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Summary

Two topics in unsupervised learning are reviewed and developed; namely, model-based
clustering and association rule mining.

A new family of Gaussian mixture models, with a parsimonious covariance structure, is
introduced. The mixtures of factor analysers and mixtures of principal component analysers
models are special cases of this new family of models. This family exhibit the feature
that their number of covariance parameters grows linearly with the dimensionality of the
data, which leads to relatively fast computation time. These models perform excellently,
compared to popular model-based clustering techniques, when applied to real data.

A new family of Gaussian mixture models with a Cholesky-decomposed covariance structure
is also introduced. Four members of this family are developed and applied to real data.
This family of models has great potential for further development in future work.

A novel approach, via association rules, is taken to the analysis of college applications
data. This analysis contributes to the discussion about the existence of a ‘points race’. A
new method of quantifying and visualising the interestingness of an association rule is also
introduced and an argument for the inclusion of negations in the association rule mining

process is given.
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Chapter 1

Introduction

1.1 Unsupervised Learning

1.1.1 Definition

Hastie et al. (2001) give the analogy of “learning without a teacher” when introducing
unsupervised learning. Formally, they consider a set of n realisations {z1,z2,...,2,} of a
random p-dimensional vector x with joint probability distribution P(x). The objective is
then to deduce properties of P(x) without knowing the correct answers, that is “without

the help of a supervisor”.

This approach to statistical learning can also be distinguished by whether or not the out-
come, or target, variable is present in the learning process. A model learns in a supervised
fashion when the outcome variable is present during the learning process, while in the un-
supervised learning context, the outcome variable is either missing, non-existent or there is

no obvious outcome variable.

This work focuses on unsupervised learning for two types of data — interval data and binary
data. The analysis of these different data types necessitates two very different approaches;
model-based clustering techniques are applied to interval data and a data mining technique

is used for the analysis of binary data.



1.1.2 Model-Based Clustering

Clustering based on mixture models has appeared in the literature with increased frequency
in recent years. The approach followed herein involves a family of Gaussian mixture models
with parsimonious covariance structure. The clustering of the data, according to this family
of models, is given by the values assigned to the group membership labels through the
learning process. Well-established mixture modelling techniques are used for motivation
and the mathematical foundation of this family of models is established. These models
are then applied to real data and perform favorably when compared to well-established
techniques. A family of Gaussian mixture models that can be applied to longitudinal data

is also introduced.

1.1.3 Association Rule Mining

Association rule mining is developed as an effective method of analysing binary data. A
novel application of association rules to a ‘clustering’ problem is demonstrated and a method
of standardising the lift of an association rule is introduced that leads to a new measure of
interestingness. Additionally, the number of potentially interesting association rules that
can be mined from a binary dataset is quantified and an argument is put forward for the

inclusion of negations in association rule analysis.

1.2 Thesis Structure

1.2.1 Chapter 2

Ideas around model-based clustering and Gaussian mixture models are introduced and the
popular literature is reviewed. The expectation-maximisation algorithm is discussed, as are
three methods of model evaluation; the Bayesian information criterion, the Rand index and

the adjusted Rand index.



1.2.2 Chapter 3

Parsimonious Gaussian mixture models are developed using a latent Gaussian model which
is closely related to the factor analysis model. These models provide a unified modelling
framework which includes the mixtures of factor of analysers and mixtures of probabilistic
principal component analysers models as special cases. In particular, a class of eight par-
simonious Gaussian mixture models, which are based on the mixtures of factor analysers
model, are introduced.

A method for obtaining the maximum likelihood estimates for the parameters in these
models, via an AECM algorithm, is demonstrated. This family of models includes five
parsimonious models that have not previously been developed. All members of this family
have the attractive property that their number of covariance parameters is linear in the
dimensionality of the data. These models are applied to the analysis of chemical and
physical properties of Italian wines and the chemical properties of coffee; the models are

shown to give superior clustering results when compared to well-established techniques.

1.2.3 Chapter 4

Chapter 4 builds on the ideas in Chapter 3 with the covariance structure of the mixture
models being further generalised. This results in four extra models. These models also have
a number of covariance parameters that is linear in the dimensionality of the data. None of
these four models have previously appeared in the literature and combined with the eight
models from Chapter 3, they give a family of twelve parsimonious Gaussian mixture models.
These models are applied to crabs data where they give excellent results when compared to

well-established techniques.

1.2.4 Chapter 5

Chapter 5 presents a different slant on the ideas of Chapter 3 and Chapter 4 with the co-
variance structures of the models being constructed via a modified Cholesky decomposition.
This leads to a family of four mixture models, two of which have not previously appeared

in the literature, that can be used to cluster longitudinal data. This family of mixture




models is shown to perform well when applied to real data. Further developments of this
covariance structure, that could potentially increase the number of models in this family,

are also suggested.

1.2.5 Chapter 6

This chapter marks the change in emphasis from interval data to binary data and thus the
switch from model-based clustering to association rule mining. In Chapter 6 association
rules are introduced. The term ‘association rule’ is defined, along with related functions,
and the popular literature is summarised. Various methods of generating, pruning and

ranking rules are introduced and reviewed.

1.2.6 Chapter 7

Chapter 7 introduces the novel idea of using association rules to reveal grouping in data.
Central Applications Office college application data is analysed using association rule mining
to investigate relationships between course choices across applicants. The role of gender as
a factor in course selection is examined as well as a larger question around the functionality
of the application system — what attracts students to a course; is it a topic of interest or
is it the perceived status of the course associated with high entry points?

The expected gender imbalances in areas like primary teaching and engineering appear,
along with some others. Association rules generated suggest that students select courses
based primarily on topic but sometimes with geographical location in mind. No evidence is

found to suggest that students are selecting courses based on perceived points status.

1.2.7 Chapter 8

The range of values that the lift of an association rule may take is used to standardise lift so
that it is more effective as a measure of interestingness. This standardisation is extended to
account for minimum support and confidence thresholds. A method of visualising standard-
ised lift, through the relationship between lift and its upper and lower bounds, is proposed.

The application of standardised lift as a measure of interestingness is demonstrated on the



college application data that was analysed in Chapter 7 and on German social data. In the
latter case, negations are introduced into the mining paradigm and an argument for their
inclusion is put forward. This argument includes a quantification of the number of extra

rules that arise when negations are considered.

1.2.8 Chapter 9

The ideas and methods demonstrated in this work are summarised in Chapter 9. Suggestions

for further work are given, both based upon and arising from this work.

1.3 The Impact of this Work

The impact of this work on the body of literature is summarised here based on the most

significant original ideas contained herein. The principal novel features of this work are:

e A new family of Gaussian mixture models, with a parsimonious covariance structure,
is introduced. The covariance structure is similar to that of the mixtures of factor
analysers model, which is in fact a member of this family. This new family of models
exhibit the feature that their number of covariance parameters grows linearly with the
dimensionality of the data, which leads to relatively fast computation time. These
models perform excellently, compared to popular model-based clustering techniques,

when applied to real data.

e A new family of Gaussian mixture models with a Cholesky-decomposed covariance
structure is introduced. Four members of this family are developed and applied to
real data. This family of models has great potential for further development in future

work.

e A new approach is taken to the analysis of college applications data that contributes

to the discussion about the existence of a ‘points race’.

e A new method of quantifying and visualising the interestingness of an association rule
is introduced and an argument for the inclusion of negations in the association rule

paradigm is put forward.






Chapter 2

Model-Based Clustering

2.1 Background

Chapters 3, 4 and 5 of this work focus on families of mixture models. Each of these families

is applied to interval data as a model-based clustering technique.

2.2 Mixture Models

2.2.1 Finite Mixture Models

Model-based clustering techniques can be traced at least as far back as Wolfe (1963). In
more recent years model-based clustering has appeared in the statistics literature with
increased frequency (Fraley & Raftery, 1998; McLachlan et al., 2003; Raftery & Dean,
2006). Typically the data are clustered using some assumed mixture modelling structure
and the parameters associated with these models are usually estimated using an expectation-
maximisation (EM) algorithm.

Finite mixture models assume that data are collected from a finite collection of sub-
populations and that the data within each sub-population can be modelled using some
standard statistical model. Therefore, such mixture models can be especially useful when
modelling data that may have been collected from multiple sources. Mixture models are the

basis of most modern model-based clustering algorithms; partly because methods based on



mixtures offer the advantage of allowing for uncertainties to be quantified using probabili-
ties. Extensive reviews of finite mixture models are contained in Titterington et al. (1985),

McLachlan & Basford (1988) and McLachlan & Peel (2000a).

2.2.2 Gaussian Mixture Models

The Gaussian mixture model has received particular attention, both in the three afore-
mentioned texts and in the wider body of statistical literature. A Gaussian model is assumed

for each sub-population, or group. The model density is of the form

G
=" wdlsp, =), (2.1)
g=1

where
6(x | 1y, 3, - {-30c- == uy)|
X > = exXPas (X ) =
ARV eZ 07 R U
is the density of a multivariate Gaussian with mean p, and covariance X, and , is the
probability of membership of group g. A review of Gaussian mixture models with particular

emphasis on applications to cluster analysis, discriminant analysis and density estimation

is given by Fraley & Raftery (2002b).

2.3 The Expectation-Maximisation Algorithm

The EM algorithm is an iterative method for finding the maximum of the expected value
of the complete-data log-likelihood. Before introducing the EM algorithm, a larger class of

algorithms to which the EM algorithm belongs is introduced.

2.3.1 MM Algorithms

MM algorithms are a blueprint for a broad, ever-expanding, class of algorithms. A review
of MM algorithms is given by Hunter & Lange (2004) and the remainder of this section
essentially presents a summary of their work.

The ‘MM’ stands for ‘minorise-maximise’ or ‘majorise-minimise’, depending on whether the

purpose of the algorithm is to minimise or maximise the function of interest. Application of



the MM principle can be seen in the literature at least as far back as Ortega & Rheinboldt
(1970) but the first use of the term MM came in Hunter & Lange (2000).
Let (™ be a fixed value of a parameter ¢ and let g(-) and f(-) be real-valued functions.

Then g (¢ | ¢(™) is said to majorize f(¢) at the point (™ if

9(90 | 99(’”)) > f(p) for all ¢, and

g(™ | ™) = f(p™).

Furthermore, g (¢ | go(m)) is said to minorize f(p) at (™ if —g (¢ | ¢{™) majorizes —f (i)
at (™M),

Further details, including the casting of the EM algorithm as a special case, are given by
Hunter & Lange (2004). In the case of the EM algorithm, the minorising function is the

expected value of the complete-data log-likelihood.

2.3.2 The EM Algorithm

The EM algorithm (Dempster et al., 1977) provides an iterative method of finding maximum
likelihood estimates (MLEs) where the data is incomplete or some of the data is missing.
Importantly, the data does not actually need to be incomplete but framing problems as
incomplete data problems often leads to efficient solutions via the EM algorithm.

In the E-step, the expected value of the log-likelihood is computed based on the current
estimates of the model parameters and the ‘complete-data’ vector — that is, the vector of
observed data plus missing data. This function, the expected value of the complete-data
log-likelihood, is a minorising function — a fact which follows from Jensen’s inequality
(Jensen, 1906). In the M-step, this expected value is maximised with respect to the model
parameters.

These two steps are repeated iteratively until convergence is reached. There are a variety
of ways to measure convergence; one common approach is to take convergence as the point
at which the difference in successive estimates of the log-likelihood is sufficiently small. A
comprehensive overview of EM algorithms is given by McLachlan & Krishnan (1997) and
alternative convergence criteria are given by Lindsay (1995) and McLachlan & Krishnan

(1997).
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2.4 MCLUST: Software for Model-Based Cluster Analysis

The general Gaussian mixture model, given in Equation 2.1, has a total of
(G-1)+Gp+Gp(p+1)/2

parameters, of which Gp(p + 1)/2 are from the group covariance matrices 3,. A simpler
form of the mixture assumes that the covariances are constrained to be equal across groups,
which reduces to a total of (G — 1) + Gp + p(p + 1)/2 parameters, of which p(p + 1)/2 are
from the common group covariance matrix 3, = X.

Banfield & Raftery (1993), Celeux & Govaert (1995) and Fraley & Raftery (1998, 2002b)
exploit an eigenvalue decomposition of the group covariance matrices to give a wide range
of covariance structures that use between one and Gp(p + 1)/2 parameters. The eigenvalue

decomposition of the covariance matrix is of the form
/
3y = AgDyA4Dy, (2.2)

where )\, is a constant, D, is a matrix consisting of the eigenvectors of ¥, and A, is a
diagonal matrix with entries proportional to the eigenvalues of 3.

The model-based clustering techniques that have been developed using the covariance struc-
ture given in Equation 2.2 allow for a variety of constraints. There is the option to constrain
the components of the eigenvalue decomposition of X, across groups of the mixture model.
Furthermore, the matrices Dy or D, and A, may be set equal to I, or not.

Fraley & Raftery (2002a, 2003) describe the mclust software, which is available as a library
in the software package R (R Development Core Team, 2006). The mclust software allows
efficient model-based clustering and incorporates the work of Fraley & Raftery (1998, 1999,
2002b). Table 2.1, which is taken from Dean et al. (2006), gives the covariance decomposi-
tions that are available using the mclust software. Figure 2.1, which is similar to a figure
in Dean et al. (2006), provides an illustration of these covariance decompositions.

Fraley & Raftery (2002b) demonstrate that the parsimonious mixture models derived in this
model-based clustering framework give excellent results in a variety of applications. Dean
et al. (2006) illustrate the application of these models to give classification rules in food

authenticity problems.
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Table 2.1: A variety of covariance structures, X,, available using mclust, along with the
number of covariance parameters in each case.

ID Volume Shape Orientation Covariance Number of
Decomp. Covariance Parameters
EII Equal  Spherical — N | 1
VII  Variable Spherical — Al G
EEI Equal Equal Axis-aligned AA p
VEI Variable  Equal Axis-aligned AgA 4G —1
EVI  Equal  Variable Axis-aligned A, pG-G+1
VVI Variable Variable Axis-aligned AgAg pG
EEE Equal Equal Equal ADAD’ p(p+1)/2
EEV  Equal Equal Variable AD,AD) Gp(p+1)/2—-(G-1)p
VEV Variable  Equal Variable MDyAD,  Gp(p+1)/2-(G-1)(p-1)
VVV  Variable Variable Variable M Dy ArDy Gp(p+1)/2

O

o
€EID
2

Figure 2.1: Cluster shapes that correspond to the covariance structures given in Table 2.1.

Notably, the number of covariance parameters given in Table 2.1 for the mclust models are

either constant, linear or quadratic in p. Therefore, not all of these models are well suited

to modelling high dimensional data. In particular, fitting a mixture model with any of

the more general covariance structures available in mclust, that is the last four covariance

structures given in Table 2.1, to high-dimensional data will be extremely computationally

intensive.
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2.5 Variable Selection

Raftery & Dean (2006) propose a variable selection method based on the use of Bayes
factors. Their approach is that which would be taken to a model selection problem. Two
models, M; and M, say, for data X are compared using the using Bayes factors. The Bayes
factor, Bis, for model M; versus model My, is defined as

p(X | My)

By =—"———+~
27 (X | M)’

where

p(X | My) = / p(X | 84, Mi)p(6s | M)dy,

0y is the vector of parameters for model M; and p(6y | My) is the prior distribution of M}
(Kass & Raftery, 1995). Variables are then selected based on which model is the ‘best’.

Variable selection can be carried out using the clustvarsel package (Dean & Raftery, 2006)
in R. The user only needs to preset the maximum number of groups and clustvarsel auto-
matically selects the variables. However, due to its nature, variable selection involves many
runs of mclust and once the variables are selected the user needs to run mclust on the
chosen variables to get the classifications. Therefore, this method has even greater limita-
tions, in terms of computation time, than mclust, and thus will be particularly apparent

in applications to high-dimensional data.

2.6 Mixture Model Selection & Performance

2.6.1 The Bayesian Information Criterion

The Bayesian information criterion (BIC) (Schwartz, 1978) is often used to select an ap-
propriate mixture model; in the case of mclust, for example. For a model with parameters
®, the BIC is given by

BIC = 2i(z,®) — mlogn,

where [(z, ®) is the maximised log-likelihood, ® is the MLE of ®, m is the number of free

parameters in the model and n is the number of observations. The use of the BIC can
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be motivated through an asymptotic approximation of the log posterior probability of the
models (Kass & Raftery, 1995).

The usual regularity conditions for the asymptotic approximation used in the development of
the BIC are not generally satisfied by mixture models. However, Leroux (1992) showed that
the BIC, asymptotically, does not underestimate the true number of mixture components
and Keribin (1998, 2000) showed that the BIC gives consistent estimates of the number
of components in a mixture model. Furthermore, Fraley & Raftery (1998, 2002b) provide
practical evidence that BIC performs well as a model selection criterion for mixture models.
Note that there are alternatives to the BIC for mixture model selection; for example, the
integrated completed likelihood (Biernacki et al., 2000) penalises the BIC by subtracting
the estimated mean entropy. However, the viability of such alternatives is not discussed

herein and the BIC alone is used for model selection.

2.6.2 The Rand & Adjusted Rand Indices

The performance of mixture models in revealing group structure in data can measured
using the Rand index (Rand, 1971) and the adjusted Rand index (Hubert & Arabie, 1985).
These indices are computed on a cross-tabulation of the maximum a posteriori (MAP)
classification of the observations with the true group membership. The rand index can be
expressed as

number of agreements
g (2.3)

number of agreements + number of disagreements’
where the ‘number of agreements’ is computed based on pair agreement and the ‘number
of disagreements’ is based on pair disagreement. Consider an example similar to that
given by Rand (1971), where a variable with two groups y = {(a,b), (¢,d, e)} is classified by
7 = {(a,b,c),(d,e)}. Now, the number of agreements is the number of pairs that are together
in both y and g plus the number of pairs that are separate in both y and y. Therefore,
there are six agreements; ab, de, ad, ae, bd and be. The denominator of Equation 2.3 can

be easily computed as
5!

5 NI
C2= o131 =

10,

and so the Rand index for this example is 0.6.
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The adjusted Rand index corrects the Rand index for chance by accounting for the fact that
if classification is performed randomly some cases will be correctly classified by chance. The
indices each take values in [0,1] with ‘0’ indicating that the MAP classification and true
groups never agree and ‘1’ indicating that the they are exactly the same. Large values of
these indices indicate strong agreement between the true groupings and the classifications
proposed by the mixture model.

Note that the possibility of using alternative or additional measures of class agreement, such
as Cohen’s kappa (Cohen, 1960), was considered but the Rand and adjusted Rand indices

were thought to be sufficient for use in this work.

2.6.3 Note on Performance Assessment for Model-Based Clustering

Although the model-based clustering techniques described herein are unsupervised, their
performance is assessed wvia application to real data and subsequent comparison of the
resulting classifications to the true groups. However, in many applications the true group
structure would not be known, which is reflected in the use of the BIC for model selection

in the analyses that are carried out in this work.
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Chapter 3

Parsimonious Gaussian Mixture

Models

3.1 Introduction

A new family of finite mixture models is introduced, with a Gaussian model used to model
each mixture component. These mixture components have a parsimonious factor analysis-
like covariance structure. The factor analysis and probabilistic principal component analysis
models are used for motivation. Crucially, the members of this new family of mixture models
each have a number of covariance parameters that grows linearly in the dimensionality of

the data.

3.2 Factor Analysis

3.2.1 The Model

Factor analysis is a data reduction technique that replaces the observed variables with
unobservable factors that explain a satisfactory amount of the variability in the data. This
technique is only useful if it returns ‘many’ less factors than there are variables. The
model, which originated in the psychology literature (Spearman, 1904), assumes that a p-

dimensional real-valued data vector x is modelled using a ¢-dimensional vector of real-valued
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factors u, where ¢ < p. The model may be expressed in the form

X1 My Al Az wse Aig u; €1
X2 Mo A21 Az ... Agg up €2
o . + . . 5 . . + . )
Xp Koy Apl Ap2 ... Apg u, €
or
x=p+ Au+e, (3.1)

where A is a p x ¢ matrix of factor loadings, the factors u ~ N(0,I;) and € ~ N(0, ¥),
where W = diag(e1,v¥2,...,9p). It is a feature of the factor analysis model that A is not

uniquely defined; if A is replaced by A* = AD, where D is orthonormal, then
AN + ¥ = (A*)(A*) + P,

which allows the results of factor analyses to be rotated, altering their interpretation. This
is a large part of the reason why factor analysis has spent much time as “the black sheep

of statistical theory” (Lawley & Maxwell, 1962).

3.2.2 The Likelihood Function

From Equation 3.1, the the density of an x; is

1

) e TR ]

= {—§<xz— — 1) (AN + ®) 7 (s u)} . (32)

and it follows that the log-likelihood of x = (x1,x2,...,%,)’ is given by

Up, A ®) =) Tlog f(xi | p, A, P)

i=1

L log 2w — n log |AA" + | — = Z(xi — ) (AN +¥) " (x; — ) (3:3)
2 2 2 o
- —? log 27 — glog[AA’ + 0| — gtr {S(AA + @)},

where S = (1/n)>"" ,(x; — p)(x; — p)’. Note that the data only appears in the model
through S and that since the matrix ¥ is diagonal, the p x p matrix (AA’ + ¥) can be

inverted using the formula

(AN + @) ' =01 WAL, + AT A) TN D! (3.4)
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(McLachlan & Peel, 2000a), which leaves only ¢ x ¢ matrices to be inverted. McLachlan &

Peel (2000a) also give a convenient formula for finding the determinant of this matrix;

1

AN + % |=| @ |/ |L,—A (AN + %) A, (3.5)

The formulae given in equations 3.4 and 3.5 have the potential to greatly reduce computation
time.

Now, the MLE of p is easily obtained by differentiating Equation 3.3 with respect to p and
setting the result equal to zero to get 1 = X. In order to obtain the MLEs of A and ¥, an

EM algorithm is used.

3.2.3 The EM Algorithm for the Factor Analysis Model
E-step

The vector x is taken as the observed data and u as the missing data. The complete-data
consist of (x,u); the observed data and the missing data. Before computing the complete-

data log-likelihood I.(p, A, ¥) = logf(x,u), it is necessary to compute log f(x; | u;);

1
2
__p 1 VB (x "1 A
——§log27r—§log\\Il}—§(x1—u)\I' (xi — ) + (x; — ) ¥ Au; —

(xi — p— Aw) ¥ (x; — p — Aw;)
:
2
= -—g log 2m — %log |P| — %(x,— — ) O (% — p) + (% — ) T A %tr {A'\IJ'IAuiu;}

1
log f(xi | u;) = £ log 2 — = log || -

w AT Ay,

1 1
== —g log 27 — 3 log |[¥| — 5 tr { U (x; — p)(x; — )’} + (xi — ) ¥ Ay,
1
— §tr{A'\Il_1Auiu§}.

Now,

le(i, A, ®) = log f(x,u) = > log f(x; | w) f(w;)
=1
1 n
=C- glog ¥|—5tr {‘I’_l ;(Xi — p)(x; — M)/} + Z(Xz' — )T Ay,

1 y n
- itr{A’\IJ 1AZuiu§},

1=1
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where C'is constant with respect to u, A, and ¥. Now, the expected value of u;, conditional

on x; and the current model parameters, is
]E[uilxi’ u-'vAa ‘I’] = A/(AA, + \I’)_l(xi il l‘l’) = B(xi . I‘l’)a

where B = A/(AA'+ ¥)~! = A/S7!, and the expected value of u;u conditional on x; and

the current model parameters is

E[ujug|x;, p, A, @] =1, — BA + B(x; — p)(xi — p)'B'.

To complete the E-step, the expected value of the complete-data log-likelihood, which shall
be denoted Q(A, ¥), is computed at g = X.

QA T) = C——logm——tr{ Z m'}

—

+Z )OI AE[wlx;, 1, A, W] = ot {A"I"IAXH:E[UNQXL'-MA-@’]}
=C- glog|\Il\ - %tr {\If‘l i(xl- — ) (xi — ﬂ)’}

tr {\IJ—IABi(xi L i s — [L)I} = gtr{A"P”‘A(Iq —BA)}
B (i — )i - m’ﬁ’”

1
—s i {A’\If‘lA
1=1

=C+ g—log|\Il_1| — gtr{‘ll_ls} + ntr{\Il_lABS} - gtr{A/‘I’_IA@},

where © = I, — BA + BSB/ is a symmetric ¢ X ¢ matrix. Although ® was introduced as a
notational convenience it could be used to devise a model diagnostic, since if 3 = S then

=1,

M-step

It is necessary to maximise @ with respect to A and ¥ in the M-step of the EM algorithm.
Differentiating @) with respect to A and utilising results from Graybill (1983), Liitkepohl
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(1996) and Magnus & Neudecker (1999) gives

oQ

RN B LA SIS,
o s t{\IJ Aﬂs} t{A AG}

28A
tr{AG)A vl

Si(A, ®) =
a N N
B n(‘Il ) (ﬁS) 2 81\
— ¥ 'S'3 - . 2[(®) A + ¥ AG)]
—n¥ 1S3 —n ¥ lAL.

Now, solving the equation S;(A, ¥) = 0 gives A = SB/(B_]. Differentiating ) with respect

to U1 gives,
0Q n n o n
Sl e = s le o8 § n(ABS) - §(A')’(Ae)’
n

B __E/ = _E it &k
_2\p QS+nABS 2A@A.

Now, solving diag{Sg(f\, \il)} =0 gives
nNe o [Naqr 27 n2arred @11
b= dldg{zs nAps + Ao/ [sg'o7] }
= W= diag{S' - 2A8S + A®’(071)'3S} = diag{S — ABS}.
The matrix results used in this chapter are listed in Appendix A.1. Note that all matrices

and vectors herein are real, all objects that are differentiated are continuously differentiable

and that all differentials are well defined.

3.2.4 The Probabilistic Principal Component Analysis Model

The probabilistic principal component analysis (PPCA) model (Tipping & Bishop, 1999b)

is a special case of the factor analysis model with ¥ = ¢1,.

3.2.5 Mixtures of Factor Analysers & Mixtures of Probabilistic Principal

Component Analysers

Developing the factor analysis model, Ghahramani & Hinton (1997) develop a mixture of
factor analysers model, which is further developed by McLachlan & Peel (2000a). The
density of an observation in group g is as in Equation 3.2 with p = p,, A = A4 and

¥ = ¥,. The probability of membership of group g is denoted by m,. Mixtures of factor
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analysers traditionally differ in whether the W, term is constrained to be equal in different
groups or not. Tipping & Bishop (1999a) develop the PPCA model to get a mixture of
probabilistic principal component analysers model, which is a special case of the mixtures

of factor analysers model.

3.3 Parsimonious Gaussian Mixture Models

3.3.1 Covariance Structures

The models mentioned in Section 3.2.5 can be extended to a wider family of models by
constraining, or not, A; = A, ¥, = ¥ and whether ¥, is isotropic. The matrix ¥, is
said to be isotropic if ¥, = 1,I,. The option to apply, or not, these constraints, leads to
eight parsimonious Gaussian mixture models (PGMMs). These models, along with their

respective covariance structures, are given in Table 3.1.

Table 3.1: The covariance structure and number of covariance parameters for each PGMM.

Model Loading Error Isotropic Number of

Matrix Variance (Pg =9Yglp) Covariance Parameters
CCC  Constrained Constrained Constrained {pg—q(qg—-1)/2} +1
CCU  Constrained Constrained Unconstrained {pg—q(q—1)/2}+p
CUC  Constrained Unconstrained Constrained {pg—q(¢g—-1)/2} +G
CUU  Constrained Unconstrained Unconstrained {pg —q(q¢ —1)/2} + Gp
UCC  Unconstrained Constrained Constrained G{pg—q(g—1)/2} +1
UCU  Unconstrained Constrained Unconstrained G{pq—q(¢—1)/2}+p
UUC  Unconstrained Unconstrained Constrained G{pg—q(qg—1)/2}+G
UUU  Unconstrained Unconstrained Unconstrained G{pg—q(q—1)/2} + Gp

The last three models given in Table 3.1 have been developed previously. Ghahramani &
Hinton (1997) assume the equal noise model (UCU) and in the context of the mixtures of
PPCAs model, Tipping & Bishop (1999a) assume unequal, isotropic, noise (UUC). McLach-
lan & Peel (2000a) and McLachlan et al. (2003) assume unequal noise (UUU), however they
comment that assuming equal noise (UCU) can give more stable results.

Notably, if ¢ and G are fixed then the number of covariance parameters of each model grows
linearly in p. That is, if the number of factors and the number of groups are fixed then the

number of covariance parameters grows linearly in the number of variables. This is a very
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important and convenient feature of each member of this family of models, since it leads to
relatively fast computation time in cases with very many variables.
To illustrate how the numbers of covariance parameters given in Table 3.1 were arrived at,

consider the CCU case. The group covariance stricture is of the form
S =AA+ 0,

and g(q — 1)/2 constraints are required so that A is uniquely defined (Lawley & Maxwell,
1971; McLachlan & Peel, 2000a). Therefore, recalling that ¥ is a p x p diagonal matrix,

it follows that the CCU covariance structure has a total of

pa—glg-1)2+4p

free parameters. An analogous argument is used in the other seven cases.

Note that there is a relationship between the PGMM family of models and the MCLUST
family of models. Setting ¢ = 0 makes the PGMM covariance structure X, = ¥,, which,
depending on constraints, can also be ¥, = ¥, ¥, = ¢,I, or ¥, = ¥I,. Herein, we only

consider the models in Table 3.1 for ¢ > 0.

3.3.2 Model Fitting

The PGMMs are fitted using the alternating expectation-conditional maximisation (AECM)
algorithm (Meng & van Dyk, 1997). The ECM algorithm (Meng & Rubin, 1993) replaces
the M-step by a series of conditional maximization steps. The AECM algorithm allows a
different specification of complete-data for each conditional maximization step. McLachlan
& Krishnan (1997) give an extensive review of the EM algorithm and variants. McLachlan
& Peel (20000) give extensive details of fitting the AECM algorithm in the case where no
constraints are imposed. An example of an AECM algorithm is given with the coding details

in Appendix D.

3.3.3 Likelihoods

Denote by z, the unobserved group labels where z;;, = 1 if observation i belongs to group

g and z;; = 0 otherwise. At the first stage of the AECM algorithm, when estimating
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and p,, the group membership labels z are taken as the missing data. The complete-data

likelihood is given by

n G
El(ﬂ'g,ug,Ag,\Ilg) — HH Tof (Xi | pg, Mg, ¥y )}Z’g

and the expected value of the complete-data log-likelihood is

G G
n n
Q1(mg, ) = E nglog mg — 7plog27r—2?qlog1AgA;+\Ilg1

g9=1 g=1
G

-y % tr {Sg(AgA, + ¥g)71},
g=1

where

) g f(xi | oy, Ag, T, ))_
Ay,

Zi 3.6
i chﬂ'qf(xzyﬂq (36)

)’,
ng = Y i, Zig and Sy = (1/ng) Y0 Zig(xi — pg)(xi — p,)’. Now, maximising Q; with

respect to p, and m, yields

n %
A i—1 RigXj A n
— ——-—Zl‘l 9% and fig = b

i > ie1 Zig C B
At the second stage of the AECM algorithm, when estimating A, and ¥4, the group
membership labels z and the latent factors u are taken as the missing data. It follows that
the complete-data log-likelihood is given by

n G

Umg, pagy Ag, Wg) ZZZW log g + log f(xs|us, g, Ag, ¥y) + log f(uz)]
1=1 g=1

n
n n 5 :
——2310g|\11g| - ?gtr{\llglsg} + ) zig(xi — g ) U A gy
i=1

G
=C+Z

—§tr{ o, lA, Zzzguz H

where C is constant with respect to Ky, Ag and ¥, Now, the expected value of the
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complete-data log-likelihood, evaluated with p, = 1, and my = 7y, is of the form

n n i
- ?‘qlog|\llg| - 39 tr {\Ilg lSg}

G
Q(Agv ‘I’g) =C+ Z

+Zzzg — ) O AGE [ws]x;, iy, Ag, By

1 L N i
- 5tr{A;\Pg1AgZzigIE[uiuﬂxi,ug,Ag,\Ilg]} ,

=1

which becomes;

G

QA T)=C+) |- log[‘I’g|———tr{\I’ 's }+sz — 1) O A B (xi — )
g=1

=1

1 7 _r R S
_-2-tr{A;\Ilg1AgZzigIE[uiu;|xi,ug,Ag,‘I/g]}

i=1

= C+an[ log | ¥, 1| — —tr{w;lsg} + tr{ ¥, 'AyB,S,} — %u-{A;\I/;IAg@g}}

G
%Z [logl‘l’ N tr{®, 'S} +2tr{ W, A,B,S,} — tr{A, ¥, A, @q}}

where 6, = I, — BgAg -+ BgSgB; is a symmetric ¢ X ¢ matrix and the Z;; are computed
as in Equation 3.6 using the estimates of f1, and 7, from the first stage of the algorithm.

Now, it only remains to maximise Q(Ag4, ¥,) with respect to A, and ¥, respectively to get

MLESs of these parameters.

3.3.4 The Models

Results of this maximisation follow for all eight PGMMs. Details are given in Appendix A.
Let,

Model CCC

,B e A/(AA, L wlp)—l’ Anew _ SIB/é—l. (QZ))new = %tr{sl hanc AnewBS}‘
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Model CCU
B=AAA + )1, A — §F6°, o — diag(S — A= 38).
Model CUC
- s i - " & n At e n B
ﬂg — A/(AA/ +1/}ng)—l’ AV — Z fsgﬁg Z wA—ng P
g=1 73 g=1"7g

. 1 e ) -
(wg)new — 5tr{sg o, 2Anew,BgSg It Anew@g(Anew)/}.

Model CUU

In this case the loading matrix must be solved in a row-by-row manner. This slows the

fitting of this model to a great degree.
|

e, :

G
new nq

B, = MAN 4+ B, X =x

g=1 Vy(i)

‘i’;ew o diag{Sq = 2Anewﬁgsy L Anew@g([\now)/}’
where X-]ew is the ith row of the matrix A", 71 (i) denotes the ith element along the diagonal
of ¥, r; represents the ith row of the matrix Z  ng P v ls, ﬁ and i =1,2,.
Model UCC

By = AL(AGAl +91,)71, Avv = Sqﬂ 0,1, () = —qutr{s — A B,S,}.

Model UCU
G
- A A A T = A new o' o= T new 2 2 A new Ve
By = Ay(AA, + )71, Arv =8,8,0, ¥ = " #, diag{S, — AJ™"8,S,}.

Model UUC

A A A 7 = A new ~ = 7 new ]' A new [
By = A (AgA} + 9yL,) L A =88 670 ()™= Etr{Sg — AyB,S,}.

Model UUU

p A n T o 2 new A/ — T new L A new 7
B = AL AR+ W, A = S¢3,0;", Ui = diag{S, — A;"3,S,}.
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3.3.5 Convergence Criteria
Aitken’s Acceleration

The Aitken’s acceleration procedure, described in McLachlan & Krishnan (1997), was used
to estimate the asymptotic maximum of the log-likelihood. This allowed a decision to be
made on whether the EM algorithm had converged or not. The Aitken acceleration at

iteration k is given by
(k1) _ (k)

k) Z k1)

where [(5+1) 1k} and {*=1) are the log-likelihood values from iteration k + 1, k and k — 1

a

respectively. Then the asymptotic estimate of the log-likelihood at iteration k + 1 is given
by
1

_(k)(l(kﬂ) <,

j(k+1) _ (k) 4
1—a

o0

Bohning et al. (1994) contend that the algorithm can be considered to have converged when
i — 1l <«

where € is a ‘small’ number. Lindsay (1995) give an alternative stopping criterion; that the

algorithm can be stopped when

2 1% < ¢, (3.7)

The latter criterion is used herein, with e = 10~2.

Lack of Progress

Some model-based clustering algorithms, such as that described by Fraley & Raftery (1998),
use the difference in successive log-likelihoods as a convergence criterion. That is, the

algorithm is considered to have converged when
Al TR (3.8)

where € is a ‘small’ number. The condition in Equation 3.8, however, is not a convergence
criterion but rather an indication of lack of progress. Figure 3.1 shows a classically shaped
plot of iteration number versus log-likelihood and it can be argued that in this case the

criteria in equations 3.7 and 3.8 will give similar results.
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Figure 3.1: A ‘classic’ plot of iteration number versus log-likelihood for an AECM algorithm.

However, figures 3.2 and 3.3 illustrate situations where the difference between a lack of
progress criterion and a genuine convergernce criterion can become very apparent. In both
of these cases, a lack of progress criterion might greatly underestimate the correct value of
the log-likelihood.

Note that figures 3.1, 3.2 and 3.3 all arise from real analyses. In each case the data are the
log-likelihoods at each iteration of an AECM algorithm for the CUU model, applied to the

wine data that is introduced in Section 3.5.

3.3.6 Software

Software, called pgmm, was written in the C programming language to execute the AECM
algorithm; that is, to find MLEs for the model parameters and the estimates of the group
membership labels. The initial values for the elements of A, were randomly generated from
a uniform distribution on [0, 1), while those for ¥, were some function of diag {Sy}. It is a
feature of pgmm that data are automatically standardised prior to analysis. Further details
of the coding are given in Appendix D.

Finding the best method of initialising the z,, was very difficult. Through trial-and-error

it was discovered that the best method was to choose random values for z,4 € {0,1} and
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Figure 3.2: A plot of iteration number versus log-likelihood for an AECM algorithm, illus-
trating a single ‘step’.
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Figure 3.3: A plot of iteration number versus log-likelihood for an AECM algorithm, illus-
trating multiple ‘steps’.

then to run the CCC model and take its output as the starting point for every other model.
That said, this process was repeated multiple times with different random starting values

of the 2,4 to prevent a local, rather than global, maximum log-likelihood being attained.
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The AECM algorithm has no ‘hard classification’ step; that is, Z,4 € [0, 1] at each iteration,
rather than forcing 2,4 € {0,1}. A consequence of this feature is that at the end of the
AECM algorithm, after convergence has been reached, it is not necessarily the case that each
Zng Will take a value in {0,1}. Therefore, pgmm classifies each case based on the maximum
value of . over g = 1,2,...,G.

The option to hard classify at each iteration may seem attractive and can lead to faster
convergence in some cases. However, if a hard classification step is used at each iteration,
the algorithm can become more prone to producing sub-optimal results. An example of
an EM algorithm that involves a hard classification step is the classification EM algorithm

(Celeux & Govaert, 1992).

3.3.7 Model Selection & Performance

The BIC was used to select an appropriate PGMM. Specifically, the BIC was used to
choose the ‘best’ model from the members of the PGMM family (CCC, CCU, ..., UUU),
the number of latent factors ¢ and the number of mixture components, or groups, G. In
addition, the BIC can be used to choose between the best PGMM and models arising from
alternative model-based clustering techniques, such as MCLUST.

The performance of the PGMMs in revealing group structures in data is measured herein
using the Rand index and the adjusted Rand index. These indices are also used herein to

assess the performance of competing techniques, such as MCLUST.

3.4 Coffee Data

3.4.1 The Data

Streuli (1973) reported thirteen chemical properties of coffee from across 29 countries. These
coffees were of two types — Robusta and Arabica. Twelve of the thirteen chemical properties
that were recorded are given in Table 3.2.

The data were sourced from from www.parvus.unige.it. There was a thirteenth variable,

Total Chlorogenic Acid, which was not used, both because it was not precisely the sum of
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Table 3.2: Twelve of the thirteen chemical properties of coffee given by Streuli (1973).

Water Bean Weight Extract Yield
pH Value Free Acid Mineral Content
Fat Caffeine Trigonellin

Chlorogenic Acid Neochlorogenic Acid Isochlorogenic Acid

Chlorogenic Acid, Neochlorogenic Acid and Isochlorogenic Acid and because the information

it contained was already given by these three variables.

3.4.2 The PGMM Family of Models

The PGMM family of models was fitted to these data for G € {1,2,...,5} and ¢ €
08/ AL 5}. Further, each model was run three times from different starting values of
the group membership labels. The BIC was computed for all 600 of these models and the

best member for each (G, ¢) is illustrated in Figure 3.4.

+

Figure 3.4: A ‘heat map’ giving the maximum BIC value for each PGMM at (G, q) for the
coffee data.

The best model, in terms of BIC, was a CUU model with G = 2 and ¢ = 4. The BIC for
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this model was -1148.23. Table 3.3 gives the classification for this model, which is an exact

match — two groups directly corresponding to the two varieties of coffee.

Table 3.3: Classification table for the best PGMM for the coffee data.

1 2
Arabica | 36
Robusta 7

3.4.3 The MCLUST Family of Models

The mclust software for model-based clustering was also used to classify these data. Ta-
ble 3.4 gives the classification for the best MCLUST model, which was a VEI model with

three groups.

Table 3.4: Classification table for the best MCLUST model for the coffee data.

1l 2" 3
Arabica | 22 14
_Robusta T

This classification could also be thought of as ‘correct’, however Arabica is split across two
groups. The BIC for this model was -1301.70, which is less than the BIC for the best
PGMM.

3.4.4 Model Comparison

Table 3.5 gives the Rand and adjusted Rand indices for both families of models that were
applied to the coffee data. The chosen PGMM was the best model, in terms of BIC, Rand

index and adjusted Rand index.

Table 3.5: Rand and adjusted Rand indices for both families of models that were applied
to the coffee data.

Model | Rand Index Adjusted Rand Index
PGMM 1.00 1.00
MCLUST 0.66 0.38
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3.5 Italian Wine Data

3.5.1 The Data

Forina et al. (1986) used twenty-eight chemical properties of Italian wines from the Piedmont
region to classify them into their specific type — Barolo, Grignolino or Barbera. Table 3.6
gives the subset of these thirteen variables that are available from the gclus library (Hurley,
2004) in R. Note that the variable ‘malic acid’ represents total malic acid; see Qoche et al.

(1981) for further details.

Table 3.6: The thirteen chemical properties of wine, used by Forina et al. (1986), that are
available in gclus.

Alcohol Malic acid Ash

Alcalinity of ash Magnesium Total ahenols

Flavanoids Nonflavanoid phenols Proanthocyanins

Color intensity Hue OD2gp/OD3;5 of diluted wines
Proline

3.5.2 The PGMM Family of Models

The family of PGMMs were fitted to the data for G € {1,2,...,5} and ¢ € {1,2,...,5} by
running the pgmm software from three random starting values, so that a total of 600 models
were fitted. Figure 3.5 shows the BIC for the best PGMM for each couplet (G, q) over the
three runs — the best model was a CUU model with G = 4 and ¢ = 2. The BIC for this
model was -5294.68.

A classification table for this best PGMM is given in Table 3.7. This model classifies the
Barolo and Barbera varieties into clusters 1 and 4 respectively but Grignolino is spread

mostly across clusters 2 and 3, with two observations in cluster 4.

Table 3.7: Classification table for the best PGMM for the wine data from gclus.

1 20 03 4
Barolo 59
Grignolino 38 31 2
Barbera 48
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Figure 3.5: A ‘heat map’ giving the greatest BIC values for each PGMM at (G, q) for the
wine data from gclus.

3.5.3 The MCLUST Family of Models

The best model using mclust was a VEI model with eight groups. The BIC for this model

was -5469.95 and classifications for this model are given in Table 3.8.

Table 3.8: Classification table for the best MCLUST model for the wine data from gclus.

23 4" 5 6 7 8
Barolo 40 18 1

Grignolino 21 22 27 1
Barbera 4 1% 27
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3.5.4 Variable Selection

Variable selection was carried out using the clustvarsel package in R; the maximum
number of groups was preset at eight. The variables selected were Malic acid, Proline,
Flavanoids, colour intensity and ODsgy/OD3;5 of diluted wines. The selected model was a
VEV model with three groups and the classification results for variable selection are given

in Table 3.9.

Table 3.9: Classification table for variable selection for the wine data from glus.

1 52 -3
Barolo 51 8
Grignolino | 3 67 1
Barbera 1847

3.5.5 Model Comparison

Table 3.10 gives the Rand and adjusted Rand indices for all three models that were applied
to the wine data. The best PGMM was the best model, in terms of both Rand index and

adjusted Rand index.

Table 3.10: Rand and adjusted Rand indices for all of models that were applied to the wine
data from gclus.

Model Rand Index Adjusted Rand Index
PGMM 0.91 0.79
MCLUST 0.80 0.48
Variable Selection 0.90 0.78

The best PGMM also had greater BIC than the best MCLUST model. No comparison can
be made between the PGMM family of models and variable selection, which involves many
mclust computations, in terms of BIC.

Furthermore, it is remarkable that the PGMM family of models has outperformed variable
selection. The latter approach has the advantage that all of the ‘unhelpful’ variables are
absent during the final clustering, yet it is still outperformed by the former. Rather than
disregard variables, the PGMM approach weights variables appropriately using the elements

of the load matrices A,. This approach is not only more natural than that of variable
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selection, but based on the results of this analysis it may be superior as a model-based

clustering technique.

3.5.6 Deeper into the Italian Wine Dataset
The wines in this study were from the years 1970-1979, as shown in Table 3.11.

Table 3.11: The wine data from gclus ordered by year of production.

70 Tl 720 @3 7475 76 77 78 79
Barolo 19 20 20
Grignolino | 9 9 7 9 16 9 12
Barbera 9 5 29 5

Now, returning to the PGMM results and assuming that the data are in year order, a
more detailed classification of the PGMM results emerges and is given in Table 3.12. It
is apparent, from Table 3.12, that clusters 2 and 3 are almost grouped by year; Cluster 2
comprising mainly Grignolino wines from 1970-1974 and Cluster 3 consisting primarily of
Grignolino wines from 1974-1976.

Table 3.12: Classification table for the best PGMM model for the wine data from gclus,
ordered by year.

Cluster Barolo Grignolino Barbera
T3 TAET0 T 72 73 T4 7H 76 v 76 T8 19
1 19 20 20
& 7 8 4 8= "IN
3 2 Dl 18 -7 10
4 1 1({9 5 29 5

Furthermore, applying the information in Table 3.11 to the results of the MCLUST and

variable selection analysis gave results that were not interpretable in this fashion.

3.6 The Larger Wine Dataset

3.6.1 The Remaining Variables

The remaining 15 variables used by Forina et al. (1986) are given in Table 3.13. All but
one of these 28 variables were sourced from www.parvus.unige.it; the variable Sulphate

was not available.
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Table 3.13: The fifteen chemical properties of wine, used by Forina et al. (1986), that were
not available in gclus.

Sugar-free extract Fixed acidity =~ Tartaric acid Uronic acids

pH Potassium Calcium Phosphate
Chloride Sulphate Glycerol ODsgy/0D3;5 of flavanoids
2,3-butanediol Total nitrogen Methanol

3.6.2 The PGMM Family of Models

The family of PGMMs was fitted to this larger wine dataset for G € {1,2,...,5} and
g €{1,2,...,5} and pgmm was set to loop three times so that a total of 600 models were
fitted. Figure 3.6 shows the BIC for the best PGMM for each couplet (G,q) — the best
model overall was a CUU model with G = 3, ¢ = 4 and a BIC of -11454.32.

Figure 3.6: A ‘heat map’ giving the greatest BIC values for each PGMM at (G, q) for the
larger wine dataset.

A classification table for this model is given in Table 3.14. This model classifies the Barolo
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and Barbera into clusters 1 and 3 respectively and gets the Grignolino almost right, mis-

classifying only one sample.

Table 3.14: Classification table for the best PGMM for the larger wine dataset.

1 2 3
Barolo 59
Grignolino 7O
Barbera 48

3.6.3 The MCLUST Family of Models

Classifications for the best model, in terms of BIC, using the mclust software in R are given

in Table 3.15.

Table 3.15: Classification table for the best MCLUST model for the larger wine dataset.

20 3
Barolo 58 1
Grignolino | 4 66 1
Barbera 48

The best MCLUST model was a VVI model with three groups and a BIC value of -12119.31.

3.6.4 Variable Selection

Variable selection was carried out using clustvarsel and, once again, the maximum num-
ber of groups was preset at eight. Nineteen variables were selected and they are given in

Table 3.16.

Table 3.16: Variables selected for the larger wine dataset.

Chloride Malic acid Flavanoids  Proline

Colour intensity Uronic acids Magnesium  2-3-butanediol
Tartaric acid Total nitrogen Calcium Alcalinity of ash
Hue OD3gy/OD3;5 of diluted wines Methanol Nonflavanoid phenols
Alcohol Sugar-free extract Phosphate

A VVI model with four groups was chosen and the classifications for this model are given

in Table 3.17.
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Table 3.17: Classification table for variable selection on the larger wine dataset.

2 3
Barolo 52 7
Grignolino 17 54
Barbera 1 47

3.6.5 Model Comparison

Table 3.18 gives the Rand and adjusted Rand indices for all three models that were applied
to the wine data. The chosen PGMM was the best model, in terms of both Rand index
and adjusted Rand index. Further, the best PGMM also outperformed the best MCLUST
model in terms of BIC.

Table 3.18: Rand and adjusted Rand indices for all models applied to the larger wine
dataset.

Model Rand Index Adjusted Rand Index
PGMM o 0.98
MCLUST 0.95 0.90
Variable Selection 0.91 0.78

Interestingly, MCLUST performed better than variable selection on these data.

3.7 Discussion

A new family of PGMMSs has been introduced. This family of models can be seen as a gener-
alisation of the mixtures of factor analysers and mixtures of principal components analysers
models and contains them both as special cases. The number of covariance parameters in
this family of models grows linearly with data dimensionality, which is especially conve-
nient in high-dimensional situations. This is not true of the MCLUST models, where the
number of parameters in any of the diagonal covariance structures is linear or constant in
the data dimensionality but is quadratic in data dimension for the non-diagonal covariance
structures. The PGMM family therefore offers a more implementable modelling structure
for high-dimensional data than MCLUST.

Chang (1983) shows that the principal components corresponding to the highest eigenvalues

do not necessarily contain the most group information. Directly modelling data using
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the PGMM family avoids the problems of implementing data reduction using principal
components analysis before clustering. Modelling via the PGMM family also avoids the
need for variable selection prior to, or concurrently with, model-based clustering.

The application of the PGMM family to the coffee and the wine data indicates that the
models give excellent clustering performance. The clusters found using the PGMM family
exhibit superior group structure-capturing of these data compared to other methods. In
the case of the coffee data, choosing between the PGMM family and the MCLUST family,
using the BIC, led to the selection a member of the PGMM family; this is in agreement with
the results (Fraley & Raftery, 2002b) that show that choosing models within the MCLUST
framework using the BIC gives models with good classification and clustering performance.
The best PGMM also gave superior clustering performance on the wine data when compared
to the best model using MCLUST or variable selection.

Although not reported, in the course of the analyses featured in this chapter, it was noted
that the ‘best’ model using BIC was not always the best classifier. There is, therefore,
future scope for finding an alternative to BIC for choosing the best member of the PGMM
family of models and, perhaps, the MCLUST family of models. The ICL may present a
meaningful alternative in this situation. Moreover, since the methods introduced herein are
presented as unsupervised, it would be inappropriate to use known classifications for model

selection.
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Chapter 4

Generalised Parsimonious

Gaussian Mixture Models

4.1 Structure

4.1.1 Redefining ¥,

The family of PGMMs introduced in Chapter 3 are extended by further parameterising the

group covariance structure. This further parameterisation comes about by writing
W, = wgly,

where wy, € R and Ay = diag{d1,2,...,8,} such that |Ay| = 1, for g € Lol
This new family of models will be referred to as generalised parsimonious Gaussian mixture

models (GPGMMs).

4.1.2 The (Q Equation

Now, the equation for @) given in Section 3.3.3 can be written as

1 [y
Q(Ag,wg,Ag) =C + an { log‘ wgA 1’ ) tr {(qu lsg} it tr{(ngg) 1Agﬁgsg}

L (A, A, eq}}
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where C' is constant with respect to p,, Ay, wy and Ay, B4 = (I — Bgf\g + Bgsgﬁ;) is a
symmetric ¢ X ¢ matrix and Bg — f\;([\gf\; - ngAg)_l. Now following from Corollary A.1
of Appendix A;

log |(wgAg) ™| = log |w; ' A = log [w,?|A; ] = plogw, ™ +log|AJY,
and so @ can be written as
e
QAg,wy, Ay)=C + 3 an plogwg_1 + log |A;1| - wg_l tr{AEISg}

s (4.1)
+ 2w, tr{ A AGB,Sy} — wy  tr{ALATTA, O, } .

4.2 Parameter Estimates for GPGMMs

4.2.1 Estimating the Parameters

Estimation of the model parameters, via the AECM algorithm, is analogous to that of the
PGMM parameters of Section 3.3. The number of covariance parameters associated with

each GPGMM is given in Table 4.1.

Table 4.1: Covariance structures and number of covariance parameters for each member of
the GPGMM family.

Model Aj=A A;=A ws=w A =1 Covariance Parameters

CCCC Yes Yes Yes Yes pg—q(g—1)/2] +1

CCUC Yes Yes No Yes [pg—q(g—1)/2]+G

UCCC No Yes Yes Yes Glpg—q(g—1)/2] +1

UCUC No Yes No Yes Glpg—q(g—1)/2| +G

CCCU Yes Yes Yes No [pg—q(g—1)/2)+p

CCUU  Yes Yes No No pg—q(g—1)/2]+[G+ (p—1)]
UCCU No Yes Yes No Glpg—q(g—1)/2] +p

UCUU No Yes No No Glpg—q(g—1)/2] + [G+ (p—1)]
CUCU Yes No Yes No pg—q(g—1)/2]+ [1+ G(p — 1)]
CUUU Yes No No No pg —q(¢g—1)/2]+Gp

UUCU No No Yes No Glpg—q(g—1)/2]+ 1+ G(p —1)]
UUUU No No No No Glpg—q(¢g—1)/2] +Gp

Table 4.1 contains a total of four new models when compared to Table 3.1. The equivalences
between the models in these tables, that is the equivalences between the PGMM family and
the GPGMM family, are shown in Table 4.2.
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Table 4.2: Equivalences between PGMMs and GPGMMs.

PGMM GPGMM | PGMM GPGMM
CCC cccce UCU Uuccu

CucC CCUC = Uucuu
UCC ucccC = CcuCcu
UUC UucucC CuU CUUU
CCU CCCU = uuCcu

= CCUU Uuu [ORV2VA8]

From Table 4.2, the four new models are CCUU, CUCU, UCUU and UUCU. The derivation
of the model parameter estimates for the CCUU model are demonstrated in Section 4.2.3
and details for the remaining three new models are given in Appendix B.

The estimates for the eight pre-existing models are obtained from the PGMM estimates

given in Section 3.3.4 by writing

v
= Vg 78
v, =¥, |‘Il_q'1/g’
and setting
v
Wg = |\Ilg|1/g and Ag — ‘TI;;]%Z;

Before outlining the derivation of the MLEs of the model parameters for the CCUU model,

it is necessary to introduce the method of Lagrange multipliers.

4.2.2 Method of Lagrange Multipliers

Lagrange (1788) introduced a method of finding local extrema of a function subject to some
constraint which is also expressed as a function. This method, which is summarised here,
is described in detail by Fraleigh (1990).

In order to find local extrema of a function f(z,y, z) subject to the constraint g(z,y, z) = 0,

use the fact that there exists some constant \ such that
Vf=AAVy),

where ) is called the ‘Lagrange multiplier’. This, along with the constraint g(z,y, z) = 0,

leads to what Fraleigh (1990) calls the “conditions of the method of Lagrange multipliers”;

of 09 of g Of . dg B
5 e a5 md BmgAsT
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Furthermore, writing
L(‘r7 y’ Z’ A) == f(.fL" y’ Z) i A9(1'7 y’ Z)’
makes these conditions equivalent to the conditions

oL oL oL oL
8_1‘_0, 8—y—0, 5—0 and a—o

4.2.3 Parameter Estimates for the CCUU Model

For the CCUU model, A; = A and A, = A. Therefore, ,Bg = A'(AA’ + c&gA)_l and from

Equation 4.1, @ can be written

G
Q(A,w,, A) = Z [plogu +log|A™Y - wrltr{A71S,}

wlr—‘

+ 20, tr{ATTAB,S, } — wp tr{A'ATIAG, .

Now, form

L(A,wy, A, N) = Q(A,wy, A) — A(JA| = 1),

and differentiating L with respect to A, w, ~1 A~1 and ) respectively gives the following

score functions.

Sk, A e - @[A—ls B — AIA® }
i A~ g 9% o)

oL Ng o5 e -1 /

Sa(A,wg, A N) = awg—l = 2 [y — tr{A7IS,} + 26{ATIAB,S,} - r{AaTIAG,A'} ],

1 o s =t

S3(A,wg, A, \) = 8A e T 5} :nq[ w8y + 27 MBS, — v ' AGLA| + N A4,
oL

S4(A,UJ9,A,/\) = a—/\ = 'A’ —1.

Note that Sy is included for completeness only and solving Sy (A, wy, A, X) = 0 just returns
the constraint |A| = 1. Now, solving S; (A", &y, A, A) = 0, in an analogous fashion to the

CUC solution in Appendix A.4.3, gives

G

G
o - |3 2es,p) |32

geal A

E> lw



43

Again, imitating the PGMM solution of Appendix A.4.3, solving Sa(Ar™, &re AN =0
gives

(@)™ = gl)tr {Ar_l [Sg — 28" (3,8, + Anew@g(-f\“ew)/} } ;

and solving diag{Sz(A™", (&)™, A, A)} = 0 gives

A 1 - i
new 5 dlag {S o 2Anewﬁgs + Anew@/ (Anew) } + /\‘Anew‘Ane e 0
= Anew = gnew dlag {S 2Anewﬂ S + Anew@l (Anew) }

n+2)\]A"*‘W|

= gy dine 2[5, - 28,8, + Avey (A ]

G
G
But A" is a diagonal matrix with IA""'“’) = 1, therefore

1

P

p
n+2x= | [[&

J=1

where §; is the jth element along the diagonal of the matrix

n(’w

G
n A ' A new A new
W [Sg — 24 B,8, + A~ @y (A~y
qzl

and it follows that

1 14
)\25 Hfj =
j=1

4.3 Leptograpsus Crabs Data

4.3.1 The Data

The data consist of biological measurements on 200 crabs — 50 male and 50 female, for
each of two species; 100 orange and 100 blue. The data were sourced from the MASS library
in R; which contains datasets from Venables & Ripley (1999). There are five variables in
these data, corresponding to the five measurements that were taken on each crab; these

measurements are given in Table 4.3.
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Table 4.3: Details of the five measurements that were taken on the leptograpsus crabs.

Variable | Measurement
FL Frontal lobe size in millimeters.
RW Rear width in millimeters.
CL Carapace length in millimeters.
CW Carapace width in millimeters.
BD Body depth in millimeters.

These data first appeared in Campbell & Mahon (1974) and were subsequently analysed by
Ripley (1996), McLachlan & Peel (1998, 2000a) and Raftery & Dean (2006). These data
were selected for analysis herein because the results will be comparable with the MCLUST

and variable selection analyses of Raftery & Dean (2006).

4.3.2 The GPGMM Family of Models

The pgmm software was expanded to include the four new models. The family of GPGMMs
were fitted to the data for G € {1,2,...,5} and ¢ € {1,2,...,5} by running the pgmm
software from three random starting values, so that a total of 900 models were fitted.

Figure 4.1 shows the BIC for the best GPGMM for each couplet (G, q) over the three runs.

The best model was a UCUU model with G = 4 and ¢ = 1. The BIC for this model was
201.79 and a classification table for this best GPGMM is given in Table 4.4.

Table 4.4: Classification table for the best GPGMM for the crabs data.

1 2 3 4
Male 40 10
S Female 50
Dk Male 50
e Female 4 46

Looking at a pairs plot of the variables in the crabs data, given in Figure 4.2, it becomes
apparent that a linear relationship exists between each of the five variables. Therefore, it
is natural that the best GPGMM had one latent variable; that is, one linear combination

of the variables.
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Figure 4.1: A ‘heat map’ giving the greatest BIC values for each GPGMM at (G, q) for the
crabs data.

4.3.3 The MCLUST Family of Models & Variable Selection

Raftery & Dean (2006) report the results of applying MCLUST to the crabs data. Although
they do not state a BIC value, they do report a classification table, which is given in

Table 4.5.

Table 4.5: Classification table from the MCLUST analysis of the crabs data.

1 2 '3 4 b5 6 7
Male 32 18
Bl Female 3l 19
Ol Male 28 29
& Female 24 21 5

Raftery & Dean (2006) also used variable selection to analyse the crabs data; the classifi-

cation table for this analysis is given in Table 4.6.
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Figure 4.2: A pairs plot of the crabs data, constructed using R

Table 4.6: Classification table from the variable selection analysis of the crabs data.

T2 s e 3
Male 40 10
Hius Female 50
Orang Male 50
range Female 5 45

4.3.4 Model Comparison

Table 4.7 gives the Rand and adjusted Rand indices and the error rate for the three models
that were applied to the crabs data. The error rate is included here because it was used by
Raftery & Dean (2006) for model comparison.

The best GPGMM was the best model; it had the largest Rand and adjusted Rand indices

and it had the smallest error rate. This is another remarkable result; the GPGMM family
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Table 4.7: Rand and adjusted Rand indices and error rate for all of the models that were
applied to the crabs data.

Model Rand Index Adjusted Rand Index Error Rate
GPGMM 0.935 0.828 0.07
MCLUST 0.851 0.533 0.425

Variable Selection 0.931 0.815 0.075

of models has outperformed the far less parsimonious variable selection method, albeit by
a small margin, and the MCLUST family of models.

Furthermore, the PGMM family of models also performed excellently when applied to these
data. The best PGMM had greater Rand and adjusted Rand indices than the variable

selection method but had the same error rate.

4.4 Summary

The PGMM family of models that was introduced in Chapter 3 has been extended from eight
to twelve parsimonious Gaussian mixture models. This new family of models, the GPGMMs,
retain the attractive feature that their number of covariance parameters is linear in the
dimensionality of the data. The GPGMM family of models was applied to leptograpsus
crabs data and gave excellent classification results when compared to the MCLUST and
variable selection methods used by Raftery & Dean (2006) to analyse the same data.

The superior performance of the GPGMMs when compared to MCLUST and variable se-
lection on the data analysed in this chapter and in Chapter 3 may be related, in part, to
the different convergence criteria used. Running MCLUST and variable selection on these
data, using Aitken’s acceleration might give better results for these models. That said,
the performance of the GPGMMs compared to variable selection is remarkable when one
considers the relative simplicity of the GPGMM method.

Note that some of the models depicted on heat maps herein may not in fact be parsimonious;
that is, some such models may have a greater number of covariance parameters than the
‘raw’ covariance matrices. No such models were removed because the penalty that the BIC
imposes on the log-likelihood for lack of parsimoniousness ensured that no such model was

selected as the ‘best’.
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Chapter 5

Parsimonious Gaussian Mixture
Models with Cholesky-Decomposed

Covariance Structure

5.1 Introduction

The ideas around model-based clustering, described in chapters 2 and 3, are developed via
modified Cholesky decomposition of the covariance matrices X,. The resulting family of
mixture models can be applied to classification problems involving longitudinal, or naturally

ordered, data.

5.2 Background

5.2.1 Cholesky Decomposition

Cholesky decomposition (Benoit, 1924) is a method, often used in numerical analysis, for
decomposing a matrix into the product of a lower triangular matrix and its transpose. More
precisely, let A be a real, positive definite matrix. Then A can be decomposed uniquely,

using the Cholesky decomposition, as

A =LL/,
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where L is a lower triangular matrix.
In the numerical analysis application, Cholesky decomposition is used to decompose the

matrix A in order to simplify the solution to a linear system of equations, like
Ax =b.

In this work, a Cholesky decomposition will be applied to the group covariance matrix in a
mixture modelling framework. More precisely, a modified Cholesky decomposition will be

used.

5.2.2 Modified Cholesky Decomposition

Pourahmadi (1999, 2000) exploited the fact that covariance matrix ¥ of a random variable

can be decomposed using the relation
TET =B,

where T is a unique unit lower triangular matrix with diagonal elements t; = 1 and D
is a unique diagonal matrix with strictly positive entries. An alternative version of this
relationship is written

sl =T, (5.1)

In these decompositions, the matrices T and D can be interpreted statistically in terms of
an autoregressive model. This decomposition was also used by Pan & MacKenzie (2003,
2006), while Pourahmadi et al. (2007) extended this decomposition to account for multiple
covariance matrices. This covariance decomposition, however, has not previously been

applied in a model-based clustering context.

5.3 Parsimonious Gaussian Mixture Models with Cholesky-

Decomposed Covariance Structure

5.3.1 The Model

We assume a mixture model with a Gaussian mixture component used to model each sub-

population, with a modified Cholesky-decomposed covariance structure. Therefore, the




51

density of an observation x; in group g is

1
V@) | (TyDg'Ty)" |

where T, is the lower triangular matrix and Dy is the diagonal matrix, that follow from

f(x’i ’ ’J'gaTgng) =

I iy
exp {30 = 1) Ty Ty~ )

the modified Cholesky decomposition of 3.

Now, there is the option to constrain the T, or the Dy to be equal across groups, which leads
to four parsimonious Gaussian mixture models, which shall be called Cholesky-Decomposed
Gaussian Mixture Models (CDGMMs). Each CDGMM, along with their respective nomen-

clature and number of covariance parameters is given in Table 5.1.

lable 5.1: The covariance structure and number of covariance parameters for each CDGMM.

Model L, D, Covariance Parameters
VV  Variable Variable G[p(p—1)/2]+ Gp
VE  Variable Equal Gp(p—1)/2]+p
EV Equal Variable p(p—1)/2+ Gp
EE Equal Equal p(p—1)/2+0p

Note that two of the models in Table 5.1, EE and VV, are equivalent to models that already
exist in the MCLUST framework. The EE model is equivalent to the EEE model and the
VV model is equivalent to the VVV model.

5.3.2 Model Fitting

The CDGMMs are fitted using the ECM algorithm. The E-step is very similar to the
first E-step of the AECM algorithm from Chapter 3. The complete-data likelihood for the

mixture model is

n

G
l:(ﬂgaugsTng) = H H [ﬂgf(xi | ”g,Tg’ Dq)] Zig ’
i=1g=1

where 2z = 1if i = g and z;;, = 0 otherwise. Similarly to Q; from Section 3.3.3, the

expected value of the complete-data log-likelihood for the mixture model is

G G
np n = -
Q(mg, 1T, Dg) = ) mglogmy — —-log2m = _ ' log [(TyDy ' T) ™|
g=1 g=1
. (5.2)

n -
e tr{ng_’qung},

g=1
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where

T}gf(xi \ ﬂg»'i‘gaﬁg)
G 1Ty f(xi | g, Ty, D)
ng = Yoy g and Sy = (1/ng) 30 Zig(xi — py)(xi — g)'. Now, maximising Q with

Big =

respect to m, and p, gives

l:l’ g i Zinzl éigxi
J 22;1 22‘9

. n
and #, = -Z,
g

n

as in Section 3.3.3.

The following results (Liitkepohl, 1996, Section 4.2) were used to simplify the term
S n
> 5 log|(TyDy'Ty) ™',
g=1

in Equation 5.2.

Amxm’Bmxm5|AB\:|AHBl
Amxm:|A']=|A]
Apxm, nonsingular: | A™! | = | A|™?

Apxm = [aij], triangular

m
: i A ! = Haii
g1
The simplification is achieved as follows.
~1
log |(T;D;T,) | = log | T;D; ;| " = tog {|T;|” D5 |}

—2log IT;] + log |Dy| = log | Dy,

and it follows that
A € n
¥, ?" log IR T = ) ?9 log |Dy| .
g9=1 g=1
Now, it is also true that
R DT, = | T 8, T 0"

and so Equation 5.2 can be written
G

n i
; ~ tr{TyS;TyDy '},

G
n
Q(Tg,Dg) =C — Z ?g log |Dy| —
g=1

(5.3)

where C' is constant with respect to p,, Ty and D,. The parameter estimates for the VV
model are derived in Section 5.3.3 and estimates for the parameters of the other models are

given in Appendix C.
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5.3.3 Parameter Estimates for the VV Model

Differentiating Equation 5.3 with respect to Ty and D_;l respectively gives the following

score functions.

0Q(T,,D n n < =
51(Ty, Dy) = —%—9) S {(Dg 1,8, + Dnggsg] = —ngD; T8,
INTHD:) n n ploom
S5(Ty,Dy) = ——L -9 = 4p _ 9(T,S,T,) = £ (Dg— T,S,T}).
9 BDg 9 9 2 ( 99+ g 2 9 9~9="g

Solving S1(T,, Dy) is not entirely straightforward because it is only the lower triangular
part of T, that needs to be estimated. Following Pourahmadi et al. (2007), ¢;; is used to

denote those elements of T, that are to be estimated, so that

Il 0 0 0 e ()
R 0 W
(9) (9)
o) 02y 1 0 Lol A0
T, = ¥ & (5.4)
(9) (9) (9)
d)pq—].l d)pqﬂl.Q o (bpq_]’p_g 1 0
(9) (9) (9) (9)
(DP‘{ @l,?; Y ¢p(.]p—2 d)p(,]p—l 1

and write S1(Ty,Dy) = S1(®4, Dy), where &, = {¢ } for i > g; i,j € {1,2,...,p}. Also,
let LT{-} denote the lower triangular part of a matrix. Now, solving LT{51 <I>g), Dg} =0

for <i>g leads to a total of p — 1 linear equations. The 1 x 1 solution is straightforward;

(9) q5(9) (9)

fuPa , a1 _
B @
and so
i -
a1
The 2 x 2 case involves the equations
511)¢31 521)‘?532 i —0
g
YT

dZ(B%) dg%) d33
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which can be expressed in the form

(9) (9 d;(g) (9)

St Hey aa | __ [ & (5.5)
(9) (9 2(9) (@) |’
S12 S22 P35 S32
and so
=

2 (9) ( (9)
¢§3g1) = e Sl% 82%) 83% (5 6)
2 4 ) \ Y

It follows that the solution to the general (r — 1) x (r — 1) system of equations will be given

by

. |
¢£!{) 5(191) 5(2%) T 81(~g—)1,1 sﬁ"i)
7(9) (9) (9) (9) (9)
[0} s s wow G s
Y r2 g 12 22 r—1,2 r2 , (57)
2(9) [ (9) 9) (9)
(prf}r—l 35?2—1 82?7‘~2 i 31("]—1,7"—1 Sr?r—l

g =28 .0

Solving diag{Sg(Tg, ]59)} = 0 is much more straightforward, giving
D, = diag{’i‘gSgT;}.

which is a very natural estimator.

5.4 Rats Data

5.4.1 The Data

Data on the body weights of rats on one of three different dietary supplements were pub-
lished in Crowder & Hand (1990). A total of 16 rats were put on one of three different diets;
eight rats were on Diet 1, four were put on Diet 2 and four on Diet 3. Weights were first
recorded after a settling-in period and then weekly for a period of nine weeks. An extra
measurement was taken at 44 days to help gauge the effect of a treatment that occurred

during the sixth week. These measurements can be seen on the time series plot in Figure 5.1
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Figure 5.1: Time series for each rat, coloured by group — black for rats from Diet 1, red
for Diet 2 and green for Diet 3.

5.4.2 Analysis

An ECM algorithm for each member of the CDGMM family was implemented in C, similarly
to the pgmm software. As with the PGMM and GPGMM analyses, the Aitken acceleration
convergence criterion was used for this ECM algorithm. Each member of the CDGMM

family of models was fitted to the data for G =1,2,...,6.

5.4.3 Results

Using the BIC as a model selection criterion, the best CDGMM was an EE model with
G = 5. The classifications according to this EE model, which is equivalent to an EEE
model in the MCLUST framework, can be seen in Table 5.2 and Figure 5.2.

Table 5.2: Classification table for the best CDGMM on the rats dataset.

1 2 3 4 5
Diet 1 | 8
Diet 2 SR
Diet 3 1 3

From Table 5.2 and Figure 5.2, it is apparent that the best CDGMM classifies all rats on
Diet 1 into Group 1 and that one rat from each of the remaining two diets is misclassified

into a group on its own. However, these two misclassified rats do have unusual weights




56

600
|
|
\

Weight (g)
400
]

300
1

T T T T T T T
0 10 20 30 40 50 60

Time (Days)

Figure 5.2: Time series for each rat, coloured by classifications — black for Group 1, red
for Group 2, green for Group 3, purple for Group 4 and blue for Group 5.

relative to the other rats that were on the same diet. The Rand index associated with this

model is 0.95 and the adjusted Rand index is 0.88.

5.5 Summary

|
|
|
|
|
|
|
|
A new model-based clustering paradigm has been introduced for the analysis of longitu- !
dinal data. This family of mixture models, called CDGMMs, utilise a modified Cholesxcy !
decomposition to model the covariance structure and so they are suitable for the analysis |
of longitudinal data. Four members of the CDGMMs are given herein and the associated
maximum likelihood estimates for the parameters have been derived. Two of these models
have already appeared in the literature, through the MCLUST framework, while the other
two models are new. This family of models performed well when applied to real data on
the weight of rats.
Note that this chapter is only intended as the first step in the creation of the CDGMM
family of models. Only basic constraints are imposed herein and there is scope for the
addition of many more members. For example, constraints could be imposed on elements
on one or more of the sub-diagonals of T,, and some of the other constraints applied by

Pourahmadi et al. (2007) could also be used.

The scope for expansion of the CDGMM family of models is great and it could grow to have

I
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at least as many members as the GPGMM family of models. However, further expansion
will be left for future work, with the emphasis of this thesis now shifting from interval to

binary data.






29

Chapter 6

Association Rules

6.1 Introduction

This chapter marks the shift in this work from techniques applicable to interval data to
techniques that can be applied to binary data. This shift, from model-based clustering to
association rule mining, also marks the transition from statistical modelling into an area of

data mining that is largely algorithm-driven.

Association rules are distinct from other methods of analysing binary data, such as loglin-
ear models, in that they present an efficient method of analysing large binary data sets.
Association rules are used to discover relationships between binary variables in transaction
databases. A transaction database may be considered as one that consists solely of binary

variables; an item can either be present in a transaction or not.

Although formally introduced by Agrawal et al. (1993), many of the ideas behind association
rules can be seen in the literature at least as far back as Yule (1903). Applicable to data
from a wide range of sources, such as convenience stores, credit card companies, electorial
commissions, college application offices and healthcare providers; association rule analysis

is one of the most versatile data mining techniques available to the analyst.

The apriori algorithm (Agrawal & Srikant, 1994; Borgelt & Kruse, 2002; Borgelt, 2003)

presents an easy-to-implement method of generating, or mining, association rules.
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6.2 Definition of an Association Rule

6.2.1 Association Rules

Given a non-empty set, I, an association rule is a statement of the form A = B, where
A,B C Isuch that A# 0,B # (), and AN B = (). The set A is called the antecedent of the
rule, the set B is called the consequent of the rule, and I is called the itemset. Association
rules are generated, or mined, over a large set of transactions {71,72,...,7,}.

An association rule is deemed interesting if the items involved occur together often and there
is evidence to suggest that one of the sets might in some sense lead to the presence of the
other set. Consider a convenience store example; the association rule {bread} = {butter}
suggests that those who purchase bread, tend to also purchase butter.

The ‘interestingness’ of an association rule is commonly described by mathematical notions

called support, confidence and lift. These functions are defined in Section 6.3.

6.2.2 Negations

In many applications, it is not only the presence of items in the antecedent and the conse-
quent parts of an association rule that may be of interest. The absence of items from the
antecedent part can be related to the presence or absence of items from the consequent part
and vice versa. An example of a rule of this form is {sunflower spead} = {not butter}, and
such a rule is sometimes referred to as a ‘replacement rule’. Widening the mining paradigm
to include this type of association rule gives rise to the possibility of mining many more
association rules from each transaction dataset.

For convenience, we introduce the term ‘negation’. Let X € I and write X to denote the
absence or negation of the item, or items, in X from a transaction. Considering X as a
binary {0,1} variable, the presence of the items in X is equivalent to X = 1, while X is
equivalent to X = 0. Mining an association rule A = B can actually lead to the discovery
of related rules, which involve negations, such as A = B; one way this can be achieved
is through doubledecker plots, which are discussed in Section 6.6.2. An analysis involving
negations along with a quantification of the number of rules that can be generated when

negations are considered is given in Section 8.4.
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6.3 Support, Confidence, Expected Confidence & Lift

The notation P(A) is introduced to represent the proportion of times that the set A appears
in transaction set Y. Similarly, P(A, B) represents the proportion of times that the sets A

and B coincide in transactions in Y. It is also necessary to define

P(B;A):P—;j(—%’i).

That is, the proportion of times that the set B appears in all of the transactions involving
the presence of the set A. Having established these definitions, Table 6.1 gives the functions

by which association rules are typically characterised.

Table 6.1: Common functions of association rules.

Function Definition

Support s8{A = B) ="P(A, B), 8(A) = P(A)
Confidence ¢c(A=B)=P(B|A)

Expected Confidence EC(A = B) = P(B)

Lift L(A= B) =c¢(A= B)/EC(A = B)

Note that the expected confidence is the value that the confidence of a rule would take if

the antecedent and consequent were statistically independent.

6.4 Rule Generation

In the original formulation of the association rule mining problem (Agrawal et al., 1993),
mining was performed by generating rules with support and confidence above predefined
thresholds. The apriori algorithm (Agrawal & Srikant, 1994) was soon introduced; it also
used a predefined support threshold but did so in a much more efficient manner. Recent
improvements on the implementation of the apriori algorithm by Borgelt & Kruse (2002)
and Borgelt (2003) have made it yet more efficient.

There have, however, been some viable alternatives to support based pruning. These alter-
natives mean that rules with relatively low support can be produced, which can lead to the

discovery of rules involving negations. The idea of discovering association rules based on
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conditional independencies was introduced by Castelo et al. (2001) through the MAMBO
algorithm.

Pasquier et al. (1999) showed that it is not necessary to use support pruning in order to find
all interesting association rules and that it is sufficient to mine the closed frequent itemsets.
To define precisely a ‘closed frequent itemset’, it is necessary to consider Galois connection
and Galois closure operators. These notions, together with other supporting definitions, are
given by Pasquier et al. (1999). Further, Pei et al. (2000) and Zaki & Hsiao (2002) have
proposed algorithms for this purpose, called CLOSET and CHARM respectively.

6.5 Lift & Odds Ratios

6.5.1 The Lift
The lift of an association rule is a symmetric function, since

s H B R e REUE) el
L(A:*B)ZCP(B) = P(B) ~ P(A)P(B) P(A) P(A) e

This is extremely useful when it is not clear which of the rules A = B and B = A is of more
interest, or when both may be of interest. Equivalently, lift can be useful when it is not
clear whether P(A | B) or P(B | A) is of more interest, or when both may be of interest.
Further, lift can also be used in any situation, even outside of the area of association rule
mining, when it is not clear whether P(A | B) or P(B | A) is of interest, or when both may
be of interest.

The distance of lift from one can be taken as a measure of the interestingness of an associ-

ation rule, since if the lift of the association rule A = B is one then

P(A, B) = P(A)P(B),

and so A and B are statistically independent. Further, the lift of an association rule gives
insight into the interestingness of rules containing negations. Consider the rule A = B
where A and B are singleton sets; if the lift is less than one then only rules containing

one negation will potentially be of interest, whilst if the lift is greater than one then only
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rules involving two or no negations will be potentially of interest. Further details on this
argument are given in relation to odds ratios in Section 6.5.2.

One problem with the interpretation of lift is that it is not symmetric about one. A possible
solution to this is to consider log(lift), and another is to standardise lift as outlined in

Chapter 8.

6.5.2 2 x 2 Tables & Odds Ratios

Table 6.2, which is a cross-tabulation of A versus B, can be regarded as a representation of
the supports of all of the rules that can be formed with antecedent A (or A = 1) or A (or
A = 0) and consequent B (or B = 1) or B (or B = 0). For example, the rule A = B has

support a and the rule B = A has support c.

Table 6.2: A cross-tabulation of A4 versus B.

A
1 0
1| a b
= c d

The odds ratio associated with Table 6.2 is given by

_ad

Odds Ratio = = —,
be

=
=

aulo

This odds ratio can be related to association rules as follows. Note that A = 1 is considered
to be the event here, without loss of generality. Consider the following three possibilities:
odds ratio = 1, odds ratio < 1 and odds ratio > 1.

If odds ratio = 1 then B = 0 and B = 1 have exactly the same affect on the event.
Therefore, no association rules involving A and B will be of interest.

If odds ratio < 1 then B = 1 reduces the chances of the event occurring and it is only the
association rules containing exactly one negation that may be of interest, namely; A= B,
A= B, B= Aand B= A.

If odds ratio > 1 then B = 1 increases the chances of the event occurring and it is only
the association rules containing either no or two negations that may be of interest, namely

A= B, B= A, A= Bor B= A.
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Therefore, the odds ratio can be viewed as providing a partition of the eight possibly inter-
esting association that can be formed from A, B and their respective negations. Moreover,
lift can be viewed in the same way.

Furthermore, the relationship between association rules, contingency tables and odds ratios
can be extended to larger tables where collapsibility could be used to determine which rules
may be of interest. For example, if a 2 x 2x 2 table representing A, B and C can be collapsed
(see Agresti, 2002, Section 9.1.2) to a 2 x 2 table representing A and B, then of the rules
that can be formed from the sets A, B, C, A, B and C we know that those involving C

and C will not be of interest.

6.6 Association Rule Visualisation

Hofmann & Wilhelm (2001) discuss methods of visualising association rules, amongst which

are two-key plots and doubledecker plots.

6.6.1 Two-Key Plots

Plotting confidence against support results in a scatter plot where each point lies on a
straight line through the origin. Each such line represents all rules of the form A = B;, so
that each antecedent is represented by a line. Such a plot is often called a ‘two-key plot’
and an example is given in Figure 6.1. A two-key plot can be used to visualise pruning, for
example all rules with support of at least 40% and confidence of at least 60% lie in the blue

rectangle on Figure 6.2.

6.6.2 Doubledecker Plots

A doubledecker plot is a mosaic plot (Hartigan & Kleiner, 1981) showing various combina-
tions of absence and presence of the items involved in an association rule. Figure 6.3 shows
the doubledecker plot arising from the rule A = B.

Each of the rules A = B, A = B, A = B and A = B are represented on the plot in
Figure 6.3. Specifically, the antecedents A and A are represented by a portion of the thin

horizontal bar at the bottom of the plot, while the consequents B and B are each illustrated,
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Figure 6.2: A two-key plot with a rectangle enclosing all rules with confidence of at least 0.6
and support of at least 0.4.
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" Yes
= No

B

Figure 6.3: Doubledecker plot arising from the rule A = B.

for each antecedent, by a portion of a bin. These bins have an interpretation; the support
of each rule is reflected in the area of the corresponding bin, while the height of the bin

gives the confidence.

Doubledecker plots represent a method of extracting association rules involving negations
implicitly. However, there is a limitation to their usefulness for this purpose. Consider
Figure 6.4, which arises from the rule {A, B} = {C, D}. Figure 6.4 only illustrates rules
with consequent {C, D} or {C, D}, the former is that of the original rule while the latter is
the union of the three sets {C, D}, {C, D} and {C, D}.

Therefore, while doubledecker plots can be used to visualise all possible antecedents wken
negations are considered, they are limited in that they can only display two possible conse-
quents. That is, they are not sufficient to display all combinations of presence or absence
of items from a given rule unless the consequent of that rule is singleton. The doubledecker
plots shown in figures 6.3 and 6.4 were produced using the software package PISSARRO
(Keller & Schlogl, 2002, stats.math.uni-augsburg.de/PISSARRO).
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" Yes
= No

Figure 6.4: Doubledecker plot arising from the rule {A, B} = {C, D}.

6.7 Pruning

There have been few statistically sound, yet useful pruning methods mentioned in the as-
sociation rules literature. One attempt at such a method was given by Bruzzese & Davino
(2001), who presented three tests designed to avoid support and confidence pruning. Ini-
tially, association rules are mined with certain support and confidence thresholds, then three
statistical tests are employed; an association rule is only retained if it ‘passes’ all three tests.

These tests can be carried out using the software package PISSARRO.

6.7.1 Test 1

The first test is used to prune rules that have high confidence due to the presence of frequent
items in the consequent part of the rule. Statistically, this test compares the confidence of
the rule, ¢(A = B), to the expected confidence of the rule, EC(A = B), and is based upon

the following hypotheses.
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Hy:c(A= B)=EC(A= B)
H; :¢(A = B) > EC(A= B)

Under Hj the antecedent and the consequent of the rule A = B are statistically independent

since P(B | A) = P(B).

6.7.2 Test 2

The second test involves performing a chi-squared test on each set of rules with the same
antecedent part. This test suffers the usual problems associated with chi-squared tests, as
outlined by Wilhelm (2002).

The effect of Test 2 can be visualised on a two-key plot because if the test statistic is not
significant then Test 2 will have the effect of deleting a line from the associated two-key
plot. This relationship arises because, as mentioned is Section 6.6.1, each line on a two-key
plot represents all rules with a common antecedent. Moreover, lines on the left hand side of
a two-key plot face greater risk of deletion by Test 2 because these are the lines with higher

slope and so represent rules with similar support.

6.7-3 Test 3

The third test is performed in order to evaluate the strength of the association between the
antecedent and the consequent of a rule. The support of a rule is compared to the support
of the antecedent part of the rule. Applying this test will cause the deletion of all rules for
which the confidence is not close to one. This test, if applied, may cause the deletion of

rules with confidence that might in fact be considered high, such as 90%.

6.7.4 Remark

While this, and other pruning methods can be effective in the analysis of association rules,
they can slow down the mining process and often require that rules be initially generated
using relatively low support or confidence thresholds. There is therefore no tangible advan-
tage to pruning rules after generation over an effective mining method or a good system for

ranking mined rules.
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6.8 Interestingness

An alternative to pruning association rules is to rank them in order of interestingness,
although this is not the sole intended use of measures of interestingness. In fact, the
question of what makes an association rule interesting is at the heart of association rule
mining. An important consideration regarding the interestingness of an association rule is
the context in which it is presented; a rule may be mathematically interesting but yet may
not be interesting in practice. Since what is interesting in practice will vary depending on
the data and the purpose of the analysis, it is interestingness in the mathematical sense
that is focused upon in this section.

Measures of interestingness have already been introduced in Section 6.3; for example, an
association rule A = B could be considered interesting if ¢(A = B) > ¢;, where ¢; is a
predefined threshold for confidence. However, basing interestingness on confidence alone
is not satisfactory since there is no guarantee that the antecedent and consequent are not
statistically independent.

Lift could also be used to rank mined association rules but the distance of lift from one
cannot necessarily be taken as a reliable measure of interestingness. Lift is discussed further
in Chapter 8.

Within the literature, alternative definitions of interestingness have been proposed. Two
types of interestingness, that are described by Vazirgiannis et al. (2003), are given in the

following sections.

6.8.1 Gray & Orlowska’s Interestingness

Gray & Orlowska (1998) define the interestingness of the association rule A = B as

(irm) -

where K and M are fixed constants used to weight the relative importance of the lift and

Int(A = B; K, M) = (P(A)P(B)M,

the support components, P(A)P(B), respectively. Int(A = B; K, M) could potentially be

viewed as an objective function to be maximised in the mining process.
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As a consequence of the symmetry of lift, Gray and Orlowska’s interestingness is also sym-

metric, for every value of K and M, since
(P(4).P(B)™ = (P(B).P(A)".

Therefore, Gray and Orlowska’s interestingness could also be used in any situation, even
outside of the area of association rule mining, where there is doubt over whether P(A | B)
or P(B| A) is of interest, or when both may be of interest.

Another advantage of Gray and Orlowska’s interestingness is ease of implementation; in fact,
this type of interestingness is used is Chapter 7. Although, some justification for selection
of the values of K and M used in Chapter 7 is given therein, the degree of arbitrariness in

the choice of K and M is a weakness of this kind of interestingness.

6.8.2 Dong & Li’s Interestingness

Dong & Li (1998) define interestingness in a more mathematical fashion than either Silber-
schatz & Tuzhilin (1995) or Gray & Orlowska (1998). Dong and Li’s interestinguess involves
computing a distance metric between a rule and the other association rules in its neighbor-
hood. An association rule is deemed interesting if the corresponding point is unexpected in
the context of the neighboring rules.

Dong & Li (1998) actually define two types of interestingness; ‘unexpected confidence’ and
‘isolated interestingness’. In both cases, the value taken by interestingness is either ‘0’ or
‘1’. A value of ‘1’ is assigned if the distance, as defined by some metric, is bigger than some
predefined threshold; otherwise, a value of ‘0’ is assigned. The binary nature of this type
of interestingness means that it cannot be used to obtain any useful ranking of association

rules.
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Chapter 7

Association Rule Analysis of CAO
Data

7.1 Introduction

Selected methods described in Chapter 6 are used and developed to facilitate the analysis
of college application data. The purpose of this analysis is to discover whether or not there
is a meaningful relationship between the points that a school-leaving student expects to
attain and the courses, at an Irish university, that the student applies for. In particular,
the question of primary interest is do students select university courses based on the points
‘value’ of the course, or based on subjects of interest? The relationship between course

selection and gender is also explored.

7.2 Background

On Monday 21st August 2006 the Irish Times carried an article entitled ‘Points race’ may
be over as CAO requirements tumble. The author, Sean Flynn explained that the points
race may be coming to an end; a claim supported in the article by John McGinnity, deputy
registrar at NUI Maynooth (NUIM), who was quoted as stating that “this year has seen a
rebalancing between the supply and demand for places.”

The term ‘points race’ is used to describe the struggle to attain points; the metric by which
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school leavers have come to judge their Leaving Certificates’. In past generations the vital
statistic in assessing the strength of one’s Leaving Certificate was the number of passes and
honours attained. Today however, the assessment is usually given in cold hard points, so
much so that the attainment of points has become, for many, an end as well as a means.
Points are awarded by the Central Applications Office (CAO) on the basis of grades at-
tained at the Leaving Certificate examination. The intended purpose of these points is
to allow colleges to decide which students should get into which courses. In this sense. it
is understandable that students should want to get as many points as possible; the more
points attained, the less likely a student is to be pipped at the finishing line and lose out
on their preferred college course.

However, it would be a disturbing prospect if students were choosing their courses based on
points value rather than on topic; if the status of taking a college course with high points
outweighed the wisdom of taking one that the student might enjoy or even excel at. This
would be a points race in a different sense: points for points-sake.

Considering that the points requirement for a course is dictated by the demand for entry
to the course versus the amount of places available, it is not necessarily true that courses
requiring higher points are better than those requiring lower points — high or low points
reflect only supply versus demand for a course. Therefore, since the number of places for
each course is limited, universities can control the points ‘value’ of a course simply by
lowering the quota for the course; which must be set before the applications are made.
Socially, in a situation where this type of points race existed, our prospects of succeeding

as a knowledge-based society in the future would have to viewed as questionable.

7.3 Literature

Tuohy (1998) completed the first research paper for the Commission on the Points System,
which was established in 1997 by then Minister for Education and Science, Micheal Martin.
Amongst his conclusions, the author found that gender may have been an issue in course
choice. Moreover, he maintained that the answer to the question over whether or not the

points system directly effected students choices was unclear.
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The final report of the commission, including recommendations (Hyland, 1999) found that
the Leaving Certificate was a valid method of predicting higher education performance,
pointing to Lynch et al. (1999) for substantiation. In fact the report largely vindicated
the Leaving Certificate together with the CAO system as a college entrance system. The
report highlighted application for medicine courses as an exceptional case and recommended
further investigation by the relevant state and healthcare bodies.

Clancy (2001) and O’Connell et al. (2006) completed an extensive study of access to higher
education. They found that socioeconomic background was having a notable effect on the
profile of entrants to various third-level courses and that more females than males were
entering third-level education, with the stereotypical gender biases still present in areas like
engineering and primary teaching.

Gormley & Murphy (2006) analysed the CAO data from 2000 by assuming the existence
of an underlying mixture model with a Plackett-Luce model (Plackett, 1975) used for each
mixture component. This analysis yielded a model with 22 mixture components, which is
essentially claiming that there are 22 different sub-populations of students filling in CAO
forms; 21 subject-based groups plus a noise group. These results supported the CAO system
since no group emerged that chose courses that were linked only by high points value and
not by topic.

They went further and looked at the subset of students that their model assigned to the
health sciences component, listing the 30 courses with the greatest probability of appear-
ing on their CAO forms. The medicine courses across the five institutions — University
College Dublin (UCD), Trinity College Dublin (TCD), National University of Ireland Gal-
way (NUIG), University College Cork (UCC) and the Royal College of Surgeons in Ireland
(RCSI) — topped this list, which also contained two law courses and an engineering course.
The authors ascertained that this could be regarded as adding “some weight” to the argu-
ment that a points race does exist.

Lynch et al. (2006) looked at the CAO system as an admission system for dentistry courses.
They concluded that while there was a statistically significant relationship between Leaving
Certificate performance and first year dental examination results, there was “no association

between the number of points achieved by students in their Leaving Certificate examination
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and their performance in the final dental examination”.

Interestingly, Moran & Crowley (1979), even though they analysed data based on a slightly
different application system over 25 years ago, also found that there was a relationship
between Leaving Certificate performance and first year college exam performance. This
relationship continuing in a less definite fashion through the remainder of the university
years.

Notably, Moran & Crowley (1979) concluded at the time that science-based subjects, in
particular Mathematics, had better predictive value than non-science-based subjects. They
also vindicated, to an extent, the Leaving Certificate as a college entrance exam, concluding
that “the prospects for other selection systems which can equal or improve on the Leaving

Certificate seem poor”.

7.4 Methodology & Data

7.4.1 Methodology

CAO applications data from the year 2000 were analysed using association rule mining.
Whereas similar data have been analysed before using fairly complicated statistical models
— Moran & Crowley (1979), Tuohy (1998) and Gormley & Murphy (2006) — the analysis
herein is conducted at a very intuitive level. In particular, no underlying statistical model
is assumed and no hypotheses are proposed. Therefore, the analysis essentially represents

a convenient way of looking at the data.

7.4.2 Data

The data represent CAO degree applications from the year 2000; the same data that was
analysed by Gormley & Murphy (2006). In the year 2000, 53,757 applicants — 24,419 male,
29,337 female and one with unspecified, misspecified or incorrectly recorded gender — chose
up to ten of 533 degree courses; note that the two-subject moderatorship offered at TCD
was counted as separate courses since, unlike the arts degrees offered at the NUI colleges,

each applicant explicitly selected their course options at the application stage.
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Figure 7.1: The ten most popular course choices in the year 2000.

The most popular course was Arts at UCD, which was chosen by 11,007 (20.5%) applicants.
The ten most popular courses are shown in Figure 7.1; these are all either arts or business
courses, with the exception of Science at UCD. The top four courses in Figure 7.1 are all

common entry arts courses offered at NUI colleges in Dublin, Galway, Maynooth and Cork.

Note that the abbreviation DIT is used herein to denote ‘Dublin Institute of Technology’

and IT is used in general to denote ‘Institute of Technology’.

Interestingly, the profile of the ten most popular first choices (Figure 7.2) is different; arts
at UCD and NUIG switch places as the first and second most popular courses respectively.
Furthermore, in addition to arts and business courses, primary teaching courses also feature

this time along with the computer applications course in DCU.

Figure 7.3 represents the distribution of the number of courses chosen by applicants on the
degree section of their respective CAO forms in the year 2000. The form was completed
in full by 16,138 (30%) students and so 70% of applicants did not select the maximum

number of degree courses. One was the next most popular number of courses selected, with
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Figure 7.2: The ten most popular first preference course choices in the year 2000.

4,952 (9%) students opting to gamble on getting their first and sole choice. The number of

applicants choosing 2-9 courses was roughly the same, taking values from 3,618 to 4,518.

7.5 Analysis of Rules Interrelating Courses

7.5.1 Rule Generation

Association rules were generated using the apriori algorithm of the arules package (Hahsler
et al., 2005) in R. The minimum support for a rule was set at 0.5%, the minimum confidence
at 80% and the maximum length of a rule was set at ten. Practically, support of 0.5% means
that at least 269 students must have selected a particular combination of courses for a rule
comprised of that combination to feature within the mined rules. In analysing these rules,
two subsets of rules were of particular interest; those interrelating courses and those relating

courses and gender.
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Figure 7.3: The number of courses selected by applicants in the year 2000.

7.5.2 Pruning Method

Discovery of interesting rules that interrelate courses was facilitated by using only the course
choices in the input data, thereby omitting the gender variable; 145 association rules were
generated using R. In order to view courses at the highest level of grouping, the following

pruning technique was devised:
1. Consider the items in an association rule.
2. If a larger rule contains those items then delete the smaller association rule.

This method was applied and more than halved the number of association rules, leaving 72
rules, some of which comprised the same courses in different order.

For example, a rule comprised of four medicine courses, such as

{Medicine at NUIG, Medicine at TCD, Medicine at RCSI} = {Medicine at UCC},

was pruned in favor of a rule comprised of these four, plus one additional medicine course,

such as
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{Medicine at NUIG, Medicine at UCC, Medicine at TCD, Medicine at RCSI}

= {Medicine at UCD}.

Note that when this method is faced with two or more rules of the same length, containing
the same items (courses), all rules are retained. The option of a third step where ties of
this sort can be broken, using confidence say, was not availed of in this case. It can be
seen in Section 7.5.3 that the order of such rules, when ranked by confidence, can provide
information about their constituent courses.

The pruning method described in this section is somewhat unusual and perhaps even coun-
terintuitive. Typically, the rule {A, B} = C would be pruned in favor of the rule A = C,
provided that the presence of B had no perceived ‘benefit’. However, in the specific ap-
plication of this section, it is desirable to retain the larger rule because if no rule relating
courses like medicine and law existed amongst the pruned rules then none could have existed

amongst the original rules.

7.5.3 Top Twenty Rules

Table 7.1 gives the top twenty rules, by confidence, relating distinct items. Following
inspection of these rules, they can each be grouped into one of a few categories so that a
non-model-specific ‘clustering’ of the courses emerges. An explanation of all course codes

appearing in this work is given in Table E.1 (Appendix E).

Medicine

Rules 1, 10 and 15 in Table 7.1 relate the medicine courses across the five institutions
offering medicine: NUIG, UCC, TCD, RCSI and UCD. In this case, the fact that the UCD
course is in the consequent in Rule 1 suggests that it was the most popular of the five
medicine courses; in rules 10 and 15 and elsewhere amongst the 72 remaining rules, rules
relating the medicine courses appeared with different courses in the consequent (NUIG was
the second most popular medicine course and TCD was the third).

Rule 14 associates three courses within Dublin; Science in UCD, Medicine in TCD and

Medicine in UCD. This is a possible example of a geographical effect on course selection.
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Table 7.1: The top twenty rules, ranked by confidence, interrelating courses.

Rule Support Confidence Lift

1 {GY501, CK701, TRO51, RC001} = {DN002}  0.53% 97.92%  33.76

2 {MI005, DN012, CM001, FR001} = {PD101} 0.55% 97.67% 21.22

3 {PD101, FR001, LM047} = {MI005} 0.55% 96.71% QL.17

4 {CMO001, FR001, PD103} = {PD101} 0.60% 96.41% 20.95

5 {MI005, PD103} = {PD101} 0.51% 95.82% 20.82

6 {CMO001, LM047} = {MI005} 0.56% 95.54% 20.91

7 {GY101, MI005, CM001, FR001} = {PD101} 0.58% 95.44% 20.74

8 {DNo012, CM001, MH101, FR001} = {PD101}  0.64% 95.04% 20.65

9 {MI005, CM001, MH101, FR001} = {PD101} 0.58% 94.24% 20.48

10 {CK701, TR051, DN002, RC001} = {GY501} 0.53% 92.76% 38.84
11 {CK101, CM001} = {MI005} 0.54% 92.33% 20.21
12 {TRO084, FT472} = {FT471} 0.59% 92.11% 17.38
13 {GY101, DN012, FR001} = {PD101} 0.52% 92.11% 20.01
14 {DNO008, TR051} = {DN002} 0.54% 91.25% 31.47
15 {GY501, CK701, DN002, RC001} = {TRO051} 0.53% 89.52% 41.31
16 {DC111, FT542, DN015} = {FT351} 0.66% 89.44% 9.47
17 {GY101, MH101, FR001} = {PD101} 0.57% 89.24% 19.39
18 {CK101, FR001} = {MI005} 0.56% 80.05%  19.49
19 {MI005, DN012, PD101, CM001} = {FR001} 0.55% 88.82% 29.33
20 {TRO04, GY251} = {DN009} 0.50% 88.67%  27.93

Teaching & Arts

Rules 2-9, 11, 13 and 17-19 relate arts (BA) and education (BEd) courses across nine
institutions throughout Ireland. The course PD101 (BEd), at St. Patrick’s College, is the
consequent part of the majority of these courses, suggesting that it was a significant draw

to such-minded people and the most popular of the BEd courses.

Social Care

Rule 12 suggests that people who applied for Social Studies (Social Work) at TCD and
Early Childhood Care and Education at DIT also selected Social Care at DIT. In fact less
than 8% of applicants choosing the former pair failed to choose the latter course. This may

be indicative of a geographical effect — applicants wishing to study social care in Dublin.
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Business

Rule 16 relates four business courses in Dublin: Business Studies at DIT and DCU, Man-
agement and Marketing at DIT and Commerce at UCD. There are further rules within the

72 that related business courses in Dublin.

Law

Rule 20 associates the Law degrees at TCD, NUIG and UCD; the UCD degree being the
most popular choice. This rule can be used to illustrate the lift of an association rule;
given that it is known that an applicant selected Law at both TCD and NUIG, they are
27.93 times more likely to have selected Law at UCD than if no information was available
regarding their other course choices. Moreover, since lift is symmetric it is also true that
if it is known that an applicant selected Law at UCD, they are 27.93 times more likely to
have selected Law at TCD and NUIG than if no information regarding their other course

choices was available.

7.5.4 Remaining Rules

All 72 rules are given in Table E.2 (Appendix E). When the antecedent and consequent of
these rules are considered, almost all of them can be considered as belonging to one of the

following categories, or ‘clusters’.

Arts Primary Teaching & Arts
Business! Psychology & Arts
Business & Communications Science

Engineering Social Care?

Law Theology & Arts
Medicine

All of the remaining rules fall under some combination of these categories — typically, but
not exclusively, a combination involving Arts. Most importantly, there were no combina-
tions, like medicine and law, that associated two very different disciplines that are regarded

as prestigious in terms of CAO points. Therefore, it can be said that all of the 145 mined

"Tncludes Business Studies, Commerce, Finance and Marketing.
*Includes Social Care, Social Science, Early Childhood Care and Early Childhood Studies.
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rules were grouped by topic of interest and not by perceived prestige associated with high
points value.

Looking within the categories into which these rules fall, there is evidence of further group-
ing by geographical area. For example, Rule 12 in Table 7.1 relates social care courses
within Dublin whereas Rule 38 in Table E.2 relates the same type of courses without this
geographical constraint.

Moreover, Rules 29 and 49 (Table E.2) relate science courses in the Dublin area, while
Rule 51 relates business courses within Dublin. The geographical effect is not, however,
restricted to the Dublin area. Rule 57 relates three courses in Cork: Commerce, Government
and Public Policy, and Arts, all at UCC. This rnay in fact be an example of a rule where

topic was second to geographical location as the main motivator for course selection.

7.5.5 Remarks

By inspection of the top 20 rules, five ‘clusters’ emerge. These ‘clusters’ are consistent
with the findings of Tuohy (1998) and Gormley & Murphy (2006), yet come about from
the output of a very simple analysis that assumed no underlying model. Furthermore,
inspection of the whole 72 rules led to the discowvery of six additional ‘clusters’.

The presence of these ‘clusters’, especially arrivedd at in such a natural fashion, is evidence
of the effectiveness of the points system; this analysis yielded no evidence to suggest that
students choose courses with the highest points, instead the data suggest that they choose
courses by topic, with geography sometimes a factor. Moreover, due to the pruning method
that was employed, it can be inferred that amongst all 145 mined rules, there was no
evidence to suggest that course choices are made based on prestige associated with high

CAO points.

7.6 Further Exploratory Analysis

7.6.1 The Idea

Further analysis was carried out to search for amy weak evidence that might suggest that

a points race exists amongst a smaller cohort of students. The support threshold was




82

reduced and pruning was effected. Then subsets of prestige (high-point) courses within the

remaining rules were examined.

7.6.2 Methodology

The rules were mined once again, this time the support threshold was set at just 0.1%,
meaning that a rule would be mined so long as it was supported by at least 54 appli-
cants. The confidence threshold remained at 80% and the pruning method employed in
Section 7.5.2 was applied to the 2,537 rules that were generated; this reduced the number
of rules to 1,020.

7.6.3 Results

Whilst three rules were found that contained law and medicine and one that contained

psychology and law, these rules were each supported by less than 70 applicants.

7.7 Analysis of Gender Related Choices — Female

7.7.1 Initial Analysis

The gender variable was included in the mining process, the support threshold was reset to
0.5% and 536 association rules were generated using the arules package in R. The resulting
rules were pruned, as in Section 7.5.2. The remaining rules were syntactically constrained
to have ‘female’ (denoted F' herein) in the consequent and the top ten such rules are given
in Table 7.2.

From Table 7.2 it is apparent that the Early Childhood Care and Education course at DIT
is in the antecedent of eight of the ten rules. The aim of this section was to find relationships
between course choice and gender (female), and the rules in Table 7.2 largely failed in this
aim. Therefore an alternative approach was necessary.

Note that rules were chosen with { '} in the consequent rather than the antecedent because
the proportion of applicants to a particular course that were female was viewed as more
interesting than the proportion of females that applied to a particular course. In any event,

since lift is symmetric, it applies identically to the converse of each rule.
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Table 7.2: The top ten rules, ranked by confidence, with consequent {F}.

Antecedent Supp. Conf. Lift
{BEd at Froebel, Early Childhood Care & Ed. at DIT} 0.54% 99.32% 1.82
{Arts at NUIG, Early Childhood Care & Ed. at DIT} 0.86% 99.14% 1.82
{BEd (Home Economics) at St. Catherine’s} 1.26% 99.12% 1.82
{E.C.C. & Ed. at DIT, Tourism Marketing at DIT} 0.59% 99.07% 1.82
{Arts at UCC, E.C.C. & Education at DIT} 0.54% 98.97% 1.81
{E.C.C. & Ed. at DIT, Soc. Care at DIT, E.C.Std. at UCC} 0.84% 98.90% 1.81
{BEd at St. Patrick’s, E.C.C. & Ed. at DIT} 0.66% 98.89% 1.81
{BEd at Mary Immaculate, Early Childhood Std. at UCC} 0.60% 98.80% 1.81
{E.C.C. & Ed. at DIT, Hosp. (H. & C.) Man. at DIT} 0.58% 98.42% 1.80
{Social Science at UCC, E.C.C. & Ed. at DIT} 0.51% 98.21% 1.80

7.7.2 An Alternative Approach -— Gray & Orlowska’s Interestingness

Due to the failure of the approach described in Section 7.7.1, a different tact was taken. Gray
and Orlowska’s interestingness was computed for all 536 mined rules, with K = M = 2.
The top ten rules with consequent {F}, ranked in order of interestingness, are given in
Table 7.3. The magnitude of the interestingness column (Interest.) of Table 7.3 is not of

particular importance here; it is used for ranking purposes only.

Table 7.3: The top ten rules, ranked by interestingness, with consequent {F}.

Antecedent Supp. Conf. Lift Interest.

1 {Social Care at DIT} 4.99% 94.10% 1.72  0.00165
2 {Early Childhood Care & Ed. at DIT} 4.49% 98.13% 1.80  0.00140
3 {BEd at St. Patrick’s} 4.01% 87.23% 1.60  0.00098
4 {BEd at Mary Immaculate} 3.89% 85.18% 1.56  0.00089
5 {Social Science at UCD} 3.47% 85.79% 1.57  0.00072
6 {Early Childhood Studies at UCC} 3.19% 96.30% 1.78  0.00069
7 {Social Science at UCC} 3.02% 87.88% 1.61  0.00056
8 {BEd at Froebel} 2.77% 91.34% 1.68  0.00049
9 {E.C. Care & Ed. at DIT, Soc. Care at DIT} 2.49% 98.10% 1.80  0.00042
10 {BEd at Colaiste Mhuire} 2.51% 88.27% 1.62  0.00039

Choosing K = M = 2 can be viewed as giving a balanced compromise between the distance
of lift from one and the respective magnitudes of P(A) and P(B). However, a more concrete

argument can be made for setting K = M. Gray and Orlowska’s interestingness can be
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written as
Int(A = B; K, M) = [¢(A = B)¥ — P(B)X] P(A)M P(B)M K. (7.1)

To see why this is so, notice that

Int(A = B; K, M) = (LB)))K 5

- (P(4).P(B)™

= [P(B | A)* - P(B)¥] P(A)M P(B)M~*

= [¢(A = B)¥ - P(B)X] P(A)MP(B)M~K.
From Equation 7.1, an argument for choosing K = M becomes apparent; since all of the
rules are to be syntactically constrained to have a particular consequent (F or later, M),
P(B) = P(F) will be equal across all rules and choosing K = M gives P(B)M=K = 1.
Setting K = M = 2, which is somewhat arbitrary, achieves a suitable compromise between

measuring the distance of ¢(A = B) from P(B) and the magnitude of P(A) giving,

Int(A = B;2,2) = [c(A = B)? — P(B)?] P(4)%

7.7.3 Top Ten Rules

By inspection, the rules in Table 7.3 fall neatly into two distinct categories. This gives
an insight into the areas of undergraduate study that are most strongly linked to female

applicants.

Primary Teaching

Rules 3, 4, 8 and 10 associated various types of primary teaching degrees (BEd) to female
applicants. These rules all have confidence in the range 85.18% — 91.34%, which is consistent
with the proportion of primary school teachers in Ireland that are female. Drew (2006)
reports UNESCO educational statistics that reveal that 86% of primary school teachers in
Ireland in 2002 were female. Table 7.4 gives the corresponding figures for the years 1999,
2001 and 2004 as well as the year 2002.
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Table 7.4: Gender breakdown of primary teaching staff in Ireland, 1999-2004.

1999 2000 2001 2002 2003 2004

Total 21,148 20,865 21,865 22,979 23,972 24,792
Female 17,924 - 18,680 19,772 - 20,671
Male 3,224 = 3,185 3:207 - 4,121
% Female 84.8 - 85.4 86.0 - 83.4
% Male 15.2 - 14.6 14.0 = 16.6

The raw data for Table 7.4 was sourced from the UNESCO Institute for Statistics website
http://www.uis.unesco.org, UIS Database, updated following the Final release of data
from the 2005 education survey. The gender-specific data for the years 2000 and 2003 were
listed as unavailable.

Over the four years for which data on the proportion of female primary teachers is available,
this number is between 83.4% and 86.0%. Drew (2006) suggests a variety of reasons that
may explain why men are not attracted to primary teaching courses. Moreover, this issue
is not confined to applicants within the Republic of Ireland. The situation is similar north
of the border. The Stranmillis Annual Report 2003/04 stated that “male entrants to the
Primary B.Ed. represent 17% of the Primary intake [in 2003|, compared with 9% in 2002.”
However, their 2004/05 annual report revealed that this number had fallen to 10% in 2004.
Earlier this year it appeared that the Government recognised this imbalance as an issue
and was planning to address it. In an article entitled Competition Intense for Places on
Teaching Degree Courses in the Irish Times on 25th January 2006, Brian Mooney wrote
that “Some 90 per cent of primary school teachers under 40 are women and today, the
Department of Education is launching a promotion campaign to attract men into primary

teaching.”

Social Care & Childhood Care

Rules 1, 5 and 7 link courses in Social Care and Social Science to female applicants. Rules
2 and 6 link courses in Early Childhood Care / Studies to female applicants; for example,
over 96% of applicants to Early Childhood Studies at UCC were female. Rule 9 shows that

over 98% of applicants who applied for both Social Care and Early Childhood Care and
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Education at DIT were female.

This area shows a gender imbalance on par with, or worse than, that shown in primary
teaching. The reasons for such an imbalance are likely to be similar; such as the perception
of such jobs as ‘women’s jobs’. However, there is far less literature around this topic;

suggesting that it may be perceived as being of less importance to society.

7.7.4 Further Rules

Extending to the twenty most interesting rules, as listed in Table E.3 (Appendix E), all
courses that emerge are in the areas of primary teaching, social studies and arts. Therefore,
the stereotype that primary teachers and social workers are predominantly female is, the

data suggests, apparent from the application stage.

7.8 Miscellaneous

7.8.1 Analysis of Gender Related Choices — Male

The 536 rules generated in Section 7.7.1 were ranked according to their interestingness, with
the syntactic constraint that the consequent is ‘male’, denoted {M}. The top twenty such
rules are given in Table E.4; these rules all associated courses in engineering, construction
and manufacturing. The data suggests, as in the female case, that the usual stereotypes

hold in the male case and are entrenched in the application process.

7.8.2 Results of Analyses for Alternative Support & Confidence Thresh-
olds

One of the criticisms sometimes levelled at association rule analysis is the sensitivity of the
results to perturbation of the support or confidence thresholds. Therefore, in the interest
of completeness, analyses were carried out with support as low as 0.1% and confidence as
low as 50%. Note that while a support threshold of 0.1% may be considered ‘too’ low, it
is certainly the case that a rule with confidence 50% is not useful. If a rule A = B has

confidence 50% then B is as likely to occur as not, given that A occurs.
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The results of this analysis supported the earlier findings in this chapter, with rules linking

courses by high points alone confined to a very small number of students.

7.9 Conclusions

Through the application of a simple analysis to CAO application data from the year 2000
— which consisted only of a useful way to look at the data without imposing any statistical
model, testing any hypotheses or computing any confidence intervals — some important
questions regarding the CAO application system have been answered, while others may
have been raised.

Definite patterns of course choice amongst applicants emerge, based primarily on course
topic, with geography also a factor for some applicants. In no instance, save for very small
cohorts of students, did points alone dictate course choice. Moreover no evidence to link
courses purely based on points was found. This is a very important result, supporting the
CAO application system as an effective third level application channel.

There is strong gender linkage amongst the data. The vast majority of applicants to courses
in social care, early childhood care and primary teaching are female; whereas the majority
of applicants to courses in engineering, construction and manufacturing management are
male.

Whereas the gender imbalances in primary teaching and engineering are active issues, com-
paratively little is being done to address the imbalances that exist in the social care and
construction sectors. Whether or not these imbalances are detrimental to our society is
debatable, however, it is clear from this analysis that they can all be traced back to the

application stage.

7.9.1 A Word of Warning

The conclusions of this chapter should not be taken as a vindication of the CAO college
application system. Whereas it is true that there is no evidence herein to suggest that a
‘points race’, in the negative sense, is prevalent, it is not necessarily true that this application

system puts the best applicants into each college course.
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Tuohy (1998) gives the analogy of a bank using a round of golf to decide which applicant
should get the management post; it is a fair, consistent system but the best golfer will not

necessarily be the best branch manager.
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Chapter 8

Standardising the Lift of an

Association Rule

8.1 Introduction

Various measures of the ‘interestingness’ of an association rule were introduced in Chapter 6.
One of these, Gray and Orlowska’s interestingness, was used in the analysis of the CAO data
in Chapter 7. While Gray and Orlowska’s interestingness was useful in this application, the

somewhat arbitrary nature of the choice of K and M is a drawback of this interestingness.

This chapter aims to use one of the most commonly used stand-alone measure of interesting-
ness, the lift, to devise a new measure of interestingness. This new kind of interestingness,
standardised lift, relies only on the most commonly used functions of an association rule;
support, confidence and lift. This new interestingness can be visualised elegantly and it has
no parameters, so there are no ambiguities like those around Gray & Orlowska’s interest-

ingness.
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8.2 Range of Values of Lift

8.2.1 Range in Terms of P(A) & P(B)

The range of values that the lift of an association rule A = B can take is restricted by the

respective values of P(A) and P(B);

max{P(A)+ P(B) —1,1/n} 1
P(A)P(B) SLA=B) < A PBT

(8.1)

where n is the the number of transactions 7;. Equation 8.1 is derived in Appendix F.1 and

gives bounds that are almost identical to those derived by Fréchet (1951).

8.2.2 Range in Terms of the Minimum Support Threshold or the Number

of Transactions

Equation 8.2, which is derived in Appendix F.1, is an expression for the range of values of

lift in terms of minimum support threshold s.

4s

1
— < < —. 2
(1+S)2_L(A:>B)_S (8.2)
Now, substituting s = 1/n in Equation 8.2 gives the bounds in terms of n,
A B (8.3)
(n+1)2 — e N

Equation 8.3 will give realistic bounds for lift in situations where minimum support and
confidence thresholds are not used in the mining process.

Standardisation will not be useful in general if achieved through equations 8.2 or 8.3 because
the limits given in these equations do not vary from rule to rule. In other words, a ranking
of rules by lift would be invariant under any standardisation involving these limits alone.
Equation 8.3 does, however, give an insight into why it is necessary to standardise lift: the
maximum value that lift can take is n and this occurs when a rule is supported by only one
transaction. Rules supported by only one transaction will not usually be of interest and

may even be pruned in the rule generation stage of the mining process.
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8.2.3 Range in Terms of P(A), P(B), Support & Confidence Thresholds

Equation 8.1 can be expanded to account for both the minimum values of support (s) and

confidence (c¢) that may be set at the mining stage;

i { P(A)+P(B) =1 _4s ° : }
P(A)P(B) ’'(1+s)2’ P(A)P(B)’ P(B) (8.4)
= LiA="B)< :

~ max{P(A), P(B)}
Equation 8.4 is derived in Appendix F.1 and follows from equations 8.1 and 8.2 with little
extra work. This equation provides the most general, and accurate, upper and lower bounds

for lift given herein.

8.2.4 Standardisation

Equation 8.1 can be used to standardise the lift of an association rule according to the

formula
A= 1) = %‘ (8.5)
where
)= max{P(A) + P(B) — 1,1/n}
a (P(A)P(B)) ’
and
1

~ max{P(4), P(B)}’
are the limits given in Equation 8.1.
The standardised lift £ must take a value inside the closed interval [0, 1]. A value close to
1 is indicative of an interesting rule. By refining A to account for the lower bound given in
Equation 8.4, the expression for £ in Equation 8.5 can be altered to account for minimum
support and confidence thresholds. We shall denote this type of standardised lift by £*,
which is given by

(4= By =24 j_fi)*_ ~ sl
where
- P(A)+P(B) -1 _4s ; -

and v is defined as before.
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8.3 Example I: College Application Data

8.3.1 Background & Data

Chapter 7 presented an analysis of CAO data from the year 2000. These data are based on
53,757 applicants who each chose up to ten of 533 degree courses. Association rules were

initially generated as outlined in sections 7.5.1 and 7.5.2.

8.3.2 Initial Analysis
Rules

Following the application of the pruning procedure mentioned in Section 7.5.2, 72 of the 145
rules that were initially mined remained. Four of these rules contained only the medicine

courses offered across five institutions and they are given, ranked by confidence, in Table 8.1.

Table 8.1: The four mined rules that contained only medicine courses.

1d. Rule Support Confidence Lift
1 {GY501, CK701, TRO51, RC001} = {DNO002} 0.53% 97.92% 33.76
2 {CK701, TR0O51, DN002, RC001} = {GY501} 0.53% 92.76% 38.84
3 {GY501, CK701, DN002, RC001} = {TRO051} 0.53% 89.52% 41.31
4 {TRO51, GY501, DN002, RC001} = {CK701} 0.53% 85.20% 46.54

Note that all of the rules in Table 8.1 have equal support since each of the four rules comprise

the same items.

Standardised Lift

The bounds given in equations 8.1 and 8.4 were calculated for each of the rules in Table 8.1

and are given in Table 8.2.

Table 8.2: The four rules from Table 8.1, with their bounds for lift.

Id. Rule Lift X X\ v
{GY501, CK701, TRO51, RC0O01} = {DN002} 33.76 0.12 31.85 34.48
{CK701, TRO51, DN002, RC001} = {GY501} 38.84 0.14 36.64 41.87
{GY501, CK701, DN002, RC001} = {TR051} 41.31 0.14 38.97 46.15
{TRO51, GY501, DN002, RC001} = {CK701} 46.54 0.16 43.91 54.62

=W N =
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The lift of each rule in Table 8.2 and its relationship with the upper and lower limits can

be visualised as shown in Figure 8.1 and Figure 8.2.
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Figure 8.1:
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Figure 8.2:

Rule Id.

The lift of the rules in Table 8.2 with upper (v) and lower (\) bounds.

Rule Id.

The lift of the rules in Table 8.2 with upper (v) and lower (A*) bounds.

Figures 8.1 and 8.2 confirm that ordering these rules by confidence gives a ranking that
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is consistent with the position of the lifts in relation to their respective upper and lower
bounds. Figure 8.2 is, however, much better for this purpose, providing much tighter and
more revealing lower bounds. These figures, and Figure 8.2 in particular, illustrate why

rules with greater lift are not necessarily better rules.

The lift of each rule in Table 8.2 was then standardised according to Equation 8.5 and

Equation 8.6 and their standardised lifts, £ and L£* respectively, are given in Table 8.3.

Table 8.3: Standardised lifts for the four rules listed in Table 8.1.

1d. Rule Conf. Lift Ik L

{GY501, CK701, TR051, RC001} = {DN002} 97.92% 33.76 0.979 0.727
{CK701, TR051, DN002, RC001} = {GY501} 92.76% 38.84 0.927 0.420
{GY501, CK701, DN002, RC001} = {TR051} 89.52% 41.31 0.895 0.326
{TR051, GY501, DN002, RC001} = {CK701} 85.20% 46.54 0.852 0.246

=W N =

The values of £* in Table 8.3 give a better, more discriminatory, range of values for stan-
dardised lift than those given by £. This example illustrates how standardised lift may be
used to choose the ‘best’ rule from amongst multiple rules that are comprised of the same
items.

Ranking association rules by standardised lift reflects how close the lift of each rule is to
the maximum value that it can take given the support of its antecedent and consequent,
and, if applicable, minimum support and confidence thresholds. This presents a natural

and unambiguous method of ranking association rules.

8.3.3 Analysis of Rules with Consequent ‘Female’

Rules

In Chapter 7 rules with a gender variable in the (singleton) consequent were also considered.
In these cases Gray & Orlowska’s Interestingness, Int(A = B, 2,2), was used to rank these
rules. The three highest ranked rules with consequent ‘female’ are given in Table 8.4.

The ranking of the rules in Table 8.4 by Int(A = B, 2,2) is different to that by lift or by

confidence.
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Table 8.4: The highest ranked, by Int(A = B;2,2), rules with consequent {F'}.

Id. Antecedent Support Confidence Lift Int.
1 {Social Care at DIT} 4.99% 94.10% 1.72  0.00165
2 {Early Child. Care & Ed. at DIT}  4.49% 98.13% 1.80 0.00140
3 {BEd at St. Patrick’s} 4.01% 87.23% 1.60 0.00098

Standardised Lift

The upper and lower limits of lift were computed along with the standardised lift £* for

each rule in Table 8.4. These results can be seen in Figure 8.3 and Table 8.5.
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Figure 8.3: The lift of the rules in Table 8.4 with upper (v) and lower (A\*) bounds.

This ranking is different to that by Gray and Orlowska’s interestingness and it does, in this
instance, agree with the ranking by confidence. The agreement between the ranking by

standardised lift and that by confidence is discussed further in Section 8.3.4.

Table 8.5: Standardised lift for the three highest ranked rules with consequent {F'}.

Id. Antecedent Supp. Conf. Lift Int. Vi
1 {Social Care at DIT} 4.99% 94.10% 1.72 0.00165 0.71
2 {Early Child. Care & Ed. at DIT} 4.49% 98.13% 1.80 0.00140 0.91
3 {BEd at St. Patrick’s} 4.01% 87.23% 1.60 0.00098 0.36
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8.3.4 Remark

Despite the results of the analyses in this section, ranking by standardised lift and ranking
by confidence is not generally the same. It has been the same in the rules that we have
considered with consequent ‘female’ because the lift was bounded by [¢/P(B),1/P(B)] in
all of these cases and so L£* was given by

P(A,B)

L-)\ _ p@pPE _PE _PB|A)-c_cA=B)-c
PR 1 i il ’
U_)\ -}TCB—)—-P(—B) 1'—6 l—C

which is a linear function of confidence for fixed ¢. The ranking of the rules in Section 8.3.2

by standardised lift also agreed with the ranking by confidence.

8.4 Example II: German Social Life Feelings

8.4.1 The Data

The data analysed in this section are taken from a study of ‘social life feelings’ that ap-
peared in Scheussler (1982) and Krebs & Schuessler (1987), and has been analysed many
times. These analyses include Bartholomew & Schuessler (1991), Bartholomew (1991),
Bartholomew et al. (1997), de Menezes & Bartholomew (1996) and Bartholomew & Knott
(1999). The purpose of the analysis in this section is to demonstrate that the standardised
lift can give a different ranking to either confidence or lift and to demonstrate the potential
importance of negations in association rule analysis. Due to the extensive body of literature

on these data, no in-depth analysis in conducted herein.

Table 8.6: The questions that were asked in the German ‘social life feeling’ study.

1. Anyone can raise his standard of living if he is willing to work at it.

Our country has too many poor people who can do little to raise their standard
of living.

Individuals are poor because of the lack of effort on their part.

Poor people could improve their lot if they tried.

5. Most people have a good deal of freedom in deciding how to live.

Ll

The data used herein are the answers given by a sample of 1,490 Germans to the questions

in Table 8.6. These are the data that were analysed by Bartholomew & Knott (1999) and
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they were sourced from www.kendallslibrary.com. Each of the five questions that were
asked could be answered either ‘yes’ or ‘no’. Overall, there were 3,224 ‘yes’ answers and
3,227 ‘no’ answers. The distribution of the number of ‘yes’ answers per question is given in

Figure 8.4, which reveals that only questions 2 and 3 had more than 50% ‘yes’ answers.
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Figure 8.4: The number of ‘yes’ answers given to each question by the sample of surveyed
Germans.

8.4.2 Negations & Coding

These data raise an interesting point; the fact that ‘yes’ is coded ‘1’ and ‘no’ is coded ‘0’
can be viewed as arbitrary. Further, had the questions been worded differently, the ‘1’s and
‘0’s could have been be flipped in some or all of the questions. Negations were therefore
used in this analysis. In this case, the ‘1’s were coded y1, y2, y3, y4 and y5 respectively
while the ‘0’s, or negations, were coded nl, n2, n3, n4 and n5 respectively. Then the apriori

algorithm was used to mine the rules.

This straightforward method of mining rules containing negations is facilitated by a rel-
atively small data set and would not be practical in most cases. Further discussion on

negations is given in Section 8.5.
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8.4.3 Resulting Rules

Association rules were generated using the arules package in R with minimum support set at
20% and minimum confidence at 80%. This approach led to the generation of 38 association

rules, the top ten of which, ranked by £*, are given in Table 8.7.

Table 8.7: Top ten rules from the German ‘social life feeling’ data, ranked by L£*.

Id. Rule Supp. Conf. Lift L LB UB
1 {n3n4} = {nl} 0.262 0.951 1.095 0.757 0.920 1.151
2 {n3n5} = {nl} 0.255 0.945 1.088 0.726 0.920 1.151
3  {n4nb} = {nl} 0.446 0.945 1.087 0.723 0.920 1.151
4 {n3} = {nl} 0.311 0935 1.076 0.677 0.920 1.151
5 {n4} = {nl} 0.548 0.935 1.076 0.674 0.920 1.151
6 {n2n4} = {nl} 0.225 0.949 1.092 0.673 0.971 1.151
7  {ndnb5,y2} = {nl} 0.256 0.934 1.075 0.670 0.920 1.151
8 {n3,n4n5} = {nl} 0.221 0954 1.097 0.667 0.991 1.151
9 {n4,y2} = {nl} 0.323 0.925 1.064 0.626 0.920 1.151
10 {n4n5,y3} = {nl} 0.225 0.936 1.077 0.617 0.958 1.151

All of the rules in Table 8.7 had the same upper bound for lift because they all had the
same consequent, which had greater support in each case, than the antecedent. The lift of

each rule can be seen in context of its upper and lower bounds in Figure 8.5.

8.4.4 Results

Although the rules had not been pruned to any great extent, looking at Table 8.7, some
interesting rules became apparent. The rule with the highest value of standardised lift was
{n3, n4} = {nl}. That is, 95.1% of those who did not agree that people were poor because
of lack of effort or that poor people could improve their lot if they tried also did not agree
that people could raise their standard of living if they were willing to work at it.

Note that the ranking of the rules in Table 8.7 is by £* and is different than the ranking by
either confidence or lift. This example illustrates £* as a new and useful method of ranking
association rules. Furthermore, if a pruning technique like that described in Section 7.5.2

was applied to these data, £L* could be used to effectively break ties.
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Figure 8.5: The lift of the ten rules, given in Table 8.7, along with their upper (v) and lower
(A*) bounds.

8.5 Negations

8.5.1 Background — Negative Association Rules

Silverstien et al. (1998) proposed the concept of association rules involving negations.
Savasere et al. (1998) demonstrated a method of mining rules of the form A # B, which
they referred to as ‘negative association rules’. Hofmann & Wilhelm (2001) proposed mosaic
plots as a means of visualising all combinations of presence or absence of the antecedent and
consequent of an association rule; this is a method of deriving rules containing negations
after mining, however it is limited in its effectiveness when the consequent is not singleton.
Wu et al. (2002, 2004) considered rules of the form A = B, A = B and A = B and

provided algorithms to mine such rules.

8.5.2 How Many More Rules

In Appendix F.2 it is shown that the number of rules that can possibly be generated from

an itemset consisting of n items and their negations is given by

5" —2(3") + 1. (8.7)
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If negations are not considered, this number is given by

n
Y orCi(2-2)=3"-2(2") +1
i=2
(Hipp et al., 2002), where
n!

nQ, =

These bounds and, in particular, results that came about in the process of deriving these
bounds are similar to the results of Fréchet (1951).
Now, it is trivial to work out the number of ‘extra’ rules that can be mined when negations

are included;

5% = 2(8™) + 1= [3® = 2(2™) + 1] = 5" — 37+ L. o+,

When viewed as a proportion of the total number, the amount of rules that contain at least

one negation is given by
5N _ 3n+1 Sl 2n+1

57 —2(3") + 1

Therefore, when an itemset of just 20 items is considered, it follows from Equation 8.8 that

(8.8)

99.996% of potential association rules involve negations.

Of course, it may be argued that the number of rules given by Equation 8.7 is unrealistic
because a minimum of 2" transactions would be required in order that all potential rules may
exist. Furthermore, it is highly unlikely in most practical applications that a transaction
involving all, or even most, of the items will occur. For example, in a convenience store
application it is highly unlikely that any one customer will purchase more than 0.5% of the
items. However, regardless of these considerations, Equation 8.8 provides a useful figure for

the proportion of potential rules that will contain negations.

8.5.3 Mining Association Rules Involving Negations

The huge amount of extra rules that can be mined when negations are included in the
mining process presents many computational problems. Furthermore, the method of mining
association rules involving negations demonstrated in Section 8.4 is not viable in general.
Thiruvady & Webb (2004) and Gan et al. (2005) presented efficient algorithms to mine rules

containing negations.
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Similarly to the interestingness of a rule, the importance of negations in association rule
mining depends on the data and on the purpose of the analysis. In the context of the
German social life feeing data analysed herein, an argument was presented for the inclusion
of negations in the mining paradigm. However, no such argument was made in relation to
the CAO data because applicants were restricted to selecting at most ten courses and so

each applicant would have over 500 negations.

8.6 Summary

A new function for ranking association rules, standardised lift, has been introduced. A
method of visualising standardised lift or, more precisely, lift relative to its upper and
lower bounds, was also introduced. This function, and all theory around it, calls only
upon support, confidence and lift — all of which are common and widely used functions of
association rules — and, if applicable, minimum support and confidence thresholds.

This new method of ranking rules was illustrated on two data sets and compared to existing
functions of interestingness. In the analysis of second of these datasets, the German social
life feeling data, negations were introduced to facilitate the mining process. An argument
was given for the inclusion of negations in the association rule mining process, including a

quantification of the amount of rules that can be mined when negations are included.
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Chapter 9

Conclusions

9.1 Summary

This work has focused on the development and implementation of two topics in unsupervised
learning; model-based clustering via parsimonious Gaussian mixture models and analysis of
binary data via association rule mining. Significant additions have been made to the body

of literature on these topics.

9.1.1 Model-Based Clustering

A new family of mixture models for model-based clustering has been introduced. Well-
established mixture models were used for motivation and the model parameters for each
member of this new family of models were estimated using an AECM algorithm. The
‘best” member of the family was chosen using a well-established criterion — the Bayesian
information criterion. The clustering of the data, according to each model, was given by
the values assigned to the group membership labels through the learning process.

These models were then applied to coffee and wine data and performed favorably when
compared to well-established techniques. Although initially comprised of eight members,
this family was extended to twelve members and then applied to crabs data giving excellent
results when compared to other model-based clustering techniques.

A modified Cholesky decomposition was used to build the framework for another family of
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Gaussian mixture mixture models that are suitable for the analysis of longitudinal data.
Four members of this family were introduced and applied to real data, where they performed

well, giving good clustering results.

9.1.2 Association Rule Mining

The application of association rule mining to college application data was presented as a
novel application that included a simple, but very effective, pruning strategy. This analysis
contributed to the discussion over the existence of a ‘points race’. A new and very natural
measure of interestingness was introduced and a method of visualising this new type of
interestingness was presented. The number of association rules that can arise from a given
itemset when negations are included in the mining paradigm was quantified for the first time.
This new measure of interestingness was demonstrated on the college application data and
on German social data. The analysis of the German data was also used to illustrate the

potential importance of negations.

9.2 Further Work

9.2.1 Modelling the Mean in Model-Based Clustering

In the earlier part of this work there was some focus on modelling the covariance structure
in Gaussian mixture models. There is also scope to model the mean structure. The saving,
in terms of potential number of parameters, that can be realised by modelling the mean
is not as great as that which may be realised by modelling the covariance structure. For
a Gaussian mixture model involving G groups and p variables, modelling the group means
p, will require Gp parameters. However, in situations where there may be a lot of groups,
this saving may be worthwhile.

For example, some of the group means could be considered equal, but not others, or, in
the case of longitudinal data, the mean of each group could be modelled using a general

polynomial spline, with some group-specific correction applied where necessary.
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9.2.2 Allowing the Number of Factors to Vary Across Groups

The PGMM family of models could be further extended by allowing the number of factors
q to vary across groups. This approach would allow greater flexibility for model fitting.
However, the resulting increase in the number of models would be so great that this approach

would be highly computationally intensive.

9.2.3 Application of Generalised Procrustes Analysis to Model-Based
Clustering

Generalised Procrustes analysis (Gower, 1975), or GPA, is a method of matching or aligning
one matrix with another. The elements of the matrices are matched using rotation, trans-
lation and scaling. Parameters of mixture models, or even a collection of parameters, could
be subjected to GPA. This would have the effect of aligning parameters across groups.

Consider the PGMM family of models as an example; the loading matrices A, could be
subjected to GPA to facilitate estimation of the posterior expected value of the latent

variables given the data, the model parameters and membership of group g¢; that is
E [u,- | g, Xi, Ag, ‘I'g} = A;;E;l(xi — HKy),

where A; is the only term that is not rotation invariant.

9.2.4 Parallelisation

There is scope for parallelisation of the C code that was written to perform the AECM
algorithm on the PGMM family of models. The code already written, and described in
Appendix D, is ‘embarrassingly parallelisable’ because it can easily be compartmentalised
into independent sections defined by the triple (model, G, ¢). Parallelising the code in such
a fashion would greatly reduce the computation time and allow full exploitation of the linear
relationship between the number of covariance parameters and the dimensionality of the

data.



106

9.2.5 Further Expansion of the CDGMM Family

There is great scope to expand the CDGMM family of models beyond the four initial
members that were presented herein. As mentioned in Section 5.5, this could be achieved

by imposing constraints on the sub-diagonals of the matrix T,.

9.2.6 Model Selection & Convergence Criteria

In the analyses of data carried out using the PGMM and GPGMM families of models it
became apparent that the model with the greatest BIC was not always the best model in
terms of classification. There is work to be done on the viability of alternatives to the BIC,
such as the ICL, for model selection. There is also work to be done on the use of different

convergence criteria, such as Aitken’s acceleration, with MCLUST.

9.2.7 Association Rules

There is some work to be done on an association rule approach to categorical data. There
has already been some work carried out in this area, such as that given in Tan et al. (2006,
Chapter 7), but much is left to do. The application of some of the ideas around standardised
lift that were raised herein, may lead to the emergence of interesting concepts in this area.
Furthermore, the resulting theory may be so different from association rule mining as to

constitute a new data mining technique.

9.2.8 The CAO Data

An analysis of the CAO data that uses the entry points from the previous year to try
to predict the courses selected, or the order of the courses selected, by applicants may
reveal interesting results. Repeating the analysis of Chapter 7 with data from another year
may also be useful. The repetition of the analysis herein with the inclusion of a variable
indicating the geographical location of the applicant’s school may confirm the tendency

towards nearby universities, for a cohort of students, that is suggested herein.
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Appendix A

Calculations for PGMMs

A.1 Important Results

The following results from Liitkepohl (1996) and Magnus & Neudecker (1999) are utilised
herein;
Olog |X|
Xomxn : ——
A X
Amxn, Baxm : tr(AB) = tI(BA)
JOtr(XA) Otr(AX)

=X"1

Xmxn) Anxm : = = A’
SO 0X oX
men-Apxm-anp : %g(ﬂ =F.%: 8
tr(XAXB
Xana Anxna Bm,Xm, : Qiaf_—) = B,X,A/ + AIXIB,.
tr(XAX'B
Xnxns Anxmy Bnxm : Q_r(-gx—) = B'XA’ + BXA.

The following Theorems, taken from Graybill (1983), are also important.

Theorem A.1. Let A and B be any matrices such that AB is defined, then
(AB) = B'A’,

Theorem A.2. If A is any matriz, then A’A and AA’ are symmetric.

Theorem A.3. If A is a nonsingular matriz, then A’ and A~' are nonsingular and
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Theorem A.4. If each element of the i row of an n X n matriz A contains a given factor
k, then we may write |A| = k|B|, where the rows of B are the same as the rows of A except

that the number k has been factored from each element of the i row of A.

A corollary of this theorem follows without further work; it is also stated as a result in

Anton & Rorres (1994).
Corollary A.1. Let A and B be n x n matrices such that
A=FkRB,

where k is a scalar. Then
|A] = k"|B].
An important consequence of this corollary is that

log [ 'I,| = log ™7 + log |I,| = plogy™".

A.2 Q Equation

Recall the formula for Q(A4, ¥,) that was derived in Section 3.3.3;
L .
Q(Ag, ®,) = C+5 >, [1og W — o { W18, ) +2tr{ W, A,B,S,} — tr {A;\p_;lAgeg}} ,
g=1

where C is constant with respect to p,, Ay and ¥, and @y = I, — ,Bgf\g -+ Bgsgﬁ; is a

symmetric ¢ X ¢ matrix.

A.3 Differentiation

It is necessary to work out

8Q(Aga ‘I’q)
OA,

0Q(Ay, W)
Bl S STy T R E
L owy!

S1(Ag, ¥y) =
for each of the eight cases in Table 3.1 and to then solve Sj(A™, ®¥) = 0 for A™" and
diag{Sa (A, W)} = 0 for W™ or So(A™™, (¥)*) = 0 for () in each case to get

maximum likelihood estimates of these parameters.
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A.4 Maximum Likelihood Estimates

A.4.1 Model CCC

For Model CCC; Ay = A and ¥, = ¥ = ¢I,. Therefore, B=A(AA + L@Ip)_l and Q can

be written as

QA ¢) =C+ g [plogw—l — 3 tr{S} + 297" tr{ABS} -y cr{A'Ac:)}]

Differentiating (Q with respect to A and ¥~! respectively gives the score functions below.

Si(A, ) = %’—@ = g[Sﬂ —A@].
Sa(A, ) = % = 2lpv — {8} + 20 {ABS) — r{A'AG}].

Now, solving S} ([\“‘*“’, ¥) = 0 gives
s56!
and solving SQ(A““, (1@)“““’) = 0 gives

P = {8} — 20x{A"™ B8} + tr{ (A=Y A" ©)

Il

tr{S} — Qtr{A“"WIBS} + tr{Anewé/(Anew)l}

tr{g} - 2t1‘{A"“WIBS} - tr{A““‘Wé’(SIB'(l)—l)’}

— {8} — 2te{A"BS) + tr{A""3S),
therefore,
. 1 o
()™ = 5 tr{S - A“"WBS}.
A.4.2 Model CCU

For Model CCU; A; = A and ¥, = W¥. Therefore, B = A'(AA’ + ) and Q can be

written as
Q(A¥) = C+ 3 [log|#7| - tr{®7'8} + 26:{ W' ABS} — r{A'F 2B},

Differentiating @ with respect to A and ¥~! respectively gives the score functions below.

S1(A, ) = % =n [\IrléB’ ~ \II‘IA(:)} :
So(A, W) = 8%—(‘;‘;13) = 2 |w -8 +2085 - aén].
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Now, solving Sy (A", ) gives
A =830,

and solving diag{Ss (A", &)} = 0 gives

Prew — diag{g — 2A"v3S + Anewé/ZAnew)/}
_ ding{S— 2435 + Am (35671}
— diag{S — 2A*"3S + A~ 38}
= diag{g = f\“ewﬁé},

A.4.3 Model CUC

For Model CUC; Ay = A and ¥, = 91, so that B, = A’(AA’ + ¢,1,)~1. Therefore, Q
can be written as

G
1 .
QA %) =C+3 3.7 [p logw, ' — v, tr{Sy} + 2y, tr{AB,S,} — ;! tr{A'Aeg}] :
g=1

Differentiating @@ with respect to A and wg_l respectively gives the score functions below.

2Q(A d
( wq) M — an |: gﬂq Anew@
g=1
Sa(A ) = a%ff )21 Ty, — r{S,) + 26r{AB,S,} ~ tr{A'A®,}].

Now, solving Sy (A“e‘”, 1[19) = 0 gives

G

Anew Z Ng eg s Z nq Sgﬂga

=g e

and so
]

G G
Arev = {Z %sg[ﬁ;} {Z %@g

g=1 79 g=1 749

Solving S (A", (1)) = 0 gives

3 1 1 BT
(¢g)new - 5tr{sg joi} 2Anewﬁgsg i Anew@fq(Anew)/}.
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A.4.4 Model CUU

For Model CUU; A, = A and so B, = A(AA + \Il )~ L. Therefore, Q can be written as

G
QA, ¥, =C+ % > g [1og|ql;1[ — tr{ ¥, 'S} +2tr{ ¥ 'ABS} - tr{A'\IJ“lAC:)}} ;
g=1

Differentiating () with respect to A and \Il!;l respectively gives the score functions below.

G

8Q(A v,) N e

Si(A, ) = = ng |98, - xpglA@g] .

g:

0Q(A, ¥ g) _Ng 1Al

Sy(A, ) = 711_—‘__ 2 [w, - S, +248,8, - AO[A].

Now, sclving Sl([\““‘”, \ilg) = 0 gives

G ~ ~
> kAR, = an 18,8, (A.1)
g=1

which must be solved for A™* in a row-by-row manner. Write
A=A X2 o Nig )

to represent the ith row of the matrix A and let r; represent the ith row of the matrix on

the right-hand-side of Equation A.1. Now, row 7 of Equation A.1 can be written

where ﬁg(i) is the ith entry along the diangonal of ¥,. Therefore,

-1
G

< new n
g=1 wq 1)
fori =1,2,...,p. Unfortunately, the row-by-row nature of this solution slows the fitting of

the CUU model to a great degree.
Solving diag{Ss (A, ¥1ev)} = 0 gives

1o = diag(S, — 247"3,S, + A™@,(A™)').
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A.4.5 Model UCC

For Model UCC; ¥, = 91, and so Bg — A;([\QA; - 1[)11,)“1. Therefore, () can be written
as
i/ .
QAg, ) = C+3 3.6 [p logyy™' — 9 tr{S,} + 207 tr{A,B,S,} — ! tr{A;Ag@g}] :
g=1

Differentiating @ with respect to A, and ¢! respectively gives the score functions below.

0Q(A,, i
S1(Ag,¥) = Qéquw) = % [Sg,@g - Aeg} :
0Q(A,, e ; ' Al
Sa(Ag ¥) = _Qa(wf—l‘”) = 23 g [ — {8y} + 200 {A,B,8) — tr{A,0,)].
g=1

Now, solving S; (A;‘*W, w) = 0 we obtain
~ aif =
Ay =848,0, i

in the familiar way. Solving Ss ([\;ew, (z[))“ew) = 0 gives

G

G
P S ng =3 ng [tr{S,} — 20r{ A5 3,8y} + er{Azv ) (Az)}]
g=1 g=1

and so .
P =2 [er{S,} - tr{A;~A,S,}] .
Therefore,

" 1 Anew -
= EZ g tr{Sy — Ag™B,S,}.

A.4.6 Model UCU

For Model UCU, ¥, = ¥, so 4 \il)"l and so ( can be written as

g
G
1 A
Q(Ag, ¥) = C+3 > 1 [log ot - tr{ TS} + 2tr{ ¥ 'A,B,S,} - tr{A’g\p—lAgeg}} :
g=1

Differentiating @ with respect to A, and ¥~! respectively gives the score functions below.

IQ(A,, ® b T
Si(Ag, ¥) = —%Ag;—l =2 [@718,8, - 971A,0,] .
0Q(Ag, ¥)

G
1 i
Safg W) =Bl = 237, @ -8, +20,8,8, - A,0,A;] .
g=1
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Now, solving S; (f\;‘*“’, \Il) = 0 gives the familiar result
A new 2 -1
AT =8,0.0 ",
and solving diag{Sg ([\;e‘”, \il“e‘”)} = 0 gives
~ G G -~ A ~ -~
pres Z ng = Z ng diag{S, — 2A3™8,S, + A} O, (Ar™)'},
g==1 g=1

and therefore,

G
e Z g diag{Sy — A;ewBQS-‘J}'
g=1

A.4.7 Model UUC

For Model UUC, ¥, = I, so that B, = Al(AgA! +1,I,)"!. Therefore, Q can be written

as
s :
Q(Ag, %) = C+5 Y ng [plogwg‘l — 1 tr{Sg} + 2y, tr{AyB3,8,} — ;! tr{A;Ageg}} .
g=1

Differentiating @) with respect to A, and wg_l respectively gives the score functions below.

aQ(Ags wq) Ny

S1(Ag, %) = T == [wg—lsggg _ wg—IAg@g} .
: 0Q(Agy, Y n ; I AT
Sa(Ag,vg) = %w_) = _2,;_ {p% — tr{Sg} + 2tr{AB,Sy} — tr{A;O A }|.
g

Now, solving S ([\;"“, L@g) = 0 gives
A new __ S Y -1
Ay =848,0,,
and solving So (A;“”", (zﬁg)“”) =0, in the familiar fashion, leads to the result
. 1 I
(Pg)™™ = ;tr{Sg - A;EW'BQSQ}-
A.4.8 Model UUU

No constrainits are imposed upon A, or ¥, for the UUU model, therefore,

G
1 "
QA ®g) = C+3 Y ny [log |95 — tr{W; 'S, } + 24r{ W A,B,8,} — tr{A¥;'A,0,}] .
g9=1
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Differentiating @ with respect to A, and \Ilg_1 respectively gives the score functions below.

8Q(A?‘Il) n . — 5/ I,—1 A new
Sy, @) ==t = 5 [,78,8, - ¥, A0,
8Q A ’q’ n T, new A new /. A new A new
S2(Ag, W,) = w = 20 [ET, - S, + 2R3, 8, - Ay ey (Ay)].
g

Solving S (f\;e‘”, ¥,) = 0 gives
A new __ o/ -1
AT =8,8,0",

and solving diag{SQ (A;"’W, ‘i’;ew)} = 0 gives
\il;ew = diag{S, — QAZEWBQSQ o A;e‘”@'g(f\;"w)'}

= diag{S, — A2™B,S,}.
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Appendix B

Calculations for GPGMMs

B.1 Important Results

In addition to the results mentioned in Section A.1, the following result from Liitkepohl
(1996) and Magnus & Neudecker (1999) is used in this section;

X

b, I ingular) : ——— = —|X|~}(X")1.
(nonsingular) X IX|H(X)
From which it follows that

0X| ’

— = —|X|X.

0X-1 2%

B.2 Q Equation

Recall Equation 4.1;

N =

G
Q(Ag g Ay) =C + an [plogwg_1 + log \A;l\ - wg_l tr{A;ISg}
g=1

+ 2wg_1 tr{A;]AngSg} — wg_l tr{A;A;IAng}],

A A ~ Al
where C' is constant with respect to pg, Ag, wy and Ay, Oy = 1, — B Ay + B,5,8, is a
symmetric ¢ x ¢ matrix and |A4| = 1. Now, maximising Q) with respect to Ay, Ay and wy
gives maximum likelihood estimates of these parameters for each of the the models listed

in Table 4.1.
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B.3 Constrained Maximum Likelihood Estimates

B.3.1 Model UCUU

For Model UCUU, Ay = A and so ﬁ = A ([\gf\; + @gA)~! and Q can be written
I i
QAg g, A) = C+ 53y [plogw; ! +log| A~ —w; tr{ A71Sg} + 2w tr{ AT AgB,S, }
g=1

—w; er{A;A1A,0,}].
Now, form L(Ag,wg, A, X) = Q(Ag,wq, A) — A(|A| — 1) and differentiating Q) with respect

to Ag, w, ~1. A~! and ) respectively gives the score functions below.

= 2/ — ~
Si(Ag,wg, A, ) = aA Z [ 1Sgﬂg—A1Ag®g},

OL _ ng
dwy! 2

LA N [pwq— tr{A718,} + 26r{ A71A,B,S,} - tr{A;,A71A,0,}],

G
L A
Sa(Agriiy AX) = sor = 23 ng [A w518, + 207 AB,S, — w ' AgOGAY] + NAIA,

oL
o = lal-1.

Solving S1(A%™, &g, A, \) = 0, we obtain

Sa(Ag,wg, A, N) =

A new e —1
Ay =8,68,0,".
Now, setting SQ(A““‘" " ,A,\) =0 we have
1 . e -LE o
(@) = S tr{ATI8; — ATAT"BS, }

and solving diag{S3(Azev, &oe ,Arev A} = 0 gives
i G

& n e 3
Anew . _ ” g dla. S A AnewIB S
n+ 2X|Arev| ggl (@Dg)me™ g{ 9 g Mg g}

[ LB i
_n+2)\d1ag{z(wg)new [s — ﬁs}}

g9=1

But A" is a diagonal matrix with [A""| = 1, therefore

P \»
n+2\ = (H@) :

i=1
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where §; is the jth element along the diagonal of the matrix

G

Z (@:)gnew [Sg T f\_‘;”f’gsg

g=1
It follows that

oA L

1 14
7=1

B.3.2 Model CUCU

For Model CUCU, Ay = A and wyg = w. Therefore, ﬁg = A’(AA’ + &)Ag)_l and @ can be

written

QAw, Ay =C+ = an plogw™ +log|A; ! —w ™ tr{A;'S,} + 2w tr{A;TAB,S,}
q—l

—g tr{A’A;lA@g}]

Now, we form

G
L(A,w, Ay \) = )= Ag(|Ag - 1).
g=1
Differentiating @) with respect to A, w™", A; and A\ respectively gives the score functions
below.
Ng o _ ~
Si(A,w, Ag, \y) Z‘U[ 71808, — 8,148,
0L
SQ(A,LJ, Ag, )\q) — 560—_1~

- %an [po - tr{a;18,} +20{A;1AB,S,} - n{A; A0 A"},
g=1

oL n _ Z1. 2 "
Sa(Aw By Ag) = g = 2 8y - w718} + 207 IAB,S, — wTIAGLA| + MlAlA,,
g
oL
S4(A,w, Aga)\g) = 5/\— = |Ag’ - 1.
g

Unfortunately, we must solve 51([\“”,&1, Ag, Ag) = 0 in a row by row manner, like that of

the CUU solution in Appendix A.4.4, so that

@ G n o
XN =ri| Y =0,
g=1 OQ’(Z)
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where r; is the ith row of the matrix

A N
Z 5_gsgﬁg
g=1 “g(9)
and 59(1) is the ith element along the diagonal of the matrix A Solving Sy (A", (&)™, Ag, Ag) =

0 gives
) = = an tr{A;'Sy — 2A; 1A 3,8, — AJTA™ Oy (A™")'}.

Solving diag{Ss( (R = A“““’ Ag)} = 0 gives
ST, T
e (14 22)

But A;"'W is a diagonal matrix with |A;‘“‘W| = 1, therefore

5 )new o

(&g diag{S), — 2A™"B,S, + A" @/ (A™)'}. (B.1)

1

(%)“‘*W(H—) (H@) ,

where ; is the jth element along the diagonal of the matrix
S:] o 2Anewﬂgsg + Ax)eweg(Anew)l'

It follows that

1

’\gz_' uﬁ: e (Hfgy) =1

For Model UUCU, wy = w. Therefore, ,Bg = A’ (A A' +&A,)~! and Q can be written

B.3.3 Model UUCU

G
QAgw, A,) = Z [plogw™ +1og A7 — w tr{A71S,} + 207 tr{ A7 AgB,S, }

[\')In—l

syl tr{A'gAglAgeg}}

and we form

G
L(Ag,w,Ag,)) = Q(Ag,w, Ag) = Y Ag(|1Ag] — 1).
g=1
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Differentiating @ with respect to Ay, w1, A;l and A, respectively gives the score functions

below.
0L ng .1 & L
Si1(Ag,w, Bg, Ag) = T [Ag SqB, — Ay Ag@g] )
oL
Sa(Ag,w, Ag, Ag) = -1

G
1 :
= 2 ng [pw— tr{A;18,} + 261{A;A,8,8,} - tr{A,A;'A.0,}],
g=1

oL )
S3(Agw, Ag.dg) = =7 = Ay - w78, + 2T MBS, — wT A A + AlAlA,,
g
oL
Ss(Ag,w,Bg,Ag) = N |Ag| — 1.
g

Solving S1 (A2, &, Ag, Ag) = 0 gives
A new k= e -1
A =R.B 8",
and solving SQ(A;”W, (il Ag, Ag) = 0 gives
e ; e
(@) = ; Z figtr{A;1(Sy — A2"B,S,)}.
g=1

Solving diag{S3(Al™, (@)"*, A2 Aj)} = 0 gives

) 1 I A .
Anew = dlag{S, o 2Anewﬂ S + Anew@/ (Anew)/}
g % new 22 g g4 g
(@g) <1 + If')
1

= diag{S, — A*B,S,}.
(@) (1 + %2> g 99

But A;““‘ is a diagonal matrix with ’A;"'W| = 1, therefore

. 2X L ’
@ (1+22) = ([e ) -
ltg -
7=1
where 4; is the jth element along the diagonal of the matrix
S; — PR Sy

It follows that

P

n 1 -
/\g = _q % new gg] - 1
2 | (@) J,Izll

(&g
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Appendix C

Calculations for CDGMMs

C.1 (@ Equation

From Equation 5.3,

G G
n n _1
G, D=~ 7" log [Dy| — > 7" tr{TyS,T,D, '},
g=1 g=1
where C' is constant with respect to p,, Ty and Dy. Now, it is necessary to maximise Q)
with respect to Ty and D, to get maximum likelihood estimates of these parameters for
each of the four cases VV, VE, EV and EE. Solutions for these latter three cases are similar

to the VV case detailed in Section 5.3.3.

C.2 Maximum Likelihood Estimates

C.2.1 Model VE

For Model VE, D, = D and so @ can be written

G
n n =
Q(Ty, D) = C - S log|D| - > ?’qtr{TgSgT;D 1, (C.1)
g=1
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Differentiating Equation C.1 with respect to T, and D;l respectively gives the following

score functions.

0Q(T,,D n i - _
S1(T,, D) = % = -2 (D7) T,S, +D ngsg] = —n,D-1T,S,.
0Q(Tg,D) _n_ <~ o T o Ml
SQ(TQ,D) = —61)T = §D & Z 7 (TquTq) = ‘§Dq e Z 7TgSng.
g=1 g=1

Solving LT{S’l(Tg,D)} = 0 gives an identical solution to that of Section 5.3.3, with a

general (r — 1) x (r — 1) system of linear equations given by

=1
() (9) (: (9) (9)
¢r£{ Slgl, 323) e srg—l,l Srgl
7 ) (9) (9) (
¢r%) - s§92 5292 e Srq—l,Q srg)
1(9) (9) (9) (9) (9)
¢r?r——1 Sl?r—l 82?7‘——2 Y Sr(i—l.r-—l Sr{]r—l
for r = 2,3,...,p, where the {qbgf)} are those elements of T, which must be estimated.

Solving diag{SQ(Tg, 15)} = 0 gives

G
D= Z Tg diag{'i‘gsg’i‘;}.
g=1

C.2.2 Model EV

For Model EV, T, = T and so @ can be written

G G
QT,Dy)=C-Y % log [Dy| — Y % w{ws, T (C.2)

g=1 g=1
Differentiating Equation C.2 with respect to T, and D;l respectively gives the following

score functions.

8Q(T,D,) - E e g o
SI(T,Dy) = =L =2 = -3~ 20 [(D;")' TS, + D;'TS, | = - " n,D; TS,
g=1 g=1
0Q(T,D,) n n i B
52(T, Dy) = Tﬁg . 7ng = 79 (TgSgT./q) = 79 (Dy — TS,T).

To solve Sl(’i‘,Dg), once again we use ¢;; to denote those elements of T, that are to be

estimated. Now, solving LT{S1(T,D,)} = S1(®,D,) = 0 for & leads again to a total of
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p — 1 linear equations. The 1 x 1 solution is;

Z 311 ¢21 4 igi)
d(‘J)

g=1

b

and so
ZG sty
=1 d*(y)

o [2]
gl(

For convenience, we introduce the notation

o1 = —

so that Equation C.3 can be written
do1 = k' /K3
The 2 x 2 case involves the equations
K3 d31 + K3 B3z + K3 =

K3 031 + K3 32 + Ky =0

which can be expressed in the form

k3! k3 31 B K31
g\ ) a2
and so r
da1 \ w' mg gt
b32 Rl it B2

It follows that the solution to the general (r — 1) x (r — 1) system of equations will be given

by

7 11 21 r—1,1 B 1
¢T‘l KT ’{T‘ SR Kp K/:
7 12 22 r—1,2 2
¢T‘2 Ky K, S Ry Fi?
= — : (C.4)
2(9) 1,r—1 2,r—2 r—1,r—1 ror—1
¢r r—1 Kr Ry ERE Kr Ky

for r = 2,3,...,p. Note that k% = xJ, and so the (r — 1) x (r — 1) matrix in Equation C.4

is symmetric. Now, solving diag{S>(Ty,D,)} = 0 gives

f)g =Ty diag{’i‘SgT’}.
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C.2.3 Model EE
For Model VE, T, = T and Dy, = D and so @) can be written
n n Qam/Ty—1
Q(T,D)=C - 3 log|D| — 7 tr{TST'D }, (C.5)

where S = ZgG:1 74S,. Differentiating Equation C.5 with respect to T and D! respectively

gives the following score functions.

S1(T,D) = -8—% = —g [(D-l)’TS' - D“lTS] = —nD™'TS.
S»(T,D) = a—%(DT_’—]D) = 2D - -(TST)' = (D - T5T).

Solving LT{Sl(T, D)} = 0 gives a similar solution to that of Section 5.3.3, with a general
(r —1) x (r — 1) system of linear equations given by

—:

®r1 s1 Sa1 -+ 8r-11 Sr1
Or2 S12 S92 o+ Sp-12 Sr2
d’r,r—l §l.r—1 52.1‘—2 e gr—l,r—l gr,r—l
forr =2,3,...,p, where the {¢;;} are those elements of T which must be estimated. Solving

diag{S>(T,D)} = 0 gives
D= diag{TS’i"}.
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Appendix D

Coding

D.1 Background

This aim of this section is to outline the C code that was written in order to execute
the AECM algorithm for the PGMM family of models and later extended to account for
the GPGMM family with the addition of four extra models. At the early stages of its
development, simulation studies were used to test the code. An overview of the code is

given in the following sections.

D.2 Functionality

D.2.1 Organisation & Input

A makefile is used for compilation so that the code compiles on entering make and the exe-
cutable is called pgmm. To remove old program and data files, the command make allclean
is used. This code dynamically allocates memory so that the size of the dimensionality of
the data is not hard-written into the code. Data is read in from a file containing a single

column; given the number of variables, this column is easily separable into variables.
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D.2.2 Command Line

Arguments are taken on the command line; getopt() was used to facilitate this. The

method ‘flag” must be one of those given in Table D.1.

Table D.1: The command line options available in pgmm.

Flag Method

a  Run all models; the CCC model is randomly seeded and every other model takes
the classification output from this CCC model as their starting classification values.
Must be followed by filename for input.

f Filename for input; only to be used when just one member of the family is to be

run.

Invoke a help file.

Set the number of times to loop over the AECM algorithm, default is two.

Run one (specified) model with random initial classification. Must be followed

by model number; 1 (CCC), 2 (CCU), 3 (CUC),..., 12 (UUCU).

Set the maximum number of groups, default is 8.

Set the number of observations.

Set the number of variables.

Set the number of factors, default is 8.

Set the seed for the random starting classifications. By default, a function of time

is used.

g5 — =

w 0 T B 0

For example, to run all of the models on data with 19 variables and 200 observations

contained in file.txt, with 1-6 groups and 1-4 factors, the command line might read

./pgmnm -a file.txt -g 6 -q 4 -p 19 -n 200.

To run just the UUC model on these data, the command line may read

./pgmm -m 7 -f file.txt -g 6 -q 4 -p 19 -n 200.

Convieniently, the order of the command line arguments is not at all important due to the

nature of getopt ().

D.2.3 Output to Files

The files produced by running pgmm are described in Table D.2.
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Table D.2: The files produced by running pgmm.

Filename Contents

bicstore The maximum BIC values for each (G, ¢) over all models.

o.model name The maximum BIC values for each (G, q) for a particular model.
o.seed The random seed that was used to obtain the initial classifications.
o.class The classifications for the model with the greatest BIC.

D.2.4 Output to Screen

The name, number of groups and number of factors are given for the best model. The
classification for the best model is also printed. Another feature of this code is that a warning
message is printed to the screen if the log-likelihood has decreased from one iteration to
another. Decreasing log-likelihood during an AECM algorithm should only happen due to
round-off error and a frequent or systematic decrease in log-likelihood would indicate an
error in the algorithm, the code, or both.

The name of each member of the PGMM family is printed to screen just before the AECM
algorithm is run on it and each pair (G, q) is printed to the screen in turn. An example of

such output is given below.

cuc

(1, 1 (1, 2) 41,3 (1,4 (1, 5
(2, 1) %2, 8) (2,8 (2, 4) (2,5
3, 1) (3, 2 (3, 3 (3, 4) (8, 5
(4, 1) (4, 2) (4, 3) (4, 4 (4, 5
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5

D.2.5 Notes on the Structure of the Code

The function main() is in pgmm. c; main() is quite terse and mostly farms out tasks to other
functions. One of these functions is op1 (), which is responsible for randomly seeding the
array of classifications and sending them to the appropriate algorithm. The function op1 (),

together with the necessary headers, is given below.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "functions.h"
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void opl(double **x, double ****xz, double **bayes, char *fname, int N, int p,
int''q, int G,
void (*func) (double **z1, double **x1, double **bl, int, int, int, int)){

Antl a8 m;
double rd,count=0;
FILE *file_out;

file_out = fopen(fname, "w");

if ('file_out){
printf ("Error opening %s'\a",fname);
exiti(1);

/* The random seeding happens here */
{FILE *seedfile;

int seed;

seed = time(NULL)+G*q+N;
srand48(seed) ;

seedfile = fopen("o.seed","a");
fprintf (seedfile,"seed %d\n",seed);
fclose(seedfile);}

/* The ‘stick breaking’ happens here */
for(g=0;g<G;g++){
count=0;
for(j=1;j<=q;j++){
for(i=0; i<N; i++){
rd = drand48();
for (m=0;m<=g;m++) {
z[gl [j-11[i] [m]=0;
if (rd<((double) (m+1)/(double) (g+1)) &&
rd>((double)m/(double) (g+1))){
z[gl [j-11[i] [m]=1;

iy

printf (" (Yd, -%d)\t",g+1,]j); fflush(stdout);

/* The function call is made and timed */

start_timer();

func(zfigl [j-11, 'x, bayes, 'j, p, gtl, N);

if ('timedout ())
fprintf(file_out, "BIC[G=%d] [q=%d] :\t%f\n",g+1, j,bayes[g+1] [j1);
else bayes([g+1][j] = -100000.00;
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}

printf("\n");
}
fclose(file_out);

There is another function in the file operator.c, called op(), that is very similar to op1 ()
except that it uses a given array of classifications. The file functions.h contains function
declarations for all of the functions used either directly or indirectly by main. The func-
tion void (*func) () can be thought of as a place-holder for one of the functions aecm(),

aecm2(),..., aecm12().

D.2.6 Example of an AECM Algorithm

Code for the application of the AECM to the CCC model is given below. This code is
contained in the file aecm.c.

/***x*xxx Function to execute AECM algorithm for G groups, q factors
and p variables in CCC case *¥x¥*x*x/

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "functions.h"

void aecm(double **z, double **x, double **bic, int q, int p, int G,
int N){

double **sigma, **lambda, **mu, **w, **beta, **theta,
**ksampcovtilde, *1, *at, *pi, *n;

int it,stop,paras;

double psi, detpsi, c=1.0, geometry_pi, detsig;

geometry_pi = 3.14159265;

/* Allocate memory - matrices and vectors */
my_alloc_vec(&pi,G);

my_alloc_vec(&n,G);
my_alloc_vec(&at,150000) ;
my_alloc(&sigma,p,p);
my_alloc_vec(&1,150000) ;
my_alloc(&sampcovtilde,p,p);
my_alloc(&lambda,p,q);
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my_alloc(&beta,q,p);
my_alloc(&theta,q,q);
my_alloc(&mu,G,p);
my_alloc(&w,G,N);
update_n(n, z, G, N);
update_pi(pi, n, G, N);

update_mu(mu, n, x, z, G, N, p);

psi = initialise_psi(z, x, mu, p, G, N);
initialise_lambda(lambda, p, q);

it=0; stop=0;
while(stop==0){

update_n(n, z, G, N);

update_pi(pi, n, G, N);

update_mu(mu, n, x, z, G, N, p);

if (it>0) BOMBOUT (update_z(w, x, z, sigma, mu, pi, c, N, G,p));
update_stilde(sampcovtilde,x, z, mu, G, N, p);
update_sigmainv(sigma, lambda, psi, p, q);

update_beta(beta, sigma, lambda, p, q);

update_theta(theta, beta, lambda, sampcovtilde, p, q);
update_lambda(lambda, beta, sampcovtilde, theta, p, q);

psi = update_psi(lambda, beta, sampcovtilde, p, q);

update_sigmainv(sigma, lambda, psi, p, q);

detpsi = pow(psi,p);

detsig = update_det_sigma(lambda, sigma, detpsi, p, q);

c = pow(2*geometry_pi,p/2.0)*sqrt(detsig);

/* Abort if calculations go outside machine precision */
BOMBOUT (update_z(w, x, z, sigma, mu, pi, ¢, N, G,p));
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stop = convergtest(l, at, w, N, it, G);
Aatt)s

}

/* no of parameters */
paras = G-1 + Gxp + p*q - q*(q-1)/2 + 1;

/* BIC = 2log_likelihood - mlog(n) */
bic[G] [q] = 2x1[it-1] - paras*log(N);

/* Deallocate memory */

my_free(sigma,p); my_free(lambda,p); my_free(mu,G); my_free(w,G);
free(n); my_free(beta,q); my_free(theta,q); my_free(sampcovtilde,p);
free(l); free(at); free(pi);

D.2.7 Compatibility of Output with R

The contents of the files bicstore and o.class can easily be read into the software package
R. This facilitates the production of the contingency tables and heat maps given in chapters 3

and 4.
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Appendix E

Tables from the Analysis of CAO
Data

E.1 Explanation of Course Codes

Table E.1: Course codes appearing in this work.

CK Cork Institute of Technology
CR107 Electronic Engineering

CR108 Mechanical Engineering

CK University College Cork (NUI)
CK101 Arts

CK102 Social Science

CK111 Early Childhood Studies

CK201 Commerce

CK204 Finance

CK210 Government and Public Policy
CK301 Law

CK402 Biological and Chemical Sciences
CK701 Medicine

CM Colaiste Mhuire

CMO001 BEd

DC Dublin City University

DC111 Business Studies

DC121 Computer Applications

DC126 Financial and Actuarial Mathematics
DC131 Communication Studies
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DC132
DC181
DC191
DC192
DC201
FT
FT101
FFI11
FT125
FT221
FT222
FT224
FT281
FT351
FT352
FT353
FT354
FT401
FT402
FT471
FT472
FT541
FT542
FT543
FR
FRO01
NC
NCO001
RC
RC001
CS
CS001
PD
PD101
PD103
TR
TRO04
TR032
TRO51
TRO71
TRO84
DN
DNO001

Journalism

Biotechnology

Electronic Engineering
Telecommunications Engineering
Common Entry into Science (Undenominated Entry)
Dublin Institute of Technology
Arcgitecture

Construction Economics and Management (Quantity Surveying)
Engineering

Electrical and Electronic Engineering
Applied Sciences

Optometry

Computer Engineering

Business Studies

Media Arts

Communications — Journalism
Information Systems Development
Hospitality (Hotel and Catering) Management
Tourism Marketing

Social Care

Early Childhood Care and Education
Marketing

Management and Marketing

Retail and Services Management

Froebel College of Education

BEd

National Coll of Ireland

Accounting and Human Resource Management
Royal College of Surgeons in Ireland
Medicine

St Catherine’s College of Education
BEd (Home Economics)

St. Patrick’s College of Education
BEd

BA in Humanities

Trinity College Dublin

Law

Engineering

Medicine

Science

Social Studies (Social Work)

University College Dublin (NUI)
Architecture
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DNO002  Medicine

DNO003  Engineering

DNO005 Veterinary Medicine

DNO007  Social Science

DNO08  Science

DNO009 Law (BCL)

DNO12 Arts

DNO015 Commerce

DN020 Actuarial and Financial Studies

DNO021 Business and Legal Studies

DNO054  Psychology plus 2 permissible subjects under DNO12 [Arts] for first year only
LC Limerick Institute of Technology

LC017  Construction Economics (Quantity Surveying)
LC019  Construction Management

MI Mary Immaculate College
MIO05  BEd
LM University of Limerick

LMO047  Arts

LMO050 Business Studies

LMO069 Computer Engineering
LMO081 Manufacturing Technology

GA Galway-Mayo Institute of Technology
GA042 Construction Management

GY National University of Ireland, Galway
GY101 Arts

GY103 Arts (Public and Social Policy)

GY201 Commerce

GY251 Bachelor of Civil Law (BCL)

GY301 Science

GY401 Engineering (Undenominated)

GY402 Civil Engineering

GY501  Medicine

MH National University of Ireland, Maynooth
MH101 Arts

MH102 Finance

MH106 Psychology

MH201 Science

MU Pontifical University, Maynooth
MUOO1 Theology and Arts

WD Waterford Institute of Technology
WDO025 Construction Management

WDO026 Electronics
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E.2 Rules Interrelating Courses

Table E.2: The 72 rules mentioned in Section 7.5.4, ranked by confidence.

Rule Support Confidence Lift

1 {GY501, CK701, TR051, RC001} = {DN002} 0.525% 97.92% 33.76

2 {MI005, DN012, CM001, FR001} = {PD101} 0.547% 97.67% 21.22

3 {PD101, FR001, LM047} = {MI005} 0.547% 96.71% 21.17

4 {CM001, FR001, PD103} = {PD101} 0.599% 96.41% 20.95

5 {MI005, PD103} = {PD101} 0.512% 95.82% 20.82

6 {CMO001, LM047} = {MI005} 0.558% 95.54% 20.91

7 {GY101, MI005, CM001, FR001} = {PD101} 0.584% 95.44% 20.74

8 {DN012, CM001, MH101, FR0O01} = {PD101}  0.642% 95.04% 20.65

9 {MI005, CM001, MH101, FR001} = {PD101} 0.579% 94.24% 20.48

10 {CK701, TR051, DN002, RC001} = {GY501} 0.525% 92.76% 38.84
11 {CK101, CM001} = {MI005} 0.538% 92.33% 20.21
12 {TRO084, FT472} = {FT471} 0.586% 92.11% 17.38
13 {GY101, DN012, FR001} = {PD101} 0.521% 92.11% 20.01
14 {DN008, TR051} = {DN002} 0.543% 91.25% 31.47
15 {GY501, CK701, DN002, RC001} = {TRO051} 0.525% 89.52% 41.31
16 {DC111, FT542, DN015} = {FT351} 0.662% 89.44% 9.47
17 {GY101, MH101, FR0O01} = {PD101} 0.571% 89.24% 19.39
18 {CK101, FR001} = {MI005} 0.560% 89.05% 19.49
19 {MI005, DN012, PD101, CM001} = {FR001} 0.547% 88.82% 29.33
20 {TRO004, GY251} = {DN009} 0.501% 88.67% 27.93
21  {MI005, PD101, CM001, MH101} = {FR001} 0.579% 88.60% 29.26
22 {TRO71, MH201} = {DNO008} 1.049% 88.13% 13.62
23 {CK101, PD101} = {MI005} 0.766% 88.03% 19.27
24 {GY101, CM001, MH101} = {PD101} 0.526% 87.89% 19.10
25 {DN021, TR004} = {DN009} 0.698% 87.41% 27.53
26 {TRO071, GY301} = {DN008} 1.019% 87.12% 13:47
27 {DC111, FT541, DN015} = {FT351} 0.841% 86.92% 9.20
28 {CK402, TRO71} = {DN008} 0.655% 86.91% 13.43
29 {TRO71, FT222} = {DNO008} 0.536% 86.23% 13.33
30 {MI005, FRO01, LM047} = {PD101} 0.547% 85.96% 18.68
31 {DNO012, MU001} = {MH101} 0.737% 85.90% 5.64
32 {DC131, DC132, FT352} = {FT353} 0.549% 85.51% 26.42
33 {DNO054, MH106, MH101} = {DN012} 0.809% 85.29% 4.17
34 {DCI111, FT541, FT542} = {FT351} 0.969% 85.27% 9.03
35 {GY501, TRO51, DN002, RC001} = {CK701} 0.525% 85.20% 46.54
36 {PD101, FR001, PD103} = {CMO001} 0.599% 85.19% 30.01
37 {GY101, MI005, PD101, CM001} = {FRO001} 0.584% 85.09% 28.10
38 {FT471, CK111} = {FT472} 0.845% 84.86% 18.53
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40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
%)
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

{TRO032, GY401} = {DN003}

{MH101, GY103} = {GY101}

{DC111, NC001} = {FT351}

{CK101, DN012, MH101, LM047} = {GY101}
{DN012, PD101, CM001, MH101} = {FR001}
{GY101, MU001} = {MH101}

{GY201, MH101} = {GY101}

{GY101, DN012, PD103} = {MH101}
{MI005, DN012, MH101} = {PD101}
{MH106, GY101, DN012} = {MH101}
{TRO71, DC201} = {DN008}

{CK102, LM047} = {CK101}

{FT541, FT542, DN015} = {FT351}

{CK101, GY101, DN012, LM047} = {MH101}
{DN012, TR004} = {DN009}

{CK101, FR001} = {PD101}

{CK301, TR004} = {DN009}

{LMO050, FT351, DN015} = {GY201}
{CK201, CK210} = {CK101}

{GY101, PD101, CM001, FRO01} = {MI005}
{MI005, DN012, PD101, FR001} = {CMO001}
{GY101, MI005, DN012} = {PD101}
{DC111, FT354} = {FT351}

{FT351, MH102, DN015} = {DC111}
{FT351, FT542, FT543} = {FT541}

{TRO71, DC181} = {DN008}

{MI005, PD101, MH101, FR001} = {CM001}
{PD101, CM001, PD103} = {FR001}
{DN007, MH101} = {DN012}

{CK204, CK101} = {CK201}

{DN054, MH106, DN012} = {MH101}
{DC111, LM050, DN015} = {GY201}
{DC111, FT541, DN012} = {FT351}
{DN012, PD101, MH101, FR001} = {CMO001}

0.541%
0.590%
0.783%
0.939%
0.642%
0.582%
0.757%
0.543%
0.588%
0.580%
0.504%
0.512%
0.727%
0.939%
0.765%
0.521%
0.558%
0.532%
0.512%
0.584%
0.547%
0.526%
0.621%
0.584%
0.521%
0.519%
0.579%
0.599%
1.287%
0.662%
0.809%
0.593%
0.515%
0.642%

84.84%
84.76%
84.54%
84.17%
84.15%
84.14%
83.92%
83.91%
83.60%
83.42%
83.38%
83.08%
83.01%
82.92%
82.86%
82.84%
82.64%
82.18%
82.09%
81.98%
81.89%
81.56%
81.46%
81.35%
80.92%
80.87%
80.78%
80.70%
80.65%
80.54%
80.41%
80.35%
80.29%
80.23%

22.35
5.42
8.95
5.38

27.79
5.52
5.37
5.51
18.17
5.47
12.89
6.02
8.79
5.44

26.10
18.00

26.03
13.34
5.95
17.95

28.85
15772
8.63
10.46
11.45
12.50

28.46

26.65
3.94
18.38
5.28
13.05
8.50

28.26

149
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E.3 Rules with Consequent {F'}

Table E.3: Top twenty rules, ranked by interestingness, with consequent {F'}.

Antecedent Support Confidence Lift Interest.

1 {FT471} 4.987% 94.10% 1.72  0.00165

2 {FT472} 4.494% 98.13% 1.80  0.00140

3 {PD101} 4.014% 87.23% 1.60  0.00098

4 {MI005} 3.892% 85.18% 1.56  0.00089

5 {DNO007} 3.469% 85.79% 1.57  0.00072

6 {CK111} 3.192% 96.30% 1.78  0.00069

7 {CK102} 3.021% 87.88% 1.61  0.00056

8 {FRO001} 2.766% 91.34% 1.68  0.00049

9 {FT472, FT471} 2.491% 98.10% 1.80  0.00042

10 {CMO001} 2.506% 88.27% 1.62  0.00039
11 {PD101, FR0O01} 2.390% 91.46% 1.68  0.00037
12 {PD101, CM001} 2.245% 89.61% 1.64  0.00032
13 {DNO007, DN012} 2.247% 85.07% 1.59  0.00030
14 {MI005, PD101} 2.175% 87.96% 1.61  0.00029
15 {TRO084} 2.111% 92.13% 1.69  0.00029
16 {CMO001, FROO01} 1.961% 90.86% 1.66  0.00025
17 {PD103} 1.987% 84.03% 1.54  0.00023
18 {PD101, CM001, FROO1}  1.823% 91.33% 1.67  0.00021
19 {DNO012, PD101} 1.780% 89.77% 1.65  0.00020
20 {MI005, FROO1} 1.717% 90.67% 1.66  0.00019

|



E.4 Rules with Consequent {M}

Table E.4: Top twenty rules, ranked by interestingness, with consequent {M}

Antecedent Support Confidence Lift Interest.
1+ {FT125} 2.907% 87.12% 1.92  0.00062
2 {TRO032} 2.556% 80.30% 1.77  0.00044
3 {WD025} 2.318% 90.09% 1.98  0.00040
4 {GA042} 2.269% 91.59% 2.02  0.00039
5 {LCO017} 2.273% 87.85% 1.93  0.00038
6 {LCO019} 2.17% 91.75% 2.02  0.00036
7 {FT111} 2.18% 88.74% 1.95  0.00035
8 {FT221} 2.015% 89.65% 1.97  0.00030
9 {FT281} 1.767% 84.07% 1.85  0.00022

10 {DC191} 1.468% 88.55% 1.95  0.00016
11 {CR107} 1.432% 88.71% 1.95  0.00015
12 {CR108} 1.397% 91.25% 2.01  0.00015
13 {DNO003, FT125}  1.269% 83.99% 1.85  0.00011
14 {LCO019, LC017} 1.205% 93.51% 2.06  0.00011
15 {LMO069} 1.259% 81.86% 1.80  0.00011
16 {TRO032, FT125} 1.161% 85.95% 1.89  0.000097
17 {WD026} 1.127% 90.99% 2.00 0.000095
18 {GY402} 1.168% 82.52% 1.82  0.000095
19 {DC192} 1.068% 84.16% 1.85  0.000081
20 {LMO081} 1.027% 89.76% 1.98  0.000078
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Appendix F

Lift & Negations

F.1 Range of Values for Lift

Theorem F.1. Suppose I is an item set, and A = B is an association rule on a set of

transactions {T1,. .., 7o} over I. Then
C -1,
max{P(A) + P(B) 1/n} < A= Bl 2 1 .
P(A)P(B) max{P(A), P(B)}

Proof. First consider the bounds of P(A, B). If P(A) + P(B) < 1, then the appropriate
lower bound is given by

P(A,B) >

S|

otherwise the appropriate lower bound is P(A, B) > P(A) + P(B) — 1.
The upper bound is given by P(A, B) < min{P(A), P(B)}. Therefore,

max{P(A) + P(B) — 1,1/n} < P(A, B) <min{P(A), P(B)},

and so,

max{P(A) + P(B) — 1,1/n} 1
P(A)P(B) = Ha=Bj = max{P(A), P(B)}

d

Theorem F.2. Suppose I is an item set, and A = B is an association rule mined over a
set of transactions {71, ..., Tn} over I, using support threshold s. Then

4s
(1+s)2

gL(A=>B)§l.
S
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Proof. Let s = 9/n. The maximum value of lift will occur when

P(A,B) = P(A) = P(B) = g

and so y
n n 1
HA= B S Gomp =9 =5

To find the minimum value of lift, first consider the case where n+% is even, then L(A = B)

is minimised when

Pla. B~ g and P(A) = P(B) = (n +n19)/2 i (n2—;19)

;)

however, if n + 9 is odd then L(A = B) is minimised when

P(A,B):g’ P(A):(n+19+1)/2_(n+19+1)

n 2n
and P(B) = (n+9-1)/2 _(n+9-1)
n 2n
Now,
m+d—-1) n+9+1) m+9+Dn+9-1) (n+9)?
2n . 2n B 4n? % ing
therefore,
(TP ., AR . S

= m+9)2/4n2  (n+09)2 (1+s)2
O

Lemma F.1. Suppose I is an item set, and A = B is an association rule on a set of trans-
actions {T1,...,Ta} over I. Suppose that minimum thresholds for support and confidence

are used in the mining process, denoted s and c respectively. Then

P(A)+P(B) -1 4s g i
max{ P(A)P(B) '(1+s)?’ P(A)P(B)’ P(B)

} <L(A= B)

< 1

~ max{P(4), P(B)}’
Proof. In addition to the results of theorems F.1 and F.2, note that if P(A, B) > s then
P(Aa B) = S

HA=B) = piayp(B) > PAPE)
and if P(B | A) > c then
_P(B|4) c
(A= B) = P(B) > 55}
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F.2 Negations Theorem

Theorem F.3. The number of rules that can possibly be generated from an itemset con-

sisting of n items and their negations is given by
5" —2(3") + 1.

Proof. If A and B contain a total of m items then the number of rules involving these m

items and their negations is given by

m—1 m
[Z mcr} = {Z mCy - 2} 2™ = (2™ — 2) 2™ = 92m _ gm+1

r=1 r=0
Therefore, from an itemset of size n there are 22" — 2"*1 ryles of length n, there are
-1 [22("“1) — 2(”_1)“] rules of length n — 1, "C)p,_o [22("‘2) - 2(""2)’“1} rules of length
n — 2 and so on. It follows that the total number of rules that can be generated from these

n items and their negations is given by
(2271 _ 2n+l) +"Cpy [22(71—1) ) 2(n—l)+]j| s [22(2) _ 22+1} _

Which can be expressed as
n

chi (221 - 2i—+—1) ) (F]_)

i=2
Now, the binomial theorem states that

n

1+2)"= Z"Ci:ci,

i=0
and so developing Equation F.1 gives,
i=2 i=2 i=2 i=2 =2
n ) n )
= D _"Citi - "Co+m C1(9) | — 2| Y "Ci2 - ("Co+" ¢y (2))
i=0 i=0

=[5" = (1+4n)] —2[3" — (1+2n)] =5" — 2(3") + 1.



