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Summary

Two topics in unsupervised learning are reviewed and developed; namely, m odel-based 

clustering and association rule mining.

A new family of Gaussian m ixture models, w ith a parsimonious covariance structure, is 

introduced. The m ixtures of factor analysers and m ixtures of principal com ponent analysers 

models are special cases of this new family of models. This family exhibit the feature 

th a t their num ber of covariance param eters grows linearly w ith the dimensionality of the 

data, which leads to  relatively fast com putation time. These models perform excellently, 

compared to popular model-based clustering techniques, when applied to real data.

A new family of Gaussian m ixture models with a Cholesky-decomposed covariance structure  

is also introduced. Four members of this family are developed and applied to  real data. 

This family of models has great potential for further development in future work.

A novel approach, via association rules, is taken to the analysis of college applications 

data. This analysis contributes to  the discussion about the existence of a ‘points race’. A 

new m ethod of quantifying and visualising the interestingness of an association rule is also 

introduced and an argum ent for the inclusion of negations in the association rule mining 

process is given.
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Chapter 1 

Introduction

1.1 U nsupervised  Learning

1.1.1 D efinition

Hastie et al. (2001) give the analogy of “learning w ithout a teacher” when introducing 

unsupervised learning. Formally, they consider a set of n  realisations { x \ , x 2 , ■ ■. ,x„}  of a 

random  p-dimensional vector x  with joint probability d istribution P(x). The objective is 

then to deduce properties of P (x) w ithout knowing the correct answers, th a t is “w ithout 

the help of a supervisor” .

This approach to  statistical learning can also be distinguished by whether or not the out­

come, or target, variable is present in the learning process. A model learns in a supervised 

fashion when the outcome variable is present during the learning process, while in the un­

supervised learning context, the outcome variable is either missing, non-existent or there is 

no obvious outcome variable.

This work focuses on unsupervised learning for two types of d a ta  — interval da ta  and binary 

data. The analysis of these different d a ta  types necessitates two very different approaches; 

model-based clustering techniques are applied to  interval d a ta  and a da ta  mining technique 

is used for the analysis of binary data.
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1.1.2 M od el-B ased  C lustering

Clustering based on mixture models has appeared in the literature with increased frequency 

in recent years. The approach followed herein involves a family of Gaussian mixture models 

with parsimonious covariance structure. The clustering of the data, according to this family 

of models, is given by the values assigned to the group membership labels through the 

learning process. Well-established mixture modelling techniques are used for motivation 

and the mathematical foundation of this family of models is established. These models 

are then applied to real data and perform favorably when compared to well-established 

techniques. A family of Gaussian mixture models tha t can be applied to longitudinal data 

is also introduced.

1.1.3 A ssocia tion  R ule  M ining

Association rule mining is developed as an effective method of analysing binary data. A 

novel application of association rules to a ‘clustering’ problem is demonstrated and a method 

of standardising the lift of an association rule is introduced tha t leads to a new measure of 

interestingness. Additionally, the number of potentially interesting association rules that 

can be mined from a binary dataset is quantified and an argument is put forward for the 

inclusion of negations in association rule analysis.

1.2 T hesis Structure  

1.2.1 C hapter 2

Ideas around model-based clustering and Gaussian mixture models are introduced and the 

popular literature is reviewed. The expectation-maximisation algorithm is discussed, as are 

three methods of model evaluation; the Bayesian information criterion, the Rand index and 

the adjusted Rand index.
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1.2.2 Chapter 3

Parsimonious Gaussian m ixture models are developed using a latent Gaussian model which 

is closely related to  the factor analysis model. These models provide a unified modelling 

framework which includes the m ixtures of factor of analysers and m ixtures of probabilistic 

principal component analysers models as special cases. In particular, a class of eight par­

simonious Gaussian m ixture models, which are based on the m ixtures of factor analysers 

model, are introduced.

A m ethod for obtaining the maximum likelihood estim ates for the param eters in these 

models, via an AECM  algorithm, is dem onstrated. This family of models includes five 

parsimonious models th a t have not previously been developed. All members of this family 

have the a ttractive property th a t their num ber of covariance param eters is linear in the 

dimensionality of the data. These models are applied to  the analysis of chemical and 

physical properties of Italian wines and the chemical properties of coffee; the models are 

shown to give superior clustering results when com pared to well-established techniques.

1.2.3 Chapter 4

C hapter 4 builds on the ideas in C hapter 3 with the covariance structure  of the m ixture 

models being further generalised. This results in four ex tra  models. These models also have 

a num ber of covariance param eters th a t is linear in the dimensionality of the data. None of 

these four models have previously appeared in the literature and combined with the eight 

models from C hapter 3, they give a family of twelve parsimonious Gaussian m ixture models. 

These models are applied to  crabs da ta  where they give excellent results when compared to 

well-established techniques.

1.2.4 Chapter 5

C hapter 5 presents a different slant on the  ideas of C hapter 3 and C hapter 4 w ith the co- 

variance structures of the models being constructed via a modified Cholesky decomposition. 

This leads to  a family of four m ixture models, two of which have not previously appeared 

in the  literature, th a t can be used to  cluster longitudinal data. This family of m ixture
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models is shown to perform well when applied to real data. Further developments of this 

covariance structure, tha t could potentially increase the number of models in this family, 

are also suggested.

1.2.5 C hapter 6

This chapter marks the change in emphasis from interval data to binary data and thus the 

switch from model-based clustering to association rule mining. In Chapter 6 association 

rules are introduced. The term ‘association rule’ is defined, along with related functions, 

and the popular literature is summarised. Various methods of generating, pruning and 

ranking rules are introduced and reviewed.

1.2.6 C hapter 7

Chapter 7 introduces the novel idea of using association rules to reveal grouping in data. 

Central Applications Office college application data is analysed using association rule mining 

to investigate relationships between course choices across applicants. The role of gender as 

a factor in course selection is examined as well as a larger question around the functionality 

of the application system — what attracts students to a course; is it a topic of interest or 

is it the perceived status of the course associated with high entry points?

The expected gender imbalances in areas like primary teaching and engineering appear, 

along with some others. Association rules generated suggest tha t students select courses 

based primarily on topic but sometimes with geographical location in mind. No evidence is 

found to suggest that students are selecting courses based on perceived points status.

1 .2 .7  C hapter 8

The range of values tha t the lift of an association rule may take is used to standardise lift so 

tha t it is more effective as a measure of interestingness. This standardisation is extended to 

account for minimum support and confidence thresholds. A method of visualising standard­

ised lift, through the relationship between lift and its upper and lower bounds, is proposed. 

The application of standardised lift as a measure of interestingness is demonstrated on the
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college application data that was analysed in Chapter 7 and on German social data. In the 

latter case, negations are introduced into the mining paradigm and an argument for their 

inclusion is put forward. This argument includes a quantification of the number of extra 

rules that arise when negations are considered.

1.2.8 Chapter 9

The ideas and methods demonstrated in this work are summarised in Chapter 9. Suggestions 

for further work are given, both based upon and arising from this work.

1.3 The Im pact of th is Work

The impact of this work on the body of literature is summarised here based on the most 

significant original ideas contained herein. The principal novel features of this work are:

• A new family of Gaussian mixture models, with a parsimonious covariance structure, 

is introduced. The covariance structure is similar to that of the mixtures of factor 

analysers model, which is in fact a member of this family. This new family of models 

exhibit the feature that their number of covariance parameters grows linearly with the 

dimensionality of the data, which leads to relatively fast computation time. These 

models perform excellently, compared to popular model-based clustering techniques, 

when applied to real data.

• A new family of Gaussian mixture models with a Cholesky-decomposed covariance 

structure is introduced. Four members of this family are developed and applied to 

real data. This family of models has great potential for further development in future 

work.

• A new approach is taken to the analysis of college applications data tha t contributes 

to the discussion about the existence of a ‘points race’.

• A new method of quantifying and visualising the interestingness of an association rule 

is introduced and an argument for the inclusion of negations in the association rule 

paradigm is put forward.
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Chapter 2

M odel-Based Clustering

2.1 Background

Chapters 3, 4 and 5 of th is work focus on famihes of m ixture models. Each of these families 

is applied to  interval d a ta  as a m odel-based clustering technique.

2.2 M ixture M odels 

2.2.1 F inite M ixture M odels

Model-based clustering techniques can be traced at least as far back as Wolfe (1963). In 

more recent years m odel-based clustering has appeared in the statistics literature with 

increased frequency (Fraley &: Raftery, 1998; McLachlan et ai ,  2003; Raftery h  Dean, 

2006). Typically the  d a ta  are clustered using some assumed m ixture modelling structure 

and the param eters associated with these models are usually estim ated using an expectation- 

m aximisation (EM) algorithm .

Finite m ixture models assume th a t d a ta  are collected from a finite collection of sub­

populations and th a t the  d a ta  w ithin each sub-population can be modelled using some 

standard  sta tistical model. Therefore, such m ixture models can be especially useful when 

modelling d a ta  th a t may have been collected from m ultiple sources. Alixture models are the 

basis of most m odern m odel-based clustering algorithms; partly  because m ethods based on



m ixtures offer the advantage of allowing for uncertainties to  be quantified using probabili­

ties. Extensive reviews of finite m ixture models are contained in T itte ring ton  et al. (1985), 

McLachlan & Basford (1988) and M cLachlan & Peel (2000a).

2.2.2 Gaussian M ixture Models

The Gaussian m ixture model has received particular attention, both  in the three afore­

m entioned texts and in the wider body of statistical literature. A G aussian model is assumed 

for each sub-population, or group. The model density is of the form

G

/ ( ^ )  =  (2 -1 )
5=1

where

0(x I = - ^ = y = = e x p | - ^ ( x - A i g ) ' S - i ( x - / X g ) |

is the density of a m ultivariate Gaussian with mean fig and covariance Sg, and Hg is the 

probability of m embership of group g. A review of Gaussian m ixture models with particular 

emphasis on applications to  cluster analysis, discrim inant analysis and density estim ation 

is given by Fraley & Raftery (20026).

2.3 The E xpectation-M axim isation  A lgorithm

The EM algorithm  is an iterative m ethod for finding the m aximum  of the expected value 

of the com plete-data log-likelihood. Before introducing the EM algorithm , a larger class of 

algorithm s to  which the  EM algorithm  belongs is introduced.

2.3.1 M M  Algorithms

MM algorithm s are a blueprint for a broad, ever-expanding, class of algorithm s. A review 

of MM algorithm s is given by H unter & Lange (2004) and the rem ainder of this section 

essentially presents a sum m ary of their work.

The ‘M M ’ stands for ‘m inorise-maxim ise’ or ‘majorise-m inim ise’, depending on w hether the 

purpose of the algorithm  is to  minimise or maximise the function of interest. Application of
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the  MM principle can be seen in the literature a t least as far back as O rtega &: Rheinboldt 

(1970) but the first use of the term  MM came in H unter &: Lange (2000).

Let be a fixed value of a param eter ip and let g{-) and /(• )  be real-valued functions. 

Then g {ip \ is said to  majorize f { ip)  a t the point if

g{ip I >  f { ip)  for all <̂ , and

Furtherm ore, g {ip \ is said to minorize f { ip)  at if —g {ip \ majorizes —f { p )

at <p^^\

Further details, including the casting of the EM algorithm  as a special case, are given by 

H unter & Lange (2004). In the case of the EM algorithm , the minorising function is the 

expected value of the com plete-data log-likelihood.

2.3 .2  T he EM  A lgorithm

The EM algorithm  (Dem pster et al., 1977) provides an iterative m ethod of finding maximum 

likelihood estim ates (MLEs) where the da ta  is incomplete or some of the da ta  is missing. 

Im portantly, the d a ta  does not actually need to  be incomplete but framing problems as 

incomplete d a ta  problem s often leads to  efficient solutions via  the EM algorithm.

In the E-step, the expected value of the log-likelihood is com puted based on the current 

estim ates of the model param eters and the ‘com plete-data’ vector — th a t is, the  vector of 

observed d a ta  plus missing data. This function, the expected value of the com plete-data 

log-likelihood, is a minorising function — a fact which follows from Jensen’s inequality 

(Jensen, 1906). In the M -step, this expected value is maximised with respect to  the model 

param eters.

These two steps are repeated iteratively until convergence is reached. There are a variety 

of ways to  m easure convergence; one common approach is to  take convergence as the point 

at which the difference in successive estim ates of the log-likelihood is sufliciently small. A 

comprehensive overview of EM algorithm s is given by M cLachlan & Krishnan (1997) and 

alternative convergence criteria are given by Lindsay (1995) and McLachlan &: Krishnan 

(1997).
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2,4 M CLUST: Software for M odel-B ased  C luster A nalysis

The general Gaussian m ixture model, given in Equation 2.1, has a to ta l of

{G — 1) +  Gp +  Gp{p +  l ) /2

param eters, of which Gp{p + l ) /2  are from the group covariance m atrices Sg. A simpler

form of the m ixture assumes th a t the covariances are constrained to  be equal across groups, 

which reduces to  a to ta l of (G — 1) +  Gp + p{p + l ) /2  param eters, of which p{p + l ) /2  are 

from the common group covariance m atrix  Eg — S .

Banfield &: R aftery (1993), Celeux & Govaert (1995) and Fraley & R aftery (1998, 20026)

exploit an eigenvalue decomposition of the group covariance m atrices to  give a wide range 

of covariance structures th a t use between one and Gp{p+  l ) /2  param eters. The eigenvalue 

decomposition of the covariance m atrix  is of the form

Eg =  AgDgAgO;, (2.2)

where Xg is a constant, Dg is a  m atrix  consisting of the eigenvectors of Eg and Ag is a 

diagonal m atrix  w ith entries proportional to the eigenvalues of Eg.

The m odel-based clustering techniques th a t have been developed using the covariance struc­

tu re  given in Equation 2.2 allow for a variety of constraints. There is the option to  constrain 

the components of the eigenvalue decomposition of Eg across groups of the m ixture model. 

Furtherm ore, the m atrices Dg or Dg and Ag may be set equal to  I, or not.

Fraley & R aftery (2002a, 2003) describe the m clu s t software, which is available as a library 

in the  software package R (R Development Core Team, 2006). The m clu s t software allows 

efficient model-based clustering and incorporates the work of Fraley & Raftery (1998, 1999, 

20026). Table 2.1, which is taken from Dean et al. (2006), gives the  covariance decomposi­

tions th a t are available using the  m clu s t software. Figure 2.1, which is similar to  a figure 

in D ean et al. (2006), provides an illustration of these covariance decompositions.

Fraley & Raftery (20026) dem onstrate th a t the parsimonious m ixture models derived in this 

m odel-based clustering framework give excellent results in a  variety of applications. Dean 

et al. (2006) illustrate the application of these models to  give classification rules in food 

authenticity  problems.
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Table 2.1: A variety of covariance structures, Sg, available using m clust, along with the 
number of covariance parameters in each case.

ID Volume Shape Orientation Covariance
Decomp.

Number of 
Covariance Parameters

E li Equal Spherical — AI 1
VII Variable Spherical — Afcl G
EEI Equal Equal Axis-aligned AA P
VEI Variable Equal Axis-aligned A,A p + G - 1
EVI Equal Variable Axis-aligned AA, pG — G -f-1
VVI Variable Variable Axis-aligned Ag Ag pG
EEE Equal Equal Equal ADAD' p{p + l ) !2
EEV Equal Equal Variable ADfcADjt G p { p + l ) / 2 - { G - \ ) p
VEV Variable Equal Variable AfcDfcAD'^ G p ( p + l ) / 2 - ( G - l ) ( p - l )
vvv Variable Variable Variable AfcDfcAfcD^ Gp { p +l ) / 2

c > A

O

o
o  ° \J 4)<3^

Figure 2.1: Cluster shapes that correspond to the covariance structures given in Table 2.1.

Notably, the number of covariance parameters given in Table 2.1 for the m clust models are 

either constant, linear or quadratic in p. Therefore, not all of these models are well suited 

to modelling high dimensional data. In particular, fitting a mixture model with any of 

the more general covariance structures available in m clust, that is the last four covariance 

structures given in Table 2.1, to high-dimensional data will be extremely computationally 

intensive.
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2.5 Variable Selection

Raftery & Dean (2006) propose a variable selection method based on the use of Bayes 

factors. Their approach is that which would be taken to a model selection problem. Two 

models, Mi and M2 say, for data X  are compared using the using Bayes factors. The Bayes 

factor, Bi2 , for model Mi versus model M2 , is defined as

p{X  I  M l )  
p { X \ M 2Y

where

p{X  I  Mfc) =  I p { X  i  dk,Mk)p{ek  I  Mk)dOk,

Ok is the vector of parameters for model M  ̂ and p{9k \ M^) is the prior distribution of 

(Kass &: Raftery, 1995). Variables are then selected based on which model is the ‘best’. 

Variable selection can be carried out using the c lu s tv a r se l package (Dean Sz Raftery, 2006) 

in R. The user only needs to preset the maximum number of groups and c lu s tv a r se l auto­

matically selects the variables. However, due to its nature, variable selection involves many 

runs of mclust and once the variables are selected the user needs to run mclust on the 

chosen variables to get the classifications. Therefore, this method has even greater limita­

tions, in terms of computation time, than mclust, and thus will be particularly apparent 

in applications to high-dimensional data.

2.6 M ixture M odel Selection  8̂  Perform ance  

2.6.1 The Bayesian Inform ation Criterion

The Bayesian information criterion (BIC) (Schwartz, 1978) is often used to select an ap­

propriate mixture model; in the case of mclust, for example. For a model with parameters 

$ , the BIC is given by

BIC =  2/(x, i )  — m logn,

where is the maximised log-likelihood, $  is the MLE of m is the number of free

parameters in the model and n is the number of observations. The use of the BIC can
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be m otivated through an asym ptotic approxim ation of the log posterior probability of the 

models (Kass & Raftery, 1995).

The usual regularity conditions for the asym ptotic approxim ation used in the development of 

the BIC are not generally satisfied by m ixture models. However, Leroux (1992) showed th a t 

the BIC, asymptotically, does not underestim ate the true  num ber of m ixture components 

and Keribin (1998, 2000) showed th a t the  BIC gives consistent estim ates of the number 

of com ponents in a m ixture model. Furtherm ore, Fraley k. Raftery (1998, 20026) provide 

practical evidence th a t BIC performs well as a model selection criterion for m ixture models. 

Note th a t there are alternatives to the BIC for m ixture model selection; for example, the 

integrated completed likelihood (Biernacki et a i, 2000) penalises the BIC by subtracting 

the estim ated mean entropy. However, the viability of such alternatives is not discussed 

herein and the BIC alone is used for model selection.

2 .6 .2  T he R and &: A d ju sted  R and Indices

The performance of m ixture models in revealing group structu re  in d a ta  can measured 

using the Rand index (Rand, 1971) and the adjusted R and index (H ubert & Arabie, 1985). 

These indices are com puted on a cross-tabulation of the m aximum  a posteriori (MAP) 

classification of the observations with the true group membership. The rand index can be 

expressed as
num ber of agreements 

num ber of agreements +  number of disagreem ents ’

where the ‘num ber of agreem ents’ is com puted based on pair agreement and the ‘num ber

of disagreem ents’ is based on pair disagreement. Consider an example similar to  th a t

given by Rand (1971), where a variable w ith two groups y — {{a, b), (c, d, e)} is classified by

y = {(a, b, c), {d, e)}. Now, the num ber of agreements is the num ber of pairs th a t are together

in both  y  and y plus the num ber of pairs th a t are separate in bo th  y  and y. Therefore,

there are six agreements; ab, de, ad, ae, bd and be. The denom inator of Equation 2.3 can

be easily com puted as

and so the R and index for this example is 0.6.
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The adjusted  R and index corrects the Rand index for chance by accounting for the  fact th a t 

if classification is performed random ly some cases will be correctly classified by chance. The 

indices each take values in [0,1] with ‘0’ indicating th a t the M AP classification and true  

groups never agree and ‘1’ indicating th a t the they are exactly the same. Large values of 

these indices indicate strong agreement between the true groupings and the classifications 

proposed by the m ixture model.

Note th a t the  possibility of using alternative or additional measures of class agreement, such 

as Cohen’s kappa (Cohen, 1960), was considered bu t the Rand and adjusted R and indices 

were thought to  be sufficient for use in this work.

2.6.3 N ote  on Perform ance A ssessm ent for M odel-Based Clustering

Although the  model-based clustering techniques described herein are unsupervised, their 

perform ance is assessed via application to  real d a ta  and subsequent comparison of the 

resulting classifications to  the true groups. However, in many applications the true  group 

structu re  would not be known, which is reflected in the use of the BIC for model selection 

in the  analyses th a t are carried out in this work.



15

Chapter 3

Parsim onious Gaussian M ixture 

M odels

3.1 Introduction

A new family of finite mixture models is introduced, with a Gaussian model used to model 

each mixture component. These mixture components have a parsimonious factor analysis- 

Uke covariance structure. The factor analysis and probabilistic principal component analysis 

models are used for motivation. Crucially, the members of this new family of mixture models 

each have a number of covariance parameters tha t grows linearly in the dimensionality of 

the data.

3.2 Factor A nalysis 

3.2.1 The M odel

Factor analysis is a data reduction technique that replaces the observed variables with 

unobservable factors tha t explain a satisfactory amount of the variability in the data. This 

technique is only useful if it returns ‘many’ less factors than there are variables. The 

model, which originated in the psychology literature (Spearman, 1904), assumes tha t a p- 

dimensional real-valued data vector x is modelled using a q-dimensional vector of real-valued
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factors u, where q ^  p. The model may be expressed in the form

/ A n  A,, . . .  \x i

X2
+

A2I A22 ^2q

Ul

U2 €2

\  Xp y y y y Api Ap2 • • • p̂q /  \  /  \  /
or

X =  fj, +  A u  +  e, (3.1)

where A is a p x 9  matrix of factor loadings, the factors u ~  A^(0, Ig) and e ~  A' (̂0, 

where =  diag(?/;i, ip2 , . . . ,  ^p). It is a feature of the factor analysis model that A is not 

uniquely defined; if A  is replaced by A* =  A D , where D  is orthonormal, then

A A ' +  'I' =  (A*)(A")' +  ^ ,

which allows the results of factor analyses to  be rotated, altering their interpretation. This 

is a large part of the reason why factor analysis has spent much time as “the black sheep 

of statistical theory” (Lawley k. Maxwell, 1962).

3 .2 .2  T he L ikelihood Function

(3.2)

From Equation 3.1, the the density of an Xj is

/ ( x ,  !  ̂ - e x p | - ^ ( x i  -  ^ ) '( A A '+  ^ ')-* (x , - ^ ) |
s /{2n)P  I A A ' +  ^  \ [ 2 J

and it follows that the log-likelihood of x  =  ( x i , x 2 , . . .  ,x „ )' is given by
n

/(^, A ,^ )  = ^ l o g / ( x j  I 
i=l

=  - ^ lo g 2 7 T  -  ^ lo g |A A ' +  ^ -  /i)
i=l

np
log27T — ^  log |A A ' +  tr {S(AA^ +  ^') ,

where S =  (1 /n ) ~  M)(xi — fi)'- N ote that the data only appears in the model

through S and that since the matrix ^  is diagonal, the p x p  m atrix (A A ' +  ^ )  can be 

inverted using the formula

(A A ' +  4 ')-^  =  -  ^ “ ^A(Ig +  (3.4)

n
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(McLachlan & Peel, 2000a), which leaves only q x  q matrices to be inverted. McLachlan & 

Peel (2000a) also give a convenient formula for finding the determinant of this matrix;

time.

Now, the MLE of is easily obtained by differentiating Equation 3.3 with respect to fx and 

setting the result equal to zero to get /x =  x. In order to obtain the MLEs of A and an 

EM algorithm is used.

3.2 .3  T h e EM  A lgorith m  for th e  Factor A nalysis M odel 

E-step

The vector x  is taken as the observed data and u as the missing data. The complete-data 

consist of (x, u); the observed data and the missing data. Before computing the complete- 

data log-likelihood Id/J-, A , ' ^ )  =  lo g /(x , u), it is necessary to compute lo g /(x j  | u j ;

I AA'  +  ^  1 =  1 I /  I Ip -  A'  (AA'  +   ̂ A (3.5)

The formulae given in equations 3.4 and 3.5 have the potential to greatly reduce computation

- ^ t r { A ' ^ ^  ^ A u ,u '} .

Now,

71

=  l o g / ( x ,  u)  =  ^ l o g / ( X i  i U , ) / (U;)

C -  I  log l^'l -  ^ tr I ^   ̂^ ( x ;  -  /i)(x i -  ^)' I +  ^ ( x j  -  /x)'^  ^Auj
i=l

n ) n

i=l
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where C  is constant with respect to /x, A, and Now, the expected value of Uj, conditional 

on Xj and the current model parameters, is

E[uj|xi, /X, A, =  A'(AA' + (xj -  /x) = /3(xi -  ^),

where /3 =  A'(AA' + '1')“  ̂ =  A'S~^, and the expected value of u,u ' conditional on x̂  and 

the current model parameters is

E[UjU'|Xj,/i, A, «»] =  Iq - /3 A  + /3(x, -  /x)(x; -  /x)'/3'.

To complete the E-step, the expected value of the complete-data log-likelihood, which shall 

be denoted Q(A, ^ ) ,  is computed at =  x.

Q(A, = C -  | l o g | ^ j  -  ^ t r | ^ “ ^ ^ ( x i  -  A ) '|

"  - - i f  "  -  -  1
- l - ^ ( x i  - /i) '^ '“ ^AE[uj|xi,/x, A,4'] -  ;^tr< A ^  E[u ,u' |x, , /i. A, 4'] i

i = \  “  I  i = i  J

= C -  ^  log j^'l -  ^ tr ^ ( X i  -  /i)(Xi -  A ) ' |

-t- tr | ^ ' “ ^ A ^ ^ ( x i  -  A)(xj -  / i ) ' |  -  ^  tr{A '« '“ ^A(Ig -  0A) }

t ( r n
tr  A '^ -^ A

i=l
n

=  C +  ^ lo g l ’I'-^ l -  | t r { ^ “ iS} + n tr{ ^ '- iA ;3 S }  -  |  tr{ A '^ “  ̂A©},

where © =  Ig — 0 A  +  /9S/3 is a symmetric q x q matrix. Although © was introduced as a 

notational convenience it could be used to devise a model diagnostic, since if S  =  S then

©  =  I 9 -

M -step

It is necessary to maximise Q with respect to A and in the M-step of the EM algorithm. 

Differentiating Q with respect to A and utilising results from Graybill (1983), Liitkepohl
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(1996) and Magnus & Neudecker (1999) gives 

Sl(A,*P) =  f x

= n (<p- ' ) ' ( /3S ) ' -^ |^ tr{A 0A '«I . - ' }

=  ^  [ ( 'I '- I ) 'a © ' +  A©]

=  n « ' " i S ^ ' - n ^ ' “ ^ A 0 .

Now, solving the equation 5 i(A , ^ )  =  0 gives A =  S/9 0 “ .̂ Differentiating Q  w ith respect 

to gives,

^  ^ (A')'(A0)'

=  | » - ^ S '  + n A 5 S - | A 0 ' A ' .

Now, solving diag{52(A , 4 ')}  — 0 gives

=  d i a g j ^ S ' -  n A 0 S  +  ^ A 0 ' [ S ^ '0 “ ^ ] ' |

=» ^  =  diag{S ' -  2A ^S  +  =  diag{S -  A ^ S } .

The m atrix  results used in this chapter are listed in Appendix A .I. Note th a t all m atrices 

and vectors herein are real, all objects th a t are differentiated are continuously differentiable 

and th a t all differentials are well defined.

3.2.4 The Probabilistic Principal C om ponent Analysis M odel

The probabilistic principal component analysis (PPCA ) model (Tipping & Bishop, 19996) 

is a special case of the factor analysis model w ith ^  =  iplp.

3.2.5 M ixtures o f Factor Analysers M ixtures of Probabilistic Principal 

Com ponent Analysers

Developing the factor analysis model, G hahram ani k. Hinton (1997) develop a m ixture of 

factor analysers model, which is further developed by McLachlan &: Peel (2000a). The 

density of an observation in group is as in Equation 3.2 w ith =  /x^, A =  A^ and 

=  ^ g .  The probability of m embership of group g is denoted by TTg. M ixtures of factor
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analysers traditionally  differ in whether the term  is constrained to  be equal in different 

groups or not. T ipping & Bishop (1999o) develop the PPC A  model to  get a m ixture of 

probabilistic principal component analysers model, which is a special case of the m ixtures 

of factor analysers model.

3.3 Parsimonious Gaussian M ixture Models 

3.3.1 Covariance Structures

The models m entioned in Section 3.2.5 can be extended to  a wider family of models by 

constraining, or not, Ag =  A, and whether ^ g  is isotropic. The m atrix  is

said to  be isotropic if '^g = tpglp. The option to  apply, or not, these constraints, leads to 

eight parsimonious Gaussian m ixture models (PGM M s). These models, along with their 

respective covariance structures, are given in Table 3.1.

Table 3.1; The covariance structure  and num ber of covariance param eters for each PGMM.
Model Loading

M atrix
Error
Variance

Isotropic 
(j ~  V-’glp)

Number of
Covariance Param eters

CCC Constrained Constrained Constrained 1 1 l ) /2 }  +  l
CCU Constrained Constrained Unconstrained {pq -  q{q - l ) / 2 } + P
cuc Constrained Unconstrained Constrained {pq -  q{q - l) /2 }  +  G
cuu Constrained Unconstrained Unconstrained {pq -  q{q - l) /2 }  +  Gp
ucc Unconstrained Constrained Constrained g {pq -  q{Q - l ) / 2 }  +  l
UCU Unconstrained Constrained Unconstrained G{pq -  q{q - l ) / 2 }  +  P
UUC U nconstrained Unconstrained Constrained G{pq -  q{q - l ) / 2 }  +  G
UUU U nconstrained Unconstrained Unconstrained G{pq -  q{q -  l) /2 }  +  Gp

The last three models given in Table 3.1 have been developed previously. G hahram ani & 

Hinton (1997) assume the equal noise model (UCU) and in the context of the m ixtures of 

PPC A s model. T ipping &: Bishop (1999a) assume unequal, isotropic, noise (UUC). McLach- 

lan Peel (2000o) and M cLachlan et al. (2003) assume unequal noise (UUU), however they 

com m ent th a t assuming equal noise (UCU) can give more stable results.

Notably, if q and G  are fixed then the num ber of covariance param eters of each model grows 

linearly in p. T h a t is, if the num ber of factors and the num ber of groups are fixed then  the 

num ber of covariance param eters grows linearly in the num ber of variables. This is a very
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im portan t and convenient feature of each member of this family of models, since it leads to 

relatively fast com putation tim e in cases with very many variables.

To illustrate how the numbers of covariance param eters given in Table 3.1 were arrived at, 

consider the CCU case. The group covariance stricture  is of the form

E = AA' + ^ ,

and q{q — l ) /2  constraints are required so th a t A is uniquely defined (Lawley & Maxwell, 

1971; M cLachlan & Peel, 2000a). Therefore, recalling th a t  is & p  x p  diagonal matrix, 

it follows th a t the CCU covariance structure  has a to ta l of

p q - q { q -  l ) / 2 + p

free param eters. An analogous argum ent is used in the o ther seven cases.

Note th a t there is a relationship between the PGM M  family of models and the MCLUST 

family of models. Setting q — 0 makes the PGM M  covariance structu re  Sg =  which, 

depending on constraints, can also be Sg =  =  ipglp or Sp =  tplp. Herein, we only

consider the models in Table 3.1 for q > 0.

3.3.2 M odel F itt in g

The PGM M s are fitted using the a lternating  expectation-conditional m axim isation (AECM) 

algorithm  (Meng & van Dyk, 1997). The ECM  algorithm  (Meng & Rubin, 1993) replaces 

the M -step by a series of conditional m axim ization steps. The AECM  algorithm  allows a 

different specification of com plete-data for each conditional m axim ization step. McLachlan 

&: Krishnan (1997) give an extensive review of the EM algorithm  and variants. McLachlan 

& Peel (20006) give extensive details of fitting the AECM  algorithm  in the case where no 

constraints are imposed. An example of an AECM algorithm  is given w ith the coding details 

in A ppendix D.

3.3.3 Likelihoods

Denote by z, the unobserved group labels where Zig =  1 if observation i belongs to  group 

g and Zig =  0 otherwise. At the first stage of the AECM  algorithm , when estim ating 7Tg
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a n d  iJ.g, t h e  g ro u p  m e m b e r s h ip  la b e ls  z  a re  ta k e n  a s  th e  m is s in g  d a t a .  T h e  c o m p le te - d a ta  

l ik e lih o o d  is  g iv e n  b y

n G

C l i n g ,  H g , A g , ^ g )  =  H l l  \ g , A g , g ) ] " ' ^  ,
i = l  g= l

a n d  th e  e x p e c te d  v a lu e  o f  th e  c o m p le te - d a ta  lo g - lik e lih o o d  is

w h e re

Q l (TTg, lo g  7Tg -  ^  log  27T -  ^  ^  log  j A gA '^ +
2  °  ^ 2  

.9=1 9=1

g ^ l

I A g, A g ,  ^ g )

^ g '  =  l I P 'g'l A g ' i  g
(3 .6 )

^ 9  =  E r = i -^*9 ^ 9  =  ( V ^ g )  s r = i  ~  f^-gY- N o w , m a x im is in g  Q i w ith

r e s p e c t  to  H g  a n d  y ie ld s

Mo =
E n

i = l  ^ig'^i
g -  Y -n   ̂ a n d  TTg =  ^ .  

Z ^ i = l  ^*9 n

A t th e  s e c o n d  s ta g e  o f  th e  A E C M  a lg o r i th m , w h e n  e s t im a t in g  X g  a n d  ^ g ,  t h e  g ro u p  

m e m b e r s h ip  la b e ls  z  a n d  th e  l a t e n t  f a c to rs  u a re  ta k e n  a s  th e  m is s in g  d a t a .  I t  fo llow s t h a t  

t h e  c o m p le t e - d a ta  lo g - lik e lih o o d  is  g iv e n  b y

n G

Zig [log  7Tg 4- log  / ( X j |U j ,  f l g , A g ,  ' ^ g )  "|- lOg / ( U j) ]
1=1 g = l

G

9=1

• ^ l O g l ^ ' g i  - ^ t r { ^ g ^ S g }  + ^ Z i g { ^ i -  H g Y ^ g ' ^ A g Ui
i = l

i = l

w h e re  C  is  c o n s ta n t  w i th  r e s p e c t  to  A g a n d  ^ 'g . N ow , t h e  e x p e c te d  v a lu e  o f  th e
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com plete-data log-likelihood, evaluated with /Xg =  fig and is of the form

G

3 = 1

+  ^  2ig(Xi -  A g ) '^ g   ̂A gE[u,|X j, Ag, Ag,
2 = 1

i  t r  I  A g ^ g  ^Ag ^  [u^ u '  | X,', ^g  , Ag , 4^g] |

which becomes;

Q(Ag, =  C  +  ^  
.9=1

2  l o g  t ^ s l  -  y  t r  ^ S g }  +  ^  Z ig( Xi  -  A g ) ' ^ g  ^ A g ^ g ( X i  -  Ag
i=l

-  J  tr  I Ag^'g ^Ag  ̂i igE [u ,u 'jX i,  /ig, Ag, 4»g]
i = l

G-

=  C +  ^ n g  ilogl^'g-^l -  ^trj^'-iSg} +  t r j ^ ' g - ^ A g ^ g S g }  -  i t r { A g ^ ' g - i A g 0 g }

g = l

1 G
=  C + - ^ n g  l o g l ^ ' g ^ l -  t r j ^ ' g ^ S g }  +  2 t r { ^ ' g ^ A g ^ g S g }  -  t r { A g ^ g ^ A g 0 g }

.9=1

where 0 g  =  I ,  — PgAg  +  PgSgfig  is a symmetric q x  q m atrix  and the Zig are computed 

as in Equation 3.6 using the estim ates of fig and 7Tg from the first stage of the algorithm. 

Now, it only rem ains to  maximise Q{A.g, ^ g )  with respect to  Ag and ^ g  respectively to  get 

MLEs of these param eters.

3.3.4 The Models

Results of th is m axim isation follow for all eight PGMA4s. Details are given in Appendix A. 

Let,
G

S =  ^  % Sg and 0  =  I ,  — P X  + /9S/9 .
.9=1

Model CCC

y3 =  A '(A A ' +  A "'" =  S ^ ' 0 - \  ^  tr{ S ' -  A""“^ S } .
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’  G ’  G

.9 = 1  ^ 9 _g=i ŷ g

Model CCU

P = A '(AA ' +  4 ' ) - \  A""” =  S p '@ - \  =  diag{S -  A""";3S}.

M odel CUC

IG  ^

Pg =  A '(A A ' +  ^ g l p ) - \  A— =   ̂ ^

=  i  tr{Sg -  2A^“'^figSg +  A"'^"'0g(A""”)'}.

M odel CUU

In this case the loading matrix must be solved in a row-by-row manner. This slows the 

fitting of this model to a great degree.

,̂ = A '(A A ' +  ^,)-i, A r  =  r, ,

Vs=i .̂9(0 J

4';®“ =  diagjSg -  2A"^'^'figSy +  A"""'©y(A''"")'},

where A" is the ith  row of the matrix A""", 'ipg(i) denotes the itli element along the diagonal 

of 4fg, Fj represents the ith  row of the matrix  ̂ ~  1) 2 , . . .  ,p.

M odel UCC

1
=  A ; ( A , A ;  +  A —  =  S g ^ ' g Q - \  -  E  ^ .9  -  K ' ^ ^ g ^ g } -

^ 9=l

M odel UCU

Pg = A'giAgA'g + 4 f ) - \  A— SgP'g@;\ = E^,diag{Sg -
9 = 1

M odel UUC

0g = a ; ( a , a ;  +  ^Pglp)-\ A -  =  SgP’g & - \  ( 4 ) -  =  ^  tr{ S , -  A - ^ , s , } .  

M odel U U U

Pg  =  A'giAgA'g +  \  A - *  ^  =  di a g { S ,  -  A — P g S g } .
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3.3.5 Convergence Criteria  

A itken’s A cceleration

The A itken’s acceleration procedure, described in M cLachlan &: Krishnan (1997), was used 

to  estim ate the asym ptotic maximum of the log-likelihood. This allowed a decision to  be 

made on whether the  EM algorithm  had converged or not. The A itken acceleration at 

iteration k  is given by
It )  ^

/ ( fc)

where and are the log-likelihood values from iteration k  + 1, k  and A: — 1

respectively. Then the asym ptotic estim ate of the log-likelihood at iteration fc -h 1 is given 

by

Bohning et al. (1994) contend th a t the algorithm  can be considered to have converged when

where e is a ‘sm all’ num ber. Lindsay (1995) give an alternative stopping criterion; th a t the 

algorithm  can be stopped when

(3.7)

The la tter criterion is used herein, with e =  10“ .̂

Lack o f Progress

Some m odel-based clustering algorithms, such as th a t described by Fraley Sz Raftery (1998), 

use the difference in successive log-likelihoods as a convergence criterion. T ha t is, the 

algorithm  is considered to  have converged when

j (̂fe+i) (3.8)

where e is a ‘sm all’ num ber. The condition in Equation 3.8, however, is not a convergence 

criterion bu t ra ther an indication of lack of progress. Figure 3.1 shows a classically shaped 

plot of iteration  num ber versus log-likelihood and it can be argued th a t  in this case the 

criteria in equations 3.7 and 3.8 will give similar results.
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Figure 3.1: A  ‘classic’ p lo t o f ite ra tion  number versus log-like lihood for an A E C M  a lgorithm .

However, figures 3.2 and 3.3 illu s tra te  s itua tions where the difference between a lack of 

progress crite rion  and a genuine convergence crite rion  can become very apparent. In  both  

o f these cases, a lack o f progress c rite rion  m igh t greatly  underestim ate the correct value of 

the log-like lihood.

Note th a t figures 3.1, 3.2 and 3.3 a ll arise from  real analyses. In  each case the data  are the 

log-likelihoods at each ite ra tio n  o f an A E C M  a lgo rithm  for the C U U  model, applied to  the 

w ine data  th a t is in troduced in  Section 3.5.

3.3 .6  Software

Software, called pgmm, was w ritte n  in  the C program m ing language to  execute the A E C M  

a lgorithm ; th a t is, to  find  M LE s for the model parameters and the estimates o f the group 

membership labels. The in it ia l values for the elements o f A g  were random ly generated from  

a un ifo rm  d is tr ib u tio n  on [0,1), while  those for were some function  o f diag {S ^ }. I t  is a 

feature o f pgnun th a t data  are au tom a tica lly  standardised p rio r to  analysis. F u rther details 

o f the coding are given in  A ppend ix  D.

F ind ing  the best m ethod o f in itia lis in g  the Zng was very d ifficu lt. T h rough  tria l-and -e rro r 

i t  was discovered th a t the best m ethod was to  choose random  values fo r Zng € {Oj 1} and
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Figure 3.2: A plot of iteration num ber versus log-likelihood for an AECM algorithm , illus­
tra ting  a single ‘s tep ’.
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Figure 3.3: A plot of iteration num ber versus log-likelihood for an AECM  algorithm , illus­
tra ting  m ultiple ‘steps’.

then to  run the CCC model and take its ou tput as the starting  point for every other model. 

T ha t said, this process was repeated m ultiple times w ith different random  starting  values 

of the Z n g  to  prevent a  local, rather than  global, maximum log-likelihood being attained.
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The AECM  algorithm  has no ‘hard classification’ step; th a t  is, Zng S [0,1] a t each iteration, 

ra ther than  forcing Zng G {0,1}. A consequence of th is feature is th a t a t the end of the 

AECM  algorithm, after convergence has been reached, it is not necessarily the case th a t each 

Zng will take a value in {0,1}. Therefore, pgmm classifies each case based on the maximum 

value of Zng over g  =  1, 2 , . . . ,  G.

The option to hard classify a t each iteration may seem a ttrac tive  and can lead to  faster 

convergence in some cases. However, if a hard classification step is used at each iteration, 

the algorithm  can become more prone to  producing sub-optim al results. An example of 

an EM algorithm  th a t involves a hard classification step is the classification EM algorithm  

(Celeux & Govaert, 1992).

3.3.7 M odel Selection & Performance

The BIC was used to  select an appropriate PGMM . Specifically, the BIC was used to 

choose the ‘best’ model from the members of the PGM M  family (CCC, CCU, . . . ,  UUU), 

the num ber of latent factors q  and the number of m ixture components, or groups, G . In 

addition, the BIC can be used to  choose between the best PGM M  and models arising from 

alternative model-based clustering techniques, such as MCLUST.

The performance of the PGM M s in revealing group structures in d a ta  is m easured herein 

using the R and index and the adjusted Rand index. These indices are also used herein to 

assess the performance of com peting techniques, such as MCLUST.

3.4 Coffee Data  

3.4.1 The D ata

Streuli (1973) reported th irteen  chemical properties of coffee from across 29 countries. These 

coffees were of two types — R obusta and Arabica. Twelve of the th irteen  chemical properties 

th a t were recorded are given in Table 3.2.

The d a ta  were sourced from from w w w .p a rv u s .u n ig e .it . There was a th irteen th  variable. 

Total Chlorogenic Acid, which was not used, both  because it was not precisely the sum of
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Table 3.2: Twelve of the th irteen  chemical properties of coffee given by Streuli (1973).

W ater Bean Weight E x tract Yield
pH Value Free Acid Mineral Content
Fat Caffeine Trigonellin
Chlorogenic Acid Neochlorogenic Acid Isochlorogenic Acid

Chlorogenic Acid, Neochlorogenic Acid and Isochlorogenic Acid and because the information 

it contained was already given by these three variables.

3.4.2 The PG M M  Family of M odels

The PGM M  family of models was fitted to  these d a ta  for G  G {1 , 2 , . . . ,  5} and q G 

{ 1 , 2 , . . . ,  5}. Further, each model was run three tim es from different starting  values of 

the group m em bership labels. The BIC was com puted for all 600 of these models and the 

best member for each {G,q)  is illustrated in Figure 3.4.

1 2 3 4 5

G

Figure 3.4: A ‘heat m ap’ giving the maximum  BIC value for each PGM M  at {G, q) for the 
coffee data.

The best model, in term s of BIC, was a CUU model with G = 2 and g =  4. The BIC for
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this model was -1148.23. Table 3.3 gives the classification for this model, which is an exact 

m atch — two groups directly corresponding to  the two varieties of coffee.

Table 3.3: Classification table for the best PGMM  for the coffee data.

1 2
Arabica 36
R obusta 7

3.4 .3  T h e M C L U ST  Fam ily o f M odels

The m clu s t software for model-based clustering was also used to  classify these data. Ta­

ble 3.4 gives the classification for the best MCLUST model, which was a VEI model v/ith 

three groups.

Table 3.4: Classification table for the best MCLUST model for the coffee data.
1 2 3

Arabica 22 14
R obusta •1

1

This classification could also be thought of as ‘correct’, however Arabica is split across two 

groups. The BIC for this model was -1301.70, which is less than  the BIC for the best 

PGM M .

3 .4 .4  M odel C om parison

Table 3.5 gives the  R and and adjusted Rand indices for both families of models th a t were 

applied to  the cofiFee data. The chosen PGM M  was the best model, in term s of BIC, R and 

index and adjusted R and index.

Table 3.5: Rand and adjusted Rand indices for bo th  families of models th a t were applied 
to  the  coffee data.

M odel Rand Index Adjusted Rand Index
PGM M 1.00 1.00

M CLUST 0.66 0.38
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3.5 Italian W ine D ata

3.5 .1  T h e D ata

Forina et al. (1986) used twenty-eight chemical properties of Italian wines from the Piedm ont 

region to  classify them  into their specific type — Barolo, Grignolino or Barbera. Table 3.6 

gives the subset of these thirteen variables th a t are available from the g c lu s  library (Hurley, 

2004) in R. Note th a t the variable ‘malic acid’ represents to ta l malic acid; see Ooche et al. 

(1981) for further details.

Table 3.6: The th irteen  chemical properties of wine, used by Forina et al. (1986), th a t are 
available in gclus.

Alcohol Malic acid
Alcalinity of ash M agnesium
Flavarioids Nonflavanoid phenols
Color intensity Hue
Proline

3.5 .2  T h e P G M M  Fam ily o f M odels

The family of PGMIVls were fitted to the d a ta  for G G { 1 ,2 , . . . ,  5} and q e  {1, 2 , . . . ,  5} by 

running the pgnim software from three random  starting  values, so th a t a to ta l of 600 models 

were fitted. Figure 3.5 shows the BIC for the best PGM M  for each couplet {G, q) over the 

three runs — the best model was a CUU model with G =  4 and q = 2. The BIC for this 

model was -5294.68.

A classification table for this best PGM M  is given in Table 3.7. This model classifies the 

Barolo and B arbera varieties into clusters 1 and 4 respectively but Grignolino is spread 

m ostly across clusters 2 and 3, w ith two observations in cluster 4.

Table 3.7: Classification table for the best PGM M  for the wine d a ta  from g c lu s .

1 2 3 4
Barolo 59
Grignolino 38 31 2

Barbera 48

Ash
Total ahenols 
P  roant hocyanins 
OD 2 8 0 /O D 315  of diluted wines
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1 2 3 4 5

G

Figure 3.5: A ‘heat m ap ’ giving the greatest BIC values for each PGM M  a t (G, q) for the 
wine d a ta  from g c lu s .

3.5.3 The MCLUST Family of Models

The best model using m clu s t was a VEI model w ith eight groups. The BIC for this model 

was -5469.95 and classifications for th is model are given in Table 3.8.

Table 3.8: Classification table for the best M CLUST model for the  wine d a ta  from g c lu s .

1 2 3 4 5 6 7 8
Barolo 40 18 1
Grignolino 21 22 27 1
B arbera 4 17 27
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3.5.4 Variable Selection

Variable selection was carried out using the c lu s t v a r s e l  package in R; the maximum 

num ber of groups was preset a t eight. The variables selected were Malic acid, Proline, 

Flavanoids, colom- intensity and OD 2 8 0 /O D 3 1 5  of diluted wines. The selected model was a 

VEV model with three groups and the classification results for variable selection are given 

in Table 3.9.

Table 3.9: Classification table for variable selection for the wine d a ta  from g lu s .
1 2 3

Barolo 51 8

Grignolino 3 67 1

Barbara 1 47

3.5.5 M odel Com parison

Table 3.10 gives the R and and adjusted Rand indices for all three models th a t  were applied 

to  the wine data. The best PGM M  was the best model, in term s of both  Rand index and 

adjusted Rand index.

Table 3.10: Rand and adjusted Rand indices for all of models th a t were applied to  the wine 
d a ta  from g c lu s .

M od el R an d  In d ex A d ju sted  R and In d ex
PGM M 0.91 0.79

M CLUST 0.80 0.48
Variable Selection 0.90 0.78

The best PGM M  also had greater BIG th an  the best M CLUST model. No comparison can 

be made between the PGM M  family of models and variable selection, which involves many 

m clu s t com putations, in term s of BIG.

Furtherm ore, it is rem arkable th a t the PGM M  family of models has outperform ed variable 

selection. The la tte r approach has the advantage th a t all of the ‘unhelpful’ variables are 

absent during the final clustering, yet it is still outperform ed by the former. R ather than  

disregard variables, the PG M M  approach weights variables appropriately using the elements 

of the load m atrices Ag. This approach is not only more natu ral than  th a t of variable
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selection, bu t based on the results of this analysis it may be superior as a  m odel-based 

clustering technique.

3.5.6 D eeper into the Italian W ine D ataset

The wines in this study  were from the years 1970-1979, as shown in Table 3.11.

Table 3.11: The wine d a ta  from g c lu s  ordered by year of production.

70 71 72 73 74 75 76 77 78 79
Barolo 19 20 20
Grignolino 9 9 7 9 16 9 12
Barbera 9 5 29 5

Now, returning to  the PGM M  results and assuming th a t the d a ta  are in year order, a 

more detailed classification of the PGM M  results emerges and is given in Table 3.12. It 

is apparent, from Table 3.12, th a t clusters 2 and 3 are almost grouped by year; Cluster 2 

comprising m ainly Grignolino wines from 1970-1974 and Cluster 3 consisting prim arily of 

Grignolino wines from 1974-1976.

Table 3.12: Classification table for the best PGM M  model for the wine d a ta  from g c lu s , 
ordered by year.

C luster Barolo Grignolino B arbera
71 73 74 70 71 72 73 74 75 76 74 76 78 79

1 19 20 20
2 7 8 4 8 8 2 1
3 2 1 2 1 8 7 10
4 1 1 9 5 29 5

Furtherm ore, applying the inform ation in Table 3.11 to  the results of the M CLUST and 

variable selection analysis gave results th a t were not interpretable in this fashion.

3.6 T he Larger W ine D ataset  

3.6.1 The Rem aining Variables

The rem aining 15 variables used by Forina et al. (1986) are given in Table 3.13. All bu t 

one of these 28 variables were sourced from w w w .p a rv u s .u n ig e .it ; the variable Sulphate 

was not available.
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Table 3.13: The fifteen chemical properties of wine, used by Forina et al. (1986), th a t were 
not available in gel us.

Sugar-free ex tract Fixed acidity Tartaric acid
pH Potassium  Calcium
Chloride Sulphate Glycerol
2,3-butanediol Total nitrogen M ethanol

3.6.2 T he PG M M  Family of M odels

The family of PGM M s was fitted to this larger wine dataset for G € {1 , 2 , . . . , 5}  and 

q G {1, 2 , . . . ,  5} and pgmm was set to loop three times so th a t a to ta l of 600 models were 

fitted. Figure 3.6 shows the BIC for the best PGM M  for each couplet (G, q) — the best 

model overall was a CUU model with G =  3, q =  4 and a BIC of -11454.32.

1 2 3 4 5

G

Figure 3.6: A ‘heat m ap’ giving the greatest BIC values for each PGM M  a t (G, q) for the 
larger wine dataset.

Uronic acids 
Phosphate
OD 2 8 0 /O D 3 1 5  of flavanoids

A classification table for th is model is given in Table 3.14. This model classifies the Barolo
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and B arbera into clusters 1 and 3 respectively and gets the Grignolino alm ost right, mis- 

classifying only one sample.

Table 3.14: Classification table for the best PGM M  for the larger wine dataset.

1 2 3
Barolo 59
Grignolino 70 1
B arbera 48

3.6.3 The M CLUST Family of M odels

Classifications for the best model, in term s of BIC, using the m c lu s t software in R are given 

in Table 3.15.

Table 3.15: Classification table for the best MCLUST model for the larger wine dataset.
1 2 3

Barolo 58 1

Grignolino 4 6 6 1

B arbera 48

The best M CLUST model was a VVI model with three groups and a BIC value o f -12119.31.

3.6.4 Variable Selection

Variable selection was carried out using c lu s tv a r s e l  and, once again, the m axim um  num­

ber of groups was preset a t eight. Nineteen variables were selected and they are given in 

Table 3.16.

Table 3.16: Variables selected for the larger wine dataset.

Chloride Malic acid Flavanoids Proline
Colour intensity Uronic acids M agnesium 2-3-butanediol
T artaric  acid Total nitrogen Calcium Alcalinity of ash
Hue OD 2 8 0 /O D 3 1 5  of diluted wines M ethanol Nonflavanoid phenols
Alcohol Sugar-free extract Phosphate

A VVI model w ith four groups was chosen and the classifications for th is model are given 

in Table 3.17.
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Table 3.17: Classification table for variable selection on the larger wine dataset.
1 2 3 4

Barolo 52 7
Grignolino 17 54
Barbera 1 47

3 .6 .5  M o d e l C om p ar ison

Table 3.18 gives the Rand and adjusted Rand indices for all three models that were applied 

to the wine data. The chosen PGMM was the best model, in terms of both Rand index 

and adjusted Rand index. Further, the best PGMM also outperformed the best MCLUST 

model in terms of BIC.

Table 3.18: Rand and adjusted Rand indices for all models applied to the larger wine 
dataset.

M odel Rand Index A djusted  Rand Index
PGMM 0.99 0.98

MCLUST 0.95 0.90
Variable Selection 0.91 0.78

Interestingly, MCLUST performed better than variable selection on these data.

3.7 D iscussion

A new family of PGMMs has been introduced. This family of models can be seen as a gener­

alisation of the mixtures of factor analysers and mixtures of principal components analysers 

models and contains them both as special cases. The number of covariance parameters in 

this family of models grows linearly with data dimensionality, which is especially conve­

nient in high-dimensional situations. This is not true of the MCLUST models, where the 

number of parameters in any of the diagonal covariance structures is linear or constant in 

the data dimensionality but is quadratic in data dimension for the non-diagonal covariance 

structures. The PGMM family therefore offers a more implementable modelling structure 

for high-dimensional data than MCLUST.

Chang (1983) shows that the principal components corresponding to the highest eigenvalues 

do not necessarily contain the most group information. Directly modelling data using
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the PGMM family avoids the problems of implementing data reduction using principal 

components analysis before clustering. Modelling via the PGMM family also avoids the 

need for variable selection prior to, or concurrently with, model-based clustering.

The application of the PGMM family to the coffee and the wine data indicates that the 

models give excellent clustering performance. The clusters found using the PGMM family 

exhibit superior group structure-capturing of these data compared to other methods. In 

the case of the coffee data, choosing between the PGMM family and the MGLUST family, 

using the BIG, led to the selection a member of the PGMM family; this is in agreement with 

the results (Fraley &: Raftery, 20026) that show that choosing models within the MCLUST 

framework using the BIG gives models with good classification and clustering performance. 

The best PGMM also gave superior clustering performance on the wine data when compared 

to the best model using MCLUST or variable selection.

Although not reported, in the course of the analyses featured in this chapter, it was noted 

that the ‘best’ model using BIG was not always the best classifier. There is, therefore, 

future scope for finding an alternative to BIG for choosing the best member of the PGMM 

family of models and, perhaps, the MCLUST family of models. The ICL may present a 

meaningful alternative in this situation. Moreover, since the methods introduced herein are 

presented as unsupervised, it would be inappropriate to use known classifications for model 

selection.
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Chapter 4

Generalised Parsim onious 

Gaussian M ixture M odels

4.1 Structure

4.1.1 R edefin ing

The family of PGMMs introduced in Chapter 3 are extended by further parameterising the 

group covariance structure. This further parameterisation comes about by writing

^ .9  ~  ^ 9 ^ 9 ’

where ujg G R and A g  =  diag{(^i, ^2 ! • • •, <̂p} such that |Ag| =  1, for g G {1 ,2 ,...,G } . 

This new family of models will be referred to as generalised parsimonious Gaussian mixture 

models (GPGMMs).

4.1 .2  T he Q  E quation

Now, the equation for Q  given in Section 3.3.3 can be written as

G ri 1 _ -
Q{A.g,iJg, A g )  = C +  ^  Tig ~ 10g|(o;gAp) | ~  “  tr |(o ;g A g )  Sg} +  tr|(ti;gAg) Ag/3gSg}

9 = 1

1
2
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where C is constant with respect to Ag, ujg and Ag, =  (Ig — +  $gSgfig) is a

symmetric q x q matrix and 0g = Ag{AgA'g + UgAg)~^. Now following from Corollary A .l 

of Appendix A;

log|(a;gAg)“ ĵ =  log|u;~^A~^| =  log [u;g^'|A“ i|] = p lo g a ;“  ̂ + log jA ~ ^ |, 

and so Q can be written as

1 ^
Q{Ag, ujg, Ag) =  C" +  -  n,(2 ^ - s

9 = 1

plogWg^ +  l o g |A / |  - a ; / t r { A g ^ S g }

(4.1)

2u;”  ̂ tr{ A “ ^Ap^gSg} -  uj~^ tr{A gA"* Ag©g}

4.2 Param eter E stim ates for G PG M M s 

4.2.1 Estim ating the Param eters

Estimation of the model parameters, via the AECM algorithm, is analogous to tha t of the 

PGMM parameters of Section 3.3. The number of covariance parameters associated with 

each GPGMM is given in Table 4.1.

Table 4.1: Covariance structures and number of covariance parameters for each member of 
the GPGMM family.

Model A , =  A

<1II<

U)g -- UJ A = 7 Covariance Parameters
CCCC Yes Yes Yes Yes \pq -  q{q -  l)/2] +  1
ccuc Yes Yes No Yes \pq -  q(q -  l)/2] +  G
uccc No Yes Yes Yes G \ p q - q { q -  l)/2] +  1
ucuc No Yes No Yes G\pq -  q{q -  l)/2] + G
cccu Yes Yes Yes No \ p q - q { q - l ) / 2 ]  + p
ccuu Yes Yes No No \pq -  q{q -  l)/2] + [G + { p -  1)]
uccu No Yes Yes No G \ p q -  q { q - l ) l 2 ] + p
ucuu No Yes No No G[pq -  q{q ~  l)/2] + [G + {p -  1)]
cucu Yes No Yes No \pq -  q{q -  l)/2] +  [1 +  G{p -  1)]
cuuu Yes No No No \pq -  q{q -  l)/2] +  Gp
uucu No No Yes No G\pq -  q{q -  l)/2] +  [1 +  G{p — 1)]
uuuu No No No No G\pq -  q{q -  l)/2] + Gp

Table 4.1 contains a total of four new models when compared to Table 3.1. The equivalences 

between the models in these tables, tha t is the equivalences between the PGMM family and 

the GPGMM family, are shown in Table 4.2.
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Table 4.2; Equivalences between PGA-IMs and GPGMMs.
PGMM GPGMM PGMM GPGMM
CCC CCCC UCU UCCU
CUC ccuc - UCUU
ucc vccc - CUCU
uuc ucuc cuu CUUU
ccu cccu - UUCU

- CCUU uuu u u u u

From Table 4.2, the four new models are CCUU, CUCU, UCUU and UUCU. The derivation 

of the model param eter estimates for the CCUU model are demonstrated in Section 4.2.3 

and details for the remaining three new models are given in Appendix B.

The estimates for the eight pre-existing models are obtained from the PGMM estimates 

given in Section 3.3.4 by writing

and setting

ujg =  and A g  =
9 \

Before outlining the derivation of the MLEs of the model parameters for the CCUU model, 

it is necessary to introduce the method of Lagrange multipliers.

4.2.2 M ethod of Lagrange M ultipliers

Lagrange (1788) introduced a method of finding local extrema of a function subject to some 

constraint which is also expressed as a function. This method, which is summarised here, 

is described in detail by Fraleigh (1990).

In order to find local extrema of a function f {x,  y, z) subject to the constraint g{x, y, z) = 0, 

use the fact tha t there exists some constant A such that

V/ = A(V̂ ),
where A is called the ‘Lagrange multiplier’. This, along with the constraint g{x, y, z )  — 0, 

leads to what Fraleigh (1990) calls the “conditions of the method of Lagrange multipliers” ;

d f  . d g  d f  . dg  d f  ^dg , .  ̂ rx
^  =  A— , ^  =  A— , ^  =  A—  and g{x, y, z )  = 0 .
ox ox  oy oy Oz oz



Furtherm ore, writing

L{x,  y, z, A) =  f { x ,  y, z) -  Xg{x, y, z),

makes these conditions equivalent to  the conditions

d L  d L  dL  ^  ̂ dL
—  =  0 , ^  =  0 , ^  =  0  and ^  =  0 .
dx  dy  dz  dX

4.2.3 Param eter Estim ates for the C C U U  M odel

For the CCUU model, Ag = A and A g  =  A . Therefore, Pg =  A '(A A ' +t j gA) ~^  and from 

Equation 4.1, Q can be w ritten

Q (A ,cjg ,A ) =  C  +  ^ ^ n g  p l o g u ; g ^ + l o g j A  i | - u ; ^ 4 r { A  ^Sg}
.9 = 1

+  t v { A - ^ A P g S g }  -  t r { A ' A - i A 0 g }

Now, form

L{A, uj g, A, X)  =  Q{ A, Ug , A)  -  A(jA|  -  1),

and differentiating L with respect to  A, A~^ and A respectively gives the following 

score functions.

5i(A ,u;g, A , A) =  ^  ^  \ ^ - ' S g P ’g -  A - ^ A 0 ,

52(A ,tjg, A , A) =

53(A,a;g,A,A) =

dL G
ViR. 

9 = 1  ^
dL ^ 9  r.

d u g ^ = y l '
dL

5A -1
9=1

A  -  +  2u;;^ApgSg  -  0 ;;^  A© ^A ' ■ A| A| A,

dL
S4{A,L0g,A,X)  = —  = \ A \ - l .

Note th a t ^ 4  is included for completeness only and solving ^ 4  (A, cOg, A ,  X) = 0 ju st returns 

the constrain t | A{ =  1. Now, solving 5i(A"®",a;g, A , A) =  0, in an analogous fashion to  the 

CUC solution in A ppendix A .4.3, gives
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Again, imitating the PGMM solution of Appendix A.4.3, solving S’2 (A"®", A, A) =  0 

gives

[OJn =  S g - 2 A " " " ' / 3 g S g  +  A " " " ' 0 g ( A " ' ' * ) '  } ,

and solving diag{53(A"®” , A"'"” , A)} =  0 gives

1 ^
^  A — -  -  ^  diag { s ;  -  2A— + A— 0 ;(A -» ) '}  + A| A - - |  A""- =  0

9=1 ®

^  2^new _
n

1
 y  T T ^  diag ( S; -  2A"^"'/3„S, + A"«”'0 ;(A " ‘̂“ ) ' |

V I  A n e w ]  ^  L ® ' ^ 9  3  g y  /  J+  2A|A"-=»| ^  p g )

1
n +  2A diag <

n„
Sg -  2A""'^^gSg +

But A"®" is a diagonal matrix with |A"®"| = 1, therefore

n
2 ^ =  i n « .

\i=^

\
P \ p

I ’

where is the jth  element along the diagonal of the matrix

E
9=1

Ua Sg -  2A"®"/9gSg + A""*0g(A''' "̂')'

and it follows that

A = -  
2 n « .

u ' = i

n

4.3 Leptograpsus Crabs D ata

4.3.1 T h e  D ata

The data consist of biological measurements on 200 crabs — 50 male and 50 female, for 

each of two species; 100 orange and 100 blue. The data were sourced from the MASS library 

in R; which contains datasets from Venables Sz Ripley (1999). There are five variables in 

these data, corresponding to the five measurements that were taken on each crab; these 

measurements are given in Table 4.3.
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Table 4.3: Details of the five measurements tha t were taken on the leptograpsus crabs.
V ariab le M easu rem e n t

FL Frontal lobe size in millimeters.
RW Rear width in millimeters.
CL Carapace length in millimeters.
CW Carapace width in millimeters.
BD Body depth in millimeters.

These data first appeared in Campbell &: Mahon (1974) and were subsequently analysed by 

Ripley (1996), McLachlan & Peel (1998, 2000a) and Raftery & Dean (2006). These data 

were selected for analysis herein because the results will be comparable with the MCLUST 

and variable selection analyses of Raftery &: Dean (2006).

4.3.2 The GPGMM  Family of Models

The pgmm software was expanded to include the four new models. The family of GPGMMs 

were fitted to the data  for G € { 1 ,2 ,. . . ,  5} and q G { 1 ,2 , . . . ,  5} by running the pgmm 

software from three random starting values, so tha t a total of 900 models were fitted. 

Figure 4.1 shows the BIG for the best GPGMM for each couplet {G, q) over the three runs.

The best model was a UCUU model with G =  4 and g =  1. The BIG for this model was 

201.79 and a classification table for this best GPGMM is given in Table 4.4.

Table 4.4: Classification table for the best GPGMM for the crabs data.
1 2 3 4

Blue Male 40 10
Female 50

Orange Male
Female

50
4 46

Looking at a pairs plot of the variables in the crabs data, given in Figure 4.2, it becomes 

apparent tha t a linear relationship exists between each of the five variables. Therefore, it 

is natural tha t the best GPGMM had one latent variable; tha t is, one linear combination 

of the variables.
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Figure 4.1: A ‘heat m ap’ giving the greatest BIC values for each GPGMM at {G,q) for the 
crabs data.

4.3 .3  T he M C L U ST  Fam ily o f M odels & V ariable Selection

Raftery & Dean (2006) report the results of applying MCLUST to the crabs data. Although 

they do not state a BIC value, they do report a classification table, which is given in 

Table 4.5.

Table 4.5: Classification table from the MCLUST analysis of the crabs data.
1 2 3 4 5 6 7

Blue Male 32 18
Female 31 19

Orange Male
Female

28
24 21

22
5

Raftery &: Dean (2006) also used variable selection to analyse the crabs data; the classifi­

cation table for this analysis is given in Table 4.6.
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Figure 4.2: A pairs plot of the crabs data, constructed using R

Table 4.6: Classification table from the variable selection analysis of the crabs data.
1 2 3 4

Blue Male 40 10
Female 50

Orange Male
Female

50
5 45

4 .3 .4  M odel C om parison

Table 4.7 gives the Rand and adjusted Rand indices and the error rate for the three models 

tha t were applied to the crabs data. The error rate is included here because it was used by 

Raftery & Dean (2006) for model comparison.

The best GPGMM was the best model; it had the largest Rand and adjusted Rand indices 

and it had the smallest error rate. This is another remarkable result; the GPGMM family
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Table 4.7: Rand and adjusted Rand indices and error rate for all of the models that were 
applied to the crabs data.

M odel Rand Index A djusted Rand Index Error R ate
GPGMM 0.935 0.828 0.07
MCLUST 0.851 0.533 0.425

Variable Selection 0.931 0.815 0.075

of models has outperformed the far less parsimonious variable selection method, albeit by 

a small margin, and the MCLUST family of models.

Furthermore, the PGMM family of models also performed excellently when applied to these 

data. The best PGMM had greater Rand and adjusted Rand indices than the variable 

selection method but had the same error rate.

4.4 Sum m ary

The PGMM family of models tha t was introduced in Chapter 3 has been extended from eight 

to twelve parsimonious Gaussian mixture models. This new family of models, the GPGMMs, 

retain the attractive feature tha t their number of covariance parameters is linear in the 

dimensionality of the data. The GPGMM family of models was applied to leptograpsus 

crabs data and gave excellent classification results when compared to the MCLUST and 

variable selection methods used by Raftery & Dean (2006) to analyse the same data.

The superior performance of the GPGMMs when compared to MCLUST and variable se­

lection on the data analysed in this chapter and in Chapter 3 may be related, in part, to 

the different convergence criteria used. Running MCLUST and variable selection on these 

data, using Aitken’s acceleration might give better results for these models. T hat said, 

the performance of the GPGMMs compared to variable selection is remarkable when one 

considers the relative simplicity of the GPGMM method.

Note that some of the models depicted on heat maps herein may not in fact be parsimonious; 

that is, some such models may have a greater number of covariance parameters than the 

‘raw’ covariance matrices. No such models were removed because the penalty tha t the BIC 

imposes on the log-likelihood for lack of parsimoniousness ensured tha t no such model was 

selected as the ‘best’.
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Chapter 5

Parsim onious Gaussian M ixture 

M odels w ith Cholesky-Decom posed  

Covariance Structure

5.1 Introduction

The ideas around model-based clustering, described in chapters 2 and 3, are developed via 

modified Cholesky decomposition of the covariance matrices Sg. The resulting family of 

mixture models can be applied to classification problems involving longitudinal, or naturally 

ordered, data.

5.2 Background

5.2.1 Cholesky D ecom position

Cholesky decomposition (Benoit, 1924) is a method, often used in numerical analysis, for 

decomposing a m atrix into the product of a lower triangular matrix and its transpose. More 

precisely, let A be a real, positive definite matrix. Then A  can be decomposed uniquely, 

using the Cholesky decomposition, as

A =  LL',
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where L is a lower triangular matrix.

In the numerical analysis application, Cholesky decomposition is used to decompose the 

matrix A in order to simplify the solution to a linear system of equations, like

A x =  b.

In this work, a Cholesky decomposition will be applied to the group covariance matrix in a 

mixture modelling framework. More precisely, a modified Cholesky decomposition will be 

used.

5.2.2 M odified Cholesky D ecom position

Pourahmadi (1999, 2000) exploited the fact tha t covariance m atrix S  of a random variable 

can be decomposed using the relation

T S T ' =  D,

where T  is a unique unit lower triangular matrix with diagonal elements ta — 1 and D 

is a unique diagonal matrix with strictly positive entries. An alternative version of this 

relationship is written

E - i = T 'D “ 1t . (5.1)

In these decompositions, the matrices T  and D can be interpreted statistically in terms of 

an autoregressive model. This decomposition was also used by Pan &: MacKenzie (2003, 

2006), while Pourahmadi et al. (2007) extended this decomposition to account for multiple 

covariance matrices. This covariance decomposition, however, has not previously been 

applied in a model-based clustering context.

5.3 Parsim onious G aussian M ixture M odels w ith  Cholesky- 

D ecom posed  Covariance Structure

5.3.1 T he M odel

We assume a mixture model with a Gaussian mixture component used to model each sub­

population, with a modified Cholesky-decomposed covariance structure. Therefore, the
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density of an observation x , in group g is

f { ^ i  I  Tg, Dg) =  I =  exp /  — —  (xj —  /ig) TgDg Tg(xj —  Hg) 1 ,

y'(27T)P  I ( T ' D g  i T g ) - i  I I- 2 J

where is the lower triangular m atrix  and Dg is the diagonal m atrix, th a t follow from 

the modified Cholesky decomposition of Sp.

Now, there is the option to  constrain the Tg or the  Dg to  be equal across groups, which leads 

to four parsimonious Gaussian m ixture models, which shall be called Cholesky-Decomposed 

Gaussian M ixture Models (CDGMMs). Each CDGMM, along with their respective nomen­

clature and num ber of covariance param eters is given in Table 5.1.

Table 5.1; The covariance structure  and num ber of covariance param eters for each CDGMM.
Model T , Covariance Param eters

VV Variable Variable G \ p { p - l ) / 2 ]  + Gp
VE Variable Equal G \ p { p -  l)/2 ] + p
EV Equal Variable P ( P -  l ) /2  +  Gp
EE Equal Equal 1 +

Note tha t two of the models in Table 5.1, EE and VV, are equivalent to  models th a t already 

exist in the M CLUST framework. The EE model is equivalent to  the EEE model and the 

VV model is equivalent to  the VVV model.

5.3.2 M odel F itt in g

The CDGMMs are fitted using the ECM  algorithm . The E-step is very sim ilar to  the 

first E-step of the AECM  algorithm  from C hapter 3. The com plete-data likelihood for the 

m ixture model is
n G

£ ( 7 T g , / X g , T g , D g )  ^  H  ^  ^ ^ / ( x ,  | ^ g  , T g  , D g ) ] ,
1 = 1  g=l

where Zig = I if i = g and Zig — 0 otherwise. Similarly to Q\  from Section 3.3.3, the

expected value of the com plete-data log-likelihood for the m ixture model is

G G
Q { n g ,  tXg Tg ,  D g )  =  ^  Tig lOg TTg _  log27T ~  ^  ^  lOg j D  "  ̂  T g  ) “ '  I

(5.2)

- E y t r | s g T ; D - i T g | ,
.9 = 1



52

where

îa —<̂10  , .

E g '  =  l ! A g ' , T g / , D g / )

= EiLi^ig and Sg =  (1/ng) E"=i 2ig(xi -  At,g)(Xi -  Now, maximising Q with

respect to tt̂  and /x̂  gives

X y i= i  ^ ig ^ i  j  - 
IJ-g =  s M  ~ and TTg = — ,

E i = i  2ig ■ n

as in Section 3.3.3.

The following results (Liitkepohl, 1996, Section 4.2) were used to simplify the term

E y i ° s l ( n D , - ‘ T , r ‘ | .

in Equation 5.2.

^ m x m ' i ^ m x m  •  I  A B  |  =  |  A  | |  B  |

^ m x m  *  1  A  I  I  A  I

Amxm, nonsingular : | | =  | A
m

Amxm [aij], triangular : [ A | =
1=1

The simplification is achieved as follows.

lo g |(T ;D ;iT ,) - i | = l o g |T ; D - i T , f '  =  l o g { |T ;n D ; i |

=  -2 1 o g |T ;|+ lo g |D g | =  logiDg|,

- 1

and it follows that
G G

Y ,  y  log |( T 'D - iT ,) - i |  = ^  log ID,I .
9=1  9=1

Now, it is also true that

t r { S , T ; D ; ' T 4  =  t r { T ,S ,T ; D - i } ,  

and so Equation 5.2 can be written

Q(T„ D , ) ^ C ~ Y , y  log -  E  Y  tr{T,S,T',D-i}, (53)
9 = 1  9 = 1

where C is constant with respect to ^̂ g, Tg and Dg. The parameter estimates for the VV 

model are derived in Section 5.3.3 and estimates for the parameters of the other models are 

given in Appendix C.
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5 .3 .3  P aram eter E stim a tes  for th e  V V  M odel

Differentiating Equation 5.3 with respect to Tg and D"^ respectively gives the following 

score functions.

c ) Q ( T g , D g )
5 i(T g ,D ,)  = Hr.

dTr
(D ,->)'T5S; + D J 'T ,S s — T g S g .

S2(T „D ,) = ^  (T ,S,,T i)' =  ^  (D , -  T ,S ,T ') .

Solving 5i(T p,D g) is not entirely straightforward because it is only the lower triangular 

part of Tg tha t needs to be estimated. Following Pourahmadi et al. (2007), 4>ij is used to 

denote those elements of Tg that are to be estimated, so that

T  =-*-.9

1 0 0 0 0

1 0 0 0

<̂ ?2̂ 1 0 0

4 -^ .2
Aa)
^p - l , p -2 1 0

4 ?
A b)<̂ P,P-2 < ^ S -i 1

(5.4)

and write 5 i(T g,D g) =  5 i(^g ,D g), where =  {((>\f} for i > j \  i , j  e {1,2, . . . , p} .  Also, 

let LT{-} denote the lower triangular part of a matrix. Now, solving LTjS'i ($g), Dg} =  0 

for $g leads to a total of p -  1 linear equations. The 1 x 1  solution is straightforward;

and so

(.9)1 (.9) (.9)
■̂11 ^21 I -̂ 21 _  n

J(.9) +  3(9)
“22 “22

-I ^Aa) _
^̂ 21 -  (.9) •

*11
The 2 x 2  case involves the equations

(,9)I(.9) M 1 ( 9 )  (.9)
■̂ 11 *<̂ 31 , '^21 ^32 , '^31 _  n

i(.9) j(,9) j(.9)
“ 33 “ 33 “ 33

A 9 ) 2 i g )  J 9 ) l ( 9 )  Ag)
®12 V"31

d'(g)
'33

+ ®22 <̂32
j ( 9 )
3̂3

^  = 0  
®33
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which can be expressed in the form

(9)
11
(9)12 4 | )  1I «

and so

^31

„(s)3̂2
(5.5)

(9 ) J 9 )  ' < J 9 )
11 *21 ^31

(.9) „(9) „(9)
12 *22 ,/  'V ®32

(5.6)

It follows tha t the solution to the general (r — l ) x ( r  — 1) system of equations will be given

by

'A’Li I

(9 ) „(9) „(s)
11 *21 * r - l , l

(9 ) „(9) , ( 9 )
12 *22 * r - l , 2

- 1
/  s(-9) \*r l

M
®r2

„ ( s )  S a )  „ { g )\  * l . r - l  * 2 , r - 2  * r - l . r - l  /

(5.7)

for r = 2 , 3 , . . . , p .

Solving diag{52(Tg,Dp)} =  0 is much more straightforward, giving

t)g — diag{TpSgTg},

which is a very natural estimator.

5.4 R ats D ata  

5.4.1 T he D ata

D ata on the body weights of rats on one of three different dietary supplements were pub­

lished in Crowder & Hand (1990). A total of 16 rats were put on one of three different diets; 

eight rats were on Diet 1, four were put on Diet 2 and four on Diet 3. Weights were first 

recorded after a settling-in period and then weekly for a period of nine weeks. An extra 

measurement was taken at 44 days to help gauge the effect of a treatm ent that occurred 

during the sixth week. These measurements can be seen on the time series plot in Figure 5.1
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Figure 5.1: Time series for each rat, coloured by group — black for rats from Diet 1, red 
for Diet 2 and green for Diet 3.

5.4.2 Analysis

An ECM algorithm for each member of the CDGMM family was implemented in C, similarly 

to the pgmm software. As with the PGMM and GPGMM analyses, the Aitken acceleration 

convergence criterion was used for this ECiM algorithm. Each member of the CDGMM 

family of models was fitted to the data for G =  1, 2 , . . . ,  6.

5.4.3 R esults

Using the BIC as a model selection criterion, the best CDGMM was an EE model with 

G =  5. The classifications according to this EE model, which is equivalent to an EEE 

model in the MCLUST framework, can be seen in Table 5.2 and Figure 5.2.

Table 5.2: Classification table for the best CDGMAl on the rats dataset.

From Table 5.2 and Figure 5.2, it is apparent tha t the best CDGMM classifies all rats on 

Diet 1 into Group 1 and that one rat from each of the remaining two diets is misc;lassified 

into a group on its own. However, these two misclassified rats do have unusual weights

1 2 3 4 5
Diet 1 8
Diet 2 3 1
Diet 3 1 3



56

O
O
CO

ooin

oo

oo
CO

600 10 20 30 40 50

Time (Days)

Figure 5.2: Time series for each rat, coloured by classifications — black for Group 1, red 
for Group 2, green for G roup 3, purple for Group 4 and blue for Group 5.

relative to  the other ra ts  th a t were on the same diet. The R and index associated with this 

model is 0.95 and the adjusted R and index is 0.88.

5.5 Sum m ary

A new m odel-based clustering paradigm  has been introduced for the analysis of longitu­

dinal data. This family of m ixture models, called CDGMMs, utilise a modified Cholcs.ty 

decomposition to  model the covariance structu re  and so they are suitable for the analysis 

of longitudinal data. Four m em bers of the  CDGMMs are given herein and the associated 

maximum  likelihood estim ates for the param eters have been derived. Two of these models 

have already appeared in the literature, through the M CLUST framework, while the other 

two models are new. This family of models performed well when applied to  real data  on 

the  weight of rats.

Note th a t th is chapter is only intended as the  first step in the creation of the CDGMM 

family of models. Only basic constrain ts are imposed herein and there is scope for the 

addition of many more members. For example, constraints could be imposed on elements 

on one or more of the  sub-diagonals of T^, and some of the o ther constraints applied by 

Pourahm adi et al. (2007) could also be used.

The scope for expansion of the  CDGM M  family of models is great and it could grow to have
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at least as many members as the GPGMM family of models. However, further expansion 

will be left for future work, with the emphasis O'f this thesis now shifting from interval to 

binary data.
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Chapter 6

Association Rules

6.1 Introduction

This chapter m arks the shift in th is work from techniques apphcable to  interval d a ta  to 

techniques th a t can be applied to binary data. This shift, from model-based clustering to 

association rule mining, also marks the transition from statistical modelling into an area of 

d a ta  mining th a t  is largely algorithm -driven.

Association rules are d istinct from other m ethods of analysing binary data , such as loglin- 

ear models, in th a t they present an efficient m ethod of analysing large binary d a ta  sets. 

Association rules are used to  discover relationships between binary variables in transaction 

databases. A transaction database may be considered as one th a t consists solely of binary 

variables; an item  can either be present in a transaction  or not.

Although formally introduced by Agrawal et al. (1993), many of the ideas behind association 

rules can be seen in the literature a t least as far back as Yule (1903). Applicable to  da ta  

from a  wide range of sources, such as convenience stores, credit card companies, electorial 

commissions, college application offices and healthcare providers; association rule analysis 

is one of the most versatile d a ta  m ining techniques available to the analyst.

The apriori algorithm  (Agrawal &: Srikant, 1994; Borgelt & Kruse, 2002; Borgelt, 2003) 

presents an easy-to-implement m ethod of generating, or mining, association rules.
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6.2 D efinition o f an A ssociation  R ule

6.2.1 A ssociation Rules

Given a non-empty set, /, an association rule is a statem ent of the form A B,  where 

A , B c l  such that A  ^  (!}, B  ^  and A D  B  — (/). The set A  is called the antecedent of the 

rule, the set B  is called the consequent of the rule, and I  is called the item set. Association 

rules are generated, or mined, over a large set of transactions { t i  , T2 , . . . ,  r„}.

An association rule is deemed interesting if the item s involved occur together often and there 

is evidence to suggest that one of the sets might in some sense lead to  the presence of the 

other set. Consider a convenience store example; the association rule {bread} {butter} 

suggests that those who purchase bread, tend to also purchase butter.

The ‘interestingness’ of an association rule is com m only described by m athem atical notions 

called support, confidence and lift. These functions are defined in Section 6.3.

6.2.2 N egations

In many applications, it is not only the presence of item s in the antecedent and the conse­

quent parts of an association rule that may be of interest. The absence of items from the 

antecedent part can be related to  the presence or absence of item s from the consequent part 

and vice versa. An exam ple of a rule of this form is {sunflower spead} => {not butter}, and 

such a rule is som etim es referred to as a ‘replacement rule’. W idening the mining paradigm  

to  include this type of association rule gives rise to the possibility of mining many more 

association rules from each transaction dataset.

For convenience, we introduce the term ‘negation’. Let X  E I  and write X  to denote the 

absence or negation of the item , or items, in X  from a transaction. Considering X  as a 

binary {0 ,1 }  variable, the presence of the item s in X  is equivalent to X  =  1, while X  is 

equivalent to  X  =  0. M ining an association rule A  ^  B  can actually lead to  the discovery 

of related rules, which involve negations, such as A  ^  B; one way this can be achieved 

is through doubledecker plots, which are discussed in Section 6.6.2. An analysis involving 

negations along with a quantification of the number of rules that can be generated when 

negations are considered is given in Section 8.4.
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6.3 Support, Confidence, E xpected  Confidence Lift

The notation P(A)  is introduced to represent the proportion of times that the set A appears 

in transaction set T. Similarly, P(A, B) represents the proportion of times that the sets A 

and B  coincide in transactions in T. It is also necessary to define

That is, the proportion of times that the set B  appears in all of the transactions involving 

the presence of the set A. Having established these definitions. Table 6.1 gives the functions 

by which association rules are typically characterised.

Table 6.1: Common functions of association rules.

Function D efinition

Support s{A ^  5 )  =  P{A, B), s{A) = P{A)
Confidence c(A ^  B) = P{B 1 A)
Expected Confidence EC{A B) = P{B)
Lift L{A ^  B ) =  c{A => B) IEC{A  =4> B)

Note that the expected confidence is the value that the confidence of a rule would take if 

the antecedent and consequent were statistically independent.

6.4 R ule G eneration

In the original formulation of the association rule mining problem (Agrawal et at, 1993), 

mining was performed by generating rules with support and confidence above predefined 

thresholds. The apriori algorithm (Agrawal k, Srikant, 1994) was soon introduced; it also 

used a predefined support threshold but did so in a much more efficient manner. Recent 

improvements on the implementation of the apriori algorithm by Borgelt & Kruse (2002) 

and Borgelt (2003) have made it yet more efficient.

There have, however, been some viable alternatives to support based pruning. These alter­

natives mean that rules with relatively low support can be produced, which can lead to the 

discovery of rules involving negations. The idea of discovering association rules based on
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conditional independencies was introduced by Castelo et al. (2001) through the MAMBO 

algorithm.

Pasquier et al. (1999) showed that it is not necessary to use support pruning in order to find 

all interesting association rules and tha t it is sufficient to mine the closed frequent itemsets. 

To define precisely a ‘closed frequent itemset’, it is necessary to consider Galois connection 

and Galois closure operators. These notions, together with other supporting definitions, are 

given by Pasquier et al. (1999). Further, Pei et al. (2000) and Zaki & Hsiao (2002) have 

proposed algorithms for this purpose, called CLOSET and CHARM respectively.

6.5 Lift & Odds R atios 

6.5.1 The Lift

The lift of an association rule is a symmetric function, since

r t A - .  P { B \ A )  P{A, B)  P { A \ B )  c{B ^  A) , ,  ^  ^
-  - p ( 5 )  =  =  P i W i B )  -  ^  P{A) ~ ‘ ^  ^

This is extremely useful when it is not clear which of the rules A B  and 5  A is of more 

interest, or when both may be of interest. Equivalently, lift can be useful when it is not 

clear whether P{A \ B)  or P{ B \ A)  is of more interest, or when both may be of interest. 

Further, lift can also be used in any situation, even outside of the area of association rule 

mining, when it is not clear whether P{A \ B)  or P{ B \ A)  is of interest, or when both may 

be of interest.

The distance of lift from one can be taken as a measure of the interestingness of an associ­

ation rule, since if the lift of the association rule A ^  B  is one then

P i A , B ) ^ P i A ) P { B ) ,

and so A  and B  are statistically independent. Further, the lift of an association rule gives 

insight into the interestingness of rules containing negations. Consider the rule A => B  

where A  and B  are singleton sets; if the lift is less than one then only rules containing 

one negation will potentially be of interest, whilst if the lift is greater than one then only
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rules involving two or no negations will be potentially of interest. Further details on this 

argument are given in relation to odds ratios in Section 6.5.2.

One problem with the interpretation of lift is th a t it is not symmetric about one. A possible 

solution to this is to consider log(lift), and another is to standardise lift as outlined in 

Chapter 8.

6.5.2 2 x 2  Tables &: Odds Ratios

Table 6.2, which is a cross-tabulation of A  versus B,  can be regarded as a representation of 

the supports of all of the rules that can be formed with antecedent A (or A =  1) or A  (or 

A =  0) and consequent B  (or B — I) or B  (or B — 0). For example, the rule A ^  B  has 

support a and the rule B  A  has support c.

Table 6.2: A cross-tabulation of A  versus B.
A

1 0
1 a b
0 c d

The odds ratio associated with Table 6.2 is given by

„ , , ^  a c ad
Odds Ratio — t  ~b a be

This odds ratio can be related to association rules as follows. Note that A =  1 is considered

to be the event here, without loss of generality. Consider the following three possibilities:

odds ratio =  1, odds ratio < 1 and odds ratio > 1.

If odds I’atio =  1 then B  — 0 and B  — 1 have exactly the same affect on the event.

Therefore, no association rules involving A  and B  will be of interest.

If odds ratio < 1 then B  — 1 reduces the chances of the event occurring and it is only the 

association rules containing exactly one negation that may be of interest, namely; A  ^  B,  

A ^  B, B  ^  A  and B  ^  A.

If odds ratio > 1 then B  — \ increases the chances of the event occurring and it is only

the association rules containing either no or two negations tha t may be of interest, namely 

A ^ B , B ^  A,  A ^ B o v B ^  A.
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Therefore, the odds ratio can be viewed as providing a partition of the eight possibly inter­

esting association that can be formed from A, B  and their respective negations. Moreover, 

lift can be viewed in the same way.

Furthermore, the relationship between association rules, contingency tables and odds ratios 

can be extended to larger tables where collapsibility could be used to determine which rules 

may be of interest. For example, if a 2 x 2 x 2 table representing A, B  and C can be collapsred 

(see Agresti, 2002, Section 9.1.2) to a 2 x 2 table representing A and B,  then of the rules 

that can be formed from the sets A, B, C, A, B  and C we know that those involving C 

and C will not be of interest.

6.6 Association Rule Visualisation

Hofmann & Wilhelm (2001) discuss methods of visualising association rules, amongst wh;ch 

are two-key plots and doubledecker plots.

6.6.1 Two-K ey P lots

Plotting confidence against support results in a scatter plot where each point lies or. a 

straight line through the origin. Each such line represents all rules of the form A Bi, so 

that each antecedent is represented by a line. Such a plot is often called a ‘two-key plot’ 

and an example is given in Figure 6.1. A two-key plot can be used to visualise pruning, for 

example all rules with support of at least 40% and confidence of at least 60% lie in the b^ue 

rectangle on Figure 6.2.

6.6.2 Doubledecker P lots

A doubledecker plot is a mosaic plot (Hartigan & Kleiner, 1981) showing various combina­

tions of absence and presence of the items involved in an association rule. Figure 6.3 shows 

the doubledecker plot arising from the rule A ^  B.

Each of the rules A ^ B ,  A ^ B , A = ^ B  and A ^  B  are represented on the plot in 

Figure 6.3. Specifically, the antecedents A  and A are represented by a portion of the thin 

horizontal bar at the bottom of the plot, while the consequents B  and B  are each illustrated.
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0.2 0.4 0.6 0.8

Support

Figure 6.1: An example of a two-key plot.

o

0.2 0.4 0.6 0.8

Support

Figure 6.2: A two-key plot with a rectangle enclosing all rules with confidence of at least 0.6 
and support of at least 0.4.



Figure 6.3; Doubledecker plot arising from the rule A B.

for each antecedent, by a portion of a bin. These bins have an interpretation; the support

of each rule is reflected in the area of the corresponding bin, while the height of the bin

gives the confidence.

Doubledecker plots represent a method of extracting association rules involving negations 

implicitly. However, there is a limitation to their usefulness for this purpose. Consider 

Figure 6.4, which arises from the rule {A,B}  ^  {C,D}.  Figure 6.4 only illustrates rules 

with consequent {C, D]  or {C, D},  the former is that of the original rule while the latter is

the union of the three sets {C, D}, {C, D} and {C, D}.

Therefore, while doubledecker plots can be used to visualise all possible antecedents when 

negations are considered, they are limited in that they can only display two possible conse­

quents. That is, they are not sufficient to display all combinations of presence or absence 

of items from a given rule unless the consequent of that rule is singleton. The doubledecker 

plots shown in figures 6.3 and 6.4 were produced using the software package PISSARRO 

(Keller & Schlogl, 2002, stats.math.uni-augsburg.de/PISSARRO).
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Figure 6.4: Doubledecker plot arising from the rule {A,B}  [C,D].

6.7 Pruning

There have been few statistically sound, yet useful pruning methods mentioned in the as­

sociation rules literature. One attempt at such a method was given by Bruzzese &: Davino 

(2001), who presented three tests designed to avoid support and confidence pruning. Ini­

tially, association rules are mined with certain support and confidence thresholds, then three 

statistical tests are employed; an association rule is only retained if it ‘passes’ all three tests. 

These tests can be carried out using the software package PISSARRO.

6.7.1 Test 1

The first test is used to prune rules that have high confidence due to the presence of frequent 

items in the consequent part of the rule. Statistically, this test compares the confidence of 

the rule, c{A => B),  to the expected confidence of the rule, EC{A => B),  and is based upon 

the following hypotheses.
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Ho : c{A ^  B ) ^  EC{A ^  B)

Hi : c{A ^  B ) >  EC{A B)

Under Hq the antecedent and the consequent of the rule A ^  B  are statistically independent 

since P{B \ A) — P{B).

6.7.2 Test 2

The second test involves performing a chi-squared test on each set of rules with the same 

antecedent part. This test suffers the usual problems associated with chi-squared tests, as 

outlined by Wilhelm (2002).

The effect of Test 2 can be visualised on a two-key plot because if the test statistic is not 

significant then Test 2 will have the effect of deleting a line from the associated two-key 

plot. This relationship arises because, as mentioned is Section 6.6.1, each line on a two-key 

plot represents all rules with a common antecedent. Moreover, lines on the left hand side of 

a two-key plot face greater risk of deletion by Test 2 because these are the lines with higher 

slope and so represent rules with similar support.

6.7.3 Test 3

The third test is performed in order to evaluate the strength of the association between the 

antecedent and the consequent of a rule. The support of a rule is compared to the support 

of the antecedent part of the rule. Applying this test will cause the deletion of all rules for 

which the confidence is not close to one. This test, if applied, may cause the deletion of 

rules with confidence that might in fact be considered high, such as 90%.

6.7.4 Remark

While this, and other pruning methods can be effective in the analysis of association rules, 

they can slow down the mining process and often require that rules be initially generated 

using relatively low support or confidence thresholds. There is therefore no tangible advan­

tage to pruning rules after generation over an effective mining method or a good system for 

ranking mined rules.
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6.8 Interestingness

An alternative to pruning association rules is to rank them in order of interestingness, 

although this is not the sole intended use of measures of interestingness. In fact, the 

question of what makes an association rule interesting is at the heart of association rule 

mining. An important consideration regarding the interestingness of an association rule is 

the context in which it is presented; a rule may be mathematically interesting but yet may 

not be interesting in practice. Since what is interesting in practice will vary depending on 

the data and the purpose of the analysis, it is interestingness in the mathematical sense 

that is focused upon in this section.

Measures of interestingness have already been introduced in Section 6.3; for example, an 

association rule A ^  B  could be considered interesting c{A => B) > c\, where cj is a 

predefined threshold for confidence. However, basing interestingness on confidence alone 

is not satisfactory since there is no guarantee that the antecedent and consequent are not 

statistically independent.

Lift could also be used to rank mined association rules but the distance of lift from one 

cannot necessarily be taken as a reliable measure of interestingness. Lift is discussed further 

in Chapter 8.

Within the literature, alternative definitions of interestingness have been proposed. Two 

types of interestingness, that are described by Vazirgiannis et al. (2003), are given in the 

following sections.

6.8.1 G ray & O rlow ska’s In terestin gness

Gray & Orlowska (1998) define the interestingness of the association rule A ^  B as

1 {P{A)P{B))
P{A)P{B)

K

where K  and M  are fixed constants used to weight the relative importance of the lift and 

the support components, P{A)P{B),  respectively. Int(A ^  B ; K , M )  could potentially be 

viewed as an objective function to be maximised in the mining process.
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As a consequence of the symmetry of lift, Gray and Orlowska’s interestingness is also sym­

metric, for every value of K  and A/, since

Therefore, Gray and Orlowska’s interestingness could also be used in any situation, even 

outside of the area of association rule mining, where there is doubt over whether P{A \ B)

or P{B I A) is of interest, or when both may be of interest.

Another advantage of Gray and Orlowska’s interestingness is ease of implementation; in fact, 

this type of interestingriess is used is Chapter 7. Although, some justification for selection 

of the values of K  and M  used in Chapter 7 is given therein, the degree of arbitrariness in

the choice of K  and M  is a weakness of this kind of interestingness.

6.8 .2  D on g  &: L i’s In terestin gn ess

Dong & Li (1998) define interestingness in a more mathematical fashion than either Silber- 

schatz &: Tuzhilin (1995) or Gray & Orlowska (1998). Dong and Li’s interestingness involves 

computing a distance metric between a rule and the other association rules in its neighbor­

hood. An association rule is deemed interesting if the corresponding point is unexpected in 

the context of the neighboring rules.

Dong &: Li (1998) actually define two types of interestingness; ‘unexpected confidence’ and 

‘isolated interestingness’. In both cases, the value taken by interestingness is either ‘0’ or 

‘1’. A value of ‘1’ is assigned if the distance, as defined by some metric, is bigger than some 

predefined threshold; otherwise, a value of ‘0’ is assigned. The binary nature of this type 

of interestingness means that it cannot be used to obtain any useful ranking of association 

rules.
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C hapter 7

Association Rule Analysis of CAO 

Data

7.1 Introduction

Selected methods described in Chapter 6 are used and developed to facilitate the analysis 

of college application data. The purpose of this analysis is to discover whether or not there 

is a meaningful relationship between the points tha t a school-leaving student expects to 

attain  and the courses, at an Irish university, that the student applies for. In particular, 

the question of primary interest is do students select university courses based on the points 

‘value’ of the course, or based on subjects of interest? The relationship between course 

selection and gender is also explored.

7.2 Background

On Monday 21st August 2006 the Irish Times carried an article entitled ‘Points race’ may 

be over as CAO requirements tumble. The author, Sean Flynn explained that the points 

race may be coming to an end; a claim supported in the article by John McGinnity, deputy 

registrar at NUI Maynooth (NUIAI), who was quoted as stating that “this year has seen a 

rebalancing between the supply and demand for places.”

The term ‘points race’ is used to describe the struggle to attain  points; the metric by which
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school leavers have come to judge their Leaving Certificates’. In past generations the vital 

statistic in assessing the strength of one’s Leaving Certificate was the number of passes and 

honours attained. Today however, the assessment is usually given in cold hard points, so 

much so tha t the attainm ent of points has become, for many, an end as well as a means. 

Points are awarded by the Central Applications Office (CAO) on the basis of grades at­

tained at the Leaving Certificate examination. The intended purpose of these points is 

to allow colleges to decide which students should get into which courses. In this sense, it 

is understandable that students should want to get as many points as possible; the more 

points attained, the less likely a student is to be pipped at the finishing line and lose out 

on their preferred college course.

However, it would be a disturbing prospect if students were choosing their courses based on 

points value rather than on topic; if the status of taking a college course with high points 

outweighed the wisdom of taking one that the student might enjoy or even excel at. This 

would be a points race in a different sense: points for points-sake.

Considering tha t the points requirement for a course is dictated by the demand for entry 

to the course versus the amount of places available, it is not necessarily true that courses 

requiring higher points are better than those requiring lower points — high or low points 

reflect only supply versus demand for a course. Therefore, since the number of places for 

each course is limited, universities can control the points ‘value’ of a course simply by 

lowering the quota for the course; which must be set before the applications are made. 

Socially, in a situation where this type of points race existed, our prospects of succeeding 

as a knowledge-based society in the future would have to viewed as questionable.

7.3 Literature

Tuohy (1998) completed the first research paper for the Commission on the Points System, 

which was established in 1997 by then Minister for Education and Science, Micheal Martin. 

Amongst his conclusions, the author found that gender may have been an issue in course 

choice. Moreover, he maintained tha t the answer to the question over whether or not the 

points system directly effected students choices was unclear.
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The final report of the commission, including recom m endations (Hyland, 1999) found th a t 

the Leaving Certificate was a valid m ethod of predicting higher education performance, 

pointing to  Lynch et al. (1999) for substantiation. In fact the report largely vindicated 

the Leaving Certificate together with the CAO system  as a college entrance system. The 

report highlighted application for medicine courses as an exceptional case and recommended 

further investigation by the relevant sta te  and healthcare bodies.

Clancy (2001) and O ’Connell et al. (2006) completed an extensive study of access to  higher 

education. They found th a t socioeconomic background was having a notable effect on the 

profile of en tran ts to various third-level courses and th a t more females than  males were 

entering third-level education, with the stereotypical gender biases still present in areas like 

engineering and prim ary teaching.

Gormley & M urphy (2006) analysed the CAO d a ta  from 2000 by assuming the existence 

of an underlying m ixture model with a Plackett-Luce model (Plackett, 1975) used for each 

m ixture component. This analysis yielded a model w ith 22 m ixture components, which is 

essentially claiming th a t there are 22 different sub-populations of students filling in CAO 

forms; 21 subject-based groups plus a noise group. These results supported the CAO system 

since no group emerged th a t chose courses th a t were linked only by high points value and 

not by topic.

They went further and looked a t the subset of students th a t their model assigned to  the 

health sciences component, listing the 30 courses w ith the greatest probability of appear­

ing on their CAO forms. The medicine courses across the five institutions — University 

College D ubhn (UCD), Trinity College D ubhn (TCD ), National University of Ireland Gal­

way (NUIG), University College Cork (UCC) and the Royal College of Surgeons in Ireland 

(RCSI) — topped this list, which also contained two law courses and an engineering course. 

The authors ascertained th a t this could be regarded as adding “some weight” to  the  argu­

ment th a t a points race does exist.

Lynch et al. (2006) looked at the CAO system as an admission system for dentistry  courses. 

They concluded th a t while there was a  statistically  significant relationship between Leaving 

Certificate performance and first year dental exam ination results, there was “no association 

between the num ber of points achieved by students in their Leaving Certificate exam ination
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and their performance in the final dental examination”.

Interestingly, Moran & Crowley (1979), even though they analysed data based on a slightly 

different application system over 25 years ago, also found that there was a relationship 

between Leaving Certificate performance and first year college exam performance. This 

relationship continuing in a less definite fashion through the remainder of the university 

years.

Notably, Moran & Crowley (1979) concluded at the time that science-based subjects, in 

particular Mathematics, had better predictive value than non-science-based subjects. They 

also vindicated, to an extent, the Leaving Certificate as a college entrance exam, concluding 

that "the prospects for other selection systems which can equal or improve on the Leaving 

Certificate seem poor” .

7.4 M ethodology D ata

7.4.1 M eth od ology

CAO applications data from the year 2000 were analysed using association rule mining. 

Whereas similar data have been analysed before using fairly complicated statistical models 

— Moran & Crowley (1979), Tuohy (1998) and Gormley & Murphy (2006) — the analysis 

herein is conducted at a very intuitive level. In particular, no underlying statistical model 

is assumed and no hypotheses are proposed. Therefore, the analysis essentially represents 

a convenient way of looking at the data.

7.4 .2  D ata

The data represent CAO degree applications from the year 2000; the same data that was 

analysed by Gormley & Murphy (2006). In the year 2000, 53,757 applicants — 24,419 male, 

29,337 female and one with unspecified, misspecified or incorrectly recorded gender — chose 

up to ten of 533 degree courses; note that the two-subject moderatorship offered at TOD 

was counted as separate courses since, unlike the arts degrees offered at the NUI colleges, 

each applicant explicitly selected their course options at the application stage.
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Figure 7.1: The ten most popular course choices in the year 2000.

The most popular course was Arts at UCD, which was chosen by 11,007 (20.5%) applicants. 

The ten most popular courses are shown in Figure 7.1; these are all either arts or business 

courses, with the exception of Science at UCD. The top four courses in Figure 7.1 are all 

common entry arts courses offered at NUI colleges in Dublin, Galway, Maynooth and Cork.

Note that the abbreviation DIT is used herein to denote ‘Dublin Institute of Technology’ 

and IT is used in general to denote In stitu te  of Technology’.

Interestingly, the profile of the ten most popular first choices (Figure 7.2) is different; arts 

a t UCD and NUIG switch places as the first and second most popular courses respectively. 

Furthermore, in addition to arts and business courses, primary teaching courses also feature 

this time along with the computer applications course in DCU.

Figure 7.3 represents the distribution of the number of courses chosen by applicants on the 

degree section of their respective CAO forms in the year 2000. The form was completed 

in full by 16,138 (30%) students and so 70% of applicants did not select the maximum 

number of degree courses. One was the next most popular number of courses selected, with
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Figure 7.2: The ten m ost popular first preference course choices in the year 2000.

4,952 (9%) students opting to  gamble on getting their first and sole choice. The number of 

applicants choosing 2-9 courses was roughly the same, taking values from 3,618 to 4,518.

7.5 Analysis of Rules Interrelating Courses 

7.5 .1  R ule G eneration

Association rules were generated using the apriori algorithm  of the arules package (Hahsler 

et al., 2005) in R. The m inim um  support for a rule was set a t 0.5%, the minimum confidence 

at 80% and the m aximum  length of a rule was set a t ten. Practically, support of 0.5% means 

th a t a t least 269 students m ust have selected a particular combination of courses for a rule 

comprised of th a t com bination to  feature w ithin the mined rules. In analysing these rules, 

two subsets of rules were of particu lar interest; those interrelating courses and those relating 

courses and gender.
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Figure 7.3: The number of courses selected by applicants in the year 2000.

7.5.2 P r u n in g  M e th o d

Discovery of interesting rules that interrelate courses was facilitated by using only the course 

choices in the input data, thereby omitting the gender variable; 145 association rules were 

generated using R. In order to view courses at the highest level of grouping, the following 

pruning technique was devised:

1. Consider the items in an association rule.

2. If a larger rule contains those items then delete the smaller association rule.

This method was applied and more than halved the number of association rules, leaving 72 

rules, some of which comprised the same courses in different order.

For example, a rule comprised of four medicine courses, such as

{Medicine at NUIG, Medicine at TCD, Medicine at RCSI} => {Medicine at UCC},

was pruned in favor of a rule comprised of these four, plus one additional medicine course,

such as
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{Medicine at NUIG, Medicine at UCC, Medicine at TCD, Medicine at RCSI}

=> {Medicine at UCD}.

Note that when this method is faced with two or more rules of the same length, containing 

the same items (courses), all rules are retained. The option of a third step where ties of 

this sort can be broken, using confidence say, was not availed of in this case. It can be 

seen in Section 7.5.3 that the order of such rules, when ranked by confidence, can provide 

information about their constituent courses.

The pruning method described in this section is somewhat unusual and perhaps even coun­

terintuitive. Typically, the rule {A, B} ^  C would be pruned in favor of the rule A C, 

provided that the presence of B  had no perceived ‘benefit’. However, in the specific ap­

plication of this section, it is desirable to retain the larger rule because if no rule relating 

courses like medicine and law existed amongst the pruned rules then none could have existed 

amongst the original rules.

7 .5 .3  T op T w en ty  R u les

Table 7.1 gives the top twenty rules, by confidence, relating distinct items. Following 

inspection of these rules, they can each be grouped into one of a few categories so that a 

non-model-specific ‘clustering’ of the courses emerges. An explanation of all course codes 

appearing in this work is given in Table E .l (Appendix E).

M edicine

Rules 1, 10 and 15 in Table 7.1 relate the medicine courses across the five institutions 

offering medicine: NUIG, UCC, TCD, RCSI and UCD. In this case, the fact that the UCD 

course is in the consequent in Rule 1 suggests that it was the most popular of the five 

medicine courses; in rules 10 and 15 and elsewhere amongst the 72 remaining rules, rules 

relating the medicine courses appeared with different courses in the consequent (NUIG was 

the second most popular medicine course and TCD was the third).

Rule 14 associates three courses within Dublin; Science in UCD, Medicine in TCD and 

Medicine in UCD. This is a possible example of a geographical effect on course selection.
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Table 7.1: The top twenty rules, ranked by confidence, interrelating courses.

R ule Support Confidence Lift

1 {GY501, CK701, TR051, RCOOl} ^  {DN002} 0.53% 97.92% 33.76
2 {MI005, DN012, CMOOl, FROOl} {PDlOl} 0.55% 97.67% 21.22
3 {PDlOl, FROOl, LM047} ^  {MI005} 0.55% 96.71% 21.17
4 {CMOOl, FROOl, PD103} {PDlOl} 0.60% 96.41% 20.95
5 {MI005, PD103} ^  {PDlOl} 0.51% 95.82% 20.82
6 {CMOOl, LM047} {MI005} 0.56% 95.54% 20.91
7 {GYlOl, MI005, CMOOl, FROOl} ^  {PDlOl} 0.58% 95.44% 20.74
8 {DN012, CMOOl, MHlOl, FROOl} {PDlOl} 0.64% 95.04% 20.65
9 {MI005, CMOOl, MHlOl, FROOl} ^  {PDlOl} 0.58% 94.24% 20.48

10 {CK701, TR051, DN002, RCOOl} {GY501} 0.53% 92.76% 38.84
11 {CKlOl, CMOOl} ^  {MI005} 0.54% 92.33% 20.21
12 {TR084, FT472} ^  {FT471} 0.59% 92.11% 17.38
13 {GYlOl, DN012, FROOl} {PDlOl} 0.52% 92.11% 20.01
14 {DN008, TR051} ^  {DN002} 0.54% 91.25% 31.47
15 {GY501, CK701, DN002, RCOOl} ^  {TR051} 0.53% 89.52% 41.31
16 {D C lll, FT542, DN015} ^  {FT351} 0.66% 89.44% 9.47
17 {GYlOl, MHlOl, FROOl} ^  {PDlOl} 0.57% 89.24% 19.39
18 {CKlOl, FROOl} ^  {MI005} 0.56% 89.05% 19.49
19 {MI005, DN012, PDlOl, CMOOl} ^  {FROOl} 0.55% 88.82% 29.33
20 {TR004, GY251} {DN009} 0.50% 88.67% 27.93

Teaching A rts

Rules 2-9, 11, 13 and 17-19 relate arts (BA) and education (BEd) courses across nine 

institutions throughout Ireland. The course PDlOl (BEd), at St. Patrick’s College, is the 

consequent part of the majority of these courses, suggesting that it was a significant draw 

to such-minded people and the most popular of the BEd courses.

Social Care

Rule 12 suggests that people who applied for Social Studies (Social Work) at TCD and 

Early Childhood Care and Education at DIT also selected Social Care at DIT. In fact less 

than 8% of applicants choosing the former pair failed to choose the latter course. This may 

be indicative of a geographical effect — applicants wishing to study social care in Dublin.
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Business

Rule 16 relates four business courses in Dublin: Business Studies at DIT and DCU, Man­

agement and Marketing at DIT and Commerce at UCD. There are further rules within the 

72 that related business courses in Dublin.

Law

Rule 20 associates the Law degrees at TCD, NUIG and UCD; the UCD degree being the 

most popular choice. This rule can be used to illustrate the lift of an association rule; 

given that it is known that an applicant selected Law at both TCD and NUIG, they are 

27.93 times more likely to have selected Law at UCD than if no information was available 

regarding their other course choices. Moreover, since lift is symmetric it is also true that 

if it is known that an applicant selected Law at UCD, they are 27.93 times more likely to 

have selected Law at TCD and NUIG than if no information regarding their other course 

choices was available.

7 .5 .4  R em ain in g R ules

All 72 rules are given in Table E.2 (Appendix E). When the antecedent and consequent of 

these rules are considered, almost all of them can be considered as belonging to one of the 

following categories, or ‘clusters’.

Arts Primary Teaching & Arts
Business^ Psychology & Arts
Business &: Communications Science
Engineering Social Care^
Law Theology k. Arts
Medicine

All of the remaining rules fall under some combination of these categories — typically, but 

not exclusively, a combination involving Arts. Most importantly, there were no combina­

tions, like medicine and law, that associated two very different disciplines that are regarded 

as prestigious in terms of CAO points. Therefore, it can be said that all of the 145 mined 

^Includes Business Studies, Commerce, Finance and Marketing.
^Includes Social Care, Social Science, Early Childhood Care and Early Childhood Studies.
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rules were grouped by topic of interest and not by perceived prestige associated with high 

points value.

Looking within the categories into which these nales fall, there is evidence of further group­

ing by geographical area. For example, Rule 12 in Table 7.1 relates social care courses 

within Dublin whereas Rule 38 in Table E.2 relates the same type of courses without this 

geographical constraint.

Moreover, Rules 29 and 49 (Table E.2) relate science courses in the Dublin area, while 

Rule 51 relates business courses within Dublin. The geographical effect is not, however, 

restricted to the Dublin area. Rule 57 relates thre« courses in Cork: Commerce, Government 

and Public Policy, and Arts, all at UCC. This m ay in fact be an example of a rule where 

topic was second to geographical location as the main motivator for course selection.

7.5.5 R em arks

By inspection of the top 20 rules, five ‘clusters’ emerge. These ‘clusters’ are consistent 

with the findings of Tuohy (1998) and Gormley* & Murphy (2006), yet come about from 

the output of a very simple analysis that assu.med no underlying model. Furthermore, 

inspection of the whole 72 rules led to the discovery of six additional ‘clusters’.

The presence of these ‘clusters’, especially arrived at in such a natural fashion, is evidence 

of the effectiveness of the points system; this arualysis yielded no evidence to suggest that 

students choose courses with the highest points, instead the data suggest that th(!y choose 

courses by topic, with geography sometimes a fac tor. Moreover, due to the pruning method 

that was employed, it can be inferred tha t amongst all 145 mined rules, there was no 

evidence to suggest that course choices are made based on prestige associated with high 

CAO points.

7.6 Further E xploratory A nalysis  

7.6.1 T he Idea

Further analysis was carried out to search for amy weak evidence that might suggest that 

a points race exists amongst a smaller cohort of students. The support threshold was
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reduced and pruning was effected. Then subsets of prestige (high-point) courses w ithin the 

remaining rules were examined.

7.6.2 M ethodology

The rules were mined once again, this time the support threshold was set a t ju st 0.1%, 

meaning th a t a rule w'ould be mined so long as it was supported by at least 54 appli­

cants. The confidence threshold rem ained at 80% and the pruning m ethod employed in 

Section 7.5.2 was applied to  the 2,537 rules th a t were generated; this reduced the number 

of rules to  1,020.

7.6.3 R esults

W hilst three rules were found th a t contained law and medicine and one tha t contained 

psychology and law, these rules were each supported by less th an  70 applicants.

7.7 Analysis of Gender Related Choices —  Female 

7.7.1 Initial Analysis

The gender variable was included in the mining process, the support threshold was reset to  

0.5% and 536 association rules were generated using the arules package in R. The resulting 

rules were pruned, as in Section 7.5.2. The remaining rules were syntactically constrained 

to  have ‘female’ (denoted F  herein) in the consequent and the top ten such rules are given 

in Table 7.2.

From Table 7.2 it is apparent th a t the Early Childhood Care and Education course a t DIT 

is in the antecedent of eight of the ten  rules. The aim of this section was to find relationships 

between course choice and gender (female), and the rules in Table 7.2 largely failed in this 

aim. Therefore an alternative approach was necessary.

Note th a t rules were chosen with {F}  in the consequent rather than  the antecedent because 

the proportion of applicants to a  particular course th a t were female was viewed as more 

interesting than  the proportion of females th a t applied to a particular course. In any event, 

since lift is sym m etric, it applies identically to  the converse of each rule.
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Table 7.2: The top ten rules, ranked by confidence, with consequent {F}.

A ntecedent Supp. Conf. Lift

{BEd at Froebel, Early Childhood Care & Ed. at DIT} 0.54% 99.32% 1.82
{Arts at NUIG, Early Childhood Care & Ed. at DIT} 0.86% 99.14% 1.82
{BEd (Home Economics) at St. Catherine’s} 1.26% 99.12% 1.82
{E.C.C. &L Ed. at DIT, Tourism Marketing at DIT} 0.59% 99.07% 1.82
{Arts at UCC, E.C.C. &; Education at DIT} 0.54% 98.97% 1.81
{E.C.C. & Ed. at DIT, Soc. Care at DIT, E.C.Std. at UCC} 0.84% 98.90% 1.81
{BEd at St. Patrick’s, E.C.C. & Ed. at DIT} 0.66% 98.89% 1.81
{BEd at Mary Immaculate, Early Childhood Std. at UCC} 0.60% 98.80% 1.81
{E.C.C. & Ed. at DIT, Hosp. (H. k  C.) Man. at DIT} 0.58% 98.42% 1.80
{Social Science at UCC, E.C.C. & Ed. at DIT} 0.51% 98.21% 1.80

7.7.2 A n A ltern ative  A pproach —  G ray S>l  O rlow ska’s In terestin gness

Due to the failure of the approach described in Section 7.7.1, a different tact was taken. Gray 

and Orlowska’s interestingness was computed for all 536 mined rules, with K  = M  = 2. 

The top ten rules with consequent {F},  ranked in order of interestingness, are given in 

Table 7.3. The magnitude of the interestingness column (Interest.) of Table 7.3 is not of 

particular importance here; it is used for ranking purposes only.

Table 7.3: The top ten rules, ranked by interestingness, with consequent {F}.

A ntecedent Supp. Conf. Lift Interest.

1 {Social Care at DIT} 4.99% 94.10% 1.72 0.00165
2 {Early Childhood Care Sz Ed. at DIT} 4.49% 98.13% 1.80 0.00140
3 {BEd at St. Patrick’s} 4.01% 87.23% 1.60 0.00098
4 {BEd at Mary Immaculate} 3.89% 85.18% 1.56 0.00089
5 {Social Science at UCD} 3.47% 85.79% 1.57 0.00072
6 {Early Childhood Studies at UCC} 3.19% 96.30% 1.78 0.00069
7 {Social Science at UCC} 3.02% 87.88% 1.61 0.00056
8 {BEd at Froebel} 2.77% 91.34% 1.68 0.00049
9 {E.C. Care &: Ed. at DIT, Soc. Care at DIT} 2.49% 98.10% 1.80 0.00042

10 {BEd at Colaiste Mhuire} 2.51% 88.27% 1.62 0.00039

Choosing K  — M  = 2 can be viewed as giving a balanced compromise between the distance 

of lift from one and the respective magnitudes of P{A)  and P{B).  However, a more concrete 

argument can be made for setting K  =  M. Giay and Orlowska’s interestingness can be
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written as

Int(A ^  B - K , M )  =  [c{A -  P{B)^]  P { A f ^ P { B f ^ - ^ .

To see why this is so, notice that 

Int(A ^  B - K , M )  =

-nBY

(7.1)

(  P{ A , B)  Y  ' 
\ P { A ) P { B ) J

\ K

P{B) K

{P{A) . P{B) f ^

i P{ A) . P{ B) f ^

=  [P{B 1 A ) ^  -  P{B)^]  P { A ) ^ P { B Y ^ - ^

=  [c(A ^  B ) ^  -  P{B)^]  P { A f ^ P { B ) ^ ^ ~ ^ .

From Equation 7.1, an argument for choosing K  — M  becomes apparent; since all of the 

rules are to be syntactically constrained to have a particular consequent {F or later. A/), 

P{B) = P{F)  will be equal across all rules and choosing K  — M  gives P{B)^^~^  =  1. 

Setting K  — M  = 2, which is somewhat arbitrary, achieves a suitable compromise between 

measuring the distance of c(A B)  from P{B)  and the magnitude of P{A)  giving,

In t(^  ^  B- 2,2) =  [c(A => B f  -  P ( B f ]  P{A)^.

7 .7 .3  T op T en R u les

By inspection, the rules in Table 7.3 fall neatly into two distinct categories. This gives 

an insight into the areas of undergraduate study that are most strongly linked to female 

applicants.

Prim ary Teaching

Rules 3, 4, 8 and 10 associated various types of primary teaching degrees (BEd) to female 

applicants. These rules all have confidence in the range 85.18% -  91.34%, which is consistent 

with the proportion of primary school teachers in Ireland tha t are female. Drew (2006) 

reports UNESCO educational statistics tha t reveal tha t 86% of primary school teachers in 

Ireland in 2002 were female. Table 7.4 gives the corresponding figures for the years 1999, 

2001 and 2004 as well as the year 2002.
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Table 7.4: Gender breakdown of primary teaching staff in Ireland, 1999-2004.

1999 2000 2001 2002 2003 2004

T o ta l 21,148 20,865 21,865 22,979 23,972 24,792
Fem ale 17,924 - 18,680 19,772 - 20,671
M ale 3,224 - 3,185 3,207 - 4,121
% Fem ale 84.8 - 85.4 86.0 - 83.4
% M ale 15.2 - 14.6 14.0 - 16.6

The raw data for Table 7.4 was sourced from the UNESCO Institute for Statistics website 

h ttp ://w w w .u is .u n e sc o .o rg , UIS Database, updated following the Final release of data 

from the 2005 education survey. The gender-specific data for the years 2000 and 2003 were 

listed as unavailable.

Over the four years for which data on the proportion of female primary teachers is available, 

this number is between 83.4% and 86.0%. Drew (2006) suggests a variety of reasons that 

may explain why men are not attracted to primary teaching courses. Moreover, this issue 

is not confined to applicants within the Republic of Ireland. The situation is similar north 

of the border. The Stranmillis Annual Report 2003/04 stated that “male entrants to the 

Primary B.Ed. represent 17% of the Primary intake [in 2003], compared with 9% in 2002.” 

However, their 2004/05 annual report revealed tha t this number had fallen to 10% in 2004. 

Earlier this year it appeared that the Government recognised this imbalance as an issue 

and was planning to address it. In an article entitled Competition Intense for Places on 

Teaching Degree Courses in the Irish Times on 25th January 2006, Brian Mooney wrote 

that “Some 90 per cent of primary school teachers under 40 are women and today, the 

Department of Education is launching a promotion campaign to attract men into primary 

teaching.”

Social C are  &; C h ild h o o d  C are

Rules 1, 5 and 7 link courses in Social Care and Social Science to female applicants. Rules 

2 and 6 link courses in Early Childhood Care /  Studies to female applicants; for example, 

over 96% of applicants to Early Childhood Studies at UCC were female. Rule 9 shows that 

over 98% of applicants who applied for both Social Care and Early Childhood Care and



Education at DIT were female.

This area shows a gender imbalance on par with, or worse than, that shown in primary 

teaching. The reasons for such an imbalance are likely to be similar; such as the perception 

of such jobs as ‘women’s jobs’. However, there is far less literature around this topic; 

suggesting that it may be perceived as being of less importance to society.

7.7.4 Further Rules

Extending to the twenty most interesting rules, as listed in Table E.3 (Appendix E), all 

courses that emerge are in the areas of primary teaching, social studies and arts. Therefore, 

the stereotype that primary teachers and social workers are predominantly female is, the 

data suggests, apparent from the application stage.

7.8 M iscellaneous

7.8.1 A nalysis o f Gender R elated Choices —  M ale

The 536 rules generated in Section 7.7.1 were ranked according to their interestingness, with 

the syntactic constraint that the consequent is ‘male’, denoted {M}. The top twenty such 

rules are given in Table E.4; these rules all associated courses in engineering, construction 

and manufacturing. The data suggests, as in the female case, that the usual stereotypes

hold in the male case and are entrenched in the application process.

7.8.2 R esults o f Analyses for A lternative Support Confidence Thresh­

olds

One of the criticisms sometimes levelled at association rule analysis is the sensitivity of the 

results to perturbation of the support or confidence thresholds. Therefore, in the interest 

of completeness, analyses were carried out with support as low as 0.1% and confidence as 

low as 50%. Note that while a support threshold of 0.1% may be considered ‘too’ low, it 

is certainly the case that a rule with confidence 50% is not useful. If a rule A ^  B  has

confidence 50% then B  is as likely to occur as not, given that A occurs.
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The results of this analysis supported the earlier findings in this chapter, with rules linking 

courses by high points alone confined to a very small number of students.

7.9 C onclusions

Through the application of a simple analysis to CAO application data from the year 2000 

— which consisted only of a useful way to look at the data without imposing any statistical 

model, testing any hypotheses or computing any confidence intervals — some important 

questions regarding the CAO application system have been answered, while others may 

have been raised.

Definite patterns of course choice amongst applicants emerge, based primarily on course 

topic, with geography also a factor for some applicants. In no instance, save for very small 

cohorts of students, did points alone dictate course choice. Moreover no evidence to link 

courses purely based on points was found. This is a very im portant result, supporting the 

CAO application system as an effective third level application channel.

There is strong gender linkage amongst the data. The vast majority of applicants to courses 

in social care, early childhood care and primary teaching are female; whereas the majority 

of applicants to courses in engineering, construction and manufacturing management are 

male.

Whereas the gender imbalances in primary teaching and engineering are active issues, com­

paratively little is being done to address the imbalances tha t exist in the social care and 

construction sectors. W hether or not these imbalances are detrimental to our society is 

debatable, however, it is clear from this analysis that they can all be traced back to the 

application stage.

7.9.1 A  W ord o f W arning

The conclusions of this chapter should not be taken as a vindication of the CAO college 

application system. Whereas it is true tha t there is no evidence herein to suggest that a 

‘points race’, in the negative sense, is prevalent, it is not necessarily true that this application 

system puts the best applicants into each college course.



Tuohy (1998) gives the analogy of a bank using a round of golf to decide which applicant 

should get the management post; it is a fair, consistent system but the best golfer will not 

necessarily be the best branch manager.
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Chapter 8

Standardising the Lift of an 

A ssociation Rule

8.1 Introduction

Various measures of the ‘interestingness’ of an association rule were introduced in Chapter 6. 

One of these, Gray and Orlowska’s interestingness, was used in the analysis of the CAO data 

in Chapter 7. While Gray and Orlowska’s interestingness was useful in this application, the 

somewhat arbitrary nature of the choice of K  and M  is a drawback of this interestingness.

This chapter aims to use one of the most commonly used stand-alone measure of interesting­

ness, the lift, to devise a new measure of interestingness. This new kind of interestingness, 

standardised lift, relies only on the most commonly used functions of an association rule; 

support, confidence and lift. This new interestingness can be visualised elegantly and it has 

no parameters, so there are no ambiguities like those around Gray &: Orlowska’s interest­

ingness.
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8.2 Range of Values of Lift

8.2.1 Range in Terms of P{A)  & P{B)

The range of values that the lift of an association rule A ^  B  can take is restricted by the 

respective values of P{A)  and

ma^{P{A) + P { B ) - l , l / n }  1
P{A)P{B)  -   ̂ -  msix{P{A),P{B)}'  ^

where n is the the number of transactions Tj. Equation 8.1 is derived in Appendix F .l and 

gives bounds that are almost identical to those derived by Frechet (1951).

8.2.2 Range in Terms of the Minimum Support Threshold or the Number 

of Transactions

Equation 8.2, which is derived in Appendix F .l, is an expression for the range of values of 

lift in terms of minimum support threshold s.

- ^ < L { A ^ B ) < - .  (8 .2)(1 +  s)^ s

Now, substituting s = l / n  in Equation 8.2 gives the bounds in terms of n,

Ari
< L { A ^ B ) < n .  (8.3)

(n +  1)̂

Equation 8.3 will give realistic bounds for lift in situations where minimum support and 

confidence thresholds are not used in the mining process.

Standardisation will not be useful in general if achieved through equations 8.2 or 8.3 because 

the limits given in these equations do not vary from rule to rule. In other words, a ranking 

of rules by hft would be invariant under any standardisation involving these limits alone. 

Equation 8.3 does, however, give an insight into why it is necessary to standardise lift: the 

maximum value that lift can take is n and this occurs when a rule is supported by only one 

transaction. Rules supported by only one transaction will not usually be of interest and 

may even be pruned in the rule generation stage of the mining process.
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8.2.3 Range in Terms of P{A), P{B),  Support & Confidence Thresholds

Equation 8.1 can be expanded to account for both the minimum values of support (s) and 

confidence (c) tha t may be set at the mining stage;

I P{ A)  + P { B ) - 1  4s s c
“ ’"^1  Pi A) P{B)  ’ (l +  s)2’ P { A ) P { B y P m j

< L{A ^  B ) <

Equation 8.4 is derived in Appendix F .l and follows from equations 8.1 and 8.2 with little 

extra work. This equation provides the most general, and accurate, upper and lower bounds 

for lift given herein.

8.2.4 Standardisation

Equation 8.1 can be used to standardise the lift of an association rule according to the 

formula

(8.5)
V — X

where
max{P(A) +  P(B ) — 1 ,1/n}

"  {P{A)PiB) )  ’

and
1

V —
m ax{P(^), P (S )}  ’ 

are the limits given in Equation 8.1.

The standardised lift C must take a value inside the closed interval [0,1]. A value close to 

1 is indicative of an interesting rule. By refining A to account for the lower bound given in 

Equation 8.4, the expression for C in Equation 8.5 can be altered to account for minimum 

support and confidence thresholds. We shall denote this type of standardised lift by C*, 

which is given by

(8 .6 )
V — X*

where
f P{A)  +  P{B)  — 1 4s s c

P{A)P{B)  ’ {I + s f '  P{ A) P{ BY  P{B)

and V is defined as before.
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8.3 Exam ple I: C ollege A pplication  D ata

8.3.1 Background & D ata

Chapter 7 presented an analysis of CAO data from the year 2000. These data are based on 

53,757 applicants who each chose up to ten of 533 degree courses. Association rules were 

initially generated as outlined in sections 7.5.1 and 7.5.2.

8.3.2 Initial A nalysis 

R ules

Following the application of the pruning procedure mentioned in Section 7.5.2, 72 of the 145 

rules tha t were initially mined remained. Four of these rules contained only the medicine 

courses offered across five institutions and they are given, ranked by confidence, in Table 8.1.

Table 8.1: The four mined rules that contained only medicine courses.
Id. R ule Support Confidence Lift

1 {GY501, CK701, TR051, RCOOl} => {DN002} 0.53% 97.92% 33.76
2 {CK701, TR051, DN002, RCOOl} ^  {GY501} 0.53% 92.76% 38.84
3 {GY501, CK701, DN002, RCOOl} =» {TR051} 0.53% 89.52% 41.31
4 {TR051, GY501, DN002, RCOOl} {CK701} 0.53% 85.20% 46.54

Note tha t all of the rules in Table 8.1 have equal support since each of the four rules comprise 

the same items.

Standardised Lift

The bounds given in equations 8.1 and 8.4 were calculated for each of the rules in Table 8.1 

and are given in Table 8.2.

Table 8.2: The four rules from Table 8.1, with their bounds for hft.
Id. R ule Lift A A* V

1 {GY501, CK701, TR051, RCOOl} ^  {DN002} 33.76 0.12 31.85 34.48
2 {CK701, TR051, DN002, RCOOl} ^  {GY501} 38.84 0.14 36.64 41.87
3 {GY501, CK701, DN002, RCOOl} {TR051} 41.31 0.14 38.97 46.15
4 {TR051, GY501, DN002, RCOOl} ^  {CK701} 46.54 0.16 43.91 54.62
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The lift of each rule in Table 8.2 and its relationship with the upper and lower limits can 

be visualised as shown in Figure 8.1 and Figure 8.2.
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Figure 8.1: The lift of the rules in Table 8.2 with upper (u) and lower (A) bounds.
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Figure 8.2: The hft of the rules in Table 8.2 with upper (i;) and lower (A*) bounds.

Figures 8.1 and 8.2 confirm that ordering these rules by confidence gives a ranking that
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is consistent with the position of the hfts in relation to their respective upper and lower 

bounds. Figure 8.2 is, however, much better for this purpose, providing much tighter and 

more reveahng lower bounds. These figures, and Figure 8.2 in particular, illustrate why 

rules with greater lift are not necessarily better rules.

The lift of each rule in Table 8.2 was then standardised according to Equation 8.5 and 

Equation 8.6 and their standardised lifts, £  and C* respectively, are given in Table 8.3.

Table 8.3: Standardised lifts for the four rules listed in Table 8.1.
Id . R ule Conf. Lift C C*

1 {GY501, CK701, TR051, RCOOl} ^  {DN002} 97.92% 33.76 0.979 0.727
2 {CK701, TR051, DN002, RCOOl} {GY501} 92.76% 38.84 0.927 0.420
3 {GY501, CK701, DN002, RCOOl} =» {TR051} 89.52% 41.31 0.895 0.326
4 {TR051, GY501, DN002, RCOOl} ^  {CK701} 85.20% 46.54 0.852 0.246

The values of C* in Table 8.3 give a better, more discriminatory, range of values for stan­

dardised lift than those given by C. This example illustrates how standardised lift may be 

used to choose the ‘best’ rule from amongst multiple rules that are comprised of the same 

items.

Ranking association rules by standardised lift reflects how close the lift of each rule is to 

the maximum value tha t it can take given the support of its antecedent and consequent, 

and, if apphcable, minimum support and confidence thresholds. This presents a natural 

and unambiguous method of ranking association rules.

8.3.3 A nalysis of Rules w ith  Consequent ‘Fem ale’

R ules

In Chapter 7 rules with a gender variable in the (singleton) consequent were also considered. 

In these cases Gray & Orlowska’s Interestingness, Int(A B,  2, 2), was used to rank these 

rules. The three highest ranked rules with consequent ‘female’ are given in Table 8.4.

The ranking of the rules in Table 8.4 by Int(yl => B,2,2)  is different to tha t by hft or by 

confidence.
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Table 8.4: The highest ranked, by In t(^  B;2,2),  rules with consequent {F}.
Id. A ntecedent Support C onfidence Lift Int.

1 {Social Care at DIT} 4.99% 94.10% 1.72 0.00165
2 {Early Child. Care & Ed. at DIT} 4.49% 98.13% 1.80 0.00140
3 {BEd at St. Patrick’s} 4.01% 87.23% 1.60 0.00098

Standardised Lift

The upper and lower limits of lift were computed along with the standardised lift C* for 

each rule in Table 8.4. These results can be seen in Figure 8.3 and Table 8.5.
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Figure 8.3: The lift of the rules in Table 8.4 with upper {v) and lower (A*) bounds.

This ranking is different to that by Gray and Orlowska’s interestingness and it does, in this 

instance, agree with the ranking by confidence. The agreement between the ranking by 

standardised lift and that by confidence is discussed further in Section 8.3.4.

Table 8.5: Standardised lift for the three highest ranked rules with consequent {F}.
Id. A ntecedent Supp. Conf. Lift Int. £*

1 {Social Care at DIT} 4.99% 94.10% 1.72 0.00165 0.71
2 {Early Child. Care & Ed. at DIT} 4.49% 98.13% 1.80 0.00140 0.91
3 {BEd at St. Patrick’s} 4.01% 87.23% 1.60 0.00098 0.36

Rule Id
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8.3.4 Remark

D espite the results of the analyses in this section, ranking by standardised lift and ranking 

by confidence is not generally the same. It has been the same in the rules that we have 

considered w ith consequent ‘fem ale’ because the lift was bounded by [ c / P { B ) , \ / P { B ) ]  in 

all of these cases and so C* was given by

P{A, B)  c
L -  X* _  P{A) P{ B)  p j B )  _  P { B  \ A)  -  c _  c(A => B)  -  c
n  1   \  *  C   1 1 ___ f t  1   f t  ^
^  P{B)  P{B)   ̂ ^  ̂ ^

which is a linear function of confidence for fixed c. The ranking of the rules in Section 8.3.2 

by standardised lift also agreed with the ranking by confidence.

8.4 Exam ple II: G erm an Social Life Feelings 

8.4.1 The D ata

The data analysed in this section are taken from a study of ‘social life feelings’ that ap­

peared in Scheussler (1982) and Krebs & Schuessler (1987), and has been analysed many 

times. These analyses include Bartholomew & Schuessler (1991), Bartholom ew (1991), 

Bartholomew et al. (1997), de Menezes Bartholomew (1996) and Bartholom ew & K nott 

(1999). The purpose of the analysis in this section is to dem onstrate that the standardised  

lift can give a different ranking to  either confidence or lift and to  dem onstrate the potential 

importance of negations in association rule analysis. Due to the extensive body of literature 

on these data, no in-depth analysis in conducted herein.

Table 8.6: The questions that were asked in the German ‘social life feeling’ study.

1. Anyone can raise his standard of living if he is willing to work at it.
2. Our country has too many poor people who can do little to raise their standard

of living.
3. Individuals are poor because of the lack of effort on their part.
4. Poor people could improve their lot if they tried.
5. Most people have a good deal of freedom in deciding how to live.

The data used herein are the answers given by a sample of 1,490 Germans to  the questions 

in Table 8.6. These are the data that were analysed by Bartholom ew & K nott (1999) and
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they were sourced from w w w .kendallslibrary .com . Each of the five questions tha t were 

asked could be answered either ‘yes’ or ‘no’. Overall, there were 3,224 ‘yes’ answers and 

3,227 ‘no’ answers. The distribution of the number of ‘yes’ answers per question is given in 

Figure 8.4, which reveals that only questions 2 and 3 had more than 50% ‘yes’ answers.

oo _ _________ _________o  n

oo -
CD

oo  -  -------------
CM

O  — I ----------------------------------- ----------------------------------- ----------------------------------------------------------------------------- -------------------------------------------

1 2 3 4 5

Question

The number of ‘yes’ answers given to each question by the sample of surveyed

8.4 .2  N egation s & C oding

These data raise an interesting point; the fact that ‘yes’ is coded ‘1’ and ‘no’ is coded ‘0’ 

can be viewed as arbitrary. Further, had the questions been worded differently, the ‘I ’s and 

‘O’s could have been be flipped in some or all of the questions. Negations were therefore 

used in this analysis. In this case, the ‘I ’s were coded y l, y2, y3, y4 and y5 respectively 

while the ‘O’s, or negations, were coded n l, n2, n3, n4 and n5 respectively. Then the apriori 

algorithm was used to mine the rules.

This straightforward method of mining rules containing negations is facilitated by a rel­

atively small data set and would not be practical in most cases. Further discussion on 

negations is given in Section 8.5.

0)
5
COc
(D

'< /5
QJ

(U

E3

Figure 8.4: 
Germans.
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8.4,3 R esulting Rules

Association rules were generated using the arules  paclcage in R with minimum support set at 

20% and minimum confidence at 80%. This approach led to  the generation of 38 association 

rules, the top ten  of which, ranked by £*, are given in Table 8.7.

Table 8.7: Top ten rules from the  German ‘social life feeling’ data, ranked by C*.

Id . R u le S u p p . C onf. L ift £* LB U B
1 {n3,n4} ^  {nl} 0.262 0.951 1.095 0.757 0.920 1.151
2 {n3,n5} ^  {nl} 0.255 0.945 1.088 0.726 0.920 1.151
3 {n4,n5} ^  {nl} 0.446 0.945 1.087 0.723 0.920 1.151
4 {n3} ^  {nl} 0.311 0.935 1.076 0.677 0.920 1.151
5 {n4} ^  {nl} 0.548 0.935 1.076 0.674 0.920 1.151
6 {n2,n4} =4> {nl} 0.225 0.949 1.092 0.673 0.971 1.151
7 {n4,n5,y2} {nl} 0.256 0.934 1.075 0.670 0.920 1.151
8 {n3,n4,n5} {nl} 0.221 0.954 1.097 0.667 0.991 1.151
9 {n4,y2} {nl} 0.323 0.925 1.064 0.626 0.920 1.151
10 {n4,n5,y3} => {nl} 0.225 0.936 1.077 0.617 0.958 1.151

All of the rules in Table 8.7 had the same upper bound for lift because they all had the 

same consequent, which had greater support in each case, than  the antecedent. The lift of 

each rule can be seen in context of its upper and lower bounds in Figure 8.5.

8.4.4 Results

Although the rules had not been pruned to  any great extent, looking at Table 8.7, some 

interesting rules became apparent. The rule with the highest value of standardised hft was 

{n3, n4} ^  {nl}. T ha t is, 95.1% of those who did not agree th a t people were poor because 

of lack of effort or th a t poor people could improve their lot if they tried  also did not agree 

th a t people could raise their standard  of living if they were willing to  work at it.

Note th a t the ranking of the rules in Table 8.7 is by C* and is different than  the ranking by 

either confidence or hft. This example illustrates £* as a new and useful m ethod of ranking 

association rules. Furtherm ore, if a  pruning technique like th a t described in Section 7.5.2 

was applied to  these data , C* could be used to  effectively break ties.
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Figure 8.5: The lift of the ten rules, given in Table 8.7, along with their upper ( ;̂) and lower 
(A*) bounds.

8.5 N egations

8.5.1 Background —  N egative A ssociation Rules

Silverstien et al. (1998) proposed the concept of association rules involving negations. 

Savasere et al. (1998) demonstrated a method of mining rules of the form A =f> B, which 

they referred to as ‘negative association rules’. Hofmann & Wilhelm (2001) proposed mosaic 

plots as a means of visualising all combinations of presence or absence of the antecedent and 

consequent of an association rule; this is a method of deriving rules containing negations 

after mining, however it is limited in its effectiveness when the consequent is not singleton. 

Wu et al. (2002, 2004) considered rules of the form A B, A ^  B  and A ^  B  and 

provided algorithms to mine such rules.

8.5.2 How M any More Rules

In Appendix F.2 it is shown tha t the number of rules that can possibly be generated from 

an itemset consisting of n items and their negations is given by

5 " - 2 ( 3 ” ) +  l. (8.7)
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If negations are not considered, th is num ber is given by

n

^ " C i ( 2 * - 2 )  = 3 ” - 2 ( 2 " )  +  l 
1 = 2

(Hipp et ai,  2002), where

 ̂ r!(n  — r)!

These bounds and, in particular, results th a t came about in the process of deriving these 

bounds are similar to  the results of Frechet (1951).

Now, it is trivial to work out the num ber of ‘ex tra ’ rules th a t can be mined when negations 

are included;

5" -  2 (3” ) +  1 -  [3" -  2 (2” ) +  1] =  5" -  3”+  ̂ +

W hen viewed as a proportion of the to ta l number, the am ount of rules th a t contain a t least 

one negation is given by
5” -  3”+i +  2"+^

5” - 2 ( 3 " )  +  l ■

Therefore, when an item set of ju st 20 items is considered, it follows from Equation 8.8 th a t 

99.996% of potential association rules involve negations.

Of course, it may be argued th a t the num ber of rules given by Equation 8.7 is unrealistic 

because a minimum of 2” transactions would be required in order th a t all potential rules may 

exist. Furtherm ore, it is highly unlikely in most practical applications th a t a transaction 

involving all, or even most, of the items will occur. For example, in a convenience store 

application it is highly unlikely th a t any one custom er will purchase more than  0.5% of the 

items. However, regardless of these considerations. Equation 8.8 provides a useful figure for 

the proportion of potential rules th a t will contain negations.

8.5.3 M ining A ssociation Rules Involving N egations

The huge am ount of ex tra  rules th a t can be mined when negations are included in the 

mining process presents m any com putational problems. Furtherm ore, the m ethod of m ining 

association rules involving negations dem onstrated in Section 8.4 is not viable in general. 

Thiruvady & Webb (2004) and Gan et al. (2005) presented efficient algorithm s to  mine rules 

containing negations.
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Similarly to the interestingness of a rule, the importance of negations in association rule 

mining depends on the data and on the purpose of the analysis. In the context of the 

German social life feeing data analysed herein, an argument was presented for the inclusion 

of negations in the mining paradigm. However, no such argument was made in relation to 

the CAO data  because applicants were restricted to selecting at most ten courses and so 

each applicant would have over 500 negations.

8.6 Sum m ary

A new function for ranking association rules, standardised hft, has been introduced. A 

method of visualising standardised lift or, more precisely, lift relative to its upper and 

lower bounds, was also introduced. This function, and all theory around it, calls only 

upon support, confidence and lift — all of which are common and widely used functions of 

association rules — and, if applicable, minimum support and confidence thresholds.

This new method of ranking rules was illustrated on two data sets and compared to existing 

functions of interestingness. In the analysis of second of these datasets, the German social 

life feeling data, negations were introduced to facilitate the mining process. An argument 

was given for the inclusion of negations in the association rule mining process, including a 

quantification of the amount of rules that can be mined when negations are included.
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Chapter 9 

Conclusions

9.1 Sum m ary

This work has focused on the development and implementation of two topics in unsupervised 

learning; model-based clustering via parsimonious Gaussian mixture models and analysis of 

binary data via association rule mining. Significant additions have been made to the body 

of literature on these topics.

9.1.1 M odel-B ased  C lustering

A new family of mixture models for model-based clustering has been introduced. Well- 

established mixture models were used for motivation and the model parameters for each 

member of this new family of models were estimated using an AECM algorithm. The 

‘best’ member of the family was chosen using a well-established criterion — the Bayesian 

information criterion. The clustering of the data, according to each model, was given by 

the values assigned to the group membership labels through the learning process.

These models were then applied to coffee and wine data and performed favorably when 

compared to well-established techniques. Although initially comprised of eight members, 

this family was extended to twelve members and then applied to crabs data giving excellent 

results when compared to other model-based clustering techniques.

A modified Cholesky decomposition was used to build the framework for another family of
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Gaussian mixture mixture models that are suitable for the analysis of longitudinal data. 

Four members of this family were introduced and applied to real data, where they performed 

well, giving good clustering results.

9.1.2 A ssociation Rule M ining

The application of association rule mining to college application data was presented as a 

novel application that included a simple, but very effective, pruning strategy. This analysis 

contributed to the discussion over the existence of a ‘points race’. A new and very natural 

measure of interestingness was introduced and a method of visualising this new type of 

interestingness was presented. The number of association rules tha t can arise from a given 

itemset when negations are included in the mining paradigm was quantified for the first time. 

This new measure of interestingness was demonstrated on the college application data  and 

on German social data. The analysis of the German data was also used to illustrate the 

potential importance of negations.

9.2 Further Work

9.2.1 M odelling the M ean in M odel-Based Clustering

In the earlier part of this work there was some focus on modelling the covariance structure 

in Gaussian mixture models. There is also scope to model the mean structure. The saving, 

in terms of potential number of parameters, tha t can be realised by modelling the mean 

is not as great as that which may be realised by modelling the covariance structure. For 

a Gaussian mixture model involving G groups and p variables, modelling the group means 

/ig will require Gp parameters. However, in situations where there may be a lot of groups, 

this saving may be worthwhile.

For example, some of the group means could be considered equal, but not others, or, in 

the case of longitudinal data, the mean of each group could be modelled using a general 

polynomial spline, with some group-specific correction applied where necessary.
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9.2.2 Allowing the Num ber of Factors to Vary Across Groups

The PGMM family of models could be further extended by allowing the number of factors 

q to vary across groups. This approach would allow greater flexibility for model fitting. 

However, the resulting increase in the number of models would be so great that this approach 

would be highly computationally intensive.

9.2.3 A pplication of Generalised Procrustes A nalysis to  M odel-Based  

Clustering

Generalised Procrustes analysis (Gower, 1975), or GPA, is a method of matching or aligning 

one matrix with another. The elements of the matrices are matched using rotation, trans­

lation and scaling. Parameters of mixture models, or even a collection of parameters, could

be subjected to GPA. This would have the effect of aligning parameters across groups. 

Consider the PGMM family of models as an example; the loading matrices could be 

subjected to GPA to facilitate estimation of the posterior expected value of the latent 

variables given the data, the model parameters and membership of group g\ that is

E [u* ! Ag, = A ^S“ *(xj -  Hg),

where A^ is the only term that is not rotation invariant.

9.2.4 Parallelisation

There is scope for parallelisation of the C code that was written to perform the AECM 

algorithm on the PGMM family of models. The code already written, and described in 

Appendix D, is ‘embarrassingly parallelisable’ because it can easily be compartmentalised 

into independent sections defined by the triple (model, G, q). Parallelising the code in such 

a fashion would greatly reduce the computation time and allow full exploitation of the linear 

relationship between the number of covariance parameters and the dimensionality of the 

data.
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9.2.5 Further Expansion of the CDG M M  Family

There is great scope to  expand the CDGMM family of models beyond the four initial 

members th a t were presented herein. As m entioned in Section 5.5, th is could be achieved 

by imposing constraints on the sub-diagonals of the m atrix  Tg.

9.2.6 M odel Selection &; Convergence Criteria

In the analyses of d a ta  carried out using the PGM M  and GPGM M  families of models it 

became apparent th a t the model with the greatest BIG was not always the best model in 

term s of classification. There is work to  be done on the viability of alternatives to the BIG, 

such as the ICL, for model selection. There is also work to  be done on the use of different 

convergence criteria, such as A itken’s acceleration, with MCLUST.

9.2.7 A ssociation Rules

There is some work to  be done on an association rule approach to  categorical data. There 

has already been some work carried out in this area, such as th a t given in Tan et al. (2006, 

C hapter 7), bu t much is left to do. The application of some of the ideas around standardised 

lift th a t were raised herein, may lead to  the emergence of interesting concepts in this area. 

Furtherm ore, the resulting theory may be so different from association rule mining as to 

constitute a new d a ta  mining technique.

9.2.8 The CAO D ata

An analysis of the CAO d a ta  th a t uses the entry points from the  previous year to  try  

to  predict the courses selected, or the order of the courses selected, by applicants may 

reveal interesting results. Repeating the analysis of C hapter 7 w ith d a ta  from another year 

may also be useful. The repetition of the analysis herein w ith the inclusion of a variable 

indicating the geographical location of the  applicant’s school may confirm the tendency 

towards nearby universities, for a cohort of students, th a t is suggested herein.
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A ppendix A

Calculations for PG M M s

A .l  Im portant R esults

The following results from Liitkepohl (1996) and Magnus k. Neudecker (1999) are utilised 

herein;

^log|X| _  1
a x

a tr (X A )  _  c)tr(A X ) _
5X “  5X “  ■

a tr (A X B )  _

^ m x n

■^m X n 1 B /^ x m

^mXTi i -A-nxm

^ m x n 1 A p x m

^ m x m

B / i x m

5X

a M X A X B ) ^B-X-A- + A'X-B'.
a X  

a tr (X A X 'B
=  B 'X A ' +  B X A

aX
The following Theorems, taken from Graybill (1983), are also im portant.

T h eorem  A .I .  Let A  and B be any matrices such that A B  is defined, then

(A B )' =  B 'A '.

T h eorem  A .2. I f  A is any matrix, then  A 'A  and A A ' are symmetric.

T h eorem  A .3. I f  A  is a nonsingular matrix, then A ' and A ~^ are nonsingular and
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T h e o re m  A .4. I f  each element of the row of an n x  n matrix  A  contains a given factor  

k, then we may write |Aj =  A;|B|, where the rows o /B  are the same as the rows of A  except 

that the number k has been factored from each element of the row o f  A .

A corollary of this theorem  follows without further work; it is also sta ted  as a result in 

Anton & Rorres (1994).

C o ro lla ry  A .I .  Let A  and ~B be n x  n  matrices such that

A  =  kB ,

where k is a scalar. Then

|A | =  fc"|Bi.

An im portant consequence of this corollary is th a t

lo g \ip~^lp\ = logip~^ + log |Ip| =plogip~'^.

A .2 Q Equation

Recall the formula for Q( A g ,  ^ g )  th a t was derived in Section 3.3.3;

1 ^  r
Q ( A „ ^ , )  =  C + - 5 ^ n ,  lo g l^ ^ -V  t r { ^ ; ' S , } + 2 t r { ^ ; > A g ^ , S g } -  t r { A ; ^ ; i A , 0 , }

2 
.9 = 1

where C  is constant w ith respect to  fig, Ag and 'ifg, and 0 g  =  Ig — PgAg  +  /3gSgl3g is a 

sym m etric q x  q m atrix.

A .3 D ifferentiation

It is necessary to  work out

Si (A „  » , )  =  and S 2 (A „  » , )  =

for each of the eight cases in Table 3.1 and to  then solve 5 i(A "''” ,4 ')  =  0 for A"®" and 

diag{52(A"®” , =  0 for 4'"®” or 52(A"®*, =  0 for in each case to  get

maximum likelihood estim ates of these param eters.
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A .4 M axim um  Likelihood E stim ates

A.4.1 Model CCC

For Model CCC; Ag =  A and — iplp. Therefore, — A'(AA' + and Q can

be written as

n
Q{A,iP) = C + - p l o g i p   ̂ — Ip ^ t r { S }  +  2̂ /;  ̂ t r { A ; 9 S }  — ^ t r { A ' A 0 }

Differentiating Q with respect to A and ip  ̂ respectively gives the score functions below.
dQ{A,ip) n5'i(A,V̂ ) = 

52 (A, =

dX 'tp 
9Q(A,V’) _  n 

~ 2

S ^ ' -  A 0

dip~̂
Now, solving 5i (A"®", ip) = 0 gives

p̂ p — tr{S} +  2tr{A;9S} — tr{A 'A 0}

s^'q - \

and solving 52 (A""*, =  0 gives

= tr{S} -  2tr{A "'“;3S} +  tr{(A""*)'A""“©}

= tr{S} -  2tr{A"*'"^S} + tr{A"““0'(A"""')'}

=  tr{S} -  2tr{A"""'^S} +  tr{A '’'’”0 '(S ;3 '0 “ ^)'}

=  tr{S} -  2tr{A''''"'/9S} + tr{A"""';9S},

therefore,
1

( ^ ) n e w  ^  - t r j s - A " " “/3S|. 
p

A.4.2 Model CCU

For Model CCU; Ag — A and ^ g  — Therefore, — A'(AA' + 4»)  ̂ and Q can be 

written as

Q(A,t/;) =  C + |  [ l o g | ^ - ^ | -  t r{^ ' -^S }+  2tr{«'- iA/9S} -  trjA'^^-^A©}

Differentiating Q with respect to A and ^   ̂ respectively gives the score functions below.
5q(a ,^:

5i (A,   = n

52 (A, =

dA
dQ{A,^)

5 ^ - 1
n
2

'i' - S '  + 2Af3S -  A 0 'A '
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Now, solving Si (A"®", gives
n̂ew ^ s^'0-i^

and solving diag{52 (A"®*, 4 ’"®")} =  0 gives

'i'"®"' =  diag{S -  2A"®"y3S +  A"®”0'(A"®"')'}

= diag{S -  2A”̂ '̂ PS +  A"*"'0'(S^'0-i)'}

= diag{S -  2A"®*^S + A"®"';9S}

= d ia g {S -

A.4.3 Model CUC

For Model CUC; Ag = A and = V'glpi so that =  A'(AA' +  xpglp)^^. Therefore, Q

can be written as

Q(A,V’g) = <̂  +  - ^ 7 1 3  plogV’g ' -  t r { S g }  + 2 ' i p g U r { A 0 g S g }  -  V'g  ̂tr{ A'A0g}
9=1

Differentiating Q  with respect to A and ipg  ̂ respectively gives the score functions below.

C  /  A I  \

^  ̂  ^ —M— " E
.9=1

1

'•Pg

52 (A, ^g) = dQ{ A, i p )  _
dipg  ̂ 2

ptpg -  tr{Sg} +2tr{A;9gSg} -  tr{A'A0g}

Now, solving 5i (A"®"', =  0 gives

p=l ^9 g=l ^9 ■

and so

yî new _
'  G ’ G

g = \  V g U ^ 9  \

- 1

Solving 52 (A"®"', (V’g)"®") =  0 gives

(T/jg)"®” = 1 tr{Sg -  2A"®“;3gSg + A"®”0|,(A"®"')'}.
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A.4.4 Model CUU

For Model CUU; Ag =  A and so (3̂  =  A '(AA ' +  g) . Therefore, Q can be written as 

1 ^  r
Q (A ,^ g )  = C + - 5 ^ n ,  l o g l ^ . - i j -  t r { ^ ; i S }  +  2 t r { ^ - i A ^ S } -  t r { A ' ^ - i A 0 }  

9=1

Differentiating Q with respect to A and ^ ^   ̂ respectively gives the score functions below.

5 i(A , = dX

5 2 (A ,^ ,)  =

9 = 1

d Q { \ ,  ^ g )  _
~  2

^ g - S g  + 2A/3gSg -  A©;A

(A.l)

Now, solving 5i(A"®"', — 0 gives

G G

9 = 1  9 = 1

which must be solved for A"®" in a row-by-row manner. Write

^i2 ' ' ■ ^iq ) ’

to represent the ith row of the matrix A and let represent the ith  row of the matrix on 

the right-hand-side of Equation A.I. Now, row i of Equation A .l can be written

Ar"x:-f̂ 0.=r„
g = l  ' ^g( i )

where ’ipg[i) is the ith entry along the diangonal of ^g .  Therefore,

- 1

Ar" =  r . | E ^ ® / ,  >
\,g=l

for f =  1, 2, . . .  ,p. Unfortunately, the row-by-row nature of this solution slows the fitting of 

the CUU model to a great degree.

Solving diag{S'2 (A"'’", } =  0 gives

-  diag{Sg -  2A""*/3gSg -h A"‘'"0g(A"''"')'}.
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A.4.5 Model UCC

For Model UCC; — iplp and so 0  =  A ' (AgA' +  Therefore, Q  can be w ritten

as

=  C + - ' £ n ,  \plog-ip ^ tr{S g }+ 2 ? /;  ̂ t r { A g 0 g S g ]  - -ip n r{ A g A g 0 p }
9=1

Differentiating Q  with respect to  Ag and if; respectively gives the score functions below.

d Q [ A g , l j } )  _  Ug

d A S g / 3 g  - ^ © 5

S2{Ag,ip) =  \ P ^ -  tr{Sg} + 2tr{Ag^gSg} -  tr{Ag0^A^}
9=1

Now, solving 5 i (Ag'*” , ~  0 we obtain

A -  =  SgP '^@ -\

in the familiar way. Solving S2 (Ag®"', =  0 gives

G G

p { ^ P r - J 2 ^ g  ^ Y . ^ g  [ t r { S ,}  -  2 t r { A - ^ g S ,}  +  tr{  A - © ; ( A - ) ' }  
9=1 9=1

and so

Therefore,

G

Pii’r '^  = E  7f [tr{Sg} -  tr {A -y 3 ,S ,}
9=1

1 ^
J ] i ^ ^ t r { S 9 - A - ^ g S g } .

.9=1

A.4.6 Model UCU

For Model UCU, so — A'g{AgAg +  ^ )   ̂ and so Q  can be w ritten as

Q{Ag,  =  C + -  E  ng log |^ - 1 |  -  +  2tv{^i>-^Ag^gSg} -  t r { A ^ ^ - 'A g 0 ,}
9=1

Differentiating Q  w ith respect to  Ag  and respectively gives the  score functions below.

d Q { A g ,  ' I f )  _  Ug

dAg

d Q { A g , ^ )
5 ^ - 1

1

^ - ^ S g ! 3 g  -  < i > - ^ A g & g  

G

n p  ^  S g  +  2 A g ^ g S g  A g Q g A g

.9=1
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Now, solving S'i(Ag'’” , =  0 gives the familiar result

=  S g ^ g & - \

and solving diag{52 (Ag®", ^"® ")} =  0 gives

G G

E  =  E  +  A — & 'g { A ; n ' } ,
.9=1 9 = 1

and therefore,
G

4 ,n ew  ^  ^  _  A — 0 g S g } .

9 = 1

A.4.7 Model UUC

For Model UUC, =  V'glpi so th a t = A'g{AgA'g + ipgIp)~^. Therefore, Q can be w ritten 

as
1 G

Q { A g , ' I P g )  =  C + ~ Y ^ U g  P  l Og g  ̂ ~  tP g  ̂ t r { S g }  +  2t p g  ̂ t r j A g ^ ^ S g }  ~  ip g  ̂ t r { A g A g 0 g }  

9= 1

Differentiating Q with respect to A g  and ip~^ respectively gives the score functions below.

c  / ' A 'i _  ^Qi^g^'^g) __ '^95 i (A „V ’9 ) -  - -  y

S2{Ag,i!)g) = _ t r { s j  + 2tr{Ag^gS3} -  tr{Ag0 gAg}
U'lpq

Now', solving 5 i (Ag*’", =  0 gives

A —  =  S g ^ ' g @ - \

and solving 52 (A"®"’, (f/’g)"''") =  0, in the familiar fashion, leads to  the result

( 4 r - - ^ t r { S . , - A - ^ , S j .

A.4.8 Model UUU

No constrainits are imposed upon A g  or ^ g  for the UUU model, therefore,

1 ^  r
Q { A g , ' i f g )  = C + - J 2 ng l o g |^ , - ' |  -  trj^'-'S,} + 2tr{^-'A,^gSg} -  tr{A^^^^A,©,}2 

.9=1
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DifTerentiating Q with respect to Ag and ^   ̂ respectively gives the score functions below.

Q ( \  >T< g)   f . j ,  —I q  ' f '~ ^  a new/::)6 l ( A g , y / g j  -  ---------------  -  y  S g (3 g  ~  ' i 'g  A g  0

^2(Ap, =  y  [ ^ r i p  -  s .  +  -  A - 0 ; ( A - ) '

Solving 5i(Ag'*” , =  0 gives

A - “  =  S g ^ ' g & - \

and solving diag{52 (A^®", 4'^®")} =  0 gives

4f—  = diag{S, -  2A— 0gSg + A — @'g{A— y }

= d ia g { S g -A —
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A ppendix B

Calculations for GPGM M s

B .l  Im portant R esults

In addition to  the results m entioned in Section A .l, the following result from Liitkepohl 

(1996) and Magnus & Neudecker (1999) is used in this section;

X „xn (nonsingular) :  ̂ =  - j X r ^ ( X ' ) “ ^

From which it follows th a t

= - I X I X ' .
dX - 1

G

B.2 Q Equation

Recall Equation 4.1;

Q{Ag,U)g,Ag) = C +  ̂^  Tig plOgUJg^ + lOg | A “ ̂ ~  ̂  ̂ }
.9 = 1

+  tr{  A -^A g^gSg} -  tr{  A ^A ^iA gO g}

where C  is constant with respect to  fXg, Ag,  Ug and A ^, 0 g  Ig — ^ g A g  + ^gSgPg  is a 

symm etric q x  q m atrix  and |Ag| =  1. Now, maximising Q  with respect to  Ag,  A g  and Ug 

gives maximum likelihood estim ates of these param eters for each of the the models listed 

in Table 4.1.
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B.3 C onstrained M axim um  Likelihood E stim ates

B.3.1 Model UCUU

For Model UCUU, Ap =  A  and so /3„ — K 'J X g X '  + ujg A.) and Q  can be w ritten

G

Q{\g,ujg,  A )  ^  C  + p l ogUg ' ^ +\ og \ A  ^ [ - u ; g 4 r { A   ̂tr{ A

— u ;,

9 = 1

-1 +v/ A' A-1t r { A 'A - ‘A ,0 ,}

Now, form L{Ag,ujg,  A ,  A) =  Q{Ag,u!g,  A )  — A(|A | — 1) and differentiating Q  w ith respect 

to  Ag, tL!g ,̂ A ^ ^  and A respectively gives the score functions below.
Q

9 = 1

d L  Ua
dujg  ̂ 2

p o ; g - t r { A  ^Sp} +  2 t r { A  -  tr{A^A ^Ag0g}

dL 1
Ss(Ag, cVg, A, A) =  — ^  rig A  — cjg Sg +  2tjg Ag^gSg — cjg A g0gA g +  Aj A| A,

9 A -

dL
.9=1

*S'4(Ap, uJp, A ,  A) — — 1 ^ 1  1.

Solving A ,  A) =  0, we obtain

A —  =  S g ; 3 g 0 - 1 .  

Now, setting ^ 2 (Ag®” , Wg®", A ,  A) =  0 we have

and solving diag{53(Ag®"', cjg'""'. A"®", A)} =  0 gives

G n,
n +  2A|A"«“ | ^

diag \ n„
U  (“»)"

B ut A"®" is a  diagonal m atrix  with lA"®” ] =  1, therefore

n + 2A= m ?
P  \  P

■J I ’
U = 1
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where is the j th  element along the diagonal of the matrix

E Tin

It follows that

ill
S3 -  A — f3gSg

u= i
n

B.3.2 Model CUCU

For Model CUCU, Ag = A  and ujg =  u.  Therefore, (3 — A' (AA' +  t iAg)  and Q  can be

written

1
Q { A , u j , Ag )  =  C +  -  ^ n < ,  j^ploga;^  ̂ +  lo g |A “ |̂ -  o;“ 4 r {  +  2cj“ 4 r {  A “  ̂A^^Sg}

U!

.9=1

- 4 r { A ' A - i A 0 g }

Now, we form

L ( A , u ; , A „ A )  =  Q ( A , u ; , A , ) - 5 ^ A g ( [ A g i  - 1 ) .
.9 = 1

Differentiating Q with respect to A, A “ ' and A respectively gives the score functions

below.

Si  (A, UJ, Ag ,  Ag) =  —  =  ^
.9=1

A - ^ S g P ' g  -  A - ^ A Q g

•52 ( A, Lc’, Ag,  Ag) —
dL

9^ -9; Q ^ - l

1
^ T T g  p u j -  t r { A g ^ S g }  +  2 t r { A g ^ A ^ g S g }  -  t r { A g ^ A 0 g A ' }

o  /  *  A  X \  ” 9SsiAjUJ, Ag ,  \ g)  ~  - 1  ~  9
d A g ^  2

dL
5 4  ( A ,  ,  A  g  ,  A g  )  =  =  I A  g  I ~  1 .

A g -  +  2i0~^A(3,Sg -  ( j - ' A © ; A9^9

Unfortunately, we must solve 5i (A"®", d;, Ag,  Ag) = 0 in a row by row manner, hke that of 

the CUU solution in Appendix A.4.4, so that

G n„
-1

^ n e w  I V— > i t f j

,g=l "9(0
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where is the ith  row of the matrix

g=l °g{j)

and is the ith  element along the diagonal of the matrix Ag.  Solving 52(A"®", (cD)"®” , Ag,  Xg)

0 gives

1 ®
=  -  ^ 7 T g t r { A - i S g  -  2 A -^ A ^ < ‘- ^ g S g  -  A -^ A ^ ^ -Q g iA ^ ^ '^ Y } .

^  a=i

Solving diag{53(A"'’” , (a))"""', Ag®", Ag)} =  0 gives

K ) ”“  = ------/  ' diag{S' -  2A” -a ,S , + A—©;(A"")'}. (B.l)
( ' + ^ )

But A"®” is a diagonal matrix with |A"®"| =  1, therefore

9J  >

where is the j th  element along the diagonal of the matrix

S'g  -  2 A " ’‘' ^ f i g S g  +  A " ® " 0 g ( A " " ” ) '

It follows that

n  I ~ 1

B.3.3 Model UUCU

For Model UUCU, ujg — u. Therefore, Pg = A'g{AgA'g + Q;Ag)~^ and Q can be written

1 G
Q{Ag,uj ,Ag)  =  C +  - 'Y ^ n g  ploguj  ^ + l o g l A g ^ | - w   ̂tr{ A^ ^Sg} +  2tj U r{ A^ ^Ag^^Sg}

.9=1

- u ; - U r { A ; A ; i A g 0 g }

and we form
G

L{Ag,  UJ, Ag,  A) =  Q{Ag,  Ul, Ag)  ~  Ag(| Ag| ~  l).
.9=1
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Differentiating Q with respect to Ag, a; , and Xg respectively gives the score functions 

below.
C> /  A A \   ̂ d L  Tig
S l { X g , U J , ^ g , X g )  ^  ^  ~

‘̂ 2(Ag, iJ, Ag, Ag) --

'■9

dL

A - ^ A g © ,

S s i ^ g i  ^ g i  ^ g )  —

d u ; ~ ^
1  G

= 2 ^ ^ ®  tr jAg^Sg} + 2 t r { A /A g ^ g S g }  -  t r {A^A^  ^A,© ,}
9=1
dL n,   Jv

d A g ^  2 

dL

A g  -  OJ-^S'g + 20J-^AgPgSg ~  UJ-^AgQ'gAg. - 1 a  A >

S4{Ag, i i ! ,  A g ,  Xg)    - -  1  ^ . 9  I  1 '

Solving 5 i(A ^ ‘’“ ,a;, A g , Ag) =  0 gives

A —  =  S g ( 3 ^ Q - \

and solving 52(A"“", (a;)"®*, Ag, Xg) = 0 gives

1 ^
( ^ ) -  ^  Y ^n^ tv {A ~ U S g  -  A -^ ,S g ) } .

r  1
5 = 1

Solving diag{53(A^'’*,(a;)"®", A^‘'*,Ag)} =  0 gives

1A  n e w

9 d ia g { s ;g  -  2 A " ^ “ /3 g S g  +  A " ‘=“ 0 ; ( A ' ' ' ' “ ) ' }

( “ » ) ” "  ( l  + 1 5 “ )

But Ag®" is a diagonal matrix with j A “ *| = 1, therefore

{UJn 1 +  ^
/  p \  p

n
V=1 /

where „̂j is the jth  element along the diagonal of the matrix

Tin

9 ^ 9 -

It follows that

i<^9 )
U = 1

- 1
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A ppendix C

Calculations for CDGM M s

C .l Q Equation

From Equation 5.3,

Q (T „ D ,) =  C -  ^  ^  log |D ,| -  ^  t r { T ,S ,T ;D ; i},
.9=1  9=1

where C is constant with respect to Tg and Dg. Now, it is necessary to maximise Q 

with respect to Tg and Dg to get maximum likelihood estimates of these parameters for 

each of the four cases VV, VE, EV and EE. Solutions for these latter three cases are similar 

to the VV case detailed in Section 5.3.3.

C.2 M axim um  Likelihood E stim ates 

C.2.1 Model VE

For Model VE, Dg =  D and so Q can be written

G

Q(Tg, D) = C -  ^  log |D| -  ^  ^  tr {TgSgT^D-i} . (C.l)
9=1
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Differentiating Equation C .l with respect to and respectively gives the following

score functions.

5 i (T „ D ) =

5 2 ( T „ D )  =

dQ{Tg,B)
dTa

rin
( D - i ) ' T g S ;  +  D - i T g S j — ngG T g S g .

5 ( 5 ( T g , D )  _  ^  Hg ^  x  -  n„

1 “  2 ^  "2
.9 = 1  9 = 1

9D-1 ( T . s , n ) ' = ^  ,

Solving LT{5i(Tg,D)} =  0 gives an identical solution to that of Section 5.3.3, with a 

general (r — 1) x (r — 1) system of linear equations given by

/  (̂.9) ,(9)
^21’ 11

„(9) Ja)
’ 12 ’ 22

,(9) Aa)

J9) \
’ r - 1,1

J9)V -1,2

(.9)

/ \*rl
„ (9 )*r2

„(9)

for r  =  2, 3, . . . , p ,  where the are those elements of Tg which must be estimated.ij
Solving diag{52(Tg, D)} =  0 gives

G

D = J 3 i,d ia g {T ,S ,t;} .
9=1

C.2.2 Model EV

For Model EV, Tp =  T and so Q can be written

Q(T, Bg)^c-J2Y -  E y  tr {T S ,T 'D ;1  } . (C.2)
9= 1 9=1

Differentiating Equation C.2 with respect to Tp and respectively gives the following 

score functions.

9= 1 9= 1

52(T, d ,)  =
5D - 1

To solve 5 i(T ,D g), once again we use (f)ij to denote those elements of Tj, that are to be 

estimated. Now, solving LT{5i(T, D^)} =  5 i($ , Dg) =  0 for $  leads again to a total of
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p —  I linear equations. The 1 x 1  solution is;
G

.9 = 1

and so

d .
(.9 )
22 d.(.9 ) 

22 J

=  0,

<t>2\ =  —

For convenience, we introduce the notation

y - G
l ^ g = l

’ , ( 9 ) '
£ l i _

. 2 2

y G
l^ g = l

£ z l
jls)

. 2 2

E
.9= 1

s i 9 )

d[(9 )

so th a t Equation C.3 can be w ritten

021  =  « 2 V « 2 ^ -

The 2 x 2  case involves the equations

K3V 31 +  032 +  =  0

42^31 +  032 +  =  0

which can be expressed in the form

; ^ l l  k-21K3 ^3

k-12 ^22r v o  rb o

031

032

-̂31

,3 2

- 1
-11 ^21 .-31

.32
-̂3

(C.3)

and so

031

032 I \  / \

It follows th a t the solution to the general (r — 1) x (r — 1) system  of equations will be given

- 1
/  ')■ \  /  11 0 1  r — 1.1 \  /  ,( ( Pr \

0 r 2

\ /  ■■■ K p '’' \  /  ;c l̂ \
,22

\  <^S-1 /

,12 r - 1 , 2Atr

l , r - l  2 , r - 2

' 'r

. r 2

r —l , r —1 / r , r —1
/^T’ j  Y ^ 7 “

(C.4)

for r  =  2, 3 , . . .  ,p. Note th a t K m  =  and so the (r — 1) x (r — 1) m atrix  in Equation C.4 

is symmetric. Now, solving diag{52(Tg, Dg)} =  0 gives

t>g =  7Tgdiag{TSgT'}.
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C.2.3 Model EE

For Model VE, Tg =  T  and =  D and so Q  can be written

T) 71
Q(T, D) =  C -  -  log |D | -  -  t r { T S T 'D - i}, (C.5)

where S =  TTgSg. Differentiating Equation C.5 with respect to T  and D * respectively

gives the following score functions.

a Q (T ,D ) n
=  -n D -^ T S .5i(T, D) = [(D-I) 'TS ' + D -iT S

S2(T, D) = f  D -  ^ (T S T ') '  =  f  (D -  TST').

Solving L T { 5 i( t ,D )}  =  0 gives a similar solution to that of Section 5.3.3, with a general 

(r — 1) X (r — 1) system of linear equations given by

- 1

<̂ r2

/ 511 S21

512 S22

r —1,1 \  f  ^
Sr-1,2 Sr2

\  0 r , r ~ l  j  \  ^ l , r —1 ^2, r—2 ' ' ’ l . r —1 J  \  ^r , r—1 J

for r  =  2,3, . . .  ,p, where the {<pi j }  are those elements of T  which must be estimated. Solving 

diag{52(T, D)} =  0 gives

D =  d ia g { tS T '} .
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Appendix D

Coding

D .l  Background

This aim of this section is to outhne the C code that was written in order to execute 

the AECM algorithm for the PGMM family of models and later extended to account for 

the GPGMM family with the addition of four extra models. At the early stages of its 

development, simulation studies were used to test the code. An overview of the code is 

given in the following sections.

D.2 Functionality  

D.2.1 Organisation & Input

A makefile is used for compilation so that the code compiles on entering make and the exe­

cutable is called pgmm. To remove old program and data files, the command make a l lc le a n  

is used. This code dynamically allocates memory so that the size of the dimensionality of 

the data is not hard-written into the code. D ata is read in from a file containing a single 

column; given the number of variables, this column is easily separable into variables.
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D .2.2 Com mand Line

Arguments are taken on the command hne; g e to p tO  was used to facihtate this. The 

method ‘flag’ must be one of those given in Table D .l.

Table D .l: The command line options available in pgmm.
Flag Method

a Run all models; the CCC model is randomly seeded and every other model takes 
the classification output from this CCC model as their starting classification values. 
Must be followed by filename for input, 

f Filename for input; only to be used when just one member of the family is to be 
run.

h Invoke a help file.
1 Set the number of times to loop over the AECM algorithm, default is two.

m Run one (specified) model with random initial classification. Must be followed
by model number; 1 (CCC), 2 (CCU), 3 (CU C),..., 12 (UUCU). 

g Set the maximum number of groups, default is 8. 
n Set the number of observations,
p Set the number of variables,
q Set the number of factors, default is 8.
s Set the seed for the random starting classifications. By default, a function of time

is used.

For example, to run all of the models on data with 19 variables and 200 observations 

contained in f i l e . t x t ,  with 1-6 groups and 1-4 factors, the command line might read

./pgmm -a  f i l e . t x t  -g  6 -q  4 -p  19 -n  200.

To run just the UUC model on these data, the command line may read

./pgmm -m 7 - f  f i l e . t x t  -g  6 -q  4 -p  19 -n  200.

Convieniently, the order of the command line arguments is not at all im portant due to the 

nature of g e to p tO .

D .2.3 Output to Files

The files produced by running pgmm are described in Table D.2.
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Table D.2: The files produced by running pgmm.

Filename Contents
b ic s to r e  
0 .model_name 
0 . seed  
0 . c la s s

The maximum BIC values for each (G, q) over all models.
The maximum BIC values for each (G, q) for a particular model. 
The random  seed th a t was used to  obtain the initial classifications. 
The classifications for the model with the greatest BIC.

D .2.4 O utput to Screen

The name, num ber of groups and num ber of factors are given for the best model. The 

classification for the best model is also printed. Another feature of this code is th a t a warning 

message is printed to  the screen if the log-likelihood has decreased from one iteration to  

another. Decreasing log-likelihood during an AECM algorithm  should only happen due to  

round-ofF error and a frequent or system atic decrease in log-hkelihood would indicate an 

error in the algorithm , the code, or both.

The name of each member of the PGM M  family is printed to  screen ju st before the AECM 

algorithm  is run on it and each pair (G, q) is printed to  the screen in turn . An example of 

such output is given below.

CUC
(1, 1) (1. 2) (1 , 3) (1 . 4) (1 , 5)
(2 , 1) (2 , 2) (2 , 3) (2 , 4) (2 , 5)
(3 , 1) (3 , 2) (3 , 3) (3 , 4) (3 , 5)
(4, 1) (4 , 2) (4 , 3) (4 , 4) (4 , 5)
(5, 1) (5 , 2) (5 , 3) (5 , 4) (5 , 5)

D .2 .5 N otes on the Structure o f the Code

The function m ainO  is in pgmm. c; m ainO  is quite terse and mostly farms out tasks to other 

functions. One of these functions is o p l ( ) ,  which is responsible for random ly seeding the 

array of classifications and sending them  to  the appropriate algorithm. The function op l () , 

together with the necessary headers, is given below.

# in c lu d e  < s td io .h >
# in c lu d e  < s td l ib .h >
# in c lu d e  < tim e.h>
# in c lu d e  " f u n c t io n s . h"
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void opKdouble ♦*x, double double **bayes, char *fname, int N, int p,
int q, int G,
void (*func)(double **zl, double **xl, double **bl, int, int, int, int)){

int i,j,g,m; 
double rd,count=0;
FILE *file_out;

file_out = fopen(fname, "w"); 
if(!file_out){

printf ("Error opening '/oS! \a", fname); 
exit(1);

}
/* The random seeding happens here */
{FILE *seedfile; 
int seed;
seed = time(NULL)+G*q+N; 
srand48(seed);
seedfile = fopen("o.seed","a"); 
fprintf(seedfile,"seed %d\n",seed); 
fclose(seedfile);}

/* The ‘stick breaking’ happens here */ 
for(g=0;g<G;g++){ 

count=0;
for(j=l;j<=q;j++){

for(i=0; i<N; i++){ 
rd = drcind48(); 
f or(m=0;m<=g;m++){ 

z[g] [j-1] [i] [m]=0;
if(rd<((double)(m+1)/(double)(g+1)) && 

rd>((double)m/(double)(g+1))){ 
z[g] [j-1] [i] [m]=l;

>
}

}
printf("(%d, %d)\t",g+l,j); fflush(stdout);
/* The function call is made and timed */ 
start_timer();
func(z[g] [j-1] , X, bayes, j, p, g+1, N); 
if (!timedout 0)
fprintf (file_out,"BIC[G=°/.d] [q=°/.d] : \t7.f \n" ,g+l, j ,bayes [g+1] [j]); 
else bayes[g+1][j] = -100000.00;
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}
printf("\n");

>
fclose(file_out);

}
There is another function in the file operator, c, called op(), th a t is very similar to  opl() 
except th a t it uses a given array of classifications. The file functions.h contains function 

declarations for all of the functions used either directly or indirectly by main. The func­

tion void (*func) () can be thought of as a place-holder for one of the functions aecmO, 
aecm2(),..., aecml2().

D .2 .6  E xam ple o f an A E C M  A lgorithm

Code for the application of the AECM to the  CCC model is given below. This code is 

contained in the file aecm.c.

/♦*!«***;« Function to execute AECM algorithm for G groups, q factors 
and p variables in CCC case +**+****/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "functions.h"

void aecmCdouble **z, double **x, double **bic, int q, int p, int G, 
int N){

double **sigma, **lambda, **mu, **w, **beta, **theta,
**sampcovtilde, +1, *at, *pi, *n; 

int it,stop,paras;
double psi, detpsi, c=1.0, geometry_pi, detsig; 
geometry_pi = 3.14159265;

/* Allocate memory - matrices and vectors */ 
my_alloc_vec(&pi,G); 
my_alloc_vec(&n,G); 
my_alloc_vec(&at,150000); 
my_alloc(&sigma,p,p); 
my_alloc_vec(&1,150000); 
my_alloc(&sampcovtilde,p,p); 
my_alloc(&lambda,p,q);
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my_alloc(&beta,q,p); 
my_alloc(&theta,q,q); 
my_alloc(&mu,G,p); 
my_alloc(&w,G,N);

update_n(n, z, G, N); 
update_pi(pi, n, G, N); 
update_mu(mu, n, x, z, G, N, p);

psi = initialise_psi(z, x, mu, p, G, N); 
initialise_lambda(lambda, p, q);

it=0; stop=0; 
while(stop==0){

update_n(n, z, G, N); 
update_pi(pi, n, G, N); 
update_mu(mu, n, x, z, G, N, p);

if(it>0) BOMBOUT(update_z(w, x, z, sigma, mu, pi, c, N, G,p)) 

update_stilde(sampcovtilde,X, z, mu, G, N, p); 

update_sigmainv(sigma, lambda, psi, p, q); 

update_beta(beta, sigma, lambda, p, q); 

update_theta(theta, beta, lambda, sampcovtilde, p, q); 

update_lambda(lambda, beta, sampcovtilde, theta, p, q); 

psi = update_psi(lambda, beta, sampcovtilde, p, q); 

update_sigmainv(sigma, lambda, psi, p, q); 

detpsi = pow(psi,p);

detsig = update_det_sigma(lambda, sigma, detpsi, p, q);

c = pow(2=t'geometry_pi,p/2.0) *sqrt (detsig);

/* Abort if calculations go outside machine precision */ 
BOMBOUT(update_z(w, x, z, sigma, mu, pi, c, N, G,p));
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stop = convergtest(1, at, w, N, it, G ) ; 
it++;

}
/* no of parameters */
paras = G-1 + G*p + p*q - q*(q-l)/2 + 1;

/* BIC = 21og_likelihood - mlog(n) =*'/ 
bic[G][q] = 2*l[it-l] - paras*log(N);

/* Deallocate memory */
my_free(sigma,p); my_free(lambda,p); my_free(mu,G); my_free(w,G); 
free(n); my_free(beta,q); my_free(theta,q); my_free(sampcovtilde,p); 
free(l); free(at); free(pi);

D .2 .7  C om patib ility  o f  O utput w ith  R

The contents of the files b ic s to r e  and o . c la s s  can easily be read into the software package 

R. This facilitates the production of the contingency tables and heat maps given in chapters 3 

and 4.
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A ppendix E

Tables from the Analysis of CAO  

D ata

E .l  E xplanation o f Course C odes

Table E .l: Course codes appearing in this work.

CK C ork In s titu te  o f  T echnology
CR107 Electronic Engineering
CR108 Mechanical Engineering
CK U n iv ers ity  C o llege  C ork (N U I)
CKlOl Arts
CK102 Social Science
C K lll Early Childhood Studies
CK201 Commerce
CK204 Finance
CK210 Government and Public Policy
CK301 Law
CK402 Biological and Chemical Sciences
CK701 Medicine
CM C ola iste  M huire
CMOOl BEd
D C D u b lin  C ity  U n iv ers ity
D C lll Business Studies
DC121 Computer Applications
DC126 Financial and Actuarial Mathematics
DC131 Communication Studies
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DC132 Journalism
DC181 Biotechnology
DC191 Electronic Engineering
DC192 Telecommunications Engineering
DC201 Common Entry into Science (Undenominated Entry)
FT D ublin  In stitu te  o f Technology
FTlO l Arcgitecture
F T l l l Construction Economics and Management (Quantity Surveying)
FT125 Engineering
FT221 Electrical and Electronic Engineering
FT222 Applied Sciences
FT224 Optometry
FT281 Computer Engineering
FT351 Business Studies
FT352 Media Arts
FT353 Communications — Journalism
FT354 Information Systems Development
FT401 Hospitality (Hotel and Catering) Management
FT402 Tourism Marketing
FT471 Social Care
FT472 Early Childhood Care and Education
FT541 Marketing
FT542 Management and Marketing
FT543 Retail and Services Management
FR Froebel C ollege o f Education
FROOl BEd
NC N ational Coll o f  Ireland
NCOOl Accounting and Human Resource Management
RC Royal C ollege o f Surgeons in Ireland
RCOOl Medicine
cs St C atherine’s C ollege o f Education
CSOOl BEd (Home Economics)
PD St. Patrick’s C ollege o f Education
PDlOl BEd
PD103 BA in Humanities
T R Trinity C ollege D ublin
TR004 Law
TR032 Engineering
TR051 Medicine
TR071 Science
TR084 Social Studies (Social Work)
D N U niversity C ollege D ublin  (N U I)
DNOOl Architecture
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DN002 Medicine
DN003 Engineering
DN005 Veterinary Medicine
DN007 Social Science
DN008 Science
DN009 Law (BCL)
DN012 Arts
DN015 Commerce
DN020 Actuarial and Financial Studies
DN021 Business and Legal Studies
DN054 Psychology plus 2 permissible subjects under DN012 [Arts] for first year only
LC Limerick In stitu te  o f Technology
LC017 Construction Economics (Quantity Surveying)
LC019 Construction Management
MI M ary Im m aculate College
MI005 BEd
LM U niversity o f Limerick
LM047 Arts
LM050 Business Studies
LM069 Computer Engineering
LM081 Manufacturing Technology
GA Galway-M ayo In stitu te  o f Technology
GA042 Construction Management
G Y N ational U niversity o f Ireland, Galway
GYlOl Arts
GY103 Arts (Public and Social Policy)
GY201 Commerce
GY251 Bachelor of Civil Law (BCL)
GY301 Science
GY401 Engineering (Undenominated)
GY402 Civil Engineering
GY501 Medicine
M H N ational U niversity o f Ireland, M aynooth
MHlOl Arts
MH102 Finance
MH106 Psychology
MH201 Science
M U Pontifical U niversity, M aynooth
MUOOl Theology and Arts
W D W aterford In stitu te  o f Technology
WD025 Construction Management
WD026 Electronics



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

R ules Interrelating Courses

Table E.2: The 72 rules mentioned in Section 7.5.4, ranked by confidence.

R ule Support C onfidence Lift

GY501, CK701, TR051, RCOOl} {DN002} 0.525% 97.92% 33.76
MI005, DN012, CMOOl, FROOl} ^  {PDlOl} 0.547% 97.67% 21.22
PDlOl, FROOl, LM047} => {MI005} 0.547% 96.71% 21.17
CMOOl, FROOl, PD103} ^  {PDlOl} 0.599% 96.41% 20.95
MI005, PD103} {PDlOl} 0.512% 95.82% 20.82
CMOOl, LM047} {MI005} 0.558% 95.54% 20.91
GYlOl, MI005, CMOOl, FROOl} =̂> {PDlOl} 0.584% 95.44% 20.74
DN012, CMOOl, MHlOl, FROOl} ^  {PDlOl} 0.642% 95.04% 20.65
MI005, CMOOl, MHlOl, FROOl} ^  {PDlOl} 0.579% 94.24% 20.48
CK701, TR051, DN002, RCOOl} ^  {GY501} 0.525% 92.76% 38.84
CKlOl, CMOOl} ^  {MI005} 0.538% 92.33% 20.21
TR084, FT472} ^  {FT471} 0.586% 92.11% 17.38
GYlOl, DN012, FROOl} ^  {PDlOl} 0.521% 92.11% 20.01
DN008, TR051} =» {DN002} 0.543% 91.25% 31.47
GY.501, CK701, DN002, RCOOl} {TR051} 0.525% 89.52% 41.31
D C lll ,  FT542, DN015} {FT351} 0.662% 89.44% 9.47
GYlOl, MHlOl, FROOl} {PDlOl} 0.571% 89.24% 19.39
CKlOl, FROOl} ^  {MI005} 0.560% 89.05% 19.49
MI005, DN012, PDlOl, CMOOl} ^  {FROOl} 0.547% 88.82% 29.33
TR004, GY251} ^  {DN009} 0.501% 88.67% 27.93
MI005, PDlOl, CMOOl, MHlOl} {FROOl} 0.579% 88.60% 29.26
TR071, MH201} ^  {DN008} 1.049% 88.13% 13.62
CKlOl, PDlOl} ^  {MI005} 0.766% 88.03% 19.27
GYlOl, CMOOl, MHlOl} ^  {PDlOl} 0.526% 87.89% 19.10
DN021, TR004} ^  {DN009} 0.698% 87.41% 27.53
TR071, GY301} ^  {DN008} 1.019% 87.12% 13.47
D C lll ,  FT541, DN015} ^  {FT351} 0.841% 86.92% 9.20
CK402, TR071} ^  {DN008} 0.655% 86.91% 13.43
TR071, FT222} ^  {DN008} 0.536% 86.23% 13.33
MI005, FROOl, LM047} {PDlOl} 0.547% 85.96% 18.68
DNG12, MUOOl} ^  {MHlOl} 0.737% 85.90% 5.64
DC131, DC132, FT352} ^  {FT353} 0.549% 85.51% 26.42
DN054, MH106, MHlOl} {DN012} 0.809% 85.29% 4.17
D C lll ,  FT541, FT542} ^  {FT351} 0.969% 85.27% 9.03
GY501, TR051, DN002, RCOOl} {CK701} 0.525% 85.20% 46.54
PDlOl, FROOl, PD103} =s> {CMOOl} 0.599% 85.19% 30.01
GYlOl, MI005, PDlOl, CMOOl} {FROOl} 0.584% 85.09% 28.10
FT471, C K lll}  {FT472} 0.845% 84.86% 18.53



39 {TR032, GY401} ^  {DN003} 0.541% 84.84% 22.35
40 {MHlOl, GY103} ^  {GYlOl} 0.590% 84.76% 5.42
41 { D C lll, NCOOl} ^  {FT351} 0.783% 84.54% 8.95
42 {CKlOl, DN012, MHlOl, LM047} ^  {GYlOl} 0.939% 84.17% 5.38
43 {DN012, PDlOl, CMOOl, MHlOl} {FROOl} 0.642% 84.15% 27.79
44 {GYlOl, MUOOl} ^  {MHlOl} 0.582% 84.14% 5.52
45 {GY201, MHlOl} ^  {GYlOl} 0.757% 83.92% 5.37
46 {GYlOl, DN012, PD103} ^  {MHlOl} 0.543% 83.91% 5.51
47 {MI005, DN012, MHlOl} ^  {PDlOl} 0.588% 83.60% 18.17
48 {MH106, GYlOl, DN012} {MHlOl} 0.580% 83.42% 5.47
49 {TR071, DC201} ^  {DN008} 0.504% 83.38% 12.89
50 {CK102, LM047} ^  {CKlOl} 0.512% 83.08% 6.02
51 {FT541, FT542, DN015} ^  {FT351} 0.727% 83.01% 8.79
52 {CKlOl, GYlOl, DN012, LM047} => {MHlOl} 0.939% 82.92% 5.44
53 {DN012, TR004} => {DN009} 0.765% 82.86% 26.10
54 {CKlOl, FROOl} ^  {PDlOl} 0.521% 82.84% 18.00
55 {CK301, TR004} {DN009} 0.558% 82.64% 26.03
56 {LM050, FT351, DN015} ^  {GY201} 0.532% 82.18% 13.34
57 {CK201, CK210} ^  {CKlOl} 0.512% 82.09% 5.95
58 {GYlOl, PDlOl, CMOOl, FROOl} => {MI005} 0.584% 81.98% 17.95
59 {MI005, DN012, PDlOl, FROOl} ^  {CMOOl} 0.547% 81.89% 28.85
60 {GYlOl, MI005, DN012} {PDlOl} 0.526% 81.56% 17.72
61 {D C lll, FT354} => {FT351} 0.621% 81.46% 8.63
62 {FT351, MH102, DN015} => {D C lll} 0.584% 81.35% 10.46
63 {FT351, FT542, FT543} {FT541} 0.521% 80.92% 11.45
64 {TR071, DC181} {DN008} 0.519% 80.87% 12.50
65 {MI005, PDlOl, MHlOl, FROOl} ^  {CMOOl} 0.579% 80.78% 28.46
66 {PDlOl, CMOOl, PD103} ^  {FROOl} 0.599% 80.70% 26.65
67 {DN007, MHlOl} ^  {DN012} 1.287% 80.65% 3.94
68 {CK204, CKlOl} ^  {CK201} 0.662% 80.54% 18.38
69 {DN054, MH106, DN012} ^  {MHlOl} 0.809% 80.41% 5.28
70 {D C lll, LM050, DN015} ^  {GY201} 0.593% 80.35% 13.05
71 {D C lll, FT541, DN012} ^  {FT351} 0.515% 80.29% 8.50
72 {DN012, PDlOl, MHlOl, FROOl} {CMOOl} 0.642% 80.23% 28.26
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E.3 R ules w ith  C onsequent {F }

Table E.3: Top twenty rules, ranked by interestingness, with consequent {F}.

A n teced en t Su p p ort C on fidence Lift In terest.

1 {FT471} 4.987% 94.10% 1.72 0.00165
2 {FT472} 4.494% 98.13% 1.80 0.00140
3 {PD lO l} 4.014% 87.23% 1.60 0.00098
4 {MI005} 3.892% 85.18% 1.56 0.00089
5 {DN007} 3.469% 85.79% 1.57 0.00072
6 { C K lll} 3.192% 96.30% 1.78 0.00069
7 {CK102} 3.021% 87.88% 1.61 0.00056
8 {FROOl} 2.766% 91.34% 1.68 0.00049
9 {FT472, FT471} 2.491% 98.10% 1.80 0.00042

10 {CMOOl} 2.506% 88.27% 1.62 0.00039
11 {PD lO l, FROOl} 2.390% 91.46% 1.68 0.00037
12 {PD lO l, CMOOl} 2.245% 89.61% 1.64 0.00032
13 {DN007, DN012} 2.247% 85.07% 1.59 0.00030
14 {MI005, PD lO l} 2.175% 87.96% 1.61 0.00029
15 {TR084} 2.111% 92.13% 1.69 0.00029
16 {CMOOl, FROOl} 1.961% 90.86% 1.66 0.00025
17 {PD103} 1.987% 84.03% 1.54 0.00023
18 {PD lO l, CMOOl, FROOl} 1.823% 91.33% 1.67 0.00021
19 {DN012, PD lO l} 1.780% 89.77% 1.65 0.00020
20 {MI005, FROOl} 1.717% 90.67% 1.66 0.00019
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E.4 Rules with Consequent [ M]

Table E.4: Top twenty rules, ranked by interestingness, with consequent {M}.

A ntecedent S upport Confidence Lift In te re s t.
1 {FT125} 2.907% 87.12% 1.92 0.00062
2 {TR032} 2.556% 80.30% 1.77 0.00044
3 {WD025} 2.318% 90.09% 1.98 0.00040
4 {GA042} 2.269% 91.59% 2.02 0.00039
5 {LC017} 2.273% 87.85% 1.93 0.00038
6 {LC019} 2.17% 91.75% 2.02 0.00036
7 {F T lll} 2.18% 88.74% 1.95 0.00035
8 {FT221} 2.015% 89.65% 1.97 0.00030
9 {FT281} 1.767% 84.07% 1.85 0.00022

10 {DC191} 1.468% 88.55% 1.95 0.00016
11 {CR107} 1.432% 88.71% 1.95 0.00015
12 {CR108} 1.397% 91.25% 2.01 0.00015
13 {DN003, FT125} 1.269% 83.99% 1.85 0.00011
14 {LC019, LC017} 1.205% 93.51% 2.06 0.00011
15 {LM069} 1.259% 81.86% 1.80 0.00011
16 {TR032, FT125} 1.161% 85.95% 1.89 0.000097
17 {WD026} 1.127% 90.99% 2.00 0.000()95
18 {GY402} 1.168% 82.52% 1.82 0.000095
19 {DC192} 1.068% 84.16% 1.85 0.000081
20 {LM081} 1.027% 89.76% 1.98 0.000078





A ppendix  F

Lift & N egations

F . l  R an ge o f V alues for Lift

T h e o re m  F . l .  Suppose I  is an item set, and A ^  B  is an association rule on a set of

transactions { r i , . . . ,  r„} over I . Then

rnax{P(^) +  P{B)  -  1 ,1/n} ^  ^  < -_______ I_______
P{A)P{B)  -   ̂ -  max{P{A) , P{B)} '

Proof. First consider the bounds of P{A,B) .  If P(A)  + P{B) < 1, then the appropriate

lower bound is given by

otherwise the appropriate lower bound is P{A,  B) > P{A)  + P{B)  — 1.

The upper bound is given by P{A,  B) < m in{P(^), P{B)].  Therefore,

max{P(A) +  P{B)  -  1 ,1/n} <  P(A , B) < mm{P{A) ,P{B)] ,

and so,
max{P(A) +  P { B ) -  1 ,1/n} => P ) < ________  ̂ -

P{A)P{B)  -  " ' ^  m&x{P{A) ,P{B)} '

□
T h e o re m  F .2 . Suppose I  is an item set, and A ^  B  is an association rule mined over a 

set of transactions { n , . . . ,  Tn} over I, using support threshold s. Then
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Proof. Let s = d /n .  The maximum value of lift will occur when

P { A , B ) ^ P { A )  = P{B)  = -
n

and so
L ( A ^ i 5 ) < ^  =  ^ =  l .

{"d/nY s
To find the  minimum  value of lift, first consider the case where n + ?9 is even, then L (A  =4> B) 

is minimised when

P ( A , B )  = -  and P{A)  =  P{B)  = +
”  n 2n ’

however, if n +  is odd then L{A B) is minimised when

P ( A , B )  = ^ ,  p ( ^ )  =  +  ^ + 1 ) /2  _  +  + 1)

and P{B)

n n 2n
{n + d — \ ) / 2 _  (n +  i? — 1)

n 2n

Now,

therefore.

(n +  — 1) (n +  t? +  1) _  (n +  I? +  l)(n  +  — 1) (n +
2n 2n 4n^ ^  4n^ ’

(n +  i9)2/4n^ (n +  (1 +  s)^
□

L e m m a  F . l .  Suppose I  is an item set, and A ^  B  is an association rule on a set of trans­

actions { t \ ,  ■ ■ ■ ,Tn} over I .  Suppose that minimum thresholds for support and confidence 

are used in the mining process, denoted s and c respectively. Then

I  P(A)  +  P( B)  -  1 4s________  ̂ c 1 < T ( A ^ R \
P{A)P(B)  ' (1 + s ) ^ ' P { A ) P { B ) ' P { B ) j  -   ̂ ^

 1________
~  m ax{P (^), P(i?)}

Proof. In addition to the results of theorems F .l and F.2, note tha t if P{A,  B)  > s then

P( A , B )  s
L{A B) — Tit A\-nt r>\ -P{A)P{B)  -  P{A)P{B) '  

and if P{B \ A) > c then

P{B)  -  P{B)

□
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F.2 N egations Theorem

T h eo re m  F .3 . The number of rules that can possibly be generated from an itemset con­

sisting of n items and their negations is given by

5” - 2  (3” ) +  1.

Proof. If A and B  contain a total of m items then the number of rules involving these m  

items and their negations is given by

fm—1

r = l Lr=0

Therefore, from an itemset of size n there are 2^” — rules of length n. there are 

[22("-D -  2("-i)+i] rules of length n -  1, [22("-2) -  2 (" -2)+i]

n — 2 and so on. It follows tha t the total number of rules tha t can be generated from these 

n items and their negations is given by

(2 2 "-2 "+ * ) + "C „_]

Which can be expressed as

2 2 ( n - l )  _  2 ( n - l )  +  l 22(2) __ 22+1

(2̂ * -  2*+^) .

i= 2

Now, the binomial theorem states that
n

(l +  x)” =  ^ " Q x * ,
1 = 0

and so developing Equation F .l gives,

72 T h  T i  T X

(2^* -  2*+i) =  ^ ” Ci22* -  -  2 j ^ " Q 2
2=2 i=2

n

^ n C i 2 '- ( " C o + "  Cl (2))

(F .l)

1 = 2 i= 2 i= 2

^ ”a 4 * - r C o + ” Cl (4)) 
Li=0 Li=0

=  [5” -  (1 +  An)] -  2 [3" -  (1 +  2n)] =  5" -  2 (3” | +  1.

□


