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This thesis is concerned with improving existing generative history-based probabil­

ity models’ treatm ent of noun phrase coordination and the development of memory- 

based techniques for model param eter estimation.

Lexicahsed generative history-based parsing models have proven to be highly suc­

cessful a t robust and accurate parsing. Although such models already achieve impres­

sive overall accuracy results there is nevertheless potential for improvement, particu­

larly in areas of difficulty for such parsers, such as coordination disambiguation and, 

more generally, param eter estim ation from sparse data.

Though coordination has long been known as an area of difficulty for natural lan­

guage parsing, coordination ambiguity is nevertheless a little studied area. Our aim is 

to increase understanding of coordination ambiguity in generative history-based pars­

ing models. We seek to find ways of improving the model’s handling of noun phrase 

coordination without removing coordination from the parsing framework. As well as 

reducing noise in the data, we look at modelling two main sources of information for 

disambiguation: symmetry in conjunct structure, and the likelihood of one lexical head 

being conjoined with another. The latter step involves extending the modelling of co­

ordinate heads to include those found in base noun phrases and improving param eter 

estim ation by incorporating d a ta  from the BNC and using a word graph and a measure 

of word similarity to decrease da ta  sparsity. We also alter the head-finding rules for 

base noun phrases so th a t the lexical item chosen to head the entire phrase more closely 

resembles the head chosen for other types of coordinate noun phrase.

A difficulty in improving probabilistic generative models is how to incorporate into 

the probability model features th a t will capture information in the data  im portant for 

disambiguation decisions w ithin the Umitations of feature selection in history-based 

models. In addition, adding new features to the model increases the risk of the sparse 

data  problem and smoothing techniques which can overcome the sparse data  problem 

when estim ating the model param eters are im portant. We study the use of memory-



based techniques for parameter estimation and demonstrate that they are effective for 

parameter estimation in a lexicahsed generative parsing model, allowing for flexible 

feature selection, good smoothing of data, and can achieve state-of-the-art results for 

accuracy.
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Chapter 1

Introduction

1.1 Thesis O utline

Lexicalised generative history-based parsing models have proven to be highly success­
ful at robust and accurate parsing [Collins, 1999, Charniak, 2000]. Developed from 
relatively simple Probabilistic Context Free Gram m ar (PCFG) models [Booth and 
Thompson, 1973], they are now highly complex models which weaken the indepen­
dence assumptions of PCFGs by using information from previously generated parse 
structure to help predict the remaining structure of the parse tree. Although these 
models already achieve impressive overall accuracy results there is nevertheless poten­
tial for improvement. This is particularly true in areas of difficulty for such parsers, 
such as, for example, coordination disambiguation, prepositional phrase (PP) attach­
ment, or, more generally, the estim ation of param eters from sparse data.

Probabilistic parsing of natural language can be broken down into three main com­
ponents: defining a probability model, estim ating the param eters of the model, and 
efficiently searching for the most probable parse from the space of all possible parses 
for the sentence. The work in this thesis is concerned with improving param eter esti­
mation in a generative model by using memory-based techniques as well as improving 
the model’s handling of coordination disambiguation and so lies within the first two 
areas.

A difficulty in improving probabilistic history-based models is how to incorporate 
into the probabifity model features th a t will capture information in the data im portant
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for disam biguation  decisions w ith in  th e  U m itations of featu re  selection in h isto ry-based  

m odels. In  addition , adding new features to  th e  m odel increases th e  sparse d a ta  p rob­

lem, one of th e  core difficulties in em pirical NLP. Increasing th e  num ber of conditioning 

featu res when p red ic ting  fu tu re  s tru c tu re  can improve accuracy as th e  m odel has m ore 

inform ation  on which to  base its  p rediction . However, increasing th e  num ber of condi­

tioning features increases th e  num ber of p aram eters in th e  m odel, spreading th e  d a ta  

over m ore specific events, and  often th ere  is sim ply not enough tra in in g  d a ta  to  be  able 

to  accurate ly  estim ate  th e  p robabilities of events. T his is especially tru e  when dealing 

w ith  features th a t  involve indiv idual words, features which nevertheless are im p o rtan t 

as indiv idual words ten d  to  have good d iscrim inating  power. T he m ethod  of e stim ating  

th e  local d istribu tions, therefore, plays a  very im p o rtan t role in building a good m odel.

In th is  thesis we exam ine th e  use of m em ory-based techniques for p aram eter estim a­

tion. Specifically, we use ^-nearest neighbour (/c-NN) for sm ooth ing  m odel param eters. 

Essentially, th is technique involves basing th e  estim ation  of a  p a rticu la r p a ram ete r, 

or query  instance, on th e  d is trib u tio n  of th e  class variable (or fu ture) over th e  set of 

k instances from th e  tra in in g  d a ta  th a t  are m ost sim ilar to  th e  query instance, k is 

typically  very large in  p robab ility  estim ation , com pared to  when /c-NN is used for clas­

sification. Instances selected are w eighted according to  their sim ilarity  to  th e  query 

instance, so th a t  instances from m em ory th a t  are m ore sim ilar to  th e  query in stance  

will be given m ore weight in th e  p red ic tion  of th e  class value.

M em ory-based learning is d istinguished from  other m achine learning a lgo rithm s in 

th a t  it delays generalising beyond th e  tra in in g  d a ta  until it m ust classify, or assign a 

p robab ility  to , each new query  instance. T his sort of lazy learning avoids com m itting  

to  a single global approx im ation  a t  tra in in g  tim e b u t instead  im plicitly  represen ts th e  

ta rg e t function by a com bination  of m any local approxim ations, which take in to  consid­

e ra tion  th e  query instance w hen deciding how to  generalise. T he specific advan tages of 

m em ory-based learning - th e  ab ility  to  m odel complex ta rg e t functions by a  collection 

of local approx im ations and  th e  fact th a t  m em ory-based learning does not a b s tra c t 

away from low frequency d a ta  - suggest, considering th e  irregu larities and  sm all se ts 

of exceptions in n a tu ra l language, th a t  m em ory-based learning a lgorithm s should lend 

them selves well to  n a tu ra l language learning [Daelemans et al., 1999a, D aelem ans and  

van den Bosch, 2005].

We show th a t  m em ory-based learning works well for p a ram ete r e stim a tio n  in a

2



generative parsing model. A;-NN is a very simple, but effective method, allows for 
flexible feature selection and achieves state-of-the-art performance in accuracy.

We carry out our experiments within the framework of generative parse reranking. 
We begin by describing a generative probabilistic model for parsing, based on Model 1 
of Collins [1999], which re-estimates the probability of each parse generated by an initial 
base parser (Bikel [2004a]’s implementation of the Collins parser) using memory-based 
techniques to estim ate local probabilities. We achieve an /-score of 89.4% for sentences 
<  40 words on section 23 of the Penn Wall Street Journal (W SJ) Treebank [Bies et al., 
1995], which represents a significant increase over our baseline parser and the Collins 
parser. Although the model effectively reranks the top-n parses output from the base 
parser, insofar as it is generative the approach is more similar to a second-pass of a 
generative parser than  to the discriminative reranking approaches of [Collins, 2000, 
Collins and Duffy, 2002, Shen et al., 2003, Henderson, 2004, Charniak and Johnson, 
2005, Koo and Collins, 2005].

Discriminative approaches to parse reranking have recently become popular, moti­
vated to a large extent by the flexibility of discriminative techniques in terms of feature 
selection compared to history-based models. Discriminative reranking approaches can 
choose features which incorporate arbitrary aspects of the whole parse tree structure, 
whereas in history-based models the choice of conditioning features when predicting 
parse structure is limited to structure th a t has already been determined in the deriva­
tion of the tree. Although discriminative reranking tends to improve on the perfor­
mance generative models, there remain relatively small differences in accuracy between 
generative and discriminative models when tested on the Penn Wall Street Journal 
Treebank, despite the more restricted choice of features possible in history-based mod­
els.

Generative parsing models and discriminative rerankers are not competing stra te­
gies to parsing, however, but are complementary. Discriminative rerankers rely on 
history-based models to generate the n-best list of parses. In addition, the probabil­
ities generated by a base generative model for each of the parses in an initial n-best 
parse ranking play an im portant role in several discriminative approaches to parse 
reranking [Collins, 2000, Collins and Duffy, 2002, Shen et al., 2003, Henderson, 2004, 
C harniak and Johnson, 2005, Koo and Collins, 2005]. Thus any improvements in the 
base generative model are likely to improve the discriminative rerankers. Generative

3



histo ry -based  reranking  m odels have also an advantage in th a t  they  can be applied 

to  th e  full o u tp u t of th e  base parser and not ju s t the  n-best list to  which discrim ina­

tive re rankers are lim ited. T his is because, unlike discrim inative reranking approaches, 

h isto ry -based  m odels can take  advan tage  of a packed represen tation  of trees and  can 

use dynam ic program m ing to  search for th e  m ost probable tree  according to  th e  model.

T he  rem ainder of th e  thesis involves tak ing  the  m em ory-based m odel as th e  base­

line m odel and  working on im proving th e  area in which th e  m odel perform s worst; 

coo rd ina tion  disam biguation .

1.1.1 Coordination Disam biguation

As an exam ple of th e  coord ination  disam biguation  task , take th e  phrase people o f all 

ages and all classes. T he coord ina ting  conjunction (CC) and  and  th e  noun phrase  all 

classes could a tta ch  to  th e  noun  phrase  all ages, as illu stra ted  in Tree 1, F igure 1.1. 

A lternatively , all classes could be  incorrectly  conjoined to  th e  noun phrase people o f all 

ages as in T ree 2, F igure 1.1. T h is problem  of w hether to  a tta ch  low (Tree 1) or a tta ch  

high (Tree 2) is a  com m on source of error in coordinate noun phrase disam biguation.

A n o ther com m on source of d isam biguation  error is illu stra ted  w ith th e  a lte rna tive  

bracketing  of th e  slightly m odified phrase people o f all ages and classes shown in F ig­

ure 1.2. Here, th e  problem  is w hether all modifies bo th  ages and  classes as in Tree 1, 

F igure  1.2, or w hether all m odifies ages b u t not classes as in Tree 2, F igure 1.2.

A lthough  there  has been a  su b s tan tia l body of work on o th er areas of difficulty 

for parsers , such as P P -a ttac h m en t, coordination  am biguity  is a relatively little  s tu d ­

ied area. O ne reason for th is  could be th a t  dependencies involving P P -a ttac h m en t 

ten d  to  occur m uch m ore often th a n  coordination constructions. T hus, im proving 

P P -a tta c h m e n t has perhaps g rea te r p o ten tia l to  improve overall parser perform ance. 

T he correct bracketing  of coord ina tion  constructions, however, rem ains one of th e  m ost 

difficult problem s for n a tu ra l language parsers and parsers often perform  worse a t  coor­

d in a tio n  d isam biguation  th a n  P P -a ttac h m en t. In the  Collins parser and our em ulation  

of his parsing  m odel, dependencies involving coordination achieve by far th e  w orst 

perform ance of all dependencies.^

^For example, in [Collins, 1999] an error analysis shows that although dependencies involving 
coordination conjunctions achieved /-scores as low as 61.8%, the lowest of all dependency types, 
compared to an /-score of 81.9% for PP modification, coordination accounts for only 1.9% of all
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Figure 1.1: Tree 1. The correct noun phrase parse. Tree 2. The incorrect parse for the 
noun phrase.

As with PP attachment, most previous attempts at tackUng coordination as a sub­
problem of parsing have treated it as a separate task to parsing. It is not always obvi­
ous, however, how to integrate the methods proposed for disambiguation into existing 
parsing models, which presumably is the end goal of any work on PP or coordination 
disambiguation. Therefore we approach coordination disambiguation, not as a sepa­
rate task, but integrated within the framework of a generative parsing model. Our 
aim is to increase understanding of coordination ambiguity in generative history-based 
parsing models and to improve the ability of a generative history-based parsing model 
to make the correct coordination decisions in the context of parse reranking. As noun

dependencies whereas PP-attachments accounts for 11.2%



1 . NP

Figure 1.2: Tree 1. The correct noun phrase parse. Tree 2. The incorrect parse for the 
noun phrase.

phrase (NP) coordination accounts for over 50% of coordination dependency error in 
our baseline model we focus primarily on NP coordination.

We examine some of the types of error made in noun phrase coordination, showing 
how Penn Treebank data for NP coordination is particularly noisy and how incon­
sistencies in the Penn Treebank WSJ annotation of coordinate NPs negatively affect 
parser performance. We also show how the different head-finding rules for noun phrases 
and non-recursive noun phrases (base NPs) affect disambiguation, suggesting slightly 
modified head-finding rules for base NPs.

We look at the dependencies between two head nouns in coordinate noun phrases. 
We first introduce our distributional word similarity measure and compare it with sev­
eral existing measures of word similarity, testing whether the various measures can 
detect similarity between the head nouns in coordinate noun phrases. We then concen-
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tr a te  on m odelling th e  likelihood of two nouns conjoining, designing a new p aram eter 

class^ for use in b o th  coord ina te  noun phrases and coord ina te  base noun phrases. In 

th e  estim ation  of th is p a ram ete r class, d a ta  from th e  unlabelled  B ritish  N ational C or­

pus (B N C )[B urnard , 1995] are used in add itio n  to  W SJ d a ta . We use a  word graph  to  

sto re  th e  tra in in g  d a ta  and  explore varia tions of A:-nearest neighbour which inco rpora te  

our m easure of word sim ilarity  in th e  estim ation  of param ete rs  in order to  reduce d a ta  

sparseness.

T here  is often a considerable bias tow ard sym m etry  in th e  syn tactic  s tru c tu re  of 

two conjuncts and m ost previous work on coord ination  d isam biguation  has a tte m p ted  

to  take advan tage  of th is. We give em pirical m easurem ents of th e  ex ten t to  which 

parallelism  in th e  syn tactic  s tru c tu re  of con juncts exists and th en  design new p aram ete r 

classes for th e  generative m odel which a tte m p t to  cap tu re  th e  parallelism  effect and 

th u s allow th e  m odel to  learn  a  bias tow ard sym m etry  in conjuncts.

The various changes to  th e  baseline m odel in th e  handling  of coordination  result in 

a  rise in N P coord ination  dependency /-score from  69.9% to  73.9%, which represents a 

relative reduction  in /-score e rror of 13%.

We now sum m arise th e  con tribu tions m ade in th is  thesis:

1. P a ram e te r E stim a tio n  - C om bating  D a ta  Sparseness

•  We d em o n stra te  th a t  m em ory-based m odels, based on varieties of th e  k- 

nearest neighbour a lgorithm , are effective for param ete r estim ation  in a 

lexicalised generative  parsing  m odel, allowing for flexible feature selection 

and  good sm ooth ing  of d a ta , and  can achieve sta te -o f-th e -a rt resu lts for 

accuracy.

•  We in troduce  a novel technique for th e  estim ation  of certa in  types of bilexical 

s ta tistics , which m akes use of b o th  labelled and unlabelled  d a ta  and incor­

po ra tes, for th e  first tim e, a m easure of word sim ilarity  into a generative 

lexicalised parsing  model.

2. C oord inate  N oun P h rase  D isam biguation

^We refer to a model space, such as, for example, the bigram model P{wi\wi-i), as a parameter 
class. A particular param eter fi'om that parameter class might be P{wi = cat\w i-i = the).
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•  We investigate some of the causes for the errors in coordinate noun phrase 
disambiguation, showing th a t the d a ta  used for such parsers are particularly 
noisy with regard to NP coordination. We also demonstrate how head- 
finding rules can negatively affect disambiguation.

• We give an empirical analysis of noun phrase coordination in the data  - fo­
cusing on two salient characteristics of noun phrase coordination: symmetry 
in conjunct structure and word similarity for coordinate head nouns.

•  Based on the study of training data  and parser errors we develop techniques 
for improving the m odel’s ability to disambiguate coordinate structure, in­
cluding altering the param eterisation of the model and improving param eter 
estimation.

An early version of the work on memory-based param eter estimation for generative 
parsing was published in [Hogan, 2005]. Hogan [2007a] describes some of the work 
on coordinate noun phrase disambiguation reported in this thesis and Hogan [2007b] 
reports on the empirical measurements of lexical similarity in noun phrase conjuncts 
presented in Chapter 4.

The remainder of this chapter is organised as follows: In Section 1.2 we outline the 
generative history-based parsing model adopted in this thesis, introducing the notation 
th a t will be subsequently used throughout the thesis. Then, in Section 1.3, we give 
a brief overview of how coordination is handled in the Collins parsing model - our 
baseline model. In Section 1.4 we outline the param eter estimation techniques used in 
this thesis: linear interpolation and the W itten-Bell estimation of the baseline model 
and A:-nearest neighbour methods. Finally, Section 1.5 gives a chapter by chapter guide 
to the rest of the thesis.

1.2 G enerative Lexicalised H istory-based Parsing  

m odels

1.2.1 G enerative

Generative parsing models estim ate the joint probability, P{t , s) ,  for each candidate 
parse tree i of a sentence s, where s E S,  t E T,  and S  is the set of all sentences in the



language and T  the set of parse trees. Each tree in T  has a member of S  as its yield 
(i.e. its sequence of leaf nodes).

Generative probability models define a joint probabiHty distribution, P (i, s) over 
the space of all possible sentence/parse tree pairs, which satisfies the constraint:

E nt,s) = i (1.1)
teT ,ses

As probabilities are for the entire language, it is possible to find the overall probability 
of a sentence:

P(5) =  5 ] F ( i , s )  (1.2)
teT

Generative parsing models estimate P(i|5) indirectly by making the observation that 
maximising P{t, s) is equivalent to maximising F (i|s). The most likely parse tree, t, is 
given by:

P(t ,s)
t =  argmax P (i|s) =  argmax ’ =  argmax P (i,s )  (1-3)

teT teT P[s) t€T

(In (1.3) P{s) is constant so maximising is equivalent to maximising P{t,s)).
The joint probabihty P{t, s) is simply P{t) where the yield of t is equal to 5, and 
0 otherwise. Thus, from the space of all candidate parses for a particular sentence, 
generative parsers choose the parse tree that maximises the probability P{t).

The probability of a tree is calculated as the product of all the rewrite rules from 
which the tree is derived. In a PCFG, for a tree derived by n applications of context-free 
rewrite rules LHSi RHSi,^ 1 < * <

P{t) = n  P{RHS, \LHSi)  (1.4)
1 = 1 . .n

In PCFGs the context-free rewrite rules are so called because they are independent 
of surrounding context in the tree - that is the probability of a rule expansion is
independent of where the rule occurs in the tree. The probability of a rewrite rule is
estimated using relative frequency estimates:

^LcftHandSide (LHS)—» RightHandSidc (RHS)
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P{RHSi \LHS i )  =
count{LHSj ^  RHSj )  

count{LH Si)
(1.5)

where count{LHSi —> RHSi )  and count{LHSi) return the frequency of LHSi  RHS i  
and LHSi in the corpus respectively. This is the maximum likelihood estimate (MLE) 
(see [ColHns, 1999, p. 40] for proof on why, in this case, the relative frequency estimate 
is the maximum likelihood estimate, and also for a fuller description of the generative 
parsing model than is given here).

1.2.2 Lexicalised

Lexicalisation tends to improve parser accuracy because it allows the parser to use 
crucial information about the words in the sentence when disambiguating the syntactic 
structures of that sentence (see, for example, early work on lexical statistics for resolving 
syntactic ambiguity in [Hindle and Rooth, 1991]).

A PCFG can be lexicalised by associating a word, w, and also a part-of-speech 
(POS) tag, t, with each non-terminal in the tree. The key idea is that each constituent 
has a ‘head’ which is its most important lexical item.

An unlexicalised PCFG rewrite rule can be written as:

w'here, on the left hand side of the rule, Cp is the parent constituent label. The right 
hand side of the rule consists of the children of a sequence of n constituents to the 
left of the head child constituent (left modifiers), followed by the head constituent, Ch, 
followed by the m  constituents to the right of the head constituent (right modifiers). 

The lexicalised version of (1.6) is;

Cp{u)p,tp) > Cln{winft ln)---Cl\{wi\ , t i \ )Cfi{Wp^tp)Cr\{Wr\t tr\)---Crm{y^Tmitrm)  (̂ •'̂ )

where each constituent is associated with its head word, Wi and head word POS tag ti. 
Note that the head word and POS tag of Ch - the head child - are inherited from the 
parent constituent.

The introduction of lexicalisation vastly increases the number of rules in the gram­
mar and makes direct estimation of constituent expansion rules unfeasible because 
of sparse data problems. Using the chain rule of probabilities the probability of a

C p  > C l n . . . C i \ C } i C r \ - - - C r m ( 1 .6 )
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rule is decomposed into the product of more tractable probabiHties and independence 
assumptions are made to reduce the number of parameters in the model.

1.2.3 H istory-Based

In order to incorporate richer context in the probability model, in an attempt to over­
come the structural weaknesses inherent in the independence assumptions of probabilis­
tic context-free grammars, history-based models [Black et al., 1992] were developed. 
In history-based models the probability of a derivation Z) of a parse tree is the product 
of the probabilities of each step in the derivation of the tree. For example, for PCFGs, 
each step, or decision, in the derivation of the tree is an application of a rewrite rule. 
Unlike PCFGs, however, in history-based models the probability of a step di in the 
construction of a tree is conditioned on potentially all structure that has already been 
determined in the derivation of the tree. For a tree derived by a sequence of n decisions:

P { D )=  II P{di\du... ,di-i)  (1.8)
1= 1..n

The sequence of previous decisions d i , ..., c?,_i is referred to as the history of d̂ . In 
practice it is not practical to condition on the entire history as this would lead to a 
vast number of parameters. Instead a history mapping function maps the history to 
a finite set of history contexts, so that;

m)= n
2= 1..n

PCFGs are a special case of history-based model, where the history of a rule expansion 
is taken simply to be the non-terminal label of the node being expanded.

How a tree is derived is important as it affects the choice of conditioning features 
at each step in the generation of the tree. In PCFGs and in the models used in this 
thesis there is a one-to-one mapping between a tree and its derivation. Thus P{D) 
= P{t). This is not always necessarily the case however. Where multiple derivations 
are possible for a tree, the probability of a tree is the sum of the probabilities of each 
possible derivation (as with, for example, the parsing models of [Magerman, 1994, Bod,
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1998]):
Pit) = J2P{D)

D

(1.10)

1.2.4 M arkovised

We use a generative model for parsing following the lexicalised history-based model 
of Collins [1999] where the grammar rules are Markovised.

Take the lexicalised rule in (1.7). In a Markov grammar, instead of generating the 
right-hand-side in one step, the generation process is broken down into three main 
steps: first the head child Ch is generated, then through to Cin{win,tin),
then Cri{u}ri, tri) through to Crmiwrm, trm)■ At each step, the probability of generating 
a particular child node can be conditioned on the children which have already been 
generated. In a first order Markov grammar a modifier node is conditioned on the 
previously generated node (as well as the parent node). In an order Markov 
grammar the node is conditioned on the m previously generated siblings (and parent 
node). The model also generates two special +STO P+ nonterminals as the leftmost 
(/n-|-1) and rightmost {rm + 1) children of every parent. In a markovised grammar the 
generation of the -l-STOP-l- nonterminals is necessary if the model is to sum to 1, due 
to the fact that constituents have a variable number of children. See [Collins, 1999, p. 
46] for a discussion on the importance of generating the -fSTOP-t- symbols.

An advantage of using a Markov grammar is that breaking down the generation 
of the child nodes of a constituent into a series of steps helps combat data sparseness 
because it makes it possible to generate rules which have not occurred in the training 
data.

The term vertical markovisation is sometimes used when information from pre­
viously generated ancestor nodes is used as part of the local history in a parameter 
class.

1.3 C oordination in the Baseline M odel

In this section we give a brief outline of the handling of coordination in the Collins 
parser - our baseline model. A more detailed description of coordination in the Collins 
model can be found in Bikel [2004b].
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C / i  C j . i ( t r i = C C )  C r 2 ( c o o r d = l )

Figure  1.3: T he basic form of a  coord inated  phrase, coord refers to  th e  coordination  
flag.

In  th e  Collins parsing m odel each node in a  parse tree  is an n o ta ted  w ith  a coordina­

tion  flag, set to  tru e  if th e  node is conjoined to  th e  head node of th e  phrase, and false 

otherw ise. T he head node of a coord inate  phrase  always precedes th e  coordination 

conjunction, and the  coord inating  conjunction  followed by th e  second conjunct always 

occur to  the  right of th e  head conjunct. A coord inating  conjunction  node, followed by 

a conjunct, are generated  together, unlike o ther constituen ts .

Take the  tree  fragm ent in F igure 1.3 where th e  PO S tag  tr\ of th e  node following the  

head node is a coord inating  conjunction. In such case th e  node following the  CC node 

will have its coord ination  flag (coord) set to  true . T he CC node will not be generated  

as w ith  o ther m odifier nodes. Instead , node Cr2 is generated  afte r th e  head node Ch' 

T hen  the  CC node is generated  via a special CC param ete r class, conditioned on the  

two conjuncts Ch and  Cr2

C oord ination  is handled  differently for base noun phrases. A base, or non-recursive, 

noun phrase (N PB) as defined in [Collins, 1999], is a  noun phrase which does not 

d irectly  dom inate  ano th er noun phrase, unless th a t  noun phrase  is possessive. For 

nodes in base noun phrases all coord ination  flags are set to  false and m odifier nodes 

are generated  in th e  usual fashion w ith  no special trea tm e n t of CC nodes. T he reason 

for th e  diflFerent handling  of coord ination  in base N Ps is not s ta ted  in C ollins’ thesis. 

However, N PB s are trea te d  differently to  o th er con stitu en t types in several ways. For 

all nodes, w ith  th e  exception of N PB s, a m odifier node to  th e  left or right of th e  head 

node is always conditioned on th e  head node. In  con trast, for base noun phrases the  

m odifier node is conditioned on th e  previously generated  node. As discussed in [Bikel, 

2004b], th e  previously generated  node in N PB s is trea te d  as a  head node for th e  purpose 

of conditioning and it is as a consequence of th is th a t  coord ina te  N PB s are not handled 

like o ther coord inate  phrases.

T he effect on d isam biguation  of th e  difl'erent handling  of coord ination  in base N Ps
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is discussed in de ta il in §4.3.1, w here we propose an  a lte rna tive  way of handling  coor­

dination  in N PB s.

1.4 Param eter E stim ation

One of th e  core difficulties in em pirical N L P is th e  sparse d a ta  problem  - often there  

is no t enough d a ta  collected to  enable accu rate  estim ation  of th e  probab ilities of low- 

frequency events. T h is is pa rticu la rly  tru e  when collecting d a ta  on events which include 

individual words. Due to  th e  sparseness of N LP d a ta , th e  m ethod  of estim ating  the  

local d is tribu tions plays a very im p o rtan t role in build ing  a  good model.

D a ta  sparseness m akes th e  m axim um  likelihood estim ate  for lexicaUsed rule p roba­

bilities unreliable, especially if we are to  include m ore features from the  history. W ith  

m axim um  likelihood estim ation  there  will be a very large num ber of cases of rules which 

are given a  zero probability , w hen in fact th ey  should really have some non-zero p roba­

bility. In th is  sense we can say th a t  m axim um  likelihood estim ation  causes overfitting: 

all the p ro b ab ility  m ass is d is trib u ted  over th e  cases we have a lready seen, w ith  no 

probability  m ass left for a  com pletely new case. C learly  there  is a need to  generalise, 

and this is w ha t sm oo th ing  does in effect. T his is a  crucial step  in n a tu ra l language 

parsing w here th e  aggregate  p robab ility  of th e  unseen or low p robability  events can be 

significant.

As m axim um  likelihood estim ation  is known to  be unreliable for low or zero counts, 

a variety of sm oo th ing  techniques has been developed to  im prove estim ates. Chen 

and  G oodm an [1996] p resen t a useful survey of sm ooth ing  techniques for language 

m odelling as well as a com prehensive com parison of several techniques. T outanova 

et al. [2003] also com pare different estim ation  techniques, including a m em ory-based 

technique, in a  H PSG  parsing  m odel. We focus here on th e  estim ation  techniques used 

in th is  thesis: th a t  of th e  baseline Collins parser - a ty p e  of linear in te rpo la tion  using 

W itteu  Bell sm oo th ing  - and  th en  m em ory-based techniques.

1.4.1 Linear Interpolation and W itten -B ell Estim ation

In linear in te rp o la tio n  th e  p robab ility  estim ate  of an  event w ith  h isto ry  context X{  is 

in te rpo lated  w ith  an  estim a te  which has a m ore general context. T he different histories
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are sometimes referred to as backoff levels. The idea is th a t when there is insufficient 
da ta  to estim ate the more specific model, then the more general model might provide 
useful information.

In linear interpolation estim ates for the probability of a class y (the future), given 
feature vector Xi  (the history), where Xi  is the history at backoff level i, are interpo­
lated as follows:

where n is the number of backoff levels, 0 <  <  1 and Xi+\  is a feature vector
less specific than Xi  (i.e. with fewer features). T hat is, the smoothed model is de­
fined recursively as a linear interpolation of the MLE of the more specific model and 
the smoothed estim ate of the less specific model. The recursion ends by taking the 
smoothed estim ate of the most general level of backoff to be the maximum likelihood 
estim ate (alternatively, the uniform distribution could be taken as the final smoothed 
model).

One simple but effective method for calculating the A values, which does not require 
extensive training, is the method used in [Collins, 1999], which was adapted from [Bikel 
et al., 1997] and the smoothing technique of [Witten and Bell, 1991].

Axi is defined in term s of count(Xt),  which is the number of times context Xi  occurs 
in the corpus:

where C  is a constant which can be optimised using held-out data. D{Xi )  is the 
diversity of the history Xi,  th a t is the number of distinct outcomes th a t have been 
seen w ith context X  ̂ in the training sample. We can interpret these calculations 
intuitively as follows: with probability Xx̂  we should use the higher order model and 
with probability 1 — \ x ,̂ the lower order model. If the particular context Xi  has a high 
frequency of occurrence then a high value for Ax  ̂ is suitable because the higher-order 
distribution will be reliable. If the context has occurred very infrequently then a low 

value for Xxi is appropriate. If the context is highly diverse then we have less trust in 
the higher-order model and more in the lower-order one. This technique is sometimes

Pin terp iy l^ i )  ^Xi ^MLEi y l ^i )  +  (1 ~  ^Xi)Pinterp{y\Xi-\-l)  

P in terpiy  \ ) =  PMLEP{y\^n)

( 1 .1 1 )

( 1 . 1 2 )

0 if count{Xi) =  0

 i' if countiXi)  > 0count{Xi)-\-C*D(Xi) ^
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referred to as W itten-Bell interpolation.

1.4.2 k-Nearest Neighbour Parameter Estimation

The probability of a class y, given feature vector X , can be estim ated using the /c-NN 
algorithm as follows:

z 2 x ' e N k ( X )  ^  ))

where A { X ,  X ' )  is the distance function between feature vectors. 5{y^ v') = ̂  iff y =  y^ 
otherwise 0. w{ A{X,  X' ) )  is the weight of neighbour X '  of X  where the weight is a 
function of the distance. N k i X )  is the set of /c-nearest neighbours of X .

For categorical variables the distance function often used is the overlap metric which 
simply counts the number of mismatching feature values between instances X  and X ':

n

A ( X ,  X' )  = d{xi, x[) (1.14)
i=\

where: d{xi,x[) =  0 iff Xj =  a:' else 1. A (X , X ') is the distance between instances 
X  and X ' , represented by n  features, and d is the distance per feature. In effect, 
the weighting function w{ A{X,  X' ) )  turns the distance into a measure of nearness, or 
similarity. A popular weighting function is the inverse distance function:

w ( A { X , X ' ) )  =  — (1.15)
 ̂  ̂ (A (X , X ') +  1)"*

for some constant m.

1.4.3 Similarity for Smoothing

In this thesis, as well as using A;-NN for param eter estimation as in (1.13), we use a 
variation which calculates the similarity function directly, rather than calculating the 
distance and then converting this to a similarity function:

^X' ^Nk{x)  s i m{ X, X  )
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where s im{X,  X ' )  is a similarity score between instances X  and X' .

If we group history samples together so th a t nj  is the history type X j  - th a t is, rij 

refers to those history feature vectors which have the same values for each feature as 
Xj ,  and where count{nj)  is the number of history samples of type rij in the data  set. 
We can rewrite (1-16) as:

, En.eN{n,)^Mnj,n^)count{y,n:r)
P{y\n-j) =  —=;--------    r--------------^  (1-17)

22n,eN{nj)^^'rn{nj,Tia:)count{n:,)

where count{y, rix) is the number of times future y  occurs with history type Ux and 
sim{rij, r ix)  is a similarity score between types ri j  and and N { n j )  is the set of types 
in the neighbourhood of rij. This is the form of our bilexical estimate in §4.3.2 where 
we use a measure of similarity between words for smoothing.

1.5 Chapter by Chapter Guide to this Thesis

The work in this thesis began by replicating the state-of-the-art parser of [Collins, 
1999] Model 1 and then altering this baseline model so tha t it used memory-based 
learning for param eter estimation. We then focused our attention on coordinate noun 
phrase disambiguation as this was the worst performing area of the parser. Our ex­
periments on noun phrase coordination disambiguation began with an analysis of the 
errors produced by the memory-based model, leading us to look at inconsistencies in 
treebank annotation as a source of error. Noticing also a marked tendency toward 
parallelism across conjuncts, we then explored this area by first measuring empirically 
the extent of symmetry across conjuncts and, based on positive evidence of the same, 
we experimented with incorporating a bias toward symmetry in conjunct structure 
into the probability model. Our analysis of errors also led us to experiment with new 
head-finding rules for base noun phrases. We noticed too on inspection th a t many 
conjoined nouns appeared to  be semantically similar and this motivated us to carry 
out experiments w ith different measures of similarity between conjoined nouns on the 
training set. In our final set of experiments we focused on modelling the likelihood of 
two nouns conjoining and reducing the sparsity for this param eter class, developing a 
similarity-based param eter estim ation technique.

For the sake of coherence, readability and because of some cross-referencing issues
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we do not always present the work in the thesis in chronological order of experiments 
carried out. The remainder of the thesis is arranged as follows.

Chapter 2 begins with an overview of history-based approaches to statistical nat­
ural language parsing, followed by a brief look at recent approaches to discriminative 
reranking. This is followed by a summary of memory-based techniques in natural 
language processing that are most relevant to the work in this thesis. We also look 
at previous attempts to use similarity measures for smoothing bilexical probability 
estimates. Finally, we discuss previous approaches to coordination disambiguation.

Chapter 3 presents our generative parsing model, with /c-nearest neighbour param­
eter estimation. We describe a technique based on constraint features to reduce the 
size of the training set for each parameter class which helps both with accuracy and 
speed. We also show how we combine A:-nearest neighbour with linear interpolation 
for bilexical statistics and present results which achieve state-of-the-art accuracy for 
generative models.

Chapter 4 begins our focus on coordinate noun phrase disambiguation and is divided 
into two main parts. The first introduces our distributional word similarity measure 
and compares it with several existing measures of word similarity, testing whether the 
various measures can detect similarity between the head nouns in coordinate noun 
phrases. The second part of this chapter concentrates on modelling the likehhood of 
two nouns conjoining, designing a new parameter class for use in both coordinate noun 
phrases and coordinate base noun phrases. In the estimation of this parameter, data 
from the unlabelled British National Corpus are used in addition to WSJ data. We use 
a word graph to store the training data and incorporate our word similarity measure 
in the estimation of the parameter in order to reduce data sparseness.

Chapter 5 begins with empirical measurements of the extent to which parallelism in 
the syntactic structure of conjuncts exists. We then design new parameter classes for 
the generative model which attem pt to capture the parallelism effect and thus allow 
the model to learn a bias toward symmetry in conjuncts.

Chapter 6 gives an analysis of some of the reasons for the baseline model’s poor 
performance in the area of coordinate noun phrase disambiguation. We look at how 
inconsistencies in the Penn Treebank WSJ annotation of coordinate NPs negatively 
affects parser performance and also show how the different head-finding rules for NPs 
and NPBs affects disambiguation, suggesting a sHghtly modified head-finding rule for
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base NPs.
Chapter 7 shows how we evaluate the experiments on coordination disambiguation 

and gives the details of the experiments carried out. We outline the effects of each 
different experiment and discuss the results.

Chapter 8 concludes on the work presented in the thesis and suggests avenues for 
further research.
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Chapter 2

Previous Work

2.1 Introduction

In this chapter we summarise previous work most related to the work in this thesis. 
First, in Section 2.2, we trace the development of history-based parsing and the cur­
rent state-of-the-art parsers, upon which our baseline model is based. Unless otherwise 
stated  parser accuracy is reported on section 23 of the Penn WSJ treebank for sentences 
< 1 0 0  words. In Section 2.3 we give a brief outline of recent work in discriminative 
reranking and n-best parsing. Section 2.4 moves on to memory-based learning of n a t­
ural language. We summarise previous work on why memory-based learning is suited 
to natural language learning tasks and briefly outline previous work on parsing th a t 
comes under the broad category of memory-based learning. In Section 2.5 we tu rn  to 
similarity for smoothing, first presenting previous work on smoothing with memory- 
based learning algorithm /c-NN, and then looking at somewhat related work in nearest 
neighbour cooccurrence smoothing. Finally, in Section 2.6, we review previous work 
on coordination disambiguation.

20



2.2 D evelopm ents in H istory-B ased Statistical Pars­
ing

2.2.1 [Magerman and Matrcus, 1991, M agerm an and Weir, 
1992, Black et al., 1992]

Some early work in overcoming the structural weakness inherent in the independence 
assumptions of the PCFG was th a t of [Magerman and Marcus, 1991, Magerman and 
Weir, 1992], The Picky parser, and its predecessor Pearl, differed from previous work 
on probabilistic parsing in th a t a hand-crafted context-free gram mar was modelled with 
context-sensitive conditional probabilities trained from a corpus. In the probabilistic 
model the probability of each parse tree T  given a sentence S  ŵ as defined as:

P{T\S) = Y , P { A ^ a ) \ C  ^ p A j , a o , a u a 2 )  (2.1)
A €T

where A  is the non-terminal being expanded, C  is the non-terminal node which imme­
diately dominates A, ai is the part-of-speech of the left-most word of constituent A, 
and ao and a 2 are the POS tags of the words to the left and right of a i , respectively.

Black et al. [1992] were the first to develop the concept of the history-based model 
which is distinguished from the context-free model in th a t for each constituent struc­
ture the conditioning was extended to look at potentially all previously built structure, 
rather than  just the non-terminal being expanded as in PCFGs. As outlined in Sec­
tion 1.2.3, in history-based models history is interpreted as any element of the parse 
tree which has already been determined and can include previous words, non-terminal 
labels, constituent structure, and any other linguistic information which is generated as 
p art of the parse structure. In Black et al. [1992]’s generative model each constituent 
in the parse tree was associated with the following probability:

P{Syn,  Sem, R, Hi,  H 2 \Synp, Senip, Rp, Ipc, Hip, H 2p) (2.2)

where S y n  and S e m  are syntactic and semantic labels associated with the constituent, 
R  is the constituent’s re-write rule, and Hi  and H 2 are two lexical heads associated with 

the constituent. These are conditioned on the syntactic and semantic labels, re-write 
rule and lexical heads of the constituent’s parent, as well as its index, Ip^, as a child
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of Rp. This probabiUty is decomposed into the product of five probabihties, of which 
all, bar one, are estimated using deleted interpolation. The other of the component 
probabilities are estimated using decision trees. The introduction of lexical information 
is noteworthy as most subsequent high-performing, broad coverage parsers use some 
degree of lexicalisation. Words were not represented as individual tokens but rather as 
bit strings via the clustering algorithm of [Brown et al., 1990].

2.2.2 [Jelinek et al., 1994, M agerm an, 1994, 1995]

The parsing model developed by Jelinek et al. [1994] and extended in Magerman [1994] 
framed the natural language parsing task as one of treebank recognition. Unlike pre­
vious parsing models, which depended on carefully hand-crafted grammars, the model 
is presented with a treebank from which to learn and, given a sentence to parse, the 
task is to recognise the parse tree for the sentence that would be given it by a tree­
bank annotator. The parsing model is a history-based conditional model. Unlike other 
history-based models, where a tree is associated with just one unique derivation, multi­
ple derivations are possible and the probability of a tree is the sum of the probabilities 
for the various derivations of the tree.

Each decision made when building a particular parse derivation is conditional on 
decisions previously made within a certain window around the current node. Nodes 
in a parse tree are associated with various features and a parse tree is constructed by 
generating values for features of the tree nodes, bottom-up, one at a time, according 
to the distributions assigned by statistical models. The features for terminal nodes 
are the head word, head tag, and extension, where the extension feature connects the 
nodes in the tree and encode the tree’s shaped. Internal nodes have the additional 
feature of the non-terminal label.

Four main statistical models are used in the construction of a tree: a POS tag­
ging model, a non-terminal label model, an extension model, and a derivation model. 
Model parameters are estimated using statistical decision trees. As with all history- 
based models, where conditioning context is taken from the structure build so far, the 
derivation of a tree affects the conditioning features. The derivation model was in­
troduced in order to allow more probability mass to be given to derivations in which 
the context available in the derivation of the tree suggested the correct parse, than
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to derivations for which the local context a t the various decisions was inconclusive or 
misleading. In the SPATTER parser of [Magerman, 1994] there was also a conjunction 
model in order to help predict the scope of conjunctions. Each node in the tree was 
associated w ith an additional boolean coordination flag, set to true for a particular con­
stituent when the constituent is part of a conjoined phrase. As in [Black et al., 1992] 
words are represented as bit strings. The version of SPATTER described in [Mager­
man, 1994] is trained and tested on the IBM Computer Manuals domain. Magerman 
[1995] gives results of a version of the SPATTER parser, which does not include the 
derivation model, trained and tested on the WSJ corpus.

2.2.3 [Collins, 1996, 1997, 1999]

Collins [1996] presents a conditional parsing model where parse trees are lexicalised 
and represented as a set of head-modifier dependency relationships and a set of base 
noun phrases. Param eters are estim ated using relative frequencies and a variation of 
the deleted interpolation method for smoothing described in [Jelinek, 1990]. Though 
a much simpler model than [Magerman, 1995] Collins’ dependency model achieved a 
higher accuracy of 85.3%/85.7% labelled precision and recall on section 23. M athem at­
ical shortcomings in the model, as well as some limitations due to parse representation, 
led to the improved generative model of [Collins, 1997], with some extra refinements 
reported in [Collins, 1999]. Collins [1997, 1999] presents three history-based genera­
tive models. The parsing model explored in this thesis is derived from Collins’ Model 
1. All three models are generative, lexicalised parsing models with first-order Markov 
gram mar generation of nodes. Nodes in the parse tree are annotated with a coordi­
nation and punctuation flag, in addition to head word and head word part-of-speech 
information. For a more detailed description of the handling of coordination in the 
Collins generative model see §1.3. Model 2 adds a suffix ‘C ’ to all non-terminals which 
are complements. In addition, a new param eter class for the generation of subcate- 
gorisation frames is introduced. Before the generation of a modifier non-terminal, its 
subcategorisation frame is generated, which is then used as a conditioning feature for 
the generation of the non-terminal label, head-word and so on. Finally, Model 3 inte­
grates a probabilistic treatm ent of traces and Wh-movement into the parsing model, 
although this has Httle effect on the accuracy of the model. The param eter estim ation
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technique for all m odels is a  sim ple b u t effective varia tion  on linear in terpo la tion , de­

scribed in m ore de ta il in 1.4.1. T he best resu lts for sentences less th a n  or equal to  100 

words in leng th  were achieved by M odel 2: 88.3% /88.1%  labelled precision/recall.

2.2.4 [Charniak, 1996b, 1997, 2000]

C harn iak  [1996b] also moved from  depending on a  hand-crafted  gram m ar to  relying 

solely on treeb an k  parses. In [C harniak, 1996b] he describes treebank  gram m ars, which 

are m ade up  of C FG  rules ex trac ted  from  Penn  treeb an k  trees. S ta tis tics  are th en  

collected from  th e  treeb an k  and  associated  w ith  th e  rules for PC F G  parsing. In his 

experim ents he found th a t ,  co n tra ry  to  com m on wisdom  a t th e  tim e, a p robabilistic  

parser tra in ed  on treeb an k  gram m ars ou tperform ed those tra in ed  from  hand-crafted  

g ram m ars associated  w ith  treeb an k  sta tistics . T his work was developed considerably 

in C h arn iak  [1997] by lexicalising th e  C FG  rules and including m ore con tex t in the  

p robab ility  estim ates. In C h arn iak  [1997]’s m odel th ere  are two p aram ete r classes. 

T he probab ility  of a  rule expansion of th e  trad itio n a l P C F G  is conditioned on increased 

con tex tual inform ation, nam ely its head-w ord Wp and its p a ren t Cgp'.

P{Cp  —> a\wp, Cp, Cgp) (2.3)

T he o ther p a ram ete r class is th e  p robab ility  of th e  head word of a co n stitu en t, wf.

P {w i\w p ,C i ,C p)  (2.4)

conditioned on its non-term inal label Ci  and  th e  head word, Wp, of its  p a ren t node, 

w ith  label Cp. E stim a tes were calcu la ted  using deleted  in terpo lation , where th e  backoff 

weights were calcula ted  as described in [C harniak, 1996a]. Interestingly, for b o th  pa ­

ram ete r classes th e  estim ate , th ough  in itially  conditioned on a  word token, is backed-off 

to  condition  on a  word class. For exam ple, th e  second backoff te rm  in th e  linear com bi­

n a tio n  of th e  estim ates in (2.4) is P{wi\class .wp, Ci, Cp). Classes of words were induced 

by a clustering  m eth o d  sim ilar to  [Pereira e t al., 1993]. C harn iak  concludes th a t  al­

though  backing off to  condition  on word classes is w orthwhile, s ta tis tic s  based on word 

classes alone, as in [M agerm an, 1995], ra th e r  th a n  on indiv idual words, h a rm s perfor­

mance. A t labelled p recision /recall scores of 86.6% /86.7%  on sentences less th a n  or 

equal to  100 words in leng th  on section 23 of th e  W SJ, C h arn iak ’s m odel ou tperfo rm ed  

th e  earlier m odels of [M agerm an, 1995, Collins, 1996].
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In [Charniak, 2000], Charniak presents new developments in his generative parser 
which result in the highest parsing accuracy to date for generative parsers. The 
‘maximum-entropy-inspired’ parser achieves labelled precision/recall results of 89.5%/ 
89.6%. The most significant improvement in accuracy came from simply annotating 
nodes with the head word’s POS tag as well as the head word and then in the top- 
down derivation of the tree, generating the POS tag of a node before generating its head 
word, which is then conditioned on its POS tag. The effectiveness of this particular 
param eterisation was noted before in [Eisner, 1996, Collins, 1999]. O ther improve­
ments to the model came from increasing the local conditioning context in the model’s 
param eters to include, for example, such features as the label of the left sibhng of the 
node being expanded. Param eters were estim ated using a novel technique inspired by 
how"̂  features are handled in maximum-entropy estimation and which allowed increased 
flexibility when experimenting with different conditioning events. Following Collins 
[1999] the PCFG  rules were markovised, with a third-order horizontal markovisation 
giving the best results.

Finally, a small but significant improvement came from explicitly marking noun and 
verb phrase coordinate structures. Unlike in [Magerman, 1995, Collins, 1999] where 
the conjuncts themselves are marked, in [Charniak, 2000] it seems th a t the parents of 
conjuncts are marked. A noun or verb phrase is marked as being a coordinate structure 
if it has two or more children of the same type (i.e. children which are noun phrases 
or verb phrases, respectively) as well as one or more of the constituents comma, CC, 
CONJP, and nothing else.

2.2.5 [Ratnaparkhi, 1997, 1998a]

R atnaparkhi [1997, 1998a] describes a conditional history-based model, where each 
action taken by the parser is conditioned potentially on all actions taken thus far in 
the parse derivation. The probability of a parse is the product of the probabilities of 
the parser actions in the bottom -up generation of the parse tree. There is a one-to-one 
mapping between a parse tree and a parse derivation. There are four main param eter 
classes, based on parser actions, and which are estim ated using maximum-entropy 

models. Some features make use of bilexical statistics and, for each feature which looks 
at pairs of head words there are one or more other features similar except tha t one or
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more words will be omitted. This is a somewhat similar idea to linear interpolation 
which backs off to less specific context due to the sparsity of data. R atnaparkhi’s 
parsing model achieved accuracy of 87.5%/86.3% on the standard test set.

2.2.6 H enderson [2003]

Henderson [2003] presents another highly accurate generative history-based model, 
trained and tested on the WSJ. R ather than  choosing by hand the conditioning features 
for each param eter class in the model, a representation of the derivation history is 
autom atically induced using a form of multi-layered neural network. The param eters 
of the model are estim ated using standard neural network methods for probability 
estimation, resulting in labelled precision/recall scores of 89.5%/88.8%.

2.2.7 Investigations into the Im portance of Lexical Statistics

Although it is clear th a t modelling the dependencies between head words helps parsing, 
the exact contribution of lexical statistics was perhaps initially overestimated. Gildea 
[2001] describes experiments where, in a replication of Collins’ Model 1, removing all 
bilexical statistics from the model* resulted in a mere 0.45% absolute reduction in /- 
score. Bikel [2004a] reports similar findings in his duplication of Gildea’s experiments 
for his replication of Collins’ Model 2. The work of Klein and Manning [2003] showed 
th a t an essentially unlexicalised history-based model could achieve accuracy rates as 
high as 86.3% for sentences < =  40 words on section 23. Their parsing model is based on 
a traditional PCFG but uses a Markov gram mar and increases the amount of vertical 
conditioning context. They also add extra annotation of nodes, such as marking any 
nodes with unary productions with the suffix ‘-U ’, and they split some of the original 
Penn Treebank POS tags into several more fine-grained tags. In this la tter step some 
POS tags actually come to represent a single word. However, the authors argue th a t 
this only occurs with functional word classes and so is not a lexicalisation of the model.

Bikel [2004a]’s investigation into the param eter classes of the Collins’ model showed 
that, during parsing, for the P{wi\H{i))  param eter class the full context, th a t is the 
conditioning context which includes the head word of the phrase, was used only 1.49%

^This was done by removing the maximal context level in the interpolated estimates of P{ wi \ H{ i ) ) ,  
where Wi is the head word of the constituent i and H{i )  its history.
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Authors < =  40 < =  100 Description Base Parser
Parsers Collins [1999] 

Charniak [2000] 
Bod [2001] 
Henderson [2003]

88.6%
90.1%
90.7%
89.6%

88.2%
89.5%
89.7%
89.1%

Generative history-based 
Generative history-based 
DOP
Generative history-based

Rerankers Collins [2000]
Collins and Duffy [2002]
Shen et al. [2003]
Henderson [2004]
Charniak and Johnson [2005] 
Koo and Collins [2005] 
McClosky et al. [2006a]

90.2%
89.2%
90.3%

89.7%
88.7%
89.8%
90.1%
91.0%
90.0%
92.1%

Boosting  
Tree kernel 
SVM LTAG 
Neural Networks 
MaxEnt
Hidden Variable 
Self-Training

Collins [1999] 
Collins [1999] 
Collins [1999] 
Henderson [2003] 
Charniak [2000] 
Collins [1999] 
Charniak [2000]

Figure 2.1: Parser and Reranking F-score Results Comparison on Section 23 of the 
WSJ

of the time. The prevailing view at th a t point in time was th a t bilexical statistics are 
too sparse to make th a t much of difference to parsing accuracy. In further experiments 
Bikel found th a t although estim ates were using bilexical statistics only 1.49% of the 
time, these statistics were being used up to 28.8% of the time during the generation 
of the top-scoring parse. The reason the bilexical statistics make such little difference 
to overall accuracy, Bikel argues, is th a t the distributions of the param eters which in­
clude the head word in the conditioning context and the param eters which omit th a t 
feature are so similar th a t it makes little difference which estim ate is used. Although 
bilexical statistics may have limited usefulness, monolexical, or lexico-structural, de­
pendencies, where syntactic structure is conditioned on the lexical head, appear to be 
more im portant with regard to parsing accuracy.

2.3 Ranking A lgorithm s

Two of the most accurate and popular state-of-the-art broad coverage statistical parsers 
are those of Collins [1999] and Charniak [2000]. They are very similar models - history- 
based generative parsers - and achieve F-scores of 88.2% and 89.5% respectively on 

the standard  test set. Improvements in the accuracy of probabilistic parsers have 
occurred in very small increments over several years. However, since the publication 
of [Collins, 1999] and [Charniak, 2000] there have been no further improvements in 
accuracy reported for these parsers. Instead there has been a shift towards n-best 
parsing and discriminative reranking. In this approach the n-best list of parses for each
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sentence output from a base parser are reranked using another, usually discriminative, 
model.

The usefulness of reranking the output of a base parser, with a model which can 
incorporate a richer feature set, was first demonstrated as early as [Ratnaparkhi et al., 
1994]. Using a maximum entropy model, they reranked the trees output by the decision 
tree parser of Jelinek et al. [1994] and noted an improved score. Ratnaparkhi [1997] 
notes the potential of reranking by commenting on how the oracle score^, taken from 
as few as 20 top parses produced by a baseline parser, can be dramatically higher than 
the base parser’s top-1 parse.

The recent shift towards discriminative reranking has been motivated to a large 
extent by the flexibility of discriminative reranking techniques in terms of feature se­
lection compared to history-based models. Discriminative approaches can choose fea­
tures which incorporate arbitrary aspects of the whole parse tree structure, whereas in 
history-based models the choice of conditioning features when predicting parse struc­
ture is limited to structure that has already been determined in the derivation of the 
tree.

Collins [2000] introduced a discriminative reranking approach for parsing: a ranking 
function is learned which assigns a ranking score to each candidate parse of a sentence 
from the n-best list of parses. Parse trees are represented by m  binary valued features, 
/ifc, for k =  l..m. The ranking function for a tree, x  has the following form:

F { x , a )  =  a o L { x ) +  ' ^ a k h k { x )  (2.5)

where L{x) is the original log probability assigned the tree by the baseline parser. 
a  =  {ao,Oii, is a parameter vector of feature weights. The learning process
involves finding the parameter weights that minimise some loss function, where the 
loss function is related to the number of ranking errors the ranking function makes on 
the training set. A ranking error rate is defined as the number of times a lower scoring 
parse (as measured against the gold standard parse) is incorrectly ranked above the 
best parse in the list. Experiments with two loss functions, one based on conditional 
Markov fields and another based on the boosting algorithm, are made in [Collins,

^The oracle score is the score that an ‘oracle’ would get were it to pick from each ra-best list the 
highest scoring parse according to measures of labelled prccision/recall. The oracle score is less than 
100% because the correct parse is not always among the top-n parses produced by a parser. The 
oracle score marks the upper accuracy limit for rerankers.
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2000] and presented in more detail in [Collins and Koo, 2005]. The baseline parser 
used to produce the n-best lists is th a t of Collins [1999]. A rich feature set of over 
500,000 binary features was used in the final model. The boosting algorithm approach 
increases precision/recall accuracy from 88.3%/88.1% labelled precision and recall to 
89.9%/89.6%.

The discriminative reranker of Charniak and Johnson [2005] follows the reranking 
methodology of Collins [2000]. Feature weights are trained using a maximum entropy 
estim ator. The parser of Charniak [2000] is adjusted to output the 50-best parses 
(see §2.3.1) for a sentence. A set of carefully hand-crafted features types are designed 
and include features which, for example, capture a preference for parallelism across 
conjuncts (see §2.6) and right-branching trees. In [McClosky et al., 2006a] the accuracy 
of this reranker is further improved to an impressive 92.1% /-score through a self­
training method. The reranker of Charniak and Johnson [2005] was used to parse 
sentences from an unannotated corpus of a similar newswire domain. The 1-best parse 
trees produced by the reranker were then added to the original W SJ hand-parsed 
corpus, and the resulting enlarged corpus used to re-train the original base parser 
of Charniak [2000]. In this process events from W SJ trees were given more weight than  
events from reranker-produced trees. Re-training the parser in this fashion increased 
the accuracy of the base parser to 91.0%. Finally, a reranker which used this higher- 
accuracy parser as a base parser achieved the highest accuracy to date on the WSJ 
test set.

Reranking tree kernel approaches have also been developed such as th a t of Collins 
and Duffy [2002], where features consist of all possible subtrees, as in [Bod, 1998], and 
the voted perceptron algorithm is used to learn the feature weights. Another successful 
tree kernel approach is th a t of Shen et al. [2003] who use support vector machines and 
Lexicalized Tree Adjoining G ram m ar based features.

In an effort both  to reduce data  sparsity and to handle polysemous words, Koo 
and Collins [2005] propose a conditional log-linear model with hidden variables which 

represent the assignment of words to word clusters or word senses. The input to this 
model is the n-best trees produced by Collins [1999]’s parser. W hen combined with the 
base parser Collins [1999] and features from the Collins [2000] reranker the log linear 
model gives a small improvement over Collins [2000].

In Henderson [2004] the accuracy of a neural network generative parser [Henderson,
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2003] is improved on when its top 20 parses are reranked by a discriminatively trained 
model. Instead of training the parameters of the generative model by maximising the 
joint likelihood of the trees and the sentences of the training corpus, the parameters of 
the joint model are training by maximising the conditional likehhood of the parses in 
the corpus given the sentences in the corpus, resulting in improved performance.

Advantages of ranking algorithms as opposed to generative probabilistic approaches 
are that rerankers are relatively straightforward to implement and, importantly, that 
is it trivial to incorporate arbitrary features in a ranking setting whereas adding new 
features to a generative parser can be difficult.

2.3.1 n-best lists

Generally, the better the n-best list of candidate parses produced by a base parser the 
better a reranker will do, where the quality of a list can be measured by its oracle score. 
A higher oracle score tends to be correlated with a higher reranker score. The n-best 
lists for the experiments in [CoUins, 2000] were produced by simply turning off dynamic 
programming in the chart parser of [Collins, 1999] (by not allowing any two edges to be 
equal). This, of course, slows down parsing prohibitively and so the beam width^ was 
narrowed from 10“  ̂to 10“  ̂and a chart cell limit of 100 was imposed. In addition to the 
n-best lists produced in this fashion, the 1-best output produced by the original Collins 
[1999] parser was added to the mix. However, as demonstrated in [Huang and Chiang, 
2005], restricting the search space in such a fashion affects the quality of the n-best 
lists produced. Huang and Chiang [2005] develop new efficient algorithms for producing 
high-quality n-best hsts. Building on top of Bikel’s implementation of Collins’ parser 
they could produce 10000-best lists in almost the same time as 1-best lists and in 
experiments with n = 100 and a beam width of 10“  ̂ achieved an oracle /-score of 
96.4%, compared to Collins’ 94.9%. This algorithm was adopted for the reranking 
of McClosky et al. [2006a] over the original method used for the Charniak and Johnson 
[2005] reranker which had simply kept the n-best edges, rather than the 1-hest, during 
the second-pass of the parser.

În [Collins, 1999] in order to increase efficiency, a beam width is used to prune the search space. 
Any constituent whose probability is less than 1/10000 times the highest probability constituent for 
the same word span is pruned from the search space.
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2.4 M em ory-based Learning and N atural Language 
P rocessing

We now look at the learning technique adopted in this thesis - memory-based learning. 
Learning techniques that come under the relatively broad category of memory-based 
learning have been applied to a variety of language learning tasks. For example, nearest 
neighbour techniques have been applied with some success to PP-attachment [Zavrel 
et al., 1997, Zhao and Lin, 2004] and shallow parsing [Daelemans et al., 1999b, Sang, 
2002]. In this section we begin by outlining the argument that memory-based learning 
is particularly suited to natural language learning tasks. We then give a brief summary 
of memory-based techniques applied to full parsing. The next section on similarity for 
smoothing (Section 2.5) includes also previous work on A:-NN for smoothing.

2.4.1 A dvantages of Local Learning for N atural Language Learn­
ing Tasks

There is evidence that in many natural language learning tasks the instance space tends 
to be highly disjunctive [van den Bosch et al., 1997, Daelemans et al., 1999a, Daelemans 
and van den Bosch, 2005]. That is, natural language data sets often contain many small 
disjuncts, where a disjunct is a cluster of identically classified instances. In a highly 
disjunctive instance space those disjuncts that correctly classify only a few training 
examples collectively cover a significant portion of the text. Daelemans et al. [1999a], 
for example, measure the degree of disjunctivity of several data sets (grapheme-to- 
phoneme conversion, part-of-speech tagging, PP-attachment, and base noun phrase 
chunking) in the following leave-one-out experiments: For each instance in a data set, 
the 50 nearest neighbours to the instance are retrieved from the remaining data set 
and ranked according to their distance to the left-out instance. The cluster size of 
the left-out instance is measured as the rank (minus one) of the nearest neighbour to 
the left-out instance that has a different class value to the left-out instance. Using 
this method to measure disjunctivity, many different NLP data sets were shown to be 
highly disjunctive.

Studies such as [Weiss, 2000] have shown that small disjuncts are much more error 
prone than large disjuncts and contribute to a disproportionate number of the total
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errors. Aha [1992]’s analysis shows how the A:-nearest neighbour algorithm performs 
well at highly disjunctive learning. The work of [Daelemans et al., 1999a, Daelemans 
and van den Bosch, 2005] shows that variants of /c-NN work well on several different 
natural language learning tasks and relate this to the fact that lazy learning retains all 
information concerning disjuncts, no matter how small, whereas eager-learning algo­
rithms such as decision trees implement pruning and tend to overgeneralise thus loos­
ing important disambiguating information contained in small disjuncts. Thus nearest 
neighbour, because it learns locally, would seem to be an ideal candidate for natural 
language learning.

The advantages of local learning for natural language learning are demonstrated 
in Daelemans et al. [1999a] in a series of experiments which showed that editing excep­
tional instances from the training set tended to harm generalisation accuracy, although 
similar experiments [Rotaru and Litman, 2003] on learning tasks in the area of spoken 
dialog systems did not show such clear evidence for the harmful effect of editing excep­
tional instances (but see §2.5.2 for evidence of the importance of rare events in other 
types of similarity-based learning). In another series of experiments in [Daelemans 
et al., 1999a], A:-NN learning was shown to outperform decision tree learning, and de­
creases in the performance of the decision tree classifier were shown to be linked to the 
degree of abstraction from exceptions (by pruning or the eagerness of the algorithm).

2.4.2 M em ory-Based Parsing

Scha et al. [1999] show how Data-Oriented-Parsing (DOP) [Bod, 1998] relates to 
memory-based learning techniques such as Case-Based Reasoning (CBR), noting that 
although DOP differs from mainstream CBR methods, there are some similarities: 
DOP is lazy as it does not generalise over the treebank until it starts parsing a new 
sentence, and DOP defines a space of parses for a new input sentences simply by 
matching and combining fragments from the treebank.

DOP models, instead of defining their probabilities on minimal syntactic rules as 
with traditional probabilistic grammars, define probabilities over whole trees, and tree 
fragments. The main motivation for this is the belief that syntactic constructions of ar­
bitrary size and complexity may be statistically important. DOP is not an extension of 
PCFGs but is based on a grammar formalism known as Tree Substitution Grammar. In
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theory, in the DOP framework all previously seen parse trees and parse tree fragments 
can be used to construct and assign probabilities to a new parse tree. In practice, the 
space of tree fragments used for training is restricted somewhat as this tends to increase 
accuracy. Bod [2001] notes th a t whereas the parsing approaches of Collins [1999] and 
C harniak [2000] limit the statistical dependencies beforehand (in th a t a limited set of 
conditioning features are hard-coded in advance) and then extend the dependencies in 
order to  increase accuracy, DOP instead begins by taking into account all fragments 
seen in the treebank and then experiments with restrictions in order to uncover the 
optim al set of relevant fragments. As displayed in Table 2.1 a version of DOP [Bod, 
2001] tested on the Penn treebank recorded high accuracy results.

Sang [2002] achieved state-of-the-art results for base noun phrase identification, 
arb itrary  base phrase recognition, and clause detection using combinations of k-NN 

classifiers. However, when the cascaded memory-based approach (where the output of 
one level of chunking is used as the input to the next level) was applied to full parsing 
the results were below state-of-the-art parsers, receiving an /-score of 80.5% on section 
23 of the Penn W SJ treebank.

Kiibler [2004] describes a parser based on memory-based learning, trained and 
tested on the TiiBaD treebank [Stegmann et al., 2000, Hinrichs et al., 2000], a tree­
bank made up of speech transcripts in several domains. A test sentence is first POS 
tagged and divided into syntactic chunks using the chunk parser of Abney [1996]. The 
memory-based parser then searches for the most similar sentence in the training set 
based on sequences of words. Training instances are stored in a prefix trie of words and 
the search for the most similar sentence is a search for the most similar sequence of 
words in the trie. If no reasonably similar sentence is retrieved then a backoff module 
searches for similarity based on chunk information. When searching for the most sim­
ilar sentence in the training set the search algorithm allows ignoring words or chunks 

in both the new sentence and a training sentence when the exact match cannot be 
found. The retrieved sentence, with its associated parse tree, is then adapted to the 
test sentence, by om itting the words or phrases th a t were om itted in the search. The 
parser gets a labelled precision/recall /-score of 84.78%. The data  set for the experi­
ments contains sentences of average length 4.5 words which is very low compared to 
the average length of W SJ treebank sentences (23 words) and, as discussed in [Kiibler, 
2006], the parser, as is, would not be suitable for unrestricted newswire text because
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of the extreme unhkeUhood of finding the same or very similar sentence to the test 
sentence in the training set. Dialog data, on the other hand, contains many repetitions 
and has fewer words per sentence.

2.5 Sim ilarity for Sm oothing

We now turn to the area of probability estimation using similarity for smoothing. We 
first look at previous work on A:-NN for smoothing and then to the related area of 
nearest neighbour cooccurrence smoothing.

2.5 .1  A;-NN for S m o o th in g

Although they do not apply fc-NN to probabilistic estimation, Zavrel and Daelemans 
[1997] explore the relationship between A;-NN and non-interpolated back-off smoothing. 
They demonstrate that when k = \  and an unweighted overlap metric used, then k -N N  
and the backoff model both specify similar hierarchies of abstraction of the context 
features; that is, the ordering of the feature subsets in back-off smoothing is identical 
to the ordering of buckets of neighbours in the A:-NN algorithm. Zavrel and Daelernans 
argue that memory-based learning has advantages over backoff smoothing in that the 
similarity metric and feature weighting scheme automatically specify a domain-specific 
hierarchy between the most specific and most general conditioning information and do 
so without the need for a large number of parameters.

Toutanova et al. [2003] report that nearest neighbour techniques outperformed de­
cision trees and other smoothing methods (Witten-Bell, Jelinek-Mercer, and log-linear 
models) when used to estimate local probability distributions in history-based gen­
erative parsing models. As the Redwoods HPSG treebank was used, results are not 
directly comparable with parsers based on the Penn Treebank. Nonetheless, results 
are relevant to Penn Treebank parsing because of the use of similar generative models, 
which have some conditioning features in common with typical Penn Treebank parsers.

Toutanova et al. [2003] also make explicit the relationship between deleted interpo­
lation models and a broad class of memory-based learning. Their analysis is based on 
a nearest neighbour model which is restricted to a linear order among feature subsets, 
and which uses the overlap distance function to measure distance between instances.
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They show that memory based models of this type are a subclass of deleted interpola­
tion models, where the value of the backoff weights in the interpolated models is based 
on counts of feature subsets and distance-weighting. In practice interpolated models 
use strictly linear feature subsets for the various levels of conditioning feature backoff. 
Similarly restricting the features in the A;-NN algorithm allowed a direct comparison of 
results. The A:-NN model worked best at /c=15,000, outperforming the other smoothing 
techniques. Accuracy was again increased when the features were not restricted to a 
linear order.

2.5.2 Cooccurrence Sm oothing

The problem of estimating the probability of events from sparse data is particularly 
severe when the events involve individual words. It comes as no surprise then that in the 
area of language modelling for speech recognition, where it is necessary to estimate the 
probability of a sequence of words, the smoothing of estimates has long been a major 
focus. Several smoothing techniques have been developed (see for example [Jelinek and 
Mercer, 1980, Katz, 1987, Church and Gale, 1991]), including class-based approaches 
such as that of [Brown et al., 1990], where words are clustered into classes and the 
probability of a cooccurrence is determined using the probability of class cooccurrences. 
In this subsection we focus on cooccurrence smoothing because of its similarity with 
one of the estimation techniques developed in this thesis (§4.3.2). We discuss how our 
word similarity-based smoothing relates to cooccurrence smoothing in (§4.4).

Cooccurrence smoothing for language modelling was first introduced by Essen and 
Steinbiss [1992]. The basic idea is that when estimating the conditional probability 
of word bigram, P{w 2 \w{), cooccurrences of word W2  with words similar to Wi can be 
useful. The cooccurrence-smoothed estimate takes the form:

Pco-smooth{w2\wi) =  P { w 2 \ w [ ) f  {wi ,  w [ )  (2 .6 )
w{

where f{wi,  w[) depends on the similarity of Wi and w[ and, in this case, is the confusion 
probability. In [Essen and Steinbiss, 1992] the estimate in (2.6) is combined with 
maximum likelihood estimates by way of linear interpolation to give the final smoothed 
estimate. This technique was used in [Grishman and Sterling, 1993] for smoothing
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models of selectional constraints; th a t is, smoothing probabilities of words occurring 
together in specific syntactic relations.

In [Dagan et al., 1994] cooccurrence smoothing for language modelling is further 
explored. Their similarity model has the following form:

sim{wi, w[)

w { € S { w i )  V IJ

P s i m M w i )  =  P{w 2 \w [ )= — (2.7)
wi € S ( w ^)

where S{wi)  is the set of nearest neighbours of Wi and s m { w i ,w [ )  is a similarity 
function derived from the Kullback-Leiber (KL) distance between the probability dis­
tributions of wi and w[. This method of similarity-based smoothing is also called 
distance-weighted averaging [Lee, 1999]. The smoothed estimate, Psim{w 2 \w\)^ is a 
combination of estimates for cooccurrences involving words similar to w i, where each 
estim ate is weighted by a normalised measure of similarity between w\ and neighbour 
w[. The nearest neighbour set S{wi)  was chosen to be the set of, at most, k words 
th a t were less than a certain distance t from W\. k and t were tuned experimentally. 
Dagan et al. [1994] found the best results when combining the estim ate in (2.7) with 
the unigram probability P {w 2 ) via linear interpolation. This interpolated estim ate was 
used only for the estimation of the probability of bigrarns th a t had never before oc­
curred in the training data. Otherwise, in cases where a bigram had occurred before 
in the training set, the maximum likelihood estim ate, P m le{w 2 \w\), was used. These 
two estim ators were combined using a variation of K atz [1987]’s back-off model. The 
estim ation technique was found to be effective in the task of language modelling leading 
to a reduction in perplexity and speech-recognition error.

In an continuation of this work [Lee, 1997, Dagan et al., 1999], experiments are 
carried out with an additional three similarity functions (the confusion probability, the 
LI norm and the Jensen-Shannon divergence) and their success evaluated on a pseudo 
word disambiguation task. The performance of the similarity-based methods were 

found to be on the whole better than th a t of standard methods. Interestingly, they 
found th a t when events which occurred only once in the d a ta  were omitted from the 
training set, the similarity-based smoothing methods suffered noticeable performance 
degradations. As noted in §2.4.1, a similar phenomenon - th a t rare events are useful 
- was found in case editing experiments w ith the ^-NN algorithm [Daelemans et al.,
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1999a],

Lee [1999] compares seven distributional similarity measures in a restricted version 
of the distance-weighted averaging model to see which measure is best a t returning 
useful nearest neighbours. Based on an analysis of the results a new similarity function, 
the a-skew divergence, is developed which performs better than  the other functions.

More recent work on cooccurrence smoothing [Weeds, 2003a] (and in more de­
tail [Weeds, 2003b] ) has experimented with how to choose the set of nearest neighbours 
S{wi)  in (2.7). The estim ates P{w 2 \w[) were combined as in (2.7) as each neighbour w[ 
was added to ^(lUi) until some stopping condition was met. Experiments with three 
different stopping conditions were made and results showed all techniques gave an 
improvement over maximum likelihood estimation and naive Add-one type smoothing.

2.6 Previous Work on C oordination A m biguity R es­
olution

We now conclude this chapter with a review of previous work on coordination disam­
biguation.

Agarwal and Boggess [1992] present a deterministic algorithm for identifying the 
conjuncts of coordinating conjunctions. Their conjunct identifier is a component of an 
expert system for the autom atic extraction of information from structured reference 
manuals, in this case the Merck Veterinary Manual. The task is to identify conjuncts 
which appear in text th a t has been part-of-speech tagged, as well as tagged with se­
mantic labels specific to the domain. The text has also been processed by a semi-parser 
which identifies noun, verb, prepositional, gerund, adjective, and infinitive phrases in 
the sentences. The algorithm makes the simplifying assumption th a t each coordinating 
conjunction conjoins only two conjuncts. The post-CC conjunct is always taken to be 
the first complete phrase th a t follows the CC. The identification of the pre-CC conjunct 
is based on heuristics which essentially work from the CC backwards to the s ta rt of the 
sentence and choose as the first conjunct the first word or phrasal component which 
matches the second conjunct’s semantic and syntactic labels, relaxing the constraints 
to  match syntactic labels only if no such component is found. As the semi-parser 
does not recognise clauses and some phrases the conjunct identifier was expected only
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to correctly recognise the beginnings of clauses and phrases being conjoined but not 
the right boundary of the components. Within this framework the system correctly 
identified 81.6% of coordinations on a test set of some 544 cases.

In [Kurohashi and Nagao, 1994] coordination disambiguation is carried out as the 
first component of a Japanese dependency parser using a technique which calculates 
similarity between series of words from the left and right of a conjunction. Similarity 
is measured based on matching POS tags, matching words and a thesaurus-based 
measure of semantic similarity. The most similar two series of words is calculated 
using a dynamic programming technique. Their method first identifies the coordinate 
structures in a sentence and then performs a dependency analysis for each phrase in 
the identified structures. Each conjunctive structure is then reduced to a single node 
and a deterministic dependency analysis is carried out on the reduced sentence.

Resnik [1999] considers noun phrase coordinations of the form nl and n2 nS and of 
the form n l n2 and nS u4- The former has two possible structural analyses, for example 
a (bank and warehouse) guard and a (policeman) and (park guard) while for the latter, 
five alternate structural analyses are possible. The learning task was to determine which 
nouns are the heads being coordinated. In the first example given above, nJ:bank and 
n^:warehouse are coordinated. In the second example ni;policeman and n5:guard are 
the conjoined heads. In the Penn Treebank, following the guidelines [Bies et al., 1995], 
both types of noun phrase would be given a flat structure. Thus for the vafidation and 
test sets a selection of noun phrases of these forms were extracted from the Wall Street 
Journal corpus and disambiguated by hand. There were 100 and 89 samples in the two 
test sets respectively. To resolve the ambiguities automatically Resnik uses three main 
sources of information: agreement in number of candidate conjoined nouns, similarity 
of meaning between the nouns, and a measure of the appropriateness of noun-noun 
modification. Experiments were carried out on various different ways of combining 
these sources of information, including using a heuristic method as well as a decision 
tree approach. For the noun phrases involving three nouns 80% of the coordinations 
were disambiguated successfully with 100% coverage. For the second type of coordinate 
noun phrase accuracy of 81.6% was achieved with 85.4% coverage.

In Goldberg [1999] an unsupervised statistical model for disambiguating coordinate 
noun phrases of the form n l p n2 cc n3 is presented. Here the problem is framed as an 
attachment decision: does nS attach ‘high’ to the first noun, nl, or ‘low’ to n2̂ ? In the
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noun phrase box of chocolates and roses ‘roses’ attaches high to ‘box’ yielding: ((box (of 
chocolates)) and roses)). In busloads of executives and their wives ‘wives’ attaches low 
to ‘executives’ giving the structure (busloads (of ((executives) and (their wives))). A  
maximum entropy statistical model based on Ratnaparkhi [1998b] is used to estimate 
the probability; Pr{a\nl,p, u2, cc, n3), where the variable a is either a high attachment 
or low attachment. The model is trained from examples of unambiguous coordination 
noun phrases, of the from n l cc n2, extracted from the unannotated WSJ. The results 
presented had not yet been tested on a separate test set, but achieved precision of 72% 
on the 500-phrase validation set extracted from the WSJ Treebank.

Nakov and Hearst [2005] focus on disambiguating noun compound coordination of 
the form n l cc n2 n3, where the CC is limited to and or or. They consider phrases 
such as car and truck production where both car and truck modify the head noun 
production. These phrases are given a flat structure: (car and truck production). 
Alternatively, for phrases such as president and chief executive, a two-headed noun 
phrase, they assign the following bracketing: ((president) and (chief executive)). The 
task is to decide which of the two possibilities is the correct bracketing structure given 
the four words. In the case where the nouns in a noun coordinate construction are 
modified by non-nominal modifiers, these modifiers are used for disambiguation but 
the final bracketing deals only with the four words outlined above. The Web is used 
to get statistics on word cooccurrences such as counts on how often n l occurs with nS 
compared with n2 cooccurring with n3. Counts from the Web of paraphrase patterns 
are also used as an information source. For example if the pattern n2 cc n l n3, as in 
truck and car production, is matched often enough then a flat structure is likely. The 
Web based statistics are used to make decisions on which type of bracketing should be 
employed. In addition, heuristics which take into account any adjectives or determiners 
modifying the nouns as well as a number agreement heuristic all have a vote on the 
correct bracketing. The final decision is based on a majority vote from all information 
sources, with a default of flat structure when the various sources of information were 
undecided as to the correct bracketing structure.

The system was tested on 428 examples apparently automatically extracted from 
the Penn Treebank and achieves 80.6% accuracy. Officially, however the Penn Tree­
bank would assign a flat structure to both examples given above because they only
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involve nominal modifiers^, although in practice this is often not the case (see discus­
sion in §6.2). If a non-nominal unshared modifier is introduced, as in president and 
old chief executive then the phrase is given added structure: ((president) and (old chief 
executive))^. The results of Nakov and Hearst might be obscured somewhat by not 
accounting for flat structure often given to both  types of noun coordination in the Penn 
Treebank. Only when the noun phrases in their test set originally contained unshared 
non-nominal modifiers should the treebank give the more structured bracketing.

Interestingly, the early discriminative parse reranker of R atnaparkhi et al. [1994] 
includes features to capture parallelism in conjuncts. The model has classes of boolean 
features which return 1 if particular syntactic patterns occur in both conjuncts. The 
discriminative reranker of Charniak and Johnson [2005] also included features to cap­
ture syntactic parallelism across conjimcts at various depths. One type of feature 
indicated whether conjuncts had the same syntactic label a t depth 0, whether they 
had the same labels for all nodes at both level 0 and level 1 and so on. A nother feature 
type measured the difference in the number of preterminals dominated by two con­
juncts. An extra boolean flag indicated whether the two conjuncts in question were 
the last two in the coordinated phrase. For both rerankers, results were not given for 
the effect of the coordination-based features alone, but rather for the effect th a t these 
and other features had on overall reranker scores.

^See, for example, page 138 of the Penn Bracketing Guidehnes [Bies et al., 1995]. ‘In general, we 
avoid showing either the internal structure or the extent of modification of noun modifiers, regardless 
or the strength of the annotator’s intuition in a particular example...[In the case of an NP with multiple 
heads] if the only unshared modifiers are nominal, we annotate with fiat structure’.

^See page 139 of the Penn Bracketing Guidelines [Bies et al., 1995]. ‘When there are unshared 
modifiers, added structure shows which modifiers go with which head...When there are unshared 
adjectives, determiners, or possessives, we frequently end up showing structure for nominal modifiers 
as well’.
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Chapter 3

M em ory-Based Param eter 
Estim ation

3.1 Introduction

In th is  chap ter we describe a h isto ry-based  generative parsing  m odel which uses a k -  

nearest neighbour technique to  estim a te  th e  m odel’s param eters. T aking th e  o u tp u t of 

a  base n -best parser we use our m odel to  re -estim ate  th e  log p robab ility  of each parse 

tree  in th e  n -best list for sentences from th e  Penn W all S treet Jo u rn a l treebank . By 

fu rth er decom posing th e  local p robab ility  d istribu tions of th e  base m odel, enriching 

th e  set of conditioning features used to  estim ate  th e  m odel’s param eters, and using 

/c-NN for estim ation  as opposed to  th e  W itten-B ell estim ation  of th e  base m odel, we 

achieve an  /-score of 89.4%, representing  a  6% relative decrease in /-score error over 

th e  1-best o u tp u t of th e  base parser.

3.2 M otivation

As discussed in §2.4, previous work has shown m em ory-based learning to  be effective 

for n a tu ra l language learning tasks. O f p a rticu la r relevance to  th e  work presented  here 

is th e  work of Zavrel and D aelem ans [1997] and of T outanova e t al. [2003]. Zavrel and 

D aelem ans [1997] discuss th e  advantages of A;-nearest neighbour for sm ooth ing  over 

linear in te rpo lation , and show how A:-NN gives a convenient way of experim enting  w ith
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complex conditioning events. In the work of Toutanova et al. [2003] on param eter 
estim ation in a Head-Driven Phrase Structure G ram m ar (HPSG) parsing model [Pol­
lard and Sag, 1994], estimation using k-NN outperformed other estim ation techniques 
(W itten-Bell, Jelinek-Mercer, decision trees and log-linear models).

Given the stated  advantages of /c-NN over linear interpolation and motivated by the 
success of fc-NN for estim ation in the HPSG parsing domain, we applied /j-NN to the 
task of smoothing local probability distributions in a generative PCFG-derived history- 
based parsing model. For a baseline model, we repUcated the state-of-the-art generative 
parsing model of Collins [1999] (hereafter the Collins parser). This high-accuracy parser 
uses W itten-Bell linear interpolation for param eter estimation. Though the model is 
history-based there are relatively few conditioning features in the param eter classes 
of the model, presumably due to the lim itations of linear interpolation for smoothing. 
Estim ating the param eter classes with A:-NN could potentially improve the model by 
allowing for better smoothing of da ta  and for more information from the history to be 
used in predictions.

3.3 The Baseline M odel

We replicated Model 1 of the Collins parser so th a t we would then have a baseline 
against which we could test the effect of any subsequent alterations we made to the 
model. Although Model 2 of [Collins, 1999] achieves more accurate results than  Model 
1, we chose to replicate Model 1 as our baseline model. Model 2 of [Collins, 1999] 
introduces probabilities over subcategorisation frames in order to solve the problems 
caused by the bad independence assumption in Model 1: th a t modifiers are generated 
independently of each other. However, given th a t A:-NN estim ation should allow for 
greater freedom w ith conditioning features we anticipated increasing the conditioning 

context for the generation of modifiers so th a t the history would include previously 
generated sibling modifiers (i.e. by increasing the level of horizontal m arkovisation). 
This could weaken the independence assumptions of Model 1 and yet avoid the added 
complication of modelling subcat frames. Our replication of Model 1 is our first baseline 
against which we compare the memory-based model. In our evaluation of results we
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also compare the memory-based model with Collins Model 2}
Replicating Model 1 of the Collins parser proved to be a more complicated task than 

originally anticipated. However, based on the details published in [Collins, 1999], as 
well as those published in [Bikel, 2004b], we repHcated parsing Model 1. We reproduced 
all the preprocessing steps on the trees in the training and test sets necessary for the 
model and then, given a preprocessed parse tree, our parsing model will estimate the 
probability of the tree, following the parameterisation of the Collins parser.

As our research is concerned with the generative parsing model and the estimation 
of its parameters, rather than the mechanisms of the parser itself, and given the avail­
ability of Bikel’s replication [Bikel, 2002] of the Collins Model 2 parser with its n-best 
list producing option, it was not necessary to reproduce the actual parser.^ Instead, we 
rerank the output of Bikel’s n-best parser, first according to our replication of Collins 
Model 1 and then according to our memory-based model. As Bikel’s parser is based 
on Model 2, we would not expect our Witten-Bell Model 1 replication to give a better 
ranking of parses. This step was necessary however in the development of the parsing 
model in order to give us our own baseline parsing model mechanism.

3.4  T h e M em ory-B ased  M odel

The memory-based parsing model differs from the Collins parser (Model 1) in how pa­
rameters are estimated: instead of Witten-Bell estimation, we use /c-NN for estimation, 
as described in §1.4.2. We return to the details of our estimation technique in the next 
section. The memory-based model also differs from Model 1 in that it is parameterised 
slightly differently, with increased conditioning features. History-based models allow 
for conditioning on any previously built structure, therefore vertical markovisation, 
where information from previously generated ancestor nodes is used as part of the 
local history in a parameter class, can be employed to improve the predictive capac­
ity of a parameter class. In our model the feature sets for each parameter class are 
expanded to include additional features from the parse history, specifically increasing

^Collins [1999] also presents a third parsing model, which models traces and Wh-movement, how­
ever it does not improve on the accuracy of Model 2.

^Initially, however, in a proof of conccpt experiment, we replicated the actual parser for Model 
1, achieving similar results to Collins Model 1 results. This allowed us to test that we had correctly 
rcplicated Model 1, though in subsequent experiments we did not use the actual parsing mechanism.
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the n*^-order assumption for both horizontal and vertical markovisation. Choosing n 
greater than 1 in vertical markovisation has been shown to be useful in the parsing 
models of [Johnson, 1998, Charniak, 2000, Klein and Manning, 2003]. In the latter 
two works using a and (variable) 2"*̂  order horizontal markovisation, respectively, 
proved optimal. A nother difference between our model and the Collins parser Model 
1 is th a t where Collins estim ates the constituent label of a dependent constituent, its 
part-of-speech tag, and its punctuation and coordination flag in one step, we do so 
in three steps: first the probability of the part-of-speech tag is estim ated, then the 
constituent label, and finally its coordination and punctuation flags. Details of the 
param eter classes of the memory-based model are given in Section 3.5. See [Bikel, 
2004b] for a detailed description of all the param eter classes in the Collins parser.

3.4.1 Constraint Features for Training Set R estriction

The number of training examples in the training set for a particular param eter class 
can be quite high. For example, the number of head child generation events in the parse 
trees of sections 02 to 21 inclusive of the Penn W SJ treebank is 947,715 and the number 
of examples of the generation of a constituent to the right of a head child is 1,367,411. 
In k-NN estim ation each time a conditional probability is estim ated it is necessary to 
calculate A (X , X' ) ,  th a t is the number of feature value mismatches between the history 
of the probability we wish to estim ate and the history of an instance from the training 
set, for each distinct example in the training set for this param eter class.

We found th a t restricting the number of examples in the training set used in a 
particular param eter estim ation helped both in term s of accuracy and speed. We re­
stricted the training sets by making use of constraint features. Take, for example, the 
head child generation param eter class which estim ates the probability of head child 
label Ch given, say, a history Cp, Wp, tp, tgp, where Cp is the parent non-term inal la­
bel, Wp and tp its head word and part-of-speech respectively, and tgp is the POS tag 
of the grandparent node. If we make Cp a constraint feature then to estim ate, say, 
P{Ch = IN\Cp = PP,Wp = at,tp = I N ,  tgp = N N )  we would make our prediction 
using only those training examples where Cp =  PP.  This mechanism is somewhat 
similar to the idea of the MAC/FAC model of similarity-based retrieval [Centner and 
Forbus, 1991], which is based on a two-stage process, where a com putationally cheap
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filter is used to  retrieve a  subset of sim ilar exam ples which will undergo m ore ex­

pensive processing (sim ilar also to  th e  idea beh ind  m ultiple-pass parsing  [Goodm an, 

1997, C harn iak , 2000]). Stanfill and W alz [1986] m ake use of constra in t features which 

th ey  call p red ic to r re stric tion  in order to  increase th e  accuracy of th e ir m em ory-based 

reasoning approach  to  word pronuncia tion . T hey  use a  featu re  weighting function  to  

determ ine th e  m ost im p o rtan t featu re  which th ey  th en  use to  restric t their tra in in g  

set to  only those  exam ples which have th e  sam e value for th a t  featu re  as th e  query 

instance. D aelem ans e t al. [1997] also explore a  constra in t feature  approach  to  A:-NN. 

T heir T R IB L  a lgorithm  constrains th e  in itia l d a ta  set based on featu res chosen accord­

ing to  their in form ation  gain and  th en  classifies a query instance based on applying 

k-NN  to  th e  reduced tra in in g  set. T R IB L  perform ed well on several non-linguistic  d a ta  

sets achieving sim ilar accuracy resu lts to  A:-NN w ithou t d a ta  set restric tio n  b u t w ith  

considerable speed advantages over th e  s ta n d a rd  k-'N'N a lgorithm . O ur constra in t fea­

tu res  were generally  chosen to  coincide w ith  th e  features in th e  last level of back-off of 

th e  pa ram ete r classes in th e  Collins parser.

We carried  o u t experim ents using different sets of constra in t features, some m ore 

restrictive th a n  o thers. T he m echanism  we used is as follows: if the  num ber of exam ples 

in th e  tra in in g  set, retrieved using a p a rticu la r  set of constra in t features, exceeds a 

certa in  th resho ld  value th en  use a h igher level of restric tion  i.e. one which uses m ore 

constrain t features. If, using th e  h igher level of restric tion , th e  num ber of sam ples 

in th e  tra in in g  set falls below a  m inim um  th resho ld  value th en  ‘back-off’ to  th e  less 

restric ted  set of tra in in g  sam ples.

3.4.2 Sm oothing

A lthough using fc-NN for p a ram ete r e stim ation  is an effective way of sm ooth ing  a 

p robability  e stim a te  w ith  m any conditioning events, it is nevertheless still necessary to  

sm ooth  th e  A:-NN estim ate . T his is in order to  avoid a  zero probab ility  when th e  class 

value of th e  query case does not occur in any of th e  events selected for th e  estim ation  of 

th e  p aram eter. Following T outanova e t al. [2003], in order to  avoid zero p robabilities we 

added artificial instances to  th e  tra in in g  set, one for each class value. These instances 

are m ade to  be  a t a certa in  d istance from  th e  query instance, a d istance considerably 

larger th a n  th e  m axim um  d istance of a  ‘rea l’ tra in in g  instance from th e  query instance.
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3.4.3 Lexical Statistics

T he word p a ram ete r class, P{wi \ H{ i )) ,  where Wi is th e  head word of th e  node being 

generated  and H{i )  is its history, is d istinguished from all o thers in th e  relatively 

large num ber of class values possible (12,002 possible values). We found th a t  th e  

estim ation  of th is  p a ram ete r class required  a  slightly  different trea tm en t to  th a t  of 

th e  o ther p a ram ete r classes. T he best resu lts were ob tained  when th e  A;-NN estim ate  

was com bined w ith  th e  original W itten-B ell e stim ate  of M odel 1. Let X i  be a featu re  

vector which is a  p a rticu la r in stan tia tio n  of th e  h isto ry  con tex t of th e  p a ram ete r class 

P{wi \H{i ) ) .  P { w i \ X i )  is calculated  as follows:.

where Yi  is a con stra in t feature  vector, as described in §3.4.1. T he constra in t featu res 

in Yi  are a subset of th e  features in X i. X 2 is a feature  vector, less specific th an  X i, to  

which we back off. T he calculation  of th e  A weights is sim ilar to  th e  weight calculations 

in th e  W itten-B ell in te rpo lation , ou tlined  in §1.4.1. T he in te rpo la tion  weights here are 

derived from th e  count of th e  co n stra in t featu re  values in th e  tra in in g  set. We define 

Ay. in term s of ly^], which is th e  num ber of tim es con tex t Yi occurs in th e  corpus:

where C  is a  con stan t which can  be optim ised using held-out da ta . D{Yi)  is th e  

d iversity of th e  h isto ry  Yi, th a t  is th e  num ber of d istinc t outcom es th a t  have been 

seen w ith  con tex t Yi in th e  tra in in g  sam ple. In practise. Ay. =  0 does no t occur. T he  

constra in t featu re  for th is  pa ram ete r class is chosen to  be t,, th e  PO S tag  of Wi. In th e  

tra in in g  set th ere  is no PO S ta g  value for which we have no events. As in th is case 

th e  A;-NN estim ate  is sm oothed by backing off to  th e  W itten-B ell e stim ate  it is not 

necessary here to  add  th e  artificial instances to  th e  tra in in g  set, as described above in 

Section 3.4.2.

(3.1)
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3.5 Experim ents

3.5.1 Experim ental Set up

Following established methodology our model is trained on sections 02 to 21 inclusive 
of the Penn W SJ treebank and tested on section 23. Initially we used section 24 as 
the validation set. However we encountered overfitting problems with this da ta  set 
and subsequently switched to using sections 00, 01, 22 and 24 for validation. In order 
to speed up the fine-tuning process we chose the set of top-n parses for every third 
sentence in this set so th a t the final validation set contained sentences from each of the 
four sections. As in this phase of experiments we test on sentences of length less than  
or equal to 40 words, the validation set is also made up only of parses for sentences less 
than  41 words. The validation set was used for development and param eter tuning.

For the validation and test sets we obtained a set of top-n parses from the Bikel 
parser setting the beam width to 10“ '̂ ,̂ getting an average of 31 parses per sentence. 
We then merged this with the 1-best output of the same parser run with a wider beam 
of 10““*. According to Huang and Chiang [2005], Collins [2000] uses a similar process 
for producing such a merged /c-best list. This gave us an oracle /-score of 96% for 
section 23, on sentences <  40 words.

As discussed further in §2.3.1, Bikel’s implementation of the Collins parser includes 
a ‘hack’ (which essentially turns off dynamic programming) to allow for n-best parsing. 
As in [Huang and Chiang, 2005] we found th a t with the standard beam width of 10~^ 
the method was prohibitively expensive. We limited our experiments to sentences of 
<  40 words because we found th a t for longer sentences we could not produce good 
quality n-best lists. If we narrowed the beam width too much the oracle score for the 
parses produced was not high - th a t is, the quality of the n-best lists was poor. Yet, 
if we widened the beam width we either encountered memory problems or the time 
taken to produce the list was prohibitively long. (See §3.7 for the specifications of the 
machine we used).

3.5.2 Experim ental D etails

We re-estimated the probability of each parse using our own baseline model, which 
is a replication of the Collins parser Model 1, with the same param eter classes, and
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using the same Witten-Bell estimation technique. We tested /c-NN estimation first on 
the head generation parameter class P{Ch\H{i)),  while the other model parameters 
were still estimated using Witten-Bell. We then extended the use of A:-NN to include 
the parameter classes for generating modifying nonterminals. Collins treats the gen­
eration of nonterminals whose parent is a base noun phrase differently to all other 
modifying nonterminal generation. For the generation of modifying nonterminals there 
are therefore two different parameter classes, one for any constituent whose parent 
is an NPB, P{Ci,ti,punc\Cp =  NPB,H{i) ) ,  and another for all other constituents 
F{Ci,ti, coord,punc\H{i)).^ Finally, we further decomposed these two modifying non­
terminal parameter classes.^

Tables 3.1, 3.2, and 3.3 outline the parameter classes estimated using A:-NN in the 
final model settings and shows the feature sets used for each parameter class as well as 
the constraint feature settings. For the constraint feature columns, where a particular 
parameter class has more than one set of constraint features, the more restrictive set, 
that is the set containing more constraint features, will be used only when the training 
set contains a number of examples exceeding a certain threshold. Where we used 
more than one level of constraint features, we set the threshold over which the more 
restrictive constraint feature set was employed to 5000, and the minimum training set 
size threshold to 100. Table 3.1 gives the details of the parameter class for generating 
the head child node. Table 3.2 gives the details of most of the parameter classes used 
for the generation of modifier nodes. This table has a column dir which indicates that 
the parameter class is used for modifiers to the left of the head child (left) or to the 
right of the head child (right) or is used in both cases (left|right). The column Cp 
indicates which parameter classes are not used for nodes with NPB parents (!NPB). 
When there is no value for this column entry then the parameter class is used for all 
values of Cp. The final table. Table 3.3, gives the details of the remaining modifier 
parameter classes, used only for nodes whose parent is a base noun phrase.

We did not extend the use of /:-NN estimation to include the other, minor, parameter 
classes in the complete model, which continue to be estimated using Witten-Bell.

 ̂coord and punc denote the coordination and punctation flags respectively.
^We found experimentally that decomposing the parameter classes seemed to work well for fc-NN. 

We can hypothesise that A:-NN for parameter estimation does better with class variables that have 
fewer possible values. This might also explain why A:-NN alone did not work well for the parameter 
class P{wi\H{i))  which has a word class variable.
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H ea d  N o d e s
P a r a m ete r  C la ss F u tu re H is to r y C o n str a in t  F ea tu res
P( Ch\ H{i )) Ch Cp , W p  , t p  , t g p {Cp}

Table 3.1: T he p a ram ete r class for generating  Ch, th e  non-term inal label of th e  head 
child node. Cp is th e  p a ren t non-term inal label, Wp and  tp its head word and part-of- 
speech respectively, and tgp is th e  PO S tag  of th e  g ran dparen t node.

M o d ifier  N o d e s
dir Cp P a r a m ete r  C la ss F u tu re H is to r y C o n str a in t  F ea tu res

left !NPB P{ t , \H{i )) U dir y C^p, C ' , IVp, dist ,  t i —\ , t i_2» qp {dir,  Cp},{dir,  Cp, C ^ }
P( w i \H {i) ) Wi t i , Ci , C p , C}i, Wp, dist ,  ti — \ , ti — ̂  , Cgp { U i

right !NPB P{t i\ H( i) ) ti d i r , C p , C , Wp, t p , dist ,  t i —\ , t i —2 y Cgp {dir,  Cp} ,{d ir,  Cp, Ch  }
P{w,\H{i)) Wi ti  1 Ci , C p , Cfi) w p , tp , dist ,  ti — X  ̂ti — 2 i ^QP Iti} '

left 1 right !NPB P{Ci\H {i ))
P{coord, punc\H (i ) )

Ci
coord, p unc

dir , t i , C p , Cfi , w p , t p , dist ,  t i —\ , t i —2 ? ^ qp 
dzr, ) t i ) C*p} , iVp, tp

{dir,  t i} ,{di r ,  t i , C p } 
{dir,  C i , t i }

Table 3.2: T he p a ram ete r classes for th e  generation  of m odifier nodes. T he n o ta tio n  
is th a t  used th ro ughou t th e  thesis, dir  is a flag which indicates w hether th e  m odifier 
being  generated  is to  th e  left or th e  right of th e  head child, dis t  is th e  d istance m etric  
used in th e  Collins parser. and  ti - 2  are th e  PO S tags for th e  previous two generated  
nodes. Cgp is th e  g ran dparen t non-term inal label.

M o d ifier  N o d e s , C p  = N P B
P a r a m ete r  C la ss F u tu re H is to ry C o n str a in t  F ea tu res
P{C^,tAHii)) Ci,ti dir , C p , C fi , W p , Ci~2 5 — 2 1 — 3 1 — 3 t ^ Q P t  C q q p, Cqqqp {dir, Cp, Ch]
P{punc\H (i)) punc dir, C p , t i , C i , C}i , W p  ̂  t p , tj — \ , t i —^ {dir, Cp,ti}

T able 3.3: T he param ete r classes used only w hen Cp =  N PB . T he n o ta tio n  is th a t  
used th roughou t th e  thesis. In  add ition , Cggp and  Cgggp are th e  g reat- and great-g reat- 
g ran d p aren t non-term inal labels respectively. C i_ 2 ,u^i- 2  and  C i - 3 ,W i-s  are th e  non­
te rm inal labels and head words of th e  second and  th ird  previously generated  nodes.

As noted  earlier, we ex tend  th e  original featu re  sets by increasing th e  order of b o th  

horizontal and vertical m arkovisation. From  each constituen t node in th e  vertical or 

horizontal h istory  we chose featu res from  am ong th e  c o n s titu en t’s nonterm inal label, 

its  head word and th e  head w ord’s part-of-speech tag . As ou tlined  in [Bikel, 2004a] for 

th e  m odifying p a ram eter classes where th e  p a ren t node has an  N PB  label, th e  head 

child is taken to  be th e  previously generated  m odifier, so Ch is always for these 

p a ram ete r classes.

As well as p a ram ete r class decom position and  feature  selection for each param ete r 

class, fine-tuning th e  m odel involved choosing th e  best value for k  for each of th e  pa-
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< 40 Words(2245 Sentences), Section 23
M odel LR LP CBs 0 CBs 2CBs
W B Baseline 8 8 .2 % 88.5% 0.93 65.66% 86.9%
C 0 9 9  M l 87.9% 8 8 .2 % 0.95 65.8% 86.3%
C 0 9 9  M2 88.5% 88.7% 0.92 66.7% 87.1%
Bikel 1-best 88.7% 88.7% 0.92 67.2% 86.95%
/t-NN 89.2% 89.6% 0.84 6 8 .0 % 8 8 .2 %

Table 3.4: R esu lts for sentences of less th a n  or equal to  40 words, from  section 23 of 
th e  Penn  treebank . L P /L R  = L ab elled  Precision /R ecall. CBs =  th e  average num ber of 
C rossing B rackets per sentence. 0 CBs, 2 CBs are th e  percentage of sentences w ith  0 
or <  2 crossing brackets respectively. W B B aseline is our baseline em ulation  of M odel 
1 when te s ted  on th e  o u tp u t of th e  Bikel n -best parser. C 0 9 9  M l and M2 are  [Collins, 
1999] M odels 1 and  2 respectively. Bikel 1-best is [Bikel, 2004a]. /c-NN is our final 
/c-NN model.

ram ete r classes estim ated  w ith  A:-NN and th e  best d istance weighting function. In itia lly  

we experim ented  w ith  different d is tan t w eighting functions. We tried  b o th  th e  inverse 

d istance w eighting function  and exponential decay , bu t found little  dif­

ference betw een th e  two and  se ttled  on th e  inverse d istance function, being  m arginally  

b e tte r. In  in itial experim ents we also used a grid search: for different values of k, 

we kept k fixed and th en  a lte red  th e  constan t value in th e  inverse d istance  w eighting 

function. We found for all pa ram ete r classes k =  10,000 or k =  20,000 worked best. 

T he d istance weighting function  th a t  worked best was th e  inverse d istance weighting 

function, w ith  se ttings of e ither ((5^ ) ^  or ((5^ ) ^ -

3.6 R esults

T he resu lts are  shown in Table 3.4. T he higher scores we achieve w ith  our em ulation  of 

M odel 1 over Collins M odel 1 are no do u b t due to  th e  fact th a t  unlike Collins parser, 

which s ta r ts  w ith  (PO S tagged) sentences, we take as in pu t a  set of n -best parses 

g enerated  by a  parser based on M odel 2. O ur W itten-B ell M odel 1 scores are  lower 

th a n  B ikel’s 1-best score, presum ably  because th e  Bikel parser uses M odel 2. W ith  

our A;-NN m odel we achieve L R /L P  of 89.2% /89.6%  on sentences <  40 words. These 

resu lts show an  9% relative reduction  in /-score error over our M odel 1 baseline and

50



a 6% relative reduction in /-score error over the Bikel parser which, as the parser we 
used as our base parser, is the second baseline score against which we evaluate our 
results. See Table 2.1 for a summary of the performance of state-of-the-art parsers and 
discriminative rerankers on the same test set.

We compared the results of our A:-NN model against the Bikel 1-best parser results 
using the paired T test where the data  points being compared were the scores of each 
parse in the two different sets of parses. Following Collins [2000] the score of a parse, 
X ,  is calculated as follows:

Score{x) = ^ size(x)
 ̂  ̂ 100 ’

where
L R ^ L P

jscore[x)  =
.5{LR + LP)

and size{x)  is the number of constituents in the gold standard parse for this sentence. 
It is a good idea to take into account the size of the parse tree because it is relatively 
easy to get an /-score of, say, 100% on short sentences, and much harder on longer 
sentences, so accounting for the size when scoring a particular parse gives a more 
accurate picture of how well the model is doing. The mean scores for Bikel’s 1-best 
and the fc-NN model were 15.06 and 15.17 respectively. The mean difference between 
the scores was 0.12, with standard deviation 1.57. The 95% confidence interval for 
the mean difference between the scores of the paired sets of parses is [0.05,0.18] with 
p < .0005.

Using k-NN for param eter estimation, enriching the feature sets used for prediction, 
in combination w ith a further decomposition of param eter classes produced significant 
improvements in parser accuracy over the original model with W itten-Bell estimation. 
These results show th a t using A:-NN to estim ate local probabilities in the generative 
parsing models presented in this chapter is highly effective for param eter estimation. 

/c-NN allows for flexible feature selection and good smoothing of da ta  and can achieve 
state-of-the-art results for accuracy.
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3.7 C om putational C osts

The /;-NN algorithm for probability estim ation delays generalising beyond the training 
data  until it must assign a probability to a new query instance. While this lazy learning 
has advantages insofar as an estim ate is custom-built for a new query instance, it carries 
with it the disadvantage th a t the com putational cost of producing an estim ate for a 
new query instance can be high. This is because nearly all computation takes place 
not when the training examples are first encountered but a t run time. Though A:-NN 
allows for greater flexibility in term s of conditioning features, the computational cost 
of estim ating param eter classes with many features must be taken into consideration, 
with each extra feature contributing significantly to slowing down the speed of the 
parser.

All experiments in this thesis were carried out on a machine with a 1.7 GHz Intel 
Pentium processor and 1 GB of memory. Due to memory limitations, we carried out 
the experiments as follows: to rerank a set of n-best lists we calculated the estimates for 
each param eter class in separate runs. W hen all param eter class estimates needed to 
rerank the lists were calculated we ran the reranker with the pre-computed estimates. 
To rerank the 2245 rz-best lists for section 23, this process took in to tal 4 hours 10 
minutes. All our experiments were focused on improving accuracy and we believe the 
program could be speeded up considerably with more attention paid to efficiency, as 
well as, obviously, a higher specification machine.

Given the com putational cost of param eter estimation with A:-NN, it would not 
be feasible to apply the memory-based model directly in a one-pass parser like tha t 
of Collins [1999]. However, applying the model as the second-pass of a two-pass parser, 
along the lines of Charniak [2000]’s parser, would be a worthwhile area of future re­
search.

3.8 R elation to  P revious Work

Our parsing model is related to previous work on history-based parsing, in particular 
the generative approaches of Collins [1999] and Charniak [2000]. Our baseline model is 
a direct replication of the Collins’ parsing model. Model 1. In the development of the 
parsing model we depended on the details in Collins thesis as well as the previously
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unpublished  d e ta ils  ou tlined  in Bikel [2004b], A lthough our m odel is applied to  th e  

parse  reranking  task , it is m ore sim ilar to  th e  second-pass of a  parser, such as th e  

tw o-pass parser of C harn iak  [2000], th an  th e  discrim inative rerankers of, for exam ple, 

Collins [2000]. O u r m odel differs from  previous work in generative h istory-based parsing 

in th e  param ete r estim ation  technique used (m em ory-based p a ram ete r estim ation) and 

in th e  param ete risa tio n  of th e  parsing  model.

O ur m em ory-based param ete r estim ation  technique is sim ilar th a t  used in [Toutanova 

e t al., 2003]’s experim ents w ith  /c-NN for p a ram ete r e stim ation  in a H PSG  parsing 

m odel. In th e ir experim ents they  also tra in  generative h isto ry-based  m odels, b u t for 

H PSG  derivation  trees. T he work presented  in th is  chap ter, however, differs from th a t  

of T outanova e t al. [2003], not only in our dom ain  of app lication , b u t also in our use 

of constra in t features, as well as our com bination  of k-NN  estim ates w ith  W itten-B ell 

e stim ates as a way of sm oothing lexical probabilities.

3.9  C onclusion

T his chap ter describes a generative parsing  m odel which uses fc-NN for local probab ility  

estim ation . T aking th e  n-best o u tp u t of a base parser and re-estim ating  th e  probability  

of each parse, it achieves an  /-score of 89.4% which is a  6% relative error reduction  over 

th e  1-best o u tp u t of the  base parser. A lthough in our experim ents we rerank  th e  parses 

o u tp u t from a base parser, our m odel differs from  o ther rerankers in  th a t  it is generative 

and  could conceivably be inco rpora ted  into a  base parser as a second pass.

D iscrim inative rerankers have advantages over h isto ry-based  approaches in th a t  

th ey  are not re stric ted  to  choosing features from  th e  parse  derivation  h isto ry  b u t instead  

can  use add itional features which inco rpora te  a rb itra ry  aspects of th e  whole parse tree  

to  im prove th e  in itia l ranking of th e  base parser. In th e  d iscrim inative rerankers of 

[Collins, 2000, Collins and Duffy, 2002, Shen e t al., 2003], th e  log p ro b ab ih ty  given by 

th e  base parser for each of th e  n-best parses of a sentence is used in th e  com puta tion  of 

th e  new score of a parse. O ur generative m odel improves th e  rank ing  of an  in itial base 

parser by recalcu lating  th e  log p robab ility  of each parse p roduced by th e  base parser 

and  so produces a m ore accurate  rank ing  of parses along w ith  th e ir log probabilities. It 

is possible th a t  im proving th e  log p robab ility  rank ing  of a base parser therefore could 

im prove th e  scores of th e  discrim inative re ranker which uses these  log probabiU ties in
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its reranking algorithm. We discuss this further in Chapter 8 when we outline areas of 
future work.
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Chapter 4 

Conjoined Lexical Head N ouns

4.1 Introduction

In this chapter we begin by discussing how a measure th a t captures similarity of con­
joined noims might be useful for coordinate noun phrase disambiguation. This is our 
motivation for developing a measure of distributional similarity based on coordination 
patterns. We also look at other measures of word similarity based on WordNet and test 
all similarity measures on WSJ da ta  to see if they can detect similarity in conjoined 
head nouns.

The second part of the chapter is devoted to modelling the likelihood of one noun 
being conjoined with another. We show how the head-head dependencies of coordinate 
noun phrases are not captured in the baseline model and develop a param eter class 
for the estim ation of coordinate nouns in both noun phrases and base noun phrases. 
As this param eter class involves bilexical statistics, da ta  is extremely sparse and the 
remainder of the chapter is centred around improving the estim ation of the param eter 
class by building a word graph from BNC and WSJ data  and incorporating our word 
similarity measure into the parsing model.

4.2 M easures o f W ord Sim ilarity

Some noun pairs are more likely to be conjoined than others. Take the trees in Fig­
ure 4.1 (the phrase is taken from the W SJ). The two head nouns coordinated in Tree 1
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N PB

b u s lo a d s

N PB

e x e c u tiv e s

Figure 4.1: Tree 1. The correct noun phrase parse. Tree 2. The incorrect parse for the 
noun phrase.

are executives and wives, and in Tree 2: busloads and wives. Clearly, the former pair 
of head nouns is more likely and, for the purpose of discrimination, the model would 
benefit if it could learn th a t executives and wives is a more likely combination than 
busloads and wives. On inspection of noun phrase coordination in the d a ta  it seemed 
clear th a t nouns cooccurring in coordination patterns were often semantically similar, 
and therefore if a similarity measure could be defined so tha t, for example:

sim {executives, w ives) > sim{busloads, w ives)

then it could be useful for coordination disambiguation.

The idea th a t nouns cooccurring in conjunctions tend to be semantically related 
has been noted in [Riloff and Shepherd, 1997] and used effectively to autom atically 
cluster semantically similar words [Roark and Charniak, 1998, Caraballo, 1999, Wid- 
dows and Dorow, 2002]. The tendency for conjoined nouns to be semantically similar 
has also been exploited for coordinate noun phrase disambiguation by Resnik [1999] 
who employed a measure of similarity based on WordNet to measure which were the 
head nouns being conjoined in certain types of coordinate noun phrase.
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Semantic similarity can be defined in different ways, from a very narrow definition 
of word similarity th a t would define words as similar only if they are synonyms, to 
definitions of similarity based on membership of the same semantic category (e.g. ap­
ples, pears, and bananas are all members of the category fruit) or, even more generally, 
similarity based on a more general notion of semantic relatedness, where words are 
similar if they are related in meaning somehow (such as car and wheel).

A number of measures of semantic similarity have been developed which are based 
on similarity in lexical taxonomies such as W ordNet [Fellbaum, 1998]. O ther measures 
of word similarity are based on distributional similarity: the idea th a t words which are 
semantically similar occur in similar contexts and with similar distributions. Context 
can be defined in terms of gram matical dependency relations (such as conjunctions 
or modifier-head dependencies), documents, or a window^ of context words around the 
word under consideration.

We now look at different measures of word similarity in order to discover whether 
they can detect empirically a tendency for conjoined nouns to be more similar than  
nouns which co-occur but are not conjoined. In 4.2.1 we introduce our measure of 
word similarity based on word vectors and in 4.2.2 we briefly describe some WordNet 
similarity measures which, in addition to our word vector measure, will be tested in 
our experiments in 4.2.3.

4.2.1 Sim ilarity based on C oordination Cooccurrences

The potential usefulness of a similarity measure depends on the particular application. 
An obvious place to start, when looking at similarity functions for measuring the type 
of semantic similarity common for coordinate nouns, would be a similarity function 
based on distributional similarity w ith context defined in terms of coordination p a t­

terns. Our measure of similarity is based on noun co-occurrence information, extracted 
from conjunctions and lists. We collected co-occurrence data  on 82, 579 distinct word 
types from the BNC and the hand-annotated W SJ. The exact details of how the co­
occurrence data  is extracted from the BNC and the W SJ and stored in a word graph is 
described later in Section 4.3.2. From the co-occurrence data  we construct word vec­
tors. Every dimension of a word vector represents another word type and the values 
of the components of the vector, the term  weights, are derived from the coordinate
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word co-occurrence counts. We used dam pened  co-occurrence counts, of th e  form: 

1 +  log{count),  as th e  term  weights for th e  word vectors. We used no prun ing  of word 

types, th u s vectors had  82, 579 dim ensions. To m easure th e  sim ilarity  of two words, 

w\ and  W2 , we calculate th e  cosine of th e  angle betw een th e  two word vectors, Wi and 

w^, as follows:

C 0 S [ W i , W 2 )  == II ^  ni l  ^  II (4-1)
F 2

4.2.2 W ordN et-B ased Sim ilarity M easures

We also exam ine th e  following m easures of sem antic sim ilarity  which are W ordN et- 

based. ̂  W u and  Palm er [1994] propose a m easure of sim ilarity  of two concepts Ci and 

C2 based on th e  d ep th  of concepts in th e  W ordN et hierarchy. S im ilarity  is m easured 

from  th e  d ep th  of th e  m ost specific node dom inating  b o th  c\ and C2 , (their lowest 

com m on subsum er), and norm alised by th e  d ep ths of Ci and  C2 - In Resnik [1995] 

concepts in W ordN et are augm ented  by corpus s ta tis tics  and an in form ation-theoretic  

m easure of sem antic  sim ilarity  is calculated . S im ilarity  of two concepts is m easured 

by th e  in form ation  con ten t of th e ir lowest com m on subsum er in th e  is-a h ierarchy 

of W ordN et. B oth  Jian g  and C o n ra th  [1997] and  Lin [1998] propose ex ten tions of 

R esn ik’s m easure. Leacock and  C hodorow  [1998]’s m easure takes in to  account the  

p a th  leng th  betw een two concepts, which is scaled by th e  d ep th  of th e  hierarchy in 

which th ey  reside. In [Hirst and  St-O nge, 1998] sim ilarity  is based on p a th  length  as 

well as th e  num ber of changes in th e  direction  in th e  p a th . In [Banerjee and  Pedersen, 

2003] sem antic  relatedness betw een two concepts is based on th e  num ber of shared 

words in th e ir W ordN et definitions (glosses). T he gloss of a  p a rticu la r concept is 

ex tended to  include th e  glosses of o th er concepts to  which it is re la ted  in th e  W ordN et 

hierarchy. Finally, P a tw ard h an  and  Pedersen  [2006] build on previous work on second- 

order cooccurrence vectors [Schiitze, 1998] by constructing  second-order co-occurrence

'̂ All of the WordNet-based similarity measure experiments, as well as a random similarity measure, 
were carried out with the WordNet::Similarity package, which is freely available for download from 
http://search.cpan.org/dist/WordNet-Similarity.
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SimTest Authors Description

coordGraph this work cosine similarity derived trom coordination

res [Resnik, 1995] WordNct-based, information theoretic
lin [Lin, 1998] WordNet-based, information theoretic
jcn [Jiang and Conrath, 1997] WordNet-based, information theoretic

wup [Wu and Palmer, 1994] WordNet-based, depth in WordNet hierar­
chy

Ich [Leacock and Chodorow, 1998] WordNet-based, path length and depth in 
hierarchy

hso [Hirst and St-Onge, 1998] WordNct-based, path length and number ot 
changes in direction

lesk [Banerjec and Pedersen, 2003] number of shared words in WordNet glosses

vectorGloss [Patwardhan and Pedersen, 2006] similarity ot 2nd order cooccurrence vectors 
derived from WordNot glosses

Table 4.1: Summary of the 9 different word similarity measures to be evaluated em­
pirically on W SJ cooccurrence data.

vectors from W ordNet glosses, where, as in [Banerjee and Pedersen, 2003], the gloss of 
a concept is extended so th a t it includes the gloss of concepts to which it is directly 
related in WordNet.

4 .2 .3  E m pirical E valuation  o f S im ilarity  M easures

We selected tŵ o sets of d a ta  from sections 00, 01, 22 and 24 of the W SJ treebank. 
(The WSJ data  used to tra in  our vector similarity function is from sections 02 to 21.) 
The first consists of all nouns pairs which make up the head words of two conjuncts 
in coordinate noun phrases (detected when the coordination flag is set to  true, and 
therefore not including coordinate NPBs). We found 601 such coordinate noun pairs. 
The second data  set consists of 601 word pairs which were selected at random  from 
all head-modifier pairs in the same sections of the WSJ where both head and modifier 
words are nouns and are not coordinated. We tested the 9 different measures of word 
similarity just described and summarised in Table 4.1 on each data  set in order to see 
if, through using the measures, a significant difference could be detected between the 
similarity scores for the coordinate words sample and non-coordinate words sample.

Initially both the coordinate and non-coordinate pair samples each contained 601 
word pairs. However, before running the experiments we removed from the sets all 
pairs where the words in the pair were identical. This is because identical words occur 
more often in coordinate head words than in other lexical dependencies (there were 43 
pairs where the two words in the pair were identical in the coordination set, compared
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SimTest ^ c o o r d ^ c o o r d ^  ̂  c o o r d '^ n o n C o o r d ^ n o n C o o r d ^  ̂  n o n C  o o r d 95% Cl p-value
coordGraph 503 0.11 0.13 485 0.06 0.09 [0.04 0.07] 0.000

res 444 3.19 2.33 396 2,43 2.10 [0.46 1.06] 0.000
lin 444 0.27 0.26 396 0.19 0.22 [0.04 0.11] 0.000
jcn 444 0.13 0.65 395 0.07 0.08 [-0.01 0.11] 0.083
wup 444 0.63 0.19 396 0.55 0.19 [0.06 0.11] 0.000
Ich 444 1.72 0.51 396 1.52 0.47 [0.13 0.27] 0.000
hso 459 1.599 2.03 447 1.09 1.87 [0.25 0.76] 0.000
lesk 451 114.12 317.18 436 82.20 168.21 [-1.08 64.92] 0.058

vectorGloss 459 0.67 0.18 447 0.66 0.2 [-0.02 0.03] 0.545
random 483 0.89 0.17 447 0.88 0.18 [-0.02 0.02] 0.859

Table 4.2: Summary statistics for 9 different word similarity measures (plus one random 
measure) iricoord and rinonCoord are the sample sizes for the coordinate and non-coordinate 
noun pairs samples, respectively; xcoord, SD coord  and XnonCoord, SD nonCoord are the 
sample means and standard deviations for the two sets. The 95% Cl column shows the 
95% confidence interval for the difference between the two sample means. The p-value 
is for a Welch two sample two-sided t-test.

to 3 such pairs in the non-coordination set). If we had not removed them, a statistically 
significant difference between the similarity scores of the pairs in the two sets could 
by found simply by using a measure which, say, gave one score for identical words and 
another (lower) score for all non-identical word pairs.

Results for all tests on the data  sets described above are displayed in Table 4.2. The 
similarity measures displayed are: (coordGraph) our vector similarity described above 
in 4.2.1, and (res) [Resnik, 1995], (lin) [Lin, 1998], (jcn) [Jiang and C onrath, 1997], 
(wup) [Wu and Palmer, 1994], (Ich) [Leacock and Chodorow, 1998], (hso) [Hirst and 
St-Onge, 1998],(lesk) [Banerjee and Pedersen, 2003] and (vectorGloss) Patw ardhan and 
Pedersen [2006]. In one final experiment we used a random measure of similarity. For 
each experiment we produced two samples, one consisting of the similarity scores given 
by the similarity measure for the coordinate noun pairs, and another set of similarity 
scores generated for the non-coordinate pairs. The sample sizes, means, and standard 
deviations for each experiment are shown in the table. Note th a t the variation in the 
sample size is due to coverage: the different measures did not produce a score for all 
word pairs. Also displayed in Table 4.2 are the results of statistical significance tests 
based on the Welsh two sample t-test. A 95% confidence interval for the difference of 
the sample means is shown along w ith the p-value.
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4.2.4 D iscussion

For all but three of the experiments (not including the random measure), the difference 
between the mean similarity measures is statistically significant. Interestingly, the three 
tests where no significant difference was measured between the scores on the coordina­
tion set and the non-coordination set [Jiang and Conrath, 1997, Banerjee and Pedersen, 
2003, Patw ardhan and Pedersen, 2006] were the three top scoring measures in [Patward- 
han and Pedersen, 2006], where a subset of 6 of the above W ordNet-based experiments 
were compared and the measures evaluated against human relatedness judgements and 
in a word sense disambiguation task. In another comparative study [Budanitsky and 
Hirst, 2002] of five of the above W ordNet-based measures, evaluated as part of a real- 
word spelling correction system, Jiang and Conrath [1997]’s similarity score performed 
best. Although performing relatively well under other evaluation criteria, these three 
measures seem less suited to measuring the kind of similarity occurring in coordinate 
noun pairs. One possible explanation for the unsuitability of the measures of [Pat­
wardhan and Pedersen, 2006] for the coordinate similarity task could be based on how 
context is defined for the building of their context vectors. Context for an instance of 
the the word w is taken to be the words (minus low frequency and stop words) th a t 
surround w in the corpus within a given number of positions, where the corpus is taken 
as all the glosses in WordNet. Words th a t form part of collocations such as disk drives 
or task force would then tend to have very similar contexts, and thus such word pairs, 
from non-coordinate modifier-head relations, could be given too high a similarity score.

A lthough the difference between the mean similarity scores seems rather slight in 
all experiments, it is worth noting th a t not all coordinate head words are semantically 
related. To take a couple of examples from the coordinate word pair set: work/harmony 
extracted from hard work and harmony, and power/clause extracted from executive 
power and the appropriations clause. We would not expect these word pairs to get a 
high similarity score. On the other hand, it is also possible th a t some of the examples of 
non-coordinate dependencies involve semantically similar words. For example, nouns 
in lists are often semantically similar, and we did not exclude nouns extracted from 
lists from the non-coordinate test set.

A lthough not all coordinate noun pairs are semantically similar, it seems clear, on 
inspection of the two sets of data, th a t they are more likely to be semantically similar
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than  modifier-head word pairs, and the tests carried out for most of the measures of 
semantic similarity detect a significant difference between the similarity scores assigned 
to coordinate pairs and those assigned to non-coordinate pairs. The measure of dis­
tributional similarity introduced in Section 4.2.1 also measured significant differences 
between the two da ta  sets.

It is not possible to judge, based on the significance tests alone, which might be the 
most useful measure for the purpose of disambiguation. However, in terms of coverage, 
the coordinate word graph measure clearly performs best (somewhat unsurprisingly 
given it is part trained on d a ta  from the same domain). This measure of distributional 
similarity is perhaps more suited to the task of coordination disambiguation because 
it directly measures the type of similarity th a t occurs between coordinate nouns. T hat 
is, the distributional similarity measure presented in Section 4.2.1 defines two words 
as similar if they occur in coordination patterns with a similar set of words and with 
similar distributions. W hether, or to what degree, the words are semantically similar 
becomes irrelevant. A measure of semantic similarity, on the other hand, might find 
words similar which are quite unlikely to appear in coordination patterns. For example, 
Cederberg and Widdows [2003] note th a t words appearing in coordination patterns 
tend to be on the same ontological lev̂ el: ‘fruit and vegetables’ is quite likely to occur, 
whereas ‘fruit and apples’ is an unlikely cooccurrence. A W ordNet-based measure of 
semantic similarity, however, might give a high score to both of the noun pairs.

In the next section, we look at how best to model the dependencies between co­
ordinate head words in the parsing model, and show how the coordinate word graph 
similarity measure might be incorporated into the parsing model to aid noun phrase 
coordination disambiguation.

4.3 M odelling C oordinate H ead W ords

Bilexical head-head dependencies of the type found in coordinate structures are a 
somewhat different class of dependency to modifier-head dependencies. In the fat cat, for 
example, there is clearly one head to the noun phrase: cat. In cats and dogs however there 
are two heads, though in the parsing model just one is chosen, somewhat arbitrarily, 
to head the entire noun phrase.

In the baseline model there is essentially one param eter class for the estim ation of
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word probabilities;

PwordiwilH (i)) (4.2)

where Wi is the lexical head of constituent i and H{i)  is the history of the constituent. 
The history is made up of conditioning features chosen from structure that has already 
been determined in the top-down derivation of the tree.

For certain types of coordinate NP, such as the coordinate noun phrases of Fig­
ure 4.1, the head-head dependency is captured in the model when one feature of the 
history, the coordination flag, is set to true. Parses are generated top-down, head-first, 
left-to-right. For the trees in Figure 4.1, discarding for simplicity the other features in 
the history, the probability of the coordinate head wives,  is estimated in Tree 1 as:

Pward{wi =  w iv e s \ c o o r d  =  t ru e ,W p  =  e x e c .u t i v e s , ...) (4-3)

and in Tree 2:

Pword{Wi =  w iv e s \ c o o r d  =  t ru e ,  Wp =  b u s l o a d s , ...) (4-4)

where Wp is the head word of the node to which the node headed by W{ is attaching 
and coord is the coordination flag. However, as we discuss further in the next section, 
for NPBs this coordinate head-head dependency is not captured in the probability 
model.

In Section 4.3.1 we look at how we might improve the model’s handling of coordinate 
head-head dependencies by altering the model so that the common parameter class 
in (4.5) is used for coordinate word probability estimation in both noun phrases and 
base noun phrases.

PcoordWoTd{}^i\^pi -^(^)) (4’5)

In Section 4.3.2 we focus on improving the estimation of this parameter class by 
including BNC data to reduce data sparseness.
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4.3.1 E xtending PcoordWord to  Coordinate N P B s

As described in §1.3, coordination in base NPs is handled differently to coordination 
in NPs in the Collins model. Unlike NPs, in NPBs (i.e. flat, non-recursive NPs) the 
coordination flag is not used to mark whether a node is a coordinated head or not. This 
flag is always set to false for NPBs. In addition, unlike other NPs, modifiers within 
NPBs are conditioned on the previously generated modifier rather than the head of the 
phrase.^ This means that, in the baseline model, in an NPB such as (cats and dogs), 
the estimate for the word cats will look like:

Pword{wi — cats\coord = false, Wp = and, ...) (4.6)

We alter the baseline model so that, for NPs, when the coordination flag is set to 
true, we use the parameter class in (4.5) to estimate the probability of one lexical head 
noun, given another. In order to capture head-head dependencies in coordinate NPBs, 
if a noun is generated directly after a coordinating conjunction in an NPB then it is 
taken to be a coordinate head, Wi, and conditioned on the noun generated before the 
coordinating conjunction (w'hich is taken to be Wp) and also estimated using (4.5).

4.3.2 Estim ating the PcoordWord Param eter Class from a Coor­
dination Word Graph

B uild in g  th e  W ord G raph

Data for bilexical statistics are particularly sparse. In order to decrease the sparseness 
of the coordinate head noun data, we extracted from the BNC examples of coordinate 
head noun pairs. We extracted all noun pairs occurring in a pattern of the form: noun 
cc noun, as well as lists of any number of nouns separated by commas and ending in cc 
noun (note these are not the actual BNC tags). To the BNC data we added all head 
noun pairs from the WSJ (sections 02 to 21) that occurred together in a coordinate 
noun phrase, identified when the coordination flag was set to true. We did not include 
coordinate head nouns from NPBs because the underspecified annotation of NPBs 
in the WSJ means that the conjoined head nouns can not always be automatically 
identified. We stored these coordinate head noun samples in a graph, where each vertex 

full explanation of the handling of coordination in the model is given in [Bikel, 2004a].
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in the graph represents a word and the edges between vertices indicate the number of 
times two words have occurred together in a coordination pattern  in the training set. 
The graph is undirected; thus an occurrence, say, of ‘apples and bananas’ also counts 
as an occurrence of ‘bananas and apples’. This further helps reduce sparseness. For 
lists of nouns, each noun in the list is linked with every other noun in the list. Thus 
for a list: n i, n2, and n^, there will be links between nodes rii and ri2, between rii and 
ns and between U2 and 713. Therefore, for each list or coordinate pair extracted from 
the corpora, containing m  nouns, there are — m  coordination events.

To illustrate, take the following examples extracted from the BNC:

teachers, nurses, engineers and mariners 
doctors, nurses and teachers 
doctors and nurses 
sailors and mariners

sailors [1]

nurses [6]
mariners [4]

doctors [3]

teachers [5]

engineers [3]

Figure 4 .2: Graph of coordinations extracted from the BNC.

These examples are used to construct the graph in Figure 4.2. In to ta l the graph 
stores the equivalent of 22 coordination events or training samples where each sample 
consists of two words, one the class value and the other the sole feature value (the 
history).
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E stim ation  from  th e  W ord G raph

The probabihty of one noun n* being coordinated with another Uj can be calculated 
simply from the graph as:

„ , , , countininA , ,
PwG{n,\n,) = ----------------------------------------------------(4.7)

count [ T i j )

where count{nirij) is the number of links between node n, and rij in the graph, 
and count{nj) is the count of word token Uj in the graph. This is just the unsmoothed 
maximum likeUhood estimate. Again to reduce data  sparseness, we introduce a measure 
of word similarity so th a t if we have examples of bananas and apples in the graph but 
no examples of oranges and apples, for which we need an estimate, it would be useful 
to know th a t bananas are similar to oranges, and as we’ve seen examples of bananas 
and apples, then an occurrence of oranges and apples should be reasonably likely.

We use the measure of word similarity described in §4.2, which is based on cosine 
similarity of word vectors derived from the graph of coordinate words (equation (4.1)). 
The graph representation lends itself easily to measures of word similarity based on
vectors. A word is represented as a vector where every word in the graph is a dimension
of the vector. In this case the values of the vector components are derived from the 
number of links between the two word nodes in the graph (i.e. the number of times 
the words occurred together in a coordination pattern  in the training set). Note th a t 
in Section 4.2 we measured similarity between two, possibly coordinate, head words, 
nouui and nouuj.  Here, however, we do not directly measure the similarity of the two 
head words but rather use the similarity function both to find words similar to nourij to 
include in the sample when estim ating the probability of nouui being conjoined with 
nounj,  and as a weight to determine the contribution of these similar words during 
estimation.

We alter the probability estim ate of (4.7) to incorporate the similarity measure in 
the following manner;

 ̂s im(ni,nx)count(ninx)
P.Uni\n,) = . V \ ----- 71̂^n.eJV(n,) sim{nj, n^)count{n^)

where s im {n j ,nx)  is a similarity score between words Uj and and N{nj )  is the 
set of words in the neighbourhood of Uj. This neighbourhood can be based on the
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fc-nearest neighbours of nj,  where nearness is measured with the similarity function.
The estim ate in (4.8) can be viewed as the estim ate with the more general history 

context because the context will include not only rij  but also words similar to rij .  We 
combine the estim ate in (4.7) with the more general estim ate in (4.8) by way of linear 
interpolation so th a t the final estim ate is calculated as follows:

PcoordWordi^il^j^ ^rij "̂” (^ ^rij) Psimlnterp{^i\^j^ (4'9)

where

Psimlnterp{^i\^j) ~  ”1” (^ (4.10)

PkNN{ni\H{i)) is a /c-NN estim ate calculated in the same fashion as the /c-NN esti­
mates described in chapter 3. We include this final layer of backoff in order to smooth 
the bilexical estim ate further. A„̂ . is calculated using W itten-Bell interpolation and 
so the linear combination of estim ates is similar to how the maximum-likelihood esti­
mates were combined for smoothing in the Collins parser. However for the calculation 
of the weight in (4.10) we adapt the W itten-Bell method so th a t it incorporates 
the similarity measure for all words in the neighbourhood of ri j ,  as follows:

^ _  En.6jV(n,) simjnj,  n^)count{ng,) ^
Hn,eN{nj) sim{nj, U:^){count(ria:) + CD{n^))

where C is a constant th a t can be optimised using held-out da ta  and D { r i j )  is the 
diversity of a word rij .  The diversity of a word is the number of distinct words (i.e. 
word types) w ith which rij has been coordinated in the training set.

4.4 R elation  to  Previous Work

In Section 4.3.2 we described how a word graph was build from noun coordination and 
list cooccurrence statistics. Word cooccurrence statistics, based on coordination and 
list contexts, have been used successfully in the past to extract semantic information 
for building semantic lexicons [Roark and Charniak, 1998, Widdows and Dorow, 2002] 
and to improve recall in autom atic hyponymy extraction [Cederberg and Widdows,
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2003]. In [Roark and Charniak, 1998] the method for extracting co-occurring head 
nouns differs from ours in th a t the corpus (they use the MUC-4 and WSJ corpora) was 
first autom atically parsed and the heuristics for extracting the head nouns were slightly 
different, including not just lists and conjunctions but also appositives (such as: the 
plane, a twin-engined Cessna)^. Building a graph of coordinate words, extracted from 
the BNC in the fashion described in §4.3.2, follows the work on graph-based models 
described in [Widdows and Dorow, 2002, Widdows, 2004]. Our graph additionally 
includes coordinate head nouns from the m anually-annotated WSJ.

The graph we construct, partially from unparsed BNC data, is used to store events 
for the estim ation of coordinate word probabilities. In the probabilistic approach to 
noun phrase coordination disambiguation presented in [Goldberg, 1999], unannotated 
data  is also used. The model is trained from examples of unambiguous coordination 
noun phrases, of the form n l cc n2, extracted from the unannotated WSJ. Their method 
of da ta  collection differs from ours in several ways. For example, before searching for 
coordination patterns their unannotated d a ta  is chunked autom atically using a simple 
chunker which replaces noun and quantifier phrases with their head words, whereas 
we collect da ta  directly from the POS tagged BNC. Also the heuristics for collecting 
the n l cc u2  in Goldberg [1999] are more complicated than in our collection of da ta  
in th a t Goldberg puts more restrictions on the events collected, with the aim of only 
collecting unambiguous samples.

In §4.2.1 we introduce a measure of distributional similarity based on coordination 
patterns in the BNC and W SJ. In Nakov and Hearst [2005]’s approach to noun phrase 
coordination, the Web is used to get statistics on coordinate head word cooccurrences, 
though a similarity measure is not developed. Resnik [1999] also uses a measure of 
similarity to aid in noun phrase disambiguation but it is WordNet-based rather than  
based on coordination cooccurrences.

Measures of similarity between words based on similarity of cooccurrence vectors 
have been used for word sense disambiguation [Schiitze, 1998, Patw ardhan and Peder­
sen, 2006], for PP-attachm ent disambiguation [Zhao and Lin, 2004] and for the auto­
matic construction of noun hierarchies [Caraballo, 1999]. Our approach resembles th a t 
of [Caraballo, 1999] where cooccurrence is also defined with respect to coordination 
patterns, although the experimental details in terms of da ta  collection and vector term

^Example taken from [Roark and Charniak, 1998]



weights differ.

Our incorporation of a similarity measure into a probability estim ate in (4.8) comes 
from A;-NN estim ation bu t bears some resemblance to the cooccurrence smoothing 
reviewed in §2.5.2. For the sake of comparison, we write the estim ate in (4.8) as:

P s i m M N N \ W 2 \ W l )  = ^ ^ ' (4-12)

where sim^wi^w'-^) is a similarity score between words W\ and w[ and S{w \)  is the 
set of words in the neighbourhood of

In cooccurrence smoothing the form of (2.7) in §2.5.2 can be w ritten as:

"sim.coccur{W2\ui\) = ---------  :---Z------- jr------- (4--*-3)

In cooccurrence sm oothing the smoothed estim ate is based on similarity-weighted 
probability estimates] our estim ate, derived from /c-NN, is based on similarity-weighted 
events.

4.5 Sum m ary

Nouns th a t occur together in a coordination pattern  are often semantically similar. We 
show tha t this can be detected by various different measures of semantic similarity. We 
also show how a measure of distributional similarity based on coordination patterns can 
also detect significant differences between the similarity of conjoined nouns and nouns 
th a t cooccur but are not conjoined. We argue th a t this latter measure is more suited 
to coordinate noun phrase disambiguation than WordNet-based measures of semantic 
relatedness.

We also show how the dependencies between conjoined head nouns are not ade­
quately modelled in the baseline model and suggest an alternative th a t a ttem pts to 
capture head-head dependencies in both NPs and base NPs. In order to improve the 
param eter estim ation involving conjoined head nouns we build a word graph from both 
BNC and W SJ da ta  and use the d a ta  stored therein for estimation. Finally, we show 

how a word similarity measure derived from the word graph data  can be incorporated 
into the estim ation of the head-head param eter class. In chapter 7 we show the effect
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of changes suggested in this chapter on the basehne model.
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Chapter 5

Parallelism  Across Conjuncts

5.1 Introduction

In this chapter we carry out empirical measurements on coordination da ta  from the 
WSJ in order to gauge the extent to which parallelism exists in the syntactic structure 
of two conjuncts. We then suggest an approach for altering the base parsing model 
so th a t it can capture a bias toward symmetry in conjunct structure, with the aim of 
improving coordination disambiguation accuracy.

5.2 Em pirical M easurem ents of Parallelism

There is often a considerable amount of symmetry or parallelism in the syntactic struc­

ture of two conjuncts. Take Figure 5.1: If we take as level 0 the level in the coordinate 
sub-tree where the coordinating conjunction CC occurs, then there is exact symmetry 
in the two conjuncts in term s of non-terminal labels and headword part-of-speech tags 
for levels 0, 1 and 2.

In order to measure empirically the extent of parallehsm across conjuncts we follow 
the work of Church [2000] on lexical priming and Dubey et al. [2005] on syntactic 
priming and parallehsm in coordination, which we discuss in more detail in §5.4.
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C C i i

J J s  N N S 4 I N i 7
D T i 5

high
D T 2 0  N N P 1 9

Figure 5.1: Example of symmetry in conjunct structure in a lexicalised subtree. 

5.2.1 M ethodology

We measure symmetry of conjunct structure in the training data  based on counts of 
how often the syntactic labels in a post-CC conjunct of a coordinate phrase match 
the corresponding labels in the pre-CC conjunct. We compare the prior probability 
of a particular label occurring in the post-CC conjvmct, with the probabihty of the 
label occurring in post-CC conjunct given it has occurred in the pre-CC conjunct. 
These correspond to the prior probabilities and positive adaption probabilities described 
in Church [2000]. We examine symmetry in conjunct structure across all conjunct 
types, with the exception of fiat NPB constructions.

We first align each node, Ni, in the second conjunct with its corresponding pre-CC 
conjunct node, Note th a t when the structure of two conjuncts is different not
all nodes in the post-CC conjunct will have a corresponding pre-CC conjunct node. 
For each node, Ni, in the post-CC conjunct we either align it w ith or record
th a t there is no corresponding node for Ni in the pre-CC conjunct.^ W hen retrieving 

^iprecc ^ post-CC conjunct node we tried both  a left-to-right and a head-first 
traversal of the head c o n j u n c t . T h e  traversal of the pre-CC conjunct is guided by 
the position of Ni in the post-CC conjunct. For example, in a head-first traversal we

^We do not collect data on nodes in the pre-CC conjunct that have no corresponding node in the 
post-CC conjunct.

^Note that the head conjunct is always the pre-CC conjunct in the Collins model (with the exception 
of coordinate NPBs).

^See Zhang and Shasha [1989], for example, for other approaches to tree alignment, such as the 
tree-distance approach.
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dog

Figure 5.2: Trees th a t contain conjuncts with non-isomorphic structure.

ahgn the head node at level 1 of the post-CC conjunct, with the head node of level 1 
in the pre-CC conjunct; the first modifier node to the left of the head in the post-CC 
conjunct is aligned w ith the corresponding node in the pre-CC conjunct and so on. In a 
left-to-right alignment the left-most node at a particular level of the post-CC conjunct 
is aligned with the left-most node at the same level in the head conjunct; the second 
node from the left of post-CC conjunct is aligned with the second from the left in the 
head conjunct and so on.

While the head-first and left-to-right methods of aUgning nodes are simple and 
reasonably effective, they will not always capture the full extent of symmetry in some 
non-isomorphic structures. For example, for the trees in Figure 5.2 the pairs of aligned 
nodes at level 1 are displayed in Table 5.1.

p re-C C post-C C

T ree  1
H ead -F irs t N N (c a t )

j j ( f a t )
N N (d o g )
D T (th e )

L eft-to -R ig h t D T ( th e )
j j ( f a t )

D T ( th e )
N N (d o g )

T ree  2

H ead -F irs t
N N (d o g )
D T ( th e )

N N (c a t)
j j ( f a t )

D T (th e )

L eft-to -R ig h t
D T ( th e )
N N (d o g )

D T (th e )
j j ( f a t )

N N (c a t)

Table 5.1: Nodes aligned at level 1 for the trees in Figure 5.2
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test test
history a = 136 6 - 8
history c = 5 d = 13939

Table 5.2: Contingency table for the head child non-terminal label TO at conjunct 
depth 1.

For our first set of experiments we use the set of aligned nodes to create lists of 
history-test pairs, to use the terminology of Church [2000]; the history samples coming 
from pre-CC conjuncts and test samples from post-CC conjuncts.

The first node to be generated in the expansion of a non-terminal is the head 
child node of the non-terminal, with label Ch- We first collected, via a head-first 
traversal, a set of history-test pairs of head child nodes in conjuncts at depth 1. For each 
distinct non-terminal label we estimated the prior probabilities and positive adaption 
probabilities. Following Church [2000], prior and positive adaption probabiUties are 
calculated in the following manner. Take Table 5.2 which displays a contingency table 
for the non-terminal label TO, with counts collected from the history-test pairs for 
depth 1 head conjunct nodes.

The table shows that there are (a) 136 examples where TO  is the head conjunct 
label in both test and aligned history node, there are (b) 8 examples where TO is the 
head conjunct label in the history node but not the test node, (c) 5 cases where TO  
occurs in the test but not the history node and finally (d) 13939 cases where TO is the 
head conjunct label in neither history nor test nodes. Positive adaption, P+adapt, and 
prior, Ppriori probabilities are calculated as:

P + a d a p t  = =  TO) =  ^  «  0.94

% or =  PiCh,.., = TO) = ^  0.01
a -f c 

Q b c d

As in [Dubey et al., 2005] whether TO occurring in the test set is independent of 
TO occurring in the history set can be tested using the test for significance on the 
contingency table.
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Figure 5.3: Prior and posterior (positive adaption) probabilities for head child non­
term inal labels a t conjunct depth 1

M j]jj J]

Figure 5.4: Prior and posterior (positive adaption) probabilities for head child non­
term inal labels at conjunct depth 5
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5.2.2 Results

The positive adaption and prior probabihties for the twenty most frequent Ch labels at 
this depth are displayed in Figure 5.3. Out of a total of 40 non-terminal label types for 
which we gathered statistics, in all cases the prior were less than the positive adaption 
probabilities. The difference in probabilities was statistically significant {p < 0.0001) 
for 33 non-terminal types. We found that for most cases P+adapt ^  Pprior was also true 
for depths greater than one, though the difference in prior and posterior probabilities 
reduced the greater the depth. Figure 5.4 displays the twenty most frequent Ch labels 
at conjunct depth 5. For a history-test pair set collected via a left-to-right traversal of 
the first conjunct we found similar results.

■  prior 
□  posterior

Figure 5.5: Prior and posterior (positive adaption) probabilities for modifier POS labels 
at conjunct depth 1

For modifier nodes we also found similar evidence of s}^mmetry across conjuncts, 
both for non-terminal labels and head part-of-speech tags. Figure 5.5 displays results 
for the top twenty modifier part-of-speech tags across conjuncts at depth 1.
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Depth \HeadEvents\ %M Ch L-R %M Ch H-F
1 14,156 (14%) 81 87
2 20,932 (21%) 37 47
3 16,671 (17%) 19 24
4 12,689 (13%) 10 13
5 9559 (9.7%) 5.6 7.1
6 7316 (7.4%) 2.9 3.7
7 5319 (5.4%) 1.0 1.4
8 3882 (3.9%) 0.54 0.57
9 2705 (2.7%) 0.26 0.26
10 1830 (1.9%) 0.11 0.16

Table 5.3: Percentage Match(%M) of head event labels Ch in right-of-head conjuncts 
w ith the corresponding label in the head conjunct, grouped by Depth. Percentage 
match for head conjunct nodes collected in both a left-to-right (L-R) traversal and 
head-first (H-F) traversal are shown.

Finally, in an effort to summarise results across different conjunct depths, we show 
the percentage of times the POS tag and non-terminal label of a node, Ni  in the post- 
CC conjunct matches the POS tag and non-terminal label of the corresponding node 
^iprecc head conjunct. W hen counting matches, if there is no corresponding
node in the head conjunct for a node in the post-CC conjunct then this counts as a 
non-match.

Table 5.4 shows the percentage of POS tags {ti) and non-terminal labels (Cj) of 
modifier nodes in post-CC conjuncts th a t have the same value for POS and non­
term inal labels as ^^e head conjunct. Results are shown for both head-first
and left-to-right traversals for each level in the coordinate phrases. For depth 0 and 
depth 1 non-terminal labels across conjuncts match more often than  part-of-speech 
tags. From depth 2 on, the percentage of matches for non-terminal labels and POS 
tags is similar. This is probably because the conjunct nodes from depth 2 and deeper 
are more likely to be pre-term inal nodes, where the node label and POS tag are the 
same for a given node. For both  POS tags and non-terminal labels, there is little 
difference whether the pre-CC nodes are retrieved head-first or left-to-right.

Table 5.3 shows the percentage of matches of the head non-terminal label in the 
post-CC conjunct with the corresponding non-terminal label in the pre-CC conjunct 
for both left-to-right and head-first traversals. Head-first traversals of the pre-CC
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Depth \DepEvents\ %M Cj L-R %M Cj H-F %M U L-R %M tj H-F
0 15,840 (5.4%) 93 93 65 65
1 40,429 (14%) 69 68 64 63
2 59,907 (21%) 49 49 48 47
3 45,623 (16%) 31 30 31 30
4 35,511 (12%) 17 16 16 16
5 26,538 (9.1%) 8.5 8.4 8.4 8.2
6 20,423 (7.0%) 4.1 4.3 4.1 4.3
7 14,681 (5.0%) 1.8 1.8 1.7 1.8
8 10,771 (3.7%) 0.95 0.90 0.95 0.88
9 7472 (2.6%) 0.37 0.40 0.37 0.40
10 5039 (1.7%) 0.28 0.26 0.28 0.26
11 3388 (1.2%) 0.059 0.059

Table 5.4: Percentage Match(%M) of Q  and U labels of dependent events in right-of- 
head conjuncts with the head conjunct, grouped by depth. Percentage match for head 
conjunct nodes collected in both a left-to-right (L-R) traversal and head-first (H-F) 
traversal are shown. The total number of dependent events {\DepEvents\) in post-CC 
conjuncts for each level is displayed.

conjunct return more matching labels. Comparing the data in Table 5.4 and Table 5.3, 
the percentage of label matches is greater for head labels than for modifier labels at 
depth 1 but not for depths greater than one. However, if we remove all STOP events'^ 
from the dependent events set and then compare the percentage of dependent node 
label matches with the percentage of head node label matches, the percentage of head 
node matches is greater at all depths.

There is clearly evidence of a bias towards symmetry in the syntactic structure of 
conjuncts, although this symmetry diminishes the deeper the level in the conjuncts. 
Learning a bias toward parallelism should improve the parsing model’s ability to cor­
rectly attach the coordination conjunction and second conjunct to the correct position 
in the tree. In Figure 5.1 for example, a preference for symmetry in conjuncts might 
help the model to attach the CC node and NPfstatesj subtree to the NPfplainsJ node 
due to the fact that the two NPs have almost identical internal structure.

^i.e. where the non-terminal label in the post-CC conjunct is the STOP symbol.
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5.3 M odelling Sym m etry in Conjuncts

In the Collins generative history-based model a tree is generated top-down head-first 
and features are limited to being functions of the tree generated so far. Thus the task is 
to incorporate a feature into the model th a t captures a particular bias yet still adheres 
to these derivation-based restrictions. Each node in the tree in Figure 5.1 is annotated 
w ith the order in which the nodes are generated (we omit, for the sake of clarity, 
the generation of the ST O P  nodes). Note th a t when the decision to a ttach  the second 
conjunct to the head conjunct is being made (i.e. Step 11, when the CC  and NPfstates] 
nodes are being generated) the internal structure of the sub-tree rooted at NPfstates] 
has not yet been generated. Thus at the point th a t the conjunct attachm ent decision 
is made it is not possible to use information about symmetry of conjunct structure as 
we do not know yet what the structure of the second conjunct will be.

It is possible, however, when generating the internal structure of the second conjunct 
to condition on structure of the already generated head conjunct. In order to allow the 
model to learn a preference for symmetric structure, we introduce new conditioning 
features: when the structure of the second conjunct is being generated we condition 
on features which are functions of the first conjunct, returning for example the part- 
of-speech tag of Â ip̂ ecc ^ feature when predicting a POS tag for a node Ni in the 
post-CC conjunct.

The usual param eter classes for estim ating the probability of the head label, Ch, 
and the part-of-speech label of a modifier node, ti, are (as outlined also in §3.5.2):

Pc^i.C'h \ Cp ,  Wp,  tp,  tgp)  (5.1)

( ^ i I ^h') distj  tj_2, ^gp) {^‘̂ )

'^p'l dist^ ti^\^ î _2, Cgp') ( '̂ )̂

Instead of the above param eter classes we created two new param eter classes which 
are used only in the generation of post-CC conjunct nodes. These param eter classes 
are as follows:
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P cH co n ju n c t {C h \ l { .h e a d C o n ju n c t ) ,  Cp,  Wp, tp ,  tgp, d e p t h ) (5.4)

P t i c o n ju n c t { U \c t { h e a d C o n ju n c t ) ,d i r ,  C p,  Wp, tp,  d i s t ,  ti_i, ti_2, d e p th )  (5.5)

where ^{headConjunct)  returns the non-terminal label of for a head node, N{,
and a{headConjunct)  returns the POS tag of for modifier node, Ni. Both
functions return + N O M A T C H +  if there is no for the node being generated.
depth is the level of the post-CC conjunct node N^. The param eter class (5.4) replaces 
th a t of (5.1) in the generation of post-CC conjunct nodes and the param eter class 
of (5.5) is used in the generation of both left and right modifier nodes (replacing 
both (5.2) and (5.3)).

5.4 R elation to Previous Work

Dubey et al. [2005] dem onstrate the prevalence of parallel structures across conjuncts 
in coordinate NP data  from the Penn Treebank. Drawing data  from all N P i  C C  

N P 2 constructions, they focus on five types of syntactic construction (for example the 
construction: N P  D T  J J  N N )  and measure frequencies of occurrence of the syntactic 
constructions in N P i  and N P 2 . They compare the prior probability of a particular 
construction occurring in N P2 , w ith the probability of the construction occurring in 
N P 2 , given it has occurred in NP^. This latter probability they call positive adaption 
after the work on lexical priming of Church [2000]. They find th a t, for all but one 
of the construction types examined, a given construction is more likely to occur in 
N P 2 given it has occurred in N P i.  Interestingly, the only construction type where the 
prior probability was higher than  the positive adaption probability was the case of the 
type; N P  — > N N .  We would guess th a t the reason for this is because a coordinate NP 
structure such as ( N P  ( N P  ( N N ) )  C C  ( N P  ( N N ) ) )  would, in fact, be inconsistent with 
the Penn guidelines (the correct structure being ( N P  ( N N  C C  N N ) )  and, therefore, 
although it does occur in the data, it would not do so as often as phrases which are 
consistent with the guidelines.

In Section 5.2 we measure sym metry of conjunct structure in our training data  by 
counting how often the non-terminal label in a post-CC conjunct of a coordinate phrase



matches the corresponding non-terminal label in the pre-CC conjunct. Unlike Dubey 
et al. [2005] we do not focus on NPs alone but instead look at symmetry in conjunct 
structure across all conjunct types, w ith the exception of fiat NPB constructions. In 
addition where Dubey et al. [2005] measured symmetry at depth 1 only of the conjuncts, 
we look at the parallehsm effect for different conjunct depths. A final difference is th a t 
rather than  comparing sequences of non-terminals we compare individual nodes.

In term s of coordination disambiguation, several previous attem pts have attem pted 
to take advantage of the tendency for parallel structures across conjuncts, as described 
in §2.6. Insofar as we do not separate coordination disambiguation from the overall 
parsing task, our approach resembles the efforts to improve a coordination disambigua­
tion in the discriminative rerankers of Charniak and Johnson [2005] and Ratnaparkhi 
et al. [1994], where both rerankers include features to capture syntactic parallelism 
across conjuncts a t various depths.

5.5 Sum m ary

We have dem onstrated th a t a significant level of parallelism exists in the syntactic struc­
ture of conjuncts in the W SJ. The symmetric effect holds true both for non-terminal 
labels and, to  a lesser extent, for part-of-speech labels and is evident a t increasing con­
junct depths, though unsurprisingly parallelism decreases with increasing depth. The 
mechanism for aligning nodes in post-CC conjuncts with nodes in pre-CC conjuncts 
can be incorporated into the probabihty model in order to encourage the model to 
give more weight to syntactic structures which exhibit parallelism. This is done in 
the following manner: when generating syntactic structure in a post-CC conjunct, the 
model conditions on aligned structure in the pre-CC conjunct. In C hapter 7 we give 
details of experiments with the param eter classes introduced in this chapter and show 
the results of these changes to the baseline model.
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Chapter 6

N oun Phrase Coordination Error 
Analysis

6.1 In trod u ction

In this chapter we look at two different causes for the incorrect bracketing of coordinate 
noun phrases in the model described in Chapter 3. Section 6.2 examines inconsistencies 
in the annotation of coordinate NPs in the Penn Treebank which can lead to errors 
in coordination disambiguation. We show how some of the types of coordinate noun 
phrase inconsistencies can be automatically detected.

In Section 6.3 we describe a method of tree alignment to aid error analysis. We also 
discuss how the different head-finding rules for coordinate noun phrases and coordinate 
base noun phrases can negatively affect coordination disambiguation. Section 6.3.1 
suggests a minor modification to the head-finding rules for base noun phrases so that 
the lexical item chosen to head the entire phrase more closely resembles the head chosen 
for other types of coordinate noun phrase.
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6.2 Bracketing G uidelines for the Penn Treebank 
and Inconsistencies in W SJ Coordinate N oun  
Phrase A nnotation

The annotation of noun phrases in the Penn Treebank [Bies et al., 1995] follows some­
w hat different guidelines to th a t of other syntactic categories. Because the interpreta­
tion of nominal modifiers is highly ambiguous and often subject to individual interpre­
tation, no internal structure is shown for nominal modifiers. Hence the following fiat 
structures (examples taken from [Bies et al., 1995]): (NP the primary college entrance 
examination) and (NP U.S. patent and copyright owners). For noun phrases with more 
than  one head noun, if the only unshared modifiers in the constituent are nominal mod­
ifiers, then a flat structure is also given. Thus in (NP the Manhattan phone hook and 
tour guide) a flat structure is given because although the is a non-nominal modifier it is 
shared, modifying both tour guide and phone book, and all other modifiers in the phrase 
are nominal. Note th a t even though phone is clearly unshared in th a t it modifies book 
but not tour guide, no internal structure is shown because it is a nominal premodifer.

However, it happens relatively often in the WSJ Treebank th a t these guidelines are 
not followed, and coordinate noun phrases which should be annotated flat are instead 
given internal structure. Take the following example (this time we show the POS tags 
as well) extracted from the treebank:

(a) (NP (NP (NNS controllers))(CC and)(NP (NN disk)(NNS drives)))

According to the guidelines, the phrase should be bracketed flat. O ut of 1,417 examples 
of noun phrase coordination in sections 02 to 21 inclusive, involving phrases containing 
only nouns (common nouns or a mixture of common and proper nouns) and the coor­
dinating conjunction, we found 21.3%, contrary to the guidelines, were given internal 
structure. W hen all proper nouns are involved it is even more common to encounter a 
coordinate NP showing internal structure where officially they should be given a flat 
structure, for example:

(b) (NP (NP (NNP Rainman) ) (CC and)(NP (NNP Batman)))

In the guidelines, however, it is recognised th a t proper names are frequently annotated
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with internal structure. We found 1,369 examples of coordinate noun phrases where 
all nouns were proper. Of these 29.4% were given structure.

Another common source of inconsistency in coordinate noun phrase bracketing oc­
curs when a non-nominal modifier appears in the coordinate noun phrase. As previ­
ously discussed, according to the guidelines the modifier is annotated flat if it is shared. 
Where it is unclear if a non-nominal modifier is shared or not, the default is to bracket 
as shared. W hen the non-nominal modifier is unshared, more internal structure is 
shown:

(c) (NP (NP (NNS fangs)) (CC and) (NP (JJ pointed) (NNS ears)))

(d) (NP (NP (DT the) (NNP U.S.)) (CC and) (NP (NNP Europe)))

We found on inspection th a t sometimes a flat armotation was given, when in fact more 
structure should have been shown. Take the following two examples extracted from 
the treebank, which should in fact be given the more structured bracketing shown in 
Figure 6.1 Tree 1 and 2 respectively:

(e) (NPB (NN oversight)(CC and)(JJ disciplinary)(NNS procedures))

(f) (NPB (JJ moderate)(CC and)(JJ low-cost)(NN housing))

Following the guidelines any coordinate base noun phrase which ends with the following 
tag sequence can be autom atically detected as incorrectly bracketed: CC /non-nom inal 
modifier/noun. This is because either the non-nominal modifier, which is unambigu­
ously unshared, is part of a noun phrase as in Figure 6.1, Tree 1 or it conjoined with 
another modifier as in Figure 6.1, Tree 2}  We found 202 examples of this in the 
training set, out of a to tal of 4,895 coordinate base noun phrases.

Finally, inconsistencies in POS tagging can also lead to problems w ith coordination. 
Take the bigram executive officer. We found 151 examples in the training set of a base 
noun phrase which ended with this bigram. 48% of the cases were POS tagged JJ  NN,

^Note however that CC/non-nominal modifier/noun/noun  can not be automatically classified as 
inconsistent with the Treebank guidelines. For example, (NPB (JJ personal) (N N  computer) (CC  
and) (JJ  electronic) (NN equipment) (N N  maker)) is correctly bracketed flat because ‘No internal 
structure is shown for conjoined nominal premodifiers...Even in the case where a nominal premodifer 
is adjectively modified, the entire structure is left flat’.
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1 . NP

NP
I

NN
I

oversight

2 .

ADJP NP
I

NN
JJ CC JJ  I
I I I housing

moderate and low-cost

Figure 6.1: Correct Parse tree bracketing according to the Penn Guidelines

52% tagged N N  NN.^ This has repercussions for coordinate noun phrase structure, as 
the presence of an adjectival pre-modifier indicates a structured annotation should be 
given.

These inconsistencies pose problems both for training and testing. W ith a relatively 
large amount of noise in the training set the model learns to give too high a probability 
to structures which should be very unlikely. In testing, given inconsistencies in the 
gold standard trees, it becomes more difficult to judge how well the model is doing.

JJ  NNS
I  I

disciplinary procedures

NP

6.3 N P B  H ead-Finding Rules

In order to gain more insight into the type of errors being made in coordinate structures 

we compared the erroneous coordinate phrases proposed by our memory-based baseline 
model on the validation set, w ith the corresponding oracle coordinate phrases, where 
the oracle subtrees are correct. For each correct NP coordinate phrase in the oracle

^According to the POS bracketing guidelines [Santorini, 1991] the correct sequence of POS tags 
should be NN NN.
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trees that did not exist in the trees selected by the baseline model, we retrieved the 
(incorrect) sub-tree from the baseline model set that contained the same coordinating 
conjunction. We then aligned the two subtrees so that they spanned the same number 
of words. We did not ahgn trees where the oracle and baseline model tree contained 
crossing brackets.^ Figure 6.2 demonstrates how trees were aligned. Tree 1 contains the 
correct coordination dependencies which occurred in the oracle tree. Tree 2 shows the 
corresponding coordinate noun phrase returned by the baseline model. Tree 3 shows 
the oracle tree subtree after the oracle and baseline subtrees have been aligned.

Out of a total of 190 coordinate noun phrases, including base noun phrases, where 
the oracle subtree was correct and the baseline model subtree incorrect, 156 trees were 
aligned in this manner. This left us with a set of 156 paired coordinate noun phrases, 
where each pair contained the incorrect structure chosen by our model as well as the 
correct version of the subtree.

Aligning trees allowed us to easily examine the types of error being made in co­
ordinate structures. We could also compare the probability estimates the generative 
reranker gives for the two trees. We found that for 25% of the pairs, the correct coor­
dinate sub-tree was correctly assigned a higher probability, this despite the fact that 
this structure was not the structure that ends up in the highest scoring parse according 
to our model. One reason this might occur could be to do with factors unrelated to 
the coordinate noun phrase in question but instead related to the probability given to 
other structures in the tree of which the coordinate NP is but a component. This is 
discussed further in §7.4. Another reason this phenomenon occurred was because the 
probabilities we compared for the two subtrees do not take into account the probabil­
ities of the head word (and head POS tag, non-terminal label etc.) of the subtrees, 
given their previously generated parse structures. These missing generative terms can 
have an important effect, particularly when the heads of the two subtrees are differ­
ent, which was the case to a significant extent in the aligned trees. In such cases, the 
probabihties of the subtrees are to some extent incomparable.

The choice of head affects the various dependencies in the model. Head-finding rules 
for coordinate NPBs differ from coordinate NPs.'* Take the following two versions of

^Two trees contain crossing brackets if the constituents in one tree cross over constituent boundaries 
in the other tree. See [Manning and Schiitze, 2001, p. 434] for an explanation, with illustration, of 
crossing brackets.

^The head rules used in the baseline model can be found in the Appendix of [Collins, 1999].



N PB

N P B b u s in e s s

N P B

N P B

b u s in e s sin d iv id u a l

Figure 6.2: Tree 1: The correct oracle coordinate NP. Tree 2: The incorrect coordinate 
NP returned by the baseline model. Tree 3: The oracle tree aligned with Tree 2.
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the noun phrase hard work and harmony:

(g) (NP (NPB hard work and harmony))

(h) (NP (NP (NPB hard work)) and (NP (NPB harmony))).

In the first example, harmony is chosen as head word of the NP; in example (h) the 
head of the entire NP is work. In the case of two coordinate NPs which, as in the 
above example, cover the same span of words and differ only in whether the coordinate 
noun phrase is fiat as in (g) or structured as in (h), the choice of head for the phrase is 
not particularly informative. In both cases the head words being coordinated are the 
same and either word could plausibly head the phrase; discrimination between trees in 
such cases should not be influenced by the choice of head, but rather by other, salient 
features that distinguish the trees.®

6.3.1 M odifying the N P B  H ead-Finding Rules

In order to avoid discrimination based on the difTering head-finding rules of coordinate 
NPs and NPBs, we would like to alter the head-finding rules for coordinate NPBs so 
that the word chosen to head the entire coordinate noun phrase would more often 
coincide with that chosen in non-base noun phrases. One of the difficulties lies in 
detecting which are the two nouns being coordinated. A rule that, for example, would 
always choose the noun to the left of the CC to head the base noun phrase, risks 
choosing an obviously incorrect head in a phrase such as French and German cars, 
where the nominal modifiers are coordinated and the head of the noun phrase is clearly 
cars.

[Collins, 1999, p. 238] gives the head-finding rules used in the Collins parser. As 
there are no rules explicitly for base noun phrases we can assume they are the same 
as the rules for noun phrases. Coordinated phrases have their own special treatment 
with regard to head-finding. NPBs are not treated as coordinated phrase in the Collins 
model (for reasons discussed in §1.3). In coordinate phrases the head always comes 
before the CC node, but this is not the case for NPBs. Generally in NPBs the right­
most noun is chosen to head the phrase. For example, in a base noun phrase such

^For example, it would be better if discrimination was largely based on whether hard modifies both 
work and harmony (g), or whether it modifies work alone (h).



as NPB  —> nourii CC nourij nourik, the head of the phrase is (usually) the rightmost 
noun in the phrase.

In our model, in a base noun phrase with a sequence of children:®

nouui CC nourij nouuk

the head rules remain unchanged and the head of the phrase is, as before, (usually) the 
rightm ost noun in the phrase. T hat is, when the pattern  nourii CC nourij nourik occurs 
- when nourij is immediately followed by another noun - the default is to assume nom­
inal modifier coordination and the head rules stay the same. In such cases the bilexical 
coordinate head-head dependencies of §4.3.2 are modelled as PcoordWord{nouni\nounj).

The slight modification to the head rules for NPBs th a t we make is as follows: 
when nourij is not immediately followed by a noun, in any NPB containing the pattern  
nourii CC nourij, then the noun chosen to head the entire phrase is the noun preceeding 
the CC: nourii. (This alteration to the original head-finding rules is not implemented 
if there is more than  one CC node in the NPB.) The head-head dependencies in such 
cases are then modelled as PcoordWord{nounj\nouni).

In addition, if the following pattern  occurs: N PB C{ CC Cj, where the label 
Ci is the same as the label Cj, and both nodes are pre-terminals, then, in the new 
head-finding rules, the head of the phrase is the node labelled Ci. Note th a t there is 
no requirement th a t the labels be nouns.

These two modifications to the head-finding rules are both aimed at making the 
rules for coordinate NPBs more similar to those for coordinate NPs for the reasons 
outlined in §6.3. We do not, however, suggest th a t the head rule modifications proposed 
here off’er a complete solution. In a phrase such as dolls and toy cars, for example, 
dolls would be the head chosen if the phrase were (incorrectly according to the Penn 
guidelines) given internal structure, as in (NP (NP (NPB dolls)) and (N P (NPB toy 
cars))). On the other hand, even with the modified rules, in the tree (N PB dolls and 
toy cars), cars would be the head word. Altering the head rules also had side-effects 
which necessitated new features for the generation of modifier nodes with NPB parents, 
which we discuss in more detail in §7.3.3.

®Note there can be other children to the left or right of this sequence.



6.4 R elation to  P revious Work

Heuristics to detect particular inconsistencies in treebank annotation have been ex­
plored before, for example, when deriving a categorical grammar style annotation from 
Penn Treebank trees in [Hockenmaier and Steedman, 2005]. Blaheta [2002] charac­
terises types of errors in inconsistency in corpus annotation and also gives examples of 
inconsistency detection using rules which search for specific inconsistencies. More gen­
eral approaches to treebank inconsistency detection, which do not rely on hand-crafted 
heuristics, are outlined in Dickinson and Meurers [2005]. In testing their method they 
take a similar approach to us insofar as they eliminate the noisy events. Their method 
was tested on the WSJ corpus by retraining a PCFG parser on the training data after 
having eliminated all rules in the training data that arose from local trees considered 
to be errors by the method. They then compared the result with the parser trained 
on the original training set. The result on an (unchanged) section 23 showed small yet 
significant increases in precision and recall.

6.5 Sum m ary

We have shown that coordinate noun phrase data appears to be particularly noisy in the 
WSJ Penn Treebank. Inconsistencies in coordinate noun phrase data make it harder 
for a model to learn the correct bracketing for coordinate NPs. We demonstrated that 
for some of these inconsistencies it is possible to automatically detect when an NP tree 
in the treebank is not bracketed according to the Penn treebank bracketing guidelines. 
In chapter 7 we will use this automatic detection of inconsistent trees to clean noisy 
data in the training and test sets.

In this chapter we also described a useful method to facilitate error analysis and 
discussed how differing head-finding rules for NPs and NPBs can negatively affect 
coordination disambiguation. We suggest a minor alteration in the head-finding rules 
for coordinate base noun phrases so that the lexicalisation process for coordinate NPBs 
is more similar to that of other NPs. In Chapter 7 we demonstrate the efltects of 
changing the NPB head-finding rules on the accuracy of the model.
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Chapter 7 

Experimental Evaluation - 
Coordination

7.1 Introduction

This chapter gives the details of our experiments on improving NP coordination disam­
biguation, implementing the ideas of the previous chapters. We begin by outlining how 
we select our coordination test and validation sets and under what criteria a coordina­
tion dependency is taken to be correct. We then step through each set of experiments, 
from those involving eliminating noisy data  from the training set, to the introduction 
of param eter classes th a t capture symmetry in conjunct structure, to changes in the 
NPB head-finding rules, to the experiments on modelling conjoined head words. We 
show the effect of each experiment on the validation set, the overall effect on the test 
set, and conclude with a discussion of the results achieved.

7.2 Experim ental Evaluation

For our experiments on coordination disambiguation our baseline model is th a t de­
scribed in C hapter 3, where /c-NN is used for param eter estimation. As in Chapter 3, 
the experiments outlined in this chapter take place in the context of parse reranking, 
where the n-best output from Bikel’s parser is reranked according to our parsing model. 
Sections 02 to 21 are again used for training. The coordination test set is taken from
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section 23 and the coordination vaHdation set taken from the remaining WSJ sections. 
Only sentences containing 40 words or less were used for testing and validation.

As outlined in §6.2 the Penn Treebank guidelines are somewhat ambiguous as to 
the appropriate bracketing for coordinate noun phrases which consist entirely of proper 
nouns. We therefore do not include, in the coordination test and validation sets, 
coordinate noun phrases where in the gold standard NP the leaf nodes consist entirely 
of proper nouns (or CCs or commas). In doing so we hope to avoid a situation whereby 
the success of the model is measured in part by how well it can predict the often 
inconsistent bracketing decisions made for a particular portion of the treebank.

In addition, and for the same reasons, a tree is not included when calculating co­
ordination precision and recall of the model if the gold standard tree is inconsistent 
with the guidelines in either of the following two ways: the gold tree is a noun phrase 
which ends with the sequence CC/non-nominal modifier/noun; the gold tree is a struc­
tured coordinate noun phrase where each word in the noun phrase is a noun (recall 
from §6.2 that for this latter case the noun phrase should be fiat - an NPB - rather 
than a noun phrase with internal structure). Call these inconsistencies type a and type 
h respectively.

In total, 296 coordination dependencies were excluded in this manner from the 
validation set and 134 coordination dependencies excluded from section 23. This left us 
with a coordination validation set consisting of 1064 coordinate noun phrase (including 
base noun phrase) dependencies and a test set of 416 coordinate NP/NPB dependencies 
from section 23.

A coordinate noun phrase dependency was deemed correct if the parent constituent 
label, and the two conjunct node labels (at level 0) match those in the gold subtree 
and if, in addition, each of the conjunct head words are the same in both test and 
gold tree. This follows the definition of a coordinate dependency in [Collins, 1999]. As 
in [Collins, 1999] all labels which are part-of-speech tags are relabelled TAG in order to 
avoid errors in tagging being counted as dependency errors. In our tests, for NPBs the 
first conjunct was taken to be the head node of the phrase, using the original head rules. 
The second conjunct was taken as the node generated directly after the coordinating 
conjunction. Based on this criteria, the baseline /-scores for test and validation set 
were 69.1% and 67.1% (see Table 7.1) respectively. The coordination /-score for the 
oracle trees on section 23 is 83.56%. In other words: if an ‘oracle’ were to choose
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M odel /-score significance
1. Baseline 67.1
2. N oiseE lim ination 68.7 >  1
3. Sym m etry 69.9 >  2, >  1

4. N PB  head  rule 70.6 NOT >  3, >  2, >  1

5. P c o o rd W o rd  ^^SJ 71.7 NOT >  4, >  3, »  2

6. BNC d a ta 72.1 NOT >  5, >  4, »  3

7. s im{wi ,wp) 72.4 NOT >  6, NOT >  5, »  4

Table 7.1: R esu lts  on th e  V alidation  Set. 1064 coord inate  noun phrases dependen­
cies. In th e  significance colum n >  m eans a t level .05 and ^  m eans a t  level .005, for 
M cN em ar’s te s t of significance. R esults are cum ulative.

from each set of n-best trees th e  tree  th a t  m axim ised co n stituen t precision and recall, 

then  th e  resu lting  set of oracle trees would have a  N P coord ination  dependency /-score 

of 83.56%. For th e  validation  set th e  oracle trees coord ination  dependency /-score is 

82.47%. T he labelled precision and recall scores for th e  oracle and  baseline trees for 

section 23 are displayed in T able 7.2.

7.3 Experim ental D etails and R esults

In th is section we give a  breakdow n of resu lts on th e  validation  set (see Table 7.1), as 

well as th e  overall resu lts of all experim ents on th e  coord ination  dependency /-score of 

section 23 (see T able 7.2). R esu lts rep orted  on th e  validation  set are cum ulative. All 

s ta tis tica l significance te s ts  were carried  out using M cN em ar’s te s t [D ietterich, 1998] 

for significance, baised on th e  num ber of co rrec t/in co rrec t coord ination  dependencies 

in th e  d a ta  sets.

7.3.1 E lim inating N oisy  D ata

O ur first experim ents consisted of a tte m p ts  to  reduce noise in th e  tra in in g  da ta . We did 

th is by au to m atica lly  d e tecting  type  a and type  b inconsistencies (defined in Section 7.2) 

and eU m inating th em  from  th e  tra in in g  set. T he efTect of th is on th e  validation  set 

is outlined in T able 7.1 (row 2). E lim inating  th e  noisy d a ta  resulted  in a s ta tistica lly  

significant {p < 0.005) im provem ent in coord ination  accuracy, w ith  th e  /-score rising
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from the baseUne 67.1% to 68.7%.

7.3.2 M odelling Sym m etry in Conjunct Structure

Our next changes to the basehne model involved implementing the parameter classes 

described in §5.3, which aim at introducing a bias toward parallehsm in conjunct 

structure. For the parameter class of (5.4) in §5.3 which models the probability of 

Ch (the head child non-terminal label) in a post-CC conjunct given its history, the 

best results occurred when the parameter class was used only at depths 1 and 2 of 

the conjuncts, although the training examples for this parameter class contained head 

events from all post-CC conjunct depths. The parameter class of (5.5) in §5.3 was used 

for predicting POS tags at level 1 in post-CC conjuncts, although again the training 

set contained events from all depths. We did not restrict use of these parameters to 

noun phrases conjuncts only but used the parameter class for all types of conjunct. 

The result of the these new parameter classes was a rise in /-score accuracy to 69.9%, a 

significant (p <  0.05) rise in coordination accuracy (Table 7.1 row 3) from the previous 

score of 68.7%.

7.3.3 N P B  H ead-Finding Rule and N ew  Features for N P B s

As suggested in §6.3.1 we altered the head-finding rules for base noun phrases. At 
this point we also introduced two new types of conditioning features to the history of 

parameter class P{Ci , t i \Cp — N P B , H { i ) ) .  In the memory-based m odel presented in 

Chapter 3, three conditioning features for this parameter class are C i - \ ,  C i - 2 , and Cj_3  

(the non-terminal labels of the three previously generated nodes). Instead, we found 

it useful to chunk the three previously generated non-terminal labels together into one 

feature. The idea behind this feature was to make certain sequences, like: D T  J J  N N  

CC, more unlikely. Initially, after altering the head-finding rules, we found problems 

were being caused because generating a coordinating conjunction and subsequent nodes 

to  the right of the head word was too unlikely. We found adding a new ‘com m a’ distance 

feature for the generation of nodes to the right of the head node helped. We added a 

boolean feature which returns true if a punctuation node (w'ith POS tag or ':’) has 

already been generated as a sibling to the node in question, false otherwise. The effect 

of these changes are displayed in Table 7.1 (row 4). There was a rise in /-score from
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the previous result of 69.9% to 70.6%, though the change in coordination accuracy was 
not statistically significant.

7.3.4 M odelling Conjoined H ead Nouns

We now turn to the experimental details for the word graph described in §4.3.2. For 
building the word graph we extracted 9961 coordinate noun pairs from the WSJ training 
set and 815,323 pairs^ from the BNC. As links between pairs are symmetric this resulted 
in a total of 1,650,568 coordinate noun events stored in the graph. All words were 
collapsed to lower case, and every digit replaced by the special character &. The final 
graph consisted of 82,579 nodes, or word types.

This word graph was then used for the estimation of the parameters of the P co o rd W o rd  

parameter class introduced in §4.3. For all our experiments with P co o rd W o rd  the param­
eter class is used both for NPs and NPBs. In our first experiments we estimated 
PcoordWord from the graph without using the similarity function and used only two 
layers of back-off combined using Witten-Bell interpolation, as in:

PcoardWordi.^i\^j^  ^rij P w c i ^ i l ^ j )  P kN

where is the maximum likelihood estimate calculated from the events stored
in the graph and in P k j \ [ ] s [ { n i \H { i ) )  the history is simply the POS tag of n .̂ For the 
P k N N { n i \ H { i ) )  estimate, as with word estimates in the original baseline model, words 
occurring less than 5 times were mapped to the +UNKNOWN+ token. We found that 
in the calculation of A„̂  , above, the best results occurred when the constant C was 
set to 5, the same setting as for the Witten Bell estimations in the baseline model. 
Calculating PcoordWord in such a fashion. Table 7.1 shows the effect of this parameter 
class estimated from a word graph that contained WSJ data only (row 5), and then 
from the word graph with the addition of the BNC data (row 6).

We incorporated the similarity measure (introduced first in §4.2.1) into the estimate 
of PcoordWord i^ the manner described in §4.3.2, and repeated here for convenience:

P c o o rd W o rd iP 'i  \ )  P w c i j ^ i l ^ j ^  “I” ( 1  ^ T ij^  P s i m l n t e r p ( ^ ^ i \ ^ j ^

^Note that some of these pairs of nouns from the BNC were extracted from Usts in the manner 
described in §4.3.2.
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Model NPccPrecision NPccRecall
Baseline 66.03 74.29
FinalModel 70.46 77.40
Oracle 79.57 87.98

Table 7.2: Results for Section 23. 416 coordinate noun phrase dependencies 

where

P sim In terp (,^ i\^ j^  “I” I■ ^ (0 )

In practice it proved too computationally expensive to calculate similarity measures 
for every vertex in the graph. For the estim ation of Psimi'^il'rij) we found the best 
results were obtained when the neighbourhood of rij was taken to be the /c-nearest 
neighbours of rij  from among the nodes directly connected to ri j ,  where k is 1000. For 
the calculation of in (7.2) we set the constant C  to 10, and for the calculation of 

in (7.3) it was set to 5. As before, for the P kN N {ni\H (i)) estim ate the history was 
simply taken to be the noun rij’s POS tag. Table 7.1 shows the effect of the PcoordWord 

param eter class estim ated with the word similarity measure (row 7).

Though none of the three individual changes to model discussed in this subsec­
tion (first using PcoordWord OH WSJ alone, then on BNC d a ta  and finally with the 
similarity metric) resulted in statistically significant changes in coordination accuracy, 
taken together the changes result in a rise of /-score accuracy from 70.6% to 72.4%, a 
statistically significant result (p < 0.005).

7.3.5 R esults

The overall result on the test set of all these experiments was an increase in coordinate 
noun phrase /-score from 69.91% to 73.77%. This represents a 13% relative reduction 
in coordinate /-score error over the baseline, and, using M cNemar’s test [Dietterich, 
1998] for significance, is significant at the 0.05 level {p =  0.034). The reranker /-score 
for all constituents for section 23 rose slightly to 89.6%.^

Finally, for the sake of completeness, we report results on an unaltered coordination

^This is the evalb score on the full trees of section 23, not excluding any coordinate NPs.
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test set, th a t is, a test set from which no noisy events were eUminated. The baseUne 
coordination dependency /-score for all NP coordination dependencies (550 dependen­
cies) from section 23 is 69.27%. This rises to 72.74% when all experiments described 
in Section 7.3 are applied, which is also a statistically significant increase {p =  0.042).

C om paring C oord in ation  R esu lts  w ith  P rev iou s W ork on C oord ination  D is­
am biguation

Though the work of [Resnik, 1999, Goldberg, 1999, Nakov and Hearst, 2005] on co­
ordination disambiguation is also tested on W SJ data, it is nevertheless not possible 
to compare our coordination disambiguation results with the results of these other 
systems. As discussed in more detail in §2.6, the approaches of both [Resnik, 1999] 
and [Nakov and Hearst, 2005] aim to show more structure than is shown in trees follow­
ing the Penn guidelines, whereas in our approach we aim to reproduce Penn guideline 
trees. The learning task is therefore different. In the probabilistic approach to coordi­
nation disambiguation of Goldberg [1999] the system is tested on a particular type of 
coordination construction involving prepositional phrases. While this type of construc­
tion does form a proportion of our test set it is nevertheless difficult to compare results. 
Firstly, Goldberg [1999]’s system in not tested on a test corpus. In addition, results are 
given only for a development set of 500 phrases extracted from the annotated treebank 
and with no details given on which WSJ sections the examples were extracted from.

Finally, again as discussed in §2.6, the discriminative reranker of Charniak and 
Johnson [2005] contains coordination specific features and is tested on Section 23 of 
the Penn Treebank. However the effect on coordination disambiguation is not tested, 
only the labelled precision and recall /-score results for all constituents are given. As 
both the [Charniak, 2000] base parser and the [Charniak and Johnson, 2005] reranker 

are widely available we carried out an experiment to compare the NP coordination 
dependency score of the base parser and the discriminative reranker. Taking the out­
put of the Charniak base parser and the Charniak and Johnson reranker on section 
23, we calculated the NP coordination dependency /-score in the fashion described 
in §7.2, for the same test set of 416 coordinate NPs. The base parser achieves a co­
ordination dependency /-score of 72.05%, which increased to 80.22% for the reranking 
parser. A lthough both  results are impressive they are not directly comparable to the
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results reported for our baseline model and reranker. Firstly, the Charniak base parser 
is not identical to the Collins parser and achieves a considerably higher labelled preci­
sion/recall /-score to both the Collins parser and the model described in C hapter 3 of 
this thesis. Thus one would expect the baseline coordination results to be higher for 
the Charniak parser. For the reranking experiments, the Charniak parser also produces 
higher quality n-best lists than  the Collins parser (and than  Bikel’s emulation of the 
Collins parser)^ which tends to lead to higher reranker scores (see discussion § 2.3.1). 
Finally, the reranking parser is discriminative and includes some 1,148,697 features, 
of which only 32 are coordination-specific features. Thus, many features contribute 
to the selection of the best tree from an n-best list and it is not possible to say to 
what extent the high coordination dependency score for the reranking parser is due to 
the coordination-specific features or due to other factors which contribute to picking 
overall high-scoring trees.

7.4 D iscussion

To some extent it is difficult to discern the individual effect of each change to  the 
baseline model, although we a ttem pt to do so in Table 7.1 where the statistical signif­
icance of the individual changes are noted. However, judging from our experiments, 
we suspect th a t it is the joint effect of several of the changes taken together th a t is 
im portant in term s of improving accuracy.

Introducing the PcoordWord param eter class for both noun phrases and base noun 
phrases, and estim ating PcoordWord from the word graph, clearly helps disambiguation. 
In the word graph, data  sparseness is decreased because each collected event is made 
symmetric, and list da ta  from the BNC is included. Storing the bilexical d a ta  in a 
graph is a convenient way of conceptualising the data, allows for compact storage, and 
lends itself easily to measures of word similarity based on vectors. However, the effect 
of using the similarity function was somewhat disappointing as it increased accuracy 
only to a small, almost negligible, degree. In §8.2.4 we look a t ways the word graph 
and similarity estim ates might be improved upon.

A disadvantage of focusing on coordinate errors within a reranker setting is th a t,

^Charniak and Johnson [2005] report an oracle f-score score of 96.8% whereas [Huang and Chiang, 
2005] report an /-score of less than 94.9% for Collins’ n-best lists.



for validation and testing, results can be obscured somewhat due to the fact that any 
coordinate structure being evaluated is attached to a whole parse tree and a particular 
parse tree is chosen as the most probable parse of a sentence due to many factors, 
not only its coordinate structures. If the only difference between two parses were the 
coordinate structure this would not be problematic. However this is not always the 
case. Thus it is possible that some change to the model might result in the correct 
coordinate structure in a particular parse being assigned a higher weight than other 
incorrect coordinate structures in the n-best list of parses, but the reranker neverthe­
less gives the entire tree, of which the correct coordinate sub-tree is but a component, 
a lower probability than that assigned some other tree containing an incorrect coordi­
nate structure. To illustrate the point: The oracle set of trees are those trees which 
score overall highest on precision and recall. In the validation set of top-scoring trees 
according to our final model there are a total of 130 coordinate noun phrase depen­
dencies which are incorrect and which are correct in the oracle set. Yet there are 17 
examples of dependencies in our final set which are correct but which are incorrect in 
the oracle set. This occurs because in the n-best list there is no tree which contains 
both the correct coordinate structure as well as the best scoring syntactic structures 
for the rest of the tree. This phenomenon means also that an improved coordinate 
score has somewhat unpredictable effects on the overall parsing /-score. For example, 
improvements in coordinate /-score in the validation set led to no change in the overall 
/-score, whereas in section 23 the /-score rose slightly from 89.4% to 89.6%. This effect 
could be mitigated if, rather than reranking the top n trees, the generative model were 
applied to the full output of the base parser, possible through dynamic programming 
on a packed representation of the trees. This is a potentially fruitful area of future 
work.

7.5 Sum m ary

Our evaluation of coordinate disambiguation is based on coordinate noun phrase de­
pendencies from section 23 of the Penn WSJ. Although our experiments are focused 
on making improvements in noun phrase coordination, the context of the experiments 
is generative reranking - that is each parse tree is given an overall probability based 
on the full generative parsing model and not just on the score for the coordinate noun
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phrases in the tree. We show how various changes in the baseUne parsing model, sug­
gested in previous chapters, lead to statistically significant improvements coordination 
disambiguation in the test set. The overall result on the test set was an increase in 
coordinate noun phrase /-score from 69.91% to 73.77%, which represents a 13% relative 
reduction in coordinate /-score error. In the next and final chapter we conclude and 
discuss future work that might further improve this score.
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Chapter 8

Conclusions and Future Work

8.1 Sum m ary

In this thesis we have dem onstrated how a generative parsing model which uses varia­
tions of the /c-nearest neighbour algorithm to estim ate the local posterior distributions 
of the model can achieve state-of-the-art accuracy scores when tested in a reranking 
setting. By further decomposing the local probabihty distributions of the base model, 
enriching the set of conditioning features used to estim ate the model’s parameters, and 
using A:-NN as opposed to the W itten-Bell estim ation of the base model, we achieve an 
f-score of 89.4%, which is a 6% relative decrease in /-score error over the 1-best output 
of the base parser. This score was increased to 89.6% when the model was altered to 
improve its ability to correctly disambiguate coordinate noun phrase structures.

Noun phrase coordination is the worst performing area of the parsing model and a 
major focus of this thesis was on increasing understanding of coordinate noun phrase 
ambiguity in order to develop techniques to improve the model’s handling of coordi­
nate NP disambiguation. To this effect we gave an empirical analysis of noun phrase 
coordination in the annotated W SJ. Coordination disambiguation necessitates infor­

mation from a variety of sources to help make the final disambiguation decision and 
our multi-faceted approach to improving coordinate noun phrase disambiguation has 
reflected this fact. We presented a variety of methods which succeeded in increasing 
coordinate noun phrase dependency /-score from 69.91% to 73.77% - a 13% relative 
reduction in coordinate /-score error.
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The remainder of this section outUnes in more detail the conclusions of this thesis 
on memory-based param eter estim ation and coordinate noun phrase disambiguation.

8.1.1 M em ory-Based Param eter E stim ation

We have explored a variety of param eter estimation techniques based on k-NN.  We 
found it useful to employ a constraint feature mechanism whereby the number of ex­
amples in the training set used for param eter estim ation was restricted according to the 
values of a set of constraint features. This helped both in terms of accuracy and speed, 
the latter a particularly im portant factor in order to make A:-NN a feasible option in the 
domain of param eter estim ation in generative parsing. In addition, we found th a t com­
bining the k-NN  estim ates with the original W itten-Bell estimates improved accuracy 
for the param eter class used to estim ate the probability of constituent head words. We 
combined the A:-NN and W itten-Bell estimates for this param eter class, backing off to 
the original W itten-Bell estim ate, using a variation of W itten-Bell interpolation where 
interpolation weights are derived from the count of the constraint features values in 
the training set.

We also developed a param eter estimation technique for a param eter class which 
models bilexical coordinate noun data, PcoordWord{wi\Wp, H( i ) ) .  For these estimates 
there were three levels of back-off. The most specific was a maximum likelihood esti­
m ate from da ta  stored in a word graph. The word graph consisted of d a ta  not only 
from the W SJ data  set but also from the unannotated BNC data, which helped to de­
crease data  sparsity. In addition, sparseness is decreased because each collected event 
is made symmetric. Using W itten-Bell interpolation we backed off to a more general 
estim ate which included words similar to Wp in the training set, again w ith the aim of 
reducing d a ta  sparsity. This la tter estim ate was another variation on the k-NN algo­
rithm , where instead of the inverse of the overlap metric, similarity of two instances is 
based on a distributional word similarity measure. This estim ate was in tu rn  combined 
with a final layer of backoff where the history was taken to be the POS tag of the word, 
estim ated from WSJ data. The technique used to combine the final two estim ates is 
inspired by W itten-Bell estim ation where interpolation weights are derived from the 
count of each word, w^,  in the neighbourhood of Wp and weighted by the similarity of 
Wp and Wx-
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Although adding a level of backofT to the estim ate which incorporated the simi­
larity function gave only a small increase in accuracy, we believe this is an area of 
future potential. Though techniques have been developed independently to incorpo­
rate measures of lexical similarity into probability estim ates (see §2.5), to the best of 
our knowledge, none have before been integrated into a parsing model. In §8.2.4 we 
discuss ways the similarity-based estim ate might be improved upon.

8.1.2 N oun Phrase Coordination Disam biguation

In our analysis of noun phrase coordination in the annotated WSJ we looked at incon­
sistencies in the annotation of the treebank. We found th a t noun phrase coordination 
in the treebank appears to be quite noisy and discussed how this negatively affects 
coordinate noun phrase disambiguation. We showed how some of these inconsistencies 
could be detected autom atically and how this detection method could be used to clean 
the data.

We also described a method to facilitate error analysis, which involved aligning 
incorrect coordinate subtrees, ou tput from the memory-based baseline model, with the 
correct version of the subtree. We discussed how the differing head-finding rules for 
noun phrases and base noun phrases are a potential source of coordination error and, in 
order to minimise this source of error, we made a slight alteration to the head-finding 
rules for base noun phrases so th a t the lexicalisation process for coordinate NPBs is 
more similar to th a t of other NPs.

Our analysis on parallelism in conjunct structure supports th a t of previous work 
[Dubey et al., 2005] and in addition shows th a t a significant level of parallelism is 
evident in the syntactic structure of conjuncts at depths greater than  one, though 
decreasing with conjunct depth. We showed how the mechanism used in the empirical 
analysis for aligning nodes in post-CC conjuncts with nodes in pre-CC conjuncts can 
be incorporated into the probability model in order to encourage the model to give 
more weight to syntactic structures which exhibit parallehsm.

On semantic similarity between coordinate head nouns we showed th a t a number 
of different similarity measures, both distributional and WordNet-based, could detect 
th a t nouns th a t occur together in a coordination pattern  are often similar. We also 
show how the dependencies between conjoined head nouns are not adequately modelled
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in the baseline model and developed an alternative that attempts to capture head-head 
dependencies in both NPs and base NPs.

8.2 Future Work

The variations of fc-NN for parameter estimation and Witten-Bell interpolation devel­
oped in this thesis were successful at increasing the overall accuracy of parsing model, 
as well as its coordinate noun phrase accuracy. We believe that parameter estima­
tion might be further improved by further research in a number of areas, outlined in 
this section. We also present ideas for further improving NP coordination disambigua­
tion and discuss how the generative model can be applied to second-pass parsing and 
discriminative reranking to improve overall parsing accuracy.

8.2.1 Feature W eighting

The parameter estimation techniques presented in this thesis (Chapter 3) did not use 
feature weighting. Although we did carry out preliminary experiments in information 
gain and gain ratio feature weighting, they did not improve results. However, intu­
itively it would seem that some features are clearly more important than others. One 
possible reason that preliminary experiments in information gain and gain ratio feature 
weighting did not improve results could be that these are global feature weights. It is 
possible that more local feature weighting techniques, such as feature weights based on 
feature values might be more suitable, for example the value difference metric [Stanfill 
and Walz, 1986] or the modified value difference metric [Cost and Salzberg, 1993], as 
described in [Daelemans and van den Bosch, 2005, p. 38]. In addition, our feature 
selection method was a mostly manual hill-climb and an approach to feature selection, 
such as backward sequential selection, might help ensure that the optimal feature sets 
for each parameter class are chosen.

8.2.2 C onstraint Features

It would be interesting to carry out more experiments with the constraint feature 
mechanism. In particular, we would like to increase the number of constraint feature
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sets used. With the current mechanism, depending on the particular feature values, 
there can be huge differences in the number of samples retrieved at the same level of 
constraint feature set. For example, the parameter class P{Ch\H{i)) has one constraint 
feature set, {Cp}, containing one feature Cp (the nonterminal label of the parent of the 
node with label Ch)- If this has the value NP ,  239,018 samples will be retrieved as the 
initial training set for the /c-NN estimate. If, on the other hand, Cp = W H A D J P  only 
71 samples will be retrieved. A mechanism whereby, when there are very few samples 
at the most general level of constraint feature, then another feature is chosen as the 
constraint feature, might help ensure a minimum number of retrieved samples.

8.2.3 Sm oothing

For most parameter classes we used the smoothing mechanism for A:-NN of [Toutanova 
et al., 2003], where in order to avoid zero probabilities we added artificial instances to 
the training set, one for each class value. It is possible that more sophisticated smooth­
ing might improve the estimates. Combining the /c-NN estimate with the Witten-Bell 
estimate for the P{wi\H{i)) parameter class gave an improvement in accuracy over 
both of the estimates when taken in isolation. It is possible that this approach could 
work also for the other k-NN estimates.

8.2.4 W ord Graph and Sim ilarity Function

There are three main areas of future work which have the potential to improve the word 
graph-based estimation techniques described in Chapter 4: expanding on and cleaning 
the data stored in the word graph, improving techniques for the efficient retrieval of 
the A:-nearest neighbours, and experimenting with different similarity functions.

The data in the word graph could easily be increased, and sparsity thus reduced, 
by incorporating coordinate events from other unannotated sources as well as more 
events from the annotated WSJ. Although including data from sources other than the 
WSJ might be good for parser adaption [McClosky et al., 2006b], results on the WSJ 
could be improved if unannotated corpora of a similar genre were used. More careful 
selection of events, similar to the selection of unambiguous coordinations in Goldberg 
[1999], could also help to reduce noise in the graph. The annotated WSJ is a good 
(albeit somewhat noisy) source of data. We did not collect head-head data from NPBs
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in the WSJ because of possible ambiguities. However, we intend to extract data from 
unambiguous coordinate NPBs from the annotated W SJ, such as base noun phrases 
with the following form: (NPB (noun CC noun)). This, as well as including nouns 
from lists in the hand-parsed W SJ, could help against da ta  sparsity.

In the tests described in Chapter 7, for the estimation of Psijn{ni\nj) we searched 
for the nearest neighbours of rij only from among the nodes directly connected to rij.  

In order to expand the search space and possibly return  nearer/better neighbours it 
would be worthwhile to widen the search space as much as is practical, perhaps looking 
again to a model of retrieval whereby a less costly measure could be used to retrieve 
an initial set of nearest neighbours to be reduced in turn  to k neighbours by the more 
sophisticated similarity measure.

In term s of the actual similarity measure used, Lee [1999] compares several different 
lexical similarity measures for lexical cooccurrence smoothing and found the a-skew 
divergence outperformed the cosine similarity metric. Experimenting with different 
similarity measures would be an interesting area of future work.

Finally, as the word graph estim ation technique improved coordination disambigua­
tion, we think it is worth extending to nouns appearing in lists (after all, the data  in 
the graph is part extracted from lists in the BNC). For example, take the phrase:

(NPB (NNP Paris)(, ,)(N N P  Brussels) (, ,)(C C  and)(NNP Milan))

Currently, the PcoardWord{'<Ĵ i\Wp̂  H{i))  param eter class is used to estim ate Pcocn-dWordiwi =  
M ilan\wp  =  B russels). We would like to investigate using the same param eter class 

to estimate, PcoordWordi'^i =  Paris\wp = B russe ls).

8.2.5 M odelling D ependencies Across CCs

Another information source im portant to NP coordinate disambiguation is the depen­
dency between non-nominal modifiers and nouns which cross CCs in NPBs. Modelling 
this type of dependency could help the model learn th a t the phrase the cats and dogs 
should be bracketed flat, whereas the phrase the U.S. and Washington should be given 
structure. How best one might model these dependencies for parse disambiguation is 
an open area of research.
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8.2.6 C leaning N oisy  D ata

Results might improve if, rather than  merely eliminating noisy events, some of the 
suspect trees were manually corrected to reflect the Penn guidelines. Correcting the 
inconsistent coordinate noun phrases which end with the POS pattern  CC/non-nominal 
modifier/noun, for example, would involve adding structure, or perhaps merely chang­
ing POS tags, for some 202 subtrees.

8.2.7 Second-Pass Parsing and D iscrim inative Reranking

The accuracy of the parsing model described in this thesis might be improved on sig­
nificantly if, rather than  being limited to reranking the top-n trees of a base parser, 
it were applied to the full output of the base parser. Discriminative rerankers have 
advantages over history-based approaches in th a t they are not restricted to choosing 
features from the parse derivation history but instead can use additional features which 
incorporate arb itrary  aspects of the whole parse tree to improve the initial ranking of 
the base parser. However, the disadvantage of a generative model in terms of feature 
selection compared to discriminative rerankers is also its advantage insofar as its limi­
tations on feature selection enable the generative model to use dynamic programming 
techniques on a packed representation of trees and therefore search over a larger space 
of possible trees. Applying the generative model as a second-pass of a parser would 
exploit the full potential of the generative approach.

The generative model outlined in this thesis might also be useful for producing 
the log probabilities for a discriminative reranker. Our generative model improves 
the ranking of an initial base parser by recalculating the log probability of each parse 
produced by the base parser and so produces a more accurate ranking of parses along 
with their log probabilities. It is possible th a t improving the log probability ranking of 
a base parser could improve the scores of the discriminative reranker which uses these 
log probabilities in its reranking algorithm.

Finally, in future work we will extend our experiments to sentences of all lengths, 
not only sentences of <  40 words. Longer sentences tend to have more conjunctions 
and therefore the improvements in coordinate noun phrase disambiguation could be 
especially beneficial for longer sentences.
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