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A bstract

This thesis is concerned with the design and development of microphone-array-processing 
techniques for videoconferencing applications in classroom environments. We argue 
that, in such environments, it is advantageous in terms of both performance and prac­
tical implementation to use widely distributed arrays. A likely consequence of the 
use of such arrays is that the relative locations of the microphones will be unknown, 
however, most previously published microphone-array-processing techniques assume 
and require knowledge of the microphone locations. We propose two novel algorithms 
which are designed for use with widely distributed arrays of unknown geometry.

The first of these is a Leaky-LMS-based method for precise beamformer steering. 
Beamforming is a classical array-signal-processing technique for the suppression of 
noise and reverberation. Traditionally, a necessary preliminary step - known as steer­
ing - has been the application of delays for the time-alignment of the target-signal 
components in each microphone output. When using time-sampled data, estimates 
of the appropriate delays are typically limited to being integer multiples of the sam­
pling period. Consequently, the source locations to which we may precisely steer are 
also limited to a number of discrete locations, leading to missteering and reduced 
beamformer performance.

In this thesis we show that a leaky, multichannel, least-mean-squares algorithm 
may be used to achieve steering that is both more accurate and less computationally 
complex than traditional methods. We provide the results of experiments using both 
real and simulated data  which demonstrate the efficacy of our approach in reverberant 
environments.

The second algorithm is a method for determining the distance between a sound 
source and the microphones in an array in reverberant environments. Following from 
the results of a series of experiments in real-room environments, we show that, in a 
spatially averaged sense, reverberation levels observed in a room are constant. This 
provides the theoretical justification for our technique, which we dub the “Range- 
Finder” algorithm.

We derive the Range-Finder algorithm and analyse the distribution of the source- 
microphone range-estimates it returns. We also provide the results of experiments in 
which we compare the performance of the Range-Finder algorithm to those of a naive 
range estimation technique and a modified-steered-response-power technique, in both 
real and simulated reverberant environments.



Summary

This thesis opens with an introduction in chapter 1. In chapter 2 we discuss 
sound propagation in rooms, outlining relevant theory and presenting the results of 
experiments which investigate the variation of the Direct-to-Reverberant ratio (DRR) 
with distance from a sound source. These experiments were performed in real rooms. 
Our results show that, given an omni-directional source and receiver, the reverberation 
levels at any point in a room are independent of the source-microphone range and are 
instances of a normally-distributed random variable with a  constant mean. Following 
from this result, we propose a new metric for describing the reverberant characteristics 
of a room -  the “D RR-at-lm ” . We define this metric and demonstrate instances in 
which the DRR-at-lm  gives a more accurate impression of relative reverberation levels 
than the more commonly used measure, the “reverberation time” .

In chapter 3, we introduce the fundamentals of array-signal-processing and define 
the notation and much of the terminology to be used throughout the thesis. We 
develop the concept of spatial sampling and explore its implications with reference 
to spatial aliasing, “sidelobe” levels and wavenumber-vector resolution. The effects 
of frequency, direction-of-arrival and array geometry are explored. The issues arising 
from discrete-time sampling are also addressed.

In chapter 4, we review the literature concerning techniques for enhancing the 
perceptual characteristics of recorded speech. Starting with a review of conven­
tional beamforming techniques, we explore the topic of “adaptive” beamformers us­
ing the “constrained-optimization” paradigm. We discuss the relationships between 
the popular “generalized-sidelobe-canceller” algorithm, its robust variants and the 
multichannel-Wiener-Filter. We also review the literature concerning dereverbera­
tion techniques.

In chapter 5, we review the literature relating to methods for determining the 
location of a sound source. Starting with a review of approaches to time-delay es­
timation, we discuss time-delay-estimate-based source-locahzation. Parametric and 
subspace-based methods are also reviewed.

In chapter 6, the inadequacies of currently-available microphone-array techniques 
are outlined with respect to classroom-based videoconferencing. We address the ad­
vantages to be obtained via a widely-distributed, ad-hoc and unknown microphone 
deployment, while also outlining the additional problems such an array-configuration



would pose. We thus define the scenario and appHcations for which the novel tech­
niques presented in this thesis are designed.

In chapter 7, we present a technique for steering-vector estimation based upon a 
leaky-LMS filter. This method is suitable for practical implementation in situations in 
which the array geometry is unknown. The steering-vector thus obtained may be used 
to time-align the target-signal components of the outputs of multiple microphones -  a 
necessary preliminary step for beamforming. While LMS-based techniques have been 
previously applied to the problem of obtaining time-delay estimates (from which a 
steering-vector may be determined), our approach calculates the steering-vector di­
rectly, without a requirement for intermediate time-delay estimation. Furthermore, 
we analyse our method under reverberant conditions. This is in contrast with previ­
ously published techniques which assume an anechoic environment. In discussion, we 
highlight how, in reverberant environments, the effective performance of our approach 
is dependent upon the selection of an appropriate step size and leakage coefficient.

We present the results of experiments using simulated and real recorded data 
that demonstrate that the steering-vector obtained by our method achieves accurate 
beamformer steering under reverberant conditions. Furthermore, we show tha t our 
approach to beamformer steering is, under certain conditions, both more accurate 
and less computationally complex than traditional methods.

In chapter 8, we present a method for determining the distance between a sound 
source and the microphones in an array - the "Range-Finder" technique. The theoret­
ical underpinning of the Range-Finder follows from our results in chapter 2 regarding 
reverberation levels in rooms. As with our technique for delay-vector estimation, the 
Range-Finder method is suitable for application to arrays of unknown geometry. We 
show th a t the distribution of the range estimates returned by the Range-Finder is 
related to a Cauchy distribution which is itself a function of the relative positioning 
of the source and microphones. Based on our analysis, we discuss the conditions 
necessary for accurate range estimation and, following from this, outline possible 
applications for the Range-Finder technique.

Using simulated and real-room recordings, we compare the performance of our 
method with tha t of a modification of the classical Steered-Response-Power approach 
and a “naive” range estimator, which assumes an anechoic environment. To the 
author’s knowledge, the modified-Steered-Response-Power technique has not been 
presented elsewhere previously.

We conclude in chapter 9 with a discussion of potential future work.
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Chapter 1

Introduction

Recent years have seen the rapid development of telecommunications technology both 
in terms of its advancing capabilities and in terms of its evolution towards near­
ubiquity in our day-to-day lives.

When communication technology has been its most successful, it has been when 
it has allowed us to interact with others across boundaries of distance, location and 
time. We are, perhaps, all familiar with the advantages and impact of mobile (cellu­
lar) phones, text messages and E-mail. Emerging technologies promise an even more 
profound effect. Text-to-speech, speech-to-text and automatic translation technologies 
have begun and will continue to break down the barriers of disability and language.

Some of the most exciting potential applications for telecommunications technology 
exist in the area of education. In this thesis, we shall be seeking to design and develop 
techniques that support and facilitate classroom-to-classroom videoconferencing.

The potential benefits of such technology are difficult to overstate. Whereas today 
students and educators are largely constrained by geography, in the future they could 
be able to interact with other students, lecturers, teachers, politicians and public 
personalities in ways tha t would enhance the quality and depth of their education. 
In particular, by interacting with their peers in other (perhaps distant) countries, 
students would broaden their experience and understanding of differing cultures and 
outlooks -  something tha t is increasingly important in a shrinking world.

However, to be widely adopted, classroom-based videoconferencing must facilitate 
interactions tha t are natural and spontaneous, whilst at a practical level being cost- 
efficient, reliable and effective. In addition, we must be mindful of the fact tha t such 
videoconferencing systems will, in all likelihood, be set up by people (i.e. teachers) 
with minimal experience in audio and video technology. Therefore, any systems or 
equipment used should require only a minimum amount of technical know-how for their 
use and maintenance. Consider the ideal. W ith no special effort on the part of the

1



1. In tro d u ctio n 2

participants, a talker’s words are transm itted to the far-end classroom. Furthermore, 
the location of the active contributors is automatically determined such tha t a camera 
may be steered towards them. At the far-end they are heard clearly and intelligibly. 
In addition, the location information is used at the far-end so that a talker’s speech 
is perceived to originate at his/her on-screen location, thus maintaining the sense of 
presence tha t is vital for the naturalness of such interactions.

Natural and spontaneous interaction between participants will feature a certain 
amount of speech overlap (i.e. multiple participants talking at the same time). In 
order to facilitate this, our videoconferencing system must support “full-duplex” com­
munication - i.e. the channels through which sound is transm itted from one classroom 
to the other must be open in each classroom at the same time. Unfortunately, when 
using full-duplex communication systems there exists the potential for a “feedback- 
loop” to become established. Sound is detected in one room and transm itted to  a 
second where it is produced by loudspeakers. In the second room this sound is de­
tected by microphones and transm itted back to the first room, causing the talker to 
hear a delayed version of his/her own voice. This is known to be very off-putting 
for participants. Also, to provide the spatial audio cues required to achieve a sense 
of “telepresence” , each classroom must contain multiple loudspeakers. This creates 
multiple feedback-loops, exacerbating the problem.

Achieving ideal videoconferencing presents a number of other technical challenges. 
Among these, how to locate an active talker and how to faithfully capture his or 
her speech? This latter obstacle is most commonly overcome using head or lapel- 
mounted microphones. In many situations, however, purchasing and maintaining such 
equipment, in quantities sufficient for a potentially large number of participants, is 
not cost-efficient. At the same time, sharing fewer microphones by, say, passing them 
around the room is not conducive to spontaneity or natural interaction.

We therefore require a system in which a moderate number of microphones would 
be sufficient to effectively capture speech from every potential contributor. However, 
in a classroom, audience members will be widely distributed and so we can expect 
a participant to be some distance (perhaps several meters) from a microphone. As 
we shall see, classrooms may be expected to be both noisy and reverberant (echoic) 
environments. By increasing the separation between talkers and microphones, we 
increase the attenuation of a target speech signal (due to propagation losses) and 
thereby increase the relative power of noise and reverberation. This leads to a reduction 
in speech intelligibility and perceived quality.

We therefore require methods by which we may suppress noise, reverberation and 
the off-putting effects of feedback-loops. Microphone-array-processing techniques, us­
ing networks of multiple remote microphones, provide a potential solution.
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Array-processing techniques have their origins in the Second World War, where 
radar and sonar processed the outputs of multiple sensors to exploit the spatial as well 
as temporal and spectral information contained in the observed waves (electromagnetic 
and acoustic respectively). Using these techniques, the location and heading of enemy 
planes and submarines etc. could be determined.

Using similar methods, the location of an active talker may be found using arrays 
of microphones. As we shall see, microphone arrays may also be used to enhance the 
perceived quality and intelligibility of recorded sound, by means of processing tech­
niques tha t attenuate interference such as noise and reverberation while maintaining 
the target speech signal.

As shall become apparent from our review of the literature, previously published 
techniques are typically based upon the assumptions/requirements tha t the micro­
phone array geometry (that is, the relative positions of each microphone) is fixed, 
known a priori and tha t the distance to the target talker is large with respect to the 
width or extent of the array. In fact, these assumptions put us at significant practical 
disadvantage in situations, such as in classrooms, where it would be most advantageous 
to allow microphones to be moved according to the specific and changing requirements 
of the room or audience.

In this thesis we present two novel microphone-array-processing techniques which 
do not require knowledge of the array geometry and which may be applied when 
the target talker is close with respect to the array dimensions. The first of these is a 
method for estimating the distance between an active talker and multiple microphones 
at unknown locations. The second is a method for “steering” -  a necessary preliminary 
step for many speech enhancement algorithms.

Classroom-based videoconferencing is by no means the only application for such 
technologies. Rather, it represents one of the most challenging scenarios tha t system 
designers are likely to encounter. Consequently, microphone-array-processing tech­
niques tha t are effective in a classroom are highly likely to be directly applicable 
to, for example, office-to-office videoconferencing, “hands-free” telecommunications or 
talker-identification for autom ated speech transcription. Therefore, while we shall con­
tinue to refer to the specific case of the classroom, the microphone-array-processing 
techniques proposed in this thesis will have applications in rooms and enclosed spaces 
in general.

This thesis will continue as follows. Chapter 2 shall investigate rooms as acoustic 
environments. Sound propagation in rooms shall be discussed. Following from this, 
reverberant sound propagation shall be explored and the concept of the “room impulse 
response” introduced. Furthermore, the metrics to be used in this thesis for quantifying 
the acoustic properties of rooms shall be defined. Sources of acoustic noise shall
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be discussed and the characteristics of these with particular implications for array 
processing shall be highlighted.

Chapter 2 shall conclude with a review of the literature concerning the effects 
of noise and reverberation upon the perceptual characteristics of speech. This shall 
confirm their adverse effects on speech intelligibility and quality, thus vindicating our 
requirement for noise/reverberation-suppression techniques.

In chapter 3, we will introduce the fundamentals of array-signal-processing and 
define the notation and much of the terminology to be used throughout the thesis. 
We shall develop the concept of spatial sampling and explore its implications with 
reference to spatial aliasing, “sidelobe” levels and wavenurnber-vector resolution. The 
effects of frequency, direction-of-arrival and array geometry shall also be explored. 
Furthermore, the issues arising from discrete-time sampling shall be addressed.

In chapter 4, we review the literature concerning techniques for enhancing the 
perceptual characteristics of recorded speech. Starting with a review of conven­
tional beamforming techniques, we explore the topic of “adaptive” beamformers us­
ing the “constrained-optimization” paradigm. We discuss the relationships between 
the popular “generalized-sidelobe-canceller” algorithm, its robust variants and the 
multichannel-Wiener-Filter. We also review the literature concerning dereverberation 
techniques.

In chapter 5, we review the literature relating to methods for determining the 
location of a sound source. Starting with a review of approaches to time-delay es­
timation, we discuss time-delay-estimate-based source-localization. Parametric and 
subspace-based methods are also reviewed.

In chapter 6, the inadequacies of currently-available microphone-array techniques 
are outlined with respect to classroom-based videoconferencing. We shall address the 
advantages to be obtained via a widely-distributed, ad-hoc and unknown microphone 
deployment, while also outlining the additional problems such an array-configuration 
would pose. We thus define the scenario and applications for which the novel tech­
niques presented in this thesis are designed.

In chapter 7, we present a technique for delay-vector estimation based upon a 
leaky-LMS filter. This method is suitable for practical implementation in situations 
in which the array geometry is unknown. We also present the results of simulations 
and experiments that demonstrate the efficacy of this approach.

In chapter 8, we present a method for determining the distance between a sound 
source and the microphones in an array -  the “Range-Finder” technique. Once again, 
this method is suitable for application to arrays of unknown geometry and its effec­
tiveness is verified by the results of experiments using real and simulated data. We 
conclude in chapter 9 with a discussion of potential future work.



Chapter 2

R oom  A coustic Environm ents

2.1 Introduction

In the following chapter we discuss room acoustic environments and their influence on 
the success or otherwise of classroom-based videoconferencing. We start by investigat­
ing sound propagation in rooms and briefly discuss the effects of the so-called “wave 
phenomena” . The combined effects of these phenomena are jointly referred to as rever­
beration and we present the metrics used in this thesis to quantify the degree to which 
reverberation is present in a room or on a recording. Noise in rooms is also discussed 
and this is followed by a review of the literature concerned with the perceptual impact 
of noise and reverberation on listeners.

2.2 Sound P ropagation  in R oom s

Sound waves are introduced to the medium (air) by vibrating objects, which cause 
the space between adjacent molecules to be compressed and expanded. The resulting 
disturbance travels from molecule to molecule transporting energy as it moves. Sound 
is a longitudinal wave -  that is, its oscillations are parallel to the direction of travel.

At sea level in dry air, the speed of sound, c, may be approximately calculated as 
shown below, were Tc is the temperature in degrees Celsius.

c =  (331.4 +  O.erc) m s-i (2.1)

For indoor acoustic environments, we make the following assumptions. Firstly, we 
assume the medium to be homogenous with no significant density, temperature or 
pressure gradients. In addition we assume there to be no significant wind or air flow. 
Following from these, we therefore assume c to be known (corresponding to room 
temperature) and constant within the room.

5
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A full and rigorous analysis of soundwave propagation would be excessive in the 
context of this discussion. Nonetheless, we find it useful to briefly discuss the behavior 
of soundwaves with respect to their propagation in rooms.

2.2.1 Sound Energy D ensity

As sound propagates through a medium the sound energy density (where sound energy 
density =  ) reduces. This is primarily due to “geometric spreading” of
sound energy as the distance between the source and the location at which the sound 
is detected increases. Assuming an omnidirectional point sound source, “direct-path” 
(i.e. non-reflected) soundwaves will propagate outwards forming an expanding sphere. 
Since energy is conserved, the sound energy density will be inversely proportional to 
the surface area of this sphere. This surface area may be given by 47rr^, where r is the 
radius of the sphere. Therefore we may write

sound energy density oc (2.2)

Molecular absorption (due to, for example, air viscosity) also contributes to the 
reduction in intensity of propagating soundwaves. However, molecular absorption 
reduces sound energy density by a factor that is inversely proportional to the distance 
travelled, as opposed to the distance squared. In air, sound energy density losses 
due to molecular absorption are small and, over the short ranges typical of indoor 
environments, may be considered negligible in comparison with those of geometric 
spreading.

Note that, for simplicity, the term "sound intensity" shall be taken to mean the 
sound energy density in the sequel.

2.2.2 W ave Phenom ena

As a wave, sound will exhibit the classical wave behaviors of refraction, diffraction, 
interference and reflection. We briefly discuss each of these and their relevance to the 
indoor scenarios under investigation.

R efra ctio n

Refraction is the phenomenon whereby the direction of a wave changes due to a change 
in its speed. This occurs as a wave travels from one medium to another. Refraction is 
more commonly demonstrated with lightwaves, such as in the classic example of the 
“bent” pen in a glass of water. However, as per our initial assumptions, the air-density 
gradients typical in rooms are such that refraction of soundwaves is insignificant.
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Figure 2.1: Diffraction: Waves “spread” after passing through a gap or around an 
obstacle, (image sourced from http://www.gcsescience.com/pwav37.htm)

D iffraction

Diffraction refers to the “spreading out” of soundwaves after passing through a gap 
or around some obstacle. In general, the effects of diffraction are only noticeable 
where the wavelength is of the same order of magnitude as the diffracting obstacle or 
gap. However, the wavelengths of audible soundwaves are of a similar magnitude to 
the windows, doorways and furnishings common in typical rooms. We may therefore, 
expect diffraction to occur in the scenarios under investigation.

R eflec tion

When incident with a surface, soundwaves are reflected. Specular or “mirror-like” 
reflection occurs when the reflecting surface is smooth, figure (2.2a). Alternatively, 
rough surfaces will lead to diffuse reflections and a “scattering” of the reflected sound, 
figure (2.2b). The degree of scattering tha t occurs is frequency-dependent, with higher 
frequencies tending to be scattered more.

While most of the sound energy is reflected, some is absorbed. As with scattering, 
the degree of absorption tha t occurs is frequency-dependent. Figure (2.3) shows surface 
absorption with respect to frequency for common indoor surface materials.

In terferen ce

At points in space where multiple waves meet, the resulting waveform is the algebraic 
sum of the component waves. This is known as interference. For two monochromatic 
sources generating soundwaves of equal wavelength, the “interference pattern” shown 
in figure (2.4) would result. The blue lines in figure (2.4) correspond to points where 
differences in the distance of propagation cause the instantaneous amplitude due to
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Figure 2.2; Wave reflection from smooth and rough surfaces.
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Figure 2.3: Sound absorption with respect to frequency for typical surface materials 
in rooms. Source: EASE 4.0 materials database, [110],
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Figure 2.4: Interference: soundwaves generated by the monochromatic sources SI and 
S2 interfere constructively (red lines) and destructively (blue lines). Note: for visual 
clarity, not all points at which constructive and destructive interference occur are 
shown.

one source to be tt radians out of phase with the amplitude due to the other. Thus 
their sum is zero and we observe complete “destructive” interference. The red lines 
correspond to points where the instantaneous amplitude due to each source is in-phase, 
thus maximizing the amplitude of the resultant wave at those points. This is known 
as complete “constructive” interference. The remaining points in figure (2.4) would 
experience interference somewhere in between these two extremes.

In a reflective or “echoic” acoustic environment, multiple reflected copies of the 
source signal will meet at points throughout the room. However, for broadband signals, 
intensity variations due to interference are not perceptible as destructive interference 
at one frequency is compensated for by constructive interference in another.

2.3 R everberation

The propagation losses and wave phenomena discussed in the previous section will 
cause an acoustic signal emitted by some sound source to be subject to “room effects” 
- jointly referred to as reverberation. As a result, the acoustic signal observed at any 
location in space will differ from the emitted sound. Furthermore, this observed sound 
will differ from tha t observed at any other location in space. In the following section 
we discuss reverberation and introduce the metrics used to quantify it in this thesis.
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2.3.1 A  Linear T im e-Invariant R oom  M odel

In the scenarios under investigation, a sound will be subject to source-directionality, 
whereby the intensity of the direct-path soundwave is dependent upon the orientation 
of the source relative to the location at which the sound is detected. Furthermore, this 
directionality is frequency-dependent. In addition, the emitted soundwaves are subject 
to room effects such as reflections and diffraction etc. Finally, the microphone itself 
will apply a frequency-and-orientation-dependent gain to the acoustic signal. The 
source, room and microphone combined represent a “system” tha t filters a “clean” 
acoustic signal to produce a microphone output. We shall model this system as being 
linear and time-invariant.

We must, however, qualify our assumptions of linearity and time-invariance. Re­
garding linearity, we make the assumption that the soundwaves of interest have ampli­
tudes above the threshold of detection and below the saturation levels corresponding 
to the microphones being used to detect them. We also assume these microphones to 
have a linear response in this region. Regarding our assumption of time-invariance, a 
“room response” will, in practice, vary in time - often significantly so. Typical causes 
relate to changes in the room environment. Opening doors or windows and draw­
ing blinds or curtains will alter the room response. So too will moving furniture or, 
indeed, the microphones themselves. Perhaps most significantly, talkers engaged in 
natural conversation will alter the room response as they move their heads, gesture 
and/or walk around.

Nonetheless, as is done throughout the literature, we shall continue to make the 
simplifying assumption of time-invariance whilst highlighting those instances where 
doing so would cause us to draw false conclusions or obtain flawed results.

2.3 .2  T h e R oom  R espon se

Any linear, time-invariant (LTI) system may be wholly characterized by its impulse 
response (in the time domain) or transfer function (in the frequency domain). In a 
noiseless room environment, the acoustic signal observed at some point, y{t),  may be 
expressed as the convolution of the source-microphone impulse response, h (t), and the 
“clean” acoustic signal originating at the source, s {t).

x{ t )  = h (t) * s (t)

In the frequency domain

(2.3)
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X{uj) = H{u)S{u j )  (2.4)

=  (Hdp {uj) + Hmp {ui))S (u)

where H^p (w) and Hmp {ijj) denote the components of the frequency response corre­
sponding to direct-path propagation and room effects (i.e. “m ultipath” propagation) 
respectively. Treating the effects of molecular absorption as negligible compared to 
those of geometric spreading, we may consider the intensity of the direct-path compo­
nent of the received sound to inversely proportional to the source-microphone range 
squared. Therefore we may write

\ H d p { o j f < x ^  (2.5)

from which we may determine that the direct-path component of received sound in­
tensity decreases by 6dB per doubling of r.

Figure (2.5) depicts a source-microphone impulse response, which was obtained in 
a classroom as follows. A microphone was placed directly in front of a loudspeaker 
at a distance of 3.5m. The loudspeaker produced a pseudorandom Maximum-Length- 
Sequence (MLS) of approximate duration 5.5s, at a sampling rate of 48kHz.  The 
output of the microphone was recorded, also at a sampling rate of 48kHz.  This 
recording was then cross-correlated with the “clean” MLS to obtain an impulse re­
sponse estimate.

The initial pulse in the impulse response is due to direct-path propagation from 
the source to the microphone and, as we would expect, corresponds to a scaled de­
lay. The remainder of the impulse response is primarily due to reflections but also 
characterizes the effect of the other wave phenomena. This portion of the impulse 
response is composed of a series of delayed impulses tha t are attenuated relative to 
the direct-path component. This is consistent with what we might expect in a room 
environment where, in addition to the direct-path component, multiple soundwaves 
reach the microphone after being reflected.

The m ultipath components of the arriving sound are jointly referred to as “re­
verberation” . As we shall see in subsequent sections, reverberation has the potential 
to effect the intelligibility and perceived quality of speech. Furthermore, reverbera­
tion can adversely effect the accuracy and performance of microphone-array-processing 
algorithms. It is, therefore, im portant to be able to characterize the degree of rever­
beration present in a room or recording. We shall now introduce the metrics tha t we 
shall use in this thesis to do so.
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Figure 2.5: An impulse response obtained in a classroom at a distance of 3.5m from 
the  source.
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2 .3 .3  R everb era tio n  tim e

In an enclosed space the reverberant component of an observed sound will decay 
exponentially with time. The “Reverberation Time” , (RTqo), is the time taken for 
the energy of the reverberant component to decay by 60dB. Originally proposed by 
Sabine in the late 19th century, the RT^o remains in wide use in the field of architectural 
acoustics. Sabine’s reverberation equation, (2.6), describe the relationship between the 
RTqo and the physical characteristics of a room.

RTeo = 0 . 1 6 1 ^  (2.6)

where V  is the volume, S  the surface area and the average surface absorption 
coefficient of a room. Sabine’s equation (which assumes a fully diffuse soundfield) 
describes a phenomena that will be intuitive to many readers, whereby large rooms 
with reflective surfaces will be more reverberant. However, because it characterizes 
the acoustic environment in terms of only its volume, surface area and average surface 
absorption, Sabine’s equation does not account for the effects of more subtle variations 
in room geometry or room contents. Several variations/improvements on (2.6) exist 
- most notably that of Eyring, [1] - but these also suffer from similar deficiencies. A 
more satisfactory approach is to measure the RT^o directly. Using the transient decay 
method, [2], a spectrally white acoustic signal is interrupted and the RTqq determined 
from the rate of decay of the reverberant sound intensity. To investigate the variation 
of the RTeo with frequency, the recorded signal may be bandlimited as required. A 
simple illustration of this technique is shown in figure (2.6).

As previously shown in figure (2.3), surface absorption and hence RTqq, varies with 
frequency. Therefore, as per what has become the convention, we shall, when specifying 
the RTeo, be referring to the RTqo in the region of I kHz  -  this being generally accepted 
as indicative of the relevant acoustic characteristics of a room when the sound source 
is human speech.

Although useful for conveying a general idea of how reverberant a room may be, 
specifying the RTqq gives no idea of how reverberant a recorded sound will be. Con­
sider, for example, a recording made in a room at a distance of Im  from a sound 
source. This recording will be perceived as being less reverberant than one made in 
the same room at 5m  from the source. This is because the direct path component 
decays as we get farther from the source, despite the RTqq being the same in each 
instance. Nonetheless, reverberation time still finds widespread use throughout the 
literature, despite its relative crudeness.
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Figure 2.6: Implementing the transient decay method for determining RTqq. The 
recorded acoustic signal used to generate this figure is bandlimited in the range 1 — 
2kHz.
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Figure 2.7: A photograph of the experimental setup used to obtain DRRs  at varying 
distances from a sound source.

2 .3 .4  D ir e c t-to -R e v e r b e r a n t R a tio

A more effective way of describing the degree of reverberation that obtains on a record­
ing is to specify the direct-to-reverberant ratio {DRR) - that is, the ratio of the received 
sound energy due to the direct-path component and multipath reverberation. For a 
given bandwidth, the DRR  for the output of a microphone, mo, may be defined as 
follows

= J ,2.7)

An investigation of DRRs in real rooms proves informative. Figure (2.8) shows a 
plot of DRRs,  found at a variety of locations in an office, classroom and reception 
hall. The DRRs are plotted with respect to log2 (r). The reverberation times were 
determined experimentally using the transient decay method and were found to be 
0.6s, 0.5s and 1.1s respectively. Source-microphone impulse responses estimates were 
obtained as previously described in section 2.3.2 and, from these, the DRRs  were 
estimated. Recordings were made at varying locations in each room and at varying 
distances relative to a single source - once again a loudspeaker. In each instance, the 
microphone was placed directly in-front of the loudspeaker so as to avoid complications 
due to the directivity of the source.
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Figure 2.8: Direct-to-reverberant ratios versus log2 (r), where r is the source-
microphone range. Results shown are for an office, classroom and reception hall.
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Figure (2.8) also shows “best-fit” linear approximations of the data. The slopes 
of these fits are —6.12, —5.99 and —5.915 decibels per doubling of range for the office, 
classroom and hall respectively. Given that we can expect \Hdpo\  ̂ to decay at a rate of 
6dB per doubling of the source-microphone range, these results suggest that, in a given 
room, I /  \Hmpo\^ is a constant that is independent of the source-microphone 
range.

We note that a brief inspection of the results in figure (2.8) reveals that, although 
it had the greatest RTqq, the reception hall was not the most reverberant of the rooms 
in which we took measurements. This further illustrates the inadequacy inherent in 
characterizing the degree of reverberation in a room by specifying its RTqo alone. Our 
results do, however, suggest an alternative metric. The intercept of best-fit line with 
the y-axis defines the spatially-averaged “Di?i?-at-lm” and we shall use this metric 
to describe acoustic conditions in the sequel.

2.4 N oise

The term “noise” is generally taken to refer to any sound that is, in some sense, 
undesirable, off-putting, containing no useful information etc. Noise that is likely to 
be encountered in the scenarios under investigation may be separated into three broad 
categories - ambient noise, quantization/sensor noise and noise due to feedback.

2.4.1 A m bien t N o ise

In addition to (probably reverberant) speech, classrooms may be expected to contain 
certain levels of ambient acoustic noise. This could be as the result of exterior noise 
sources like passing traffic. Much noise will also originate from local sources -  i.e. 
acoustic sources in the same room as the target talker. Examples include “fan-noise” 
produced by computers and air conditioning units.

In [3], the authors surveyed acoustic conditions in 32 unoccupied public school 
classrooms across the American state of Ohio -  8 in rural, 12 in urban and 12 in 
suburban areas. It is worth noting that, of these, only 4 had noise levels below those 
recommended for effective learning, [4].

The problem is compounded in occupied classrooms. Nominally silent audience 
members may also be expected to generate certain levels of noise. Coughs, sneezes, 
page turning, moving chairs etc. are all causes of noise and the effects of these may 
be amplified if, for example, the noise source is closer to a microphone than the target 
speech source.
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Figure 2.9: A full-duplex communication system and the resulting “feedback loop” . 

2 .4 .2  F eedb ack

In the scenario under investigation, natural and spontaneous interaction between par­
ticipants will feature a certain amount of speech overlap (i.e. multiple participants 
talking at the same time). In order to facilitate this, our videoconferencing system 
must support full-duplex communication. Unfortunately, when using full-duplex com­
munication systems there exists the potential for a “feedback-loop” to become estab­
lished, whereby sound is detected in one room and transm itted to a second where it 
is produced by loudspeakers. There, the sound is detected by microphones and trans­
m itted back to the first room, figure (2.9). This gives rise to two forms of noise -  
“howl” and acoustic echoes.

Howl (or acoustic feedback) is the “whistle” that occurs when the response of the 
feedback-loop has a magnitude greater than 1 and a phase shift tha t is some integer 
multiple of 2n radians, at some frequency. In such scenarios signal components at that 
frequency are amplified with each pass through the loop, until a point of saturation 
is reached. Other sounds become unintelligible and the result is a deeply unpleasant 
listening experience.

Various methods exist for suppressing howl. Primary among these is the judicious 
placement of loudspeakers and microphones. However, this requirement may not be 
apparent to the non-professionals who are likely to be setting up a videoconferencing 
system in a classroom. A single-channel approach to howl-suppression is frequency 
shifting. At some point in the feedback loop, a frequency shifter imperceptibly in-
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Figure 2.10: Acoustic echo cancellation: An adaptive filter estimates the loudspeaker- 
microphone response and subtracts an estimate of the acoustic echo from the micro­
phone output.

creases the frequency of the signal. In this way, continuous positive feedback cannot 
become established at any frequency and howl is suppressed.

The term “acoustic echo” describes the phenomenon whereby the feedback loop 
causes a talker to hear a delayed version of his/her own voice. Traditional acoustic echo 
cancellation (AEC) techniques involve the use of filters tha t estimate the loudspeaker- 
microphone channel, figure (2.10). An estimate of the acoustic echo is thus subtracted 
from the microphone output. Typically, the filter is updated by means of a Least- 
Mean-Squares-type algorithm. However, a long-recognised problem in the field of 
AEC is the “non-uniqueness” problem tha t arises when multiple loudspeakers emit 
correlated signals, [5]. In such scenarios (which include tha t which we are investigating) 
currently-available filter update algorithms have difficulty in accurately approximating 
the loudspeaker-microphone channel and AEC fails.

Therefore, we must assume the presence of acoustic echo as existing methods for 
its suppression are inadequate for the scenario being considered.

2 .4 .3  S en so r /Q u a n tiza tio n  N o ise

In any practical digital system, an acoustic signal is sampled and recorded with a 
finite degree of precision. The representation of sound as a series of discrete values 
gives rise “quantization noise” . In addition, a certain degree of sensor noise may be
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expected to be present in the outputs of non-ideal sensors. In general, both sensor 
and quantization noise are modelled as additive, Gaussian random signals that are 
uncorrelated across the microphone outputs.

Sensor/quantization noise may be easily controlled by our choice of quantization 
levels and the use of microphones of sufficiently high quality. Hence, on its own, sen­
sor/quantization noise rarely leads to audible degradation of recorded speech. How­
ever, as we shall see in chapter 4, the presence of such noise does limit the degree to 
which we may suppress other types of noise and so bears mention here.

2.5 Perceptual Effects o f N oise and R everberation .

In the following section, we review the literature concerning the perceptual impact 
of noise and reverberation on speech. In particular, we focus on the intelligibility 
and “quality” of speech. It is, of course, difficult to assess the perceptual and hence 
completely subjective characteristics of an audio signal. This difficulty is compounded 
by the sheer variety of acoustic environments, types of noise etc. which it is possible 
to encounter. As we shall see, however, there is certainly sufficient evidence in the 
literature to verify a supposition based upon intuition and normal everyday experience 
-  tha t noise and reverberation degrade the intelligibility and quality of speech.

2.5.1 Intelligibility

Intelligibility is generally defined as being the degree to which words are correctly 
heard/identified/understood by listeners. Noise and reverberation both serve to reduce 
the intelligibility of speech. Noise degrades our comprehension of speech by corrupting 
its perceptually im portant physical characteristics. Our perception of the “loudness” 
of noise is determined both by the intensity and frequency of the sound -  tha t is 
to say tha t sounds of equal intensity but different frequencies may be perceived as 
having different loudness. The “A-curve” or “equal loudness curve” plots intensity 
with respect to frequency for equal perceived loudness, [6]. This gives rise to the A- 
weighted SNR (ASNR) by which speech and noise signal components are assigned a 
weight which is inversely proportional to the A-curve, thereby placing greater emphasis 
on those frequencies tha t are perceived as being louder.

Reverberation reduces intelligibility by temporally “smearing” the speech signal. 
D irect-path components of recent utterances arrive at the same time as reflected com­
ponents of previously uttered sounds. As a result, strong vowel sounds may, for ex­
ample, mask consonants, making “Bad” indistinguishable from “Bat” / “Bap”/ “Back” 
etc.
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In [7], Bradley performs a series of intelligibility tests across ten classrooms chosen 
as representing the full spectrum of classroom acoustic environments. Each classroom 
contained an average of 24.3 12 — 13 year-olds who were asked to identify a series of 
words produced by a loudspeaker at the front of the room. Comparing intelligibility- 
test scores {ITS) to the acoustic conditions under which they were obtained, a regres­
sion equation was obtained which predicted test scores with a standard error of 9.6%. 
This equation illustrates the detrimental impact of noise and reverberation.

I T S  = {2.26ASNR -  0.0888ASNR^ -  13.9RTeo + 95) % (2.8)

However, not all reverberation is detrimental. It has been known since the work of 
Haas [8], that early arriving reflections are not perceptible as reverberation but rather 
are perceived in such a way as they are combined with the direct-path sound, increasing 
its loudness. In [8] early arriving was taken to mean <40ms after the direct-path. More 
recent work chose cutoffs ranging between 35 — 50ms.

Haas’ work has led several authors to investigate whether, in the presence of noise, 
speech intelligibility is maximized by non-zero levels of reverberation -  the idea be­
ing that early reflections are perceived as being direct sound and thus increase some 
“perceived SNR”

In [10], Bistafa and Bradley perform a theoretical investigation assuming ideal 
“diffuse” reverberation (i.e. propagating with equal intensity from all directions). 
Noise and reverberation levels were varied and analysis performed on the resulting 
changes in metrics previously shown to be effective predictors of mean intelligibility 
scores (these metrics being functions of the physical characteristics of the noisy and 
reverberant sound).

The results obtained revealed that in noisy environments optimal reverberation 
levels are non-zero (with the precise optimal level being determined by noise levels, 
source-microphone distances etc.). However, as pointed out in [11], the investigations 
in [10] contained a flaw in that the noise levels were assumed to be independent of 
the reverberation levels. In fact, noise will not be absorbed by room surfaces but 
will be reflected. Therefore, increasing reverberation levels lead to a corresponding 
increase in the (reflected) noise intensity. Also, just as early reflections increase the 
perceived loudness of speech, so too will they increase the perceived loudness of noise. 
Correcting for this mistake it was found in [11] that zero reverberation is optimal when 
the speech source is closer to the microphone/listener than the noise source. Otherwise 
some non-zero reverberation level is optimal.

A failure to realize that noise levels are in some ways a function of and not in­
dependent of reverberation levels may also explain contradictions elsewhere in the
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literature. In [12] intelligibility scores obtained in reverberant but noiseless environ­
ments are shown to decrease from ~  100% to ~  80% as RT^q increases from 0 — 1.2s. 
On the other hand, in [7], following from results obtained in noisy reverberant envi­
ronments an “interaction effect” is reported whereby varying reverberation levels have 
a significant effect on intelligibility scores only when the A S N R  is low. Conversely,

"If there are minimal (noise) problems the effect of room acoustics, 
from very bad to near optimum changes speech intelligibility by no more 
than 2.5%" [7]

For the reasons we have discussed, the separate and independent treatm ent of noise 
and reverberation, as occurs in [7], leads to erroneous results. We, therefore, prefer the 
results in [12] showing tha t reverberation in the absence of noise retains the potential 
to significantly reduce the intelligibility of speech.

Two further phenomena relating to the perceptual impact of noise and reverber­
ation have particular relevance for our application. The first of these is the effect on 
speech intelligibility due to spatial information. In [12], intelligibility scores are ob­
tained by listeners, across a range of ages, listening to reverberant recordings played 
by headphones. At an RTqq of 0.4s, these are 2 — 4% higher for binaural (stereo) sound 
presentation than for the monaural case. At an RTqq of 1.2s they are 5 — 9% higher. 
In [14], it is shown that, when noise and speech signals are generated by two spatially 
separated loudspeakers at right angles to each other, an increase in intelligibility is 
obtained compared to the case when both noise and speech are produced by the same 
loudspeaker. This increase is equivalent to that achieved by a 9.6dB increase in the 
SNR.

We may expect, therefore, tha t participants in a remote room, listening to a single­
channel microphone recording, will perceive greater levels of signal degradation than 
participants in the same room as the talker.

Secondly, we note the particularly off-putting effect of acoustic echo. This is signif­
icantly greater than that of other noise of similar intensity. As an illustration of this 
consider the required acoustic echo suppression specified by GSM (Global System for 
Mobile communications) protocols -  46dB compared with an ASNR of 25dB described 
as being “ideal” for ambient noise levels in classroom environments in [10].

2.5.2 Quality

Perceived quality is far less well-understood than intelligibility, mainly due to the 
difficulty inherent in quantifying “good” or “bad” quality. In addition individuals will 
have highly diverging opinions as to what constitutes “good” or “bad” quality speech.
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Noise, it may safely be assumed, reduces sound quality. We note tha t we are aware 
of the existence of “acoustic conditioning” strategies whereby ambient noise is masked 
by less irritating, deliberately injected noise. However, acoustic conditioning is in very 
limited use and it may be assumed not to be present in classrooms.

Reverberation on the other hand, has long been held to improve sound quality -  no­
tably when referring to spaces used to host musical performances. In [8], Haas reports 
early reflections as causing speech to be perceived as more “pleasant” by listeners.

Other research, however, demonstrates a clear preference among listeners for less 
reverberant sound. In [15], listeners were presented with recordings of speech convolved 
with simulated room impulse responses and asked to rank their quality using a 9- 
point scale (9 being “excellent” , 1 being “unsatisfactory”). The speech bandwidth 
was AkHz.  The resulting mean opinion scores were then compared with the acoustic 
conditions under which they were obtained and a predictor of speech quality derived. 
This predictor is the equation shown below

Predicted Preference =  7.94 — 0.46cr — (2-9)

where a is the standard deviation of the log-amplitude of the frequency response of 
the room. The average listener preference is, therefore, for less reverberant speech.

2.6 D iscu ssio n

In chapter 1, we outlined the requirements for a classroom-based videoconferencing 
application as mandated by the need to facilitate natural and spontaneous interaction 
while, at the same time, using moderate amounts of equipment and requiring only 
minimal technical know-how. Those included the use of full-duplex communication 
protocols, multiple loudspeakers and remote microphones. This chapter will have 
made apparent the significant problems tha t these requirements pose.

Direct-path sound attenuates as it travels. Therefore, in moving a microphone 
farther away from a talker, we are likely to be reducing both the SNR and DRR. 
Furthermore, full-duplex communication is susceptible to howl and acoustic echo. The 
latter is of particular concern as the traditional methods for its suppression fail when 
multiple loudspeakers produce correlated signals. We have seen the effects of noise, 
reverberation and, in particular, acoustic echo to be highly detrimental to both the 
intelligibility and perceived quality of speech. We have also noted tha t these effects 
are compounded when spatial information is lost, such as occurs when noisy speech is 
recorded by a single microphone.

W hat are required, therefore, are techniques by which we may suppress the noise 
and reverberation present in a recording while faithfully maintaining a target speech
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signal. Traditional bandpass filtering will be of only limited use in this regard. Speech 
and ambient noise are both broadband signals and, as such, will have frequency spectra 
which overlap considerably. In the case of reverberation and acoustic echo, their long­
term power spectra will be virtually identical to the target speech.

As we have seen, at certain levels and in certain conditions reverberation can, in 
fact, improve speech quality and intelligibility. However, while it is possible that, in 
any given scenario, the reverberation present is beneficial, it is almost certain that in 
some if not most cases, the reverberation will serve to degrade speech. Therefore, we 
require the means to suppress it.

In this thesis we will investigate methods by which we may enhance the perceived 
quahty of recorded speech using the data provided by arrays of spatially distributed 
microphones. In the next chapter, we develop the fundamental theory underpinning 
such microphone-array-processing.



Chapter 3

A rray-Processing Theory

3.1 Introduction

In this chapter, we explore the fundam ental theory behind array-signal-processing. In 
section 3.2 we discuss our subsequent treatm ent of a propagating wave as a function 
of both space and tim e - a spatiotem poral signal. In section 3.3 we describe and 
explain the consequences inherent in sampling such a signal a t discrete points in space 
using an array of sensors. In section 3.4 we focus on the theory behind filter-and-sum  
array-signal-processing, whereby sensor ou tpu ts are filtered before being combined to 
form an overall system  ou tput. We undertake this specific investigation due to  the 
near-ubiquity and, hence, im portance of filter-and-sum  strategies in techniques for 
speech-enhancement and source-localization. We conclude with section 3.5, in which 
we outline the signal models to  be used in the rem ainder of the thesis.

The analysis presented here is, in large part, adapted from [16]. For readers who 
wish to  explore array-signal processing further, the author also recommends [17].

3.2 Spatiotem poral Signals

In digital signal processing, we are familiar with the concept of a waveform being 
a function of tim e. Observations of propagating waves, however, will depend not 
only upon the tim e bu t also the location at which they are made. For example, our 
observation of the  soundwaves produced by a remote source, a t any instant, will be a 
time-delayed version of th a t which we would have observed a t the  same instan t and 
a t some point closer to  the  source. This is due to  the ex tra  tim e required for the  wave 
to  propagate the  farther distance. We are, therefore, concerned with spatiotem poral 
signals. The “wavefield” , f { x ,  y,  z, t), is such a signal. The variables x, y and z describe 
location with reference to  a 3-dimensional Cartesian coordinate grid. For conciseness,

25
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we shall alternatively use the vector notation whereby (x, y , z )  = x  .
Let us assume th a t the wavefield consists of a single, non-attenuating, monochro­

m atic, plane wave, propagating in a direction described by the unit vector (see
figure (3.1)). Doing this shall allow us to  introduce some useful term s and concepts. 
We define fo(t),  the observation of the wavefield a t the origin.

fo{t) = f  {0 ,0 ,0 , t) (3.1)

A monochrom atic wave has a single frequency component, ui. We may, therefore, 
express fo{t) as follows

fo{t) = Aexpi j cot }  (3.2)

where yl is a complex scalar. A plane wave has constant phase a t every point on any 
plane perpendicular to the direction of propagation. Furtherm ore, the  am plitude of 
a non-attenuating wave remains constant as the wave propagates. Therefore, we may 
obtain an expression for the wavefield in term s of fo{t),  as shown below

f i ' x ,  t) = fo{t  -  ^ ' ^ ° ) (3.3)
c

where c is the speed with which the wave propagates. The term  is traditionally  
referred to  as the “slowness vector” and has units of sm~^.  From this

=  A exp{ja;(f -  ^ ^ ) }  (3.4)
c

=  A e x p { j { u t  — Ic.  k ) }  

where k = and is known as the “wavenumber vector” . The wavenumber vector
C

has units of radians per m eter and may, therefore, be considered as a spatial analog 
of frequency. Following the previous convention, k = (kx ,ky ,kz)

3.2.1 M ultidim ensional Fourier Transform

T he Fourier Transform is a well-known technique th a t is widely used in single-dimensional 
digital signal processing. It may also be easily expanded for use in the m ulti-dim ensional 
cases under investigation. The (non-unitary) 4-dimensional Fourier Transform  of 
f { x ,  y, z, t) is shown below.

00

F{k^, ky , kz ,uj )  =  J J J J f { x , y ,  z , t )  e x p{ - j u j t }  exp{-jk::cx} e x p { - j k y y }  exp{ - j k ; , z }dxdydzd i
—  OO

(3.5)
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/ /

Figure 3.1: A planar, non-atteiituating wave with direction of propagation l / .  f{~x, t), 
the wavefield at "x , may be expressed in terms of / (  0 , t), where 0 is the origin.

or more concisely as

OO

F { k , u )  = JJ f{~x , t) exp{—j { u t  + k . ^ ) } ( f x  dt (3-6)
— OO

We adopt the convention of changing the sign of the k .Ic term. As we are integrating
between ±oo, this does not alter our result.

OO

F ( k , u )  = JJ f {lc ,t) exp{—j{ujt — k . ^ ) } d ^ d t  (3-7)
— OO

Similarly, the inverse Fourier transform may be written as follows

OO

f { l c ,  i) =  j  I I  F{ k ,oj) exp{j{ojt — k . ^ ) } d  k dui (3.8)
( 2 tt) J J

— OO

We may interpret equation (3.8) as showing that an arbitrary wavefield may be consid­
ered as a superposition of a (possibly infinite) number of weighted exponential plane 
waves.
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3.3 Array Signal P rocessing

An array is composed of multiple sensors at discrete locations in space. The array 
itself may, therefore, be considered a function of space, which we denote w{ x ) .  We 
may express w{lc) as follows

M - l

w{~x) = '^Wm5{~X - I c  m) (3.9)
m = 0

where M  is the number of sensors, ~Xm is the location of the sensor, Wm — w{lcm)  
and 6{lc) is defined such that

J  f { ' x , t )S{ ' x)d ' x  ^  fo{t) (3.10)

We may obtain the multidimensional Fourier Transform of w{~x) as before

OO

W { k ) — J  w { ' x ) e x p { j k . ^ ) } d l c  (3-11)
— OO

Inserting (3.9) yields

M-l
^ (  ^ ) =  X]'«^mexp{j A: .'Xm)} (3.12)

m = 0

We refer to H^( /c) as the Array Pattern. We also define VF( /c) as being the Array 
Pattern where Wm = IVm (in general w„i need not equal 1). As such, W { k )  is a 
function of the location of the sensors only. Later in this chapter we shall demonstrate 
how fundamental quantities in array processing may be expressed in terms of ( fc ), 
thus showing the strong influence of array geometry.

3.3.1 Spatial Sam pling

Many readers will be familiar with the concept of sampling in the context of discrete­
time sampling of temporal signals. Indeed, much of our previous discussion may have
struck some as being highly analogous to time sampling. It will come as no surprise, 
then, that well-known consequences of time-sampling - those of spectral smoothing and 
frequency aliasing - have analogous counterparts when performing spatial-sampling.

Using the array, we may sample the wavefield at multiple discrete locations. The 
observed wavefield, may be expressed as the product of the wavefield and the
array function

(3.13)
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Calculating the m ultidim ensional Fourier Transform of this relationship

Z (‘fc , w) =  f  W ( k  -  7  )F{k,u)d7 (3.14)
(27t) J

We shall restrict the following analysis to  the special case of linear, equispaced  

arrays (LEAs; see figure (3.2a)). We assume each element of the array to be on the  

x-axis. As a result, w{~x)  is zero for non-zero values of y  and 2 . This allows us to  

drop the vector notation and write w{x) .  Similarly, for variables in the wavenumber 

domain, we write W(kx). The ease with which such arrays may be analyzed shall allow  

us to obtain valuable insights. In addition, since any arbitrary array geom etry may be 

decom posed into linear, equispaced com ponents (even if each com ponent contains only  

two sensors) these insights may be applied to the development of our understanding  

of more general cases. We reformulate (3.13) as shown below, where we express the  

finite, discrete array function w{x)  as the product of an infinite pulse train, Ws{x),  and 

a continuous windowing function, Wc { x) .

z{x,  t) =  w { x ) f { x ,  t) =  W c { x ) W s { x ) f { x ,  t) (3.15)

where

OO

Ws{x) — S{x — nd) (3.16)
n = — OO

1 i ^ ) d < x < { ^ ) d  
0 otherwise

and d is the intersensor spacing. In the wavenumber-frequency domain

Z{kx,u>) =  —^ W c { k x )  * Ws{kx) * F{kx,u})  (3.18)
(27r)

where * is the convolution operator. The Fourier Transform of a pulse train is also a 

pulse train

O —  / ^ T T

Wsikx)  =  - j Y . ^ { k x  -  - ^ )  (3.19)
l= —oo

From this

1 ^  lOiTT
Z{kx,Lj) =  ^ F { k x , t o )  * ^ c{k x  -  - ^ )  (3.20)

! = —oo

The observed wavefield is, therefore, seen to be a circular convolution of Wc{kx) and 

F{kx,uj).

(3.17)
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A • • • • • • •

B • • • •

C 1 • • •

D • • i f
Figure 3.2: Linear arrays; A shows a 7-element LEA; B-D are “sparse” arrays. The 
minimum  intersensor spacing is d .

3 .3 .2  Spatia l A liasing

Figure (3.3) plots of W { k x )  for a 7-element LEA { w m  — yV?n). In order to  avoid 
spatial aliasing, F{kx,u>) must be bandlim ited such th a t

(3.21)
a a

From the upper bound

m axj/ci} =  rnax{^^^} =  ^  (3.22)

Maximizing by letting =  1, we get N yquist’s result giving a lower bound for per­
missible intersensor spacing.

d =  —  =  ^  (3.23)
^ m a x  ^

where Amin is the  wavelength of the maximum frequency being sampled, ô max-

3.3 .3  W avenum ber Sm ooth in g

In addition to  being periodic, Z{kx,Lo) is also “sm oothed” in the wavenumber dom ain
by convolution w ith Wc{kx)- Following the well-known Fourier relationship, if Wc{x)
is a square “window” , Wc{kx)  is a  sine function

W c i k x )  =  m  -  l ) d )  sine ( (3.24)
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Figure 3.3: W{k^) for a  7-element LEA. The “lobe” at ^  =  0 is referred to  as
7T

the  mainlobe. The other periodically repeating lobes are known as “grating” lobes 
- a name w ith its origins in experim ents where light is passed through a  grating to 
produce an interference pa tte rn  with m ultiple periodically repeating bright lines.

In virtually all array processing algorithm s our success or otherwise will depend 
upon our ability to  resolve an observed wavefield’s component wavenumber vectors. 
In signal enhancem ent, we m ust be able to  isolate and enhance (or suppress) a single 
propagating wave. In detection or source localization, we m ust be able to  accurately 
determ ine the  wavenumber vector corresponding to  an observed signal. To achieve 
this resolution, the  degree to  which Z{kx,ui)  is “sm oothed” m ust be sufficiently small. 
Letting A be a real scalar, smc{Akx)  S{k) as A —> oo. From inspection of (3.24), 
therefore, it is apparent th a t  resolution improves as the term  (M  — l ) d  increases - i.e. 
as the array w idth increases.

For optim al resolution, we require the dimensions of the  array to  be as large as 
possible. However, in practice array dimensions are constrained by other considera­
tions. As we shall see, this, in tu rn , constrains the performance of array-processing 
algorithms.

One such consideration is th a t of hardware costs, which will place a  lim it on the 
num ber of sensor which may be used. However, in seeking the best placing for a finite 
num ber of sensors, an array designer may consider a trade-off whereby we increase the 
intersensor spacing. This increases the array w idth and reduces sm oothing but also 
increasing spatial aliasing if d >
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Figure 3.4: \W{kx) \ for a 7-element LEA corresponding to a “square” window function, 
(a), and a Hamming window function, (b).

3 .3 .4  W eighting

We may control the smoothing exhibited by Z { k x , u j )  by varying the “weightvector” , 
{lUm}, in a way similar to windowing in discrete-time processing. Figure (3.4a) plots 
\W{kx)\ corresponding to an 7-element array. The weightvector is [y, j ,  ^].
Figure (3.4b) plots |Ĥ (A:a;)| corresponding to a weightvector of [.024, .093, .231, .301, 
.231, .093, .024], which some readers may recognize as a 7-tap Hamming window. A 
comparison of the two plots clearly shows that by choosing the second weightvector we 
obtain reduced sidelobes at the expense of a wider mainlobe. Such weighting would 
be appropriate if we were concerned with the effects of the sidelobes while the former 
weighting would allow us to resolve closely spaced wavenumbers more effectively.

Alternatively, we may narrow the mainlobe at the expense of increased sidelobes. 
In doing so we may exploit a portion of the wavenumber axis known as the “invisible 
region” . At frequencies where d < | ,  we are spatially over-sampled - i.e. we are 
sampling more frequently than is required to prevent spatial aliasing. In such situations
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the  values of k x  between and ^ define those wavenumbers th a t cannot correspond 
to  propagating waves. Through appropriate weighting, we may narrow the m ainlobe 
of W { k x ) .  This will increase the size of the  sidelobes, however this will not m atte r 
if the sidleobes are in the  invisible region, where no waves of interest exist. By over- 
sampling, we may achieve enhanced resolution know as “superdirectivity” , a fact th a t 
is exploited by m any array processing algorithms.

3.3 .5  Sparse A rrays

Certain non-equispace arrays may also be understood in term s of weighting. Consider 
the “sparse” array geometries shown in figure (3.2). Each resembles an LEA where 
certain sensors have been removed. A step equivalent to  removing the sensor is 
to  let W m  — 0. P lots of W { k x )  corresponding to the sparse arrays are shown in 
figure (3.5) and are com pared to th a t of a 4-element LEA. Sparse arrays are popular 
in the literature as, for a fixed num ber of sensors, they offer a wider array extent while 
avoiding aliasing.

3.4 F ilter-and-Sum  Array Signal P rocessing

The large m ajority  of array processing algorithm s (to be reviewed in chapters 4 and 
5) follow a Filter-and-Sum  (F&S) paradigm  whereby the observations a t each sensor 
undergo tem poral filtering before being combined to  form the system ou tput, figure 
(3.6). Given the ubiquity of F&S systems in array processing, we find it useful to 
characterize their behavior. For the moment we shall assume ideal, om nidirectional 
sensors with frequency-invariant unity gain. Furtherm ore, we shall assume th a t the 
response of each of the  FIR  filters corresponds to  a simple frequency-invariant scaling 
and delay. We may express the ou tpu t of a F&S system  as the sum m ation of m ultiple 

delayed and scaled m icrophone outputs.

M - l

z { t )  =  ' ^ W m V r n i t -  ^ m )  (3.25)
m=0

where y m { t )  is the ou tpu t of the sensor and Am is the delay applied by the 
FIR  filter. From equation (3.8) we see th a t a wavefield may be considered to  be a 
superposition of a possibly infinite num ber of monochrom atic, non-attenuating plane 
waves. We therefore characterize the system  in term s of its response to  a single such 
wave with frequency u q  and slowness vector
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Figure 3.5: W(kx)  corresponding to the sparse array geometries in figure (3.2). Com­
pared to a 4-element LEA they achieve a narrower mainlobe at the expense of larger 
sidelobes.
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Figure 3.6: Filter and Sum: Sensor outputs undergo temporal filtering before being 
combined.
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z(t)
M ~ 1  I '  N

=  ' ^ W m e x p  A m ------ >
<rr> —O ^  •'

(3.26)
m = 0

M-1
^ u ; m e x p <  j w o ( -  A m  . 'X m )  ?
m =0  ̂ K

exp {juot}

The term in the square brackets may be said to be the wavenumber-frequency 
response of the system.

3.4 .1  S teering

From inspection of (3.26), we see that we may alter the wavenumber-frequency re­
sponse of an F&S system by varying the delays applied to the sensor outputs. Indeed, 
many array processing techniques are based upon a judicious choice of delays. For 
example, let us assume that Am— — This,  in effect, time-alligns our obser­
vations of the propagating wave in the output of each sensor. This time alignment is 
commonly referred to as “steering”. Following from our assumption, the wavenumber- 
frequency response is '^Wm- Thus, by steering we may apply some desired gain to 
a specified propagating wave. Traditionally, steering maximizes the system response 
for the specified wave, thus enhancing it relative to the remainder of the sampled 
wavefield. This is known as “beam-steering” or “beamforming” and is the classical 
array processing technique. Alternatively we may suppress a specified wave. This is 
known as “null-steering” and occurs when Yl = 0- Other steering applications 
include source localization, a simple implementation of which involves beamforming 
in multiple directions. The direction that maximizes the system output is then taken 
as corresponding to some active source. We shall review the applications which ex­
ploit steering more fully in chapters 4 and 5. For the moment, having highlighted its 
importance, we shall discuss those factors effecting our ability to steer with accuracy.

3.4 .2  D iscrete-T im e Scimpling

So far, we have considered time to be a continuous variable. In reality, we are likely to 
be using discrete-time sampling of the wavefield. Discrete-time sampling has important 
but well-understood implications. We shall not attempt to describe these fully here 
but, rather, shall limit our discussion to those implications that are particular to array 
processing.

Of these, perhaps the most significant is related to steering. In applying delays, 
we are restricted to a finite set of discrete times, nT  - where n is some integer and T  is
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/

\

Figure 3.7: A planar wave propagating across a LEA. The angle of incidence, 0, is 
commonly referred to  as the direction of arrival of the wave.

the tem poral sam pling period - which may or may not exactly equal A ^. We therefore 
introduce error, em-, into our steering.

/ / t —

The result is, in effect, a complex-valued and position-dependant scaling of sensor 
weights which d istorts the response of the system.

3 .4 .3  A ngular R eso lu tio n

In the classical array-processing scenario, we are concerned with a plane wave propa­
gating across a LEA. In such a scenario, steering is commonly referred to  in term s of 
the  “direction-of-arrival” (DOA) of the wave - th a t being the angle of incidence formed 
by the wave with the axis of the  array, figure (3.7). Let us consider a 2-element ar­
ray w ith intersensor spacing d, steering toward a farfield source with DOA 9. To

— £m “I"

Replacing Am in (3.26)

(3.27)

m = 0

(3.28)
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Figure 3.8: Steerable angles for a LEA where d = 0.2m, and c =  340ms“ .̂ Increasing 
the sampling rate (reducing T) increases the density of the steerable angles.

T=.00005sT= ,0001s

tirne-allign the outputs of the sensors we apply a delay to the output of one sensor of 
magnitude A, where

dsin0
A = -------- (3.29)

c
We are, however, restricted to discrete delays, nT,  and hence discrete angles {On}- 

Substituting A and performing simple algebraic manipulation on (3.29)

( c n T )
6n — arcsin < > (3.30)

Successful steering may only be achieved when some steerable angle is suf­
ficiently close to the true DOA. For illustrative purposes, we let d — 0.2m, and 
c =  340ms“  ̂ (corresponding to an acoustic wave in air). Figure (3.8) shows the 
steerable angles between 0° and 90° for T  — 1 x lO^'^s and T  — 5 x  10~^s. We clearly 
see that, due to the non-linear nature of the arcsin function, the discrete steerable 
angles are not, themselves, evenly spaced. Rather, (0„+i — 9n) increases with n.
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We see also, tha t the number of steerable angles increases as T gets smaller. The 
limits of n, and hence the limits on the numbers of steerable angles, may be found by 
maximizing and minimizing (3.30), i.e. we let sin0„ =  1, giving us

nmax =  floor {1}
where floor{X}, rounds X  down to  the nearest integer. Remembering that we must 
include n =  0, we may therefore steer in nmax +  1 directions, within the angular 
boundary 0° < 0 < 90°.

Let us assume tha t d is just small enough to prevent spatial aliasing (i.e. d =  
see section 3.3.2). Following from the previous equation

2c7lmsix   1   ^ m a x ^ m e ix  2̂ g2)
'^m in  ^  ^

In other words, when we sample spatially at the Nyquist rate, we must sample tempo­
rally at rimax times the Nyquist rate to steer in rimax +  1 directions, within the angular 
boundary 0° < 0 < 90°. The requirement for such high sampling rates may, in many 
cases, be prohibitive. As an alternative, we can employ time domain interpolation or 
frequency-domain steering.

3 .4 .4  In te r p o la t io n

The classical approach to interpolating a time-signal, by some factor I,  is to intersperse 
each sample with 7 — 1 zeros. We then pass the resulting zero-padded signals through 
low-pass filters to smooth out the waveforms and obtain “upsampled” signals which 
we may steer and add as required. Alternatively we may exploit an efficient polyphase 
interpolation structure which we shall now derive. To avoid confusion, we shall denote 
with a ^  all signals having the upsampled sampling rate. Letting ^(n) denote a suitable 
lowpass filter and Um{n)  be the zero-padded y m { n )

y m { n l  + r) ^  Y^Um{i)g{nI + r -  i)  (3.33)
i

We may obtain an equivalent but more efficient computation of the interpolated output 
by summing over only non-zero values of Um{n)

y { n l +  r) ^ ' ^ y m { l ) g { { n - l ) I +  r) (3.34)
/

From the expression above, we see tha t y{nl  + r) is, in effect, a convolution of ym('>̂ ) 
and every coefficient of the lowpass filter, starting with the coefficient. We 
define the following
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9r{n) = g { n l  +  r) (3.35)

and inserting this into (3.34)

y{n l  +  r) =  Y^ym{l)9r{{n -  1)1) (3.36)

The output of a steered F&S system is given by

M -l
z {n l  + r) =  'Y^WmVrninl +  r -  Tim) (3.37)

m = 0
M - l

m=0 L I

Denoting r — Um modulo /  as (r — nm)j,  we may write

M-l
^ n l +  r)  =  Y ^ y m { l ) g { r - n n . ) , { n - I ) (3.38)

m=0 L I

And thus we obtain an efficient polyphase method for interpolation steering. Down- 
sampling by a factor I  is easily achieved by setting r  constant (say, for simplicity, 
r  =  0). The downsampled system output may then be calculated by

We see, therefore, that interpolation steering may be achieved without upsampling. 

3.4 .5  S teerin g  in th e  Frequency D om ain

Steered F&S array processing applications may also be implemented in the frequency 
domain. For practical applications using discrete-time data, we apply a discrete Fourier 
transform (DFT) to short (and possibly overlapping) segments of recorded data. For 
simplicity and clarity, we shall assume only one segment of N  samples per sensor, 
although we may easily extend our analysis to include multiple consecutive segments. 
The DFT of the data segment ym{n),  n  G {0 : — 1}, is defined as

{ n ) =^Y ^Wm Yl ym{ l )g{ -n„^) , {n- l ) (3.39)

—U

where v is the frequency index and •w{n) is the temporal window. The DFT of z{n) 
may be expressed as
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^{'^) = ' ^ ' ^ r n y r n { v ) e : ^ v { - ^ - ^ ^ \  (3-41)
m=0 '' ^

T he exponent applies a phase shift to Ym{v) corresponding to  a delay A ^ . Inserting 
(3.40)

V/  ̂  ̂ , f j 2 T T V n \  f  j27TV A m ]
^  2_^ 2 ^  w m w { n ) y m [ n )  exp -  ^  V exp < -----

m = 0 n = 0

We obtain  a com putationally  efficient two-dimensional D F T  expression whenever the 
following holds

2n v A m  2ttt]
= —r r f n  (3.43)

N  T  M
or, equivalently, when

where t] is some integer. L etting x { m ,n )  — Wm'w{n)ym{n)

Z{v)  =  ^  ^  x(m , n)  exp |  -  |  exp |  - ^ |  (3.45)
m = 0  n = 0  ^ '

=  X{v,v)

The integer rj may therefore be considered as denoting the wavenumber index (just 
as V denotes the frequency index). A tim e dom ain ou tpu t may be obtained following 
the  inverse D F T  operation, DFT~^[X{rj ,v) \ .  We m ust be careful in obtaining the 
tim e-dom ain ou tpu t. Rem em bering the well-known D F T  relationship

D F T “ ^[X(r?,t;)] exp x ( n - A m ) N  (3.46)

and assuming, for illustration, th a t =  nmT,  we may w rite the following

M - l

DFT~'^[Z{v )\ =  ^  Wmw{n -  nm)Nym{n -  Tim)N (3-47)
m =0

The tim e-dom ain ou tpu t, is subject to  circular shifting. Furtherm ore, while the 
delays {um T }  will tim e-allign the  sensor outputs {ym{n)},  they will mis-allign the 
tem poral windowing function w{n).  As a result, we shall observe distortion at the 
edges of the  window. However, while we should be aware of this distortion, a  variety
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of techniques exist by which we may m itigate against it, allowing us to perform steered  

F&S operations in the frequency domain, albeit cautiously.
To steer a beam at an angle 9, r] and v  must follow the relationship

(3-48)
In general, this relationship is not an absolute requirement. In not adhering to  

(3.48) we are merely steering multiple distinct simultaneous beams, one corresponding 

to each frequency index. Presuming, however, that we wish to  steer in one direction  
only

We may increase the number of steerable angles by increasing the number of sen­
sors, M . In practice, this is rarely an available option, however, we may artificially 

increase M  provided that the corresponding { w m }  are zero. This is analogous to  

the com mon step of zero-padding the boundaries of time signal segments. As with  

tim e-dom ain zero-padding or interpolation, such a step will not increase waveimmber 

resolution - this would require a wider array.

3 .4 .6  N o n -Id e a l S en sors

So far, our analysis has assumed that we are using sensors that sample the wavefield at 

points in space of infinitely small volume. In reality, no such sensor will exist. Rather, 
practical sensors such as microphones, aerials and telescopes are continuous apertures 

with non-zero physical dimensions. As such they behave as spatial filters, scaling and 

integrating sim ultaneous observations of the wavefield within some (small) volume of 

space.

Furthermore, we have treated the sensors as having a frequency-invariant response. 

Once again, this will not be the case in practice. We must therefore consider each sensor 

as being a spatiotem poral filter. The output of the sensor may be expressed as 

a space-tim e convolution of the wavefield and the sensor’s spatiotem poral response, 

Cm( X ,t).

ym{t)  =  J J  T)(fx d r  (3.50)

=  e x p { j { u J o t -  k o . ' x ) }  J J  i ^ { ' x , T ) e x p { - j { u j o T  -  k o - ^ } d ' x d T

T he integration is equivalent to a 4-dimensional Fourier Transform. Letting Ejfi( k , lj) 

denote the Fourier transform of
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ym{t) = Em{ko,uJo)exp{ j {uJot -  k o - ^ m ) }  (3-51)

The response of each sensor is seen to  be a function of the  wavenumber of the 
sam pled wave. For a known frequency and speed of propagation, th is is equivalent to 
a dependence upon the direction of propagation of the  wave. Indeed, real sensors are 
m ost commonly referred to  in term s of their “directionality” ra ther th an  their spatial 
filtering properties, w ith some well-known examples including cardioid microphones 
or dipole antennas.

We now consider the  effect of non-ideal sensors upon the wavenumber-frequency 
response of a F&S system. Indeed, this is of particular im portance as m any array 
processing techniques deliberately and explicitly incorporate directional and frequency- 

variant sensors to  achieve some desired result.
Inserting (3.50) into (3.25)

M - l

fco ,a;o )exp{j(cjo (i-A m ) -  fco-^m )} (3.52)
m = 0

" M - l

=  expjjwoi}
. m = 0

' ^ W m ' ^ r n i  k  o, Uq) e x p { - j {uq A m  + k o - l C m ) }

The bracketed term  expresses the wavenumber-frequency response of the system. From 
inspection, it becomes apparent th a t this equation may also be used to  describe the 
effects of F IR  filters applying frequency-variant gain. We merely need let ^ ^ (  x  , t) 
denote the combined response of the sensor and filter.

For the  purposes of illustration, we assume th a t Wm and E]t„( k  o ,^o) are identical 
for all sensors and, in addition, th a t Am= giving

z(t) =  Wm^m( ko,uJo)iV(aJo(- ^ ) )  exp (3-53)c
This result is significant in th a t it makes clear the relationship th a t exists be­

tween W(k)  and the wavenumber-frequency response of a F&S system  and thereby 
emphasizes the  fundam ental im portance of array geometry (upon which, remembe'r, 
lV(k) is solely dependant) to  the success or otherwise of F&S-based array processing 
techniques.

3.5 Signal M odel

In this section we develop the signal models th a t shall be used in the rem ainder of th is 
thesis. The derivation and analysis of the techniques comprising the  novel contribution
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of this work shall be done in the frequency domain. This is done for reasons of clarity 
and because of the insight afforded by a frequency domain analysis. For consistency 
and ease of comparison, our discussion and description of previously published methods 
and techniques shall also be with reference to the frequency domain. In practice, many 
of these techniques are actually implemented in the time domain, however our analysis 
remains valid.

3.5.1 A nechoic S ignal M odel

In chapters 4 and 5, we shall review previously published techniques for speech- 
enhancement, time-delay estimation and source localization. Many of these are based 
on a simplified, anechoic model of sound propagation, whereby each (ideal omnidirec­
tional) sensor receives a delayed and simply-scaled version of the target signal, s{t).  
Following from section 2.2.1, this scaling will be proportional to the distance between 
the source and the microphone. The output of the sensor may, therefore, be 
expressed as

Vm {t) - r-JT - s f t - —  (3.54)I s -  mm\  V c  /
where rim{t) is the noise at rrim, c is the speed of propagation of the wave and a is a 
scalar. In the frequency domain

i'm {^) = I exp \ - j u  ^ I  5  +  TVm (t^) (3.55)
I  ^  ^ m [  t  \  ^  /  }

For M  microphones we may define the observation vector as follows.

Y { lj) = [Fo(u;),yi(a;),...............................................................(3.56)

N (w) may be similarly defined. We define the intersensor time-delay Ta,b as the 
difference in the propagation delay between ma and mb-

Taking mo as a reference, we may define We may express Y { u )  as follows

Y(cj) =  /3D(u;)5 ( l j )  exp |  —juj |  +  N  (a;) (3.58)

where the “steering vector” D  (w, ~s) is given by
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where /3 is some scalar chosen such that the norm of D (cj, s ) is unity. We may 
simplify the rather cumbersome signal model in (3.58) by redefining S (uj) to include 
the scaling and phase shift, yielding

Y(w) =  5 (w )D (w ,:? )+  N(u;) (3.60)

3 .5 .2  R everb eran t Signal M odel

Modelling a reverberant acoustic environment as an LTI system, the output of rrim 
may be modelled as follows

Vm (t) =  hm (t) * s (t) +  rimit) (3.61)

where hm is the source-to-microphone impulse response. In the frequency domain

Y m { u )  =  Hm{uj)S{uj) +  Nmiu)  (3.62)

=  Xm {<̂ ) +  -/Vm (^^)

Defining X(u;) and H(a;) in a way similar to (3.56) we may write

Y(u;) =  X(w) +  N(cj) (3.63)

=  5  (w) H(o;) +  N(u;)

Letting H(^p(a;) and Hj„p(a;) denote the direct-path and m ultipath components of 
H(coi), respectively, we may write

Y { u)  =  5  {uj) (Hdp(a;) +  H^p(a;)) +  N{uj) (3.64)

Note that, if the source is omnidirectional, Hdp(cj) and D(a;, are identical to within 
some complex scalar (the norm of H<ip(a;) is not constrained to be unity). If we can 
assume tha t the source is omnidirectional, we may, in many cases, use H(ip(o;) and 
D(cj, ~s) interchangeably. Throughout this thesis, we shall use Hdp(u;) when referring 
to the general case where the source is potentially directional. On occasion, however, 
we shall assume an omnidirectional source and use D(a;, ^ )  so as to be consistent with 
the literature.

3 .5 .3  F ilter-cind-Sum  P rocessin g

Using a F&S architecture, FIR filters apply a frequency-dependant weighting, W{uj), 
to the output of each microphone. The resulting filter outputs are then added to 
obtain a system output, Z (u). This process may be expressed as shown below
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Z (w) =  W "  (w) Y  M  (3.65)

where W (cj) =   > and is known £is the “weightvector” .

3.5.4 The Spatiospectral Correlation M atrix

The spatiospectral correlation matrix appears repeatedly throughout the literature and 
is of fundamental importance in many array processing techniques. We, therefore, find 
it useful to define associated notation here. In addition we describe the characteristics 
of such matrices tha t are of relevance to our future discussions.

We define the spatiospectral correlation matrix of Y(a;) as follows

R y y {( )̂ =  E { Y { uj) Y ^ { uj) }  (3.66)

where E  is the expectation operator and ^  denotes the Hermitian transpose. R n n  { ^ )  

and R xx (w) may be similarly defined. In the case of the later we note that

(3.67)

Of particular interest in this thesis is the R n n  {i^) associated with zero-mean, Gaussian 
noise signals appearing in the sensor outputs and where the noise signal in the output 
of any one sensor is uncorrelated with the remaining noise signals. As such, these noise 
signals represent samples of a spatially and temporally uncorrelated soundfield. The 
corresponding spatiospectral correlation matrix is given by R n n  { ^ )  ~  where I is 
the identity matrix and is the noise variance (assumed equal for each microphone 
output).

As Hermitian matrices, the spatiospectral correlation matrices have the following 
properties; their eigenvectors are orthonormal and their eigenvalues are real and non­
negative. Therefore, taking R xx as an example, we may write,

R-xx (<̂ ) =  (w) qi ( u )  g f  (w) (3.68)
i

where Aj (w) and qi  { u )  are the eigenvalue and eigenvector of R xx { ^ )  respectively.

3.6 D iscussion

In this chapter we have outlined the fundamental theory underpinning the study of 
array-signal-processing. We have introduced the concept of propagating waves as 
spatiotemporal signals -  functions of both space and time. Using sensor arrays, we
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sample these signals at discrete points in space, giving rise to phenomena (spatial 
aliasing, wavenumber smoothing etc.) analogous with those associated with temporal 
sampling. We explored the implications of these phenomena with respect to array 
geometry.

In section 3.4 we sought to characterize the behaviour of filter-and-sum systems. 
In doing so, we introduced the concept of steering. As shall become apparent in later 
chapters, accurate steering is of significant importance in microphone array processing 
-  to  the point where precise steering is typically treated as a necessary assumption in 
the literature. In this chapter, we have outlined the problems of steering error and 
finite angular resolution tha t occur when using time-sampled data. This analysis shall 
inform our discussion, in chapter 6, of the practical difficulties associated with steering.

We expanded our analysis to incorporate non-ideal sensors and derived an ex­
pression for the wavenumber-frequency response of filter-and-sum systems using such 
sensors. We also demonstrated how this expression may be considered as a function of 
the array geometry. This im portant result bears remembering as it means tha t, irre­
spective of the weighting strategy employed (these shall be discussed in chapters 4 and 
5), system performance will, in large part, be determined by the relative positioning 
of the sensors. This, in turn, forms part of the motivation (which we outline fully in 
chapter 6) for the use of ad-hoc, distributed arrays.
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Chapter 4

Speech-Enhancem ent Techniques

4.1 In tro d u ctio n

In this chapter we review multimicrophone techniques for enhancing the perceptual 
characteristics of recorded speech. Adaptive and non-adaptive techniques are dis­
cussed. Starting with the data-independent delay-and-sum beamformer, we continue 
with a review of data-dependent approaches including minimum-variance-distortionless- 
response beamforming, the generalized-sidelobe-canceler and the multichannel-Wiener- 
filter. The relationships between these are also highlighted. We conclude with a review 
of dereverberation strategies. Note that, for clarity and simplicity, we omit the u  and 
~s arguments throughout this chapter.

4.2  D elay -an d -S u m  B eam form in g

Inserting (3.64) into (3.65) we obtain

Z =  W " (5 (H d p  +  H^p) +  N ) (4.1)

= +W "(5H^p + N)

The system output produces an enhanced signal if the “clean” component, SW ^H^p, 
corresponding to the direct-path sound, is boosted relative to the unwanted “reverberation- 
plus-noise”, W^(5'Hmp +  N). The simplest method by which we may attempt to 
achieve this is by maximizing SW^H^p for a given |W|. Following from the Cauchy- 
Schwartz inequality, this occurs when

W  a  Hdpexp{ju;T} (4.2)

where r  is some time shift. This approach to target-signal enhancement is known as

49
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delay-and-sum beamform ing (D&S) and, as m entioned in chapter 3, is the classical 
array processing technique. We define a weightvector, 'W d &c. S i to  satisfy (4.2)

W d& s =  ^ 2  e x p { j u A o }  (4.3)

=  Dexp{jo;Ao}

WjT) & 5  is proportional to  the steering vector, D (see (3.59)). Determ ining an 
appropriate value for W 0 & 5  is, therefore, equivalent to  estim ating D. In practice this 
is non-trivial. D is a function of the source location, ~s, the microphone locations, 
{ ^ m } , and the intersensor time-delays, {7m } (although these may be inferred from 

and {mm})-  However, the problem may be greatly simplified by invoking the  so- 
called “far-field” assum ption, whereby whereby the distances between the microphones 
in the array are considered to  be very small compared to  the source-microphone ranges. 
Following from this

'  (4^4)
0 \ s  -  m „| / 3 | s  -  rubl y / M

for all m a and mfc. As a result, D is calculable using time-delays (or time-delay 
estim ates - see section 3.5.1 ) only.

A D&S beamform er may be characterized by its array pattern , Vy(A;). Once 
again, for illustrative purposes we consider a LEA with its elements aligned along the 
x-ajcis. R ather th an  being a function of the wavenumber vector k , the  array pa tte rn  
is a function of the  wavenumber kx. Alternatively, rem embering th a t kx — , we
may, for a given c (the speed of sound), express the array pattern  as W{u)^6).  Figure 
(4.1) shows \ W{u,6) \  for a 7-element LEA with weighting corresponding to a D&S 
bearnformer. The beamform er is “steered” toward a source a t 0° in the  far-field of the 
array (i.e. Tm =  0 and 1 =  for all m ). P ropagating waves falling w ithin

( j \  S  — 771 rn \  M

the mainlobe receive unity gain while others are a ttenuated . This a ttenuation  is not 
frequency invariant. As frequency reduces the m ainlobe width increases. As a result 
the D&S offers poor spatial selectivity a t low frequencies. The a ttenuation  of noise 
and reverberation m ay more accurately be described as low pass filtering.

As described in section 3.3.3, we may achieve a more narrow mainlobe by widening 
the array. This can be achieved by adding more elements to the array, or, if we 
are limited in the  num ber of microphones available, we may choose to increase d. 
Figure (4.2) shows \W{uj,6)\  corresponding to  a 7-element LEA where d — 0.1m. 
The consequent widening of the array has produced a narrower mainlobe (and hence 
greater spatial resolution) bu t a t frequencies where d >  we observe “grating lobes” 
due to spatial aliasing. Nonetheless, we may still choose to  increase d if it is felt th a t
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Figure 4.1; \W{u),6)\  for a seven-element D&S beamformer; ^  m,uj .  d —
0.034m. The array gain has been normalized to  give unity gain in the  look direction.

the advantages of enhanced resolution outweigh the disadvantages arising from spatial 
aliasing.

4.3 D ata-D epend ant Signal Enhancem ent 

4 .3 .1  C o n stra in e d  O p tim iz a tio n

T he weightvector applied by the D&S is independent of the noise present in the sam­
pled wavefield and, as such, is suboptim al. In general we may achieve superior noise 
suppression by explicitly incorporating estim ates of the soundfield statistics in the 
calculation of the weightvector. The resulting class of “data-dependan t” beamformers 
have emerged as the preferred solution to  signal enhancem ent in noisy and reverberant 
environments.

V irtually all data-dependant signal enhancem ent techniques have some basis in 
or bear some relationship to  constrained optim ization, whereby the weightvector is 
th a t  which minimizes the power of system  ou tput, subject to some constraint(s). The 
ou tpu t power of an F&S system  may be expressed as W ^ R y y W  and the constrained 
optim al weightvector, W co?  m3,y be calculated from
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Figure 4.2: \W{uj,9)\ for a seven-element D&S beamformer: =  ;^  V m,ui. d
0.1m. The array gain has been normalized to give unity gain in the look direction.

W c o  a rg m in {W ^ R Y Y W } subject to W ^ C  =  c (4.£)
w

where C is the constraint vector/matrix and c is a scalar/vector containing the cot- 
straining value(s). We may solve (4.5) using Lagrange multipliers (Appendix B), 
yielding

W c o  =  R y V C (C " R y V C )"^ c"  (4.f)

T h e  M in im u m  Variance Distortionless Response Beam form er

Perhaps the simplest implementation of constrained optimization is the Minimun 

Variance Distortionless Response (M VDR ) beamformer, whereby C  =  D  and c =  1 
- we are effectively constraining the beamformer to apply unity gain to the signal 
corresponding to some specified steering vector.

W m k d r  =  R y V D (D ^ R y V D )" ' (4.7)

Substituting ^ m v d r  into (4.1) yields

Z  =  S e xp j-jw A o } -h +  N ) (4.0
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Thus the  system ou tpu t contains the  undistorted (although delayed) target signal plus 
a  m inimized interference component. Figure (4.3) plots the array pa tte rn  correspond­

ing to  W m v d r  for a five-element LEA where D  =  (i-®-

steering towards a  far-field source w ith a DO A of 0°) and the noisefield consists of 
two broadband propagating noise signals w ith DOAs of 45°and —13°. As expected, 
the  M VDR beamform er gives unity  gain in the  look direction while a t the same tim e 
placing deep nulls in the  path  of the  noise. Alternatively, we might consider setting  
the  constraints to  cancel the noise, letting C  =  (where and are
the  steering vectors corresponding to  the interference sources) and c =  [1,0,0]. This, 
however, should not be done for two reasons; firstly because such an approach would 
require us to take the additional step of explicitly estim ating the directions from which 
the  noise signals propagate and secondly because it would, in fact, yield inferior noise 
suppression. To understand  why th is is the  case, consider figure (4.3) once again. 
The large sidelobes a t angles from which no noise is assumed to propagate are an 
unavoidable consequence of placing deep nulls in the  path  of the propagating noise. In 
addition to  the propagating noise, quantization and rounding error appears as noise 
in the microphone outputs. This noise may be considered as propagating from all 
directions and, as such, is magnified by the  large sidelobes. This is known as “white 
noise gain” . We cannot suppress the propagating noise further w ithout increasing the 
white noise gain and noise levels overall. Therefore, the very strong a ttenuation  (as 
opposed to  complete removal) of the  propagating interference, as shown in figure (4.3), 
achieves minimal overall noise levels and, as such, is the preferred approach.

Im p lem en tin g  th e  M V D R

In im plem enting the M VDR, we m ust consider how we m ight effectively estim ate R y y  • 
T he first approach would be to model it from assum ptions m ade about the soundfield. 
By doing this, R-y y  calculated offline. For example, we may assum e th a t
we have a single source in the presence of spectrally white noise th a t is uncorrelated 
across each of the  m icrophone locations -  i.e. the noise is spatially  white also. From 
this R n n  where 5 is some real scalar. If we also assum e th a t the environm ent
is anechoic, we need only consider Rnn> as only noise - and not reverberation - need 
be suppressed. Substitu ting  51 for R y y  in (4.7) yields a  result th a t is, in fact, a  D&S 
beamformer.

^ M V D R  =  2 i t - > i 2 (4-9)6^ |Dr
Alternatively we m ay consider our observations to  contain diffuse or “spherically 

isotropic” noise. Diffuse noise is often held to approxim ate am bient noise and re-
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Figure 4.3: The Array Pattern for a MVDR beamformer.
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Figure 4.4; \W{u>,6)\ for a seven-element superdirective beamformer: d — 0.034m. 
The array gain has been normalized to give unity gain in the look direction.

verberation in small-to-medium sized rooms, [18],[19]. The corresponding correlation 
matrix, Ttoiff,  may be defined in terms of its individual components,

 ̂ (4.10)

where i and j  are the row and column indices respectively and where P{ cj) =  Ri,ioiff (^)

Figure (4.4) shows the array pattern obtained, for a 7-element linear, equispaced 
array with intersensor spacing of 0.034m, by letting D = 
replacing R y y  in (4.7) with Hoiff .

Compared with that achieved by D&S weighting, we obtain superior resolution 
at low frequencies. It is for this reason that such beamformers are commonly re­
ferred to as exhibiting “super-directivity” . Despite this, superdirective beamformers 
are very often unsuitable for practical implementation. The narrow mainlobe at low 
frequencies is achieved at the expense of massive sidelobes in the invisible region of 
the wavenumber domain (see section 3.3.4). No propagating waves inhabit this region 
but sensor/quantization noise does. To avoid applying massive gain to this noise we 
must take account of its presence. We do this by applying diagonal loading to 
although it is difficult to know to what degree this should be done - too little and we
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suffer white noise gain, too much and we obtain performance very similar to tha t of a 
D&S beamformer.

A more satisfactory approach is to estimate R-y y  directly from the observed data. 
We may do this in a blockwise manner as follows,

R y y (/)  =  a R Y Y { l  -  1) +  Y (/ -  1 )Y "(/ -  1) (4.11)

applying the matrix inversion lemma

y y (0 -  ^ R y y (̂  1)
R yV (/ -  1)Y(^ -  1 )Y ^(/ -  1)RyV(^ -  1) 

a  + Y ^ ( / -  1 ) R y V(^ -  1 ) Y ( / -  1)
(4.12)

where a  6 K{0 : 1}, is a leakage coefficient and I is the observation-block index. 
As / ^  oo, R y y (0  ^YY within a constant of proportionality. We may obtain 

in a similar way using noise-only observations. We may then use the updated 
correlation matrices to recalculate V ^ m v d r  required. Alternatively we may update 
^ M V D R  directly using a constrained LMS approach as derived in [20], shown below.

W(Z +  1) =  C ( C " C ) - ic "  (4.13)

+ (I -  C (C " C )-^ C ^ )  (W(Z) +  nZ*( l)Y  { I  -  1))

4 .3 .2  G eneralized  S id elob e C anceller

First developed by Griffiths and Jim, [21],[22], the generahzed sidelobe canceller (GSC), 
is a data-dependant beamforming technique tha t was originally conceived as an al­
ternative and more efficient implementation of the MVDR. The weightvector is de­
composed into orthogonal components; a non-adaptive component, Wc, satisfies the 
constraints while an adaptive component , W „, seeks to minimize the output power.

Figure (4.5) shows a block diagram of the GSC. W c defines a conventional (data- 
independent) beamformer that captures the target-signal-plus-noise. In parallel, the 
signal is processed by the blocking matrix B, the purpose of which is to cancel the signal 
components creating a noise reference which the multiple-input canceller, MC (defined 
by W a) then optimally subtracts from the output of the conventional beamformer. The 
resulting system output may be expressed as

^GSC =  W " Y  -  W " B Y  (4.14)

In optimally subtracting the noise reference, the adaptive component is seeking to 
minimize the output power
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Figure 4.5: The Generahzed Sidelobe Canceller.

W „ =  argm in{(W e -  B " W a )^ R Y Y (W , -  B ^ W ^ )}  (4.15)

This is an unconstrained optim ization, the optim um  W iener solution to  which is given

by

W „ =  (B R y y B " ) ~ ^ B R y y W c (4.16)

This yields

W g 5 C  =  W c -  B^Wa =  [I -  B ^ ( B R y y B ^ ) - 1 b R y y ] W c (4.17)

We now determ ine the conditions under which ' W g s c  performs a constrained opti­
m ization operation. E quating (4.17) and (4.6) and m ultiplying both  sides by B R y y  

reveals

B C ( C ^ R y y C )“ ^c^  =  0 (4.18)

Prom this we see th a t, if the GSC is to  perform  constrained optim ization the  null-
space of B  m ust contain C ( C ^ R y y C )~^c^ .  Furtherm ore, B  m ust be singular. If it
is invertible, C ( C ^ R y y C )“ ^c^  =  0 which makes no sense. Therefore, we define B  
as a singular m atrix  where

B C  =  0 (4.19)

It is, however, not necessary to  specify C  or c explicitly. Rem em bering th a t W c 
satisfies the constraints (i.e. W f  C  =  c ), we may write
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W f =  c(C"C)“^C" (4.20)

Thus (4.19) is equivalent to

BW c =  0 (4.21)

Therefore, if each row of the blocking m atrix  is orthogonal to  the non-adaptive weight 
vector, the GSC will perform a constrained optim ization operation.

Im p le m e n tin g  th e  G S C

In the  following discussion we shall describe the classical im plem entation of the Griffiths- 
Jim  GSC (G J-G SC ) which considers the case of a single target source and a small 
array. The dimensions of the array are sufficiently small and the source sufficiently dis­
tan t th a t  the source-microphone ranges and the orientation of each microphone relative 
to the source may be assumed to  be identical. Following from this assum ption (which, 
we remember, is known as the “far-field” assum ption) we may ignore the effects of 
propagation losses and source-directionality and consider the am plitude of the  direct- 
path  com ponents of the received sound to  be equal a t each microphone. For simplicity, 
let us assume th a t the array has been steered such th a t the target-signal-com ponents 
of Y  are time-alligned.

To satisfy a constraint of unity gain in the look direction (0°) we let W c =  
jg [l , 1,..., l]ixM - The blocking m atrix  is defined as in [21]

As required, B is singular because it is not square. Generally speaking, B  may be 
defined in any way provided th a t the coefficients of each row sum to zero. In effect, 
each row is a  null-steering beamformer. The nulls are steered toward the target source 
thereby removing the target signal from the noise reference B Y .

T he MC is implem ented using a filterbank of parallel F IR  filters. The filter-tap 
coefficients are determ ined using an LMS update algorithm  whereby

Wa i l  +  1) -  Wai l )  +  f i B Y  { I - I )  [Zcsc i l )  -  W f  (/) B Y  (/ -  1)] * (4.23)

B =

1 - 1  0 . .  0 0
0 1 - 1  . .  0 0

(4.22)

0 0 1 - 1
M - l x M

where I is the  update index and the “stepsize” ^  is a real scalar in the range 0 ; 1.
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R o b u s t  G S C

D ata-D ependant beamformers following a constrained optim ization paradigm  suffer a 
noted susceptibility to  target signal cancellation (TSC), [23],[24]. In the case of the 
GSC, th is occurs when target signal inform ation is passed by the blocking m atrix  to 
the  MC (this is known as “target signal leakage”). The MC then uses this inform ation 
to  remove the target signal from the GSC output.

Target signal leakage can be a result of steering errors, sensor-gain errors or re­
verberation, when m ultipath  replicas of the target signal propagate with DOAs other 
than  the  look direction and are, therefore, not cancelled by B . The vast m ajority  of 
research into the GSC concerns the design of GSC variants th a t are robust against 
these problems. Several researchers ([25] to  [33]) have obtained robust performance 
using a  variety (and usually a combination) of techniques.

R o b u s t  M C  R obust MCs are implem ented using either leaky, [25],[26],[27], or 
norm -constrained, [28],[29],[31], LMS filters. The effect of such constraints may be 
in terpreted  as follows. Target signals falling close to  bu t ju st outside the nulls of the 
blocking m atrix  are not fully cancelled but are, nonetheless, greatly a ttenuated . Sim­
ilarly, m ultipath  reflections are subject to  increased attenuation  due to propagation 
and surface absorption. To remove target signal from Z q s c  we m ust first apply sig­
nificant gain to  the a ttenuated  target-signal com ponents in the noise reference. By 
constraining W ^, we prevent this from occurring.

Unfortunately, as V / g s c  is data-dependant, the  GSC response is determ ined more 
by signal and interference statistics than  it is by the controllable param eters of robust 
beamform ers such as leakage coefficients and norm  constraints. For this reason, no 
particular param eter set can be seen to  consistently and predictably correspond to  a 
particular level of robustness.

R o b u s t  B  Blocking M atrices may be altered to  improve robustness. Typically, 
this is achieved by specifying additional constraints to  broaden the null th a t is steered 
by the blocking m atrix. One example is the derivative constraint [21], whereby the 
derivative of the blocking m atrix ’s array pa tte rn  is constrained to  be zero in the  look- 
direction. Assuming, once again, th a t the  look direction is 0°, this is realized using a 
blocking m atrix  w ith rows of [1, —2,1, 0 ,..., Oj.

Chen et al, [32], propose a simple and sturdy  design incorporating additional am ­
plitude constraints (extra nulls about the look direction) in B . This is achieved by 
means of a  m ultistage blocking m atrix. In [23], a  m ethodology is outlined whereby, 
given prior knowledge of the approxim ate noise and reverberation statistics, we may
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design a blocking matrix to achieve a specified balance between noise suppression and 
TSC.

Nordholm and Claesson, [25], suggest a generalized approach. A temporal high- 
pass filter is designed according to the requirements of its null-width (stopband) and 
restrictions on the number of coefficients that may be used. The blocking matrix then 
applies weights to the sensor outputs tha t correspond to the coefficients of the temporal 
filter. This approach is expanded for wideband applications by designing appropriate 
highpass filters for each frequency bin and applying these frequency-dependent weights 
via FIR filters at the microphone outputs. In this way we attain an effective null-width 
tha t is uniform across all frequencies of interest, [26]. A similar effect is achieved by a 
slightly different approach in [33]

As an alternative to null-steering, Hoshuyama et al ([27] to [30]) implement a block­
ing matrix using coefficient-constrained LMS filters (CCLMS). Under this approach, 
the filter-tap coefficients of each CCLMS adapt such that, following the filter-and- 
subtract operation illustrated in figure (4.6), the power of each output of the blocking 
matrix is minimized. In this way, the correlation between W ^ Y  and the noise refer­
ence is also minimized. The coefficient constraints are chosen such that only signals 
with a DOA within a specified range (which would presumably include the target 
signal) may be removed from the blocking matrix output.

This method may be shown to be theoretically superior to null-steering blocking 
matrices, [34]. This is because blocking occurs only at those frequencies which com­
pose the target signal. At other frequencies no blocking occurs, thereby removing 
the constraints on the permissible noise reduction. However, other researchers have 
reported this approach to be unsuitable in the presence of non-stationary signals or 
noise, [32].

Although robust CSC techniques are demonstrably successful in preventing target 
signal leakage due to steering errors, they are ineffective in the presence of reverber­
ation when multipath replicas of the target signal propagate accross the array with 
DOAs well outside even a broadened null. Furthermore, by constraining the MC and 
widening the null steered by B, we necessarily limit noise cancellation, thereby di­
minishing the advantages of the CSC over data-independent approaches. As a result, 
practical implementations of the CSC limit adaptation to noise-only periods with con­
sequent reductions in the ability of the system to respond to changes in the noisefield,
[30].
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Figure 4.6: Leaky adaptive filters (LAFs) in the  blocking m atrix  of a  GSC.
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4 .3 .3  T h e M ultich annel W iener F ilter

As an alternative to spatial filtering we may attempt to suppress noise by processing 
multiple channels containing noise corrupted signals in such a way as to optimally 
approximate an estimate of the clean signal. The multichannel Wiener filter (MWF) 
returns a MMSE approximation of the clean signal (see appendix A). Note that in this 
c8;Se, “clean” is taken to mean “noise-free” as distinct from “noise-and-reverberation- 
free”. This is a departure from previous speech enhancement strategies where we wish 
to preserve only the direct-path component of the recorded sound.

M W F  =  (R -X X  + R -N n ) R -X X V o (4.24)

where vq = [1 , 0 ,...,
R n n  may be estimated during noise-only periods and, assuming that the noise is 

stationary, we may estimate R xx via R x x  = R yy — R n n i  [35],[36],[37]. W m w f  

may then be calculated either directly, or by means of a computationally efficient 
generalized singular-value decomposition (GSVD) approach, [35]. Further reductions 
in computational complexity are obtained using a subband implementation of the 
GSVD method, [36]. Alternative approaches employ prerecorded calibration signals 
which are then used to converge LMS filters, [38],[39],[40].

Decomposing W m w f  (see appendix A) is informative and reveals that the multi­
channel Wiener filter may be described as the product of a scalar component, W p 2 , and 
a vector component , Wpi, which is in fact, equivalent to the solution to a constrained 
optimization problem (compare the form of Wpi with equation (4.6))

(4.25)

W p i  ----------------- -----
Wp2

Consider W p 2 ', as the SNR at a given frequency reduces the effect of W p 2 is to sup­
press the signal components at that frequency, thus distorting the signal. Since the 
signal and noise can be assumed to overlap, at least partially, in the frequency do­
mains, noise suppression occurs at the expense of target signal distortion, [41]. The 
speech-distortion-regularized MWF (SDR-MWF, W s d w )  allows us to strike a balance 
between the twin imperatives of noise attenuation and speech signal fidelity, [37].

W s d w  —  (Rxx + kRnn)~^RxxVo (4-26)

where k  G R{0 : oo}. As k —> oo, all emphasis is placed on noise suppression and 
W 5 0 W —> 0. Conversely, if k =  0, all emphasis is placed on minimizing the signal
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distortion  and ^ S D W  — vq. Note th a t, as in [38], a similar effect may be achieved by 
varying the gain applied to  the  signal and noise calibration signals.

4.3.4 Blind Source Separation

Blind source separation (BSS) refers to  the problem  of separating m ixtures of sta tis­
tically independent signals using arrays of unknown geometry. Such techniques would 
have obvious application to, for example, enhancing recordings m ade in the  presence 
of a  local noise source. W hile a thorough discussion of BSS is beyond the scope of this 
thesis, a brief overview of the  topic is presented here. For a more detailed review of 
BSS techniques, readers are referred to  [42] and [43].

Let us consider the  two-source, two microphone problem. In such a scenario the 
observation vector may be expressed as

X l' ^^11 H i 2 ' S {

.^2. i / 2 1  H22_ S2_
X = H 1 2 S

To separate the signals we m ust calculate the m atrix  W 12 such th a t

S = W 1 2 X (4.28)

or equivalently

W 1 2  -  ^
H22  —H \2  

- H 2 1  H u
(4.29)

H 1 1 H 2 2  — H 1 2 H 2 1

It is apparent th a t BSS is achieved by weighting and combining the  ou tpu ts  of 
m ultiple microphones. As such, the  problem is strongly related to  beamforniing. In­
deed, in [44] it is shown th a t the  performance of a  M VDR beamform er represents an 
upper bound on th a t of frequency domain BSS techniques.

A wide variety of techniques exist for calculating W 12 (an overview of these is pro­
vided in [45]). All of these m ay be seen to  suffer from one or more typical drawbacks. 
From (4.29), it may be seen th a t W 12 is a function of the source-microphone fre­
quency responses. In reverberant environments, the  corresponding impulse responses 
are of the order of hundreds of milliseconds long. BSS techniques im plem ented in 
the tim e dom ain require sim ilarly long filters which can prove prohibitive in term s of 
com putational complexity [45].

BSS techniques im plem ented in the  frequency dom ain offer reduced com putational 
complexity but suffer from a w hat is commonly referred to  as the “perm utation  prob­
lem” , whereby the  signals in each frequency bin, while separated, are not assigned to
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a known and unique source. Special methods are required to determine which of the 
signals across each frequency bin must be recombined to obtain a broadband signal 
corresponding to a single unique source. These are reviewed in [46], which seeks to 
present an implementation of a frequency-domain BSS technique tha t comprehensively 
addresses the permutation and other problems while offering robust performance in 
reverberant environments. While the source separation achieved is described by the 
authors as being “fairly good”, the acoustic environment in which the recordings were 
obtained were only mildly reverberant (the microphones were placed approximately 
1.2m from a sound source in a room with RT60 of 130ms). Other studies by the same 
authors show BSS performance to be “highly limited” in more reverberant environ­
ments such as we are likely to encounter in a classroom [47].

4.4 D ereverberation

Like noise, reverberation reduces the intelligibility of recorded speech (see section 
2.5.1). Its exact effect on the perceived quality of the speech is more difficult to 
characterize given the subjective nature of the term. Much research has therefore 
focused upon techniques by which we may “dereverberate” a signal, albeit with limited 
success.

Several techniques have been proposed that exploit knowledge of the source-microphone 
impulse responses. Gillespie and Atlas, [51], present a method by which we may deter­
mine the appropriate FIR filter tap coefficients such that the overall room-plus-filters 
impulse response optimally approximates an all-pass filter. Multichannel Matched- 
Filtering, [52],[53], convolves recordings with time reversed versions of the source- 
microphone impulse responses before adding the resulting filter outputs. This simul­
taneously time aligns and maximizes the gain applied to the direct-path components 
in the microphone outputs. In practice, we are unlikely to have access to impulse 
responses and so techniques that do not require this explicit knowledge are of greater 
practical interest.

Beamforming may be applied suppress reverberation. Unfortunately, beamforming 
does not achieve satisfactory dereverberation in situations where a significant propor­
tion of the reverberation propagates from directions of arrival close to tha t of the 
direct component, [54], Also, for practical talker-rnicrophone distances, the far-field 
requirement restricts the array width, which, in turn, severely limits beamforming 
performance at low frequencies. Using wider arrays and performing near-field beam- 
forming has been shown to lead to enhanced dereverberation, [55], but does so at the 
expense of increased steering-vector-estimation complexity.

Cepstral techniques may be applied to the dereverberation problem, [49]. The
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cepstrum, may be characterized as follows, [50].

C x M  =  log{|X(a;)|} (4.30)

Consider a transmission path whose impulse response consists of a direct path com­
ponent and a single attenuated echo, delayed by Tg

X { io )  =  5(u;)(l +  a e x p  {—jiJTe}) (4-31)

Cx{u>) = C5(w) + lo g { l - | - a e x p { - j i c j T e } }

where Cs{oj )  =  log{5'(cj)}. The cepstra of the received sound is equal to the superpo­
sition of Cs{ui )  and a periodic component with period which may be removed by 
comb filtering. The clean speech signal may then be recovered.

Unfortunately, while effective in the presence of a single echo, cepstral techniques 
have greater difficulty in the presence of multiple echoes, as are typical in reverberant 
room environments. Several authors have sought to combine beamforming with cep­
stral techniques, [56],[57], whereby lowpass filtering is applied in the cepstral domain. 
Problems still remain however if the signal and reverberation cepstra overlap in the 
cepstral domain.

Recently, much research has focused on techniques based on processing of the 
“residual” obtained using a linear predictive coding (LPC) approach, [58],[59],[60]. 
Two assumptions underpin such approaches; firstly, tha t the LP coefficients of clean 
and reverberant speech are identical and secondly, tha t the LPC residual consists of 
periodic glottal pulses followed by additional peaks due to reverberation. In [61] it is 
shown tha t the first assumption is true only in a spatially averaged sense (that is to 
say tha t the mean of the LP coefficients corresponding to reverberant speech recorded 
at multiple, spatially distributed locations will tend towards those of clean speech). 
Also, for high-pitched speech, such as from women or children, the second assumption 
does not hold and so these techniques have limited application.

4.5 D iscussion

In this chapter we have reviewed multimicrophone techniques for enhancing the per­
ceptual characteristics of recorded speech. These may be described as being either 
data-dependent or data-independent techniques. The former of these two broad cat­
egories will, in theory, offer noise suppression that is, in some sense, optimal and 
generally superior to th a t achieved using data-independent methods.

For data-dependent, constrained optimization approaches (of which the CSC is the 
most versatile and efficient implementation) the “optimal” output is obtained as that
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which minimizes output power subject to some constraints (a typical example being 
unity gain for signals originating at some target location). The GSC is highly effective 
in low-reverberation environments and will adapt quickly to changes in noise statis­
tics. However, the GSC is subject to target signal cancellation in highly reverberant 
environments or where mis-steering has occurred.

For MCWF approaches the optimal output is tha t which is closest, in a MMSE 
sense, to a (noise free) reference signal. The MCWF requires no steering and does 
not fail in the presence of strong reverberation. It does, however, require any noise 
present to be stationary such th a t a valid noise reference may be obtained by means 
of infrequent updates. Non-stationary noise results in reduced performance.

The varying modes of failure of the MCWF and GSC make it difficult to make 
a definitive and quantitative comparison of their relative performances as this will 
depend heavily upon the specific acoustic conditions encountered. Indeed, it is con­
ceivable, tha t in the presence of strong reverberation and highly non-stationary noise, 
a data-independent beamformer such as the D&S would provide superior performance 
in practice. Nonetheless, these methods, if employed appropriately, can achieve a 
reduction in noise power and a consequent improvement in acoustic signal quality.



Chapter 5

Tim e-D elay Estim ation and 
Source-Localization

5.1 In trod u ction

In the following section we shall review the literature concerning the problems of time- 
delay estimation and source localization. The two problems are distinct but strongly 
related, to the point where the terms are used interchangeably in the literature. The 
confusion arises principally because time-delay estimation is a necessary first step for 
many source-localization algorithms but is further compounded by inconsistencies in 
the way in which the source localization problem is defined.

In the strictest sense, the term “source localization” refers to the problem of finding 
a unique and discrete estimate of the location of the source with respect to some 
coordinate system. Throughout the literature, however, varying and usually less strict 
definitions are used. Following from these, source localization may also be taken to 
refer to estimating the location of source to within some surface of revolution or bearing 
line. Alternatively, we may simply wish to determine which of a group of candidate 
locations is closest to the source.

Time-delay estimation is, on the other hand, concerned with estimating the inter­
sensor time-delays. For any two microphones, rUa and mt), the time-delay, Ta,b> is the 
difference in between the source-microphone propagation delays (see section 3.5.1). 
For M  microphones we may define a set of time-delays, {rm)-

{"Tm} =  { 0 , r i , . . . , T M - i }  (5-1)

For a given array geometry and known speed of sound, {Tm} is wholly dependent upon 
the source location ~s. Therefore, each source location estimate (SLE, s) ,  will have a 
corresponding and implicit set of time-delay estimates (TDEs,{rm})' However, these

67
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may not be unique to s  and so not every {xm} will have a corresponding, discrete s . 

Furtherm ore, ra ther than  being calculated geometrically, as in (3.57), TD Es are found 
by a  variety of means th a t are independent of the source or microphone locations.

We shall continue with a review of time-delay estim ation techniques and follow this 
with a review of the  literature concerning source localization using TDE, param etric 
and subspace-based m ethods.

5.2 T im e-D elay E stim ation  Techniques

5.2.1 Cross-Correlation

The cross correlation (CC) m ethod is one of the earliest and simplest techniques for 
time-delay estim ation. The CC m ethod is based upon the ideal anechoic signal model 
(section 3.5.1) and assumes th a t the  noise present in each channel is uncorrelated with 
the signal and noise in other channels. For two microphones

Vbi t )  =  Xb{ t )  +  nb { t )

=  a X a { t  -  Ta,b)  +  nb { t )

The intersensor tim e delay is taken as th a t tim e lag which maximizes the cross­
correlation function between the microphone outputs.

where V'a,6('^) =  E { y a { t ) y b { t  +  r)} .

5.2.2 G eneralized Cross-Correlation

Generalized cross-correlation techniques (GCC) represents an extension and improve­
m ent of the CC m ethod, [62]. Following from the W iener-Kinchin theorem, the Fourier 
transform  of V’a,&(''’) the  cross-spectrum , ^a^;,(w).

y a { t )  =  X a { t ) + n a { t ) (5.2)

Ta,b =  argm ax{V ’a,6('r)} (5.3)
r

Applying a frequency variant weighting, $(a;)

(5.4)

'IfGCciuj) -  £;{$(u;)F„(a;)y;(c^)} (5.5)
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In practice, is estim ated using the D FTs of blocks of tim e-sam pled micro­
phone ou tpu t data. Furtherm ore, the instantaneous ra ther than  expected value is 
used. This yields

^Gcc{v)  =  (5-6)

^ g c c {tT') =  I D F T { ^ g c c {v )}

where v is the frequency-bin index, n is the sample index and Ya{v) is the D P T  of 
ya{k). Following from the  CC m ethod

=  arg max } (5-7)t g c c  
T

where T  is the tem poral sampling period.
The weighting function ^»(u) may be chosen according to  the acoustic conditions 

th a t obtain. In [62] a maximum-likelihood GCC (GCC-M L) is derived for use in 
anechoic environm ents where the noise spectra are known a priori.

^    / r  o'!inwiinwi
The performance of the GCC-ML is optim al in the sense th a t, when the under­

pinning assim iptions hold, the estim ate variance approaches the lower Cram er-Rao 
bound. However, when our assum ptions regarding the signal model do not hold - in 
particular when reverberation is present - the GCC-M L is suboptim al and we observe 
a  potentially  significant performance degradation, [63],[64].

The phase transform  GCC (GCC-PHAT) is an alternative, suboptim al weighting 
th a t has been observed to  give improved TD Es in reverberant environments, [62],[65].

^ p h a t { v )  =  . 1  (5.9)

The GCC-PHAT weighting function flattens the cross-spectrum  thus retaining only 
the phase information. Phase information th a t is correlated accross all frequency bands 
(i.e. the phase shift due to  the d irect-path  delay) is thereby emphasized. However, an 
additional effect of ^PHAri^)  is to  place equal emphasis on all frequency bands, includ­
ing those w ith low SNRs. The GCC-PHAT will, therefore, offer inferior performance 
in the presence of noise, [62].

O ther weighting functions seek to  enhance the TD Es by exploiting the spectral 
characteristics of speech. In [66], $ (v ) is given by

$ (? ;)  =  2 0 1 o g io (5 ’(u )) (5.10)
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where S{v)  a smoothed, averaged speech spectrum , thus emphasizing the contribu­
tion of those frequency components where the speech-energy (and hence SNR) is high. 
A pitch-based delay estim ator is proposed in [67], whereby ^>(v) is selected accord­
ing to  the degree to  which the observed signal spectrum  corresponds to  a harmonic 
speech model. Frequency bands corrupted by noise/reverberation will deviate from 
the  explicit speech model and will, therefore, be de-emphasized.

Typically, GCC-based estim ators use short segments of d a ta  (~  10 — 30m s). In 
practice, the frequency with which we m ust update the TD Es is often very much 
lower. In many applications, therefore, we will have access to many individual TD Es 
with which to  make a single, time-averaged, estim ate. Beyond simple averaging, we 
may construct a histogram  of the TD Es and select the t q c c  as th a t corresponding to 
the  maximum. A lternatively we may assign a weight to  each TD E based upon a set 
of “reliability criteria” including the observed power and the ratio of local m axim a of 

^ G c c i n ) ,  [68],[69],[70].

5 .2 .3  L east-M ean-Squares M eth od s

In addition to  its many applications to  microphone array noise suppression, the least- 
m ean-squares (LMS) algorithm  may also be applied to  time-delay estim ation, [71],[72]. 
Like the C C /G C C  m ethods, LMS-based approaches assume an ideal signal model. 
From (5.2)

Vbit) =  Xa{ t )  * 6{ t  -  Ta,b) +  ribit) (5.11)

Remembering th a t na{t) and rn,(t) are assumed uncorrelated with the signal and 
each other, we may determ ine the delay by means of a channel-identification approach, 
whereby we find the  filter th a t processes ya{t) to  optim ally approxim ate yb{t) in a 
MMSE sense. The response of this filter is taken to equal 5{t — Tâ b)- practice, 
we will be working with discrete-time-sam pled d a ta  and using a L -tap  FIR  filter, f, 
to  model the channel. This is illustrated in figure (5.1). As the system is necessarily 
bandlim ited the coefficients of f  will be samples of sinc( *̂ )•

f (n  +  1) =  f(n ) -t- /xya(n)[ya(n -  C)  -  f^(?^)ya(n)] (5.12)

where 0 <  /x <  1, ya(n) =  [ya{n), . . . ,ya{n  -  C +  l) ,- - ,y a (n  ~  L +  1)]^, f (n )  =  
[ / i ( n ) , ..., f(;{n) , ..., fL{n) \^  and f i {n)  is the coefficient of the FIR  filter. (  is selected 
such th a t /(^(n) is a tap  near the middle of f(n ), thereby allowing us to accom m odate 
negative as well as positive intersensor time-delays.

If the  delay may be assumed to be an integer m ultiple of the sampling period or if 
the  sampling rate used provides sufficient tem poral resolution, we may determ ine the
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FIR Filter

' +

yh{n.)
o--- D elay

Figure 5.1: Time Delay Estimation using the LMS algorithm.

time-delay estimate as shown below.

T L M S arg max{//(n)} 
I

C (5.13)T
Alternatively, we may, by a variety of numerical methods, apply the interpolation 
formula to increase the temporal resolution before finding an improved TDE as above, 
[73],[74],[75]. In [76], only the maximum filter-tap weight is updated and all other 
weights are determined by reference to a look-up table of sinc-function samples. In 
this way, the filter-tap coefficients are effectively constrained to be samples of a sine 
function. This is shown to lead to improved convergence.

In [77], it is shown tha t the true delay (whether an integer or non-integer multiple 
of T) may be expressed as a function of the filter-tap weights. By this method, known 
as direct-delay-estimation (DDE) we may achieve superior accuracy and convergence 
over the conventional or look-up-table approaches. In [78], the authors combine DDE 
with a unity-norm constraint on f  (the norm of samples of the delay sine function may 
be shown to equal unity) resulting in additional performance improvements over DDE 
alone.

5.2.4 A daptive Eigenvalue D ecom position

Adaptive eigenvalue decomposition (AED) techniques - proposed and developed by 
Benesty et al [79]-[83] - explicitly incorporate multichannel effects to obtain TDEs that 
are robust to reverberation. Following from the commutative properties of convolution
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Xa{t)  * h b  — s{ t )  * h a * h b  =  Xb{t) * ha (5-14)

Using a L-tap F IR  filter, to  model hm

-  x^(n)fa  =  0 (5.15)

or alternatively, letting x (n )=  [x „ (n ) ,x ^ (n )]^  and u  =  [f^,

x ^ (n )u  =  0 (5.16)

Prem ulitplying by x (n ) and applying the expectation operator yields

K x x U - 0  (5.17)

where Kxx =  £ '{x (n )x ^ (n )} . Thus u  is the eigenvector of Kxx corresponding to  the 
eigenvalue 0. In the presence of uncorrelated noise, no eigenvalue equals 0 and so we
seek the eigenvector corresponding to  the minimum eigenvalue. This may be achieved
by means of generalized singular value decomposition or the iterative approach shown 
below, [80].

, iN _  u(n ) -  M U^(n)x(n)x(n)
' “I" 1) I / \ \ f \ f w  (5.18)|u (n ) — (n jx (n jx (n )l

under the constraint |u (n ) | =  1. From, u (n ), the corresponding TD E may be calcu­
lated as the difference in the time-lags of the first arriving impulse of the fa(n.) and
fb(n) components.

Convergence of (5.18) requires th a t the Z-transforms of £„ and ft do not share com­
mon zeros, [79]. U nfortunately, common zeros are likely, particularly as the impulse 
responses/filter lengths become longer, [65]. However, given multiple microphones 
we may construct a m ulti-microphone bhnd channel-estim ation approach where, com­
pared with the two-channel case, the likelihood of all of the impulse responses sharing 
a  zero is significantly reduced. Given M  channels we can construct a  vector of con­
catenated L -tap  filters, fc  and concatenated blocks of microphone ou tpu t data , x c ,

x c (n ) =  [ x o (n ) ,x f ( n ) , . . . ,x ^ _ i ( n ) ] ^  (5.19)

fc (n )  =  [ f j  ( n ) , f f  (5.20)

The converged value of fc  is th a t which minimizes the cost function, U,

I  IN _  -  x [(n )fa (n )
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The cost function may be minimized using a LM S-type algorithm  such as th a t derived 
in [83], shown below.

f  +  n  =  f(n ) -  2/x[Kxcxc(» +  l)fc(ra) -  n{n +  l)fc (n )]
^  |f(n) -  2 /x [K x c -x c (w + l) fc H  -  +  l)fc(r!.)]|

In [82], a filter update  equation based upon the  Newton optim ization m ethod is derived 
and is shown to achieve faster convergence th an  (5.22) but w ith greater com putational 
complexity. In [81], a frequency-domain normalized-LM S approach is proposed and 
dem onstrated  to  represent a balance between the  requirem ents for fast convergence 
and low com putational cost.

Despite the elegance of the AED approach, blind estim ation of the source-microphone 
impulse responses is a non-trivial problem  th a t is com plicated by the spectral sparse­
ness of s{t).  Although the impulse response estim ates in u (n ) are accurate enough for
tim e delay estim ation, they are not sufficiently accurate to  be applied to, for example,
dereverberation.

5.3 T D E -based Source L ocalization

In the  previous section we reviewed techniques for obtaining tinie-delay estim ates. In 
the following section we shall discuss the  m ethods by which, when given {Tm}  and the 
set of microphone locations, { m ^ } , we may find s .

5.3.1 V ie te ’s So lu tion

Given {rm}  and { m m }  , the  problem  of determ ining s may be considered a practical 
application of a classical geometry problem  - Apollonius’ problem of tangent circles, 
[84]. In the two-dimensional case, illustrated  in figure (5.2), s may be found as the 
centre of the circle th a t is externally tangent to  the  circles with centres { m m }  and 
respective radii { r^ } .

A lthough soluble with compass and straight edge, the numerical solution proposed 
by Viete, [85], is of greater practical interest because, in addition to  the  obvious ad­
vantages of numerical im plem entation, it may easily be expanded to  the 3-dimensional 
case (tangent spheres). V iete’s solution is the  system  of sim ultaneous equations shown 
below.
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7/7 1

7/7 „
Figure 5.2: Source localization as an instance of Apollonius’ problem of tangent circles.

( s i  -  mo,x)^ +  (sy -  m o , y f  +  (s^ -  m o , z f  =  ( r o f  (5.23)

( sx  -  +  ( sy  -  m i ^ y f  +  ( sz  -  =  (ro +  cri)^

( ^ i  l , i )  “t" (S y  1,1/) (^z ~  (^0  "1“ —l )

where tq — | ^  — mo| and mo,x is the x-component of mo-  There are four unknowns,
{si) Sy,  5^, ro}, and so we require a  minimum of four equations/m icrophones. However,
th is is in itself insufficient to  ensure th a t we will obtain a unique and discrete value 
for s , as the system  of equations may, nonetheless, be under-determined. Consider, 
for example, a scenario in which the source and microphones are colinear. It is, per­
haps, intuitive and may be verified m athem atically th a t in such a case { r^ }  will be 
constant for all non-negative values of ro and hence an infinite num ber of solutions 
exist. Furtherm ore, due to  estim ation errors, inserting { r m }  into (5.23) may yield an 
inconsistent system  of equations with no solution.

We require m ethods th a t overcome these shortcomings. As we shall see, th is can 
generally be achieved in one of three ways (or a combination thereof). The first of 
these is to  redefine the problem such th a t s  need not be a unique or discrete point
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Figure 5.3: The far-field assumption: For distant sound sources, the curvature of the 
incident wavefront is neglibible.

in space. Alternatively, we may find s by means of a minimum-mean-square-error 
(MMSE) fitting of the data. Finally, we may assume s to be an element of a subset 
of candidate source locations thereby allowing us to restrict our search to the subset 
of corresponding candidate {rm}.

5 .3 .2  D irec tio n -o f-A rr iv a l E st im a tio n

Direction-of-arrival (DOA, 6) estimation techniques may be applied with as few as two 
microphones and follow from the assumption that the sound source is in the far-field of 
the array. In such cases, as illustrated in figure (5.3), the curvature of the direct-path 
wavefront may be considered negligible - hence we assume a planar wavefront. The 
DOA for each microphone pair is therefore a function of the corresponding TDE, figure 
(5.4).

(5.24)

This method has rotational symmetry, therefore s may be any point on the cone 
with apex  ̂  ̂ aperture (180 — 26) and its axis along the line (m^ — ma)  (al­
though the closer we get to the apex of this cone the less valid our far-field assumption 
becomes).

When the geometry of the array is two-dimensional, it is possible to obtain DOA

=  arcsm
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Figure 5.4: The direction of arrival of a far-field sound source is a function of the 
intersensor tim e delay.

estim ates in each dimension. These estim ates of the azim uth {6) and elevation (0) 
characterize a “bearing-line” along which the source will lie.

For many applications, a D O A /bearing-line is all th a t is required to  characterize 
the spatial characteristics of the source. These include any scenario in which the range 
to  the source is irrelevant (e.g. autom atic cam era steering) or may be inferred from 
other data . However, for other applications, an obvious extension of the bearing-line 
approach allows us to  obtain a more refined SLE as th a t point where bearing lines 
intersect, [86],[87]. W hen bearing hnes cannot be expected to  converge, we may use the 
m ethod proposed in [88] and [89], where s is found as a weighted average of the points 
on each bearing line th a t are the shortest perpendicular distance from the rem aining 
bearing-hnes. The weighting is chosen according to  the probability d istribution of the 
TD Es used to  calculate the 9 and (j) values.

DOA-based approaches are popular in the literature due to  the simplicity of their 
im plem entation, their low com putational cost and the minimal estim ation tim e-lag 
(im portan t when tracking a moving source). However, a significant drawback of these 
m ethods lies in their susceptibility to  error as a result of steering-quantization (see 
section 3.4.3). For practical applications, the elements of {xm} will be quantized. As a 
result, {6, <f>} is also lim ited to  a subset of discrete values. It is required, therefore, th a t 
d be increased or T  reduced (either by increasing the sampling ra te  or interpolation)



5. T im e-D e la y  E stim a tio n  and  S ou rce-L oca liza tion 77

until { 9 , ( p }  may be found with some specified accuracy.

5.3.3 Least-Square-Error F ittin g

DOA-based approaches assum e th a t  the  source is in the far-field, thus rendering them  
unsuitable for application to  the  general case in which the source m ay be in the near­
field or interior of the array. In [90], a least-squares source location estim ator is derived 
for im plem entation with an ad-hoc bu t known deploym ent of sensors. W ithout loss of 
generality, we let the reference m icrophone be a t the  origin of our coordinate system, 
i.e. mo =  [0,0,0]^.

\~s -  r r im f  =  +  2 ~ s l n m  +

From our definition of T m ,  and remembering th a t  |m o| =  0

I  ^  i  ~  m  1 ^ 1

Inserting (5.26) into (5.25)

S  -Tnfy i  - |-  CTjYi  I  S  I  2 ^ l ^ m l  m l  ^

For M  microphones we can construct the following m atrix  expression

A b =  c

where

"ll,x m i ^ y

A = t n 2 , x m 2 , y m2,2

f n M - i , x — l , y

CTi

CT2

2 [0 m M - \ \

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

|ctm - i P ) (5.30)

(5.31)

If we tre a t S x , Sy , S ; ^  and |"s*| as independent variables then an unconstrained least 
squares fitting of the d a ta  is obtained via

b =  [Sx, S y ,  Sj, =  (A A ^ )  ̂A'^c (5.32)
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We have replaced | ^ |  with r* to emphasize the fact that, in general, ^
r̂ g. As such, b  is inconsistent w ith 's being a discrete point in space. We may resolve 
this contradiction by placing constraints on b. Doing so also enhances the accuracy 
of b and hence yields a superior estimate s , [91],[92].

b= argm in  (A b — c)^ (A b — c) subject to b ^ T b  =  0 (5.33)
b

where T  =  dza^jl, 1,1, — 1}. Solving using Lagrange multipliers yields an iterative 
solution by which we may obtain successively improved b

[ I - ^ ( A A ^ ) - i T ] b , (5.34)

where is a small constant and I is the update index.
In [93], a least-squares source locator is derived for the special case where the speed 

of propagation is unknown. The authors’ final solution may be expressed as

A b (~s) =  T (5.35)

where

A =
( m i  — m o )  | m i  —  m o | - T i

(5.36)

b (V )  = S z  -

’ 2c| mol ’ 2 I mol.
(5.37)

T =  [ri,T2, ...,t m _ i ]^ (5.38)

However, this technique is of only limited advantage in indoor scenarios for which 
c «  340ms“  ̂ represents an accurate estimate.

5.4 Param etric M ethods

The source-localization techniques reviewed in the previous section followed a two-step 
process. First, TDEs were found after which a SLE was obtained. In the following 
section, we review single-step techniques whereby s is found following the evaluation 
of a parametric equation.
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5.4.1 M axim um -Likelihood M ethod

The best-known parametric source-locahzation technique is based on a Maximum- 
Likelihood (ML) approach. Assuming an anechoic environment

Y(o;) =  D(u;, ~s)S{uj) + N(w) (5.39)

we may develop an expression for M  microphones and P  sources.

where

Y(u;) =  Di:p(w, “s )Si:p(u;) +  N(a;) (5.40)

~s =  [~s (5.41)

Di:p(u;, s )̂ =  [D(u;, ■^i),D(cj, ^ 2 ) , - , D ( a ; , ‘?p)] (5.42)

Si:p(o;) =  [5i(u;),52(u;),...,5p(u;)]^ (5.43)

If the noise statistics are known, then for a given parameter set, ri(uj), we may obtain an 
expression for the conditional probability distribution of Y(w). We assume temporally 
and spatially white noise - i.e. that the noise signals defined by the elements of N(a;) 
are uncorrelated with each other and correspond to zero-mean Gaussian noise with 
variance 6̂ .

r. . . . .  1 f - |Y ( u ;) -D i:p ( u ; , l^ )S i :p (u ;) n
P r { Y { u ) / t ] { u ) )  = I --------------- 2̂--------------- j  ̂  ̂ ^

where =  { s  ,Si:p(cj)}. Since ln{B} is monotonically increasing with B, as an 
alternative to maximizing Pr{Y/r]{uj)) we may instead minimize — ln{Pr(Y/7/(u;))}. 
Ignoring irrelevant constant terms,

l){u) = a rgm in ||Y (a ;) -  Di.p(o;, l ')S i:p (a ;) |^ | (5.45)
7j(a))

Minimizing this expression with respect to Si:p(u;) yields the estimate,

Si:p(u;) =  (D"p(u;, V)Di:p(c;, -? ) ) " ' 0{fp(u;, ^ )Y (a;) (5.46)

Inserting (5.46) into (5.45) and integrating across the bandwidth of the signal(s) to 
obtain a unified, frequency-independent estimate.
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s ML =  arg mm
S

(5.47)

where

G (u ; ,^ )  = I - D i : p ( u ; , l * )  (Dffp(u;, “?)Di:p(u;,‘s"))  ̂Dffp(u;, ■?) (5.48)

Note th a t for practical im plem entations of the frequency dom ain ML source locator, 
we will need to  use D FTs which will introduce a circular shift. However, where the 
segments are sufficiently long, the resulting edge effects will not seriously degrade our 
estim ates, [94].

W hile the ML source locator may be concisely expressed, obtaining a solution to 
(5.47) requires a  P-dim ensional optim ization - a non-trivial problem in itself. Iterative 
approaches, following the steepest descent, Newton-Raphson m ethod [95] and Gauss- 
Newton [96] m ethods have been proposed. However, in these, the objective function 
to  be minimized contains m ultiple local minima making an accurate initial estim ate 
critical, [97].

Furtherm ore, while convergence to the optim um  solution may be improved by 
updating each Sp  sequentially, [94],[98], in general the ML approach is too com puta­
tionally complex to  be practical.

5.4.2 S teered  R esp on se  Pow er T echniques

For a single source, an expression equivalent to  (5.47) may be w ritten as

Com paring the expression above to  the D&S beamformer (see section 4.2), it becomes 
apparent th a t in a single source, spatially and spectrally white noise, scenario the  
maximum-likelihood SLE is obtained by steering a D&S beamform er to  all locations

•v ^

and selecting s  as th a t location which returns the m aximum  ou tpu t power. In fact, 
this approach is one of the earliest source-localisation strategies - commonly known as 
the steered-response-power (SRP) approach.

For a broadband signal using an arb itrary  F&S beamformer, we may obtain s s r p  

as follows

s =  arg max (5.49)
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In the expression above we write ( s ) to exphcitly denote the dependence of inter­
sensor time-delays on the source location.

Expanding (5.50) and using the concepts of cross-correlation introduced in section 
5.2.2 provides a key insight into SRP techniques.

s  S R P arg max
~S

M - 1  M - 1

E E
. 1= 0  m = 0

j  W*{uj)Wm{uj)Yi{uj)Y^{u!) e xp{ j w  ( r^  (V) -  n  (~s))}duj

arg max
~i*

M - 1  M - 1

(5.51)
. i= 0  m = 0  '

Observing tha t the integral in the expression above is equivalent to evaluating the 
inverse Fourier transform at f =  0, we obtain,

s  S R P  =  arg max
M -lM -l
^  C?) “  Ti (:?)) (5.52)

. t= 0  m = 0

SRP methods may, therefore, be considered a multimicrophone extension of the GCC 
approach outlined in section 5.2.2 and, indeed, the expression in 5.52 is equivalent to 
tha t obtained by several researchers seeking to enhance SLE accuracy by exploiting 
the redundancies inherent in having multiple GCC estimates, [99],[100],[101].

In general, SRP-based source localization approaches are held to be more ro­
bust to noise and, in particular, reverberation than their TDE-based counterparts, 
[97],[102]. This, however, comes at the expense of increased computational complexity 
(although this may be compensated for somewhat by our choice of search strategy, 
[103],[104]). This motivates hybrid techniques in which we perform the summation in 
(5.52) over selected, as opposed to all, microphone pairs, [105],[106],[107]. W ith judi­
cious microphone-pair selection, this leads to a reduction in computational cost while 
maintaining the noise and reverberation robustness characteristic of SRP techniques.

As with GCC-based approaches, it has been shown to be advantageous to modify 
Wm{<^) (and hence $i_rn(‘̂ )) according to the acoustic conditions. W ith this motiva­
tion, the SRP-PHAT, [97], seeks to emulate the reverberation-robust performance of 
the GCC-PHAT by applying a weightvector whereby

Wmiuj) =
1

(5.53)
l>;n(u;)|

In [106] and [107], further performance enhancements are obtained by the inclusion 
of a “spatial observability function” - a weighting which takes into account factors such 
as the room geometry, source and sensor directionality and the distance between the
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array and the SLE to emphasize/de-emphasize the contribution of a microphone pair 
according to the rehabihty of its estimate.

5.5 Subspace-Based Techniques

Subspace-based source locahzation techniques exploit the properties of the correlation 
matrix, R-y y , to achieve high-resolution SLEs. Subspace techniques include the Esti­
mation of Signal Parameters by Rotational Invariance Technique, (ESPRIT), and the 
Decomposition of the Time Reversal Operator (DORT) technique. However, DORT 
requires active (that is, capable of emitting sound) sensors and ESPRIT assumes a spe­
cific array geometry. We therefore limit our review of subspace methods to a discussion 
of the Multiple Signal Classification (MUSIC) approach.

5.5.1 MUSIC

Following from the anechoic signal model and assuming spatially and spectrally un­
correlated noise, letting R y ,.pYi p (^) =  £ ’{Yi:pY^p} we may write

^Yi,pYi:p(‘̂ ) =  Di:P ~s) R-ss(w)D(fp (ui, ~s) + 5^1 (5.54)

where R ss(‘̂ ) =  -E{Si:p(u;)Si:p(u;)}. As a Hermitian matrix R yj.pYi p (w) may be 
expressed as follows.

M

R-Yi:pYi:p(w) =  ^m(‘*̂ )qm(‘̂ )qm(‘̂ ) (5-55)
m=l

where qm(‘̂ ) and Xm{^) are the eigenvector (column vector) and eigenvalue of 
;pYi:p(‘̂ ) respectively. Let us denote the eigenvalues in order of decreasing size. 

Assuming then that M  > P  and that the signal dominates the noise, we may separate 
the signal and noise eigenvectors.

p  M

^  A^(w)q„(w)q"(u;) (5.56)
m=l m = P + l

=  Qs( i j ) A{ Lj ) Qg{ c j ) +  SQNiu})Q^(Lo)

where

Q s(^) =  [qi(c^), ...,qp(w)]

Qn { u j )  =  [qp+i(u;), ...,qA/(u;)]

A(a;) =  diag{Ai(cj),...,Ap(u;)}

(5.57)
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A further property of Herm itian m atrices is th a t  their eigenvectors are orthonorm al. 
Thus Q at(w) is orthogonal to  Q s(cj), and assuming th a t D R s s D ^  is full-rank, it 
follows th a t

M { Q 5 M }  =  R { D i : p ( w , ^ ) }  (5.58)

M{Q/v(<^)} =  N{Di:P (w,l")}

where R{ } and N{ } denote the  range and null-space respectively. Hence and
D  (cj,"?) are orthogonal.

Q ^(w )D i:p(w ,'? )  =  0 (5.59)

To exploit this, we define the MUSIC “spatial spectrum ” , U{~s ) ,  which will exhibit
peaks a t those ~Sp corresponding to  the true  s .

D ^. p { uJ , ' s ) D l : p{ LO ,~ S

D{fp(w, ^ )Q iv (u ;)Q ^(w )D i:p (a ;, s")

U nfortunately, whilst capable of resolving multiple sim ultaneous sources w ith a 
very high degree of accuracy, MUSIC has a  noted susceptibility to  error in the  pres­
ence of m ultiple correlated sources, such as we would find in reverberant environments, 
[97],[108]. Several techniques have been proposed to  reduce this susceptibility, albeit 
w ith very lim ited success. “Incoherent” approaches involve the application of the  MU­
SIC algorithm  within non-overlapping frequency bins, followed by a weighted averaging 
of the results, [109]. “Coherent” m ethods include the use of “focusing m atrices” , [110], 
to  transla te  the  signal spaces for all frequency bands onto a single signal subspace while 
“Spatial Sm oothing” m ethods, [111],[112], average the correlation m atrices obtained 
from overlapping subarrays, thereby suppressing reverberant com ponents th a t are not 
strongly correlated in each subarray output.

5.6 Discussion

In this chapter we have reviewed approaches to  the related problem s of time-delay esti­
m ation and source localization. In the application under consideration, sound sources 
are hkely to  be at some distance (perhaps several m eters) from the microphones. 
Furtherm ore, classrooms, being large rooms, are likely to  be highly reverberant. As a 
result, the  robustness against reverberation of the various techniques we have discussed 
is of significant interest.
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In the case of time-delay estim ation, adaptive eigenvalue decomposition techniques 
are explicitly designed for use in reverberant environm ents and have been demon­
stra ted  to  offer excellent performance under such conditions. However, estim ation of 
impulse responses requires the use of very long filters which, in tu rn , leads to  slow 
convergence. W hile by no means an insurm ountable problem  when the sound source 
is sta tionary  (in both  a physical and statistical sense), th is poses significant problems 
if the impulse response is tim e varying as would occur if, for example, a talker were 
moving or turning h is/her head. To the au tho r’s knowledge, AED has not been tested 
under such conditions. Generalized cross-correlation m ethods suffer no such conver­
gence problems and can retu rn  time-delay estim ates using sound samples as short as 
a few tens of milliseconds. This, combined with its dem onstrated reverberation ro­
bustness, make the GCC-PHAT the  benchm ark time-delay estim ator for reverberant 
environments.

The likely presence of significant levels of reverberation in classrooms causes us 
to reject MUSIC and other subspace-based m ethods as being unsuitable for source 
localization. In contrast, SR P and TD E-based techniques have dem onstrated to  offer 
robust performance in reverberant environm ents (although the success or otherwise 
of TDEi-based approaches will depend upon the m ethods by which the TD Es were 
obtained). In general, SRP techniques offer superior performance. However, hybrid 
techniques, such as the SRP-PHAT, allow us to  achieve performance approaching th a t 
of SRP m ethods without exceeding a given tolerance for com putational complexity.

We note, th a t to obtain an estim ate of the source location we must have knowledge 
of the location of the microphones in the array, {m }. This requirem ent may be intuitive 
to many readers and is explicit in the form ulation of TD E-based source localization 
strategies. W hile the requirem ent may not be as apparent in the cases of param etric 
and subspace-based approaches, it exists nonetheless. ML and SRP techniques, as well 
as the MUSIC algorithm , are functions of D  (cj ,  V )  which, from inspection of (3.59) 
is itself a function of {m }. We will return  to  this point again in chapter 6.

We note also th a t, given knowledge of {m }, a set of TD Es may easily be inferred 
from a source location estim ate (see equation (3.57)). In this way, source localization 
techniques may be equally apphed to  the problem of tim e-delay estimation.



Chapter 6

Classroom -Based  
Videoconferencing: A Problem  
Overview

6.1 Introduction

In chapter 4, we reviewed previously published techniques for enhancing the quality 
and intelligibility of recorded speech. Among these, the class of speech enhancers 
known as beamformers are, perhaps, the most widely investigated and have proven 
popular for their effectiveness, versatility and ease of implementation. If we can 
assume an omnidirectional source, implementing a beamformer requires us to first 
estimate the steering vector D(o;, s ). We may do this using source localization algo­
rithms. Maximum-Likelihood, Steered-Response-Power and MUSIC methods estimate 
D (cj, ~s) directly as that which maximizes some objective function. Alternatively, 
D (cj, V )  may be inferred from knowledge of the array geometry and some estimate 
of the source location obtained using TDE-based source localization methods (section 
5.3). Source location estimates may also be considered as an end unto themselves as 
they may be used for automatic camera steering, providing spatial audio cues etc.

Throughout the literature, practical implementations of source localization (and, 
hence, beamforming) strategies are based upon one or both of two common simplifying 
assumptions; firstly that the array geometry is known and secondly that the source 
is in the “far-field” of the array. In this chapter we outline these assumptions and 
highlight the instances in which they are made. We go on to show that these assump­
tions, while simplifying in a certain sense, actually impose design constraints that are 
disadvantageous in practice. We outline the potential benefits of a scenario in which 
the array geometry is unknown and the sources are in the near-field. We also outline
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the specific technical challenges th a t such a scenario would pose and which the  novel 
algorithm s, presented in this thesis, are designed to  address.

6.2 A  Typiccd V ideoconferencing Setup

The videoconferencing setup shown in figure (6.1) is typical of those found throughout 
the literature, [113]-[116]. In this setup, the microphones are arranged in a narrow 
array which is m ost often planar or linear to allow for easy m ounting on a wall or 
surface. This array is then  positioned at a distance from potential participant loca­
tions - often a t the  front of the room. This type of setup is m otivated by two main 
assum ptions/requirem ents - namely th a t the array geometry is known and th a t  the 
source is in the “far-field” of the array.

6 .2 .1  T h e  Feir-Field A ssu m p tio n

In many cases it is assumed th a t the distance between the sound source and the micro­
phones is far greater than  the separation between the microphones themselves (such 
as is the case in figure (6.1)). This is known as the far-field assum ption. The origins 
of this assum ption may be traced back to  the Second World War where, for example, 
individual array elements could only be as far apart as the  greatest dimensions of a 
ship while an enemy subm arine would (hopefully) be very much farther away.

No such inherent constraints exist for indoor applications using microphone arrays. 
Nonetheless, the far-field assum ption persists as a common and oftentimes significant 
simplification. Perhaps most im portantly, the far-field assum ption allows us to  trea t 
the source as being omnidirectional. In reality, this may not be the case but because 
each microphone is a t roughly the same azim uth and elevation relative to  the source, 
any variations in source gain due to changes in the relative azim uth/elevation (i.e. 
directivity) may be ignored. Assuming an om nidirectional source allows us to  replace 
Hdp(w) w ith D(a;,"i^) (section 3.5.2)

As seen in chapter 4, the  steering vector, D(u;, ~ s ) ,  is of fundam ental im portance in 
non-adaptive and constrained optim ization-based speech enhancem ent techniques (see 
sections 4.2 and 4.3 respectively). In practice, the steering vector m ust be estim ated 
- a non-trivial problem. As a consequence of the far-field assum ption, we may obtain 
D(u;, ^ )  from TD Es alone (4.2). This greatly simplifies practical im plem entations of 
the previously m entioned speech-enhancement techniques.

The far-field assum ption also allows us to  trea t the curvature of a wavefront prop­
agating across the array as negligible. As such, it underpins the DOA or bearing-line 
source localization strategies described in section 5.3.2.
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6 .2 .2  K now n A rray G eom etry

M any array processing techniques assume knowledge of the relative microphone loca­
tions, {m }. In particular, source-localization requires knowledge of the array geometry 
and is, otherwise, impossible to  implement. This is the case regardless of the  sense 
in which the problem  is defined (see section 5.1). The requirem ent th a t the  array 
geom etry be known is apparent for TD E-based source locahzation strategies. In these, 
microphone coordinates are explicitly trea ted  as known variables in the source lo­
calization functions. This requirem ent is equally (if perhaps implicitly) present for 
param etric and subspace-based approaches, which are based upon estim ation of the 
steering vector, D (w ,"?). We cannot infer ~ s from D (c j,"?) w ithout knowledge of 
{ m } .

A know'n array  geometry is also a significant advantage for practical implemen­
tations of techniques requiring steering - i.e. beamforming. Typically, for practical 
applications using time-sampled data, the TD Es are lim ited to  being integer multiples 
of the  sam pling period. Consequently, the source locations to  which we may precisely 
steer are also lim ited to  a num ber of discrete locations. W hen the true  source location 
does not coincide with one of these, the resulting missteering leads to  a reduction in 
beam form er performance.

To increase the num ber of steerable locations, designers may reduce the sampling 
period by increasing the sampling frequency or by using interpolation filters (see section 
3.4), albeit w ith a  consequent increase in the com putational load. Given knowledge of 
the geometry of the array, we may determ ine the maximum sampling period th a t will 
allow us to  steer to  all potential source locations w ith some specified accuracy.

In addition, when the relative microphone locations are known, the delays required 
for steering m ay be inferred for all microphones from an incomplete set of TDEs, 
thereby reducing com putational complexity.

6 .2 .3  D isadvantages

As we have seen, the setup in figure (6.1) provides the potential advantages associated 
with a known array  geometry and a far-field source. However, such a setup also has 
some inherent disadvantages and we outline these in this section.

In c r e a s e d  m ic ro p h o n e - ta lk e r  s e p a ra t io n

Under the  far-field assum ption, each microphone will be at a large distance (perhaps 
several m eters) from the source. By increasing m icrophone-talker separation, we in­
crease the  a ttenuation  of the d irect-path speech com ponent due to propagation losses.
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Loudspeaker Loudspeaker

Figure 6.1: A videoconferencing setup as typically found in the literature.

As a result, the SNR and DRR of the recorded sound is reduced, thereby increasing 
the degree of noise and reverberation suppression required.

R ed u ced  m icrop h on e-lou d sp eak er  sep aration

By placing microphones at the front of the room, we increase their proximity to the 
loudspeakers. This increases the severity of any acoustic echo tha t may be present and 
is, therefore, not to be desired.

N arrow  Eirray w id th

As a consequence of the far-held requirement, the w idth/extent of the array is small. 
As shown in chapter 3, the performance of array-processing algorithms may generally 
be said to be increasing with increasing array extent. While this is most evident in the 
case of the D&S beamformer (see section 3.3.3), it remains equally true for all F&S- 
based approaches including data-adaptive speech enhancers and source-localization 
techniques (3.4.6). Therefore, by constraining the array extent, the far-field assump­
tion constrains system performance also.
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Figure 6.2: A videoconferencing setup using an array of distributed microphones. 

P o o r  F le x ib ility /S c a la b ility

The setup in figure (6.1) lacks scope for adapting to variations in audience numbers 
or distribution. For example, the setup is biased against rearward audience members 
in tha t their contributions will be less intelligible than those from participants closer 
to the microphones. It would therefore be unsuitable for long classrooms. A possible 
solution would entail the use of multiple arrays located around the room. However, 
this may be difficult to achieve while still satisfying the far-field requirement.

6.3 T he P roposed  V ideoconferencing Setup

It is proposed to employ a videoconferencing setup such as tha t shown in figure (6.2), 
in which microphones are distributed throughout the audience area. As a consequence, 
an active talker is more likely to be close to at least one microphone. This microphone 
will, in turn, be farther from the loudspeakers, leading to improved speech intelligibility 
and reduced acoustic echo.

It is also proposed that, rather than being fixed, the microphone array be deployed
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in an ad-hoc manner. In this way, individual microphones may be positioned according 
to the conditions specific to any given scenario, allowing the array configuration to 
adapt to varying audience distributions or numbers.

Figure (6.3) illustrates a special case of the distributed microphones array ap­
proach, whereby the array is composed of distributed sub-arrays. In certain instances, 
such a setup may be preferred to that shown in figure (6.2) and so it merits specific 
mention here. Primarily, a distributed sub-array setup would be motivated by a re­
quirement to suppress spatially localized sources of noise (i.e. where the noise has an 
associated direction of origin, as opposed to reverberation which arrives at a micro­
phone from many multiple directions or sensor noise which is uncorrelated in space). 
Where microphones are closely spaced, the respective source-microphone impulse re­
sponses (corresponding to the noise source) are strongly correlated with respect to the 
intensity and relative delay of the significant reflected components etc. Where the noise 
components in the microphone outputs are very similar, we may achieve a high degree 
of noise attenuation by means of simple methods such as null steering (section 3.4.1). 
However, as microphone separation increases, impulse response correlation (and hence 
the achievable noise suppression) reduces.

While providing flexibility and superior speech capture, an ad-hoc, changing and 
distributed deployment of microphones makes accurate estimation of microphone loca­
tions cumbersome, time-consuming and prone to error. Therefore, to be practical, we 
must assume that th e  a r ra y  g eo m e try  is unknow n. This presents several technical 
challenges and we seek to address two of these - steering and source-microphone range 
estimation - in this thesis.

6.3 .1  S teering

Steering -  whereby the target signal components in the outputs of multiple micro­
phones are time-aligned by the application of appropriate delays or phase-shifts -  is 
of fundamental importance in array-processing. Beamformers, in particular, require 
accurate steering (section 4.2). When missteering occurs, the speech enhancement 
offered by beamformers degrades. This is particularly true of the generalized sidelobe 
canceller (a data-dependent beamformer), for which inaccurate steering can lead to 
significant target-signal cancellation (section 4.3.2).

Before steering an array, the appropriate delays/phase shifts must first be deter­
mined. Time-delay estimates (TDEs) may be obtained directly, using cross-correlation, 
adaptive eigenvalue decomposition or LMS-based techniques (section 5.2). Alterna­
tively, we may employ maximum-likelihood or subspace-based source-localization tech­
niques (sections 5.4 and 5.5 respectively). Using these, TDEs may be inferred from an
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F igure  6.3: A  videoconferencing setup using an array o f d is tribu ted  sub-arrays.
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estimate of the source location and knowledge of the relative microphone positions. In 
the scenarios under investigation, such an approach would be limited to application 
with distributed sub-arrays where we may reasonably assume knowledge of the relative 
locations of the microphones in any given sub-array.

In each of the approaches we have mentioned, the delay-vector is estimated as that 
which minimizes or maximizes some function. However, not every possible delay-vector 
is realizable in practice. Typically, therefore, the estimated delay vector is arrived at 
by testing each of a subset of candidate delay-vectors. As previously mentioned, if we 
possess knowledge of the array geometry we may further restrict the candidate delay 
vectors to a subset sufficient to steer to all possible source locations with satisfactory 
accuracy. If we can also assume that the source is in the far-field, we may restrict 
the candidate delay-vectors to tha t subset sufficient to steer toward all directions-of- 
arrival (these are, in general, very much fewer than those required to steer to all discrete 
locations). However, when the array geometry is unknown, such simplifications are 
not possible. In a such a scenario, we would need to test all realizable delay vectors 
which, in turn, must be very large in number -  possibly requiring interpolation filters 
or very high sampling rates -  to attem pt to ensure full coverage of all possible source 
locations. This increases our computational requirements and without knowing the 
array geometry we cannot be sure that full coverage is achieved or to what degree of 
accuracy.

Also, when we may assume tha t the source is in the far-field of the array, we may 
consider the soundwaves originating at that source as being simple plane waves. We 
may, therefore, easily infer intersensor time-delay estimates from an incomplete set of 
TDEs - allowing for further reductions in computational complexity. However, where 
the source is potentially in the near-field (as will be the case in a distributed sub­
array scenario), no such inference may be made and we must obtain TDEs for each 
microphone individually.

In chapter 7, we derive a method for precise beamformer steering, based upon a 
multichannel, leaky LMS filter. Our technique is suitable for practical implementation 
in moderately reverberant environments and using arrays of unknown geometry. The 
proposed method is shown to be more computationally efficient than a conventional 
steering approach in which the TDEs are determined using the well-known PHAT- 
GCC technique. We also present the results of experiments using real and simulated 
data, to demonstrate the efficacy of our approach.
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6 .3 .2  Source-M icrophone R ange E stim ation

In the absence of knowledge of the relative microphone locations, it is impossible to per­
form source-localization using array-processing techniques. However, for many appli­
cations, knowledge of the source-microphone range is sufficient and the precise source 
location need not be known. Some of the simplest of these would use range estimates 
to select the microphone(s) tha t is closest to a target sound source or farthest from 
some noise source, thereby providing a degree of speech-quality enhancement. Range 
estimates could also be used to inform more sophisticated speech enhancement strate­
gies. Since the DRR of recorded speech decreases with increasing source-microphone 
separation (see figure 2.8), range estimates could be considered when deciding whether 
or not to apply a dereverberation algorithm to a microphone output.

Range estimates may also be applied to the problem of source identification or 
“speaker segmentation” , whereby recorded sound is labeled or “tagged” , according 
to which of a number of spatially separated sources/talkers is active. In [106] and 
[107], estimates of the source-microphone range are incorporated as one of a number 
of criteria used to assess the reliabihty of time-delay estimates obtained by distributed 
microphone pairs.

In chapter 8 we shall derive an algorithm by which we may determine the distance 
between a sound source and the microphones in an array of unknown geometry. As 
we shall demonstrate, our approach is robust against reverberation.
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Chapter 7

A Leaky-LM S-Based M ethod for 
Precise Beamformer Steering

7.1 Introduction

In this chapter we present a novel method for beamformer-steering, based upon the 
LMS filter. Traditionally, steering is performed in two stages. In the first of these, 
the appropriate steering delays are estimated using time-delay-estimation techniques 
(section 5.2). These are then used to determine the characteristics of the all-pass 
filters which should be used to correctly steer the array. To ensure that the time-delay 
estimates so obtained achieve some required degree of accuracy, the sampling period 
used must be sufficiently small. Very often this requires the use of increased sampling 
rates or interpolation filters. Our method, however, achieves precise steering even 
where the appropriate steering delays are non-integer multiples of the sampling rate.

LMS-based approaches have been previously proposed for the problem of time- 
delay estimation (section 5.2.3). Such estimates could then be used for steering. In 
contrast with these, our approach requires no intermediate, explicit estimation of the 
intersensor time-delays. Furthermore and unlike the previously proposed LMS-based 
methods, we verify the efficacy of our approach under reverberant conditions.

7.2 Leaky-LM S-Based Beam form er Steering

Our technique employs a filter-and-sum architecture. The outputs of each microphone 
are processed by an all-pass filter which applies the delay required for steering. To 
ensure accurate steering, the filter-tap coefficients are periodically updated and, hence, 
vary in time. For simplicity, we shall assume that updates occur every sampling period. 
The filter-tap coefficients corresponding to the microphone, are characterized by
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the L X 1 vector w„i(n) where n is the time sample index and L is the filter length.

w ^(n) =  (7.1)

In reverberant but noise-free acoustic conditions, the output of the filter, Zm{fi), 
is given as follows,

L

^m(n) = ^  Wm,k{n)xm{n - k )  = w ^(n )x ^(n  -  1) (7.2)
fc=i

where Xj„(n) =  [xTn{n),Xm{n — I), ...,Xmin — L + 1)]^. The system output, z{n), is 
given by

M - l

• (̂ )̂ = X I ~  w'^(n)x(n -  1) (7.3)
m=l

where

w(n) -  [w f(n),w ^(n),...,w ^;_i(n)]^ (7.4)

x(n) =  [x f(n ),x ^ (n ),...,x ^_ i(n )]^

In practice, beamformers are unlikely to be implemented in “noise free” conditions. 
However, where noise is temporally sparse (i.e. not continually present -  say due 
to occasional coughing etc.), recordings will be noise free for large periods. These 
periods may be identified using a pre-processing stage to discriminate between noisy 
and noiseless recordings.

7.2 .1  U p d atin g  th e  W eightvector

The filter taps are updated using the well-known “leaky” LMS algorithm. Given 
appropriate parameter selection, the LMS filter will converge the filter-tap coefficients 
to those values which will minimize the expected mean squared difference between 
z{n) and some reference signal.

w(n) =  arg min (w ^(n)x(n — 1) — xq (n — r/)} (7.5)
w (n )

In our implementation, the reference signal being approximated is xq {n — t]), where 
T] is some integer in the range 1 < 77 < L. This may seem unusual. To estimate 
xo (w — 77), using a LMS approach, we must have access to xq (n — rj) and if that is the
case why are we trying to estimate it? However, as we shall see, this formulation does
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allow us to achieve useful results. Our implementation of a multichannel leaky LMS 
algorithm is shown below.

w (n +  1) =  aw (n) +  /ix(n — 1) [xq (n — r/) — w^(n)x(n — 1)] (7.6)

where the leakage coefficient, a, and the “stepsize”, /i, are scalar constants and 0 < 
a  < 1. We discuss the selection of appropriate values for a  and in section 7.2.5.

So as to best understand the relevant characteristics of the converged filters, our 
analysis shall be in the frequency domain. A frequency-domain equivalent of the 
expression in (7.6) is given by

W(w, / + 1) =  aW(w, I) + /xX (w, I -  1) [Xo(w, I) -  (u;, /) X (a;, / -  1)] * (7.7)

where * denotes complex conjugate and I is the update index. Note that to maintain 
the equivalence between (7.7) and (7.6) we must alter our definitions (originally given 
in section 3.5.2) of X(tj) and the weightvector, W(w), by omitting Xo(6<j) and Wq{ui) 
respectively.

X(u;) -  [Xi M ,X 2 (u;),...,X m_ i (u;)]^ (7.8)

However, we also note that, because mo is the reference microphone, Wq{u ) will cor­
respond to some delay that will be known a priori and, hence, need not be calculated.
The vectors N(a;) and H(u;) (section 3.5.2) may be similarly redefined.

Omitting the frequency index, u), for clarity and assuming that the coefficients of 
W  are initialized to zero.

;
E { W { l  + l)} = J 2 n a ^ - ' ^ [ E { X { k - l ) X ^ { k - l ) }  (7.9)

- E { X { k - l ) X ^  { k - l ) } E { W { k ) } ]

Let us assume that the system is stationary, i.e. E  {X {k — 1) X ^  {k — 1)} = E  {X {k) X ^  (A:)} 
R x x  and £; {X (A: -  1) Xq* (fc -  1)} =  £; {X (fc) (A:)} =  RxXo- As / ^  oo, then for 
an appropriate choice of /x, the weightvector converges in expectation and E{~W (/ +  !)} =
£ ' { W  (/)} =  W o o ,  (see [16] for a discussion of stepsize bounds and filter convergence 
behaviour).

W o o  =  (Rxxo -  R x x  W o o )  ( 7 . 1 0 )(1 -  a)
Following algebraic manipulation
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W o o  = ( R xx +
j i a

Rxxo (7.11)

We note that the scaled identity matrix in (7.11) is equivalent to  R n n  where N  

is a noise observation vector whose elements correspond to spatially and tem porally  

uncorrelated noise, with equal variance ■ Therefore, comparing (7.11) with (4.24), 

we see that Wqq is equivalent to the optimum multichannel W iener filter that would  

be obtained if the microphone outputs contained uncorrelated w hite noise. Thus, 
em ploying a leaky LMS filter is m athem atically equivalent to injecting spatially and 

tem porally uncorrelated noise into the microphone outputs.

7.2 .2  D ecom p osin g  th e  W iener S olu tion

Letting 5 ^  =  and P g  —  £^{|5|^}, (7.11) becomes

W oo =  ( P . H H "  +  J 2 i ) - 1 ( p ^ h / / o* ) 

Applying the matrix inversion lemma,

Inserting this result into (7.12) yields

W . I - HH H

HH^vo

and following some simple algebraic m anipulation we obtain

W .
Ps |H1̂

7 .2 .3  F la tten in g  th e  F ilter  R esp on ses

We make the following approximation

H ss [7ji/oexp(-jtJTi), ...,7jv^_ii/oexp(-ja;TM-i)]'

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

where the 7  terms represent real, scalar constants. This approximation is a valid one 

in situations where, for example, a high proportion of the received signal energy is due 

to  direct-path propagation. Following from (7.16), (7.15) becomes

W . [7 1  e x p ( - j a ; T i ) ,  . . . ,7 m - i  e x p ( - j u T M - i ) ] ' (7.17)
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X i { n )

f (n)

Leaky LMS Filter
in)

DFT
Wi(r)

W i ( r )
W i ( r )

1DFT
V i ( / 0

Steenng Filter

Figure 7.1: A block diagram of an implementation of the leaky-LMS-based method 
for beamformer steering. The elements shown correspond to the processing undergone 
by the output of m i . Identical processing is applied to the outputs of the remaining 
microphones.

The individual elements of the a vector, V , are found by flattening the frequency 
responses of the elements of W qo-

I  * ^ O O m  I

V  =  (7.19)

Thus, we obtain a vector containing phase-shifts tha t will correctly steer the array.

V  =  [l,exp(-ja;ri), ....,exp(-;wTM-i)]^ (7.20)

7 .2 .4  Im p lem en ta tio n

Figure (7.1) shows a block diagram of a practical implementation of the leaky-LMS-
based approach to beamformer steering. An FIR filter processes the output of each
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microphone. The filter-tap coefficients are updated with each new sample using a 
leaky-LMS filter. Every L  samples, a D FT  is applied to  the  filter coefficients and 
spectral flattening is performed. Finally, an inverse D FT  is applied to  obtain the 
tim e-dom ain coefficients of the  steering filter, v ^ (n ) .

7 .2 .5  P a r a m e t e r  S e le c t io n

We now address the question of how we might select appropriate values for a  and fi. 
From inspection of (7.15) we see th a t the m** component of the optim al converged 
weightvector, Wqo, is proportional to  = J^{hm{t)*ho{—t)}  (where T {  } denotes
the  Fourier transform ). However, A typical impulse response may be in the region of 
several hundred milliseconds long. Therefore, to  accurately approxim ate hm{t)*hQ{—t) 
an F IR  filter m ust be of similar length. In practice, F IR  filter lengths are very much 
shorter, due to  constraints on the permissible level of com putational complexity. As a 
result of the consequent disparity between the lengths of the FIR  filters and the impulse 
responses, the weightvector in (7.15) may not be achievable. R ather, the weightvector 
will converge to  th a t achievable weightvector which minimizes the expected squared 
error.

In early investigations it was observed th a t, for certain values of a  and /z, the 
weightvector did not converge to  a value consistent w ith th a t predicted by (7.15). 
R ather, the converged weightvector would tend to  emphasize the contribution of mi­
crophones closest to  the reference microphone (and hence having ou tpu ts most similar 
to  th a t of the reference microphone) while suppressing the contributions of the re­
m aining microphones. This w£is observed even in scenarios featuring closely-spaced 
microphones and a far-field source.

Due to  the small contribution of some microphones to  the overall system ou tpu t, 
large errors may be to lerated  in the corresponding weightvector elements. These errors 
are then emphasized by (7.18) leading to  inaccurate steering. We therefore require the 
weightvector to  converge to  a value for which all microphones make an approxim ately 
equal contribution to the overall output. This may be achieved by the  selection of 
appropriate values for a  and /i.

Consider a scenario in which spatially uncorrelated white noise of variance is 
present in the ou tpu t of each microphone. Applying a  weightvector to  approxim ate 
X q we may express an error signal, e, as follows

e =  W ^ (X  +  N ) - .Y o  (7.21)

M ultiplying each side by its conjugate and applying the expectation operator.
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E {|e|2} =  W ^ R x x W  +  W ^ R x x o  +  RxXoW +5^ |W |2 (7.22)

From inspection of (7.22) it is apparent tha t £ ^ | |e p |  increases with <5̂ |W p . 
Therefore, the presence of white noise effectively constrains the norm of the weightvec- 
tor. Selecting a  < 1 is, as we have shown, equivalent to injecting spatially uncorrelated, 
spectrally white noise into the microphone outputs. Therefore, leaky implementations 
of the LMS filter also constrain the norm of the weightvector. This constraint “tight­
ens” as (or in the case of actual noise, <5̂ ) increases. Therefore, by selecting
sufficiently small values for a  and we may prevent any one component of W  from 
becoming too large. The filter responds to this by increasing the contributions of the 
remaining microphones until the contribution of each microphone is approximately 
equal.

7.3 Sim ulations and E xperim ents  

7.3 .1  S im ulations

A series of simulations were performed to examine the performance of a beamformer 
steered using the proposed leaky-LMS-based technique. Our simulated environment, 
was a simple rectangular room with uniform surface absorption coefficient of 0.3 and 
dimensions [5.25m, 6.95m, 2.44m], figure (7.2). 7 sources were positioned at a range of 
2m around a linear, equispaced 7-element array with intersensor spacing of 0.034m. 
The sources were at the same height as the array and were placed at 15° angular 
intervals between 0° and 90°. The azimuth of the first-arriving wavefront, relative to 
the array is called the direction of arrival (DOA).

In this setup, the sources may be considered to be in the far-field of a narrow 
array. However, this is done only so that we may present our results with respect to 
two variables (DOA and frequency) as opposed to four (x-coordinate, j/-coordinate, 
2-coordinate and frequency) and we note, once again, tha t as the proposed method 
for LMS-based steering requires no knowledge of the array geometry, it is equally 
applicable to scenarios in which the array is distributed and the source is in the near- 
field.

Source-microphone impulse responses were then using a “raytracing” algorithm 
with random reverberant tails, [117]. The direct-to-reverberant ratio was found to be 
approximately 5dB at each microphone in the array. The sampling frequency used 
was lOkHz.  These impulse responses were then convolved with a Maximum-Length- 
Sequence (MLS) of length 3.3s to obtain simulated “recordings” . These recordings 
were then used to converge a weightvector with a time-domain, leaky LMS filter. The
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Sources

Microphone Array

Figure 7.2: The sim ulated room and loudspeaker-microphone setup.

param eters used were /x =  2 x a  — 0.9968 and L  =  16. From this weightvector, 
the coefficients of the steering filters were obtained as previously described.

T he steering filters were then used to  steer a delay-and-sum  (D&S) beamformer. 
The performance of this beamform er was compared to  th a t of a D&S steered to  0° 
( “Broadside” ) and 90° ( “Endfire” ). We note th a t, given our choice of sampling ra te  and 
intersensor spacing, application of delays which are integer multiples of the sampling 
period allows us to  steer in the Broadside and Endfire directions only. In o ther words, 
using trad itional steering techniques a beamformer processing da ta  from our array is 
incapable of being steered in any directions o ther than  0° or 90°.

The results, shown in Figures (7.3) and (7.4), clearly dem onstrate th a t a beam- 
former steered using our technique outperform s a m is-steered D&S beamformer, whilst 
m aintaining almost identical performance to th a t of a correctly steered D&S beam- 
former regardless of the DOA of the source.

This procedure was repeated using a concatenated speech sample (containing 2 
male and 2 female speakers and of approxim ately 13s in length) in place of the  MLS. 
It has been previously noted th a t when attem pting  to  enhance speech signals, most 
of the  degrees of freedom available to the filter go towards minimizing the error a t 
the  dom inant low frequencies whilst leaving the weaker high frequencies largely un­
enhanced (i.e. large errors are tolerated at high frequencies) [119]. Steering errors a t 
high frequencies are then magnified by (7.18). To com pensate for this and achieve a
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more even distribution of the filter’s degrees of freedom across the full bandwidth, we 
applied a whitening filter with a frequency response equal to the square root of the 
inverse of the long term power spectrum of speech, as described in [119].

Using the same parameters and procedure as before, steering filters were obtained 
and applied to a D&S beamformer. Once again, the performance of this beamformer, 
with respect to WNG{u)  and DI{uj), was compared with that of a D&S beamformer 
steered in the Broadside and Endfire directions. The results are shown in figures (7.5) 
and (7.6). While not as good as that achieved using simulated MLS recordings, the 
performance obtained using speech recordings is, nonetheless, comparable to that of a 
correctly-steered D&S, regardless of the DOA of the source.

V aryin g  R everb eran t C on d ition s

A second series of simulations was performed to analyze the performance of the LMS- 
steered beamformer under different direct-to-reverberant ratios. Varying DRRs were 
achieved by scaling the direct-path components of the simulated impulse responses. 
Using the simulated voice recordings, steering filters were then obtained using the 
same procedure and update parameters as previously described. Once again, these 
steering filters were used to steer a D&S beamformer, the performance of which was
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then analyzed with respect to W N G { u )  and DI{u).  The results are shown in figures 
(7.7) and (7.8). From our results we see that, while performance does worsen as the 
DRR reduces (a result of the decreasing plausibility of the assumption in equation 
(7.16)), it remains (unexpectedly) good at a DRR as low as OdB.

This occurs as a result of our use of a linear array. For soundwaves propagating 
across a linear array, the relative time delay between the sound detected by microphone 
depends only upon the azimuth, and not the elevation, of the DOA of the soundwave. 
Due to the geometry of our simulated environment, the direct-path component of the 
signal, as well as strong 1st order reflections from the floor and ceiling, will propagate 
accross the array with the same azimuth. As a result, a sufficiently large proportion 
of each source-microphone frequency response is identical subject to a phase shift 
corresponding to the relative intersensor time delays.

We also observe that in the case of the source at 0°, the performance is good accross 
all DRRs. This, again, is due to room geometry. A large proportion of the reflected 
energy propagates across the array from the two long walls at 0° and —180° relative 
to the array and therefore has the same azimuth as the direct path component of the 
signal.
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D y n a m ic  P erform ance

We analyzed the dynamic performance of our approach using the concatenated speech 
recordings and differing values of a  and ji. a  = 0.9992, 0.9984 and 0.9968. /x =  
0.02,0.01 and 0.002. The DRR was 5dB. The results in figures (7.9-7.11) show the 
variation in White Noise Gain over time. The results shown are for a source at 45° 
but are illustrative of the results obtained for all the source locations.

In each figure, we observe our results to be variable in time with the WNG subject 
to drops within one or more frequency bands. The number and severity of these is 
seen to increase as a  reduces. These drops occur at times and frequencies where the 
received signal energy is low. Due to the often harmonic nature of speech, large por­
tions of bandwidth will frequently contain low energy and we require long segments of 
recordings to overcome this. Comparing the figures, we see that, when /i =  0.01, we 
obtain generally superior performance to tha t when fx — 0.02. This we may account for 
as being the result of having insufficient virtual noise. From figure (7.11) we observe 
tha t initial convergence is slow for /i =  0.002. This slow convergence leads to subse­
quent poor performance at certain times and frequencies, particularly as a  reduces. 
We may, to a certain extent, overcome these subsequent performance problems by 
allowing adaptation only in bands where received energy is sufficiently high. However, 
our requirement for long segments of recordings would render our approach incapable 
of tracking quickly moving targets. Given a stationary or slow moving source, however, 
we will still be able to achieve satisfactory performance by selecting an appropriate 
value for /x.

7 .3 .2  R ea l-R oom  E xp erim en ts

The self-steering beamformer was tested using real recordings of an MLS and concate­
nated speech samples. A six-element linear, equispaced array with intersensor spacing 
of 0.034rn was mounted on a theodolite, 1.3m from the floor, in an empty office of 
approximate dimensions [3.2m, 4.2m, 2.6m]. A single loudspeaker was placed Im  from 
the array. At this distance, the source may be considered to have been in the farfield 
of our array. The approximate DRR at the array was 6.7dB. The sampling rate was 
lOkHz.

The array was rotated to vary the DOA of the loudspeaker output. The exact DOA 
was measured on the theodolite. Recordings of voiced and MLS signals were taken for 
DOA’s of 0°,30° and —45°. From these recordings, steering filters were obtained as 
before. The parameters used were = 0.01 and a  — 0.9992. The speech recordings 
were also prewhitened as before.

Determining the true delay-vector was problematic, due to the difficulty of mea-
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suring the exact distance between the source and the microphones. As a result we do 
not use W N G { u )  or D I { u j )  in our analysis of the beam form ers’ performance. Instead, 
in figure(7.12), we show the array patterns (i.e. gain with respect to  frequency and 
DO A) obtained using each set of recordings.

From inspection of the array patterns obtained, we see th a t the resolution offered at 
low frequencies is very poor. This is as a result of the narrow array-w idth and we can 
expect the resolution to improve as this w idth increases. Low-frequency resolution 
notw ithstanding, the mainlobe of the array pa tte rn  is po in ted /steered  toward the 
appropriate DOA in each case. This confirms th a t  the self-steering beam form er we 
have presented does, indeed, work in real environm ents for both  white and voiced 
sources.

7.4 C om putational C om plexity

In this section we compare the com putational complexity of the widely- used PHAT- 
GCC m ethod for tim e delay estim ation (section 5.2.2) to  th a t of the leaky-LMS-based 
approach presented in this chapter. To do this we make a num ber of simplifying 
assum ptions. In the case of the leaky-LMS-based approach, we consider only those 
calculations required to  obtain the coefficients of the steering filters. In the  case of

twrt« (s)
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^ = 7 -----
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Figure 7.12: The array patterns corresponding to the self-steering bearnformer, ob­
tained from real-room recordings.
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the PHAT-GCC, we consider only those required to obtain the cross-correlation func­
tion ■ see section 5.2.2) for each of M — 1 microphone pairs. Ancillary
tasks, such as determining the maxima of the cross correlation functions, are ignored. 
Furthermore, we analyze computational complexity in terms of real-valued multipli­
cations/divisions only. The comparatively trivial operations of subtraction and ad­
dition are ignored while a complex-valued multiplication/division is treated as four 
real-valued multiplications/divisions. Where a DFT or IDFT is required, we assume 
the use of the fast Fourier transform and inverse fast Fourier transform techniques 
described in [118].

Algorithm (1) details the calculations required to implement a leaky-LMS-based 
approach in which w(n) is updated every sample, while the coefficients of the steering 
filters are updated only once every L samples. Algorithm (2) outlines the computa­
tional requirements of a PHAT-GCC in which ippHAri'^^) is updated for each of M — 1 
microphone pairs once for every (non-overlapping) segment of data. It is assumed 
that each such segment spans the same duration in time as L  consecutive samples as
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used by the leaky-LMS-based method. However, to account for a possible difference in 

sampling rates, we denote the number of samples in each segment as V . Comparing 

the total number of calculations per segment required of each approach, it is apparent 
that the LMS-based m ethod is more efficient than the PHAT-GCC technique if the  

following holds,

As previously discussed, accurate tim e delay estim ation (and hence steering) using 

the PHAT-GCC approach requires the use of very high sampling rates. As we have 

seen, however, the LMS-based approach allows us to achieve precise steering while 

sampling at comparatively low rates. Let us assume, therefore, that the PHAT-GCC  

requires data sampled at 7  tim es that required by the LMS-based method. Replacing 

L' in (7.23) with j L  and performing some sim ple algebraic manipulation yields an 

expression for the conditions under which the leaky-LMS-based m ethod is less com­

putationally com plex than the PHAT-GCC approach.

and F F T i  *{♦) denote the L-point fast Fouher tixinsfonn and inverse fast Fouher tratisform respectively 

,  2IL 5L , , 5L' , 17L'
3 L  - + 1 2 - \ —— (log2 L) <  log2 L   — h20-|-

(7.23)
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AT =  2 M  = 6 AT =  10 Af =  14
4 4 5 5 5
5 5 7 7 7
6 8 1 0 1 0 1 1

Table 7.1: Integer m ultiples of the Nyquist sampling rate for which the proposed 
leaky-LM S-based steering approach is less com putationaly complex than  steering w ith 
tim e-delays determ ined using the PHAT-GCC m ethod

/ 5 7 L 7 ^  \  „ 21L(Af -  1) +  5 7 L -  17 7 L (A /-  1) „ .  ^

(724)
Table (7.1) shows the smallest integer value of 7  for which (7.24) holds, for likely values 
of L  and M .

7.5 Discussion

In th is chapter we have proposed a m ethod for beamform er steering based upon a 
m ultichannel leaky LMS filter. Furtherm ore, we have verified experim entally th a t 
the proposed approach can achieve precise steering even where the true  inter-sensor 
tim e-delays are non-integer multiples of the sampling rate.

In section 7.4, we compared the com putational complexity of the proposed tech­
nique w ith th a t of a  conventional approach using PHAT-GCC tim e delay estim ation. 
As was discussed in section 6.3.1, conventional steering techniques require the  use 
of higher sampling rates when the array geometry is unknown an d /o r the source is 
potentially  in the near-field.

For the array geometry used in the sim ulations in section 7.3.1 of this chapter, 
sam pling at 7  times the Nyquist ra te  allows us to  steer towards 7 4 -1 DOAs in the range 
0° : 90° (see section 3.4.3, equation(3.31)). There are 7 sources and so we m ust sam ple 
in tim e a t a minimum of 6  tim es the Nyquist ra te  if we are to  be able to  discrim inate 
between them  using conventional steering techniques. From inspection of table (7.1), 
however, it is apparent th a t  the proposed m ethod is a more com putationally efficient 
approach if conventional steering techniques require us to  sample a t 5-or-more tim es 
the  Nyquist rate.

Therefore, in many scenarios in which we are required to  steer a  beamform er (m ost 
notably, those in which the  array geometry is unknown or the source in the near- 
field), leaky-LMS-based steering should be preferred as being more accurate and less 
com putationally  complex than  conventional methods.
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It is worth noting, once again, that bhnd source separation (BSS: see section 4.3.4) 
is a field of research concerned with methods for separating multiple simultaneous 
and statistically independent sources, using microphone arrays of unknown geometry. 
These techniques could be applied to scenarios in which there is a source or sources 
of interest in the presence of one or more local interferers. It should be remembered 
however tha t reverberation severely limits the effectiveness of these methods and this 
would render them unsuitable for the scenarios under investigation here. Nonetheless, 
recent work (notably [46] and [48]) has presented BSS techniques for use in mod­
estly reverberant environments and future developments may yet see BSS techniques 
successfully applied in more typically-reverberant environments.



Chapter 8

Range Estim ation

8.1 Introduction

In this chapter, we derive and demonstrate a novel method for estimating source- 
microphone ranges, which may be implemented using arrays of unknown geometry 
and is robust against error due to reverberation. We refer to this method, which we 
derive in section 8.3, as the “Range-Finder” algorithm. For comparison, we also derive 
a well-known range estimator that assumes and anechoic environment and a range- 
estimating variant of the steered-response-power method for source localization. In 
section 8.4, we analyze the effects of microphone geometry and relative source location 
upon the accuracy of the range estimation techniques. In section 8.5, we present the 
results of experiments, using real and simulated data, to demonstrate the efficacy of 
the proposed method. We discuss the potential uses of the Range-Finder algorithm 
and suggest future work in section 8.6.

8.2 Sound Propagation  in R everberant Environm ents

In a noiseless but reverberant environment the signal received at some microphone, 
m-o, will consist of a direct-path component and multiple reflected components jointly 
referred to as reverberation. The output of the microphone may be modelled as the 
convolution of the source-microphone impulse response, ho {t), and the source signal.
s{t).

(8 .1)

0

In the frequency domain

115
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(8 .2 )

where i/dpo {^) is the component of H q (oj) due to direct-path (non-reflected) propa­
gation and Hmpo (i^) is the reverberant component due to multipath reflections. The 
received signal power spectrum may be calculated as follows.

|Xo(a;)|2  =  |5 ( u ; ) |2 | / /o ( a ; ) | '

-  \ S { u f  {\Hdpo (w)P +  \Hmpo (u;)!' + 2Re{Hdp, {u) (c^)})

(8.3)

where Re{ } denotes the real component and * denotes the complex conjugate.
In air, for an omnidirectional source and receiver, the power of the direct-path 

component of sound, received at mo, is inversely proportional to the source-microphone 
distance, squared.

where ro =  | s — mo| and s and mo denote the Cartesian coordinates of the source 
and mo respectively. The direct-path component decays at a rate of 6dB per doubling 
of distance. This model does not address effects due to variations of air pressure or 
temperature, however, in a room environment it is reasonable to assume a homogenous 
medium. From (8.4), we may derive an expression for the power of the direct-path 
component of the sound received at some microphone rua.

We define the following, noting that, for clarity, we omit the frequency index, w, 
in the sequel.

where the a and b subscripts denote the impulse response components correspond­
ing to the microphones nia and m^, respectively. Consider the cross-terms in (8.6). 
Direct path propagation applies a delay and scaling to a soundwave. Therefore, for 
any source-microphone impulse response, is a scaled exponential. Similarly, Hmp 
may be considered to be the sum of scaled exponentials corresponding to multiple re­
flected soundwaves. As such, HdpH^p is also the sum of multiple scaled exponentials.

(8.4)

(8.5)

Fa,b =  I  \ H m p f  -  \ H m p f  +  (8 .6 )
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Therefore, invoking the central limit theorem , we shall assume J  R e { H d p ^ H ^ p ^ } d u  
and J  R e { H ( i p i ^ H ^ p ^ } d u j  to  be zero-mean norm ally-distributed random  variables. Fol­
lowing from the  results of our analysis in section 2.3.4, we also assume /  \Hmpa\^ du  
and f  duj to  be random  variables d istribu ted  about the same mean. Therefore,
invoking the central limit theorem  once again, we may consider Fa^b to  be a zero-mean 
norm ally-distributed random  variable.

Note th a t, if Hdp and Hmp are non-zero a,t — 0, f  Re{ffdpH^p}dcj  will exhibit a 
positive bias. We m ay ignore this however, as the  frequency responses of real micro­
phones will not have a  non-zero component a t a; =  0.

8.3 R ange E stim ation

In this section we derive three range estim ation algorithms: a well-known bu t naive 
range estim ator th a t  assumes an anechoic environm ent, a modification of the  well- 
known steered-response-power technique for source localization and a novel algorithm , 
which we present in this thesis and which we refer to  as the as the “Range-Finder” .

8.3.1 A  N a iv e  R ange E stim ator

W hen Ta is the  relative intersensor time-delay between rria and mo-

Ta -  ro =  CTa (8.7)

where c is the speed of sound in air. Using any one of a variety of time-delay estim ation 
techniques, we m ay obtain an estim ate of the relative intersensor time-delay, Ta- In 
noiseless, anechoic environm ents the direct-path  sound accounts for all acoustic energy 
received by the  m icrophones and so, by substitu ting  (8.7) into (8.5) and performing 
algebraic m anipulation, we obtain a simple and well known estim ator of tq.

Unfortunately, in non-ideal acoustic environments, the presence of interfering reverber­
ation can severely d isto rt this estim ate, m aking the above range estim ator unsuitable 
for practical environm ents. W here more than  two microphones are available, the most 
accurate range estim ate will be obtained by using only those two microphones closest 
to  the source. These may be presumed to  have the  highest DRRs. The ou tpu ts of the 
rem aining microphones will contain proportionally greater levels of reverberation and 
will, therefore lead to  greater distortion in the  range estim ates.



8. R an ge  E stim a tio n 118

8.3 .2  T he S teered -R esp on se-P ow er R ange E stim ator

Steered-response-power (SRP) techniques are a classical m ethod for source localiza­
tion, whereby a beamformer is steered to a series of candidate locations with the 
source location estim ate taken as th a t which maximizes the power of the  ou tpu t of the 
beamformer. Under conditions of diffuse reverberation, the optim al beamform er for 
such a  task  would be the superdirective beamformer (section 4.3.1)). Unfortunately, 
calculating the filter weights for such a beamformer requires knowledge of the micro­
phone array geometry, which we will not have. Therefore, we use the delay-and-sum  
beamform er (section 4.2. The resulting source location estim ate may be expressed as 
follows

s =  a rgm ax  |D ^ ( '? )X |^ ( ia '| '  (8.9)

Replacing the  actual intersensor tim e delays in (3.59) with TD Es and replacing 
I"? — THml w ith ro +  CTm) we may define D (ro) as shown below.

D(ro) =
a(ro) a(ro)

ro ro +  CTi
a(ro)

r o  +  CT M - l
exp{-ju;TM_i} (8 . 10)

where a(ro) is some scalar such th a t the norm of D(cj, tq) is unity. A range estim ate 
may be obtained from

ro =  argm ax  
ro

D " (r o )X dbJ (8 .1 1 )

SRP source localization techniques are noted in the literature as being robust 
against the effects of reverberation (section 5.4.2). However, such assertions are based 
upon the results of experim ents using closely spaced arrays and far-field sources - i.e. 
where ro ~  ro -|- CTm- To the au th o r’s knowledge, no previous study has examined the 
use of SRP m ethods for determ ining source-microphone ranges.

8 .3 .3  T h e R ange-F inder A lgorithm

From (8.5) and (8.7)

ro
ro + CTa

ro
ro + CTf,

(8 .12)

The term  in the  square brackets is a function of ro,Ta and which we denote as 

G n  b (^0 ) ' ^ a i  '^b )
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Ga,b{ro,Ta,Tb) =  ( ----)  ~ ( ------------ )  (8.13)
\ r o  +  CTaJ \ r o  +  CTbJ

Integrating (8.3) across the full bandwidth of the signal we obtain the total received
signal power Pq.

Po =  I \ S \ ' ^ i \ H a p f  +  \H r n p f  +  2Re{H,p,H*^^})dL0  (8.14)

We define (, as being the difference between the total received signal power at rua 

and mi,.

Aa,b =  P a - P b  (8.15)

Let us assume, for the moment, that |5 p  is a constant with respect to frequency (we 

shall return to this assumption later). Substituting (8.14) into (8.15) and performing 

algebraic manipulation yields

Aa,b =  |5'P [kGa,b (ro, Ta,  Tb) +  Fa,b] (8.16)

where k =  J  \Hdpo\  ̂du.  From (8.16), we see that the difference between the signal 
power received at two microphones is proportional to  the sum of a scaled, determ inistic 

function, Ga,b {f'Oj'''a,Tb), and a zero-mean and normally distributed random variable, 
Fa,b- We define the following vectors, noting that we have om itted the arguments of 

the Ga,b (̂ o> Ta, Tb) terms for clarity.

G =  [Go,i, Go,2 , ■■■ G i ,2 ,  Gi,3, . . . . . G m - 2 , M - i ]^ (8.17)

II J . •fb,2, ••• ^1,2,  ^1,3, • • • (8.18)

> II p

CD

<

. . . . ,  A i ,2 ,  A i , 3 , ............ A m - 2 , A / - i ] ^ (8.19)

=  |5p[A;G +  F]

Once again, using any of the many well-known techniques for delay-vector estim a­

tion, we may obtain the time-delay estim ates and Tb- We then define Ga,b (fo)  and 

the corresponding vector G (ro) from

Ga,b (^o) =  Ga,b (ro, Ta,  Tft) (8.20)

Following from the Cauchy-Schwartz inequality, the optim al range estim ate, Fq, is 

obtained by a matched-filtering of the power-difference-vector. A , with
|C :{ro)|
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arg max 
ro G(ro)

G(ro)^A (8 .2 1 )

Following from this estimate, we may easily obtain estimates of the distance be­
tween the source and the remaining microphones by inserting Fq and the TDEs used 
to calculate G(ro) into (8.7).

Previously, we assumed |5(o;)p to be a constant with respect to frequency. In 
many cases, including that of human speech, this is unrealistic. In reality, speech 
is both a lowpass and often harmonic signal. This poses particular problems. We 
have assumed Fa^i, to be a zero-mean, normal random variable. The analysis and 
experimental evidence underpinning this assumption are for broadband signals and 
we cannot reasonably expect it to hold for cases, such as speech, where the bulk of the 
energy is concentrated at low frequencies.

This problem was overcome as follows. The microphone outputs are split into 
individual, non-overlapping subbands. The bandwidth of these subbands are chosen 
such tha t they are narrow enough that |5(u;)|^ is roughly constant within the subband 
whilst also being wide enough that there is always a direct-path speech component 
present. A is then calculated for each subband. Each A is normalized and, from 
these, an average power-difference-vector. A, found across all the subbands. The 
range estimate is found, as in (8.21) by a matched-filtering of A with G (ro )/ G(ro)

8.4 E stim ate D istribution  £tnd A ccuracy

Given multiple estimates for range, we might expect that, as the number of estimates 
increases, their mean will approach the true range. As we shall see in the following 
section, this is not necessarily the case. We shall also show how the accuracy of a 
range estimate is dependant upon the actual source-microphone ranges. We restrict 
our analysis to the situation where we have three microphones only - the minimum 
number required for the Range-Finder algorithm. We do this both for the sake of 
simpHcity and to allow us to employ an alternative formulation of the Range-Finder 
algorithm. This alternative formulation more clearly illustrates how the distribution of 
range estimates is related to the distribution of the ratio of normal random variables, 
a well-understood, albeit non-trivial, distribution that has received extensive study in 
the literature.
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8 .4 .1  A n  A ltern ative  Form ulation  o f th e  R ange-F inder

The range estimate, ¥(,, is that which maximizes the expression in (8.21). For two 
vectors with given norms, the dot product of the vectors is a maximum when they are
proportional. Therefore, we may write G ( F q )  oc A. For the three-microphone case,
this implies

[Go,i (^o)) Go,2 (j'o)] OH [Ao,i, Ao,2] (8.22)

Using an equivalent expression, we define Qo,i,2

Go,i (ro) Ao,i ^
Go,2 (ro) -̂ 0,2

and, from this, we obtain an alternative expression for the Range-Finder.

^  Go,i (ro)
Q o, i ,2 -fo =  argmin Qo,i,2 ~ p, ' , (8.24)

'■0 [ Go,2(ro)
For 3 microphones there are, of course, 5 further permutations of Q (Qo,2 ,i) Q i,2 ,o etc.).
However all may be shown to yield identical range estimates and so we shall consider
only Qo,i,2 - Furthermore, to simplify our analysis, we shall assume that 0 < r i <  T2 -
We note that this relationship is for simplicity only and is not an absolute requirement.
Rather, it is merely a result of the arbitrary way in which we assign labels to the
microphones. Once again, omitting the arguments of the Ga,6 (roj Ta, r;,) terms for
clarity.

Go,i +  (-Fo,i)//c

From (8.25), we see that (5o,i,2 is the ratio of normally distributed and correlated 
random variables, with unknown variances and means of Go,i and Gq,2 respectively. 
Such a ratio is itself a Cauchy distributed random variable.

8 .4 .2  C auchy D istr ib u tion

In [120] it is shown that, following a translation and a change of scale, Qo,i ,2 has the 
same distribution as the ratio of two uncorrelated normal random variables of unity 
variance, . The real constants a  and /3 may be calculated as follows

Gq.I _  P G 0,2

a  =  ±  (8.26)
(TO,2

where aa,b is the standard deviation of (Fa,ft) /k ,  p is the correlation between Aq,i and 
Aq,2 (which may be shown to be 0.5) and the sign of a  is chosen to be the same as
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Figure 8.1: Portions of the PDFs of . Also shown is ^  (dashed line).

tha t of p. For the sake of simplicity and to avoid unwieldy equations, the following 
discussion shall be with reference to the simplified standard form . From [121],

the probability density function (PDF), p{t), of may be given as shown below

p{t) = exp{-0.5(o^ +  P"^)}
7t (1 + 2̂) 1 + gexp{0.5g '} J  exp{-0. 5x^}dx Q =

P + at
VTT^

(8.27)
Figure (8.1) shows the PDFs for varying values of a  and 0. A very wide variety of 

distribution-shapes are possible and the ones shown are chosen for specific illustrative 
purposes. For a more complete selection of graphs see [121]. Shown also is ^  (dashed 
line). In figures (8.1a,b) the distribution is not symmetric about This indicates 
that, contrary to what we might expect, the “mean” of is biased away from

In fact, strictly speaking, the mean and variance of do not exist. This is

because is undefined when the denominator equals zero.
In practice, we may calculate a pseudo-mean and pseudo-variance by considering 

only those estimates that fall within certain bounds. A natural bound would be that 
value of Qo,i,2 corresponding to a range estimate of Om. In setting such bounds, how­
ever, we should be mindful tha t the consequent truncation of the PDF may introduce 
an additional bias in the pseudo-mean.

In general, when defined within sufficiently wide bounds, the pseudo-mean tends 
towards ^ for | a | , |/3| S> 1, as occurs when Go,6 S> cro,t. Furthermore, under these 
conditions, Qo,i,2 tends to have quite a narrow distribution (see figure (8.1c)). Un-
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fortunately, the converse is also the case. The problem is further compounded by the 
difficulty inherent in defining “sufficiently wide bounds” when Qo,i,2 is widely d istrib­
uted. W ithout knowing <to,i or ao,2 , we cannot calcu late/estim ate the  bias th a t  is 
present. We can, however, identify certain situations in which it is likely to  be very 
large. Consider the  case where ro S> CTh -  th a t is when the array is rem ote from 
the  source. From inspection of (8.13), we see th a t, under these conditions, Go,6 —> 0 
causing our estim ates to  be subject to  w hat is likely to  be a large bias.

8.4.3 The Effect o f Array G eom etry

The actual source-microphone ranges determ ine the values of r o , r i  and T 2 - We have 
seen how these param eters can effect the d istribution of Qo,i,2 and bias its pseudo- 
mean away from In this respect, therefore, the accuracy w ith which we may
estim ate range is determ ined by the array geometry. Array geometry also determ ines 
the extent to  which a b ias/error in <5 o,i,2 translates into an error in the corresponding 
range estim ate. To investigate this second effect of array geometry, we examine how 
a fixed bias, transla tes into an error in the range estim ate.

Consider an estim ate, ro, of the true range, ro, and let us assum e th a t this estim ate 
contains some error, eo-

=  (8 .28)
G o , 2  ( ’’o) ^ 0.2

As an illustrative example, we plot against ro for [ c t i , c t 2 ] =  [Im, 5m] in
figure (8.2) . O utside of a small region around rg =  0, as ro increases the slope of the 
graph reduces and eq becomes larger.

Figure (8.3), showing with respect to  ^  and provides a  more
complete description of how array geometry affects estim ate accuracy. Note th a t  the 
region where ^  <  1 is not shown as in this region 3 ^  ( S i )  I obscuring the
remaining detail in the graph. However, it is the region where «  rQ+cT 2

is of particular interest. Here, d  ( <JQ,i 
dro  \G o ,2  / approaches zero leading to  a very large eo-

Go.In the extrem e case, where t \  =  T2 , no range estim ate may be found as will be 
unity for all values of t q .  Similarly, no range estim ate may be found if r i  or T 2  equals 
zero, as will be zero or undefined respectively, for all values of ro-

The analysis in this section has been lim ited to  the three microphone case. How­
ever, the results of our analysis have implications for im plem entations of the Range- 
Finder using any num ber of microphones. To obtain accurate range estim ates, we 
require access to  a minimum of three microphones for which no two are equidistant (or 
approxim ately equidistant) from the sound source. Furtherm ore, we will not achieve



8. Range Estimation 124
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accurate range estimation when ro »  c t i , c t 2 . Under such conditions we may expect 
Q o,i ,2 to exhibit a wide distribution and significant bias. This bias/error will then 
translate into a large error in the range estimate due to ~  ■

We should not, therefore, apply the Range-Finder algorithm in what might be 
considered the classical microphone array scenario - that of closely-spaced micro­
phones and a distant, farfield source. Rather, successful implementation would re­
quire microphones to positioned in such a way that they are unlikely to be equidis­
tant from the source and, ideally, we will have access to at least 3 microphones for 
which ro <C cri <C c t 2 - Similar requirements exist when implementing the SRP and 
Naive range estimators. Prom inspection of (8.11), it is apparent that the magni­
tude of the elements of D (ro)  tend to become equal as ro increases. Therefore, when 
ro S> CTi, ct2, ..., D (ro )  D(?‘o) over a large range of ro. Any error due to
reverberation will, potentially lead to a large error in the range estimate. The Naive 
range estimator is also prone to errors when the two microphones used to determine a 
range estimate are approximately equidistant to the source. In such cases the output 
power of each microphone is approximately equal, causing the denominator of (8.8) to 
approach zero.

8.5  S im u lation s and E xp erim en ts  

8.5 .1  S im ulations

A series of simulations were performed to examine the performance of the Range- 
Finder algorithm and compare it to that of the naive and SRP-based range estimators, 
under varying reverberant conditions. Our simulated environment, figure (8.4), was 
a simple rectangular room of dimensions [5.25m, 6.95m, 2.44m] and uniform surface 
absorption coefficient of 0.3. In this room we simulated three omnidirectional sources 
and six omnidirectional microphones, (see Table 8.1 for coordinates). The sampling 
frequency used was lOkHz.  The source-microphone impulse responses were generated 
using an acoustic modeling software package [117]. A raytracing algorithm was used 
to determine first 20ms of the impulse response after and including the arrival of 
the direct-path component. Statistical, random reverberant tails were used for the 
remaining reflections. Two “source signals” - a maximum-length-sequence (MLS) of 
5.5s in duration and concatenated voice samples of approximately 13s total duration, 
both bandlimited to avoid aliasing - were convolved with each impulse response to 
obtain the simulated “recordings”. The TDEs were calculated geometrically, using 
the source and microphone coordinates and a known speed of sound.

The recordings were split into segments of 8192 samples and windowed using a
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» ' i

Figure 8.4: A diagram of the simulated room and setup. For precise coordinates of 
the microphones and loudspeakers, see Table 1.

(m) mo m i m2 m3 m4 m5 5i 52 53
X 3 3 2 2 4 4 1 2.5 4
y 4 3 3 2 2 1 5.5 5.5 5.5
z 2 1 2 1 2 1 1 1 1

Table 8.1: The coordinates of the microphone and source locations for the simulated 
room. Coordinates are in meters



8. R a n g e  E stim a tio n 127

Hamming window. The segment overlap was 50%. For each segment, the three range 
estimation techniques were then used to estimate the distance between the sources 
and each of the microphones. Negative range estimates and estimates greater than 5m 
were ignored. When applying the Range-Finder algorithm to speech recordings, the 
signals were separated into eight non-overlapping subbands with bandwidth ^ k H z  
and A was determined as described in section (8.3.3). The estimates made using the 
naive range estimator were found using the two microphones closest to the source so 
as to achieve the best possible results.

To investigate the effect of reverberation, the DRR-&t-lm  of the simulated room 
was varied by applying an appropriate scaling to the direct-path components of the 
simulated impulse responses. Range estimates were then obtained as previously de­
scribed.

In figure (8.5), the performance of the Range-Finder algorithm is compared to that 
of the naive and SRP-based range estimators, for Source 2. The mean of the range 
estimates, ±  one standard deviation are shown with respect to the DRR-sX-\m. The 
results shown relate to the estimates of ro only. Estimates of the remaining ranges (ri 
to rs) are omitted because, as is apparent from (8.7), these will exhibit an identical bias 
and distribution to those corresponding to tq. Note that mo is the closest microphone 
to each source. The estimates of tq will, therefore, exhibit the greatest percentage 
error.

The Range-Finder and naive range estimator behave as might be expected and 
return mean estimates that tend towards the correct range as the DRR-&t-\m  in­
creases. In both the voice and MLS cases, the Range-Finder algorithm outperforms 
the naive range estimator for all values of the DRR-at-lm . The behavior of the SRP- 
based range estimator is somewhat more unusual, in that it returns estimates with a 
bias that remains almost constant with increasing D RR-at-lm . At low values of the 
D RR-at-lm , the SRP-based range estimator outperforms the Range-Finder.

Further comparisons of the performance of the Range-Finder and SRP-based range 
estimator are shown in figures (8.6) and (8.7), corresponding to Source 1 and Source 
3 respectively. The results obtained using the naive range estimator are omitted in 
each case. For the MLS recordings, the results returned by the naive range estimator 
were broadly in line with those shown in figure (8.5), while, for the speech recordings, 
the range estimates obtained were greater than 5m and were, therefore, outside the 
cutoff boundary. The omission of the naive estimator results allows us to more closely 
inspect the relative performance of the Range-Finder and SRP-based estimator.

The means of the results obtained using the voice recordings are slightly more 
accurate than those found using the MLS recordings, albeit with a significantly greater 
variance. For low values of the D RR-at-lm , range estimates obtained using the Range-
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Figure 8.5: Range estimates ±  one standard deviation, obtained using the Range- 
Finder, Naive and SRP-based methods, for source 2.

Finder are subject to a negative bias that reduces as the reverberation levels decrease. 
In the previous section we discussed the factors that may explain the presence of a 
bias in the range estimates. While, it is not necessarily the case that any such bias 
should be negative, from inspection of the PDFs in figure (8.1) we see that the density 
below the mean tends to be greater than that above. We may speculate, therefore, 
that any bias present would be negative, although the precise nature of such a bias is 
ultimately determined by the reverberation levels present and the array geometry and 
estimate bounds used. In all but one case (Source 1, voice recordings), the SRP-based 
range estimates exhibit a negative and almost constant bias. The reason for this bias 
in unclear but it is speculated that, as with the Range-Finder, it occurs as a result of 
the specific array geometry and specifications used.

With the exception of the results for Source 1 using the voice recordings, figures 
(8.6) and (8.7) repeat the pattern of figure (8.5), whereby the performance of the 
Range-Finder is initially inferior to but then “overtakes” that of the SRP-based ap­
proach. The results of our simulations suggest that the naive range estimator is the 
worst performing of those tested. The performance of the two remaining estimators 
may be said to be largely comparable with the Range-Finder algorithm and the SRP- 
based estimator tending to be superior at high and low values of the DRR-aX-lm,
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Figure 8.6: Range estimates ±  one standard deviation, obtained using the Range- 
Finder and SRP-based methods, for source 1.

respectively.

8.5 .2  E xperim ents

A series of recordings were made to test the Range-Finder under real conditions. The 
recording were made in an office, which was chosen for being a highly reverberant envi­
ronment tha t would best test the performance of the range estimation algorithms. Six 
microphones were positioned at distances of between 0.8m and 3m from a loudspeaker, 
at intervals of roughly 0.5m. The loudspeaker and microphones were arranged so as 
to be approximately colinear, so as to avoid errors due to the directionality of the 
source. Voice and MLS signals were produced by the loudspeaker. The microphone 
outputs were recorded before being bandlimited and downsampled to a sampling rate 
of \QkHz.  These recordings were then split into segments of 8192 samples and win­
dowed using a Hamming window. The segment overlap was 50%. The TDEs were 
found using a PHAT-GCC [62] and range estimates were obtained for each segment. 
This procedure was repeated for each of three setups in which the loudspeaker and 
microphones were arranged colinearly along the length and each diagonal of the office 
respectively.
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Figure 8.7: Range estimates ±  one standard deviation, obtained using the Range- 
Finder and SRP-based methods, for source 3.

The results, for the MLS and voice recordings, are shown in figures (8.8) and 
(8.9) respectively. For the MLS recordings, the Range-Finder and SRP-based range 
estimator demonstrate comparable performance and both are clearly superior to the 
Naive range estimator. For the voice recordings, the Range-Finder is provides the 
best range estimates while, once again, the Naive range estimator yields the poorest 
results. Also, we observe no noticeable trend with respect to the bias in the mean of 
the estimates of the Range-Finder and the SRP-based estimator.

8.6 Discussion

We have proposed a novel method for estimating source-microphone ranges - the 
“Range-Finder” - that is robust against the effects of reverberation and which requires 
no information, regarding microphone locations, in order to return a range estimate. 
We have discussed the factors affecting the distribution and accuracy of the range 
estimates obtained by our method. We have presented the results of experiments, 
using real and simulated data, which demonstrate the efficacy of the Range-Finder 
algorithm and compare its performance with tha t of “naive” and SRP-based based 
range estimators.
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Figure 8.8: Range estimates ±  one standard deviation, obtained using the Range- 
Finder, Naive and SRP-based methods, using real recordings of a maximum-length 
sequence.
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Figure 8.9: Range estimates ±  one standard deviation, obtained using the Range- 
Finder, Naive and SRP-based methods, using real recordings of concatenated speech 
samples.



8. R an ge  E stim a tio n 133

Of the three range estim ators examined, the naive estim ator consistently yielded 
th e  poorest results. The performances of the Range-Finder algorithm  and SRP-based 
estim ator were largely com parable and neither m ethod was observed to  be consistently 
superior to  the  other. E ither of these approaches would, therefore, be suitable for range 
estim ation using m icrophone arrays of unknown geometry.

While none of the range estim ation m ethods tested require knowledge of the  mi­
crophone locations, our analysis in section 8.4 revealed th a t the accuracy of any range 
estim ates so obtained is, nonetheless, effected by the relative positioning of the  micro­
phones and the sound source. In particular, it was found th a t we can expect the range 
estim ates to  be inaccurate if t q  3> c t \ , c t 2 , R ather, successful im plem enta­
tion of the Range-Finder requires th a t the microphones be positioned such th a t there 
is a  sufficient “spread” in the distances from the source to  each microphone. This 
then  precludes the application of the Range-Finder m ethod to  the  classical scenario 
of closely spaced microphones and a farfield source. However, when the source is in 
the  near-field or interior of an array of d istributed microphones, it is also likely th a t 
we will have access to  a t least three microphones for which ro <C c t i  <C c t 2 - We may, 
therefore, expect accurate range estim ates in the scenarios under investigation in this 
thesis.

It has been previously suggested th a t range estim ation m ethods might be com­
pared to TDE^based source localization techniques when the array geometry is known. 
However, the relative positions of the microphones and sound source have a signifi­
cant bearing upon the accuracy or otherwise of both range-estim ation techniques and 
TD E-based source localization algorithm s. Consider, for example, a  scenario in which 
the  microphones and source are colinear. In such cases, the relative intersensor tim e 
delays are identical for all values of ro (assuming th a t the source is not in the interior 
of the array). As a result, TD E-based source localization algorithm s could not re tu rn  
a unique estim ate of rg. W here, the  source and microphones are nearly colinear, we 
can expect TD E-based m ethods to  exhibit large estim ation errors due to  errors in the 
TD Es. Conversely, the range-estim ation techniques will fail in scenarios in which the 
microphones are all equidistant from the source. It is apparent, therefore, th a t  any 
experim ental comparison such as th a t suggested would yield results th a t are specific to 
the  array geometry and source locations used and could not, therefore, be considered 
valid in general.

So far, we have assumed an om nidirectional source. In doing so, we have ignored 
a  very pressing practical problem. In reality, sources of interest are likely to  be direc­
tional and the received sound intensity will depend not only upon the m icrophone’s 
d istance from the source but also its relative azim uth and elevation. If the azim uth- 
elevation-dependant gain were known for each microphone it could easily be included in
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our formulation of the Range-Finder. However, we are unlikely to have such informa­
tion, or, indeed, to know the orientation of the source relative to the microphones. A 
further complicating factor is tha t source-directionality is frequency-dependant, with 
sources typically becoming increasingly directional with frequency.

We should, however, be careful not to overstate the difficulties tha t directionahty 
presents. Some studies would suggest that directivity would not be a significant factor 
at frequencies below 4kHz  and within an azimuth of ±30° relative to the direction 
in which a talker is facing [122]. If we could assume that the microphones were 
within some angular boundaries relative to the source then we may apply the Range- 
Finder with confidence. Yet, in the absence of comprehensive data regarding azimuth- 
elevation-dependant gain for the source of interest, it is hard to see how we might 
specify and justify the required angular boundaries. We therefore require such data 
and are limited in application when it is not available.

We note that not all microphones need be within the specified boundaries - only 
a minimum of 3 need be -  and the remaining ranges may be found from the TDEs. 
Future work will focus on determining the directionahty of typical sources and on 
methods for automatically determining which, if any, of the microphones we should 
use in the presence of a directional source.

While the Range-Finder may not be reliably employed in all situations, it re­
mains effective in precisely those situations where most source-localisation strategies 
fail. Consider, once again, the case of colinear or nearly colinear microphones and 
sound source. While TDE-based source-localization techniques fail, the Range-Finder 
remains effective. Furthermore, source directionality is no-longer a problem. This 
suggests a role for the Range-Finder as an auxiliary source localization algorithm.



Chapter 9

Conclusion

In this final chapter we summarize our main findings and contributions, present sug­
gestions for future work and conclude the thesis.

9.1 Sum m ary

In the introduction to this thesis we outlined the potential advantages represented by 
speech capture using arrays of spatially distributed, remote microphones. In partic­
ular, we chose to focus upon the scenario of classroom-based videoconferencing and 
discussed the associated benefits and technical challenges. The remainder of the thesis 
was then outlined.

In chapter 2, we discussed the characteristics and phenomena associated with sound 
propagation in enclosed “room” environments. We introduced the concept of the 
source-room-microphone system as being linear and time-invariant and hence wholly 
characterized by an impulse/frequency response. Following from an investigation of 
such impulse responses it was found that the reverberant component of the received 
signal energy at any microphone could be modelled as a random variable distributed 
about a range-independent mean. This important result would provide part of the 
basis for the derivation of the novel range estimation algorithm proposed in chapter 8 
and led us to propose a new metric for quantifying the degree of reverberation present 
in a room -  the DRR-at-lm . A review of the literature confirmed tha t noise and 
reverberation degrade both the quality and intelligibility of recorded speech -  thus 
verifying the need for techniques to mitigate against this degradation.

In chapter 3, we outlined the theoretical underpinnings of array processing. We 
addressed the issues of steering, spatial aliasing and wavenumber smoothing. We 
focused, in particular, upon filter-and-sum processing and discussed the impact of 
sensor characteristics and array geometry upon the wavenumber-frequency response

135
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of such systems. Finally we defined the notation used throughout the remainder of 
the thesis and described the anechoic and reverberant signal models typically used 
throughout the literature.

The state-of-the-art for multi-microphone speech enhancement was reviewed in 
chapter 4, while previously-published time-delay estimation and source localization 
techniques were reviewed in chapter 5. Throughout these, the relationships between 
the various techniques were explored and highlighted. In chapter 6, we discussed 
practical implementations of the methods reviewed in the previous two chapters and 
showed how these were based, explicitly or implicitly, upon one or both of two simpli­
fying assumptions/requirements -  those of far-field sources and known array geometry. 
We went on to discuss how these assumptions/requirements -  while simplifying to a 
certain degree -  could, in fact, represent a significant disadvantage in some scenar­
ios. An alternative approach, which treated the array geometry as unknown and the 
source location as being potentially in the near-field, was proposed. The technical 
challenges posed by such an approach provided the motivation for the two novel al­
gorithms proposed in this thesis -  leaky-LMS-based steering and the “Range-Finder” 
technique.

In chapter 7 we derived and tested a leaky-LMS-based method for steering arrays 
of unknown geometry. As discussed in (section 5.2.3), LMS time-delay estimation has 
been previously proposed in various forms and by several authors. These methods 
would yield inter-sensor time-delay estimates which could be used to steer an array. 
However, in contrast with these, our approach requires no intermediate estimation 
of time-delays. Furthermore, we verify the efficacy of our method under reverberant 
conditions. To our knowledge, the performance of LMS-based time delay estimation 
techniques in reverberant environments has not been previously investigated. We show 
our approach to achieve correct steering in simulated and reverberant environments. In 
addition, we identified those conditions under which our method is less computationally 
complex than steering using the well-known PHAT-GCC approach.

In chapter 8, we derived and demonstrated a novel method for source-microphone 
range estimation in reverberant environments for arrays of unknown geometry. Our 
approach -  the “Range-Finder” algorithm - was compared with a well-known but naive 
range estimator as well as a range estimation technique based upon a modest variation 
of the classical steered-response-power (SRP) method for source localization. We ana­
lyzed and discussed the impact of the relative locations of the microphones and source 
on the accuracy of our approach and tested it under real and simulated conditions. The 
Range-Finder was found to significantly outperform the naive range estimator under 
all tested conditions while offering comparable (if not slightly improved) performance 
to tha t achieved by the SRP-based range estimation method.



9. C on clu sion 137

9.2 Future work

9.2.1 Leaky-LM S-Based Steering

Future work should investigate the impact of the update parameters with respect to the 
speed of convergence of the filters and the steering accuracy achieved by the converged 
weightvector. The object of any such investigation should be to determine a range of 
values for a  and n that are appropriate for given reverberation levels and/or received 
signal energy etc.

In this thesis, we have applied leaky-LMS-based steering to non-adaptive beam- 
formers. Future work should investigate the application of such steering to adaptive 
beamformers. In particular, it would be desirable to determine whether or not the 
precise steering achieved by the leaky-LMS method is capable of reducing the degree 
of target-signal-cancellation, due to missteering, that is observed in implementations 
of generalized sidelobe cancellers.

We have analyzed the performance of the proposed method for steering under 
reverberant but noise free conditions. Future work should investigate the performance 
of this method using a speech-noise discriminator in the presence of temporally sparse 
noise as well as that achieved using spectral subtraction as proposed in [35], [36] and 
[37] for stationary noise.

9.2.2 Range Estim ation.

As previously discussed, practical implementation of the Range-Finder and other range 
estimation approaches will require greater understanding of source-directionality. Fu­
ture work should, therefore, investigate source-directionality with particular attention 
paid to the case where the sound source is a human talker. Investigations of head source 
directionality are available in the literature [122],[123]. These, however, used dummy 
(mannequin) heads and investigate source-gain variations with respect to changes in 
azimuth only. Further studies, using real people or verifiably accurate models, are re­
quired. These should investigate head directionality with respect to both azimuth and 
elevation and should be large enough to provide information regarding the variation 
of head directionality within the population.

Additional future work can then investigate methods by which directionality- 
information may be incorporated to obtain improves range estimates. We note that 
source directionality information could be exploited to obtain accurate estimates of 
Hdp, which could then be used in the implementation of the speech enhancement and 
source localization methods reviewed in chapters 4 and 5 respectively. Such possibili­
ties should also be explored.
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Further comparative investigation of the Range-Finder and SRP-based range esti­
mation should be undertaken to determine the conditions (if any exist) under which 
one method might be expected to consistently outperform the other. This would pro­
vide a basis for discriminating between the scenarios in which either method should 
be preferred to the other.

9.3 C onclusion

More than two decades have passed since the publication of the landmark array- 
processing papers by Griffiths and Jim, [21], and Knapp and Carter, [62]. In tha t time 
and despite considerable research efforts, microphone array processing techniques have 
failed to evolve to towards any significant commercial application. This failure may be 
attributed, at least in part, to a predominant focus in the literature upon applications 
featuring fixed, far-field arrays of known geometry.

Whereas the often-stated goal of microphone array processing is to provide unob­
trusive sound capture and location information for unencumbered talkers, fixed arrays 
are cumbersome and lack the flexibility and portability that would allow them to 
achieve these aims in practice. In addition, placing microphones far from target sound 
sources is counter-productive as both the quality and intelligibility of speech is known 
to degrade with increasing source-microphone distance/range.

Applications using easily-deployed, ad-hoc arrays promise useful adaptability. De­
spite this, such applications have received little attention in the literature. In this 
thesis, we have proposed and demonstrated methods for steering and range estimation 
which may be implemented using arrays of unknown geometry in reverberant environ­
ments. It is hoped that, in the future, the development of these and similar methods 
will lead to practical and useful technologies.



Appendix A

The M ultichannel W iener Filter

We seek to optimally approximate some reference signal, K (w), by applying a weightvec- 
tor, W (cj), to an observation vector Y(a;). The approximation error, e{u)  is given
by

e M  -  K{u)  -  W "(u;)Y (cj) (A.l)

Multiplying each side by its conjugate and applying the expectation operator,

E{\£{ lo) \ '^}  = E{\K{u)\ ‘̂ } - W ^  { l j ) R y y { u j ) W { u ) - E { W ^ ^  {u)Y{u)K* {u)+K{u)Y^ { l o ) W { l j ) }
(A.2)

£J{|e(u;)|^} is a real-valued and analytic function with respect to W(cj) and 
This being the case, it is shown in [16] tha t we may determine the stationary points 
of £{|e(u;)p} by treating W(cj) and (cj) as independent variables, differentiating 
with respect to W (tj) or W ^(w ) and setting the resulting derivative equal to zero. 
Therefore, differentiating with respect to £^{|e(u;)|^} is minimized if

R y y (w ) W ( w ) -  £{Y(a;)/^*(a;)} =  0 (A.3)

Therefore, it is apparent that the optimal weightvector (in the sense tha t it minimizes 
the expected squared difference between the filter output and the reference signal) is 
given by

= Ry\r{u)E{Y{u)K*{u)}  (A.4)

In the special case where the reference signal is the noise-free output of some 
microphone in the array (let us arbitrarily assign the reference microphone as being 
mo) we get

Woptiuj) =  R yV (‘̂ )^{Y(w)Xo*(o;)} (A.5)

Assuming tha t the target signal and noise are uncorrelated with each other, we may 
write

W o p f ( u ; )  =  ( R x x ( t ^ )  +  R-n n (w ) )   ̂ R x x (‘â )vq  ( A . 6)



where vq =  [1,0,
This solution may be decomposed as follows. Let us assume th a t RNN(^)i , i  = 

= ■P/v(‘̂ )Vi, j ,  then we may define the signal coherence m atrix , F n n  (w)-

Tnn =  -P/vH‘̂ )R-nn i>̂)
Prom this (and om itting the frequency index, w, for clarity)

Wopt = ( |5 |" hh "  + P„rNN)~Hl-5pHH"vo) 
By applying the m atrix  inversion lemma we obtain the following

( |5 |" H H "  +  P„rN N )“ ' =  - ^ p - i  
^ N N

NN"- ' |S|^

Inserting this result into our previous expression for Wopt yields

W opt =
i5 r p —1 tr trW p—1

p - 1  _  i  n N “ "  ^ N N  
N N  1 t J  I Pn

w
H H " vo

and following some simple algebraic m anipulation we obtain

|5 r H " H  +  P;v
Wpi

Wp2

(A.7)

(A.8)

(A.9)

(A.IO)

(A. l l )



A ppendix B

Constrained Optim ization

T he following constrained optim ization problem can be solved using the m ethod of 
Lagrange M ultipliers

Wop* =  a rg m in jW ^ R Y Y W }  subject to  W ^ C  — c (B .l)
w

T he Lagrangian of this expression is given by

W ^^R y y W + A (W ^ C  -  c) (B.2)

where A is the Lagrange multiplier. Finding the gradient of the Langrangian with 
respect to  and setting the result equal to zero yields

2 R y y W + A C  =  0 (B.3)

from which we get

W o p t=  -R y V C A /2  (B.4)

This result m ust satisfy our constraint. Replacing W ^ C  =  c with the equivalent 
C ^ W  =  we obtain

- C " R yV C A /2 =  c "  (B.5)

from which we get

- 2 c ^
A—   j—  (B.6)

C^RyVC
Reinserting th is result into (B.4) yields the  final solution

Wopt = R yVC(C"R yVC)-^c" (B.7)
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