mariners
doctors, nurses and teachers
doctors and nurses

satlors and mariners

engineers [3]

Figure 4.2: Graph of coordinations extracted from the BNC.

These examples are used to construct the graph in Figure 4.2. In total the graph
stores the equivalent of 22 coordination events or training samples where each sample
consists of two words, one the class value and the other the sole feature value (the

history).

65

Estimation from the Word Graph

The probability of one noun n; being coordinated with another n; can be calculated
simply from the graph as:

count(n;n;)

PWG(ni|nj) = (4~7)

count(n;)

where count(n;n;) is the number of links between node n; and n; in the graph,
and count(n;) is the count of word token n; in the graph. This is just the unsmoothed
maximum likelihood estimate. Again to reduce data sparseness, we introduce a measure
of word similarity so that if we have examples of bananas and apples in the graph but
no examples of oranges and apples, for which we need an estimate, it would be useful
to know that bananas are similar to oranges, and as we've seen examples of bananas
and apples, then an occurrence of oranges and apples should be reasonably likely.

We use the measure of word similarity described in §4.2, which is based on cosine
similarity of word vectors derived from the graph of coordinate words (equation (4.1)).
The graph representation lends itself easily to measures of word similarity based on
vectors. A word is represented as a vector where every word in the graph is a dimension
of the vector. In this case the values of the vector components are derived from the
number of links between the two word nodes in the graph (i.e. the number of times
the words occurred together in a coordination pattern in the training set). Note that
in Section 4.2 we measured similarity between two, possibly coordinate, head words,
noun; and noun;. Here, however, we do not directly measure the similarity of the two
head words but rather use the similarity function both to find words similar to noun; to
include in the sample when estimating the probability of noun; being conjoined with
noun;, and as a weight to determine the contribution of these similar words during
estimation.

We alter the probability estimate of (4.7) to incorporate the similarity measure in

the following manner:

2 neeN(ny) TN, g) count(ning)

4.8
aneN(n,) sim(n;, ng)count(ng) S

Poim(n; |n1) o=

where sim(n;,n;) is a similarity score between words n; and n; and N(n;) is the

set of words in the neighbourhood of n;. This neighbourhood can be based on the

66

k-nearest neighbours of n;, where nearness is measured with the similarity function.
The estimate in (4.8) can be viewed as the estimate with the more general history

context because the context will include not only n; but also words similar to n;. We

combine the estimate in (4.7) with the more general estimate in (4.8) by way of linear

interpolation so that the final estimate is calculated as follows:

Pcor)rdWord(ni|nj) =)‘anWG(ni|nj) + (1 -)\n])PsimInterp(ni|nj) (49)
where
Ps,-mjmew(nimj) =)‘,n] Psim(n,-|n]-) = (1 = /\;J)PkNN(TLl!H(l)) (410)

Piyn(ni|H(7)) is a k-NN estimate calculated in the same fashion as the &NN esti-
mates described in chapter 3. We include this final layer of backoff in order to smooth
the bilexical estimate further. A, is calculated using Witten-Bell interpolation and
so the linear combination of estimates is similar to how the maximum-likelihood esti-
mates were combined for smoothing in the Collins parser. However for the calculation
of the weight A7 in (4.10) we adapt the Witten-Bell method so that it incorporates

the similarity measure for all words in the neighbourhood of n;, as follows:

Zn,eN(nJ) sim(nj, ng)count(ng)
aneN(nJ) sim(n;j, ng)(count(ng) + CD(ng))

An, = (4.11)

where C' is a constant that can be optimised using held-out data and D(n;) is the
diversity of a word n;. The diversity of a word is the number of distinct words (i.e.

word types) with which n; has been coordinated in the training set.

4.4 Relation to Previous Work

In Section 4.3.2 we described how a word graph was build from noun coordination and
list cooccurrence statistics. Word cooccurrence statistics, based on coordination and
list contexts, have been used successfully in the past to extract semantic information
for building semantic lexicons [Roark and Charniak, 1998, Widdows and Dorow, 2002]

and to improve recall in automatic hyponymy extraction [Cederberg and Widdows,

67

2003]. In [Roark and Charniak, 1998] the method for extracting co-occurring head
nouns differs from ours in that the corpus (they use the MUC-4 and WSJ corpora) was
first automatically parsed and the heuristics for extracting the head nouns were slightly
different, including not just lists and conjunctions but also appositives (such as: the
plane, a twin-engined Cessna)®. Building a graph of coordinate words, extracted from
the BNC in the fashion described in §4.3.2, follows the work on graph-based models
described in [Widdows and Dorow, 2002, Widdows, 2004]. Our graph additionally
includes coordinate head nouns from the manually-annotated WSJ.

The graph we construct, partially from unparsed BNC data, is used to store events
for the estimation of coordinate word probabilities. In the probabilistic approach to
noun phrase coordination disambiguation presented in [Goldberg, 1999], unannotated
data is also used. The model is trained from examples of unambiguous coordination
noun phrases, of the form n! cc n2, extracted from the unannotated WSJ. Their method
of data collection differs from ours in several ways. For example, before searching for
coordination patterns their unannotated data is chunked automatically using a simple
chunker which replaces noun and quantifier phrases with their head words, whereas
we collect data directly from the POS tagged BNC. Also the heuristics for collecting
the nI cc n2 in Goldberg [1999] are more complicated than in our collection of data
in that Goldberg puts more restrictions on the events collected, with the aim of only
collecting unambiguous samples.

In §4.2.1 we introduce a measure of distributional similarity based on coordination
patterns in the BNC and WSJ. In Nakov and Hearst [2005]’s approach to noun phrase
coordination, the Web is used to get statistics on coordinate head word cooccurrences,
though a similarity measure is not developed. Resnik [1999] also uses a measure of
similarity to aid in noun phrase disambiguation but it is WordNet-based rather than
based on coordination cooccurrences.

Measures of similarity between words based on similarity of cooccurrence vectors
have been used for word sense disambiguation [Schiitze, 1998, Patwardhan and Peder-
sen, 2006], for PP-attachment disambiguation [Zhao and Lin, 2004] and for the auto-
matic construction of noun hierarchies [Caraballo, 1999]. Our approach resembles that
of [Caraballo, 1999] where cooccurrence is also defined with respect to coordination

patterns, although the experimental details in terms of data collection and vector term

3Example taken from [Roark and Charniak, 1998]

68

weights differ.
Our incorporation of a similarity measure into a probability estimate in (4.8) comes
from A-NN estimation but bears some resemblance to the cooccurrence smoothing

reviewed in §2.5.2. For the sake of comparison, we write the estimate in (4.8) as:

Dow ey Stm(wr, wi) [wow|

; 4.12
2w es(wn) Sim(wy, wi)|wi | (412)

Poimknn(walwr) =

where sim(wy,w]) is a similarity score between words w; and wj and S(w;) is the
set of words in the neighbourhood of w;.

In cooccurrence smoothing the form of (2.7) in §2.5.2 can be written as:

Zu:'les(wl) Sim(wli wll)P(wzlwll)

Zw;esml) sim(wr, wy)

Psim_coccur(wzlwl) = (413)

In cooccurrence smoothing the smoothed estimate is based on similarity-weighted
probability estimates; our estimate, derived from 4NN is based on similarity-weighted

events.

4.5 Summary

Nouns that occur together in a coordination pattern are often semantically similar. We
show that this can be detected by various different measures of semantic similarity. We
also show how a measure of distributional similarity based on coordination patterns can
also detect significant differences between the similarity of conjoined nouns and nouns
that cooccur but are not conjoined. We argue that this latter measure is more suited
to coordinate noun phrase disambiguation than WordNet-based measures of semantic
relatedness.

We also show how the dependencies between conjoined head nouns are not ade-
quately modelled in the baseline model and suggest an alternative that attempts to
capture head-head dependencies in both NPs and base NPs. In order to improve the
parameter estimation involving conjoined head nouns we build a word graph from both
BNC and WSJ data and use the data stored therein for estimation. Finally, we show
how a word similarity measure derived from the word graph data can be incorporated

into the estimation of the head-head parameter class. In chapter 7 we show the effect

69

of changes suggested in this chapter on the baseline model.

70

Chapter 5

Parallelism Across Conjuncts

5.1 Introduction

In this chapter we carry out empirical measurements on coordination data from the
WSJ in order to gauge the extent to which parallelism exists in the syntactic structure
of two conjuncts. We then suggest an approach for altering the base parsing model
so that it can capture a bias toward symmetry in conjunct structure, with the aim of

improving coordination disambiguation accuracy.

5.2 Empirical Measurements of Parallelism

There is often a considerable amount of symmetry or parallelism in the syntactic struc-
ture of two conjuncts. Take Figure 5.1: If we take as level 0 the level in the coordinate
sub-tree where the coordinating conjunction CC occurs, then there is exact symmetry
in the two conjuncts in terms of non-terminal labels and headword part-of-speech tags
for levels 0, 1 and 2.

In order to measure empirically the extent of parallelism across conjuncts we follow
the work of Church [2000] on lexical priming and Dubey et al. [2005] on syntactic

priming and parallelism in coordination, which we discuss in more detail in §5.4.

71

NP (plains)
NP2(plains) Cclu NPj1(states)
/\ and /\
NP3(plains) ?{ NPia(states) PP1s(of)
INg NPgrre /\

DT JJs NNSg) 9(7[“’“) IN17 NP1g(Delta)

| | [f N DTqs 33 NNS |
the high plains ke i e 0 o DT/hP
Texas the northern states 20 19

|
the Delta

Figure 5.1: Example of symmetry in conjunct structure in a lexicalised subtree.

5.2.1 Methodology

We measure symmetry of conjunct structure in the training data based on counts of
how often the syntactic labels in a post-CC conjunct of a coordinate phrase match
the corresponding labels in the pre-CC conjunct. We compare the prior probability
of a particular label occurring in the post-CC conjunct, with the probability of the
label occurring in post-CC conjunct given it has occurred in the pre-CC conjunct.
These correspond to the prior probabilities and positive adaption probabilities described
in Church [2000]. We examine symmetry in conjunct structure across all conjunct
types, with the exception of flat NPB constructions.

We first align each node, N;, in the second conjunct with its corresponding pre-CC
conjunct node, N;, ... Note that when the structure of two conjuncts is different not
all nodes in the post-CC conjunct will have a corresponding pre-CC conjunct node.
For each node, N, in the post-CC conjunct we either align it with N; .. or record
that there is no corresponding node for N; in the pre-CC conjunct.! When retrieving
Nimecc
traversal of the head conjunct.?® The traversal of the pre-CC conjunct is guided by

for a post-CC conjunct node we tried both a left-to-right and a head-first

the position of N; in the post-CC conjunct. For example, in a head-first traversal we

1We do not collect data on nodes in the pre-CC conjunct that have no corresponding node in the
post-CC conjunct.

2Note that the head conjunct is always the pre-CC conjunct in the Collins model (with the exception
of coordinate NPBs).

3See Zhang and Shasha [1989], for example, for other approaches to tree alignment, such as the
tree-distance approach.

72

1. NP (cqt)

NP (cat) CCand) NP (dog)

and
DT(the) NN(dog)

DT(Iu.g) ‘]‘!(_Ifal) NN(lcat) i doE

the fat cat

2. NP (40g)

NP (dog) CC(ana) NP (cat)
|

and
DT(the)y NN(dog)
| |

DT JJ NN
tbE dor (I"") ({nt) (Ical)

the fat cat
Figure 5.2: Trees that contain conjuncts with non-isomorphic structure.

align the head node at level 1 of the post-CC conjunct, with the head node of level 1
in the pre-CC conjunct; the first modifier node to the left of the head in the post-CC
conjunct is aligned with the corresponding node in the pre-CC conjunct and so on. In a
left-to-right alignment the left-most node at a particular level of the post-CC conjunct
is aligned with the left-most node at the same level in the head conjunct; the second
node from the left of post-CC conjunct is aligned with the second from the left in the
head conjunct and so on.

While the head-first and left-to-right methods of aligning nodes are simple and
reasonably effective, they will not always capture the full extent of symmetry in some
non-isomorphic structures. For example, for the trees in Figure 5.2 the pairs of aligned

nodes at level 1 are displayed in Table 5.1.

pre-CC post-CC
4 NN(cat) | NN(dog)

Head-Firs
e Ji(fat) | DT(the)

DT(the) | DT(the)

Left-to-Right 39(fat) | wn(dos)

NN(dog) | NN(cat)
Head-First DT(the) JJ(fat)
Tree 2 * DT(the)
DT(the) | DT(the)
Left-to-Right | NN(dog) | JJ(fat)

* NN(cat)

Table 5.1: Nodes aligned at level 1 for the trees in Figure 5.2

73

| test test
history | a=136 b=8
history | ¢c=5 d = 13939

Table 5.2: Contingency table for the head child non-terminal label 70 at conjunct
depth 1.

For our first set of experiments we use the set of aligned nodes to create lists of
history-test pairs, to use the terminology of Church [2000]; the history samples coming

from pre-CC conjuncts and test samples from post-CC conjuncts.

The first node to be generated in the expansion of a non-terminal is the head
child node of the non-terminal, with label C;. We first collected, via a head-first
traversal, a set of history-test pairs of head child nodes in conjuncts at depth 1. For each
distinct non-terminal label we estimated the prior probabilities and positive adaption
probabilities. Following Church [2000], prior and positive adaption probabilities are
calculated in the following manner. Take Table 5.2 which displays a contingency table
for the non-terminal label T'O, with counts collected from the history-test pairs for

depth 1 head conjunct nodes.

The table shows that there are (a) 136 examples where TO is the head conjunct
label in both test and aligned history node, there are (b) 8 examples where TO is the
head conjunct label in the history node but not the test node, (¢) 5 cases where TO
occurs in the test but not the history node and finally (d) 13939 cases where T'O is the
head conjunct label in neither history nor test nodes. Positive adaption, Py qdqept, and

prior, Pprior, probabilities are calculated as:

a

Pradapt = P(Chicsr = TO|Chiiyior, = TO) = ~ +5 ~ 094
a+c
Pyrior = P(Ch,,., =TO) = ——— =~ 0.01
P (htest) e 0

As in [Dubey et al., 2005] whether TO occurring in the test set is independent of
TO occurring in the history set can be tested using the x? test for significance on the

contingency table.

74

3 - prior
M O posterior M

probability

:ml%fth tf~ﬂ“T v

Figure 5.3: Prior and posterior (positive adaption) probabilities for head child non-
terminal labels at conjunct depth 1

| prior
O posterior

06

probability

Ch

Figure 5.4: Prior and posterior (positive adaption) probabilities for head child non-
terminal labels at conjunct depth 5

75

5.2.2 Results

The positive adaption and prior probabilities for the twenty most frequent C, labels at
this depth are displayed in Figure 5.3. Out of a total of 40 non-terminal label types for
which we gathered statistics, in all cases the prior were less than the positive adaption
probabilities. The difference in probabilities was statistically significant (p < 0.0001)
for 33 non-terminal types. We found that for most cases Pyqaqpt > Pprior Was also true
for depths greater than one, though the difference in prior and posterior probabilities
reduced the greater the depth. Figure 5.4 displays the twenty most frequent C} labels
at conjunct depth 5. For a history-test pair set collected via a left-to-right traversal of

the first conjunct we found similar results.

| prior
O posterior

probability
0.6 0.8

0.4

0.2

0.0

| 1 al 1ol

STOP N NN NNS RB PRP TO MNP VB

ti

Figure 5.5: Prior and posterior (positive adaption) probabilities for modifier POS labels
at conjunct depth 1

For modifier nodes we also found similar evidence of symmetry across conjuncts,
both for non-terminal labels and head part-of-speech tags. Figure 5.5 displays results
for the top twenty modifier part-of-speech tags across conjuncts at depth 1.

76

Depth |HeadEvents| %M C, L-R %M Cj H-F

1 14,156 (14%) 81 87
2 20,932 (21%) 37 47
3 16,671 (17%) 19 24
4 12,689 (13%) 10 13
5 9559 (9.7%) 5.6 71
6 7316 (7.4%) 2.9 3.7
7 5319 (5.4%) 1.0 14
8 3882 (3.9%) 0.54 0.57
9 2705 (2.7%) 0.26 0.26
10 1830 (1.9%) 0.11 0.16

Table 5.3: Percentage Match(%M) of head event labels C}, in right-of-head conjuncts
with the corresponding label in the head conjunct, grouped by Depth. Percentage
match for head conjunct nodes collected in both a left-to-right (L-R) traversal and
head-first (H-F) traversal are shown.

Finally, in an effort to summarise results across different conjunct depths, we show
the percentage of times the POS tag and non-terminal label of a node, /NV; in the post-
CC conjunct matches the POS tag and non-terminal label of the corresponding node
N,

iprecc 0 the head conjunct. When counting matches, if there is no corresponding

node in the head conjunct for a node in the post-CC conjunct then this counts as a
non-match.

Table 5.4 shows the percentage of POS tags (¢;) and non-terminal labels (C;) of
modifier nodes in post-CC conjuncts that have the same value for POS and non-

terminal labels as N; in the head conjunct. Results are shown for both head-first

preCC
and left-to-right traversals for each level in the coordinate phrases. For depth 0 and
depth 1 non-terminal labels across conjuncts match more often than part-of-speech
tags. From depth 2 on, the percentage of matches for non-terminal labels and POS
tags is similar. This is probably because the conjunct nodes from depth 2 and deeper
are more likely to be pre-terminal nodes, where the node label and POS tag are the
same for a given node. For both POS tags and non-terminal labels, there is little
difference whether the pre-CC nodes are retrieved head-first or left-to-right.

Table 5.3 shows the percentage of matches of the head non-terminal label in the
post-CC conjunct with the corresponding non-terminal label in the pre-CC conjunct
for both left-to-right and head-first traversals. Head-first traversals of the pre-CC

7

Depth |DepEvents| %M C; L-R %M C; H-F %M t; L-R %M t; H-F

0 15,840 (5.4%) 93 93 65 65

1 40,429 (14%) 69 68 64 63

2 59,907 (21%) 49 49 48 47

3 45,623 (16%) 31 30 31 30

4 35,511 (12%) 17 16 16 16

5 26,538 (9.1%) 8.5 8.4 8.4 8.2
6 20,423 (7.0%) 4.1 43 41 43
7 14,681 (5.0%) 1.8 1.8 1.7 1.8
8 10,771 (3.7%) 0.95 0.90 0.95 0.88
9 7472 (2.6%) 0.37 0.40 0.37 0.40
10 5039 (1.7%) 0.28 0.26 0.28 0.26
11 3388 (1.2%) 0.059 0.059

Table 5.4: Percentage Match(%M) of C; and ¢; labels of dependent events in right-of-
head conjuncts with the head conjunct, grouped by depth. Percentage match for head
conjunct nodes collected in both a left-to-right (L-R) traversal and head-first (H-F)
traversal are shown. The total number of dependent events (| DepEvents|) in post-CC
conjuncts for each level is displayed.

conjunct return more matching labels. Comparing the data in Table 5.4 and Table 5.3,
the percentage of label matches is greater for head labels than for modifier labels at
depth 1 but not for depths greater than one. However, if we remove all STOP events*
from the dependent events set and then compare the percentage of dependent node
label matches with the percentage of head node label matches, the percentage of head

node matches is greater at all depths.

There is clearly evidence of a bias towards symmetry in the syntactic structure of
conjuncts, although this symmetry diminishes the deeper the level in the conjuncts.
Learning a bias toward parallelism should improve the parsing model’s ability to cor-
rectly attach the coordination conjunction and second conjunct to the correct position
in the tree. In Figure 5.1 for example, a preference for symmetry in conjuncts might
help the model to attach the CC node and NP/[states] subtree to the NP/[plains] node
due to the fact that the two NPs have almost identical internal structure.

4i.e. where the non-terminal label in the post-CC conjunct is the STOP symbol.

78

5.3 Modelling Symmetry in Conjuncts

In the Collins generative history-based model a tree is generated top-down head-first
and features are limited to being functions of the tree generated so far. Thus the task is
to incorporate a feature into the model that captures a particular bias yet still adheres
to these derivation-based restrictions. Each node in the tree in Figure 5.1 is annotated
with the order in which the nodes are generated (we omit, for the sake of clarity,
the generation of the STOP nodes). Note that when the decision to attach the second
conjunct to the head conjunct is being made (i.e. Step 11, when the CC and NP/[states]
nodes are being generated) the internal structure of the sub-tree rooted at NP[states]
has not yet been generated. Thus at the point that the conjunct attachment decision
is made it is not possible to use information about symmetry of conjunct structure as
we do not know yet what the structure of the second conjunct will be.

It is possible, however, when generating the internal structure of the second conjunct
to condition on structure of the already generated head conjunct. In order to allow the
model to learn a preference for symmetric structure, we introduce new conditioning
features: when the structure of the second conjunct is being generated we condition
on features which are functions of the first conjunct, returning for example the part-
of-speech tag of V; .. as a feature when predicting a POS tag for a node NNV; in the
post-CC conjunct.

The usual parameter classes for estimating the probability of the head label, C},

and the part-of-speech label of a modifier node, ¢;, are (as outlined also in §3.5.2):

Pe, (Ch|Cp, wp, tp, tgp) (5.1)
P’t,left(tildirt Cp7 Ch7 Wy, di5t7 ti—l: ti—Za Cgp) (52)
-Pt,vright(ti|dir7 pr Ch; wp7 tpv di‘gt: tivlv ti-27 Cgp) (53)

Instead of the above parameter classes we created two new parameter classes which
are used only in the generation of post-CC conjunct nodes. These parameter classes

are as follows:

79

Pe, conjunct(Ch|v(headConjunct), Cp, wp, tp, tep, depth) (5.4)

P, conjunct(ti|a(headConjunct), dir, Cp, wy, t,, dist, t; 1, t; o, depth) (5.5)

where y(headConjunct) returns the non-terminal label of N; ... for a head node, N,
and a(headConjunct) returns the POS tag of N; .. for modifier node, N;. Both
functions return +NOMATCH+ if there is no N;, .. for the node being generated.
depth is the level of the post-CC conjunct node N;. The parameter class (5.4) replaces
that of (5.1) in the generation of post-CC conjunct nodes and the parameter class
of (5.5) is used in the generation of both left and right modifier nodes (replacing
both (5.2) and (5.3)).

5.4 Relation to Previous Work

Dubey et al. [2005] demonstrate the prevalence of parallel structures across conjuncts
in coordinate NP data from the Penn Treebank. Drawing data from all NP, CC
N P, constructions, they focus on five types of syntactic construction (for example the
construction: NP — DT JJ NN) and measure frequencies of occurrence of the syntactic
constructions in NP, and NP,. They compare the prior probability of a particular
construction occurring in N P,, with the probability of the construction occurring in
N P,, given it has occurred in N P;. This latter probability they call positive adaption
after the work on lexical priming of Church [2000]. They find that, for all but one
of the construction types examined, a given construction is more likely to occur in
N P, given it has occurred in N P;. Interestingly, the only construction type where the
prior probability was higher than the positive adaption probability was the case of the
type: NP — NN. We would guess that the reason for this is because a coordinate NP
structure such as (NP (NP (NN)) CC (NP (NN))) would, in fact, be inconsistent with
the Penn guidelines (the correct structure being (NP (NN CC NN)) and, therefore,
although it does occur in the data, it would not do so as often as phrases which are
consistent with the guidelines.

In Section 5.2 we measure symmetry of conjunct structure in our training data by

counting how often the non-terminal label in a post-CC conjunct of a coordinate phrase

80

matches the corresponding non-terminal label in the pre-CC conjunct. Unlike Dubey
et al. [2005] we do not focus on NPs alone but instead look at symmetry in conjunct
structure across all conjunct types, with the exception of flat NPB constructions. In
addition where Dubey et al. [2005] measured symmetry at depth 1 only of the conjuncts,
we look at the parallelism effect for different conjunct depths. A final difference is that
rather than comparing sequences of non-terminals we compare individual nodes.

In terms of coordination disambiguation, several previous attempts have attempted
to take advantage of the tendency for parallel structures across conjuncts, as described
in §2.6. Insofar as we do not separate coordination disambiguation from the overall
parsing task, our approach resembles the efforts to improve a coordination disambigua-
tion in the discriminative rerankers of Charniak and Johnson [2005] and Ratnaparkhi
et al. [1994], where both rerankers include features to capture syntactic parallelism

across conjuncts at various depths.

5.5 Summary

We have demonstrated that a significant level of parallelism exists in the syntactic struc-
ture of conjuncts in the WSJ. The symmetric effect holds true both for non-terminal
labels and, to a lesser extent, for part-of-speech labels and is evident at increasing con-
junct depths, though unsurprisingly parallelism decreases with increasing depth. The
mechanism for aligning nodes in post-CC conjuncts with nodes in pre-CC conjuncts
can be incorporated into the probability model in order to encourage the model to
give more weight to syntactic structures which exhibit parallelism. This is done in
the following manner: when generating syntactic structure in a post-CC conjunct, the
model conditions on aligned structure in the pre-CC conjunct. In Chapter 7 we give
details of experiments with the parameter classes introduced in this chapter and show

the results of these changes to the baseline model.

81

Chapter 6

Noun Phrase Coordination Error

Analysis

6.1 Introduction

In this chapter we look at two different causes for the incorrect bracketing of coordinate
noun phrases in the model described in Chapter 3. Section 6.2 examines inconsistencies
in the annotation of coordinate NPs in the Penn Treebank which can lead to errors
in coordination disambiguation. We show how some of the types of coordinate noun

phrase inconsistencies can be automatically detected.

In Section 6.3 we describe a method of tree alignment to aid error analysis. We also
discuss how the different head-finding rules for coordinate noun phrases and coordinate
base noun phrases can negatively affect coordination disambiguation. Section 6.3.1
suggests a minor modification to the head-finding rules for base noun phrases so that
the lexical item chosen to head the entire phrase more closely resembles the head chosen

for other types of coordinate noun phrase.

82

6.2 Bracketing Guidelines for the Penn Treebank
and Inconsistencies in WSJ Coordinate Noun

Phrase Annotation

The annotation of noun phrases in the Penn Treebank [Bies et al., 1995] follows some-
what different guidelines to that of other syntactic categories. Because the interpreta-
tion of nominal modifiers is highly ambiguous and often subject to individual interpre-
tation, no internal structure is shown for nominal modifiers. Hence the following flat
structures (examples taken from [Bies et al., 1995]): (NP the primary college entrance
ezamination) and (NP U.S. patent and copyright owners). For noun phrases with more
than one head noun, if the only unshared modifiers in the constituent are nominal mod-
ifiers, then a flat structure is also given. Thus in (NP the Manhattan phone book and
tour guide) a flat structure is given because although the is a non-nominal modifier it is
shared, modifying both tour guide and phone book, and all other modifiers in the phrase
are nominal. Note that even though phone is clearly unshared in that it modifies book
but not tour guide, no internal structure is shown because it is a nominal premodifer.

However, it happens relatively often in the WSJ Treebank that these guidelines are
not followed, and coordinate noun phrases which should be annotated flat are instead
given internal structure. Take the following example (this time we show the POS tags

as well) extracted from the treebank:
(a) (NP (NP (NNS controllers))(CC and)(NP (NN disk)(NNS drives)))

According to the guidelines, the phrase should be bracketed flat. Out of 1,417 examples
of noun phrase coordination in sections 02 to 21 inclusive, involving phrases containing
only nouns (common nouns or a mixture of common and proper nouns) and the coor-
dinating conjunction, we found 21.3%, contrary to the guidelines, were given internal
structure. When all proper nouns are involved it is even more common to encounter a
coordinate NP showing internal structure where officially they should be given a flat

structure, for example:
(b) (NP (NP (NNP Rainman))(CC and)(NP (NNP Batman)))
In the guidelines, however, it is recognised that proper names are frequently annotated

83

with internal structure. We found 1,369 examples of coordinate noun phrases where
all nouns were proper. Of these 29.4% were given structure.

Another common source of inconsistency in coordinate noun phrase bracketing oc-
curs when a non-nominal modifier appears in the coordinate noun phrase. As previ-
ously discussed, according to the guidelines the modifier is annotated flat if it is shared.
Where it is unclear if a non-nominal modifier is shared or not, the default is to bracket

as shared. When the non-nominal modifier is unshared, more internal structure is

shown:
(c) (NP (NP (NNS fangs)) (CC and) (NP (JJ pointed) (NNS ears)))
(d) (NP (NP (DT the) (NNP U.S.)) (CC and) (NP (NNP Europe)))

We found on inspection that sometimes a flat annotation was given, when in fact more
structure should have been shown. Take the following two examples extracted from
the treebank, which should in fact be given the more structured bracketing shown in

Figure 6.1 Tree 1 and 2 respectively:
(e) (NPB (NN oversight)(CC and)(JJ disciplinary)(NNS procedures))

(f) (NPB (JJ moderate)(CC and)(JJ low-cost)(NN housing))

Following the guidelines any coordinate base noun phrase which ends with the following
tag sequence can be automatically detected as incorrectly bracketed: CC/non-nominal
modifier/noun. This is because either the non-nominal modifier, which is unambigu-
ously unshared, is part of a noun phrase as in Figure 6.1, Tree 1 or it conjoined with
another modifier as in Figure 6.1, Tree 2.! We found 202 examples of this in the
training set, out of a total of 4,895 coordinate base noun phrases.

Finally, inconsistencies in POS tagging can also lead to problems with coordination.
Take the bigram ezecutive officer. We found 151 examples in the training set of a base
noun phrase which ended with this bigram. 48% of the cases were POS tagged JJ NN,

INote however that CC/non-nominal modifier/noun/noun can not be automatically classified as
inconsistent with the Treebank guidelines. For example, (NPB (JJ personal) (NN computer) (CC
and) (JJ electronic) (NN equipment) (NN maker)) is correctly bracketed flat because ‘No internal
structure is shown for conjoined nominal premodifiers...Even in the case where a nominal premodifer
is adjectively modified, the entire structure is left flat’.

84

1t NP
NP CC NP
| |
NN
i B 33 NNS
oversight | |

disciplinary procedures

2. NP
ADJP NP
|
/y\ NN
JJ CC JJ |
| | | housing

moderate and low-cost
Figure 6.1: Correct Parse tree bracketing according to the Penn Guidelines

52% tagged NN NN.? This has repercussions for coordinate noun phrase structure, as
the presence of an adjectival pre-modifier indicates a structured annotation should be
given.

These inconsistencies pose problems both for training and testing. With a relatively
large amount of noise in the training set the model learns to give too high a probability
to structures which should be very unlikely. In testing, given inconsistencies in the

gold standard trees, it becomes more difficult to judge how well the model is doing.

6.3 NPB Head-Finding Rules

In order to gain more insight into the type of errors being made in coordinate structures
we compared the erroneous coordinate phrases proposed by our memory-based baseline
model on the validation set, with the corresponding oracle coordinate phrases, where

the oracle subtrees are correct. For each correct NP coordinate phrase in the oracle

2According to the POS bracketing guidelines [Santorini, 1991] the correct sequence of POS tags
should be NN NN.

85

trees that did not exist in the trees selected by the baseline model, we retrieved the
(incorrect) sub-tree from the baseline model set that contained the same coordinating
conjunction. We then aligned the two subtrees so that they spanned the same number
of words. We did not align trees where the oracle and baseline model tree contained
crossing brackets.® Figure 6.2 demonstrates how trees were aligned. Tree 1 contains the
correct coordination dependencies which occurred in the oracle tree. Tree 2 shows the
corresponding coordinate noun phrase returned by the baseline model. Tree 3 shows
the oracle tree subtree after the oracle and baseline subtrees have been aligned.

Out of a total of 190 coordinate noun phrases, including base noun phrases, where
the oracle subtree was correct and the baseline model subtree incorrect, 156 trees were
aligned in this manner. This left us with a set of 156 paired coordinate noun phrases,
where each pair contained the incorrect structure chosen by our model as well as the
correct version of the subtree.

Aligning trees allowed us to easily examine the types of error being made in co-
ordinate structures. We could also compare the probability estimates the generative
reranker gives for the two trees. We found that for 25% of the pairs, the correct coor-
dinate sub-tree was correctly assigned a higher probability, this despite the fact that
this structure was not the structure that ends up in the highest scoring parse according
to our model. One reason this might occur could be to do with factors unrelated to
the coordinate noun phrase in question but instead related to the probability given to
other structures in the tree of which the coordinate NP is but a component. This is
discussed further in §7.4. Another reason this phenomenon occurred was because the
probabilities we compared for the two subtrees do not take into account the probabil-
ities of the head word (and head POS tag, non-terminal label etc.) of the subtrees,
given their previously generated parse structures. These missing generative terms can
have an important effect, particularly when the heads of the two subtrees are differ-
ent, which was the case to a significant extent in the aligned trees. In such cases, the
probabilities of the subtrees are to some extent incomparable.

The choice of head affects the various dependencies in the model. Head-finding rules
for coordinate NPBs differ from coordinate NPs.* Take the following two versions of

3Two trees contain crossing brackets if the constituents in one tree cross over constituent boundaries
in the other tree. See [Manning and Schiitze, 2001, p. 434] for an explanation, with illustration, of
crossing brackets.

4The head rules used in the baseline model can be found in the Appendix of [Collins, 1999)].

86

1 NP
NP cc NP
| | |
NPB or NPB
an individual & business
2 NP
NP cc NP
|
/\ or NPB
7 /\
NPB PP & business
/I\ of NP
the tax returns |
NPB
an individual
3 NP
NPB PP
the tax returns /\
of NP
NP ce NP
| | |
NPB or NPB
an individual 4 business

Figure 6.2: Tree 1: The correct oracle coordinate NP. Tree 2: The incorrect coordinate
NP returned by the baseline model. Tree 3: The oracle tree aligned with Tree 2.

87

the noun phrase hard work and harmony:

(g) (NP (NPB hard work and harmony))
(h) (NP (NP (NPB hard work)) and (NP (NPB harmony))).

In the first example, harmony is chosen as head word of the NP; in example (h) the
head of the entire NP is work. In the case of two coordinate NPs which, as in the
above example, cover the same span of words and differ only in whether the coordinate
noun phrase is flat as in (g) or structured as in (h), the choice of head for the phrase is
not particularly informative. In both cases the head words being coordinated are the
same and either word could plausibly head the phrase; discrimination between trees in
such cases should not be influenced by the choice of head, but rather by other, salient

features that distinguish the trees.’

6.3.1 Modifying the NPB Head-Finding Rules

In order to avoid discrimination based on the differing head-finding rules of coordinate
NPs and NPBs, we would like to alter the head-finding rules for coordinate NPBs so
that the word chosen to head the entire coordinate noun phrase would more often
coincide with that chosen in non-base noun phrases. One of the difficulties lies in
detecting which are the two nouns being coordinated. A rule that, for example, would
always choose the noun to the left of the CC to head the base noun phrase, risks
choosing an obviously incorrect head in a phrase such as French and German cars,
where the nominal modifiers are coordinated and the head of the noun phrase is clearly
cars.

[Collins, 1999, p. 238] gives the head-finding rules used in the Collins parser. As
there are no rules explicitly for base noun phrases we can assume they are the same
as the rules for noun phrases. Coordinated phrases have their own special treatment
with regard to head-finding. NPBs are not treated as coordinated phrase in the Collins
model (for reasons discussed in §1.3). In coordinate phrases the head always comes
before the CC node, but this is not the case for NPBs. Generally in NPBs the right-

most noun is chosen to head the phrase. For example, in a base noun phrase such

5For example, it would be better if discrimination was largely based on whether hard modifies both
work and harmony (g), or whether it modifies work alone (h).

88

as NPB — noun; CC noun; nouny, the head of the phrase is (usually) the rightmost

noun in the phrase.

In our model, in a base noun phrase with a sequence of children:5

noun; CC noun; nouni

the head rules remain unchanged and the head of the phrase is, as before, (usually) the
rightmost noun in the phrase. That is, when the pattern noun; CC noun; noun; occurs
- when noun; is immediately followed by another noun - the default is to assume nom-
inal modifier coordination and the head rules stay the same. In such cases the bilexical
coordinate head-head dependencies of §4.3.2 are modelled as Peooraword(noun;|noun;).

The slight modification to the head rules for NPBs that we make is as follows:
when noun; is not immediately followed by a noun, in any NPB containing the pattern
noun; CC noun;, then the noun chosen to head the entire phrase is the noun preceeding
the CC: noun;. (This alteration to the original head-finding rules is not implemented
if there is more than one CC node in the NPB.) The head-head dependencies in such
cases are then modelled as P,ooraword(noun;|noun;).

In addition, if the following pattern occurs: NPB — C; CC Cj, where the label
C; is the same as the label Cj, and both nodes are pre-terminals, then, in the new
head-finding rules, the head of the phrase is the node labelled C;. Note that there is
no requirement that the labels be nouns.

These two modifications to the head-finding rules are both aimed at making the
rules for coordinate NPBs more similar to those for coordinate NPs for the reasons
outlined in §6.3. We do not, however, suggest that the head rule modifications proposed
here offer a complete solution. In a phrase such as dolls and toy cars, for example,
dolls would be the head chosen if the phrase were (incorrectly according to the Penn
guidelines) given internal structure, as in (NP (NP (NPB dolls)) and (NP (NPB toy
cars))). On the other hand, even with the modified rules, in the tree (NPB dolls and
toy cars), cars would be the head word. Altering the head rules also had side-effects
which necessitated new features for the generation of modifier nodes with NPB parents,

which we discuss in more detail in §7.3.3.

SNote there can be other children to the left or right of this sequence.

89

6.4 Relation to Previous Work

Heuristics to detect particular inconsistencies in treebank annotation have been ex-
plored before, for example, when deriving a categorical grammar style annotation from
Penn Treebank trees in [Hockenmaier and Steedman, 2005]. Blaheta [2002] charac-
terises types of errors in inconsistency in corpus annotation and also gives examples of
inconsistency detection using rules which search for specific inconsistencies. More gen-
eral approaches to treebank inconsistency detection, which do not rely on hand-crafted
heuristics, are outlined in Dickinson and Meurers [2005]. In testing their method they
take a similar approach to us insofar as they eliminate the noisy events. Their method
was tested on the WSJ corpus by retraining a PCFG parser on the training data after
having eliminated all rules in the training data that arose from local trees considered
to be errors by the method. They then compared the result with the parser trained
on the original training set. The result on an (unchanged) section 23 showed small yet

significant increases in precision and recall.

6.5 Summary

We have shown that coordinate noun phrase data appears to be particularly noisy in the
WSJ Penn Treebank. Inconsistencies in coordinate noun phrase data make it harder
for a model to learn the correct bracketing for coordinate NPs. We demonstrated that
for some of these inconsistencies it is possible to automatically detect when an NP tree
in the treebank is not bracketed according to the Penn treebank bracketing guidelines.
In chapter 7 we will use this automatic detection of inconsistent trees to clean noisy
data in the training and test sets.

In this chapter we also described a useful method to facilitate error analysis and
discussed how differing head-finding rules for NPs and NPBs can negatively affect
coordination disambiguation. We suggest a minor alteration in the head-finding rules
for coordinate base noun phrases so that the lexicalisation process for coordinate NPBs
is more similar to that of other NPs. In Chapter 7 we demonstrate the effects of
changing the NPB head-finding rules on the accuracy of the model.

90

Chapter 7

Experimental Evaluation -

Coordination

7.1 Introduction

This chapter gives the details of our experiments on improving NP coordination disam-
biguation, implementing the ideas of the previous chapters. We begin by outlining how
we select our coordination test and validation sets and under what criteria a coordina-
tion dependency is taken to be correct. We then step through each set of experiments,
from those involving eliminating noisy data from the training set, to the introduction
of parameter classes that capture symmetry in conjunct structure, to changes in the
NPB head-finding rules, to the experiments on modelling conjoined head words. We
show the effect of each experiment on the validation set, the overall effect on the test

set, and conclude with a discussion of the results achieved.

7.2 Experimental Evaluation

For our experiments on coordination disambiguation our baseline model is that de-
scribed in Chapter 3, where k-NN is used for parameter estimation. As in Chapter 3,
the experiments outlined in this chapter take place in the context of parse reranking,
where the n-best output from Bikel’s parser is reranked according to our parsing model.

Sections 02 to 21 are again used for training. The coordination test set is taken from

91

section 23 and the coordination validation set taken from the remaining WSJ sections.
Only sentences containing 40 words or less were used for testing and validation.

As outlined in §6.2 the Penn Treebank guidelines are somewhat ambiguous as to
the appropriate bracketing for coordinate noun phrases which consist entirely of proper
nouns. We therefore do not include, in the coordination test and validation sets,
coordinate noun phrases where in the gold standard NP the leaf nodes consist entirely
of proper nouns (or CCs or commas). In doing so we hope to avoid a situation whereby
the success of the model is measured in part by how well it can predict the often
inconsistent bracketing decisions made for a particular portion of the treebank.

In addition, and for the same reasons, a tree is not included when calculating co-
ordination precision and recall of the model if the gold standard tree is inconsistent
with the guidelines in either of the following two ways: the gold tree is a noun phrase
which ends with the sequence CC/non-nominal modifier/noun; the gold tree is a struc-
tured coordinate noun phrase where each word in the noun phrase is a noun (recall
from §6.2 that for this latter case the noun phrase should be flat - an NPB - rather
than a noun phrase with internal structure). Call these inconsistencies type a and type
b respectively.

In total, 296 coordination dependencies were excluded in this manner from the
validation set and 134 coordination dependencies excluded from section 23. This left us
with a coordination validation set consisting of 1064 coordinate noun phrase (including
base noun phrase) dependencies and a test set of 416 coordinate NP/NPB dependencies
from section 23.

A coordinate noun phrase dependency was deemed correct if the parent constituent
label, and the two conjunct node labels (at level 0) match those in the gold subtree
and if, in addition, each of the conjunct head words are the same in both test and
gold tree. This follows the definition of a coordinate dependency in [Collins, 1999]. As
in [Collins, 1999] all labels which are part-of-speech tags are relabelled TAG in order to
avoid errors in tagging being counted as dependency errors. In our tests, for NPBs the
first conjunct was taken to be the head node of the phrase, using the original head rules.
The second conjunct was taken as the node generated directly after the coordinating
conjunction. Based on this criteria, the baseline f-scores for test and validation set
were 69.1% and 67.1% (see Table 7.1) respectively. The coordination fscore for the

oracle trees on section 23 is 83.56%. In other words: if an ‘oracle’ were to choose

92

Model fscore | significance

1. Baseline 67.1

2. NoiseElimination | 68.7 >1

3. Symmetry 69.9 >0

4. NPB head rule 70.6 NOT >3,>2, > 1

5. Pooraword WSJ T NOT >4, >3,>2

6. BNC data 2.1 NOT >5,>4, >3

7. sim(w;, wp) 72.4 NOT > 6, NOT > 5, > 4

Table 7.1: Results on the Validation Set. 1064 coordinate noun phrases dependen-
cies. In the significance column > means at level .05 and > means at level .005, for
McNemar’s test of significance. Results are cumulative.

from each set of n-best trees the tree that maximised constituent precision and recall,
then the resulting set of oracle trees would have a NP coordination dependency f-score
of 83.56%. For the validation set the oracle trees coordination dependency f-score is
82.47%. The labelled precision and recall scores for the oracle and baseline trees for

section 23 are displayed in Table 7.2.

7.3 Experimental Details and Results

In this section we give a breakdown of results on the validation set (see Table 7.1), as
well as the overall results of all experiments on the coordination dependency f-score of
section 23 (see Table 7.2). Results reported on the validation set are cumulative. All
statistical significance tests were carried out using McNemar’s test [Dietterich, 1998]
for significance, based on the number of correct/incorrect coordination dependencies

in the data sets.

7.3.1 Eliminating Noisy Data

Our first experiments consisted of attempts to reduce noise in the training data. We did
this by automatically detecting type a and type b inconsistencies (defined in Section 7.2)
and eliminating them from the training set. The effect of this on the validation set
is outlined in Table 7.1 (row 2). Eliminating the noisy data resulted in a statistically

significant (p < 0.005) improvement in coordination accuracy, with the fscore rising

93

from the baseline 67.1% to 68.7%.

7.3.2 Modelling Symmetry in Conjunct Structure

Our next changes to the baseline model involved implementing the parameter classes
described in §5.3, which aim at introducing a bias toward parallelism in conjunct
structure. For the parameter class of (5.4) in §5.3 which models the probability of
C}, (the head child non-terminal label) in a post-CC conjunct given its history, the
best results occurred when the parameter class was used only at depths 1 and 2 of
the conjuncts, although the training examples for this parameter class contained head
events from all post-CC conjunct depths. The parameter class of (5.5) in §5.3 was used
for predicting POS tags at level 1 in post-CC conjuncts, although again the training
set contained events from all depths. We did not restrict use of these parameters to
noun phrases conjuncts only but used the parameter class for all types of conjunct.
The result of the these new parameter classes was a rise in f-score accuracy to 69.9%, a
significant (p < 0.05) rise in coordination accuracy (Table 7.1 row 3) from the previous
score of 68.7%.

7.3.3 NPB Head-Finding Rule and New Features for NPBs

As suggested in §6.3.1 we altered the head-finding rules for base noun phrases. At
this point we also introduced two new types of conditioning features to the history of
parameter class P(Cj, t;|Cp, = NPB, H(i)). In the memory-based model presented in
Chapter 3, three conditioning features for this parameter class are C;_1, C;_», and C;_3
(the non-terminal labels of the three previously generated nodes). Instead, we found
it useful to chunk the three previously generated non-terminal labels together into one
feature. The idea behind this feature was to make certain sequences, like: DT JJ NN
CC, more unlikely. Initially, after altering the head-finding rules, we found problems
were being caused because generating a coordinating conjunction and subsequent nodes
to the right of the head word was too unlikely. We found adding a new ‘comma’ distance
feature for the generation of nodes to the right of the head node helped. We added a
boolean feature which returns true if a punctuation node (with POS tag ‘,” or ¢’) has
already been generated as a sibling to the node in question, false otherwise. The effect

of these changes are displayed in Table 7.1 (row 4). There was a rise in fscore from

94

the previous result of 69.9% to 70.6%, though the change in coordination accuracy was

not statistically significant.

7.3.4 Modelling Conjoined Head Nouns

We now turn to the experimental details for the word graph described in §4.3.2. For
building the word graph we extracted 9961 coordinate noun pairs from the WSJ training
set and 815,323 pairs! from the BNC. As links between pairs are symmetric this resulted
in a total of 1,650,568 coordinate noun events stored in the graph. All words were
collapsed to lower case, and every digit replaced by the special character &. The final
graph consisted of 82,579 nodes, or word types.

This word graph was then used for the estimation of the parameters of the Peooraw ord
parameter class introduced in §4.3. For all our experiments with P,,oqwora the param-
eter class is used both for NPs and NPBs. In our first experiments we estimated
Pooorawora from the graph without using the similarity function and used only two

layers of back-off combined using Witten-Bell interpolation, as in:
Pcoordﬂ"ord(ni|n]) = AnJPVVG(niInj) GR (1 e)\n])PkNN(ni|H(i)) (71)

where Py g(n;i|n;) is the maximum likelihood estimate calculated from the events stored
in the graph and in Pyny(n;|H (7)) the history is simply the POS tag of n;. For the
Pinn(ni|H(7)) estimate, as with word estimates in the original baseline model, words
occurring less than 5 times were mapped to the + UNKNOWN+ token. We found that
in the calculation of A, , above, the best results occurred when the constant C was
set to 5, the same setting as for the Witten Bell estimations in the baseline model.
Calculating P, orqworg in such a fashion, Table 7.1 shows the effect of this parameter
class estimated from a word graph that contained WSJ data only (row 5), and then
from the word graph with the addition of the BNC data (row 6).

We incorporated the similarity measure (introduced first in §4.2.1) into the estimate

of P,oorawora in the manner described in §4.3.2, and repeated here for convenience:

PcoordVVord(nilnj) =)\n]PWG'(ni|nj) =+ (1 = /\nJ)Psimlnterp(niInj) (72)

!Note that some of these pairs of nouns from the BNC were extracted from lists in the manner
described in §4.3.2.

95

Model NPccPrecision NPccRecall
Baseline 66.03 74.29
FinalModel | 70.46 77.40
Oracle 79.57 87.98

Table 7.2: Results for Section 23. 416 coordinate noun phrase dependencies

where
Psimmmp(ni|nj) = A;]Psim(n,-]nj) + (1 — /\:,])PkNN(nllH(l)) (73)

In practice it proved too computationally expensive to calculate similarity measures
for every vertex in the graph. For the estimation of Pyim(n;|n;) we found the best
results were obtained when the neighbourhood of n; was taken to be the k-nearest
neighbours of n; from among the nodes directly connected to n;, where kis 1000. For
the calculation of A, in (7.2) we set the constant C to 10, and for the calculation of
An, in (7.3) it was set to 5. As before, for the Peyn(ni|H (7)) estimate the history was
simply taken to be the noun n;’s POS tag. Table 7.1 shows the effect of the Puooraword
parameter class estimated with the word similarity measure (row 7).

Though none of the three individual changes to model discussed in this subsec-
tion (first using Poorawora 0n WSJ alone, then on BNC data and finally with the
similarity metric) resulted in statistically significant changes in coordination accuracy,
taken together the changes result in a rise of fscore accuracy from 70.6% to 72.4%, a

statistically significant result (p < 0.005).

7.3.5 Results

The overall result on the test set of all these experiments was an increase in coordinate
noun phrase f-score from 69.91% to 73.77%. This represents a 13% relative reduction
in coordinate f-score error over the baseline, and, using McNemar’s test [Dietterich,
1998] for significance, is significant at the 0.05 level (p = 0.034). The reranker fscore
for all constituents for section 23 rose slightly to 89.6%.>

Finally, for the sake of completeness, we report results on an unaltered coordination

2This is the evalb score on the full trees of section 23, not excluding any coordinate NPs.

96

test set, that is, a test set from which no noisy events were eliminated. The baseline
coordination dependency f-score for all NP coordination dependencies (550 dependen-
cies) from section 23 is 69.27%. This rises to 72.74% when all experiments described

in Section 7.3 are applied, which is also a statistically significant increase (p = 0.042).

Comparing Coordination Results with Previous Work on Coordination Dis-

ambiguation

Though the work of [Resnik, 1999, Goldberg, 1999, Nakov and Hearst, 2005] on co-
ordination disambiguation is also tested on WSJ data, it is nevertheless not possible
to compare our coordination disambiguation results with the results of these other
systems. As discussed in more detail in §2.6, the approaches of both [Resnik, 1999]
and [Nakov and Hearst, 2005] aim to show more structure than is shown in trees follow-
ing the Penn guidelines, whereas in our approach we aim to reproduce Penn guideline
trees. The learning task is therefore different. In the probabilistic approach to coordi-
nation disambiguation of Goldberg [1999] the system is tested on a particular type of
coordination construction involving prepositional phrases. While this type of construc-
tion does form a proportion of our test set it is nevertheless difficult to compare results.
Firstly, Goldberg [1999]’s system in not tested on a test corpus. In addition, results are
given only for a development set of 500 phrases extracted from the annotated treebank
and with no details given on which WSJ sections the examples were extracted from.
Finally, again as discussed in §2.6, the discriminative reranker of Charniak and
Johnson [2005] contains coordination specific features and is tested on Section 23 of
the Penn Treebank. However the effect on coordination disambiguation is not tested,
only the labelled precision and recall f-score results for all constituents are given. As
both the [Charniak, 2000] base parser and the [Charniak and Johnson, 2005] reranker
are widely available we carried out an experiment to compare the NP coordination
dependency score of the base parser and the discriminative reranker. Taking the out-
put of the Charniak base parser and the Charniak and Johnson reranker on section
23, we calculated the NP coordination dependency f-score in the fashion described
in §7.2, for the same test set of 416 coordinate NPs. The base parser achieves a co-
ordination dependency f-score of 72.05%, which increased to 80.22% for the reranking

parser. Although both results are impressive they are not directly comparable to the

97

results reported for our baseline model and reranker. Firstly, the Charniak base parser
is not identical to the Collins parser and achieves a considerably higher labelled preci-
sion/recall fscore to both the Collins parser and the model described in Chapter 3 of
this thesis. Thus one would expect the baseline coordination results to be higher for
the Charniak parser. For the reranking experiments, the Charniak parser also produces
higher quality n-best lists than the Collins parser (and than Bikel’s emulation of the
Collins parser)® which tends to lead to higher reranker scores (see discussion § 2.3.1).
Finally, the reranking parser is discriminative and includes some 1,148,697 features,
of which only 32 are coordination-specific features. Thus, many features contribute
to the selection of the best tree from an n-best list and it is not possible to say to
what extent the high coordination dependency score for the reranking parser is due to
the coordination-specific features or due to other factors which contribute to picking

overall high-scoring trees.

7.4 Discussion

To some extent it is difficult to discern the individual effect of each change to the
baseline model, although we attempt to do so in Table 7.1 where the statistical signif-
icance of the individual changes are noted. However, judging from our experiments,
we suspect that it is the joint effect of several of the changes taken together that is
important in terms of improving accuracy.

Introducing the P.orawora Parameter class for both noun phrases and base noun
phrases, and estimating Peooraword from the word graph, clearly helps disambiguation.
In the word graph, data sparseness is decreased because each collected event is made
symmetric, and list data from the BNC is included. Storing the bilexical data in a
graph is a convenient way of conceptualising the data, allows for compact storage, and
lends itself easily to measures of word similarity based on vectors. However, the effect
of using the similarity function was somewhat disappointing as it increased accuracy
only to a small, almost negligible, degree. In §8.2.4 we look at ways the word graph
and similarity estimates might be improved upon.

A disadvantage of focusing on coordinate errors within a reranker setting is that,

3Charniak and Johnson [2005] report an oracle f-score score of 96.8% whereas [Huang and Chiang,
2005] report an f-score of less than 94.9% for Collins’ n-best lists.

98

for validation and testing, results can be obscured somewhat due to the fact that any
coordinate structure being evaluated is attached to a whole parse tree and a particular
parse tree is chosen as the most probable parse of a sentence due to many factors,
not only its coordinate structures. If the only difference between two parses were the
coordinate structure this would not be problematic. However this is not always the
case. Thus it is possible that some change to the model might result in the correct
coordinate structure in a particular parse being assigned a higher weight than other
incorrect coordinate structures in the n-best list of parses, but the reranker neverthe-
less gives the entire tree, of which the correct coordinate sub-tree is but a component,
a lower probability than that assigned some other tree containing an incorrect coordi-
nate structure. To illustrate the point: The oracle set of trees are those trees which
score overall highest on precision and recall. In the validation set of top-scoring trees
according to our final model there are a total of 130 coordinate noun phrase depen-
dencies which are incorrect and which are correct in the oracle set. Yet there are 17
ex