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Siiniinary

Three models for the firm size distribution are implemented using an 

Agent-Based Modelling (ABM) framework, and a theory explaining the 

source of a skew firm size distribution in one of the models is proposed. 

The variable effort model produces a skew distribution of firm sizes, we 

propose, due to the presence within the model of endogenous birth and pro

portional growth forces. These forces result from the instantiation within 

an agent-based model of contradictory microeconomic tendencies, namely 

the free riding tendency due to Cobb-Douglas income leisure preferences 

and the increasing returns to scale of the firm production function. All of 

these elements have a role to play in the resultant generation of a skew firm 

size distribution.
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Chapter 1

Introduction

It is time to see how the new ideas can usefully be applied to that 

immensely complex, but indisputably self-organizing system we 

call the economy. (Krugman 1996)[p. vi]

The economy, as Krugman and many others have observed, is self- 

organising. We all participate in this self-organisation on a daily basis, 

our ancestors have done so for tens of thousands of years. Most of us would 

think of such participation as a human right, if it were not so ubiquitous 

th a t we usually do not think about it at all. We choose where, when and 

how to sell our labour, or the fruits of it, and where, when and how to buy 

the fruits of others’. All of the larger structures in the economy, firms for ex

ample, result from the interaction over time of a large number of individual 

acts of economic participation. Even in the most highly-centralised ordered 

economies, underground markets flourish, driven by individuals seeking the 

benefits of trade. A self-organising economy is a seemingly unstoppable 

emergent property of human group behaviour.

Research into self-organizing systems has arisen out of the study of com

plex systems, which itself is rooted in the disciplines of complexity theory 

and chaos theory. Computer simulation gave birth to chaos theory, with 

Lorenz’ famous meteorology simulation in which a small change in input 

resulted in a very different output, and is also the primary means we have 

to study it and its descendants. “To chaos researchers, mathematics has

3



CH APTER 1. IN TRO D U CTIO N 4

become an experimental science, with the computer replacing laboratories 

full of test tubes and microscopes.” (Gleick 1987) [p. 38] Whilst in principle 

a modern computer can only solve an extremely small subset of those prob

lems which the human mind is capable of solving, in reality computers open 

up new realms of research with their two fundamental advantages, speed and 

memory. Instead of having to reduce complex systems to a small number of 

linear differential equations to make them analytically tractable, computer 

simulation allows us to  make different types of simplifications which may 

prove to retain more of tha t which interested us in the original and which 

will, at the very minimum, give us a new perspective.

Since a computer is capable of remembering the preferences, attributes 

and current states of a very large number of objects, it is possible to  con

struct a type of simulation which mimics the interaction of agents in an 

economy. Agents in such a simulation are discrete entities in virtual time 

and space. Even if they are homogeneous in design (though they seldom are) 

they are separate, distinct beings, and they interact as such. The economy 

moves forward, one stej) at a time, because one agent interacts in some way 

with another agent. The study of economics using Agent-Based Modelling 

(ABM) is necessarily about more than just the current state of affairs, it is 

also about how the economy arrived there. It is about interaction/process, 

as well as aggregation/state. The two are inseparable. To arrive at a partic

ular state, the system must have experienced the path of a process leading 

to  tha t state.

In an agent-based model, the macroeconomics of the system are an emer

gent property of the microeconomics. (Or, the state of the system is an 

emergent property of the process.) Behaviour is only programmed at the 

microeconomic level, agents interact locally with other agents. Macro-level 

regularities or patterns are said to  be emergent since they are a conse

quence of interaction within the system, and not externally specified or 

programmed. This structure enables a researcher to study the impact of a 

micro-level change on the macro-level emergent properties of a system.

In this thesis, we will be employing various agent-based models to  exam

ine a question which has had a strong impact on the evolution of the theory
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of the firm. Why does the distribution of firm sizes take the form th a t it 

does, namely a skew distribution resembling a power law? The skew distri

bution of firm sizes represents the state, a t a point in time, of one aspect 

of the economy. We will be looking at processes which might lead to th a t 

state. Firms, being large-scale complex structures, will not be programmed 

into our simulation but will arise through the interaction of agents. Agents 

will be programmed to organise themselves into firms using a variety of 

behavioural rules, which will vary from model to model. Thus the simu

lated firms themselves, as well as information about the entire population 

of firms, including the size distribution, will be emergent properties of the 

simulation.

The empirical skew distribution of firm sizes has been a focal point for 

research into the growth of firms since at least the time of Gibrat. Gibrat 

proposed that a lognormal distribution would fit the empirical observations 

he made for French firm sizes, and based upon a stochastic process which 

leads to a lognormal distribution, he proposed tha t firm growth rates are 

random variables independent of firm size, or equivalently th a t absolute 

firm growth is proportional to firm size. Subsequent researchers have refined 

and modified this algorithm, either to  produce a slightly different probability 

distribution such as the Yule or Pareto, or to  improve the economic intuition 

of the model.

The power law or Pareto distribution is easily recognised since its proba

bility density function (PDF) has a straight-line shape in double logarithmic 

coordinates. The lognormal PDF has a similar shape, it is a parabola in 

double logarithmic coordinates, which with certain parameter values can 

appear almost linear. There is a closer relationship between these distribu

tions than simply a visual similarity, the generative models which lead to 

a lognormal can be altered slightly to  produce a power law distribution in

stead. It is therefore not surprising tha t there has been considerable debate 

in the literature as to whether the lognormal or power law is a better fit to 

empirical data. There is no consensus. For some data sets the lognormal 

is a better fit, for others the power law. For many, neither fits particularly 

well, causing some researchers to wish to abandon this line of reasoning al-
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together. Sutton, who has written extensively on the work descending from 

G ibrat’s original book, summarises the state of play as follows:

In particular, there is no obvious rationale for positing any gen

eral relationship between a firm’s size and its expected growth 

rate, nor is there any reason to expect the size distribution of 

firms to take any particular form for the general run of indus

tries. Most authors now claim only th a t the distribution will 

be skew, but do not specify the extent of the skewness, of the 

particular form the size distribution might take.

This new agnosticism as to  the form of the size distribution 

meshes well with the empirical finding . . .  according to which no 

particular form of size distribution can be justified as typical 

across the general run of industries. (Sutton 1998) [p. 245]

Thus, the emphasis seems to  be moving away from seeking a definitive 

answer as to the precise nature of this distribution, in recognition of the 

fact tha t there probably isn’t  one. Furthermore, G ibrat’s hypothesis, the 

Law of Proportional Growth, has not stood up to econometric scrutiny and 

is no longer intuitively appealing (Cefis, Ciccarelli, and Orsenigo 2004). 

Where to go from here? The agent-based models being explored in this 

thesis have opened up a new way of thinking about this situation. In one 

of the models, firms do exhibit a sort of proportional growth in agreement 

with Gibrat, but such growth is not an assumption of the model. This 

pattern emerges from the programmed agent-level behaviour. In this same 

model we also observe a skew distribution of firm sizes. The growth is not 

exactly like Gibrat, and the resulting distribution of firm sizes is not shaped 

precisely like a power law or lognormal distribution, but it is plausible tha t 

a process which behaves similarly to a G ibrat proportional growth process 

would result in a similar probability distribution, and if unrelated agent-level 

behaviours can mimic such a process at the firm level, then we can construct 

a new, more intuitively appealing foundation for the macroeconomic theory 

of firm size distribution based upon modern microeconomic theories of firm 

organisation and behaviour. Such work is beyond the scope of this thesis,
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but what will be done here is to explore in a computational laboratory 

setting the principles th a t might guide such later work.

It must be stressed that the research herein is of a theoretical nature, 

and we are interested in the skew distribution of firm sizes as a stylised 

fact. It is not the purpose of this research to revisit, or even to delve 

deeply into, the question of which probability distribution best describes the 

empirical firm size distribution. We certainly will not attem pt to fine-tune 

the models to  match a particular shape or slope of an empirical distribution, 

or evaluate the models on their precise correspondence to empirical data. 

W hat is of interest is the fact th a t a highly abstracted model, the variable 

effort model, is capable of producing results in accordance with a stylised 

fact when many mainstream models either do not address the question or 

cannot reproduce it. We seek in this thesis to  understand why and how 

this abstract model produces a skew distribution of firm sizes, and thus we 

hope to evaluate whether this model represents an amusing toy or a valuable 

tool for comprehending one of the most widespread empirical regularities in 

economics.

In the next chapter of this thesis, we will review the history of the skew 

distribution of firm sizes in economics, and also review several skew proba

bility distributions including the power law. In Chapter 3, we will discuss 

ABM in general and how our particular models are actually implemented 

in code. The following four chapters will relate to  the models and their 

simulation results.

The first model, and the one which will be dealt with in most detail, 

is a variable-effort model and is presented in Chapter 4 with additional 

extensions to the model in Chapter 5. The variable-effort model is the most 

typical agent-based model we will see here, agents are heterogeneous and 

the formation of firms will be strictly endogenous. The later two models 

are based on more conventional approaches to the firm size distribution, and 

have exogenous elements contributing to the resultant firm size distribution. 

In Chapter 6 we implement an exogenous birth model which is inspired by 

some of the modifications to G ibrat’s Law intended to address the problem of 

increasing variance over time, an issue we will discuss in Secion 2.3. Our final
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model in Chapter 7 tries to link the traditional cost curve analysis approach 

to  the agent-based approach. Finally, we will discuss the implications of the 

three models and conclusions in Chapter 8. Source code is contained in an 

appendix.



Chapter 2

Skew Probability  

Distributions, G ibrat’s 

Law and Scale Invariance

In this chapter we survey two well-known skew probability distributions 

along with two less well-known distributions. Following this discussion, we 

will consider G ibrat’s Law and some of the models which descended from 

G ibrat’s original economic interpretation of a generating function for the 

lognormal probability distribution. Finally, we discuss some of the theoreti

cal implications of the concept of scale invariance, and how they may apply 

to this research.

2.1 Skew Probability  D istributions

The power law and lognormal distributions are the most well-known skew 

distributions, they have been competing for “market share” amongst re

searchers interested in skew distributions since there have been researchers 

interested in skew distributions, but neither theoretical nor empirical work 

has managed to settle the apparent dispute between which of them is “the” 

skew distribution. As we shall see in this section, they are in fact related to 

each other in much deeper ways than just their superficial resemblance. We

9
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also address two other distributions in this section which have been proposed 

in recent literature as alternatives to the power law. Many datasets which 

are usually described as following a power law (linear in double logarithmic 

coordinates) do in fact show some curvature. The lognormal distribution 

allows for curvature, as do the two other alternatives discussed here, the 

stretched exponential and the parabolic fractal. These four distributions are 

by no means an exhaustive list of the power law like distributions, a good 

survey can be found in a recent paper by Mitzenmacher (Mitzenmacher 

2003).

Although we will present these four probability distributions and discuss 

how their parameters may be calculated, in practice in this thesis we will 

only consider one distribution, the discrete power law. We will not perform 

any statistical testing, but we will calculate the value of the power law slope 

param eter k as a. summary statistic. The power law is the simplest distri

bution available to us for summarising skew data, with a single parameter 

which has an intuitive meaning. Although there is curvature visible in many 

skew datasets and the power law is strictly linear, it is still a useful first ap

proximation. The slope of the power law distribution has been proposed as 

a measure of market concentration, most notably by Simon and Ijiri who 

argue that

. . .  frequently used measures of concentration, like the Gini in

dex, or the fraction of to tal industry sales that are accounted 

for by some fixed number of largest firms, do not have any clear 

theoretical foundation. It would seem more defensible to mea

sure concentration by a param eter of the stochastic process tha t 

is being used to explain the data  - for example the slope of the 

Pareto curve. (Ijiri and Simon 1977) [p. 13]

Steindl offers additional support for the significance of k

It appears from the results of various authors that the Pareto 

coefficient is determined as the ratio of certain growth rates. In 

Simon’s model it is the ratio of growth of the firm-population 

to the growth of the firm; in Wold-Whittle’s model, the ratio
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of growth of wealth to the death rate of wealth-owners. These 

growth rates apparently represent the dissipative and the stabi

lizing tendencies in the process. This confirms the intuition of 

G. K. Zipf who regarded the Pareto coefficient as the expression 

of an equilibrium between counteracting forces. (Steindl 1965)

The focus of this paper is on the mechanisms which lead to  skew distri

butions, not the precise shapes of those distributions. The thorny process 

of comparing the relative merits of probability distributions with differing 

assumptions, estimation techniques and numbers of parameters would be 

a significant research endeavour in itself, and is neither within the scope 

nor the time frame of this thesis. A further complication which warrants 

research is whether a simulated firm size distribution, th a t is a set of obser

vations of firm sizes and their relative frequencies, consists of independent 

and identically distributed observations, since it arises from a closed system 

of a fixed number of agents who self-organize into firms. For these reasons, 

rather than go through the motions of an inappropriate statistical analysis, 

we prefer to set aside the issue of statistical testing in the belief tha t it would 

not add value to this analysis a t this time. In this approach, we follow the 

example of numerous other authors including Herbert Simon

A great deal has been written, at one time or another, as to 

whether a particular empirically observed distribution could, or 

could not, be approximated by a Yule distribution, the Pareto or 

the log normal. Such a question is difficult to answer, for several 

reasons. One reason . . .  is th a t there does not really exist a 

body of statistical theory th a t tells one whether some data fit a 

particular extreme hypothesis. . . .  Hence, we shall not be much 

concerned, in what follows, with significance tests, which are 

completely inappropriate for testing the fit of data to extreme 

models. (Ijiri and Simon 1977) [p. 4]

We will employ the following terminology to describe discrete data  such 

as firm sizes. Observations x i , . . . ,  are sorted from largest to  smallest so 

th a t the subscript i corresponds to the rank of the observation, the largest
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Source PDF CDF Rank

Gabaix C +  1 c ^ (Rank is on y axis. Size on x  axis)

Adamic k b = ^  (Rank is on x  axis. Size on y axis)

Table 2.1: The power law exponents used by two authors. <̂ ,/c > 0

observation being ranked first and the smallest n*^. Amongst our observa

tions are m  < n  unique values, and so we can convert our vector of obser

vations into two vectors, the first of the unique values F  = ( / i , .. •, /m) and 

the second of the number of occurrences of each of the /j ,  C = ( c i , . . . ,  c„ ), 

so tha t n =  Y1T=\

For example, a vector of observations X  = (30 ,5 ,3 ,2 ,2 ,1 ,1 ,1 ) would 

have corresponding F  =  (30 ,5 ,3 ,2 ,1) and C  =  (1 ,1 ,1 ,2 ,3). To make this 

more concrete, consider the vector X  to be a vector of firm sizes. There is 

one firm of size 30, one firm of size 5, one firm of size 3, two firms of size 

3 and three firms of size 1. The firm of size 30, the largest, has first rank. 

The three firms of size 1 are ranked 6*^, 7*  ̂ and 8* .̂

2.1.1 T he Pow er Law and L ognorm al D istributions  

Power Law

The probability density function (PDF) of the power law distribution is 

given by

/ ( x )  oc (2.1)

for a; > 0, where the parameter A; > 0 determines the steepness of the slope. 

The probability mass function in the upper tail is

F {x)o^x- '^ .  (2 .2 )

Taking logarithms oi y = x~^  gives

logy =  - k \o g x , (2.3)
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which illustrates the power law’s tradem ark linear relationship in double 

logarithmic coordinates (Adamic 2006).

It can be confusing to compare the terminology of different authors who 

may be referring to  one of three distinct types of plot, each of which may 

show a roughly straight line which could be referred to as having a “power 

law slope”. Table 2.1 compares the parameters of two such authors, Gabaix 

and Adamic. The power law slope has a canonical value of a =  2, or 

equivalently k = h — I (Adamic 2006). Gabaix, as we see in Section 2.3.2, 

also defines a standard case in which C =  1-

L ogn orm al

The PDF of the lognormal distribution is given by

1
a \ /^ x

(Bi, Faloutsos, and Korn 2001).

exp
(In X — fiY

(2.4)

D isc r e te  Form s

The power law and lognormal can be discretised, and must be when apply

ing them  to discrete data.^ The discrete probability function (point-mass 

function) of the power law is given by

j . - ( f c+i )

P{ )̂ =  ^ o o  ^

for X  a positive integer, and can also be written more succinctly as

(fc +  1)
Mx) =  (2.6)

where d^{n) = X ljli  ^  Riemann zeta function (Weisstein

2005).

The distribution parameter k can be determined by maximum likelihood. 

Assuming independent, identically distributed data the likelihood function 

is

^Bi et al argue that any observations measured with finite precision should be consid

ered discrete (Bi, Faloutsos, and Korn 2001).
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L(fc)=n̂ (̂ i)=n
,=1 i= iC (^  +  i)

The log-hkehhood function is given by

l (k)  =  - ( k  +  1) ^ l o g X j  -  nlog[C(fc +  1)],
i—1

or equivalently in terms o f F  and C

l{k)  =  - { k  +  l ) ^ C j  lo g / i  -  nlog[C(fc +  1)].

(2.7)

(2.8)

(2.9)
i= l

These equations having been derived follow ing the example o f B i et al (Bi, 

Faloutsos, and Korn 2001) who provide the follow ing discretised version of 

the lognormal d is tribu tion , which they refer to  as the Discrete Gaussian 

Exponential or DG X

, . A{fi,(T) 
p{x)  =  ------------exp

(In a; — /x)^
(2.10)

for X  a positive integer, where the normalisation constant A  is given by

( In j -M )"
- 1

( j  =
(2 .11)

Assuming independent, identically d istribu ted data the log-likelihood func

tion  is

/(/U, cr) =  n In A{f i ,  a) — ^
i= l

In Xi  +
(InX j -  /x)

2 (t 2

21

or equivalently in  terms o f F  and C

l{f i ,  a)  =  n  In A{f i ,  a) — c, 
1=1

In f i  +
2a2

(2 .12)

(2.13)

The parameter k for the discrete power law, and the parameters / i and a 

can be determined by numerically maxim ising the respective log-likelihood 

expressions. There is an unfortunate catch-22 in  th is technique, which is 

th a t the same parameter values which maximise the log-likelihood also cause 

the summations w ith in  those expressions to  converge extremely slowly. For 

certain data sets, the numerical com putation becomes extremely tim e con

suming, to  the point o f being prohib itive  in  exploratory research.
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2.1 .2  T he Fractal D istr ib u tion s

Both the stretched exponential and parabolic fractal distributions are de

fined with reference to a type of plot known as a fractal display, in which 

observation values (the vector F defined previously) are plotted against their 

corresponding ranks with double logarithmic axes.

Stretched  E xponential

The stretched exponential distribution is a generalisation of the exponential 

distribution (Laherrere and Sornette 1998). The PDF is defined as

f {x )  = c
p C — 1

exp (2.14)

with Cumulative Distribution Function (CDF)

F{x)  =  P { X  < x) = exp (2.15)

for 0 < c < 1. When c =  1 this reduces to the exponential distribution (La

herrere and Sornette 1998). The Stretched Exponential produces a straight 

line when the natural logarithm of the rank is plotted against observed 

values raised to the power c

x^ = —a \n i  + b. (2.16)

The three parameters of the distribution are a, b and c with xq = a i .  

The proposers provide no algorithm for fitting the Stretched Exponential. 

Thus far the only practical method we have found is one of brute force. 

Allow c to  take each of the values in (0.001,0.002,... ,0.999,1.000) (or the 

required search precision) and proceed to fit the linear model specified in 

Equation 2.16 to the vector of observations x 1 , . . . , x ^ .  Thus there will 

be, in this case, 1,000 linear models fitted. Choose the value of c which 

corresponds to the highest regression R^,  and a and b are then obtained 

from the corresponding linear model.
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P arabolic Fractal

Like the lognormal distribution, the parabolic fractal distribution is a 2"'̂  

order polynomial extension of the linear power law (Laherrere and Sornette 

1998)^. Both distributions take the shape of a downward-facing parabola, 

the lognormal does so in a standard double logarithmic probability plot 

whilst the parabolic fractal does so in the fractal display, that is a double 

logarithmic rank-frequency plot. The parabolic fractal is defined in terms 

of observations by

When 6 = 0, this reduces to the power law. Since a concave parabola 

has a maximum value, the theoretical maximum observation (regardless of 

sample size) can be calculated

The parabolic fractal is fit using linear regression on logi and (logz)^.

2.2 Som e E xam ple D atasets

We will proceed to fit each of the four distributions to by the methods 

described. We can compare the power law and lognormal plot with one 

other using an error statistic, denoted ERR ,  defined by

which is a simple extension of the Mean Squared Error. We define a sim

ilar error statistic for Rank-Frequency data, denoted ERRn,  which we will 

use to compare the stretched exponential and parabolic fractal distributions.

^The original article proposing the parabolic fractal distribution is in French, the 

parabolic fractal is discussed along with the stretched exponential distribution in this 

paper.

logXj =  loga;i — a log I — b{\ogi)^. (2.17)

m a x (2.18)

(2.19)

by
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E R R r =
i=l

where F{i) is the predicted frequency for the observation of rank i.

2.2.1 Words in Beowulf

Beowulf, one of the earhest surviving poems in Enghsh, was a source text 

for Zipf’s study of the frequency with which words appear in the written 

language (Zipf 1965). The text of Beowulf (Anonymous 1000) was analysed 

and a word count list (concordance) was prepared, the sta rt of which is 

shown in Table 2.2.

Frequency Word

1 ABANDONED

1 ABEL

2 ABIDE

1 AB.JECT

3 ABLE

4 ABODE

6 ABOUT

2 ABOVE

1 ABROAD

2 ACCURSED

Table 2.2: Excerpt from concordance of Beowulf.

The concordance, which lists individual words, was then collated into 

a distribution of word appearance frequency which is shown in Table 2.3. 

In this table we have word frequencies in the first column, and the num

ber/count of words which appear with said frequency in the second column. 

Rank is also given for the highest ranked observations. The interpretation 

of the first row of this table is th a t there are 1,611 words which appear only 

once within the text of Beowulf. The most frequent word is “the”, which 

appears 1,587 times in the text. The full distribution of the Frequency of
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word appearance and Count of each frequency is plotted in Figure 2.1, along 

with the fitted discrete power law and discrete lognormal.®

Frequency Count Rank Word

1 1611

2 548

3 293

4 180

5 115

276 1 5 WITH

321 1 4 THAT

408 1 3 HIS

636 1 2 AND

1587 1 1 THE

Table 2.3: Excerpts from the distribution of word frequency appearance in 

Beowulf.

We see that the E R R  statistic is lower for the lognormal than the power 

law, which is to be expected since the lognormal distribution is a general

isation of the power law. The stretched exponential and parabolic fractal 

are shown plotted in Figure 2.2. For this dataset, they give similar shaped 

fitted curves and similar error statistics. We see that both curves miss the 

handful of highest ranked observations by a considerable amount. This may 

be a feature of the ranked data which has a data point for each observation, 

rather than each observed value, and so places more of an emphasis on the 

common small events by listing them separately whereas in the Frequency- 

Count data, these small events are aggregated together.

2.2.2 Genera and Species o f Snake

The number of species in a genus, for a family of plants or animals, has a 

skew distribution. We consider two similar datasets here. The first dataset 

^Figures are located at the end of each section in this thesis.
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is taken from Yule’s original paper (Yule 1925), which was quoted from an 

earlier work by Willis, who in turn  collated the data  from the “Catalogue of 

the Snakes in the British Museum”, by G. A. Boulenger, published in 1893. 

We also have an updated version with 2005 data, which we collated from 

the online EMBL Reptile Database (Uetz and Heidelberg 2005), a process 

which must have been almost infinitely simpler today than in W'illis’ day. 

There are 293 genera and 1,475 species in the 1893 dataset, and 463 genera 

and 3,002 species in the 2005 dataset. The data  is plotted and the discrete 

power law and lognormal are fitted in Figure 2.3 (1893 data) and Figure 2.5 

(2005 data). The stretched exponential and parabolic fractal are shown in 

Figure 2.4 (1893) and Figure 2.6 (2005).

For both 2005 and 1893 we see tha t the discrete lognormal has a lower 

error statistic, as we expect. The stretched exponential is also a better fit in 

both cases, and in the 2005 data  it seems to match even the largest events. 

The parabolic fractal, in addition to having a poor fit, also has a positive 

coefficient for logi in the 2005 data which violates its specification.

2.2 .3  C ities in th e  U n ited  S ta tes

Here we look at the distribution of population amongst cities in the United 

States with over 100,000 people. The discrete lognormal again outperforms 

the power law, as shown in Figure 2.7. The parabolic fractal in this instance 

has a slightly lower error statistic than the stretched exponential, but this 

is probably not a significant difference, see Figure 2.8.

2 .2 .4  D iscu ssion

The discrete lognormal and discrete power law were fit using maximum like

lihood, and their distribution functions explicitly acknowledged the discrete 

nature of the data. The stretched exponential and parabolic fractal were 

fit using linear regression, implicitly assuming continuous data, and were fit 

in the rank-frequency plot rather than a frequency-count or frequency-pdf 

plot. It is not clear at this point whether these two approaches will turn  

out to be complementary, each highlighting different and useful aspects of 

the data, or whether one will emerge to be “correct”.
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For the datasets considered here, the discrete lognormal was a better 

fit than the discrete power law, which was expected as the lognormal is a 

generalization of the power law and has more parameters. The parabolic 

fractal proved problematic as it should be strictly decreasing, but for several 

datasets the fit produced by linear regression led to negative values for the 

a coefficient. The stretched exponential did not have this difficulty, and it 

had a better or comparable error statistic to  the parabolic fractal in the 

examples considered here, so where a Rank-Frequency-based distribution is 

desired the stretched exponential seems preferable.
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Beowulf
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Figure 2.1: Frequency of word appearance in Beowulf. The fitted discrete 

power law is shown in purple, values are k = 0.780, E R R  = 358.0. The 

discrete lognormal is shown in green, values are /x = —2.231, a = 2.275, 

E R R  = 12.3
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Figure 2.2: Frequency of word appearance in Beowulf and Rank of each 

Frequency. Fitted stretched exponential (orange) with a = 0.189, b =  2.489, 

c =  0.143 and E R R r =  318.1. Fitted parabolic fractal (green) with a = 

0.423, b = 0.113 and E R R r = 312.5.
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Snakes (1893)
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Figure 2.3: Number of species per genus of snake. The fitted discrete power 

law is shown in purple, values are k = 0.722, E R R  =  19.9. discrete lognor

mal is shown in green, values are /x =  —0.506, a =  1.790, E R R  = 16.3
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Figure 2.4; Number of species per genus of snake and rank of each genus. 

F itted stretched exponential (orange) with a = 0.580, b = 4.153, c =  0.321 

and E R R h = 1.9. F itted  parabolic fractal (green) with a = 0.131, b = 0.273 

and E R R r  =  4.8.
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Sn ak es(2005)
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Figure 2.5: Number of species per genus of snake. Tfie fitted discrete power 

law is shown in purple, values are k = 0.631, E R R  =  78.8. discrete lognor

mal is shown in green, values are = 0.330, a =  1.601, E R R  = 5.0
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Figure 2.6: Number of species per genus of snake and rank of each genus. 

Fitted stretched exponential (orange) with a = 0.687, h = 5.089, c =  0.332 

and E R R r  = 0.6. F itted parabohc fractal (green) with a = —0.116, b = 

0.326 and E R R r  =  8.9.
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U.S. Cities
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Figure 2.7: Frequency of city size. The fitted discrete power law is shown 

in purple, values are k =  0.898, E R R  = 123.0. discrete lognormal is shown 

in green, values are /x =  0.131, a = 1.144, E R R  = 28.0
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Figure 2.8: Frequency of city size and rank of each size. Fitted stretched 

exponential (orange) with a =  0.094, b = 1.499, c = 0.104 and E R R r = 4.4. 

Fitted parabohc fractal (green) with a = 0.666, b = 0.039 and E R R r =  2.8.
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2.3 G ibrat’s Law

. . .  if the very same regularity appears among diverse phenomena 

having no obvious common mechanism, then chance operating 

through the laws of probability becomes a plausible candidate 

for explaining that regularity. Hence, the theoretical models we 

shall examine are stochastic models yielding the observed size 

distributions as their steady-state equilibria. (Ijiri and Simon 

1977) [p. 3]

Inspired by a simple mathematical model and his compelling empirical 

observations, Gibrat’s Law of Proportional Effect spawned “one of the most 

important strands in the literature on market structure” (Sutton 1997)[p40]. 

The model, as explained by Steindl, is based on the assumption that “growth 

in proportion to size is a random variable with a given distribution which 

is considered constant in time” (Steindl 1965)[p. 30], or

—  ^ t - i  =  ( 2 .21 )

and

=  (1 +  £ t ) X t - i  =  -^o( l  +  £^i)(l +  £2 ) .  ■ • (1 +  £t) ,  (2.22)

where £t is an independent, identically distributed random variable repre

senting the proportional growth rate and Xt  represents the size of the object 

(firm size, firm’s capital) we are interested in (Steindl 1965)[p. 30].

That is, the growth rate St is random and does not depend upon the 

size of the firm, equivalently absolute growth is proportional to the size of 

the firm. It follows from the Central Limit Theorem that the logarithm of 

Xt  is normally distributed with mean mt  and variance (Steindl 1965) [p. 

30]. Gibrat’s economic interpretation of this generating mechanism for the 

lognormal distribution is that the growth rate of firms is independent of 

their size. Gibrat presented empirical evidence showing that firm sizes in 

various sectors of the French economy do seem to follow a lognormal distri

bution (Sutton 1997).
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An implication of G ibrat’s model is th a t the variance of firm sizes, a^t, 

will increase over time, eventually tending to infinity. Kalecki, who observed 

th a t this was unsatisfactory both theoretically, “for a priori reasons it is clear 

th a t changes in the standard deviation of the logarithm of a given variate 

are to  a great extent determined by economic forces”, and empirically, “no 

tendency for such an increeise is apparent (for instance in distribution of 

incomes)” (Kalecki 1945) [p. 162], took the straightforward mathematical 

approach, held variance constant, and therefore derived an assumption of a 

negative second derivative, which solves this particular dilemma but at the 

cost of introducing a rather arbitrary assumption. Champernowne, whose 

work was inspired by both Pareto and Gibrat (Champernowne 1952), uses 

a Markov chain approach and brings birth and death into the model. His 

solution to the increasing variance problem is to  assume tha t the expected 

value of the random growth rate is negative, which can be interpreted as as

suming th a t older, high-income workers die off and are replaced by young, 

low-income workers (Steindl 1965). Champernowne also assumes a mini

mum level of income which is another method of ensuring the variance does 

not become infinite (Gabaix 1999) [p. 759]. Champernowne’s model, which 

is actually an income model but which can also be applied to firm sizes, 

leads to  a power law distribution rather than the lognormal distribution. In 

the following sections we consider two additional approaches to the issue of 

the increasing variance of firm sizes: those of Simon and Gabaix.

2.3.1 S im on ’s A pproach

In his paper on skew distribution functions, Herbert Simon presents a mod

ernisation of what is now widely viewed as the classic work in the field, by 

G. Udny Yule (Simon 1955). Simon’s paper does not mention Gibrat at 

all, or firm sizes, but he does discuss the relationship of his work to th a t 

of Champernowne. Yule’s original paper, which as an aside gives an in

teresting snapshot of the state of the theory of Darwinian evolution at the 

time, presented a mathematical model to explain the skew distribution of 

the number of species in a genus of plants or animals, evidently a stylised 

fact in biology (or on its way to  becoming one) at the time (Yule 1925).
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The resulting distribution, known as the Yule distribution (seemingly thus 

christened by Simon (Simon 1955)[p. 426]), is similar to  the power law 

and can be approximated by it. Simon, noting tha t he, unhke Yule, had 

access to the “modern theory of stochastic processes”, was able to make 

weaker assumptions and put forward a model intended to address a variety 

of well-known empirical skew distributions in various fields

The empirical distributions to which we shall refer specifically 

are: (A) distributions of words in prose samples by their fre

quency of occurrence, (B) distributions of scientists by number 

of papers published, (C) distributions of cities by population,

(D) distributions of incomes by size, and (E) distributions of 

biological genera by number of species. (Simon 1955) [p. 425]

Simon’s model is extremelj' intuitive. Imagine we are undertaking an anal

ysis of word count frequencies in Bc«wulf. We have already read the first 

k words and we denote f ( i ,  k) the number of different words tha t have oc

curred exactly i times thus far. Simon provides two possibilities for the 

k -I- l ‘* word. W ith constant probability a , the k -I- 1*̂  word will be a new’ 

word, not present in the first k words. W ith probability I — a, therefore, 

the k + word is one of the existing words, and the probability th a t it is 

a word th a t has already appeared exactly i times is proportional to i f{i ,  k). 

These behaviours can be referred to as birth and proportional growth, since 

the probability of repeating an existing word is proportional to  the existing 

popularity of the word. Later in the paper, Simon translates his model in 

term s of income: “We picture the stream of income as a sequence of dollars 

allocated probabilistically to  the recipients.” (Simon 1955)[p. 438).

This model leads to  the Yule distribution, given by

where > 0, /9 > 0 are constants and B{i , p  + 1) is the Beta function of 

i, p + 1, defined as

f { i )  = A B { i , p + \ ) , (2.23)

(0 < i;0  < p < oo). (2.24)
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Simon shows th a t as i oo, this distribution approaches

/ ( i )  ~ r ( p + l ) r < ^ + i )  (2.25)

where F is the Gamma function, and tha t therefore the Yule distribution 

approximates the power law distribution which Simon defines as

m  = ( J )  y. (2.26)

where a, b and k are constants with b approximately equal to 1.

In his discussion of the application of this model to income distribu

tion, Simon notes th a t Champernowne’s model, although very different in 

appearance and inspiration, satisfies these assumptions and that therefore 

“the underlying structure is the same” (Simon 1955)[p. 438]. Simon’s model 

incorporates the elements of minimum size and birth and death, death be

ing introduced later in the paper and resulting in a very similar generalised 

Yule distribution, although it does not appear th a t these concepts were in

troduced specifically for the purpose of addressing the variance issue, rather 

they seem to be an natural feature of the model.

Simon updated and reframed his model specifically in terms of firms in 

the modern classic, “Skew Distributions and the Sizes of Business Firms” (Ijiri 

and Simon 1977). The income stream metaphor is now expressed in terms 

of new opportunities of which arise over time. An opportunity is simply a 

unit increase in the size of the economy, it can take the form of a new firm 

entering the economy or a unit increase in the size of an existing firm. The 

probability of a new entrant firm taking up the opportunity is a constant 

a , and, therefore, with probability 1 — a  an existing firm takes up the new 

opportimity, the probability of a particular firm doing so being proportional 

to the size of th a t firm.

2.3.2 Gabaix’s Approach

Gabaix, in a paper on city sizes, proves th a t the power law distribution is 

the unique steady state distribution possible in a system in which G ibrat’s 

Law holds (Gabaix 1999). He expresses G ibrat’s Law as “homogeneity of
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growth processes”, i.e. every city’s stochastic growth process has the same 

mean and variance as every other city. He further shows tha t the slope of 

the power law must be 1 in the standard case, and then gives conditions 

under which it may differ from 1 .

The existence of a power law can be thought of as due to a simple 

physical principle: scale invariance. Because the growth process 

is the same at all scales, the final distribution process should be 

scale-invariance. This forces it to be a power law. To see why 

the exponent of the power law is 1 , a concrete situation might 

help. Suppose tha t cities are on a discrete grid, and that at 

each point in time a city might double, or halve in size. Because 

we nmst satisfy the constraint tha t the average size (understood 

as share of the total population) be constant, the probability 

of doubling has to be and the prol)ability of halving |  (the 

expected growth is |  ■ 2 +  |  •  ̂— 1 =  0). To see how the number 

of cities of a given size can be constant, take a size S. One can 

quickly convince oneself that the number of cities of size 25 

should be half the number of cities of size S,  and the number of 

cities of size ^  should be double. This is precisely an expression 

of Zipf’s law. (Gabaix 1999) [pp. 744-745]

Gabaix illustrates the physical mechanism at work behind his m athem at

ical reasoning with an economic example in which young workers migrate to 

a city of their choice, their utility being based upon wages and urban ameni

ties, where they will remain for the rest of their lives. In physical terms, 

he describes his model as incorporating reflected Brownian motion, with 

a barrier which prevents cities falling below an exogenous minimum size. 

Gabaix shows tha t a power law distribution with an exponent of 1 holds 

provided the “appearance rate of new cities i/ is lower than the growth rate 

of existing cities 7 ” (Gabaix 1999)[p. 751]. If, instead, 1/ > 7 , a power law 

distribution with slope greater than 1 will occur. Finally, Gabaix explains 

the irregularity tha t small and medium cities often have a power law expo

nent of less than 1 by showing th a t a relatively higher variance can account 

for this.
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For cities we have u <  'y, so that the resulting exponent does 

not depend on the details of the country’s situation: it is just 1, 

or very close to it. For incomes we have «/ >  7 , in which case the 

exponent depends finely on the situation’s parameters, v, 7 , a, 

which explains why [the power law exponent] loses its constancy 

across economic structures and has cross-sectional and possibly 

time series variations. (Gabaix 1999) [p. 760]

In particular, when >  7  the power law exponent can be calculated as 

the positive root of

M C ) = C " - ( l - 2 ^ ) C - 2 ^ ,  (2.27)

where is the variance of 7 .

2.4 Scale Invariance and Power Laws

The power law distribution is closely tied to the conce^pt of scale invariance, 

as we have just seen in our discussion of Gabaix’s model. “Speaking about 

a (material or mathematical) object, scale invariance refers to its invari

ance over changes of scales of observation.” (Dubrulle, Graner, and Sornette 

1997) [p. 2]. A fractal, which looks similar at any level of magnification, has 

no obviously “correct” scale and is a canonical visual example of scale in

variance. While it is possible to calculate the mean size of a firm in the Irish 

economy, a firm which happens to be that size is in no way a prototypical 

or stylised example of a firm. Unlike in normally distributed systems, the 

average (mean) does not imply average (typical). It is quite trivial to estab

lish the link between scale invariance and the power law. If an observable 

variable 0{ l )  changes by factor /i(A) when the scale is changed by a factor 

A, then the observable must have solution 0{ l )  =  C l °  (Dubrulle, Graner, 

and Sornette 1997)[p. 3], i.e. a power law, with a  =

Power laws also have a deeper link with the concept of scale invariance, 

and the idea of a phase transition. In physics, researchers trying to under

stand phase transitions, for example water freezing and thereby transform

ing from a random, chaotic liquid into an ordered, structured solid, found
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power laws in their observations of many phenomena around the point of 

transition. Kenneth Wilson developed the theory of renormalization by 

assuming th a t “in the vicinity of a critical point the laws of physics ap

plied in an identical manner at all scales” (Barabasi 2003) [p. 76], i.e. scale 

invariance, and was therefore able to  predict the appearance of power laws.

If power laws are the signature of systems in transition from 

chaos to order, what kind of transition is taking place in complex 

networks? If power laws appear in the vicinity of a critical point, 

what tunes real networks to their own critical point, allowing 

them  to display a scale-free behavior? (Barab&i 2003) [p. 78]

The boundary between chaos and order is a region in which complex 

structures can exist. Chaos itself is not a fertile environment, complex 

structures do require some regularity. While a complex structure can exist 

in a highly ordered environment, such a structure will be rigid and brittle, 

and will not survive in a competitive and changing world. Stuart Kauffman, 

in an epic yet readable tome, explores theoretical mathematical underpin

nings of evolutionary biology and argues tha t complex systems “achieve a 

‘poised’ state near the boundary between order and chaos, a state which 

optimizes the complexity of tasks the systems can perform and simultane

ously optimizes evolvability.” (Kauffman 1993) [p. 173]. Biological evolution, 

Kauffman argues, results from two ingredients: self-organisation and selec

tion. Self-organisation creates complex entities, selection destroys those 

which are less fit, allowing those which survive to evolve further. The two 

forces, combined and iterated over time, give us the biological diversity we 

observe in nature, and also the ecological context in which those biological 

organisms exist.

Returning to economics, could the presence of power laws be a signa

ture of the phase transition between order and chaos, and therefore be an 

indicator of a healthy self-organising complex dynamic system, ideally sit

uated to  perform complex tasks and remain resilient and adaptable in the 

face of inevitable internal and external shocks? Is the power law distribu

tion of firm sizes and the highly inequitable Pareto distribution of income a 

fundamental property of a vibrant market-based diversified economy?
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We can begin, not to answer these questions but to explore them, by 

experimenting with a self-organising system which generates a power law 

distribution.



C hapter 3

An A gent-Based Firms 

Framework

We face the paradox in agent-based modelling th a t in order to  study our 

models in a simulated context, we must make seemingly arbitrary decisions 

about implementation. Should our agents make decisions sequentially or 

randomly? Synchronously or asynchronously? Should they be organised 

into a lattice structure with a geographic neighbourhood, or into an un

structured soup where neighbours are defined by a social network? How 

much information should agents have access to, how accurate should it be, 

how up-to-date should it be? All of these decisions, many of which are not 

specifically relevant to  the economic question being considered, will have 

an impact on the simulation. How, then, do we isolate the pure effects of 

the economics from our simulation results? One answer is tha t we cannot, 

and furthermore we should not! The specifics of the implementation are a 

fundamental part of the simulation, and the strength of ABM is tha t it al

lows us to  understand our economic models and ideas in a physical context 

(which is of course where they will be in the real world). W hat we can do is 

improve our understanding of the interrelationship between economics and 

environment by {1) treating the environmental assumptions as experimental 

variables and observing the impact that changes have on the results and (2) 

creating one or more standard reference environments and substituting a

37



C H APTER 3. A N  AG EN T-BASED  FIRM S FRAM EW O RK 38

variety (or a combination) of economic models into these well-understood 

environments, i.e. treating the economic models as experimental variables. 

In this thesis we will be doing both of these. We implement all of our mod

els, having very different economic content, in a single framework so tha t we 

can focus on the differences between models, and we also experiment with 

many of the environmental parameters to  learn about the impact they have 

on the results.

We consider a general framework in which agents within a simulation 

create, join and leave firms with no centralised co-ordination, tha t is, firms 

are created and structured endogenously. The economy consists of N  agents, 

indexed by i =  1 , . . . ,  Â . Agents in a firm are also referred to as employees. 

Whilst the population of agents remains fixed throughout the simulation, 

firms can be created or destroyed. A firm dies when its last employee leaves.

Agents are randomly assigned n friends during the initialisation of the 

simulation, the default is n =  2. Friendship is unidirectional, and so the 

friendship network forms a random directed graph (digraph). Agents can 

only obtain information about their own firm and their friends’ firms, hence 

agents are said to  be myopic. In principle, the more friends, the more 

information is available to agents although it is possible for some or all 

friends to be in the same firm, in which case there would be fewer unique 

observable firms. Whilst each agent has n friends, i.e. n outward links in the 

graph, the number of inward links is variable. For example, in Figure 3.1, 

no agents are linked to Agents 4, 8, 13 or 16 whilst five agents are linked to 

Agent 2.

Firms are created endogenously in this framework, agents create new 

firms and move between firms in order to maximise their utility. Agents 

are activated at random, and when activated will join the firm at which 

they can maximise their utility. The choices available to an activated agent 

are represented in Figure 3.2. An agent can remain in their current firm, 

join the firm of a friend, or create a new firm. If the agent creates a new 

firm then, initially, they will be the only employee of that firm. This is 

referred to  as a singleton firm. The simulation is initialised with each agent 

in a singleton firm. An example showing agents grouped into firms with
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Figure 3.1: Example of a friendship network with 20 agents, n = 2. 

friendship links between agents is shown in Figure 3.3.

a g e n t 's  firm friend  1 's firm

^ ^ g e n T ^ - - ^ ^ i e n ^ ^ ^

hyp o th e tica l new  firm '>

V  ' - " v
i  a g e n t

friend  2 's  firm

friend  2

Figure 3.2: Options available to an agent when activated.

Whilst the precise nature of an agent’s utility function and a firm’s 

production function depend upon the specific model under investigation, 

we expect that a firm will have a production function which will depend 

somehow upon the labour of the firm’s employees. Employee income will be 

derived from the firm’s production, either explicitly or implicitly, and agent 

utility will depend in part or in full upon the level of income they receive 

from being an employee of a particular firm.

All models implemented using this framework will produce the same 

basic simulation output. Every simulation will produce a distribution of
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Figure 3.3: Friendship links (green directed lines) between agents (yellow 

circles) in firms (blue rectangles).
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firm sizes, and distributions of firm output and agent utility, although in 

the latter two cases scales may differ between models. Additionally, each 

model will have input parameters and output statistics particular to it.
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Chapter 4

A Variable Effort M odel

4.1 Introduction

The model in this chapter is based upon a model by Robert Axtell (Ax- 

tell 1999). The friendship framework used for all the models is also taken 

from Axtell’s original model, although in tha t model it was not a separate 

component as it is here. While Axtell’s emphasis was on the analytical foun

dations of his model, with some descriptive statistics, here we will focus on 

gaining a more detailed understanding of the mechanism which generates 

the power law distribution of firm sizes. There are numerous graphs and 

plots in this thesis which have been carefully designed to reveal the inner 

workings of the simulations. Frequently this process involved returning to 

the simulation’s source code and defining new data sources, then running 

fresh simulations and evaluating the usefulness of the new statistics. This 

iterative process took far more time than implementing the basic structure 

of the model itself, and it can be argued tha t the creative process of defining 

and extracting data from simulations is the real “work” of the technique.

The agents in this model have Cobb-Douglas utility functions for income 

and leisure. Income is derived from being an employee within a firm and 

receiving a share of tha t firm’s output. Agents exert a level of effort be

tween 0 and 1,6*, and leisure is defined to be 1 — e,. The combined effort 

of employees within a firm is converted to firm output with a production

43
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function th a t has increasing returns to  scale. A firm j  has a set of employees 

denoted J  with cardinality N j . The aggregate effort of agents within a firm 

j ,  Ej ,  is

Ej = y ' gfc, (4-1)
keJ

where represents the effort level of Agent k. The corresponding output 

function is

0 ( E j )  == aEj + b { E j f  , (4.2)

where a and b are simulation parameters which determine the extent of the 

returns to scale. The default values are a =  1 and 6 = 1 .  We can make 

explicit a single employee’s contribution to  the output function

0 {E j ,  Cj) =  a {^Ej +  +  b ^Ej  +  , (4.3)

where Ej  represents the combined effort of all employees in Firm j  excluding 

Agent i.

Agents in a firm share the firm’s production equally, so for an agent in 

Firm j ,  income will be Agents have Cobb-Douglas utility functions, 

they seek both income and leisure and the parameter 0 determines the 

relative value of income versus leisure. High 9 agents obtain more utility 

from income, low 0 agents prefer leisure. T hat is,

0 6 (0 ,1 ) . (4.4)

In a singleton firm, where firm production and hence agent income is com

pletely dependent upon the agent’s own effort, the relationship between 

effort and utility is:

Ui = [aci + befY '  (1 -  . (4.5)

Each agent is randomly assigned a value of 0i at initialization, chosen from 

a uniform distribution between 0 and 1.

The effort of the other employees in a firm is taken as given, and so using 

Equation 4.3 we can express utility as a function of individual effort
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0. (E j + Ci^ + b (E j + 6i\ \
U^i e , ) =\ - ^ ---------------------------- ^  ( 1 - e i ) ' - ^ '  0 6(0,1).

(4.6)

In the following sections we examine results from simulation runs. Unless 

otherwise specified, the simulation was run with N  = 10,000 for 1,000 

time periods. Some time series data is gathered at the end of each time 

period. For a small detail time period, a snapshot is taken after each agent 

is activated, resulting in N  =  10,000 time series data points per period.

4.2 Case Studies

In this section we look at the histories of two firms, one very large firm and 

a more modest medium-sized firm (which is nonetheless much larger than 

the mean firm size of 2.7). These case studies allow us to gain an intuitive 

feel for the processes at work in this simulation before we move on to more 

impersonal aggregate statistics in later sections.

4.2.1 Large Firm Case Study

In this section we will examine the history of a firm which, starting as a 

singleton, grows to a size of 218 before declining. The firm was formed in 

Period 161 of the simulation by an agent with 6 — 0.981. This is a very 

high 6, close to 1, and we will discuss the relationship between firm size and 

the 6 of the founding agent of a firm in Section 4.3.

In Figure 4.1, we see th a t the singleton entrepreneur starts out with a 

high level of effort (red), close to 1, but average effort decreases sharply as 

new agents join the firm. Utility (black) is high initially, as the employees 

enjoy the benefits of the increasing returns to scale, but it begins to decline 

along with total output after Period 168 (see Figure 4.2 for the time series 

of firm size and output). During Period 168, even though the firm size 

continues to increase, the total output of the firm begins to decrease due 

to the decline in average effort levels. In Period 169, the population of the 

firm peaks and begins to decrease.
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In Figure 4.3, we can observe the utihty of agents at various time periods 

during the life of the firm. The red points represent the employees at the end 

of Period 166. By this time the firm is well established, and about to begin 

its dramatic size increase. We see th a t almost all employees are “above” the 

purple curve which represents the level of utility which a singleton agent of 

given 6 can achieve. Any agent above this line is better off than they would 

be as a singleton. No agent will choose to be below the purple curve as they 

have the option to  create a singleton firm and thus achieve a utility level on 

the purple curve.

By the end of Period 167, the firm has increased to a population of 

146 agents, and we see th a t agents are better off than they were in the 

previous time period. All but a handful of very high 6 agents are above the 

purple curve now, and these few are on or just below the curve. By the 

following period, however, things have changed dramatically. As the olive 

green points show, agents with 6 > 0.6 are now below' the purple curve. By 

Period 169, the population of the firm is collapsing as high 9 agents leave. 

It is apparent that the longevity of the firm is due in part to the fact that 

agents are unable to leave whenever they wish. Agents can only move when 

they are activated, and with random activation an agent may have to wait 

for several time periods before being activated. In a model with sequential 

activation, the longest an agent would remain with a suboptimal firm would 

be 1 time period.

The mean 9 of agents in the firm decreases throughout the life of the 

firm, as shown in Figure 4.1, caused initially by low 9 agents joining the 

firm and later by higher 6 agents leaving. In this example, the firm attracts 

some high 9 agents and remains small until approximately period 166, when 

a large immber of low 9 agents “discover” the firm and the mean value of 9 

within the firm can be seen steadily declining. The ability of agents to free 

ride, to enjoy high levels of income based upon the effort of other agents, 

causes both the rise and fall of the firm. It a ttracts the large ninnbers, but 

those large numbers dilute the income of the high 9 agents and cause them 

to leave. It is this process, on a large scale such as in this (unusually large 

and long-lived) firm, or on a small scale in a more typical small firm, which
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drives the dynamic firm population in this model.

4.2.2 M edium  Firm Case Study

In this section we perform an abbreviated case study with a medium-size 

firm. As shown in Figure 4.5, this firm achieves a maximum size of 13. The 

life span of this firm is shorter, it lasts for 6.0 periods as compared with the 

large firm’s life span of 13.3 periods. (The relationship between firm size 

and age is explored in Figure 4.11.) However, despite these differences, a 

similar pattern of growth followed by decline is seen in the life of this firm.

Figure 4.4 shows a time series profile of the firm. We see th a t the founder 

remains a singleton for more than a period at the beginning of the firm’s 

life. After the second member joins the firm, the firm grows quickly and 

then declines at a slightly more leisurely pace, see Figure 4.5. O utput peaks 

before the firm size peaks, again suggesting tha t many agents are joining 

the firm and contributing little effort, they are joining with the intention 

of free-riding. (The output peak now suggests itself as a leading indicator 

of a firm’s decline.) Although the plot in Figure 4.6 is more sparse than 

its counterpart in the previous section, we can still observe the relationship 

between the singleton optimum utility curve and the declining slope of the 

agents’ utility-0 “line”.
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Figure 4.1: Average employee utility (black), effort (red) and 6 (green) 

the large case study firm over time.
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Figure 4.2: Firm size (black) and total output (yellow) in the large case 

study firm over time.
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•  Period  166 (F irm  Size: 44)
•  Pe riod  167 (F irm  Size: 146)
•  Period  168 (F irm  Size: 194)
•  Period 169 (F irm  Size: 67)
•  Period  170 (F irm  S ize: 31)
•  Period  171 (F irm  S ize: 13)
•  P e riod  172 (F irm  S ize: 6)
•  P e riod  173 (F irm  Size: 2)
•  P e riod  174 (F irm  Size: 1)

__
------------
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Figure 4.3: Utility of members of the large case study firm at the end of the 

indicated time periods, plotted against their 9.



CHAPTER 4. A VARIABLE EFFORT MODEL 51

tfo
3=
LU

D  °

164 165 166 167 168

Period
169 170

Figure 4.4: Average employee utility (black), effort (red) and 9 (green) in 

the medium case study firm over time.
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Figure 4.5: Firm size (black) and total output (yellow) over time in the 

medium case study firm over time.
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> P eriod  163 (F irm  Size: 1) 

P eriod  164 (F irm  Size: 1)

> P eriod  165 (F irm  Size: 11)

> P eriod  166 (F irm  Size: 10)

> P eriod  167 (Firm  Size: 5)

« P eriod 168 (F irm  Size: 2)
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Figure 4.6: Utility of members of the medium case study firm at the end of 

the indicated time periods, plotted against their Q.
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4.3 0 , Effort, U tility  and the Firm

The case studies demonstrated a typical hfe-cycle pattern for medium and 

large firms. In this section we explore some of the factors which might 

determine whether a firm will grow to a large size.

4.3.1 Founder’s 9

Being founded by an agent with high 0 is a helpful but not sufficient con

dition for a firm to grow to a large size. Figure 4.7 shows the relationship 

between the maximum size a firm reaches in its lifetime and the 8 of the 

agent which founded the firm. Our large case study firm, shown in red, has 

both large size and very high founder’s 6, but it is evident that many other 

firms with equally high or higher founder’s 8 stay as singletons or very small 

firms. The medium case study firm, visible in green, has a relatively high 

founder’s 0 but we see that other firms with this founder’s ff grew to be 

much larger.

Figure 4.8 confirms the intuition that high-0 agents are more likely to 

be founders of firms. This histogram shows the number of firms created by 

agents of various 6, and the relationship is very obvious. Another perspec

tive on this is shown in Figure 4.9, which shows that as 9 increases, agents 

are likely to create a higher number of firms over the course of the simula

tion, but the variance is extremely high. Some high-0 agents are extremely 

prolific, others not at all. The histogram in Figure 4.10 shows the total 

number of firms founded per agent. The most prolific agent founded 728 

firms, whilst 1181 agents didn’t voluntarily create any firms.

The relationship between the age of a firm and its maximum size is shown 

in Figure 4.11. In our two case studies, the larger firm had the longer 

lifespan, and we see that there is indeed a positive relationship between 

lifespan and maximum size, at least initially. Firms which die at a very 

young age don’t have time to reach a large size. However, we also observe 

in this graph that the very long-lived firms tend to be quite small. So 

some extreme firms live fast and die young, others have a long, quiet life of 

isolation. The majority of firms, however, have a short lifespan, as shown in
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tlie histogram in Figure 4.12. The extremely long-lived “hermit” firms are 

all founded by very high-0 agents, as shown in Figure 4.13. This agrees with 

our intuition tha t a low-0 agent is unlikely to  remain a singleton for long, 

being willing to join even a relatively unproductive firm, rather than having 

to  exert effort to maintain income, whereas a high-0 agent would prefer to 

work in isolation than to join an unproductive firm.

If there is a guaranteed predictor of a newly-formed firm’s fate, we have 

not uncovered it in this section. We have seen th a t factors such as the 0 of 

the foimder of a firm do have an impact on the expected size and life span 

of the firm, but it is not a simple, predictable relationship and certainly not 

a linear one. An agent, whose 0 and whose neighbours haven’t  changed, 

can start several identical singleton firms which may have vastly different 

outcomes, a point which is clearly illustrated by Figure 4.14.

The difference in outcomes between two firms founded by the same agent 

can only arise from the different state of the rest of the system. Other 

competing opportunities are available. At one time, the agent’s new firm 

may be the best thing going in the neighbourhood and it gains momentum 

quickly as other agents flock to join, at another time the founder may find 

a better opportunity and leave before the firm has a chance to grow.

4.3.2 Agent Income, Effort and U tility

When agents are activated, they have three options and the proportion of 

agents choosing each option is remarkably stable throughout the simulation. 

47% will move to an existing firm (a friend’s firm), whilst 41.5% will stay 

where they are, and the final 11.4% will start a new firm.

The relationship between agent utility and 9 is complex and interesting, 

and understanding this relationship sheds light on the dynamics of the sim

ulation. An agent with a very low 6, close to  0, will always have a utility 

of close to 1. An agent with higher 9 may achieve a higher utility in some 

periods, but a t the risk of very low utility in other periods. High 9 agents 

are workaholics with a high risk, high reward lifestyle. In Figure 4.15, the 

blue dots represent the utility of a low 9 agent with 0 =  0.1, whilst the black 

dots represent the utility of a high 9 agent with 9 = 0.8. The low 9 agent
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has a utihty level of approximately 1 which does not change throughout the 

simulation. In contrast the high 9 agent has highly volatile utility.

Figure 4.16 shows the relationship between utility and 0 for a single time 

period of the simulation. This plot is similar to Figure 4.3 and Figure 4.6, 

but it contains all agents in the simulation for a single time period rather 

than snapshots of agents in a particular firm over several time periods. The 

risk-reward relationship can be seen clearly here, along with some other 

interesting patterns. The points in green represent agents who are members 

of the largest firm in the simulation. The points in yellow are agents in 

singleton firms, and the violet line represents the highest possible utility for 

a singleton firm. All agents above this line are better off than they would 

be in a singleton firm, those below this line worse off. The green “line” made 

up of agents in the largest firm crosses the yellow line at around 6 =  0.4, so 

firm membership is beneficial for agents with 6 < 0.4, but the high 0 agents 

are stuck in a sub-optimal firm. At some point in the past, the largest firm 

was a utility-maximising option for these high 0 agents, or they would not 

have joined it. Another feature of this plot is the red curve marking minimal 

utility. This is actually an artefact of the numerical optimisation algorithm 

and it represents the lowest achievable effort level, effectively zero effort.

A few agents have high levels of utility, but the majority have a utility 

of less than 1, shown in Figure 4.17. When plotted in double logarithmic 

coordinates (see Figure 4.18), the distribution of employee utility takes a 

strongly kinked shape, perhaps a double-Pareto distribution (Mitzenmacher 

2003). The plot of the distribution of employee effort, shown in Figure 4.19, 

is in linear coordinates and shows an apparent linear decline in effort until 

the level zero is reached, and we observe tha t nearly half of all agents are 

contributing negligible effort.
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0 of Firm Founder

Figure 4.7: Tiie maximum size which a firm will reach in its hfetime plotted 

against the 9 of the founder of the firm. The red firm is that in the large firm 

case study, the green firm is that in the medium firm case study. Includes 

all firms which died after the first period and prior to the end of the last 

period of the simulation.
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Figure 4.8: Histogram of the number of firms created per agent, categorised 

by 6. Includes all firms created after the first period of the simulation.
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Figure 4.9; For each agent in the simulation, the number of firms created 

by tha t agent plotted against the agent’s 6. The red agent is the founder of 

the large case study firm, the green agent is the founder of the medium case 

study firm. Includes all firms created after the first period of the simulation.
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Figure 4.10: Histogram of the number of firms created per agent. Includes 

all firms created after the first period of the simulation.
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Figure 4.11: The largest size a firm achieves in its lifetime, plotted against 

the lifespan of the firm in periods. The red firm is th a t in the large firm 

case study, the green firm is tha t in the medium firm case study. Includes 

all firms which died after the first period and prior to the end of the last 

period of the simulation.
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Figure 4.12: Histogram of lifespan of firms. Includes all firms which died 

after the first period and prior to the end of the la^t period of the simulation, 

except tha t 281 firms (0.02% of dataset) with lifespan longer than  30 periods 

are excluded.
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0 of Firm Founder

Figure 4.13: Lifespan of a firm plotted against the founder’s 9. The red firm 

is th a t in the large firm case study, the green firm is tha t in the medium 

firm case study. Includes all firms which died after the first period and prior 

to the end of the last period of the simulation.
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Figure 4.14: Lifespan and maximum size of firms started by a particular 

agent over the course of the simulation run. The red firms are those started 

by the founder of the large case study firm, the large case study firm itself 

is indicated by a black diamond. The green firms are those started by the 

founder of the medium case study firm, the medium case study firm itself 

is indicated by a black diamond. Includes all firms founded by these two 

agents which died after the first period and prior to  the end of the last 

period of the simulation.



C H APTER 4. A  VARIABLE EFFORT MODEL 65

Utility of Low, High 0 Agent
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Figure 4.15: Time series of the utility of an agent with low 0 (0.062) shown 

in blue and an agent with high 0 (0.815) shown in black.
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Employee Utility vs. 6
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Figure 4.16: Utility of all agents in the simulation at the end of Period 1000, 

plotted against their 9. The green agents are members of the largest firm 

in the simulation at this time. The yellow agents are singleton agents. The 

purple curve represents optimum singleton utility. The red curve represents 

the utility of singleton agents with the minimum possible nonzero effort level 

of 0.00502.
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Figure 4.17: Distribution of employee utility for all agents in the simulation 

at the end of Period 1000.
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Figure 4.18: Distribution of employee utility for all agents in the simulation 

at the end of Period 1000, in double logarithmic coordinates.
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Figure 4.19: Distribution of employee effort for all agents in the simulation 

at the end of Period 1000.
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4.4 Firm Size Distribution

For all the chaos and unpredictability at the micro level, the aggregate 

statistics of the simulation show a remarkable stability. After an initial 

adjustment period, the average firm size settles down to a constant value 

of approximately 2.7 agents. With N  = 10,000, this results in an average 

number of 3,650.3 firms. Whilst the total immber of firms remains more or 

less the same throughout the simulation, the firms themselves are constantly 

changing. An average of 1,142.6 firms (31.3% of firms) die in every time 

period (see Figure 4.20). The birth rate is equal to the death rate and so 

the total number of firms is stable (see Figure 4.21).

The firm size distribution is presented as a bar chart in Figure 4.22. 

We see straight away that there is a highly skew distribution, with a large 

number of singleton firms present in the firm population, 1,867 or 50.3% of 

firms.

Figure 4.23 shows the firm size distribution plotted with double logarith

mic axes. The relationship here is not strictly linear, but it is a robust skew 

distribution which is at least power-law like. The data points have been 

overlaid with a fitted discrete power law. Whether or not these data do 

in fact have an underlying power law distribution, the power law exponent 

is useful as a summary statistic. As a reminder, the discrete form of the 

probability density function for the power law distribution is:

j . —(fc+i)

Using maximum likelihood estimation, we obtain a fitted value for k of 

0.951. The distribution of firm sizes remains skew with roughly the same 

shape throughout the simulation, despite the constant turnover of firms.

The productive output of a firm is determined by aggregating the con

tributions of employees’ effort and applying the output function which has 

positive returns to scale, given by Equation 4.2. An individual employee’s 

effort can range between 0 and 1, thus we have a theoretical maximum eco

nomic output represented by the situation of all employees exerting an effort 

of 1 in a single firm. This would result in 100,010,000 units of production.
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While some agents exert close to their maximum possible effort, others do 

almost no work and the average effort is around 0.3. The actual total out

put in the entire economy averages around 8,306.329 units, or 0.00831% 

of the potential output. The average output per firm remains fairly stable 

throughout the simulation at a level of 2.3 units of production. The mini

mum output is close to zero, whilst the maximum output is highly volatile, 

varying between 50.6 and 526.2.

4.5  D iscu ssion

Returning to  the discussion in Section 2.3 of the importance of b irth /death  

and proportional growth to a skew distribution, it is easy to identify the 

elements of birth and death in our simulation. Firms are born when an 

agent decides tha t their utility would be highest in a new singleton firm, 

and they die when their last agent leaves to seek higher utility elsewhere. 

Proportional growth, too, seems likely, at least to an extent. W hat is partic

ularly interesting about this model is tha t the counteracting forces of birth 

(increasing the number of small firms) and proportional growth (increasing 

the size of large firms) are both achieved. The ingredients within the model 

th a t lead to  this are the economies of scale (output is of the order of effort 

squared), and the potential for free riding. Economies of scale promote the 

growth of larger firms, but are counteracted by free riding.
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Figure 4.20: Time series of the number of firms which are born (green) and 

die (red) in each period.
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Figure 4.21: Time series of the total number of firms in each period.
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Figure 4.22: Firm size distribution.
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Figure 4.23: Firm size distribution plotted with double logarithmic axes 

and showing fitted discrete power law with k =  0.951.
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Chapter 5

Extensions of a Variable 

Effort M odel

Ju s t as extrem e and unusual medical conditions can help to  illum inate the 

functioning of a healthy hum an body, extending the  basic variable effort 

model w ith the intention of “breaking” the  skew firm size d istribution may 

help us to  understand it better. Some of the  modifications in this section 

will have only a minimal effect on the  firm size d istribution , others will be 

m ore noticeable.

5.1 Sequential A ctivation

In our original sim ulation runs, agents were activated randomly. A period 

of sim ulation tim e is defined to  be every N  agent activations where N  is the 

to ta l population of agents. If the  agents are activated in sequence, then  each 

agent will be activated exactly once per period. If the  agents are activated 

randomly, then an agent may be activated once, more th an  once, or not a t 

all in a given period. We saw in the  case studies presented in Sections 4.2.1 

and 4.2.2 th a t  some agents rem ained in suboptim al firms for several tim e 

periods because they had not been activated and hence were unable to  leave 

the ir firm. In th is section, we exam ine results from sim ulations where agents 

are activated sequentially.
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The plot in Figure 5.1 confirms the intuition that, with sequential ac

tivation, agents would not remain in a sub-optimal firm for more than 1 

period. This firm’s life cycle is delightfully blunt. The singleton firm in 

Period 167 is, of course, on the purple optimum singleton utility curve. At 

the end of Period 168, there are 9 agents enjoying extremely high utility, 

well above the purple curve. Things are still going well in Period 169 and 

the firm has grown dramatically to 163 agents. During the course of Period 

170, however, things decline rapidly, and by the end of the period all agents 

having 0 > 0.2 are in a suboptimal situation. It is no surprise that by the 

end of Period 171 the firm is defunct.

Firms are larger on average but shorter-lived in a simulation with se

quential activation. The mean firm lifespan is 2.2 and the median is 1.9, 

compared with the standard case’s mean firm lifespan of 3.2 and median 

of 2.6. The mean firm size (calculated over all the firms in the simulation, 

rather than a cross-sectional snapshot) is 5.8 in the case of sequential activa

tion with a median firm size of 3.0. For non-sequential standard activation 

the mean is 4.2 and the median 2.0.

The firm size distributions for both the standard and sequential models 

are shown in Figure 5.2, there are slightly fewer firms of size 1 and 2 in the 

sequential case, but more firms of almost every larger size, with a larger 

maximum firm size. As shown in Figure 5.3, however, large firms have a 

very short lifespan with sequential activation. This same plot also indicates 

th a t other firms, very small firms, have extremely long lives and can last for 

several hundred periods. We have already seen why we can expect such a 

short lifespan for most firms: sequential activation allows agents to escape 

from suboptimal firms within 1 period, but why does sequential activation 

also allow some firms to survive for such a long life?

The histogram in Figure 5.4 has a very striking and telling feature, a 

spike indicating th a t some agents found as many as 999 firms, th a t’s a 

new firm in every period. (Compare this with the standard case shown in 

Figure 4.10.) Why might this be? W ith sequential activation, it is possible 

for agents to spend much or all of the simulation trapped in repeating loops. 

One such loop might be as follows: an agent in a singleton firm is joined by
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a neighbour, making the firm a twosome. When the original agent is next 

activated, he decides to leave and create a new singleton firm, leaving the 

neighbour by himself. If no other agents become involved, and if no more 

tem pting choices present themselves to either of these two, it is possible for 

this loop to repeat indefinitely since both agents will always be activated in 

the same sequence and, given the same situation, will always make the same 

decisions. This cyclicality, although not th a t particular scenario, can be 

seen in Figure 5.5, which shows the utility choices available to  an agent. The 

pattern  shows distinctly repetitive elements, if not a purely cyclical pattern. 

By contrast, a similar diagram for a typical agent under non-sequential 

activation shown in Figure 5.6 shows no regularity or predictability in the 

utility choices available. Every time an agent is activated, the simulation 

space of firms will be very different. In theory, it might be possible for a 

repeating loop to develop with non-sequential activation, but a scenario in 

which the order of activation of the two agents didn’t m atter is more difficult 

to construct. Even if one did appear by chance it would be a rare exception 

and not a dominant feature of the simulation. In some small simulations 

with sequential activation, the entire simulation can become a repeating 

loop, see Figure 5.7 for an illustration. As an aside, this has implications for 

the study of business cycles using agent-based models, sequential activation 

of agents can introduce artificial cyclicality. Returning to the question of the 

long-lived very small firms, we can easily envisage a scenario now where, with 

two agents locked in the repeating loop described above, a third singleton 

agent nearby is left in peace for hundreds of periods.

If we think of all the possible configurations of the simulation as a state 

space, we can think of sequential activation as resulting in a smaller search 

of such space, restricted by cyclical behaviour which hmits the number of 

states th a t can be explored by the system. Clearly, unless there is a com

pelling reason to choose sequential activation, it should not be a default 

choice as it introduces many arbitrary behaviours into a system. The im

pact of sequential activation on the firm size distribution can be quantified 

by considering the fitted power law slope parameter k. The fitted value for 

sequential activation is 0.857, compared with the standard model’s 0.951.
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This lower value indicates a flatter slope, as can be seen in Figure 5.2, and 

corresponds to  a higher level of market concentration (more large firms, 

fewer small firms).
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Figure 5.1: Utility of firm’s employees, plotted against 6, at the end of 

various time periods.
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Figure 5.2: Comparison of firm size distribution for standard model (black) 

and with sequential activation (green) plotted with double logarithmic axes 

and showing fitted discrete power law with k = 0.951 (standard model) and 

k = 0.857 (sequential model).
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Figure 5.3; The largest size a firm achieves in its lifetime, plotted against 

the lifespan of the firm in periods. The red firm is th a t in the firm case 

study.
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Figure 5.4: Histogram of the number of firms founded per agent during a 

simulation with sequential activation.
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Figure 5.5: Utility calculated by an agent in a simulation with sequential 

activation for the agent’s various options: staying in current firm (blue), 

creating a new firm (black), joining the first friend’s firm (red) or joining 

the second friend’s firm (purple). Vertical green lines indicate a change of 

firm.
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Figure 5.6: Utility calculated by an agent in a simulation with random 

activation for the agent’s various options; staying in current firm (blue), 

creating a new firm (black), joining the first friend’s firm (red) or joining 

the second friend’s firm (purple). Vertical green lines indicate a change of 

firm.
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Period

Figure 5.7: Time series of the number of firms present in a simulation with 

N  = 200 agents, showing a loop which repeats every 10 periods.



C H APTER 5. EXTENSIONS OF A  VARIABLE EFFORT MODEL  88

5.2 M yopia

Agents have a hmited number of firms to choose from. In the standard 

model, each agent is assigned n  =  2 friends and those friends’ firms are the 

only ones an agent is able to “see” and potentially move to. Limiting agents 

to  local information is referred to  as myopia. In this section we examine the 

impact of assigning more friends to an agent, reducing the degree of myopia.

Figure 5.8 shows the firm size distribution for the standard n = 2 case 

and also for n =  3, n =  5, n =  10, n =  20 and n = 50, along with the 

fitted power law line in each case (except n =  50). Increasing the number of 

friends has a definite effect on the firm size distribution. The more friends 

each agent has, the larger firms grow, and the fewer small firms are seen. 

Only 50 agents are in singleton firms when n =  50, compared with 1,867 

agents in the standard case of n =  2.

The source of this difference can be seen in Figure 5.9, which illustrates 

how the choices agents make change as the number of friends increase. When 

n  =  2, 47.0% of agents choose to  join a friend’s firm, by n =  50, this value 

has increased to 92.5%. W ith so many more firms to choose from, it stands 

to  reason tha t one of these firms is likely to  offer a higher level of utility 

than either staying in one’s current firm or creating a new firm. Reducing 

the agents’ myopia in this way has virtually cut off the birth component 

in our model, it seldom makes sense to create a new firm when you have 

50 friends, leaving the proportional growth component free to concentrate 

agents in larger firms.

In Figure 5.10, we see tha t firms are only founded by extremely high- 

9 agents, which is to be expected. Low-0 agents are very unlikely to find 

th a t creating a new singleton firm is their best option. In fact, no agents 

with 6 less than 0.8 create firms in this simulation. More surprising is the 

extremely large size which is achieved by some firms, over 6,000 agents (60% 

of the population) in a few cases. Firms live longer, the mean firm lifespan 

with n =  50 is 4.0, compared with the standard mean firm lifespan of 3.2. 

Looking at Figure 5.12, this appears to  be a simple consequence of the larger 

firm size, it takes longer for larger firms to complete their life cycle.

W ith n =  50, we observe an im portant tradeoff in this model. Agents
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have higher utility and exert lower effort due to the greater efficiency of 

large firms, as shown in Figure 5.13. Agents spend more time in large 

firms since they are able to observe and take part in good opportunities. 

Large firms last longer, since more agents join them. The price to  be paid 

for this is that v/e have a higher market concentration, there are virtually 

no singleton firms left. In some (albeit exceptional) periods, a majority 

of agents are in a single firm. Of course, it is not really possible to make 

value judgements about the ideal firm size in this model without a frame 

of reference. And, in this model even the very large firms are not able to 

exert any monopoly influence as they begin to  decline in due course. W hat 

we can say is tha t myopia has a very strong role in determining the slope of 

the firm size distribution in a model such as this. The fact tha t agents can 

only see or join a small rmmber of firms is responsible for the high rate of 

new firm creation and hence the high proportion of singleton firms for the 

low n simulation runs.

5.3 D iscussion

In this chapter we reviewed the impact of sequential iteration and myopia on 

the simulation behaviour in general and the firm size distribution in particu

lar. The relationship between myopia and the power law slope param eter k 

was quite striking, illustrating the application of that parameter as a market 

concentration indicator. W ith n = 2 friends, the slope was approximately 

1, with n  =  20, the slope was 0.5. If this parameter belatedly comes to be 

employed regularly as a market concentration indicator, it will be interest

ing to observe the development of intuition as to what characterises, say, a 

k = 0.9 economy. In the next two chapters we discuss additional models, 

and we return to  a discussion and analysis of all the models in Chapter 8.



CHAPTER 5. EXTENSIONS OF A VARIABLE EFFORT MODEL 90

(0
X )o

'V.
r 4 iL •  ■

wfl*. t* •  •t   •>

•  ' " t  ■ "  "

•  •

•  •  •  N

1 2 5 10 20 50 100 200 500

Frequency

Figure 5.8: The firm size distribution for 2 (black), 3 (green), 5 (blue), 

10 (purple), 20 (red) and 50 (orange) friends per agent, plotted in double 

logarithmic coordinates with fitted discrete power law having k parameter 

of 0.95 (n =  2), 0.83 (n =  3), 0.71 (n =  5), 0.56 (n =  10) and 0.47 (n =  20).
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Figure 5.9: Number of agents in each period who join a friend’s firm (blue), 

stay in their current firm (red) and create a new firm (green) for various 

values of n.
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0 of Firm Founder

Figure 5.10: Maximum size of a firm plotted against the founder’s 0. In

cludes all firms which died after the first period and prior to the end of the 

last period of the simulation.
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Figure 5.11: Lifespan of a firm plotted against the founder’s 0. Includes all 

firms which died after the first period and prior to the end of the last period 

of the simulation.
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Lifespan

Figure 5.12: The largest size a firm achieves in its lifetime, plotted against 

the lifespan of the firm in periods. Includes all firms which died after the 

first period and prior to the end of the last period of the simulation.
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Figure 5.13: Mean agent utility (green) and efFort(red) for various n.
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Chapter 6

An Exogenous Birth  

M odel

In our discussion of the history of G ibrat’s Law in Section 2.3, we saw 

how Champernowne, Simon and others proposed a variety of mechanisms 

to prevent the undesirable increase in firm size variance over time which 

was the result of G ibrat’s basic model.^ The Simon and Ijiri firms model 

specifies an exogenous increase in the size of the overall economy in each 

time period, with a proportion a  of new opportunities leading to the creation 

of new singleton firms (in our terminology) and the remaining proportion 

1 — a  being allocated to existing firms with probability proportional to  their 

size. Mathematically, this leads to a Yule distribution, close to a power law 

distribution(Ijiri and Simon 1977).

We ask two questions in this chapter. Firstly, does an exogenous birth 

model such as the Simon-Ijiri model lead to a skew firm size distribution 

when implemented as an agent-based model? Secondly, what are the differ

ences, if any, between an exogenous birth process and the endogenous birth 

and growth observed in the variable effort model presented in Chapter 4 and 

discussed further in Chapter 5. In the variable effort model the birth rate 

of new firms and the growth patterns of existing firms are not programmed

^Simon’s original work was not, as we saw, specifically intended by him to address 

this problem in Gibrat’s model but it did so nonetheless.
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into the simulation, instead they are emergent properties of the interaction 

of agents.

6.1 Im plem enting Exogenous B irth  w ith  A gents

We will, of course, implement this model as an Agent-Based Model using the 

framework developed in Chapter 3. Thus the concepts of friendship, firm 

membership and agent activation are such as we have already discussed. In 

this instance, due to the nature of this model, there is no real meaning for 

firm output or agent utility.

Agents will obey two simple behavioural rules each time they are ac

tivated. Firstly, with probability a  an agent will create and join a new 

singleton firm (unless they are already in a singleton firm in which case 

they take no action and remain there). W ith probability 1 — a  the agent 

joins one of firms visible to  it (via its friends) with probability proportional 

to  the size of each firm. Hence, for example, if the agent belongs to  a firm of 

size So and has two friends belonging to firms of size Si and S2 respectively 

then the probability of remaining in the same firm after activation is:

( 1 - q ) ------------------- . (6 .1 )
So +  *1 +  ^2

Figure 6.1 illustrates all the options available to the agent in this scenario 

and their corresponding probabilities.

This is not entirely identical to the Simon-Ijiri model, in particular we 

are not actually increasing the size of our simulation in each time step.

We are creating new firms at the rate a, but to create these firms we are 

removing agents from existing firms.

This model has two system-wide parameters, a  and n, the number of 

friends per agent. Agents are homogeneous in this simulation, there are no 

agent-specific parameters. The parameter a, the birth rate of new firms, 

can take values between 0 and 1, with both 0 and 1 permissible values 

corresponding to degenerate cases. When a  =  0, agents will never create 

a new singleton firm, when a  = 1, agents will never join an existing firm.

In Section 6.2, we explore the impact of different values for a  and n on the
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a g e n t 's  firm (size  Sq)
size  s

frien d  2 's  firm
________(size Sj)

friend  2 J

h y p o th e tica l new  firm

Figure 6.1; Example of the options and corresponding probabilities available 

to an activated agent in the Simon-Ijiri firms model.

sinmlation.

6.2 A Survey of the Param eter Space

The contour plot in Figure 6.2 shows the mean number of firms present in 

the simulation for various values of a  and n. This plot incorporates the 

results of 99 individual simulation runs with a population of =  10,000 

agents in each case, a  was assigned values between 0 and 1 inclusive with 

an increment of 0.1, and n  took integer values from 1 to 9 inclusive. The 

number of firms was averaged over 700 periods of a 1,000 period simulation, 

the first 300 periods were excluded to allow the system to stabilise.

We can see tha t the number of firms in the simulation increases as the 

birth rate a  of new firms increases, which agrees with our intuition. The 

light beige coloured regions show close to 10,000 individual agents, or almost 

every agent, in a singleton firm. By contrast, the purple and dark blue 

regions indicate a very small total number of firms. It is clear from this 

contour plot that the firm size distribution generated by this simulation will 

look very different depending upon the value of a  chosen.
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The number of friends also has an impact on the mean number of firms, 

but it appears tha t this is a secondary effect, much less strong than the 

impact of a. In general, having more friends results in a smaller number 

of firms, ceteris paribus, however the number of friends only has an impact 

for some values of a. The behaviour of the system with extreme values of 

a  does not change due to the number of friends.

The maximum firm size, averaged over the last 700 periods, shown in 

Figure 6.3, decreases as the birth rate increases. For middling values of a , 

an increase in the number of friends also increases the maximum firm size. 

Maximum firm size is plotted again in Figure 6.4 for fixed n =  2 to show 

more clearly the relationship with the parameter a. Increasing the number 

of agents changes the scale but not the shape of the relationship between 

maximum firm size and a. We see from this plot tha t there seems to be 

three distinct regions of behaviour: one for 0 <  a  < 0.2, another when 

0.2 < a  < 0.6 and a third for 0.6 <  a  < 1, and we will discuss the firm size 

distribution in each of these three regions in the next section.

Considering again the total number of firms in the simulation, in Fig

ure 6.5 we observe tha t the variance of the number of firms is very small 

near a  = 0 and q  =  1, increasing significantly between them. When a  =  0 

or a  =  1, the number of firms will be close to 1 or 10,000 respectively. 

As a  increases from 0 or decreases from 1, the number of firms can take 

many different values which will be determined by random interactions in 

the simulation and so the increased variance makes sense given what we 

have already learned about the system.
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Figure 6.2: Mean number of firms averaged over Periods 300-1000 for various 

values of a  and n.
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Figure 6.3: Mean maximum firm size averaged over Periods 300-1000 for 

various values of a  and n.
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Figure 6.4: Mean maximum firm size averaged over Periods 300-1000 for 

various values of a  with n =  2.
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Figure 6.5: Variance of number of firms averaged over Periods 300-1000 for 

various values of a  and n.
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6.3 Firm Size D istribution

In this section we assume n =  2, unless stated otherwise. 

6.3.1 A “Super” Firm

Firm Size Number of Firms

1 1012

2 6

8976 1

Table 6.1: Period 1000 of Simon Model with n =  2, q =  0.1 and 10000 

agents.

In the region 0 < a  < 0.2, the maximum firm size is close to the total 

number of firms in the simulation. This implies th a t most of the agents in 

the simulation are members of a single “super” firm. For example, Table 6.1 

shows the firm size distribution for Period 1000 of a simulation run with 

Q =  0.1. In this example, most of the agents in the simulation are members 

of a single firm of size 8,976.

The red line in Figure 6.4 shows what the maximum firm size would be 

if all agents, except the proportion a  just forced into creating new singleton 

firms, were grouped into a single “super” firm. For a  < 0.2, this in fact 

appears to be the situation, the observed maximum firm sizes are almost on 

the red line. The singleton firms, and the handful of 2-agent firms, shown in 

Table 6.1, are present because 10% of agents are assigned to new singleton 

firms in each time period. The 90% (or 1 — a) of activated agents who select 

a new firm based on proportional growth will, with high probability, choose 

to join (or remain in) the super firm. Not only is a super firm attractive 

in itself, since the agents are programmed to prefer large firms, but a super 

firm is likely to be the only option available to an agent as most if not all of 

the agent’s friends will already be members of the super firm. For a  =  0.1 

and n =  2, the average number of distinct firms available to  an agent is 1.3, 

much less than the theoretical maximum of 3. If we increase the number
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of friends in the simulation to  5 or 10, then the reduction in the number 

of available firms from the theoretical maximum is more marked. W ith 5 

friends, the mean number of firms available is 1.6, with 10 friends it is 2.1. 

Figure 6.6 illustrates for various values of a  and n, the steeper slope with 

which the purple (q =  0.8) points rise indicating the more normal increase 

in the number of available firms as the number of friends increase.

6.3.2 More D iversity

Firm Size Number of Firms

1 5490

2 481

3 106

4 33

5 8

6 2

7 3

10 1

3015 1

Table 6.2: Period 1000 of Simon Model with n =  2, a  =  0.5 and 10000 

agents.

For 0.2 < a  <  0.6, there is still a very large firm dominating the simula

tion, but the deviation away from the red line in Figure 6.4 indicates that 

some agents are choosing to  join or remain in smaller firms. As shown in 

Table 6.2, the distribution of firm sizes now includes many more sizes of 

small firm. The growing diversity of firm sizes reflects the fact th a t, with so 

many singletons, many agents will be singletons and also have both friends 

as singletons, so will not have the option of joining the “super” firm. These 

agents will cluster into larger firms which may, eventually, lead them to be 

able to join the “super” firm, but in the mean time these agents support a 

greater number of firm sizes. Figure 6.7 shows the number of distinct firm 

sizes present for various param eter values.
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6 .3 .3  Sm all F irm s O nly

Firm Size Number of Firms

1 8544

2 552

3 81

4 20

5 3

6 1

8 1

Table 6.3; Period 1000 of Simon Model with n = 2, a  = 0.8 and 10000 

agents.

Finally, in the region 0.6 < a  < 1 the very large firm disappears entirely. 

The firm size distribution as shown in Table 6.3 consists entirely of small 

to medium-sized firms. The firm size distributions for all three sections are 

shown plotted together in Figure 6.3.3.
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Figure 6.6: Mean number of firms available for a =  0.1 (blue), a  =  0.5 

(green) and a  =  0.8 (purple) and various values of n.
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C ount of Different Firm Sizes
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Figure 6.7: Count of number of distinct firm sizes in Period 1000 of a run 

of Simon’s model over various values of a  and n  with 1,000 agents.
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6.4 D iscussion

The exogenous birth model presented here does result in a skew firm size 

distribution, however the presence of a “super” firm for many param eter val

ues distorts this distribution away from the power law like distributions we 

observed with the variable-effort model. In order to prevent the appearance 

of a “super” firm we were obliged to set the a  parameter to an extremely 

high value, it is not likely th a t Simon intended for the a  parameter to be 

anything like as large as we have experimented with in this model, given 

its interpretation as a growth rate for the economy. We do see hints of a 

skew distribution in places, and it is easy to imagine tha t if the “super” firm 

were not present at lower values of a  then the system would achieve a skew 

distribution closer to the lognormal or power law.

In answer to  our questions posed at the beginning of the chapter, we 

do not obtain a skew firm size distribution in the way we expected, and so 

there does seem to be a difference between an exogenous birth process and 

an endogenous one. Although occasionally very large firms were seen in the 

variable effort model, they did not persist and did not distort the firm size 

distribution in the way th a t the “super” firm in the exogenous birth model 

did.

The endogenous instability of large firms in the variable effort model 

is the key to understanding the difference between these two models. The 

birth of new firms in the variable effort model came at the expense of older 

large firms, due to  the older firms’ inherent unattractiveness. By contrast, 

the exogenous birth of new firms does not mean tha t large firms are any less 

attractive, and the presence of the “super” firm confirms this. This model 

could, perhaps, be modified to  prevent the appearance and persistence of a 

“super” firm. Large firms could be culled or divided into smaller firms when 

they reach a certain size. Such an approach, however, would be ultimately 

less satisfying than a model in which the large firms regulated themselves.
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Figure 6.8; Firm Size Distribution for a  = 0.2 (purple), a  = 0.5 (black) and 

Q =  0 .8  (green).
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C hapter 7

A Cost Curve M odel

In this chapter we attem pt to forge stronger links between our agent-bfised 

analysis of firm size distributions and mainstream industrial organisation. 

This quote from Sutton nicely summarises the contemporary dilemma con

cerning firm sizes;

The two aspects of structure — the cross-industry differences in 

concentration, and the within-industry skewness — sat uneasily 

side by side. The students made no attem pt to relate the two 

stories. Neither did their textbooks. (Sutton 1998) [p. xiii]

The skew distribution has not been a central theme in industrial organisa

tion, either as a source of inspiration or as a stylised fact which theories 

of the firm should endeavour to address, as Simon and Ijiri lament; “The 

classical theory would admit a normal distribution, a rectangular one, or a 

single size for all the firms in an industry as readily as it would admit the 

skew distributions (whether they be Pareto, Yule or log normal) tha t are 

actually observed.” (Ijiri and Simon 1977) [p. 8-9]. Industrial organisation 

theory, when it addresses firm size at all, does so in terms of the cost curve 

facing a firm and hence tells the story that “the size and the number of the 

firms in an industry are related to the degree of returns of scale.” (Tirole 

1997)[p. 18]. This can be interpreted to mean tha t all firms within an indus

try  will have the same size, if they share a common cost curve, or th a t the 

firm size distribution will depend upon the distribution of cost curves where

113
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they are heterogeneous. We will explore an agent-based implementation of 

a cost-curve firm size model in this chapter.

7.1 Im plem enting C ost Curves w ith  A gents

Within our standard friendship network framework, each agent is initialised 

into a singleton firm which is allocated a random unit cost. Agents will 

have a utility function which tells them to seek the firm with the lowest 

unit cost. The intuition behind seeking a firm with low unit cost is that the 

profits of such a firm will be higher, corresponding to higher agent income. 

Since we ignore the demand side in this model in the interest of simplicity, 

the relationship between low unit cost and high agent income/utility is very 

simple, agent utility is equal to 1 minus the effective unit cost of the firm 

they are a member of.

With this as our starting point, we then consider a variety of scaling 

regimes, where the unit cost of a firm changes with the market share of the 

firm, where market share is defined to be the proportion of agents in the 

simulation who are members of that firm. The taxonomy of scaling regimes 

is based upon work by Mazzucato who used replicator dynamics rather than 

agent based modelling to consider the relationship between cost curves and 

market structure (Mazzucato 2000). We distinguish here betw'een initial 

unit cost, which is the random value allocated to the firm as its starting 

point, and the effective unit cost which is the initial unit cost adjusted for 

the market share of the firm according to the relevant scaling regime.

7.1.1 Static Econom ies o f Scale

Each firm, indexed by an integer j ,  has a unit cost function Cj which depends 

upon the market share Sj of the firm (measured by the number of employees 

divided by total employee population):

C j { s j )  =  Cj { l  +  4> -  S j )  S j )

=  Cj (l +  24>uSj — (j)ŝ )

(7.1)

(7.2)
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dc
=  Cj ( 2 4 > i / — 2 ( p S j )  (7.3)

dSj

=  2c j ( j )  { v  — S j )  (7-4)

d'^Cj

d s ]

C onstant R eturns To Scale

2cj(t> (7.5)

4> =  0

C j =  9
d c ^_^

d S j
=  0

d ^ C 4

d s ]
=  0

(7.6)

(7.7)

(7.8)

(7.9)

In this scenario, the market share does not have an impact on fitness. Even

tually, all employees will end up in that firm which happened to be given 

the lowest unit cost at the initialisation of the simulation (unless some em

ployees are disconnected from that firm, although this is highly unlikely).

D ecreasing R eturns to  Scale

(p < 0 (7.10)

=  2cj4>{y-Sj )  (7.11)

 ̂ >  0 if Sj >  J/ (7-12)

dcj 
dsj

dsj
d c '

< 0 if Sj <  1/ (7-13)

(7.14)

When the parameter 4> < 0, we have static decreasing returns to scale. 

That is, the unit cost increases as the firm size grows above a market share 

of Sj — V. If 7 =  0, that is all firms have same initial unit cost, we would 

expect employees to organise themselves into firms of size S  =  i^N or as 

close as they can achieve.
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Increasing R eturns to  Scale

4> >  0 (7.15)

(7.16)

< 0 if Sj > V
dS j

dCj rt -c> 0 if s, <  i/
dS j

(7.18)

(7.19)

(7.17)

In static increasing returns to scale, unit costs decrease as the firm mar

ket share grows above the critical value of u. Thus we should probably 

assume i/ = Q to  have sensible behaviour. Just as in the case of constant 

returns to scale, all employees will end up in one firm, and it will be a firm 

which had a relatively low initial unit cost, but not necessarily the lowest. 

A firm which grows quickly, thus reducing its unit cost, will be more com

petitive than a firm which perhaps started with a lower initial unit cost but 

added employees at a slower rate. There are many possible equilibrium out

comes in this scenario. The friendship network may come into play strongly 

here, the number of inward links into a particular firm will determine its 

growth rate in the first time period of the simulation and may be crucial in 

determining the final winner.

7.1.2 Dynam ic Econom ies of Scale

We multiply the last term  in Equation 7.1 by a factor of (1 — \f3sj). We 

can set /3 =  0 and revert to Equation 7.1. Since dynamic returns are an 

extension of the Increasing Returns scenario, we assume zv =  0, </> >  0.

(7.20)

(7.21)

Hr
=  Cj { -2 ( j )S j  +  !3(j)s]) (7.22)

(7.23)
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Since <p >  0, 0 <  p  < 1, 0 < S j  <  1, we have ^  < 0. This corresponds 

to static increasing returns, i.e. the cost is decreasing as firm size increases.

(7.24)

(7.25)

If /3 =  1, then ^ < 0  for all values of Sj. This corresponds to increas

ing returns to scale, as firm market share increases, unit cost decreases at 

an increasing rate. If 0 <  /3 <  1, then for Sj <  p  we  have increasing re

turns and for Sj > /3 we have decreasing returns. This case corresponds to 

Mazzucato’s definition of dynamic decreasing returns which are decreasing 

above an implicit cutoff point. Note that if 1 <  /3 <  2, we have dynamically 

increasing returns for all Sj with no critical point within the domain of the 

Sj. We would expect such a system to behave similarly to the case of simple 

increasing returns to scale, i.e. /3 =  0.

Table 7.1 summarises the coefficients and parameters of the system^

Sj Market Share of Firm j

Cj Original Unit Cost of Firm j (Assigned Randomly At Initialisation of Simulation)

7 Std Deviation of Probability Distribution used to generate Cj

(p Coefficient for Increasing/Decreasing Returns

y  Critical Point for Increasing/Decreasing Returns

p  Critical Point for Dynamically Increasing/Dynamically Decreasing Returns

'w h ilst these equations are similar in intent and were inspired by the equations given 

by Mazzucato, there are some differences relating to the differing methods of computa

tional implementation (Mazzucato 2000). The parameters v  and /3, explicit here, are 

implicit in the Mazzucato equations and similarly the Mazzucato parameters A and a ,  

which determine the speed of adjustment, are implicit here. The parameter cj>, which de

termines the nature of the scaling regime, corresponds to Mazzucato’s /  and g functions.

Table 7.1: Parameters for the cost curve model.
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7.2 R esults

7.2.1 Static Econom ies o f Scale 

C onstant R eturns to  Scale

Recall th a t we expect an equilibrium outcome with all agents in the firm 

which had lowest unit cost a t initialisation, and this is indeed the outcome 

we observe. A time series of the number of firms in the simulation, shown 

in Figure 7.1, shows tha t the firm population drops from its initial value 

of 1,000 to its final value of 1 within 10 time periods. The simulation has 

reached a steady state at this point and does not change after this. The 

minimum, maximum and mean unit cost is plotted in Figure 7.1, these lines 

converge as all the agents join the firm with lowest unit cost. By contrast, 

if we assume a homogeneous distribution of initial unit costs, then agents 

will remain in singleton firms (or whatever size firm they are initialised in), 

there being no benefit to joining a different firm.

D ecreasing R eturns to  Scale

If we initialise all firms with homogeneous unit cost of 0.5 (i.e. 7 =  0), then 

with N  = 1,000 agents and 1/  = 0.1 we would expect to see an equihbrium 

outcome of 10 firms of approximately 100 agents each. In fact, Table 7.2 

shows th a t instead agents group into 6 equally sized firms. This is not the 

only possible outcome, but it is the most common. Occasionally we observe 

a grouping into 7 firms.

Firm Size Number of Firms

166 2

167 4

Table 7.2: Firm size distribution for <f> = —1.00, = 0.10, /3 = 0.00 and

7  =  0 .00 .

The reason for this suboptimal outcome can be determined by consid

ering the unit cost function, which for these parameter values is Cj{sj) =
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Cj ( l — 0.2sj + s^). This equation is plotted in Figure 7.3 (the purple curve) 

and it shows tha t while the optimum market share is indeed 0.1 (indicated 

by the red vertical mark), the equilibrium outcome of 6 firms (indicated by 

the orange dot) is superior to the market share of singleton firms (indicated 

by the green horizontal line and the green dot), and this fact is sufficient 

for the 6 firm state to be a stable outcome.

All agents begin in singleton firms, at the green dot. After 1 period, the 

blue dots indicate tha t the largest firms in the simulation are approaching 

the optimal market share. However, once they reach th a t market share 

agents will continue to join them and they will contirme to grow, despite the 

fact tha t the unit cost is now increasing. These large firms are still preferable 

to the agents’ existing firms. When they reach a size of approximately g 

market share, agents finally stop joining them and join smaller firms which 

are now preferable, until eventually the simulation reaches the distribution 

in Table 7.2.

The agents do achieve a balanced equilibrium, they divide themselves 

evenly into firms, however they are not able to  divide themselves into opti

mal firms. This is the result of the agents’ simplicity, they are not able to 

strategize or to understand th a t 0.1 is an optimal value. It is also the result 

of allowing free entry into firms. If the agents within a firm were able to 

restrict new members when it was not in their interest a t accept them, then 

the large firms would “freeze” when they reached 100 agents. However this 

might not result in a superior overall outcome, some agents might become 

isolated in small, sub-optimal firms if all of their friends were in 100-agent 

frozen firms. The process as it stands is rapid, equitable and robust, if not 

optimal. W ith heterogeneous initial unit costs, agents will again organise 

themselves into firms with equal unit costs adjusted for market share, but 

these will not necessarily be equal sized firms. W ith homogeneous initial 

unit cost, the identity of the six surviving firms is random, with heteroge

neous initial unit costs the final six firms will be ones which happened to 

have low initial unit cost.
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Increasing R eturns to  Scale

W ith increasing returns to scale, the equihbrium outcome is for all agents 

to  be in a single firm, the outcome is effectively indistinguishable from the 

case of heterogeneous constant returns to scale. The convergence of the 

maximum, minimum and mean unit costs for this case is shown in Figure 7.4.

7.2.2 Dynam ic Econom ies o f Scale

Dynamic economies of scale, as an extension of increasing returns to scale, 

has a similar outcome, in th a t all agents end up in a single firm. The 

convergence of the maximum, minimum and mean unit costs for this case 

is shown in Figure 7.5.
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Period

Figure 7.1: Time series of the number of firms in the simulation for (p = 0. 

D ata is collected after the end of each time period and so the initial firm 

population of 1,000 which corresponds to time 0 is not visible here.
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Figure 7.2: Time series of the maximum (red), minimum (green) and mean 

unit cost (purple) for (f) = 0.
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Figure 7.3: The purple curve represents the unit cost function. The green 

horizontal line represents the achievable singleton market cost. The red line 

indicates the optimal market share. The market share distribution after 

period 2 is shown in blue, and after period 15 in orange.
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Figure 7.4: Time series of the maximum (red) and minimum (green) initial 

unit cost, and the mean effective unit cost (purple) for (f> = 1. The effective 

unit cost reaches 0 when the largest firm reaches a market share of 1.
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Figure 7.5: Time series of the maximum (red) and minimum (green) initial 

unit cost, and the mean effective unit cost (purple) for P =  0.1. The effective 

unit cost reaches a minimum value, which is greater than 0, when the largest 

firm reaches a market share of 1.
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7.3 D iscussion

The models in this chapter result in either a single firm containing all agents 

in the simulation, or uniformly-sized firms within which the population is 

evenly divided (or close to it). This is a very different outcome from our 

other models. Also noteworthy is that, as we progressed from constant 

returns to scale, to increasing returns to  scale, to dynamically increasing 

returns to scale, ever more refined and subtle models, the outcome and 

dynamics of the agent-based simulations scarcely changed, despite the very 

different economic implications of these scenarios. The case of decreasing 

returns to scale provided another im portant illustration of how intuition 

about an analytical model can be misleading when the model is implemented 

in an agent-based framework.



Chapter 8

Conclusions

The variable effort model produces a skew distribution of firm sizes, we 

propose, due to  the presence within the model of endogenous birth and 

proportional growth forces. These forces result from the instantiation within 

an agent-based model of contradictory microeconomic tendencies, namely 

the free riding tendency due to Cobb-Douglas income leisure preferences 

and the increasing returns to scale of the firm production function. All of 

these elements have a role to play in the resultant generation of a skew firm 

size distribution.

The agent-based model implementation provides an environment where 

information is gathered and decisions are made asynchronously, with my

opia/local neighbourhood interaction. We saw tha t myopia was an im

portant part of the variable effort model, when this was relaxed the skew 

distribution changed shape, first slightly and then more dramatically at ex

trem e values such as n =  50. The agent-based implementation provided the 

scaffold which allowed the counteracting microeconomic tendencies to be 

translated into macroeconomic forces having an impact on simulated firms 

which resembled birth and proportional growth sufficiently to yield a skew 

firm size distribution.

An im portant possibility is tha t the specifics of the variable effort model 

are not of fundamental importance. This analysis does not suggest tha t 

the specific factors of income-leisure preferences and increasing returns to
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scale are necessarily responsible for the skew distribution of firm sizes, but 

rather it suggests th a t any two (or more) microeconomic attributes which 

interact with each other in a similar way can result in similar macroeconomic 

behaviour. How do such factors need to interact with each other? The 

specifics can be determined experimentally (perhaps with another model 

implemented in this same framework), but a good starting point may be that 

the income-leisure preferences and increasing returns to scale can potentially 

interact both positively and negatively with each other. Innovation is a 

category which jumps to mind as having many microeconomic models and 

the potential for positive and negative interactions, and so may have the 

necessary dichotomous nature to lead to a skew distribution.

This necessary endogenous tension is reminiscent of the discovery in 

physics tha t a power law is a sign of a phase transition, and it is evocative 

of the concept th a t an economy demonstrating a skew distribution is poised 

in the complex and challenging border between order and chaos. If we take 

the view tha t these tensions are healthy and necessary, tha t an economy 

which becomes stable will soon become stagnant, then we are left with the 

implication tha t the inequality implied by a skew distribution is a funda

mental fact of life. The Pareto distribution of income, the 80/20 rule, is not 

something which can ever be permanently remedied, although we may be 

able to  alter its slope.

The cost curve and exogenous birth models each provided interesting 

counterexamples to the ideas brought out by the variable effort model. Ex

ogenous birth, the blunt force solution proposed by Simon to counteract the 

monopolistic trends of a proportional growth regime, proved to  be ineffective 

as an add-on. The cost curve model provided many interesting insights into 

what can change when an analytical or computational model is implemented 

in an agent-based framework. The model quickly reached a steady state, 

making it have limited interest compared with the rich turnover apparent 

in the variable effort model.

The unification, or at least reacquaintance, of the G ibrat’s Law branch 

of the theory of the firm with the modern industrial organisation strand 

is a promising and fertile field for future research, with the aid of new
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perspectives which can combine the positive attributes of both approaches. 

We can view Gibrat’s Law as a consequence, rather than an assumption, of 

economic theory. The skew distribution of firm sizes can be seen as a styhsed 

fact which should be explained by a model in an agent-based context, and 

not necessarily outside of that. Perhaps the industrial organisation theorists 

were right to ignore the skew distribution of firm sizes after all. It may not be 

an implication of microeconomic theory itself, but of the imperfect physical 

manifestation of that theory in an asynchronous, myopic world.
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A .l  Framework

137

The classes in this section: SimpleFirmsModel, Emploj'’ee and Firm, form the core of the 

friendship-firms framework. They are intended to  be subclassed with the model-specific 

behaviour, for example in the Variable Effort model they are subclassed by VariableEffort- 

Model, VariableEffortEmployee and VariableEffortFirm respectively. For some models, 

it might not be necessary to subclass all three, the default behaviour may suffice.

A .1.1 Sim pleFirm sM odeI.java

package i e . t e d .e c o n o m ic s . f ir m s ;  

im p o r t  j a v a . l a n g . R u n t im e ; 

im p o r t  J a v a . la n g .P r o c e s s ;  

im p o r t  j a v a . i o . * ; 

im p o r t  j a v a . u t i l . A r r a y L is t ; 

im p o r t  J a v a .u t i l . I t e r a t o r ;  

im p o r t  J a v a . u t i l . D a t e ;

im p o r t  u c h ic a g o . s r c . s im . a n a l y s i s .DataRecorder; 

im p o r t  u ch ica g o . s r c . s im . e n g in e . SimpleModel;

public  c lass SimpleFirmsModel e x te n d s  SimpleModel {

J / i i i r  n i i n i i /  t o t a l  > l u j i l d i j i  ( s  Unii  ' i h i t i o n ' ^

p r o te c te d  in t  numberEmployees;

'  H d i i  n u n n i  f r i t  n d s  p i  /  ( u / i  n f :  - 

p ro te c te d  in t  numberFriends;

H d i r  n i i i i i i j  jK ■■ ■ ' / >  ■ ■

A. 1.1. SimpleFirmsModel.java
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p r o te c te d  in t  stopA tP eriod;

H i i i f  n i di i t j  < ni 'ploi/(  I s  j)i r  f i r m  s h o u l d  u  ini t i ( i t i s< :

I ' si ial l i j  s f  f f n  1 i o  s i i n i  in  s i n i i l r t o i i  f i r n i s

p r o te c te d  in t  in it ia lF ir m S iz e  = 1;

’  D r f i n i  fi H i m  pi  r io i l  d u r i n g  i r l n ch  l i i i /hl i i  d i f i i i l i d  s i n n i l a l i o n  i lnf i i  

^ a n  r o l l i i i i d .  C ' o l U i H n f ]  d i  i u i h  d  d u i u  f o r  Un i i i f i n  s i  ni i i lai  i o n  

'  IS II n iK  11 s s a r i /  a n i l  f i n i i  - roi i . s i rni ini j .

p u b lic  in t  d e ta ilS ta r tP e r io d ;  

p u b lic  in t  d e ta ilS to p P e r io d ;

* R i  P i i s f  p r o r i d i  s  a gi  ni  n i l  i>i t ( ( /cr T i r k .  t h i s  r u s t i n n T i r k

*  l ( f s  u s  b r i n k  ( i i r h  T i c k  i i i io  n i i n i h i  r F n i p l o i / i i  s  s i i l i t i i k s .

* S o  i f  w r  h d i ' i  m o  iii/i I l f s  i n  f h (  s i i i i i i l i i f i o n . a f t i  r  f h i

* , t i rs f  o n e  i s  a r f i r a f c d  ire w i l l  hi a t  f i l m  D.DI .  t h r u  I).II.! i f r.

'  T h i s  i i l l o i r s  f o r  m o n  d v i u i h d  f i i m  si  ri t  s  t i i k i n i /  a s m i p s h o f

i i f f c r  I ar i l  ai / i  l i t  i i c t i v i i f io i i ,

p r o te c te d  double customTick;

* T h i s  i s  a  v u r i n h U  t o  h o l d  u d (  s i r e d  i 'u I i k  f o r  f l u  r n n d o i u S i  < d

* i i n f i l  i f  c a n  In p n s s t - d  f o  f h (  i i n d i  l i i / ini^  R i  P a s t  f n r r m  i ror k .

p riva te  lon g  randomSeed;
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1 n l <  ii III' h i  n i l  i i i i K  n: , : ,  villi': I n n : ^  /■ - s l n i i i l  m  f in ' -  

A r r d i / L i . ' ^ i . I ' s i / I  I m  i i ( n i 1 i n ( j  f h i n i i f i h  n i l  f i r n i ^ .

p ro te c te d  A rray L is t< F irm >  f irm s L is t;

'  S h o u l d  ii (/ i  iif.<. I i n i i  t i l l  ( i j i t i i t i i  111 r r i d t i  u  11(11' I-^i i i i / h  f o i l  I f i  n i l  ^ 

p ro te c te d  boolean allowNewFirms = t ru e ;

'  lt< n i f i  ii(/i I l fs  ill SI ijiii n i  l III nu i i l o i u l i i ' (

p ro te c te d  boolean i te r a te S e q u e n t ia l ly  = f a ls e ;

'  I f  iiiji I l l s  ( (III 1)1 f o r c d l  f o  r r i d f i  III i r  s i i i i / h f o n  f i r m s .

’ irifli irhdf i>r(ili(iliilifii will fh( i/ crnifi ik ti' firms''

p ro te c te d  double fo rceN ew S in g le to n P ro b ab ility ;

*  \ i iri(i l i l<s n i d f i i i f j  f o  i ld f d  col l f  r f i o t i .  E a c h  D d f n R t  v o n h  r  h a s  d

*  c o r n  s p o n d i v ; }  b o o U a a  p r i  f i r i i i c i  f o r  t rh i fh< r  il  i s  a c f i r t  o r  i iof .

* d l lo i r i i i i j  f h (  in f o  Ik n i s i l i j  s i r i f c h i d  of f '  i rh(  n n o t  i n r d f d .

p riv a te  in t  new Firm sThisPeriod; 

p r iv a te  in t  deadFirm sT hisPeriod;

p r iv a te  i n t [] sizeO fF irm Joined; 

p r iv a te  in t [ ]  s izeO fF irm L eft; 

p r iv a te  i n t [ ]  sizeO fFirm Stayed;

A. 1.1. SimpleFirmsModel.java



A PPE N D IX  A. SOURCE CODE 140

protected boolean recordModelDetail = true; 
protected DataRecorder recorder;

protected boolean recordFirmSizeDistribution = true; 
protected int recordPirmSizeDistributionlnterval = 1; 
private DatciRecorder firmSizeDistributionRecorder;

protected boolean recordCumulativePirmSizeDistribution = true; 
private DataRecorder cumulativeFirmSizeDistributionRecorder;

protected boolean recordPirmSizeJoinedLeftStayed = false; 
private DataRecorder firmSizeJoinedRecorder; 
private DataRecorder firmSizeLeftRecorder; 
private DataRecorder firmSizeStayedRecorder;

public static boolean recordEmployeeTimeSeries = true; 
public static DatciRecorder employee?imeSeriesRecorder;

public static boolean recordEmployeeCrossSection = true; 
public DatciRecorder employeeCrossSectionRecorder;

public static boolesm recordEmployeeCrossSectionCaseStudy = true; 
public DataRecorder employeeCrossSectionCaseStudyRecorder;

public boolean recordPirmCrossSection = true; 
public DataRecorder firmCrossSectionRecorder;

public boolean recordPirmTimeSeries = false; 
public int firmTimeSeriesInterval = 20; 
public DataRecorder fimiTimeSeriesRecorder;

public static boolean recordPirmTimeSeriesDetail = false;
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p u b lic  s ta tic  boolean recordF riendshipN etw ork  = t r u e ;  

p u b lic  DataRecorder friendsh ipN etw orkR ecorder;

p u b lic  s ta tic  boolean reco rd P irm L ifeS ta ts  = f a ls e ;  

p u b lic  DataRecorder f irm L ife S ta tsR e c o rd e r; 

p r iv a te  double f  irm Lif eS ta tA ge; 

p r iv a te  double f  irm LifeStatW ho; 

p r iv a te  double f  irm LifeStatM ajcSize;

p u b lic  s ta tic  boolean re co rd P irm B irth S ta ts  = f a ls e ;  

p u b lic  DataRecorder f irm B irth S ta tsR e c o rd e r;

p u b lic  s ta tic  boolean re co rd P irm Jo in in g S ta ts  = t r u e ;  

p u b lic  DataRecorder f irm Jo in in g S ta tsR e c o rd e r; 

p r iv a te  double f  irm Jo in in g S ta tS iz e ; 

p r iv a te  in t  firinJoiningStatW hoEmployee; 

p r iv a te  in t  firm JoiningStatW hoFirm ;

p u b lic  s ta tic  boolean recordE m ployeeD ecisionS tats = t r u e ;  

p u b lic  DataRecorder em ployeeD ecisionS ta tsR ecorder; 

p ro te c te d  double em ployeeDecisionStatW ho; 

p ro te c te d  double em ployeeDecisionStatPirm StayW ho; 

p ro te c te d  double em ployeeD ecisionS tatP irm S tayS ize; 

p ro te c te d  double em p lo y ee D ec is io n S ta tS tay U tility ; 

p ro te c te d  double em ployeeD ecisionStatPirm JoinlW ho; 

p ro te c te d  double em p lo y eeD ecis io n S ta tP irm Jo in lS ize ; 

p ro te c te d  double e m p lo y e e D ec is io n S ta tP irm Jo in lU tility ; 

p ro te c te d  double em ployeeD ecisionStatPinnJoin2W ho; 

p ro te c te d  double em ployeeD ecisionS tatP irm Join2Size; 

p ro te c te d  double em p lo y eeD ec is io n S ta tP irm Jo in 2 U tility ; 

p ro te c te d  double em p lo y eeD ec is io n S ta tP irm C rea teU tility ;

p ro te c te d  in t  num berStayingCurrentPirm ;
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p ro te c te d  i n t  numberCreatingNewFirm;

p ro te c te d  i n t  num berJoiningFriendsFinn;

'  (/I i In i i P( i r <u ) i l  I i i sui i l l i /  n i i u i i s  (in t i rn i f i  o f  s t r / i u / s  >~p( ( /[(/ ini /

" p<i r i i i i i ( f ( i s .  H(  r< i n  t h i s  t o  i i l l o i r  s i /hc l ds s i iH/  i i iofli  Is t o

* a d d  th(  i r  o w n  p d i r i n i s  t o  l i s t .

* n i ( i i i i l i i i t P ( i r< ni i ( ) f / i i ' t s  p a r a n K  ti  r s  n  h r d i i t  t o  S i m p U  F i n u s M o d i  t

* ( i d d i t i o n ( i U i i i t P ( i r ( i i i i s l i  i t i i d s  t i n  p d K i m i  t< r s  a d i U d  hi/ s u l x  l a s s i i o j

* m o d i  Is.

public  StringL] m ain ln itParam O  {

S t r i n g [] params = {"modelName", "codeVersion",

"numberEmployees", "numberFriends", " s topA tP er iod" , 

"randomSeed", " in i t i a l F i r m S i z e " , "allowNewFirms", 

" i t e r a t e S e q u e n t i a l l y " , " fo rceN ew S ing le tonP robab il i ty " , 

" d e t a i l S t a r tP e r io d " , " d e ta i lS to p P e r io d " } ; 

r e tu r n  params;

}

public  StringL] g e t ln i tP a ram O  { 

r e tu r n  m ain ln itParam O  ;

}

public  S t r i n g [] a d d i t io n a l ln i tP a r a m s (S t r in g [] add it ionalParam s)

{
S t r i n g [] mainParams = m ain ln itP aram O ;

S t r i n g [] params = new  String[m ainParam s. len g th  + 

ad d i t io n a lP a ram s . l e n g t h ] ;

System .arraycopy(m ainParam s, 0, params, 0, mainParams. l e n g t h ) ; 

S y s te m .a r ra y c o p y (a d d i t io n a lP a ra m s , 0, params, 

mainPaxams. le n g th ,  ad d i t io n a lP a ram s . l e n g t h ) ;
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return params;
}

I n i f i i i l / s i  r i n i i l d i i i S '  < (I h (  i ( .

■' i f  i n  s(  i i f  (IS (I pr< f i  r( iii-( h i i i  r  i f  i r / l l  o n  ri i ' ri t< t h i s  r i i l t K .

public void setup () { 
super. setup 0  ;
rauidomSeed = System.currentTimeMillisO ;

}

public void buildModelO {
if (recordFirmSizeJoinedLeftStayed) {

sizeOfFirmJoined = new int[numberEmployees]; 
sizeOfFirmLeft = new int[numberEmployees]; 
sizeOfFirmStayed = new int[numberEmployees];

}

/ /  S i I t h )  H i I ’l i s f  t i n i i  p r i ' iD i !  i i i  n i i i r h  I n  -<li)ji. 

this.setStoppingTime(stopAtPeriod);
, , S i i  t i l l  U t P a s i  h ’l i i i d i i n i S c i  il. 

this.setRngSeed(randomSeed);

firmsList = new ArrayListO ;

initializeDataRecordersO;

, ' ( i i i ' i  s  i Di i i j i / l i  r  I r r o r  i f  i m f  i i i i f i i i l i s i  il.

Firm firmToJoin = null;

for (int i = 0; i < numberEmployees; i++) { 
Employee emp = createEmployee(i);
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agentList.add(emp); 
if (i 7« initialFirmSize ==0) { 

emp.createAndJoinFirmO; 
firmToJoin = emp.firm;

> else  {

if (firmToJoin == null) {
throw  new  R u n tim eE xception  (

"firmToJoin not initialised!");
} else  {

emp.joinFirm(firmToJoin);
}

>

>

for (Iterator it = agentList. iterator (); it.hasNextO ; ) { 
((Employee)it.next()).makeFriendsO;

>

stepDataRecorders0;

I ' s d l  pr inKir i l t j  in l<st/n(j  triii r< in i l i in' f  iriiiit 1o i lnla  n r o i ' d i i -

' a n d  will V( fill II ri i iisi  I .rri p t  iDiis in l i s t  i f  n o t  s i r i l r l i i d  off'.

public void disableRecordersO { 
recordModelDetail = false; 
recordFirmSizeDistribution = false; 
recordCumulativeFirmSizeDistribution = false; 
recordEmployeeTimeSeries = false; 
recordEmployeeCrossSection = false; 
recordEmployeeCrossSectionCaseStudy = false; 
recordFirmCrossSection = false; 
recordFirmTimeSeries = false;
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recordFriendshipNetwork = false; 
recordFirmSizeJoinedLeftStayed = false; 
recordPirmLifeStats = false; 
recordFirmBirthStats = false; 
recordFirmJoiningStats = false; 
recordEmployeeDecisionStats = false;

}

Tln> u n  f h o d  s h o u l d  Ik <i i ’( n r r iH< ii m  sdliclu'^-

public Employee createEmployee(int i) {
System. out. pr int In (

"Overwrite createEmployeeO in your model."); 
return new Employee (this, i) ;

}

public void preStepO {
customTick = getTickCount(); 
newFirmsThisPeriod = 0; 
deadFirmsThisPeriod = 0; 
numberStayingCurrentFirm = 0; 
numberCreatingNewFirm = 0; 
numberJoiningFriendsFirm = 0;

if(iterateSequentially) {
for (int i = 0; i < agentList. sizeO ; i++) { 

getAgent(i).activate(); 
customTick += 1.0/agentList.sizeO; 
if (recordFirmTimeSeries &&

recordFirmTimeSeriesDetail && inDetailPeriodO)
{

firmTimeSeriesRecorder.recordO;
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}
>

} else {

R i i i i d o i n l f i  Si l t d  ( !( / (I l f s  f o r  iii f i r<i t ini i  

for ( i n t  i  = 0; i  < a g e n tL i s t . s i z e ( ) ; i++) {

i n t  j  = getNextIntFromTo(0, a g e n t L i s t . s i z e ( ) - l ) ; 

g e tA g en t( j )  . a c t i v a t e O  ; 

customTick += 1 . 0 / a g e n t L i s t . s i z e ( ) ; 

if (recordFirmTimeSeries &&

recordF irm T im eSeriesD eta il  && in D e ta i lP e r io d O )

{
f i rm T im eS er ie sR ec o rd e r .re co rd O ;

}
}

}
}

pub lic  vo id  s t e p O  {

for ( I te r a to r  i t  = f i r m s L i s t . i t e r a t o r ( ) ;  i t .h a s N e x t ( ) ;  ) { 

( (Firm) i t  .nex t  ( ) ) .  s t e p O  ;

}
}

pub lic  vo id  p o s tS te p O  { 

stepDatciRecorders 0  ;

if ( th is .ge tT ickC oun tO  % 50 == 0 M in D e ta i lP e r io d O ) { 

w ri teD ataR ecordersO  ;

}

public  vo id  atEndO {

w ri teD a taR eco rd e rsO ;

}
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public void destroyFimi(Firm exFirm) { 
firmsList.remove(exFirm); 
if (recordFirmLifeStats) {

firmLifeStatAge = exFirm.getExactAgeO; 
firmLifeStatWho = exFirm.getWho(); 
firmLifeStatMaxSize = exFirm.getMaxSize(); 
firmLifeStatsRecorder.record();

}
deadFirmsThisPeriod++;

>

public void addFirm(Firm newFirm) { 
f irmsList.add(newF irm); 
if (recordFirmBirthStats) {

firmBirthStatsRecorder.recordO;
}
newFirmsThisPeriod++;

}

/ / Arf(

public String getModelNameO {
return this.getClassO .getNameO ;

}

' T h i s  UK i h o d  q u t h i  IS t i n  S i i h n  r s i o i i  r od (  v( I ' s i on  n i m i h f r  i r h i c h  /s s i o i r i l  

’■ (IS (I p u r i n i K  t( r  i i i i il  p i  i i i l i d  t i i i f  m  iliifii p h s .  s o  f l m f  f lu  I'i r s io i i  a f  

c o d i  i i s i i l  f o  p i ' o d i i n  (I ( j i n n  l i i i i ih  i s  k i i o i r i i .

public String getCodeVersionO { 
int exit = -1;
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S tr in g  l i n e  = " " ;

S tr in g  r e s u l t S t r  = "" ;

R u n t im e  r t im e  = R u n t im e .g e tR u n t im eO  ; 

t r y  {

P ro ce s s  c h i ld  = r t i m e . exec("svnvers ion

I n p u tS t r e a m R e a d e r  inputStreamReader = new

I n p u tS t r e a m R e a d e r  ( c h i ld .g e t ln p u tS t r e a m O );  

B u ffe red R ea d e r  re a d e r  = new

B u ffe red R ea d e r( in p u tS tream R ea d e r) ;

do {

r e s u l t S t r  += l i n e ;  

l i n e  = r e a d e r . re ad L in e () ;

} w hile  ( l i n e  != n u l l ) ;  

r e a d e r . c lo s e O  ;

e x i t  = c h i ld .w a i tF o r 0 ;

} ca tch  (E x c ep t io n  ex) {

r e s u l t S t r  = "Not D e te c te d " ;

}
r e tu r n  r e s u l t S t r ;

}

/

G i f  f l l (  (l(/l Ilf  a f  p o s i t i o n  ! it! i l l !  Illjl i i t L i s t

pub lic  Employee g e tA g e n t( in t  i ) {

r e tu r n  (E m p lo y e e )a g e n tL is t .g e t ( i ) ;

>
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p u b lic  i n t  getNumberEmployees() { 

r e tu r n  n\imberEmployees;

}

p u b lic  vo id  setNumberEmployees( in t  newNumberEmployees) { 

numberEmployees = newNumberEmployees;

>

p u b lic  i n t  getN um berFriends() { 

re tu r n  num berF riends;

>

p u b lic  vo id  setN um berF riends(in t newNumberFriends) { 

num berFriends = newNumberFriends;

}

p u b lic  i n t  ge tS topA tP eriodO  { 

re tu r n  stopA tP eriod ;

>

p u b lic  vo id  se tS to p A tP e rio d (in t argS topA tPeriod) { 

S topA tPeriod = argS topA tPeriod ;

}

p u b lic  i n t  getN ew Firm sThisPeriodO  { 

r e tu r n  new Firm sThisPeriod;

}

p u b lic  in t  getD eadFirm sT hisPeriodO  { 

r e tu r n  deadFirm sThisPeriod;

>

p u b lic  in t  getNumberFirmsO {
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return firmsList,size();

>

public void setRandomSeed(long newRandomSeed) { 
randomSeed = newRandomSeed;

}

public long getRandomSeedO { 
return randomSeed;

•»r

public double getNumberStayingCurrentFirmO { 
return numberStayingCurrentFirm;

}

public double getNumberCreatingNewFirmO { 
return numberCreatingNewFirm;

}

public double getNumberJoiningFriendsFirmO { 
return numberJoiningFriendsFirm;

}

public double getCustomTickO { 
return customTick;

>

public void setInitialFirmSize(int arglnitialFirmSize) { 
initialFirmSize = arglnitialFirmSize;

}

public int getlnitialFirmSizeO { 
return initialFirmSize;
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}

public void setAllowNewFirms(boolean argAllowNewFirms) { 
allowNewFirms = argAllowNewFirms;

>

public boolean get AllowNewFirms () { 
return allowNewFirms;

}

public void setlterateSequentially(boolean arglterateSequentially) 
{

iterateSequentially = arglterateSequentially;
}

public boolean getlterateSequentially() { 
return iterateSequentially;

}

public void addSizeOfFirmJoined(int sizeOfFirm) { 
if (recordFirmSizeJoinedLeftStayed) {

SizeOfFirmJoined[sizeOfFirm]++;
>

}

public void addSizeOfFirmLeft(int sizeOfFirm) { 
if (recordFirmSizeJoinedLeftStayed) { 

sizeOfFirmLeft[sizeOfFirm]++;

>

>

public void addSizeOfFirmStayed(int sizeOfFirm) { 
if (recordFirmSizeJoinedLeftStayed) {
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s izeO fF irm Stayed[sizeO fFirm ]++;

}
>

public  double getF irm Lif eStatAgeO { 

r e tu r n  f irm L ife S ta tA g e ;

>

public  double getFirm LifeStatW ho() { 

r e tu r n  f irm LifeSta tW ho;

}

pub lic  double getF irm LifeS tatM axSizeO  { 

r e tu r n  f  irmLif eStatMajcSize;

}

public  void  se tF o rceN ew S in g le to n P ro b ab il i ty (double 

newForceNewSingletonProbability) -[ 

fo rceN ew S ing le tonP robab il i ty  =

new ForceN ew SingletonProbability ;

}

pub lic  double g e tP orceN ew S ing le tonP robab il i ty () { 

r e tu r n  fo rceN ew S in g le to n P ro b ab il i ty ;

}

pub lic  boolecin in D e ta i lP e r io d O  {

r e tu r n  th is .g e tT ick C o u n tO  > d e t a i l S t a r t P e r i o d  && 

th is .g e tT ick C o u n tO  < d e ta i lS to p P e r io d ;

}

pub lic  boolecin d e c i s i o n S t a t s () {

r e tu r n  recordEm ployeeDecisionStats  && in D e ta i lP e r io d O ;
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}

public void recordDecisionStatsO {
employeeDecisionStatsRecorder.recordO;

>

public void setDetailStartPeriod(int newDetailStartPeriod) ■[ 
detailStartPeriod = newDetailStartPeriod;

}

public int getDetailStartPeriodO { 
return detailStartPeriod;

}

public void setDetailStopPeriod(int newDetailStopPeriod) { 
detailStopPeriod = newDetailStopPeriod;

}

public int getDetailStopPeriodO { 
return detailStopPeriod;

}

public void setFirmJoiningStatSize(double newFirmJoiningStatSize)
{

firmJoiningStatSize = newFirmJoiningStatSize;
>

public double getFirmJoiningStatSizeO { 
return firmJoiningStatSize;

}

public void setFirmJoiningStatWhoEmployeeC 
int newFirmJoiningStatWhoEmployee) {
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firmJoiningStatWhoEmployee = newFirmJoiningStatWhoEmployee;
>

public double getFirmJoiningStatWhoEmployee() { 
return firmJoiningStatWhoEmployee;

>

public void setFirmJoiningStatWhoFirm(int newFirmJoiningStatWhoFirm) 

firmJoiningStatWhoFirm = newFirmJoiningStatWhoFirm;
}

public double getFirmJoiningStatWhoFirmO { 
return firmJoiningStatWhoFirm;

}

public double getEmployeeDecisionStatWhoO { 
return employeeDecisionStatWho;

>

public double getEmployeeDecisionStatFirmStayWhoO { 
return employeeDecisionStatFirmStayWho;

}
public double getEmployeeDecisionStatFirmStaySizeO { 

return employeeDecisionStatFirmStaySize;
>

public double getEmployeeDecisionStatStayUtilityO { 
return employeeDecisionStatStayUtility;

}
public double getEmployeeDecisionStatFirmJoinlWhoO { 

return employeeDecisionStatFirmJoinlWho;
>

public double getEmployeeDecisionStatFirmJoinlSizeO { 
return employeeDecisionStatFirmJoinlSize;
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public double getEmployeeDecisionStatFirmJoinlUtility() { 
return employeeDecisionStatFirmJoinlUtility;

}
public double getEmployeeDecisionStatFirmJoin2Who() { 

return employeeDecisionStatFiniiJoin2Who;
}
public double getEmployeeDecisionStatFirmJoin2Size() { 

return employeeDecisionStatFinnJoin2Size;
}
public double getEmployeeDecisionStatFirmJoin2Utility() { 

return employeeDecisionStatFirmJoin2Utility;
}
public double getEmployeeDecisionStatFirmCreateUtility() { 

return employeeDecisionStatFirmCreatelltility;
}

Ddfii Ri rordi IS

public void initializeDataJlecorders() throws 
NullPointerException {
long filenameTimeStamp = System.currentTimeMillisO ;

if (recordModelDetail) {

recorder = new DataRecorder (" ./output/"+ 
filenameTimeStamp + "_model.txt", 
this, "Random Seed;\t"+ getRngSeedO) ; 

recorder.createNumericDataSource(
"number_of_firms", firmsList, "size"); 

recorder.createNumericDataSource(
"new_firms", this, "getNewFirmsThisPeriod"); 

recorder.createNumericDataSource(
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"dead_firms" , this, "getDeadFirmsThisPeriod");

156

recorder.addNumericDataSource("total_employees", new 
TotalNiimericDataSource (firmsList) { 
public double getValue(Object argObject) {

return (double)((Finn)argObject).getSizeForStatCollector();
>

»:

recorder.addNmnericDataSource("max_firm_size", new 
MaxNumericDataSource(firmsList) { 
public double getValue (Object argObject) {

return (double)((Firm)argObject).getSizeForStatCollector();
}

»;

recorder.addNumericDataSource("max_firm_age", new 
MaxNumericDataSource(firmsList) { 
public double getValue (Object argObject) {

return (double)((Firm)argObject).getAgeO;
}

»:

recorder,addNumericDataSource("avg_firm_age", new 
AverageNumericDataSource(firmsList) { 
public double getValue (Object argObject) {

return (double)((Firm)argObject).getAgeO;
}

});

recorder.addNumericDataSource("avg_firm_size", new 
AverageNumericDataSource(firmsList) {
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public double get Value (Object argObject) { 
return (double)((Firm)argObject) 
■getSizeForStatCollectorO;

}
»;

recorder.addNumericDataSource("max_utility", n e w  
MaxNumericDataSource(agentList) { 
public double getValue(Object argObject) {

return (double)((Employee)argObject).getUtility();
}

});

recorder.addNumericDataSource("miii_utility", n e w  
MinNumericDataSource(agentList) { 
public double getValue (Object argObject) •[

return (double)((Employee)argObject).getUtilityO;
}

} ) ;

recorder.addNumericDataSource("avg_utility", n e w  
AverageNumericDataSource(agentList) { 
public double getValue (Object argObject) •[

return (double)((Employee)argObject).getUtility();
}

»:

recorder.createNumericDataSource("number_staying_current_firm", 
this, "getNumberStayingCurrentFirm"); 

recorder.createNumericDataSource("number_creating_new_f irm", 
this, "getNumberCreatingNewFirm"); 

recorder.createNimiericDataSource("n\amber_joining_friends_firm", 
this, "getNumberJoiningFriendsFirm");
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recorder.addNumericDataSourceC"cohabitationRate", new 
AverageNumericDataSource(agentList) { 
public double getValueCObject argObject) { 

return (double)((Employee)argObject) 
■getCohabitationRateO;

>

}

if (recordEmployeeTimeSeries) {
employeeTimeSeriesRecorder = new DataRecorder("./output/"+ 

filenameTimeStamp + "_employee_time_series.txt", 
this, "Random Seed:\t"+ getRngSeedO ) ;

}

if (recordEmployeeCrossSection) {
employeeCrossSectionRecorder = new DataRecorder("./output/"+ 

filenameTimeStamp + "_employee_cross_section.txt", 
this, "Random Seed:\t"+ getRngSeedO);

>

if (recordEmployeeCrossSectionCaseStudy) {
employeeCrossSectionCaseStudyRecorder = new

DataRecorder("./output/"+ filenameTimeStamp 
+ "_employee_cross_section_case_study.txt", 
this, "Random Seed:\t"+ getRngSeedO);

if (recordFirmCrossSection) {
firmCrossSectionRecorder = new DataRecorder("./output/"+ 

filenameTimeStamp + "_firm_cross_section.txt",
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this, "Rcindom Seed:\t"+ getRngSeedO ) ;
}

if (recordFirmTimeSeries) {
firmTimeSeriesRecorder = new DatcLRecorder("./output/"+ 

f ilenaimeTimeStaiDp + "_finn_time_series.txt", 
this, "Random Seed:\t"+ getRngSeedO); 

if (recordPirmTimeSeriesDetail) {
firmTimeSeriesRecorder.createNumericDataSourceC 
"custom_tick", this, "getCustomTick");

}
}

if (recordFirmSizeDistribution) {
firmSizeDistributionRecorder = new DataRecorder("./output/"+ 

filenameTimeStamp + "_firm_size_distribution.txt", 
this, "Random Seed:\t"+ getRngSeedO); 

f irmSizeDistributionRecorder.addObj ectDataSource("", 
new DistributionDataSource( 
firmsList, numberEmployees, false, true) { 
public int getValue (Object argObject) { 

return ((Firm)argObject).getSizeO;
>

});

}

if (recordCumulativeFirmSizeDistribution) {
cumulativeFirmSizeDistributionRecorder = new DataRecorder( 

"./output/"+ filenameTimeStamp +
"_cum_firm_size_distribution.txt", 
this, "Random Seed:\t"+ getRngSeedO); 

cumulativeFirmSizeDistributionRecorder.addObjectDataSource( 
"", new DistributionDataSource(
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f i rm s L is t ,  numberEmployees, t r u e ,  t r u e )  { 

pub lic  i n t  g e tV a lu e (O b jec t  argO bject)  { 

r e tu r n  ( (F i rm )a rg O b je c t ) .g e tS iz e O ;

}
» ;

if  ( recordF irm SizeJo inedL eftS tayed) ■[

firm SizeJo inedR ecorder = new  DataRecorder( " . /o u tp u t /" +  

filenameTimeStamp + " _ f i i 'm _ s iz e _ jo in e d . tx t" , 

th i s ,  "Random S e e d : \ t"+  getRngSeedO);  

f irm S izeJo inedR ecorder .addO bjec tD ataSourceC " , new  

A rray In tD is tr ibu tionD ataS ource (s izeO fF irm Jo ined ,  

numberEmployees, "Size of Firm J o in e d " ) ) ;

f irm SizeL eftR ecorder = new  DataRecorder( " . /o u tp u t /" +  

filenameTimeStamp + " _ f i r m _ s iz e _ l e f t . t x t " ,  

th i s ,  "Random S e e d : \ t"+  getRngSeedO);  

f i rm S izeL e f tR eco rd e r .addObjectDataSource( " " , new  

A rray In tD is tr ib u t io n D a taS o u rce (s izeO fF irm L eft , 

numberEmployees, "Size of Firm L e f t " ) ) ;

firm SizeStayedRecorder = new  D ataR ecorder(" . /o u tp u t /" +  

filenameTimeStamp + " _ f i rm _ s iz e _ s ta y e d . tx t" ,  

th i s ,  "Random S e e d : \ t"+  getRngSeedO); 

f irm SizeS tayedR ecorder.addO bjectD ataSource( " " , new  

A rrayIn tD is tr ibu tionO ataS ource(s izeO fF irm S tayed ,  

numberEmployees, "Size of Firm S tay ed " )) ;

}

if (recordFriendshipNetwork) {

friendshipNetworkRecorder = new  D ataR ecorde r(" . /o u tp u t / " +  

filenameTimeStamp + "_ fr ie n d sh ip _ n e tw o rk . tx t" ,
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this, "Random Seed;\t"+ getRngSeedO); 
friendshipNetworkRecorder.addObjectDataSourceC", new 

GraphvizDataSource(agentList, "Friendship Network"));
}

if (recordFirmLifeStats) {
firmLifeStatsRecorder = new DataRecorder("./output/"+ 

filenameTimeStamp + "_firm_life_stats.txt", 
this, "Rcindom Seed: \t"+ getRngSeedO ) ; 

firmLifeStatsRecorder.createNumericDataSource("age", 
this, "getFirmLifeStatAge"); 

firmLifeStatsRecorder.createNumericDataSource("who", 
this, "getFirmLifeStatWho"); 

firmLifeStatsRecorder.createNumericDataSource("maxSize", 
this, "getFirmLifeStatMaxSize");

if (recordFirmBirthStats) {
firmBirthStatsRecorder = new DataHecorder("./output/"+ 

filenameTimeStamp + "_firm_birth_stats.txt", 
this, "Random Seed;\t"+ getRngSeedO);

>

if (recordFirmJoiningStats) {
firmJoiningStatsRecorder = new DataHecorder("./output/"+ 

filenameTimeStamp + "_firm_joining_stats.txt", 
this, "Random Seed:\t"+ getRngSeedO); 

firmJoiningStatsRecorder.createNumericDataSource("size", 
this, "getFirmJoiningStatSize"); 

firmJoiningStatsRecorder.createNumericDataSource("employeeWho", 
this, "getFirmJoiningStatWhoEmployee"); 

firmJoiningStatsRecorder.createNumericDataSource("firmWho", 
this, "getFirmJoiningStatWhoFirm");
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}

if (recordEmployeeDecisionStats) {
employeeDecisionStatsRecorder = new DataRecorder( 

"./output/"+ filenameTimeStcunp + 
"_employee_decision_stats.txt", 
this, "Random Seed:\t"+ getRngSeedO); 

employeeDecisionStatsRecorder.createNumericDataSource( 
"customTick", this, "getCustomTick"); 

employeeDecisionStatsRecorder.createNumericDataSource( 
"who", this, "getEmployeeDecisionStatWho"); 

employeeDecisionStatsRecorder.createNumericDataSource( 
"firmStayWho", this,
"getEmployeeDecisionStatFirmStayWho"); 

employeeDecisionStatsRecorder.createNumericDataSource( 
"firmStaySize", this,
"getEmployeeDecisionStatFirmStaySize"); 

employeeDecisionStatsRecorder.createNumericDataSource( 
"f irmStaylltility", this, 
"getEmployeeDecisionStatStayUtility"); 

employeeDecisionStatsRecorder.createNumericDataSource( 
"firmJoinlWho", this,
"getEmployeeDecisionStatFirmJoinlWho"); 

employeeDecisionStatsRecorder.createNumericDataSource( 
"firmJoinlSize", this,

"getEmployeeDecisionStatFirmJoinlSize"); 
employeeDecisionStatsRecorder.createNumericDataSource( 

"firmJoinlUtility", this, 

"getEmployeeDecisionStatFirmJoinlUtility"); 
employeeDecisionStatsRecorder.createNumericDataSource( 

"firmJoin2Who", this, 

"getEmployeeDecisionStatFirmJoin2Who"); 
employeeDecisionStatsRecorder.createNumericDataSource(
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"firmJoin2Size", this,

"getEmployeeDecisionStatFirmJoin2Size"); 
employeeDecisionStatsRecorder.createNiomericDataSource( 

"firmJoin2Utility", this,
"getEmployeeDecisionStatFirmJoin2Utility"); 

employeeDecisionStatsRecorder.createNumericDataSource( 
"firmCreateUtility", this,
"getEmployeeDecisionStatFirmCreateUtility");

pubhc void stepDataBecorders() { 
if (recordModelDetail) { 

recorder.recordO ;

}

if (recordEmployeeTimeSeries) {
employeeTimeSeriesRecorder.record0;

}

if (recordEmployeeCrossSection && 
this.getTickCount() 7, 100 == 0) { 
employeeCrossSectionRecorder.record();

}

if (recordEmployeeCrossSectionCaseStudy && 
inDetailPeriodO) { 

employeeCrossSectionCaseStudyRecorder.recordO;

}

if (recordPirmTimeSeries) {
firmTimeSeriesRecorder.recordO;
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}

if (recordFirmCrossSection &&
this.getTickCount() ‘/, 100 == 0) ■[ 
firmCrossSectionRecorder.recordO;

}

if (recordFirmSizeDistribution && 
this.getTickCount() %

recordFirmSizeDistributionlnterval == 0) { 
f irmSizeDistribut ionRecorder.record();

}

if (recordCumulativeFirmSizeDistribution) {
cumulativeFirmSizeDistributionRecorder.recordO;

}

if (recordFirmSizeJoinedLeftStayed) { 
firmSizeJoinedRecorder.recordO; 
firmSizeLeftRecorder.recordO; 
firmSizeStayedRecorder.recordO;

>

if (recordFriendshipNetwork && this.getTickCountO == 1) { 
friendshipNetworkRecorder.recordO;

}

}

public void writeDataRecorders() { 
if (recordModelDetail) {

recorder.writeToFileO;
}
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if  (recordEmployeeTimeSeries) {
employeeTimeSeriesRecorder.writeToFile();

}

if  (recordEmployeeCrossSection) {
employeeCrossSectionRecorder.writeToFile();

}

if  (recordEmployeeCrossSectionCaseStudy) ■[
employeeCrossSectionCaseStudyRecorder.writeToFile();

}

i f  (recordFirmTimeSeries) {
firmTimeSeriesRecorder.writeToFileO ;

}

if  (recordFirmCrossSection) {
firmCrossSectionRecorder.writeToFile();

>

i f  (recordFinnSizeDistribution) {
firmSizeDistributionRecorder.writeToFileO;

}

if  (recordCumulativeFirmSizeDistribution) {
cumulativeFirmSizeDistributionRecorder.writeToFileO;

}

i f  (recordFirmSizeJoinedLeftStayed) {
firmSizeJoinedRecorder.writeToFileO; 
f irmSizeLeftRecorder.writeToFile(); 
f irmSizeStayedRecorder.writeToFile();

A. 1.1. SimpleFirmsModel.java



A PPEN D IX A. SOURCE CODE 166

>

if (recordFriendshipNetwork) {
friendshipNetworkRecorder.writeToFileO;

}

if (recordFirmLifeStats) {
firmLifeStatsRecorder.writeToFileO;

}

if (recordFirmBirthStats) {
firmBirthStatsRecorder.writeToFileO;

}

if (recordFirmJoiningStats) ■[
firmJoiningStatsRecorder.writeToFile();

}
}

}
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A .1.2 Em ployee.java  

package  ie . te d .e c o n o m ic s . f i rm s ;

i m p o r t  u ch ica g o . s r c . s im . a in a ly s is . DataRecorder; 

im p o r t  u ch ica g o . s r c . s im . a n a l y s i s . NumericDataSource;

p u b lic  class Employee { 

p ro te c te d  Firm firm ; 

p ro te c te d  I n t e g e r [] f r ie n d s ;  

p ro te c te d  SimpleFirmsModel model; 

p ro te c te d  i n t  who;

p ro te c te d  s ta t ic  final i n t  STAY_CURRENT_FIRM_OPTION = 0; 

p ro te c te d  s ta t ic  final i n t  CREATE_NEW_FIRM_OPTION = -1; 

p ro te c te d  s ta t ic  final i n t  JOIN_EXISTING_FIRM_OPTION = -2;

p u b lic  Employee (SimpleFirmsModel newModel, i n t  i )  -[ 

who = i ;

model = newModel; 

dataiRecordersO ;

}

p u b lic  vo id  a c t i v a t e () {

joinM aximum UtilityFirm O;

>

O p f i o t K i l h ;  ( l i  t i i l l  s i i h c l i i s K .

pub lic  double c a lc u l a t e C u r r e n tU t i l i t y () {

r e tu r n  calculateMcLximumUtilityAtFirm(firm);

}

167
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O c t l i . - . . .  :

public double calculateMaximumUtilityAtFirmCFirm firm) { 
return 0;

>

( s t i n  n u m i n i s  a f  f r i<  i i d s h i p  m t t r o r k s .  T h i s  n i d h o i l  n i i l i a l / j s  

f l i d f  f i ' i (  n d s h i j i  m l n  t t rk  hi /  c i d i l / n i j  o m  - i r t i t i  f r ' n  ndsUip  l i n ks  f i i  r i i i i i l d n i l i /

*  SI l( l i i  t l  I inpl<)i/( ( s i r i t h i i i  i l u  n t od t l .  T i n  i i i i i i i h i  r  i i f  i i n i i j t i t  f r i i  n i l s

* i i s s i i j i i i d  III I a r i l  ( i i i j ) l i i i ; i i  is a i i i i i d i  I p i i r i i i i i i  l i  r.

public void makeFriendsO {
if (model.niamberFriends > model.numberEmployees - 1) { 

throw new RuntimeExceptionC
"Must have fewer friends than employees in simulation.");

}
friends = new Integer [model. numberFriends] ; 
for (int i = 0; i < friends.length; i++) {

Integer friendCandidate; 
boolecin newFriend; 
do {

friendCandidate = new Integer(model.getNextIntFromTo( 
0, model.numberEmployees - 1)); 

newFriend = true; 
for (int j = 0; j < i; j++) {

if (friends[j].equals(friendCandidate)) { 
newFriend = false; 
break;

}
>

} while ((friendCandidate. intValueO == who) I I InewFriend);
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friends[i] = friendCandidate;
}

>

l.nijili)t/( I s  j o in  llii p n n  ni  u'liich ih( ij c du  i ichi i  r< Ihi lu(/li( si  iitililij.  

l h (  II f . rani i i i i  a l l  i iriiiliihli p n i i s  ( ihi  n  ri i rr(  iif l irni .  j i rn is  dJ al l  f r i i  nils.  

( I  l i i /polhi  I t ra l  s i iniUUti i  p r n i  IIk i/ r u n  r r i d t i  ) .  an i l  l i i o ns f  ibi  hi sf  

i i j i i ion.

protected void joinMaximumUtilityFirmO { 
double maxUtility = 0; 
double utility = 0;

int option = STAY_CURRENT_FIRM_OPTION;
Firm firmToJoin = null;

if (!forceNewSingletonO) {
/ / I  l i l i f i /  lit llii r i i r n  III f i rm.

majcUtility = calculateMaximumUtilityAtFirm(firm);

if (model.decisionStatsO) {
model.employeeDecisionStatFirmStayWho = firm.getWhoO; 
model.employeeDecisionStatFirmStaySize = firm.getSizeO; 
model.employeeDecisionStatStayUtility = maxUtility;

>

/ / I  f i l i t i /  III II III ir s i iu j l i l i i n  p r i n .  

/ / I f  iri a n  alrui i l i i  a sini / l i  f un  lin n i r i l  In ilii lliis.  

if (model.allowNewFirms && firm.getSizeO != 1) {
Firm temporaryFirm = createNewFirmO;
utility = calculateMciximumUtilityAtFirm(temporaryFirm); 
temporaryFirm = null;
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if (utility > maxUtility) {
option = CREATE_NEW_FIRM_OPTION; 
maxUtility = utility;

}

if (model.decisionStatsO) {
model.employeeDecisionStatPinnCreateUtility = 

utility;
>

>

for (int i = 0; i <  friends.length; i++) {
Firm friendsFirm = getFriend(i).firm; 
if (!friendsFirm.equals(firm)) ■[

utility = calculateMaximumUtilityAtFirm(friendsFirm);

if (utility > maxUtility) {
option = JOIN_EXISTING_FIRM_OPTION; 
firmToJoin = friendsFirm; 
maxUtility = utility;

>

if (model.decisionStatsO) { 
switch (i) { 

case 0 :
model.employeeDecisionStatFirmJoinlWho = 

friendsFirm.getWhoO ; 
model.employeeDecisionStatFirmJoinlSize = 

friendsFirm.getSizeO; 
model.employeeDecisionStatFirmJoinlUtility 

= utility; 
break;
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case 1:
model.employeeDecisionStatFirmJoin2Who = 

friendsFirm.getWhoO; 
model.employeeDecisionStatFirmJoin2Size = 

friendsFirm.getSizeO ; 
model.employeeDecisionStatFirmJoin2Utility 

= utility; 
break;
}

}
}

}
} else {

I'lirn II III ir .'iiiK/li Ion prill 

if (model.allowNewFirms && firm.getSizeO != 1) { 
option = CREATE_NEW_FIRM_OPTION;

>

}

switch (option) {
case CREATE_NEW_FIRM_OPTION:

model.addSizeOfF irmLeft(f irm.getSize());
createAndJoinFirmO ;
model.numberCreatingNewFirm++;
model.addSizeOfFirmJoined(l);
break;

case JOIN_EXISTING_FIRM_OPTION:
model.addSizeOfF irmLeft(f irm.getSize());
joinFirm(firmToJoin);
model.numberJoiningFriendsFirm++;
model.addSizeOfFirmJoined(firmToJoin.getSizeO);
break;
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case STAY_CURRENT_FIRM_OPTION:

model. addS izeO fP irm S tayed (f irm .ge tS izeO );  

model.numberSt ayingCurrentPirm++;

>

if (m o d e l .d e c is io n S ta ts O )  {

model. employeeDecisionStatWho = who;

model. em p lo y eeD ecis io n S ta tsR eco rd er .reco rd O ;

}
}

I. ((Iff riirrt iii p rn i .  ijdr}!/. m id  j o i n  fli( j i n n  i>(iss((l as (iiyirint n1 

“ ptirauis IK i i 'F/nii  F i n n  Id hi J o in uL

public  void  jo inFirm (F irm  newFirm) { 

if  (f irm  != n u l l )  {

if (f irm .equa ls(new F irm )) {

th ro w  new  R u n t im e E x c e p t io n  (

"Employee t ry in g  to  j o i n  a f i rm  they a re  a l re ad y  i n . " ) ;

>

f irm .loseE m ployee(th is)  ;

}
th i s . f i r m  = newFirm; 

newFirm.gainEmployee(this) ; 

if (model. in D e ta i lP e r io d O  ) {

model. setFirmJoiningStatWhoEmployee(who); 

model. setFirmJoiningStatWhoF irm(newF irm .getWho( ) ) ;  

model. se tF irm Jo in ingS ta tS ize (new Firm .ge tS ize  0 ) ;  

model. f i rm Jo in in g S ta tsR e c o rd e r . r e c o r d () ;

}
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>

II l l ' i i  p i i i i  a n d  j i i i i i  li.

public void createAndJoinFirmO {
Firm newFirm = createNewFirmO ; 
this.joinFirm(newFirm); 
model.addFirm(newFirm);

}

Ett i j ih i j id  s (ID n  sjiiiiis/hli f o r  i ri (itiiif/ n< ir J i r ins .  H< iii i i iii  li siihi lass  

iij h  iiijiloi/i I m i i s i  (}i'( rri(l( ( r< iii< \ (  i r F i n i i  to  < r(iit< fh< (•ori'( spoii(liii(/

■ siihi-his.'^ o f  h  m u .  l l i i s  slioiilil  oiili/ hi ciilli il f r o m  rri  <ifi A n i I J on i l - ' i rn i  I )

Miii/lii ni(ik( p r i r i i t i  ':

public Firm createNewFirmO { 
return new Firm (model) ;

}

protected boolean forceNewSingletonO {
return model.getNextDoubleFromTo(0,1) < 

model.forceNewSingletonProbability;
}

' W'Ik i I j)( rci ntiifii  o f  nii/ in  i f ihhoi irs a n  in t in s a i n i  p n n  as nii r

private double cohabitationRateO { 
double total = 0;
for (int i = 0; i < friends.length; i++) -[
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Firm fr ien d sF irm  = g e t F r i e n d ( i ) . firm ; 

if ( f r ie n d s F irm .e q u a ls ( f i rm ))  { 

t o t a l + + ;

>

}
r e tu r n  t o t a l / (doub le)f r i e n d s . len g th ;

}

.4 rrf .s.sn/.s

pub lic  double g e t U t i l i t y O  {

r e tu r n  c a l c u l a t e C u r r e n tU t i l i t y ( ) ;

}

public  Employee g e tF r ie n d ( in t  i )  {

r e tu r n  model .g e t  Agent ( f r ie n d s  [ i]  . in tV a lu e O ) ;

}

pub lic  double getWhoO { 

r e tu r n  who;

}

pub lic  double ge tC o h ab i ta t io n R a teO  { 

r e tu r n  c o h a b ita t io n R a teO  ;

}

/  /D d td  B( cordt rs

pub lic  vo id  da taR ecordersO  {

if (model. recordEmployeeTimeSeries &&

who Vo (model.numberEmployees/20) == 0) { 

m odel. employeeTimeSeriesRecorder. addNumericDataSource( 

"choice_"+ who, n ew  F irm C h o iceO );

A. 1.2. Employee.java
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model. employeeTimeSeriesRecorder. addNumericDataSource( 

" u t i l i t y _ " +  who, new  E m p loyeeU ti l i ty ( ) ) ;

}
}

class FirmChoice im p le m e n ts  NumericDataSource ■[ 

pub lic  double e x e c u te () { 

r e tu r n  -999;

}
>

class Em ployeeU tility  im p le m e n ts  NumericDataSource { 

pub lic  double e x e cu te ()

r e tu r n  c a lc u l a t e C u r r e n tU t i l i t y () ;

>

}

A. 1.2. Employee.j&va
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A .1.3 Firm .java

p a c k a g e  i e . te d .e c o n o m ic s .f i rm s ;

im p o r t  j a v a .u t i l .A r r a y L i s t ;

p u b lic  c la ss  Firm  {

p r o te c te d  Sim pleFirm sM odel m odel; 

p r iv a te  i n t  age = 0; 

p r iv a te  i n t  s i z e  = 0; 

p r iv a te  i n t  m axSize = 0; 

p r iv a te  do u b le  bornOnCustom Tick;

p r o te c te d  A rray L is t< E m p lo y ee>  em ployees = n ew  A r r a y L is tO ;

p r o te c te d  i n t  who;

p r o te c te d  s ta t ic  i n t  whoCounter = 0;

p u b lic  F irm (Sim pleFirm sM odel newModel) { 

model = newModel; 

who = whoCounter++; 

bornOnCustomTick = m odel.custom T ick ;

}

p u b lic  v o id  gainEm ployee (Employee newEmployee) {. 

i f  (em p lo y ees. co n ta in s(n ew E m p lo y ee)) { 

th ro w  n e w  R u n t im e E x c e p t io n (

"T ry in g  to  add em ployee to  a f irm  th e y ’r e  a lr e a d y  i n . " ) ;

}
em p lo y ees. add(new Em ployee); 

if  ( c a lc u la te S iz e O  > m axSize) { 

m axSize = c a lc u l a t e S iz e O ;

}
>

p u b lic  v o id  loseEm ployee(Em ployee exEmployee) {

A. 1.3. Firm.java
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if ( ! em ployees.contains(exEm ployee)) { 

th ro w  new  R un tim eE xcep tionC

"Trying to  remove employee from a f irm  th e y ’re  not i n . " ) ;

}
employees.remove(exEmployee); 

if (e m p lo y e es .s iz e0  == 0) { 

model. d e s t ro y F i rm ( th is ) ;

}
}

pub lic  void s t e p O  { 

age++;

s iz e  = c a lc u la te S iz e O  ;

}

'alciildtor^

p r iv a te  i n t  c a lc u la te S iz e O  { 

r e tu r n  employees. s i z e () ;

}

p r iv a te  i n t  calculateSizeExcludingEmployee(Employee emp) { 

if (employees, co n ta in s  (emp)) -[ 

r e tu r n  c a lc u la te S iz e O  -  1;

} else {

r e tu r n  c a lc u l a t e S iz e O ;

}
}

\cr< ssn/>

p u b lic  i n t  ge t  Age () { 

r e tu r n  age;

A. 1.3. Firm.Java



APPENDIX A. SOURCE CODE 178

>

p u b lic  in t  g e tS iz e O  {

re tu r n  c a lc u la te S iz e O  ;

}

p u b lic  in t  getSizeExcludingEm ployee(Em ployee emp) { 

r e tu r n  ca lcu lateS izeE xcludingE m ployee(em p);

}

p u b lic  i n t  g e tS iz e F o rS ta tC o lle c to r () ■[ 

r e tu r n  s iz e ;

}

p u b lic  boolean containsEmployee(Employee emp) { 

r e tu r n  em ployees.con ta ins(em p);

>

p u b lic  in t  getM axSizeO { 

r e tu r n  maxSize;

}

p u b lic  in t  getWhoO { 

r e tu r n  who;

}

p u b lic  double getExactA geO  {

re tu r n  m odel. customTick -  bornOnCustomTick;

>

A .1.3. Firm.java
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A .2 D ata  C ollection

The classes in this section are concerned with the collection of data  during simulation 

runs and outputting tha t data  to text files. The CollectionSummary class is subclassed 

by MaxNumericDataSource, MinNumericDataSource, AverageNumericDataSource and 

TotalNumericDataSource. Only MaxNumericDataSource is shown here as the others are 

trivially similar. As the names suggest, these classes collect summary data. Generally 

they will summarise over the list of employees or the list of firms, so for example they 

might calculate the mean employee utility or the meiximum firm output.

The ArrayDataSource class, by contrast, does not summarise data but records it in 

detail. It also operates on a list such as the list of employees or the list of firms, but it will 

record every data point rather than aggregating them. The DistributionDataSource and 

ArraylntDistributionDataSource classes produce size distribution tables, i.e. Frequency- 

Count data. The GraphvizDataSource produces output which can be imported into 

the GraphViz application with minimal processing, this is used to record the friendship 

network and to  subsequently plot it as a network with GraphViz. This is impractical 

when the number of agents is greater than 100.

A. 2.1 C ollectionSum m ary. Java

package ie . t e d .e c o n o m ic s . f ir m s ;

im p o rt J a v a . u t i l . C o llec tio n ;  

im p o rt j a v a . u t i l . I tera to r;

p u b lic  cIeiss CollectionSunmiary{

C o llec t io n  o b je c tC o l le c t io n ;

pub lic  CollectionSummary (C o llec t io n  a rgO b jec tC o llect ion )  { 

o b j e c tC o l le c t io n  = argO bjectC ollect ion ;

}

p u b lic  double g e tT o ta lO  { 

double to tV alue  = 0;

A .2.1. CollectionSummary.java
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for ( I te r a to r  i t  = o b j e c t C o l l e c t i o n . i t e r a t o r O  ; i t .h a s N e x tO  

; )  {

double nextValue = g e tV a lu e ( i t  . n e x t O ) ; 

to tV alue  += nextValue;

>

r e tu r n  to tV alue ;

pub lic  double getAverageO {

if ( o b j e c tC o l l e c t io n . s i z e O  == 0) { 

th ro w  new  R u n t im e E x c e p t io n (

"Trying to  tak e  an average with  no items in  c o l l e c t i o n . " ) ;

}
r e tu r n  g e tT o t a l O / o b j e c tC o l l e c t i o n . s i z e O  ;

>

public  double getMinimumO {

if ( o b j e c tC o l l e c t io n . s i z e O  == 0) { 

th ro w  new  R u n t im e E x c e p t io n (

"Trying to  c a lc u l a t e  minimum with  no items in  c o l l e c t i o n . " ) ;

}
' S i t  f o rcr i /  l<iiy( rt i l in so  i n  a n  s u n  to In l< s s  fhi in fli/s.  

double minValue = Double.MAX_VALUE;

for ( I te r a to r  i t  = o b j e c t C o l l e c t i o n . i t e r a t o r O  ; i t .h a s N e x tO  

:)  {

double nextValue = g e tV a lu e ( i t  .n e x tO )  ; 

if (nextValue < minValue) { 

minValue = nextValue;

>

}
r e tu r n  minValue;

A.2.1. Collectionsummary.java
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pub lic  double getMaximumO {

if ( o b j e c tC o l l e c t io n . s i z e O  == 0) { 

th ro w  new  R u n t im e E x c e p t io n (

"Trying to  c a lc u l a t e  majcimum with  no items in  c o l l e c t i o n . " ) :

>

S(  t lo  r- iii si iKill  I ' a l i K  , ' •  '- ■ '. '/ r  t o  h< i/r<(if(r I I k i i i

double maxValue = -Double.MAX_VALUE;

for ( I t e r a to r  i t  = o b j e c t C o l l e c t i o n . i t e r a t o r ( ) ;  i t .h a s N e x tO  

;) {
double nextValue = g e t V a l u e ( i t . n e x t O ) ; 

if (nextValue > maxValue) { 

maxValue = nextValue;

}
}

r e tu r n  maxValue;

}

'  ()i'< i irrH< thi s  iiK t l iod in sii liclass.

*  Th( Vdluf t/oii I r i s h  t o  t n k (  t h i  n i i n / i i i i i . i / t i > t i i l / ( H ' (  r(i(/( f t c .  i i f ,

pub lic  double getValue (O b je c t  co l le c t io n O b je c t )  { 

r e tu r n  0 .0 ;

}
>

A .2.1. CollectionSummary.java
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A .2.2 M axN um ericD ataSource.java

package  ie . te d .e c o n o m ic s . f i rm s ;  

im p o r t  J a v a .u t i l . L i s t ;

im p o r t  uch icag o . s r c . s im . a n a l y s i s . NumericDataSource;

pub lic  class MaxNijmericDataSource e x te n d s  CollectionSummary 

im p le m e n ts  NumericDataSource {

pub lic  MaxNumericDataSource(List a rg O b jec tL is t )  { 

s u p e r ( a r g O b je c tL i s t ) ;

>

pub lic  double e x e cu te () { 

r e tu r n  getMaximumO ;

>

}

A.2.2. MaxNumericDataSource.java
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A. 2.3 A rrayD ataSource. Java

package ie . te d .e c o n o m ic s . f i rm s ;

im p o r t  J a v a .u t i l . L i s t ;

im p o r t  j a v a . u t i l  .L is t l t e r a to r ;

im p o r t  u ch ica g o . s r c . sim. a n a ly s i s  . D a ta S o u rc e ;

.1 iliitn < (}lli < f imi  i ldMS dtsi(}i i(d to on ipu l  a ri is ioni i sabl i  iirraij o f  mh::  s. 

' U( i(it< s o n  r (I l/.'il. p n n l s  ( ik Ii r<ilii< s i j x i r a i i d  hij ii coiiinid.

public  class ArrayDataSource im p le m e n ts  D a ta S o u rc e  {

L ist o b j e c t L i s t ;

S tr in g  name;

pub lic  ArrayDataSource (List a rg O b je c tL is t , S tr in g  argName) { 

name = argName; 

o b je c tL i s t  = a rg O b jec tL is t ;

}

pub lic  O b je c t  e x e cu te () {

S tr in g B u ffe r  buf = new  StringBufFer ( ) ;

buf .append("\n"+this .nam e+"\n") ;

L i s t l t e r a to r  i t  = o b j e c t L i s t . l i s t l t e r a t o r ( ) ;  

b u f . a p p e n d (g e tV a lu e ( i t .n e x t ( ) ) ) ;  

for ( ; i t . h a s N e x t ( ) ;) {

b u f . append( " , "+ g e t V a lu e ( i t . n e x t ( ) ) ) ;

}
b u f . append( " \n " ) ;  

r e tu r n  buf . to S t r in g O  ;

}

A.2.3. ArrayDataSource.java
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Oi l nr: flu I ill 0(1

p u b lic  double getV alue (O b je c t l is tO b je c t )  { 

retu rn  0;

>

}

A .2.3. ArrayDataSource.java
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A. 2.4 DistributionD ataSource.java

p a c k a g e  i e . t e d . e c o n o m i c s . f i r m s ;

i m p o r t  J a v a . u t i l . L i s t ;

i m p o r t  J a v a . u t i l . L i s t l t e r a t o r ;

im p o r t  u c h ica g o . s r c . s im .a n a ly s i s . D a ta S o u r c e ;

'  C i i l r i i l d h  s  II n i i t i i  i l i s l  ril>ii1 i o n  I  Fr i  ijiii n i  i/. ( ’u t i i i f  i l i if i i  I f r n i i i  a r o l l i  r i i i n i  

'  Il f  r i i i r  nl i s i  n ' u h o n s  a n i l  j u i n l H  I n  a p l i .

i

p u b l ic  c la ss  D is t r ib u t io n D a ta S o u r c e  im p le m e n t s  D a t a S o u r c e  {

L is t  o b j e c t L i s t ;  

i n t  maxSize; 

b o o le a n  c u m u la t iv e ;  

booleein d i s p l a y S e p a r a t e T a b le ; 

i n t [] d i s t r i b u t i o n A r r a y ;

p u b l ic  D i s t r ib u t io n D a ta S o u r c e ( L i s t  a r g O b j e c t L i s t , i n t  argM axSize, 

b o o le a n  a rg C u m u la t iv e , b o o lean  a rg D is p la y S e p a ra te T a b le )  { 

t h i s . o b j e c t L i s t  = a r g O b je c tL i s t ;  

th is .m a x S iz e  = argMaxSize; 

t h i s . cu m u la t iv e  = a rgC um ula tive ;

t h i s . d i s p la y S e p a r a te T a b le  = a rg D is p la y S e p a ra te T a b le ;

}

p u b l ic  O b j e c t  e x ecu te  () {

StringBufFer buf = new  S tr ingB ufFerO  ;

if  ( ! cu m u la t iv e  I | d i s t r i b u t i o n A r r a y  == n u l l )  { 

d i s t r i b u t i o n A r r a y  = n e w  i n t [m axSize+1];

>

A.2.4. DistributionDataSource.java



APPENDIX A. SOURCE CODE 186

for (L i s t l t e r a to r  i t  = o b je c tL i s t  . l i s t l t e r a t o r O  ; i t .h a s N e x tO  

: )  {

d i s t r i b u t io n A r r a y [ g e tV a lu e ( i t . n e x t () )]++ ;

}

if  (d isp layS epara teT ab le )  {

b u f . append( " \n \n F requency\tCount") ;  

for ( i n t  i  = 1; i  <= maxSize; i++) { 

if  (d i s t r ib u t io n A r ra y  [ i]  >0) ■[

b u f .append("\n"+  i  + " \ t " +  d i s t r i b u t i o n A r r a y [ i ] );

}
}
b u f . append( "\ n ") ;

} else {

b u f ,a p p e n d ( d is t r ib u t io n A r ra y [0 ]) ;  

for ( i n t  i  = 1; i  <= maxSize; i++) { 

b u f . append( " , " ) ;

b u f . a p p e n d (d i s t r ib u t io n A r ra y [ i ] ) ;

}
}
r e tu r n  buf . to S t r in g O  ;

>

/Jf:

Ihis nuthoi l  ni

i

public  i n t  g e tV a lu e (O b jec t  l i s tO b je c t )  { 

r e tu r n  0;

>

}

A.2.4. DistributionDataSource.java
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A .2.5 A rrayln tD istrib u tion D ataS ou rce.java

package ie . te d .e c o n o m ic s .f i rm s ;

im p o r t  J a v a .u t i l . L i s t ;

im p o r t  j a v a . u t i l . L i s t l t e r a t o r ;

im p o r t  u c h ica g o . s r c . s im .a n a ly s is  .D a ta S o u rc e ;

P r i n f s  (I !)si()iKil ( i i rd i /  t n  a i ahU iri f l i  I h i  ( i rrai /  h i d i . i

^  <is [■)'( ijiK i i c y  ( i iut  till . s toi ' td  I 'aliii a s  C o u n t .

F u r  (III ( . r i i i i ipl i  I l f  ni l  arr i i i i  t o  hi p r n i t i i l  i i sn i i j  i h i s  rln.ss  

.‘il l S i n i i i l i  l ' / n i i s M o i l (  l . i i i l i l Sr . i  ( ) f l '  i r i i i . l o i i i i  ill I n i i i l  r i l i i t i i l .

public  class A rray ln tD is tr ib u tio n D a taS o u rce  im p le m e n ts  D a ta S o u rc e  ■[ 

i n t [] in tA rray ;

S tr in g  name; 

i n t  maxSize;

pub lic  A rray ln tD is tr ib u t io n D a ta S o u rce ( i n t  [] a rg ln tA rray ,  

i n t  argMaxSize, S tr in g  argName) {. 

name = argName; 

in tA rray  = a rg ln tA rray ;  

maxSize = argMatxSize;

>

public  O b je c t  execute () {

S tr in g B u ffe r  buf = new  S tr in g B u ffe r  () ;

b u f . append(" \n \n F req u en cy \tC o u n t" ) ; 

for ( i n t  i  = 1; i  <= maixSize; i++) { 

if ( in tA rray  [ i]  >0) {

b u f . append("\n"+ i  + " \ t " +  i n t A r r a y [ i ] ) ;

A.2.5. ArraylntDistributiouDataSource.java



APPENDIX A. SOURCE CODE 188

}
}
buf.append( "\ n"); 

return buf . toStringO ;

>

>

A.2.5. ArraylntDistributionDataSource.java
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A .2.6 G raphvizDataSource.java

package ie . te d .e c o n o m ic s . f i rm s ;

im p o r t  J a v a . u t i l . L i s t ;

im p o r t  j a v a . u t i l . L i s t l t e r a t o r ;

im p o r t  u ch icag o . s r c . sim. a n a ly s i s  .D a ta S o u r c e ;

public  class GraphvizDataSource im p le m e n ts  D a ta S o u rc e  {

L ist o b je c tL i s t ;

S tr in g  name;

pub lic  GraphvizDataSource (L ist a r g O b je c tL i s t , S tr in g  argName) { 

name = argName; 

o b je c tL i s t  = a rg O b jec tL is t ;

}

public  O b je c t  e x e c u te () {

S tr in g B u ffe r  buf = new  S tr in g B u ffe r  ( ) ;  

b u f . append( " \n d ig raph  u n t i t l e d  { \n " ) ;

f o r (L i s t I te r a to r  i t  = o b j e c t L i s t . l i s t l t e r a t o r O ; i t .h a s N e x t ( ) ; ) {  

Employee thisEmployee = (E m p lo y ee ) i t .n ex t ( ) ;  

f o r ( i n t  i  = 0; i  < thisEmployee.model.numberFriends ; i++) 

{
buf.append(thisEmployee.who+" - >  "+ 

th i s E m p lo y e e . f r i e n d s [ i ] + " \n " ) ;

}
}

b u f . append( " } \ n \ n " ) ;

b u f . append(" -----\n " ) ;

r e tu r n  buf . to S t r in g O  ;

}
>

A.2.6. GraphvizDataSource.java
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A.2.6. GraphvizDataSource.java
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A.3 Utilities

A .3.1 BoundedDouble.java

p ac k a g e  ie . te d .e c o n o m ic s .f i rm s ;

. 4  c u n i  r i i / f  i i i (  i rrapjH f  f a r  t h )  ( loi ibl i  rla.ss i i i i i c h  i iif<iir( s  i hu1 v u I i k k  a n  k ( p i  

III a n  ( i p p r o p r i a i i  i v i n i i . j o t  ( i d t u p l t  ( t i l l .

p u b lic  c la ss  BoundedDouble { 

p r iv a te  doub le  v a lu e ;  

f in a l p r iv a te  d o u b le  MAX_VALUE; 

f in a l p r iv a te  d o u b le  MIN_VALUE;

. '  *  C r i a f i s  II n i  ir i i i s tai i i - i  i i j  B o i i n i l i  ( IDoi i l i l i

p u b lic  BoundedDouble(d o u b le  argM inV alue, d o u b le  argMajcValue) { 

i f  (argM inV alue < argMcixValue) {

MAX_VALUE = argM axValue;

MIN_VALUE = argM inV alue;

/ / s i i  ri i l iK f o  a n  i l h c / a l  ri i l in  

v a lu e  = MIN.VALUE -  1;

} e lse  {

th ro w  n e w  R u n t im e E x c e p t io n (

"Majc V alue m ust be s t r u c t l y  g r e a t e r  th a n  Min V a lu e ." ) ;

>

}

p u b lic  BoundedDouble(d oub le  argM inV alue, d o u b le  argM axValue, 

d o u b le  in i t ia l iz e T o V a lu e )  { 

th is (a rg M in V a lu e , argM axV alue); 

t h i s . s e tV a lu e ( in i t i a l iz e T o V a lu e ) ;

A.3.1. BoundedDouble.java
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>

p u b lic  double ge tV alueO  { 

if (va lue  <  MIN.VALUE) {

th ro w  new  R u n tim e E x c e p tio n (

"Value has no t been i n i t i a l i z e d . " ) ;

} else  {

r e tu r n  v a lu e ;

}
>

pub lic  vo id  se tV alu e(d o u b le  argValue) { 

if (argV alue < MIN_VALUE) {

th ro w  new  R u n tim eE x cep tio n ("V a lu e  "+ argV alue +

" must be g re a te r  than  minimum of "+ MIN_VALUE); 

} else  if (argV alue >  MAX_VALUE) {

th ro w  new  R u n tiin e E x c e p tio n ("Value "+ argV alue +

" must be le s s  than  maximum of "+ MAX_VALUE);

} else  {

value  = argV alue;

}
>

pub lic  double getMaxO { 

re tu r n  MAX.VALUE;

>

p u b lic  double getM inO { 

r e tu r n  MIN.VALUE;

>

>

A.3.1. BoundedDouble.java
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A .3.2 Function.java

/( / ] . ' ( ) ( ) ( )  TIk Dr/)okin</s Iiisti fni/on.  Al l  Bitjhis Hi rri(i

P i rni/sfi/oii to iis< this sofiiriin nnil ils dovnnit n futnm fo r  itDii-coiiuiii ri iul 

" pui j)u>ii s mill intlioiif fi I IS III n  Ini ijnintiil. prnriiliil  Hus i iiiiijrii/ht stiiti nii nf 

ik nirliiili d. J ’lidsi roii iai i  us Joi jii I'linss/oii for ri ilisl rihiit inn ii nil otiii r iisi s.

' B l i O O K I X C S  .\JA K E S  X(> n E P P E S E X r A  T I O X S  OR  ir.4 R R A X T I E S  .1 n O E T  T H E  

SI  I T  ABU.  T T Y  OE

" T H E  S O E T W A R E .  E I T H E R  E X P R E S S  O R  IM PL IED .  I X C H  D I X G  I3ET  X O T  

LI METED

TO T H E  I M P L I E D  W A R R A X ' T I E S  OF M E R d l A X T A U I I . T T Y .  E I T X E S S  EO R  .4 

P A R T I C T I . A R  PI R P O S E .

' OR X O X - I X E R I X C E M E X T .  D R O O K I X G S  S H A L L  X O T  B E  L I A B L E  E O R  .l.V l 

DA .M A GE S S E E E E R E D  B Y

* L K E X S E E  A S  .1 R E S E L L  OE  E S I X G  THI S  S O E T W A R E  OR I T S  D E R I V . V H V E S .

* M ih s  Piirki r

' iiipiii'l i r <1 liriiiil'. I ilii

’ littp: ‘/  irivir.liviiiik.i ilii,'i .̂ . ' i li/iiuni/rs/niodi h / n s t  iipi .

Llii Briioliiiijs Inst i iui ion

Wii.'^hiiii/lon. D.C.

package i e . te d .e c o n o m ic s . f i r m s ; 

im port Java, i o . Serializable;

.4 Oiii -iliiiii iisninal fiiiii hr.

A .3.2. Fanction.java



APPENDIX A. SOURCE CODE 194

"(i i i fhoi Mil( s Pal i  -

<‘ n r s i ( ) i i  l . l l  

<l .si l lC( 1.1)

p u b l ic  a b s t r a c t  c lass F u n c t io n  im p le m e n ts  S e r ia l iz a b le ,  C lo n e a b le  {

■' T a i l  " n i d f / / ' - "  i i a i i i l x  r. <i j i j )r( i .r.  I . ( i ] S( l . - i  

p u b l ic  s ta t ic  f in a l  d o u b le  ta u  = (1 + M a t h . s q r t  (5 ) )  /  2 ;

- >

*  L( i r t / (  ( I I I !  o f  ( / o l d i  II s i i  f i i i i i .  i i j i p ro . r .  . ( i l S I I  ! 

p u b l ic  s ta t ic  f in a l  d o u b le  s e c tL a rg e  = ta u  -  1;

/ * *

*  ( I I I !  o f  i i dI i I i  i i  s i d i o i i .  approx. .■■iSI!)'/

p u b l ic  s ta t ic  f in a l  d o u b le  s e c tS m a ll = 1 -  s e c tL a rg e ;

*  D ( s i i ( ( i  i r . ' i d l i i f i un  o f  i i i a . i i i i i i r j i f / o n .

V
p u b l ic  s ta t ic  f in a l  d o u b le  r e s o lu t io n  = 0 . 0 1 ;

/ *

‘  T h t  f i r. ' ^t  i iK  a s u n  i iK n i  o f  f h (  c v r i r i i f  i i i f t i n i l .

*  F o r  m i n o r  p (  r f o r n i i n i c f  n i i . ' i o i i s .  f h i s  i i i i i l  o f l i i  r  u n  i i s i i i i  i i k  n 1 s  a n  n o t  

■ i n i f i i i l i : . ( ( l  i n  t i n  h o d i /  o f  t h e  n i a x i i n i z o t i o n  f i i n c f i o i i . ' i .

* Th is  can (as i l i /  tx c l ian f j i  d i f  di K in d.

*  . A l . s o .  p U a s f  n o t f -  t h a t  t h i . s  r l i i . ‘<s i s  _ i i o t ^ i l i r ( a d  s o f t :  i n  o r d t  r  f o  t n a k i  i t

*  s o .  s i n i j i l y  i n i t i a l r j  t i n  f o l l o i r i i i f i  r a r i u h U s  v i t l i i n  a  i - o n f r i i c f o r  l o r  i n  f l u  m e t h o d

A.3.2. Function.java
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hodiii .  lut ik  ■ '  '  ' / n m r . i  f lu n u f h o d s  t: j.

p ro te c te d  s ta tic  double x l = 0.0;

T I k  n i t  n i l  III I l f  f l i ( r { i r i (  n t  i u f i i r u ! .

p ro te c te d  s ta tic  double x2 = 0.0;

I  Ik th i rd  n i l  iisiiri n i l  Il f  nj  tin n i r r - nl i n t i r rn l .

p ro te c te d  s ta tic  double x3 = 0.0;

rill four th  n i l  i i f i i iri  n i (  nt o f  tin r i i rn  nl  iui( r r a i

p ro te c te d  s ta tic  double x4 = 0.0;

Till I'l siilf riiliii fo r  ihf s t c o n d  rni t imirnnr nl.

p ro te c te d  s ta tic  double f2  = 0.0;

Tht  II sui t  riiliii for  til! thi rd ni f i i s i in nil nt.

p ro te c te d  s ta t ic  double f3  = 0.0;

Th( A ii.vi-i (](]p til t i n  (II till p r s t  a n d  s t r a n d  i nd i s i i n  nn nts

p ro te c te d  double gapl = 0;

A .3.2. Function.Java
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T i l l  A  a.ns i/ i i j ) III t i l ' l l  II t i l l  s ( v o n d  m i d  t h i r d  n i i  i isi i  r< i n i  m s  

f i i f t r r  m u  i i i i  i i si i  r i  i n i  n t  lia.s hi i n  d r o p p i  d. I i i i r / i i i i  t l i r a  t i / t i i l .  i

protected double gap2 = 0;

M a . n t i u : . !  t in  o a t p u t  o f  t h i s  f i i n r t i o n .  i i s s i r i i i i i i i j  f i i n i i i i i n  / s  i i i i i n i i i d i i l .  

‘  i i s i r i i j  II i jo ld i  11 SI i t  i o n  s ( i i n h  s t r a t i  i/n.

* S i i  P i t  ss. F h i n n i ' r i / .  Ti  i ikolshi / .  Vi  t t i r l i n g  ^ . X i i n i i  r i r i i l  h’ l r i p i  s n i  

’  f u r  i j i  I I I  rat  i / i i i d i  I h i i  s. hut  no t  f n r  spi  r i p i  i i i i p l i  i i i r i i t i i t i m i .

’  ‘ ' r i t i r r i i  t h i  n p t i i n i i l  i n p u t  r i i r i i i h l i

public double maximize() { 
xl = 0.0; 
x2 = sectSmall; 
x3 = sectLarge; 
x4 = 1.0; 
double gap = 1.0;
. / F o r  ’ i j i h i r i n i i  n i i i i i h i  r  o f  i t i  r u t  inns.

/ / r u t  i l l  r  =  l>

while (gap > resolution) { 
f2 = solveFor(x2); 
f3 = solveFor(x3); 
if (f2 < fS) { 
gapl = x3 - x2;
gap2 = x4 - x3;

xl = x2;
if (gapl > gap2) { 
x2 = x3 - gapl * sectSmall; 
f2 = solveFor(x2); 
gap = gapl;

A .3.2. Fiinction.java
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}
else { . i / ii jiJ ' -
x2 = x3;
x3 = x2 + gap2 * sectSmall; 
f2 = f3;
fS = solveFor(x2); 
gap = gap2;

>

}
else { / / v i V  < = 

gapl = x2 - xl; 
gap2 = x3 - x2; 

x4 = x3;
if (gapl > gap2) { 
x3 = x2;
x2 = x3 - gapl * sectSmall; 
f2 = solveFor(x2); 
gap = gapl;
}
else { / /q n p f l !  < = ■ '■;<' 

x3 = x2 + gap2 + sectSmall; 
f2 = f3;
fS = solveFor(x2); 
gap = gap2;

>

>

}
return f2 > f3 ? x2 : x3;
}

* Solr(  this  l sniy l (-r ( i r i ( i hl i i  f i incti()ii .  O n  rridi  f a d c  f i in  i/fiiir oii'ii f i incfioii.  

<> iMiraiii r  fh( rai ' idhh nipi i t  pdnni i i  h  i

A .3.2. Function.java
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’ ■ ' ' : - i i i r i i  f i n  ( ) i i f j ) i i i  r u U t t

p u b lic  double so lveF or (double x) { 

re tu r n  x;

}

/' t-

 ̂ ( 'loiK s ih/s fiiiiciioii.

p u b lic  O b je c t c lone () { 

t r y  {

F unction  c lone = (F unction) s u p e r .c lo n e ( ) ;  

r e tu r n  c lone; 

y c a tc h  (C Io n e N o tS u p p o rte d E x c e p tio n  e) {

t h i s  s i K i i i I . i h i ' t  h a p i K  I I . ' ::!(■( i n  iii> C I d i k i i h l i  

th ro w  new  In te rn a lE r ro r  () ;

}
>

}

A .3.2. Function.Java
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A .4 Variable Effort M odel

A .4.1 VariableEfFortModel.java

package ie .te d .e c o n o m ic s .f irm s ;

im p o rt  u ch icag o . s r c . sim . a n a ly s i s . D ataR ecorder;

im p o rt u ch icag o . s r c . sim . e n g in e . S im ln it ;

p u b lic  class V ariab leE ff ortM odel ex ten d s  SimpleFirmsModel { 

p r iv a te  double minTheta = 0; 

p r iv a te  double maxTheta = 1 ; 

p ro te c te d  boolean  useMaxTheta = t ru e ;

p riv a te  double minLeimbda = 1 ; 

p r iv a te  double maxLambda = 1 ; 

p ro te c te d  boolean  useMaxLambda = t r u e ;

p ro te c te d  in t  firmToWatchOne; 

p ro te c te d  in t  firmToWatchTwo;

p riv a te  double firm L ifeS ta tP o u n d ersT h e ta ; 

p riv a te  in t  firm LifeStatPoundersW ho;

p riv a te  double firm B irth S ta tP o u n d ersT h e ta ; 

p riv a te  in t  firm B irthStatPoundersW ho;

p u b lic  V ariab leE ff ortM odel () { 

s u p e r 0  ;

allowNewPirms = t ru e ;

}

p u b lic  s ta tic  vo id  m a in (S tr in g [] a rg s) {

S im ln it i n i t  = new  S im ln it ( ) ;

i n i t . loadModel (new  V ariab leE ff ortM odel 0  , n u l l ,  f a l s e ) ;

A .4.1. VariableEffortModel.java
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}

pub lic  S tr in g  [] g e t ln i tP a ra m O  -[

StringC] params = {"m inTheta", "maxTheta", "useMaxTheta", 

"minLambda", "firmToWatchOne", "firmToWatchTwo"}; 

r e tu r n  s u p e r .a d d i t io n a l ln i tP a r a m s (p a r a m s ) ;

>

pu b lic  vo id  buildModelO { 

s u p e r  .buildM odelO ; 

ad d i t io n a lD a taR e co rd e rs0 ;

Var iab leE f  f  o r tF  i rm . f  irmsToWat c h . add (new  In te g e r  ( 

getF  irmToWatchOne( ) ) ) ;

Var iab leE f  f  o r tF  i rm . f  irmsToWatch. add (new  In te g e r  ( 

getFirmToWatchTwoO));

>

pub lic  Employee crea teE m ployee(in t  i )  {

r e tu r n  new  V ariab leE ffo rtE m ployee(th is ,  i )  ;

>

public  void  destroyFirm (F irm  exFirm) { 

f irm L ifeS ta tF oundersT he ta  =

C (V ariab leE ffo rtF irm )exF irm ).ge tF oundersT he taO ; 

firmLifeStatFoimdersWho =

( (V ariab leE ffortF irm )exF irm ).ge tFoundersW hoO ; 

s u p e r .d e s t ro y F irm (e x F irm );

>

public  void  addFirm(Firm newFirm) { 

f irm B irthS ta tF oundersT heta  =

( (V ariab leE ffortF irm )new Firm ).getFoundersT hetaO  ; 

firmBirthStatFoundersW ho =

200
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( (V ariab leE ffo rtF irm )new F irm ).getFoundersW hoO ; 

s u p e r . addFirm (newFirm );

}

A c  '

p u b lic  double getM inThetaO  { 

r e tu r n  minTheta;

}

p u b lic  vo id  setM inT heta(double argM inTheta) { 

minTheta = argM inTheta;

}

p u b lic  double getM axThetaO { 

if (useMaxTheta) { 

r e tu r n  maxTheta;

} else {

r e tu r n  1 -  m inTheta;

}
}

pub lic  vo id  setM axTheta(double argMaxTheta) { 

maxTheta = argMaxTheta;

>

p u b lic  boolecin getUseMaxThetaO { 

re tu rn  useMaxTheta;

}

p ub lic  vo id  setUseMcLxTheta(boolean argUseMaxTheta) { 

useMaxTheta = argUseMaxTheta;

}

A .4.1. VariahleEffortModeI.java
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p u b lic  double getMinLambdaO { 

r e tu r n  minLambda;

}

p u b lic  vo id  setMinLambda(double argMinLambda) { 

minLambda = argMinLaunbda;

}

p u b lic  double getMaxLambda() { 

if (useMaxLambda) { 

r e tu r n  maxLambda;

} else  {

r e tu r n  1 -  minLajnbda;

}
}

p u b lic  vo id  setMcixLambda (double argMaxLambda) { 

maxLcimbda = argMaxLeunbda;

>

p u b lic  i n t  getFirmToWatchOneO { 

r e tu r n  firmToWatchOne;

>

p u b lic  vo id  setFirm ToW atchOne(int argFinnToWatchOne) -[ 

firmToWatchOne = argFirmToWatchOne;

}

p u b lic  i n t  getFirmToWatchTwoO { 

r e tu r n  firmToWatchTwo;

}

A .4.1. VariableEfFortModeI.java
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public  void  setFirmToWatchTwo(int argFirmToWatchTwo) { 

firmToWatchTwo = argFirmToWatchTwo;

}

public  double getF irm L ifeS ta tFoundersT hetaO  { 

r e tu r n  f irm L ifeS ta tFoundersT he ta ;

}

public  double getFirmLifeStatFoundersWhoO { 

r e tu r n  firmLifeStatFoundersW ho;

>

public  double getF irm B irthS ta tFoundersT hetaO  { 

r e tu r n  f irm B irthS ta tF oundersT heta ;

}

public  double getFirmBirthStatFoundersW ho() { 

r e tu r n  firm BirthStatFoundersW ho;

>

. Htronli  rs

public  void  add it io n a lD a taR eco rd e rsO  { 

if (recordM odelDetail)  { 

recorder.addN um ericD ataSource("m ax_effort" , new  

MajcNumer icDataSource (a g en tL is t)  -[ 

pub lic  double g e tV a lu e (O b jec t  argO bject)  {

r e tu r n  (d o u b le ) ((V ariab leE ffo rtE m ployee)argO bject)  

.g e t E f f o r t O  ;

}
»:

recorder.addN iam ericD ataSource("m in_effort" , new

A .4.1. VariableEfFortModel.java
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MinNTimericDataSource(agentList) { 

pub lic  double g e tV a lu e (O b jec t  argO bject) {

r e tu r n  (doub le)((V ariab leE ffortE m ployee)a rgO bjec t)

■ g e tE f f o r tO  ;

>

»:

recorder.addN um ericD ataSource("avg_eff o r t " , new  

AverageNumericDataSource(agentList) •( 

public  double getValue (O b je c t  argO bject)  {

r e tu r n  (doub le)((V ariab leE ffortE m ployee)a rgO bjec t)

■ g e tE f f o r t  0 ;

>

» ;

reco rd e r .a d d N u m er icD a taS o u rce (" to ta l_ e f fo r t" , new  

T otalN um ericD ataSource(agentList)  { 

pub lic  double getValue (O b je c t  argO bject)  {

r e tu r n  (doub le)((V ariab leE ffortE m ployee)a rgO bjec t)  

.g e tE f f o r tO  ;

}
});

recorder.addNum ericD ataSource("m ax_output" , new  

MaLxNumericDataSource(firmsList) { 

pub lic  double getValue (O b je c t  argO bject) {

r e tu r n  (d o u b le ) ( (V ariab leE ffo rtF irm )argO bjec t)

-getOutput 0 ;

}
» ;

recorder.addNvunericDataSource("min_output", new  

MinNuinericDataSource(firmsList) {

A.4.1. VariableEffortModeLjava
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public  double g e tV a lu e (O b jec t  a rgO bjec t)  {

r e tu r n  (d o u b le ) ( (V a r iab leE ffo r tF in n )a rg O b jec t)

■ getO u tpu tO  ;

}
}):

recorder.addN um ericD ataSource("avg_output" , new  

AverageNumericDataSource(firmsList) { 

pub lic  double getValue (O b je c t  argO bjec t)  {

r e tu r n  (d o u b le ) ( (V a r iab leE ffo r tF irm )arg O b jec t)

■ getO u tpu tO  ;

}
});

reco rd e r .ad d N u m ericD a taS o u rce (" to ta l_ o u tp u t" , new 

TotalN um ericD ataSource(firm sList) { 

pub lic  double getValue (O b je c t  a rgO bjec t)  {

r e tu r n  (d o u b le ) ( (V ar iab leE ffo r tF irm )arg O b jec t)  

. getOutput 0 ;

>

» ;

recorder.addN uinericD ataSource("m ax_effic iency", new  

McLxNumericDataSource(firmsList) { 

pub lic  double getValue (O b je c t  a rgO bjec t)  {

r e tu r n  (d o u b le ) ( (V a r iab leE ffo r tF irm )a rg O b jec t)  

.g e tE ff  i c ie n c y O  ;

}
});

reco rder.addN um ericD ataSource("m in_effic iency" , new 

MinNumericDataSource(firmsList) { 

pub lic  double getValue (O b je c t  a rgO bjec t)  {
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r e tu r n  (d o u b le ) ( (V a r iab leE ffo r tF irm )a rg O b jec t)

■ getEf f  ic ie n c y O  ;

}
}):

recorde r .addN m nericD ataS ource ("avg_eff ic iency" , new  

AverageNumericDataSource(firmsList) { 

pub lic  double g e tV a lu e (O b jec t  argO bject)  {

r e tu r n  (d o u b le ) ( (V a r iab leE ffo r tF irm )a rg O b jec t)

.g e tE f f ic ie n c y O  ;

}
});
}

if (recordF irm C rossSection) {

t h i s . f  i rm C rossSectionR ecorder. addObj ec tD ataSource( " " , new  

A rrayD a taSource(f irm sL ist ,  "Output") { 

pub lic  double getValue (O b je c t  argO bject)  {

r e tu r n  ( (V a r iab leE f fo r tF irm )a rg O b je c t) .g e tO u tp u t( ) ;

}
» ;
t h i s . f  irmCrossSect ionR ecorder.addObj ec tD ataSource( " " , new  

A rray D a taS o u rce( f irm sL is t , "S ize") { 

pub lic  double getValue (O b je c t  argO bject) {

r e tu r n  ( ( V a r ia b le E f fo r tF i rm )a rg O b je c t ) .g e tS iz e O ;

>

»;
th is .f i rm C rossS ec tionR ecorder .addO bjec tD ataS ource ("" , new  

A rray D a taS o u rce( f irm sL is t , " E f fo r t" )  { 

pub lic  double getValue (O b je c t  argO bject) { 

r e tu r n  ( (V a riab leE ffo rtF irm )arg O b jec t)  

.g e tT o ta lR e a l iz e d E f fo r t  0 ;

}

A.4.1. VaiiableEffoTtModel.java,
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});

}

if (recordEmployeeCrossSection) {
this.employeeCrossSectionRecorder.addObj ectDataSource("", 

new ArrayDataSource(agentList, "Who") { 
public double getValue (Object argObject) { 

return ((Employee)argObject).getWhoO;
}

»;
this.employeeCrossSectionRecorder.addObj ectDataSource("", 

new ArrayDataSource(agentList, "Theta") •[ 
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject) 
.getThetaO ;

}
});
this.employeeCrossSectionRecorder.addObjectDataSource("", 

new ArrayDataSource(agentList, "Lambda") { 
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject)
■ getLambdaO ;

}
});
this.employeeCrossSectionRecorder.addObj ectDataSource("", 

new ArrayDataSource(agentList, "Effort") ■[ 
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject)
■ getEffortO ;

}
}) ;
this.employeeCrossSectionRecorder.addObjectDataSource("", 

new ArrayDataSource(agentList, "Utility") -[
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public double getValue(Object argObject) {
return ((VariableEffortEmployee)argObject)
• getUtilityO ;

>

»:
this.employeeCrossSect ionRecorder.addObj ectDataSource("", 

new ArrayDataSourceCagentList, "Firm") { 
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject).firm.who;
>

}) ;
this.employeeCrossSect ionRecorder.addObj ectDataSource("", 

new ArrayDataSource(agentList, "FirmSize") { 
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject).firm 
.getSizeO ;

>

});

}

if (recordEmployeeCrossSectionCaseStudy) {
this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource( 

new ArrayDataSource(agentList, "Who") { 
public double getValue (Object argObject) { 

return ((Employee)argObject).getWhoO;
>

}) ;
this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource( 

new ArrayDataSource(agentList, "Theta") -[ 
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject)
.getThetaO ;

>
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this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource( 
new ArrayDataSource(agentList, "Lambda") { 

public double getValue (Object argObject) {
return ((VariableEffortEmployee)argObject)
■ getLambdaO ;

}
});

this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource( 
"", new ArrayDataSource(agentList, "Effort") { 
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject)
■ getEffortO ;

}
});
this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource( 

new ArrayDataSource(agentList, "Utility") { 
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject)
■ getUtilityO ;

>

}):
this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource( 

new ArrayDataSource(agentList, "Firm") { 
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject).firm.who;
>

»:
this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource( 

new ArrayDataSource(agentList, "FirmSize") { 
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject).firm 
.getSizeO ;
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}
});

}

if (recordFirmLifeStats) {
firmLifeStatsRecorder.createNijmericDataSource( 

"foundersTheta", this,
"getFirmLifeStatFoundersTheta"); 

f innLifeStatsRecorder.createNuinericDataSource( 
"foundersWho", this,
"getFirmLifeStatFoundersWho");

}

if (recordFirmBirthStats) ■[
f irmBirthStatsRecorder.createNumericDataSource( 

"foundersTheta", this, 
"getFirmBirthStatFoundersTheta"); 

f irmBirthStatsRecorder.createNumericDataSource( 
"f oundersWho", this, 
"getFirmBirthStatFoimdersWho");

}
}

>

A .4.1. VariableEffortModeI.java



APPEN D IX A. SOURCE CODE

A .4.2 VariableEfFortEmployee.java

package ie . te d .e c o n o m ic s . f i rm s ;

im p o r t  u ch icago . s r c . sim. a n a ly s i s  .NumericDataSource;

pub lic  class VariableEffortEm ployee e x te n d s  Employee {

p r iv a te  BoimdedDouble c u r r e n tE f f o r t  = new  BoundedDouble(0,l ,0) 

p r iv a te  BoundedDouble t h e t a  = new  BoundedDouble(0,1) ; 

p r iv a te  BoundedDouble lambda = new  BoundedDouble (0 ,1 ) ;

pub lic  V ariab leE ff  ortEmployee (

V ariableEffortM odel newModel, i n t  i )  { 

super(newModel, i ) ;

t h e t a . setValue(newModel.getNextDoubleFromTo( 

newModel.getMinThetaO, 

newModel .getMaxThetaO ) ) ;

Icimbda. setValue(newModel.getNextDoubleFromTo( 

newModel.getMinLambdaO, 

newModel-getMaxLambdaO) ) ;  

a d d i t io n a lD a taR eco rd e rs0 ;

>

public  Firm createNewFirmO -[

r e tu r n  new  V ariab leE ffo r tF irm (m o d e l) ;

}

public  void  a c t i v a t e O  { 

s e tE f f o r t ( O ) ; 

s u p e r . a c t i v a t e O ; 

c a lc u la teA n d S e tC u rre n tE f fo r t0 ;

}

( ' ( i l i  i i l d t i i i
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p u b lic  double calculateM aximumUtilityAtFirm(Firm argFirm) { 

V a r ia b le E f f o r tU t i l i ty F im c t io n  u t i l i t y F u n c t i o n  = new 

V a riab leE ffo r tU ti l i ty F u n c t io n C a rg F irm , th is )  ; 

r e tu r n  u t i l i t y F u n c t i o n . u t i l i t y (

u t i l i t y F u n c t i o n . effortForMcixiniuinUtility( ) )  ;

>

pub lic  double c a l c u l a t e C u r r e n tU t i l i t y () ■[

r e tu r n  new  V ar iab leE ffo r tU ti l i ty F x in c tio n C f irm, th is )

.u t  i l i t y (cu rren tE f f  o r t . g e tV a lu e( ) ) ;

}

pub lic  double c a l c u l a t e S in g l e to n U t i l i t y () -[

V a r ia b le E f fo r tU t i l i ty F u n c t io n  u t i l i t y F u n c t i o n  = new

V a r ia b le E f f o r tU t i l i ty F u n c t io n (0 ,  0, g e tT h e ta O ,  getLambdaO); 

r e tu r n  u t i l i t y F u n c t i o n .u t i l i t y C

u t i l i t y F u n c t i o n .  ef f  ortForMaLximumUtilityO ) ;

}

pub lic  double b e t te rO ffT h an S in g le to n O  {

if ( c a l c u l a t e C u r r e n t U t i l i t y 0  >= c a lc u l a t e S in g l e to n U t i l i t y 0 )  { 

B(it( r off. 

r e tu r n  1 ;

} else  {

. off! n ’( V/ Ih ht t i (rof f ' on our own.

r e tu r n  0;

>

>

pub lic  void  c a lc u la teA n d S e tC u rre n tE f fo r t () {

se tE f  f o r t  (new  V ariab leE ff  o r tU t i l i ty F u n c t io n ( f i rm ,  th is )

. effortForMajcimumUtility0  ) ;

}
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public double calculateFriendsThetaO -[ 
double total = 0;
for (int i = 0; i < model.numberPriends; i++) {

VariableEffortEmployee friend = (VariableEffortEmployea) 
model .getAgent (this.friends [i] . intValueO); 

total += friend.getThetaO;
}
return total;

}

. lr( ( .'.■'fi;’'

public double getEffortO {
return currentEffort.getValueO;

}

public void setEffort(double argEffort) {
((VariableEffortFirm)firm)

.subtractContribution(getRealizedEffort 0); 
currentEffort.setValue(argEffort);
((VariableEffortFirm)f irm).addContribution(getRealizedEffort());

>

public double getRealizedEf fort () {
return currentEffort.getValueO + lambda.getValue();

}

public double getThetaO { 
return theta.getValueO ;

}

public double getLambdaO {
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return lambda.getValue();
}

public double getFriendsThetaO { 
return calculateFriendsThetaO;

>

■ Ddfii  / ? !

public void additionalDataRecorders() { 
if (model.recordEmployeeTimeSeries &&

who '/. (model .numberEmployees/20) == 0) { 
model.employeeTimeSeriesRecorder.addNumericDataSource( 

"theta_"+who, new EmployeeThetaO); 
model.employeeTimeSeriesRecorder.addNumericDataSource( 

"effort_"+who, new EmployeeEffort()); 
model.employeeTimeSeriesRecorder.addNumericDataSource( 

"lambda."+who, new EmployeeLambdaO) ;
}

}

class EmployeeTheta implements NumericDataSource { 
public double execute () { 

return getThetaO ;
}

}

class EmployeeLambda implements NumericDataSource { 
public double execute () { 

return getLambdaO ;
>

>
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class F rien d sT h eta  im p le m e n ts  NumericDataSource { 

p u b lic  double execu te  () {

r e tu r n  g e tF r ie n d sT h e ta O ;

}
}

class EmployeeEff o r t  im p le m e n ts  NmnericDataSource { 

p u b lic  double execu te  () { 

r e tu r n  g e tE f fo r tO  ;

}
>
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A .4.3 VariableEffortUtilityFunction.java

p ackage  ie . te d .e c o n o m ic s . f i rm s ;

pub lic  class V a r ia b le E f fo r tU t i l i ty F u n c t io n  e x te n d s  U t i l i ty F u n c t io n  { 

p ro te c te d  double re s tO fF irm R e a l iz e d E ffo r t ; 

p r o te c te d  double res tO fF irm Size ;

p r o te c te d  BoundedDouble t h e t a  = new  BoundedDouble(O.l); 

p r o te c te d  BoundedDouble lambda = new  BoundedDouble(0,1 ) ;

pu b lic  V a r iab leE ffo r tU ti l i ty F u n c t io n C  

double a rgR estO fF irm R ea lizedE ffo rt ,

double argRestO fFirm Size, double a rgT heta , double argLambda)

{
re s tO fF irm R ea lized E ffo r t  = a rgR estO fF irm R ealizedE ffort; 

res tO fFirm Size  = argRestOfFirmSize; 

t h e t a . s e tV a lu e ( a r g T h e ta ) ; 

lambda. setValue(argLcUnbda);

}

pub lic  V a r ia b le E f fo r tU t i l i ty F u n c t io n (F i rm  f irm ,

VariableEffortEm ployee emp) { 

t h i s ( ( (V a r iab leE ffo r tF irm )f i rm )

■getTotalRealizedEffortExcludingEmployee(emp),

( ( V ariab leE ffortF irm )firm ).ge tS izeE xclud ingE m ployee(em p), 

em p.getThetaO , emp.getLambdaO) ;

}

pub lic  double e ffortForM axim um U tility () { 

r e tu r n  th is .m axim ize( ) ;

}

pub lic  double so lv eF o r(double a rg E f fo r t )  {

BoundedDouble e = n ew  BoundedDouble(0 ,1 ) ;
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BoundedDouble re  = new  Bo\mdedDouble(0,1 ) ;

, A s s i i i n i i u j  f ( i  II i l D i i i i l i l i  i i i i f o i n i i i i c i i l l i j  t ( s i s  f m  j i i ' ap i  r  c i i l u i s .

e . s e tV a lu e ( a r g E f f o r t ) ;

r e . s e tV a lu e (a r g E f fo r t  * la m b d a .g e tV a lu e O );

r e tu r n  M a th ,p o w ((V ar iab leE ffo r tF irm O u tp u tF u n c t io n .g e tO u tp u t( 

re s tO fF irm R ea lized E ffo r t  + r e .g e tV a lu e O )  /  

(res tO fF irm Size + 1) ) ,  

t h e t a .g e tV a lu e () )  * M a th .p o w (l  -  e .g e tV a lu e O  ,

1 -  t h e t a .g e tV a lu e O );

}
}
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A .4.4 VariableEfFortFirm.java

p ackage  i e . ted .eco n o m ics . f i r m s ; 

im p o r t  J a v a . u t i l . I t e r a t o r ;

im p o r t  u ch icag o . s r c . s im . a n a l y s i s . DataRecorder; 

im p o r t  u ch icag o . s r c . s im . a n a l y s i s . NumericDataSource; 

im p o r t  j a v a . u t i l .  A r ra y  L is t;

pub lic  class V ariab leE ffo r tF irm  e x te n d s  Firm { 

p r iv a te  double cachedRealizedEff o r t  = 0; 

p r iv a te  s ta t ic  double d e fau l tT o le ran c e  = 0.00000000001; 

p ro te c te d  s ta t ic  A r r a y L is t< In te g e r> firmsToWatch = new  A r r a y L is tO ;  

p r iv a te  double foimdersTheta; 

p r iv a te  i n t  foundersWho;

pub lic  V ariableEffcrtFirm (Sim pleFirm sM odel newModel) { 

super(newM odel);

if (Var iab leE f  f  o r tF i rm . f  irmsToWatch. co n ta in s  (new  In teg e r  (who) ))  { 

ad d i t io n a lD a ta R e c o rd e r s O ;

}
>

p u b lic  void  s t e p O  ■[ 

s u p e r . s t e p O  ;

double c a lc u la te R e a l iz e d E f fo r t  = 

c a lc u la te T o ta lR e a l i z e d E f fo r t0 ;  

if (M a th ,  abs (c a lcu la teR ea liz ed E f  f o r t  -  cachedRealizedEff o r t )

< 0 . 001) {

cachedR ea lizedE ffo rt  = c a lc u la te R e a l i z e d E f f o r t ;

}
}

pub lic  vo id  fa ilO nC achedR ea lizedE ffortD isc repancy(
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double tolerance) {
if (!checkCachedEffortDiscrepancy(tolerance)) ■[

throw n e w  RuntimeExceptionC "Cached effort " + 
cachedRealizedEffort +
" out of sync with actual effort "+ 
calculateTotalRealizedEffort());

}
}

public void failOnCachedRealizedEffortDiscrepancy() { 
failOnCachedRealizedEffortDiscrepancy(

VariableEffortFirm.defaultTolerance);
>

public void gainEmployee(Employee newEmployee) { 
if (getSize()==0 && getAge()==0) {

foundersTheta = ((VariableEffortEmployee)newEmployee)
■ getThetaO ;

foundersWho = ((VariableEffortEmployee)newEmployee).who;
}
super.gainEmployee(newEmployee);

private double calculateEff iciency () {
double totalEffort = getTotalRealizedEffort(); 
return VariableEffortFirmOutputFunction 

.getOutput(totalEffort)/totalEffort;
>

private double calculateTotalOutput () {
return VariableEffortPirmOutputFunction
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. g e tO u tp u t ( g e t T o t a l R e a l i z e d E f f o r t  0 ) ;

}

p r i v a t e  doub le  c a l c u l a t e T o t a l R e a l i z e d E f f o r t () { 

doub le  r e s u l t  = 0;

for  ( I t e r a t o r  i t  = e m p lo y ees . i t e r a t o r ( ) ;  i t . h a s N e x t ( ) ;  ) { 

r e s u l t  += ( (V a r ia b le E ffo r tE m p lo y e e )  i t . n e x t O )

■ g e t R e a l i z e d E f f o r t O  ;

}
r e t u r n  r e s u l t ;

}

p r i v a t e  doub le  c a lc u la te T o ta lR e a l iz e d E f fo r tE x c lu d in g E m p lo y e e C  

V a r ia b le E ffo r tE m p lo y e e  emp) { 

doub le  r e s u l t  = 0; 

if  (em p lo y ees . c o n ta in s ( e m p ) ) {

r e s u l t  = g e t T o t a l R e a l i z e d E f f o r t ()  -  e m p .g e t R e a l i z e d E f f o r t O ; 

if  ( g e t S i z e O  == 1 && r e s u l t  >

V a r ia b le E f fo r tF i rm .d e f a u l tT o le r c in c e )  { 

t h r o w  n e w  R u n t i m e E x c e p t i o n (

"Nonzero r e s t  of f i r m  e f f o r t  i n  s i n g l e t o n  f i r m . " ) ;

}
} e lse  {

r e s u l t  = g e t T o t a l R e a l i z e d E f f o r t ( ) ;

>

r e t u r n  r e s u l t ;

>

p r i v a t e  doub le  c a c h e d E f fo r tD is c re p a n c y O  {  

r e t u r n  M a t h . abs  ( c a c h e d R e a l i z e d E f fo r t  -  

c a l c u l a t e T o t a l R e a l i z e d E f f o r t  0 ) ;

}
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p r iv a te  double c a lc u la te A v e ra g e l l t i l i ty () { 

if (g e tS iz e O  == 0) { 

r e tu r n  0;

} else {

double r e s u l t  = 0;

for ( I te r a to r  i t  = employees. i t e r a t o r ( ) ;  i t .h a s N e x t ( ) ; )  

{
r e s u l t  += ( (VariableEffortEm ployee) i t . n e x t O )

. c a l c u l a t e C u r r e n tU t i l i t y 0 ;

}
r e tu r n  r e s u l t  /  g e tS iz e O ;

}
}

p r iv a te  double ca lcu la teP ercen tB e t te rO ffT h an S in g leo n O  { 

if (g e tS ize O  == 0) { 

r e tu r n  0;

} else {

double r e s u l t  = 0;

for ( I te r a to r  i t  = e m p lo y e e s . i t e r a to r ( ) ;  i t .h a s N e x t ( ) ; )  

{
r e s u l t  += ( (VariableEffortEm ployee) i t . n e x t O )  

.betterOffThcUiSingletonO ;

}
r e tu r n  r e s u l t  /  g e tS iz e O ;

>

>

p r iv a te  double ca lcu la teA verageT hetaO  { 

if (g e tS ize O  == 0) ■[ 

r e tu r n  0;

} else {

double r e s u l t  = 0;
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for ( I te r a to r  i t  = employees. i t e r a t o r  ( ) ;  i t  .hasNextO ;) 

{
r e s u l t  += ( (VariableEffortEm ployee) i t . n e x t O )

. g e tT h e taO  ;

}
r e tu r n  r e s u l t  /  g e tS i z e O ;

>

>

. 1(17  .ysdl'.'

pub lic  double ge tE ff  i c i e n c y () { 

r e tu r n  c a lc u la te E f f  ic ie n c y O  ;

}

p u b lic  double getO u tpu tO  {

r e tu r n  c a lc u la te T o ta lO u tp u t ( ) ;

>

pub lic  double g e tT o ta lR ea lized E f f  o r t  () -[ 

r e tu r n  ca ch ed R ea l iz ed E ffo r t ;

}

pub lic  double getTotalRealizedEffortExcludingEm ployeeC 

VariableEffortEm ployee emp) {

r e tu r n  ca lcu la teT ota lR ealizedE ffortE xc lud ingE m ployee(em p);

}

pub lic  void addC on tr ibu tion(double  c o n t r ib u t io n )  { 

cachedR ea lizedE ffort  += c o n t r ib u t io n ;

}

pub lic  void s u b t ra c tC o n tr ib u t io n (d o u b le  c o n t r ib u t io n )  {
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cachedR ea lizedE ffort  -= c o n t r ib u t io n ;

>

pub lic  boolean checkCachedEffortD iscrepancy(double to le ra n c e )  { 

r e tu r n  cachedE ffortD iscrepancy() < to le ra n c e ;

}

pub lic  boolecin checkCachedEff ortD iscrepancy  () { 

r e tu r n  checkCachedEffortD iscrepancy(

V a r ia b le E f fo r tF i rm .d e fa u l tT o le r a n c e ) ;

}

pub lic  double getFoundersThetaO  { 

r e tu r n  foundersTheta;

}

pub lic  i n t  getFoundersWho () { 

r e tu r n  foundersWho;

}

■ Diitd I{( c(ir(l( I S

pub lic  vo id  ad d it io n a lD a taK eco rd e rs () ■[ 

if (model. recordFirmTimeSeries) {

model. firmTimeSeriesRecorder.addNumericDataSource(

"f irm_size_"+ who, new  F irm S ize O ); 

model. f irm Tim eSeriesR ecorder.addNumericDataSource( 

" to ta l_ e f fo r t_ " +  who, new  T o t a l E f f o r t ( ) ) ;  

model. f irm Tim eSeriesR ecorder. addNumericDataSource( 

"average_em ployee_util i ty_"+  who, new  

A v e ra g e U ti l i ty 0 ) ;  

m odel. f irm Tim eSeriesR ecorder. addNumericDataSource(

"average_employee_theta_"+ who, new  A verageThetaO);
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model. firm Tim eSeriesR ecorder. addNumericDataSourceC 

" p e rc e n t_ b e t te r_ o ff_ th a n _ s in g le to n _ "+  who, new  

Percen tB ette rO ffT hcinS ing le tonO );

}
}

class FirmSize im p le m e n ts  NumericDataSource { 

pu b lic  double execute () { 

t r y  {

r e tu r n  V a r ia b le E f fo r tF i rm . th is .g e tS iz e O  ;

} ca tc h  (N u l lP o in te rE x c e p t io n  ex) { 

r e tu r n  0;

}
>

}

class T o ta lE f fo r t  im p le m e n ts  NumericDataSource { 

pub lic  double ex e c u te () { 

t r y  {

r e tu r n  V a r ia b le E f fo r tF i rm . th is .g e tT o ta lR e a l iz e d E ffo r tO  ;

} c a tc h  (N u l lP o in te rE x c e p t io n  ex) { 

r e tu r n  0;

}
>

}

class A v e rag eU ti l i ty  im p le m e n ts  NumericDataSource { 

p u b lic  double execute () { 

t r y  {

r e tu r n  V a r ia b le E f fo r tF i rm .th is .  c a lc u la te A v e ra g e U ti l i ty O  ; 

} c a tc h  (N u l lP o in te rE x c e p t io n  ex) { 

r e tu r n  0;

}
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}
>

c lass AverageTheta im p lem en ts  NvimericDataSource { 

p u b lic  double ex e c u te () { 

t r y  {

re tu r n  V a riab leE ffo rtF irm .th is .c a lc u la te A v e rag eT h e ta O  ; 

} c a tc h  (N u llP o in te rE x c e p tio n  ex) -[ 

r e tu r n  0;

}
}

>

class P ercen tB e tte rO ffT h an S in g le to n  im p le m e n ts  NumericDataSource { 

p u b lic  double e x e cu te () { 

t ry  {

r e tu r n  V a ria b le E ffo rtP irm .th is .

c a lc u la te P e rc e n tB e tte rO f fThcinSingleonO ;

} c a tc h  (N u llP o in te rE x c e p tio n  ex) { 

r e tu r n  0;

}
}

}
>
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A .4.5  V ariableE ffortF irm O utputF unction .java

package i e . ted .eco n o m ics . f i r m s ;

p u b lic  class V ariab leE ffortF irm O utpu tFunction  { 

final s ta t ic  p ro te c te d  double A = 1 ; 

final s ta t ic  p ro te c te d  double B = 1 ; 

final s ta t ic  p ro te c te d  i n t  EXP = 2;

p u b lic  s ta t ic  double g e tO u tp u t(double e f f o r t )  {

if ( e f f o r t  < 0 && M a t h . abs ( e f f o r t )  > 0.0000000000001) { 

th ro w  new  R u n t im e E x c e p t io n (

"C a l l in g  V ariab leE ffo rtF irm O utpu tF unc tion .ge tO u tpu t"

+ " w ith  n eg a tiv e  e f f o r t . " ) ;

}
r e tu r n  A * e f f o r t  + B * M a th .p o w (e f f o r t ,  EXP);

>

}
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A .5 Exogenous B irth M odel

A .5.1 E xogenousB irth M od el.java

package ie . te d .e c o n o m ic s . f i rm s ;

pub lic  class ExogenousBirthModel e x te n d s  SimpleFirmsModel {

pub lic  ExogenousBirthModel 0  { 

s u p e r ( ) ;

>

pub lic  void  buildM odelO { 

s u p e r  .buildM odelO ; 

a d d i t io n a lD a ta R e c o rd e r s O ;

}

pub lic  Employee createE m ployee(in t i )  {

r e tu r n  new  ExogenousBirthEmployee(this, i )  ;

}

pub lic  void  add it io n a lD a taR eco rd e rsO  {

if (recordM odelDetail)  {

r e c o r d e r . addNumericDataSource( " f i rm s _ a v a i l a b le " , new  

AverageNumericDataSource(agentList) { 

pub lic  double getValue (O b je c t  argO bject) {

r e tu r n  (d o u b le ) ( (ExogenousBirthEmployee)argObject). 

getCountO fA vailableFirm s0 ;

>

»;
>

if  (recordFirm CrossSection) {

A .5.1. ExogenousBirthModel.java
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this.finnCrossSectionRecorder .addObjectDataSourceC" , new 
ArrayDataSourceCfirmsList, "Who") { 
public double get Value (Object argObject) -[

return ((ExogenousBirthFirm)argObject).who;
}

»;
this.finnCrossSectionRecorder.addObjectDataSourceC"", new 

ArrayDataSourceCfirmsList, "Size") -[ 
public double getValueCObject argObject) {

return CCExogenousBirthFirm)argObject).getSizeC);
}

});

>

if CrecordEmployeeCrossSection) {
this.employeeCrossSectionRecorder.addObj ectDataSource C"", 

new ArrayDataSourceCagentList, "Who") { 
public double getValueCObject argObject) {

return CCExogenousBirthEmployee)argObject).who;
}

»;
this.employeeCrossSectionRecorder.addObjectDataSourceC"", 

new ArrayDataSourceCagentList,
"CountOfAvailableFirms") ■[ 

public double getValueCObject argObject) {
return CCExogenousBirthEmployee)argObject). 

getCountOfAvailableFirmsC);
}

»:
>

}
}

228
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A .5.2 ExogenousBirthEm ployee.java

p ackage i e . ted .eco n o m ics . f i rm s ;

im p o r t  j a v a .u t i l .H a s h S e t ;  

im p o r t  j a v a .u t i l . I t e r a t o r ;

im p o r t  u ch icag o . s r c . s im .a n a ly s is . Num ericDataSource;

p u b lic  class ExogenousBirthEmployee ex te n d s  Employee { 

p r iv a te  double randomDouble; 

p r iv a te  in t  countO fA vailab leF irm s; 

p r iv a te  double com binedSizeO fA vailableFirm s;

p u b lic  ExogenousBirthEmployee(SimpleFirmsM odel newModel, in t  i ) {  

su p e r  (newModel, i )  ;

}

p u b lic  Firm createNewFirmO {

re tu r n  new  E xogenousB irthFirm (m odel);

}

■ /  T h i s  (iiK IS t oo  n  iii 1o f o l l o w  t in s f n i u h n y l  inoii(l .

' '  • ô Jl i s t  I'ri  ru ' r i i '  i i i i j iMa.t  i n n m i l  f i l i f  t / F / n n  

p ro te c te d  void  joinM axim um UtilityFirm O  { 

in t  o p tio n  = STAY_CURRENT_FIRM_OPTION;

Firm firm ToJoin  = n u l l ;

if  ( IforceN ew Single tonO ) {

H a sh S e t av a ila b le F irm s  = new  H a sh S e tO ;

CollectionSummary firmSizeSummary = new  

C ollectionS iim m ary(availab leF irm s) { 

p u b lic  double g e tV a lu e (O b jec t c o lle c tio n O b je c t)  ■[
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return ((Firm)collectionObject).getSizeO;
>

};

availableFirms.add(firm);

for (int i = 0; i < friends.length; i++) { 
availableFirms.add(getFriend(i).firm);

}

countOfAvailableFirms = availableFirms.size();

double combinedSizeOfFirms = firmSizeSummary.getTotalO; 
combinedSizeOfAvailableFirms = combinedSizeOfFirms;

if (model.allowNewFirms && firm.getSizeO != 1) {
l l n n k  (ihoiil <i siii(/I( t o n  til '"'- 

combinedSizeOfFirms++;
}

double random = model.getNextDoubleFromTo(0,1); 
double accum = 0;

for (Iterator it = availableFirms. iterator (); it.hasNextO;)

Firm thisFirm = (Firm)it.next(); 
accum += (double)thisFirm.getSizeO; 
if (accum/combinedSizeOfFirms > random) { 

if (! thisFirm. equals (firm)) {,

option = JOIN_EXISTING_FIRM_OPTION; 
firmToJoin = thisFirm;

}
break;
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>

}

if (model.allowNewFirms && firm.getSizeO != 1) { 
if (accmn/combinedSizeOfFirms < random) { 

option = CREATE_NEW_FIRM_OPTION;
}

}

} else {
' F o r n  (I IK tr sivf j i i  foil  p i  i:

if (model.allowNewFirms && firm.getSizeO != 1) { 
option = CREATE.NEW_FIRM_OPTION;

}
}

switch (option) {
case CREATE_NEW_FIRM_OPTION:

model.addSizeOfF irmLef t(f irm.getSize());
createAndJoinFirmO ;
model.nimberCreat ingNewF irm++;
model.addSizeOfFirmJoined(l);
break;

case JOIN_EXISTING_FIRM_OPTION:
model.addSizeOfFirmLeft(firm.getSize());
joinFirm(firmToJoin);
model,numberJoiningFriendsFirm++;
model.addSizeOfF irmJoined(f irmToJoin.getSize());
break;

case STAY_CURRENT_FIRM_OPTION:
model.addSizeOfF irmStayed(f irm.getSize());
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m odel.num berStayingC urrentF  irm++;

}
}

.1

p u b lic  double getC ountO fA vailab leF irm s() { 

r e tu r n  countO fA vailab leF irm s;

}

p u b lic  double getC om binedSizeO fA vailableFirm sO  { 

r e tu r n  com binedSizeO fA vailableFirm s;

>

l ) ( i ’ - h ‘ i i " i ( l ( i . '

class CountOf A vailab leF irm s im p le m e n ts  NumericDataSource { 

p u b lic  double ex e c u te () {

re tu r n  getC ountO fA vailab leF irm s( ) ;

>

}

class CombinedSizeOf A vailab leF irm s im p le m e n ts  

NumericDataSource { 

p u b lic  double e x e c u te () ■[

re tu r n  getC om binedSizeO fA vailableF irm sO ;

}
}

}
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A .5.3 ExogenousBirthFirm .java

package i e . ted .eco n o m ics . f i r m s ;

im p o r t  u ch icag o . s r c . s im . a n a l y s i s . D ataRecorder; 

im p o r t  u ch icag o . s r c . s im .c in a ly s is . NumericDataSource; 

im p o r t  j a v a . u t i l . A r r a y L i s t ;

' T h i s  siiliscld.ss (i f  F / n n  i sn ' t  n( ( d( d  f o r  h(l}<ivi(iiir. j ns1  fi> / ikI / i 'iiI ikiI f i , ni  ohs(  i i n  s.

pub lic  class ExogenousBirthFirm e x te n d s  Firm {

p ro te c te d  s ta t ic  A r ra y L is t< I n te g e r> firmsToWatch = new  A r ra y L is tO ;

pub lic  ExogenousBirthFirmCSimpleFirmsModel newModel) { 

super(newM odel);

if (ExogenousBirthFirm. firmsToWatch. co n ta in s  (new  In te g e r  (who)) ){  

add it io n a lD a taR eco rd e rsO  ;

>

}

public  void ad d it io n a lD ataR eco rd ersO  { 

if (model .recordFirmTimeSeries) -[

m odel. firmTimeSeriesRecorder.addNumericDataSource(

"firm _size_"+  who, new  F irm SizeO ) ;

}
}

class FirmSize im p le m e n ts  NumericDataSource { 

pub lic  double e x e cu te () { 

t r y  {

r e tu r n  E xogenousB ir thF irm .th is .ge tS izeO  ;

> c a tc h  (N u l lP o in te rE x c e p t io n  ex) { 

r e tu r n  0;

}
}
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}
}

A. 5.3. ExogenousBirthFirm .Java
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A .6 Cost Curve M odel

A .6.1 C ostC urveM odel.java

package ie . te d .e c o n o m ic s . f i rm s ;

im p o r t  j a v a . u t i l . I t e r a t o r ;

im p o r t  u ch icag o . s r c . s im . e n g in e . S im ln i t ;

im p o r t  u ch icag o . s r c . s im . u t i l . R a n d o m ;

pub lic  class CostCurveModel e x te n d s  SimpleFirmsModel {

p r iv a te  double gamma = 0 .5 ;  

p r iv a te  double ph i  = 0; 

p r iv a te  double nu = 0; 

p r iv a te  double b e ta  = 0;

pub lic  CostCurveModel() -[ 

s u p e r  () ;

}

pub lic  s ta t ic  vo id  main (S t r in g  [] a rgs )  {

S im ln it  i n i t  = new  S im ln it  () ;

i n i t . loadModel (new  CostCurveModel 0  , n u l l ,  f a l s e ) ;

>

pub lic  S tr in g  [] g e t ln i tP a ram O  ■[

S tr in g [ ]  params = {"gamma", "p h i" ,  "n u " , "be ta"} ; 

r e tu r n  s u p e r .a d d i t io n a l ln i tP a rc u n s (p a ra m s ) ;

>

pub lic  Ejnployee createE m ployee(in t i )  {

r e tu r n  new  CostCurveEmployee(this, i ) ;

>
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p u b lic  vo id  buildM odelO  { 

su p e r  .buildM odelO  ; 

a d d itio n a lD a ta R e c o rd e rsO ;

}

p u b lic  vo id  s te p O  { 

s u p e r .S te p O  ;

S (  f u p  F i n n  <l<it(i n  (■<>r(l( I S ii f f i  r  I s i  s l i p .

"^ i f  ( this. ( /< t T i c h C d i i i i t i  I ■■ 11 {

f a r  l U t n i t o r  i1 p r i i i s i . i s i . ii< n i t o i i  I: i i . l i i i s X i  r i i  I: I {

( ' l i s t ( ' u r n  F i n n  f i r m  I ( ' o s i C m  n  F i n u l i i . i n . v i l L  

i j  I f i rni . i i r i S iP. f  11 III \

J l n i l . a i l d i i i d i K i l D i i t a l i (  c i i n i i  r s i  j:

I
I

}

1 »'■ , f

}

. ' : \ l  I ! s^-- '.

p u b lic  double getGammaO { 

r e tu r n  gamma;

}

p u b lic  vo id  setGeunma (double argGamma) { 

gamma -  argGamma;

}

p u b lic  double g e tP h iO  { 

r e tu r n  p h i ;

}
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pub lic  vo id  se tP h i  (double argPhi)  { 

ph i = a rg P h i ;

}

pub lic  double getNuO { 

r e tu r n  nu;

>

pub lic  vo id  setNu(double argNu) { 

nu = argNu;

>

pub lic  double g e tB e taO  { 

r e tu r n  b e ta ;

}

pub lic  vo id  se tB e ta (doub le  argBeta) { 

b e ta  = argBeta;

}

, D(i1(i Rt  i i inn  r.s

pub lic  vo id  add it io n a lD a taR eco rd e rsO  { 

if (recordM odelDetail) -[

r e c o r d e r . addNumericDataSource("min_unit_cost", new  

MinNumericDataSource(firmsList) { 

pub lic  double g e tV a lu e (O b jec t  argO bject) { 

r e tu r n  (d o u b le ) ( (CostCurveFirm)argObject)

■ getU nitC ost 0 ;

>

»;

recorder.addNum ericD ataSource("m ax_iin it_cost" , new
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MaxNiunericDataSource(firmsList) { 

pub lic  double getValue (O b je c t  argO bject)  { 

r e tu r n  (d o u b le ) ( (CostCurveFirm)argObject) 

■ g e tU n itC o s tO  ;

}
});

}
}

}
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A .6.2 C ostC urveE m ployee.java

package ie.ted.economics.firms;

public class CostCurveEmployee extends Employee •[

public CostCurveEmployee(SimpleFirmsModel newModel, int i){ 
super(newModel, i);

}

public Firm createNewFirmO {
return n e w  CostCurveFirm(model) ;

}

public double calculateCurrentUtility() ■[
return calculateMaximumUtilityAtFirm((CostCurveFirm)firm);

}

public double calculateMaximumUtilityAtFirm(
Firm firmForUtility) {
if (firmForUtility.containsEmployee(this)) {

return ((CostCiirveFirm)firmForUtility).getPerCapitalncomeO; 
} else {

return CostCurveFirmCostFunction.calculatePerCapitaIncome( 
(CostCurveFirm)f irmForUtility,
((CostCurveFirm)firmForUtility).getMarketSharePlusOne(), 
firmForUtility.getSizeO + 1);

}
}

}
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A .6.3 CostCurveFirm.java

package ie.ted.economics.firms; 

import j ava. lang. M a t h ;
import uchicago. src. sim. analysis .DataRecorder; 
import uchicago.src.sim.analysis.NumericDataSource;

public class CostCurveFirm extends Firm -[

protected double unitCost;

public CostCurveFirm(SimpleFirmsModel newModel) -[ 
super(newModel);
double gamma = ((CostCurveModel)model).getGammaO;

'■‘r u i d n : : .  m / l C o s i  1 n  i : . : h  p n h  i i f  ' f K i U . ’1 H n .

unitCost = model.getNextDoubleFromTo(0.5 - gamma, 0.5 + gamma); 
additionalDataRecorders0;

}

( ' ( i lcuhi lors

private double calculatePerCapitalncomeO {
return CostCurveFirmCostFunction.calculatePerCapitalncome(this, 

calculateMarketShareO , getSizeO);
>

private double calculateMarketShareO {
return (double)getSizeO / (double)model.numberEmployees;

>

private double calculateMarketSharePlusOneO {
return ((double)getSizeO + 1.0) / (double)model.numberEmployees;

}
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.4 .

pub lic  double getPerC apita lncom eO  { 

r e tu r n  ca lc u la teP erC ap i ta ln co m e() ;

}

public  double getM arketShareO  { 

r e tu r n  ca lcu la teM ark e tS h a re ( ) ;

}

public  double getM arketSharePlusOne() { 

r e tu r n  ca lcu la teM arke tSha reP lusO neO ;

}

pub lic  double ge tU n itC os tO  { 

r e tu r n  u n i tC o s t ;

>

. ' / D a t a  !?(r o . . '

pub lic  void ad d i t io n a lD a taR eco rd e rsO  { 

if (model. recordFirmTimeSeries) {

m odel. f  irmT im eSeriesR ecorder. addNumericDataSource( 

"m arket_share_"+hashCode(), new  M arketShareO) ; 

m odel. firm Tim eSeriesR ecorder. addNumericDataSource( 

"un it_cost_"+ hashC ode() , new  U n i tC o s tO ) ;

}
}

class MarketShare im p le m e n ts  NumericDataSource { 

pub lic  double execute () {

r e tu r n  CostC urveFirm .th is .getM arketShareO  ;

>
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class UnitCost im p le m e n ts  NumericDataSource { 

pub lic  double e x e c u te () {

r e tu r n  C ostC urveF irm .th is .ge tU n itC ostO  ;

}
}
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A .6.4 C ostC urveF irm C ostF unction .java

package ie . te d .e c o n o m ic s . f i rm s ;  

pub lic  class CostCurveFirmCostFunction {

pub lic  s ta t ic  double calcu la teU nitC ost(CostC urveF irm  f irm , 

double marketShare) {

double ph i = ((C ostC urveM ode l)f irm .m ode l) .ge tP h iO ; 

double nu = ( (CostCurveM odel)f irm .m odel).getN uO; 

double b e ta  = ( (C ostC urveM odel)f irm .m odel) .getB etaO ;

if (marketShare < 0) {

th ro w  new  R u n t im e E x c e p t io n  (

"marketShare Cannot Be Less Than 0 " ) ;

} else if (marketShare > 1) ■[

th ro w  new  R u n t im e E x c e p t io n  (

"marketShare Cannot Be G rea te r  Than 1");

>

r e tu r n  f i rm .u n i tC o s t  * (1 + phi * (2 * nu -  marketShare) * 

marketShare * (1 -  b e ta  * m arketShare)) ;

}

public  s ta t ic  double ca lc u la te T o ta lC o s t  (

CostCurveFirm f i rm , double m arketShare, i n t  f irm S ize)  { 

r e tu r n  c a lc u la te U n i tC o s t ( f i rm ,  marketShare) * f irm S ize ;

}

pub lic  s ta t ic  double ca lcu la teT o ta lIncom e(

CostCurveFirm f i rm , double marketShare, i n t  f irm S ize)  { 

r e tu r n  f irm S ize  -  c a lc u la te T o ta lC o s t ( 

f i rm ,  m arketShare, f i rm S ize ) ;

244
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public static double calculatePerCapitalncome(
CostCurveFirm firm, double marketShare, int firmSize) { 
return calculateTotallncome(

firm, marketShare, firmSize) / firmSize;
}
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