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Summary

The Skyrme model is a topological field theory th a t has been shown to be a good low- 
energy approximation to QCD. A particular quantum theoretical treatm ent of the 
model reduces the quantization to a finite-dimensional quantum  mechanical problem, 
selecting significant degrees of freedom of the configuration and quantizing them. 
A long-asked question has been how the quantized configuration differs from the 
classical minimum.
Simulated annealing is a well-known technique for finding global minima of energy 
functions in configuration spaces with numerous local minima. We use it here to 
find the Skyrme model configuration th a t minimizes the energy obtained when the 
quantized spin and isospin modes are included. We include these modes without any 
prior assumptions of symmetry.
We find tha t the quantized isorotational energy is an average of energies obtained 
from rotations around all symmetry axes, and th a t it has only a radially expanding 
effect on the minimum configuration.
We also find th a t the chiral symmetry breaking term  corresponding to the inclusion 
of a pion mass has a substantial efi'ect on higher charge configurations. We find, for 
the examples we have studied so far, the configuration becomes more elongated for 
large pion masses provided the polyhedral skeleton around which the zero pion mass 
baryon density is distributed is non-Platonic.



There are no limits to our capacities 

Because we have the infinite Divine 

Within us.

Sri Chininoy
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Chapter 1

Introduction

The experimental confirmation by Rutherford [1] of the absence of electrons in the nu­

cleus gave rise to the realization that there was an internucleonic force that overcame 

the electrostatic force between protons and kept the nucleus together. The develop­

ment of Quantum Chromodynamics (QCD) in the late 1960’s and early 1970’s gave 

us a description of this ‘strong’ force at a fundamental level within the nucleon itself. 

The long-term goal of nuclear physics is the derivation of physical observables from 

QCD. QCD is non-perturbative at low energies, and the main approach in this area 

is using lattice QCD simulations. However, at the present time most lattice QCD 

simulations work with lattices not much larger than the size of a single nucleon, and 

it is not expected that lattice QCD simulations will be able to obtain direct predic­

tions with the precision of existing data in the near future. Nuclear physics does have 

well-developed phenomenological models based on separated nucleons interacting via 

potentials constrained by nucleon-nucleon scattering data, but there is no underly­

ing theory determining the setting of the many parameters needed to fit the model 

accurately to data, and the search for a connection with QCD is in its infancy. As 

yet, there is no quantitative understanding of the strong interaction at the level at 

which it was first discovered.

One possibility is to use an effective theory that is a good approximation to QCD 

at nuclear energies. At low energies, QCD approximates a mesonic theory with pion 

fields as the dominant fields in the limit of the number of colours {Nc) going to infinity
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[2, 3]. There are only three quark colours in SU(3) QCD, of course, but it is felt that 

this approach is a promising starting point for describing low energy phenomenology, 

such as the dynamics of hght nuclei. No-one knows what this large-A^c effective theory 

should look like, except that it should produce solitonic baryon solutions and that to 

a first approximation the phenomenological behaviour should be similar to a theory 

of pion fields only. The simplest reasonable choice for such a theory is the Skyrme 

model.

The Skyrme model is a classical field theory originally developed [4] a^ part of the 

original search for a description of the strong interaction. The theory treats baryons 

as solitonic configurations of pion fields, identifying the baryon number B  with the 

soliton‘s winding number. A very good review of early work in the the Skyrme model 

and large-//c QCD can be found in [5].

Notwithstanding its connection to low-energy QCD, the Skyrme model is an inter­

esting model to study in its own right. The theory has proved capable of describing 

at least some aspects of nuclear behaviour. The main features of the nucleon-nucleon 

interaction can be deduced from the model, including the short range repulsion corre­

sponding to the Pauli exclusion principle [6]. For light nuclei, Skyrme configurations 

are most stable when considering baryon numbers corresponding to ^He and ^Li, the 

stable nuclei in that region [7]. Of particular importance is the simple quantization 

of the Skyrmion of unit baryon number [8], which gives reasonable predictions of 

nucleon and delta resonance properties.

The Skyrme model is also remarkable in that soliton configurations corresponding 

to baryons can be obtained from a mesonic field. Bound-state Skyrme configurations 

exist for values of B  greater than one [9] and the minimum energy configurations 

have a skeletal structure with a very high degree of symmetry [10], as illustrated by 

the examples in figure 1. In most minimum energy configurations, the baryon density 

is concentrated around a spherical shell away from the origin. The B = 2 solution 

is shaped like a torus, and the configurations have Platonic symmetries in the cases 

of B =  3 (tetrahedron), B = A (cube) and B — 7 (dodecahedron). Almost all of 

the minimum energy Skyrme configurations found so far have a skeletal structure
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Figure 1-1; Baryon density isosurfaces of classical Skyrme configurations of baryon 
number seven and eight. The baryon density of the B  = 7 configuration is distributed 
around a dodecahedral skeleton; for the B = 8 the skeleton is fullerene-shaped.

consisting of three-way vertices characteristic of fullerenes; a Skyrme configuration 

has even been found th a t resembles a buckyball.

The Skyrme model is non-renormalizable, and no serious attem pts have been 

made a t a full quantum  field theoretical treatm ent. Most quantization approaches 

have reduced the Skyrme model to a finite-dimensional quantum  mechanical system, 

quantizing the relevant particle degrees of freedom. For a static Skyrme solution, 

the relevant degrees of freedom are the spin and isospin rotational modes and the 

vibrational modes. The energy of a classical Skyrme configuration does not change 

under spatial rotation or rotation in isospin space; therefore, the spin and isospin 

degrees of freedom are called the zero modes of the solution. Pioneering work in 

Skyrme model quantization was done [8] in which the zero modes of the classical 

B = I minimum energy solution were quantized. Subsequent quantization approaches 

[12, 13] allowed the shape of the 5  =  1 Skyrme configuration to move away from the 

classical minimum under rotations, and showed th a t Skyrme configurations require 

a sufficiently high pion mass to  be stable.

However, so far these changes in the configuration were made while still main­

taining spherical or axial symmetry. The true zero mode quantized configurations 

are those th a t minimize the total energy obtained by quantizing the rotational and 

isorotational degrees of freedom without any symmetry assumptions. Such config­

urations might be the key to addressing one current unanswered question in the



Skyrme model; namely, that the ground state quantum numbers obtained for some 

Skyrme configurations do not match those of their counterparts in nature [14, 15]. 

The allowed quantum numbers depend on the topology of the space of zero modes, 

which in turn depend on the symmetries of the configuration; perhaps allowing the 

rotational and isorotational degrees of freedom to change the configuration shape will 

give quantum numbers consistent with experiment.

The effect of adding a term to the Skyrme energy corresponding to the addition 

of a pion mass is itself a topic of current interest. With the addition of this term, 

the baryon charge density of the minimum energy solution is spread more evenly 

throughout the configuration volume, and so a minimum energy configuration with 

pion mass has a shorter mean radius than a minimum energy configuration of the same 

baryon number with zero pion mass. As we have discussed, when the configuration 

has zero mass much of the baryon density is concentrated on the surface, and so the 

size of the configuration scales as \fB. However, due to the volume contribution 

of the pion mass, the size of nuclei scale as \ /B,  in agreement with experiment. 

There are also indications [16] that the pion mass causes significant changes to the 

structure of minimum energy Skyrme configurations. The shell like structures that 

are the minimum in the massless case might no longer be the minimum if a large 

enough pion mass is added, and it is an open question what the new configurations 

might be, or even if for some values of B  there is any bound configuration at all.

Put simply, our goal in this research is to find out what effect the zero modes and 

the pion mass have on Skyrme configurations. To do this, we require a means where 

given a Skyrme energy functional, the configuration corresponding to the minimum 

energy of the functional can be obtained in such a way that the structure of the con­

figuration is clearly visible. However, the space of all possible Skyrme configurations 

is dotted with local energy minima whose number increases as more degrees of free­

dom are considered, and a minimization algorithm th a t goes straight for the nearest 

minimum may well end up trapped in a configuration that is not a global minimum. 

A perturbative method which is able to move out of local minima is needed.

The simulated annealing algorithm is such a method; it also has the advantages
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of being robust and easy to apply to  a wide range of problems. In addition, advances 

in computing speed mean we can now compute minimum energy configurations in 

a reasonable time, using general formulae for the energy of a rotating Skyrme con­

figuration th a t do not make any prior assumptions about symmetry. A definitive 

zero-mode quantization is now within reach.

In the next chapter, we shall give a more detailed account of the Skyrme model, 

including the topological and quantization issues of interest to us, before expanding in 

detail upon our own approach. The third chapter contains a description of our imple­

mentation of the simulated annealing algorithm, and describes the features peculiar 

to perturbing a topological configuration on a discretized lattice. An adaptation of 

the algorithm whereby 3D configurations can be annealed on 2D lattices using axial 

symmetry is described. In the fourth chapter we shall present the results of our sim­

ulations. We investigate the effects of high pion masses on Skyrme configurations, 

first focusing on the B =  8 case, which has low binding energy and a ground state  

with no zero mode energy. We then investigate other values of B,  and produce a 

general hypothesis about the effect of pion masses on minimum energy solutions. We 

produce new results for the Skyrme configurations modelling the nucleon and delta, 

and determine the effect of the rotational energy on higher charge Skyrme configu­

rations. The last chapter will be given to concluding remarks and some ideas about 

how to proceed onwards from our work.
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Chapter 2 

The Skyrme model

2.1 Introduction

The Skyrme model is a non-linear sigma model, im which the dynamics are described 

by a scalar meson field a (x) and a pseudoscalar- pion field tt, with the constraint 

cr̂  +  TT.TT =  F^/4, where is a constant.

These fields can be incorporated into an SU(2 ) matrix f/:

as the expansion around the vacuum expectation value tt =  0 of the exponentiation

Written in terms of the vector currents of the field U (x), the Skyrme

model has the Lagrangiar.

7T

(2 .1)

where I 2 is the 2 x 2  identity matrix and r  are Ithe Pauli matrices. U can be seen

(2 .2)

L I d=x - ^ T r  {R^R“) +  J^ T T r {{R„ R,]{R“, /{-])

TV ( ( 7 - 1 ) 1  , (2.3)

where and e, along with F ,̂ are free parametejrs of the model.
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The classical Skyrine mass for a sta tic  field Us (x) can be derived from this La- 

grangian and  is

Ed =  E 2  +  E 4  Em (2-4)

where

E 2 =
F l
16

J  d^x T v { R ^ R , )

Em  = d=x T r ( t / - 1 ) .  (2.5)

2.1.1 T he sigm a m odel term

E 2  is the unique term  th a t is second order in the derivatives of th e  a  and tt  fields:

E2 = \  (2.6 )

and is generally referred to  as the sigma model term . Solitonic configurations w ith 

baryon num ber exist as solutions of the sigm a model te rm  on its own. However, these 

configurations are not energetically stable in 3D space by D errick’s theorem  [] 7]. This

can be seen by a rescaling of U (x) as x  goes to  Ax. T he in tegration  m easure d^Ax

transform s as

d^ (Ax) (AM^x ) (2.7)

and the spatial derivative d  d{Xxi )  as

«  ^ (2 .8 )
d (Xxi) \ X  J dxi

Therefore, the scaled energy is

Ê , ^ E 2  (2.9)

8



Clearly, energetically favourable configurations have zero energy, and  the resulting 

Skyrmion collapses to  a  point.

2.1.2 The Skyrme term

T he E 4  te rm  was added by Skyrme to  stabilize the soliton, and  is com monly referred 

to  as the  Skyrm e term . In th is case, the energy scales as X E 4 . We can easily

verify th a t w ith th e  addition of the  Skyrme term  a tru e  minim um  is obtained, and 

Skyrmion collapse is prevented;

d E  (Ax) ^  ^  =  \
dX E i

d^E{Xjc)
dX^

=  0 => E 2 >  0

There are o ther possible four-derivative integrands we could place in the  Lagrangian 

which could stabilize the soliton, for exam ple T r[(5i?^)^], bu t the Skyrme term  is 

the  unique term  th a t  gives rise to  a positive H am iltonian and  also the  unique term  

th a t gives rise to  a  H am iltonian th a t is second order in tim e derivatives. T he la tte r 

is especially im portan t because there are problem s w ith the  stab ility  of th e  classical 

solution once term s of higher order in tim e derivatives are included.

Stable 3D configurations can also be produced by adding higher-order energies to  

the  sigma m odel term , for exam ple a sixth-order term  E q [19]. However, the  addition  

of such term s as higher-order corrections to  the Skyrme mass (2.4) seem to  have no 

effect on th e  s truc tu re  of the m inim um  energy configuration, save for a slight radial 

expansion [20, 21].

2.1.3 The pion mass term

T he th ird  term  in the  energy, Em,  is a chiral sym m etry breaking te rm  first added in 

[18]. Inserting the pion expansion (2.2) of U  into the Em,  we see th a t  it is indeed a

9



E(̂ )

E-+ E. +E2 4 m

Figure 2-1: Plot showing how the energy changes as the length scales from x  ^  Ax. 
The solid line shows the sigma model term only, the dashed line is with the Skyrme 
term  added and the dotted line is with both Skyrme and sigma model terms added.

mass potential term, with as the pion mass:

Both the sigma model and Skyrme terms are invariant under the SU(2) x SU(2) 

chiral transform ation sending U —̂ GUH~^,  where G and H  are arbitrary  SU(2) 

matrices. In nature, SU(2) x SU(2) chiral symmetry is only good to within 5%- 

10%, and it was argued that a symmetry breaking term  might yield a closer fit to 

nature in their quantization approach than  th a t obtained in [8]. Introducing this 

term  did not modify the minimum energy solution significantly for the nucleon and 

delta resonance cases studied in [18]; however, the term  has been retained in many 

Skyrme model approaches to counteract instabihties in the quantized configuration 

caused by rotation. These instabilities will be discussed in section 2.4.

(2 .10)

The pion mass term  scales as

(2 . 11)
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m =345MeV
F(r) m = 0  MeV

2.5

0.5

r(fm )

Figure 2-2: Plot of the numerically determined profile function for the minimum 
energy D = \ configuration in the hedgehog ansatz as a function of radius r  from the 
origin, for pion mass values of m̂ r =  0 and m̂ r =  345 MeV.

2.1.4 Energy and length scales

We can scale the parameters F̂ r and e out of the sigma model and Skyrme terms 

entirely by setting appropriate energy and length scales: a choice of F^/4e as our 

unit of energy and 2jeF.^ as our unit of length yields

L =  I d ^ x  - ^ T t { R ^ R n  + ~ T v { [ R ^ , R u W , R ^ ] ) + m ^ T r { U - l )  (2.12)

where for convenience we use the scaled pion mass m =  2m., /̂FT .̂ The scaling changes 

the static Skyrme energy functional to

- I d '^ x 4  TV{R^R^) -  ^  m ,  Rj][Ru Rj]) - m ^ T r { U - l )  
I  I d

(2.13)

2.1.5 The hedgehog ansatz

An important solution to the Euler-Lagrange equation of the Skyrme model is the 

unit baryon number ‘hedgehog’ ansatz suggested by Skyrme

f /  =  e i / ( r ) n .r (2.14)
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The hedgehog moniker derives from the fact the the pion field vectors all point radially 

outward.

A radial function /  (r) that takes a value of tt at the origin and tends to zero at 

long distances yields a Skyrme conf.guration with unit baryon number. Indeed, /  (r) 

can be numerically generated such that the hedgehog map describes the minimum 

energy B = I Skyrme configuration. Numerical solutions for zero and nonzero pion 

mass are shown in figure 2-2.

2.1.6 A note on sym m etry

We described the elegant symmetries of Skyrme configurations in the introduction; 

we need to say a little more about what we mean by symmetry. For example, we 

do not mean by spherical symmetry that the Skyrme field is just a function of the 

radius r; such configurations have no winding number. When we refer to the spatial 

symmetry of the solution, we mean that a symmetry transformation acting on the 

Skyrme configuration in space can be compensated by a transformation in isospin 

space of the form

U AUA^ (2.15)

where A  G SU(2). This isospin symmetry comes from the spontaneous breaking of the 

chiral symmetry brought about by the constraint that the field tend to the vacuum at 

long distances. The simplest way of distinguishing the two rotations is to say that the 

spatial rotation rotates the coordinates x, whereas rotations in isospin space, known 

as isorotations, rotate the pion fields tt. Defining a spatial field symmetry this way 

makes the physically observable energy and baryon charge densities £  and B strictly 

invariant under that symmetry
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2.2 Sigm a model topclogy

The Skyrme field ^7(x) is a mapp;ng from —> SU(2), arud hence to its group

manifold 5^. However, in order to leep the configuration energ;y firite we must 

impose a suitable long-distance constrxint. The condition

!im U (x) =  1 (2-16)
|x |—oo

maps all points at infinity in to ore point, compactifying th e  dom ain to the 

topological three-dimensional sphere S'. As detailed below, th e  m ap  is non­

trivial; it is possible to split the set o' all such maps into disitinct subsets th a t are 

not continuously deformable into each other. These subsets ane known as homotopy 

or Chern-Pontryagin classes.

More technically, the homotopy clisses of a m ap from th(e n-sphere 5" to any 

topological space X  form a group k nw n  as the n -th  hom otopy group of X  and 

denoted 7r„ (X). Thus, the horr.otipv group of our mappinjg is 7t„ (5^). For all 

k, TTfc (5^) is isomorphic to Z [22], and we shall refer to the initegeir label of 7t„ (5^) 

as the topological charge or winding number. The im portant P'oint is that, since any 

time evolution of the configuration can be understood as a hom otopy transformation, 

the corresponding winding numbers are conserved independently off the dynamics.

To construct an explicit form for tie  winding number of a  conifiguration in the 

space Q of all Skyrme configuratiDns

B : Q ^ Z  (2.17)

in the Skyrme model, we mast first write down the norm alized volume element in 

the range SU(2):

A d U U -^  A d U U - ^ )  (2.18)

The degree of the Skyrme rr.ap L : SU{2)  is independent off £.nd given by

the pull-back of to the domain 5^

13



The in tegrand is the  Jacobian  J  (x) of the m ap a t x.

We shall now show th a t deg U takes integer values, and is, thus, the  winding

back U* (fi) is concentrated  around the points {xi, . . . ,x ^ } . The integral of U* (fi) 

over a neighbourhood of a point

is ± 1  depending on the  orientation o i U \  we dem onstrate  th is by a naive change of

This winding num ber was equated to  the baryon num ber by Skyrm e [4]; a  more 

physical justification in term s of large-A^c QCD [24] shows th a t the  in tegrand is in fact 

equal to  the conserved N oether current associated to  the  baryon charge. T he baryon 

num ber provides a lower bound on the  minim um  mass of a  Skyrme configuration. 

Rewriting the Skyrme energy (2.13) using the  skew-herm eticity of and  applying

num ber B  of the  m ap U [23]. We choose an element U of SU(2) such th a t the  set 

of points { x i,...,x m }  in R 3 th a t get m apped to  U have non-zero Jacobians for the 

map. The fim ction
771

B  =  ^ s i g n  ( J  (xfc)) (2 .20)
k=l

counts the  points a:^, adding -1 if the orientation of U is reversed at x^. B  is clearly 

an integer; we now show th a t B  =  deg U and is thus independent of the  choice of U. 

If the volume element is deform ed to  a small neighbourhood of U, then  its pull-

(2 .21)

coordinates from x  to U

( 2 .22 )

which is equal to  the  sign of J  (x). Sum m ing over all Xi reproduces the  formula 

( 2 .20 ).
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Figure 2-3; Tlie likely shape of Skyrine configuration space for 5  > 1; many local 
minima with energies quite close to each other. In Chapter 3 we shall conclude that 
simulated annealing is the best approach to finding a minimum energy solution in 
such a landscape.

the Cauchy-Schwarz inequality, we obtain

E =

>

d^x Tr

(2.23)

or

(2.24)

Equation (2.24) is sometimes referred to as the Bogomol’ny bound; in fact no non­

trivial Skyrme configuration exists such that this bound is completely saturated.

2.2.1 Solutions with B > 1

As described in the introduction, minimum energy Skyrme configurations with baryon 

number greater than unity have a high degree of symetry. Two or more bound state 

solutions with different symmetries exist for each value of B > 1, and the number of 

solutions with different symmetry tend to increase with B.
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Identifying minimum energy solutions has not always been a straightforward pro­

cess; for several values of B,  minimum energy configurations were incorrectly identi­

fied which turned out to have different symmetries than the actual minimum energy 

configurations. In some cases, the energy minima for two different structures cor­

responding to the same value of B have been so close as to be almost degenerate; 

examples of this are B =  10,13 and 16. Almost all values of i? > 10 have solutions 

with different symmetry than the minimum energy solution but not much higher en­

ergy. For B < 10, very little research has been done into higher energy solutions, but 

the same is probably true to a lesser extent. Due to the structure change, the energy 

barrier between bound states of the same charge B is probably quite high. Thus 

we can conclude that the energy ‘landscape’ mapped out by the space Q of Skyrme 

configurations most likely consists of many local minima with deep potential wells. 

In addition, the number of local minima in the the configuration space of baryon 

number B solutions Q {B) increases with B.
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2.3 T he rational map ansatz

Many shell-like solutions of higher minimum energy solutions of baryon number B >  1 

are similar in appearance to BPS monopole solutions of the same monopole number. 

The rational map ansatz was developed in [25] as a means of easily approximating 

minimum energy solutions; it was motivated by a similar association of rational maps 

to monopoles [26].

A rational map is a function from which is holomorphic in the Riemann

sphere coordinates 2  =  tan {6/z)e''^. A g;eneral rational map of degree B  has, as 

the name suggests, the form

(2 2̂5)
Pi Z^  +  P2Z + ■■■Pb - i Z + P b

In the ansatz, the unit vector v/hi:h appears in the Skyrme hedgehog 2.14 ansatz,

n =  (sir.0cos<;i!), sin^sinc/), COS0) (2.26)

Re^ I m .  l - | z P \
1 +  1 -t- 1 +  l l̂

is replaced by a unit vector written in term s of rational maps

f  ReP.(;) I mM( z )

giving rise to a new field ansatz:

U = (2.29)

Any function /  (r) which has /  (0) =  tt a n d  tends asymptotically to zero for large 

r will yield a map with baryon number B.  To find approximations to the minimum 

energy solution, R{z )  is first simplified using the symmetries of the known charge- 

B  minimum energy solution. Numerical algorithm s are then used to find profile 

functions /  (r) th a t minimize the rational m ap energy, Erat, obtained by inserting
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the ansatz into the classical energ/ (2.13):

/Jo

■CO

+ T  ̂ -, J  +  2m^ (1 — cos/) I (2.30)

where
1  ̂ / 1 +  k P  ̂ 2i dz dz

(2.31)

is a real-valued function that depends only on R{z) .  Rational maps th a t minimize 

J  have been numerically computed for all IB < 40; the integrand is independent of

and so the rational map (2 25) that rniinimizes I  is the same for solutions with 

and without pion mass. Using the minimize;d value of X, profile functions th a t min­

imize the rational map energy (2.30) can be; oibtained by one-dimensional simulated 

annealing.

Originally the map was used to model solutions with m,r =  0, and produced 

energies only a few percent abo/e :hose of tlhe numerically determined minima. It is 

not known if ansatze modelling coafiguratioms with high pion masses are as accurate 

as those modelling configuraticns with zer(o pion mass, simply because minimum 

energy configurations with large p;on mass aire not yet available. By obtaining these 

minimum energy configurations using simuliat ed annealing, we will then be able to 

compare them to their rational mtp counter'parts.

IS



2.4 Skyrm e m odel quantization

A seminal paper on Skyrme model quantization is that of Adkins et al. [8], in which 

the 5  =  1 Skyrme ‘hedgehog’ ansatz (2.14) is quantized. The calculation obtaining 

the zero mode Lagrangian of a general Skyrme configuration is described in section 

2.5; in the specific case of the hedgehog ansatz, the Lagrangian becomes

(2.32)

where to is the angular velocity of the rotation; for spherically symmetric configu­

rations spatial rotations and rotations in isospin space are equivalent. Ed is the 

classical energy (2.13) written in terms of the hedgehog ansatz profile function /  (r):

= d r j r ^ d

and A is the moment of inertia:

dr
+ 1 sinV + (2.33)

A =4. r
Jo

dr r^sin^/ 1 +  ̂ s in"/
dr

(2.34)

Introducing the conjugate angular momentum J  =  Au, and defining quantum states 

on which the operator has the eigenvalue { j  + 1), we write down the quantum 

Hamiltonian
P

H = E,i + —  " 2A
(2.35)

This approach is often referred to as ‘rigid-body’ quantization, as the inertia of the 

classical Skyrme configuration is used to calculate the quantized rotational energy; in 

this approach, quantization does not change the minimum energy configuration. But 

the softness of the soliton with respect to shape changes away from the hedgehog 

ansatz configuration was soon recognized [27, 28], and it was clear that the most 

obvious zero-mode correction to the rigid-body result was to allow for the possibility 

of the shape of the Skyrme configuration changing as a result of spin and isospin 

rotations. This can be done in a straightforward manner, by allowing the Skyrme

19



configuration to minimize the full Hamiltonian (2.35) instead of just Ed', the resulting 

Euler-Lagrange equation can be solved numerically, and was done so in [12] with the 

addition of the pion mass energy term. For convenience, we shall just show the

The pion mass m,r, therefore, sets an upper limit as to how fast the configuration 

can rotate. Beyond this limit /  (r) is oscillatory, and the configuration has infinite 

energy. The experimental value of =  138MeV is too small to enable the Skyrmion 

to spin fast enough to match nucleon and delta resonance masses without becoming 

unstable. A new calculation [29] showed that proper fits of F.̂  and e to experimental 

data can be obtained only by increasing m̂ r to well above its experimental value.

2.4.1 Effect of quantization on Skyrm e param eters

The quantities F.̂  and e have usually been treated as the free parameters of the 

Skyrme model. Those working on the model have largely tended to adopt the values 

of e =  4.84 and =  108 MeV obtained as a result of rigid-body Skyrme quantization 

with set to its experimental value of 138 MeV [18]. These values were found by 

comparing quantized nucleon and delta resonance masses to experiment. Although 

there are no values of Ft̂ and e that would produce stable Skyrme models of either 

the nucleon or the delta resonance w'ith the experimental pion mass, the parameters 

obtained in [18] have remained in use as a means of comparing different approaches 

to the Skyrme model. As described above, one can fit 5  =  1 data to the Skyrme 

model for large values of the pion mass, and future approaches may use parameters 

similar to the set of m̂ r = 345 MeV, e =  4.84 and Ft̂ =  108 MeV obtained in [29].

leading terms in the Euler-Lagrange equation to order 1/r^:

dr'i r  dr 4A^+ + sin2/ — m ^sin/ =  0 (2.36)

Thus the function /  (r) has a Yukawa-like decay as r ^  oo:

(2.37)
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On the other hand, Skyrme parameters have been obtained up to now using a 

quantization procedure that only takes into account the zero modes of the configura­

tion. There is evidence tha t the addition of field and vibrational modes would have 

a substantial effect on the configuration. The minimum energy solutions of baryon 

number B  are much more tightly bound than  their counterparts in nature; for ex­

ample, a B =  2 toroidal configuration has a binding energy of 186 MeV compared 

to 2 MeV for the deuteron it models [9]. The addition of vibrations to the space 

of modes to be quantized would reduce this binding energy considerably. A number 

of investigations of the vibrational modes of various Skyrme configurations have al­

ready taken place [30, 31, 32] and some ideas about how to use simulated annealing 

to incorporate vibrational modes of freedom are given in Chapter 5. Quantum  field 

modes are much more difficult to  treat, although a numerical scheme to evaluate the 

zero point quantum  corrections to soliton masses has been examined [33].

A more thorough quantization of the zero mode states might also yield better 

parameters. Specifically, allowing the configuration to change shape without prede­

termined symmetries might lower the masses enough to enable stable-configuration 

fits of Ftt and e while constraining mjr to its experimental value. A generalization of 

rigid-body quantization that will allow us to quantize a Skyrme configuration of any 

symmetry is described in section 2.5.

2.4.2 Sym m etry and higher-charge quantization

A quantization of the Skyrme model yields energy eigenstates with spin I and isospin 

k. In this section, we shall see th a t for a given value of baryon number B ,  there 

are only certain combinations of I and k which are consistent with quantizing the 

configuration as a fermion in the case of o d d -5  configurations, or as a boson in the 

case of even-B configurations.

Ideally, Skyrme wavefunctions should obey the requirement th a t we can quantize 

them as fermions or bosons according to their spin quantum  number. Suppose we 

have a state consisting of one or more separated B  = 1 Skyrme configurations. If 

this state is to be quantized as a fermion, the wavefunction \'ip) must change sign
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if one of the configurations ro.ates by 27r. Rotations by 27t are closed paths in 

Skyrme configuration space Q tia t are not continuously deformable to a point; other 

examples of such closed paths ire ro tations of a configuration by any angle 9 such 

th a t U{e)  = U{0).

These closed paths fall into two hom otopy classes [34]; those rotations th a t are 

continuously contractible to a p>int and those th a t are not. By allocating the follow­

ing phase to the wavefunctioii

the state can be quantized in wo ways, O'Ue corresponding to quantizing it as a 

fermion, the other to quantiziig it as a  boson. Cfr  are known as Finkelstein- 

Rubinstein (FR) constraints. lo ta tions by 27t of B =  1 configurations with half­

integer spin are noncontractibli [35], and  so B =  1 configurations corresponding 

to the nucleon and delta resonmce can be quantized as fermions. This result was 

extended to configurations of al baryon numbers by the observation [24] th a t 27t 

rotations are noncontractible ii the baryon number is odd, which is the case for 

half-integer spin.

If a Skyrme configuration is iymmetric, there  are additional closed paths we can 

use to constrain I and k. For ex<mple, if a configuration has C2 rotational symmetry 

about a given axis, then a rotition by n  abou t th a t axis is a closed path, since 

U {n) = U (0). If a spatial rotition by a  followed by an isorotation /5 is a closed 

loop, we can apply the FR constraints once we have determined whether the loop is 

contractible or not. The allowedspin and  isospin quantum  numbers I and k are then 

deduced by:

I, loop is contractible,

— \  loop is non — contractible.
(2.38)

so th a t a 2tt rotation R  has the effect

(2.39)

(2.40)
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The difficulty lies in deciding whether a closed loop is contractible. Rational 

map ansatze which have the same symmetry as the minimum solution were used to 

derive a  general formula in [14], Another method [15] relied primarily on separating 

the configuration into smaller configurations with known contraction properties to 

obtain the quantum  numbers. The results of the two approaches are summarized in 

table 2.1 for baryon numbers from five to nine. Results for all baryon numbers from 

1 to 22 were obtained in [14]. In both  approaches the general result is the same: 

the even-B  quantum  number match the corresponding experimental value, whereas 

almost all the odd-i3 quantum  numbers do not.

Both approaches assume that the the ground state quantum  numbers are the 

numbers with the lowest values of I and k consistent with the FR constraints; the 

underlying assumption being tha t the dominant terms in the rotational energy have 

the form

E r o t  =  h (2.41)
2U 2V

where U and V  are rotational and isorotational moments of inertia. A change of 

Hamiltonian might yield a lowest energy state for higher quantum  numbers; for ex­

ample, the addition of a strong spin-isospin cross term, or the generalisation of the 

Hamiltonian to include spin and isospin inertia tensors with large non-diagonal ele­

ments.

However, for some baryon numbers the ground state quantum  numbers found in 

nature are not even allowed by the FR  constraints. For example, in the B  = 7 case the 

spin 3/2, isospin 1/2 state  is forbidden, even though those are the quantum numbers 

of the ground state for the Li^ isotope. States corresponding to the experimentally 

determined ground states are in the enlarged set of allowed wavefunctions obtained by 

combining vibrational modes with the rotational modes [15]; however, some of these 

states clearly have higher energy than the predicted minimum quantum  numbers.

Another possibility is th a t with the addition of rotational energy, the minimum 

energy configuration differs from the classical minimum structure so th a t the FR 

constraints obtained above are no longer applicable; we should instead find the con-

23



B Theory Expt. State in rotational 
spectrum?

State in vibrational 
spectrum?I k I k

4 0 0 0 0

5 1
2

1
2

3
2

1
2 Not in [15], first ex­ Yes, but I = ^ , k  = ^

cited spin state in [14] is lower energy

6 1 0 1 0

7 7
2

7
2

3
2

1
2 No Yes, but cannot deter­

mine if it is ground
state

8 0 0 0 0

9 1
2

1
2

3
2

1
2 Not in [15], first ex­ Yes, but I = ^ , k  = ^

cited spin state in [14] is lower energy

Table 2.1: The ground state quantum  numbers obtained in [15, 14] for B  from four 
to nine are compared with experiment. The second last column asks whether the 
experimental ground state is in the spectrum of quantum numbers obtained by con­
sidering the rotational and isorotational modes. The second column asks whether 
the ground state numbers are obtained if the rotational modes are combined with 
vibrational modes as in [15].

figuration th a t minimizes

E  = Ed + Eroti (2.42)

where E^i is the classical energy functional (2.13) and Erot is obtained w ithout any 

symmetry assumptions; we shall describe how to do this in the next section. The 

symmetries of this configuration can then be used to find new FR constraints and 

hence new quantum numbers I and k which can be compared with experiment.

One indication th a t this approach might work is given by the fact th a t the zero 

mode quantized configuration is more likely be different in shape from the classical 

minimum in the odd-S  sector. The spin and isospin inertias are equal for 5  =  1, 

but then U increases as B'^ whilst V  increases as B, a t least when m̂ r =  0. Thus, 

isospin energies are larger than  rotational energies, but they do not contribute for 

the even baryon number states calculated in [15, 14] since k =0. However, k = 1 /2  

for odd-fi states, and zero mode energies for odd-S  states have more influence on 

the final configuration than for even-Z? states.
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Another indication is that Skyrme configurations are soft with respect to non 

rigid-body rotation around an axis, and these rotations tend to reduce the symmetries 

of the minimum energy configuration. Each symmetry places additional constraints 

on the wavefunction, and so we expect the spectrum of allowed states to be greater 

for configurations for which the symmetry has been lowered by rotation.

The approach for obtaining FR constraints for rational maps [14] has been gen­

eralised so that constraints can now be obtained from numerically generated config­

urations [37], The possibility of finding configurations that yield values of I and k 

consistent with experiment has been a major motivation in our research.
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2.5 A definitive zero m ode quantization

Before we derive the general symmetry-independent form of the quantized rotational 

energy Eroti we should first emphasize the difference between our approach and the 

rigid-body quantization carried out in [8]; there, the quantization is carried out on 

the rotational and isorotational modes of an already-determined classical minimum 

configuration. Rather than investigating the modes of a specific Skyrme configura­

tion, we want to consider the zero-mode space of fields generated from a general static 

configuration Ug (x) by isorotation C and rotation D:

U{y.) = CUs{DijXj)C^ (2.43)

where C  is in SU(2) form, and Dij is an SO(3) rotational matrix representation of the 

SU(2) matrix D. All Skyrme configurations obtainable from the classical minimum 

energy configuration as a result of rotation and isorotation lie within this configu­

ration space. Rotation and isorotation are symmetries of the original Lagrangian

(2.12), so classically these configurations are all energy-degenerate.

The effective Lagrangian on this restricted space of configurations can be calcu­

lated by treating C  and D as time-dependent coordinates. We follow the approach

first generalized in [36], inserting the time-dependent field (2.43) into the Lagrangian

(2.12) to obtain L = ~ E  + Lroti where E  is the Skyrmion mass (2.13), and

Lrot = I  d 'x  ( - ^ T v  {F + G f  -  ^Tr {[R„ F + F  +  G])^ , (2.44)

the skew-Hermitian currents F  and G are given by

F = C ^ C - U C ^ C U \

G =  DijDji^XkRu (2.45)

with

U =  t/(x), (2.46)
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and

Xj DijOCi.

Setting Qi =  —zTr aiC^C, we write F  =  ^kTk,  where

Similarly, setting ujj =  -zT r we obtain

Thus the Lagrangian due to ihe zero modes is

where the matrices Uij, Vij and Wij are given by the following integrals:

=

d \ lv{nT,) + -Tr{[R,,T,][Rk,T,])

Xi T r i T M  + -Tr{[Rk,T,][R,,Rra])

-/ d X XiXp Tr {RmRq) +  4 Tr Rm][Rk, i?q])

Lrni can be written as

where

U  =
- W i j

- m j  V,,
,a  =

a;

n

We define an angular momentun L canonically conjugate to a:

(2.47)

(2.48)

(2.49)

(2.50)

. (2.51)

(2.52)

(2.53)
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where U  is the  sym m etrizition \ { U  + of U.  Thus, the  H am iltonian of the  spin 

and isospin degrees of freeiom :s

To obtain  the eigenvalues of this H am iltonian  we first note th a t L can be split up 

into its spin, L, and  isospii, K , part.s

For a  spin-i, isospin-fc {article the: angular m om entum  operators L can be w ritten  

as {21 +  1) X {2k +  l)-dimaisional m a tr ix  representation  E f , E 2  , E 3  of SU(2), as can 

the isospin operators off K  for an  isospin-n particle. If we define our

quantum  sta te  as a  |/, I3 ) 0  \k, A3 ) st.ate. I, I3  and  k, k^ being the  quantum  num bers 

for L and K  respectively, >ve c£.n th<en em bed L and  K  into the  resulting S0(3)-^x 

S 0 (3 )^  direct p roduct spa::e;

(2.55)

(2.56)

(2.57)

K

(2.58)

W hen these representation, of L andl K  are inserted into the  H am iltonian H , it be­

comes a m atrix  w ith (2/ -  1) > {2k +  1) eigenvalues. To calculate the zero mode



Isospin Spin Particles applied to

0 1,2 ,3 Even-5  Nuclei
1
2

1 3  5 7 
2 ’ 2 ’ 2 ’ 2 O dd-5  Nuclei

3
2

3
2 A-resonance

Table 2.2: Summary of the zero mode Hamiltonians constructed for use in our sim­
ulations

energy Erot, we used an algorithm th a t calculated all the eigenvalues of H  and re­

turned the lowest one. The ground state quantum  numbers of the configuration were 

thus evaluated as the simulated annealing run progressed and allowed, if necessary, 

to change from the initial quantum  numbers.

The quantum  numbers I and k should have integer values for even B  and half­

integer values for odd B.  Given this criterion, we then construct Hamiltonians cor­

responding to those values I and k th a t are of interest for light nuclei. In all our 

constructed Hamiltonians, k is kept to its lowest allowed value. This is consistent 

with nature in the range of B  we explore; for nuclei with 5  < 30 the number of pro­

tons and neutrons are equal for even B,  with one necessarily extra neutron for odd 

B.  For B  > 30 there are more neutrons than  protons due to electromagnetic effects. 

It has been pointed out in [15], th a t if the the zero mode energy is of the form (2.41) 

in which separate spin and isospin contributions are dominant, then states with high 

values of k are more likely to be energetically unfavourable than  states with high 

values of I.

Experimental considerations also guide our choice of /; for B <  30 the nuclear 

spin reaches a maximum of three. However, we have constructed Hamiltonians for 

half-integer values of spin up to 7/2; the I = 7/2, k = 1/2 Hamiltonian is constructed 

in response to the corresponding ground state predictions in [15, 14] for B  = 7. 

Simulations of the 5  =  7 configuration with the I = 7/2, k = 1/2 Hamiltonian can 

then be compared with simulations using the I = 3/2, k = 1/2 Hamiltonian to see 

which has the lower energy.
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Chapter 3 

The Simulated Annealing  

Algorithm

Simulated annealing [38] is a probabilistic searching algorithm used to locate the 

global minimum of a given function. The algorithm takes its name and inspiration 

from the annealing process ia metallurgy, in which a metal or glass is heated to the 

point where all the internal stresses and defects within the material have eased, and 

then cooled slowly. The heat causes the atoms to become unstuck from their initial 

positions, and the slow cooling allows them to settle in configurations with less energy 

than the initial energy.

Before the introduction of simulated annealing, or SA for short, algorithm devel­

opment had focused on the fastest way to navigate the downward slope in the energy 

‘landscape’ towards a minimim. In a landscape with potentially many local minima, 

this may lead to the configiration being trapped in a minimum th a t may not actually 

be the global minimum, a situation analogous to the molecules of a metal being frozen 

in random positions by sudden quenching. In contrast, SA will temporarily change 

the system state to states tha,t have higher energy than  the initial state. The prob­

ability th a t the algorithm w;ll accept higher energy states is then slowly decreased 

with time, so th a t the entire space of possible solutions can be searched for the global 

minimum.

How do we know SA is the right choice of algorithm for the Skyrme model?
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Figure 3-1: Three different energy landscapes: a convex landscape (top left), a ‘golf- 
hole’ landscape (top right), and a rugged landscape with many minima ideal for SA 
(bottom).

There are other algorithms which outperform SA for certain types of configuration 

space. The most obvious example is the superior performance of the steepest descent 

method in a purely convex space; but in the Skyrme model we know there are many 

distinct local minima. Another example perhaps more pertinent to us is the superior 

performance of a random search algorithm in the ‘golf-hole’ landscape shown in figure 

3-1, characterised by a hollow whose width is negligible compared to the total space. 

However, the success of conventional calculus-based minimization techniques with 

small baryon number configurations suggest th a t the energy hollows are relatively 

wide. SA seems to be ideally suited for the Skyrme configuration space.

The effective use of SA requires an intuitive knowledge of the energy landscape of 

configuration space and, as such, its application to specific problems can be considered 

almost as much of an art as a science. However, simulated annealing on a 3D lattice
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has been used before in finding Skyrme solutions. The first approach [43] was a basic 

feasibility study for values of baryon number B  up to four. Recently the technique has 

been used to evaluate corrections to the minimum energy classical solution caused by 

the addition of higher order terms [21] to the energy. In our implementation, we build 

on the suggestions contained in these papers and make considerable improvements of 

our own.

In order to implement the simulated annealing algorithm, Skyrme configurations 

are placed on a 3D lattice by assigning the four independent field components of U to 

each lattice point. For convenience we shall refer to these components as defined 

in terms of the fields a and tt as:

These components are perturbed in such a way as to preserve the unitarity of U, 

and the resulting energy change A E  is computed. The new components are then 

accepted or rejected according to the Metropolis probability

where T is a temperature parameter that is lowered to zero during the course of 

the minimization. The algorithm will thus accept large increases in energy near the 

beginning of the run, freeing the configuration from local energy minima. As T  is 

decreased the algorithm is less likely to accept energy-increasing perturbations, and 

more likely to reach the bottom of the current energy hollow it finds itself in.

There are two stages to our annealing algorithm, analogous to the heating and 

cooling stages of a metal:

• An equilibriation stage in which T  is mantained at a starting temperature Tmax 

until all points on the lattice are thermalized and the system is in equilibrium.

• A cooling stage in which the temperature T is brought from T^ax to T  slowly

(3.2)
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enough for the configuration to explore the parameter space and settle on the 

global minimum.

In an SA simulation, first an initial field configuration is assigned to the lattice. 

The lattice is then swept through in such a way that field components at every point 

are perturbed. For each perturbed component or group of components, we accepted 

or rejected the perturbation based on the probabilities in (3.2). Care has to be taken 

with perturbing the points; unwanted correlations can arise if neighbouring lattice 

points are repeatedly perturbed in sequence. We avoided this by storing the accepted 

points in a backup array and only updating the field points when the entire lattice 

was perturbed.

This lattice is swept repeatedly, first at T  =  Tmax for the equilibriation stage, then 

with T  slowly brought down to zero for the cooling stage. As T  goes to zero, the 

algorithm behaves more and more like a steepest descent algorithm. The algorithm 

terminates when the field configuration fails to change appreciably over a defined 

number of lattice iterations.

3.0.1 G enerating a starting configuration

In section 2.2, we saw that the Skyrme configuration space is partitioned into disjoint 

subsets labelled by baryon number B\ a simple way of generating configurations for 

any value of B is required, and it would be additionally useful if the method also could 

generate good approximations to minimum energy classical solutions for comparison. 

Furthermore, for higher charge solutions with high pion masses we would like to 

use smaller lattices; hence a starting configuration that also reproduced the baryon 

number on smaller lattices would be desirable. For these reasons, the rational map 

ansatz was usually our initial configuration of choice. To check that the algorithm 

gave consistent results regardless of the initial configuration used, we also generated 

initial configurations consisting of separated hedgehog ansatze.

A sequence of SA runs with different starting configurations provided an excellent 

check on the robustness of the algorithm. The runs that failed to end up at the global 

minimum gave us intuition for the energy configuration space, which we could use to
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readjust the parameters for a nother sequence of runs. This technique was particularly 

important for studies of rotating configurations to test if certain configurations we 

obtained were indeed the minimum energy configuration. Our studies in this regard 

focused on B = I configurations; there are many interesting profile functions that 

have already been developed, including functions based on kinks [44] and instantons 

[46]. We were particularly interested in generating non-spherically symmetric initial 

configurations to determine whether the final configuration was the same as those 

generated from spherically symmetric initial conditions.

An increasingly common technique in SA, especially for complicated configuration 

spaces, is to do many runs with different initial conditions with fast cooling and 

choose the lowest energy rather than one long run with a slow schedule. The Skyrme 

configuration space is not so complicated as to warrant this technique for the examples 

we studied, but it might be an option for higher values of B.

3.0.2 Lattice perturbation

As lattice correlations are already avoided by updating the lattice after all points 

are swept, the lattice can be swept sequentially. However, we can check whether any 

bugs have crept into the algorithm by noting the total energy and inertia change as 

the lattice is swept and comparing it to the energy and inertia obtained by summing 

over all the local lattice values. In order to do this effectively, it is better to divide 

the lattice into subgrids of non-neighbouring points and sweep through each subgrid 

in turn. This can be done without any loss of computational efficiency.

In order to reach the global minimum, it may be necessary for the algorithm 

to move the Skyrme fields considerably from their initial starting point. However, 

perturbing the lattice one point at a time is an unacceptably slow means to this 

end; if the initial starting configuration is very different to the minimum energy 

configuration, then a perturbation of a single field towards the minimum perturbation 

is likely to be rejected as the surrounding fields are still in the old configuration.

On the other hand, a cubic block of lattice points perturbed towards the minimum 

is more likely to be accepted because the energy increase per lattice point is smaller
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Figure 3-2; Cross-sections of configurations at the points in the graphs shown in 
figure 3-3 marked ’’separated nucleons” and ’’toroidal configuration” .

[43]. Upon perturbation the entire plaquette of lattice points is accepted or rejected 

according to the probability in (3.2). In the equilibriation stage, large plaquettes 

enable better collective motion of the Skyrme fields, while single perturbations are 

better for very low T  when the configuration structure has been established and the 

main priority is thermal noise elimination. For this reason, the size of the plaquette 

is chosen with a T-dependent probability at the beginning of each lattice iteration.

3.0.3 Equilibriation criteria

Typically, when T  is kept at T^ax long enough for the lattice to be fully thermalized, 

the configuration should have approximately the structure of the minimum energy 

configuration, albeit with considerable thermal fluctuations. The cooling run will 

then fine tune the length scale of the configuration and remove the unwanted noise. 

The important question here is when to stop the equilibriation process and start 

coohng.

The ideal method of determining if the lattice has fully thermalized is to store 

the Skyrme field after n, say, lattice iterations; after another n lattice iterations the 

field is then compared with the previous stored field to see if the configuration has 

changed. More specifically, if the lattice has equilibriated, a subtraction of the current 

fields from the stored fields should leave only uncorrelated fluctuations.

However, our implementation, with 26 stored variables associated with each lattice

35



700

600

M
CO

g  500
T3

£?
c

W 400

2200

2000

1800
3
<D
I  1600

1400

1200

~  1000

800

600

! r 1—  —  I 1 1 1 
T o t a l  energy „ ..

1 T w o  separaied  
! n u c leon s

ii 1 1 1 1

T oroidal i 
co n figu ra tion  !

1 i
0 100 200 300 400 500 600 700

L aU ice Iterations ( .5 x  10 f
1 1 1 

U1
<. ; U2 .........

\*. ;
n' . 1  ̂ ; N*;.

U 3 -------- --

1 “
i
i
j
j
j

T oroidal i

I T w o  separated co n figu ra tion  i
i

! n u cleon s j

:l 1 1 1 1

1
j

1 i
100 200 300 400 500

L attice Iterations ( ,5 x  10 f
600 700

Figure 3-3: The graphs shows the evolution of the  spin m om ents of inertia  contrasted  
w ith th a t of the to ta l energy during the equilibriation phase of an annealing run. 
The configuration being annealed is the  chiral nonro tating  B  — 2 Skyrmion, s ta rting  
from an initial configuration of two separated 5  =  1 hedgehogs. Polynom ial fit lines 
ex tracted  from therm al noise are used to  show the general trend  of the  data . Cross- 
sections of the configuration a t the points in the  graph m arked ’’separated  nucleons” 
and ’’toroidal configuration” are shown in figure 3-2.
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point, puslies close to  the RAM lim its of some of the processors we used, and  this 

m ethod would add  an ex tra  four variables. In searching for a  less RAM -intensive 

alternative, our first idea was ju st to  anneal until the  energy converged on some value. 

However the  exam ple dem onstrated  in figure 3-2 of two well separated  B  = \  Skyrme 

configurations annealed to  a B  =  2 toroid  configuration illustrates the inadequacy 

of this approach. T he difference between separated  and toroidal Skyrme energies is 

negligible com pared to  the  therm al noise; the  therm alized energy is roughly the  same 

for both  configurations. The ro ta tional and isorotational m om ents of inertia, on the 

other hand, change considerably in the transition  from an initial s truc tu re  to  the 

final annealed structu re . Therefore a more accurate measure of the  stopping point 

is given by testing w hether these inertia  values have stopped changing over a  certain  

num ber of lattice iterations. Also, in equilibrium, the  algorithm  should be accepting 

around 50% of those pertu rba tions th a t cause a rise in energy and rejecting the  rest; 

an additional check is perform ed by testing this for random  points on the  lattice.
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3.1 M ove class and cooling schedule

The Skyrme field will reach the global minimum energy configuration at the end 

of the annealing run provided th a t the tem perature param eter T  is lowered to zero 

slowly enough to allow the entire space of possible configurations to be searched. 

Therefore, cooling schedule governing the rate at which T  is lowered is chosen to 

keep the system in a state of near equilibrium throughout the run.

We define the move class of a lattice point as the space of all possible perturbations 

of the point. The move class can be changed by changing the manner in which the 

field is perturbed, and a good move class will considerably improve the algorithm ’s 

ability to search the configuration space, enabling a shorter cooling schedule to be 

employed. A suitable move class is of particular importance in keeping the algorithm 

running efficiently at low T ; if the move class remains unchanged as the tem perature 

is lowered, increasingly fewer of the generated perturbations will be acceptable and 

the system will eventually spend most of its running time rejecting perturbations.

A first a ttem pt to rectify this would be to dynamically change the length scale 

of the move class, reducing it if the acceptance rate is falling. This will, however, 

eventually lead to the system only accepting perturbations within a very small neigh­

bourhood of a point and curtailing the latitude of the algorithm to explore the con­

figuration space.

Instead we introduce a probabihty distribution to the perturbation; the width of 

the distribution narrows as T  is lowered, making smaller perturbations more likely 

but still not ruling out the possibility of a large perturbation. For a given probability 

distribution one can often find out what type of cooling schedule will enable the 

algorithm to converge; a well-known case of this is the proof supplied in [39] in a 

study of the application of SA to image resolution, showing the convergence to the 

global minimum of a Gaussian probability distribution with a logarithmic cooling 

schedule.
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Figure 3-4: Plot showing energy of system during three separate runs, all with an 
equilibriation stage of 25,000 iterations. The lines correspond to the exponential 
cooling schedule in (3.4) with the cooling param eter c set at .004, .0004 and .0001 
respectively

3.1.1 Probability  distribution for the next move

We use a probability distribution th a t enables a much faster convergence rate devel­

oped by Ingber and described in [40]. Using this distribution, a field component Ui 

is perturbed to a new field component Ui + SUi, with 6Ui chosen according to

where 5Umax is the maximum value of 5Ui set by topology considerations as described 

in 3.3, and u is a random number between -1 and 1. The distribution comes with 

its own tem perature scale which is independent of, but can be linked to, the 

acceptance tem perature T. If there is no limit on SUmaxi then the move class includes 

all possible values of Ui. If this is the case, the algorithm is guaranteed to converge, 

provided the acceptance tem perature T  is lowered according to

max (3.3)

T  = rini, e x p (-cn „ ) (3.4)
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Figure 3-5: Plot showing the changes in the temperature Td governing the ASA 
probability distrubution in the course of a typical simulation. Here, the temperature 
is increased based on perturbations of the field component U\ at the origin (solid 
line) and at a point 3.6 Skyrme units outside the origin (dashed line). We see that 
the origin is less willing to accept perturbations; and also that has roughly the 
same exponential decrease as T.

where Tinu is an initial starting temperature, Ua is the number of accepted perturba­

tions at a given lattice point and c is a tunable parameter.

Ingber uses a ‘reannealing’ method to modify his acceptance temperature based 

on the contours of the energy landscape; we adopt a simpler approach, instead aiming 

to keep a constant acceptance rate of about 50%. The algorithm is always more 

inclined to accept smaller perturbations as they cause a smaller rise in energy, and 

so we use the crude but effective method of raising every time a perturbation is 

accepted and lowering every time one is rejected. The end result is that has 

much the same exponential decrease as T.

Different parts of the lattice have different sensitivities to perturbations; the near­

vacuum lattice points are more ready to accept perturbations than those where sub­

stantial amounts of Skyrme matter are located. This is because the energy increase 

from a perturbation is greater where there is concentrated Skyrme m atter than for 

the same perturbation where there is vacuum. To increase efficiency we assign a sep-
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Figure 3-6: As 3-5, b u t v/ith the tem peratu re increased based on pertu rba tions of 
the field com ponent U2 a t the origin (solid line) and a t a  point 3.6 Skyrme units 
outside the origin (dashed line). We see th a t the U2 com ponent is equally sensitive 
to  pertu rba tions as U\ and th a t it makes sense ju s t to  have one governing all 
perturbations.

arate  and Ua to  each la ttice point. Ingber also suggests assigning a  separate to  

each com ponent. We tried  this initially, bu t found th a t our four field com ponents Ui 

were roughly equally sensitive to  la ttice pertu rba tion . P lots of showing the changes 

in pertu rba tion  tem p era tu re  during a  typical algorithm  run are shown in figures 3-5 

and 3-6.

3.1.2 P erturbing the field com ponents

Studies of SA on functions of m any continuous variables [41] indicate th a t, in m aking 

the perturbation , it is more efficient to  pertu rb  only one field com ponent ra th e r than  

all the com ponents together. Further studies [42] show additional im provem ent if a 

random  subset of com ponents is perturbed . This seems to  be the  case in our sim ula­

tions, although th e  difference is not as m arked as for these studies which pertu rbed  

many more com ponents. The four com ponents Ui of the  SU(2) m atrix  U m ust be 

perturbed  such th a t U rem ains unitary, th a t is, such th a t =  1. The sim plest

41



way to achieve this is to perturb  the fields as

f/. + 8U.
(3.5)

W hen only one point at a tim e is perturbed this is equivalent to the method in [43] 

where Ui is treated  as a vector and rotated. For plaquettes, optimal acceptance 

occurs when all the lattice points in the plaquette are rotated the same way; we 

closely approximate this by perturbing the same components of each point in the 

plaquette with the same random perturbation.

This method is very simple to implement but has a drawback in near-vacuum 

fields when only one or two components are perturbed; dividing by the determinant 

tends to negate the perturbation and the algorithm accepts a configuration th a t is 

not much diff'erent from the original one. If a single field component [/„ is being 

perturbed it is more efficient to carry out the unitarization as follows

where a,b,c ,d  are three unequal indices in the range 0 to 3. Here, the unitarization 

is explicitly done in such a way as to keep the perturbations intact.

Tjold   V T j n e w

TTold  V j j n e w  ___

new
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3.2 Im plem en ting  energy and inertia  term s on th e  

la ttice

The energy densities £  and moment of inertia densities Uij, Vij, Wtj  at a lattice point 

are:

3 3

£  =
3 j < i  3 l< k

Y .  Y ,  ( S M f  + E  E  E  E  (S,Uta,U, -  d ,U ,d jU tf +  2 m ( l - U o )
i= l  k= 0  j = 2  i = 0  fc=l 1=0

3 r l< k  3

fc=0 _ Z=0 m = l

X { { T , ) ^ d m U i ~ { T , ) ^ d m U k ] ]

3 3E E îmô m̂ oUkCjpqXpdqUji
fc=0 m ,o ,p ,q = \

3 l< k  3

+ EE E d o U k d r U l  d o U i d r U k )
_/c=0 / = 0  m ,o ,p ,g , r= l

E
fc=0

^  ^ ^ i r n o ^ m ^ o U (7 )̂̂
771, 0 = 1

l< k  3+E E ifimo^mdoUkdfUl Umo^mdoUldrUk) {{Tj)^drUl ~ [Tj)idrUk)
1=0 m ,o ,r = l

where Tj is the com m utator of the Skyrme field and z-th Pauli m atrix Tj as defined 

in (2.51). The indices i, j ,  m,  o, p, q and r  indicate spatial direction, k and I label 

the components Ui of the SU(2) field.

The derivatives must be approximated from the lattice field points using a Taylor 

expansion, shown here to first order:

(3.7)

where h  is the spacing between the lattice points. However, this approximation 

immediately presents a ‘doubling problem’: if the derivatives for the energy term
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Figure 3-7: Scheme for calculating derivatives to avoid doubling. Derivatives are 
calculated using the measured point and nearest neighbours in each direction. Two 
possible ways of calculating the derivatives are shown above, each marked by triads of 
perpendicular lines meeting at i, j ,  k, the arrowheads indicate the derivative direction. 
There are eight such combinations; energies are calculated for each and averaged.

are written only in term s of nearest neighbours, then the derivative term  at a lattice 

point is independent of the derivative term for its nearest neighbour. Thus, the 

simulated annealing algorithm will, in finding the minimum, divide the lattice into 

two independent lattices and find the minimum solution for each configuration. Due 

to the finite size of the lattice, the two solutions have slightly different boundary 

conditions and will not match up to each other. Using the Taylor expansion to 

approximate the derivative to higher orders will only mildly correlate the lattice as 

the nearest neighbour term s are still dominant and so the effect will remain.

The doubling problem is overcome by a derivative method th a t correlates the 

measured point with its nearest neighbours in each direction. As the classical energy 

is the dominant term , this correlation need be applied to the calculation of the en­

ergy densities only. We use two such methods in our simulations depending on the 

circumstance: local averaging and the dual lattice.

3.2.1 Local averaging

There are eight different ways of combining a lattice point and one neighbouring point 

along each of the three axes; two such combinations are shown in figure 3-7. Prom each 

of these combinations, derivatives in each of the three directions were approximated
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using the  Taylor expansion. Using these derivatives, we can then  com pute th e  energy 

density  for each com bination and  average over all com binations to  ob ta in  our final 

answer.

D eterm ining the  local energy and  inertia  change arising form a la ttice pertu rb a tio n  

occupies the  m ajority  of com puter tim e in executing the  algorithm , so efficiency is 

quite an im portan t consideration here. The averaging m ethod is the  less intensive of 

the  two m ethods we consider, a t least in the  3D case. It also has the  advantage th a t 

the  pion mass energy te rm  does not have to  be modified to  make it doubling-free. 

This is the  m ethod we used for our 3D simulations.

3.2.2 The dual lattice

A m ethod th a t appears a t first gla,nce to  be com putationally  less expensive th a n  local 

averaging is the dual la ttice m ethod employed in [43]. Here the  energies are instead 

calculated a t im aginary la ttice points midway between the  field la ttice points. The 

field value a t these ‘d u a l’ la ttice points is defined as an average of the  fields a t the 

eight surrounding la ttice  points, and the  derivatives in the  z-th direction are defined 

as follows:

m
dxi

1
h

E TTi+l,j,k
_____ j,k ______

i,j,k

E, Em .
(3.8)

(3.9)

This is the Taylor expansion using averaged fields on either side of the  dual la ttice 

points in place of  U  {x +  h)  and U {x — h);  the  square root factor on the  bo ttom  is 

to  keep the  averaged field unitary.

This would be com putationally  less dem anding th a n  the  local averages m ethod 

if the  annealing were done w ithout including th e  ro ta tional energy term s. However, 

the spin inertia  energy term  in particu lar is lowered by a spreading of the  Skyrme 

energy d istribution, and  in the dual la ttice  m ethod the  algorithm  is able to  ‘chea t’ 

by artificially creating field anom alies near th e  edge of the  la ttice  which are partially
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undetectable by the classical energy terms. It does this by creating non-zero field 

configurations such tha t both the field and the unfavourable derivatives average to 

zero. This can be dealt with in a simple and elegant way for the sigma model energy 

term  [45]:

However, for the Skyrme energy term  one must find derivatives at each of the eight 

surrounding points and take averages, as in the local averaging method. When im­

plementing unitarity on the fields is also taken into account, we conclude tha t the 

dual lattice m ethod is more time consuming than local averaging.

For each perturbation, the local energy change on all affected points must be cal­

culated. Therefore, the number of lattice points affected by perturbing a plaquette of 

points is an im portant consideration in determining the more efficient method. For 

the local averaging method, the number is n^ +  6n^, compared to (n -1- 1)^ for the dual 

lattice method. For n =  1 local averaging changes the energy of seven surrounding 

points compared to eight for the dual lattice; however for small n > 1 the dual lattice 

changes the energy of less points than  local averaging. In our implementation, we 

used a maximum plaquette size of n == 3, so the difference is not too large; however, 

it is probably enough to compensate for the increased computational time of the dual 

lattice method.

The dual lattice has the additional advantage of being easier to implement in 

parallel programming. It also lends itself much more easily to the cartoon method 

described in section 3.4.

(3.10)

and in a rather clumsier fashion for the pion mass term

46



B
0.993

"bn.txt '

0.992

0.991

0.990

0.989

0.988

0.987
0 400 1200 1400 1600200 600 800 1000

Lattice perturbations (x 100)

Figure 3-8: Plot of the baryon number in the course of an annealing run on a 5  =  1 
configuration using a 2D 250 x 250 cartoon lattice with spacing .06. The dashed line 
separates the equilibrium and cooling runs.

3.3 Preserving top o logy

The primary restriction on the performance of the SA algorithm is given by the need 

to maintain the baryon number of the configuration. In the continuum theory, the 

baryon number B , equated to the winding number of the solitonic configuration, is 

a constant regardless of changes in the shape of the configuration. In the discretized 

lattice space which approximates the continuum, however, the numerics of the algo­

rithm  can break down for sharply fluctuating fields because the Taylor approximation 

(3.7) is not able to accurately calculate the derivatives. There is therefore a possibil­

ity th a t the configuration can lose its winding number and end up at a vacuum final 

state.

The tem perature T  governs the extent to which the lattice points fluctuate ther­

mally; there is therefore a limit on the maximum initial tem perature Tinu one can 

use during the equilibriation stage. On the other hand, we must ensure tha t this 

tem perature is high enough so tha t the energy of the thermalized configuration rises 

above tha t of the energy barriers separating local and global minima. This is achiev-

47



0.001

m.ax

0.0001
0.12 0.22 0.24 0.260.14 0.16 0.18 0.2

Lattice spacing

Figure 3-9: Logarithmic plot of the maximum annealing tem perature Tmax above 
which the topology of the Skyrme configuration is lost, as a function of lattice spacing 
in Skyrme units 2/eFT^.

able provided appropriate values of the maximum perturbation length and lattice 

spacing are chosen. An over-long perturbation length SUmax governing the move 

class allows fluctuations in the configuration th a t the Taylor approximation cannot 

handle. Therefore, in all our runs, SUmax is kept at .03. This, of course, means th a t 

the cooling schedule (3.4) no longer gives a cast-iron guarantee of convergence and 

we must tune the constant c to ensure the system cools slowly enough. The largest 

lattice spacing we use is .12; this gives a maximum value of Tinu of .002. This is 

the same tem perature th a t produced good results in [43, 21]; it typically gives an 

equilibrium energy around fifteen times th a t of the final configuration.
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3.4 The Cartoon M ethod

T he m ain th ru s t of our work is finding minim um  energy Skyrme configurations w ith­

out any prior sym m etry assum ptions. However if an annealed solution were shown 

to have a  particu la r symmetry, we could then  use th a t sym m etry in another imple­

m entation  of the  SA algorithm  which lessens the com puter workload and produces 

more accurate  results. W ith  specific reference to  the  B =1 and B = 2  Skyrmions, if 

the  Skyrme fields were shown to  have axial symmetry, we could then  obtain  more 

accurate results by annealing on a 2D grid.

In the  axially sym m etric case, the inertias Uij,Vij  and Wij  simplify to  four inde­

pendent inertias; U2 , V 2 , V3 and W 2 - A 2D sim ulation arranges the Skyrme fields such 

th a t we can calculate the  local energy and inertia  values on a plane radially ju ttin g  

out from the  cylinder axis. We express th is plane as (r, 0 =  0 0 , z)  in cylidrical polar 

coordinates.

We can calculate the energy and inertias of the full 3D configuration using th e  local 

transform ation  properties of the  energy and m om ent of inertia  densities V2 , V3

and W 2 under cylindrical symmetry:

£  (r, (/)o H- (/), 2 ) =  S  (r, 0o, z)

V3 (r, 00  +  0, 2 ) =  V3 (r, 0 0 , z)

V2 (r, 00  +  0, 2 ) =  V2 (r, 0 0 , z) co sV  -|- Vi (r, 0o, z) s in V  (3.12)

The other axially-sym m etric inertia  densities of interest, U2 and W 2 , transform  

in the same m anner as V2 . Thus the  classical energy (2.13) and m om ent of inertia

(2.51) integrals over change to  the  following integrals over the  (r, z) plane once 0

is in tegrated  out:

E  =

^3 =

1/2 =
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Thus when a point (r, 0 =  0oi -2) is perturbed in the SA algorithm, the change in the 

energies and inertias arising from the perturbation is calculated using the integrands 

in (3.13).

However, using cylindrical coordinates in our simulations on the 2D grid invari­

ably leads to singularities which are difficult to work around, whereas 3D cartesian 

coordinates have no such complications. The trick is to do the simulation in Cartesian 

coordinates using a th in  3D slab positioned so th a t the points where the energies and 

inertias are calculated lie a t 0 =  0o- The slab is thick enough so th a t the derivatives 

in the </) direction can be calculated; the dual lattice method only needs a slab two 

points thick. The energies and inertias thus obtained are then integrated to find the 

total energy.

In our implementation, the (r, 0 =  0o, 2 ) plane is coincident with the (x = 0, y, z) 

plane, so th a t |y | =  r  and Si. = <p. The lattice field points are arranged as in figure 

3-10, so th a t the {x =  0 ,y , z )  plane is the plane of dual lattice points on which the 

local energies and inertias are calculated. There are thus two {y, z) planes of field 

lattice points located at x  = :^hl2,  where h is the lattice spacing. The (y,z)  lattice 

plane at x  = h / 2  is swept, and each time a point is perturbed, its counterpart at 

X — —h/2  is also updated by rotating the field at x =  h/2.  The new values for both 

points are then accepted or rejected according to the Metropolis criterion (3.2).

The ‘cartoon m ethod’ [47], as it is called, is ideally suited to the dual lattice 

discussed in section 3.2. An implementation using local averaging would require 

three planes of field points, a t {x — Oand ±  h, y, 2 ); the values of the points not on 

the centre plane would have to  be interpolated from the points on the centre plane 

using trigonometric identities. However the dual lattice implementation has no such 

problem; the values of the field components at {—h / 2 , y , z )  are just plus or minus 

those at {h / 2 , y , z ) ,  depending on the component.

It is necessary to perturb  the field such th a t axial symmetry is preserved; this can 

be done by keeping U within the ansatz

Uo = /o, [/i =  / i ,
(3.14)

U2 =  /2  cos 0, U3 = f 2 sin 0,
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Figure 3- 10; Schematic of dual lattice cartoon method with 2-direction compressed. 
The field lattice points (shaded circles) at 2 and 2 -1-1 are located on top of each 
other, and the dual lattice points (crosses) are on the 2 -|- 1/2 plane.

where /o ,/ i , /2  are functions of /  (r, 2) such that Eif^ =  1. This has the effect of 

permanently fixing B, as on the x =  ± h / 2  planes U2 and t/3 are kept in a constant 

ratio to each other; for the cartoon method we can make the maximum perturbation 

length as large as we wish.
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3.5 M ethod evaluation and suggested im provem ents

Most of our 3D annealing runs were performed on a 90^ lattice with 8 parallel C PU ’s, 

the lattice being divided into 45^ subcubes and a CPU assigned to each subcube. This 

arrangem ent meant we could then perturb a spherical lattice of radius 45, reducing 

the com putational workload by a factor of 7t/ 6, whilst still spreading the load equally 

amongst all processors. The Taylor expansion used for the derivative (3.7) meant 

th a t we had to pass on the values of the fields at the borders between subcubes to 

neighbouring processors. However, the fields were only updated and passed on after 

each full lattice iteration, and so the communication between processors took a tiny 

fraction of CPU time compared to the computation.

The largest lattice spacing we used was .12 for the 5  =  8 and B  = 9 cases. This 

spacing was in line with two previous 3D annealing simulations [43, 21], both of which 

which used lattices of 80^ and modelled Skyrmions of charge one to four. In our case, 

the addition of large pion masses contract the configuration; a. B  = 8 minimum energy 

solution with sufficiently high pion mass is around the same size as a 5  =  4 solution 

with zero pion mass. The pion fields also fall away more sharply towards the vacuum; 

for example, the B  = 1 profile function with pion mass decreases exponentially as 

opposed to a 1/r^ decrease in the massless case. We use vacuum boundary conditions 

rather than  the periodic conditions imposed in the previous simulations; in hindsight, 

periodic boundary conditions seem to result in smaller finite lattice errors as the fields 

are continuous at the boundary, and our finite lattice error seems to be 1% greater 

than th a t obtained in the other two simulations.

A primary requirement of the SA algorithm is th a t it be able to find minimum 

energy configurations even if they are shaped very differently to the initial starting 

configuration. To achieve this, our implementation sometimes requires a long equi- 

libriation phase depending on the initial configuration. For example it may take two 

separated hedgehog configurations up to 20,000 lattice iterations before they coalesce 

into a toroidal configuration.

In the case of an initial configuration of separated hedgehogs, we note Skyrme’s 

original observation [4] th a t at long range the interaction between two separated
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hedgehog configurations is very similar to that between dipoles, and an initial con­

figuration of separated Skyrmions must therefore rotate to a maximally attractive 

configuration before coalescing. This the rotation is equivalent to tracing a path in 

the energy landscape with an almost flat slope. Landscapes such as these, where 

the energy minimum hollows have wide tails and relatively narrow half-widths, seem 

ideal for an increasingly-used technique called ‘basin-hopping’ [48].

In this technique, the move class is such that the perturbed configuration is likely 

to be in a diff'erent local minimum hollow. A deterministic minimizer is then used 

to find the local minimum; an efficient minimizing algorithm like conjugate gradient 

or steepest descent can be employed here to speed up the process. The configuration 

is then accepted or rejected by inserting the energy of the local minimum into the 

Metropolis probability (3.2). The space of possible solutions is thus restricted to 

the space of local minima. It would be impossible to adapt the move class in our 

implementation such that the configuration can be perturbed to a different local 

minimum hollow; instead, a good approach would be to generate a rational map 

ansatz using a random rational map of degree B.

Our implementation was capable of annealing configurations with large pion mass 

up to 5  =  9, but extensive computational improvements must be made in order to 

anneal configurations with higher baryon number. Our current lattice size is the 

largest that can generate solutions in a reasonable time; a thorough simulation of 

25,000 equilibriation iterations followed by cooling with a parameter c=.0002 takes 

almost one week on eight 3MHz processors. The computing time increases as the 

cube of the lattice size, hence an increase of even ten points per subcube on our 

current value will double the computing time.

One option is to increase the lattice spacing, particularly if finding the structure 

is more important than getting an accurate minimum energy. As we discussed in 

section 3.3, any increase in the lattice size rapidly lowers the maximum temperature 

at which we can anneal and still keep the topology intact. This effect is exacerbated 

for high pion masses, which contract the configuration and cause high derivative 

gradients. One way of keeping the winding number is to add a Lagrangian multiplier
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A [21] to constrain the baryon number to its correct value B:

(/
2

E - ^  E  + X (3.15)

The energy E  and the Skyrme configuration space Q cannot be parameterized in 

terms of a common variable, and so A cannot be computed directly. The simplest 

method is to tune A to the problem at hand using trial and error. The resulting 

objective functions are known as static-penalty formulations, and they tend to make 

the configuration space more rugged and deepen the local minima with increasing A. 

In our case, it appears at first sight to be a rather costly method for lattice accep­

tances. As the fields become thermalised, the accuracy of the Taylor approximation 

decreases slightly, and there is a slight lowering in the baryon density. As seen in 

figure 3-8, the baryon density will later be recouped in the cooling as the therm al 

noise is eliminated and the fields become smoother. A tight constraint on the baryon 

density during the equilibriation stage might inhibit the algorithm ’s ability to make 

large moves.

A better alternative would be to set A dynamically, so th a t it takes quite a low 

value during equilibriation and then increases as the acceptance tem perature drops. 

An ideal value of A can be adaptively found as the run progresses by changing the 

annealing problem to one of finding a configuration th a t simultaneously minimizes E  

and maximizes A [49]. The annealing search is thus extended to a direct product of 

the Skyrme configuration space and the ID space parameterised by A.

One easy way to anneal larger configurations is to rescale the unit of length. Our 

unit of length is set a t 2/eF^; a length of 2y/2/eF-^ is used in [21] to cater for the 

expansion of the configuration under the influence of sixth and eighth order Skyrme 

terms. However, we have the opposite problem; the contraction of the configuration 

with the addition of a pion mass means th a t our current length unit is close to 

the outer limit beyond which the numerics no longer model the solution accurately. 

However, a large length unit is certainly a good starting point to get an idea of the 

structure of higher charge Skyrmions.

As regards getting accurate results, the only real option is to increase the number

54



of processors to 64 or more. At the time of writing, the facihties to cater for such 

large jobs are beginning to come onstream. In this case it would be still nice to  keep 

the spherical lattice and spread the workload equally among all processors. Perhaps 

one way of doing this would be to divide the lattice into eight subcubes as we do 

now, and then within each subcube assign a CPU to a subgrid of uncorrelated points. 

This method would also have the advantage th a t one would be able to increase the 

number of processors in multiples of eight, by adding extra subgrids, rather than  in 

integer cube powers. This method would involve considerably more communication 

between processors at the end of a lattice iteration; however, we suspect theat the 

communication to computation ratio will still be very small.
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Chapter 4 

M inimum energy Skyrme 

configurat ions

As a result of our simulations, we now have a comprehensive description of Skyrme 

configurations with high pion masses, and with quantized spin and isospin degrees of 

freedom. The B  = \ Skyrme configuration has long been the testing ground for zero 

mode quantization; here we present results th a t are perhaps counterintuitive from a 

classical point of view but make sense from a quantum  perspective. We use the B  = S 

configuration, whose ground state has no rotational energy, as our principal testing 

ground for probing the nature of the deformations from the classical minimum with 

high pion masses, before examining their effect on other charges. We evaluate the 

effect of spin and isospin degrees of freedom on configurations of baryon number up 

to nine. Perhaps one surprising aspect of our research is the discovery th a t Skyrme 

configurations with spin energy lower their total energy by ejecting m atter towards 

the edge of the lattice; we investigate whether the configuration loses all its spin 

energy in this manner.

The chapter is structured as follows: first, we present results arising from our 

exploration of pion mass effects. We then discuss the effect whereby m atter is ejected 

from spin energy configurations, before going on to discuss particles for which this 

effect occurs.
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Figure 4-1: Plot comparing the energies as a function of the scaled pion mass m  of 
a B = 8 annealed configuration (solid line), two well separated 5  =  4 configurations 
(dashed line), and the B = 8 rational map ansatz. The energy is divided by a factor 
of 127t̂  for comparison with the Bogomol’ny bound (2.24).

4.1 Investigating the effect o f the pion mass

For a long time, it was generally thought that any modifications to the shell-like 

structure of the classical minima described in Chapter 1 would be brought about 

by the addition of rotational terms to the Skyrme Hamiltonian. However, it has 

recently been suggested [16] that the pion mass term, previously thought only to 

localize the configuration and change its radial length scale, may have a considerable 

impact on the Skyrme configuration structure, and may lead to the baryon density 

of the minimum energy configuration becoming more equally distributed throughout 

the configuration volume.

We are particularly interested in one example studied in [16], in which the energy 

of the 5  =  8 rational map configurations was found to be higher than the energy of 

two 5  =  4 rational maps above a critical value of m.,̂ . Similarly, a value of pion mass 

existed above which the energy of the 5  =  5 rational map solutions was higher than 

the combined energies of the 5  =  4 and 5  =  1 rational map solutions. This suggested
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that the rational map that approximated the = 0 minimum energy configuration 

did not accurately describe minimum energy configurations with pion masses for 

both values of baryon number. This result opens up a number of possibilities: the 

minimum energy configuration may be described by a different rational map, or it 

might have a distorted shape not described by any rational map; perhaps there are 

no bound Skyrme configurations for B = 5 and 5  = 8, just as there are no stable 

isotopes with these baryon numbers in nature. So far, nothing is known about the 

structure of these minimum energy configurations, but in simulated annealing we have 

the perfect tool to find minimum energy solutions with pion mass so their structure 

can be seen.

The 5  = 8 configuration, in particular, is a good testing ground to see what 

actually happens to the shell-like structure of a Skyrmion as the pion mass is increased 

from m = 0, where m  is the scaled pion mass 2m. ^ / B o t h  it and the B = 4 

Skyrmion have no rotational energy term, so we can test the stability of the B = 8 

configuration against decay into two B — 4 configurations independently of rotational 

effects.

We used simulated annealing to find minimum energy B — 8 and B = A solutions 

for different values of m  ranging from m  =  0.25 up to m = 4. From the graph in 

figure 4-1, we can see that the energy of the 5  =  8 annealed configuration approaches 

that of twice the annealed 5  =  4 configuration as m  increases up to four times its 

experimental value. This is roughly the point where the energy of the 5  = 8 rational 

map overtakes that of twice the energy of the 5  = 4 map [16]. However the 5  = 8 

energy stays below that of the 5  =  4 energy for higher values of m, proving that 

the annealed 5  =  8 solution is bound against breakup into two annealed 5  = 4 

solutions, at least up to a pion mass value of m = 4. The two energies are very 

close together for values of m > 2, perhaps even within experimental error of each 

other; however the energy of the 5  =  8 configuration is likely to be affected more by 

finite lattice effects than the 5  =  4 configuration, and thus the energy difference is 

probably slightly greater than the graph suggests. Baryon density isosurface plots of 

the 5  =  8 configuration for a range of pion masses are shown in figure 4-2. We see
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Figure 4-2: Baryon density isosurface plots a,t B = .017 for pion masses at m=1.6, 
3.8 and 5. These simulations were performed on lattices with spacing h = .12. The 
upper row are the annealed solutions, whilst the bottom  row are their corresponding 
rational maps.

tha t the baryon density is no longer concentrated around a spherical shell, but rather 

a spheroidal shell whose thickness increases with pion mass. We have described in 

chapter 1 how Skyrme configurations for m =  0 are shaped like skeletal polyhedra; 

in the case of 5  =  8 we see tha t, under the influence of pion mass m, the two 

hexagonal faces of the polyhedron get pulled in towards the origin more than the 

other pentagonal faces.

This contrasts with the result of our SA simulations for 5  =  7 shown in figure 4- 

3; we see tha t the baryon density is still distributed around a spherical shell. The 

annealed solution is very similar to the rational map solution, albeit with slightly 

thicker shells. However for B =  9 the difference between annealed and rational map
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Figure 4-3: Baryon density isosurface plots for S  =  7 at =  .025 for a pion mass of 
m =3.8. The solution on the right is compared to the rational map on the left.

solutions is much more marked. The 5  =  9 solution for m =  0 is unusual in th a t it is 

one of the few minimum energy configurations to have four-valent vertices; it has two 

such vertices opposite each other. W ith the addition of pion mass, these four-valent 

vertices are pushed in towards each other to the extent tha t the four pentagonal faces 

joined together at each vertex are almost coplanar, as can be seen in figure 4-4.

We made comparisons of the B  — A and B  = 5 annealed solutions with their 

respective rational maps; from our combined results, we see tha t for the Platonic 

shapes of 5  =  4 and 7 the solution differs only in scale to the minimum solution for 

m =  0, and tha t the annealed solution is indeed a good approximation to the rational 

map. Changes to the configuration shape change occur for the non-Platonic shapes 

5  =  5,8 and 9; there seems to be a relationship between the number of vertices 

on a polygonal face of the polyhedron skeleton around which the baryon density is 

distributed and the extent to which th a t face is pushed in towards the origin under 

the influence of pion mass. For example, the two hexagonal faces of the 5  =  8 

fullerene get pulled in more than the other pentagonal faces, and the square faces 

of the 5  =  5 configuration are pulled in more than  the triangular faces. This is 

consistent with the lack of shape change in Platonic configurations; for example, the 

twelve identical pentagonal faces of the 5  =  7 are all pulled in equally towards the 

origin. The 5  =  9 polyhedral skeleton also consists wholly of pentagons, however the 

four-valent vertices mean that the baryon density is not distributed evenly throughout 

the polygonal faces. It is worthwhile noting th a t the 5  =  9 solution is very closely
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Figure 4-4: Baryon density isosurface plots for i? =  9 a t =  .025 for a  pion m ass of 
m = 3.8 . T he plan and  elevation of the solution on the  left is com pared to  th e  rational 
m ap on the  right.

related to  ano ther solution in which the  four pentagons are replaced by two hexagons 

and two pentagons [11], and th a t the  baryon density d istribu tion  of our annealed 

solution is probably  quite similar to  the density d istribu tion  of th a t solution.

Finally, we investigate w hether the annealed non-P latonic solutions can still be 

described using the  rational m ap ansatz. A simple way of testing  th is is to  see w hether 

the profile function /  (r) used in the  field ansatz (2.29) is spherically sym m etric for 

our annealed solutions. Cross-sections of the profile function for the  B  =  9 solution 

are shown in figure 4-5; we see th a t in fact the  profile function has a spheroidal dis­

tribu tion  which m atches th a t of the shell around which m ost of the  baron density 

is d istribu ted . One could still construct a  rational m ap using such a  profile func­

tion; however, m inimizing a non-spherically profile function would require a time- 

consum ing 3D sim ulation. This negates the m ain advantage of the rational m ap



Figure 4-5: Contour plot of the profile function of an annealed B  = 9 configuration 
with m  = 3.8. The first three plots are cross-sections through the origin in the x , y  
and 2 directions, while the plot in the bottom  right hand corner is the cross-section 
for the rational map configuratiin the x, y and 2 directions.



ansatz, namely th a t it is a fast way to generate good approximations to minimum 

energy solutions.

4.2 Ejected m atter solutions

As described in section 2.5, the simulated annealing algorithm provides a means of 

obtaining the definitive zero mode quantized Skyrme configurations. We performed 

many simulated annealing runs for baryon numbers up to 9 with different values of 

spin quantum number I.

The major feature encountered in the investigation of solutions with spin energy 

was the discovery of ejected matter solutions, th a t is, Skyrme configurations in which 

some of the baryon density ends up at the very edge of the lattice boundary. An 

accumulation of baryon density as far away from the origin as possible lowers the 

rotational energy by increasing the spin moments of inertia Uij by a factor of (//4)^ 

times the resulting increase in the Skyrme mass E, where I is the lattice size. Only a 

tiny fraction of the to tal m atter is ejected, and the overall shape of the configuration 

does not change.

Many Skyrme model approaches have taken the view th a t spin and isospin mo­

ments of inertia have the same general characteristics. Much of the im portant work 

on quantizing the Skyrme model took place within a spherically symmetric ansatz 

which constrain the spin and isospin moments of inertia to be equal to each other 

and prevents ejected m atter solutions by keeping the pion fields in a constant ratio 

to each other. Because of this assumption, the general expectation has been th a t 

any instability caused by spin energy is of the type described in section 2.4, and 

could thus be cured by the addition of a  suitably high pion mass. This seems like 

a reasonable expectation, since both the spin and isospin rotational energy terms 

scale as Erot ^^Erot as f/ (x) —> (Ax), and the pion mass energy term  scales as

E t̂ —> \ / \ ^ E r .  However, the effect persists for a range of pion masses far higher than 

those used in [29] to produce stable isorotating solutions. In fact, the ejected m atter 

becomes more apparent with higher pion mass since the resultant configurations have 

less inertia and more spin energy. Also, the instability described in section 2.4 is not
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Figure 4-6: Cross-sections of the U\ field component for a i? =  1, spin 3/2, isospin 
3/2 Skyrmion annealed using a cubic lattice (top) and spherical lattice (bottom ). 
The cubic cross-section is taken near a cube face. The origin in this annealing run 
was moved slightly away from the corner where the largest concentration of m atter 
is, showing th a t the configuration lowers energy by ejecting Skyrme m atter as far 
away as possible. A close-up of the largest m atter concentration is shown to the 
right. The spherical cross-section is taken through the origin; the Skyrme field has 
been truncated at f/i =  —.002 in order to see the effect more clearly.
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visible on finite lattices; to determine whether or not a configuration is stable, one 

must check if the energy changes when the lattice size is varied. The spin contribu­

tion to the rotational energy term  is responsible for a class of instability th a t cannot 

be controlled by the pion mass term  and which are visible on finite lattices.

Obviously, upon discovery of such an effect, attention first turns to verifying the 

soundness of the algorithm implementation. The first, and most serious question, 

is whether the field and derivative definitions on the lattice are termed in such a 

way th a t the minimum energy configuration is unphysical; ways in which this might 

happen were discussed in section 3.2. The telltale indicator would be evidence th a t 

the instability occurs on the level of the lattice spacing; probing the structure of the 

ejected Skyrme m atter for lattice-scale artifacts and verifying th a t the solution is the 

same when annealed with different lattice spacings are convincing ways to remove 

such doubts.

Once it is verified tha t the algorithm is working properly, the next task is to 

determine if the annealed configuration is indeed the minimum energy. The bulk of 

our tests focused on the 5  =  1, spin 3/2, isospin 3/2 Skyrmion modelling the delta 

resonance, enabling smaller lattices, use of the cartoon method and easier generation 

of multiple initial configurations. We minimized many initial 5  =  1 configurations 

using a ‘quenching’ variant of SA th a t only accepts perturbations of lower energy, 

to find th a t they all had ejected m atter configurations as their local minima. We 

therefore annealed using very small lattice over as many lattice iterations as it took 

to bring two separated Skyrme configurations together, and came to the conclusion 

th a t the ejected energy is not merely trapped in a local minimum configuration, th a t 

it is in fact the global minimum.

So, what does what we are seeing corresponding to physically? Simulated anneal­

ing is a rather limited tool to use in answering questions of this nature. The heating 

and cooling in the algorithm are not steps in time; SA can give a minimum energy 

configuration, but it cannot illustrate the dynamical process by which it arrived there 

from the initial configuration. However, a shrewd investigation of the energy traces 

left by the process on the annealed configuration can piece together a good picture
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Figure 4-7: Plot showing values of U2 for the B = I spin 3/2 isospin 3/2 minimum 
energy solutions annealed using the cartoon method, as a function of lattice disc 
radius. The line at the bottom of the graph is the value of V2 for the simulations.
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energy solutions obtained by 3D annealing, as a function of lattice disk radius. The 
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of what has happened. For example, we cannot see baryon density being ejected 

from the main body of the configuration; however we can conclude that matter is 

being ejected because the baryon density is constant and so the baryon density at 

the edge of the lattice has to come from the main body of the configurations. In 

additions, simulations using different lattice shapes and sizes show that the baryon 

density accumulation is always as far away from the origin as possible; for example, 

in a square lattice with the origin placed off-centre the baryon density accumulation 

is to be found primarily in the farthest corner of the lattice, whereas for spherical 

lattices the accumulation is spread equally along the curved lattice edge.

One possibility is that, if the lattice size were extended to infinity, the configura­

tion would radiate away all its spin energy in this manner. In investigating this, we 

first note that the spin energy does not seem to have any substantial effect on the 

main body of the configuration. Indeed, it is unclear whether it has any effect at all 

within the experimental error of the lattice simulations. Simulations on the B = I 

spin 3/2, isospin 3/2 configuration and on the B = 2 spin 1, isospin 0 configuration 

showed that the peak variance in the fields was less than .1% with the spin energy 

included. The peak variance is an order of magnitude larger than the peak ejected 

field value. However, the inertia increase, and hence the change in rotational energy, 

is almost entirely due to the ejected fields. It is fair to say that most, if not all, of 

the spin energy goes into radiating matter away from the configuration.

This is a very strong indication that, in fact, the configuration radiates away all 

its spin energy. One can also find evidence to support this hypothesis by seeing how 

the moments of inertia vary as the lattice sizes are increased. Again, our tests are 

run using the B — \ spin 3/2, isospin 3/2 and 5  =  2 spin 1, isospin 0 configurations. 

In the B = \ case, the simulations are done under the assumption of axial symmetry; 

all indications are that the spin energy radiates radially so the imposition of axial 

symmetry should have no change on the end state. We derive the energy of the 

axially symmetric B = \ spin 3/2, isospin 3/2 configuration in section 4.3; a general
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description of the terms are adequate here:

2

(4.1)

The energy is divided into isospin-only terms and spin-isospin cross terms whose 

magnitude depends on the divergence between spin and isospin. One can just as 

easily write the energy as the sum of spin terms and similar cross terms. Therefore, 

for the B  = \ configuration to radiate away all its spin m atter, the value of the spin 

moments of inertia should tend towards those of the isospin moments of inertia as 

the lattice is made infinitely large; from the graph in figure 4-7, we see th a t in fact 

the spin inertia values tend quite quickly towards the isospin inertia values.

In contrast, the B = 2 configuration has spin energy only; the rotational energy 

is of the form

increasing as the lattice size increases.

Our investigations are curtailed by the size of the lattice and are by no means 

conclusive. However, the results obtained so far still are a very strong indication tha t 

the configuration radiates all its spin energy.

4.3 M odelling the nucleon and delta resonance

Our aim in the 5  =  1 simulations is to obtain the definitive zero-mode quantized 

Skyrme configurations corresponding to the nucleon and delta resonance, and thus 

complete the task begun by the rigid-body quantization in [8]. The parameters F.̂  

and e obtained by fitting the configuration energies to the nucleon and delta masses 

for a given value of can thus be settled, at least for the rotational case.

We initially annealed the two particles on a 70^ lattice with spacing .12, using the 

same initial configurations. The inertial energy terms for the I = k = 1/2  nucleon

(4.2)

and so the spin energy will be radiated away if the diagonal values of Uij go to infinity 

as the lattice is made infinite. Indeed, our plot in figure 4-8 shows the diagonal values
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and I = k = 3 /2  delta  resonance, was obtained by finding the  lowest eigenvalue of a 

4 x 4  and 16 x 16 m atrix  respectively. Previous work [50] indicates th a t the  nucleon 

in the Skyrnie model is stable against quadrupole deform ations and th a t nucleon 

deform ations, to  leading order, take place w ithin a spherically sym m etric ansatz. 

O ur 3D results results indeed seem to  bear this out, w ith Uu = Vu = Wa  for all 

values of i to  w ithin la ttice  error. The I — k  = 2>/2 configuration showed signs of 

ejected energy for all values of pion mass.

We were m ainly concerned w ith checking th a t the configurations had a t least axial 

symmetry, so we could use the cartoon m ethod described in section 3.4 to  get much 

more accurate results. As well as axial symmetry, there is also a reflection sym m etry 

in the x?/-plane and so the  principal axes of inertia  can be taken as the s tan d ard  

orthogonal axes, w ith Uij =  Vij = Wij =  0 where i ^  j-, v/e can set Uu =  Ui and  so 

forth.

We simplify the inertia  m atrix  U  using the  axially-sym m etric identities:

^1 =  Ui, Vi = V2 , H/i =  M/2 , (4.3)

in which case U  becomes:

/
U 2 0 0 - W 2 0 0 \

0 t/2 0 0 - W 2 0

0 0 t/3 0 0 - 1 ^ 3

- I V 2 0 0 V 2 0 0

0 - W 2 0 0 v̂2 0

\ 0 0 -W 3̂ 0 0 1/3 /

Ŵ e first consider the  case of the  nucleon; inverting U  and pu tting  the  result into the  

m atrix  H am iltonian (2.55) for the I = k = 1/2  representation of the  direct p roduct
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Figure 4-9: P lot of as a function of e, for which the energy M  +  is equal 
to  the nucleon mass 939 MeV; the  pion mass param eter m.^ set to  its experim ental 
value of 138 MeV. O ur results (bold circles) are com pared w ith those obtained using 
the rigid body approach taken in [18] (solid line).

spacc of L and K  gives;

H  = -

+  AC3 0  0

0 Kl -  K3 «2 

0 K2 Kl —

0 0 0

0

0

0
(4.5)

^ 1 + ^ 3  j

1^2

U 2 - V2

2 V̂b

U 2 -
vva
V"3 (4.6)

U s - V3

Following [9], we simplify the H am iltonian further by establishing a relation be­

tween U3 , V3  and W 3  for axially sym m etric fields. We first express the  quantity
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Figure 4-10: As Fig. 4-9, bu t w ith the pion mass param eter m„ set to  the value 
of 345 MeV suggested in [29]. O ur results (bold circles) are com pared w ith those 
obtained using the rigid body approach taken in [18] (solid line).

e^jkXjRk in polar coordinates:

^zjk^jRk =  ( x x V ) 3 ? 7 f / ^

We can then  identify Cij^XjRi and —|  [<7 3 , U] by looking a t the  general form of an 

axially sym m etric field w ith unit baryon number:

U =  (4.8)

and tak ing  its derivative with respect to  4 >\

34>

=  (4.9)

We see the  expressions for the  inertias U3 , V3 and W 3  in the  m om ent of inertia  integrals
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(2.51) differ only in the terms e^jkXjRk and —|  [0 -3 , U] W , and so

U. = V. = (4.10)

We did not insert this identity into the full Hamiltonian (2.55) initially because it 

would have made the m atrix (4.4) singular. The elements of the m atrix Hamiltonian 

(4.5) are modified by the relation:

Ki =

K2 = 

1̂3 =

V2

0 W2
^ v̂2

1 1
2 +  —  H------------Vo 2K ’

U2

0 .

V̂2

(4.11)

We can use a filter to ensure we only get eigenvalues of states corresponding to 

L3  =  —K 3 . Using as columns the basis vectors of the null space of K 3 +  L3  in their 

right place we construct the matrix P

P  = (4.12)

0 0 0 0 ^
0 1 0  0 

0 0 1 0  

0 0 0 0

The eigenvalues of P H P  will correspond to states with L3 =  —K^.  There are two 

eigenvectors of H  which are also eigenvectors of L3  +  K 3 with eigenvalue zero:

V /

v/2 ( ' 2 ’ 2^
1 ^
' 2 ’ 2 '  ' 2 ’ 2 ^ 2 ’ ~ 2  ) ’ ^ 0 ,0  — j  {k-1 -  1̂ 2 ) (4.13)

and

^  U 2 ’ "2^ ®  I 2 ’ 2  ̂ ^ '2’ 2  ̂ ® I 2 ’ " 2 O  ’ “  i

The first eigenvector is a spherically symmetric state and also has the lower energy
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Figure 4-11; Plot of radial distribution of baryon density B for a spin 3 /2 , isospin 3 /2  
B = \  Skyrme configuration with m ^=345M eV  (solid line), compared with distribution  
of an m =  0 classical Skyrmion (dotted line).

since K\ and «2 are always positive; hence

(>-S)
E m =  —

C/2 j 1 1
' ^ [ / 2 ^ 2 U 3yy|

C/2

(4.15)

and is therefore the energy of an axially sym m etric nucleon. We see that in the 

spherically sym m etric case U2 =  U3  =  W 2 =  V2 , and reduces to  the rotational 

energy formula obtained in [8]:
h

(4.16)
Tpsym   3 h

“ 42A

where A =  j  [Ui +  U2 +  U3 ) =  U3 . The energies of all other eigenstates go to  infinity 

in the spherically sym m etric limit.

We find the energy of the spin 3 /2 , isospin 3 /2  delta resonance in an identical 

manner to the nucleon, constructing direct product eigenstates of L ® K  using the  

3 /2  m atrix representation of SU (2) and finding the lowest eigenstate of the resulting
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Figure 4-12: Plot of radial distribution of baryon density B for two different ap­
proaches towards quantizing a spin 3/2, isospin 3/2 B —l Skyrme configuration with 
m7T=345MeV. The result of quantizing the lowest eigenvalue of a m atrix Hamiltonian 
is shown by a solid line; the cross-section was taken at 0 =  7t/2, but other cross- 
sections taken at 7r/8,7r/4, and 37t/8 overlay exactly onto this hne. The approach in 
[29] of quantizing the degree of freedom given by the cylindrical map ansatz (3.14) is 
shown with cross-sections at 7t/4 (thin hne) and tt/2  (dotted line).
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Figure 4-13; Plot of distribution of moment of inertia density X normal to the cylin­
drical axis of rotation for a spin 3/2, isospin 3/2 5 = 1  Skyrme with m^=345MeV 
(solid hne), compared with distribution of an m =  0 classical Skyrmion (dotted hne).
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H am iltonian th a t is also a  null eigenstate of L 3  + K 3 :

\Ea  >=
V"2(l +  X")

[(1 - X ) | 0 , 0 > - ( l  +  x ) | 2 , 0 >] (4.17)

where

X

C  =

31^2 I c/j

r  3 ^  1 2
^U2 +1 I

1 _
 ̂ U2 J

3 W 2

2

V2 t/2

(  1

J ' vt /2

1

U2 U z )

- \ / c

(4^18)

I^ a ) is the axially sym m etric delta  sta te; its energy is

■5 ( 1
E a  =

h
^ 2  qW',
U2 )

V o - U2

' ^  + -  +  ~ - 2 ^ f C  
U2  2U,

(4.19)

In the spherically sym m etric case, x  goes to  —1, IE'a) is the  singlet |0 ,0) s ta te , 

and the energy (4.19) again reduces to th e  ro ta tional energy form ula obtained  in [8 ]:

1 'i hT^sym _ (4.20)

with the energy of all other eigenstates going to  infinity.

O ur annealing was carried out on a quarter-disc la ttice w ith a  radius of 250 

lattice points spaced a distance of .06 ap art. This configuration gave rise to  errors 

0.5% arising from the la ttice spacing and  .2% arising from the finite la ttice size. O ur 

results were crosschecked w ith full 3D sim ulations and  found to  be identical w ithin 

the lattice errors of the  3D simulation. For the  I = k =  1 /2  configuration all m om ents 

of inertia are equal; for the I = k = 3 /2  th e  ejected energy causes a  divergence of U2  

from the other m om ents of inertia V2 , V3 and  W^; th is divergence was around 2 % for 

a  lattice radius of 250 points spaced .06 apart.

O ur approach can be com pared w ith  th a t of [29] which also annealed a. B  =  

1 configuration on a  2D lattice using axial symmetry. Instead of quantizing the
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fields as shown above and then  using the cylindrical field ansatz (3.14) in th e  la ttice  

im plem entation, they make th e  approxim ation of substitu ting  the ansatz  into the  

Lagrangian (2.12), resulting in the energy

Ea„ = : ^ J ( l + l )  (4.21)

One could say th a t th is procedure is guided by classical intuition; classically 

the  particle is expected to  bulge in a  direction norm al to  the  ro ta tion  axis and so 

one m ight expect the norm al degree of freedom is the  one to  quantize. However in 

quantization, there is no preferred axis of ro ta tion  and the  order of m agnitude of the  

ro ta tional energy term s is the same in each direction.

In figure 4-9 and figure 4-10 the results of our nucleon sim ulations are shown in 

com parison w ith results obtained using the  rigid body approxim ation used in [18]. 

The pion mass m.,  ̂ was set to  its experim ental value of 138 MeV in figure 4-9, w hereas 

in figure 4-10 it was set to  the larger value of 345MeV suggested in [29]; we see th a t 

the variation from the rigid-body solution is not significant and indeed only becomes 

noticeable a t the higher value of the pion mass. In th is case our results do not differ 

substan tially  from those in [29], the m ain reason being th a t the  deform ation from the  

rigid-sphere quantization result is very small in bo th  cases.

T he deform ation from the classical m inim um  in the  I = k = 3 /2  case is much 

larger th an  in the I = k =  1/2  case, large enough to  cause a noticeable bulge in the  

configuration for the  approach in [29]. However w ith our approach, and leaving the  

ejected energy aside, every indication points to  the  configuration having spherical 

symmetry. Baryon density cross-sections taken a t different angles to  the  sym m etry 

axis are as close to  each other as to be indistinguishable, as are those of U2 , V2 and 

IV2 away from the la ttice edge a t any given angle to  the  sym m etry axis.

T he approach in [29] does not have any ejected energy as the  U3 is constrained 

by the  sym m etry to  be equal to  V3. The m inim um  energy configuration has a  lower 

energy th an  our approach, in line w ith the predictions of [51] using restric ted  oblate 

modifications of Skyrme hedgehog configurations. However this is a  result of th e  lack 

of rigour in the quantization.
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One final question; why does the I = k — 3/2  eject energy whilst the I = k = 1/2 

B=1 Skyrmion does not? The short answer is th a t the Skyrmion does not spin 

fast enough to produce any rotational eff’ects; there is no significant deviation from 

our result and th a t using the rigid-sphere approach in [18]. One might argue th a t 

the higher charge configurations spin much more slowly and yet still eject m atter. 

However, the nucleon is spherically symmetric, and so spin and isospin are constrained 

to be equal. In the nucleon case, the spin energy is not high enough for the spin 

and isospin degrees of freedom to separate. One might suspect th a t for higher pion 

masses, the increased spin energy due to the lower moments of inertia might cause the 

configuration to radiate m atter; preliminary results suggest th a t this might indeed 

be the case.

4.4 H igher charge rotating configurations

As we discussed in section 2.4.2, we wish to investigate the the possibility th a t the 

Skyrme configuration th a t is a minimum in the zero mode configuration space might 

deviate sufficiently from the classical minimum energy to give ground state quan­

tum  numbers consistent with experiment. The quantization is carried out without 

symmetry impositions so th a t the annealed configuration changes the entire space of 

rotational and isorotational deformations.

Our quantum  treatm ent of the nucleon and delta resonance in section 4.3 yielded 

rotational energy terms which averaged rotations over all directions, and maintained 

the spherical symmetry. In effect, there is no preferred axis of rotation, and instead 

of a rotational bulge we get a radial expansion in all directions. For B  > 1 the 

rotational energy contribution drops due to increasing inertias, and so we expect 

rotational effects to be less marked for higher values of B.

Due to lattice size constraints, we cannot anneal configurations of B > 5 without 

a significantly large pion mass. The pion mass does have the effect of lowering the 

inertias and increasing the rotational energy contribution; however, even with the 

pion mass the zero mode energy does not have a significant effect on the configuration. 

The B  = 7 configuration, for example, does not differ significantly from the annealed
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Figure 4-14: Baryondensity surface of two spin 3/2 isospin 1/2 i? =  5 configurations 
at m =  0, for values of e =  8.6 and e =  12.2; this corresponds to values of h of 150 
and 300 respectively.

solution in figure 4-3.

The pion mass energy term  is a central potential; from our D = 1 simulations it 

appears the rotational energy term  is also. It is therefore reasonable to investigate 

whether a configuration with a very large rotational energy will change shape in 

expanding in the same way th a t a configuration with large pion mass changes shape 

in contracting. The rotational energy is proportional to which is in turn  equal to 

4e''; there may be a critical value of the free param eter e above which the shape is 

changed from the classical minimum.

The B  = 5 configuration is the configuration with the lowest baryon number 

for which the polyhedral skeleton has unequal polygonal faces; we recall th a t shape 

change with the addition of the pion mass only took place in when the polyhedral 

skeletons were non-Platonic. Our simulations took place with =  0 and different 

values of e up to two and a half times th a t of the value used in our B  = I simula­

tions. Isodensity surfaces for two values of e can be seen in figure 4-14; so far, no 

conclusive evidence of shape change has been seen, and indeed the zero mode energy 

appears not to have any significant effect on the configuration. However, for B =  5, 

rotational energies only begin to equal large pion mass energies at for values of e at 

five times th a t used in our B = I simulations, and investigations are continuing in 

this param eter range.



Chapter 5

Conclusion

The simulated annealing technique has enabled us to shed considerable light on the 

static configurations of the Skyrme model, yielding three primary findings of impor­

tance.

1. A quantized treatment of the Skyrme model does not pick out a preferred axis 

of rotation, and as a result the rotational energy of the quantized configuration 

is an average of contributions from all rotational axes. The B = \ Skyrme 

minimum energy configurations therefore remain spherically symmetric with 

the addition of rotational energy. Configurations with B > \ are not affected 

considerably by rotational energy due to their high moments of inertia.

2. Allowing the spatial spin degrees of freedom to influence the configuration 

causes a small ejection of matter towards the edge of the lattice while leaving 

the configuration practically unchanged. We have found evidence to suggest 

that the configuration radiates away all its spatial rotation energy.

3. For large pion masses, non-Platonic configurations change in shape compared 

to their equivalents without pion mass; Platonic configurations are changed in 

size only. The shape change for non-Platonic configurations is such that the 

rational map is no longer a good approximation.

It is our discovery that Skyrme configurations radiate away their spin energy that 

has the most immediate consequences for the future of the Skyrme model. If it is
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true, then it would spell the end of the Skyrme model as a useful theory of nuclear 

physics, as there is no way of distinguishing states of different spin in the model. The 

evidence to suggest th a t all the spin energy is radiated is convincing, but more needs 

to be done to conclusively show this, and also tha t the radiation is physical and not 

due to some unknown computational irregularity.

Both these issues can be addressed by obtaining the same results using a different 

numerical scheme, namely, evolving the full field equations in time. This method has 

already been in use for some time to generate minimum energy field configurations 

[7], and it has the advantage th a t we would be able to see the process of radiation 

in the course of the algorithm run, compared to SA where we can only see the final 

configuration. Evolving the full field equations is time-consuming, and a minimum 

onrgy configuration using the m atrix Hamiltonian method method used here cannot 

yet be obtained within a reasonable time. However, it would suffice to show th a t the 

same effect happens using SA and full-field evolution using a simplified rotational 

energy term, for example

E = E,i +  ^ ,  (5.1)

the energy of a toroidal configuration like the 5  =  2 toroid describing the deuteron 

(9).

Even if the zero mode Skyrme configuration is stable, the addition of the zero 

modes will not provide the correct quantum  numbers. At the beginning of our re­

search, we believed the zero modes would cause the symmetry-breaking deformation 

and the pion mass would infiuence the radial deformation; it seems now th a t the re­

verse is the case. This does not necessarily mean th a t configurations with pion mass 

will yield the correct quantum numbers; the configurations we have generated so far 

do not differ in their point symmetry group to their zero pion mass equivalents. In 

addition, Platonic configurations such as 5  =  7, which have the most restrictions on 

allowed quantum  numbers I and k, appear to differ from the =  0 configuration 

in scale only.

It is known th a t the spectrum of rotational states is widened with the addition of 

higher mode degrees of freedom [15]; the general consensus, however, is th a t obtaining
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minimum energy configurations with vibrational degrees of freedom added is much 

more difficult. At present, vibrational mode spectra are usually treated as small 

fluctuations around the classical minimum and, as such, the treatm ent relies on the 

symmetries of the classical minimum in order to classify them. One approach [30, 32] 

involves treating the vibrations as small harmonic perturbations around the static 

configuration Ustatic (x)

U  (x) =  Ustatic (x) +  ^  e J n  (x) COS +  O (e^) (5.2)
modes

where the functions (x) obeying

5 „ (x ) .t/„ (x )  =  0 (5.3)

are normal modes, each excited with frequency and amplitude

The power spectrum was found by perturbing the classical minimum and using 

full field simulations to evolve the configuration in time; u>n and e„ were found by 

Fourier analysis of U (x) a t any lattice point. Once u>n have been identified, the maps

5„ (x) can then be identified by performing another full field evolution and by Fourier

analysing each component of U (x).

Perhaps one idea might be to anneal with respect to the energy of this configura­

tion
modes

E  =  E d  +  Erot +  ^  ^   ̂ (5-4)
n

If the Skyrmion then deforms, new full field evolutions can then be run to determine 

the new and another annealing run performed; the procedure continues until the 

configuration stabilises.
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