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Summary

This thesis studies threshold nonlinearity in time series using TSMARS, a time series extension of the 

Multivariate Adaptive Regression Splines (MARS) procedure of Friedman (1991a). MARS is model free 

and can detect and measure linear and curvilinear structure in data. In this thesis this is used to assess 

the degree of nonlinearity in empirical time series in official statistics published by the Central Statistics 

Office (CSO).

For this research Friedman’s (1991a) MARS algorithm has been coded from scratch in SAS/IML. This 

has facilitated the study of empirical series that possess seasonality, outliers, and dependent errors. Each 

of these require extensions that are novel to TSMARS. These extensions are an important contribution of 

this thesis.

In Chapter 2 the SAS/IML TSMARS algorithm is described in detail. In simulation studies this program 

gives statistically equivalent results Friedman’s original version (1991a).

In Chapter 3 a rigorous set of simulation studies are conducted to examine how integrated and seasonal 

time series should be modelled with TSMARS. We show that differencing integrated data improves the 

precision of the estimates. Simple seasonal models that are novel are also introduced. These distinguish 

so called regime dependent seasonality from simpler non-regime dependent forms. These are studied to 

decide whether prior seasonal adjustment is likely to affect TSMARS estimates. We show that this is not 

the case. Furthermore, we show that it is prior seasonal adjustment that changes the characteristics of 

the series and not TSMARS.

Chapter 4 provides an empirical investigation of a test-bed of twenty seasonal and non-seasonal CSO 

time series using four different and sophisticated TSMARS modelling variations. Novel aspects of these 

variations include seasonal adjustment prior to TSMARS modelling and modelling with variables lagged 

at 1, 2, 3, 12 and 13 past periods, to name only two. Independent predictors are also used to control for 

fixed effects such trading day factors. The key purpose of this modelling procedure is to look for and 

measure the level of nonlinearity in CSO Series. A key conclusion of this chapter is that nonlinearity is 

shown to be only present to a small degree. In virtue of the autoregressive nature of the modelling we 

stress that this conclusions is incomplete as outliers and moving average components may alter it.

In Chapter 5 TSMARS is examined from a forecasting perspective - this is novel research. Here, based 

on cross validation, we show that TSMARS gives consistent forecasts for simple linear and nonlinear time 

models. The chapter also provides one year ahead (i.e. 12-steps) forecasts for the empirical CSO data 

using a cross validation approach. The accuracy and precision of the forecast error is reported.

Chapter 6 implements a novel outlier treatment methodology in TSMARS. This is called the Conditional 

Model Outlier Treatment (CMOT) procedure. We prove that this approach ensures that the model 

selection mechanism in TSMARS is consistent in the presence of outliers.

Three different adjustment procedures are also set out; namely, Least Squares (LSAO), Bounded 

Influence (BIF) and Time Series (TSAO). The LASO method is ideal when residuals are independent. The 

BIF method is suitable when the residuals are independent but may deviate from normality. The TSAO
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method is specific for autoregressive, threshold and additive model time series and we prove this method 

models the error process correctly in these cases. Simulation studies show that these treatment 

procedures make TSMARS consistent; that is, TSMARS is more likely to choose a correct model type in 

the presence of an outlier. Both the CMOT procedure and these three outlier treatment mechanisms are 

important contributions to TSMARS and to the subject of robust methods generally.

The outlier adjustment procedures are also run on the ‘test-bed’ of twenty economic time series and we 

find no evidence to alter the conclusions of Chapter 4 - that is, nonlinearity is only present to a small 

degree. Moreover, we find that the nature of the models found suggest that dependent errors may be 

more appropriate to model the twenty empirical CSO series.

In Chapter 7 we extend TSMARS to incorporate moving average (MA) components. This is a particularly 

significant development of the program as many economic time series are better modelled with MA rather 

than AR terms. This extension allows TSMARS to identify SETMA, ASTAR and ASTARMA models; both 

ASTMA and ASTARMA are novel model forms.

To gain efficiency we implement parsimonious MA estimation using conditional least squares (CLS) 

based on a Gauss-Newton procedure. We use two variations of the methodology; namely, Jacobi and 

Seidel iteration schemes. There are a number of important innovations. The Jacobi iteration de-couples 

regimes and estimates each separately. This Jacobi iteration is only used for finding the threshold as the 

residual sum of squares (RSS) in this step is not too sensitive to the method. Final estimation uses the 

regime dependent Seidel iteration to ensure accurate estimates. In simulation studies this new 

methodology is shown to be statistically sound.

Attention is then returned to TSMARS with MA component estimation of the empirical CSO series. The 

results show no improvement over earlier estimates. However, simpler more stable models are found 

showing that MA components better explain the nature and extent of nonlinearity of CSO series. This is a 

significant finding.

In Chapter 8 predictive intervals for TSMARS models are computed. We use two novel variations of 

existing parametric and nonparametric bootstrap methods. These ensure that the intervals account for 

explicit dependence of forecast on the last p values of a p'^ order model of a time series. We conduct 

simulation studies that show the predictive intervals obtained for simple linear models are close to those 

obtained elsewhere. Moreover, we apply our methods to simple threshold models driven by three 

different forms of noise. Once again forecast intervals are shown to be accurate and consistent.

These bootstrapping methods are also used to compute predictive intervals for some of the empirical 

CSO Series. The results show the intervals are generally small for these data. Moreover, these intervals 

are in close agreement with cross validation intervals obtained in Chapter 5 when large fluctuations do 

not occur near the end of a time series.
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1 introduction 

1.1 Background

This thesis studies nonlinearity in time series. The primary focus is on estimation and short term 

forecasting using TSMARS, a time series extension of the Multivariate Adaptive Regression Splines 

(MARS) procedure of Friedman (1991a). MARS is chosen because it is model free and can discern 

nonlinearity. In addition, the method gives a precise measure of the degree of nonlinearity, by 

apportioning the overall variance of the time series to linear and nonlinear components.

Of particular interest in this thesis are empirical time series in official statistics published by the Central 

Statistics Office (CSO). Several aspects arise in the study of these series, such as seasonality, outliers, 

and dependent errors. Each of these require extensions that are novel to TSMARS. These extensions 

constitute another important focus of this thesis. Additionally, a new version of TSMARS has been 

implemented in SAS/IML, a platform that will make it much more accessible to researchers in many fields.

To illustrate some of the topics of interest to this research the logged 1®' differences (i.e. filtered) of the 

Imports of Power Machinery empirical series is plotted in Figure 1.1.1. This time series is estimated and 

future values forecast in later chapters. Of interest is the local or short-term behaviour of the series. This 

is often important in forecasting into the immediate future, typically one year ahead. The reason for this is 

simply that the next value is likely to depend on the last observed value of the series. Thus, for example, 

the Volume of Monthly Industrial Production in Ireland in October will be close to that of September, if all 

other economic factors remain unchanged.

Figure 1.1.1: Plot of Filtered Imports of Power Machinery Time Series
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The local behaviour o f the series is influenced by a num ber o f effects. For example, in mid 1989, the large 

upward spike is fo llowed by a correspondingly large downward spike. In a 1®' differenced series this 

indicates that an additive (shock) outlier occurred in the original (i.e. undifferenced) imports series. The 

presence o f an outlier tends to affect statistical procedures adversely giving poor estim ates and forecasts. 

In th is study handling outliers is important as empirical data are emphasised.

Another interesting feature o f the series is it seems to have patches where it fluctuates more dramatically 

than at other tim es. The period between 1981 and 1984 appears m ore volatile than the remainder. 

Changes in the vo la tility  o f a time series are evidence o f hetroscedasticity; that is, the variance o f the 

series changes over time.

A less obvious, but relevant feature of the series is the frequency o f positive and negative values. There 

are 85 positive and 192 negative values. However, the propensity o f negative values is not due to a 

downward trend in the data. Careful scrutiny o f the plot shows that a negative value tends to be followed 

by another negative value, while a positive value also tends to be followed by a negative value. This 

suggests that there m ay be a degree o f asymm etry in the series. A  tentative nonlinear statistical model for 

these data with error e, m ight be

- 0 3 y , ^ , + £ ,  i f y , _ ^ > 0

This model is a special case of the general class of threshold models that are important in this thesis. The 

model suggests that when _y,_, is negative, y,  will tend to stay negative and if is positive, y,  will

become negative. This implies that model (1.1.1) cannot be reversed; that is, y,_^ cannot be predicted 

from  y , ,  as the threshold depends on which is unknown when time is reversed. Asym m etry caused 

by the presence o f a threshold is central in this thesis. Moreover, it is a particular type of nonlinear 

phenomenon that is suited to modelling with TSMARS.

In this thesis, threshold models sim ilar to (1.1.1) are used in Monte Carlo experim ents to test extensions 

to TSMARS. However, the most significant and innovative aspects o f the research are:

■ First, the system atic treatm ent of seasonal threshold models; som e o f these models are original. In 

particular we show that TSM ARS estimates are largely unaffected by data transform ations and 

seasonal adjustment. These findings are applied to regular and seasonal CSO time series to 

ascertain the degree of nonlinearity that m ight be present. W e find only a small nonlinear component 

in these series. The study of these series also covers forecasting and here we find that nonlinearity 

does affect forecasts for some of the series.

■ Second, as TSM ARS is based on least squares estimation it is not robust against outliers. A  set of 

three methods, varying in complexity and efficiency, to treat outliers w ithin TSM ARS is developed and 

tested. The key developm ent here is that the outlier treatm ent m ethods are built into the core MARS 

procedure in an efficient way that ensure the model selection criteriion is robust. In sim ulation studies 

the efficacy of this approach is adumbrated. In addition the extended TSM ARS procedure is applied
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to the CSO series and here we find that outliers do not alter our conclusion regarding te extent of 

nonlinearity present.

■ Third, a system atic treatm ent o f threshold models that possess dependent errors is created and 

tested; here, once again, some original models are defined. This is a particularly significant 

developm ent o f the TSMARS procedure in that parsimonous threshold moving average type models 

are incorporated in to the TSM ARS fram ework in a consistent and efficient manner. This extension is 

also used to test CSO series for nonlinear moving average components. The particularly appealing 

finding of this research is that the resulting TSMARS models tend to be simpler than their 

counterparts obtained using the original version o f TSMARS.

■ Fourth, two novel adaptations of bootstrap methods for obtaining stantard errors fo r TSMARS 

forecasts are also given. In simulation studies these are show to produce reasonable forecast error 

intervals that are in line with earlier research. These techniques are then used to generate forecast 

intervals for the CSO series that are shown to be close to cross validation intervals obtained in an 

earlier chapter.

In the remainder o f this chapter, a review of relevant nonlinear time series models and their properties is 

given. In section 1.3 nonlinear seasonal models are discussed, some o f which are new. Section 1.4 

describes nonparametric methods, highlighting the fam ily of methods to which MARS belongs. Finally, 

section 1.5 sets out the main research themes; that is, estimation and forecasting of (potentially) 

nonlinear time series. The section closes with a review  of the chapters and contributions in the rem ainder 

of the thesis.

1.2 Nonlinear Time Series Models and their Properties
Typically the analysis of nonlinear time series models is more difficult than linear models with additive 

Gaussian innovations. One reason fo r this is that lagged innovations as well as lagged values o f the 

variable y ,,  may be combined so that it is impossible to express y,  as a linear combination o f innovations 

alone. Moreover, the innovations may be non-Gaussian and give rise to nonlinear effects even where the 

variables and innovation are combined linearly in a statistical model. In this section the statistical and

dynam ic aspects o f a number of relevant nonlinear time series models are discussed.

1.2.1 Preamble

The general form of the nonlinear time series model is

V t  =  ( 1-2 .0 )

This is a rather intractable stochastic difference equation where the independent innovation s, and its 

lagged values are implicit. A somewhat simpler form  specified by, for example, Tsay (2000) assum es the 

innovation is additive giving the model

( 1-2 .1)

It is clear that this definition encompasses the linear models of the previous section but also allows for

models based on much more general functional forms.
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An immediate difficulty with model (1.2.1) is that it gives no clue as to the degree or form of nonlinear 

model that may be useful. Moreover, there are no obvious measurable quantities, such as the lag 

autocovariance function of the linear model, that are known to fully summarise the underlying dynamics. 

This is in stark contrast to nonlinear dynamical systems theory where basic tools such as the correlation 

dimension and Lyapounov exponents are important invariants (Tong 1990 Chapter 2). These can be used 

to decide whether data is generated from a nonlinear system. The usefulness of these invariants however 

is limited when the model is stochastic (Tong 1990 Chapter 4)). Indeed it is this lack of precise invariants 

for the nonlinear stochastic model (1.2.1) that, in part, makes it difficult to distinguish a linear model from 

a nonlinear one for a given time series realisation. The implications of this are explored further in the 

remainder of this section and in the Appendix.

1.2.2 The univariate stochastic linear model and the IVIA representation

A linear model for a given time series variable y , ,  observed at a time point ? = !...« , is assumed to be 

driven by an unobserved error process s, called the innovation. In addition, it is presumed that the 

innovation is white noise (WN), that is

£ ( f , )  = 0 Mt

E { e ] )  = a ]  V?

£(£'j£', ) = 0 V i ,  rand5?>tf

where £(•) is the expectation function. This definition specifies that the errors are uncorrelated. Linear 

models driven by uncorrelated errors are defined as weakly stationary linear models. If it is further 

assumed that the errors are independent and identically distributed (i.i.d.), the error process is 

distinguished as strict WN. Therefore, normally distributed errors are strict WN random variables. A linear 

model driven by i.i.d. errors is known as a strictly stationary linear model.

A time series y,  is said to be causal, if it is caused by a WN process up to time t. This means that y,  can 

be represented as an infinite MA process. Harvey (1993, Chapter 8) defines a linear time series model 

according to the invertible MA representation

t - \

y < = ^ ^  ( 1-2 -2 )
7=0

where , are non-stochastic weights, Aq , is a (fixed or random) initial condition and the innovations e,

is a sequence of independent random variables with mean 0. Using the MA representation (1.2.2) the 

statistical properties of y,  can be deduced.

Without doubt the most familiar case of model (1.2.2) occurs when the innovations are Normal. In this 

instance the statistical properties are fully described by second order moments and the predictive 

distributions are also Normal. This model (see Tong 1990 Chapter 1) is generally called a Linear 

Gaussian Random Process (LGRP).
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The invertible MA representation can be obtained by repeatedly substituting for lagged values. This 

technique can also be used to derive the (generalised) MA representation of nonlinear models. Consider 

the following stochastic perturbation of the AR(1) model

yi =<t>£i-\yi-\+£i s ,~N{Q,a^)

This model is a special case o f the general class o f b ilinear models. Back substituting for the lagged 

value _v,_, gives the equation

y, =4>e,_^{<pE,_jy,_2 +e,_^)+e, = (p^£,_^e,_2y ,-2 +£,

and by repeating this y,  can be written as

k  k - \  i

y,  yi  k Y l ^ ' - k  ^ ' - ' 0 ^ ' - /
/= ! (= 0  y = l

Assum ing the determ inistic component is negligible and therefore

k - ]  /

yt ^ ' - '  0 ^ ' - /
1=0 7=1

The mean of this process is clearly zero while the variance, obtained by squaring the MA representation 

is K (y ,) = o -^+ (zS^£(£,1 |). The variance of the process then depends on the kurtosis of the Normal 

distribution.

This example shows how repeated substitution can be used to derive the mean and variance o f a simple 

nonlinear time series model. W hile it has proved effective in this case, more complex nonlinear models 

cannot be expressed so readily in MA form . Consequently their statistical properties are not easily 

derived.

1.2.3 Limitations of the univariate stochastic linear model

In the last subsection the definition o f a stationary stochastic linear time series model was given in term s 

of second order moments o f the innovations. Stationarity is important because it specifies that the model 

is stochastically stable. Therefore any predicted value of the model will remain bounded; that is,

and ^ > 1, where r,_, is the set o f all lagged values.

Beyond the LGRP defined in the previous subsection, the next level of complexity in model (1.2.2) is the 

Linear non-Gaussian Random Process (LnGRP), see Tong (1990 Chapter 1). Certain aspects of these 

are examined in detail in Rosenblatt (2000). A  simple exam ple o f such a model is the AR (1) model

y ,=, />,y,_,+e,  ~ C /p A 7=] (1.2.3)

where ( /[-V i,7 2 ] is the Uniform distribution over the range -72 to > 2  and has mean 0 and variance 1/12. 

This model is strictly stationary and linear in the state variable y,.  As a consequence the first and second 

order moments are straightforward to compute. These however are not sufficient to characterise the full 

stochastic behaviour o f this process which depend on the upper and lower limits. It is also worth
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mentioning that this model can be accurately estimated by least squares and produces residuals that are 

(asymptotically) uniformly distributed. That is regression

gives estimated uniform residuals e, = y,  This suggests that least squares based estimation

methods, such as TSMARS, may prove useful for models driven by non-Normal disturbances.

The uniform AR(1) model (1.2.3) has the property that the innovations are independent and the series 

autocorrelated. However, even in simple nonlinear processes, such as the bilinear model

y, =<j>̂ S,_̂£,_2 +£i

with innovation e, (i.e. strict W N random variables with mean 0 and variance a ^ )  the

series itself tuns out to be a W N process (see Harvey 1993, Chapter 8). Therefore the absence of 

autocorrelation only means that a linear model is inappropriate. However, there may be a nonlinear model 

that is appropriate. In terms of prediction, the linear least squares predictor remains the best linear 

predictor, but there may be a nonlinear predictor that is better.

Figure 1.2.1: Simulated time series plot from AR model (1.2.4)
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Worse still, the distinction between linearity and nonlinearity gets blurred for certain LnGRP. Even simple 

LnGRP with independent innovations can turn out to be irreversible. That is the backward regression 

^ i y t - \ \ y i )  rnodel is not the reverse of the fon/vard regression model E{y,\y,_^). Tong (1990, Chapter 1) 

illustrates nicely the type of unexpected effect that can occur using the AR(1) model
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1 f l  /  2 with probability l / 2 l
y i =  — y i - \ + £ t  f (1-2.4)

2 [ 0 with probability I / 2 J

and £, is independent o f y ^ , s < t .  The stationary distribution o f y,  is then uniform ly distributed on [0,1].

Figure 1.2.1 shows a plot of a time series simulated from  this model. This tim e series displays a saw

tooth pattern w ith often longer curved upward m ovem ents followed by short sharp downward movements. 

Thus, a m odel that is linear in the state variable turns out to be irreversible, that is asym m etric and 

therefore nonlinear, in time.

This example shows that even though a model can be form ally represented as an M A model (1.2.2) the 

process itself is not symmetric. Therefore the representation (1.2.2) would appear to be too weak to 

specify a linear model. In this thesis a linear model is defined according to (1.2.2) with the additional 

requirem ent that the marginal d istributions defined by forward and backward regressions are reversible. 

In general on ly processes with Gaussian innovations are examined in this thesis.

1.2.4 Some well known univariate stochastic nonlinear time series models

Within the fram ework of model (1.2.0) som e simple models that are nonlinear in the param eters can be 

readily postulated. In finance fo r example, volatility is often studied using a m ultip licative noise models 

known as an ARCH (autoregressive conditional hetroscedastic) or GARCH (Generalised ARCH) model, 

see Harvey (1993, Chapter 8) or Fan & Yao (2003). The simplest form o f (G)ARCH model directly 

relevant to this thesis is AR C H (1) model o f lag order 1, given by

y , = a , £ ,  <T,̂  = a  + a > 0 , f i > 0  (1.2.5)

and if, in addition s, ~ N{0,1) the model is conditionally Gaussian. The key fact however about this model 

is that the evolving variance is related to the previous times series value in a nonlinear way. That is, large 

time series values tend to be followed by large values while small values tend to be followed by small 

ones. As a consequence the distribution tends to have heavier tails than the Normal. It can be readily 

shown using the Law o f Iterated Expectations (see Chapter 8, Harvey 1993) that the unconditional 

variance of the process is given by

Var(y, )  = E ( y f )  = / 3 / { l - a )

and since the process is a Martingale D ifference it is W N but not strict W N. The ACF o f the squared 

observations also has the nice property that it fo llows an AR(1) process (see Harvey 1993, Chapter 8).

C losely related to the ARCH model is the Bilinear model. A  simple example o f th is model can be obtained 

by squaring the ARCH(1) model above giving

y f  = a e ;  + P y U  sf 

and putting u, = y ^ , r j ,  = a e j  and (j) = { p i a )  gives the bilinear form

V, +V,

In this case it is interesting to note that the m ultiplicative ARCH model based on the general form (1.2.0) 

can be expressed as an additive error model of the form  (1.2.1),
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Bilinear nnodels (see Tong 1990) involve sunns of products of lagged variables of y, and the innovations. 

In general the simplest bilinear model (which may be termed 1®' order) is given by

Vi e, ~i . i .d.(0,a^)  (1.2 .6 )

These models are studied in Tong (1990) among other places. As in subsection 1.2.2, using repeated 

substitution of past values, model (1.2.6) can be expressed as a sum of products of the lagged 

innovations. This can be used to establish that the model is stationary if <1. It is worth

mentioning that the relationship between ARCH and Bilinear models is used to characterise neatly the 

modelling results of a simulated ARCH(1) model studied in Chapter 2.

The method of repeated substitution in model (1.2.6) suggests the possibility of models that involve sums 

and products of the innovations only. These, quite naturally, are called nonlinear MA models. Among the 

simplest is

y , ^ s , +  p£,_\E,_2 £, (1-2.7)

An important contribution of this thesis is the development of a procedure to estimate models of this type 

within the TSMARS framework.

1.2.5 Univariate stochastic nonlinear AR and MA time series models based on a
threshold

Among all types of nonlinear time series model, the study of the Nonlinear Autoregressive (NLAR) model 

has generated greatest interest. The NLAR(p) model of order p has the general form

yt=f[yt-\^--^yi-p)+£t ( 1-2 .8)

and obviously the linear AR(p) model driven with Gaussian noise is the simplest.

Particularly relevant to the research described in this thesis, is subclass of model (1.2.8) known as the self

exciting threshold autoregressive (SETAR) model (Tong 1990). A SETAR model is in fact a number of 

distinct linear AR models that depend on a threshold lag parameter. This parameter effectively separates 

each AR model into two or more distinct regimes. The simplest SETAR model is the 2-regime 

SETAR(2,1,1) model

(1 2 9̂)
hy,-\+£, ify,-d<r

in this model the two AR(1) models are distinguished by the value of the threshold r and lag value d. 

Model (1.2.9) is a special case of the general /-reg im e S E TA R (/,p ,,/? 2 , -••/’ /)  model, the notation 

indicating /, the number of regimes and p j  the AR order in each regime, conditional on 0-1 ^y>-d < 0  

with ry 6 9?.

Using indicator functions / ( • )  to distinguish each regime, model (1.2.9) can straightforwardly be rewritten 

as follows

y , = y > i f [ y , - d  ^ r ]  + (j>jl{y,^  ̂ > r ] ) y , ^ ^ + £ ,  ( 1.2 .10)
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with obvious generalisations to 3 or nnore regimes and higher AR orders. Thus for example the general / - 

regime model with mean ^  and variance a  , in each regim e can be compactly written as

y , = M  + Y .  (a>;(S) + a ,£ ,) / [ r ._ ,  < y ,_ ,  < r j ] y ,  (1.2.11)
;= i

with being the AR polynom ial o f arb itrary order p  in reg im e^ . This expression follows

straightforwardly from (1.2.10). The general / -regim e model SETAR Model (1.2.11) specifies that the 

threshold variables y,_^ are simple. C learly, the threshold variables can have more complex functional

forms. In particular the threshold variable may be the k"'  d ifferenced value y,_^ ~y,-d-k '  *his type of 

threshold we distinguish as complex.

This model, with Gaussian errors, has been w idely used in the literature in diverse areas, including 

econom ics (Tiao & Tsay 1994), environmental sciences (Melard & Roy 1988), finance (Li & Lam 1995), 

population dynam ics (Stenseth et. al. 1999), as well as the original application to the Canadian Lynx data 

described in Tong (1990). The popularity of this model lies partially in its simplicity as it partitions the data 

according to the state variable. This can preserve stationarity. In contrast, change-point models where the 

regime changes with time result in non-stationary processes (Fan & Yao 2003, Chapter 4). In addition, 

there is no literature on SETAR models driven with non-Gaussian errors.

Repeated substitution o f past values y,_^,y,_2 etc. fails for SETAR models due to the presence of 

thresholds and so these models cannot be expressed as MA processes. As a consequence, the 

properties of even the simple SETAR model (1.2.9) are still a m atter o f study. The general SETAR model 

is even less well understood though it has been shown to be strictly stationary if (a) cr, = ... = a ,  and (b)

p p

either m ax ^  \< t> j î  | <  1 or ^  m ax \c j) j  | <  1, (see Chapter 4 Fan &  Yao 2003).
k = \ k = \

where c r , , . . .  ,cr ,  is the innovation standard deviation in each regime and is the A R (/t ) param eter 

in regime j .

These conditions are sufficient but not necessary. So, as noted in Fan & Yao (2003), among other places, 

it remains a challenge to prove the necessary conditions for the simple 2-regime model (1.2.9) to be 

ergodic (see Appendix). For example, it is im m ediately clear that model (1.2.9) w ith param eters 

= 0.5, (/>2 = -0 .5 , r  = 0 and s, ~ N { 0 , \ )  is strictly stationary. However, for the SETAR(2,2,2) model 

(see Tong 1990, Chapter 7)

^  0.25y,_, -  0 .4 y ,_2  +  £, if y,_2 <1 (1 2  12)

0 . 5 y , _ , - l . 2 y , _ 2 + £ ,  i / y ,-2 > 1

with £, ~ N(0 , l ) ,  stationarity cannot be assumed. T im e series realisations from the model however do 

appear to be stationary. An important implication o f this issue relevant to this thesis is that simulation 

studies are restricted to simple strictly stationary SETAR models. These are used to address a num ber of 

basic research questions and the knowledge is used to inform modelling choices for empirical data.
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Figure 1.2.2: Plot of SETAR(2.2.2) model and AR(1) model
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Another second important implication is analysis tools appropriate fo r linear models (e.g. the correlation 

function) are not very useful for SETAR models. Understanding o f SETAR models tends to rely on data- 

analytic techniques and non-param etric methods. However, perhaps the sim plest and most useful 

technique fo r understanding state variable relationships is scatter plot analysis. For model (1.2.12) a time 

series plot is shown in Figure 1.2.2. A lso shown for comparison is an AR(1) model realisation with 

parameter =0.447. This is an ‘equiva lent’ AR(1) model obtained by taking the square root of the area 

spanned by the 2-dim ensional vectors specified in each regime (i.e. [0 .25,-0 .4 ],[0 .5 ,-12]). It is clear from 

Figure 1.2.2 that where the SETAR model data values go above the threshold value (= 1), the series 

tends to jum p to a negative value two steps later, oscillates and then settles down again to something like 

an an ‘equiva lent’ AR(1) model. As an aside, it is worth noting that stationarity fo r SETAR models may be 

easier to show by inferring it from an ‘equ iva lent’ linear model.

Displayed in Figure 1.2.3 is the scatter plot o f against y^_2 . The im portant feature o f this scatter plot is 

that there is a small ‘hole ’, that is absence of scatter plot points in the centre at (0, 0). Indeed any 

realisation from  model (1.2.12) is likely to possess a hole in the scatterplot that uses the threshold 

variable as the predictor (i.e. x-axis). The existence of a hole in the plot indicates that the underlying 

skeleton (i.e. the associated determ inistic system, see Tong 1990) may possess a lim it cycle. The system 

therefore is often used to model predator prey type situations such as the Canadian Lynx data (Tong 

1990). Here, populations increase where the food source is abundant and then fall away rapidly as the 

expanded population quickly runs out of that food. In addition the data cannot be reflected along the line
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y r  =  y f ~ 2  is indicative of asymm etry. The data generating process is therefore not reversible and

so is not a linear Gaussian process.

Figure 1.2.3: Scatter Plot o f SETAR(2.2.2) Model (1.2.12) data
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1.2.6 Generalisations

A num ber of models are associated with or are generalisations o f the SETAR model that are also 

important in this thesis. The first is the Additive Model studied in Tsay (1993). The form  of this model is

y, =  / i ( y , - i ) + / 2 ( y , - 2 ) - + f p { y , - p h ^ t  (1 .2 .13)

That is, a nonlinear function acting on each lagged variable separately. The model can be estimated via 

the Generalised Additive Modelling (GAM ) technique of Hastie and Tibshirani (1990). Tsay (1993) uses 

this approach to model, among others, data arising from the additive sine model given in Chapter 2 o f this 

thesis.

The second and perhaps m ost obvious generalisation of the SETAR model (1.2.11) is the SETMA model. 

The simplest example is the SETMA(2,1,1) model (see Tong 1990) given by

^  <9,,I + 0 ,  2 + f,,, i f  y , - ,  <  r  (1 2  14)

' + Q 1,1̂ 1.,-\ +^2., '/ y,-i

This model is a special case of the 2-regim e SETMA(2;q,q) model o f order q studied by De Gooijer

(1998). The model has the obvious generalisations to three or more regimes with varying orders in each

and can be written in a com pact form sim ilar to (1.2.11). Note also that in Chapter 7 mention is made of a 

related model (not specified elsewhere in the literature) and referred to in this thesis as the Innovation 

Excited Threshold Moving Average model. Here the threshold is placed on the lagged innovation
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and not on the lagged series value y ,_ j . This nnodel is not studied here but it could be estimated by 

generalising the approach in Chapter 7 even further.

When the functions in the additive model (1.2.13) are thresholds, e.g. f \ {y i - \ )  = (t>\yt-\I[yi-\ <'■] it is 

immediately clear that certain SETAR models fall within the class of additive models. SETAR models are 

also within the class of Adaptive Spline Threshold Autoregressive (ASTAR) models defined by Lewis & 

Stevens (1991). In effect the ASTAR model is a generalisation of the SETAR model wherein each regime, 

the AR model is replaced by a model that is bilinear (or possibly trilinear) in the lagged values of y , . The 

full model formula is given in Chapter 2, equation (2.4.1). This model is the basis of much of the empirical 

studies undertaken in this thesis in Chapters 4 and 5. The model is estimated using the MARS algorithm 

of Friedman (1991). Analysis of the ASTAR model from a theoretical perspective has not been carried out 

due to its complexity.

The final generalisation of (1.2.11) is the ASTMA and ASTARMA models. These models incorporate MA 

components into the adaptive spline model framework. These models have not appeared in the literature. 

They are set out and investigated in Chapter 7, equations (7.2.10) and (7.2.11) respectively.

Related to the SETAR model is the Functional-Coefficient Autoregressive (FAR) Model of Chen & Tsay 

(1993). Indicator functions are replaced by smooth transition coefficient functions f i {y , .d)  giving the form

y t  = f \ i y t - d ) y t - \  + f 2 { y t - d ) y t - 2  ■■■+fp {y i -d)y t -p + ^ t  ( 1.2 .15)

Chen & Tsay (1993) demonstrated that this model is ergodic if the transition functions are bounded and 

all roots of the associated characteristic function lie inside the unit circle.

There are several other nonlinear models appearing the literature related to the threshold model. In 

particular the Smooth Transition AR (STAR) model is closely related to the SETAR and FAR models. 

These smooth out the threshold discontinuity using a sigmoid or logistic function. deBruin (2002), among 

other, investigates the properties of these models and uses them to study asymmetry in economic cycles. 

Other models that use the threshold principle are Markov switching models. These are also popular 

models for studying asymmetry in economic cycles, in for example GNP. The theory and methodology of 

these models is set out in detail in Kim & Nelson (1999).

Finally, general nonparametric models are also used to study nonlinear data. The approach uses kernel 

smoothing or locally weighted regression methods to estimate the conditional mean and/or variance of a 

time series (see Fan & Yao 2003). A justification for the usefulness of nonparametric models for time 

series data comes from the whitening by windowing principle (Hart 1996). This states that where there is 

strong mixing the process will have short memory and in this case smoothing methods suitable for 

independent data can be deployed for dependent processes. This principle is adopted in a simple outlier 

treatment method in Chapter 4.

1.2.7 Summary

The statistical and dynamic aspects of a number of nonlinear time series models that occur in the literature 

have been set out. In particular the focus has been on models that are relevant to this thesis. It was shown
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that even simple linear non-Gaussian process give rise to asymmetry. On this basis a definition of the 

linear model has been given which in fact is quite strict. Weaker definitions (as referred to above, Harvey 

1993) are based on the general MA representation (see Tong 1990, section 4.10) but problems remain 

with these, especially when the innovation distribution is not smooth.

The properties of some well-known simple nonlinear models were examined. The connection between 

ARCH and Bilinear models was emphasised and studied using the back substitution method. This method 

works for linear models. However, for more complex models this is not fruitful (see Appendix).

Threshold models and their generalisations were also set out. These models tend to be suitable in 

situations where there is asymmetry. Thus predator-prey situations are often a worthwhile application area. 

It was also emphasised that analysis remains to be done to fully understand these models. Generalisations 

of threshold models included the SETMA model. In this thesis (see Chapter 7) a novel extension of 

TSMARS is developed to estimate these models and the more general ASTARMA model. This extension 

is the first automatic nonparametric procedure that treats dependent errors in a systematic methodology.

A major gap has been left in the models discussed so far as no seasonal models have been set out. The 

seasonal ARIMA (SARIMA) is set out in the Appendix. SARIMA models are important in this thesis as they 

are used to benchmark the performace of other nonlinear seasonal models. A second linear seasonal 

model called the PAR model is set out in the next section. Seasonality however has been largely ignored 

in the context of nonlinear models except for a few specific instances to be referred to in Chapters 3 and 4. 

An important step forward here is that seasonal data is a vital element of this research on nonlinear time 

series.

1.3 Skeletons and Frames
The noise free case of the general nonlinear time series model (1.2.0) is referred to as the skeleton (Tong 

1990). This is obtained directly from the (1.2.0) by simply setting e, =0,V?, giving

(1-3.1)

This equation is the deterministic version of the NLAR(p) model (1.2.8). A skeleton plot of this equation is 

a time series with the noise stripped off.

In this thesis the novel concept of a frame in introduced. A frame is a plot of a piecewise linear skeleton 

function / ( • )  over the arranged sequence of n data values {x = x^,xj  = x , + c , x ^  = +2c, . . .

x„ =x ,  + ( n - l ) c  = } where c is a constant (i.e. step-length) and y „ m , ^^e minimum and

maximum of the time series y, .  With this definition when y ,., = x  then y ,_2 = ^ :-c a n d  y,_^ = x - 2 c e t c .  

Thus the p -d im ensiona l piecewise linear skeleton can be plotted as

/ ( x , x - c . . . , x - ( p - l)c) which is a function of x alone.

Somewhat more generally a product-frame can defined as a frame composed of piecewise products of 

degree 1 in the predictor variables (e.g. x y  but not x y ^ ) .  A frame therefore is made up of linear 

piecewise additive components while the product-frame allows piecewise curvilinear components. Based 

on this definition, a product-frame is the skeleton of the ASTAR model.
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F ra m e s  a re  useful visualisation tools for S E T A R  and m o re  genera l A S T A R  m odel approxim ations  

p roduced  by T S M A R S . T a k e  the sim p le c a s e  o f the S E T A R (2 ,1 ,1 )  m odel driven by norm ally distributed  

noise e , =  yv (0 ,1/4)
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V aria tion s of this m odel a re  used fo r sim ulation  purposes throughout this thesis. C learly  the skeleton of 

this m odel is a lso  the fra m e  (i.e . the p ie ce w ise  linear representation  in the o rdered  va lues of x  =  y,_^) .  

H o w eve r, a skeleton  em p h as ises  tim e evolution based  on (1 .3 .1 )  with the noise stripped off. T h e  fra m e  

on the o ther hand show s the s ta te  va riab le  representation  (1 .3 .2 )  and em ph as ises  the (p iecew ise ) linear 

relationship  b e tw ee n  the va riab les. T h e  contrast betw een  th ese  tw o representations is given in F igures

1.3 .1 .1  and  1 .3 .1 .2  w h e re  the skeleton  plot, as  well as the fra m e  plot for S E T A R  m odel (1 .3 .4 ), a re  

displayed .

Figure 1 .3 .1 .1 :  S E T A R (2 ,1 .1 ) M odel R ealisatio n  and Skeleton

y(t)
3 SETAR Model y(t) SETAR Skeleton

1

1

•3 r  -3

0 20 40 60 80 100

T h e  skeleton  plot g iven  in F igure 1 .3 .1 .1  is useful as  it shows how  the noise affects  the m odel. H o w ever, 

as a tim e series plot the m odel structure is hard  to discern. In contrast, the fra m e  representation  in F igure

1 .3 .1 .2  c learly  show s the m odel structure in te rm s of the sta te variab les based  on the o rdered  sequ ence  

y ,_ ,. O f co urse h ere  the fra m e  co inc ides exactly  with the underlying S E T A R  function. In particu lar the

slope o f the A R  m odel in each  reg im e is em phasised ; this is the va lue o f the corresponding reg im e  

param eter va lue . M o reo ver, this represen tation  suggests that each  reg im e o f the S E T A R  m odel is 

independent, a t least to an initial app ro xim atio n . This reg im e ind ependent approxim ation  is used in later  

chapters as a  starting point for d eve lop ing  T S M A R S  for m ore com plex tim e series data.
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Figure 1.3.1.2: SETAR(2,1.1) Model Realisation Scatterpiot and Frame

y( t )
3 S E T A R  M o d e l  y( t ) S E T A R  F r a m

1

1

3

2 01 1

y( t - 1 )

An important advantage of the frame is the fact that it is based on an ordered sequence of the state 

variables. Thus, for example, if y,^,  = x  i s  chosen as the predictor variable, then>',_2 = x - c  is obtained 

by a simple translation one step to the right. Consider the i.i.d. noise driven SETAR(2,2,2) model

0 .7 y ,_2+ s ,  i f  y , . 2 ^ 0
y ,  = -0 . 4 y , _ ,  +

0 .3y ,_2+s ,  i f y , _ 2 > 0

Figure 1.3.1.3: SETAR(2,1.1) Model Realisation Scatterpiot and Frame

(1.3.3)

y<t)
5 : S E T /^ Frruftdel Ft a r t 9  y( t )

o:

- 2 '

- 3 ~

- 5 "

1 2 3- 5 - 3 -2 1 O 5
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Here the frame for y,_, is a line with slope -0 .4  while the frame f o r y , _ 2  is identical to that displayed in 

Figure 1.3.1.2 with predictor y,_2 - However, because the state variables are ordered, the frame for y , _ 2  

can be overlaid on that for y,_, but lagging by one step. The frame for model (1.3.5) is obtained by the 

simple addition of the frame for and the lagged frame fory,_ 2 - These three frames are displayed in 

Figure 1.3.1.3, where the underlying function for model (1.3.5) is now displayed as a function of one 

variable, namely x = rather than a plane in the two-dimensional space of y,_, and y,_2 -

The frame for model (1.3.5) is now clearly identifiable as a simple piecewise linear function of the variable 

x = y,_i. However, explicit knowledge of the dependence of the threshold on y , _ 2  is now lost, as the 

representation in Figure 1.3.1.3 suggests the appropriate time series model for y(t) is

- 0 . l y , _ , - 0 . 3  + £, i / y , _ , > l

This representation is striking as it implies that this model is ‘equivalent’ to model (1.3.3). Moreover, this 

suggests that it might be easier to prove a SETAR model is stationary by showing it is equivalent to a 

model that is already known to be stationary.

1.4 Some Nonlinear Seasonal Models

1.4.1 Seasonality and Seasonal Models

Seasonal data are important in many application areas and in economic applications they are central. A 

simple key that can be used to unlock seasonality is the 2-way layout as given in Table 1.4.1.1 for Irish 

Total Imports in £m.

Table 1.4.1.1: Irish Total Imports £m

Month

Year Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

1996 2498 2385 2567 2483 2391 2267 2248 1945 2286 2553 2523 2333

1997 2398 2398 2747 2898 2698 2662 2671 2372 2831 3147 3111 2932

1998 3118 3193 3569 3283 3347 3307 3266 2821 3259 3480 3659 3413

Clearly this layout suggest a simple 2-way fixed effects additive ANOVA model as the basis for analysis 

of a seasonal time series y,

y , =  H + T i + 3 i + £ i  (1.4.1)

where n, r,- and 5  ̂ represent the overall, annual and seasonal effects respectively. Denoting the

number of season by s and using seasonal indicator functions, often called seasonal dummies D j ,

= | i  + j (y = i . . . i ) , equation (1.4.1) can be rewritten as
|0  otherwise ^  ’

S

y, =/u + T i + ' ^ S j D j , + e ,  (1.4.2)
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This model and the notion of splitting the data into an annual component and seasonal components can 

be used as a basis to build seasonal models.

1.4.2 Models based on Periodic Autoregression
The first generalisation of (1.4.2) is the Periodic Autoregression (PAR) model of Franses (1996). In this

model the constant parameters are replaced with lag order s AR polynomials, and B is the usual back 

shift operator, giving the PAR model

5

y , = ^  + r ^ + ^ S j B ^ D j , + £ ,  (1.4.3)
7=1

It is clear that, in the PAR model, the within period effects are modelled by an AR polynomial; this is 

usually of low order. A straightforward nonlinear generalisation of this model is the threshold form called 

the periodic ASTAR model of Lewis & Ray (1997, 2002). In this case the linear AR terms are replaced by 

(usually low order) SETAR terms. The periodic ASTAR is used in Chapter 4 to model seasonal economic 

test data.

Clearly, the seasonal component in (1.4.1) need not be linear or even piecewise linear but may have a 

more general functional form. Further, there is also the possibility of allowing MA components into the 

seasonal part of model (1.4.1). In this case (1.4.3) would become the PARMA model

S S

y,  = M  + T i + Y , ^ j B , D j , + £ , + Y ^ S f B , D ^ , s ,  (1.4.4)
7=1 7=1

This model has not been specified or studied in the literature. In principle this model and its ASTARMA 

generalisation could be estimated using the methods of Chapter 7 though this avenue of research is not 

pursued in this thesis.

1.4.3 Models based on Standard Seasonal Lags
An alternative approach to the PAR method for treating seasonality is to generalise the linear SARIMA 

(seasonal ARIMA, see Appendix) model. Take for example the simple linear seasonal AR model (referred 

to as Model 1 in Chapter 3)

y t =  P\y i - \+P2y, -s+£,  ( 1-4 .5)

Nonlinear versions of this model can be straightforwardly conceived. For example the additive model 

(1.2.12) can be readily applied to give an additive seasonal model

yi=f \ {yt - i )+fsiyt-^+£i  C^.e)
When the nonlinear functions in (1.4.6) are thresholds the resulting models are SETAR. In Chapter 3 the 

SETAR(2,1,1) model is augmented by the seasonal fluctuation p j  g{t,s),  giving the model

[P n  yt-'i \ y i- i < 0

Here, it is obvious that the threshold is placed on the regular component and so the seasonal fluctuation 

is independent of the threshold. When, in contrast the seasonal fluctuation depends on the threshold we 

get the model



27

P u y t - \  P\ig\{t,s)  if > ',-1^0
y, = + + + £,

P l \ y t - \  P 2 2 g 2 ( ^ ■ ^ )
(1.4.8)

This model is called the Regime Dependent Seasonal SETAR model. It is introduced and studied in 

simulations in Chapter 3. Clearly, generalisations to more complex threshold structures are possible and 

models of this seasonal ASTAR flavour are estimated for test data in Chapter 3.

Models (1.4.7) and (1.4.8) are based solely on autoregressions and quite naturally MA components can 

be included. This type of model occurs in Chapter 7, w/here some of the modelled test data result in 

Regime Dependent Seasonal ASTARMA models.

1.4.4 Comments
Where seasonal data arise in applications there are numerous instances of the linear SARIMA (or 

SRAIMA+ type) methodologies having been used with success. In contrast the area of nonlinear seasonal 

models is largely ignored except for a few specific cases mentioned in Chapter 3. In particular very little 

analysis has been done on seasonal nonlinear models other than through simulation studies.

In this section a number of seasonal models have been set out. Some of these appear in the literature 

while others are given here for the first time. These models are used to study the effects of seasonality in 

a nonlinear context through extensive simulation studies in this thesis.

1.5 Nonparametric Smoothing Methods

it is assumed in this thesis that little or no knowledge about a time series is available, other than obvious 

factors such as integration, trading effects or seasonality. In this situation, finding the true or even best 

parametric model is infeasible as the population of models is infinite. The alternative is to adopt a 

nonparametric (i.e. model free) method. Here, of course, there are many methods to choose from. In the 

remainder of this section the main families of smoothing methods are outlined with the focus on 

conditional mean smoothers. From these TSMARS is chosen for study in this thesis and the reasons for 

this choice are also given.

1.5.1 Linear smoothers

Consider again the NLAR(p) model (1.2.8). Linear smoothers approximate the nonlinear function / ( • )  

with a flexible class of (simpler) functions based on deterministic AR terms Approximating

the function in this way is generally known as scatterplot smoothing. This emphasises overall functional 

form at the expense of a potentially complete understanding of the stochastic evolution.

More formally, let t = (? ,,...,/„)^a n d  y =  { y \ , - - - , y „ Y  be the set of time series observations. A linear 

scatterplot smoother of y against t at each time point is given by the linear form (see Buja, Hastie & 

Tibshirani 1989):

n

(1.5.1)
1=1

for some set of weights 5, (?o,t). In matrix form (1.4.1) can be written as

y = 5 y (1.5.2)
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where the sm oother matrix S depends on t, as well as the particular smoother, but not on y.

Examples

1. Moving Average, Local Regression and Kernel Smoothers

The most fam iliar form of sm oother is the moving average. This group also includes the slightly m ore 

general local regression smoother. These produce an estimate at to by averaging the response values 

in a neighbourhood around to.

A  related method is the popular kernel smoothing. Here the smoothing matrix has elements 

Sjj =c , where d  is an inverse distance measure, c, is chosen so that the rows sum to unity

and X is the w indow size (i.e. smoothing parameter). When, fo r example, d(»)  based on the Gaussian 

distribution the smoother is the well-known Nadaraya-W atson nonparametric regression estimator (see 

Pena et. al., 2000).

2. Regression Spline

At predefined points, known as knots, a regression spline partitions the predictor space into d istinct

function, is then fitted to the data in each interval by least squares. The smoother matrix therefore is 

made up of blocks of so-called Hat m atrices, one for each interval.

The knots are a set of predefined points in the predictor space. When the independent variable (time) is 

the predictor the regression spline is sim ply a change-point regression. However, if lagged values o f y,  

are used to define the predictor space, then the regression spline is a state variable change-point 

regression; that is, the approximation is in fact the parametric SETAR model (1.2.11).

3. Smoothing Spline

Another popular choice of sm oother is the cubic smoothing spline. Here the objective is to trade off 

accuracy of (least squares) fit against sm oothness (see Hastie, Tibshirani & Friedman 2001); that is, to 

find an approximation y,  to y,  that m inim ises:

where A. is a tuning parameter. The solution to this Lagrange variational problem is a natural cubic 

spline with knots at each distinct predictor value and a smoother matrix given by the generalised ridge 

regression (see Hastie, Tibshirani & Friedman 2001)

where N  and Qf j  are constructed from  some appropriate set of basis functions such as B-splines. 

Other Popular Smoothers

intervals. A  polynomial (e.g. a constant indicator  ̂^  , with knot Iq ), called a basis
0 otherwise

s = N{N'^N+?.af^y^N^
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The Locally Weighted Running-line Smoother (LOWESS) of Cleveland (1979) combines the strict local 

nature of running lines and the smooth weights of kernel smoothers.

Wavelet smoothing uses a complete orthonormal basis and then shrinks the coefficients by selection 

tow^ard a sparse representation. Wavelets are useful where it is necessary to represent either smooth, 

piecewise constant or bumpy, that is fractal type functions in an efficient way (see Hastie, Tibshirani & 

Friedman 2001).

1.5.2 Higher dimensional smoothing based on Additive models

In p-dimensions the linear least squares estimate is likely to provide a poor approximation to a more 

general surface. A convenient nonparametric smoothing solution involves applying a multivariate Gaussian 

kernel. This generally tends to give poor results because the distribution of available data values gets more 

sparse as the dimension of the predictor space increases. This is known as the curse of dimensionality 

(Bellman 1961). As a consequence fewer points are available in a local neighbourhood for use in 

computing the local smoothed approximation.

Backfitting Algorithm

A more pragmatic alternative than direct multivariate smoothing is to generalise the linear model. A key 

feature of the linear model is that it is additive in the predictor effects. The Additive Model (1.2.13) of Buja, 

Hastie & Tibshirani (1989), and Hastie and Tibshirani (1990) builds on this concept for the (model free) 

component functions / , ( • )  in (1.2.13). As mentioned above, the model can be estimated via the 

Generalised Additive Modelling (GAM) technique of Hastie and Tibshirani (1990).

As mentioned breifiy in subsection 1.2.6, an efficient procedure for fitting a GAM is backfitting algorithm of 

Buja, Hastie & Tibshirani (1989). This cycles through each predictor in turn applying a linear smoother, 

based on cubic smoothing splines to represent the component functions / ,  (•). The resulting program that 

fits Additive Models in this way is called BRUTO (Hastie and Tibshirani 1990).

It is also worth mentioning that the benchmark X II  (Shiskin et. al. 1967) seasonal adjustment program 

uses a forerunner of the GAM technique to separate seasonal and regular cycles in empirical series (see 

Hastie and Tibshirani 1990).

Regression Spline Algorithm

In the Additive Model (1.2.13), an alternative to smoothing splines is to use regression splines to 

approximate the component functions. The regression spline adopted is a simple piecewise linear function 

of the form

The notation (;c-Xo)+ is shorthand to represent a spline that is supported to the right of the knot point Xq. 

The Additive Model (1.2.13) is then approximated by linear splines b{yj )  = [yj  with knot points

according to the formula

^ > =  -^0 

otherwise
(1.5.3)
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p M,

= Z  Z  p f ” ^ y j ' ”  I  (■'
j = \  m=I

The parameters P can then be found by regressing onto the space spanned by these linear splines. 

Automatic Fitting Algorithms

In practice there are two major drawbacks to both the backfitting and regression spline methods. These 

are that the number of basis functions and the knot positions have to be chosen at the outset. An 

alternative is to adaptively fit basis functions, so that, when added together they give a flexible and 

parsimonious Additive Model fit.

In Friedman and Silverman (1989) an Additive Model fit is built up by looking at each variable and data 

point/knot on that variable, in turn, to form a piecewise linear spline basis function. This is temporarily 

added to the model by regression and the lack-of-fit computed. When all variables and knots have been 

examined, the basis function that gives the greatest improvement in lack-of-fit is added to the model. The 

cycle is repeated until there is no improvement in the overall lack-of-fit. This procedure is adaptive: that is, 

it automatically chooses the knot points, parameters and linear spline functions that make up the Additive 

Model approximation. The procedure forms the basis of the TURBO program of Friedman and Silverman 

(1989).

1.5.3 The rationale for TSMARS

MARS and therefore TSMARS, is basically a generalisation of the TURBO program. It is an adaptive 

procedure that automatically chooses the knot points, parameters and linear spline functions. The key 

difference is that MARS allows Cartesian tensor-products of piecewise linear splines as basis functions in 

its model approximation. It can therefore represent more complex functional forms, involving products, 

than a straightforward additive model.

MARS is suited to situations where the data may be a mixture of smooth and non-smooth forms. It can 

automatically adapt to different forms in different regions of the predictor space. For example, the MARS 

model (see Chapter 2 for a definition) includes piecewise curvilinear functions such as

ixy x > = 0  

[ X  otherwise

This function of course cannot be written as an Additive Model as it involves a product. A MARS model 

therefore is more flexible than an Additive Model which represents curved regions by approximating 

planes.

As stated at the beginning of this chapter, modelling and forecasting empirical time series is of particular 

interest. Furthermore no a priori assumptions are made about the data other than additive Gaussian 

error. The key task is to decide whether or not these time series data are nonlinear. MARS is suited to 

this because it is model free and can discern both linear and curvilinear structure in the data. Moreover, 

MARS can compute the contribution to the overall variance of each linear or curvilinear component. Thus, 

the method not alone provides evidence for deviations from linearity but also give a precise measure of it.
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These advantages, combined with the fact that IVIARS is adaptive and can be efficiently implemented, are 

among the main reasons it has been chosen for this research.

Forecasting is also relevant. Little or no actual forecasting results have been reported for TSMARS and 

no information is available on future prediction intervals. Forecasting, as stated at the outset, is an 

important focus of this thesis. Here this gap in the literature is addressed.

The version of TSMARS used in this thesis has been programmed from scratch in SAS/IML. The 

justification for doing so is due to two factors. First, Friedman’s (1991a) original core code is not available: 

only an executable version of the program can be obtained. This means that any adaptation can only be 

done outside the core code. This severely limits experimentation and improvement. A version is however 

available in the R-language (Hastie 1996) but was rejected for this research as the code is complex and 

hard to decipher. Moreover, it is not proven in the sense defined in Chapter 2.

The second reason for creating the SAS/IML version was that it facilitated a complete understanding of the 

MARS algorithm. This meant that any adaptations could be built into the code and tested thoroughly. The 

development of this version also has the advantage that it makes MARS available, for the first time, to the 

wider statistical community using SAS. This is an important contribution of this research.

As stated in Section 1.1, three novel methods of outlier treatment are included in TSMARS and these are 

fully described in Chapter 6. This represents one of the key extensions of TSMARS developed in this 

thesis. The reason it is necessary to incorporate outlier treatment into TSMARS is because the estimation 

methodology of MARS is based on least squares. Friedman (1991a), as a consequence, remarks that 

MARS and therefore TSMARS, is not robust. This is a severe drawback when studies based are on 

empirical data that may often possess outliers.

The reason outlier treatment is not available in MARS is due to the extra computation involved. Any 

extension can dramatically increase computation time rendering the procedure useless in all but the 

simplest of problems. In Chapter 6 efficiency is maintained by adjusting for outliers only on the most 

recently accepted best fitting model. This adjusted model is then used to find the next best fitting model. 

This proves efficient as it adds little extra computational burden on MARS. It is referred to as the Current 

Model Outlier Treatment (CMOT) methodology. It is novel to MARS and moreover, the concept of building 

in outlier treatment in this way would appear to be novel to any stepwise or stagewise fitting procedure.

Finally, it is worth mentioning some developments related to MARS that have appeared. Friedman (1991b) 

included logical/categorical predictors into the MARS model and called the resulting function estimating 

method, an Adaptive Spline Network (see Friedman 1991c). Friedman (1993) followed these innovations 

by introducing Fast MARS. It reduced computation time at the expense of some accuracy. Another 

variation of MARS, called PolyMARS, has also been introduced by Stone et. al. (1997) for classification 

problems. This platform is not studied in this thesis.

1.6 Research Themes

The primary purpose of this research is to see if there is evidence for nonlinearity in CSO time series. 

This question is explored through the two main themes of estimation and forecasting. A key element of
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the approach is that the size of the nonlinear part of an estimated time series model is quantified. In 

addition the form of the nonlinearity is identified. The estimated model is assessed in terms of within- 

sample predicted fit according to

V i • • ■ £■ , - , )  ( 1-6 .1)

and out-of-sample forecasting at h-steps ahead according to

yr+h\T -  ^ i y T + h \y T - \ ’ ----’ y T - p ’ ^T-\  ( 1-6 .2 )

To address the primary research question a number of issues have to be resolved such as the modelling 

method, estimation procedure and data specific issues. These will be outlined in more detail in the 

remainder of the section, along with a description of the main contributions of this thesis.

1.6.1 Nonlinear time series modelling forecasting

With nonlinear data there may be no obvious choice of model; even where there is, model estimation is 

not as straightforward as in the linear case. For example, estimation of the general form (1.2.0) with 

Gaussian innovations has not been attempted in the literature. However, specific forms such as the 

bilinear model (1.2.6) and Nonlinear MA (NLMA) model (1.2.7) can be estimated by either Conditional 

Least Squares (CLS), Maximum Likelihood (ML) or the Kalman Filter, see Tong (1990) and Harvey 

(1993) respectively.

In tandem with the interest in stationarity, mixing and invariant properties, most of the estimation activity 

has focussed on the NLAR(p) model (1.2.8) driven by Gaussian disturbances. Here once again specific 

forms have tended to dominate. The family of ARCH and GARCH models are widely used in finance and 

can be estimated by CLS, ML or the Kalman Filter (see Harvey 1993). In this case, as with the bilinear 

model and NLMA the estimator is best in the least squares sense though it is not necessarily the best.

The threshold models of subsection 1.2.4 are within the class of NLAR models. These can be estimated 

by OLS once the position and lag order of the threshold variable is determined. Tsay’s test for a threshold 

uses the idea of ordered regression to find the threshold; that is, values of the time series are assigned to

each regime based on the threshold lag variable and then y, is regressed on its lagged values

separately on each regime. This is repeated for each value t = 1 to n, of threshold lag variable At

some point t the BIC will be a minimum; this is the desired threshold value. Once the threshold is 

determined, the parameters in each regime can be estimated by OLS. This methodology is used in Tong 

(1990) to study the Canadian Lynx data and also the Sunspot Series.

In general parametric modelling of a possibly nonlinear time series is too inflexible. The reason for this is 

phenomenological. Unless there is good reason to believe in a particular model based on empirical 

observation, such as the ARCH models in finance or threshold models for predator prey systems, there is 

potentially an infinite range of possible nonlinear models to choose from. One way around this difficulty is 

to adopt a nonparametric modelling technique.

Nonparametric time series analysis is a broad field. It does however rely on a few core methodologies. 

These are kernel estimation, locally weighted regression and wavelet smoothing as well as state-domain
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smoothing techniques, such as GAIVl models (1.2.12), and FAR models (1.2.15) and Neural Network (i.e. 

STAR model) approaches. All of these approaches have a good pedigree and methods for estimation are 

described in various places including Pena (2000) and Fan & Yao (2003).

Another alternative to estimating (1.2.8) nonparametrically is described in Krantz and Schreiber (2004). 

This approach is a dynamical systems based method and uses reconstruction (delay) vectors. Basically 

the method, called local projective noise reduction, consists of fitting a series of locally linear models via 

principal components to delay vectors that are close (in some sense). The closeness measure then 

becomes a bandwidth parameter of the method that must be course grained enough to distinguish the 

noise. Krantz and Schreiber (2004) suggest the method is reliable for estimating certain invariants such 

as Lyapounov exponents.

In this thesis the nonparametric time series modelling route is followed. The method used throughout is 

TSMARS. This method was first adopted for time series by Lewis & Stevens (1991) and has been used, 

since then, by Lewis & Ray (1997) among others. The method of estimation is based on least squares 

and is fully described in Chapter 2. Essentially it generalises the notion of ordered regression to an 

exhaustive search across all lagged variables and allows for product terms in its approximation. In this 

way it builds a flexible approximation to the underlying nonlinear function in (1.2.8) using Cartesian 

products of linear splines. Thus in 3-dimensions for example, MARS can be thought of as building a 

‘frame’ using locally linear planes that approximate the surface given by the nonlinear function.

Estimating a time series model is important but forecasting unknown future values is perhaps more 

important. Forecasting with linear models is well understood; in this case the forecasts are minimum 

mean square error (MMSE) forecasts. The forecast at h-steps ahead from time point T is given by the 

out-of-sample estimate (1.6.2). This formula is of course very similar to the within-sample one (1.6.1) 

except for the explicit dependence of the future values on the last p, q observed values.

For the linear model the distribution of the forecast errors is readily available from the model (see Wei 

1990). For the linear AR(1) model the forecast value at h-steps ahead is easily seen to be =(t>\ y r-

Using this, and the MA representation of the series, the standard error of the forecast can be computed 

(see Wei 1990). However, as stated earlier forecasts from a linear model will In general not be best 

possible when the underlying process in nonlinear. Putting aside the complex area of non-Gaussian 

processes, the NLMA model admits a better nonlinear forecast than its linearised counterpart (see Harvey 

1993, Chapter 8). Worse still, even within the Gaussian framework, the 3-step ahead forecast cannot be 

explicitly computed for the SETAR(2,1,1) model (1.2.11). This is because the forecast is conditional on 

the unknown future value compared against the threshold. Methods for approximating the forecast 

error in this case are available based on the Chapman-Kolmogorov relation (see Tong 1990 and de Bruin 

2002 among others). These methods tend to be somewhat limited in their usefulness as the algebraic 

manipulations can be difficult. When greater flexibility is required the smoothing approach of Fan & Yao 

(2003) or the bootstrapping technique is generally preferred to obtain confidence bands for forecasts. 

Very little empirical study however has been done to ascertain the power of these techniques on real 

rather than simulated time series.
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1.6.2 Chapter and contributions review

In Chapter 2 the MARS algorithm is described in detail. Based on this description, the first contribution of 

this research is the development of a new version of the MARS program written in SAS/IML. This 

program is assessed against some of the results given for Friedman’s original version (1991a) and is 

shown to give statistically equivalent results. The program is then adapted for time series and the 

resulting TSMARS program is then benchmarked against identical studies in the literature.

The type of empirical data that arises in practice is often nonstationary and seasonal. TSMARS has been 

rarely used for this type of data, it is a flexible nonparametric state-variable smoother and so should not 

be influenced by nonstationary components. However, a nonlinear log transformation and/or differencing 

may affect the quality of the TSMARS fitted model. It is therefore natural to ask to whether or not data 

should be transformed prior to TSMARS modelling. This question is explored in detail in Chapter 3 

through simulation studies. The issue of seasonal data is also considered; specifically, whether or not it is 

better to seasonally adjust data prior to TSMARS modelling. Once again this topic is addressed through 

detailed simulations using newly defined nonlinear seasonal models. For both stationarity and seasonal 

adjustment, this is the first rigorous study that has taken place for models arising from TSMARS.

Chapter 4 is an empirical investigation of a test-bed of CSO time series. Here four different TSMARS 

modelling implementations are put into practice to model seasonal data. While some aspects of the 

implementations adopted have already appeared in the literature (see Chapter 3 for details) a significant 

portion are new. These include seasonal adjustment prior to TSMARS modelling and modelling with 

variables lagged at 1, 2, 3, 12 and 13 past periods, to name only two. Independent predictors are also 

used to control for fixed effects such trading day factors. The modelling procedure in all four 

implementations is sophisticated. It is designed to ascertain the nature and extent of the nonlinearity in 

CSO data. This, important contribution, is the first time a study on this scale and level of detail using 

TSAMRS has been reported for time series data.

In Chapter 5 the usefulness of TSMARS is examined from a forecasting perspective. This is the first time 

an in-depth study of this nature has been conducted in the literature. Initially, forecasting at h = 1 to 5 

steps ahead on the linear and nonlinear time models studied in Chapter 2 is conducted. The purpose of 

this is to show that TSMARS gives consistent forecasts and can therefore be used for further research. 

The second half of Chapter 5 provides one year ahead (i.e. 12-steps) plug-in forecasting for the empirical 

data. One year ahead forecasting is the most important in short-term analysis and is conducted for each 

implementation for the five years 1998 through 2002. The approach is to retain the relevant year, say 

1998, as a cross-validation set and use it to compute actual forecast errors. The accuracy and precision 

of these is reported. Once again this is a new contribution to both empirical forecasting and the 

understanding of TSMARS as a forecasting tool.

The linear SARIMA+ model has two important ingredients that are not part of TSMARS. These are a 

systematic way of treating outliers and built-in MA components. Even for non-ordered data, MARS itself is 

not robust; in particular, for official time series, the absence of outlier handling is a major drawback. Some 

work on outlier adjustment for TSMARS has been conducted (see Chapter 6). However, the approaches 

assume only model coefficient parameters are influenced by the existence of an outlier. Threshold value
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estimates are neglected. This problem is overcome in Chapter 6 where outlier adjustment is efficiently 

incorporated into the threshold and coefficients estimation procedure. In addition, three adjustment 

procedures are made available. A fast method suitable for independent data, a robust bounded influence 

procedure and a time series based method that is accurate for SETAR models. Each of these three 

options is tested in simulation studies. They are then tested on the empirical data to see if the accuracy of 

the estimates obtained in Chapter 4 are influenced by outliers. The addition of efficient outlier adjustment 

to the threshold and parameter selection mechanism In TSMARS, is an important new contribution to the 

estimation procedure in TSMARS for both independent and dependent data.

A major flaw in TSMARS is the lack of any means to incorporate MA components. Many economic time 

series are better modelled with MA terms rather than AR terms. Trying to fit MA terms to the residual of a 

TSMARS fit is not ideal as MA components may have been partially smoothed in the original TSMARS fit. 

Adding MA component estimation to TSMARS is set out in Chapter 7. This is a significant step forward in 

the development of TSMARS. It is implemented using conditional least squares (CLS) based on a Gauss- 

Newton procedure. Two variations of the methodology adopted; these are Jacobi and Seidel iteration 

schemes. There are a number of important innovations. First, the Jacobi iteration assumes that each 

regime, of say a SETMA model, is independent. Accordingly the regimes can be de-coupled and 

estimated separately. An efficient algorithm is outlined for this purpose. This Jacobi iteration is however 

only used in the inner (costly) loop of TSMARS for finding the threshold as the residual sum of squares 

(RSS) in this step is not too sensitive to the method.

For the final estimation of the model the more costly Seidel iteration is used. In this case the assumption 

of regime independence is dropped. This iteration is required to ensure accurate basis functions are 

computed. This step is required because perturbations of the basis function based on the independence 

assumption causes instability. This results in poor TSMARS estimates.

This enhanced TSMARS procedure is used in Chapter 7 for MA component estimation in simulations of 

linear and threshold MA time series. It is also used to study the empirical data to identify whether or not 

nonlinear MA components are evident in these data.

Little or no space in the literature devoted to forecasting with TSMARS. In Chapter 8 the issue of 

forecasting for TSMARS Is taken beyond the cross validation approach of Chapter 5. Essentially equation 

(1.5.2) describes the average value of the underlying predictive distribution. In the nonlinear context 

where asymmetry may occur, the predictive distribution often deviates from normality. As a consequence, 

it is often better to obtain quantiles rather than standard deviations to characterise the predictive errors. 

This topic is explored in Chapter 8 using bootstrapping techniques designed to take account of the explicit 

dependence of the forecast on the last available value. These techniques are studied using simulated 

models and are then applied to a small but relevant set of official time series. The bootstrapping methods 

and the results described are both new contributions to the study of time series forecasting using 

TSMARS.
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2 MARS and Time Series Estimation using MARS
The research described in this thesis is built upon the smoothing program MARS (Friedman 1991a). The 

first section of this chapter describes the salient features of MARS. It also gives any amendments made 

(e.g. special parameters) to develop the SAS/IML version used to produce results reported here. Recall, 

from Chapter 1, a SAS/IML version was written because Friedman’s original code is available and it 

facilitated a more complete understanding of the method. Furthermore, the version in R-code was 

complex and as yet it appears to be proven in the time series literature. From this point on, where the 

term MARS (and TSMARS) is used it will be taken to mean the SAS/IML version.

The remaining sections of this chapter are devoted to ‘proving’ MARS through simulation studies. The 

objective is to show that MARS produces an approximation that is statistically equivalent to Friedman’s 

original version. In order to prove MARS, data is simulated from a statistical model and MARS is applied. 

In a proportion of simulations, the type of MARS model that results is different to the original model from 

which the data were simulated. These MARS models are termed 'incorrect models’. Following Lewis and 

Stevens (1991), results in this thesis are quoted only for correct models found in simulation studies. 

Incorrect models occur firstly, because the sample size used in the simulation may be small and 

secondly, because the statistical properties of the lack-of-fit criterion used in MARS are unknown.

In some of the simulations conducted in this chapter it is possible to distinguish the subset of correct 

models. In these cases MARS is deemed to be performing correctly, if at least two-thirds of models are 

‘correct’ and this fraction increases with the sample size. This figure is chosen because a good statistical 

test of evidence for SETAR effect, generally has power of at least two-thirds (see Pena et. al. 2000, 

Chapter 10). In addition, this lower bound reflects the fact that Friedman’s original code produced a 

correct model, in at least two-thirds of simulation studies on selected models. These studies, among 

others, are repeated here with the SAS/IML version of MARS.

Having fitted the model, parameter estimates and associated predicted values are compared with their 

true values in terms of accuracy, precision and consistency. MARS will be judged to be performing 

properly if estimated parameters, based on correctly estimated models, are within two standard errors of 

their true values. Matching this criterion ensures both the form and the accuracy, precision and 

consistency, of the MARS approximation is statistically equivalent to Friedman’s original version.

2.1 The MARS Algorithm
MARS is a flexible nonparametric smoothing program developed by J. Friedman for data modelled as 

independent cases. The algorithms are described in Friedman (1991a) and subsequent enhancements to 

the functionality are described in Friedman (1991b, c).

MARS seeks to approximate the underlying functional relationship between a single response variable y 

and a vector of p predictor variables x = (x,, ■ • ■ ) through the nonlinear regression equation

y  =  f { x „ . . . X p )  + £  (2 .1 .1)

over some domain D  cz R '’ that contains n samples of data, namely and having i.i.d. error

e . Specifically, the regression function / ( x )  is modelled as a linear combination of M+1 basis functions
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M

/  =  (2 . 1 .2 )
m = \

Each basis function b^{\)  is a tensor product of K„ linear spline functions over the predictor variables 

and takes  the form

(* )  =  t  t,m {^v(k.m) ~  U(k ,m)  )]+
*=1

The quantity Km is the interaction degree of the spline functions and is normally limited to 3. Each spline 

function 5^ composed of 3 elements. These  are the sign denoted by a

single predictor variable and knot p o i n t t h a t  splits the domain of into two sub-regions

according to

^k,m ^v { k , m)  ’ ^^(k.m) )~" ~  ^^(k,m) )1̂.

r 1 if Z > 0
with the +” subscript denoting the positive part of the argument, i.e. [zj^ = <

[0, otherwise

If takes on a set of unordered categorical values that is a se t  where no distance

relation exists between the values, then

where the indicator function H takes the value 1 if is in any unique (permutation) subset of the

categorical values and 0 otherwise.

The key to understanding MARS lies in the matrices v{k,m), 4(k,m) and s{k,m). Each basis 

function (x) is associated with a corresponding column in each matrix and these  record the list of 

predictor variables, their signs and knots in v,  ̂ and s respectively. The iterative solution for the knot 

U(k,m)> variable sign s{k,m} and interaction defining each basis function, the model sizeAf

and regression parameters involves MARS starting with a basis function set that consists of the 

single constant basis function

6o(x)  = l .

A new basis function ft^^,(x) is then added to the existing se t  {Z>q, } by conducting, in a forward 

stepwise manner, a nested exhaustive search looping over:

■ the existing set of basis functions - that is columns of v, and

■ all predictor variables not already in the selected column of v, and 

■ all values of that predictor variable not already used as  knots in 

This process generates a sequence  of combinations of basis function, new variable and knot (i.e. split 

point on that variable) that make up a potential new basis function. Each of these  is temporarily added in 

turn to the existing set of basis functions. The resulting set is then used to compute the weighted least
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squares approximation /  (i.e. regression spline approximation) and modified Generalised Cross 

Validation (GOV) lack-of-fit score

ASR
G CV{M)=- (2.1.3)

{d + \ ) M ' 
n

Here the Average Squared Residual is ASR = — ̂ [ y ,  d \s a user-specified constant. The GCV

Criterion was originally conceived by Craven and Wahba (1979) and has the following form

ASR
GCV{M) = (2.1.4)

n

Here the function C (M ) is a complexity cost penalty included to account for the increased variance 

associated with increasing model complexity (i.e. the number of basis functions M ). The GCV is 

therefore intended to trade-off some accuracy for smoothness in the MARS approximation / .  In a 

regression situation with an MxN basis function matrix B, where only the model coefficients are being 

estimated the complexity cost is (see Friedman 1991a)

C(M) = trac^B{B'^b Y  + \ (2.1.5)

In MARS this is equal to the number of linearly independent basis function, that is M +\.  Using (2.1.5) in 

2,1.4) gives the original GCV proposed by Craven and Wabha (1979).

Mars however makes extensive use of the data values to construct a basis function set. Thus the basis 

function parameters, namely the matrices of variables, knots and signs v{k,m), s(k,m),^(k,m) respectively, 

are not independent of the response values. This reduces the bias of the model but increases the 

variance since additional parameters are being adjusted to help fit the data at hand. This means that 

(2.1.5) no longer reflects the effective number of parameters being estimated in the nonlinear MARS 

model. To compensate for this Friedman (1991a) further penalises (2.1,5) according to

C{M) = C(M) + d M  = { d  + \ ) M  (2.1.6)

where d as mentioned above is a user specified smoothing constant, usually set at 3, that penalises (i.e. 

charges) for models having a larger number of basis functions. This charge is proportionately reduced 

when a potential new basis function is linear or additive by a factor of 1/3 and 2/3 respectively. This gives 

a slightly greater preference to linear and additive functional forms over curvilinear forms. Friedman 

(1991a) also notes that in simulation studies MARS in not sensitive to the value of the smoothing constant 

and works well with the effective but crude choice d = 3. We have adopted this choice throughout this 

thesis.

In MARS as the forward stepwise search proceeds, the potential basis function giving the smallest GCV, 

that is, that best adapts to the shape of the underlying function is chosen as the candidate basis function 

to enter the existing set. On completion the candidate enters the existing set of basis functions and a new 

column is added to the matrices v, ^ and s. This new column records all existing variables, knots and
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signs o f the “p are n t” basis function as  w ell as  the n ew  variab le , knot and  sign chosen in the search . T h e  

p are n t is sim ply th e  basis function chosen from  the existing se t in o u te r loop o f the search . W h e re  a 

can d id a te  basis function is a  com bination  o f both categorical as  w ell as  continuous functions it sim ply  

rep laces  th e  p aren t basis function a lre ad y  in the existing set. T h is  p ro ced u re  continues until th ere  is no 

reduction in the G C V  score, or a p re-d efin ed  n um ber of basis functions a re  reach ed , or the A S R  is 

sufficiently sm all.

Follow ing the fo rw ard  stepw ise search  a  b ackw ard  iterative search  is app lied . Th is  se lective ly  deletes  

basis functions o n e -a t-a -tim e  if the asso cia ted  G C V  is reduced , th ereb y  producing a  “good” set o f basis 

functions for approxim ating  the underlying function. W h e n  this p ro ced u re  is com plete , the A N O V A  

decom position  (s e e  below ), is used to rep lace  the linear spline basis function set with a  set o f cubic spline  

basis functions (s e e  F riedm an 1 9 9 1 a ).

T h e  M A R S  algorithm  outlined ab o ve  has b een  coded  as a  S A S  m acro  w ith the core fo rw ard /backw ard  

stepw ise search es  written in S A S /IM L  (In te rac tive  M atrix  L an g u ag e). A  key  co m p o nent affecting the  

effic iency o f th e  algorithm  is the com putation o f the A S R  from  the w eigh ted  least squares

approxim ation  / .  T h e  approxim ation is com puted  via (w e igh ted ) orthogonalisation  using the M odified  

G ram -S ch m id t p roced u re  (s e e  G olub  & V an  Loan 19 96 ); this is n um erically  m o re  s tab le  than the standard  

version o f G ram -S ch m id t. Th is  provides a co n venien t and  re la tively ch e a p  m ethod  for com puting the  

im p ro vem en t in th e  A S R , since as  each  additional basis function is ad d ed  to the existing set, the

im p ro vem en t is s i m p l y | | ^ w + 2 ||̂  the residual from  the existing se t is also  orthogonal to

L in ear d ep en d e n c e  within the basis function set can occur and  this is contro lled  using a  to lerance  

criterion on the se t o f orthogonalised basis functions. Setting this to le ran c e  is crucial to the quality of the  

approxim ation, s ince too fine a va lu e  can introduce noise w hile  too large a  va lu e  m a y  exc lu de im portant 

fea tu res . A  d efau lt a  va lue 2 X 1 0 " ' 'has b een  chosen based on ex p erien ce , though a  larger va lue  is

so m etim es required especia lly  w h e re  the d ata  a re  known to possess a  significantly linear com ponent. 

S o m e  additional fea tu res  o f this S A S  im plem entation  o f M A R S  include the standardisation  o f the  

resp on se and  predictors to im prove com putational stability; th ese  a re  re -co ded  to their input va lues on 

exit. T h e  m axim um  num ber of a llow ab le  basis functions, M is set to m ax(5« '^ '‘ - i -p , / j /4 ,5 0 )  w hile  the  

; interaction d eg ree  of the linear splines Km, an d  the num ber of predictor va riab les  p, a re  chosen a  priori. 

Also, every  third order statistic is chosen  as  a potential knot point in th e  pred ictor sp ace. Th is  avoids  

excess  noise occurring in the solution and redu ces the overall com putation  tim e by a fac tor o f 3.

2.2 The ANOVA Decomposition
T h e  result o f apply ing the M A R S  algorithm  is an approxim ation based  on a  m odel o f the form

m = ]  k = \

A s noted in F ried m an  (1 9 9 1 a ), this constructive representation , that is, based  on forw ard  stepw ise  

selection and backw ard  deletion o f basis functions, provides little insight into the nature of the  

approxim ation. H o w ever, by sim ply rearrang ing  term s, (2 .2 .1 ) can be cast into form  that reveals  a lot 

ab o ut the predictive relationship b e tw een  the resp on se and co -variates. T h e  idea is to collect to gether all
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linear b a s i s  fun ct io n s ,  then  s e c o n d  order  te n s o r  product b a s i s  fu n ct ion s ,  then  all third order te rm s  in

(2 .2 .1 )  and  s o  on .  An e x a m p le  will b e s t  illustrate th e  idea .  T a k e  the  following M A R S approxim ation b a s e d

on  th e  c o -v a r ia te s  ;c,, .^2 >

f  =  0.05 +  0. Ix, - 0 .5x 3 - 0 . 1 8  (xj -0 .35)^ . + 0.3 x, (x j  - 0 . 5 ) _  +O.2 X2X3 - 0 .  Ix, ( x ,  - 0 . 5 ) _  (X3 -0.3)^.

T his  M A R S  m o d e l  c a n  b e  rewritten a s  an  addit ive com bin ation  o f  th e  form

fQ + =  0.05 +

/ i * ( x , ) +  = 0 .1 X ] - 0 .5 x 3 - 0 . 1 8 ( x , -0 .35)^ . +

^  / 2* (x ,- ,x ^ )+  = 0 .3 X ](x2 - 0 . 5 ) _ + 0 . 2 X2X3 -

/ 3* (x , . ,x^ - ,x* )+  = 0 . 1x , ( x 2 - 0 .5 )_ (X 3 - 0 .3 ) ^

T h is  is a  s u m  o v e r  all b a s i s  fu n ct io n s  that involve  a  s in g le  variable, o f  tw o var iab les  on ly  and involving  

th ree  v ar ia b le s  only. Similarly, th e  full M A R S  m o d e l  (2 .1 .3 )  ca n  b e  r e c a s t  into th e  form

f  = f o  + f \  (X; ) + f l  (x,- , X j )  + f l  (x,-, X .̂, X* ) + .. .
A /,  A / ,   ̂ M . -j,

= P o + ' ^ P m b „ { X i ) +  Y _ , P m b n , { X i , X j ) +  ^  „ { x  j , X j  , X ̂ )  +. . .  (2 .2 .2 )
m=\ m=] m=\
K„=\ K„=2 K„=2

O w ing  to th e  similarity o f  this e x p r e s s io n  with th e  d e c o m p o s it io n  o f  th e  a n a ly s is  o f  v ar ian ce  for 

c o n t in g e n c y  ta b le s ,  Friedm an ( 1 9 9 1 a )  refers to (2 .2 .2 )  a s  th e  A N O V A  d e c o m p o s it io n  o f  th e  M ARS m o d e l

(2 .2 .1 ).

In this t h e s i s  a  sm all  variation o n  (2 .2 .2 )  is a d o p te d .  T h e  s in g le  variab le  function / i * ( x , )  is further split 

into a  purely linear part an d  th e  rem ain der .  T h u s ,  in th e  e x a m p le  a b o v e

,  / i * i ( ^ / ) +  O . l x , - 0 .5x 3 -  
/■ (x . )  = . =

f l T ( X i )  0 . 1 8 ( x , - 0 . 3 5 ) ,

w h e r e  L d e n o t e s  th e  linear part a n d  T  r e p r e s e n t s  th e  rem ainder, m a d e  up purely of sp l in e s  b a s e d  on  a 

knot. In this th e s i s ,  funct ions  o f  th e  form /i*t-(x, ) will b e  ca lled  threshold  fu n ct ion s  w hile  funct ions in

(2 .2 .1 )  that in vo lv e  products  will b e  ca l led  curvilinear. T h e  s e t  of threshold  an d  curvilinear funct ions  is

co l lec t ive ly  ca l led  n on linear funct ions .

T h e  m o s t  u sefu l  a s p e c t  o f  the  A N O V A  d e c o m p o s i t io n  is that overall v a r ia n c e  (i.e . total su m  of  s q u a r e s )  

ca n  b e  formally written a s

^ ( y )  = V ( f )  + K(residual)

= y { f o  ) + V i f U i X i )) + V { K t )) + i X i , X j )) + K ( / ; ( x , , X̂ ., x , »  + . . .  + K (residual) (2 .2 .3 )

=  K (co n sta n t )  + K(linear) + K(nonlinear) + F(res idual)

w h e r e  K(») is th e  v a r ia n ce  (n o te ,  that this formal d e c o m p o s it io n  fo l lo w s  from the fact that th e  b a s i s  

fu n ct ion s  in M A R S  are  orthogona l) .  T his  partition o f  th e  overall v a r ia n ce  is crucial, a s  it p rov ides  a

m e a s u r e  of th e  e x te n t  o f  nonlinearity in a  g iven  s e t  o f  data . In the  resu lts  reported in later ch ap ters ,  th e

e x te n t  o f  nonlinearity will b e  e x p r e s s e d  a s  a  p e r c e n t a g e  o f  the  overall v a r ia n c e  acco rd in g  to

% Nonlinearity =  xlGO%
y ( y )
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A fundamental aspect of this research is, evidence for nonlinearity in a dataset is obtained using MARS 

and moreover, a precise measure of that nonlinearity is provided through the ANOVA decomposition. 

Using the ANOVA decomposition to measure nonlinearity in this way is a novel element of this research.

2.3 Simulation Studies using IVIARS
As pointed out by Friedman (1991a), a reasonable concern with MARS is that it might find considerable 

spurious structure in data where the signal-to-noise ratio is small. In particular, this means random noise 

in the data, is picked up by MARS as false structure, thereby giving a misleading indication of the 

association between the predictor and response variables.

2.3.1 Random Noise Simulation Study
A straightforward way to decide whether the MARS approximation suffers in situations where the signal- 

to-noise ratio is small is to apply it to random data. Here we follow Friedman (1991a) and generate 100 

data sets y, for which the response values in each case are drawn from the Standard Normal Distribution 

(i.e. N(0,1)) and five predictors (quite independent of y ) are drawn from a uniform distribution on [0,1],

For each simulation run the ratio of the GCV of the final model to that of the mean (i.e. /  = >^)is

computed; in this case the ratio should be 1. The distribution of GCVs is displayed in Figure 2.3.1.1.

In contrast, if MARS finds a spurious signal then the resulting GCV ratio will be a lot less than 1. In this 

case, the averages for both simulations with 5 independent predictors, 100 observations and maximum 

interaction set to 1 and 3 respectively, is about 0.98. This is not a noticeable fall in the GCV ratio and 

is similar to that obtained by Friedman (1991a). Therefore MARS does not find structure in noise where 

there is none. MARS is therefore performing properly in this simulation.

Figure 2.3.1.1: Random Data Simulation on 100 Data sets

n=100, p=5

c

o
0 .

0
0.8 0.84 0.88 0.92 0.96 1.04 1.08

GCV Ratio
0  Interaction = 1 □  Interaction = 3
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2.3.2 Additive Function Simulation
C learly , it is equally  im portant that M A R S  should find the true structure w here  it exists. So, for exam ple , 

w hen  the d a ta  are  add itive M A R S  should not introduce spurious interactions. Friedm an (1 9 9 1 a )  

d em o n stra tes  that this is the c a se  by conducting a sim ulation study based  on the nonlinear function

d
/ ( x )  =  0 .1 e ‘*̂ > + ------- _^0(x ,-0.5) + 2 ^ 4  + ^ 5  (2 -3 .1 )

'  +  ^   ̂ 1=6

Note: the coeffic ients of all variab les  to 10 a re  zero.

A  sim ilar sim ulation study to F ried m a n ’s is repeated  here for n = 50 and 100  observations. In each  case  

(p = 1 0 ) co varia te  vectors w ere  random ly draw n from  the uniform  distribution on [0,1], The corresponding  

resp on se va lues  w ere  assigned according to

J ' , - = / ( x , )  +  ^/ l < i < n

with the noise term  random ly g en era ted  from  the S tandard  N orm al distribution. H ere  the signal to noise  

ratio is 3 .2 8  and  the true underlying function accounts for 9 1 %  (a  large proportion) o f the variance (se e  

F ried m an  1 9 9 1 a ).

F igure 2 .3 .2 .1  displays the h istogram s obta ined  from  the 100  sim ulation runs for the ratio of the residual 

sum  of squares (R S S ) to the total sum  of sq u are  (T S S ) by 10 0 % . In both cases the fit is very  good with 

the av e ra g e  va lue  for th ese  ratios (inset in the top left o f the figure) being 7 .5 %  and 8 .7 %  respectively. 

This m ean s  that m ost of the noise (9 %  of the T S S ) has b een  filtered out leaving virtually a perfect signal -  

that is, none o f noise is left is the M A R S  es tim ate  of the underlying function. M A R S  is perform ing correctly  

and properly as the accu racy  and precision o f fitted m odels is optim al in this sim ulation.

Figure Z.3.2.1: Histogram of results for Additive Data Simulation
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Mean(n=50) = 7.5% 
iVlean (n=100) = 8.7%
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B n  = 50 □  n = 100

9.2 9.7 10.2

(RSS/TSS)x100%

T h e  histogram s above provide a  good indication of the accu racy  o f the M A R S  estim ate . The histogram  in 

n = 5 0  case  show s the R S S  is sm aller than the n = 1 0 0  case . T h e ir m ean s are  7 .5 %  and 8 .7%  respectively. 

T h e  n = 5 0  case  is therefore a slightly poorer fit, as the error accounts for 9 %  o f the overall variance. Thus, 

in both cases M A R S  gives a very good approxim ation  to the data  and m oreover, this approxim ation  

im proves with increasing sam p le  size.
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jh o w eve r, this is not the w hole story, as  th e  ap p ro xim atio ns m a y  involve second order or higher level 

interactions b etw ee n  the variab les in a basis function. T h e  tab le b elow  is b ased  on the A N O V A  

jecom po sitio n , eq u ation  (2 .2 .2 ). It show s th a t the ap proxim ation  m ain ly com prises linear and additive  

Dasis functions. T h a t is, the approxim ation is w ho lly  m a d e  up o f about 6 .5  linear/threshold  functions and  

th ese  account for ab o ut 5 0 %  of the M A R S  m odel va rian ce  - the m ean  accounts for the rest. Also, the fact 

th a t no basis function has interactions would ind icate th e  constraints, on basis function selection in M A R S  

is so m ew hat d iffe ren t to those in F riedm an  (1 9 9 1 a ) and  ap p e a rs  to result in m o re  conservative m odels. 

T h is  is to be ex p e c te d , s ince as stated earlier, this vers ion  o f M A R S  gives slightly m ore preference to the  

selection of linear and  threshold  basis than d oes F rie d m a n ’s original.

Number of 

observations

Function

type

Average Number of 

Basis functions

Percentage of 

Approximation

50 Mean 1 48 

6.6 52
Linear/

Additive

100 Mean 1 54 

6.4 46
Linear/

Additive

2.4 Nonlinear Time Series MARS (TSIVIARS) IVIodelling
|M A R S , as proposed by F riedm an  (1 9 9 1 a ) an d  outlined ab o ve , is a non p aram etric  approach  to nonlinear 

regression m odelling using adap tive  regression  sp line basis functions fit by least squares. It w as  

jconceived and des ig ned  for situations w h e re  th e  resp on se and co varia te  predictor variab les are  

independent, with the addition of w eighting to handle  heteroscedastic ity . M A R S  can be read ily  adapted  to
I

handle  tim e d ep en d e n t d ata  by using lagged va lues  as  predictors.

C onsider the u n ivariate  linear A R (p ) tim e series m odel. It arises directly from  the linear m ultivariate  

regression m odel by sim ply letting the predictor va riab les  for the va lu e  in the tim e series { j ' ,}  be the

lagged values ,  y , ^ 2  > ••• > y  t - p  ■ S im ilarly , w ith M A R S , by letting the predictor variab les be the p

lagged va lues of the tim es series w e get T im e  S eries  M A R S  (T S M A R S ). Th is  ap p ro xim ates  a (nonlinear) 

tim e series w ith M +1 spline basis functions of th e  lagged predictors defined  by knots (i.e . partition

points) e , y , _ 2 y , ^ p , and takes  the form

h  =  ' f t  =  p Q + Y j P < n Y \ \ k , m ( y v { k . m ) - y ] ( k . m ) \  (2 -4 .1 )
m = \  k = \

T h e  resulting non linear tim e series m odel defined  by this approxim ation  is known as the A daptive Spline  

Threshold A u to reg ress ive  (A S T A R ) m odel o f Lew is & S tev en s  (1 9 9 1 ). Th is  m odel, as pointed out by 

.ew is  & S tevens (1 9 9 1 ), adm its  the /  -reg im e S E T A R ( / , /? , ,p 2 > •• • / ’ / )  rnodel o f Tong  (1 9 9 0 ) as a special 

case. This being obta ined  by sim ply restricting the interaction d eg ree  of the sp line basis functions to K m  

p 1 . Thus, for ex am p le , the S E T A R (2 ,1 ,1 ) m odel with i.i.d. noise
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(2.4.2)

can be rewritten in ASTAR nnodel form  as follows

yi=l^+P\ [(+!)(>',- 1 )]+ + Pj [(-!)(>',- 1 )]+ + £i 
with the sign “-1” inverting the orientation o f the predictor in the sub-region to the left of the knot, that 

is threshold point situated at zero. TSM ARS, when applied to data arising from say a SETAR(2,1,1)

the single legged predictor, its threshold point and the parameters /y ,/?, and /?2 - As noted in Lewis & 

Stevens (1991), the advantage of th is approach over Tong ’s (1990) m ethodology for SETAR modelling, is 

that TSMARS admits continuous m odels with possibly more than 1 threshold. By contrast, Tong’s

associated with the threshold selection process.

2.5 Model Estimation Simulation Studies using TSMARS
TSM ARS is designed to find autoregressive linear and/or nonlinear structure in a univariate time series, 

by detecting the presence or otherw ise o f a threshold (i.e. knot) in the set o f lagged predictors. So, by 

analogy with the simulations studied above fo r independent data, it is important to test whether this 

SAS/IML implementation o f TSMARS will find the fram e when the data are simulated from a linear or 

nonlinear AR process. To decide this a set o f sim ulations on univariate times series models that have 

been used in the literature are studied. In all but one case study the first 100 generated sample values of 

each simulated series are discarded to a llow  fo r “burn in” .

The simulation results of this chapter are displayed as fram es with m ore detail given in tables later. The 

displayed frames are in fact the average values o f all fram es generated by each simulation run. This 

average frame is computed pointwise fo r each data value in range o f data values in the predictor space 

(e.g. running from - 2  to 1 in Model (1.3.4)). In addition, this pointwise computation of the frame allows 

the pointwise calculation o f the standard error of the fram e at each data value. The two standard error 

limits are also displayed with the average fram e (which is referred to sim ply as the frame in the relevant 

figures). W e begin with a simulation study o f an AR (1) model.

2.5.1 Simjiation of a linear AR(1) model
This simulation study exam ines the ability o f TSMARS to identify a simple linear AR(1) model with known 

coefficients. The example is taken from Lewis & Stevens (1991) and the data are generated from a 

stationary AR(1) model with autoregressive param eter p, ( |p |< l) ,  driven by normally distributed noise

e,=N{Q,a^)

Several simulations were performed fo rp  = 0.5,0.7 and 0 .9and w i th / /= 0 and cr^ =1. Figure 2.5.1.1 

shows the frame and Table 2.5.1.1 shows the simulation results for p  = 0.5; results for p  = 0.7 and 0.9

process, can be expected to recover the skeleton (see section 1.3) o f the model by adaptively choosing

approach admits discontinuous models that are usually limited to a single threshold, due to the difficulties

(2.5.1)
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are similar to those reported here for p  = 0.5. Note, in this case the frame is simply the straight line with

slope 0.5 equal to the AR parameter value.

figure 2.5.1.1: AR(1) Model Frame Simulation for p = 0.5

y(t)

0.5

-0.5

— AR Model y(t) Frame ” ” Upper 95% C.l. ■ “ Lower 95% C.l.

In each simulation 100 data sets were generated. TSMARS was then called with response >^,,one lagged 

predictor and maximum interaction degree set to 1. Simulation experiments were repeated for two 

sample sizes of n = 100 and 250. These experiments were repeated again allowing 3 lagged predictors 

y / - i ,  y,-2> yr-3 maximum interaction degree of 3. All simulations were conducted with the smoothing 

parameter set to 3

•The frame displayed in Figure 2.5.1.1 is virtually exact, as the line showing the slope of the AR Model 

parameter is overlaid by the frame. The upper and lower confidence lines are also virtually exact as their 

slopes agree almost exactly with their true asymptotic values.

|~able 2.5.1.1: AR(1) Model Simulation Results for p = 0.5

Std.Err.(p)

No of 

lagged 
predictors

Maximum

Interaction

Degree

Basis
function

Tolerance

n Number of 

AR(1) Models 

found

P Actual True

1 1 1.5X10'^ 100 99 0.505 0.081 0.087

250 100 0.505 0.058 0.055

3 3 1.5X10'^ 100 95 0.503 0.084 0.087

250 100 0.505 0.058 0.055

pispiayed in Table 2.5.1.1 are the number of times an AR(1) model is correctly identified from the 100 

simulation data sets. Also given is the average value of the estimated parameter p  and its “Actual”
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standard error computed from the correctly identified models. For comparison, the true (asymptotic) 

standard error for AR(1) data with n observations is also given.

Where possible in this thesis, results are reported for correct models. A correct model is defined as a 

TSMARS model whose form is identical to the model the data are simulated from. Correct models are 

identified by comparing the actual form of the variable, knot and sign matrices v{k,m). i { k ,m )  and s{k,m)

in the TSMARS model to their true form as defined by the time series model. So, in this particular 

simulation study TSMARS models found are correct if

That is, correct models involve one linear function in the lagged variable and a knot at the minimum

value of j , .  All other models are defined as incorrect models. If, as on line 1 of Table 2.5.1.1, TSMARS

returns one case of the constant mean value model, this TSMARS model is incorrect. Including 

parameter estimates from incorrect models will bias the average values reported in the results. In 

particular, including the incorrect model will result in a parameter estimate that is smaller than reported 

value p  = 0.505.

Looking at Table 2.5.1.1, when the number of lagged predictors is 1 and the basis function tolerance is 

1.5X10'^, TSMARS correctly identified 99 and 100 models, for simulations with 100 and 250 observations 

respectively. The corresponding parameter values are close to their true values and, as expected, tend to 

it with increasing n. There standard errors follow a similar pattern. When the number of lagged predictors 

equals 3, the only difference is that a higher tolerance is required to get broadly similar results. 

Comparing the results in Table 2.5.1.1 with those given in Lewis & Stevens (1991), virtually no difference 

is observed other than a slight upward bias in the parameter values in Table 2.5.1.1. The results in figure

2.5.1.1 and Table 2.5.1.1 show that the TSMARS models these data correctly and properly.

2.5.2 Simulation of a SETAR(2,1,1) model
The second simulation study is once again taken from Lewis & Stevens (1991) and repeated here for 

comparison. The simulation involves generating 100 data sets each consisting of n = 250, 500 and 750 

samples respectively, from the model

Piyt- i+£,
y t =  r  n (2.5.2)

Piyt - \ +£t  u y , - i > o

driven by normally distributed noise e, = A^(0,1/4) with parameters values pi = 0.7 and p2  = 0.3. TSMARS

was applied to each data set with the basis function tolerance set at 2X10'^ and smoothing parameter set 

at 3. The frame for the case n = 500 is displayed in Figure 2.5.2.1 while further results are shown in Table

2.5.2.1 wnere once again the number of correctly identified SETAR(2,1,1) models is given, the average 

values of the parameters pi and p2 , labelled Est., along with their standard errors labelled Std. Err., for the 

correct models. With the SETAR model the threshold must also be estimated. This in fact is the knot 

value identified by TSMARS. The average knot value and its standard error is also given for the correctly 

identified models which in this case involve two piecewise linear functions in the lagged variable y ,_ , .

y, = p y , - \

and the form of matrices are v{k,m) , and s{k,m) =
0

0 0 

0 1
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Figure 2.5.2.1: SETAR(2,1.1) Model Frame Simulation for o  ̂ = 0.7. p? = 0.3 and threshold = 0.0

 -3 r

y ( t )

y ( t - 1 )

 S E T A R ( 2 , 1 ,1 )  M o d e l  — ^ F r a m e  -  -  -  U pp  e r 9 5% C .1. -  -  -  L o w er  9 5 %  C .1.

It is clear from Figure 2.5.2.1 that the fram e slope is very close to the actual slope parameters in each 

regime of the SETAR(2,1,1) model. More importantly both o f these line plots lie well within the upper and 

lower confidence bands obtained for the simulated frames.

In Table 2.4.2.1 m ore detail is given. The estimates of p, and p2 and their standard errors improve with 

increasing sample size. This behaviour is in line w ith the results o f Lewis & Stevens (1991). A  sim ilar 

trend is also observed with the number o f correctly identified models. It is worth remarking that Lewis & 

Stevens (1991) do not report results for sample sizes under 500, where in this case, the performance of 

MARS falls below the proof criterion. The threshold value is not reported in Lewis & Stevens (1991).

Table 2.5.2.1: SETAR(2,1,1) Model Simulation Results for p, = 0.7, p? = 0.3 and threshold = 0.0

Pi = 0.7 P2 = 0.3 threshold (knot)

No of 

lagged 

predictors

Maximum

Interaction

Degree

n Correct

SETAR(1)

Models

found

Est. Std. Err. 

Pi

Est. Std. Err.

P i

Est. Std. Err.

1 1 250 48 0.781 0.093 0.169 0.131 -0.010 0.088

500 71 0.748 0.060 0.239 0.110 -0.019 0.088

750 84 0.740 0.049 0.310 0.088 -0.064 0.079

3 3 250 46 0.778 0.102 0.160 0.141 -0.009 0.103

500 66 0.749 0.063 0.238 0.110 -0.017 0.091

750 81 0.741 0.048 0.320 0.070 -0.062 0.045
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However, here it is estimated accurately with a slight negative bias and small standard error. These 

results show that TSMARS is perform ing both correctly and properly on sample sizes of 500 and above. 

This is in line with results obtained by Lewis & Stevens (1991) using Friedm an’s original MARS code.

2.5.3 Simulation of a EXPAR(1) model
In this simulation the ability of TSMARS to estim ate an EXPAR(1) model is examined. The model is

y,  = (0.3 + 0.8 ) y,_j +  e, (2.5.3)

where £, is generated from the Standard Normal distribution. The model is taken from An & Tcng (1991) 

and they noted that it has also been studied elsewhere in the literature. For the purposes of this 

simulation 50 data sets o f length n = 100 were generated from  the E X P A R (I) mode! and TSM/^RS called 

with 3 predictors and maximum interaction degree of 1. On completion o f each TSMARS

call, the resulting TSMARS model was used to estim ate the frame. This is computed from o i a set of 

ordered x values that cover the range of data values of y , . In this case the x-range is -3 .5  to 3 and 

predictors are x,=x-0.1, X2=x-0.2 and X3=x-0.3. This process generated 50 sample fram es over the range 

of x values that were summarised to give an average fram e response value y{x)  and its standard error. 

This fram e is plotted in Figure 2.5.3.1 along w ith its 2 standard error bounds (dotted in red) ard the true 

function

y{x)  =  (0.3 + 0.8 ) x , .

From this simulation study TSMARS has over smoothed these data. On the left of the plot the estimate is 

slightly concave so TSMARS appears to be introducing a slight bend to pick up the kink in the finction. 

Figure 2 .5 .3 .1 : Frame o f EXPARd) Model S im ulation Results

EXPAR Model

0.5  -

- 2.5 0.5 2.5

On the right of the plot a sim ilar behaviour is also observed. On these simulations TSM ARS tended, in 

most cases, to pick either an AR (1) model or SETAR (2,1,1) model with equal frequency and this accounts 

for the shape of the frame. It is clear however that the fram e does pick up the general fcrm o f the
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underlying function and this stays w ithin the upper and lower standard error bands. TSMARS is once 

again perform ing properly on these data though with s lightly less accuracy than in the AR and SETAR 

models simulated earlier. It was also observed on a num ber o f calls that the forward stepwise strategy did 

pick up other basis functions. These how ever were autom atically deleted because they contributed less 

than 1% to the total sum of squares. Finally, given that the function has smooth transition kinks it m ight be 

expected that a STAR(1) model could be a more appropriate to these data

2.5.4 Simulation of a Nonlinear Additive Sine model
This simulation exam ines the ability o f TSM ARS to model the nonlinear periodic tim e series

r - l . O S i n
/  \

+ £
[  2 J I  2 J

where s, is Standard Normal noise.

This time series was studied by Chen & Tsay (1993a) using the backfitting programs Alternating 

Conditional Expectation (ACE) of Briem an & Friedman (1985) and the Generalised Backfiting (BRUTO) of 

Hastie & Tibshirani (1990). They found that both of these program s worked well on time series generated 

from this model.

In this study 50 data sets, each o f length n = 200 were generated and TSM ARS called with 3 predictors 

y , - \ , y , - 2 ^y,-^ and maximum interaction 1. The resulting TSM ARS model was then used to generate the 

fram e over a set of x-values that correspond roughly to the range o f values o f y , .  The average frame 

response value y ( x )  and its standard error (dotted in red) are displayed in Figure 2.5.4.1.

Figure 2.5.4.1: Frame of Nonlinear Sine Model Simulation Results

Nonlinear Sine Model

The plot shows the true function as a th ick (black) line with the estimated fram e as a thin (blue) line. 

Overall T5MARS generates a fram e that fo llows the true function reasonably well, as the true function is 

well w ith ii the standard error bounds. However, the period of the fram e is slightly out of phase. This is
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mainly due to the fact that TSIVIARS, in a number calls chose a model that only contained the lag 3 

predictor. The average value of the ratio of GCV for the fitted model to the constant model was 

reasonable at 0.75 with a standard error of 0.16. This indicates that TSMARS smoothed the noise 

acceptably while not over-fitting these data. It is clear from the plot that the shape, accuracy and precision 

of the frame in Figure 2.5.4.1, indicates that TSMARS performs properly on these data.

2.5.5 Simulation of an ARCH model
This study examines how well TSMARS can handle changes in variance and has not been considered 

elsewhere in the literature. The simulations are based on the ARCH(1) model

y , = ( 7 , e ,  with a ^ = a  + Py^_\.  (2.5.5)

Specifically, the ARCH parameters are a = 0.3 and p = 0.7 with the noise s, generated from the Normal 

distribution with mean 0 and standard deviation 2/3. Once again 50 data sets were generated according 

to this model each having a sample size of n = 200. TSMARS is called for each data set with response 

y j  and a single lagged value y^_^. The resulting TSMARS model is then used, as before, to predict the 

bilinear frame associated with the squares of these ARCH data.

This bilinear modelling approach is preferred over direct ARCH modelling, as the underlying function in 

the ARCH model is a constant. A frame based on a constant is not particularly informative. In contrast, 

bilinear modelling captures the changing variance as a curve in the squares of the data values. The 

TSMARS approximation to this curve provides an informative frame that is more useful to visually judge 

the quality of this approximation on accepted models.

Figure 2.5.5.1: Bih'near Frame associated with ARCHd) Model Simulation

ARCH(1) Model

In this study, an acceptable model is identified, by making a second call to TSMARS with weighting 

applied. On this second call, data simulated from (2.5.5) are modelled directly with response y,  and
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predictor Weights are the Winsorized inverses of the predicted value obtained from modelling y ]  in

the first call is correct, weights will be accurate. Therefore, TSMARS should return the constant mean

When this two-call process is applied to the 50 simulated data sets, it resulted in 31 acceptable bilinear

Figure 2.5.5.1 for the 31 accepted models. Examining the plots it appears that TSMARS does quite well

points. For the larger values of x this may mean that TSMARS will underestimate in regions where there 

is a large change in variance in ARCH data. With small x-vaiues TSMARS once again underestimates 

and would appear to distinguish small variance in the ARCH model simply as noise. Of course this is not 

a drawback but in some cases a slightly negative value is returned. With the methodology used here this 

could result in no ARCH model being defined by TSMARS in regions where the variance is small. The 

simulated frames here show that TSMARS is once again performing correctly and properly. However, the 

estimates may need some attention where the variance is very large or very small. Methods to deal with 

this type of situation through moving average components are introduced in a later chapter.

2.5.6 Simulation of a Markov model
The last simulation study in our sequence is taken from Lai & Wong (2001) who used Friedman’s (1991a) 

TSMARS program to look at one-step-ahead forecasts arising from a Markov chain model. Here we 

repeat their exercise but instead look at the ability of TSMARS to fit the data arising from their Markov 

chain. The chain {_y,} has state space [0,1] and transition p.d.f.

To obtain the next value in the chain it is necessary to evaluate the c.d.f. We draw u from the

uniform distribution on [0,1] and solve the nonlinear equation

The resulting Markov chain {y , }  has a nonlinear regression function

E(y , \y, - \ )  = yt-\ - l  + e x p ( l-y ,_ i) /2

and the residuals are not i.i.d. and do not have normal marginal distributions.

The simulation study involves generating 50 data sets, each containing 300 sample values according to 

this Markov chain model. TSMARS was called for each data set with one lagged predictor . Of the 50 

calls to TSMARS model 25 were rejected as they only comprised the mean value. The remaining 25 

TSMARS models were then used to generate an average frame response value y(x) .  Both, this and its 

standard error (dotted in red) are displayed in Figure 2.5.6.1 as well as the true regression function

the first call (i.e. \ / y , ). These capture the fact that the variance a ,  depends on t. Now, if the outcome of

model on this weighted second call. This defines a correct model. Any simulation that does not return a 

constant mean model on the second call is incorrect and the associated bilinear model is also rejected.

model estimates. The frame plotted in Figure 2.5.5.1 is based on this set of acceptable modes.

The average bilinear frame response value j^ (x )a nd  its standard error (dotted in red) are displayed in

where the x-values are of moderate size but the estimates however do not bend sufficiently at the end

(2.5.6)

E{y,\y,-\)-
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Examining the plots in Figure 2.5.6.1 it is clear that TSMARS captures the underlying shape of the 

regression function quite well. This is particularly pleasing given the data set is of moderate size and also 

the residuals are not normally distributed. That said, at both ends of the x-value range the fit is a little 

poorer then elsewhere but still under 10% in error. Thus, while TSMARS performs slightly below standard 

in terms of correct models, it is once again performing properly. This 10% error may account for the poor 

forecasting ability of TAMARS when compared to the Stochastic Neural Network approach of Lai & Wong 

(2001).

Figure 2.5.6.1: Frame of Markov Chain Model Simulation

Markov Chain Model

0.6

0.4

0.2
0.2 0.4 0.6 0.8

2.6 Concluding Remarks
The MARS algorithm and the details associated with coding it in SAS have been outlined. The ANOVA 

decomposition was also described. This decomposition is particularly important to the research reported 

in this thesis, as it provides a measure of the extent of nonlinearity in a given set of data.

With the program in place the remainder of the chapter focussed on ‘proving’ MARS. Basically, the 

objective was to ensure MARS and TSMARS would give statistically sound estimates in a variety of 

situations. Estimates were regarded as statistically sound if they were equivalent to those reported in the 

literature for Friedman’s original code.

The results of the simulations showed that MARS did not find structure where there was only noise and 

the reverse was also true. Simulations on time series data with TSMARS also gave correct estimates that 

were accurate and precise. The novel concept of a frame was introduced. This visualisation tool 

facilitated easy comparison of the original function and the simulated TSMARS model. Based on the 

frames and other tabulated simulation results TSMARS is judged to perform correctly and properly. That 

is, MARS is proven as it gives sound estimates that are statistically equivalent to Friedman’s original 

code.
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3 Data Transformations and Seasonality
This chapter assesses whether a data transformation or seasonal adjustment is necessary prior to 

modelling a time series with TSMARS. TSMARS is a flexible model free smoother. Therefore, it is 

reasonable to infer that predicted values obtained by transforming a time series, followed by modelling 

and then reversing the transformation, should be close to predicted values obtained by modelling without 

any transformation. In this chapter the validity of this claim is checked for certain types of data 

transformation and separately for seasonal adjustment. In the context of TSMARS this claim has not been 

addressed in the literature. In this chapter it is tackled using a series of novel simulation studies. In later 

chapters the inferences made will ensure that studies of empirical data will be based on sound modelling 

principles.

Essentially, TSMARS is checked as follows. Data is simulated from a basic model, such as the 

SETAR(2,1,1) model. To these data, either a log or exponential transformation is applied or seasonal 

effect added. This data is then modelled with TSMARS to get the approximation series y , .  The sequence 

of transformations are then applied in reverse to this approximation. The true model is fit to the resulting 

series giving a set of implied parameter estimates. TSMARS will be judged to be unaffected by a 

transformation or seasonal adjustment, if these implied parameters are within two implied standard errors 

of their true values.

Seasonal adjustment may also influence the nonlinear characteristics of a time series. As a consequence, 

poor values of implied parameters may be the result of seasonal adjustment rather than TSMARS 

modelling. To identify whether seasonal adjustment is responsible, Tsay’s threshold F-test (see Appendix, 

Relevant Statistical Tests) is applied. If this test is negative for a series that possessed a threshold prior 

to seasonal adjustment, then poor implied parameter values are not due to TSMARS modelling. In this 

event, TSMARS will also be judged to be unaffected by seasonal adjustment, even though the reported 

implied parameter values appear poor.

3.1 TSMARS and Data Transformations

Many economic time series are differenced or natural log transformed prior to modelling. These 

transformations are usually applied to make a series stationary in level and variance respectively. In this 

section, a number of simulation studies are conducted to see whether it is necessary, to transform data 

prior to TSMARS modelling. This question is relevant because the quality of the TSMARS approximation 

could suffer, in both level and variance, by the use of a transformation when its use is inappropriate.

Simulation studies are conducted based on AR and SETAR models respectively. The Box-Cox 

transformation (in modified form) for number of parameter values (0 < A. < 1) combined with (A = 1) or 

without (A = 0) 1®' difference operator is adopted. Thus a time series y , ,  simulated from an AR (or 

SETAR) model is transformed according to

A>0

M  ^  = 0

and where this is combined with the 1®' difference operator the resulting transformed series is
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A > 0

This last transform ation of course corresponds to the period-on-period growth rate of the original series.

On each simulation, once the transform ed series is generated it is modelled with TSMARS giving the 

estimated series , (Ax^.r) ■ This is then back transform ed giving the TSMARS estimate of y , ,  namely

y ,.  W e then act as though y,  is the observed series and fit an AR (or SETAR) model to the series to get 

param eter estimates. These are called implied param eter estimates, to reflect the fact that they are the 

values implied from  fitting a model of the correct form (e.g. AR(2)) to y , . If the series y,  is good 

approximation to the original series, the implied param eter estimates can be expected to be close to their 

true values. The accuracy o f the implied param eters is reported for 100 simulated time series. Their 

quality reflects the impact of the transform ation process on the TSM ARS approximation.

In addition to examining the effect o f a transform ation on a series simulated from  AR or SETAR model, 

the effect o f the transform ations on data that are transform ed with the exponential function is examined. 

That is, exp(y,)  is taken as the original series and the effect o f the proposed transformation(s) on the 

TSM ARS approximation to this series is also assessed.

3.1.1 Simulations based on an AR model

The tim e series model adopted for this set of simulations is based on the AR(2) model

w h e r e i s  A^(0, cr^) white noise. Two sets of parameters are chosen, both having //  = 0 and p j  = -0 .5  

and p, = l o r  1.5 respectively. These resulting models are borderline stationary and integrated IAR(1) 

models respectively.

In this study 100 time series, each having n = 100 values are simulated from the model. Each tim e series 

is adjusted by adding an appropriate constant, n a m e ly^  = l-m in ( ;^ ,) to  ensure the values all remain

positive. The test procedure outlined above is applied to each series for a combination o f Box-Cox 

param eter values and/or 1®' difference operator and the implied param eter estimates obtained. For ease 

o f comparison, the mean and two standard error (S.E.) limits, for the p, ^ l a n d p j  = -0 .5  case are 

graphically displayed in Figure 3.1.1.1. The bim odality that arises in the plot fo r each value of A reflects 

this fact. The detailed figures as well as the figures for the p , =1.5 case are given in the Table Appendix, 

see Table 3.1.1.1.

In Figure 3.1.1.1 the implied param eter estim ates obtained w ithout the Box-Cox transformation (i.e. >i = 1) 

and with the 1®* difference operator are captioned with a diamond symbol. As the Box-Cox param eter X. is 

decreased no fall off in the accuracy o f the implied param eter estimates is discernible, though their 

precision is slightly affected. Thus, the TSM ARS approximation is unaffected by a smooth transform ation 

o f these data.

In contrast, when the 1®' difference operator is not applied (i.e. A = 0) the accuracy and precision of the 

results (captioned with a thick dot) is influenced, but only to a small degree (for example, in the X = 0.5

(3.1.1)
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case p j  = -0 .5  is biased). The effect is least when ^ = 1, that is no Box-Cox transfornriation is applied and

raw data is modelled. These observations suggest that differencing can marginally improve estim ates on 

borderline stationary data but inappropriate use of a Box-Cox transformation can lead to slightly poorer 

estim ates. This inference is also borne out by similar results obtained for the IAR(1) simulations given in 

Table 3 .1 .1 .1 .

Figure 3.1.1.1: AR(1) Model Simulation Results p, =1

1.5

0.5

-0.5

-1

1 1D la1 h l|

I \ 1 X

1 1 li

•  A=0 0 A=1

Simulations w ere also carried out on exponential data with the results given in the Table Appendix, Table  

3.1.1.2 . Once again, w here A. = 0 (i.e. the log transformation) and the 1®* difference operator used the 

implied estimates are accurate and precise. However, as 1. is increased the accuracy and precision of the 

estimates suffers. In particular, where the 1®' difference operator is not applied (A = 0 ), the accuracy and 

precision of the estim ates is poor. Based on these simulations, the use of appropriate data 

transformations prior to modelling with T S M A R S  is worthwhile for borderline stationary and integrated 

data.

3.1.2 Simulations based a SETAR model

The time series model adopted for this set of simulations is based on the SETA R  model. O nce again two 

variations are used, both driven by white noise e, ~ N{Q, 1 /4 ). The first model variation is

\/^ + Puy,-\+p\2y,-2+£t  i f y , - 2 ^ 0  , .o 1 o\
y , = i  ., ^ t = l ,2 , . . . ,n  (3 .1 .2 )

[M + P 2 i y , - l + P 2 2 y i - 2 + £ ,

having parameters /z = 0, p ,, = p ji  = U P 1 2  = -0 .7  and p 2 , = - 0 3 .  Therefore, this mode! satisfies the 

necessary conditions (see subsection 1.2 .5) for it to be borderline stationary; since p ,, =1 .0  in both 

regimes.

The second model variation is
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y , = i  .. .  t = \ ,2,--- ,n  (3.1.3)
[ / j  + Pi \  y,-\  + P 2 2  y t -2  + y t - i  -  y , - 2  < 0

having param eters / i  = 0, p ,, =1.7, P 21 =1-3 and both p ,,  = -0 .7  and p j 2 = -0 .3  as in (3.1.2). Taking 1®‘ 

differences o f this model gives the stationary SETAR (2,1,1) model

M + P u ^ , -2+£,  if - 1 ^ 0 with z, = y,
/ /  + P22 z ,-2  +  £ , if ^1 -2  < 0 

Thus model (3.1.3) with the chosen parameters is an integrated ISETAR(2,1,1) model.

As in last subsection, 100 time series o f length n = 500 are simulated according to the appropriate model 

and adjusted by adding an appropriate constant; namely, / / =  m in(;;,) + l  to ensure the all values remain 

positive. The test procedure outlined earlier is applied to each series fo r a combination of Box-Cox 

param eter values and/or 1®' difference operator and the implied parameter estim ates obtained. For ease 

of comparison, the mean and two standard error (S.E.) limits, for the borderline stationary model are 

graphically displayed in Figure 3.1.1.1 (note, for graphical clarity, the param eter estimates of -0 .3  are 

displayed as 0.3, since otherw ise they would be hidden by the -0 .5  values). . The trim odality that arises in 

the plot for each value o f Z reflects this fact. The detailed figures, as well as the figures for ISETAR 

model (3.1.3) are given in the Table Appendix, see Table 3.1.2.1.

In Figure 3.1.2.1 the data are borderline stationary and therefore modelling m ay benefit from differencing 

the simulated data. This case, where the 1®' d ifference operator applied w ithout the Box-Cox 

transformation (i.e. A. = 1), is captioned with a diamond and shown on the extrem e right o f Figure 3.1.2.1. 

The (diamond) line segments associated with each param eter show that these implied parameter 

estimates are accurate and have narrow precision bands (compared to their undifferenced counterparts). 

In addition, as the Box-Cox param eter X is decreased no fall o ff in accuracy or precision is discernible. 

This pattern is repeated for the integrated ISETAR(2,1,1) data (see Table 3.1.2.1). Thus, as with the AR 

data, when threshold data should be differenced, the TSMARS approximation o f the differenced series is 

unaffected.

On the other hand when the 1®’ difference operator is not applied the accuracy and precision of the results 

(captioned with a dot) is influenced. The line segm ents made up o f dots on the extreme right, show the 

implied parameter estimates obtained when TSM ARS is used to model the raw simulated data. These 

estimates are less accurate and have larger S.E. bands than their differenced counterparts. This pattern 

is repeated for A. = 0.5 and 0. These results are sim ilar to those obtained for the AR data.

However, it will be noticed in Table 3.1.2.1 that the results for the integrated model are better than those 

obtained for the borderline model. Valid models were not distinguished for m odels based on the raw (i.e. 

undifferenced) data. In this instance, it is clear that the Box-Cox transform ation has no effect. Therefore 

TSMARS always finds a good approximation to this integrated data. From the results in Table 3.1.2.1, it 

appears that differencing does not affect the accuracy or precision o f estimates on integrated data and 

using a Box-Cox transform ation m ay well be futile.
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Figure 3 .1 .2 .1 : SETAR(2,1.1) Model S im ulation Results
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Sim ulations were also carried out on exponential data w ith the results given in the Table Appendix, Table 

3.1.2.2. In this case the empirical size of the implied param eter estimates is obtained when >. = 0 (i.e. the 

log transform ation) and the 1®‘ difference operator is used. The relevant implied param eter estimates are 

accurate and precise. It is clear that for increased values o f X  the accuracy and precision of the estimates 

does suffer in the integrated data case. Looking at the left side o f the table, that is where the 1®' difference 

operator is not applied (A = 0), the accuracy and precision of the estimates, is poorer fo r integrated data. 

The results observed here are sim ilar to those obtained fo r the AR model where the data are borderline 

stationary. The sim ilarity is not observed fo r integrated data.

Based on the results, it is clear from this study that TSM ARS estim ates are not influenced by a data 

transformation.

3.1.3 Summary

The simulation studies conducted on borderline stationary and integrated data were designed to check if 

TSMARS estimates were influenced by a data transformation. It was shown that differencing does not 

greatly improve the accuracy o f estimates but can improve their precision on borderline stationary data. 

This conclusion did not hold up fo r integrated data though differencing did not improve the estimates. 

Thus TSMARS will in general ‘adapt’ to produce regression models that account for the level o f an 

integrated time series w ithout the explicit need to difference. The variance of the estimate can suffer, as 

the standard deviation o f the param eter estimates obtained w ithout differencing, was sometimes two or 

more times that obtained with differencing. Therefore, these results infer that it is best to d ifference time 

series that appear to be integrated prior to modelling with TSM ARS. This will ensure precision is 

maintained.
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Using a Box-Cox transform ation does not appear to affect TSM ARS estim ates but the log transformation 

can help when m odelling growth data to stabilise the variance. This means that econom ic time series in 

particular should be ‘log’ tested prior to modelling with TSMARS.

3.2 Seasonal Adjustment and TSMARS

Benchm ark procedures such as X11 (Shiskin 1967) or Tram o-Seats (Gomez & Maravall 1996) are 

routinely used to seasonally adjust econom ic tim e series. The seasonally adjusted series or ‘s ignal’ is 

generally regarded as the true representation o f the underlying process that is not disturbed by seasonal 

fluctuations. Short-term  effects such as year-on-year or period-on-period growth rates, computed from the 

signal, reflect changes in the underlying process and are often m ore useful than their counterparts 

computed on the observed data.

In general there are two approaches to time series analysis fo r seasonal data. Either, the observed time 

series can be seasonally adjusted and a model for the signal estimated, or a full model incorporating 

seasonal effects can estimated directly from  the observed data. TSM ARS can be applied based on either 

approach and the quality o f the resulting fit m ay be dependent upon the approach adopted. In this 

section, prior seasonal adjustment followed by TSM ARS m odelling is compared to direct modelling, to 

decide which approach gives better estimates. To assess this question a num ber o f simulation studies 

are conducted on simple seasonal tim e series models.

Each simulation study conducted is based on an A R (1) or SETAR (2,1,1) model. To this basic model an s- 

period seasonal fluctuation p 2 g(t ,s)  is added o f the form  P 2 >'r-s > o'" P 2 |q *^herwise^’ P 2 S in (2 ;rr/5 )

Thus, for example in the AR (1) case 3 types o f model are simulated, namely

Model 1: y,  = P\ y, - i  + P 2 y , - s + ^ t

Model 2 : = Pi >'/-i + P 2 tmod(s) - 2  ^
H \  J ' l - i  H I  O therw ise '

M o d e ls : y i ~ P \ y t - \ ^ P i  S in (2 ;r t/5 )+ f,

with distributed N(0,1). Note that Model 1 is the parsim onious seasonal autoregressive model

AR(1)(1)s. Model 2 defines seasonality that depends explicitly on the 2"*̂  season and Model 3 allows the 

seasonality to vary smoothly over time.

Based on the chosen model a quarterly (s=4) time series y,  of length n+56 is simulated and a constant 

added to the series n  = l-m in ( jv ,)  to ensure the values stay positive. This series is checked for significant

seasonality at the 1% level by regressing it on seasonal dum mies =i' (i = l . . . 5 )
’ [0  otherw ise

according to the model

y< = ^1  A ,(  + < ^2  +<^3  ^ 3,r +^4  ^4,( + “ / (3.2.1)

( m, is white noise) and computing the F-statistic based on the corrected regression sum o f squares. This

is used to test whether all the seasonal means <5, = 0 . Only those simulated series showing significant

seasonality are used for this assessment.
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The seasonal adjustment operator adopted is the quarterly 57-term linear symmetric moving average 

approximation to X 11, of Laroque (1977), given by the formula

where B and F  are the backward and forward shift operators respectively. The weights c,- used in the

approximation are reproduced in Table 4.1 of Franses (1996). This approximation is preferred to X I I  for 

seasonal adjustment tests because it is linear and not data dependent. In contrast X11 adapts to the 

characteristics of a time series and so cannot be relied upon to make an identical transformation to each 

simulated series. Resulting conclusions may therefore be confounded.

Each time series is simulated with n+56 values. This is to ensure that seasonal adjustment of the middle 

n values (i.e. excluding the first 28 and last 28 values) is not spoiled due end-effects. In these simulation 

studies, only the middle n values of the original simulated series are used for modelling and comparison 

of results.

In order to assess the relevance of seasonal adjustment to each seasonal time series the following two 

methods are adopted:

1. Direct: TSMARS is called using the n middle values of a simulated time series that possesses

significant seasonality with predictors y,_^ and g{t ,s)  appropriate to the model type (i.e. 1-3).

The gives an approximation y , .  We act as though this is the observed series and fit the original 

AR(1) or SETAR(2,1,1) with s-period seasonal fluctuation model to get implied parameter estimates.

2. Seasonal Adjustment: The alternative involves generating the seasonally adjusted series x, = Sjsiy,)  

and the seasonal series s, for the middle n simulated time series values. The seasonally adjusted 

series is then modelled using TSMARS with lagged predictors x,_, x,_2 s giving an estimated series 

X , .  To this we add back the seasonal series giving the approximation y, = x , + s ,  and once again 

assume this to be the observed series. The original AR(1) or SETAR(2,1,1) model with s-period 

seasonal fluctuation is then fitted to this series and implied parameter estimates obtained.

The assumption underlying this assessment of both methods is that implied parameter estimates should 

be close to the true model parameter values and the degree of closeness indicating which method is best.

It is important to draw attention to the fact that the moving average seasonal adjustment method affects 

the underlying dynamics of a time series. This is due to y,  and e, being independent, but their 

seasonally adjusted values are not (see Hyileberg 1992, p36). As a consequence, the ACF of the 

seasonally adjusted series tends to die away slowly. To attempt to capture this behaviour the number of 

lagged predictors used to model the seasonally adjusted series x, is increased to 2s and the threshold 

parameter (used to control basis function dependence) in decreased to 1.5X10'®.

3.2.1 Simulation based on a seasonal AR(1) model

The time series model adopted for this set of simulations is based on the AR(1) model augmented by the 

seasonal fluctuation P 2 g{(,s), giving the model
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y , = l ^  + P \ y , - - i + P 2 g { U s )  + e, t = \ ,2, . . . ,n  (3.2.2)

where isA^(0, white noise. The param eters are // = 0, cr = l with the remaining param eters based 

on the chosen m odel (1-3), that is, the seasonal fluctuation g{t,s).  The AR(1) parameter pi in each model 

is constant. For Model 1, pi = 0 .1 5  while in M odel 2 pi = 0.4 and in Model 3 pi = 0.2. For each o f these 

values the seasonal param eter p2 takes values %, V2 and % respectively. This set o f nine simulation runs, 

each consisting o f 100 simulated series, is repeated for both the Direct and Seasonal Adjustm ent 

methods, giving a 18 different sets o f results fo r 18 separate simulation runs.

Each simulation consist of generating a sufficient num ber o f time series values o f length n = 100 + 56 

according to each model and testing each fo r seasonality. This is repeated until 100 series are generated 

showing significant seasonality. Each of these series is modelled either directly or by prior seasonal 

adjustment as outlined above. For the worst case, nam ely p2  = %, the two standard error (S.E.) bands for

Figure 3.2.1.1: Implied Parameter Estimates fo r AR(1) Model with Seasonality (worst case shown)
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each param eter estimate are shown in Figure 3.2.1.1 across all three model types. Note, for visual clarity, 

the dot and diamond lines are placed slightly to the left and right respectively o f their Model Type value 

while the mean is at the centre of the band. The results for the Direct Method are shown with a thick line 

of dots while those fo r Seasonal Adjustm ent are captioned with a line of diamonds. In each case two lines 

are shown, each represents the standard error band o f that parameter estimate, p2=0.25 while  p i=0.15, 

0.4 and 0.2 for each model type respectively. The bim odality that arises in the plot for each model type 

reflects this fact. More results are given in Table 3.2.1.1 (see Table Appendix) which also gives the Mean
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(over the 100 simulations) Residual Root Mean Square Error (RMSE) computed from y ,  and the relevant 

approxinnation y , .

The results from Model 1, where the seasonality is stochastic, show the direct method, that is modelling 

the simulated series using TSMARS, gives implied parameter estimates that are closest to the true 

values. Both methods produce estimates of the AR(1) parameter p, with a slight bias but standard 

deviations are similar. It is striking that the implied seasonal parameter estimate (i.e. p2 ) is significantly 

biased for the Seasonal Adjustment method (top left-hand diamond column) for Model 1. In Model 2 the 

seasonality is categorical and induced via a level shift in season 2. Once again the estimate is biased. For 

Model 3, which displays periodic seasonality this pattern is repeated.

Table 3.2.1.1 (see Table Appendix) shows the results from all simulations. Both the accuracy and 

precision of the estimates is shown to improve as the seasonal parameter (i.e. P2 ) is increased. Thus, as 

the seasonality is more readily distinguished both methods perform equally well. The Mean RMSE 

results for all 3 models is always just under 1.0 for the Direct Method while it is about 0.8 for the Seasonal 

Adjustment method. Given the innovation standard deviation is a = 1, it would appear that the Seasonal 

Adjustment method tends to over fit the simulated data.

The conclusion from these seasonal AR(1) based simulations is that the presence of seasonality has not 

influenceed the quality of the TSMARS approximation.

3.2.2 Simulation based on a seasonal SETAR(2,1,1) model

The time series model adopted for this set of simulations is based on the SETAR(2,1,1) model 

augmented by the seasonal fluctuation giving the model

w here f ,  isA^(0, o -^ ) white noise. The parameters are /u = 0, cr = % while the remaining parameters are 

based on the chosen mode! (1-3), that is, on the seasonal fluctuation g{t , s) .

In these simulations 100 series of length n = 500 + 56, showing significant seasonality are generated. 

Each series is modelled either directly or by prior seasonal adjustment. The two standard error (S.E.) 

band, with the central mean value, of the resulting implied parameter estimates for Model 1 only, are 

reported in Figure 3.2.2.1, with results for Models 2 and 3 in Table 3.2.2.1 (see Table Appendix). Thus in 

Figure 3.2.2.1 three lines are shown, each represents the standard error band of that parameter estimate. 

The trimodality that arises in the plot for the regular parameters p,, =0.2, p , 2 =0.1, and each respective 

value of the seasonal parameter p j  = 0.25,0.5 and 0.75 reflects this fact.

The distribution of the implied parameter estimates displayed in Figure 3.2.2.1 for Model 1 show that the 

Direct Method is much better than the Seasonal Adjustment Method. The Seasonal Adjustment Method 

gives estimates that are particularly biased for the seasonal parameter p j  (c.f. the three columns

captioned with a diamond running across the top of the figure). This bias decreases as p2  increases and

(3.2.3)



62

the seasonality gets stronger; this is dem onstrated by the Seasonal Adjustm ent (diamond) and Direct 

(dot) columns getting closer as p j  increases.

The results displayed for Model 1 are the w orst set obtained. Results from Models 2 and 3, where the 

seasonality is determ inistic, are genera lly good (see Table 3.2.2.1). However, fo r Model 2, the Seasonal 

Adjustment method gave Residual RMSE values that are poor, when compared to the standard deviation 

of the noise a  = %. This suggests a potential dilemma; that is, e ither (a) the estimates may be poor as a 

consequence o f seasonal adjustm ent, or (b) seasonal adjustm ent is working correctly and TSMARS 

modelling of these data has caused problems.

To answer this dilemma, Table 3.2.2.1(a) reproduces from  Table 3.2.2.1, implied param eter values 

obtained using the Seasonal Adjustm ent method on Model 2 with p ,2 = 0.75. These are contrasted with 

implied param eter values obtained from  the seasonal adjusted series, that is x, = S2${yi \  These values 

are obtained by regressing x, against left and right threshold basis functions (threshold = 0) o f x,.^ and 

an indicator series that has value 1 in season 2 and is 0 otherwise. Also, provided are the actual empirical 

estimates (that is, those based on the seasonal SETAR(2,1,1) regression fo r ;; , )  o f the parameters.

Figure 3.2.2.1: SETAR(2.1,1) Model 1 with Seasonalitv Simulation Results (worst case)
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It is clear from Table 3.2.2.1(a) that seasonal adjustment is effective since the seasonal param eter p j  =

0, for ,v,, as expected. However, the associated SETAR(2,1,1) param eter is accurate but has a very

large standard deviation. This induces the poor precision in the corresponding estimate (0.304) from 

Table 3.2.2.1. Since the empirical estimate of this param eter is correct (0.70, 0.116), it m ust be inferred
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that seasonal adjustment has altered some of the characteristics of the simulated time series x , . Thus 

the fault in the modelling is not due to TSMARS but to prior seasonal adjustment which has altered the 

underlying nonlinear characteristics of the regular SETAR(2,1,1) data.

Table 3.2.2.1(a): Seasonal Adiustment effects on Model 2 Parameters

pii =0.7 P1S = 0.3 P2 = 0.75

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Seasonal Adjustment (Table 3.2.2.1) 0.51 0.304 0.33 0.027 0.73 0.018

Seasonal Adjusted Series x, 0.74 0.600 0.45 0.045 0.00 0.001

Empirical Estimates (y,) 0.70 0.116 0.30 0.020 0.75 0.014

These results and associated observations support the view that the Direct Method gives the most 

reliable TSMARS estimates when the data are seasonal. Also, since the Direct Method worked relatively 

well on all three models we can say that there is no preference for a particular model type.

3.2.3 Simulation based on regime dependent seasonal SETAR(2,1,1) models

The seasonal SETAR(2,1,1) model (3.2.3) studied above assumes that seasonality is constant across the 

two separate regimes of the process. This assumption can be relaxed allowing the seasonality to be 

different in different regimes. The resulting regime dependent seasonal SETAR(2,1,1) model has different 

seasonal fluctuations g^(i,s) and in respective regimes and takes the form

^ ^ P \2 8 l i ‘ >s) if.y ,-|>0  i r , O A \
y , = M +  +  ̂ a  n < =  (3.2.4)

Pn y i - i  P22 g2('’ -̂ ) II y /-i < 0

where is U(0, <j^) white noise. This model is quite general, in that, the form of the seasonal function as 

well as the seasonal parameters can be different in each regime. Generalisations to three or more 

regimes with different seasonal fluctuations in each regime are obvious.

The relevance of this model lies in the empirical observation that for economic time series, the business 

cycle fluctuation does not appear to be independent of seasonal fluctuation (see Franses 1996). It is 

however unclear whether the parameter simply changes its value in different regimes, or the form of 

seasonal fluctuation function changes across the business cycle; say from stochastic to a more regular 

movement.

The results from the set of simulations based on the regime dependent seasonal SETAR(2,1,1) model 

are given in Table 3.2.3.1 (see Table Appendix). These assess whether original or seasonal adjusted 

data, simulated from the relevant model, is more appropriate to modelling with TSMARS. The length and 

number of simulated series generated is identical to that adopted for the seasonal SETAR(2,1,1) model in 

subsection 3.2.2. The parameters once again are // = 0, cr = % with the remaining parameters based on 

the chosen model type.

Among the three model types adopted, Model 3 is simplest in that the seasonality is regular in both 

regimes. This accounts for the fact that it gives implied parameter estimates that are best. In contrast
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Models 1 and 2 incorporate stochastic seasonality that changes across the regimes. This results in 

TSMARS producing poorer implied param eter estimates. The Seasonal Adjustm ent Method has 

performed poorest overall. More param eter estim ates tend to be biased using this method. However, its 

Residual RMSE values are good. Therefore, unlike the Model 2 case in the previous subsection, neither 

method has affected the nonlinearity of the underlying SETAR(2,1,1) series. Once again, these 

observations support the view  that the Direct Method is a slightly better modelling approach than prior 

seasonal adjustment.

3.2.4 Orthogonality and nonlinearity of seasonal and non-seasonal time series

The validity o f the simulation studies conducted in this section relies on two assumptions:

• The linear seasonal adjustm ent operator S28 will produce seasonal and seasonal adjusted series

that are orthogonal. That is, they will each possess cycles whose periods are independent.

•  The application o f a linear seasonal adjustm ent operator, such as S2 8 , to a linear series will result

in a seasonal adjusted series that is also linear, while its application to a nonlinear series will

result in a seasonal adjusted series that is nonlinear.

The Gain function (see Ladiray & Quenneville 2001) o f X11 and by implication S28 is sufficient to justify 

the claim that seasonal and seasonal adjusted series w ill be orthogonal when the input series is linear. A 

linear moving will produce a linear seasonal adjusted series but its autocorrelation pattern will, as 

mentioned earlier, be affected (see Hylleberg 1992). Therefore simulation results for the AR(1) models 

are well-founded since these two assum ptions are not violated.

Figure 3.2.4.1: Mean Spectra of Seasonal SETAR(2.1,1) model (p? = 0.75, see Table 3.2.2.1)
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Sim ulations resu lts based  on the n on lin ear S E T A R (2 ,1 ,1 ) m o d els  m a y  h o w ever be open to question. 

H ere , there is no g u a ran tee  that th e  season al and non season al series  will be orthogonal or that the  

season al ad jus ted  series will retain  threshold  nonlinearity. S ea s o n a l ad jus tm ent has been  o bserved  to 

interfere with th e  nonlinear ch aracteris tics  o f a  tim e series. For e x a m p le , G hyse ls  & Perron (1 9 9 3 ) show  

that seasonal ad ju s tm en t can sm ooth  a w a y  level shifts w hile  de Bruin (2 0 0 2 ) has d em onstra ted  that the  

sm oothing co nstan t in the S E A S T A R  m odel is deflated .

In order to c h ec k  orthogonality a  sm oo th ed  spectrum  (using a P a rze n  w indow , se e  S A S /E T S  U s er’s 

G uid e 19 99 ) is com puted  for ea ch  o f the 100  sim ulated series  (w ith  p j  =  0 .7 5 )  used to g e n e ra te  the  

results in T a b le  3 .2 .2 .1  (se e  T a b le  A p p en d ix). T h e  m ean  o f th ese  1 0 0  sp ectra  is com puted  across the  

frequency/period  rang e and th e  resulting M ea n  S pectrum  for each  m odel type is d isplayed in Figure  

3 .2 .4 .1 . T h e  M e a n  Spectrum  is co m p u ted  fo r the original series , th e  seaso n a l ad justed series and  the  

seasonal series.

It is c lear from  the spectral plots in F ig u re  3 .2 .4 .1  that on a v e ra g e  seas o n a l ad justm ent has separa ted  

quarterly  (I.e . period  = 4 )  cycles from  longer cycles associated  w ith th e  reg u lar S E T A R (2 ,1 ,1 ) part o f the  

of the model. S in c e  all plots sh o w  that th e  S ea so n a l Adjusted series has no pow er a t Period = 4 , w hile  the  

S easo n a l series has 1 0 0 %  of the pow er, th ese  tw o series a re  orthogonal. T h a t is, both of th ese  series  

carry cycles th a t are  largely ind ep en d en t o f o ne another.

T o  se e  w hether the seasonal ad jus tm ent o p erato r S 28 affects the n on lin ear nature of the sim ulated  series  

T s a y ’s F-test (T s a y  1 9 8 9 ) is app lied  a t lag 1. T h e  test checks for the ex is ten ce  of one or m ore thresholds  

against a  lin ear a lterna tive (s e e  A p p en d ix , Statistical T est for further deta ils ). T h e  test is app lied  to both 

the sim ulated series  y,  and  the corresponding  seasonal ad jus ted  se ries  x , .  T h e  num ber of series that 

rem ain  nonlinear after season al ad ju s tm en t is given in T a b le  3 .2 .4 .1  (s e e  T a b le  A pp en d ix). A  sm all 

section of this tab le  is reproduced h e re  for discussion purposes, labelled  T a b le  3 .2 .4 .1 (a ).

T a b le  3 .2 4 .1 (a ) :  N onlinearitv  of S e a s o n a l A diusted S E T A R (2 ,1 .1 )  M o de l with S easo n ality  R esults

Seasonal Adjusted Series (j :,)

Original Series ( y , ) 1% 5%

Linear Non

linear

Total Linear Non

linear

Total

Seasonal 

Parameter ( p 2 )
Model 1

0.25
Linear 44 7 51 : 21 6 27

Nonlinear 14 35 49 21 52 73

T o  interpret th e  results, consider th e  top right-hand corner o f T a b le  3 .2 .4 .1 (a )  w h ere  P 2  =  0 .2 5  and  

T s a y ’s F-lest is applied  at the 5 %  level. In this case  threshold nonlinearity  w as  detected  in 73  o f the 100  

sim ulated  series . O n season al ad ju s tm en t 52  of th ese  rem ain ed  n o n lin ea r w hile 21 w e re  found to be  

linear. A t first sight, this would ind icate  that seasonal ad jus tm ent has ch an g ed  the characteris tics o f 21 

series. T h s  h o w ever is not the case , since the test only has ab o ut 7 5 %  pow er. So, ap p ro xim ate ly  5 5  of
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the 73 seasonally adjusted series will appear nonlinear after application o f Tsay’s test. T h js , 52 as 

against an expected 55, seasonally adjusted series were found nonlinear. Therefore, seasonal 

adjustm ent did not affect the nonlinear characteristics (i.e. did not remove the threshold) of the seasonal 

adjusted series.

Looking at the rest of the results fo r Model 1, those at the 5% level show that fewer nonlinear models are 

detected as p j  's increased. This is due to the seasonal elem ent o f the series dom inating tne regular 

SETAR(2,1,1) part. This causes the test to pick up the linear seasonal elem ent in preference to the 

nonlinear element. O ther than this, there appears to be no discernible evidence that the nonlinear 

characteristics have been altered by seasonal adjustment.

The results for Models 2 and 3 at the 5% level are sim ilar to those for Model 1. Once again a b o jt 70-75%

of series tested show evidence of a threshold. O f these roughly o f the seasonal adjusted series 

retain the threshold. Based on the power of the test, the conclusion fo r these models is sim ilar to that fo r 

Model 1.

The results at the 1% level fo r all three models are sim ilar to those obtained at the 5% level except that

more simulated series test as linear. This clearly is to be expected.

Figure 3.2.4.2: Mean Spectra o f Regime Dependent Seasonal SETAR(2.1.1) model (p?? = 0.25)

Mnripl 1

- S i m u l a t e d  ( y )

S e a s o n a l  
A d ju s te d 
S e a s o n a l

P e r i o d

M n H o  9

1

0
2 4 6

Period F^od

Turning to the regime dependent seasonal SETAR(2,1,1) model, the mean spectral density where p j j  = 

0.25 is displayed in Figure 3.2.4.2. Model 3 spectra show that the seasonal and seasonal adjusted series 

are independent.
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In contrast Models 1 and 2 possess stochastic AR seasonality. This causes the spectrum to fatten out 

around the seasonal period (i.e. Period = 4). It also produces a widening of the spectral peak in the 

simulated seasonal series. This however, is of relatively short duration. Outside this narrow band about 

the seasonal period there is very good separation of the seasonal and seasonal adjusted series. This 

indicates that both of these sets of simulated series are independent.

In Table 3.2.4.2 (see Table Appendix) the results of applying Tsay’s F-test to the regime dependent 

seasonal SETAR(2,1,1) model are displayed. Once again, a small relevant section is displayed for 

discussion purposes, labelled Table 3.2.4.2(a). Model 1, with the test applied at the 5% level gives just 39 

simulated series that appear to show a threshold while 61 appear to be linear. Of these 39, almost all 

remain nonlinear after seasonal adjustment. However, for the 61 that appear linear roughly a half or more 

become nonlinear after seasonal adjustment. Thus either the test is unreliable for this model or the 

characteristics of the simulated series are altered by seasonal adjustment.

However, the test appears reliable since the results at the 1% level show no inconsistency. That is, more 

series appear linear and fewer nonlinear, as expected. Therefore we infer that the nonlinear 

characteristics of the simulated series have been altered by seasonal adjustment.

Table 3.2.4.2: Nonlinearity Test Results of Regime Dependent Seasonal Adiusted SETAR(2.1.1)

Seasonal Adjusted Series (j:,)

Original Series (y,) 1% 5%

Linear Non

linear

Total Linear Non

linear

Total

Seasonal 

Parameter (p2 2 )
Model 1

0.25
Linear 41 37 78 20 41 61

Nonlinear 2 20 22 3 36 39

The results for Model 2 show a similar pattern to those observed for Model 1. This is to be expected since 

both models possess a stochastic seasonal fluctuation. Once again, it must be inferred that seasonal 

adjustment altered the characteristics of the simulated series.

The results for Model 3 lie somewhere between those observed for the seasonal SETAR(2,1,1) model 

(3.2.3) and those already observed for the regime dependent model. That is, 2/3' ‘̂‘’s or more simulated 

series show evidence of a threshold, as in the seasonal SETAR(2,1,1) case. But almost none of these 

appear linear after seasonal adjustment, as in the regime dependent Models 1 and 2 above. Moreover, 

of those that initially appear linear when tested, half or more appear nonlinear after seasonal adjustment; 

with the results at the 1% level being consistent with those observed at the 5% level. Thus in Model 3 

seasonal adjustment has also altered the characteristics of the simulated series.

The results of this subsection show that seasonal adjustment, of both the seasonal SETAR(2,1,1) model 

and the regime dependent seasonal SETAR(2,1,1) model, result in seasonal and regular cycles whose 

periods are largely independent. Threshold nonlinearity testing of the seasonal SETAR(2,1,1) model
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showed there is no evidence that the nonlinear characteristics of the simulated series were altered. In 

contrast, when the seasonality was regime dependent, there was evidence to support the claim that 

seasonal adjustment alters the nonlinear characteristics of the simulated series. Where the seasonality 

was stochastic the evidence supporting the conclusion was strongest, but even where the seasonality 

was deterministic there was also sufficient evidence to support the conclusion.

3.2.5 Concluding remarks
This section has contrasted the effect of directly modelling simulated time series with TSMARS against 

the alternative method based on prior seasonal adjustment. Using this approach implied parameter 

estimates were obtained and the two methods compared.

The simulations based on the seasonal AR(1) model showed that there was little difference between 

using the Direct Method and Seasonal Adjustment Method. This is to be expected since the data are 

linear. The results for the seasonal SETAR(2,1,1) model showed the Direct Method to be slightly more 

reliable. Simulation results from the regime dependent seasonal SETAR(2,1,1) model showed that the 

Seasonal Adjustment Method performed poorly. The Direct Method once again did best based on implied 

parameter estimates.

The results from Tsay’s F-test (see Table 3.2.4.2) showed that seasonal adjustment affected the 

nonlinear characteristics of the regime dependent seasonal SETAR model. This conclusions agrees with 

de Bruin (2002) and Ghysels & Perron (1993), who also observed seasonal adjustment affected nonlinear 

characteristics of times series.

Taking all these observations and conclusions together TSMARS modelling using the Direct Method is 

preferred. However, the Seasonal Adjustment Method also gives reliable estimates when the seasonality 

is not regime dependent.

3.3 Conclusions
The purpose of this chapter was to check TSMARS in a variety of situations that occur frequently in time 

series. Specifically, attention was focussed on data transformations and seasonal adjustment. Both of 

these topics being particularly relevant to the empirical time series modelling that will be conducted in 

later chapters. The conclusion drawn from the simulation studies will therefore provide a useful guide in 

this forthcoming modelling exercise.

Simulation studies were conducted and showed that differencing did not influence the accuracy of 

TSMARS estimates but it can improve their precision. Therefore, to ensure precision, differencing is 

recommended. It was also found that using a Box-Cox transformation is futile. The log transformation is 

useful when modelling growth data to stabilise the variance.

In relation to seasonal adjustment versus direct modelling with TSMARS, this section showed that the 

latter approach is slightly better. However, for the regime dependent seasonal SETAR(2,1,1) model, the 

Seasonal Adjustment Method performed poorly. The impact of seasonal adjustment on the nonlinear 

characteristics of a time series was also examined. Only in the case of the regime dependent seasonal 

SETAR model was any effect observed.
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The conclusions of this chapter are therefore clear. When TSMARS is applied, integrated data should be 

differenced and modelling the data without prior seasonal adjustnnent is preferred. This will ensure that 

estimates are the best possible and that nonlinear effects are not inadvertently filtered out.

Table Appendix
Table 3.1.1.1: AR Model Simulation Results

oII< A =  1

Borderline Stationary

Pi= 1 p2 = -0.5 p ,=  1 P2 = -0.5

0 Mean 0.992 -0.408 1.005 -0.501

Std. Dev. 0.127 0.113 0.090 0.096

Valid Models 100 - 100 -

0.5 Mean 1.095 -0.291 1.008 -0.503

Std. Dev. 0.160 0.080 0.090 0.097

Valid Models 75 - 100 -

1 Mean 1.014 -0.515 1.009 -0.504

Std. Dev. 0.085 0.083 0.090 0.097

Valid Models 93 - 100 -

X
Integrated

Pi= 1.5 p2= -0.5 P i= 1 .5 p2= -0.5

0 Mean 1.395 -0.408 1.475 -0.492

Std. Dev. 0.375 0.148 0.08 0.086

Valid Models 94 - 67 -

0.5 Mean 1.475 -0.510 1.490 -0.527

Std. Dev. 0.170 0.094 0.060 0.056

Valid Models 99 - 100 -

1 Mean 1.489 -0.514 1.486 -0.522

Std. Dev. 0.084 0.081 0.058 0.055

Valid Models 100 - 99 -



Table 3.1.1.2: AR Exponential Data Model Simulation Results

OII 
: 

< 
'i

A =  1

Borderline Stationary

P,= 1 p2 = -0.5 p ,=  1 P2 = -0.5

0 Mean 0.995 -0.480 1.009 -0.504

Std. Dev. 0.138 0.184 0.090 0.097

Valid Models 100 - 100 -

0.5 Mean 0.920 -0.423 0.524 -0.240

Std. Dev. 0.224 0.148 0.283 0.133

Valid Models 100 - 100 -

1 Mean 0.837 -0.250 0.541 -0.272

Std. Dev. 0.549 0.664 0.337 0.235

Valid Models 100 - 100 -

Integrated

P i=  1.5 p2= -0.5 p i=  1.5 P2 = -0.5

0 Mean 1.210 -0.326 1.486 -0.522

Std. Dev. 0.393 0.205 0.058 0.055

Valid Models 93 - 99 -

0.5 Mean 1.313 -0.363 1.023 -0.110

Std. Dev. 0.242 0.200 0.279 0.255

Valid Models 99 - 70 -

1 Mean 1.337 -0.375 0.791 -0.220

Std. Dev. 0.205 0.201 0.548 0.361

Valid Models 100 - 58 -
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Table 3.1.2.1: SETAR Model Simulation Results

Borderline Stationary

I

> II o A = 1

P11 -P21 -  1 Pi2 — 0.7 P22 -  -0.3 P11 -p21 -  1 pi2= -0.7 P22 — 0.3

0 Mean 0.973 -0.664 -0.375 1.000 -0.669 -0.285

S.E 0.105 0.187 0.200 0.037 0.060 0.059

Valid Models 69 - - 100 - -

0. Mean 1.078 -0.403 -0.393 1.000 -0.685 -0.293

5 S.E 0.092 0.086 0.074 0.037 0.065 0.058

Valid Models 63 - - 100 - -

1 Mean 0.985 -0.723 -0.434 1.001 -0.698 -0.300

S.E 0.106 0.189 0.221 0.037 0.067 0.056

Valid Models 56 - - 100 - -

Integrated

A = 0 A = 1

Pi2- 1-7 pi2= -0.7 P12= 1.3 P22 — 0.3 P1 2 -  1.7 P12 “  -0.7 P12= 1.3 P22 — 0.3

0 Mean 1.694 -0.694 1.312 -0.313 1.601 -0.601 1.355 -0.355

S.E 0.067 0.067 0.116 0.116 0.058 0.058 0.124 0.124

Valid N/A - - - 72 - - -

Models

0.5 Mean 1.694 -0.694 1.313 -0.313 1.606 -0.607 1.364 -0.364

S.E 0.067 0.067 0.116 0.116 0.056 0.056 0.135 0.135

Valid N/A - - - 58 - - -

Models

1 Mean 1.694 -0.694 1.313 -0.313 1.610 -0.610 1.356 -0.355

S.E 0.067 0.067 0.116 0.116 0.055 0.055 0.129 0.129

Valid N/A - - - 57 - - -

Models

N /A  = Not Applicable: In this case valid models are not distinguished as the raw data, without differencing 

applied.
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Table 3.1.2.2: Exponential SETAR Data Model Simulation Results

Borderline Stationary

A = 0 A = 1

IIQ.Itd Pi2 — 0.7 P22---0.3 Pl1 -p21 -  1 Pi2 — 0.7 p22- -0.3

0 Mean 1.007 -0.731 -0.402 0.964 -0.819 -0.299

S.E 0.120 0.219 0.189 0.044 0.114 0.051

Valid Models 63 - - 100 - -

0. Mean 1.000 -0.731 -0.401 0.963 -0.854 -0.304

5 S.E 0.132 0.299 0.193 0.044 0.127 0.052

Valid Models 55 - - 100 - -

1 Mean 0.985 -0.822 -0.382 0.963 -0.903 -0.309

S.E 0.111 0.369 0.168 0.044 0.137 0.051

Valid Models 34 - - 100 - -

Integrated

A = 0 A 1

Pi2- 1.7 pi2= -0.7 pt2= 1.3 P22 -  -0.3 Pi2- 1-7 Pi2 “  -0.7 P12 = 1.3 P22 -  -0.3

0 Mean 1.694 -0.694 1.313 -0.313 1.610 -0.610 1.356 -0.356

S.E 0.067 0.067 0.116 0.116 0.055 0.055 0.130 0.130

Valid N/A - - - 57 - - -

Models

0.5 Mean 1.626 -0.626 1.096 -0.096 1.651 -0.651 1.155 -0.155

S.E 0.205 0.205 0.348 0.348 0.192 0.192 0.253 0.253

Valid N/A - - - 26 - - -

Models

1 Mean 1.783 -0.705 1.160 -0.157 1.893 -0.978 1.175 -0.127

S.E 0.371 0.533 0.681 0.577 0.981 1.295 0.930 0.607

Valid N/A - - - 19 - - -

Models
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Table 3 .2 .1 .1 : Implied Param eter Estimates for A R (1) Model with Seasonality

Model 1: y, = p \  y,-t ^  P i  y,-s

Mean Residual P2 = 0.25
Method RMSE S.E S.EMean Mean

Direct 0.98 0.05 0.155 0.30 0.103

Seasonal Adjustment 0.78 0.1170.02 0.095 0.64

0.98 

0.78

Direct 0.07 0.112 0.51 0.082

Seasonal Adjustment 0.04 0.092 0.74 0.076

P2 = 0.75

Direct 0.98 0.08 0.067 0.71 0.069

Seasonal Adjustment 0.78 0,0640.06 0.063 0.85

1 tmod(s) = 2 ^
0 otherwise ‘

Model 2 ; y , = p i  y,-i +p2

Mean Residual pi = 0.4 P2 = 0.25
RMSE S.ES.EMean Mean

Direct 0.96 0.32 0.1400.140 0.42

Seasonal Adjustment 0.81 0.0930.33 0.154 0.43

Direct 0.97 0.38 0.119 0.55 0.114

Seasonal Adjustment 0.83 0.37 0.118 0.54 0.088

Direct 0.98 0.40 0.103 0.76 0.132

Seasonal Adjustment 0.84 0.39 0.75 0.1180.106

Model 3 : y , = p ,  _v,_, + p j  S in ( l / r t  / i ) +

Mean Residual pi = 0.20

RMSE S.E S.EMean Mean

Direct 0.95 0.13 0.0870.141 0.50

Seasonal Adjustment 0.81 0.07 0.188 0.47 0.090

Direct 0.98 0.17 0.138 0.59 0.115

Seasonal Adjustment 0.83 0.13 0.139 0.57 0.112

Direct 0.98 0.17 0.121 0.76 0.154

Seasonal Adjustment 0.82 0.1530.16 0.127 0.75
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Table 3.2.2.1: SETAR(2.1.1) Model with Seasonality Simulation Results

Model 1: y i = i  l + P i y r - s + S i  
y p \ 2 y i - \ ]  V T 

T
A 

IV
 

0 
0

\

/

Mean CMdIIa. p12— 0.1 P2= 0.25

Method Residual

RMSE
Mean S.E Mean S.E Mean S.E

Direct 0.25 0.18 0.088 0.09 0.102 0.26 0.046

Seasonal Adjustment 0.23 0.03 0.076 -0.01 0.089 0.68 0.067

p2= 0.5

Direct 0.25 0.19 0.077 0.08 0.100 0.50 0.037

Seasonal Adjustment 0.24 0.04 0.066 0.0 0.073 0.77 0.039

P2= 0.75

Direct 0.25 0.19 0.045 0.08 0.083 0.74 0.032

Seasonal Adjustment 0.28 0.09 0.042 0.02 0.065 0.84 0.022

Model 2 : >V =
jP l iy r - l l  tmod(s) = 2 

\ p \ 2 y t - \ \  [0 otherwise
f i f  y , - ]  ^ 0 ^

+ € f ..
l^lf y , ^ i  <  O j

Mean Pii = 0.7 Pi2= 0.3 P2= 0.25

Residual Mean S.E Mean S.E Mean S.E
RMSE

Direct 0.25 0.62 0.124 0.36 0.065 0.25 0.015

Seasonal Adjustment 0.29 0.57 0.156 0.49 0.076 0.23 0.014

P2= 0.5

Direct 0.25 0.57 0.151 0.35 0.037 0.50 0.015

Seasonal Adjustment 0.43 0.55 0.200 0.37 0.041 0.47 0.018

P2 = 0.75

Direct 0.25 0.59 0.157 0.33 0.021 0.75 0.014

Seasonal Adjustment 0.61 0.51 0.304 0.33 0.027 0.73 0.018

Model 3 : \ p \ \ y i - \
y,

yp\2 y t - i
I  + P2 S in (2 ;tf/5 )+ f,

0 
0

A
l 

V

T 
T

Mean pii = 0.7 P i2 =  0.3 P2 == 0.25

Residual Mean S.E Mean S.E Mean S.E
RMSE

Direct 0.25 0.63 0.061 0.36 0.136 0.25 0.015

Seasonal Adjustment 0.22 0.59 0.066 0.40 0.091 0.24 0.016

P2 = 0.5

Direct 0.25 0.64 0.079 0.29 0.220 0.50 0.020

Seasonal Adjustment 0.22 0.60 0.049 0.42 0.066 0.49 0.016

P2 == 0.75

Direct 0.25 0.63 0.113 0.37 0.250 0.74 0.021

Seasonal Adjustment 0.23 0.62 0.038 0.42 0.059 0.75 0.016 1



Table 3.2.3.1: SETAR(2.1.1) Model with Regime Dependent Seasonality Simulation Results

Method

Model 1: yi
Pit y i-\ + P22 yi-s

+ £,
if > 0
if y,_, < 0)

Mean

Residual

RMSE

pii = 0.2

Mean S.E

p21 -  0.1

Mean S.E

p i2 =  0 .7 5

Mean S.E

P22 = 0 .25

Mean S.E

Direct

Seasonal

Adjustment

0.26

0.21

0.18

0.18

0.089 0.10

0.098 0.03

0.055 0.58

0.119 0.58

0.058

0.077

0.55

0.35

0.054

0.066

P22 = 0.5

Direct

Seasonal

Adjustment

0.25

0.20

0.17

0.19

0.062

0.064

0.13

0.08

0.051 0.67

0.102 0.66

0.041

0.054

0.64

0.51

0.044

0.054

Method

p ^ y i - i

Model 2 :  y, = P2 i> '/-i +
P22

1 tmod(s) = 2 + e ,  

0 otherwise

"if y,_i > 0 
if < 0

Mean

Residual

RMSE

p ii = 0 .2

Mean S.E

P21 -  0.1

Mean S.E

p i2 =  0 .75

Mean S.E

p22 -  0 .2 5

Mean S.E

Direct

Seasonal

Adjustment

0.28

0.24

0.21

0.08

0.154

0.211

0.12

0.05

0.121

0.070

0.49

0.53

0.079

0.076

0.22

0.22

0.039

0.020

P22 = 0.5

Direct

Seasonal

Adjustment

0.29

0.26

0.14

0.02

0.200

0.200

0.04

0.07

0.049

0.041

0.58

0.64

0.054

0.038

0.45

0.43

0.026

0.022

Pi 1 >’/-!
Model 3 : _y, = P21 >'(-i +

P22

P i 2 ( S i n ( 2 ; r f / 5 ) )

1 tmod(s) = 2 + s ,

0 otherwise

if y,_i >  0 
l^if y,.^ < 0

Mean P11 = 0.7 P21 = 0.3 P12 - 0.75 P22 - 0.25

Method Residual

RMSE
Mean S.E Mean S.E Mean S.E Mean S.E

Direct 0.26 0.67 0.079 0.30 0.073 0.71 0.057 0.23 0.042

Seasonal

Adjustment

0.29 0.84 0.072 0.03 0.050 0.49 0.040 0.24 0.014

P22 = 0.5

Direct 0.30 0.74 0.073 0.22 0.050 0.70 0.075 0.45 0.019

Seasonal

Adjustment

0.32 0.76 0.073 0.12 0.043 0.50 0.066 0.43 0.021
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T ab le  3 .2 .4 .1 : N on linearitv  o f S easo n a l Adjusted S E T A R (2 .1 .1 )  M odel with S easo n ality  R esults

Seasonal Adjusted Series (j:,)

Original Series (y.) 1% 5%

Linear Non

linear

Total Linear Non

linear

Total

Seasonal 

Parameter (p2 )
Model 1

0.25
Linear 44 7 51 21 6 27

Nonlinear 14 35 49 21 52 73

0.5
Linear 51 7 58 28 6 34

Nonlinear 12 30 42 21 45 66

0.75
Linear 66 14 80 48 21 69

Nonlinear 9 11 20 9 22 31

Seasonal 

Parameter (p2 )
Model 2

0.25
Linear 47 0 47 21 3 24

Nonlinear 13 40 53 21 55 76

0.5
Linear 40 3 43 18 2 20

Nonlinear 15 42 57 19 61 80

0.75
Linear 44 7 51 19 6 25

Nonlinear 35 14 49 22 53 75

Seasonal 

Parameter (p2 )
Model 3

0.25
Linear 55 5 60 31 1 32

Nonlinear 11 29 40 16 52 68

0.5
Linear 46 7 53 26 3 29

Nonlinear 14 33 47 19 52 71

0.75
Linear 49 7 56 29 6 35

Nonlinear 15 29 44 16 45 65
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Table 3.2A.2:  Nonlinearity Test Results of Regim e Dependent Seasonal Adjusted S E T A R (2 .1 .1)

Seasonal Adjusted Series (x,)

Original Series (y,) 1% 5%

Linear Non

linear

Total Linear Non

linear

Total

Seasonal 

Parameter (p2 2 )
Model 1

0.25
Linear 41 37 78 20 41 61

Nonlinear 2 20 22 3 36 39

0.5
Linear 47 23 70 34 27 61

Nonlinear 3 27 30 1 38 39

Seasonal 

Parameter (p2 2 )
Model 2

0.25
Linear 42 27 69 27 31 58

Nonlinear 0 31 31 0 42 42

0.5
Linear 28 23 51 22 25 47

Nonlinear 1 48 49 0 52 52

Seasonal 

Parameter (p2 2 )
Model 3

0.25

0.5

Linear

Nonlinear

Linear

Nonlinear

37

3

23

8

29

31

13

56

66

34

14

1

36

64

10

24

61

10

80

38

62

20

80
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4 Modelling Empirical Economic Time Series with TSMARS 

4.1 Introduction

Of particular interest in this thesis are empirical economic time series in official statistics published by the 

CSO. These series can display seasonal variation, independent effects (see below) and outliers. In 

addition some of the series may be nonlinear. In this chapter a number of empirical time series are 

modelled with TSMARS to search for evidence to support this claim. Furthermore, the size of nonlinear 

component is quantified based on the ANOVA decomposition of the TSMARS approximation.

To gauge noniinearity a ‘test bed’ of 20 monthly economic flow, stock and index series is taken from CSO 

sources. After linear modelling with SARIMA+, statistical tests (see Appendix) on residuals from each 

series indicated the presence of nonlinear effects. These detailed test results are given in a Table 

Appendix at the end of this chapter (see Table 4.6.1.1). More importantly, they also provide a standard 

against which TSMARS modelling of these series can be judged. A description of SARIMA+ is given in an 

Appendix to this thesis.

Growth or seasonal effects in an empirical series can swamp nonlinear features. Therefore, the way 

these effects are modelled can confound evidence of nonlinearity. In section 4.2 four different modelling 

variations of TSMARS are set out; two of these have already appeared in the literature while the other 

two are novel. The difference between each variation is the mechanism for handling data transformations 

and seasonality; these will be described in the next section. The key purpose of these four variations is to 

check, whether evidence of nonlinearity and its level depend on the modelling approach. In addition, all 

four variations cater for independent effects (e.g. trading day). However, in contrast to SARIMA+, no 

attempt is made to deal with outliers in any TSMARS variation; this topic is taken up in Chapter 6.

In section 4.3 an individual scrutiny of the TSMARS approximation for two of the series is also conducted. 

The two series are the Imports of Power Machinery and the Number of Males on the Live Register in 

Nenagh adjusted for seasonal effects; recall the logged 1®' differences of the Power Machinery series was 

plotted in Fig 1.1.1. For both series, the four TSMARS approximations are examined. Evidence for a 

nonlinear component is evaluated through frame plots, the ANOVA decomposition and plots of the 

distribution of residuals. The purpose of this section is to show how outputs from TSMARS can be used to 

provide a qualitative assessment of the model fit to the data.

In section 4.4, the quality of the TSMARS approximation to each test-bed series is evaluated based on a 

battery of statistical tests (see Appendix, Relevant Statistical Tests). For each of the four model variations 

these tests indicate the presence of nonlinear effects in the regular and seasonal parts of the series. The 

level of nonlinearity is quantified directly from the ANOVA decomposition of the TSMARS approximation. 

Tables showing detailed modelling results for all 20 test-bed series, using all four TSMARS modelling 

variations and SARIMA+ are displayed in the Table Appendix at the end of the chapter. This systematic 

modelling of empirical economic time series and the evaluation of the resulting test statistics to check for 

nonlinearity is novel.
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4.2 Economic Data Modelling Methods

There are several ways in which TSMARS can be applied to empirical economic data. This study 

confines itself to modelling univariate time series that may be non-stationary. In this thesis, changes in the 

level of an empirical series are handled by differencing while changes in variance are treated with a log 

transform (see Appendix, SAS/ETS User’s Guide 1993). In addition, independent predictors are also 

incorporated to account for fixed effects such as trading day factors.

This section describes the modelling methods used to produce a TSMARS approximation. First, methods 

to incorporate fixed effects are briefly outlined. This is followed by a description of four different modelling 

variations. Each of these is designed to capture seasonality in an alternative way. The resulting set of four 

TSMARS approximations will be contrasted with those obtained by linear modelling (i.e. with SARIMA+) 

in later sections.

In the TSMARS literature, two of the four modelling variations adopted have already appeared. The first 

uses independent periodic predictors in TSMARS, giving the so-called Periodic Predictor SETAR(ASTAR) 

model of Lewis & Ray (1997, 2002). The variation, referred to simply as TSMARS in subsection 4.4.2 

below.

The other variation that has already appeared uses periodic autoregressive predictors. Using these in 

TSMARS gives the Periodic SETAR(ASTAR) model of Lewis & Ray (2002). This modelling variation 

described in subsection 4.4.4 below and is called PTSMARS.

The remaining two variations of TSMARS described in this section are novel. One uses prior seasonal 

adjustment and is called SATSMARS. The other variation models a parsimonious set of appropriately 

transformed data. This variation is termed STSMARS.

4.2.1 Independent Predictor Effects

Independent predictors are incorporated in TSMARS models in this and subsequent chapters to account 

for to account for fixed effects. These fixed effects are length of month (MD), trading week length (TD) 

and Easter effects (the so-called trading effects).

The length of month effect is computed by subtracting 30.4375 (i.e. the average number of days in any 

month) from the number of days in that month (i.e. MD = month length -  30.4375). The trading week 

length effect is TD = number of work week days -  5 X number of weekend days/2 (see Pena et. al. 

2000). The Easter effect is computed according to the Corrected Immediate Impact rule given in Ladiray 

& Quenneville (2001). These trading factors are entered as co-variates and allowed to fully interact with 

the selected set of lagged time series predictors.

4.2.2 TSMARS Model

In this case, the raw response values y, are modelled in TSMARS. Thus, for example, no 

transformations are made to render the series stationary.
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A set o f i+ 1  m onthly (s= 1 2 ) lagged predictors a determ inistic seasonal

p red icto rp,  = Sin{2n:i /s),  { i  = l . . . s )  and a set o f s categorical predictors (each having a 1 in month i and 

denoted by ) are computed and input to the TSM ARS program. In this variation seasonality is identified 

either autoregressively through lagged values, or as a fixed effect through A:, , or as a periodic effect 

through p,. The maximum interaction degree set to 3 and basis function threshold = 2 X 10 ®. After the 

first call, further calls are made to TSMARS with weights to account for heteroskedasticity among the 

residuals giving the basic TSM ARS approximation

y, = , ̂ 1 , .. ., A:,,/?,, M D ,, T D ,, E aster,) (4.2.1)

where / ( • )  denotes the TSM ARS model.

4.2.3 SATSMARS: Seasonal Adjusted TSMARS Model

Here, the time series is first seasonally adjusted with Proc X11 (SAS/ETS) giving x, = S ( y , ) ,  with 5 

denoting the m onthly X I I  seasonal adjustment operator. Then, as above, a set o f lagged predictors 

Jc,-I categorical predictors and a determ inistic seasonal predictor are computed. These are

input to TSMARS with maximum interaction degree set to 3 and basis function threshold = 2 X 10'®. No 

further calls are made to TSMARS. The seasonal factors are then reapplied giving the approximation

y ,  = s f ,  E a s te r , ) /100 (4.2.2)

where sf, denotes the seasonal factor. In this variation seasonality is removed prior to modelling. 

Categorical predictors and the determ inistic seasonal predictor are included to account for the possibility 

of residual seasonality left after seasonal adjustment; however, the results show that this in fact does not 

occur. Also, only the m ultiplicative model is used and so no results are available when the data possess 

negative values

4.2.4 STSMARS: Seasonal TSMARS

In this variation the time series is checked and adjusted, as appropriate, for a log, a constant and the set 

o f difference transform ations giving the transformed series denoted by

z, = (l -  b Y  {log(j^, + c )}

where B denotes the backward difference operator (5  ), d (=0, 1, 2) denotes the regular

difference operator, D (= 0 ,1 ) denotes the seasonal difference operator, c is a constant adjustment. The 

parsimonious set of lagged p r e d i c t o r s a r e  computed and input into the

TSMARS program, along with appropriately differenced trading effects’ variables. The maximum 

interaction degree is set to 3 and basis function threshold = 2X10 ' ® with subsequent weighted calls to the 

TSMARS program to handle heteroscedasticity. On completion the sequence o f transform ations are 

applied in reverse giving the approximation based on the general form
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y, =  exp - c  (4.2.3)

where Zt^D etc. denotes the appropriate ly chosen differenced value o f MD etc. Note, that no independent 

categorical predictors or determ inistic seasonal predictor are included in the model. Therefore, 

seasonality is only catered fo r autoregressively in this m odelling variation. This variation is also closest in 

flavour to linear m odelling methodology, in that, a parsim onious set o f lagged predictors, along with 

differencing and a log transform ation are used as identify the model.

4.2.5 PTSMARS: Periodic TSIVIARS

In this variation the time series is checked and adjusted, as appropriate, fo r log and the periodic (lags = 1 

and s) differences. Appropriate transform ations are applied giving the transform ed series denoted by z,. 

This series is transposed into tabular years (rows) X months (colum ns) form. Let i and j  denote the year 

and month respectively and let the transposed value o f z, by M - j .  Then each month, January for 

example, is estimated separately with response data M ,-, and predictors A f , ,2 giving the

Periodic TAR (PTAR) model for each individual month. Trading effects fo r the relevant month (e.g. 

January in this case), are also added to the predictor set. In the length of month case MD is denoted by 

^ i \ ! M D  ■ 'S made to the TSM ARS program for each month, with the maximum interaction degree

is set to 1 and basis function threshold = 2 X 10'®. On completion the sequence of transform ations are 

applied in reverse giving the general form  of approximation

1/MD ' l^ ir rO  ’ •'^1/EASTER )

y, = exp (4.2.4)

where M , denotes the vector of time series values in January and the seasonal lags are based on the 

seasonal integration test (see Appendix, Relevant Statistical Tests). Note, no independent categorical 

predictors or determ inistic seasonal predictor are included in the model. The seasonality in this case is 

catered for autoregressively and separately in each period.

4.3 Individual Scrutiny of Two TSMARS Economic Time Series Approximations

In this section the results obtained from  two of the test time series are discussed in detail. Analysis of the 

other series, based on statistical test results, is conducted in section 4.4. As mentioned above, the two 

series chosen are Imports o f Power M achinery and the Number of Males on the Live Register in Nenagh 

adjusted for seasonal effects. This section provides a qualitative assessm ent of the fit produced by 

TSMARS for each of the four modelling variations. Evidence fo r a nonlinear com ponent is gauged 

through frame plots, the ANO VA decomposition and plots of the distribution o f residuals.
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4.3.1 Imports of Power Machinery
The results obtained from modelling this time series are displayed in Figure 4.3.1.1. Two separate 

residual plots covering the years 1993 to 2002 are provided for clarity. The first plot shows the both the 

TSMARS and SATSMARS (i.e. TSMARS applied to the seasonal adjusted series) residuals while the 

second shows the STSMARS and PTSMARS residuals.

Figure 4.3.1.1: Residual Plots of Imports of Power Machinerv€000
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The plots show that TSMARS and SATSMARS (i.e. TSMARS on seasonal adjusted series) provide very 

similar approximations. TSMARS tends to give a smooth approximation that tracks the local mean value 

of the series quite well. Both model variations however fail to pick up extra peaks in the years 2000 -  

2002 as the residuals in this period are large. The plots for STSMARS and PTSMARS are also quite 

good. STSMARS modelled the differenced series. This plot is not as smooth but most of this local 

variation is accounted for by the adding back the differences. This would also account for STSMARS 

tending to follow the 2000 -  2002 peaks in the original series a little better than other methods.

The time series models produced by each approximation (reproduced from Table 4.6.1.1 with z, 

denoting the 1®’ differenced series) respectively are

y,  =21,119 + 0.32>;,_, +0.25y,_3 +0.38>',_4 (TSMARS)

y,  = 3 5 , 0 5 6 - 0 . 4 +0.59(y,_, -52,932)_ (SATSMARS)

z, = 0.28 + 0 .18z ,_2 -0.87(z,_, -1.28)^ +0.2(z,_,2 -1.05)+ (STSMARS)

>>,= Mixed (PTSMARS)

The term ‘Mixed’ is used to for PTSMARS where the 12 individual monthly models are different; most 

often being an AR model in one month and a SETAR model in another month.

The TSMARS approximation found is a nonseasonal linear model. This model is almost a simple moving 

average with coefficients of 1/3; to a close approximation. The SATSMARS is a nonseasonal SETAR 

model. In contrast the STSMARS model is a regime dependent seasonal SETAR model in the 1®' 

differences. The frame for this model is plotted in Figure 4.3.1.2.

Figure 4.3.1.2: Imports of Power Machinerv STSMARS Frame
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It is clear from Figure 4.3.1.2 that the fram e is not linear and moreover, it cannot be well approximated by 

a simple linear function. A  quadratic function could be used indicating that higher order lags may help in 

modelling the data -  this is the case with the linear TSM ARS approximation.

However, the STSM ARS fram e in Figure 4.3.1.2 can be approximated quite well by the simple piecewise 

linear function

0. Ijc i f  x < 0
y =  (4 .3 .1 )

-0 .3 x  i f  x > 0

This function in fact is the fram e associated with the SETAR (2,1,1) model given in C hapter 1, equation 

(1.1.1). Recall, this SETAR model was suggested to explain the tendency o f the differenced Imports of 

Power Machinery series, to stay negative after a negative value or to become negative after a positive 

value. Thus, STSMARS has found this asym m etric structure in the data and explained it with a regime 

dependent seasonal model.

However, the actual am ount on nonlinearity is small, at only 2% according to the ANO VA decomposition 

given in Table 4.6.1.2. An extract from this table is given below for TSMARS and STSMARS 

approximations. Note: STSM ARS figures are computed on the differenced series and the large residual in 

this case, is the residual from modelling this differenced series. In contrast, the TSM ARS residual is 

computed from the raw series.

Extract of Table 4.6.1.2:

ANOVA Decomposition of Approximations to Imports of Power Machinery Series

Method Function Type Function % Variance

TSMARS Mean 21,119 43

Linear 0.32>',_| + 0.253 ,̂_3 + 0 .383 ,̂_4 52

Nonlinear None 0

Residual - 5

STSM ARS Mean 0.28 15

Linear 0.18z ,_2 13

Nonlinear -0 .8 7 (z ,_ i -L 2 8 ) ^  +0.2(z ,.,2 -1 .0 5 )., 2

Residual - 70

Looking at the combined variance o f the mean and linear functions, this is split in roughly in the same 

proportion over the mean function and linear function fo r both methods (i.e. 43/52 and 15/13). 

respectively. This indicates that the variance in the higher lags in the TSM ARS approximation m ay be 

modelling curvature in the data. The STSMARS approximation shows that any curvature is likely to be 

small as only 2% o f the variance is attributable to the nonlinear component. Thus, there is little d ifference 

between the TSM ARS and STSMARS approximations. This conclusion is reinforced on taking 1®' 

difference of the TSMARS approximation giving a model o f the form  (note, this function includes z,_2 
which the usual 1®' difference would not)

z, = -0.68z,_| -  0.68z,_, -  [0.43z,_3 + 0.05z,_4 + O (z,_5)] (ATSMARS)
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This is a function that approximates the negative slope in z,_, on the right half of frame in Figure 4.3.1.2. 

The distribution of residuals from both of the TSMARS and STSMARS models fit are plotted in Figure 

4.3.1.4. These show^ a high peak at the centre. The normal curve is also plotted and demonstrates that 

both TSMARS and STSMARS residual distributions have heavy tails. There is also evidence of two small 

peaks at about ±7,000. Both of these observations show that TSMARS did not manage to completely 

identify the underlying signal. In fact the heavy tails observed in the residual could be due outliers or to 

moving average components. This possible presence of moving average components is suggested by the 

fact that the SARIMA+ returned a 1®' differenced first order moving average model for these data.

Figure 4.3.1.3: Imports of Power Machinery Residual distributions
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4.3.2 Live Register IVIales Nenagh (seasonal adjusted)
The results obtained from modelling this time series are displayed in Figure 4.3.2.1. In this case only the 

STSMARS plot is given as all the other methods produced an approximation of the form

y, =314 + 0.99y,_, (TSMARS)

Clearly, this approximation shows that the series should have been differenced before modelling. 

However, STSMARS is designed to handle data that should be differenced. In this case, 1®' differences 

were applied giving the seasonal model approximation

z, =-0.03 + 0 . 17z ,_,2 - 0 .2 6 ( z ,_3 +0.009)+ +0.2(z,_,^ +0.02)+ (STSMARS)

The plot in Figure 4.3.2.1 shows that the observed data are quite smooth and the STSMARS 

approximation is very close. The STSMARS model for the differenced series z, has a threshold term at 

lag 3 and a linear and a threshold term at the seasonal lags. The extract below from ANOVA
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decomposition (c.f. Table 4.6.1.2) shows that only 1% o f the variance appears to be attributable to the 

threshold terms. The mean and linear components dom inate the approximation.

Extract of Table 4.6.1.2 :

ANOVA Decomposition of STSMARS Approximation to Live Register Series

Method Function Type Function % Variance

STSMARS Mean - 0.29 6

Linear 0.17z ,- i 2 5

Nonlinear - 0.26(z ,_3 - 0.009)^ + 0.2(z ,_i 3 - 0.02)^ 1

Residual - 88

The fram e for this model is plotted in Figure 4.3.2.2. It is clear from the plot that the STSMARS 

approximation is virtually linear over the range o f the data. A  small kink is visible and this explains the 

occurrence of the threshold terms.

Finally, in Figure 4.3.2.3 the residuals are plotted fo r both TSMARS and STSMARS. The TSMARS 

residuals are included to show the amount o f frequency that is accounted fo r by differencing alone. The 

TSM ARS plot is slightly skewed but otherw ise approximates the Normal quite well. The STSMARS fit is 

very good except fo r the slight peak at residual values around 60. Also, there is no evidence for heavy 

tails in these distributions. Based on this analysis these data linear. Prior seasonal adjustm ent though has 

not removed the seasonal linear component that is discernible in the 1®' differenced series.

Figure 4.3.2.1: Live Register No. Males Nenaqh (sesaonal adiusted)
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Figure 4.3.2.2: Live Register No. Males STSMARS Frame
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Figure 4.3.2.3: Live Register No. Males Residual distributions
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4.3.3 Closing Remarks
The section contrasted four different variations of TSMARS approximations on two chosen series and 

gave qualitative assessment of the fit of each variation.

The analysis of the Imports of Power Machinery concluded that there was evidence for nonlinearity in the 

1®* differenced series of STSMARS. The size of this component was however quite small, at 2% 

according to the ANOVA decomposition. This however was sufficient to give a better residual fit than the 

linear approximation of TSMARS (i.e. without differencing). The residual distributions of both methods 

though did show evidence of heavy tails. This would indicate that there is potentially another nonlinear 

component, such as a departure from normality that STSMARS is unable to find; see, for example 

subsection 2.5.6, where TSMARS gave poor estimates where the data depated from normality.

The Live Register No. in Nenagh adjusted for seasonal effects was also analysed. Three of the four 

modelling variations produced a integrated order 1 approximation. STSMARS though produced a 

seasonal threshold model. On further analysis this model was ruled out, as the threshold effects only 

marginally perturbed the data away from linearity. In this case, it was concluded that this is a 1®' order 

differenced series, with a small seasonal linear component driven by Gaussian error. This linear seasonal 

component however has not been removed by prior seasonal adjustment.

This qualitative assessment therefore shows that TSMARS produces accurate approximations to these 

data. However, even with sophisticated modelling variations, a departure from normal errors, such as 

heavy tails, can affect the TSMARS approximation.

4.4 Economic Data Modelling Results

In this section the modelling results are summarised and discussed. The summary has two components, 

a frequency table of significant test results and a frequency table of model types. The discussion is based 

on and an analysis of the MAPE statistics. The purpose of this examination is to assess the overall 

presence of nonlinear components, as well as their influence on the set of 20 ‘test bed’ time series. Based 

on this, a verdict is made on the nature, type and influence of nonlinear effects In CSO series.

4.4.1 Explanation of Results Table
The results obtained from the time series modelling study of the test bed are displayed in Table 4.6.1.1. 

For each series in the table, the number of observation (N), the series code and its title are given. Then,

for each TSMARS modelling variation an indicator is given to signify whether a log transformation or

constant was applied. The TSMARS model approximating the data is also given, followed by statistics 

computed on the residual. These statistics are specified in the Appendix - Relevant Statistical Tests.

The model given In the SARIMA+ case has the following definition:

(p,d,q)(P,D,Q)s{MD, TD, EASTER}[AO, LS, TS 10] 

where p, d, q and P, D, Q specify the regular and seasonal AR order, level of differencing and MA order 

respectively. In curly braces the trading effects predictors are specified while In square braces the number 

of additive outliers, level shifts, transitional shifts and innovational outliers is given. Note that only 

significant trading effects predictors are incorporated in the final estimated SARIMA+ model.
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In relation to the periodic PTSMARS method the model for each month is given when it is simple. 

However a number of the models found were complex with up to 12 different monthly additive models 

combined. When this occurred the model is classified as M /xedwith independent predictors (when found) 

placed alongside in curly braces.

The column Cycles/Notes in Table 4.6.1.1 identifies whether a cycle (i.e. significant spike, see Brockwell 

& Davies 1991) was evident in the residual spectrum. Where a regular cycle is found and Tsay’s F-test is 

also significant at a corresponding lag (or integer multiple thereof) then Tsay’s F-test classifies it as a 

nonlinear effect. Evidence of a threshold can therefore only be accepted when there is no evidence of a 

cycle.

4.4.2 Discussion of Results

Table 4.6.1.1 provides a detailed set of results from the modelling exercise with statistics computed on 

the residual y, - y , .  To glean useful additional information from the statistical test results, Table 4.4.2.1

summarises the number of times each test produced a significant value at the 1% level (except for t^ „  at 

5%). In the table the rank of each method is also given (best = 1) in braces and a final column shows the 

sum of the ranks. The purpose of Table 4.4.2.1 is to show any differences between the modelling 

variations in terms of results of test statistics. In this context a modelling variation will be judged better if it 

has the lower ‘Sum of Ranks’ value.

Table 4.4.2.1: Frequency of Significant Test Results

Method
Statistics

Sum

of

Rani<s

2
X2 tjlpO Tsay F- 

test lags

BDS test Seasonality

F-test

PAR(1)

F-test

PAR(2)

F-test

Periodic

Variation

F-test

SARIMA+ 10(1) 1 8 (5 ) 1 (2) 5 (3 ) 18(5) 1 (1) 0 (1 ) 0 (1 ) 1 (2) (21)

TSMARS 17(5) 11 (2) 4 (5 ) 7 (4 ) 14(2) 14 (5 ) 13(2) 13(3) 4 (5 ) (33)

SATSMARS 13(3) 13 (3 ) 3 (4 ) 3 (1 ) 16(3) 1 (1) 15(4) 14(4) 0 (1 ) (24)

STSMARS 11 (2) 10 (1) 0 (1 ) 4 (2 ) 12(1) 7 (4 ) 13(2) 12(2) 1 (2) (17)

PTSMARS 13(3) 15 (4 ) 1 (2) 9 (5 ) 16(3) 4 (3 ) 17(5) 15(5) 3 (4 ) (34)

Table 4.4.2.1 can be divided into two parts, on the left are the model adequacy tests; then Vo. Tsay F- 

test and BDS test. Where these are significant it indicates there is nonlinearity in the residuals. On the 

right are the seasonality tests.

In terms of model adequacy, the figures show that STSMARS is judged best with consistently low ranks. 

Among the others there is little difference. Therefore STSMARS has found more nonlinearity than any 

other modelling variation. STSMARS performs second best on seasonality test though the number of 

significant test statistics is only marginally lower than the other modelling variations.

With regard to seasonality, SARIMA+ out performs other methods. In fact, this method left almost no 

seasonality behind in the residuals. Moreover, the figures suggest that the seasonal component in these 

test-bed series is linear and does not interact with the regular component.
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A particularly striking feature in Table 4.4.2.1 is that the t^, „  statistic and Periodic Variation F-test were 

significant in a snnall num ber of cases. This indicates that neither regular or seasonal heteroscedasticity is 

evident in the residual.

The MAPE statistic was analysed using the Kruskal-W allis One-way test of ranks procedure treating each 

nnethod as a separate group for the one-way analysis. The H-value that resulted was 0.82; this is not 

significant at the x^4,o.95 = so there is no evidence of a difference in the MAPE values across 

methods. H-values were also computed pair wise. These ranged from 0.0 to 0.7 and once again none of 

these values are significant at the 5% level and so there does not appear to be any difference between 

the methods in terms o f their MAPE.

Table 4.4.2.2 sum m arises the models observed in Table 4.6.1.1 according to model type. The frequency 

distribution shows that both TSMARS and SATSM ARS returned an integrated 1(1) model in 12 of the 20 

cases. This is a reflection of the fact that the signal variance is dominated by the ‘growth’ component in 

m any econom ic time series. In contrast roughly ha lf o f the models found by the STSMARS method 

displayed some nonlinear effect after the growth com ponent was removed. This suggests that to identify 

nonlinear components, integrated effects should be removed prior to modelling with TSMARS. In relation 

to PTSMARS the models are simply classified as linear or nonlinear. Here again, the method seasonally 

differenced the data prior to m odelling and the results show that over half of the models possessed some 

nonlinearity.

Table 4.4.2.2: Frequency o f D ifferent Model Tvpes Observed in the Test Results

Method
Model Type

Mean only Independent

Predictors

Linear Integrated

1(1)

SETAR Seasonal

SETAR

Regime

Dependent

SETAR

Nonlinear

TSMARS 1 1 2 12 1 2 0 1

SATSMARS 0 0 1 12 4 1 1 0

STSMARS 0 2 5 2 2 4 5 0

PTSMARS - - 8 - - - - 12

The table above indicates which methods found som e nonlinearity. However, of greater interest is the 

number of test statistics that were not significant w here a nonlinear model was found. Table 4.4.2.3 gives 

this number for the (five) model adequacy test. The presence o f a in the cell indicates that the model 

did not possess any nonlinearity. Looking at the figures it is clear that the test statistics from STSMARS 

result in fewer significant tests of nonlinearity. For test-bed series numbered 6 through 10, a lm ost all 

nonlinear test were not significant. This verifies the claim that CSO series possess nonlinear features, 

since these models are nonlinear and these residual tests show no evidence o f nonlinearity.
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Table 4.4.2.3: Frequency of (five) Test Statistics that are not significant for Nonlinear Models only.

Method
Test Series Number

1 2 3 4 5 6 7 8 9 10

TSMARS

SATSMARS

STSMARS 1 - 1 - 5 5 5 4 5

Method
Test Series Number

11 12 13 14 15 16 17 18 19 20

TSMARS

SATSMARS

STSMARS

3 - - - 0 1 - 

2 - - 2 1 2 

4 - 1 - - - 1 1 3 1

4.4.3 ANOVA Decomposition Results

The TSMARS program provides an ANOVA type analysis that breaks down the contribution of each basis 

function in the approximation to the overall variance. In Table 4.6 .1.2 this breakdown is given grouped by 

basis function type. The breakdown is computed somewhat differently for each method in that the figures 

given, are those that arise solely from the call to the TSMARS program. This means that growth effects 

are excluded from the figures given for STSMARS and average figures are given for the 12 monthly 

approximations obtained in PTSMARS.

Table 4.4.3.1: Extract of Table 4.6.1.2 ANOVA Analysis

No N Series Code Title Method % Variance

Mean Linear Nonlinear Independent Residual

Average TSMARS 48 42 4 1 5

SATSMARS 49 44 3 0 4

STSMARS 25 19 6 0 50

PTSMARS 67 18 8 0 7

The overall average figures given in Table 4.6.1.2 are extracted and displayed in Table 4.4.3.1. These 

show the mean and linear basis functions account for roughly 90% of the explained variance for three of 

the methods. These sources of variation largely account for the growth components of the time series that 

mask other characteristics such as nonlinearity. This masking is further emphasised by the fact that the 

residual variance is also relatively small for these three methods. The breakdown of the variance for 

STSMARS does appear different to that of the others in that the residual variance accounts for 50% of the 

overall variance. This however is an anomaly, since in this case the variance breakdown is given purely 

for the TSMARS program call. The approximation therefore does not always include the growth 

component. In general the nonlinear component appears to account for about 5% of the overall variance.
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Only test-bed series numbered 3, 13, 14, 17, 18 and 19 show evidence of nonlinear signature in the 

residual using more than 1 method.

4.5 Conclusions

In this chapter a ‘test bed’ of 20 monthly economic flow, stock and index series were modelled with four 

TSMARS modelling variations. The purpose of this was to assess whether there is evidence for 

nonlinearity in each series. An individual scrutiny of the TSMARS approximation for two of the series was 

also conducted to glean further evidence in support of the nature of the nonlinearity.

The individual scrutiny showed that TSMARS modelled the data accurately. There was also evidence 

from frame and residual analysis to support the conclusion in favour of some nonlinearity. In particular, 

the 1®' differenced Imports of Power Machinery series showed asymmetric structure. There was also 

evidence for some departure from normal errors.

The detailed results of Table 4.6.1.1 and the associated ANOVA breakdown in Table 4.6.1.2, showed that 

many of the TSMARS approximations were simply integrated order 1 growth models. This growth effect 

tended to mask other characteristics. The conclusions of Chapter 3 regarding the importance of 

differencing prior to TSMARS modelling therefore hold up. Where nonlinearity was found, invariably the 

STSMARS variation discovered it. Moreover, this was confirmed by the fact the test statistics for 

nonlinearity in the residual tended to be accepted. Analysis of the associated ANOVA decomposition 

showed that only about 5% of the variance was attributable to nonlinear effects. This however varied from 

0% in most cases, to a maximum of 47% in one case.

The conclusions obtained from this modelling exercise show that nonlinearity was only present to a small 

degree. This conclusion is affirmed by the fact that linear SARIMA+ modelling gave results that were also 

good. Moreover, SARIMA+ incorporates both MA components and outliers. These may be responsible for 

heavy tails observed in the residual of the Imports of Power Machinery series. This in turn may be affecting 

the test statistics. If these effects are present then TSMARS will produce estimates of insufficient quality. 

The reasons for this are that TSMARS is not robust and does take account of dependent errors in it 

model estimates. These issues will be taken up in later chapters.
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Table Appendix Table 4.6.1.1: Time Series Test-bed Results

No
Series

Code
Title Method

Transformations

Log Constant

Model

286 ASAM003 Cows Milk

Protein 

Content (%)

SARIMA+

TSMARS

SATSMARS

STSMARS

PTSMARS

(3, 0),

y, = 210,770 + 1.01>>,_,

y, = 30,867+ 0.97>-,.I

a [v , = - 0 . 0 I - 0 . 4 4 > ’,_ i +0.48>>,_|2]

A /i = 1 0 .3 +  1 .0 4 ^ 2 ’ ^ 2  = 10.3+ 0 .9 4 A /,,  A/ 3  = 10.4 +  0.92 A /,, 

A/ 4  =  10.3 + 1.04 A /,, A/ 5  =10.3 + 0.98 A / i,  =  10.3 +  0.98 A /3 , 

A/ 7  =10 .3  + 0.96 A /,, A/g = 10.3 +  1.03 A /2 , A/ 9  =  10.3 + 1.00 A /4 . 

A/1 0  =10 .4  + 1.02 A /4 , A /,, = 10.4 + 1.01 A /4 , A/ , 2 =  10.3+ 0.97 A/ 4

286 ASAM206 Calves

S laughtering 

000 Heads

SARIMA+

TSMARS

SATSMARS

STSMARS

PTSMARS

(1 ,0 , 1)(1, 0, 1)s[0, 4, 3, 2] 

y ,  =0.13 + 0.71y,_,

Series has zero values -  inappropriate for 

m ultiplicative adjustment

=1.08 + O . I 8 r , . , ( r , . j - 1 .2 ) , -

+ 0.5y,_,(r,_2 - 1.2)_ (r ,_,2 - 0 .8 ) ,  

y, =  Mixed {TD}

3 286 ASAM305 Heifers

S laughtering 

000 Tons

SARIMA+

TSMARS

SATSMARS

STSMARS

PTSMARS

(0, 1, 1)(0, 1, 1),{TD}

y , = 8.3 + 0.22y,_2 + 0.42y,_f2 -  0.37y,_|3 -  

0 -56(y,-i -  I0'2)_ + 0.42(y, -  10.2).^

y , =  8.48 -  0.78(y,_, -  4.6)_ + 0.57 (y,_^ -  4.6)+ + 0.64y,_i2 

-0 .4 y ,_ ,j + 0 . l6 ( ro  + 5) .̂

a [v, = 0 .0 6 -0 .0 1  (7 D -7 )_  -0 .0 2 (A /£ )-3 ).^ ]

y , =  Mixed {TD}

250 FIAM023 Irish C urrency SARIMA+

in C irculation 

(€)
TSMARS

SATSMARS

STSMARS

PTSMARS

(1 ,0 , 1 )(1 ,0 , 1)s[0, 2, 2, 5] 

y , = 1,068.8 + l.01>-,., 

y , = 1,087 + 1.02 y,_|

y, =0.11 + 0.2y,_| +0.57>>,_|j -1.18(>>,_2 -0.11)^. + 

1.17(y,_3 -0.12)^. +

2-^Sy,-, iy , - 2  + 0 -  2.63y,,,2(y,-u + 013K

W , = 6 .9 +  0.991^2, M 2 = 6 .9  +  A /|, W 3 =  6.9 + 0 .98A /,,

W 4 = 6.9 + 1.02 W |, M 5 = 6.9 + 1 . 0 4 =  6.9 + 1.02M ,, 

M j  = 6.9 + 1.04 jW|, A/g = 6.9 + 1.01 A /|, Mg  =7 .0  + 1.01 M ,, 

M,r, = 6.9 + \ . 0 2 M „ M , ,  =6.9 + 1.05A/,, A / „  = 7 .0+ I.OIA/,

5 324 FIAM102 Exchange SARIMA+

Rate $ £STR TSMARS

SATSMARS

STSMARS

PTSMARS

(1, 0, 1)(1, 0, 1)s{EASTER}[0, 4, 1, 0] 

y, =  0.75 + 0.98>',_, 

y , =  0.74 + 0.98;^,_i 

a [ v ,  = -0 .0 2  + 0 .3 7 > ',_ ,]

A /, =  0.8 +  A /2 , A/ 2  = 0 . 8 + 0.97A /|, A/ 3  = 0 .8 +  0.93 A /|,

A/ 4  = 0.8 +  0.96 A /|, A/ 5  = 0.8 + A /|, =  0.8 + 0.95A /,,

A/ 7  = 0 .8 +  0.93 A /|,A /g  = 0 ,8 +  0.92 A / i,A /g  = 0 .8 +  0.97 A /,, 

A/ , 0  = 0.8 + 1 .03A /|, A /,, = 0 .8  + 1.01 A / ,,  A/ , 2  = 0 .8  + 0 .96A/,
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No Method
Statistics

2
Xi

2
X2 Tsay F- 

test 

lags

BDS

test

Seasonality

F-test

PAR(1)

F-test

PAR(2)

F-test

Periodic

Variation

F-test

MAPE %

Error

Cycles/

Notes

1 SARIWA+ 0.01 0.01 -0.48 2, 3, 6 0.01 0.01 1.0 1.0 1.0 8 8 0.0 3

TSMARS 0.01 0.01 1.63 1 - 3 , 4

-8

0.01 0.01 0.01 0.01 0.30 10.9 0.0 3

SATSMARS 0.01 0.01 2.78 2 - 1 3 0.01 0.95 0.01 0.01 0.93 8.5 0.0 3

STSMARS 0 01 0 01 -0 12 2 , 4 , 6 -

10

0.01 0.05 0.01 0 01 1.0 8.7 0.0 3

PTSMARS 0.01 0.01 -0.99 2, 3, 5 0.01 1.0 0 01 0.01 0.22 11.5 0.0 3

2 SARIMA+ 0.75 0.01 0.36 None 0.01 0.38 0.87 0.80 0.49 42.6 60.4

TSMARS 0.01 0.01 2.06 1,2,5,

6

0.01 0.01 0.01 0.01 0.13 51.4 58.6

SATSMARS - - - - - - - - - - - -

STSMARS 0.01 0.01 -0.31 2, 6, 7 0.01 0.62 0.01 0.01 0.15 69.0 58.6 Outliers

PTSMARS 0.62 0.99 -0.90 4 0.93 1.0 0 01 0.03 0.01 39.1 61.0

3 SARIMA+ 0.04 0.01 2.0 2 0.01 0.90 0.78 0.94 1.0 7.5 10.2

TSMARS 0.01 0.01 2.06 2 0.01 0.01 0.13 0.08 0.58 7.6 9.8 3

SATSMARS 0.01 0.01 1.28 3 0.01 1.0 0.01 0 01 0 58 6.4 9.8 3

STSMARS 0 01 0.01 1.13 2, 5 0.01 0.01 0.01 0.01 0 55 10.7 9.8 3

PTSMARS 0.02 0.01 -0.08 None 0.01 1.0 0.06 0.15 0.22 5.5 10.3 3

4 SARIMA+ 0.01 0.01 1.63 1, 2, 3, 

7

0.01 0.72 1.0 1.0 0.24 1.6 0.0 3, 7

TSMARS 0.01 0.12 2.32 1, 3, 10 

- 12

0.01 0.01 0.01 0.01 0.01 3.0 0 0 3

SATSMARS 0.01 0.74 1.34 1, 6, 

10, 11

0.01 002 0.01 0.01 0.91 1.6 0.0

STSMARS 0.01 0.01 -0.94 2 , 4 , 6 -

10

0.01 0.05 0.01 0.01 1.0 2.6 0.0 3

PTSMARS 0.01 0.01 1.73 All 0.01 1.0 0.01 0.01 0.02 2.8 0.0

5 SARIMA+ 0.21 0.01 -0.43 10 0.01 0.47 0.76 0.85 0.05 1.0 1.2

TSMARS 0.01 0 06 0.62 None 0.01 0.06 0.01 0.01 0.42 1.1 1.2

SATSMARS 0.01 0.16 0.68 None 0.01 0.93 0.01 0.01 0.46 1.1 1.1

STSMARS 0.40 0.45 0.75 None 0.01 0.08 0.15 0.15 0.70 1.1 1.1 Outliers

PTSMARS 0.01 0.01 -0.19 None 0.01 1.0 0.01 0.01 0.03 1.6 1.1
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No Kl Series C ode
Title Mettiod

Transform ations Model
IN

Log Constant

6 179 LRGMQ01 Live SARIMA+ Y N (0 , 1 , 1)(0 , 1 , 1),

Register

Total
TSMARS - - r = 133,416 + .)',_,

(No)
SATSMARS - - y = 136,771+ >■,_,

STSM ARS Y N A A,2 [y, = -4442 + + 1.25(y,_|2 -  6772)^]

PTSMARS Y - A/| =141,806 + A/2 ,A/ 2  = 140,060+A /,, A/3  = 135,591 +A/,,
A/4  = 132,953 + A /,, A/ 5  = 129,394 + 0.98 A/,, A/^ = ] 36,382 + 0.97A/,,
A /, = 141,736 + 0.97 A /„A /g = 142,943 + 0 .9 6 A /,, A /, = 129,204 + I.OIA/;

A/|(| = 126,680 + 0.99 A/3 , A /,, =  130,268 + 0.98 M , , A/ , 2  = 135,869 + A/ 4

7 179 LRGM111 Live SARIMA+ Y N (0 , 1 , 1 )(0 , 1 , 1 )s[0 , 2 , 0 , 0 )

Register/ 

Tara St.
TSMARS - - = 947 + 0 .9 9  y,_|

Total
SATSMARS - - y, = 989 + r,_ .

(No) STSM ARS Y N A[y, = -0 .0 2  -  0 .48 (r,_ , -  0.39) J

PTSM ARS Y - A/, = 6.9 + 0 .9 7 A /j, A/ 2  = 6 .9  + ].03A /|,A /3  = 6.9 + 1.01A/,,

A/ 4  = 6 .9 + 1.01 A /,, A/ 5  = 6 .9  + 1.04A /,, A/s = 6.9 + A/,

A /, = 6.9 + A /|, A/g = 6.9 + 0.99 A /,, A /, = 6.9 + 0.98 A/ 2

A/ , 0  = 6.9 + 1.01 A/4 , A/, 1 = 8 .2 -1 .01  A/4 , A/ , 2  = 7 .0  + 0 .96A/,

8 179 LRGM438 Live SARIMA+ Y Y (0, 1, 1)(0, 1, 1),

Register/ TSMARS - - y, = 181+>.,_,
Ttiomasown

Males
SATSMARS - - y, = 186 + r ,- i

(No) STSM ARS Y Y a[v , = -0 .0 5  + 0 .3 1>< ,_ | 2  -0.5(>>,_, -  O.I8 ) J

PTSMARS Y - A/

M

, = 5 .3  + 0 .9 7 A/2 , A/ 2  = 5.2 + 1.02A /„ A/ 3  = 5.2 + 1.05 A/,,

4 = 5.2 + 1.11 A /j, A/ 5  = 5.2 + 0.98 A /j, Mf,  = 5.2 + O.9 6 A/2 ,

A /, = 5 .3 +  0 .8 0 A/4 , A/g = 5 .3 +  0.82 A/4 , Af, = 5 .3 +  0 .86A/4 ,

A/ , 0  = 5.3 + 0 .83A /4 , A /,, = 5.2 + 1.02A /j, A/ , 2 = 5.3 + 1.05 A/j

g 179 LRGM515 Live SARIMA+ Y N ( 0 1 , 1)(0, 1, 1),

Register/

Nenagti
TSMARS - - yt = 314 + 0.99>’,_,

Males SATSMARS - - y, = 377 + 0.99>>,_,

(No) STSM ARS Y N
A

r ,  = -0 .2 9  + 0.17y , _  , 2  -  0.26(y , _  3  + 0.009)^ +‘ 

0 .2 (y , _ | 3  = 0 .0 2 )^

PTSMARS Y - M , = 6.0 + 0.98 A /j, A/ 2  = 5 .9  + 1.02A /,,A /3 = 6.0 + 1.02 A/2 ,

M 4 = 5 .9  + A /j, A/ 5  = 5.9 + l.O IA /j, A/(, = 5.9 + 0.98A/ 3>
M 7 = 5 .9 + 0 .9 7 A/3 , A/g = 5 .9 + 0 .9 6 A/4 , A /, = 5 .9 + 0.97 A/5 ,

M , 0  = 5 .8 + 0.99 A /5 , A /,, = 5 .8 + 0 .99A /,, A /,2 = 5 .9 + 0.97 A/g

10 179 LRGM800 Live SARIMA+ Y N (0, 1, 1)(0, 1, 1),

Register/

N ewcastle
TSMARS - - yt = 286 + 0.98;',_,

W est SATSMARS - - y, = 301 + 0.99>>,_,

fem ales
STSM ARS Y N A [y, = -1 2 .3  + 0.27y,_3 + 0.4y,_,2 -  0.01>>,.3(;',_2 -  1 2 3 )J

(No)

PTSMARS jW, = 3 3 5  + 1 .0 8 ^ 2 ,^ 2  = 345 + 0 .8 9 A / |,M j = 3 3 6 +  0 .9 6 ^ 2 . 

M i  = 320 + 1.03A/2, A/s = 3 0 6  + 1 .0 3 ^ 2 ,^ 6  =331 + 1.03A/j, 

A /, = 358 + M , . M g  = 3 5 9  + 0.99A/(,, A /, = 285 + I.O5 A/5 ,

A/,0 = 295 + 1.04A/6, A /|| = 290 + 1.03A /j, A/ , 2  = 315 + 1.13A /|,
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No Method
Statistics

2
X1

2
X2 t..c Tsay F- 

test 

lags

BOS

test

Seasonality

F-test

PAR(1)

F-test

PAR(2)

F-test

Periodic

Variation

F-test

MAPE %

Error

Cycles/

Notes

6 SARIMA+ 0.01 0.01 0.55 2, 4 0.01 0.79 1.0 1.0 0.93 1.2 0 2

TSMARS 0.01 0.01 -0.62 1 -6 0.01 0.01 0 01 0.01 0.01 2.2 0

SATSMARS 0 01 0.01 0.18 2, 4, 5 0.01 1.0 0.01 0.01 0.20 1.0 0 2

STSMARS 0.09 0.24 1.57 None 0 74 1.0 0.01 0.01 0 73 1.1 0

PTSMARS 0 01 0.01 -0 68 1, 12 0.01 1.0 0.01 0.01 0.01 3.6 0

7 SARIMA+ 0.01 0.01 1.76 4, 6 0 01 0.33 1.0 1.0 1.0 2.5 0

TSMARS 0.47 0.96 -0.02 8 - 1 2 0.01 0.01 0.35 0.44 0.55 3.2 0

SATSMARS 0.14 0.99 0.05 3 0.01 0.61 0 03 0 01 0 52 2.6 0 3

STSMARS 0.65 0.86 -0.06 None 0.11 0.80 0.80 0.07 0.55 3.0 0

PTSMARS 0.01 0.01 -2.51 1 0.01 1.0 0.01 0.01 0.18 6.7 0

8 SARIMA+ 0 09 0.02 1.13 None 0.50 0.46 0.93 0.89 0.03 3.3 0.3 3

TSMARS 0.01 0.01 0.50 1 0.59 0.01 0.22 0 34 0.04 3.2 0.3

SATSMARS 0.04 0.01 1.26 1, 4, 6 0.57 0 71 0.01 0.03 1.0 3.5 0.3 3

STSMARS 0.55 0.06 -1.50 None 0.52 0.01 0.48 0.46 0.96 2.8 0.3 3

PTSMARS 0.01 0.01 0.58 None 0.01 1.0 0.01 0.01 0.04 4.8 0.3

9 SARIMA+ 0.01 0.01 -0.89 2, 3 0.01 0.19 0.09 0.92 0.01 3.4 0.1

TSMARS 0.01 0.97 -0.75 5, 6 0.63 0.01 0.69 0.02 1.0 4.0 0.1 6

SATSMARS 0.01 0.99 -1.77 None 0.01 0.95 0.92 0.05 0.78 3.1 0.1 2

STSMARS 0.01 0.84 -1.14 None 0.53 0.01 0.93 0.04 0.92 3.8 0.1

PTSMARS 0.01 0.01 -0.96 2 0.01 1.0 0.01 0.01 0.23 5.6 0.1

10 SARIMA+ 0.05 0.01 -0.39 None 0.01 0.34 0.72 0.84 1.0 3.7 0.2

TSMARS 0.01 0.14 -1.50 2. 3 0.66 0.01 0.01 0.01 1.0 4.4 0.2

SATSMARS 0.01 0.01 0.13 7 0.69 1.0 0.01 0.02 0 98 2.7 0.2 7

STSMARS 0.80 0.13 1.06 None 0.52 0.04 0.02 0.09 1.0 3.4 0.2

PTSMARS 0.01 0.01 -0.11 None 0.01 1.0 0.01 0.01 0 67 3.9 0.2
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No N
Series Code

Title Method
T ransformations Model

Log Constant

11 288 MIAM014 Volume Index SARIMA+ Y N (0, 1, 1)(0. 1, 1)s[3, 0, 1,0]

NACE 37 

(Base 1985=
TSMARS - - y, =35.7 + 0.99y,_,

100) SATSMARS - - y, =46.3 + >’,.,

STSMARS

PTSMARS

A,: y, = -0.15 + 0.25>.,_| + 0.12r ,.,3 + 0 . 9 5 > . , . -0. 52) ,

+ 2 .05(;.„, -0.28),(3<,_|3 -0 .3 ), - 0 - 7 7 > - , -0.24) ,

A ,2[y, = Mixed (eASTER))

12 288 MIAM051 Volume Index SARIMA+ Y N (0, 1, 1)(0, 1, 1)s{TD}

Manufacturing TSMARS - - y. = 56.0 + y,_,
Industries

(Base 1985 SATSMARS - - y. = 62.2 +

=100)
STSMARS Y N y. = 4.05 + 0.98.v,_,

PTSMARS Y - a [ y, = Mixed {TD, EASTER}]

Volume Index SARIMA+ Y Y (1, 1 ,2 )(0 ,0 ,0 ),

NACE 429 TSMARS - - y, = 85.3 + 0.29y,_g + 0.67(y,.| -  27.7),
Adjusted

(Base 1985=
SATSMARS - - As above (seasonally adjusted series)

100) STSMARS Y Y > , = 0.15 -  0 .3r,_ j -  0.14y„3 + 4.85(y,

O .I8(>-,_ ,-0 .06)_-0.05r,_ ,2(y,_ ,

PTSMARS Y - y, = Mixed

Dublin Airport SARIMA+ Y Y (0, 1, 1)(0, 1, 1),[1,0, 0, 0]

Rainfall (mm) TSMARS - - r , = 69.5-7.16Sin(t)

13 288 MIAM524

14 288 MTAM351

SATSMARS

STSMARS

PTSMARS

y, = 70.5 -  0.14;-,_ ,j -  0.005(y ,.5 -  I 44),>>,.,2 

y, =3.8 + 0 .7 (A /£ )-2 .4 ), 

y, = Mixed (TD}

15 288 MTAM553 Mullingar 

Rainy Days 

(No.)

SARIMA+

TSMARS

SATSMARS

STSMARS

PTSMARS

(0, 1, 1)(0, 1, 1)s

y, = 18.0 - mean only fitted 

y, = 1 9 .5 -0 .I> ’,_|2 

j>, = 17.1 + 0.13>.,_|, 

y, = Mixed {TD, EASTER}
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No Method
Statistics

Xi^ Ks Tsay F- 

test 

lags

BDS

test

Seasonality

F-test

PAR(1)

F-test

PAR{2)

F-test

Periodic

Variation

F-test

MAPE %

Error

Cycles/

Notes

11 SARIMA+ 0.02 0.01 -0 26 1,4, 10 0.01 0.25 1.0 1.0 0.4 6.1 0.5 10

TSMARS 0.01 0.01 -1.03 1, 2, 3, 

12

0.01 0.94 0.03 0.01 0.81 12 6 0.5 3

SATSMARS 0.02 0 01 -1.47 7 0.01 0.98 0.01 0.01 0.08 5.2 0.5 7

STSMARS 0.80 0.13 1.06 1, 2 0.52 004 0.01 0.01 0.71 6.5 0.5

PTSMARS 0.04 0.01 -0.42 1 .2 ,4 0.01 0.98 0.01 0.01 0.13 3.9 0.6 4

12 SARIMA+ 0.01 0.01 0.07 6 0.01 0.65 0.92 0.97 0.16 3.0 0.5 6

TSMARS 0.01 0.01 -0.77 2, 3 0.01 0.01 0.01 0 01 0.01 7.3 0 5

SATSMARS 0.01 0.01 0.84 6 0.01 0.98 0.01 0 01 0.74 2.6 0.5 7

STSMARS 0.01 0.01 0.56 2, 3, 5, 

9

0.01 0.01 0.01 0.01 0.01 7.3 0.5 2

PTSMARS 0.01 0.01 -0.15 1, 4, 5 0.01 1.0 0.01 0.01 0 72 2.3 0.6 5

13 SARIMA+ 0.05 0.01 1.17 1 0.01 0.92 0.72 0 90 0.99 5.5 1.0

TSMARS 0.38 0 08 -1.69 1 0.80 0.97 0.01 0.05 0 06 5.3 1.0

SATSMARS ■ ■ ■ “ ■ ■ ■ “ “ “ ■

STSMARS 0.01 0.01 1.17 6 0.01 0 67 0.03 0.04 0.99 5.4 1.0 10

PTSMARS 0.02 0.04 -1.39 8 0.53 1.0 0.01 0.01 0.06 4.3 1.0

14 SARIMA+ 0.20 0.01 -0.85 1 0.01 0.21 0.58 1.0 0.16 91.7 1.3 10

TSMARS 0 88 0.66 -0.08 3 0.51 0.01 0.47 0.27 0 16 76.9 1.2 3

SATSMARS 0.77 0.90 2.0 2, 3 0.01 0.88 0.36 0.38 0.4 64.1 1.2 4

STSMARS 0.75 0.58 -0.13 3 0.66 001 0.01 0.02 0.99 64.7 1.2

PTSMARS 0 89 0.98 0 27 None 0.51 0.99 0.01 0.01 0.72 51.4 1.2 8

15 SARIMA+ 0.19 0.16 0.44 None 0.76 084 0.56 0.58 1.0 30.6 5.3

TSMARS 0.01 0.79 -0.74 None 0.62 0.01 0.37 0.60 0.01 29.1 5.1

SATSMARS 0.21 0.54 -0.75 None 0 69 0.94 0.43 0.30 1.0 23.6 5.1

STSMARS 0 33 0.80 0.21 None 0.55 0.01 0.54 0.72 1.0 28.7 5.1 12

PTSMARS 0.50 0.39 -0.10 None 0.62 1.0 0.69 0.70 0.01 21.4 5.2
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No N
Series Code

Title Method
T ransfomiations Model

Log Constant

16 380 RSAM501 Retail Sale SARIMA+ N Y (0 , 0 , 2 ) (0 ,  0 , 1 )s [0 , 4, 2, 0 ]

Index: TSMARS - - y =  9 .7  +  ^ ,_ ,

All Business 

Value
SATSMARS - - =  9 .7  + r,_,

Adjusted STSMARS N Y =  10.7 +  3 ',-,

Base 1990 

= 100
PTSMARS N - AA|2y, = Mixed

17 466 TRAM009 Exempt SARIMA+ Y Y (0, 1, 1)(0, 1, 1),

Vehicles 

New (No.)
TSMARS - - >■, =  33 .2  +  0 .3 9 y ,_ , +  0.5>',_,o + 0 . 2 4 ; ; , , -  0.001>>,.j

SATSMARS - - = 2 8 7 .7 + 0 .8 2 (y ,_ 4 -3 0 4 )_

STSMARS Y Y y. =  2 .6  +  0 .4>’,_| +  0.221>',.3 +  0.24>>,_|2

PTSMARS Y - y, = Mixed {TD, EASTER}

18 380 TSAM043 Imports SARIMA+ Y Y (0, 1, 1)(0, 1, 1),{TD}

SITC 59 TSMARS - - yf = 3 6848  + 0. 19>>,.,3 -  0.6(>-,_, -  41 443)_

Other

Ctiemicals
SATSMARS y, = 23,216  + 0.34>',_| -0 .7 I( ;< ,_ 3  - 3 1 ,4 7 0 ) .  + 0.41(;<,_3 -3 1 ,4 7 0 )^

€ 0 0 0 STSMARS

PTSMARS

Y

Y

Y
A

A

> ,  = 0 . l2 - 0 .4 4 > . , . , - 0 .2 9 y ,_ 3 + 0 .1 9 > ', . , ,

+ 0.23>',_|J +  0 .24  {MD  - 1)^ -  0.23 (MD  -  2 ) ,

[y, = Mixed {TD, EASTER}]

19 380 TSAM055 Imports SARIMA+ Y N (0, 1, 1)(0, 0, 0)s

SITC 71 TSMARS - - yt = 21,119 + 0 .3 2 y ,_ | + 0.25>>,.3 + 0.38>>,_4

Power

Machinery
SATSMARS - - y. = 3 5,056  -  0 .4 1 ^ ,_4 + 0 .5 9 (y ,_ | -  5 2 ,9 3 2 ).

€ 0 0 0 STSMARS Y N Ay, = 0 .28  + 0.18>-,.2 -0 .8 7 (y ,_ ,  -1 .2 8 )_  + 0.2(>',_|2 -1 .0 5 )^

PTSMARS Y - y. = Mixed

2 0 380 TSAM601 Exports SARIMA+ Y N (3, 2, 1)(0, 0, 1)s[5, 1 ,3 , 0]

Adjusted

€ 0 0 0
TSMARS - - y. = 6 7 ,9 0 0 + >',_|

SATSMARS

STSMARS

PTSMARS

y, =  6 7 ,9 0 0 +  j , . ,

'y , =  -6 4 .0 7 0  -  0.2%y,.2 +  0 3 6 y ,,, -  O .OOOI(y,., -  

9 0 4 ,I0 0 )^ (> ’,_I3 -1 ,0 1 2 ,0 0 0 ) .  +

0 .0 0 01 (> -,.| - 9 0 4 , 1 0 0 ) ^ -  204)_(> ',_ |3  -  1 ,01 2 ,0 00 ).

AA|2 [v, = Mixed]



100

No Method
Statistics

2
Xi V , Tsay F- 

test 

lags

BDS

test

Seasonality

F-test

PAR(1)

F-test

PAR{2)

F-test

Periodic

Variation

F-test

MAPE %

Error

Cycles/

Notes

16 SARIMA+ 0.02 0.01 0.27 1, 3, 4 0.01 0 96 1.0 1.0 1.0 13.3 1.0 3

TSMARS 0.01 0.01 -1.15 1. 2 0 01 0.98 0.01 0.01 0.38 1.8 1.0 2

SATSMARS “ ■ “ ■ ■ ■ “ “ ■ ■ ■ “

STSMARS 0.01 0.01 -0.87 1,2 0.01 0.98 0.01 0.01 0.40 1.1 1.0 2

PTSMARS 0.01 0.01 -1.38 2 0.01 1.0 0.01 0.01 0.74 1.1 1.1

17 SARIMA+ 0.01 0.01 -0 30 2, 4 0.01 1.0 1.0 1.0 0.03 51.6 0.5 4

TSMARS 0.01 0.01 2.14 None 0.01 0.01 0 01 0.01 1.0 49.7 0.5

SATSMARS 0.01 0.01 0.25 None 0.01 0.91 0.01 0.01 0.74 45.8 0.6

STSMARS 0.01 0.01 -0.80 1,4 0.01 0.01 0.01 0.01 0.55 41.8 0.5

PTSMARS 0.02 0.01 -0.53 1 0.01 1.0 0.63 0.10 0.27 29.5 0.5

18 SARIMA+ 0 01 0.01 -10.5 1, 4 0.01 0.64 1.0 1.0 0.14 16.9 0 4

TSMARS 0.01 0.01 -0.74 None 0.01 0.01 0.01 0.01 0.38 22.7 0 4

SATSMARS 0.01 0.01 -0.75 3 0.01 0.92 0.04 0.01 0.77 16.2 0 4

STSMARS 0.01 0.01 0.40 2. 3, 4 0.01 0.78 0.01 0.01 0 89 19.6 0 3

PTSMARS 0.01 0.01 -0.93 2, 6 0.01 1.0 0.01 0.01 0.71 11.9 0

19 SARIMA+ 0.01 0.01 0.90 1,4 0.01 0.18 1.0 1.0 1.0 19.2 0 4

TSMARS 0.01 0.08 0.88 None 0.01 0.25 0.01 0.01 0.49 21.0 0

SATSMARS 0.03 0.01 -1.0 3 0.01 1.0 0.01 0.01 0.99 17.8 0 3

STSMARS 0.02 0.03 -0.01 2 0.01 0.4 0.01 0.01 1.0 18.6 0 2

PTSMARS 0.01 0.04 -0.72 None 0.01 1.0 0.01 0.01 0.52 16.0 0

20 SARIMA+ 0.01 0.01 -1.37 2 0.01 0.32 1.0 1.0 0.25 7.1 0 2

TSMARS 0.01 0.01 -0.34 2 0.01 0.92 0.01 0.01 0.42 7.2 0 2

SATSMARS “ “ ■ 2 “ “ ■ ■ ■ ■ ■ 2

STSMARS 0.01 0.01 -0.65 1, 12 0.01 0.99 0.01 0.01 1.0 10.8 0

PTSMARS 0.01 0.01 0.22 None 0.01 1.0 0.01 0.01 0.07 7.9 0
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Table 4.6.1.2: ANOVA Analysis

No N Series Code Title Method % Variance

Mean Linear Nonlinear Independent Residual

1 286 ASAM003 Cows Milk TSMARS 67 31 0 0 2

Protein SATSMARS 27 72 0 0 1

Content (%)
STSMARS 24 30 0 0 46

PTSMARS 91 9 0 0 0

2 286 ASAM206 Calves TSMARS 18 46 0 0 36

Slaughtering 

000 Heads
SATSMARS - - - - -

STSMARS 40 0 47 0 13

PTSMARS’ 35 39 22 0 4

3 286 ASAM305 Heifers TSMARS 78 16 5 0 1

Slaughtering 

000 Tons
SATSMARS' 66 33 0 0 1

STSMARS’ 4 4 1 0 91

PTSMARS’ 85 12 4 0 0

4 250 FIAIVI023 Irish Currency TSMARS 45 55 0 0 0

in Circulation 

(€)
SATSMARS 44 56 0 0 0

STSMARS 25 35 1 0 39

PTSMARS 91 9 0 0 0

5 324 FIAM102^ Exchange TSMARS 83 17 0 0 0

Rale $ £STR
SATSMARS 82 18 0 0 0

STSMARS 7 7 0 0 86

PTSMARS 85 15 0 0 0

6 179 LRGM001 Live Register TSMARS 58 42 0 0 0

Total
SATSMARS 60 40 0 0 0

(No)
STSMARS 13 12 1 0 74

PTSMARS 58 42 0 0 0

7 179 LRGM111 Live Register/ TSMARS 35 65 0 0 0

Tara St.
SATSMARS 35 65 0 0 0

Total

(No)
STSMARS 6 0 5 0 89

PTSMARS 85 11 4 0 0

8 179 LRGM438 Live Register/ TSMARS 52 48 0 0 0
Thomasown

Males
SATSMARS 53 47 0 0 0

(No) STSMARS 8 8 2 0 82

PTSMARS 89 11 0 0 0
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No N Series Code Title Method % Variance

Mean Linear Nonlinear Independent Residual

9 179 LRGM515 Live Register/ TSMARS 45 55 0 0 0

Nenagh Males
SATSMARS 49 51 0 0 0

(No)
STSMARS 6 5 1 0 88

PTSMARS’ 90 10 0 0 0

10 179 LRGIVI800 Live Register/ TSMARS 51 49 0 0 0

Newcastle 

West females
SATSMARS' 54 46 0 0 0

(No) STSMARS' 17 18 2 0 63

PTSMARS' 56 44 0 0 0

11 288 MIAM014 Volume Index TSMARS 24 74 0 0 2

NACE 37 

(Base 1985=
SATSMARS 32 69 0 0 0

100) STSMARS 26 13 29 0 32

PTSMARS 38 0 0 0 64

12 288 IVIIAIVI051 Volume Index TSMARS 37 62 0 0 0

Manufacturing

Industries
SATSMARS 41 59 0 0 0

{Base 1985 STSMARS 83 17 0 0 0

=100)
PTSMARS 32 27 19 0 22

13 288 MIAM524 Volume Index TSMARS 85 7 8 0 8

NACE 429 

Adjusted
SATSMARS “ “ " “ "

(Base 1985= STSMARS 11 8 4 0 77

100) PTSMARS 96 3 1 0 0

14 288 MTAIVI351 Dublin Airport TSMARS 71 0 0 7 22

Rainfall (mm) SATSMARS 72 0 8 0 20

STSMARS 93 0 5 0 2

PTSMARS 83 4 11 0 2

15 288 MTAM553 Mullingar TSMARS 93 0 0 0 7

Rainy Days 

(No.)
SATSMARS 88 6 0 0 6

STSMARS 84 9 0 0 7

PTSMARS 77 5 13 0 5

16 380 RSAM501 Retail Sale TSMARS 13 87 0 0 0

Index:
SATSMARS « - . . .

All Business

Value STSMARS 15 85 0 0 0

Adjusted PTSMARS' 35 40 13 0 12

Base 1990 =

100
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No N Series Code Title Method % Variance

Mean Linear Nonlinear Independent Residual

17 466 TRAM009 Exempt TSMARS 13 57 15 0 15

Vehicles New 

(No.)
SATSMARS' 56 0 29 0 15

STSMARS' 55 44 0 0 1

PTSMARS’ 68 21 10 0 1

18 380 TSAIVI043 Imports SITC TSMARS 57 5 31 0 7

59
SATSMARS 83 0 12 0 5

Other

Chemicals STSMARS 9 15 7 0 70

€000 PTSMARS 32 23 17 0 28

19 380 TSAM055 Imports SITC TSMARS 43 52 0 0 5

71
SATSMARS 78 13 5 0 4

Power

Machinery STSMARS 15 13 2 0 70

€000 PTSMARS 82 14 4 0 0

20 380 TSAM601 Exports TSMARS 3 97 0 0 0

Adjusted €000
SATSMARS ■ ■ ■ ■ ■

STSMARS 10 16 3 0 71

PTSMARS 33 23 34 0 10

Average TSMARS 48 42 4 1 5

SATSMARS 49 44 3 0 4

STSMARS 25 19 6 0 50

PTSMARS 67 18 8 0 7
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5 Forecasting Time Series with TSMARS

5.1 Introduction
Recall from Chapter 1 that a prim ary focus of this research is short term forecasting o f a univariate time 

series using TSMARS. The literature on TSM ARS shows that it has been used only on rare occasions to 

forecast future values o f a tim e series (see for example, de G oojer et. al. 1998 and Lai & Wong 2001). In 

this chapter this gap is addressed. This research is novel in that it is the first time an in-depth study o f this 

nature has been conducted fo r TSMARS.

The m ethodology adopted in this chapter is based on cross validation. Specifically, a tim e series is split 

into an estimation subset and a cross validation subset. The TSM ARS model is computed from  the 

estimation set. The model is then used to generate out-of-sample forecasts. These forecast values are 

compared with their true cross validation counterparts and residuals computed.

In this chapter, forecast errors fo r the simple time series models considered in Chapter 2 are computed. 

The purpose of this is to see if TSM ARS, produces ‘good’ forecasts across a variety o f time series 

models. Two quantities are exam ined, the Mean Forecast Error and more importantly on Root Mean 

Square Error (RMS) of the forecast. The percentage of forecast errors that lie outside the ±2 RMS 

prediction interval is computed to sta tistically test their accuracy.

The RMS is also compared with the true standard deviation; that is, the standard deviation o f the 

predictive distribution. If, as the forecast horizon increases, the RMS value remains within 20% of the true 

value, then the predictive interval o f TSM ARS forecasts will be judged consistent. This w ill be referred to 

here as the 20% consistency rule. This figure is derived from the ratio o f the RMS obtained in S

simulation runs to the true standard deviation -  that is /%i°o.o5 =1-2, and so 20% reflects the difference

due to chance in 100 simulations. It is important to emphasis that this is comparison o f two predictive 

intervals and consistency refers to these two intervals being consistent over the forecast horizon. This 

comparison is novel for TSM ARS forecasts.

In section 6.3 forecasting is conducted fo r the test-bed of 20 empirical series. Absolute annual residual 

forecast errors are reported fo r a five-year-ahead horizon. These values are standardised and compared 

across the four modelling variations from  the previous chapter. The forecast errors are also compared to 

the MAPE statistics obtained in Chapter 4. The function o f this comparison is to see if any m odelling 

variation produces a better forecast than the other variations. Moreover, by comparison with SARIMA+ 

forecast errors, this study will show w hether nonlinear effects contributed to better forecasts.

5.2 Out-of-sample Forecasting using TSMARS
Time series modelling techniques, w hether param etric or nonparametric, all require a set of quantities 

(e.g. statistically estimated param eters or arbitrarily chosen fixed constants, such as, coefficient in an 

simple moving average) to be specified in order to provide out-of-sam ple forecasts. In TSMARS these 

parameters are the constants >9^ o f the regression splines, the set of variables v{k,m) .  the associated 

signs s {k ,m)  and knots 4{k ,m) .  W ith these specified at time T,  TSM ARS can be used to give a one-step- 

ahead autoregressive forecast according to equation (2.3.1), namely
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K T , \ )  =  E { y r , , \ l ^ ) =  -  U(k,.) I  (5 .2 .1)
m = \  k = \

w here E{yj-^^\lj-) is the expectation of J/7-+1 conditional on the information set Ij-, comprising the lagged 

values and the specified TS M A R S  param eters.

To  obtain forecasts for (h >  2) there are a several possibilities:

■ First, a straightforward one-step-ahead forecast j)(,(7 ’,A )o f length h (with O denoting the fact 

that the forecast is one-step) can be obtained using T S M A R S  with response y-p and predictors 

yT-h^yT-h-\ ’ yT-h-2 ’ ---^yT-h-p- That is, the forecast is based on the information set lagged h 

steps and so

yoi^’ = {̂yr+h \̂ T)
These forecasts can be inefficient since the most recently generated values are not used to 

obtain the most up-to-date T S M A R S  model.

■ Second, the most recently generated forecast value y { T , h - \ ) , { h > l )  is used in place of yr+h-\  

and a sequence of h one-step-ahead forecasts generated. The rem ainder of the information set 

Ij- is fixed at time T. The key point is that the T S M A R S  model is evaluated once at time T. It is

then re-applied at each forecast step with the most recently generated forecast value plugged-in 

in place of the actual (unknown) value. The forecast obtained in this way is generally known as 

the plug-in forecast and is given by the nested sequence

yp, (T, h) = Eiyr .h  \ h i  (T, h - l ) , . . . ,  yp, {T,2), E i y j , ,  | / ^ )) 

where the subscript PI  indicates plug-in. The approach is called the plug-in principle and when  

the data are linear it gives consistent forecasts. The plug-in principle is the most common  

forecasting principle adopted in practice. This is also the principle that is used to generate  

forecasts in this thesis.

• Third, as above, a sequence of h one-step-ahead forecasts is generated with the information set 

appropriately updated at each step. This gives the following nested sequence of expectations 

y , { T , h )  = E^yj^^ |£(y(/, /) - 1)|... | / r )))

where the forecasts y { T , h - r )  = y { T , h - r )  + e  ̂ { \ < r  < h - \ )  are computed by adding the 

‘appropriate’ residual to the model forecast value at time point r. This sequence in effect 

computes the ‘law of iterated expectations’ forecast denoted by subscript /  (see Harvey 1993). It 

is consistent in that as /i ->  00  it gives the unconditional expectation (Harvey 1993).

Once forecast values are available from T SM A R S , a key question is to m easure their uncertainty or 

precision. To address this question, the simulation studies for nonlinear models conducted in Chapter 2 

are re-worked to give out-of-sam ple forecasts. So, once again S = 50 or 100 (as appropriate) data sets of 

n + h sample values are simulated from each nonlinear time series model. The TSM A R S  model is 

obtained based on the first n values. This model is then used to generate the actual forecast for the first 

step {h = \) and plug-in forecasts for the rem ainder of the forecast horizon ( h > 2 ) .  Each forecasted value
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is then subtracted from the corresponding actual simulated value taken from  the cross validation set, 

giving the cross validation forecast error

e{n,k) = - y { n , k )

at each time point k, {n + \ < k  <h) .  The mean forecast error at each point k on the forecast horizon is then

The root mean square (RMS) forecast error at each point k on the forecast horizon is also computed as

This is the precision o f the TSM ARS cross-validation forecast error.

Using the computed RMS value a prediction interval o f ±2 RMS about the mean forecast error is 

constructed. The percentage o f cross validation forecast errors at each step-ahead that fall outside this 

interval is computed. Based on this the hypothesis

is checked against the alternative. If the test is rejected then the forecast from TSM ARS will be judged to 

be statistically accurate.

The RMS is also com pared against the actual forecast precision derived either; (a) algebraically, or (b) by 

computing the standard deviation o f the predictive distribution. The predictive distribution is obtained by 

numerical evaluation o f Chapm an-Kolm ogorov integral equation using Gaussian quadrature (see Tong 

1990 subsection 4.2.4.3) with conditional starting value o f zero. The ratio o f the RMS value to the true 

standard deviation will be assessed against the 20%  consistency rule.

5.2.1 Forecasts for the SETAR(2,1,1) model
The SETAR(2,1,1) model (2.5.2) is re-examined to assess its forecasting performance. In this case the 

number of lagged predictors and the maximum interaction degree are restricted to one. Forecasting 

precision is only reported fo r the correctly identified SETAR(2,1,1) models (out of 100). The forecasting 

horizon is set to /i = 6steps ahead, as from that point on the standard deviation o f the predictive 

distribution (i.e. true) standard deviation remains constant. The results are shown in Table 5.2.1.1, where 

the mean and RMS forecast error is given for d ifferent sample sizes. In the extreme right, the percentage 

of prediction errors lying outside the ±2 RMS bands is also given.

The mean forecast error fo r all samples sizes and at all steps ahead is good, being close to 0 in all cases; 

in fact, the absolute value in all cases is less than 0.112, which is roughly 1.9% o f the data range. 

Furthermore, the TSM ARS plug-in forecasts are statistically accurate as the percentage of errors that lie 

outside the ±2 RMS interval varies from two to seven. The hypothesis H q is therefore rejected. Therefore

the TSM ARS plug-in values are accurate -  though this is borderline according to .

O f greater interest is the RMS forecast error. Applying the 20% consistency rule, the RMS values fo r the 

sample size of 500 show initial deviation but settle after three steps. This suggests that the difference 

between the RMS and true standard deviation is due to d ifferent starting values. For the other two sample

computed as

1
Mean Forecast Error («, k) = — ei (n,k)

^ ,=i
(5.2.2)

(5.2.3)

H q : Percentage o f prediction errors > 5% (5.2.4)
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sizes, all RMS values are within 20%  o f their true predictive distribution standard deviation values. Thus 

the predictive interval o f the plug-in forecasts fronn TSMARS for this model are consistent.

Table 5.2.1.1: SETAR(2,1.1) Model Simulation Forecasting Results

Steps
Mean Forecast Error RMS Forecast Error Predictive

Distribution

Percentage of Errors 

outside ± 2 RMS Band
Ahead Sample size Sample size Standard

Deviation
Sample size

250 500 750 250 500 750 - 250 500 750

1 0.031 -0.011 -0.004 0.244 0.249 0.244 0.264 6 4 7

2 0.032 0.078 -0.006 0.322 0.427 0.289 0.286 4 1 5

3 -0.021 0.006 -0.009 0.295 0.374 0.334 0.294 6 7 5

4 -0.062 -0.069 -0.041 0.309 0.310 0.322 0.298 6 6 6

5 -0.080 -0.072 -0.057 0.336 0.365 0.317 0.300 6 6 5

6 -0.112 -0.094 -0.065 0.341 0.327 0.326 0.301 2 4 5

Correct

Models
49 71 86

5.2.2 Forecasts for the EXPAR(1) and Additive Sine models
Forecasting sim ulations fo r these two nonlinear models are taken together. The forecast horizon is once 

again six steps-ahead. The results are shown in Table 5.2.2.1. Once again, the mean forecast error and 

RMS precision obtained by TSM ARS are displayed. Also reported is the standard deviation o f the 

predictive distribution as well as the percentage o f errors outside the ±2 RMS band.

Looking at the results for the EXPAR(1) model (2.5.3) the mean forecast error is close to zero for all steps 

ahead. This is accurate, as the data range is from  about -2 .5  to 2.5. In this case the accuracy o f the 

forecast is in line with expectations since the fram e (Figure 2.5.3.1) is a lm ost linear. For all steps other 

than one and three, the percentage o f errors is less than five. Therefore the hypothesis is borderline 

and so, there is a small degree of doubt over TSM ARS plug-in values in this case.

The RMS o f the forecast error appears som ewhat erratic. However, applying the 20% consistency rule 

shows, that only the third step RMS value is questionable when compared to the true value. Thus, except 

for this single instance, the predictive interval of plug-in forecasts from  TSM ARS is consistent for this 

model.

The mean forecast errors from Additive Sine model show some variab ility when compared to zero. The 

largest is -0 .41  and the absolute value o f this figure is about 7% of the data range [-3, 3]. The sm allest is 

0.023 and is about 0.4% o f the data range. This variability in mean forecast errors reflects the cyclical 

nature o f the underlying function. Indeed, fo r all steps the percentage o f errors outside the ±2 RMS band 

is less than five. Therefore the hypothesis H q is rejected and TSM ARS plug-in values are judged 

accurate.

The RMS value fo r the 1®' step is accurate. This o f course is the innovation error. From step two forward 

no RMS value is within 20% of the true standard deviation which settles down to 1.238. TSM ARS
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therefore has not produced a consistent predictive interval in this case. In particular, the poor RMS values 

are due to the point on the cycle that the forecast is made.

Table 5 .2 .2 .1 : EXPARd) and A dd itive  Sine Model S im ulation Forecasting Results

Steps

Ahead

EXPAR(1) Additive Sine Model

Mean

Forecast

Error

RMS

Forecast

Error

Predictive

Distribution

Standard

Deviation

Percentage 

of Errors 

outside ± 2 

RMS Band

Mean

Forecast

Error

RMS

Forecast

Error

Predictive

Distribution

Standard

Deviation

Percentage of 

Errors outside 

± 2 RMS Band

1 0.003 0.998 1.005 8 0.073 1,036 1,005 4

2 0,015 1.110 1.032 4 0.167 1,851 1,223 4

3 -0.036 1.549 1.032 6 0,135 1,990 1,235 2

4 0.010 0.802 1.032 4 -0,410 1,910 1,238 4

5 -0.087 1.159 1.032 4 0.023 2.170 1,238 4

6 0.016 1.218 1.032 4 -0,135 2.100 1,238 4

5.2.3 Forecasts for the ARCH(1) model
The conditional expectation of any future value fo r the ARC H (1) model (2.5.4)

= <7, £■, w ith a} = a + p . 

is zero. The forecast Mean Square Error (MSE) can be found by applying the law o f iterated expectations 

(Harvey 1993) and is

U S E { y T . h \ y T )  =  c c { \  +  P  +  +■■■ +  +  P "

In this simulation study the param eters adopted are «  = 0.7, >9 = 0.3 and =1, w ith n = 300. Plug-in 

forecasts results obtained by applying TSM ARS to the data simulated from this ARCH(1) model are given 

in Table 5.2.3.1. The table gives the mean forecast error, the RMS forecast error, the actual standard 

deviation obtained taking the square root o f the MSE above and the percentage o f errors outside the ±2 

RMS band.

The m ean forecast errors from ARCH(1) model are accurate when compared to zero. The largest is 0.14 

and this figure is about 1% of the data range [-9, 7]. The percentage of errors outside the ±2 RMS band is 

more than five at steps one and four, though the actual values are only 6% and 8% respectively. 

Therefore the hypothesis / / q is borderline and so, there is a small degree of doubt over TSM ARS plug-in 

values in this case.

Applying the 20% consistency rule, the RMS o f the forecast error is also accurate at all steps other than 

the sixth. However, repeating the simulations with other data simulated from the model did not show 

evidence of deviation at the sixth step. So, once again, the predictive interval of plug-in forecasts from 

TSM ARS fo r this model is consistent.
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Table 5.2.3.1: ARCHd) Model Simulation Forecasting Results

Steps
Ahead

ARCH(1)

Mean RMS Actual Percentage of
Forecast Forecast Standard Errors outside

Error Error Deviation ± 2 RMS Band

1 0.016 0.802 0.837 6

2 0.066 0.886 1.000 2

3 0.023 0.838 1.044 4

4 0.065 0.944 1.057 8

5 0.145 1.286 1.061 2

6 0.004 0.504 1.062 4

5.2.4 Forecasts for the Markov Chain model
The forecasting performance of the Markov chain model of Lai & Wong (2001) given in subsection 2.5.6 

is examined, once again using the six step-ahead forecast horizon. In this instance true forecast errors 

are not computed. Only the one-step-ahead error is computed from the variance function

^ (y, \y,-j) = 1 + exp(l -  ) X (1 / 3 -  y,_,) -  exp(2(l -  y,_̂ ))/4  (5.2.5)

The results are shown in Table 5.2.4.1, where the mean forecast error and RMS precision obtained by 

TSMARS are displayed. Also given is percentage of cross validation forecast errors lying outside the ±2 

RMS band, as well as the one-step forecast standard deviation computed from (5.2.5). Clearly, this 

forecast standard deviation is constant at all steps ahead.

Table 5.2.4.1: Markov Chain Model Simulation Forecasting Results

Steps
Ahead

Markov Chain Model

Mean
Forecast

Error

RMS
Forecast

Error

One-step 
Forecast Standard 

Deviation

Percentage of 
Errors outside 

± 2 RMS Band

1 0.010 0.245 0.243 8

2 -0.117 0.174 0.243 2

3 0.024 0.239 0.243 2

4 -0.009 0.218 0.243 6

5 -0.020 0.233 0.243 2

6 0.028 0.248 0.243 6

The mean forecast errors from this model are accurate for all steps except for step two. The data range is 

[0,1] so this step has an error of about 12%. The percentage of errors outside the ±2 RMS band is more
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than five at steps one, four and six. However the actual percentages are only 8%, 6% and 6% 

respectively. Therefore the hypothesis is borderline and so, there is a doubt over TSMARS plug-in 

values in this case. This is in line with expectations as the TSMARS fit of this model displayed in Figure

2.5.6.1 is poor.

Applying the 20% consistency rule the RMS of the forecast error is accurate at all steps other than step 

two. However, repeating the simulations with other data simulated from the model did not show evidence 

of deviation at the sixth step. Thus the predictive interval of plug-in forecasts from TSMARS for this model 

are consitsent when compared to one-step ahead values.

5.2.5 Concluding Remarks
In this section, TSMARS forecast errors for the simple time series models considered in Chapter 2 were 

computed. The forecast errors were obtained by cross validation and the Mean Forecast Error and Root 

Mean Square forecast error were computed over a six-step horizon. Using the RMS, the percentage of 

errors lying outside the ±2 RMS band was computed at each step. Also computed was the standard 

deviation of the predictive distribution. The RMS value was compared to this using the 20% consistency 

rule.

For the time series models considered. Mean Forecast Errors were found to be close to zero. Moreover, 

the percentage of errors lying outside the ±2 RMS band was also generally less than five. This shows that 

TSMARS gives statistically accurate forecasts of future values.

The RMS values were also shown to be accurate according to the 20% consistency rule. This was true 

for all simulations except those conducted for the Additive Sine Model. Short-term forecasts from 

TSMARS are therefore judged to be both accurate and precise, with the proviso that care should be 

exercised where the underlying function possesses a turning point. Typically, when data have been 

modelled with TSMARS, a turning point can be identified by visual inspection of a plot of the frame over 

the data range (see, for example, the frame associated with the Additive Sine model displayed in Figure 

2.5.4.1)

5.3 Forecasting Seasonal Economic Data with TSMARS

5.3.1 Introduction
In this section cross validation based forecasts errors for a five year time period are obtained for the 20 

test-bed empirical time series modelled in Chapter 4. In particular, forecast errors from estimated 

TSMARS models are compared across the four modelling variations. The purpose of this is to see if a 

particular modelling variation gives superior forecasts. Based on the fact that there was no difference in 

MAPE statistics in Chapter 4, the initial expectation is that no modelling variation will prove superior.

Linear forecasts errors from the estimated SARIMA+ model are also computed using cross validation. 

These provide a standard to assess the value of TSMARS based forecasts. The focus of this comparison 

is to see whether nonlinear models contribute to improving the accuracy of forecasts over the five-year 

period studied. Here, once again based on results from Chapter 4, the initial expectation is that nonlinear 

TSMARS and in particular the STSMARS models, do not improve forecast accuracy over linear models.
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5.3.2 Forecasting Methodology
As stated in the previous section, all time series methods use a set of quantities (e.g. statistically 

estimated parameters or arbitrarily specified fixed constants) to provide out-of-sample forecasts. In the 

In TSMARS the one-step-ahead autoregressive plug-in forecasts are computed using equation (5.2.1). To 

obtain forecasts for y„^,, (h > 2), the plug-in principle is adopted giving the nested forecast value

y{n, h )p i=  E[y{n, h)\y{n, h - \ ) p i , . . . ,  y{n,2) p,, , • • •, ,P„^h . MD^+h, ■ Easter„^h > E{y{n,\) \ / „ ) )

(5.3.1)

Here PI denotes the fact that this is a plug-in forecast value. When h is small and the data are nonlinear 

then forecasts can be expected to be reasonably close to their true counterparts. Also note, in this 

forecast, it is assumed that the true values of the independent predictors are available at each point of the 

forecast horizon.

For the test bed of 20 series the plug-in forecast values are obtained for SARIMA+ and each of the four 

TSMARS modelling variations of Chapter 4. These monthly forecast values are generated for each year 

across a five-year time span. That is, for each of the last five years, parameters are estimated based on 

data up to the end of the previous year. Thus, if 1999 is taken as the last year, the parameters are 

estimated from data up to and including December 1998. The forecast horizon h is then taken as twelve 

steps (i.e. 1 year) ahead. An actual forecast value for January is generated from the model. Subsequent 

forecasts for February etc. are then generated using one-step ahead plug-in forecast values. 

Appropriately lagged plug-in values are added to account for differencing. Log and/or constant 

adjustments are applied to give the final forecast value y {n ,h ) . This procedure gives twelve future values 

and the Mean Absolute Percent Forecast Error (MAPFE) over the twelve step horizon is computed in year 

i (/ = 1...5) as:

h

MAPFE(i)-!^ :------------------- xlOO% (5.3.2)
h

1-^  n + j . i \

This repeated for each of the final 5 years 1999 to 2003 inclusive.

5.3.3 Summary of Forecasting Results

The forecasting results for the 20 test bed series are displayed in the Table 5.5.1.1 (see Table Appendix). 

The figures reported show the MAPFE for each of the 5 years using SARIMA+ and each TSMARS based 

modelling variation. The overall average of the MAPFE values -  that is, the simple average of the MAPFE 

values for the five years considered, is also given in the extreme right column.

An extract from Table 5.5.1.1 for the Imports of Power Machinery series is given below for examination. 

The analysis of this series using STSMARS in Chapter 4 showed that a small amount of nonlinearity was 

present and this accounted for two percent of the overall variance. The constant and linear components 

accounted for most of the explained variance. This, predominantly linear nature of the series, is borne out 

by the accuracy of the SARIMA+ method forecasts. In contrast the TSMARS forecasts are all poorer. In 

particular STSMARS gives poorest forecasts in 2001, 2002 and 2003. In fact the MAPFE obtained by
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STSMARS in 2001 is 81.6% while the SARIMA+ value is only 3.5%. Clearly, this difference is too large to 

be solely attributable to a two-percent nonlinear component. Inspection of Figure 1.1.1 in Chaper 1 shows 

that an outlier is present in 2001. This effect adversely influences the forecasts of all TSMARS methods, 

as this large value is propagated by the autoregressive nature of TSMARS. This does not occur with the 

SARIMA+ method, which returned a 1®' differernced order one moving average model. This accounts for 

the better forecasts in this case.

Extract from Table 5.5.1.1: Forecast Error Analvsis

No N Title Method % Mean Absolute Percent Forecast Error

1999 2000 2001 2002 2003 Mean

19 380 Imports SITC 71 SARIMA+ 15.1 22.8 3 5 11,6 12.2 13

Power Machinery TSMARS 19.1 35.0 31.1 12.8 11.9 22

€000
SATSMARS 21.1 34.8 20.1 20.1 18.6 22.9

STSMARS 21.7 25.2 81.6 39.4 21.4 37.9

PTSMARS 23.8 24.6 27.2 8.2 17.6 20.3

As a first step to understanding the results given for the 20 empirical time series in Table 5.5.1.1, the 

standardised range of the mean column is computed. Thus, for the Mean figures in the extract table 

above, the standardised range is 1.1. This is computed as the range (i.e. 37.9 - 13) divided by the 

average of the five values in the Mean column (i.e. 23.2). The standardied ranges for all 20 test series are 

given in the following table:

Series 1 2 3 4 5 6 7 8 9 10

Range 0.8 1.2 0.3 2.3 0.8 0.6 0.9 0.5 0.4 0.2

Series 11 12 13 14 15 16 17 18 19 20

Range 0.3 0.7 1.4 0.1 0.3 1.9 0.6 2.1 1.1 0.4

These standardised ranges suggest there is a lot of variability between forecasting methods across these 

series. Only five series have a range of 0.3 (i.e. 30%) or less. This shows the modelling variations 

adopted are insufficient on their own to capture aspects of the signal that are important in forecasting 

these data.

A stated purpose given at the beginning of this section is to see whether any modelling variation gives 

better forecasts than any other variation. This is check by applying the Kruskal-Wallis ANOVA rank test to 

the mean errors. In this case we get a yi test value of 0.64 »  0.05. So, there is no evidence that any 

variation gives significantly smaller forecast errors than all others. Moreover, the test shows that no 

TSMARS based modelling variation gives smaller mean forecast errors the SARIMA+ method. This test is 

also applied pair wise to the mean errors obtained by each modelling variation across each year. The 

results are given in Table 5.3.3.1 and show that no pair-wise comparisons are significant. Thus, no 

method is better than any other method considered pair wise, nor is there any significant difference 

between the SARIMA+ approach and the four TSMARS modelling variations. Therefore the initial
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hypothesis of no expected difference between TSMARS model variations and between these and linear 

nnodels, based on the modelling results in Chapter 4 stands.

Table 5.3.3.1: Overall and Pair Wise Rank Test Results

SARIMA+ TSMARS
Year Overall

TSMARS SATSMARS STSMARS PTSMARS SATSMARS STSMARS PTSMARS

1999 0.64 0.34 0.76 0.58 0.37 0.18 0.61 0.97

2000 0.67 0.42 0.67 0.86 0.27 0.51 0.32 0.79

2001 0.57 0.61 0.95 0.82 0.10 0.73 0.75 0.34

2002 0.57 0.78 0.27 0.84 0.60 0.57 0.58 0.38

2003 0.37 0.46 0.89 0.42 0.22 0.37 0.90 0.08

Mean 0.80 0.60 0.87 0.50 0.56 0.39 0.82 0.89

Year SATSMARS STSMARS

STSMARS PTSMARS PTSMARS

1999 0.37 0.27 0.68

2000 0.71 0.36 0.23

2001 0.81 0.17 0.25

2002 0.21 0.09 0.86

2003 0.42 0.35 0.12

Mean 0.25 0.35 0.97

A second key question posed at the start of this section is, whether forecasts for series that showed 

nonlinearity are better than their SARIMA+ counterparts. In Chapter 4 only the STSMARS method 

returned a sufficient number of nonlinear models to make an informed judgement on this question. Recall 

from Table 4,4.2.3 these were series numbered 2, 4, 6, 7, 8, 9, 10, 11, 13, 17, 18, 19 and 20. The 

difference between the Overall Mean MAPFE values for SARIMA+ and STSMARS is given in the Table 

5.3.3.2.

In Table 5.3.3.2, where a value is positive it indicates STSMARS is better. A positive value occurs for six 

of the thirteen nonlinear models. Therefore, modelling nonlinearity has not improved the accuracy of the 

forecast over linear modelling. This conclusion is in line with expectations based on MARE statistics given 

in Table 4.6.1.1. The difference in the overall mean MAPE values for corresponding series is also given in 

Table 5.3.3.2. In this case, there are seven positive values. Thus, the initial hypothesis that nonlinear 

STSMARS models do not improve forecast accuracy over linear models cannot be rejected.
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Table 5.3.3.2: Differences between Overall Mean values for nonlinear models only

MAPFE value Table 5.5.1.1

Series 1 2 3 4 5 6 7 8 9 10

Difference - 19.5 - -3.4 - -0.4 2.7 -2.5 -3.4 1.9

Series 11 12 13 14 15 16 17 18 19 20

Difference 0.4 - -2.9 - - - -21.2 59.4 -24.9 2.8

Mean MAPE values Chapter 4 (Table 4.6.1.1)

Series 1 2 3 4 5 6 7 8 9 10

Difference - -26.4 - -1.0 - 0.1 0.5 0.5 -0.4 0.3

Series 11 12 13 14 15 16 17 18 19 20

Difference -0.4 - 0.1 - - - 9.8 -2.7 0,6 -3.7

5.3.4 Concluding Remarks
In this section, cross validation plug-in forecasts were computed for the 20 empirical time series using 

each of the four TSMARS modelling variations and SARIMA+. Twelve one-step plug-in forecasts were 

generated from each model for each of the five years 1998 to 2003. Using the twelve forecast values the 

cross validation based MAPFE for each year was computed. The overall average of the five years was 

also computed.

The first question addressed was whether better forecast could be generated by any one five alternatives; 

namely, the four TSMARS variations and SARIMA+, The overall average MAPFE values were compared 

across these alternatives. No appreciable difference in MAPFE values was observed in terms of the 

range of the errors, or in terms of rank based tests. The hypothesis of no expected difference in forecast 

accuracy between TSMARS model variations and linear models was accepted.

The second question posed was whether forecasts for series that showed evidence of nonlinearity, are 

better with TSMARS than with their SARIMA+ counterparts. Overall average MAPFE statistics for 

SARIMA+ and STSMARS were compared. This showed that a nonlinear model did not generate more 

accurate forecast than an SARIMA+ model. This conclusion agrees with the conclusion of Chapter 4 that 

these empirical time series do not possess substantial nonlinearity.

Thus, the conclusion from this section for short term forecasting is clear. Sound linear modelling is 

sufficient to accurately forecast CSO series. Moreover, nonlinear models do not improve the quality of 

one-year-ahead forecasts.

5.4 Conclusions
In this chapter, cross validation based one-step-ahead plug-in forecast errors were computed. Initially 

data simulated from a nonlinear time series model was estimated using TSMARS. The estimated 

TSMARS mode! was used to generate one-step-ahead plug-in forecasts for a six-step-ahead horizon. 

Using these forecast values, cross validation forecast errors were computed at each step ahead. This 

procedure was repeated to create a set of (50 or 100) six-step-ahead forecast errors. The mean of this
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set was computed giving the mean forecast error at each step ahead. These mean forecast errors 

showed that TSIVIARS generated accurate one-step-ahead plug-in forecast values.

The RMS of the forecast errors was also computed at each step ahead. This was compared to the 

standard deviation of the predictive distribution, using the novel 20% consistency rule derived from the 

5% tails of the F-distribution. In most cases RMS values were consistent with the standard deviation of 

the predictive distribution. As a consequence, TSMARS was judged to give accurate forecasts with 

consistent forecast standard errors. It was also observed, that care should be exercised where the 

underlying function may possess a turning point.

Cross validation based forecasting, was also conducted for the 20 empirical series using the four different 

TSMARS modelling variations and SARIMA+. Comparisons showed there was no difference in 

forecasting performance between these alternative methods. Moreover, linear modelling produced 

forecasts equally as good even when a time series had shown evidence of being nonlinear in Chapter 4. 

The implications of the research conducted in this chapter are clear. First, TSMARS will give consistent 

forecasts with correct forecast standard errors for nonlinear models. Second, forecasting seasonal 

economic data supports the belief that the data are mainly linear. This suggests that a robust linear 

method should be initially preferred for short term forecasting empirical economic time series. Third, 

inefficient forecasts from nonlinear models for empirical data may arise, because of outliers or dependent 

errors. Recall the Imports of Power Machinery series had a possible shock type outlier near the end of the 

data. TSMARS models, like all autoregressive models, will propagate this shock forward into the 

forecasts. TSMARS forecasts are therefore inefficient in the presence of an outlier. In contrast, moving 

average models are unaffected by shock type outliers. This may well account for the relatively good 

forecasts obtained by SARIMA+ on this series. In this case, a first order moving average model was fit to 

the data. Extending TSMARS to deal with shock outliers or dependent errors is explored in the next two 

chapters.
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Table Appendix
Table 5.5.1.1: Forecast Error Analysis

No N Series Code Title Method % Mean Absolute Percent Forecast Error

1999 2000 2001 2002 2003 Mean

1 286 ASAM003 Cows Milk SARIMA+ 7.3 12.1 12.0 11.9 8.4 10.3

Protein TSMARS 14.2 20.5 33.2 23 7 15.7 21.5

Content (%)
SATSMARS 7.3 13.4 19.5 8.4 10.3 11.8

STSMARS 73 15.5 13.6 21.3 8.4 13.2

PTSMARS 12.7 12.9 15.6 125 13.9 13.5

2 286 ASAM206 Calves SARIMA+ 82.4 153.5 152.7 75.6 46.4 102.1

Slaughtering 

000 Heads
TSMARS 90.7 86.5 64.0 51.2 68.8 72.2

SATSMARS - - - - -

STSMARS 82.9 175.1 53.0 49.6 51.8 82.5

PTSMARS’ 53 4 40.2 47.9 33.0 48.5 44.6

3 286 ASAM305 Heifers SARIMA+' 16.1 17.6 15.2 10.5 16.1 13.6

Slaughtering 

000 Tons
TSMARS 12.4 12.8 15.6 12.8 7.0 12.1

SATSMARS' 11.9 13.9 8.4 12.3 10.0 11.3

STSMARS’ 13.8 27.0 13.3 11.4 9.0 14.9

PTSMARS' 7.5 16.4 9.3 13.2 9.1 11.1

4 250 FIAM023 Irish Currency SARIMA+ 15.9 13.7 10.2 12.9 6 0 11.7

in Circulation 

(€)
TSMARS 10.9 22 0 13.5 13.6 9 8 14

SATSMARS 15.3 12.9 7 4 16.2 4.3 11.2

STSMARS 12.3 18.4 9.5 12.0 23.3 15.1

PTSMARS 62 3 64.6 60.8 60.2 67.6 63.1

5 324 FIAM102^ Exchange SARIMA+ 6.0 2.7 1.8 0.2 0.2 2.2

Rate $ £STR
TSMARS 6.7 2.9 6 6 3.9 1.3 4.3

SATSMARS 6.6 2.7 5 6 2.8 1.7 3.9

STSMARS 7.1 2.9 5.8 2.5 2 2 4.1

PTSMARS 1.7 1.6 1.9 2.3 1.0 1.7

6 179 LRGM001 Live Register SARIMA+ 2.4 1.2 17.2 13.5 3.5 7.6

Total
TSMARS 13.4 10.4 5.1 10.0 9.9 9.8

(No)
SATSMARS 10.0 12.9 3.4 12.7 6.8 9.2

STSMARS 4.2 8.6 14.7 10.0 2.5 8

PTSMARS 15.4 26.9 12.4 6.5 4.7 13.2
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No N Series Code Title Mettiod % Mean Absolute Percent Forecast Error

1999 2000 2001 2002 2003 Mean

7 179 LRGM111 Live Register/ SARIMA+ 18.5 14.0 20 1 11.4 5.3 13.9

Tara St.
TSMARS 27.8 23 4 10.3 10.2 10.0 16 3

Total

(No)
SATSMARS 10.5 26.5 8 9 11.4 4.7 124

STSMARS 8.7 4.5 20.6 13.6 8.6 112

PTSMARS 41.9 53.0 20.3 5.3 3.7 24.8

8 179 LRGM438 Live Register/ SARIMA+ 6.1 7.5 14.0 14.7 4.5 9.4
Ttiomasown

Males
TSMARS 19.1 20.1 8.1 9.1 4.6 12.2

(No) SATSMARS 137 13.3 10.1 12.3 5.1 10.9

STSMARS 6.4 14.6 10.0 12.9 15.7 11.9

PTSMARS 20.9 31.8 13.0 5.7 6.1 15.5

g 179 LRGM515 Live Register/ SARIMA+ 20 9 4.7 8.4 20.9 2.0 11.4

Nenagh Males
TSMARS 22.8 12.5 3.5 16.2 10.1 13

(No)
SATSMARS 26.7 8.6 5.6 18.7 2.9 12.5

STSMARS 17.4 7.3 17.6 18.7 13.1 14.8

PTSMARS 11.4 18.2 7.9 9.9 2.9 10.1

10 179 LRGM800 Live Register/ SARIMA+ 2.9 16.9 21.7 27.4 13.6 16.5

Newcastle 

West females
TSMARS 12.7 35.4 6.8 14.2 10.2 15.9

(No) SATSMARS 8.8 32.8 3.5 16.9 7.3 13.9

STSMARS 2.9 39.1 12.0 13.7 5.2 14.6

PTSMARS 5.1 32.3 24.8 5.3 5.2 14.5

11 288 MIAM014^ Volume Index SARIMA+ 17.3 22.6 10.9 6.8 9.6 13.4

NACE 37 

(Base 1985=
TSMARS 11.2 12.8 15.1 19 5 12.8 14.3

100) SATSMARS 16.2 14.3 10.0 7.3 8.5 11.3

STSMARS 14.5 8.3 15.6 15.7 10.8 13

PTSMARS’ 10.1 20.2 23.6 8.3 14.3 15.3

12 288 MIAMOSI^ Volume Index SARIMA+ 6.1 8.1 5.7 3.9 3.9 5.5

Manufacturing

Industries
TSMARS 15.3 6.7 14.7 15.2 4.6 11.3

(Base 1985 SATSMARS 5.4 5.9 7.5 6.2 4.7 5.9

=100)
STSMARS 9.1 7.9 14.8 7.0 10.8 9.9

PTSMARS’ 7.6 10.7 9.2 3.4 7.6 7.7

13 288 MIAM524 Volume Index SARIMA+ 5.5 6.8 5.0 8.7 10.5 7 3

NACE 429 

Adjusted
TSMARS 3.9 6.7 7.1 92 8.5 23.6

(Base 1985= SATSMARS 4.7 6.8 7.1 9 6 11.4 7.9

100) STSMARS 9.5 7.6 5.5 19.5 9.0 10.2

PTSMARS 5.6 7.2 6.9 8.8 12 2 8.1
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No N Series Code Title Method % Mean Absolute Percent Forecast Error

1999 2000 2001 2002 2003 Mean

14 288 MTAM351 Dublin Airport SARIMA+ 40.9 36.9 47.4 46.7 75.5 49.5

Rainfall (mm) TSMARS 40.1 41.3 43.3 50.4 62.2 47.5

SATSMARS 48 6 31.6 41.8 52.0 54.9 45.8

STSMARS’ 40.6 43.8 38 8 54.3 60.7 47.6

PTSMARS’ 53.1 41.4 44 9 52.1 58.2 49.9

15 288 MTAM553 Mullingar Rainy SARIMA+ 23 6 15.7 29.7 24.7 44.3 27.6

Days (No.)
TSMARS 17.3 20.7 24.4 22.7 33.0 23.6

SATSMARS 19.3 14 6 25.0 27.6 38.6 25

STSMARS 13.9 20.2 23.8 23.6 32.8 229

PTSMARS' 37.0 21.7 19.8 32.0 39.9 30.1

16 380 RSAMSOI^ Retail Sale SARIMA+ 2.9 • • * 1.3 2.1

Index;
TSMARS 1.5 2.7 2.9 1.1 3.4 2.3

All Business

Value Adjusted SATSMARS 1.5 2 6 3.0 1.2 2.9 2 2

Base 1990 = STSMARS 1.3 2.6 2.9 1.2 3.5 2.3

100
PTSMARS 10.2 12.3 11.5 3.3 7.7 9

17 466 TRAM009 Exempt Vehicles SARIMA+ 34.7 10.9 27.2 13.6 29.3 23.1

New (No.)
TSMARS 44.1 34.4 53.7 55.8 25.8 42.8

SATSMARS 19.4 35.2 56.3 19.5 17.6 29 6

STSMARS 40 3 49.3 46.3 47.9 37.9 44.3

PTSMARS’ 21.8 23 5 34.1 20.4 425 28.5

18 380 TSAM043 Imports SITC 59 SARIMA+' 12.9 188.0 29.1 14.9 157.9 80.6

Otfier Ctiemicals TSMARS 10.8 15.6 20.1 20.5 15.3 16.5

€000
SATSMARS 13.0 15 8 22.7 15.4 12.3 15.8

STSMARS' 21.7 19.6 36.6 14.4 13.5 21.2

PTSMARS' 17.5 18.4 24.4 28.7 23.6 22.5

19 380 TSAM055 Imports SITC 71 SARIMA+ 15.1 22.8 3.5 11.6 12.2 13

Power TSMARS 19.1 35.0 31.1 12.8 11.9 22
Machinery

€000
SATSMARS 21 1 34.8 20.1 20.1 18.6 22.9

STSMARS 21.7 25.2 81.6 39.4 21.4 37.9

PTSMARS 23.8 24.6 27.2 8.2 17.6 20.3

20 380 TSAM601 Exports Adjusted SARIMA+ 3.3 9.3 40.5 7.7 10.1 14.2

€000
TSMARS 7.2 5.3 16.2 9.7 13.8 10.4

SATSMARS 7.5 6.6 16.6 10.5 8.7 10

STSMARS 7.2 8.2 16.2 14.1 11.4 11.4

PTSMARS 13.6 7.5 20.2 7.2 10.9 11.9

1. Trading effects predictors incorporated in model.
2. Forecasting years cover ttie 5 year period 1997 -  2001.
3. Forecasting years cover the 5 year period 1995 - 1999
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6 TSMARS Outlier Handling

6.1 Introduction
Time series data, like all statistical data, are often subject to outliers or discordant observations. In their 

presence, Friedman (1991a) remarks that MARS (and therefore TSMARS) is not robust. This is because 

the GCV model selection criterion is based on the squared error loss function. Therefore, the influence of 

an outlier can cause TSMARS to accept an incorrect model, say a nonlinear model, when linear model is 

appropriate.

In this chapter, the initial aim is to ensure consistent model selection; that is, to ensure that outliers do not 

cause TSMARS to choose an incorrect model, when it would otherwise have chosen a correct model. In 

this case, a correct model is the one MARS would have chosen had no outlier been present in the data. 

Consistent model selection is efficiently accomplished in MARS, by incorporating the outlier treatment 

mechanism directly into the GCV based basis function selection scheme. This is novel and is referred to 

below as the Current Model Outlier Treatment (CMOT) approach. In addition, three types of outlier 

adjustment methods are proposed; the first is suitable for independent data, the second is a robust 

method designed for independent hetroscedastic data, while the third is a novel extension to SETAR 

models of an existing method suitable for time dependent linear data. In addition, the implementation of 

each of these methods has novel aspects that ensure MARS retains it computational efficiency.

This chapter comprises three main sections. Section 6.2 is methodological. It sets out the CMOT 

approach as well as the three adjustment methods. In section 6.3 simulation studies are conducted that 

compare the adjustment methods. Specifically, interest is focussed on the number of correct models 

identified by TSMARS. The true number of correct models is computed based on a set of ‘original’ 

simulated time series. This is compared to the number obtained by TSMARS, ‘with’ and ‘without’ outlier 

adjustment, based on the same series contaminated with outliers. If, the ‘with adjustment’ number is 

closer to the true value, then the CMOT approach is deemed to be model selection consistent. If, in 

addition, parameter estimates are within two standard errors of their ‘original’ values, the approach will be 

defined as statistically acceptable.

In section 6.4 the emphasis returns to empirical series. In particular, for some of the empirical time series 

studied in Chapters 4, the model selection procedure may have been affected by outliers. This means 

that TSMARS cannot be relied upon to decide correctly whether a model is linear or nonlinear. This 

uncertainty casts doubt on the validity and extent of nonlinearity observed for the empirical series. 

However, with consistent outlier adjustment in place, unbiased conclusions, at least with respect to 

outliers, can be made regarding the existence and extent of nonlinearity for the set of ‘test bed’ series. 

This is the second purpose of this Chapter.

6.2 TSMARS Estimation Methods in the Presence of Outliers
In general two distinct approaches are used to handle outliers. The first is the diagnostic approach where 

outliers are identified from the residuals of a model. These are incorporated into the model and 

parameters re-estimated. The outlier treatment procedure implemented in SARIMA+ (see Appendix) is an 

example of the diagnostic approach.
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The second is the robust approach. Here the estimation method is modified so that it is less affected or 

even unaffected by outliers. This allows robust parameter estimates to be computed and statistical tests 

based on the resulting robust model to be safely undertaken.

In this section we study the methodology to identify and efficiently adjust for outliers affecting TSMARS. 

Three adjustment methods are explored; these are a simple least squares based diagnostic approach, a 

robust procedure based on bounded influence and a time series based diagnostic approach. The 

performance of all three methods will be reviewed in later sections

6.2.1 Outlier Treatment
In this chapter we examine only the impact of additive outliers (AOs) - TSMARS is adaptive and so level 

and transitional shift effects will, in general, be directly modelled. The innovation effect is not considered 

because it propagates in the residuals; these are assumed Normal in standard TSMARS.

In the presence of an AO two difficulties can arise for TSMARS. The first occurs when a knot is located at 

the AO and TSMARS ‘steps-into’ it during its stepwise search. This causes TSMARS to locally over-fit as 

the basis functions adapt to the locally large derivative.

The second difficulty comes about when the knot step interval is greater than 1. Recall from Section 2.1 

that every third order statistic is chosen as a potential knot point in the predictor space. This gives a 

default step interval of 3. In this case, TSMARS can ‘step-over’ the AO. The AO then affects the resulting 

estimates through its leverage and influence.

The ‘greedy’ forward stepwise search procedure in TSMARS, computes the decrease in the RSS at each 

step; that is, combination of parent basis function, available variable and available knot. In the presence 

of outliers one obvious possibility is to incorporate a diagnostic and treatment procedure at every step. 

This is likely to be expensive in terms of computational effort.

A second possibility is to use the approach of de Gooijer, Ray & Krager (1998). They applied Tsay’s 

(1988) outlier detection approach to isolate potential additive outliers in the final TSMARS model. Each of 

these was incorporated as an independent categorical predictor and the TSMARS model re-estimated, de 

Gooijer et. al. (1998) concluded that the resulting estimates were much improved.

The outlier adjustment procedure of de Gooijer et. al. (1998) is reasonable. However the diagnostic 

procedure is based on the final model only. Outliers therefore are only outlying w.r.t that model. This 

means that the stepwise selection procedure used to choose basis functions is still affected by outliers. 

The TSMARS model may therefore be incorrect.

These two approaches are at opposite ends in terms of computational effort and their impact on the quality 

of the estimates. The first approach involves considerable work in terms of additional regressions at every 

step. If the diagnostic procedure adopted is appropriate this approach can be expected to yield consistent 

estimates. On the other hand, the second approach requires only one (or a small number of) additional 

regression(s) at each time point t (t = 1..n). In this case, even when the diagnostic procedure is 

appropriate, the TSMARS estimates can, as noted in de Gooijer et. al. (1998), fall short of optimal.

As a consequence of these drawbacks, neither of the two approaches described is adopted. A third 

approach that lies in between is chosen. It is called the ‘Current Model Outlier Treatment’ (CMOT) 

approach.
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For TSMARS this is;

Forward stepwise search

Based on the current M-basis function TSMARS model f , {M ,» )  (equation (2.3.1)).

•  Apply a diagnostic procedure to identify outliers for this model.

•  Re-estimate the current model taking into account the effect of the outliers.

• With this augmented model cycle through the TSMARS forward stepwise search of each

combination of parent basis function, available variable and available knot.

•  Enter the minimum GCV combination is basis function into the basis function set and an updated

TSMARS model / , ( M  + 1 ,*) estimated. This model is based only on that is without the

outlier effect.

This cycle repeats itself until there is no further improvement in the GCV or the maximum number of 

basis functions is reached (i.e. as in standard TSMARS).

Backward Deletion.

Based on the current M-basis function TSMARS model / ,  {m , • ) .

• Delete the i"’ basis function giving the reduced model / , ( a / , * | J  deleted) as in standard 

TSMARS.

• Apply a diagnostic procedure to identify outliers for this model.

•  Re-estimate the reduced model |7 de le ted ) taking into account the effect of the outliers

and compute the resulting GCV.

• Permanently delete the minimum GCV basis function (denoted by J ) from the basis function set.

•  Estimate the reduced TSMARS model de le ted ) without the outlier effect and the

GCV computed.

This cycle repeats itself until there is no further improvement in the GCV or no more basis functions 

remain to be deleted (i.e. the number of basis functions M = 1).

based on the current M-basis function TSMARS model. The resulting augmented model is therefore 

conditional on both the predictors and identified outliers. The forward and backward searches are based 

on this model. As each new basis function is temporarily added or deleted, the RSS and GCV are 

automatically corrected because the outlier has been incorporated. The associated basis function will 

therefore be more appropriate, since it gave rise to the minimum GCV. For independent cases we re-state 

this observation in the following theorem.

Proposition: For an additive outlier of size co occurring at x = Xj  of the form

There are a number of advantages to adopting this approach. First, the effect of the outlier is estimated
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the RSS computed via Gram-Schmidt (GS) of the agumented MARS model z,- = / , ( a /+  l,»)+«y / ( x y )  is 

estimated correctly by the CMOT procedure.

Proof: The proof is stepwise (i.e. by induction). First consider the simplest case where the MARS model 

being estimated is

Z t= |3 o + P ^ fM , • )+ o } I { x J )  (6.2.0A)

that is, M  =0.  In the CMOT procedure this model is estimated in sequence using GS as

z,- + C O l { X j )

and then with r, = z , -  + a i / ( x y ) )  the next model estimated is

'• /  =

The RSS from this sequence is identical to that obtained from OLS estimation of (6.2.0A) via the normal 

equations, since the sequence of predictors in GS procedure is orthogonal (see Hastie, Tibshirani & 

Friedman 2001). The RSS is therefore correctly estimated for the effect of the outlier.

Now consider the general situation where there are M  basis functions. Incorporating the M  + V  basis 

function we estimate the MARS model

M
+ + (6.2.0B)

k=\

In the CMOT procedure this model is estimated via Gram-Schmidt in sequence as

M

k=\
\

and then with r,. = z,- -  + Z  6) I { x j )
k = \  ' )

the next model estimated is

^ i =  + !.•)

Once again, since in this case the sequence of predictors is orthogonal, the RSS is identical to that

obtained from OLS estimation of (6.2.OB) via normal equations. The RSS obtained by adding the M  + V  

basis function is therefore estimated correctly in the presence of the outlier.

Thus, since the approach is true for the M  = 0 and also true for the m "' basis function model, it is true in 

general.

This completes the proof.

The CMOT is also computationally efficient, since the approach implements the diagnostic procedure once 

for each current M-basis function model. Therefore the computing time is only be increased at most by a 

factor MMAX (the maximum number of basis functions) times n^. This is not a significant overhead when 

the overall computing time for the forward stepwise search is o(n ‘’ ) (see Friedman 1991a)

The principles of the CMOT approach above do not specify the diagnostic procedure and treatment 

method to be adopted. Three methods are now described. Each is incorporated as an alternative method 

into the CMOT approach to outlier handling in TSMARS.
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6.2.2 A Least Squares based Outlier Treatment Method
If we assume dependence in the data to be of short memory, then we can appeal to the ‘whitening by 

windowing principle’ (see Hart 1996). In essence this says that ordinary least squares is applicable when 

dependence in a time series is of short duration (i.e. strongly a-mixing, see Appendix). This suggests that 

it might prove worthwhile to use an outlier treatment method based on standard least squares.

The standard least squares methodology is straightforward (see Meyers 1989):

• From the model residuals e, = y , - y , ,  compute the standardised prediction residuals

where cr = 1.5 is a robust estimate of the standard deviation (see Meyers 1989) and

is the HAT matrix diagonal entry.

• At each time point (^ = where r, > c  a constant, outliers are identified.

, i l i f  t = t '
• For each identified point t an indicator function J = \ is added as a regressor and

[O otherwise

the model re-estimated.

Computing the HAT diagonals directly from the HAT matrix (i.e. H  = B ^ ) is expensive as the

matrix inversion is o(n^). However, in TSMARS the corresponding orthogonal matrix of basis function

predictors B^  is already available. Therefore each is simply the norm • b f ) ,  of the /'*row o fthe

B^  (whose columns b, are scaled by their norm). This follows directly from the QR decomposition of an 

arbitrary predictor matrix X

H  = x ( x ^ x Y x ' ^  = Qr({QRY Q r \ '  {QRf 

since Q^Q = I .  Thus, each diagonal of the HAT matrix is simply ĥ - =  q,. q f , where i labels the i"' row of 

0-

With the HAT diagonals cheaply computed the Least Squares Outlier Treatment method is:

e,
• Compute the standardised prediction residuals -

Identify outliers at each point t (/ = ! . . .« )  where r, > c (=  4) a constant.

A sporadic indicator function is constructed as follows:

\ \  i f  t = t '
- At each identified point t the indicator function 1 = \ is successively built up

[O otherwise

by introducing a 1 at time point t * .
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■ This sporadic indicator function is temporarily added as a regressor and the model re- 

estimated.

■ If this regressor is linearly independent then the 1 introduced at this time point t is retained in 

the sporadic indicator function.

• The sporadic indicator function is added to the basis function matrix when no more outliers are 

identified.

The key point to note about this method is that, it is assumed all identified outliers arise from the same 

population -  that is, outliers are hypothesised to have a common mean shift (see IVIeyers Chapter 5 1989). 

This explains why a single sporadic indicator function, having a 1 at each identified outlier location is 

added to the basis function matrix.

6.2.3 A Bounded Influence based Outlier Treatment Method
An alternative method of outlier treatment is to use robust regression. This technique is resistant to data 

values that exert a strong influence on results. The method adopted is based on the Huber M-estimator 

(see Meyers 1989).

Huber’s influence function for the scaled residual e, =  —  is given by
(7

w(e:) =
e, > r

e, < - r- r

This function is used to ‘down weight’ scaled residuals greater than a constant r in the basis function 

regression equation = / ,  ( M ,« )  = b, P , where b, is the t" ' row of the (ordinary) basis function matrix 

B. This gives the weighted least squares equation

^ w , e ; b , = 0  (6 .2 .1)

where the weighted residuals w, =  — -----  are orthogonal to the regressors. Robust parameter estimates

are then computed by iteratively re-weighted least squares (IRWLS), with the weights updated from the 

residuals obtained at each iteration (see Meyers 1989).

M-estimation, as described here, weights according to the size of the scaled residuals without regard to 

their leverage. In particular, when is close to unity (i.e. there is an outlier in the x-space) and the outlier 

is consistent with the fit to the data, then the influence diagnostic

y,-y~,DFFITS. =

where the subscript - t  denotes the fact that observation t is left out, will not be unduly large. Bounded 

influence regression results from replacing the scaled residuals in the weighted regression (6.2.1) with a 

measure that better uncovers outlying data. In this case DFFITS ‘bounded influence’ residuals (see 

Krasker & Welsch 1982) are adopted.
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The DFFITS statistic is straightforward to compute based on standard formulae (see Meyers 1989). 

However, in the bounded influence case standard formulae are no longer available. This arises because

and the leave-one-out estimate of the standard deviation of the residuals cr ,, are weighted quantities

that arise from the IRWLS procedure. To cater for this, the leave one out residuals from each IRWLS step 

are computed from scratch according to

\ - h „

The standard deviation of these residuals is then computed using the robust estimate

(j. _, = 1.5 med

The leave one out HAT matrix elements are computed efficiently, by noting that the upper triangular 

Cholesky factor R of the weighted covariance matrix ), is available from each IRWLS step.

Thus, the resulting bounded influence residuals can be computed using linear algebra (forward followed by 

back substitution steps respectively). For each bounded influence residual labelled by /* that exceeds

IPu . = c x  — (see Belsley, Kuh & Welsch 1980) for some constant c = 4 and p predictors (i.e. columns of 
' V «

B ), down-weighting factors are computed as:

w, = <;
u .

t i f  M. > 1
DFFITS.

t

1 otherwise

Having obtained the (down) weighting factors the weighted regression (6.2.1) is computed as follows:

■ Remove each row b _ of the basis function matrix B and ‘downdate’ the associated Cholesky
/

factor R .

•  Weight, that is multiply each b _ by its corresponding weight w , replace this row in B and use
I I

this weighted row to ‘update’ the associated Cholesky factor R .

■ Use linear algebra, forward/backward substitution, to obtain the weighted LS solution.

This procedure and the computation of the weighting factors is repeated until there is no further

improvement in ^ | ^ .  | the sum of the absolute residuals.

Note: ‘downdate’ and ‘update’ are standard techniques for efficiently obtaining a Cholesky factor R, when

a row is removed or added respectively from a regression (see Golub & Van Loan 1996).

The weights that result from this bounded influence IRWLS are then used in the CMOT procedure to find 

the next minimum GCV basis function to be added/deleted respectively to the TSMARS model.
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6.2.4 A Time Series based Outlier Treatment Method
The third method proposed for outlier treatment removes the independence restriction of the two previous 

methods. This method takes Tsay’s regression based methodology (1988) for an ARMA model and

applies it to the standard M-basis function TSMARS model y , =  f ,  ( M , * ) .

Consider the i.i.d. e, driven stationary AR(1) model

y, = Py , -x^^ ,

and the corresponding model with residual e, and additive outlier assumed to exist at time point T, given 

by

I y, t ^ T ]
> + £, -  y , + o) I , {T) + £,

[y,+ci> t = T\

Note, in practice, e, is estimated from an AR(1) model initially fit to the to the series z , .

At time point T + \ therefore

yr+\ ~ ^r+i ~ P ^  ̂ r+i ~ P yr +  ^

Using the lag operator B (i.e. y,_, =B y , ) w e  get

e ,= c D { \ - / 3 B ) l , {T )  + £,

This is a simple regression equation through the origin for an additive outlier of size co at time T.

This procedure can also be applied to the SETAR(2,1,1) model (2.5.2)

P\y,-\+£, i f
P2y,-i+^i i f  y i - \>^

With left and right regime indicator functions

f 1 i f  y|_̂  < 0  f 1 otherwise
I,  = \  and Ig = i

[0 otherwise [O i f  ŷ _̂  > 0

this model can be written as

y, = pJiy,-x+P2^Ry,- i+^,

If, as in the AR(1) case, an additive outlier occurs at time point T then

yr^\ ~ ^r+i ~ Px^L^T Pi^R^T ^r+i

— p f  I  + of) + PjfR (jVr ^  ^r+i

~ P\^lyr  Pi^Ryj L Pi^R) ^r+i

giving

^r+l ~ ^P\^L ) "̂  ^T+\

In the SETAR(2,1,1) mode! it follows in general that

e , ^ - ( o [ { \ - p , B ) l i ^ + { \ - P ^ B ) I ^ ) I , { T )  + £, (6 .2 .2)

This, once again, is a simple regression equation through the origin for the additive outlier of size co 

occurring at time T in the SETAR(2,1,1) model. It leads to an obvious least squares estimator of co when
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T is known, e, is available from the SETAR(2,1,1) model initially fitted to the series z , and e , is 

assumed i.i.d.

This result can be straightforwardly extended to the case where an additive outlier occurs in a model 

where the AR order in each regime is 2 or higher. In this instance the lag polynomials can replaced by 

their general counterparts

(^) = ( l - P l a B - - ■ ■ ■ - P l ,p, )
= -  p,^B^  - . . .  -  B”  ̂ )

giving the regression

e ,= - c o { K i^ { B ) I ^ ^ + 7 t ^ { B ) I ^ ) lX T )  +  s, (6.2.3)

Equally, and without loss of generality, equation (6.2.2) can be extended to model the effect of an outlier 

on 3 or more regimes. In the case of 3 regimes, with M denoting the middle regime, the regression 

equation that follows is

leading in general /- re g im e  case to the regression

e, = - o ) ( ( l - / ? , 5 ) / ,  + { \ - P jB ) I ^  + + p , B ^ I , ^ I , { T )  + e, (6.2.4)

Combining equations (6.2.3) and (6.2.4), we get the following result in general which is given as a 

theorem.

Theorem: For a single additive outlier occurring at time T of the form

z = i ^ '
' [y,+co t = T

in the general stationary I -regime S E T A R (/,/? ,,;j2 >• • • / ’ /)  rnodel, the regression equation for the additive 

outlier parameter of size co is

e,=-co{K,{B)I ,  +7t^{B)I^ + . . . ^n , I , (B ) ) l , {T )  + e,

where is the k "' order lag polynomial occurring in a regime.

Proof: Combining equations (6.2.3) and (6.2.4) the result follows directly.

Note the stationary restriction on the time series forces all parameters to be less than 1 in absolute value. 

In the TSMARS context this means that the parameters must be tested before the method can be 

applied. In practice this makes the method sub-optimal in a nonparametric setting like TSMARS.

Based on this result the following time series based outlier method is proposed:

Given an / -regime SETAR(/,/?,,p2. - P /) niodel

■ At eacii time point / (= !,...,« ) an indicator function appropriate to the model is introduced at T 

as

/; {T) = - co[ k , { B ) I , + k , { B ) I ,+ . . .  + k ,I, {B)) I , {T)
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■ Regress this function on the model residuals e, and the t-value computed.

■ Define =  m ax, |/j.| where T denotes the time when the maximum occurs. If

7̂-max > ^ =  4) then there is an additive outlier at time T with its effect estimated by .

• The outlier is incorporated into the model using Gram-Schmidt orthogonalisation of the indicator 

function and residuals re-computed.

The above steps are repeated until no further outliers are found.

Note, if k outliers are identified, there is no need to regress these together to eliminate masking. The 

reason for this is because each associated indicator function is already orthogonalised. This is equivalent 

multiple regression (see Hastie, Tibshirani & Friedman 2001).

6.2.5 Methodological Remarks

The key principle underlying the CMOT outlier treatment approach described is that the RSS (and 

therefore GCV) is corrected for the outlier effect before the search for a new basis function begins. Each 

basis function, is in fact a weak classifier that locally discriminates response values on the basis of a 

threshold (i.e. change point) in a predictor (see Hastie, Tibshirani & Friedman 2001, Chapter 9). With 

outliers present the selection of classification boundaries will be distorted. This distortion is corrected using 

the CMOT approach. This is not alone true for MARS but is also true for its relatives such as recursive 

partitioning, TURBO (see Friedman 1991) and GAMs (Hastie & Tibshirani 1990). In fact, even tree based 

weak classifiers such as CART (Brieman, Friedman, Olshen & Stone 1984) could be adapted to include 

the CMOT approach. This should improve selection of classification boundaries in the presence of outliers.

Another important feature of the CMOT approach is that no diagnostic procedure is specified to identify 

outliers. This makes the approach quite general, in that a diagnostic method appropriate to the data can be 

selected. Here three different methods have been proposed. The first of these is the straightforward and 

efficient LS method using only one sporadic indicator function for all outliers; the second is sophisticated 

but relatively inefficient Bounded Influence method; the third is appropriate for AR and SETAR time series. 

In this case, the key restriction is that parameter estimates remain in the stationary region. The usefulness 

and accuracy of these methods, within the CMOT approach to outlier treatment, is investigated in the next 

section using simulated time series.

6.2.6 Predictor Space Adjustments

The outlier adjustment procedures above are also augmented with adjustment in the predictor space. This 

takes two forms:

■ Elimination of certain discordant knots from the knot space prior to the forward stepwise search.

■ Elimination of certain discordant values in the orthogonal spline predictor space

Elimination of discordant knots is accomplished by computing the (Euclidean/Mahalanobis) distance of 

each knot value from its predictor centre and excluding knot values outside 3 standard deviations. The 

alternative of computing the robust distances using Minimum Volume Ellipsoid (MVE) algorithm (see 

Rousseeuw 1985) available in SAS was tested. This method was slow and in contrast to the findings of



129

and Rousseeuw and van Zomeren (1990), did not give a discordant set (of knots) significantly different 

from that based on the (Euclidean/Mahalanobis) distance.

Elimination of the discordant values in the orthogonal predictor space is accomplished by computing the

computed very cheaply as outlined for the LSAO method. The resulting locations identified are then set to 

zero for each new basis function that enters during forward stepwise search. Thus, that point on that basis 

function does not contribute to the regression fit and the computation of the lack-of-fit criterion.

6.3 Outlying Observation based Simulation Studies
TSMARS selects autoregressive linear and/or nonlinear structure by detecting the presence or otherwise 

of a threshold (i.e. knot) in the set of lagged predictors. When a series is contaminated TSMARS 

estimates may not be optimal. To see whether the CMOT approach corrects for this a set of simulations 

on univariate time series models is conducted. The CMOT procedure will be deemed to be model 

selection consistent, if the number of correct models obtained in the presence of outliers is in line with the 

number obtained on same data without outliers. If, in addition, parameter estimates are within two 

standard deviations of their true values, then the procedure will be considered to be statistically 

acceptable.

Each simulation initially involves generating a time series based on the model, with the first 100 

generated sample values discarded to allow for “burn in” . TSMARS estimates labelled ‘Original’ are then 

obtained from this simulated series. To the simulated series a single additive outlier is generated and 

introduced into the series. So called ‘Contaminated’ TSMARS estimates are then computed for this 

series. On this contaminated series TSMARS estimates are also computed using each of the three outlier 

treatment methods denoted by LS (least squares), Bl (bounded influence) and TS (time series) 

respectively. This procedure is repeated 100 times and the average value of the parameter estimates, 

their standard errors and the number of correct models obtained are reported. The full set of simulations 

is repeated with 3 and 5 additive outliers respectively, placed at equally spaced time points. The detailed 

results are given in a Table Appendix at the end of this chapter.

6.3.1 Simulation of a linear AR(1) model
This simulation study examines the ability of TSMARS to identify a simple linear AR(1) model with known 

coefficients with data contaminated by outliers. The data are generated from a stationary AR(1) model 

(2.5.1) with autoregressive parameter p, (|p| < 1), driven by normally distributed noise e, = N{Q, a^ )

Simulations were performed for/? = 0.5a n d O . S w i t h = 0 and c r ^= l .  Outliers at time point T for this

series are generated from the model by adding 3 standard errors to the series value at time T according 

to

HAT diagonals of at the start of the outer loop of the forward stepwise search -  note, these can be

Contaminated + 3 x
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Table 6.3.1.1 shows the simulation results for p  = 0.5. TSMARS was called with response y ,,one  lagged 

predictor y ,_ i, maximum interaction degree set to 1 and a sample size of n = 100. This experiment was 

repeated allowing 3 lagged predictors y,_\, y,_2 , y , - 3  and maximum interaction degree of 3. All 

simulations were conducted with the smoothing parameter set to 3.

Displayed in Table 6.3.1.1 are the number of times an AR(1) model was correctly identified from the 100 

simulation data sets. Also given is the average value of the estimated parameter p  and its “Actual”

standard error computed from the correctly identified models. The tolerance on the basis functions is 

5.0X10'^.

With the ‘Original’ data, the results show the number of models correctly identified by TSMARS is 99 and 

95, using 1 and 3 lagged predictors respectively. When contaminated with outliers the number of correctly 

identified models is affected. However, with adjustment, the number of correctly identified model is 

brought into line with the ‘Original’ number. In all but one set of simulations (of the 9 reported), this 

correction in the number of correct model is observed. The CMOT procedure is therefore model selection 

consistent in this case.

In general, all three adjustment methods (LSAO, BIF and TSAO) give very similar parameter estimates. 

These show only a slight improvement over the contaminated values. The outlier adjusted parameter 

estimates are well within two standard errors of the true values. Therefore the methodology is also 

statistically acceptable.

6.3.2 Simulation of a SETAR(2,1,1) model
The second simulation study is based on the SETAR(2,1,1) model (2.5.2)

P\y,-]+£i i f
P 2 y i - \ + ^ i  >0

driven by normally distributed noise e, =A^(0,1/4). Outliers at time point T for this series are generated 

from the model by adding 3 standard errors to the series value at time T according to the regime

TSMARS is applied to each simulated time series with the basis function tolerance set at 2X10'^ and 

smoothing parameter set at 3. A number of simulation studies were run on different series lengths and 

parameter values. The results for n = 500, with parameters values pi = 0.75 and p2  = 0.25 are shown in 

Table 6.3.2.1 (see Table Appendix). In this table, the number of correctly identified SETAR models is 

given, along with the average values of the parameters pi and p2 , and standard errors labelled Std. Err. 

for the correct models. For the SETAR model the threshold/knot must also be estimated. Its average 

value and standard error are also given for the correctly identified models.

A scan of Table 6.3.2.1 gives the number of correct models for the ‘Original’ data at 82. When 

contaminated the number of correct models identified increases to nearly 100 in all cases. The stepwise 

selection mechanism in TSMARS is being affected by outliers, as there are about 18 false positive 

models. In contrast, the number of correct models obtained by each outlier adjustment method is much 

closer to the true number in every case. Moreover, there is little to choose between the methods, though

Contaminated J V f + S x
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the BIF method does show slightly better perform ance overall. The m ethodology is therefore consistent 

fo r the model studied.

The param eters pi and p2  and their standard errors have also been affected by outlier contam ination. The 

adjusted values are not sign ificantly d ifferent from their contam inated counterparts. They are however 

w ithin two standard errors o f their true values and so the m ethodology is statistically acceptable. O f 

particular interest are the knot estimates. In nearly every case these are more accurate than their 

contam inated counterparts. This is a significant improvement. It shows that the bias introduced by the 18 

fa lse positive models is removed by the CMOT procedure.

6.3.3 Simulation of the nonlinear additive sine model
This simulation revisits the nonlinear periodic time series equation (2.5.4)

initia lly studied in subsection 2.5.4 and driven by Standard Normal noise e,. In this study, 100 tim e series 

o f length n = 120 are generated and TSM ARS is called tw ice w ith 3 predictors ,y ,_ 2 , y , _ 3  and 

maxim um  interaction 1. On the second call each outlier is replaced by its predicted value from the first 

call. The TSMARS model obtained from  the second call, is used to generate the fram e over a set of 

predictor (i.e. x-values) that correspond roughly to the range o f values of y, .  The average frame 

response value denoted as “Original” along with the underlying nonlinear sine function y { x )  are 

displayed in Figure 6.3.3.1.

Also plotted in Figure 6.3.3.1 are the average outlier “C ontam inated” as well as the treated LSAO, BIF 

and TSAO fram e functions fo r the 100 simulated series. These average fram e estimates have been 

obtained by introducing 5 random ly placed additive outliers into the data. This roughly corresponds to 1 

shock occurring every second year if these were m onthly data. Given past data Y =  {y , . i ,y , -2  

standard deviation function ( j {y, \Y)  estimated via simulation, each additive outlier is computed at the 

random ly chosen time point T  and added to the series value at that point according to

Looking at Figure 6.3.3.1, the fram e obtained from modelling the “O riginal” data with TSM ARS tracks the 

underlying additive sine function quite well. It will be noticed that this is quite an improvement over the 

fram e obtained in Chapter 2, where the fram e overshot the underlying function considerably. This 

im provement is due to the introduction of an additional parameter. This controls the ratio of the GCV at the 

start o f the forward search, to the GCV obtained as each new basis is added. Using a value o f 0.99 fo r this 

ratio gave the original fram e o f Chapter 2, while a value o f 1.15 gives the fram e in Figure 6.3.3.1.

When the original time series is contam inated, the resulting fram e still displays periodicity and tracks the 

‘O rig ina l’ series closely (com pare with Figure 2.5.4.1 where standard errors are shown). The 

‘Contaminated results are computed from 100 acceptable simulation models. In contrast, the num ber of 

correct models obtained with ‘O rig ina l’ data is 82. Here an incorrect model is defined as one that results in

Contaminaterf yj
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a single (i.e. the mean value) basis function. On this basis the ‘C ontam inated’ data produces 18 false 

positive models.

For the adjustm ent methods, the LSAO method gave 96 correct models, the BIF method produced 100, 

while the TSAO method resulted in 88 correct models. The BIF method therefore is not consistent. The 

LSAO shows a small degree o f consistency, while the TSAO method brings the number o f correctly 

identified model more in line with the ‘O rig ina l’ number. It is therefore judged consistent within the CMOT 

procedure.

Figure 6.3.3.1: Frames o f Nonlinear Additive Sine Model with Additive Outliers

0 .8  T

- 0.8

l ; y(x) —  — Original C o n ta m in a te d L S A O —  BIF -  * -  T S A O

Examining the frames, the LSAO (least squares) fit is poorest, reproducing a cycle whose period is 

acceptable but the resulting fram e lacks symmetry. The TSAO (time series) method gives much better 

results but tends to undershoot the Sine function. The BIF (bounded influence) method gives very good 

estimates; these are in fact the same as the ‘C ontam inated’ data. However, as the method is not 

consistent, the fit is not statistically acceptable. Therefore, based on the fram e plot, only the TSAO 

m ethodology can be judged as statistically acceptable in this case

6.3.4 Simulation of a IVIari^ov model
In this last simulation study, the M arkov model o f Lai & W ong (2001) studied in subsection 2.4.6 is 

revisited. Recall the Markov chain } has state space [0,1] and transition p.d.f.

e ' ~ ’ " i f O < ; ; < x

This chain has a nonlinear regression function

E { y , \ y , - i )  =  y , - i  - i+ e x p ( i-> ',_ , ) /2
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variance function

^ (y, |y , - i) = 1 + exp(l -  ) X (1 /  3 -  y ) -  exp(2(l -  ) ) /4

and the residuals are not i.i.d. and do not have normal marginal distributions.

The simulation study involves generating 100 time series data sets, each containing 300 sample values 

according to this Markov chain model. TSMARS is called for each data set with one lagged predictor 

and the estimated model is used to compute the frame (as in the previous subsection). The average 

frame response value for uncontaminated data, denoted as “Original” , along with the underlying nonlinear 

regression function y{x)  are displayed in Figure 6.3.4.1. Also plotted is the “Contaminated” and treated 

LSAO, BIF and TSAO frame functions.

The average frame estimates are obtained by introducing 5 randomly placed additive outliers into the 

data. Each additive outlier is computed at a randomly chosen time point T and added to the series value 

at that point according to

3 x ^ F ( y 7 . | y j . - i )  if y? <E{yT\yr-\)
y  T,  Contaminated y  T '

Figure 6.3.4.1: Frames for the Markov Chain Model Simulation w ith  Additive Outh'ers

0.5

0.4

0.3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y  Original - - - Contaminated ■ LSAO — BI F - TSAO

Looking at the frames in Figure 6.3.4.1 the original estimates track the curvature of the nonlinear 

regression function y{x)  reasonably well up to x = 0.8. After that TSMARS estimates tend to be too flat. 

The “Contaminated “ data frame is badly effected by the five outliers added to the data. The fit obtained
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from the outlier treatment methods does not improve on this. Therefore, the methodology does not appear 

to be robust when the outliers arise in data that are not Normal. Moreover, the number of correct models 

found was either 24 or 25 for both the contaminated data and all outlier treatment methods. The ‘Original’ 

data (see Chapter 2) gave 50 correct models. The CMOT methodology in this case has not improved 

consistency and has not reproduced statistically acceptable estimates.

6.3.5 Concluding Remarks

The simulation studies conducted have ranged across four different models that cover a broad spectrum of 

nonlinearity. The original uncontaminated estimates obtained by TSMARS were used as a basis for 

comparison. One or more additive outliers were introduced into the data and the impact on the estimates 

measured. Each simulation was then repeated with the three available methods, namely LSAO (least 

squares), BIF (bounded influence) and TSAO (time series) implemented within the CMOT procedure. If the 

methodology brought the number of correct models into line with ‘Original’ value, it was judged model 

selection consistent. If, in addition, the estimates were not affected (in terms of standard errors) the 

methodology was judged statistically acceptable.

The results of the simulation studies showed that when outliers were introduced the so-called 

“Contaminated” TSMARS estimates fell well short of optimal. This agrees with the observations of de 

Gooijer et. al. (1998). In general, the three treatment procedures improved the quality of the estimates. The 

simplest method based on least squares gave poorest improvement. Both the BIF and TSAO methods 

gave good results when residuals were normally distributed. Parameter estimates tended to be biased. 

However, this problem is easily corrected by using the estimated values to replace the outliers in a second 

call to TSMARS. If this is done the parameters will be almost identical to their original uncontaminated 

values.

The CMOT procedure is designed to ensure that model selection in TSMARS is consistent estimates in the 

presence of outliers. In particular, the objective is to ensure the number of correct models is in line with the 

number obtained on the same data without outliers. For the linear and threshold models the methodology 

was shown to be model selection consistent and to give statistically acceptable estimates. However, when 

the data was not suited to threshold modelling, results were more mixed. The methodology did ameliorate 

model selection consistency for the Sine model. However, for Markov model, the methodology did not 

show any degree of improvement in consistency.

Therefore the aim of correcting stepwise knot selection in the presence of additive outliers is achieved. 

This is true for both for data suited to TSMARS modelling and also true for curved data driven by normal 

disturbances.

6.4 Modelling Seasonal Economic Data with Outlier Adjusted TSMARS

As noted in Chapter 4, modelling real time series data is a necessary contrast to simulation studies based 

on an assumed model. A ‘test bed’ of 20 monthly economic flow, stock and index series was introduced 

that possess seasonal, independent effects as well as potential outliers and possibly nonlinearity. These
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series were each studied using four alternative modelling model types of TSMARS. The key findings of 

the modelling study indicated:

■ It was important to difference growth data prior to TSM ARS modelling.

■ Incorporating seasonal effect in the model was preferred to prior seasonal adjustment.

■ There was evidence of nonlinear behaviour but the share (as a portion of the overall variance)

was small.

■ Outliers may have confounded statistical tests.

The last of these findings suggests that unbiased conclusions could not be deduced regarding the 

existence or extent of nonlinearity until TSMARS was enhanced. In simulation studies, the extensions to 

TSM ARS outlined earlier in this chapter, made it robust against outliers when disturbances are Normally 

distributed. In particular, the simulations showed that model selection inconsistency brought about by 

outliers was removed. Therefore, TSMARS could be relied upon to decide correctly whether a model is 

linear or nonlinear. This means that the veracity or otherwise of the findings of Chapter 4, can now be re

examined with greater certainty using outlier handling in TSMARS.

6.4.1 TSMARS Data Modelling with O utlier Adjustm ent
As in Chapter 4, the test bed of 20 economic time series are each modelled as univariate data with 

independent predictors to account for length of month (MD), trading week length (TD) and Easter. Only 

two of the four alternative model types of Chapter 3 are studied; these are TSMARS and STSMARS. 

These two are chosen because they represent two extremes. TSMARS represents naive modelling in that 

it involves no data transformation. On the other hand, STSMARS represents intelligent modelling in that 

the data are appropriately transformed prior to modelling. Recall the descriptions are:

■ TSMARS: Where no transformations are made to the time series values y,.  A set of s+1 monthly

(8=12) lagged predictors as well as a deterministic seasonal predictor

P i = S in { l 7 tH s )  (i=1...s) and a set of s categorical predictors (each having a 1 in month i and 

denoted by k|) is computed and input to the TSMARS program. The maximum interaction degree set 

to 3 and basis function threshold = 2 X 10'®. This gives the enhanced TSMARS approximation 

equation (3.4,1)

9t = • >',-(5+1), ̂ 1 , .. ., , M D ,, T D ,, Easter,)

where / ( • )  denotes the TSMARS model.

■ STSMARS: In this model type the time series is checked and adjusted, as appropriate, for a log, a

constant and the set of difference transformations (as set out in Chapter 1) giving the transformed

series denoted by z, =  (l -  b Y  (l -  5^ +  c)}

where B denotes the backward difference operator {B y ,  d (=0, 1, 2) denotes the regular

difference operator, D (=0,1) denotes the seasonal difference operator, c is a constant adjustment. 

The lagged p r e d i c t o r s z , . , a r e  then input into the TSMARS program along with
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appropriate ly differenced trading effects predictors. The maxinnum interaction degree is set to 3 and 

basis function threshold = 2 X 1 0 ' *  with subsequent weighted calls to the TSMARS program to handle 

heteroscedasticity. On completion the sequence of transform ations are applied in reverse giving the 

approximation based on the general form equation (3.4.3)

y, =  exp - C

where z, md etc. denotes the appropriately chosen differenced value of MD etc. Note that no 

independent categorical predictors or determ inistic seasonal predictor are included in the model.

Note, the model definitions given above do not change when outlier adjustm ent is used. This is because 

the adjustm ent is incorporated into the TSM ARS stepwise selection procedure.

6.4.2 Data Modelling Results
For both o f the selected model types, TSM ARS estim ates are obtained using each o f the three outlier 

adjustm ent methods; Least Squares Additive Outlier (LSAO), Bounded Influence (BIF) and Time Series 

Additive Outlier (TSAO). Thus, fo r each time series, a set o f 6 models are computed with detailed results 

given in Table 6.4.2.1 (see Table Appendix).

For each series, as outlined in subsection 4.4.1, the num ber of observations (N), the series code and its 

title is given. Also, for each method, an indicator is given to signify whether a log or constant 

transform ation is applied. The resulting model and associated statistics (specified in the Appendix) 

computed from  the residual y,  - y ,  are also displayed.

Table 6.4.2.2: Frequency o f S ignificant Test Results

Model

type

Method
Statistics

Sum of 

Ranks
Tsay F- 

test lags

BDS

test

Seasonality

F-test

PAR(1)

F-test

PAR(2)

F-test

Periodic

Variation

F-test

TSMARS

LSAO 16(4) 11 (1) 6 (5 ) 15(2) 12(5) 9 (2 ) 8 (1 ) 3 (6 ) (30)

BIF 19(5) 12(3) 5 (4 ) 15(2) 11 (4) 9 (2 ) 11 (4) 3 (6 ) (32)

TSAO 19(5) 12(3) 3 (2 ) 15(2) 13(6) 11 (5) 11 (4) 2 (4 ) (27)

STSMARS

LSAO 13(3) 12(3) 3 (2 ) 16(5) 19(3) 8 (1 ) 11 (4) 2 (4 ) (25)

BIF 12(2) 13(6) 5 (4 ) 15(5) 7 (2 ) 11 (5) 12(6) 0 (1 ) (31)

TSAO 10(1) 12(3) 4 (3 ) 16(5) 6 (1 ) 9 (2 ) 10(2) 1 (2) (19)

Once again, the column called Cycles/Notes identifies whether a cycle (i.e. significant spike, see 

Brockwell & Davies 1991) was evident in the residual spectrum. W here a regular cycle is found and 

Tsay’s F-test is also significant at a corresponding lag (or integer multiple thereof), then evidence fo r a
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threshold is rejected. Experience in this research has shown the power of Tsay’s F-test is small where 

there is evidence of a cycle.

Useful information is gleaned by summarising the statistical test results. Table 6.4.2.2 gives a summary of 

the number of times each test produced a significant value at the 1% level. The rank of each method is 

also given (best = 1) in braces and a final column shows the sum of the ranks.

The results in Table 6 .4 .2.2 show that STSMARS is better. Comparing the adjustment methods it is clear 

that the SATSMARS-TSAO method appears to be considerably better than the other methods in terms of 

rank. However, the Kruskal-Wallis One-way test of ranks showed no evidence of a difference in the 

MAPE values across methods; H-value = 0.23 < x̂ s.o.gs-- Also, there is no difference between the 

methods in terms of their MAPE, as H-values ranging from 0.0 to 0.2, computed pair wise are not 

significant at the 5% level.

Of particular interest is a comparison of Table 6.4.2.2 with Table 4.4.2.1 of Chapter 4. Recall, Table 

4.4.2.1 is corresponding set of figures obtained without the outlier adjustment procedure. The ranks 

obtained for both TSMARS and STSMARS with outlier adjustment (Table 6.4.2.2), show no clear 

improvement over their without adjustment counterparts (Table 4.4.2.1). Moreover, the summary 

observations of the last paragraph are similar to those of Section 4.4. Therefore, on the basis of statistical 

tests, there is no evidence to indicate outliers are confounding the conclusion from Chapter 4.

Table 6.4.2.3 summarises the models according to model type. Comparing the methods, it is clear that 

TSMARS estimates are dominated by the growth component, as in Chapter 4. In contrast, STSMARS 

found that roughly 75% of models are nonlinear. This is higher than corresponding figure, of 55% (11 out 

of 20), obtained in Chapter 4. Therefore, in contrast to the conclusion of the last paragraph, outliers have 

had an affect on the conclusions of Chapter 4.

Table 6.4.2.3: Freguencv of Different Model Types Observed in the Test Results

Method
Model Type

Mean

only

Independent

Predictors

Linear Integrated

1(1)

SETAR Seasonal

SETAR

Regime

Dependent

SETAR

Nonlinear

TSMARS LASO 0 0 1 12 4 0 0 3

BIF 0 0 2 12 4 0 0 2

TSAO 1 1 2 12 3 0 0 1

STSMARS LSAO 1 0 1 2 7 5 2 2

BIF 0 0 1 2 6 2 2 7

TSAO 2 0 1 2 3 2 2 8

The table above indicates which methods found some nonlinearity. However, of greater interest is the 

number of test statistics that were not significant where a nonlinear model was found. Table 6.4.2.4 gives 

this number for the (four) model adequacy test for STSMARS only -  STSMARS is the only method with a 

reasonable number of nonlinear models. The presence of a in the cell indicates that the model did not 

possess any nonlinearity. Looking at the figures, it is clear that the test statistics do not vary greatly



138

across the adjustment methods. However, where nonlinearity is found the BIF method has the cleanest 

residuals -  that is, it gives more series where the residual tests are not significant (e.g. a results of 3 or 

4). The figures are also compared with the corresponding figures from Chapter 4 (Table 4.4.2.3). Looking 

across the figures it s clear that more tests are not significant when these series were modelled without 

outlier adjustment. This reinforces the conclusion above that there is no evidence to imply that outliers are 

affecting the conclusion from Chapter 4.

Table 6.4.2.4: Freauencv of Test Statistics that are not significant for STSMARS Nonlinear Models onlv.

Method
Test Series Number

1 2 3 4 5 6 7 8 9 10

LSAO

BIF

TSAO

0 2 0 1 3  2 3 3 2 4 

0 0 0 0 3  3 3 4 3 3 

0 2 0 0 3  3 3 2 3 4

STSMARS 1 - 1 - 4 4 4 3 3

Method
Test Series Number

11 12 13 14 15 16 17 18 19 20

LSAO

BIF

TSAO

2 - 2 - 0 0 1  0 

0 4 4 - 0 0 0 0 

2 - 2 - 0 0 0 1

STSMARS 3 - 1 - - - 1 1 2  1

6.4.3 ANOVA discussion
The ANOVA analysis provided by TSMARS breaks down the contribution of each basis function in the 

approximation to the overall variance. In Table 6.4.3.1 this breakdown is given for each method grouped 

by basis function type. For each model type the breakdown is computed somewhat differently, as the 

figures given are those arising solely from the call to the TSMARS program. This means that growth 

effects are excluded from the figures given for the STSMARS but are included in those for TSMARS.

The overall average figures given Table 6.4.3.1a, show the mean and linear basis functions account for 

roughly 90% of the explained variance for TSMARS. This accounts for the growth components of the time 

series. This result is similar to Chapter 4. This large growth component masks other characteristics such 

as nonlinearity and considerably diminishes the size of residual variance as a proportion of the overall 

variance.

The residual variance for all STSMARS based methods, accounts for over 50% of the overall variance. In 

this case, the variance break down is given purely for the TSMARS program call and so it does not 

always include the growth component. That stated the nonlinear component accounts for over 1/10*^ of 

the overall variance. In contrast, the results in Chapter 4 showed only about 1/20*^ of the variance
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appearing as nonlinear. Therefore, outliers have had an affect on the extent of nonlinearity observed for 

this test-bed of empirical time series.

Table 6.4.3.1a: Extract of Overal Average Variance Breakdown in Table 6.4.3.1 (Table Appendix)

No Series Code Title Model type Method % Variance

Mean Linear Nonlinear Independent Residual

Average TSMARS LSAO 47 38 8 3 4

BIF 52 37 6 1 4

TSAO 48 40 7 1 4

STSMARS LSAO 26 4 14 2 54

BIF 28 5 14 2 50

TSAO 23 5 12 2 58

6.4.4 Concluding Remarks
TSMARS has been adapted to handle outliers and the program run on the ‘test-bed’ of 20 economic time 

series. From the results obtained the following can be concluded:

■ The analysis of the test statistics given in Table 6.4.2.2 demonstrates that the outlier adjustment 

methods did not result in any significant improvement in model adequacy or seasonal effects.

■ The MAPE values across the methods were not significantly different to the values observed in 

Chapter 3.

■ Table 6.4.2.3 showed that up to 25% more nonlinear basis functions were uncovered by STSMARS 

with outlier adjustment.

■ Comparison of results on nonlinear models supported the view that outliers do not alter the 

conclusions of Chapter 4.

■ The ANOVA analysis in Table 6.4.3.1a, showed that roughly l/ IO ’*̂ of the variance of all models found 

using the STSMARS method was explained by nonlinear basis functions.

These conclusions appear contradictory. However, it must be kept in mind that the outlier adjustment 

mechanisms are designed to ensure the basis function selection procedure is consistent. No attempt is 

made to reduce the final RSS using independent predictors. Thus test statistics may still lack power as 

spikes will be evident in the residual. In certain cases, this also means that MAPE values may not show 

any improvement.

The outlier adjustment mechanisms do appear to show evidence of more nonlinearity. However, close 

scrutiny of Table 6.4.2.1 (see Table Appendix) shows that independent effects, namely length of month, 

trading day and Easter effects are much more evident. In about half of the 20 series an independent 

predictor was included in the model, while only four models in Chapter 4 possessed an independent 

effect. This is a cause for concern. Moreover, this implies that the 10% of the explained variance that was 

found to be nonlinear with outlier adjustment employed requires further scrutiny. In fact section 6.3 

showed that the adjustment procedure is consistent only for additive outliers and independent innovation
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error models. Therefore, since the 10% estimate of the explained variance being nonlinear is in doubt, the 

conclusion of Chapter 4 stands -  that is, around 5% of the explained variance is nonlinear.

6.5 Conclusions
This chapter has addressed outlier treatment in TSMARS. There w/ere two aims; namely, ensuring model 

selection in TSMARS is consistent and then using this to ensure the conclusions of Chapter 4 are well 

founded.

The consistency issue was addressed using the CMOT procedure. This procedure is both novel and 

general. It does not specify a treatment method and can be applied to any stepwise procedure. It ensures 

that the search for the next basis function is conducted with the effects of outliers ameliorated.

Three different adjustment procedures were also set out; namely. Least Squares (LSAO), Bounded 

Influence (BIF) and Time Series (TSAO). The LSAO method is highly efficient with virtually no computing 

overhead. It is ideal when residuals are independent. The BIF method is complex and can require 

substantial computing. It is suitable when the residuals are independent but may deviate from normality. 

The TSAO method is specific for AR, TAR and additive model time series. A theorem was proved that 

showed method modelled the error process correctly in these cases. Simulation studies compared the 

performance of the methods in situations where one or more additive outliers were introduced into the 

data. The results of the simulation studies showed the treatment procedures made TSMARS more 

consistent; that is, TSMARS was more likely to choose a correct model type in the presence of an outlier. 

The outlier adjustment procedures were then run on the ‘test-bed’ of 20 economic time series. With 

consistent model selection in place, no evidence was found of any significant improvement in accuracy, 

model adequacy or seasonal effects over Chapter 4 values. In contrast, the ANOVA analysis showed that 

roughly 1/10'^ of the variance of all models found was nonlinear. However, many models had trading 

effects. This is incompatible with earlier results and indicated there was a problem with model selection. 

One implication of this is that dependent errors may be more appropriate, to explain the ‘test-bed’ of 20 

economic time series. The conclusion of Chapter 4, that the original estimate of around 5% of the 

explained variance is nonlinear, therefore stands. Of course, there is the possibility that dependent errors 

models may be better able to explain the processes underlying these empirical series. This issue is 

explored in the next Chapter.
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Table Appendix

Table 6.3.1.1: AR(1) Model Simuiatlon Results for o = 0.5

1 Lagged Predictor 3 Lagged Predictors

AR(1)

Models

found

P Standard

Error

AR(1)

Models

found

P Standard

ErrorNo. of 

outliers

Method

- Original 99 0.506 0.081 95 0.506 0.080

1 Contaminated 98 0.431 0.083 98 0.432 0.081

LSAO 100 0.431 0.089 98 0.428 0.086

BIF 100 0.457 0.090 95 0.440 0.078

TSAO 99 0.430 0.083 97 0.429 0.081

3 Contaminated 99 0.396 0.086 99 0.397 0.087

LSAO 98 0.398 0.089 95 0.400 0.087

BIF 100 0.410 0.087 92 0.419 0.096

TSAO 99 0.396 0.086 94 0.401 0.085

5 Contaminated 91 0.350 0.070 93 0.341 0.096

LSAO 96 0.341 0.081 97 0.342 0.098

BIF 98 0.361 0.094 88 0.362 0.088

TSAO 95 0.343 0.078 97 0.346 0.098
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Table 6 .3 .2 .1 : SETAR(2.1.1) Model Simuiati'on Results fo r pi = 0 .75 , pj  = 0 .25  and threshold (knot) = 0 .0

No of lagged predictors = 1 

Maximum Interaction Degree = 1

No of 

Outliers

Method Correct

SETAR

Models

found

Pi Std. Err. P2 Std.

Err.

knot Std. Err.

1 Original 82 0.811 0.057 0.184 0.156 -0.046 0.075

Contaminated 99 0.795 0.088 0.091 0.103 0.019 0.104

LSAO 86 0.838 0.085 0.100 0.132 -0.055 0.142

BIF 83 0.847 0.083 0.093 0.123 -0.041 0.081

TSAO 85 0.856 0.089 0.070 0.153 -0.037 0.082

3 Contaminated 100 0.779 0.094 0.056 0.069 0.053 0.101

LSAO 91 0.829 0.150 0.064 0.130 -0.146 0.322

BIF 76 0.875 0.091 0.039 0.068 -0.051 0.082

TSAO 74 0.867 0.099 0.004 0.083 -0.036 0.085

5 Original 82 0.813 0.058 0.181 0.157 -0.048 0.079

Contaminated 100 0.770 0.102 0.057 0.061 0.047 0.091

LSAO 87 0.819 0.173 0.050 0.092 -0.120 0.302

BIF 72 0.891 0.118 0.027 0.053 -0.054 0.100

TSAO 77 0.859 0.147 0.020 0.234 -0.048 0.121

No of lagged predictors = 3

Maximum Interaction Degree = 3

1 Contaminated 99 0.794 0.088 0.093 0.104 0.019 0.104

LSAO 87 0.836 0.085 0.099 0.130 -0.052 0.143

BIF 85 0.845 0.084 0.010 0.127 -0.042 0.079

TSAO 86 0.856 0.089 0.141 0.400 -0.037 0.083

3 Contaminated 100 0.778 0.095 0.057 0.071 0.055 0.100

LSAO 90 0.826 0.095 0.066 0.130 -0.145 0.324

BIF 76 0.857 0.092 0.065 0.136 -0.060 0.118

TSAO 79 0.867 0.096 0.058 0.138 -0.100 0.262

5 Contaminated 100 0.769 0.102 0.058 0.061 0.049 0.091

LSAO 81 0.848 0.125 0.053 0.093 -0.115 0.298

BIF 81 0.762 0.097 0.050 0.056 -0.048 0.099

TSAO 77 0.864 0.116 0.010 0.124 -0.097 0.266



143

Table 6.4.2.1: Time Series Test-bed Results with Outlier Adjustment

No
Series

Code
Title Model Method

Model

286 ASAM003 Cows Milk

Protein 

C ontent (%)

TSMARS

STSMARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

y ,  =210,770 + 1.01 -180,102)_

AS ABOVE 

AS ABOVE

AA,
y , = 0.2 -  O A(y,_i -  0.08)+ + 0.25(>-,_3 -  0.08)+ + 0.25(y ,_ j -  0.4)+ 

l . l (y ,_12 - 0.2)_

AS ABOVE 

AS ABOVE

286 ASAM206 C alves 

Slaughtering 

000 H eads

TSMARS

STSMARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

y, =0.12 + 0.57>>,_| +ll.2> ',_ ,(S in(t-T T/3)+  -  

14.5y,_,(Sin(t -  it/3)+(>-,_|o -  0.7)_

y , = 0.14 + 0.59y,_, + 12.0y,_|(Sin(t -TT/3)+
-  l9 .8y,_,(Sin(t -  it/3 )+(>>,_,0 -  0.9)_ -  0.0\MD

y, = 0.28 + 0.57jk,-i + 25.1y,_|(Sin(t -  it/3)+
-  34.7>>,_,(Sin(t -  tt/3)+(>’,_ |o -  0 .9).

y , = 1.1 +0.41 + 2.7>>,_,(>>,_|2 -  0.6)_ + 0 .5 6 y ,.,(y ,_ ,2  -0 .6 )+  -
2 . . 3 ) ' , 2 -0 .6 )+ (7 D -  2.5)_ -  1..1 y,_,(>’,_i2 -  0.6)+(7D -  2.5)+

>., = 1.13 + 2.96>.,_, (y,_2 -1  -2)- +11.2>-,_, (Sin(t -  tt/3)+
-l4 .5 r,.,(S in ( t-T T /3 )+ (> ',. ,o -0 .7 ) . 

y, = 0.95 + 0.58>■,_, + 0.91y,_,(y,_2 - 1 .2)_

3 286 ASAM305 Heifers

Slaughtering 

000 Tons

TSMARS

STSMARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

y ,  = 8 .9 -0 .5 2 (r,_ i -4 .6)_  + 0.47(>-,-3 -4 .6)+ -0.19>.,_2 +0.48>.,-,2 - 
0.34>’,_,3 + 0.03rZ)(>',_4 - 2)+ + 0.55(S in ( t-1T/3)+

y , =9.1 + 0.45>',_,2 + 0.37y ,_ |3 - 0.99(>’, . |  -4 .6 )_
0.5(y,_, -4.6)_(>>,_, -9 .1 ) .  +0.2MD

= 11 .2 -1 .2 3  (y,_, -4 .6 )_

a [v, = 0 .0 5 -0 .0 1  i d - 0.22(>>,_| -  0 .69)++ 0.61(y,_,2 -  0.97)+]

y , = -0.07 -  0.24(>.,_, -  0.69)+ -  0.69(r,_ |2 "  0-97)+ 
+ 0.0\MD(TD -  I3.5)_ -  0.0]MD(TD -  12.5)_

AS LSAO

4 250 FIAM023 Irish Currency

in Circulation 

(€)

TSMARS

STSMARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

y ,  =1069+>>,.,

AS ABOVE 

AS ABOVE

a[v, = 0.02 -  0.2(>>,_3 -  0.06)+ -  0.55(>>,_|2 -  0.07)+ + OM(Easler - 1)+]

y, = - 0 .0 0 2 - 2 .2 (y , .13 -0 .0 7 ) .  -  0.42(>-,_i3 -  0.07)+ + 0.03(£ojrer -  1) 

+ 47 (y,_ |3  -  0.07)_ (y ,_ | -  0.06)+ (y ,_ j  -  0.06)+

y, = 0.03 -  0.43( r ,_ |3  -  0.07)+ + 4.37( r ,_,2 -  0.13)+ (>>,.,3 -  0.07). 
+ 0.03(Easter -1 )
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No Model Method
Statistics

Xi^
2

Z2 Tsay F- 

test 

lags

BDS

test

Seasonality

F-test

PAR(1)

F-test

PAR(2)

F-test

Periodic

Variation

F-test

MAPE %

Error

Cycles/

Notes

1 TSMARS LSAO 0.01 0.01 2 ,3 ,5 0.01 0.01 1.0 1.0 0 3 10.9 0.0 3

BIF AS ABOVE

TSAO AS ABOVE

STS LSAO 0.01 0.01 2,4, 12 0.01 1.0 0.01 0.01 0.87 9.9 0.0 3

MARS

BIF AS ABOVE

TSAO AS ABOVE

2 TSMARS LSAO 0 20 0.90 5 0.01 0.19 0.53 0.54 0.78 46.7 58.6 -

BIF 0.01 0.01 5 0.01 0.22 0.01 0.01 0.13 45.3 58.6 -

TSAO 0.01 0.99 2,4, 0.01 0.16 0.55 0.36 0.24 52.1 58.6 -

5-10

STS LSAO 0.06 0 90 12 0.01 0.16 0.01 0 02 0.34 63.4 58.6 -

WARS

BIF 0.01 0.01 2, 6 0.01 0 60 0.01 0.01 0.13 45.3 58.6 -

TSAO 0.61 0.99 2,6 0.01 0.07 0.01 1.0 049 58.4 58.6 -

3 TSMARS LSAO 0 01 0.01 2 0.01 0.01 0.40 0.68 0.98 7.2 9.8 -

BIF 0.01 0.01 1-3, 12 0.01 0 01 0.15 0.01 0.15 8.4 9.8 12

TSAO 0.01 0.01 2 0.01 0.01 0.18 0.01 0.98 7.7 9.8 2

STS LSAO 0 01 0.01 2 0.01 0.01 0.11 0.01 0.97 7.7 9.8 -

MARS

BIF 0.01 0.01 2 0.01 0.01 0.33 0.05 0.98 7.8 9.8 -

TSAO 001 0.01 1-3, 7 0.01 0.01 0.11 0.01 1.0 11.4 9.8 12

4 TSMARS LSAO 0.01 0.12 1, 12 0.01 0.01 0.01 0.01 0.01 3.0 0.0 2

BIF AS ABOVE

TSAO AS ABOVE

STS LSAO 0.12 0.01 1, 6, 12 0.01 1.0 0.01 0.01 0.97 2 0 0.0

MARS

BIF 0.01 0.01 6, 12 0.01 0.96 0.01 0.01 0.34 1.9 0.0 12

TSAO 0.01 0.01 3, 11 0.01 0.94 0.01 0.01 0.45 2.0 0.0 3
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No
S eries  Code

Title Model Method
Model

324 FIAM102 Exchange 

R ate  $ £STR

TSMARS

STSMARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

A2

A2

yi = 0.75 + 0.98 y,_]

AS ABOVE 

AS ABOVE

y ,  = 0.02 + 0.35 (>■,_, -  0.03)+ + 0.00\MD - 
0.002(TD -  3)+

y, = -0.01 + 0.38 (>-,_| -  0.03)+ -  
0.15(>-,.| -0 .0 3 )+ (rZ )-2 )_  +
W ( y 2 -  0.05)_ (̂ ,_3 -  0.04)+.(ro -  2)+

y , = -0.01 + 0.42 -  0.03)+ -  0.01(n> -  2)+ ■
0 02(y,_ t -0 .0 3 )+ (A /D -5 ),

6 179 LRGM001 Live R egister 

Total

(No)

TSMARS

STSMARS

TSAO

BIF

TSAO

LSAO

BIF

TSAO

yi = 133,416 + >',_|

AA,2

AA,

AA,

AS ABOVE 

AS ABOVE

y, = -5,663 -  2.62(r,_2 -  3.460)_ 
0.56(>’,_2 -  3.460).

y ,  =-3,011 + 0.11 I -  3.460) +

+ 0.38(>>,_2 -  3.460) _ +0.66(>’,_ 2  -  3.460) _ -  
0 .1 5 (y ,_ |2  -6 .4 2 1 )_

y, = -4,387 -  2.41(>>,_2 -  3.460). + 0.53(>>,_2 -  3.460). • 
1.3(y,.2 -  6.055). + 1.34(y,.|2 -  6.772).

7 179 LRGM111 Live Register/

Tara St. 

Total 

(No)

TSMARS

STSMARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

y, =974 + y , . |

AS ABOVE 

AS ABOVE

A[y, = -0 .0 5  -  0.1 l ( y , . ,  -0 .35)+  + 0.33(y, . ,2  -  0.35)+ + 0.21 (>-,.,3 -  0.40)+

y ,  = -0 .0 5 -0 .1 8 0 .,.,  -0.35)+ + 0.33(>.,.,2 -0.35)+ + 0 .19 (y ,.,3  -0.42)+ ■ 
-0.16(>.,_2-0.35)+(>-,.3-0.35)+

a[)', = -0 .0 3 + 0 .1 1 0 ', .,2 -0.40)+]

8 179 LRGM438 Live Register/ 

Thom asow n 

Males 

(No)

TSMARS

STSMARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

y, =181+>-,.,

AS ABOVE 

AS ABOVE

= -0 .0 3  + 0 .04(r,_ , -0 .17 )+  -14.5(>>,.,2 -0 .0 6 )+  - 
I2 .7 (> ’, . | 2  -0 .13)+  -0 .5 1 (y ,. |2  -0 .1 1 ) .

y , = -0.03 -  16 .6 (y ,- i  -  0.17)+ + 0.31 (y, . , 2 -  0.06)+ ■ 
1 6 2 (> .,.3 -0.06). ( y , . , 3 - 0.06)+

y , = - 0 .0 4 - 8 .4 (>-,.,2 -0 .0 6 ) .  +0.41 (>',.,2 -0 .06 )+  + 6.4(>>,.,2 -0 .1 2 ) .  
-0 .0 5 (> > ,_ ,-0 .1 2 ). (> -,.,2 -0 .06 )+
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No Model Method
Statistics

2
X1

2
X2 Tsay F- 

test 

lags

BDS

test

Seasonality

F-test

PAR(1)

F-test

PAR(2)

F-test

Periodic

Variation

F-test

MAPE %

Error

Cycles/

Notes

5 TSMARS LSAO 0.01 0 06 5 0 01 0.06 0.01 0.01 0.42 1.1 1.2 12

BIF AS ABOVE

TSAO AS ABOVE

STS LSAO 0.26 0.40 0.01 0.16 0.07 0.12 0.73 1.0 1.1

MARS

BIF 0.21 0.06 0.01 0.10 0.11 0.09 0.69 1.1 1.1

TSAO 0.34 0.20 0.01 0.09 0.24 0.19 0.63 1.1 1.1

6 TSMARS LSAO 0.01 0.01 1-3, 6 0.01 001 1.0 1.0 0.11 2.2 0.0 6

BIF AS ABOVE

TSAO AS ABOVE

STS LSAO 0.01 0.69 0.01 0.99 0.01 0.01 0.95 1.0 0.0 4

MARS

BIF 0.7 0.45 0.01 10 0.01 0.01 0.52 1.0 0.0 4

TSAO 0.11 0 24 0.01 1.0 0.01 0.01 0 74 1.0 0.0 4

7 TSMARS LSAO 0.47 0.96 8 -12 0.01 0.01 0.35 0.44 0.55 3.2 0.0

BIF AS ABOVE

TSAO AS ABOVE

STS LSAO 0.55 0.86 0.01 0.18 0.89 0.29 0.35 2.9 0.0 4

MARS

BIF 0.54 0.91 0 01 0.19 0.92 0.31 0.54 2.9 0.0 4

TSAO 0 65 0.86 0.01 0.11 0.08 0.07 0.55 3.0 0.0 4

8 TSMARS LSAO 0.01 0.01 1 0.59 0.01 0.22 0.34 0.04 3 2 0 3 6

BIF AS ABOVE

TSAO AS ABOVE

STS LSAO 0.42 0.01 0.01 0.01 0.77 0.76 1.0 3.2 0.3

MARS

BIF 0.10 0.38 0.54 0.02 0.49 0.46 1.0 3.3 0.3

TSAO 0.24 0.01 1 0.73 0 02 0.17 0.51 1.0 3 3 0.3 2
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No
Series Code

Title Model Method
Model

179 LRGM515 Live Register/ 

Nenagh Males

(No)

TSMARS

STSMARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

y, =314 + >>,_|

AS ABOVE 

AS ABOVE

= -0 .2 2 > -,., -0 .I4>-,_3 + 0.I5>-,_,2 + I . 7 7 r , - i3 ( r , - l  - 0 .0 5 )J

0.1 ly,_3 + 0.24>>,.,2 -  0.36y,.,(>v_2 -  0.07)+]a [v, = -0 .0 4  + O.I2>',_| -0 .11y,_

y, = -0 .0 5  + 0 . I 83»,_|2 + 0.I5>',_|3 + 67>>,_|2(>',_2 -0 .0 6 )_ (y ,_ j  -0 .13 )+  

+ 41>>,-|2(>’,-2  -  0.06)_(>',_3 -  0.26)_

10 179 LRGM800 Live Register/ 

Newcastle 

West females

(No)

TSMARS

STSMARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

y, = 286 + >>,_i

AS ABOVE 

AS ABOVE

a [v, = - ] ] .7 -0 .2 7 > ',_ 3  +0.43y,_ |2  -  0.01>’,.3(>>,_2 - H 4 ) + ]

y, = -23.7 + 0.39:k,_|2 -  0.41(>-,_3 -  75)+ + 0.14y,.,2(> ',_| -  131)+ ■ 

0 . 0 5 ( > v - 3 - 8 4 ) + ( r , - 2 - ' 3 2 ) +

A [v, = - 1 1.7 -  0.27>.,_3 + 0.43y ,_ ,2 -  0.01>-,_3(>-,_2 -  123)+]

11 288 MIAM014 Volume Index 

NACE 37 

(Base 1985= 

100)

TSMARS

STS

MARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

y, =35.7 + y ,_ |

AS ABOVE 

AS ABOVE

^̂ 12 \yi -  -0 .1 1 + 0.5>>,_i -  0.25 y,_2 -  0.39>',_|2 + 0.24_v,_i3 + O.OIZd]

= -0 .1 0  + 0.53>>,_| -0.23>>,.2 -0 .37y,_ i2  +0 .2 ‘\ y , . ^ j ]

A[2 [vf = —0 .11 + 0.48y^_| + 0-26yi_2 “ ^■31_V/_i2 O.OI/Y)]

12 288 MIAM051 Volume Index

Manufacturing 

Industries 

(Base 1985 

=100)

TSMARS

STS

MARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

y,  = 4.05 + y ,_ t

AS ABOVE 

AS ABOVE

AS ABOVE 

AS ABOVE

13 288 MIAM524 Volume Index 

NACE 429 

Adjusted

(Base 1985= 

100)

TSMARS

STS

MARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

A [v, = 85.7 + 0.27 y,_g + 0.67(y,^, -  36.5)+ ]

A [y, = 91.7 + 0.88(y,_| -  36.5)+ -  0.13{>-,_8 -  10.5)+ ] 

mean only fitted

y ,  = 0 .2 1 -0 .6 9 (y ,_ i -0 .0 3 )+  - 0 . 1 1 ( y , _ 2  -0 .0 3 )+  -0 .02TD  + 

0 . \ \M D ( y ,_ x  -0 .0 3 ) +

A[y, =0.03 + 1.44(>^,_i -  0.06)_ -0.21(>-,_, -0 .0 6 )+ ]

y, =0.01 -  1.09A/Z)(>’̂ _i -0 .13 )_  -  OmMD{y,_ \  -0 .1 3 ) .

+ 0.\6MD{y,^x -  0 .03 )_(ro  -  I4)_ + 2.75WO(>',_, -  0.03)_(7'D -  1)_ 

4.0A/D(>',_i -  0.03)_(7Z) -  2)^
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No Model Method
Statistics

Xi^ Ka Tsay F- 

test 

lags

BDS

test

Seasonality

F-test

PAR(1)

F-test

PAR(2)

F-test

Periodic

Variation

F-test

MAPE %

Error

Cycles/

Notes

9 TSMARS LSAO

BIF

TSAO

0.01 0.97 5, 6 0.63

AS

AS

0.01

ABOVE

ABOVE

0 69 0.02 1.0 4.0 0.1 6

STS LSAO 0.01 0.87 None 0.01 0.01 0.81 0.15 0.89 3.8 0.1 3

MARS

BIF 0.02 0.84 None 0.01 0.05 0.96 0.13 0.96 3.9 0.1 3

TSAO 0.02 0.89 None 0.01 0.16 0.02 0.15 0.76 3.9 0.1 6

10 TSMARS LSAO

BIF

TSAO

0.01 0.14 2, 3 0 66

AS

AS

0.01

ABOVE

ABOVE

0 01 0.01 1.0 4.4 0.2

STS LSAO 0.80 0.13 None 0.55 004 0.02 0.09 0.76 3 4 0.2

MARS

BIF 0.82 0.01 None 0.62 0.03 0.04 0.01 0.87 3.5 0.2

TSAO 0.80 0.13 None 0.55 0.04 0.02 0.09 0.87 3.4 0.2

11 TSMARS LSAO

BIF

TSAO

0.01 0 01 1 -3  

None 

None

0.01

AS

AS

001

ABOVE

ABOVE

0.01 0 01 0.01 12.6 0.5 4

STS LSAO 0.01 0.01 1. 7 0.01 0.98 0 02 0.01 0 96 6.6 0.5 2

MARS

BIF 0.02 0.01 1. 7 0.01 0.98 0.01 0.01 0.90 6.6 0.5

TSAO 0.01 0.01 1, 7 0.01 0.99 0.02 0.01 0.93 6.7 0.5

12 TSMARS LSAO

BIF

TSAO

0.01 0.01 6

None

None

0.01

AS

AS

0.65

ABOVE

ABOVE

0.92 0.97 0.16 3.0 0.5 6

STS LSAO 0.01 0.01 2, 3, 5 0.01 0.01 0.01 0.01 1.0 7.3 0.5 3

MARS

BIF

TSAO

None

None

AS

AS

ABOVE

ABOVE

13 TSMARS LSAO 0.42 0.04 1 0.01 0.83 0.01 0.06 0.89 5.4 1.0

BIF 0.01 0.19 5, 8 0.01 0.95 0.93 0.31 0.96 6.2 1.0

TSAO 0.01 0.01 2 - 1 8 0.01 1.0 0.01 0.01 0.93 10.7 1.0 10

STS LSAO 0.01 0.01 None 0.76 0.96 0.16 0.02 0.89 5.7 1.0

MARS

BIF 0.01 0 01 2 0.01 0 80 0.01 0 01 0 96 5.8 1.0

TSAO 0.02 0.02 2 0.01 0.90 0.04 0.01 0.93 5.5 1.0
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No N
Series Code

Title Model Method
Model

14 288 MTAM351 Dublin TSMARS LSAO y, = 66.1 + 1.95A/D -  0.04y,_| -  6.25Sin(t)
Airport

BIF y,  =  65.4 + 2A4MD -  O.OSy,_i -  5.12Sin(t)
Rainfall

(mm) TSAO y, =53.2 + 3.7MD

STS LSAO y, = 4.0 mean only fitted

MARS

BIF 7, = 4 .l-0 .0 7 (y ,_ |  -0 .9 6 )+

TSAO y, = 4.0 mean only fitted

15 288 MTAM553 Mullingar TSMARS LSAO (N1(N

q1q00II

Rainy Days
BIF AS ABOVE

(No.)
TSAO AS ABOVE

STS LSAO = 1 9 .0 - 1.03(>-,_,2 - 2 ) .

MARS

BIF y, = 16.1 + O.I3Kt-_2 + 0-S9MD + 0.07MDy,_i2y,]} -

0 . 0 6 M D ( y , _ 2 - l 5 M y , _ , 3 - 2 0 ) ^

TSAO AS LASO

16 380 RSAM501 Retail Sale TSMARS LSAO y, =9.7 +  j- , . |
Index:

BIF AS ABOVE
All Business

TSAO AS ABOVE
Value

Adjusted STS LSAO y, =10.7 + >',_,

Base 1990 MARS

= 100 BIF AS ABOVE

TSAO AS ABOVE

17 466 TRAM009 Exempt TSMARS LSAO yi  =  27.5  +  0 .3 7 _y ,_ i +  0 .1 5 > ’,_ 4  +  0.3_v,_5 + 0 .2 1 y ^ _ i2  +

Vetiicles 0.001(>-,_7 -  3 01 )_  -  0.002(>^,_7 -  301)+

New (No.)
BIF yi  =25.3 +0.5 y t_ i  + 1 4 .6 A /0

TSAO y, = 28.5 + 0.5 +0.36>’,_g

STS LSAO y, = 3.4 +0.41 ( y ,. ,  -0 .9 4 )+  + 0.21 (y,_3 -  0.94) + 0.24(>-,_,2 -0 .94 )+

MARS

BIF y, = 3 .3 +  0.5 -0 .9 4 )+  + 0.11 ( j , . ,  -  0.94) +0.23(>',_|2 -0 .94 )+

TSAO y ,  = 4.7 mean only fitted
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No Model Method
Statistics

2
Xi

2
X2 Tsay F- BDS Seasonality PAR(1) PAR{2) Periodic MAPE % Cycles/

test test F-test F-test F-test Variation Error Notes

lags F-test

14 TSMARS LSAO 0.95 0.64 None 0.88 0.01 0.48 0.28 0.16 75.9 1.2

BIF 0.93 0.56 None 0.59 0.02 0.60 0.38 0.16 77.1 1.2

TSAO 0.75 0.66 3 0.66 0.01 0.52 0.47 0.16 76.7 1.2 4

STS LSAO 0.89 0 59 None 0.56 0.01 0.01 0.02- 0.99 63.8 1.2 4

MARS

BIF 0.70 0.62 3 0.79 0.01 0.01 0.02- 0.99 66.2 1.2 4

TSAO AS ABOVE

15 TSMARS LSAO

BIF

TSAO

0.01 0.78 12 0.68

AS

AS

0.01

ABOVE

ABOVE

0.38 0.62 0.01 29 1 5.1 6

STS LSAO 0.01 0.78 12 0.68 0.01 0.38 0.62 0.01 29.1 5.1 6

MARS

BIF 0.10 0.71 None 0.72 0.01 0.39 0.47 1.0 28.0 5.1 6

TSAO AS LSAO

16 TSMARS LSAO

BIF

TSAO

0.01 0.01 1, 5, 11 0.01

AS

AS

0.86

ABOVE

ABOVE

0.01 0 01 0.3 2.5 1.0 4

STS LSAO 0.01 0.01 1,2, 0.01 0.01 0.98 0.01 0.4 1.8 1.0 4

MARS

BIF

TSAO

9-11

AS

AS

ABOVE

ABOVE

17 TSMARS LSAO 0.01 0.01 1, 5, 6 0.01 0.01 0.01 0 01 0.93 46.0 0.5

BIF 0,01 0.01 1 , 2 - 5 0.01 0.01 0 01 0.01 0.55 52.8 0.5 4

TSAO 0.01 0.01 0.01 0.01 0.01 0.01 0.95 51.4 0.5

STS LSAO 0.01 0.01 3, 11 0.01 0.01 0.01 0.01 0.54 41.4 0.5 4

MARS

BIF 0.01 0.01 4, 11 0.01 0.01 0.01 0.01 0.43 39.1 0.5 4

TSAO 0.01 0.01 2 - 1 6 0.01 0.28 0.01 0.01 0.98 67.4 0.5 4
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No
S eries Code

Title Model M ethod
Model

18 380 TSAM043 Imports 

SITC 59 

O ther 

Chem icals 

€000

TSMARS

ST S

MARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

y, = 26,445 + 0.34y,_| -  0.82(>’,_ |2  -  31,602). + 5.06(>’,_,3 -  39,651)+

y, = 28,571 -0 .I0 (> ',_ , -  27,095)_ +0.35(>',_| -  27,095)+ +
0.81(>-,_,2 -29,190)_

y, = 44,669 -  1.05 (>■,_, -  43,443)_

y , = 0.96 -  0.56(>-,_, -  0.09)+ -  0.26(y,_2  -  0.09)+ + 0.41 (MD -  4 ) ,  + 
0.43 (A /£)-5)+

a [v, =  0 .52  -  0.52(>>,_, - 0 .0 9 ) +  -  0 .2 2 (y ,_ 2  -  0 .0 9 )+  + 0 .18  (A/£) -  4)=  ]

y, = 0.55 -  0 .52(J,_ | -  0.09)+ + 0 .3(>.,-2 "  0.09)+ + 0.13(>-,_3 -  0.09)+ + 
0.2 (A /D- 4 ) +

19 380 TSAM055 Imports 

SITC 71

Pow er

M achinery

€000

TSMARS

ST S

MARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

Y f  = 3 ,367 + 0.21 y / _ 2  + 0.26_v,_3 + 0 .\ ly i^ ^  +  0 .3 2 (> '/_ i -  640)+  + 

0 .0 0 0 1 > -,_ 2  ( > - , _ 6 - 2 3 ,3 0 6 ) .

y, = 4 1 ,1 6 9 - 0 .1 > > , . 8 - 0 . 8 3 ( y , . |  -  2 2 ,7 9 5 ) .  + 0 .2 7 ( > ', . ,  - 2 2 ,7 9 5 ) +  - 

25.2TD + 76.6711 MD

y, = 4,883 +  0 .42  I + 0 . 5 2 y , . i 2

= 0.36 -  0.73 1.13)+ -  0 .27(y,.2  -  0.57)+ + 0 .12(y,_-^ -  0.57)+ +

0 > I(r/-12 -0 .57 )+  + 0 .02( £ a i / e r - 0.5)+

A [y, = 0 .1 3 - 0 .6 1 ( y , . |  -1 .13)+]

y, = 0.44 + 0 . 3 7 -  1.26). -  1.2 2 -  1.26)+ -  0 .35(y , . 2  -  0.57)+ + 
0.28(y,_3 -0 .5 7 )+  +0.14(>.,.3 -0 .57)+(>-,.|3  -0 .55)+  +
0-67(>>,.| -  l.26)+(£-as;er-0.5)+

20 380 TSAM601 Exports

Adjusted

€000

TSMARS

STS

MARS

LSAO

BIF

TSAO

LSAO

BIF

TSAO

y, = 67,900 +

AS ABOVE 

AS ABOVE

^y, = 238,107 -  0.44{y,_j -  1,809,900). + 326,222{Easler -  0 .5). 
0.42(y,.3  -  1,809,000). (£o j/er -  3 ).

y, =185,191 --1 .8 9 (> ', .3  -8 7 7 ,0 0 0 ). + 0.44(>>,. 3  -  877,000)+ 
2 .35<y, . 3  -  877,000). (Easter -  0.5).

y, =185,191 - 0 .7 (y , .I  -877,000)+ -  1.89(>>,.3  -  877,000). +
0 .44(>>,.3 -  877,000)+ + 3.25(>',.3 -  877,000).(Easter -  0.5).
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M/->
Statistics

NO Model Method
2

Xi X2^ Tsay F- 

test 

lags

BDS

test

Seasonality

F-test

PAR(1)

F-test

PAR(2)

F-test

Periodic

Variation

F-test

MAPE %

Error

Cycles/

Notes

18 TSMARS LSAO 0.01 0.01 12 0.01 0.12 0 30 0.02 0.90 19.9 0

BIF 0.01 0 01 1, 11 0.01 0.21 0.11 0.01 0.66 27.2 0

TSAO 0.01 0.01 1 0.01 0.01 0.01 0.01 0.44 23.9 0 2

STS LSAO 0.01 0.01 2, 5, 10 0 01 0.01 0.01 0.01 0.90 19.5 0 4

MARS

BIF 0.01 0.01 2, 5, 10 0.01 0.01 0.01 0.01 0.85 20 0 0 4

TSAO 0.01 0.01 2, 5, 10 0.01 0.01 0.01 0.01 0.81 19.9 0 4

19 TSMARS LSAO 0.01 0.01 None 0.01 0.20 0.01 0.01 1.0 19.7 0 4

BIF 0.01 0.01 2-5 , 

7, 8

0.01 0,66 0.01 0.01 0.73 22.3 0 4

TSAO 0.01 0.01 None 0.01 0.29 0.01 0.01 1,0 22.3 0 2

STS LSAO 0 01 0.01 None 0.01 0.28 1.0 0 01 0,49 19.9 0

MARS

BIF 0.01 0.01 2, 4, 6, 

12

0 01 0.08 0.30 0 02 0.90 19.9 0

TSAO 0.01 0.01 6 0.01 0,12 0.30 0.02 0.90 19.9 0

20 TSMARS LSAO

BIF

TSAO

0.01 0.01 2 - 5 ,
9 - 1 4

0.01

AS

AS

0,92

ABOVE

ABOVE

0.01 0.01 0.42 7.2 0 2

STS LSAO 0 01 0.01 2, 6, 12 0.01 0.93 0 01 0 01 0.95 10,6 0 4

MARS

BIF 0.01 0.01 1, 2, 6 0.01 0.99 0.01 0,01 0.94 10,9 0 2

TSAO 0.01 0,01 1. 2, 6 0.01 0.97 0.01 0.01 0.97 8.4 0 3
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Table 6.4.3.1: ANOVA Analysis

No Series Code Title Model type Method % Variance

Mean Linear Nonlinear Independent Residual

1 ASAM003 Cows Milk TSMARS LSAO 67 0 31 0 2

Protein
BIF AS ABOVE

Content (%)

TSAO AS ABOVE

STSMARS LSAO 13 0 10 29 46

BIF AS ABOVE

TSAO AS ABOVE

2 ASAM206 Calves TSMARS LSAO 21 0 23 39 17

Slaughtering

000 Heads BIF 51 0 25 0 16

TSAO 61 17 15 0 7

STSMARS LSAO 47 0 38 0 7

BIF 40 0 47 0 13

TSAO 44 0 40 0 16

3 ASAM305 Heifers TSMARS LSAO 76 13 9 0 1

Slaughtering

000 Tons BIF 71 18 7 0 1

TSAO 87 0 11 0 2

STSMARS LSAO 24 0 25 0 51

BIF 18 0 31 0 51

TSAO 24 0 25 0 51

4 FIAIVI023 Irish Currency TSMARS LSAO 45 55 0 0 0

in Circulation

(€) BIF AS ABOVE

TSAO AS ABOVE

STSMARS LSAO 7 16 10 0 67

BIF 8 19 11 0 59

TSAO 19 15 4 0 62

5 FIAM102^ Exchange TSMARS LSAO 83 17 0 0 0

Rate $ £STR

BIF AS ABOVE

TSAO AS ABOVE

STSMARS LSAO 7 1 6 0 86

BIF 8 7 1 0 84

TSAO 8 8 1 0 83
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No Series Code Title Model type Method % Variance

Mean Linear Nonlinear Independent Residual

6 LRGM001 Live Register 

Total

(No)

TSMARS LSAO

BIF

TSAO

58 42

AS

AS

0

ABOVE

ABOVE

0 0

STSMARS LSAO 18 0 19 0 63

BIF 19 0 19 0 62

TSAO 15 0 14 0 71

7 LRGIVI111 Live Register/ 

Tara St.

Total

(No)

TSMARS LSAO

BIF

TSAO

35 65

AS

AS

0

ABOVE

ABOVE

0 0

STSMARS LSAO 7 0 6 0 87

BIF 8 0 7 0 87

TSAO 6 1 5 0 89

8 LRGM438 Live Register/ 

Ttiomasown 

Males 

(No)

TSMARS LSAO

BIF

TSAO

52 48

AS

AS

0

ABOVE

ABOVE

0 0

STSMARS LSAO 9 0 10 0 81

BIF 6 0 9 0 85

TSAO 8 0 7 0 85

9 LRGM515 Live Register/ 

Nenagh Males

(No)

TSMARS LSAO

BIF

TSAO

45 55

AS

AS

0

ABOVE

ABOVE

0 0

STSMARS LSAO 0 6 5 0 89

BIF 4 4 1 0 91

TSAO 7 6 1 0 86

10 LRGIVI800 Live Register/ 

Newcastle 

West females 

(No)

TSMARS LSAO

BIF

TSAO

51 49

AS

AS

0

ABOVE

ABOVE

0 0

STSMARS LSAO 17 18 2 0 63

BIF 19 18 4 0 59

TSAO 17 18 2 0 63
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No Series Code Title Model type Method % Variance

Mean Linear Nonlinear Independent Residual

11 MIAM014 Volume Index 

NACE 37 

(Base 1985= 

100)

TSMARS LSAO

BIF

TSAO

24 74

AS

AS

0

ABOVE

ABOVE

0 2

STSMARS LSAO 23 26 17 0 34

BIF 22 25 18 0 34

TSAO 23 26 17 0 34

12 MIAM051 Volume Index 

Manufacturing 

Industries 

(Base 1985 

=100)

TSMARS LSAO

BIF

TSAO

37 62

AS

AS

0

ABOVE

ABOVE

0 0

STSMARS LSAO

BIF

TSAO

83 17

AS

AS

0

ABOVE

ABOVE

0 0

13 MIAM524 Volume Index 

NACE 429 

Adjusted

TSMARS LSAO

BIF

84 0

AS

8

ABOVE

8 0

(Base 1985= 

100)
TSAO - - - - -

STSMARS LSAO 7 0 7 3 80

BIF 7 0 8 0 85

TSAO 6 0 16 0 78

14 MTAM351 Dublin Airport TSMARS LSAO 69 6 0 3 22

Rainfall (mm)
BIF 70 6 1 1 22

TSAO 67 0 0 11 22

STSMARS LSAO - - - - -

BIF 95 0 3 0 2

TSAO - - - - -

15 MTAM553 Mullingar 

Rainy Days 

(No.)

TSMARS LSAO

BIF

TSAO

93 0

AS

AS

0

ABOVE

ABOVE

0 7

STSMARS LSAO 93 0 0 0 7

BIF 79 3 8 4 6

TSAO 93 0 0 0 7
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No Series Code Title Model type Method % Variance

Mean Linear Nonlinear Independent Residual

16 RSAM501 Retail Sale 

Index:

All Business 

Value 

Adjusted

TSMARS LSAO

BIF

TSAO

13 87

AS

AS

0

ABOVE

ABOVE

0 0

Base 1990 = STSMARS LSAO 22 0 22 0 56

100
BIF 28 0 30 0 42

TSAO 25 0 25 0 50

17 TRAM009 Exempt 

Vehicles New
TSMARS LSAO 15 60 11 0 15

(No.) BIF 19 62 11 0 15

TSAO 17 67 0 0 16

STSMARS LSAO 71 0 28 0 1

BIF 71 0 28 0 1

TSAO - - - - -

18 TSAM043 Imports SITC 

59
TSMARS LSAO 53 13 27 0 6

Other BIF 66 0 29 0 5

Chemicals
TSAO 59 0 33 0 8

€000

STSMARS LSAO 16 0 16 0 68

BIF 15 0 14 0 71

TSAO 15 0 14 0 71

19 TSAM055 Imports SITC 

71
TSMARS LSAO 9 27 59 0 5

Power BIF 84 4 7 0 5

Machinery
TSAO 17 43 35 0 5

€000

STSMARS LSAO 18 0 18 0 64

BIF 21 0 21 0 48

TSAO 18 0 18 0 64

20 TSAM601 Exports 

Adjusted €000
TSMARS LSAO

BIF

TSAO

3 97

AS

AS

0

ABOVE

ABOVE

0 0

STSMARS LSAO 13 0 18 1 68

BIF 3 0 13 0 84

TSAO 3 0 13 0 84
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No Series Code Title Model type Method % Variance

Mean Linear Nonlinear Independent Residual

Average TSMARS LSAO 47 38 8 3 4

BIF 52 37 6 1 4

TSAO 48 40 7 1 4

STSMARS LSAO 26 4 14 2 54

BIF 28 5 14 2 50

TSAO 23 5 12 2 58
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7 Threshold Moving Average Estimation with TSIVIARS 

7.1 Introduction
In this thesis, studies of empirical economic time series are emphasised. As these series may possess 

dependent errors, modelling with moving average (MA) components is often desirable. However, 

TSMARS is based on autoregression splines and cannot distinguish an MA component. So, where a time 

series possesses an MA component, TSMARS will always identify an unsuitable model.

The main purpose of this chapter is to resolve this shortcoming of TSMARS. A novel extension is set out 

which builds on existing TSMARS methodology. It enables TSMARS adaptively to discover Self-exciting 

Threshold Moving Average (SETMA) models, Adaptive Spline Threshold Moving Average (ASTMA) and 

Adaptive Spline Autoregressive Threshold Moving Average (ASTARMA) models; both the ASTMA model 

and its generalisation, the ASTARMA model are new. In fact these two models are instances of model 

(1.2.1), the general nonlinear dependent error model with additive disturbances. This extension to 

TSMARS is therefore a significant development of the program. Moreover, it is the first instance where 

MA components are estimated within a nonparametric procedure. It is also the first procedure that 

estimates model (1 .2.1) in a systematic manner.

Section 7.2 gives the theory and associated methodology that enable TSMARS to estimate MA time 

series. In this extension to TSMARS attention is focused on the residual from the current TSMARS 

model. Essentially, an innovative application of conditional least squares (CLS) is used to fit a 

parsimonious threshold model to this residual. In particular, at each each knot in the lag variable a 

parsimonious SETMA(2, v, v ) model

^  i f  y , - v  ^  ( 7  1 1 )

' + ^ r £ r.,-v if y,-v >'■

with £ i _,,£rj ~ N ( Q , a h ^ ) ,  is fit to the residual at each knot; that is, a model for the residual r, of the form

r, = £ ,  + 6 e ,_^, is fit in each regime. This procedure identifies a left/right lagged innovation function

The parent basis function is multiplied by this innovation function and the resulting new basis function is 

added to the TSMARS model by orthogonalisation. The GCV of this model is then used to decide if there 

is an improvement in the lack-of-fit. By proceeding stepwise through the set of lagged predictors, higher 

order parsimonious ASTMA and ASTARMA basis function models can be successively built up. This 

procedure is efficient, as the basis function selection is restricted to a sequence of parsimonious MA 

models. Note, using the residual to identify the basis function makes the procedure a mixed stepwise (for 

AR) and stagewise (for MA) component estimation method. By stagewise we mean a method that 

regresses predictors on the current model residual. In contrast, stepwise regresses the current model on 

the response.

In section 7.3 the MA estimation routine is tested on simulated data. The purpose is to ‘prove’ the routine; 

that is, ensure that it gives accurate, precise and consistent results. This is the second focus of this 

chapter. The routine will be judged correct if at least three-fifths of models are ‘correct’ and this fraction 

increases with the sample size. If, in addition, parameter estimates are within two standard errors of their 

true values, then the routine will be deemed statistically correct. The three-fifths figure is slightly lower
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than the two-thirds figure adopted in Chapter 2, reflecting that mixed AR and MA models are harder to 

estimate than straightforward AR models.

With the MA estimation in place and proven, section 7.4 returns to study the empirical series. This

extended version of TSMARS is applied, to see if MA component estimation provides greater insight into

the nature and extent of nonlinearity of these series. This is the third focus of this chapter.

7.2 Estimation of Droving Average Series with TSIVIARS 

7.2.1 Conditional Least Squares Estimation of the !VIA(1) model
A simple 1®‘ order moving average model for a time series y,  having n observations, a single parameter 

6 and Normal error s, is

y , = e  (7.2.1)

This can be estimated by either conditional least squares (CLS) or using the Kalman filter (see Harvey

1993). CLS estimation is accomplished by assuming = — !- = 0 and minimising the residual sum of
86

squares (RSS)

s { e ) = Y ^ ^ = Y ^ { y , - e s , ^ , Y  (7.2.2)
1=1 /= 1

with respect to 6.

When 6 is known, observe that, since =0, the innovation can be computed by recursion as =y>2 

and s, = y, Thus the innovations s, and the parameter 9  are dependent and so the quantity

S(6) is nonlinear. W e seek an iterative minimisation of this nonlinear function based on an initial guess

Clearly the minimum of (7.2.2) occurs when

^  = 5'(6») = y - ^ f ,  =0  (7.2.3)
de ^  d9 '

l  =  \

Iteratively solving this nonlinear equation gives an estimate 0 of ^  that minimises (7.2.2) and provides 

via recursior the estimated innovations s, = £,{0).

Specifically, S'{6) is expanded in a Taylor approximation about 9^ as

5'(6')»5'(6><°>)+A6'5''(6''°>) (7.2.4)

where A6> = 9-6**°^ is the change in Q and 5"(6*) =  This suggest the following iterative scheme
q 2 q ( 0 )

for 6

(7.2.5)

whence, at convergence =6.  The 1®' derivative is evaluated from (7.2.3) by substituting for s,

while the 2"'^derivative term can be simply computed as
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J=l /=1

on keeping second order term s only. Thus (7.2.5) becomes

(7.2.6)
1=1 /  1=1

Observe that (7.2.6) can be thought o f as arising from the OLS solution of the regression, through the

■ Using the current estimate 0**' to generate £*** and in parallel the derivative 

• Then by regressing j?**’ on to get a new estimated of

Iterating this yields the Gauss-Newton approximation to the CLS estimate o f 0.  Crucially, it also gives an 

estimate of the estimate o f lagged innovation .

7.2.2 Estimation of the SEIM  A(2,1,1) model
The CLS estimation m ethodology can be extended to estimate the 2-regim e Self Exciting Threshold 

Moving Average SETMA(2,1,1) model, having threshold lag equal to 1 and constant threshold value r

This model is a special case of the 2-regime SETMA(2,q,q) model of order q studied by de Gooijer 

(1998). Note, a slightly d ifferent and more complex threshold moving average model also exists where 

the threshold lag variable is , namely

This model is new. It is referred to as the Innovation Excited Threshold Moving Average IETMA(2,1,1) 

model and will not be pursued further here; its generalisation to order q models with threshold lags 

greater than 1 are obvious.

Taking the SETMA(2,1,1) model (7.2.7), w ithout loss of generality set the constants 9 ^, and i = 0 ; for 

notational convenience let 0 \ 2 ~ ^ l  ^ 2 2  denote left and right sided regime parameters

respectively. In the left regime we can write e, = ^ while in the right e, = and so using indicator

functions (7.2.7) becomes

In this model version y ,  can be considered to be made up of two distinct left and right regime predictors. 

Moreover, the left predictor is non zero only when the right predictor is zero and vice versa. This suggests 

that the RSS in this case can be split across these regimes as follows:

origin, of on So this m inimisation can be efficiently computed by:

(7.2.7)

(7.2.8)

y ,  =  {£ , . l  +  &L -  '■ ) -  +  -  r ) ^ (7.2.8)
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with the left and right RSS components orthogonal. Therefore the minimisation of the RSS can be 

accomplished by separately minimising the RSS in the left and right regimes. That is, the CLS estimates 

are obtained from

Min
r  n ^

V / = i

Min if
i = \  i= \

i = l  1=1

Thus, the MA(1) estimation procedure, can be applied to each regime separately; that is, regressing

d s , , de, o
on — ^  to estimate 0 ^̂ and regressing ^ on — ^  to estimate .

d O i  ' d O ^

In practice this ‘Gauss-Jacobi’ type procedure gives and 6 ^ that yield a ‘satisfactory’ estimate of 

minimum RSS when both the threshold lag and threshold value are specified. However, these parameter 

estimates are inefficient. Furthermore, the estimated innovation s, and more importantly its lagged value 

are also inefficient. The reason is that, at a regime change point (e.g. when the threshold lag 

value changes sign) say moving from left to right, £,n  is dependent on e,_yif, which at the change 

point is in fact Thus the left and right RSS components are dependent at the change point. So, to

get accurate values of and 6 ,̂  the following ‘Gauss-Seidel’ type estimation procedure is necessary. 

Gauss-Seidel Estimation:

1. Generate the vectors e, ^ £ , { 6 ) and e', =£' , ( 6 ) with 0 = depending on the regime for t =

1..n.

2. Extract from e, and e\ left column vectors e , i ^= e ,  and e \ i  =e', if < r  and 0 otherwise

3. Regress ^ on to get a new estimate

4. Regenerate the vectors e, and s', with 6  = 0 l , d ^  depending on the regime for t = 1..n.

5. Extract from e, and s', right column vectors ^ - e ,  and s', ^ =e', if > ra n d  0 otherwise

6. Regress e, ^ on e', ^ to get a new estimate 6 *̂ .

Repeat steps 1 -  6 until there is no further improvement in the parameter estimates.

Using these estimates of and 6 ^ the innovation e, and left ^ and right ^ lag innovation

vectors can be accurately computed. To fit this into the MARS framework, the SETMA(2,1,1) parameters 

2 and 6 2  2 are then collectively re-estimated in the standard OLS type regression model

yt = ^ 1,2 £t-\,L + 6*2,2 + n, (7 .2 .9 )

with error rj, ~ N{0,cr^). In this manner, left and right lagged innovations act like moving average spline

basis function predictors for y,.  This is a similar to ordinary left and right splines based in the

SETAR(2,1,1) case.
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So, depending on the purpose, there are two slightly different estimation procedures. First, if an 

approximation to the m inimum of the RSS is required, then it is sufficient to treat each regime 

independently and use the Gauss-Jacobi iteration. Second, where it is necessary to estimate parameter 

values and accurate left and right lagged innovations, then the dependent approximation to the RSS 

based on Gauss-Seidel iteration is necessary. The combination o f these two estimation m ethods forms 

the core procedure proposed here for identifying and m odelling MA components within TSMARS.

7.2.3 Modifications to TSiVIARS to Identify iVloving Average Elements
The forward stepwise search in TSMARS (Friedman 1991) computes the improvement in the lack-of-fit 

criterion at each step based on a parent basis function, lagged predictor variable and knot (i.e. variable 

values) combination.

To find MA components each step is replaced by;

• Compute the residual from  the current TSM ARS model (i.e. equation (2.3.1)) based on

M basis functions, that is s, = y , ~

•  Apply the Gauss-Jacobi procedure to the residual s, giving the proposed new (left or right) basis 

function

•  Take this basis function tem porarily taken the current set using Gram -Schm idt orthogonalisation 

(i.e. as if it were an ord inary AR type basis function) and compute the reduction in the RSS.

•  Compute the GCV and compare it to the ‘best’ GOV found in the current round o f the forward 

stepwise search (including the GCV based on AR-type basis functions).

•  Treat the knot k, variable - v  and current basis function M as candidates to be entered into the 

current TSMARS model if the GOV is lowest found so far.

Note: - V  is used to distinguish that an MA basis function is added to the basis function set (in the 

standard AR case the variable is denoted by +v).

When the Gauss-Jacobi procedure is adopted, the basis function is found by iteartion using the current 

residual s,,  the lag variable v and the current knot. However, fo r this v"'  variable, the iteration schem e is 

used to fit a parsim onious (threshold) MA( v ) model of the form

s , = s , + e s , _ ^  if < r, or > r  

to the residual. The parent basis function is then multiplied by resulting lagged threshold innovation e,_^ 

giving the new basis function This is added to the current TSM ARS model. Thus, an M A(q) model

is built up in an additive m anner in a sim ilar fashion to the AR(p) model in standard TSMARS. Moreover, 

products of lagged variables can be combined both additively and m ultiplicitively with lagged innovations. 

These can also be combined m ultiplicitively among them selves to generate ASTM A and ASTARM A 

models.

When the current round o f the forward search procedure is complete the candidate basis function must 

then be added to the current basis function set.
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This is accomplished as follows:

• Compute the residual from the current TSMARS model / ,  (a/, •), that is s, = y,  -  f ,  { m ,  •)

• Apply the Gauss-Seidel procedure to the residual s, , giving the proposed new (left or right) 

basis function

• Add this basis function to the current set using Gram-Schmidt orthogonalisation (as in (7.2.9)) 

With the forward step complete, TSMARS applies a one-at-a-time basis function deletion strategy. This is 

unchanged where basis functions involve MA components. The resulting model generalises the ASTAR 

model of Lewis & Stevens (1991) to Adaptive Spline Threshold Moving Average (ASTMA)

y , =  ' f t =  + ) l  K(/,m) (7.2.10)
m = l  ;= 1

where the indicator function /(•) is used to select a 1 for each positive value of that spline function. We

also have the mixed AR and MA form, namely the Adaptive Spline Threshold Autoregressive Moving 

Average (ASTARMA) model

y t = h =  Po + T P m  ) i  f l   ̂ Uc/.m) ~ y] ( l  Ml ,m) (7.2.11)
m = \  k = \  1=]

with basis function comprising product AR splines and product MA type spline functions.

7.2.4 Concluding Remarks
In this section the methodological elements of MA component estimation in TSMARS have been set out. 

The forward stepwise search is augmented with a computationally efficient CLS estimate using a Gauss- 

Newton procedure. Knot identification is accomplished with a Gauss-Jacobi routine while parameter 

estimation uses the more accurate Gauss-Seidel procedure, which is computationally twice as expensive. 

These procedures were incorporated into a novel extension of TSMARS based on parsimonious SETMA 

models. This extension enables TSMARS to estimate SETMA, ASTMA and ASTARMA models. 

Furthermore, both ASTMA and ASTARMA are novel model forms.

7.3 Simulation Studies based on IVIoving Average Models
This section is devoted to ‘proving’ the MA estimation routine. This will ensure that it gives accurate, 

precise and consistent results. Recall, the routine will be judged correct if at least three-fifths of models 

are ‘correct’ and this fraction increases with the sample size. If, in addition, parameter estimates are 

within two standard errors of their true values, then, as in Chapter 2, the routine will be deemed 

statistically correct. Three different types of model are simulated with varying parameter values. The 

detailed results of these simulations are reported in a Table Appendix at the end of this chapter.

7.3.1 Simulation of an IVIA(1) model
The first simulation study is based on the linear 1®* order MA model driven by normally distributed noise

e, = N { Q , a ^ )

y , = O e , _ ^ + £ ,  t = \ , 2 , . . . , n  (7.3.1)

Simulations are conducted for a range of values of the parameter 9  and cr  ̂ = 1. In each simulation 100 

data sets are generated. TSMARS is called with response y , ,  one lagged predictor y,., and maximum
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interaction degree set to 1. Sim ulation experim ents are conducted for two sample sizes of 100 and 200 

respectively. These experim ents are repeated allowing 3 lagged predictors y,_^,y,_2 ,y,.T, and maximum 

interaction degree o f 3. All sim ulations are conducted with the smoothing param eter set to 3. The basis 

function threshold param eter is set at 1.5x10'^ and convergence in the iterative estimation schemes is set 

at 1.0x10'^. The resulting estimates are displayed in the Table Appendix (Table 7.5.1.1); an extract from 

Table 7.5.1.1 showing the poorest simulation results is given here for reference.

Extract from  Table 7 .5 .1 .1 : MA(1) Model S im ulation Results

No of 

lagged 

predictors

Maximum

Interaction

Degree

Parameter

0

n Parameter

Estimate
Std.Err.{e) Number of 

MA(1) 

Models 

found

Total

Simulation

Time

(sec)
Actual True

3 3 -0.8 100

200

-0.69 0.113 0.060 62 438 

-0.70 0.085 0.042 69 3,068

In Table 7.5.1.1 the num ber o f times an MA(1) model was correctly identified, from  the 100 simulation 

data sets is given. A lso given is the average value of the estimated param eter p  and its “Actual” 

standard error, computed from  the correctly identified models. For comparison the true asymptotic 

standard error -y /( l-0 ^ )/« for an MA(1) model with n observations is shown (see Harvey 1993 Chapter 

3).

The num ber of correct models found is about 75 on average, though it is clear that this falls to minimum 

o f 62 (see Extract table) in the worst case. The num ber of correct models found increases when the 

sample size is 200. The MA extension is therefore correct. Moreover, the param eter estimate is within two 

standard errors of the true value in all cases except when = ±0.8 and n = 200; though even here it is on 

the two standard error boundary. Therefore this MA extension o f TSMARS is statistically correct for this 

models.

7.3.2 Simulation of an ARIV1A(1,1) model
The second simulation study is based on the ARM A(1,1) model driven by normally distributed noise

e, = N ( 0 , a ^ )

y, t = \ ,2, . . . ,n  (7.3.2)

Once again 100 sim ulations runs are conducted w ith a combination of AR and MA param eter values and

=0.5. TSMARS is called w ith response y, ,  one lagged predictor y,_^, smoothing param eter set to 3

and maximum interaction degree set to 1. Sim ulation runs were repeated for two sample sizes of n = 100 

and 200. The basis function threshold param eter is set at 1.5x10'^ and convergence in the iterative 

estimation schemes is set at 1.0x10'^. The resulting parameter estimates and their standard errors are 

displayed in Table 7.5.1.2 (see Table Appendix). An extract from Table 7.5.1.2 showing the poorest 

simulation results is given here for reference.
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In Table 7.5.1.2 the number of times an ARMA(1,1) model was correctly identified, the average value of 

the estimated AR parameter (p and the MA parameter 6, as well as the standard errors is shown. The

true ‘Actual’ asymptotic standard error is also given for both parameters (see Chapter 3, Harvey 1993). 

The extract shows that only 35 correct models are identified at the smaller sample size. This is a 

combination of a sample size effect and a small MA parameter effect. In all other cases 57 or more 

correct models are found (see Table 7.5.1.2). So, when there is a reasonable sample size the extension 

performs correctly. Furthermore, the parameter estimates are all within two standard errors of the true 

values so the extension is also statistically correct for this model.

Extract from Table 7.5.1.2: ARAAAd.l) Model Simulation Results

Standard Error

No of 

lagged 

predictors

Maximum

Interaction

Degree

n Parameter Parameter

Estimate

Actual

Estimate

True Number of 

ARMA(1,1) 

Models 

found

Total

Simulation

Time

(sec)

1 1 100

200

(t> = -0.5 

0 = -0.25 

(t) =- 0.5 

0 = -0.25

-0.49 0.101 0.102 35 220 

-0.29 0.129 0.114

-0.60 0.079 0.072 76 1,315 

-0.13 0.163 0.081

7.3.3 Simulation of an SETMA(2,1,1) model
The third and final simulation study is based on the SETMA(2,1,1) model

y , = £ , + <  t = l ,2 , . . . ,n  (7.3.3)

driven by normally distributed noise e, = N{0, cr^)

Simulations are conducted on 100 data sets generated from the SETMA(2,1,1) model with a combination 

parameter values and Ô . The threshold value (i.e. knot) r = 0 andcr^ =0.25. TSMARS is called with 

response y,, one lagged predictor , smoothing parameter set to 3 and maximum interaction degree 

set to 1. Simulation runs were repeated for two sample sizes of n = 300 and 500. The basis function 

threshold parameter and convergence in the iterative estimation schemes is set at 1.5x10'^. The resulting 

parameter estimates and their standard errors are displayed in Table 7.5.1.3 (see Table Appendixin 

Table 7.5.1.3 the number of times an SETMA(2,1,1) model was correctly identified, the average value of 

the estimated parameters, as well as the standard errors is shown. ). An extract from Table 7.5.1.3 

showing the poorest simulation results is given here for reference.

The extract showing the poorest results has fewer than 20 correct models identified. However, the 

parameters in each regime are equal in size but opposite in sign. In this situation, the regimes tend to 

cancel out and the process is hard to distinguish from WN. In all other cases reported in Table 7.5.1.3 the 

number of correct models is 46 or more and this figure increases with sample size. The extension is
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therefore correct. In addition, parameter estimates are within two standard errors in every case, other 

than the poorest given in the extract. Looking at the threshold, it is also accurately estimated as it falls 

Extract from Table 7.5.1.3: SETMA(2,1,1) Model Simulation Results

No of 

lagged 

predictors

Maximum

Interaction

Degree

n Parameter Parameter

Estimate

Parameter 

Estimate 

Standard Error

Number of 

TMA(2,1,1) 

Models found

Total 

Simulation 

Time (secs)

1 1 300 01 = 0.5 0.41 0.139 18 937

01 =-0.5 -0.29 0.065 - -

r = 0 -0.09 0.087

500 01 =0.5 0.41 0.090 15 2,484

02 = -0.5 -0.32 0.067 - -

r = 0 -0.11 0.100 - -

well within its two standard error bound of zero. In particular, this shows that the Gauss-Jacobi (i.e. 

regime independent CLS estimation) is appropriate for knot identification in the forward stepwise search 

The extension can therefore be judged as statistically correct for this model. However, care should be 

taken to ensure that MA components do not interact to give WN like sequences; this topic is not explored 

futher in this thesis.

7.3.4 Concluding Remarks
In this section, the goal was to show that the MA extension to TSMARS returned correct models and gave 

accurate, precise and consistent parameter estimates based on data simulated from a model. The 

models used were; an MA(1) model, an ARMA(1,1) model and a SETMA(2,1,1) model. In each case the 

extension was ‘proven’ to provide an acceptable number of correct models with accurate parameter 

values. The routine is statistically correct and therefore it can be reliably used to identify nonlinear MA 

components in time series in general.

7.4 Modelling Seasonal Economic Data using Moving Average TSMARS

The study conducted in Chapter 6 found that outliers did not alter the degree of nonlinearity found in test

bed empirical time series. In this section these series are re-modelled using TSMARS with MA 

component estimation. The purpose of this is to see if further insight can be gained into the nature and 

extent of nonlinearity in these series.

7.4.1 Moving Average TSMARS Models
The test bed of 20 economic time series are each re-modelled as univariate data with independent 

predictors to account for length of month (MD), trading week length (TD) and Easter. In this study, only 

two of the four alternative model variations given in Chapter 4 are applied; namely TSMARS and 

STSMARS. Both of these are applied with MA estimation and in addition, results are obtained ‘with’ and 

‘without’ outlier adjustment. Their breif descriptions are;



167

■ TSMARS MA: Where no transformations are made to the time series values y,  the TSMARS with 

MA approximation is

where / ( • )  denotes the TSMARS-MA model. The maximum interaction degree is once again set to 3 

and basis function threshold = 2 X 1 0 "®.

■ TSMARS AO-MA: This is identical to the above except that Least Squares Additive Outlier (LSAO) 

adjustment is incorporated into the estimation.

modelled. The lagged p r e d i c t o r s z , - 3 , 2 ,-^ ,2 , are input into the TSMARS program along

with appropriately differenced trading effects predictors Zimd etc.. Also included are the estimated 

innovations giving the approximation based on the general form

Note, no independent categorical predictors or deterministic seasonal predictor are included in the 

model. The maximum interaction degree is set to 3 and basis function threshold = 2 X 10'®.

STSMARS AO-MA: Here, once again this is identical to the STSMARS MA approximation above 

except that Least Squares Additive Outlier (LASO) adjustment is incorporated into the estimation.

Models (7.4.1) and (7.4. 2) are based on autoregressive and/or innovation spline functions. Therefore, 

TSMARS with iterative MA estimation generates ASTMA and ASTARMA models. The striking feature of

(7.4.1) and (7.4.2) is that both, with additive innovation e,, are instances of the general nonlinear

dependent error model (1.2.1). Moreover, this is the first systematic procedure to approximate model

(1.2.1). Indeed, it appears that this is the first instance of nonparametric procedure that estimates MA 

components.

7.4.2 Moving Average TSMARS Results

The results for both of the selected model types obtained using MA estimation, both with or without LSAO 

outlier adjustment, are displayed in the Table Appendix (Table 7.5.1.4). As before, for each series the 

number of observations (N), the series code and its title is given. The resulting model and associated 

statistics (specified in the Appendix) computed from the residual are also given. Note, as in Chapters 4 

and 6 , that evidence of a threshold is accepted only when there is no evidence of a cycle in the residual 

spectrum.

As in previous chapters, the test statistics obtained are summarised and displayed in Table 7.4.2.1. 

Based on the ‘Sum of Ranks’, it is clear that STSMARS-MA is the best. However, this is somewhat 

misleading as the actual counts in the body of the table, show there is little difference. Furthermore, there 

no evidence of a difference in the MAPE values across methods, as a Kruskal-Wallis One-way test of

y, = • ^ ^ / - ( i+ i ) ;  ^t-\ > • • • ^ ( - ( i + 1 )  > ^1 > •  • , TD(, Easter) ] (7.4.1)

■ STSMARS MA: Here, as before the transformed

(7.4.2)
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ranks was not significant (H-value = 0.04 < x ^s.o qs)- Therefore, no statistical difference is apparent among 

the model types employed and as observed in Chapter 6, outliers do not appear important.

It is of greater interest to compare the results in Table 7.4.2.1. with those obtained in section 4.5. Most 

results are quite similar, except fo r Tsay’s F-test fo r evidence of a lag threshold. In Table 7.4.2.1 

significant results for this test are v irtua lly elim inated. This occurs because the spectrum in virtually all 

cases shows a significant spike at the threshold lag. In this case evidence fo r a threshold is rejected while 

evidence for a cycle is favoured. This choice is reinforced by the fact that periodic autoregression is also 

evident; furthermore, these effects will appear as cycles in the residual spectrum. On this basis, it is 

inferred that the residual does not possess any threshold autoregression effects. A  second inference is, 

model building should include periodic predictors in model types adopted.

Table 7.4.2.1: Frequency of S ignificant Test Results

Model

type

Method
Statistics

Sum of 

RanksX2 Tsay F- 

test lags

BDS

test

Seasonality

F-test

PAR(1)

F-test

PAR(2)

F-test

Periodic

Variation

F-test

TSM AR S

MA 1 6 (3 ) 1 3 (3 ) 1(2) 1 5 (2 ) 13(3) 11 (2) 11 (1) 1(2) (18)

A O -M A 1 6 (3 ) 1 3 (3 ) 1(2) 1 5 (2 ) 1 3 (3 ) 11 (2) 11 (1) 1(2) (18)

STSM ARS

MA 1 3 (1 ) 1 2 (1 ) 0 (1 ) 1 4 (1 ) 7(1) 1 0 (1 ) 1 2 (2 ) 0(1) (9)

AO-M A 1 4 (2 ) 1 3 (3 ) 0 (1 ) 1 4 (1 ) 8 (2 ) 11(2) 1 5 (3 ) 0 (1 ) (15)

Tables 7.4.2.2(a) and (b) sum m arise the m odels observed in Table 7.5.1.4 according to model type. In 

contrast to previous analysis. Tables 7.2.2.2(a) and (b) give a 2-way analysis. That is, the models 

obtained for each series in Chapter 4 (see Table 4.6.1.1) are cross-classified according to the model 

obtained for the same series given in Table 7.5.1.4. This ‘m obility’ analysis is conducted fo r the TSMARS 

vs. TSM ARS-M A in Table 7.4.2.3(a) and STSMARS vs. STSMARS-M A in Table 7.4.2.3(b).

The figures in Table 7.4.2.2(a) are dom inated by integrated of order 1 models. O f the 12 observed in 

Chapter 4, 11 are unchanged integrated order 1 models. The diagonal elements account for 14 of the 20 

models and so there is little mobility. Com puting the K-coefficient of agreem ent (see Bishop Fienberg & 

Holland 1975) gives a value of K = 0.5 which is not significant. The K statistics compares the actual 

agreement in a table with ‘chance agreem ent’ that occurs when row and column variables are orthogonal. 

There is some small m ovem ent to o ff diagonal elements. In particular, two MA type m odels were found 

that in Chapter 4, had been independent predictor models. There is though little m ovem ent from more 

complex to less complex models. This is deduced based on the fact that two models remain above the 

main diagonal while two remain below.
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Table 7 .4 .2 .2(a): Mobility analysis of T S M A R S  models found

TSMARS MA

Model Type Model Type

Mean + 

Independent 

Predictors

Linear 

(all types)

Integrated

1(1)

SETAR 

(all types)

Regime

Dependent

SETAR

Nonlinear MA 

(all types)

Original

TSMARS

Mean + 

Independent 

Predictors

0 0 0 0 0 0 2

(Ch 4) Linear 

(all types)
0 1 0 0 0 1 0

Integrated

1(1)
0 0 11 1 0 0 0

SETAR 

(all types)
0 0 0 2 0 0 0

Regime

Dependent

SETAR

0 0 0 1 0 0 0

Nonlinear 0 1 0 0 0 0 0

The results for S TS M A R S  are given in Table 7.4.2.2(b). Here 10 of the 20 models stay on the main 

diagonal indicating a good level of agreement; the K value = 0.4 bears this out. Mobility to off diagonal 

elem ents is once again of more interest. Specifically, four of the models found have been reclassified as 

MA type models. Looking more closely at Table 7 .4 .1 .1 , it is observed that all these MA models are of a

Table 7.4.2.2(b): Mobility analysis of Different Model Types Observed in the S TS M A R S  Test Results

STSMARS MA

Model Type Model Type

Mean + 

Independent 

Predictors

Linear 

(all types)

Integrated

1(1)

SETAR 

(all types)

Regime

Dependent

SETAR

Nonlinear MA 

(all types)

Original

STSMARS

Mean + 

Independent 

Predictors

0 0 0 0 0 0 2

(Ch 4) Linear 

(all types)
0 3 1 0 0 0 0

Integrated

1(1)
0 0 2 0 0 0 1

SETAR 

(all types)
0 1 0 2 0 1 0

Regime

Dependent

SETAR

0 0 0 0 1 0 1

Nonlinear 0 2 1 1 0 2 0
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relatively simple form. The off diagonal elements of Table 7.4.2.2(b) also show there is a movement to 

simpler models, with four of the original six nonlinear models reclassified to a simpler type o f model. 

Therefore, when MA component estimation is adopted, TSMARS tends to produce more simple and 

stable short-term economic time series models. This is in line with expectations as fluctuations in many 

economic series are often due to the propagation of errors.

It is important to stress that many of the models found did have an MA component in the forward stepwise 

TSMARS estimation. These were subsequently removed by the backward elimination procedure or 

because they contributed little to the overall variance. Therefore, the modelling of these components has 

noticeably affected the final TSMARS model in most cases leading to simpler fitting models.Once again it 

is also of interest to see the results of the test statistics on nonlinear models found. This analysis is given 

in Table 7.4.2.3. It shows the number (out of four) of not significant model adequacy tests taken from 

Table 7.5.1.4 as well as the corrsponding numbers for the STSMARS taken from Table 4.4.2.3.

Table 7.4.2.3: Frequencv of Test Statistics that are not significant for STSMARS Nonlinear Models only.

Method
Test Series Number

1 2 3 4 5 6 7 8 9 10

STSMARS

MA

STSMARS

AO-MA

1 - - - 4 4 - 4 4 

1 - - - 4 4 - 3 4

STSMARS 1 - 1 - 4 4 4 3 3

Method
Test Series Number

11 12 13 14 15 16 17 18 19 20

STSMARS

MA

STSMARS

AO-MA

0 - 0 3 2 - - 0 0 0 

0 3 2 - - 0 1 0

STSMARS 3 - 1 - - - 1 1 2  1

Comparing the results in table 7.4.2.3 there is a good deal of agreement. This is to be expected as MA 

components give smoother, more parsimonous approximations to the data, but will not greatly affect the 

size of residuals in a growth series. However, there is a difference for series numbered 14 and 15; these 

are, Dublin Airport Rainfall (mm) and Mullingar Rainy Days (No.) respectively. This result is interesting 

because these are the only non-economic series included in the test-bed. Moreover, both of these series 

were modelled with SETMA(1,0,12) (i.e. right regime only parsimonous twelve month lag) models. This 

intriguingly suggests that naturally occurring weather processes depend on a one-year threshold and the 

longer-term trend lagged by one year. For example, the implication of this for rainfall at Dublin Airport is, if 

there was rainfall one year ago, then rainfall should be expected now that is equal to the average rainfall
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plus a cnstant times the deviation about the long-term trend one-year ago. In addition, if there was no 

rainfall one year ago, then no rainfall should be expected now.

7.4.3 Concluding Remarks
TSMARS has been adapted to handle MA component estimation and the program run on the ‘test-bed’ of 

20 empirical time series. The program was used both with and without outlier adjustment.

From the results obtained the following can be concluded:

■ The analysis of the test statistics given in Table 7.4.2.1 demonstrates that the inclusion of MA 

components did not result in any dramatic improvement in most model adequacy or seasonal effects.

■ The existence of threshold nonlinearity and hetroscedastic seasonality was eliminated.

■ Cycles persist in the data and these appear to be attributable to periodic autoregressive effects.

■ The MAPE values across the methods were not significantly different though some of these were 

improved over Chapter 4 values.

■ The mobility analysis tables 7.4.2.2(a) and (b) showed that models were different when MA 

component estimation was included; this change was more evident for STSMARS.

■ The MA type estimation tended to produce simpler models in line with the expectation that economic 

series tend to be dominated by innovation errors.

In contrast to the results of Chapter 6, where outlier adjustment was studied, the results obtained here are 

not contradictory. Simpler more stable models were found. Moreover, the MA type models ignored 

independent effects. This result is in line with Chapter 4 (and SARIMA+ modelling results). Therefore, the 

frequency of independent predictors found in Chapter 6 was due to MA components that upset the outlier 

adjustment procedure. Also, since the outlier adjusted STSMARS-MA estimates were not too different 

from their unadjusted counterparts, the conclusion of Chapter 6, that these data are not dominated by 

outliers stands. Therefore, the Chapter 4 conclusion that around 5% of the explained variance is 

nonlinear also stands. Moreover, without MA component estimation, models fit by TSMARS will be 

inappropriate and may give rise to misleading out of sample forecasts. This fact was particularly evident 

for the two weather series (numbers 14 and 15).

7.5 Conclusions
The purpose of this chapter was to enable TSMARS to model dependent error processes. A novel 

extension that builds on existing TSMARS methodology was set out. This is based on CLS estimation of 

a parsimonious MA model. This extension allows TSMARS to identify SETMA, ASTAR and ASTARMA 

models; both ASTMA and ASTARMA are novel model forms.

The MA extension to TSMARS was then shown to be statistically correct on data simulated from three 

different models. In each of these simulation studies, the extension provided an acceptable number of 

correct models with accurate parameter values. This conclusion being subject to the proviso, that the MA 

component is sufficiently large to ensure It can be distinguished.

The main drawback of this approach to identifying MA-type components is the amount of computing time 

involved. This means the method is best used where the number of observations is moderate and where 

standard TSMARS has already been used for preliminary analysis.
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Finally, attention returned to TSMARS with MA component estimation of the ‘test-bed’ of 20 economic 

time series. The results showed that no significant improvement was observed in accuracy and in most 

model adequacy or seasonal tests. However, the existence of threshold nonlinearity and hetroscedastic 

seasonality was eliminated, as cycles were due to periodic effects. In general, simpler more stable 

models that ignored independent effects were found. It was inferred from this that MA components had 

upset the outlier adjustment procedure in Chapter 6. Moreover, since MA type models found both ‘with’ 

and ‘without’ outlier adjustment were similar, the outlier adjustment procedure can be judged sound. 

Therefore, the extent of nonlinearity was unaltered by outliers. The conclusion, that the original estimate 

of around 5% of the explained variance was nonlinear was therefore accepted. Accordingly, MA 

component estimation has provided greater insight into the nature and extent of nonlinearity of these 

series than is otherwise possible.
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Table Appendix
Table 7.5.1.1: AAAd) Model Simulation Results

No of 

lagged 

predictors

Maximum

Interaction

Degree

Parameter

0

n Parameter

Estimate
Std.Err.(d) Number of 

MA(1) 

Models 

found

Total

Simulation

TimeActual True

1 1 0.8 100 0.73 0.110 0.060 75 201

200 0.74 0.089 0.042 87 772

0.5 100 0.50 0.101 0.087 71 228

200 0.51 0.075 0.061 78 1,139

-0.5 100 -0.45 0.142 0.087 76 218

200 -0.48 0.076 0.061 80 1,135

-0.8 100 -0.70 0.142 0.060 70 210

200 -0.71 0.084 0.042 79 1,712

3 3 0.8 100 0.73 0.106 0.060 67 418

200 0.74 0.085 0.042 73 2,721

0.5 100 0.51 0.099 0.087 66 452

200 0.51 0.076 0.061 86 3,090

-0.5 100 -0.46 0.088 0.087 65 718

200 -0.48 0.077 0.061 84 3,687

-0.8 100 -0.69 0.113 0.060 62 438

200 -0.70 0.085 0.042 69 3,068
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Table 7.5.1.2: ARAAAd .1) Model Simulation Results

Standard Error

No of 

lagged 

predictors

Maximum

Interaction

Degree

n Parameter Parameter

Estimate

Actual

Estimate

True Number of 

ARMA(1,1) 

Models 

found

Total

Simulation

Time

(sec)

1 1 100 (|) = 0.75 0.73 0.086 0.054 73 256

0 = 0.25 0.31 0.110 0.080 - -

200 (t) = 0.75 0.78 0.067 0.039 96 1,153

0 = 0.25 0.25 0.143 0.057 - -

100 (j) = 0.5 0.57 0.078 0.067 80 306

0 = 0.5 0.43 0.114 0.067 - -

200 (t) = 0.5 0.56 0.072 0.047 92 1,114

0 = 0.5 0.44 0.097 0.047 - -

100 (t) = -0.75 -0.87 0.117 0.160 57 270

0 = 0.25 0.42 0.183 0.234 - -

200 (|) = -0.75 -0.73 0.172 0.113 92 1,133

0 = 0.25 0.25 0.223 0.165 - -

100 ((. = -0.5 -0.49 0.101 0.102 35 220

0 =  -0.25 -0.29 0.129 0.114 - -

200 (j) =  0.5 -0.60 0.079 0.072 76 1,315

0 =  -0.25 -0.13 0.163 0.081 -

100

oLOd
1II

-e
- -0.57 0.084 0.067 70 287

0 =  -0.50 -0.40 0.110 0.067 - -

200 (t) = -0.50 -0.57 0.076 0.047 90 1,333

0 = -0.50 -0.40 0.092 0.047 - -
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Table 7.5.1.3: SETAAA(2.1.1) Model Simulation Results

No of 

lagged 

predictors

Maximum

Interaction

Degree

n Parameter Parameter

Estimate

Param eter 

Estimate 

Standard Error

Number of 

TMA(2,1,1) 

Models found

Total 

Simulation 

Time (secs)

1 1 300 01 = 0.75 0.75 0.113 95 1,158

02 = 0.25 0.30 0.108 - -

r = 0 -0.08 0.161 - -

500 01 = 0.75 0.75 0.101 99 2,945

02 = 0.25 0.30 0.093 - -

r = 0 -0.07 0.124 - -

300 01 = 0.5 0.46 0.123 69 995

02 = -0.25 -0.16 0.110 - -

r = 0 -0.08 0.127 - -

500 01 = 0.5 0.50 0.089 73 2,567

02 = -0.25 -0.18 0.061 - -

r = 0 -0.08 0.057 - -

300 01 = 0.5 0.41 0.139 18 937

01 = -0.5 -0.29 0.065 - -

r=  0 -0.09 0.087

500 01 =0.5 0.41 0.090 15 2,484

02 = -0.5 -0.32 0.067 - -

r=  0 -0.11 0.100 - -

300 01 = 0.75 0.69 0.142 46 1,080

02 = -0.25 -0.10 0.102 - -

r=  0 -0.10 0.114 - -

500 01 = 0.75 0.71 0.108 54 2,918

02 = -0.25 -0.14 0.058 - -

r=  0 -0.09 0.090 - -



176

Table 7.5.1.4: Time Series Test-bed Results with Moving Average Estimation

No N
Series Code

Title Model type Method MA

evidence

Model

1 286 ASAM 003 Cows IMilk TSMARS MA N y,  = 210,770+ L01(»_1 -180,I02)_

Protein
AO-MA N AS ABOVE

Content (%)
STSMARS MA Y AAi2 \yt ~ -0.03 -  0.4_v,_i -  0.17_v,_2 + 0.5_v,-|2 + 0.0017X> ]

AO-MA Y AS ABOVE

2 286 ASAM206 Calves TSMARS MA Y y, = 0.14 + 0.57>-,_| + 18.8>',-|(Sint -  tt/ 3 ) +  -

Slaughtering 2 4 .2 r ,_ i(S in t- iT /3 )+ (> ,_ l0 -0 .9 )_

000 Heads
AO-MA Y AS ABOVE

STSMARS MA N y, = 0.95 +0.58 >V- 1  + 0 .9 l> -,- |( j,-2  -1 .2 )-

AO-MA N y, =1.03 + 0.58>',-, +\.29y,  . , ( y , - 2 -0 .8 )-

3 286 ASAM305 Heifers TSMARS MA N = 1 1 .2 -1 .23 0 ’, - ! - 4 . 6 ) .

Slaughtering
AO-MA N AS ABOVE

000 Tons
STSMARS MA Y A [y ,  = -0.08 -  0.33>’, - ,  + 0.54>>,-|2 -  0 .25c,-|]

AO-MA Y AS ABOVE

4 250 FIAM023 Irish Currency TSMARS MA N y,  = 1069 + y ,_ |

in Circulation

(€)
AO-MA N AS ABOVE

STSMARS MA Y = -0 .0 8 +  0.61 >-,-,2 ]

AO-MA N A 2 [v, = —0.08 + 0.68 .^',-1 2 ]

5 324 FIAM102 Exchange TSMARS MA N y,  = 0.75 + 0.98 y,_ |

Rate $ £STR
AO-MA N AS ABOVE

STSMARS MA Y ^ \y ,  = -0 .0 2  + 0.37 jv ,- i]

AO-MA Y a [ v ,  = -0.01 + 0.34 y ,_ i ]

6 179 LRGM001 Live Register TSMARS MA N y,  = 133,4I6 + >',-,

Total
AO-MA N AS ABOVE

(No)
STSMARS MA Y AA|2 [>’( = -4,442 + 0.39 y,_2 + l .25(y,_i2 -  6,372)-]

AO-MA Y AS ABOVE

7 179 LRGM111 Live Register/ TSMARS MA N y, =974 +>■,_!

Tara St.
AO-MA N AS ABOVE

Total
STSMARS MA N A[y, = -0 .0 2  + 0.48(>>,_,2-0-4)+]

(No)

AO-MA Y a[>’, = -0.06 + 0.2 _v,-| + 0.42 > ',-1 2 ]

8 179 LRGM438 Live Register/ TSMARS MA N y, =181+>’, - |
Thomastow/n

AO-MA N AS ABOVE
Males

(No)
STSMARS MA Y a [ v ,  = -0 .0 5  + 0.31>-,-|2]

AO-MA Y AS ABOVE
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No Model

Type

Method
Statistics

2
X2 Tsay F- 

test 

lags

BDS

test

Seasonality

F-test

PAR(1)

F-test

PAR(2)

F-test

Periodic

Variation

F-test

MAPE %

Error

Cycles/

Notes

1 TSMARS MA

AO-MA

0.01 0.01 2, 3, 5 0.01

AS

0.01

ABOVE

10 1.0 0.3 10.9 0.0 3

STSMARS MA

AO-MA

0.01 0.01 2, 4 0.01

AS

0.05

ABOVE

0.01 0.01 1.0 8.0 00 2

2 TSMARS MA

AO-MA

0.25 0.99 6 - 8 0.01

AS

0.01

ABOVE

0.98 0.39 0.22 48.6 58.6 -

STSMARS MA

AO-MA

0.01 0.73 3 ,6 0.01

AS

0.11

ABOVE

0.01 0.01 0.53 61.3 57.4 12

3 TSMARS MA

AO-MA

0.01 0.01 1 -3 0.01

AS

0.01

ABOVE

0.01 0.01 1.0 11.4 9.8 3

STSMARS MA

AO-MA

0.01 0.01 2 0.01

AS

0.01

ABOVE

0.29 0.01 1.0 8.0 9.8 3

4 TSMARS MA

AO-MA

0.01 0.12 1, 12 0.01

AS

0.01

ABOVE

0.01 0.01 0.01 3.0 0.0 2

STSMARS MA 0 01 0.01 10, 11 0.01 0.90 0.01 0.01 1.0 9.8 0.0 2

AO-MA 0.01 0.01 1 -3 0.01 0.94 0.01 0.01 0.45 2.0 0.0 3

5 TSMARS MA

AO-MA

0.01 0.06 5 0.01

AS

0.06

ABOVE

0.01 0.01 0.42 1.1 1.2 12

STSMARS MA 0.40 0.45 0.01 0.08 0.15 0.15 0.70 1.1 1.1

AO-MA 0.01 0 01 2 - 1 2 0.01 1.0 0.01 0.01 0.70 5.6 1.1 10

6 TSMARS MA

AO-MA

0.01 0.01 1-3, 6 0.01

AS

0.01

ABOVE

1.0 1.0 0.11 2.2 0.0 6

STSMARS MA

AO-MA

0 09 0.24 0.74

AS

1.0

ABOVE

0.01 0.01 0.73 1.1 0.0 4

7 TSMARS MA

AO-MA

0.47 0.96 8 - 1 2 0.01

AS

0.01

ABOVE

0.35 0.44 0.55 3.2 0.0

STSMARS MA

AO-MA

0.65 0.86 0.01

AS

0.11

ABOVE

0.08 0.07 0.55 3.0 0.0 4

8 TSMARS MA

AO-MA

0.01 0.01 1 0.59

AS

0.01

ABOVE

0.22 0.34 0.04 3.2 0.3 6

STSMARS MA

AO-MA

0.11 0.01 1 0.50

AS

0.-01

ABOVE

0.20 0.32 1.0 3.3 0.3 2
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No
Series Code

Title Model type Method MA

evidence

Model

9 179 LRGM515 Live Register/

Nenagh Males

(No)

TSMARS

STSMARS

MA

AO-MA

MA

AO-MA

y ,  = 3 1 4  + y ,_ i

AS ABOVE 

a [v, =  -0 .0 1 -0 .2 7 (y ,_ 3  -0 .1 4 )+  + 0 .1 6 £ ,_ 2  ]

A [y , = -0 .0 1  + 0 .27 f,_ 3  + 26 .5 (y ,_2  -  0 .1 2 )+ ( f,_ |3  -  0 .1 2 ). ]

10 179 LRGM800 Live Register/ 

Newcastle 

West females

(No)

TSMARS

STSMARS

MA

AO-MA

MA

AO-MA

y ,  =  286 + y ,_ |

AS ABOVE

y ,  = - 1 2 .3 -0 .2 7  >.,_3 +0.43 > - ,_ |2 -0 .0 1 r ,_ 3 (y ,_ 2 -1 1 5 )+  

AS ABOVE

11 288 MIAM014 Volume Index

NACE 37 

(Base 1985= 

100)

TSMARS

STSMARS

MA

AO-MA

MA

AO-MA

y ,  = 3 5 .7  + y ,_ i

AS ABOVE

^ 12[v; = - 0.12 + 0.25>>,_| + 0 .28>’,_2 + 0 .77y , - \ { y , - i 2  ~  0-53)_] 

^ \ l \ y i  =  -0 .0 7  +  0.47>•,_! +  0 .2 9 y ,_2  - 0 .19> ',_ ]2 l

12 288 MIAM051 Volume Index

Manufacturing 

Industries 

(Base 1985 

=100)

TSMARS

STSMARS

MA

AO-MA

MA

AO-MA

y ,  = 5 6 .0 + > ’,_ !

y ,  = 4 . 0 5 + y , . ,

AS ABOVE

AS ABOVE

13 288 MIAM524 Volume Index 

NACE 429 

Adjusted 

(Base 1985= 

100)

TSMARS

STSMARS

MA

AO-MA

MA

AO-MA

= 1 0 2 - 1 . 4 ( ; - , _ l  - 2 6 . 5 ) _

AS ABOVE

y ,  = 0 . 1 6 - 0 . 3 >’,_2 - O  lS y i- s  + 

4.8(>',_ i - 0 .6 2 ) .  -0 .3 (> v _ , - 0 .6 2 ) .

a [ v, =0 .05  - 0 .2 9 > ', -2  +0 .77(> ’,_ , - O . I4 ) _ ]

14 288 MTAM351 Dublin Airport 

Rainfall (mm)

TSMARS

STSMARS

MA

AO-MA

MA

AO-MA

y,  = 6 2 .2  + 0 .1(£,_|2 -6 4 ,6 )_

AS ABOVE 

y,  = 3.99 + 0 .07(£ ,_ |2  -2 .5 5 )^  

y,  = 4 .0  + 0 .07(£ ,_ |2  -  2.03)_

15 288 MTAM553 Mullingar 

Rainy Days 

(No.)

TSMARS

STSMARS

MA

AO-MA

MA

AO-MA

y , =18 .0  + 0 .2 2 ( f , . |2  -1 4 )+

AS ABOVE  

y , = 1 9 .0 - 0 .0 5 ( f ,_ |2  -1 6 )+

AS ABOVE

16 380 RSAM501 Retail Sale 

Index;

All Business 

Value 

Adjusted

Base 1990 = 

100

TSMARS

STSMARS

MA

AO-MA

MA

AO-MA

y , = 9 . 1 + y ,

y,  =10 .7  +_v,.|

AS ABOVE

AS ABOVE
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No Model type Method
Statistics

Xi^ t2 Tsay F- 

test 

lags

BDS

test

Seasonality

F-test

PAR(1)

F-test

PAR{2)

F-test

Periodic

Variation

F-test

MAPE %

Error

Cycles/

Notes

9 TSM AR S LSAO 0.01 0.97 5, 6 0.63 0.01 0.69 0.02 1.0 4 0 0.1 6

TSAO AS ABOVE

STSMiARS LSAO 0.09 0.90 None 0.74 0.01 0.91 0.02 0.90 3.9 0.1 6

TSAO 0.04 0.98 13 0 81 0.01 0.69 0.01 0.29 3.7 0.1 6

10 TSM AR S LSAO 0.01 0.14 2, 3 0.66 0.01 0 01 0.01 1.0 4.4 0.2

TSAO AS ABOVE

STSM.ARS LSAO 0.80 0.13 None 0.55 0.04 0.02 0.09 0.76 3.4 0.2

TSAO AS ABOVE

11 TSM AR S LSAO 0.01 0.01 1 - 3 0.01 0.98 0.01 0.01 0.99 6.8 0.5 2

TSAO AS ABOVE

STSM,ARS LSAO 0.01 0.01 1 0.01 0.98 0.01 0.01 0.99 6.8 0.5 2

TSAO 0.01 0.01 1 - 4 0.01 0.01 0.01 0.01 0.03 16.9 0.5 2

12 TSM ARS LSAO 0.01 0.01 6 0.01 0.65 0.92 0.97 0.16 3.0 0.5 6

TSAO AS ABOVE

STSM ARS LSAO

TSAO AS ABOVE

13 TSM ARS LSAO 0.01 0.01 All 0.01 0.98 0.01 0.01 1.0 10.2 1.0 10

TSAO AS ABOVE

STSM ARS LSAO 0.01 0.01 14 0.01 0.79 0.05 0.04 0.99 5.6 1 0 10

TSAO 0.01 0.01 3, 4 0.01 0.72 0.01 0.01 1.0 5.9 1.0 10

14 TSM ARS LSAO 0.81 0.74 3 0.89 0.01 0.51 0.28 0.16 75.9 1.2 12

TSAO AS ABOVE

STSM ARS LSAO 0.70 0.57 3 0.69 0.01 0.01 0.01 1.0 65.3 1.2 12

TSAO 0.82 0.62 3 0.61 0.01 0.01 0.01 1.0 66.3 1.2 12

15 TSM ARS LSAO 0.32 0.83 None 0.82 0.01 0.62 0.74 0.01 28.7 5.1 6

TSAO AS ABOVE

STSMARS LSAO 0.01 0.76 12 0.72 0.56 0.01 0.39 0 62 29.1 5.1 6

TSAO AS ABOVE

16 TSMARS LSAO 0.01 0.01 1, 5, 11 0.01 0.86 0.01 0.01 0.3 2 5 1.0 4

TSAO AS ABOVE

STSMARS LSAO 0.01 0.01 1. 2, 0.01 0 01 0.98 0.01 0.4 1.8 1.0 4

9 -11

TSAO AS ABOVE



No N
Series Code

Title Model type Method MA

evidence

Model

17 466 TRAM009 Exempt TSMARS MA Y y ,  =  28.5 + 0.5>>,_| +

Vehicles New 

(No.)
STSMARS

AO-MA

MA

AO-MA

Y

Y

Y

AS ABOVE

y ,  =3.1 +0.64>>,_|

AS ABOVE

18 380 TSAIVI043 Imports SITC TSMARS MA N >>, = 4 4 ,6 69 - 1.05(>-,_| -43 ,4 43 ).

59

Other

Chemicals
STSMARS

AO-MA

MA

N

Y

AS ABOVE

a [v, = 0 .3 8 -0 .4 5 y,_| + 1.43(y,_2 -  0-45)_ -  0.38(>',_3 -  0.91)+]

€000
AO-MA Y ^  y, = 0.21 -  0.51 + 0. 12>>,.2 + 0-2>’(- i2  ~

[  0.03>>,.2£,-|3 J

19 380 TSAM055 Imports SITC TSMARS MA N y i  = 4,883 + 0.42 y '( - \  + 0.52 y i —\2

71

Power

Machinery
STSMARS

AO-MA

MA

N

Y

AS ABOVE

A [y, = 0.28 -  0.18 y , . |  -  0.87(y,_, -  1.39)+ + 0.22(>',_|3 -  1.04)+ ]

€000
AO-MA Y A [y, = 0 .3 -0 .22 y , _ 2  - 0.68(y,_, -0 .68)+ + 0.23(>',_|2 - 0.84)+ ]

20 380 TSAM601 Exports 

Adjusted €000

TSMARS

STSMARS

MA

AO-MA

MA

AO-MA

N

N

Y

Y

y, = 67,900+ >■,_,

AS ABOVE 

[y, = -123,839 -  0.27 >>,_2 + 0.39>>,_3 ] 

[y, = -155,705 -  0.21 y ,_2  + 0.4>>,_3]

No Model type Method
Statistics

2
X2 Tsay F- 

test 

lags

BDS

test

Seasonality

F-test

PAR(1)

F-test

PAR(2)

F-test

Periodic

Variation

F-test

MAPE %

Error

Cycles/

Notes

17 TSMARS LSAO 0.01 0.01 14 0.01 0.01 0.01 0.01 0.92 51.4 0.5 3

TSAO AS ABOVE

STSMARS LSAO 0.01 0.01 1, 5, 6 0.01 0.01 0.02 0.01 0.34 45.9 0.5 3

TSAO AS ABOVE

18 TSMARS LSAO 0.01 0.01 1, 15 0.01 0.01 0.01 0.01 0.44 23.9 0 12

TSAO AS ABOVE

STSMARS LSAO 0.01 0,01 1 -2 , 5 0.01 0.01 0.01 0.01 0.46 20.8 0 12

TSAO 0.01 0.01 1 - 5 0.01 0.01 0.01 0.01 0,59 20 4 0 4

19 TSMARS LSAO 0.01 0.01 None 0.01 0.29 0.01 0.01 1.0 22 3 0 4

TSAO AS ABOVE

STSMARS LSAO 0.01 0.01 2 0.01 0.40 0.01 0.01 0,44 18.6 0 4

TSAO 0.01 0.01 None 0.01 0.26 0.01 0.01 0 8 0 17.9 0 4
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No Model type Method
Statistics

Tsay F- 

test 

lags

BDS

test

Seasonality

F-test

PAR(1)

F-test

PAR(2)

F-test

Periodic

Variation

F-test

MAPE %

En-or

Cycles/

Notes

20 TSMARS LSAO 0.01 0.01 2 - 5 , 0.01 0.92 0.01 0.01 0.42 7.2 0 2

9 - 1 4

TSAO AS ABOVE

STSMARS LSAO 0.01 0.01 6, 12 0.01 0.94 0.01 0.01 1.0 9.6 0 8

TSAO 0.01 0.01 2 ,6 0.01 0.93 0.01 0.01 1.0 7.8 0 8

i

i
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8 Bootstrapped TSMARS Forecast Errors 

8.1 Introduction

In time series analysis, a forecast of an unknown future value is called a point prediction. Its distribution is 

known as the predictive distribution and this plays an important role when data are not normal. The 

statistical uncertainty of the point prediction is referred to as the future prediction interval, or simply the 

prediction interval. This interval will contain the future value with high probability, say 95% or 99%. In this 

chapter realistic prediction intervals for some TSMARS models are computed using novel adaptations of 

existing bootstrap methods.

The predictive interval for a stationary time series with normal errors is given as the mean plus and minus 

a multiple of the standard deviation of the predictive distribution. Predictive intervals constructed in this 

way have been used for some special nonlinear models including the SETAR model (see de Bruin 2001). 

However, for most nonlinear data, where the noise may be asymmetric and/or multimodal, this approach 

is unsuitable. In this chapter an alternative approach based on bootstrap re-sampling (see Efron & 

Tibshriani 1990) is adopted.

Bootstrap methods have been used with success for computing intervals for parameter estimates (see 

Buhlmann 2002) and autocorrelations (see Romano & Thombs, 1996). In this chapter our focus is on 

computing bootstrap future prediction intervals for TSMARS models.

Intervals for the AR(p) model driven by non-Normal disturbances are constructed in Thombs & Schucany 

(1990), Breidt et. al. (1995), Romano & Thombs (1996), Hansen (1999) and Kim (2002). The method set 

out in Thombs & Schucany (1990) is reviewed in section 8.3 and adapted to TSMARS models. The key 

element of this adaptation is that the back casting device of Thombs & Schucany (1990) is avoided. The 

method is called the TSMARS Sieve Bootstrap. Sieve type bootstraps are parametric as they fit a 

parametric model to the observations. Residuals from the model are re-sampled to generate bootstrap 

time series realisations. Based on these a predictive interval is computed.

Also implemented is the Vectorised Block Bootstrap of Buhlmann (2002). This method is nonparametric 

and was developed for computing intervals for parameter estimates. It is adapted in section 8.3 for 

computing prediction intervals. In general nonparametric methods re-sample blocks of the observations 

directly. These blocks are joined together to generate a bootstrap time series realisation.

In section 8.4 both the Sieve and Vectorised block bootstrap methods are contrasted in simulations 

studies. These studies show that the predictive intervals are accurate and consistent with increasing 

sample size for models driven by noise from normal, exponential and normal mixture models respectively. 

For data simulated from a linear model the results obtained are compared with those obtained elsewhere.

In section 8.5 the bootstrap forecast methods are applied to a subset of the empirical test-bed series. 

Independent effects in these data are incorporated directly into the models used. In the Sieve Bootstrap 

case, seasonality is also catered for in the model, while in the Block Bootstrap case, the block length is 

chosen so that it does not interfere with seasonality. These methods are applied to the test-bed series
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and prediction intervals computed for a forecast horizon of 12 steps. One important aspect of this study is 

that the prediction intervals can be judged against the cross-validation estimates of Chapter 5.

8.2 Preliminaries

The overall objective is to obtain a prediction interval for a future value for a time series. In Chapter 5 

forecast errors from a time series of length n were computed for ^ = 5 steps ahead with a TSMARS

model computed on data up to n - k .  The precision of the forecast was computed as the RMS forecast

error over S simulated datasets. This procedure computed the predictive distribution

p{yn-k^ i \p {yn-k))  (8 -2 .1)

at each time point n - k  + i { i  = 0 . . . k - \ ) .  This distribution is not the true conditional predictive distribution, 

since is not fixed for every simulated dataset. However, formula (8.2.1) computes an approximation 

to the unconditional density as S -> oo. Clearly, this predictive distribution is less relevant as k increases.

The (true) conditional predictive distribution at k steps ahead given an infinite realisation Y„ = y „ , . . .  is

I Y „)=  r  / ? ( > ' „ + *  I > ' „ + , ) I Y „)  *  = 1... (8.2.2)
J-QO

This is a recursive equation for the conditional predictive density. It is known as the Chapman- 

Kolmogorov (C-K) integral equation and can be evaluated using Gaussian quadrature (see Tong 1990 

subsection 4.2.4.3). Recall this numerical approach was used to compute intervals in Chapter 5. Based 

on (8.2.2) the distribution the predictive interval, denoted by PI „+ t ,  that covers a future value with

probability >9 = 100(l-a )%  is

P I „ , , { l „ , U „ ) = p {l „ < y „ , ,  < U „ \ Y „ )  (8.2.3)

where L„ and U„  are the upper and lower quantiles of the interval and p { l „  < y„+k ^  I Y „ ) is the 

corresponding distribution function. If as S ->oo E { P I ^ ^ , ^ { L „ , U „ ) } ^ l - a  then P I „ ^ i ^ { l „ , U „ )  is also a 

/? = 100(l-a )%  unconditional interval for Predictive intervals constructed in this was are known as 

parametric intervals -  the standard normal interval (e.g. Box-Jenkins 1976 approach for the linear model) 

is the most commonly used.

For autoregressions, the distribution of y„+k \ ' ^p  where p = y „ , y „ - \  ■■■y„-p+\ is the same as the

distribution of y „+k \ ' ^ „ .  Therefore it makes sense to write the conditional predictive interval for

autoregressive processes as

PJp.n.k i K  , U „ ) =  p [l „ < y „ , ,  < U „ \ Y p )  (8.2.4)

Once again, if as S -^co e \p i then P I is also a /? = 100(l-a )%  

unconditional interval for A key purpose of this chapter is to construct intervals of the type (8.2.4) 

and to show by simulation that e [p i ^ In simulation studies we take a = 0.1 and
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SO we consider 90% intervals -  simulation results for other values of p  not reported here are similar to 

the p  = 90% case.

In this chapter the effort is on generating bootstrap critical quantile values L„ and U„.  Bootstrapping is

different to other re-sampling methods such as cross-validation in that the data are subtly randomised. 

The full sample of data is used and randomly reordered so as to preserve the underlying characteristics 

of the data generating process.

The first approach is known as the parametric bootstrap. It relies on finding and U „ based on a 

parametric model for the data and then ‘pivoting’ on these critical values to isolate The method 

adopted here follows Thombs & Schucany (1990) in that future values are used to define the root quantity 

R„ = y„+, (see Breidt et. al 1995). Letting f ( y „ )  denote the nonlinear (e.g. TSMARS) model fit to the 

data, the root may be written as

where e, are the residuals from the model fit. This root quantity can then be used to generate replicate 

samples of the observed time series as

where y]  and s]  are replicates of y,  and e, respectively. The predictive interval (8.2.4) is then 

computed from this replicate series. In practice a large number (say 100) bootstrap replicate series are 

used to estimate the predictive interval. The Thombs & Schucany (1990) method of constructing the 

predictive interval is described in detail in the next section. In general parametric bootstrap methods 

preserve the underlying characteristics of the data generating process by preserving correlation structure 

in the observations.

The second method is wholly nonparametric. Here the observations y^ , y 2 ---yn S'"® randomly selecting in 

blocks and these blocks are then joined end to end to create a replicate series y*.  The predictive interval 

(8.2.4) is then computed from this replicate series. Once again a large number (say 100) bootstrap 

replicate series are used to estimate the predictive interval. Block bootstrap methods rely on a suitable 

value for block length to preserve the underlying characteristics of the data generating process.

8.3 Bootstrapping Methods for Time Series

This section is methodological in that two algorithms for bootstrapping time series future values are set 

out; namely, the Parametric Bootstrap Method and the Nonparametric Bootstrap Method. The section 

begins with a review of the Thombs & Schucany (1990) algorithm for computing predictive intervals of the 

linear AR(p) model. Next this algorithm is adapted to handle NLAR(p) problems -  this method is called 

the TSMARS Sieve Bootstrap. Finally the Nonparametric Vectorised Block Bootstrap of Buhlmann (2002) 

is described and adapted for computing predictive intervals.

(8.2.5)

(8 .2 .6 )
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8.3.1 Linear AR(p) Parametric Bootstrapping

For linear time series data with finite 2"'“ order moments, the parametric bootstrap method has been used 

with success by among others (Thombs & Schucany 1990, Breidt et. al 1995, Romano & Thombs 1996, 

Hansen 1999 and Kim 2002). In general, the method has been used to generate prediction intervals 

based on quantiles of the predictive distribution where the disturbances are not Normal. The Thombs & 

Schucany (1990) method is set out here for the AR(1) model; generalisations to AR(p) are 

straightforward.

Consider the stationary AR(1) time series model defined by

yt =<!>/y t - \+£ t  (8.3.1)

where <!>f is an unknown constant, } is a sequence of zero mean independent errors with common 

distribution function having finite 2"*̂  order moments and / = 0,±1,±2,.... Model (8.3.1) is called the 

forward model and associated with it is the backward model where

yt (8.3.2)

These two models have the same correlation structure (see Box & Jenkins 1976) endowing the time 

series with a useful time-reversible property. This property is particularly useful as it allows replicate 

series to be generated that have the same last value (or last p values as appropriate) and, in addition, 

have the same correlation structure. Clearly, from the definition of the predictive interval (8.2.4) replicate 

series having the same last value is a fundamental requirement.

The steps involved in generating a bootstrapped prediction interval are (see, Thombs & Schucany 1990):

1 Estimate the AR(1) forward model and associated centred residuals {f,}, and let be 

their distribution function.

2 Estimate the AR(1) backward model and associated centred residuals {e,} and let F  ̂ be 

their distribution function.

3 Compute the bootstrap replicate y*„ by setting = y„  (i.e. the last data value) and use the 

estimated backward model to compute

>'*-/ =hy* , - j^ \  + C y  

where are random i.i.d. draws from F^.

4 Compute new forward model estimates from the bootstrap replicate.

5 Compute future values using the new forward model parameter estimates and forward 

residuals drawn i.i.d. from F ^ . Note, these will be conditional on y* = y „ .

6 Repeat steps 3 - 5  until B bootstrap future values have been defined at each step 

ahead k.
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7 Let g I  be the cdf of the future value then the endpoints of the prediction interval are

given by the quantiles of G*g.

Note that a prediction interval constructed in this w ay is a percentile interval in the sense described in 

Hall (1992).

In general there are two concerns with the above method. The first lies in the fact that the fonward and

backward residual d istributions are not the sam e when the innovation is correlated. As a consequence

the re-sampling schem e should only be used when the innovation sequence is i.i.d. (see Thom bs & 

Schucany 1990). Fortunately for TSMARS models this is the case as the innovation is assumed i.i.d.

A second concern is that the method relies on the assum ption o f time reversibility. As noted in Chapter 1 

this cannot be assumed fo r TSMARS models. Even the simple SETAR(2,1,1) m odel has a correlation 

structure that is regime dependent. Moreover, recall from  Chapter 1 that y,  can be generated from y,_,

in the forward problem, but this is impossible in the backward problem, as the regim e depends on 

which is unknown. This asym m etry is fundam ental and means that back casting cannot be used for 

TSMARS models.

8.3.2 Nonlinear AR(p) Parametric Bootstrapping

In this subsection a novel alternative to back casting is proposed that guarantees the last p values across 

every replicate series are the same. This involves removing the last p values from the observed time

series and appending them to end o f each replicate series (of length n - p ) .  If this is done in a sensible

manner, then the distribution o f future values will be conditional on these last p  values o f the data. This

adaptation is now implemented within the so-called sieve bootstrap algorithm  (see Buhlm ann 2002).

TSMARS Sieve Bootstrap

1. Given an observed time series y, (t = 1,2,...,«) estimate the TSMARS model / , ( • )  and compute 

the estimated innovation errors e, = y, - / , ( • ) .  The prediction interval will be com puted for this model. 

This model also fixes the lag order p . The last p  values o f the observed series are retained for 

appending to each replicate series.

2. Set m = 1,000.

3. Start with y l „ , y l „ ^ i  ■■■,yl„+p^, as a random ly selected subseries from y,  and simulate y *  for 

t = - m  + p, . . . , 0 , 1 , 2 , >  n fro m /,(» )  as y * = f , { • )+€ ,  where e, is a random draw from F^ the 

distribution o f the estimated innovation errors rescaled by y l ( n - p ) j { n - 2 p )  (see Thombs & 

Schucany 1990) to compensate for deflation in the innovation variance due model fitting.

4. Select r > n - p  such that \y „ - p ^ \ - y l \ \ y „ . p ^ 2 - y * r ^ \ - . \ y „  - yUp- \ \  is a m inimum.

5. Select the subseries o f length n - p  from  |y * |a s  y%„,yl -„+\  ■■■,y*r■

6. To this subseries jo in  the last p values of the original series giving the sieve bootstrap replicate 

series  y„ of length p.
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7. Estimate the TSM ARS sieve bootstrap model and compute the innovation errors

e : = y : - f n - ) .

Here the sieve bootstrap replicate series is used to estimate the TSMARS model / / ^ ( » )

8. TSM ARS m odels that do not have the same form as the original model are rejected as invalid.

9. Future values are computed using the plug-in rule (see Chapter 5), the last p  original values and

a valid TSM ARS sieve bootstrap model / / ^ ( » )  The forecast is given by = f ^+k{* )-^K+k  where 

e,^ .̂ (k > 0) is a random  draw from  the distribution o f the estimated sieve bootstrap replicate 

innovation errors.

10. Repeat steps 3-10 until B bootstrap future values o f each are available.

11. Let G*g be the cd f o f the future value then the endpoints of the prediction interval are given 

by the quantiles o f Gg.

A couple of points are worth noting about this algorithm. First, the predictive set o f last p  values from  the 

original series is retained to generate the conditional predictive distribution. This set is used both in the 

bootstrap replicate series and to start o ff the (Markovian) forecast sequence in step 9. The resulting 

interval therefore approxim ates (8.2.4) and gives the unconditional interval as - » oo.

Second, two different sets o f innovations are used. The original sequence e, is used to generate the 

bootstrap replicate series while the bootstrapped sequence e* is used in forecasting. This provides 

sufficient m ixing for every bootstrap replicate series. Both o f these points are designed to ensure that 

bootstrap replicate series and forecasts provide a good approximation to the underlying predictive 

stationary distribution. Moreover, it is reasonable to conjecture based on Theorem 3.1 o f Thom bs &

Schucany (1990) that yi+k in distribution provided the / / ^ ( • ) ^  / ,  (•) in probability. Simulation

studies to be conducted in the next section indicate this conjecture to be true. It is worth m entioning that 

this procedure is general - that is, fitting the TSM ARS model at steps 1 and 7 o f the algorithm  could in 

principle be replaced by any param etric modelling method. This option is not explored further in this 

thesis.

8.3.3 Nonparametric Bootstrapping

A standard nonparam etric method for generating bootstrap replicates fo r time series data is the so-called 

Moving Block Bootstrap (or block bootstrap fo r short). This method makes no assum ptions about the 

underlying distribution o f data generating process. It is described in Efron & Tibshriani (1990) and also in 

Buhlmann (2002).

For an observed time series y,  {t = \ ,2, . . . ,n) ,  the basic idea behind the block bootstrap (see Efron & 

Tibshriani 1990) is to build k overlapping blocks o f consecutive vectors {y\,...,yi), 

{ y j  y i+\) , --- , (yn-i+i . . . ,yn)< ®3ch o f length /; where for simplicity, it is assumed that n = k l { k e Z + ) .  The 

block length I is a tuning param eter of the method. Then, random ly resample with replacement, k blocks
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and join them end-to-end to generate a bootstrap replicate series of the original data. Using this replicate 

series, estimate the relevant time series model and associated statistics. Repeat this until sufficient 

bootstrap estimators are available to compute final estimates.

This method of time series bootstrapping has been called the naive block bootstrap by Buhlmann (2002). 

The key flaw in the approach is the method is not adapted to the problem. So, for example, computing the 

lag(1) autocorrelation coefficient using the naTve block bootstrap, ignores the fact that the autocorrelation 

coefficient is a functional of the p=2 dimensional distribution of (>̂ , ,y,_i). This, as demonstrated in

Buhimann (2002), produces clusters of ‘bad’ points in the scatter plot of y, vs. y,_^.

The alternative proposed in Buhlmann (2002) to overcome these difficulties is the Vectorised Block 

Bootstrap. This method is adapted here for estimating the prediction interval of an observed time series, 

in this adaptation TSMARS is initially called with the original series to provide an estimate of the lag order 

p. Therefore, this adaptation is semi-parametric. This call determines the length of the sequence of

retained last values required for forecasting. It also provides an estimate of the dimension of the 

predictive distribution iy,, y ,-],■■■,y,-p)- This is important because the future value and the predictive

interval, are functionals of the underlying p + \ dimensional predictive distribution. By retaining the last p 

values and sampling vectors of dimension p the method set out in the following algorithm ensures that 

the underlying (nonlinear) autoregressive structure of the observations is retained in replicate series.

Time Series Vectorised Block Bootstrap

1. Given an observed time series y, ( /=  l,2 ,...,n ) estimate the TSMARS model / , ( • )  to fix model 

and lag order p.

2. Select and appropriate value for block length /.

3. Construct the p + \ dimensional lagged data vector Y, = {y,y ,- \ , - - -y ,-p)  for each t = p + \,...,n.

4. Select the vector subseries and y„ and retain the last as the fixed prediction

vector.

5. Build overlapping blocks of consecutive vectors (V^

,... K„_i) of length / and assume for simplicity that n - p  = kl {k e Z +).

6. Then, resample k blocks independently with replacement and join end-to-end to form a series of 

length n -  p.

7. To this series append the retained prediction vector giving the bootstrap replicate series Y * .

8. Estimate the TSMARS vectorised block bootstrap model based on this series.

Here the vectorised bootstrap replicate replaces the original response and p  predictors in the re-

estimated TSMARS model.

9. TSMARS models that do not have the same form as the original model are rejected as invalid.

10. Future values are computed using the last p  and a valid TSMARS vectorised block bootstrap

model The plug-in forecast is given by = f^+k where (k > 0) is a random
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draw from F^, the distribution of the estimated vectorised block bootstrap replicate innovation errors 

and y ]  e Y* .

11. R epeat steps 6 -10 until B bootstrap sets of future values are available.

12. Let G*b be the cdf of the future value then the endpoints of the prediction interval are given 

by the quantiles of G*g.

In this algorithm we assum e the block length tuning param eter is fixed at / = m ax(4,Vn) for simple time 

series models; this figure is suggest by Buhlmann (2002 ) based on simulation studies. However, in this 

thesis no studies have been undertaken to find the relationship between / and G*g.

8.4 Bootstrapped Predictive Intervals for Simulated Models 

8.4.1 Models and Testing Procedure

To ascertain the quality of the bootstrap methods outlined in the previous section, simulations studies are 

conducted based on the linear A R (1 ) model and the S E T A R (2 ,1 ,1 ) model. Both models are considered 

under three different i.i.d. noise distributions. These distributions are taken from Thombs & Schucany 

(1990) and are normal, exponential and a mixture of normals respectively. The A R (1) model is

y , =  -0 .8  y,_^ +  where
^ ( 0,1)
E xp(\) (8 .4 .1 )

A ^ (- l , l ) t /< 0 .9 ;  A ^ (9 ,l)i/> 0 .1

w here U  ~ Uniform[0,l]. Simulations are conducted based on each of these three models with n = 25 , 50 

and 100 observations respectively.

The S E T A R (2 ,1,1) model is

i f  y ,^ i < 0  

i f  y,_^ > 0

with the sam e noise distributions as in (8 .4 .1 ) and n = 100, 250 and 500  respectively.

For each of these model combinations and sample sizes a time series realisation is generated. Forecast 

values are also generated for k steps ahead. To estimate the probability content >5 = 1 0 0 ( l -a )%  and 

average length of interval for these series we adopt the following test procedure.

1. Simulate a series of length n according to a specific model combination and generate R =100  

future values y^+^ at each step ahead k.

2. Use the bootstrap procedure to obtain a 90%  prediction interval G* based on

3. Estimate the conditional coverage by =# |l * < < t / *  |) and interval length

Len(k) = U l  - C „ .
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Steps 1 -  3 are repeated 100 times to get a collection of summary measures \p l ,L e n (k ) \  In the Table 

Appendix we report the average value of the conditional coverage and its standard error, and also the 

average interval length and it standard error for the models considered. We mention that each similation 

run can take several hours as TSMARS is called 10,000 times. For this reason we have not reported the 

standard symmetric intervals of Thombs & Schucany (1990). However, simulation studies based on fitting 

an exact model for the simulated series show the methods outlined are consistent when the number of 

bootstrap replicate series is increased to 999.

8.4.2 Discussion of Results

For both the Parametric Sieve Bootstrap (SB) and the Vectorised Block Bootstrap (VBB) methods results 

for a 11-step ahead prediction horizon are displayed in Tables 8.4.2.1 and 8.4.2.2 (see Table Appendix) 

for the AR(1) and SETAR(2,1,1) models respectively.

An extract from Table 8.4.2.1 for up to 3 -  steps ahead is displayed below for the AR(1) model driven by 

exponential noise. In this extract the prediction interval for the smallest sample size (n=25) appears a little 

disappointing as the conditional coverage falls short of 90% for both bootstrap methods. However, :hese 

figures compare well with the conditional coverage figures in Thombs & Schucany (1990) -  these were 

lower than nominal but nevertheless within a few percentage points. The differences between their figures 

and those given here are explained by the fact that Thombs & Schucany (1990) only fit an AR(1) model. 

In contrast TSMARS models do not always match this correct form. However, as the sample sze is 

increased the conditional coverage approaches the nominal 90% showing the methods are consistent. 

This is in keeping with expectations and moreover the accuracy of the intervals as n increases is eqjal to 

that obtained by Thombs & Schucany (1990).

Extract of Table 8.4.2.1: 90% Bootstrapped fonward prediction estimates for the AR(1) Model

Sieve Bootstrap Vectorised Block Bootstrap

Steps

Ahead

k

Mean

Pi

%

s .e [ p I )

Mean

Len{k)

%

S.E.{Len{k))

Mean %

s .e {p I )

Mean

Len{k)

%

S.E.[Len{c))

n=25
1 86.4 20 3.3 30 87.6 10 2.9 32

2 82.4 30 4.0 20 85.1 10 3.9 40

3 80.7 30 4.5 30 83.3 10 4.2 40

n=50
1 90.4 10 2.9 30 89.0 9 3.0 25

2 86.4 10 3.9 30 86.3 8 4.0 23

3 85.7 10 4.2 30 85.6 8 4.2 22

n=100
1 90.3 10 2.9 20 89.0 7 2.9 19

2 87.2 10 4.0 20 87.4 6 3.9 18

3 86.7 10 4.3 20 86.2 7 4.2 17
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Contrasting the estimates from both methods it is clear that they give very similar coverage probabilities 

and interval lengths. This is a somewhat surprising as it was expected the model free Vectorised Block 

Bootstrap would give poorer performance than the Sieve Bootstrap.

The corresponding detailed table in the Appendix shows that similar results are obtained for this AR(1) 

model with normal and normal mixture noise models respectively. It can be observed interval lengths at 

each step for normal noise are slightly narrower than their asymptotic counterparts of 3.3, 4.2 and 4.7 

respectively. Taking all of these observations together we conclude that both bootstrap methods give 

accurate and consistent predictive intervals for this model.

An extract from Table 8A.2.2 for up to 3 -  steps ahead is displayed below for the SETAR(2,1,1) model 

driven by exponential noise. In this extract the prediction intervals obtained for all sample sizes is good 

using the Sieve method. This is also true for the block method except that in this case the method fails 

smallest sample size (n=100). The improvement in accuracy of the interval as the sample size increases 

is also evidence for consistency. In the Table Appendix this pattern is also repeated for the normal errors 

case.

However, it will be seen that the methods behave differently when the error is bimodal. The Sieve method 

produces reasonable intervals, albeit slightly narrow at the smallest sample size. In contrast the block 

method fails. Here TSMARS is the problem as it ‘over smooths’ the smaller mode of the distribution 

particularly at the smaller sample sizes. This results in poor coverage probabilities and unsatisfactory 

interval lengths. We mention this problem does not occur when the exact threshold model is fit to the data 

-  the block bootstrap method is therefore reliable.

Extract of Table 8.4.2.2: 90% Bootstrapped forward prediction estimates for the SETAR(2.1.1) Model

Sieve Bootstrap Vectorised Block Bootstrap

Steps
Ahead

k

Mean

P i

%

s .e {p I ]

Mean

Len{k)

%

S.E.{Len(k))

Mean

P i

%

5.£ .(^ ;)

Mean

Len(k)

%

S.E.{Len(k))

n=100
1 82.5 10 1.5 37 - - - -

2 83.6 10 1.5 40 - - - -

3 84.0 10 1.5 40 - - - -

n=250
1 90.1 10 1.4 20 90.0 6 1.5 16

2 88.2 10 1.5 20 89.4 6 1.6 18

3 88.6 10 1.6 20 88.6 6 1.6 19

n=500
1 89.3 10 1.5 20 88.9 7 1.4 16

2 89.4 30 1.6 10 90.0 5 1.6 16

3 89.3 20 1.6 10 89.6 5 1.6 14
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8.4.3 Concluding Remarks
In this section two well known bootstrapping methods were adapted for time series modelled with 

TSMARS. The key feature of both methods is that the last p values of the time series are retainad to 

generate the conditional predictive interval. The particularly novel aspect of this alteration to the 

parametric bootstrap was that back-casting could be avoided.

Both the parametric and block bootstrap methods were then used to generate predictive intervals for data 

simulated from AR(1) and SETAR(2,1,1) models respectively. In nearly all instances the mehods 

produced credible prediction intervals. Moreover, the coverage probabilities and interval lengths were 

shown to converge to nominal values as the sample size increased. A surprising result was that the Diock 

bootstrap performed as well as the parametric bootstrap for the models studied. A second appealing 

feature of the methods is that the nonlinearity in the SETAR model was captured resulting in excBllent 

coverage probabilities and interval lengths. We can therefore conclude that these bootstrap method; can 

be expected to produce reliable and consistent intervals for both linear and SETAR data in general.

8.5 Bootstrap Intervals for Short-term Economic Time Series

in this section the two bootstrap methods are applied to some of the test bed series. Bootstrap mehods 

are only applicable when data are stationary. Therefore attention is focussed on models arising from the 

Seasonal TSMARS method, STSMARS. The purpose of this section is to generate prediction intervels for 

those stationary STSMARS models found in Chapter 4. These are contrasted against their cross- 

validation counterparts obtained in Chapter 5. Any unexplained divergence between these will incicate 

that the bootstrap methodology is defective and render the prediction interval useless.

Recall STSMARS takes a time series y ,  and after appropriate transformations gives the series z, The 

lagged p r e d i c t o r s z , _ , a r e  then input into the TSMARS program along with

appropriately differenced trading effects predictors. The maximum interaction degree is set to 3 and aasis 

function threshold = 2 X 10®. Bootstrap future values are generated for the transformed series z,. On 

completion of the TSMARS call, the sequence of transformations are applied in reverse, giving 

predictions for the model (see Chapter 4 for definition of terms)

y, = exp (l B )  (l 5  ) ,jy|Q,Z,jo,Z,^^STER)l

Bootstrap prediction intervals are then computed from these predicted values.

There are two key differences between bootstrapping the simple models of the last section and 

STSMARS models. First, the independent trading day predictors have to be included. These are 

generated as fixed effects based on the date of the future values n+k (k=1,...12). They are reus3d in 

every bootstrap replicate to generate the set of future values. Specifically, they are included in the nodel 

fn+k (•) 9 Sieve Bootstrap and in (•) in step 10 of the Vectorised Block Bootstrap.

A second consideration is seasonality. This is not a problem for the Sieve Bootstrap as replicate series 

are generated directly from the STSMARS model. However, in the Vectorised Block Bootstrap, an 

inappropriate choice of block length will induce seasonality that is out of phase compared to the orginal
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series. To ensure this does not happen, the blocl< length is set equal to the periodicity and the block 

starting point is chosen as the first day of each year. This constraint ensures the seasonal effects are not 

tampered with by the bootstrap method. Therefore, the mixing properties of the sample innovation 

distribution will be unaffected.

Only eight of the 20 test bed series studied in Chapter 4 are used to generate predictive intervals. The 

remaining models all share similarities with these eight (for example, a number of models are linear). 

Therefore intervals computed from the remaining series will not provide any additional useful information.

The eight test bed series chosen are numbers 1, 2, 6, 9, 11, 13, 19 and 20 from Table 5.5.1.1. These are 

representative of a number different statistical areas. Predictive statistics, for up to 12 steps ahead, 

computed from the associated STSMARS model is given in Table 8.5.1.1 (see Table appendix at end of 

chapter). The statistics reported are the mean predictive value, its coefficient of variation and inter quartile 

range (divided by the median predicted value) denoted by Mean, CV. and SIRQ respectively. The mean 

value actually quoted is the percentage difference of the mean predicted value from the mean value of 

the original data. This indicates how far the predictive value is away from the centre of the data. A ‘good’ 

starting value, for forecasting purposes, being one that is close to the mean.

The results in Table 8.5.1.1 shows a good degree of consistency across all problems considered. In 

particular the predictive mean value is consistent. It does not tend to the mean value as the forecasting 

horizon increases, but remains stable reflecting the fact that the data are differenced. There is also a 

good degree of consistency between the CV value at each step ahead and the SIRO value. The latter 

figure, as expected, being generally larger. This trend is not maintained in problem 2, where the SIRQ 

values grow rapidly for the VBB method. Outliers in these data close to the end of the series cause this 

problem. Overall, it is clear that both methods give very similar results.

The results in Table 8.5.1.1 are useful, but of limited value. Of greater interest is their comparison with 

cross-validation forecast errors given in Table 5.5.1.1. Recall the figures in Table 5.5.2.1 were obtained 

by retaining the final years data as a cross-validation set. Errors were computed based on the deviation of 

the forecast value from the true retained value. The % average residual error given in Table 5.5.1.1 is 

compared with the average CV obtained (over the 12 -steps ahead) for each problem in Table 8.5.1.1. 

These figures are displayed in Table 8.5.1.2.

The figures in Table 8.5.1.2 show the bootstrap methods tended to give % errors that are close to cross 

validation errors of Table 5.5.1.1. Differences do exist, in particular for problems 6 and 9. For both of 

these problems only a small number of correct models were used to generate bootstrap replicates. This 

accounts for the narrower interval. Generating more bootstrap replicates will ameliorate this flaw, as more 

correct models will be found.

For Problem 2, outliers near the end of the series induce nonstationarity. This adversely affects the size 

of predictive interval. This difficulty was evident in Table 5.5.1.1 where the maximum error was 175%.

Allowing for these difficulties, both methods have worked well and give reasonably good predictive 

distributions. This allied to the fact the methods worked well for the simple simulated models.
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demonstrates that these bootstrapping predictive intervals can be relied on. It is also nice to see that the 

cross validation intervals are in line with the bootstrap figures.

Table 8.5.1.2: Comparison of Errors

Problem Number

1 2 6 9 11 13 19 20

% Error in Table 5.5.1.1 13.2 82.5 8.0 11.9 13.0 10.2 37.9 11.4

Sieve Bootstrap CV 14.1 193.2 1.5 4.7 12.7 7.9 27.1 3.1

Vectorised Block CV 12.7 -518.8 1.8 4.1 9.9 8.9 29.1 11.3

8.6 Closing Remarks

Novel variations of two bootstrap methods, the parametric sieve type and vectorised block have been set 

out. Their merits were tested on data simulated from simple time series models driven by normal 

innovations and on a number of empirical time series.

Three modifications to existing bootstrap scheme were implemented. First, both methods endeavoured to 

recreate the true predictive distribution by retaining the last (or last p) values of the series in every 

bootstrap replicate sample. Second, the methods ensured sufficient mixing is retained in the bootstrapped 

replicate series. This was accomplished using two distinct sequences of innovations; namely those from 

the original model to generate bootstrap samples, and those from the bootstrap model for forecasting. 

Third, only correct models were used to build forecasted values. With these three modifications, the Sieve 

and Block methods of Buhlmann (2002) have been adapted to compute predictive intervals for TSMARS 

models. Tests on simple simulated models found the methods produced consistent and accurate 

predictive intervals.

The methods were also applied to a subset of the test-bed problems. Once again consistent predictive 

distributions were obtained. The predictive intervals were also compared to cross-validation based 

intervals. This comparison showed that the bootstrap intervals were similar. As a consequence the 

predictive intervals obtained are accurate and reliable estimates for these empirical series. Moreover, the 

consistency demonstrated indicates the methods should work for other time series modelling methods.

The main limitations of this approach to generating the predictive distribution are; first, when the retained 

last p-values of the series are added back to the bootstrap replicate a discontinuity is introduced. In the 

Sieve method, the effect of this discontinuity is minimised by finding a suitable point at which to join the 

retained last p-values to the bootstrap replicate (step 4 of the algorithm). However, even this is not done 

for the VBB method.
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Table Appendix
Table 8.4.2.1: 90%  Bootstrapped forward prediction estimates for the AR(1) Model

Sieve Bootstrap Vectorised Block Bootstrap

Steps Mean % Mean % Mean % Mean %

Ahead k s .e [ p I  ) Len{k) S.E.[Len{k)) P i s A p I ) Len{k) S.E.{Lenik))

Normal Noise

n=25

1 84.7 20 3.3 30 87.6 10 2.9 32

2 84.2 20 4.0 20 85.1 10 3.9 40

3 83.8 30 4 5 30 83.3 10 4.2 40

4 83.4 20 4.6 30 87.6 10 2.9 32

5 82.3 20 4.7 30 83,3 10 4.2 40

n=50

1 88.1 10 3.3 10 87.5 7 3.2 20

2 87.4 10 4.1 10 87.5 7 3.8 20

3 86.6 10 4.6 20 86.0 8 4.1 20

4 85.9 10 4.8 20 84.8 9 4,4 20

5 86.6 10 5.0 20 85.7 9 4,5 20

n=100
1 88.4 10 3 2 10 88.1 5 3,2 11

2 87.9 10 4.1 10 88.1 6 4,1 11

3 87.1 10 4.5 10 88,0 7 4,6 13

4 86.7 10 4.7 10 87,4 7 4 9 13

5 87.5 10 5.0 10 87,2 8 5,0 15

Exponential Noise

Steps Mean % Mean % Mean % Mean %

Atiead k P i s .e {p I ] Len{k) S.E{Len{k)) P i s A p I ) Len(k) S.E.{Len{k))

n=25

1 86.4 20 3.0 40 87 6 10 2.9 32

2 82.4 30 3.7 40 85.1 10 3.9 40

3 80.7 30 4.1 40 83.3 10 4.2 40

4 80.5 30 4 3 40 87.6 10 2.9 32

5 78.7 30 4,3 40 83.3 10 4.2 40

n=50

1 90.4 10 2.9 30 89.0 9 3.0 25

2 86.4 10 3.9 20 86.3 8 4 0 23

3 85.7 10 4.2 20 85.6 8 4.2 22

4 85.3 10 4.5 20 85.2 9 4.5 25

5 85.6 10 4,6 20 85,9 8 4.8 24

ooIIc

11

1 90.3 10 2 9 20 89,0 7 2.9 19

2 87.2 10 4,0 20 87,4 6 3,9 18

3 86.7 10 4.3 20 86,2 7 4,2 17

4 86.4 10 4.6 20 86,3 8 4.5 18

5 86.2 10 4.7 20 86,3 8 4.8 20
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Sieve Bootstrap Vectorised Block Bootstrap

Steps

Ahead

k

Mean %

s .e [ p I )

Mean

Len{k)

%

S.E.{Len(k))

Mean %

s .e { p I )

Mean

Len{k)

%

S.E.{Len(k))

Normal Mixture Noise

n=25

1 87.2 20 10.5 40 87.5 10 10.9 40

2 84.7 20 14.3 40 84.9 14 14.3 40

3 83.0 20 14.7 40 83.6 14 14.6 40

4 81.5 20 15.1 40 80.6 17 14.7 40

5 81.6 20 15.4 40 80.9 19 15.4 50

n=50

1 89.1 10 10.8 30 89.2 9 10.8 25

2 86.4 10 14.6 30 87.4 8 15.0 31

3 86 4 10 15.4 30 86.2 11 15.4 28

4 84.6 20 15.6 30 85.4 13 16.0 27

5 85.6 20 16.8 30 85.9 12 17 0 29

n=100

1 89.6 7 10.8 25 89.0 7 10.6 25

2 86.6 8 15.0 27 87.1 7 14.9 28

3 86.9 7 15.8 20 67.5 7 15.8 20

4 87.0 7 16.4 18 87.0 7 16 4 15

5 87.3 7 16 8 19 87.2 8 16 8 19
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Table 8.4.2.2: 90% Bootstrapped forward prediction estimates for the SETAR(2.1.1) Model
Sieve Bootstrap Vectorised Block Bootstrap

Steps Mean % Mean % Mean % Mean %

Ahead

k
P i s .e (p I ) Len{k) S.E{Len{k)) P i S.E.(pl) Len(k) S.E.{Len(k))

Normal Noise

ooIIC

1 89.1 16 1.7 10 - ■ - ■

2 88.9 15 1 9 10 - - - -

3 89.6 15 1.9 10 - - ■ -

4 88.5 16 1.9 10 - - - -

5 89.0 16 2.0 20 - - - -

n=250

1 89.1 10 1.7 10 89.4 5 1.7 9

2 89.1 5 1.9 10 89.3 5 1.9 11

3 88.6 10 1.9 10 88.2 6 2.0 11

4 87.6 10 1.9 10 88.9 5 2.0 11

5 88.7 10 2.0 10 89.8 5 2.0 11

n=500

1 89.0 5 1.7 9 89.2 6 1.7 8

2 89.1 5 1.9 8 89.3 6 1.9 10

3 89.4 5 1.9 10 89.2 6 2.0 12

4 88.6 5 2.0 10 88 8 6 2.0 11

5 89.3 5 2.0 9 89.6 5 2.0 10

Exponential Noise

Sieve Bootstrap Vectorised Block Bootstrap

Steps Mean % Mean % Mean % Mean %

Ahead

k
P i s.e [ p I  ) Len{k) S.E.{Len(k)) P i S.E.(pl) Len{k) S.E.{Len(k))

n=100

1 82.5 10 1.5 37 - - - -

2 83.6 10 1.5 40 - - ■ -

3 84.0 10 1.5 40 - - - -

4 84.0 10 1.6 41 - - - -

5 84.6 10 1.6 42 - - - -

n=250

1 90.1 10 1.4 20 90.0 6 1.5 16

2 88.2 10 1.5 20 89.4 6 1.6 18

3 88.6 10 1.6 20 88.6 6 1.6 19

4 88 5 10 1.6 20 88.9 6 1.6 22

5 88.7 10 1.6 20 89 4 6 1.6 20

n=500

1 89.3 10 1.5 20 88.9 7 1.4 16

2 89.4 30 1.6 10 90.0 5 1.6 16

3 69.3 20 1.6 10 89 6 5 1.6 14

4 88 8 10 1.5 10 90.2 5 1.6 15

5 88 6 10 1 5 10 89.9 5 1.6 16
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Sieve Bootstrap Vectorised Block Bootstrap

Steps

Ahead

k

Mean

Pi

%

s .e [ p I )

Mean

Len{k)

%

S.E.{Len{k))

Mean % Mean

Len{k)

%

S.E.{Len{k))

Normal Mixture Noise

n=100

1 73.4 49 4.8 54 - - - ■
2 73.3 48 5.1 52 - - - -
3 72.8 48 5 2 53 - - - -
4 72.7 47 5.3 52 - - - -
5 72.3 47 5.4 52 - - - -

n=250

1 86.4 19 5.3 26 - - - ■
2 85.8 19 5.7 22 - - - -
3 65.1 18 5.7 21 - - - -

4 84.7 18 5.8 23 - - - -

5 84.5 19 5.9 21 - - - -

n=500

1 89.0 7 5.6 17 69.2 44 5.7 14

2 86.8 9 5.7 14 73.3 8 6.5 54

3 87.5 7 6.0 12 63.4 24 13.6 406

4 86.8 8 5.9 15 61 9 10 111.1 758

5 88.1 6 6.1 14 58.5 17 1577.1 816
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Table 8.5.1.1: Bootstrapped forward prediction estimates for the selected Test Bed Series

No Method Statistic 1 2 3 4 5 6 7 8 9 10 11 12

1 Code: ASAM003 a Iv, = -0 .0 1 -0 .4 4  + 0 .4 8 y ,_ ,2 ]

Correct Models: Sieve = 51, Block = 39

Sieve Mean 75.9 29.1 24.9 50.1 32.4 26.8 45.6 33.0 24.0 51.6 27.9 30.7

CV 0.0 12.0 12.4 1 56 16.4 15.3 15.3 12.0 13.0 13 3 15.5 14.5

SIRQ 0.0 13.1 17.5 15.3 20.1 23.2 19.8 15.8 15 6 18.5 19.5 21.5

Vector Mean 75.9 26.4 19.3 75.9 17.8 30.6 49.9 38.7 16.4 70.0 16.8 38.5

CV 0.0 12.3 11.1 14.5 11.6 11.6 10.5 11,9 12.1 12.0 11.5 11.0

SIRQ 0.0 18.4 14.7 21.8 15.2 15.5 17.2 14.1 14.9 17.6 16.7 14.4

2 Code: ASAM206 y , =1 .08  + 0 . 1 8 > . , . , ( y , . j - l . 2 ) _ - 1 . 2 r , -2 .1 )_  + 0.8)_

Correct Models: Sieve = 27, Block = 21

Sieve Mean -3.2 -1.9 -0.7 -1.5 -1.5 -0.6 -0.7 -1.4 -0.8 -1.3 -0.7 -0.9

CV 0.0 100.0 129.4 153.7 129.1 136.3 153.4 180.3 255.5 319.5 261 1 307.0

SIRQ 0.0 111.1 177.4 282.9 123.6 141.1 207.4 195.6 255.1 236.3 261.3 272.7

Vector Mean -3.2 -1 8 -1.3 -0 5 0.0 -0.2 -1.3 -2 9 -4.5 -6.7 -7.8 -11.5

CV 0 96 205 125 110 129 221 531 1949 -4318 -2955 -1745

SIRQ 0 94 183 135 69 90 92 114 91 116 110 81

6 Code: LRGM001 A A , j [ y ,  = -4 4 4 2  + 0.39>.,_, + l.2 5 (y ,_ ,2 -  6772).

Correct Models: S ieve = 19, Block = 37

Sieve Mean -40.5 -33.5 -34.0 -35.0 -40.3 -35.5 -32.8 -26.6 -25 4 -33.1 -36.9 -37.5

CV 0.0 1.5 1.2 1.1 1.9 1.6 1.2 1.5 1,4 1.2 1.6 1 8

SIRQ 0.0 1.9 1.6 1.1 3.1 2.1 1.6 1.2 1,5 1.9 2.9 2.5

Vector Mean -40.5 -33.8 -35.2 -35.1 -40.9 -34.5 -32.6 -26.2 -25.8 -32.9 -36.7 -35.8

CV 0.0 1.6 2.0 2 1 2.0 1.7 1.8 1.6 1.5 1.8 2.1 1 8

SIRQ 0.0 1.7 2.3 2 5 2.1 2.2 2.6 1.7 1.1 2.6 2.4 2.3

9 Code: LRGM438 Ak = - -0.04 + 0.28^,_I2 -O .lS C y ,.,  -0 .1 8 )_  -0 .4 9 (> ',_ | -0 .1 8 ).^ ]

Correct Models: Sieve = 15, Block = 7

Sieve Mean -26.7 -28.6 -27.2 -27.8 -29.2 -29.0 -26,8 -24.8 -28.0 -30.3 -33.0 -37.8

CV 0.0 3.7 4,2 5.2 4.1 4.6 5,5 3.0 3.6 4.0 6.3 7.5

SIRQ 0.0 6.5 6.3 5.9 5.7 8.7 5.6 5.5 7.2 3.5 7.0 11.0

Vector Mean -26 7 -23.7 -24.1 -28.6 -28.6 -27.2 -28,6 -23.6 -26.4 -29.4 -33.9 -37.7

CV 0.0 2.8 4.8 3.7 5.4 3.9 3.8 4.1 3.5 3.6 4,5 4.6

SIRQ 0.0 4.2 6.6 6.4 9.0 7.7 4.2 6.4 7.2 5 8 5,8 8.6

11 Code: MIAM014 Ai: [v, = -0.16 + 0.24y,_| + Q.26y,,2 + 0 .2(y,_ ,, -  0.14).^ + 1 .04>',,,(>',_|, -0 .5 2 K ]

Correct Models: Sieve = 35, Block = 29

Sieve Mean 53.0 28.4 44.7 38.0 41.3 51.5 35.5 51.0 63.3 61.5 66.1 70.5

CV 0.0 11.2 15.5 11.7 11.9 20.5 13.9 10.1 10.1 10.3 15.2 9.8

SIRQ 0.0 16.0 17.3 156 12.8 22.0 23.8 9.2 11.8 10.4 6.7 9.6

Vector Mean 53.0 24.9 39.4 36,9 40.7 56.0 35.3 57 6 65 2 62.3 64.2 69.4

CV 0.0 6.3 8.0 10.3 11.4 11.9 10.7 11.1 11,2 10.6 8.1 9.2

SIRQ 0.0 8.9 7.2 6.1 15.2 16.1 14.0 9.3 18.4 16.5 7.0 15,9
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No Method Statistic 1 2 3 4 5 6 7 8 9 10 11 12

13 Code; MIAM524
a Iv, = 0 . \ S - 0 . i y , _ 2  -0.14y,_3 + 4.85(>>,_, -0.06).^ -0.18(>>,_, -0 .0 6 )_ ]

Correct Models: S ieve = 41, Block = 1 8

Sieve IVIean -2.9 -14.5 -31.2 -18 5 -10.3 -11.4 -31.5 -51.9 -19.1 6.8 -16.7 -28.7

CV 0.0 7.6 7.3 7.8 7.8 7 9 9.7 6.1 7.1 8.3 8.8 8.5

SIRQ 0.0 7.7 10.1 8.8 9.7 10.4 10.7 10.1 7.7 10.6 11.3 9 9

Vector Mean -2.9 -13.7 -33.2 -7.1 -15.0 -16.4 -32.8 -51.2 -22.3 7.0 -22.8 -27.9

CV 0.0 7.9 10.2 17.3 5.0 8.3 13.3 4.1 5.4 8.6 6 9 10.7

SIRQ 0.0 4.0 15.3 14.8 5.5 13.1 14.5 3.7 7.0 5.7 11.6 12.2

19 Code: TSAM 055 A ^ ,  =0.28 + 0.18j' , , 2 -0.87(>>,_| -1 .28)_ + 0.2(y,_,2 -1.05)^.]

Correct Models: Sieve = 8, Block = 9

Sieve Mean 17.9 50.7 17.3 16.1 12.0 32.8 5.8 20.9 46.3 26.0 22.4 29.0

CV 0.0 20 9 24.2 29.2 20.7 31.4 21.6 18.0 36.5 49.5 28.3 18 3

SIRQ 0.0 30.8 42.1 24.4 40.5 58.9 24.2 25 3 48.1 25.7 31.3 31 1

Vector Mean 17.9 44.1 27.5 13.3 16.5 22.2 10.5 16.1 35.3 22.6 38 4 27.5

CV 0.0 29.8 55.1 17.8 36.4 24.8 17.8 29.6 29.9 18.3 18.7 41.4

SIRQ 0.0 50.6 45.2 19.6 36.9 41.4 12.4 40.5 38.1 24.5 29.4 38.3

20 Code: TSAM601
A2

y, -64.070 -  0.28>>,_2 + 0 .3 6 y ,_ 3  -  

0.000l(>’,_| -904,100).^(>",.2 -

0.0001(>',_, -  904,100).^(>>,_|3 -  1,012,000)_ +' 

204)_(>',_,3 -1,012,000)_

Correct Models: Sieve = 79, Block = 22

Sieve Mean 63 4 61.2 5 5 6 61.2 57.2 51.5 54.8 47.8 54.7 51.6 50.4 52.2

CV 0.0 1.7 2.8 2.8 3.0 2.7 3.5 3.9 3.4 3.7 3.1 3.4

SIRQ 0.0 1.3 1.6 1.8 1.7 2 3 2.8 2,1 2.4 3.5 2.5 2.2

Vector Mean 63.4 61 6 55.9 60.3 55.6 52.3 55.3 48.0 54.4 52.0 72.2 24.5

CV 0.0 2.0 2.6 2.2 2.9 2.7 3.0 4 9 2.8 3.6 28.1 69.0

SIRQ 0.0 0.8 1.0 2.8 3.5 2.2 2.7 1.4 2.6 2.6 48.3 94.6
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9 Contributions and Conclusions

9.1 Background

This thesis studied nonlinearity in tinne series. Our focus was on estimation and short term forecasting 

using TSMARS, a time series extension of the Multivariate Adaptive Regression Splines (MARS) 

procedure of Friedman (1991a). MARS was chosen because it is model free and can discern nonlinearity 

in terms of asymmetry in the predictors. The method also gives a precise measure of the degree of 

nonlinearity. This facility is particularly valuable in measuring the degree of nonlinearity in empirical time 

series published by the Central Statistics Office (CSO).

Several aspects arise in the study of time series, such as seasonality, outliers, and dependent errors. 

Each of these require extensions that are novel to TSMARS. These extensions constitute an important 

contribution of this thesis. A new version of TSMARS has been implemented in SAS/IML that incorpoates 

these extensions. This platform makes TSMARS much more accessible to researchers in many fields.

9.2 Contributions

In Chapter 1 nonlinear models relevant in this thesis were reviewed. First the statistical and dynamic 

aspects of a number of nonlinear time series models were set out. It was shown that even simple linear 

non-Gaussian process give rise to asymmetry. The properties of some well-known simple nonlinear 

models were also examined. Threshold models and their generalisations were also set out. These models 

tend to be suitable in situations where there is asymmetry and are also particularly suited to modelling 

with TSMARS. The concept of a frame was introduced; this is a graphical tool that enables visualisation 

of nonlinear SETAR models. In this chapter seasonal models both linear and nonlinear were also set out.

In Chapter 2 the MARS algorithm was described in detail. Based on this description, the first contribution 

of this research was the development of a new version of the MARS program written in SAS/IML. This 

program was assessed against some of the results given for Friedman’s original version (1991a). We 

showed that the SAS/IML version gave statistically equivalent result to Friedman’s original. The program 

was adapted for time series and the resulting TSMARS program benchmarked against identical studies 

reported in the literature.

Having developed the TSMARS program and tested it the emphasis then switched to empirical analysis. 

An in-depth analysis was conducted of TSMARS under various settings. First, the question of whether 

data should be transformed prior to modelling was addressed. Using Box-Cox transformations and 

integrated models, simulations were conducted that showed transforming the data prior to modelling 

could improve the precision of the estimates.

An analysis of the impact of seasonal adjustment on TSMARS was also conducted Chapter 3 using the 

concept of ‘implied parameters’. Three different model types incorporating fixed seasonality, stochastic 

seasonality and regime dependent seasonality respectively were used to conduct the analysis. These 

models and the studies conducted are novel. The studies demonstrated that modelling the seasonal 

effects directly as part of the TSMARS model proved better than the alternative of prior seasonal 

adjustment. Moreover, for the regime dependent seasonal model, which was not trivial to assess, the
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results indicated that seasonal adjustment did affect the nonlinear characteristics of the simulated series. 

This is an important finding.

In Chapter 4 an extensive analysis was then conducted on twenty empirical CSO time series to see how 

much nonlinearity could be observed. Four different and sophisticated TSMARS modelling variations 

were developed for this study. Novel aspects of these variations included seasonal adjustment prior to 

TSMARS modelling and parsimonious modelling with variables lagged at 1, 2, 3, 12 and 13 past periods. 

First, we found that it was important to difference the data to remove growth effects before modelling. 

Second, directly incorporating seasonal effects was preferable to methods that involved prior seasonal 

adjustment. The results showed that growth effects tended to mask other characteristics and when 

removed, as for example in the STSMARS method, the test results tended to show evidence of nonlinear 

behaviour. Third, ANOVA analysis showed that about 5% of the overall variance was explained by 

nonlinear effects, though one series (ASAM206) had some 47% of its variance nonlinear. Moreover, this 

finding was in agreement with the results reported in Chapter 4 for sophisticated linear modelling using 

SARIMA+ (see Appendix).

In Chapter 5 TSMARS was used for out of sample forecasting. Cross validation based forecast errors 

were computed. The distrbution of errors for models discussed in Chapter 2 was computed. The 

associated predictive interval was found to be in line with theoretical values. Cross-validation based plug

in forecasting was also applied to the empirical series. In this case the errors were found to be in line the 

values of the MAPE statistic observed in Chapter 4.

Chapter 6 implemented a novel outlier treatment methodology in TSMARS. This is called the Conditional 

Model Outlier Treatment (CMOT) procedure. We proved that this approach ensures that the model 

selection mechanism in TSMARS is consistent in the presence of outliers.

Three different adjustment procedures are also set out; namely. Least Squares (LSAO), Bounded 

Influence (BIF) and Time Series (TSAO). The LASO method is ideal when residuals are independent. The 

BIF method is suitable when the residuals are independent but may deviate from normality. The TSAO 

method is specific for autoregressive, threshold and additive model time series. We proved this method 

modelled the error process correctly in these cases. Simulation studies show that these treatment 

procedures make TSMARS consistent; that is, TSMARS is more likely to choose a correct model type in 

the presence of an outlier. Both the CMOT procedure and these three outlier treatment mechanisms are 

important contributions to TSMARS and to the subject of robust methods generally.

The outlier adjustment procedures are also run on the ‘test-bed’ of twenty economic time series and we 

found no evidence to alter the conclusions of Chapter 4 - that is, nonlinearity is only present to a small 

degree. Moreover, we find that the nature of the models found suggest that dependent errors may be 

more appropriate to model the twenty empirical CSO series.

In Chapter 7 we extend TSMARS to incorporate moving average (MA) components. This is a particularly 

significant development of the program as many economic time series are better modelled with MA rather 

than AR terms. This extension allows TSMARS to identify SETMA, ASTAR and ASTARMA models; both 

ASTMA and ASTARMA are novel model forms.

To gain efficiency we implement parsimonious MA estimation using conditional least squares (CLS) 

based on a Gauss-Newton procedure. We used two variations of the methodology; namely, Jacobi and
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Seidel iteration schemes. There are a number of important innovations. The Jacobi iteration de-couples 

regimes and estimates each separately. This Jacobi Iteration is only used for finding the threshold as the 

residual sum of squares (RSS) in this step is not too sensitive to the method. Final estimation uses the 

regime dependent Seidel iteration to ensure accurate estimates. In simulation studies this new 

methodology is shown to be statistically sound.

Attention then returned to the study of empirical CSO series using TSMARS with MA estimation. The 

results showed that no improvement over earlier estimates could be discerned. However, simpler more 

stable models were found demonstrating that MA components better explain the nature and extent of 

nonlinearity of CSO series. This is a significant finding.

In Chapter 8 predictive intervals for TSMARS models are computed. We use two novel variations of 

existing parametric and nonparametric bootstrap methods. These ensure that the intervals account for 

explicit dependence of forecast on the last p values of a p’  ̂ order model of a time series. We conduct 

simulation studies that show the predictive intervals obtained for simple linear models are close to those 

obtained elsewhere. Moreover, we apply our methods to simple threshold models driven by three 

different forms of noise. Once again forecast intervals are shown to be accurate and consistent.

These bootstrapping methods were also used to compute predictive intervals for some of the empirical 

CSO Series. The results showed the intervals are generally small for these data. Moreover, these 

intervals were in close agreement with cross validation intervals obtained in Chapter 5 when large 

fluctuations do not occur near the end of a time series.

9.3 Conclusions

The contributions outlined above are an important step in understanding nonlinearity in seasonal time 

series. Substantial gaps in understanding how these series should be modelled with TSMARS have been 

addressed. However, the analysis for all that is Incomplete.

One key finding of the thesis is the evidence of periodicity in the form of PAR effects in the residuals. In a 

sense a PAR model is a kind of vector model approach. This is the main reason why these models have 

not been considered in more detail here in this thesis. However, without incorporating these effects more 

fully into the models used it cannot be said that the nonlinearity identified is present with absolute 

certainty. Further work however remains to be done on this aspect.

The statistical tests used throughout represent a useful subset of tests for seasonal data that are 

available in the statistical literature. However, many more test are available for different types of 

nonlinearity (see Pena 2000). While some of these were examined the evidence showed that the power 

of these was poor. This is the main reason the set chosen was fixed upon. However, an important 

weakness of the testing was the tests did not assess level of nonlinearity in the data, only that the effect 

was evident.

In Chapter 3 one seasonal series (called Model 2) had a spike In every second season that acted like an 

additive outlier. This recurring spike effect caused problems. This however may be handled by calling 

TSMARS twice and using weights on the second call to adjust for any excessive variance arising In the 

seasonal adjusted series; this approach was however not examined. What is less obvious Is that the
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bounded influence outlier methodology is implicitly implementing this by down-weighting large residuals in 

the IRWLS estimation. This method and the TSAO method are expensive, as the computing time required 

roughly doubles. However, computing times associated with the estimates were not reported as they still 

remain reasonable (i.e. within minutes).

In Chapter 7 the approach to identifying MA-type components is also computing intensive. Once again 

experience shows it more than doubles depending on the number of iterations allowed in the Gauss- 

Newrton procedure. This means the method is best used where the number of observations is moderate 

and where standard TSMARS has already been used for preliminary analysis. Clearly the method could 

be reviewed to attempt to improve some aspects of its efficiency.

In Chapter 8 the predictive distribution was examined for TSMARS models. This study was quite limited 

but nevertheless informative. A problem with the method is that when the retained last p-values of the 

series are added back to the bootstrap replicate a discontinuity is introduced. While this was addressed it 

remains an issue for further study. For the block bootstrap the dependence of interval length on the 

chosen block length also need to be investigated. A third limitation of the approach is that seasonality has 

to be handled for the predictive distributions. This was not such a problem for the sieve method but for the 

block bootstrap it is. We avoided the problem somewhat by limiting the block length to the period of the 

data. This meant that the seasonality was not disturbed but of course any underlying nonlinearity may 

have been.

Finally, it should be mentioned that the TSMARS modelling was univariate only. Versions of vector 

TSMARS are available (Hastie 1996) and other related methods such as PolyMARS have been used for 

vector time series modelling (see De Goojer & Ray 2002). The SAS/IML version of MARS used in this 

thesis also includes a reliable multivariate modelling option. Research on modelling and forecasting using 

VASTAR models or VASTARMA models that incorporate seasonality remains to be done.
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10 Appendix

10.1 Linear Time Series Models and SARIMA+
In this thesis linear tim e series models are used to provide benchm ark estimates against which other 

m ethodologies are judged. The key value o f linear models is their simplicity, in addition they are a first 

order approximation to nonlinear models. For short term forecasting therefore, they tend to give excellent 

results that are com parable to nonlinear models.

A  linear model fo r a given a time series variable y , ,  observed at a time point / = !.. .« , is assumed to be 

driven by an unobserved error process e, called the innovation. In addition, it is pressumed that the 

innovation is white noise (WN), that is

£■(£,) = 0 V t

E{e^)  = a l  \ / t

E{e^e,) = Q ^  s , t  and s

where £■(■) is the expectation function. This definition specifies that the errors are uncorrelated. If it is 

further assumed that the errors are independent and identically distributed (i.i.d.) the error process is 

distinguished as strict W N . Therefore, normally d istributed errors are strict WN random variables.

The empirical data used in this thesis are m ainly seasonal time series. Benchmark linear estimates of 

these series are obtained from a Multiplicative Seasonal AR IM A model labelled SARIMA+. The key 

elements of the SAS/IM L program to autom atically estimate this model are now outlined with further 

methodological details available in Pena et. al. (2000) and W ei (1990).

The Multiplicative Seasonal ARIM A model denoted by SARIMA(p,d,q)X(P,D,Q)s o f Box & Jenkins (1976) 

is implemented. This model captures the w ithin period, so called regular, relationships through a 

nonseasonal AR IM A(p,d,q) model and the between period seasonal relationships with the 

ARIMA(P,D,Q)s model. In back shift notation (i.e. with = B y , ) the full SARIMA model is given by

^ p { B ) { \ - B f c ! > ^ ( B ) { \ - B ) ‘‘ y ,  = & Q { B ) a ,  (10.1.1)

where a, is residual strict WN. The p, P order regular and seasonal autoregressive polynom ials are

denoted by (pp and O ;, respectively. The corresponding degrees o f differencing are d (usually 0, 1 or 2)

and D (usually 0 or 1) respectively while the q, Q order regular and seasonal moving average polynomials 

are denoted by 0^ and & q respectively.

Algorithms that allow  fo r automatic model selection and outlier treatm ent of a given time series modelled 

with (10.1.1) have also been implemented. Autom atic model selection is done using the Model 

Identification A lgorithm  given in section 7.3 o f Pena et. al. (2000). This algorithm picks the ‘best’ model 

using the sm allest BIG (Schwarz’s Bayesian Information Criterion).

Model outliers are identified based on standard intervention analysis for ARIM A models, see W ei, (1990) 

Chapter 9. This device handles additive outliers (i.e. shocks), level shifts, transitional shifts and innovation 

type outliers for the SARIM A model for y,  as well as m asking via multiple regression. The methodology
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that comprises automatic SARIMA model selection followed by outlier treatment is referred to here as 

SARIMA+.

10.2 Stationarity, Mixing and Invariants

The NLAR(p) model (1.3.8) of order p from Chapter 1, repeated here, has the general form

yt= (10.2.1)

and quite naturally its study often begins with an analysis of its stochastic stability properties; that is, 

whether the model is stationary. A second related area of study is the dependence structure of the model; 

for time series models this is generally known as mixing.

To establish whether a time series defined by a linear model is stationary is not easy even for simple 

nonlinear models. One method (see Tong 1990) is to apply stochastic Lyapounov equations to establish 

stationarity. This method borrows directly from the Lyapounov ‘energy’ equation approach of dynamical 

systems. Finding a suitable energy function is not trivial and this is one of the reasons why the approach 

has been largely superseded by the ergodic method in the statistical literature.

For (10.2.1) the ergodic method involves expressing the time series model as a Markov chain over 9?'' 

and then establishing that the chain is ergodic. That is, for y, and e, =(s,,0,...,0)^

in 91''there exists a stationary distribution (for simplicity a density) //(y ,) and a given innovation transition 

probability density g(£,) = g(y,|y,_i)such that

(̂y,)= (y, - /(x ) ) f /x  (10.2.2)

Starting off the chain with /((x) = l the stationary distribution can be found by iteratively solving this 

homogeneous integral equation. This clearly is an almost impossible task but in general stationarity can 

be established if the total variation p “ " | | / ! „ (y , |x ) - / !(y , |-> 0  for any x. In this case the sequence {y ,} is 

ergodic if p  = l and geometrically ergodic if p  < 1 (see Fan & Yao 2003).

Closely linked to the concept of ergodic sequences and stationarity for a time series model is the notion of 

mixing. As alluded to above mixing measures the degree of dependence between different parts of the 

time series. Specifically, a mixing time series has the property that the past and distant future are 

asymptotically independent. For mixing sequences both the law of large numbers (i.e. ergodic theorem) 

and a central limit theorem can be established (see Fan & Yao 2003).

For strictly stationary processes (i.e. those driven by i.e. innovations) the idea is to define mixing 

coefficients to measure the strength of dependence for two segments of a time series that are apart from 

each other in time. The most commonly used mixing coefficients are the so-called strong mixing or a- 

mixing sequence of coefficients. To define this sequence let [y,, t = Q,±\,±2,. . ]  be a strictly stationary 

time series. For n = 1, 2, ... define the sequence

a{n) = sup|P(/4)f’(5 )-P (/^5 )| (10.2.3)
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where A is the a-algebra (i.e. set of events over the basic sannple space) generated by the sequence

[ y , , i < t <  j }  and B is the is the a-algebra generated by the sequence { y , , n < t  <<x,}. Intuitively, a(n) 

measures the frequency of values shared by the sequence in A that are also in B. A time series then is 

defined to be strongly mixing if the sequence a(n) tends to 0 with n going to infinity. Strong mixing is in 

fact the weakest form of mixing, essentially based on frequency counts. Other forms of mixing based on 

different norms can also be defined (see Fan & Yao 2003).

The notion of mixing sequences and dependence implies that some form of autocorrelation structure may 

persist in a time series; that is, there may be an invariant sequence (or more generally an invariant set) 

that is recurrent. In deterministic nonlinear systems the invariant set lies on a so-called attractor (e.g. limit 

cycle) that is often characterised by three (or variations thereof) interrelated invariants. These are 

Lyapounov exponents, correlation dimension and entropy. A key ingredient in the study of the general 

dynamical system

is that the system is dissipative. This guarantees that the solutions remain bounded or equivalently that 

the trajectories in phase space converge to an ‘attracting set’ known as an attractor. When the attractor is 

not a stable equilibrium or saddle point, limit cycle or torus it is called as a ‘strange attractor’; a term 

coined by Ruelle & Takens (1971). A well-known example of a simple dynamical system that exhibits a 

strange attractor is the Henon map (see Tong 1990)

+yr x , ^ i = l - a x f  +bx,_i (10.2.5)
ym =bx,

What is important about this system is that even though the solutions (i.e. realisations) are bounded, any 

two solutions that initially start off close soon diverge. That is, the solutions will end up on the attractor but 

will not be close as time evolves. As a consequence the study of nonlinear dynamical systems has not 

emphasised the properties of solutions but rather invariant measures that can be used to characterise the 

attractor. The most popular of these measures among time series analysts is the correlation dimension 

and correlation entropy as they can be estimated relatively easily from the correlation integral.

The correlation integral is usually estimated using the Grassberger-Procaccia Method (see Diks 1999 

among other places). For time delay t  and lag vectors yj" ={y,  y,-^  ̂ • ■ > 'r - (m + i ) r )  length m (known as 

m-histories or reconstruction vectors), the correlation integral is computed according to

where H(») is the Heaviside function and denominator incorporates the Theiler correction (see Diks 1999) 

for dependence among lagged vectors that are close in time. Roughly speaking, the correlation integral 

counts the frequency of repeated lagged patterns in the data as a function of a closeness parameter e . 

For deterministic time series, the correlation integrals for small e and large m behave according to the 

scaling relation

(10.2.4)

( 10.2 .6 )
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(1 0 .2 .7 )

w h e re  D 2  is the correlation d im ension  and K 2  is the correlation en tropy per unit tim e (or correlation  

entropy for short). T h e  correlation d im ension  is the basis of the so-called  B D S  nonllnearity  test (s e e  Brock  

et. al. 1 9 9 6 ) given in next section o f the A ppendix . It can be interpreted as  the d im ension  o f the attractor 

and n eed  not be an in teger but is bounded by m. T h e  correlation en tropy is a  m e a s u re  o f the ra te  of 

d ivergence o f solution that initially start o ff close together. Both of th ese  m eas u res  a re  ind ep en d en t o f the  

initial conditions of the dyn am ic  equation  (1 0 .2 .4 ).

Invariant m easu res  are  pow erful tools for understanding determ inistic  n on linear system s and are  used  in 

the p resen ce  o f stochastic noise. Th is  approach  to tim e series analysis  is popular in en g in eering  and  

adopted  for statistics by, am on g  others, K ran tz & S ch re iber (2 0 0 4 ). H o w eve r, in the p resen ce  o f noise  

com puting th e  invariants can be unreliab le . T h e  problem  stem s from  the fac t that even  if the underlying  

nonlinear function is d issipative th ere  is no reason w hy the sa m e  function (called  a skeleton  by Tong  

1 9 9 0 ) with even  additive noise, as  in (1 0 .2 .1 )  should be stationary. In fac t w h e th er or not the stochastic  

tim e series m odel rem ains bounded d ep en ds on the ‘adm issible s ize ’ o f the noise and  w h eth er this is 

sw am p ed  by the g eom etry  o f the attractor (s e e  C hen  & Tong 1 9 9 4 ). F o r exam p le , th ey  show  that the  

E X P A R ( I)  m odel

y i  +<t>2 + £ t  ( 10 .2 .8 )

is ergodic if | < 1  and the half-w idth  of the support of e, is larger than m ax | ( ^ 2  |  T hus

distinguishing the ‘s ize ’ o f the noise from  that o f attractor is critical. It exp la ins w hy the study o f invariant 

sets tends to  be secondary to understand ing  the stochastic evolution based  on ergodic and  mixing  

properties.

10.3 Relevant Statistical Tests
Testing  o f seasonal tim e series d ata  can  be broadly divided into tests for in d ep en d en t effects  (e .g . trading  

d ay p atterns) seasonal effects and  o ther nonseasonal or regular tests of the residuals arising from  a fitted  

m odel. T h e  regular tests g en era lly  com prise tests of random ness and tests  for specific characteristics  

such as so m e form on nonlinearity. A  set of regu lar and seasonal statistical tests arising in the literature is 

now  outlined. T h e s e  tests will b e  used throughout this thesis to ch arac terise  the lack o f fit o f residuals  

from  a fitted m odel at the 1%  level.

T h e re  are  so m e w ell-know n om issions to the test list. T h e se  include the B i-spectrum  test o f S h u b b o -R ao  

(se e  Tong 1 9 9 0 ) and as genera lisations o f T s a y ’s F-test described in P e n a  (2 0 0 0 ). T h e  reason  for these  

om issions is that the pow er o f the B i-spectrum  test in applications is poor (s e e  P en a  2 0 0 0  for exam p le ). 

T h e  o ther tests are  om itted b eca u se  th ey  specify a  particular non linear m o del, such as th e  b ilinear m odel. 

T h e s e  tests are  so m ew hat less re levan t as  ev idence, for exam ple , o f a y }  co m ponent will show  up as a  

V-shaped threshold at the origin. T s a y ’s F-test, w hich has pow er, is th ere fore  likely to pick up this effect 

and indicate nonlinearity.
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10.3.1 Regular statistical test

Box-Liunq y? test: This is a test of randomness for a seasonal time series model with period s and 

having n residuals. It is computed according to the following formula

+ (10.3.1)
* = i  "  ^

where is the autocorrelation coefficient (c.f. equation (1.2.4)) at lag k. This test value is computed at

lags from 2 through 24 and if statistically significant at 90% or more of the 23 lag values the hypothesis of 

randomness is rejected.

Box-Liunq test: This is a test of randomness that is virtually identical to the Z i except that the

squares of the residuals and used in formula (7.2.1). This test is known to be useful for indicating the 

presence of hetroscedasticity (i.e. possible ARCH effects) in the residual series (see Harvey 1993).

Smoothed coefficient of variation „ :  Based on a s+1 point centred moving average the sliding t-

value is computed to check if the mean of the residual changes with its variance. This may indicate a 

regime change in the innovation sequence.

Tsav’s F-test ( Is a y  1989): This is an ordered autoregression test for threshold nonlinearity. 

Generalisations of the test for other types of nonlinearity are given in Pena (2000). The original test is 

adopted as it has been found to be robust for the data arising in this thesis.

Basically, the test checks for the existence of threshold autoregression by examining the standardised 

predictive residuals that arise through recursive regression. These predictive residuals are ordered 

according to the values of the threshold variable. By doing so a threshold model is transformed into a 

linear model. If there is a regime shift at some point the standardised residuals from the ordered 

autoregression will deviate from normality. Plots of the standardised residuals against the series at 

specific lags may then show evidence of a threshold. The method can be implemented using a Kalman 

Filter but the approach adopted here follows Tsay’s original recursive regression implementation. In this 

implementation of the test, the threshold lag order is tested from 1 through 24 and if significant for 21 of 

the 24 lags tested, then evidence for threshold lag autoregression is accepted. Note however, that 

experience using this test has demonstrated that it is particularly susceptible in the presence of dominant 

frequencies in the spectral density of the residual series. In practice that is, the presence of a cycle in the 

residual series is often misinterpreted as a threshold and so evidence of a threshold is only accepted 

when the spectrum is flat.

It is worth noting that this notion of ordering the residuals according to the threshold value is essentially 

the mechanism underlying TSMARS, the subject of much of the remainder of this thesis.

BPS test (Brock et. al 1996): This is the nonlinear analogue of the Box-Ljung xi^ autocorrelation test on 

the residuals. It is based on the correlation integral (1.2.13) with the closeness parameter 8 chosen at 1 

standard deviation of the data, see Pena (2000)). The test statistic is based on the quantity

„ { e ) - C { e ) " ' \  where lim C „,„(£) = C(£)'"; the statistic is asymptotically normal (see Brock et. al.
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1996). In the implennentation of this test in this thesis lag lengths of m = 1 to 10 are used; evidence of 

nonlinearity is accepted if the BDS statistic is significant for at least half o f these m-histories.

10.3.2 Tests fo r seasonality
The seasonality tests described here rely on the seasonal dummies models outlined in section 1.4. Here 

once again the test is applied to a residual series where it is assumed that the alternative for the test is 

the mean.

Seasonality F -test: This test uses the seasonal dum m ies directly in regression model (1.4.2) giving the 

model

e, = (?i D^ i + (? 2  D j t +<^3 -^3,/ +<^4 , +a , (10.3.2)

(a , is white noise). The associated F-statistic based on the corrected regression sum o f squares is used 

to test whether all the seasonal means ^, = 0 .

Periodic Autoregression of order 1 (PAR(1)) test (Franses 1996): This test is a d irect application the 

PAR model equation (1.4.3) to a residual series using lag order 1 AR polynom ials in each season. In this 

case the regression model is

e, =S^B^ Z )|, + 8 2 8 ^0 2 ,̂ , ^ 4,1 (10.3.3)

where 8  ̂ is the appropriate seasonal lag operator. Once again the F-test is used to test whether all the 

seasonal regression coefficient <J, = 0 .

Periodic Autoregression of order 2 (PAR(2)) test: This test is identical to the above test except that 

order 2 AR polynom ials are used in each season.

Periodic Variation (VPAR) test (Franses 1996): This test checks for periodic hetroscedasticity in the 

residuals. The test is identical to Seasonality F-Test based on equation (10.3.2) except that the residuals 

e, are replaced by their squares giving the regression model

D^ i + 8 2  D 2 1  + <?3 + < ^4  ^ 4 , 1  ' ^ ^ 1  (10.3.4)

10.3.3 Independent predictor tests
Tests are carried out for three independent predictor effects, namely length o f month (MD), trading day 

(TD) or more precisely trading week length, and Easter effects. The length o f month effect is computed by 

subtracting 30.4375 (i.e. the average number of days in any month) from the num ber of days in that 

month while the trading week length effect = number o f work week days -  5 X num ber o f weekend days/2 

(see Pena 2000). The Easter effect is computed according to the Corrected Im m ediate Im pact rule given 

in Ladiray & Quenneville (2001). These 3 predictors are regressed against the residual and the likelihood- 

ratio statistics computed fo r each parameter in the m ultiple regression model. The level for these test is 

taken as 1 %.



10.3.4 Error measures
Two error measures are adopted and these are used throughout the thesis.

Residual Sum of Squares (RSS): This, of course is the usual uncorrected formula based on the errors 

= y, - y , ,  where y, is the estimated value;

1 ”
RSS = - Y e f  (10.3.5)

Mean Absolute Percent Error (MAPE): This measure is often more meaningful for assessing 

forecasting performance in that a portion of the end of the series is used to compute it. Specifically, the 

formula covering the last 3 years of data is
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