
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

T R IN IT Y C O L L E G E

LIBRARY DUBLIN

, 0 5 JUL 2 0 0 7

^ \1\

Self-Organising Skew Distributions in an

Agent-Based Model W ith Applications to

Gibrat’s Law

Ana Nelson

Ph.D. Thesis

2007

Department of Economics

University of Dublin, Trinity College

DECLARATION

I hereby declare that:

a) this thesis has not been submitted as an exercise for a

at this or any other University and

b) this thesis is entirely my own work.

I hereby agree that:

c) the Library may lend or copy this thesis upon request.

Ana Nelson

Siiniinary

Three models for the firm size distribution are implemented using an

Agent-Based Modelling (ABM) framework, and a theory explaining the

source of a skew firm size distribution in one of the models is proposed.

The variable effort model produces a skew distribution of firm sizes, we

propose, due to the presence within the model of endogenous birth and pro

portional growth forces. These forces result from the instantiation within

an agent-based model of contradictory microeconomic tendencies, namely

the free riding tendency due to Cobb-Douglas income leisure preferences

and the increasing returns to scale of the firm production function. All of

these elements have a role to play in the resultant generation of a skew firm

size distribution.

Acknowledgements

I am indebted to my supervisor, Jacco Thijssen, for his many helpful

comments and insights, and for his support and encouragement. I am also

grateful to the Department of Economics and the University for financial

and academic support. I wish to acknowledge the developers and user com

munities of RePast, R, TeX and TextM ate software in particular, and the

open source community in general, for the many freely available resources

which were utilised during the preparation of this work. Finally, numerous

conference participants have made helpful comments and provided feedback,

and I would particularly like to thank Robert Axtell for his input.

Contents

1 In tro d u ctio n 3

2 Skew P ro b a b ility D is tr ib u tio n s 9

2.1 Skew Probability D is t r ib u t io n s ... 9

2.1.1 The Power Law and Lognormal D is tr ib u tio n s 12

2.1.2 The Fractal D is tr ib u t io n s .. 15

2.2 Some Exam ple D a ta s e t s ... 16

2.2.1 W ords in Beowulf .. 17

2.2.2 G enera and Species of Snake ... 18

2.2.3 Cities in the U nited S tates .. 19

2.2.4 D iscussion ... 19

2.3 G ib ra t’s L a w .. 29

2.3.1 Sim on’s A p p r o a c h .. 30

2.3.2 G abaix’s A p p ro a c h .. 32

2.4 Scale Invariance and Power L a w s .. 34

3 A n A g e n t-B a se d F irm s F ram ew ork 37

4 A V ariab le E ffort M o d e l 43

4.1 In tro d u c tio n ... 43

4.2 Case Studies .. 45

4.2.1 Large Firm Case S t u d y ..45

4.2.2 Medium Firm Case S t u d y .. 47

4.3 0 , Effort, U tility and the F i r m ... 54

4.3.1 Founder’s 6 ..54

1

2

4.3.2 Agent Income, Effort and U t i l i t y 55

4.4 Firm Size D istrib u tio n .. 70

4.5 D iscussion... 71

5 E xtensions o f a Variable Effort M odel 77

5.1 Sequential Activation.. 77

5.2 Myopia .. 88

5.3 D iscussion... 89

6 A n Exogenous B irth M odel 97

6.1 Implementing Exogenous Birth with A g e n ts 98

6.2 A Survey of the Parameter S p a c e .. 99

6.3 Firm Size D is trib u tio n ...105

6.3.1 A “Super” F ir m ... 105

6.3.2 More D iv e rs ity ... 106

6.3.3 Small Firms Only ...107

6.4 D iscussion... 110

7 A C ost Curve M odel 113

7.1 Implementing Cost Curves with Agents 114

7.1.1 Static Economies of S c a l e ...114

7.1.2 Dynamic Economies of S c a l e .. 116

7.2 R esults..118

7.2.1 Static Economies of S c a le ...118

7.2.2 Dynamic Economies of S c a l e .. 120

7.3 D iscussion...126

8 Conclusions 127

References.. 130

A Source Code 135

Chapter 1

Introduction

It is time to see how the new ideas can usefully be applied to that

immensely complex, but indisputably self-organizing system we

call the economy. (Krugman 1996)[p. vi]

The economy, as Krugman and many others have observed, is self-

organising. We all participate in this self-organisation on a daily basis,

our ancestors have done so for tens of thousands of years. Most of us would

think of such participation as a human right, if it were not so ubiquitous

th a t we usually do not think about it at all. We choose where, when and

how to sell our labour, or the fruits of it, and where, when and how to buy

the fruits of others’. All of the larger structures in the economy, firms for ex

ample, result from the interaction over time of a large number of individual

acts of economic participation. Even in the most highly-centralised ordered

economies, underground markets flourish, driven by individuals seeking the

benefits of trade. A self-organising economy is a seemingly unstoppable

emergent property of human group behaviour.

Research into self-organizing systems has arisen out of the study of com

plex systems, which itself is rooted in the disciplines of complexity theory

and chaos theory. Computer simulation gave birth to chaos theory, with

Lorenz’ famous meteorology simulation in which a small change in input

resulted in a very different output, and is also the primary means we have

to study it and its descendants. “To chaos researchers, mathematics has

3

CH APTER 1. IN TRO D U CTIO N 4

become an experimental science, with the computer replacing laboratories

full of test tubes and microscopes.” (Gleick 1987) [p. 38] Whilst in principle

a modern computer can only solve an extremely small subset of those prob

lems which the human mind is capable of solving, in reality computers open

up new realms of research with their two fundamental advantages, speed and

memory. Instead of having to reduce complex systems to a small number of

linear differential equations to make them analytically tractable, computer

simulation allows us to make different types of simplifications which may

prove to retain more of tha t which interested us in the original and which

will, at the very minimum, give us a new perspective.

Since a computer is capable of remembering the preferences, attributes

and current states of a very large number of objects, it is possible to con

struct a type of simulation which mimics the interaction of agents in an

economy. Agents in such a simulation are discrete entities in virtual time

and space. Even if they are homogeneous in design (though they seldom are)

they are separate, distinct beings, and they interact as such. The economy

moves forward, one stej) at a time, because one agent interacts in some way

with another agent. The study of economics using Agent-Based Modelling

(ABM) is necessarily about more than just the current state of affairs, it is

also about how the economy arrived there. It is about interaction/process,

as well as aggregation/state. The two are inseparable. To arrive at a partic

ular state, the system must have experienced the path of a process leading

to tha t state.

In an agent-based model, the macroeconomics of the system are an emer

gent property of the microeconomics. (Or, the state of the system is an

emergent property of the process.) Behaviour is only programmed at the

microeconomic level, agents interact locally with other agents. Macro-level

regularities or patterns are said to be emergent since they are a conse

quence of interaction within the system, and not externally specified or

programmed. This structure enables a researcher to study the impact of a

micro-level change on the macro-level emergent properties of a system.

In this thesis, we will be employing various agent-based models to exam

ine a question which has had a strong impact on the evolution of the theory

CHAPTER 1. INTRODUCTION 5

of the firm. Why does the distribution of firm sizes take the form th a t it

does, namely a skew distribution resembling a power law? The skew distri

bution of firm sizes represents the state, a t a point in time, of one aspect

of the economy. We will be looking at processes which might lead to th a t

state. Firms, being large-scale complex structures, will not be programmed

into our simulation but will arise through the interaction of agents. Agents

will be programmed to organise themselves into firms using a variety of

behavioural rules, which will vary from model to model. Thus the simu

lated firms themselves, as well as information about the entire population

of firms, including the size distribution, will be emergent properties of the

simulation.

The empirical skew distribution of firm sizes has been a focal point for

research into the growth of firms since at least the time of Gibrat. Gibrat

proposed that a lognormal distribution would fit the empirical observations

he made for French firm sizes, and based upon a stochastic process which

leads to a lognormal distribution, he proposed tha t firm growth rates are

random variables independent of firm size, or equivalently th a t absolute

firm growth is proportional to firm size. Subsequent researchers have refined

and modified this algorithm, either to produce a slightly different probability

distribution such as the Yule or Pareto, or to improve the economic intuition

of the model.

The power law or Pareto distribution is easily recognised since its proba

bility density function (PDF) has a straight-line shape in double logarithmic

coordinates. The lognormal PDF has a similar shape, it is a parabola in

double logarithmic coordinates, which with certain parameter values can

appear almost linear. There is a closer relationship between these distribu

tions than simply a visual similarity, the generative models which lead to

a lognormal can be altered slightly to produce a power law distribution in

stead. It is therefore not surprising tha t there has been considerable debate

in the literature as to whether the lognormal or power law is a better fit to

empirical data. There is no consensus. For some data sets the lognormal

is a better fit, for others the power law. For many, neither fits particularly

well, causing some researchers to wish to abandon this line of reasoning al-

CH APTE R 1. IN TRODUCTION 6

together. Sutton, who has written extensively on the work descending from

G ibrat’s original book, summarises the state of play as follows:

In particular, there is no obvious rationale for positing any gen

eral relationship between a firm’s size and its expected growth

rate, nor is there any reason to expect the size distribution of

firms to take any particular form for the general run of indus

tries. Most authors now claim only th a t the distribution will

be skew, but do not specify the extent of the skewness, of the

particular form the size distribution might take.

This new agnosticism as to the form of the size distribution

meshes well with the empirical finding . . . according to which no

particular form of size distribution can be justified as typical

across the general run of industries. (Sutton 1998) [p. 245]

Thus, the emphasis seems to be moving away from seeking a definitive

answer as to the precise nature of this distribution, in recognition of the

fact tha t there probably isn’t one. Furthermore, G ibrat’s hypothesis, the

Law of Proportional Growth, has not stood up to econometric scrutiny and

is no longer intuitively appealing (Cefis, Ciccarelli, and Orsenigo 2004).

Where to go from here? The agent-based models being explored in this

thesis have opened up a new way of thinking about this situation. In one

of the models, firms do exhibit a sort of proportional growth in agreement

with Gibrat, but such growth is not an assumption of the model. This

pattern emerges from the programmed agent-level behaviour. In this same

model we also observe a skew distribution of firm sizes. The growth is not

exactly like Gibrat, and the resulting distribution of firm sizes is not shaped

precisely like a power law or lognormal distribution, but it is plausible tha t

a process which behaves similarly to a G ibrat proportional growth process

would result in a similar probability distribution, and if unrelated agent-level

behaviours can mimic such a process at the firm level, then we can construct

a new, more intuitively appealing foundation for the macroeconomic theory

of firm size distribution based upon modern microeconomic theories of firm

organisation and behaviour. Such work is beyond the scope of this thesis,

CHAPTER 1. INTRODUCTION 7

but what will be done here is to explore in a computational laboratory

setting the principles th a t might guide such later work.

It must be stressed that the research herein is of a theoretical nature,

and we are interested in the skew distribution of firm sizes as a stylised

fact. It is not the purpose of this research to revisit, or even to delve

deeply into, the question of which probability distribution best describes the

empirical firm size distribution. We certainly will not attem pt to fine-tune

the models to match a particular shape or slope of an empirical distribution,

or evaluate the models on their precise correspondence to empirical data.

W hat is of interest is the fact th a t a highly abstracted model, the variable

effort model, is capable of producing results in accordance with a stylised

fact when many mainstream models either do not address the question or

cannot reproduce it. We seek in this thesis to understand why and how

this abstract model produces a skew distribution of firm sizes, and thus we

hope to evaluate whether this model represents an amusing toy or a valuable

tool for comprehending one of the most widespread empirical regularities in

economics.

In the next chapter of this thesis, we will review the history of the skew

distribution of firm sizes in economics, and also review several skew proba

bility distributions including the power law. In Chapter 3, we will discuss

ABM in general and how our particular models are actually implemented

in code. The following four chapters will relate to the models and their

simulation results.

The first model, and the one which will be dealt with in most detail,

is a variable-effort model and is presented in Chapter 4 with additional

extensions to the model in Chapter 5. The variable-effort model is the most

typical agent-based model we will see here, agents are heterogeneous and

the formation of firms will be strictly endogenous. The later two models

are based on more conventional approaches to the firm size distribution, and

have exogenous elements contributing to the resultant firm size distribution.

In Chapter 6 we implement an exogenous birth model which is inspired by

some of the modifications to G ibrat’s Law intended to address the problem of

increasing variance over time, an issue we will discuss in Secion 2.3. Our final

CHAPTER 1. INTRODUCTION 8

model in Chapter 7 tries to link the traditional cost curve analysis approach

to the agent-based approach. Finally, we will discuss the implications of the

three models and conclusions in Chapter 8. Source code is contained in an

appendix.

Chapter 2

Skew Probability

Distributions, G ibrat’s

Law and Scale Invariance

In this chapter we survey two well-known skew probability distributions

along with two less well-known distributions. Following this discussion, we

will consider G ibrat’s Law and some of the models which descended from

G ibrat’s original economic interpretation of a generating function for the

lognormal probability distribution. Finally, we discuss some of the theoreti

cal implications of the concept of scale invariance, and how they may apply

to this research.

2.1 Skew Probability D istributions

The power law and lognormal distributions are the most well-known skew

distributions, they have been competing for “market share” amongst re

searchers interested in skew distributions since there have been researchers

interested in skew distributions, but neither theoretical nor empirical work

has managed to settle the apparent dispute between which of them is “the”

skew distribution. As we shall see in this section, they are in fact related to

each other in much deeper ways than just their superficial resemblance. We

9

C H APTER 2. SK E W P R O B A B IL IT Y DISTRIBUTIONS 10

also address two other distributions in this section which have been proposed

in recent literature as alternatives to the power law. Many datasets which

are usually described as following a power law (linear in double logarithmic

coordinates) do in fact show some curvature. The lognormal distribution

allows for curvature, as do the two other alternatives discussed here, the

stretched exponential and the parabolic fractal. These four distributions are

by no means an exhaustive list of the power law like distributions, a good

survey can be found in a recent paper by Mitzenmacher (Mitzenmacher

2003).

Although we will present these four probability distributions and discuss

how their parameters may be calculated, in practice in this thesis we will

only consider one distribution, the discrete power law. We will not perform

any statistical testing, but we will calculate the value of the power law slope

param eter k as a. summary statistic. The power law is the simplest distri

bution available to us for summarising skew data, with a single parameter

which has an intuitive meaning. Although there is curvature visible in many

skew datasets and the power law is strictly linear, it is still a useful first ap

proximation. The slope of the power law distribution has been proposed as

a measure of market concentration, most notably by Simon and Ijiri who

argue that

. . . frequently used measures of concentration, like the Gini in

dex, or the fraction of to tal industry sales that are accounted

for by some fixed number of largest firms, do not have any clear

theoretical foundation. It would seem more defensible to mea

sure concentration by a param eter of the stochastic process tha t

is being used to explain the data - for example the slope of the

Pareto curve. (Ijiri and Simon 1977) [p. 13]

Steindl offers additional support for the significance of k

It appears from the results of various authors that the Pareto

coefficient is determined as the ratio of certain growth rates. In

Simon’s model it is the ratio of growth of the firm-population

to the growth of the firm; in Wold-Whittle’s model, the ratio

CHAPTER 2. S K E W P R O B A B IL IT Y DISTRIBUTIONS 11

of growth of wealth to the death rate of wealth-owners. These

growth rates apparently represent the dissipative and the stabi

lizing tendencies in the process. This confirms the intuition of

G. K. Zipf who regarded the Pareto coefficient as the expression

of an equilibrium between counteracting forces. (Steindl 1965)

The focus of this paper is on the mechanisms which lead to skew distri

butions, not the precise shapes of those distributions. The thorny process

of comparing the relative merits of probability distributions with differing

assumptions, estimation techniques and numbers of parameters would be

a significant research endeavour in itself, and is neither within the scope

nor the time frame of this thesis. A further complication which warrants

research is whether a simulated firm size distribution, th a t is a set of obser

vations of firm sizes and their relative frequencies, consists of independent

and identically distributed observations, since it arises from a closed system

of a fixed number of agents who self-organize into firms. For these reasons,

rather than go through the motions of an inappropriate statistical analysis,

we prefer to set aside the issue of statistical testing in the belief tha t it would

not add value to this analysis a t this time. In this approach, we follow the

example of numerous other authors including Herbert Simon

A great deal has been written, at one time or another, as to

whether a particular empirically observed distribution could, or

could not, be approximated by a Yule distribution, the Pareto or

the log normal. Such a question is difficult to answer, for several

reasons. One reason . . . is th a t there does not really exist a

body of statistical theory th a t tells one whether some data fit a

particular extreme hypothesis. . . . Hence, we shall not be much

concerned, in what follows, with significance tests, which are

completely inappropriate for testing the fit of data to extreme

models. (Ijiri and Simon 1977) [p. 4]

We will employ the following terminology to describe discrete data such

as firm sizes. Observations x i , . . . , are sorted from largest to smallest so

th a t the subscript i corresponds to the rank of the observation, the largest

CHAPTER 2. S K E W P R O B A B IL IT Y DISTRIBUTIONS 12

Source PDF CDF Rank

Gabaix C + 1 c ^ (Rank is on y axis. Size on x axis)

Adamic k b = ^ (Rank is on x axis. Size on y axis)

Table 2.1: The power law exponents used by two authors. <̂ ,/c > 0

observation being ranked first and the smallest n*^. Amongst our observa

tions are m < n unique values, and so we can convert our vector of obser

vations into two vectors, the first of the unique values F = (/ i , .. •, /m) and

the second of the number of occurrences of each of the /j , C = (c i , . . . , c„),

so tha t n = Y1T=\

For example, a vector of observations X = (30 ,5 ,3 ,2 ,2 ,1 ,1 ,1) would

have corresponding F = (30 ,5 ,3 ,2 ,1) and C = (1 ,1 ,1 ,2 ,3). To make this

more concrete, consider the vector X to be a vector of firm sizes. There is

one firm of size 30, one firm of size 5, one firm of size 3, two firms of size

3 and three firms of size 1. The firm of size 30, the largest, has first rank.

The three firms of size 1 are ranked 6*^, 7* ̂ and 8* .̂

2.1.1 T he Pow er Law and L ognorm al D istributions

Power Law

The probability density function (PDF) of the power law distribution is

given by

/ (x) oc (2.1)

for a; > 0, where the parameter A; > 0 determines the steepness of the slope.

The probability mass function in the upper tail is

F {x)o^x- '^ . (2 .2)

Taking logarithms oi y = x~^ gives

logy = - k \o g x , (2.3)

C H APTER 2. S K E W P R O B A B ILITY DISTRIBUTIONS 13

which illustrates the power law’s tradem ark linear relationship in double

logarithmic coordinates (Adamic 2006).

It can be confusing to compare the terminology of different authors who

may be referring to one of three distinct types of plot, each of which may

show a roughly straight line which could be referred to as having a “power

law slope”. Table 2.1 compares the parameters of two such authors, Gabaix

and Adamic. The power law slope has a canonical value of a = 2, or

equivalently k = h — I (Adamic 2006). Gabaix, as we see in Section 2.3.2,

also defines a standard case in which C = 1-

L ogn orm al

The PDF of the lognormal distribution is given by

1
a \ /^ x

(Bi, Faloutsos, and Korn 2001).

exp
(In X — fiY

(2.4)

D isc r e te Form s

The power law and lognormal can be discretised, and must be when apply

ing them to discrete data.^ The discrete probability function (point-mass

function) of the power law is given by

j . - (f c+i)

P{)̂ = ^ o o ^

for X a positive integer, and can also be written more succinctly as

(fc + 1)
Mx) = (2.6)

where d^{n) = X ljli ^ Riemann zeta function (Weisstein

2005).

The distribution parameter k can be determined by maximum likelihood.

Assuming independent, identically distributed data the likelihood function

is

^Bi et al argue that any observations measured with finite precision should be consid

ered discrete (Bi, Faloutsos, and Korn 2001).

C H A P T E R 2. S K E W P R O B A B IL IT Y D IS T R IB U T IO N S 14

L(fc)=n̂ (̂ i)=n
,=1 i= iC (^ + i)

The log-hkehhood function is given by

l (k) = - (k + 1) ^ l o g X j - nlog[C(fc + 1)],
i—1

or equivalently in terms o f F and C

l{k) = - { k + l) ^ C j lo g / i - nlog[C(fc + 1)].

(2.7)

(2.8)

(2.9)
i= l

These equations having been derived follow ing the example o f B i et al (Bi,

Faloutsos, and Korn 2001) who provide the follow ing discretised version of

the lognormal d is tribu tion , which they refer to as the Discrete Gaussian

Exponential or DG X

, . A{fi,(T)
p{x) = ------------exp

(In a; — /x)^
(2.10)

for X a positive integer, where the normalisation constant A is given by

(In j -M)"
- 1

(j =
(2 .11)

Assuming independent, identically d istribu ted data the log-likelihood func

tion is

/(/U, cr) = n In A{f i , a) — ^
i= l

In Xi +
(InX j - /x)

2 (t 2

21

or equivalently in terms o f F and C

l{f i , a) = n In A{f i , a) — c,
1=1

In f i +
2a2

(2 .12)

(2.13)

The parameter k for the discrete power law, and the parameters / i and a

can be determined by numerically maxim ising the respective log-likelihood

expressions. There is an unfortunate catch-22 in th is technique, which is

th a t the same parameter values which maximise the log-likelihood also cause

the summations w ith in those expressions to converge extremely slowly. For

certain data sets, the numerical com putation becomes extremely tim e con

suming, to the point o f being prohib itive in exploratory research.

CHAPTER 2. S K E W P R O B A B ILITY DISTRIBUTIONS 15

2.1 .2 T he Fractal D istr ib u tion s

Both the stretched exponential and parabolic fractal distributions are de

fined with reference to a type of plot known as a fractal display, in which

observation values (the vector F defined previously) are plotted against their

corresponding ranks with double logarithmic axes.

Stretched E xponential

The stretched exponential distribution is a generalisation of the exponential

distribution (Laherrere and Sornette 1998). The PDF is defined as

f {x) = c
p C — 1

exp (2.14)

with Cumulative Distribution Function (CDF)

F{x) = P { X < x) = exp (2.15)

for 0 < c < 1. When c = 1 this reduces to the exponential distribution (La

herrere and Sornette 1998). The Stretched Exponential produces a straight

line when the natural logarithm of the rank is plotted against observed

values raised to the power c

x^ = —a \n i + b. (2.16)

The three parameters of the distribution are a, b and c with xq = a i .

The proposers provide no algorithm for fitting the Stretched Exponential.

Thus far the only practical method we have found is one of brute force.

Allow c to take each of the values in (0.001,0.002,... ,0.999,1.000) (or the

required search precision) and proceed to fit the linear model specified in

Equation 2.16 to the vector of observations x 1 , . . . , x ^ . Thus there will

be, in this case, 1,000 linear models fitted. Choose the value of c which

corresponds to the highest regression R^, and a and b are then obtained

from the corresponding linear model.

CHAPTER 2. SKEW PRO BABILITY DISTRIBUTIONS 16

P arabolic Fractal

Like the lognormal distribution, the parabolic fractal distribution is a 2"'̂

order polynomial extension of the linear power law (Laherrere and Sornette

1998)^. Both distributions take the shape of a downward-facing parabola,

the lognormal does so in a standard double logarithmic probability plot

whilst the parabolic fractal does so in the fractal display, that is a double

logarithmic rank-frequency plot. The parabolic fractal is defined in terms

of observations by

When 6 = 0, this reduces to the power law. Since a concave parabola

has a maximum value, the theoretical maximum observation (regardless of

sample size) can be calculated

The parabolic fractal is fit using linear regression on logi and (logz)^.

2.2 Som e E xam ple D atasets

We will proceed to fit each of the four distributions to by the methods

described. We can compare the power law and lognormal plot with one

other using an error statistic, denoted ERR , defined by

which is a simple extension of the Mean Squared Error. We define a sim

ilar error statistic for Rank-Frequency data, denoted ERRn, which we will

use to compare the stretched exponential and parabolic fractal distributions.

^The original article proposing the parabolic fractal distribution is in French, the

parabolic fractal is discussed along with the stretched exponential distribution in this

paper.

logXj = loga;i — a log I — b{\ogi)^. (2.17)

m a x (2.18)

(2.19)

by

CHAPTER 2. S K E W P R O B A B ILITY DISTRIBUTIONS 17

E R R r =
i=l

where F{i) is the predicted frequency for the observation of rank i.

2.2.1 Words in Beowulf

Beowulf, one of the earhest surviving poems in Enghsh, was a source text

for Zipf’s study of the frequency with which words appear in the written

language (Zipf 1965). The text of Beowulf (Anonymous 1000) was analysed

and a word count list (concordance) was prepared, the sta rt of which is

shown in Table 2.2.

Frequency Word

1 ABANDONED

1 ABEL

2 ABIDE

1 AB.JECT

3 ABLE

4 ABODE

6 ABOUT

2 ABOVE

1 ABROAD

2 ACCURSED

Table 2.2: Excerpt from concordance of Beowulf.

The concordance, which lists individual words, was then collated into

a distribution of word appearance frequency which is shown in Table 2.3.

In this table we have word frequencies in the first column, and the num

ber/count of words which appear with said frequency in the second column.

Rank is also given for the highest ranked observations. The interpretation

of the first row of this table is th a t there are 1,611 words which appear only

once within the text of Beowulf. The most frequent word is “the”, which

appears 1,587 times in the text. The full distribution of the Frequency of

CHAPTER 2. SKEW PROBABILITY DISTRIBUTIONS 18

word appearance and Count of each frequency is plotted in Figure 2.1, along

with the fitted discrete power law and discrete lognormal.®

Frequency Count Rank Word

1 1611

2 548

3 293

4 180

5 115

276 1 5 WITH

321 1 4 THAT

408 1 3 HIS

636 1 2 AND

1587 1 1 THE

Table 2.3: Excerpts from the distribution of word frequency appearance in

Beowulf.

We see that the E R R statistic is lower for the lognormal than the power

law, which is to be expected since the lognormal distribution is a general

isation of the power law. The stretched exponential and parabolic fractal

are shown plotted in Figure 2.2. For this dataset, they give similar shaped

fitted curves and similar error statistics. We see that both curves miss the

handful of highest ranked observations by a considerable amount. This may

be a feature of the ranked data which has a data point for each observation,

rather than each observed value, and so places more of an emphasis on the

common small events by listing them separately whereas in the Frequency-

Count data, these small events are aggregated together.

2.2.2 Genera and Species o f Snake

The number of species in a genus, for a family of plants or animals, has a

skew distribution. We consider two similar datasets here. The first dataset

^Figures are located at the end of each section in this thesis.

CHAPTER 2. SKEW PROBABILITY DISTRIBUTIONS 19

is taken from Yule’s original paper (Yule 1925), which was quoted from an

earlier work by Willis, who in turn collated the data from the “Catalogue of

the Snakes in the British Museum”, by G. A. Boulenger, published in 1893.

We also have an updated version with 2005 data, which we collated from

the online EMBL Reptile Database (Uetz and Heidelberg 2005), a process

which must have been almost infinitely simpler today than in W'illis’ day.

There are 293 genera and 1,475 species in the 1893 dataset, and 463 genera

and 3,002 species in the 2005 dataset. The data is plotted and the discrete

power law and lognormal are fitted in Figure 2.3 (1893 data) and Figure 2.5

(2005 data). The stretched exponential and parabolic fractal are shown in

Figure 2.4 (1893) and Figure 2.6 (2005).

For both 2005 and 1893 we see tha t the discrete lognormal has a lower

error statistic, as we expect. The stretched exponential is also a better fit in

both cases, and in the 2005 data it seems to match even the largest events.

The parabolic fractal, in addition to having a poor fit, also has a positive

coefficient for logi in the 2005 data which violates its specification.

2.2 .3 C ities in th e U n ited S ta tes

Here we look at the distribution of population amongst cities in the United

States with over 100,000 people. The discrete lognormal again outperforms

the power law, as shown in Figure 2.7. The parabolic fractal in this instance

has a slightly lower error statistic than the stretched exponential, but this

is probably not a significant difference, see Figure 2.8.

2 .2 .4 D iscu ssion

The discrete lognormal and discrete power law were fit using maximum like

lihood, and their distribution functions explicitly acknowledged the discrete

nature of the data. The stretched exponential and parabolic fractal were

fit using linear regression, implicitly assuming continuous data, and were fit

in the rank-frequency plot rather than a frequency-count or frequency-pdf

plot. It is not clear at this point whether these two approaches will turn

out to be complementary, each highlighting different and useful aspects of

the data, or whether one will emerge to be “correct”.

CH APTER 2. S K E W P R O B A B IL IT Y D ISTRIBU TIO NS 20

For the datasets considered here, the discrete lognormal was a better

fit than the discrete power law, which was expected as the lognormal is a

generalization of the power law and has more parameters. The parabolic

fractal proved problematic as it should be strictly decreasing, but for several

datasets the fit produced by linear regression led to negative values for the

a coefficient. The stretched exponential did not have this difficulty, and it

had a better or comparable error statistic to the parabolic fractal in the

examples considered here, so where a Rank-Frequency-based distribution is

desired the stretched exponential seems preferable.

CHAPTER 2. SKEW PROBABILITY DISTRIBUTIONS 21

Beowulf

^ ^ *• m ° V
-s >2 8 if

» • • • 4

10 50 500

Frequency

Figure 2.1: Frequency of word appearance in Beowulf. The fitted discrete

power law is shown in purple, values are k = 0.780, E R R = 358.0. The

discrete lognormal is shown in green, values are /x = —2.231, a = 2.275,

E R R = 12.3

CHAPTER 2. SKEW PROBABILITY DISTRIBUTIONS 22

Beowulf

>%oc
(B
3
CT
<D

5 10 50

Rank

500

Figure 2.2: Frequency of word appearance in Beowulf and Rank of each

Frequency. Fitted stretched exponential (orange) with a = 0.189, b = 2.489,

c = 0.143 and E R R r = 318.1. Fitted parabolic fractal (green) with a =

0.423, b = 0.113 and E R R r = 312.5.

CHAPTER 2. SKEW PROBABILITY DISTRIBUTIONS 23

n
CO

o

Snakes (1893)

1 2 5 10 20 50 100

Number of Species

Figure 2.3: Number of species per genus of snake. The fitted discrete power

law is shown in purple, values are k = 0.722, E R R = 19.9. discrete lognor

mal is shown in green, values are /x = —0.506, a = 1.790, E R R = 16.3

CH APTER 2. S K E W P R O B A B IL IT Y DISTRIBUTIONS 24

10
0

o(/)
CD
O
0 oQ. CVJ

CO
oo

V

CD m
E
3

Z CO

Snakes (1893)

10 20 50 100 200

Rank

Figure 2.4; Number of species per genus of snake and rank of each genus.

F itted stretched exponential (orange) with a = 0.580, b = 4.153, c = 0.321

and E R R h = 1.9. F itted parabolic fractal (green) with a = 0.131, b = 0.273

and E R R r = 4.8.

CHAPTER 2. SKEW PROBABILITY DISTRIBUTIONS 25

Sn ak es(2005)

CO

O
, f -

• • •

2 5 10 20 50 100

Number of Species

Figure 2.5: Number of species per genus of snake. Tfie fitted discrete power

law is shown in purple, values are k = 0.631, E R R = 78.8. discrete lognor

mal is shown in green, values are = 0.330, a = 1.601, E R R = 5.0

C H APTER 2. S K E W P R O B A B IL IT Y DISTRIBUTIONS 26

V)oo
< D
Q .

< /)

Snakes (2005)

5 1 0 20 50 100 200 500

Rank

Figure 2.6: Number of species per genus of snake and rank of each genus.

Fitted stretched exponential (orange) with a = 0.687, h = 5.089, c = 0.332

and E R R r = 0.6. F itted parabohc fractal (green) with a = —0.116, b =

0.326 and E R R r = 8.9.

CHAPTER 2. SKEW PROBABILITY DISTRIBUTIONS 27

U.S. Cities

1 2 5 10 20 50

Size of City (100,000s)

Figure 2.7: Frequency of city size. The fitted discrete power law is shown

in purple, values are k = 0.898, E R R = 123.0. discrete lognormal is shown

in green, values are /x = 0.131, a = 1.144, E R R = 28.0

CHAPTER 2. SKEW PROBABILITY DISTRIBUTIONS 28

U.S. Cities

wooo
o 'o

><

b
“o
CD
N

CO

1 2 5 10 20 50 100 200

Rank

Figure 2.8: Frequency of city size and rank of each size. Fitted stretched

exponential (orange) with a = 0.094, b = 1.499, c = 0.104 and E R R r = 4.4.

Fitted parabohc fractal (green) with a = 0.666, b = 0.039 and E R R r = 2.8.

CHAPTER 2. SKEW PROBABILITY DISTRIBUTIONS 29

2.3 G ibrat’s Law

. . . if the very same regularity appears among diverse phenomena

having no obvious common mechanism, then chance operating

through the laws of probability becomes a plausible candidate

for explaining that regularity. Hence, the theoretical models we

shall examine are stochastic models yielding the observed size

distributions as their steady-state equilibria. (Ijiri and Simon

1977) [p. 3]

Inspired by a simple mathematical model and his compelling empirical

observations, Gibrat’s Law of Proportional Effect spawned “one of the most

important strands in the literature on market structure” (Sutton 1997)[p40].

The model, as explained by Steindl, is based on the assumption that “growth

in proportion to size is a random variable with a given distribution which

is considered constant in time” (Steindl 1965)[p. 30], or

— ^ t - i = (2 .21)

and

= (1 + £ t) X t - i = -^o(l + £^i)(l + £2) . ■ • (1 + £t) , (2.22)

where £t is an independent, identically distributed random variable repre

senting the proportional growth rate and Xt represents the size of the object

(firm size, firm’s capital) we are interested in (Steindl 1965)[p. 30].

That is, the growth rate St is random and does not depend upon the

size of the firm, equivalently absolute growth is proportional to the size of

the firm. It follows from the Central Limit Theorem that the logarithm of

Xt is normally distributed with mean mt and variance (Steindl 1965) [p.

30]. Gibrat’s economic interpretation of this generating mechanism for the

lognormal distribution is that the growth rate of firms is independent of

their size. Gibrat presented empirical evidence showing that firm sizes in

various sectors of the French economy do seem to follow a lognormal distri

bution (Sutton 1997).

C H A P TE R 2. S K E W P R O B A B IL IT Y D ISTRIBU TIO NS 30

An implication of G ibrat’s model is th a t the variance of firm sizes, a^t,

will increase over time, eventually tending to infinity. Kalecki, who observed

th a t this was unsatisfactory both theoretically, “for a priori reasons it is clear

th a t changes in the standard deviation of the logarithm of a given variate

are to a great extent determined by economic forces”, and empirically, “no

tendency for such an increeise is apparent (for instance in distribution of

incomes)” (Kalecki 1945) [p. 162], took the straightforward mathematical

approach, held variance constant, and therefore derived an assumption of a

negative second derivative, which solves this particular dilemma but at the

cost of introducing a rather arbitrary assumption. Champernowne, whose

work was inspired by both Pareto and Gibrat (Champernowne 1952), uses

a Markov chain approach and brings birth and death into the model. His

solution to the increasing variance problem is to assume tha t the expected

value of the random growth rate is negative, which can be interpreted as as

suming th a t older, high-income workers die off and are replaced by young,

low-income workers (Steindl 1965). Champernowne also assumes a mini

mum level of income which is another method of ensuring the variance does

not become infinite (Gabaix 1999) [p. 759]. Champernowne’s model, which

is actually an income model but which can also be applied to firm sizes,

leads to a power law distribution rather than the lognormal distribution. In

the following sections we consider two additional approaches to the issue of

the increasing variance of firm sizes: those of Simon and Gabaix.

2.3.1 S im on ’s A pproach

In his paper on skew distribution functions, Herbert Simon presents a mod

ernisation of what is now widely viewed as the classic work in the field, by

G. Udny Yule (Simon 1955). Simon’s paper does not mention Gibrat at

all, or firm sizes, but he does discuss the relationship of his work to th a t

of Champernowne. Yule’s original paper, which as an aside gives an in

teresting snapshot of the state of the theory of Darwinian evolution at the

time, presented a mathematical model to explain the skew distribution of

the number of species in a genus of plants or animals, evidently a stylised

fact in biology (or on its way to becoming one) at the time (Yule 1925).

C H APTER 2. S K E W P R O B A B IL IT Y DISTRIBU TIO NS 31

The resulting distribution, known as the Yule distribution (seemingly thus

christened by Simon (Simon 1955)[p. 426]), is similar to the power law

and can be approximated by it. Simon, noting tha t he, unhke Yule, had

access to the “modern theory of stochastic processes”, was able to make

weaker assumptions and put forward a model intended to address a variety

of well-known empirical skew distributions in various fields

The empirical distributions to which we shall refer specifically

are: (A) distributions of words in prose samples by their fre

quency of occurrence, (B) distributions of scientists by number

of papers published, (C) distributions of cities by population,

(D) distributions of incomes by size, and (E) distributions of

biological genera by number of species. (Simon 1955) [p. 425]

Simon’s model is extremelj' intuitive. Imagine we are undertaking an anal

ysis of word count frequencies in Bc«wulf. We have already read the first

k words and we denote f (i , k) the number of different words tha t have oc

curred exactly i times thus far. Simon provides two possibilities for the

k -I- l ‘* word. W ith constant probability a , the k -I- 1*̂ word will be a new’

word, not present in the first k words. W ith probability I — a, therefore,

the k + word is one of the existing words, and the probability th a t it is

a word th a t has already appeared exactly i times is proportional to i f{i , k).

These behaviours can be referred to as birth and proportional growth, since

the probability of repeating an existing word is proportional to the existing

popularity of the word. Later in the paper, Simon translates his model in

term s of income: “We picture the stream of income as a sequence of dollars

allocated probabilistically to the recipients.” (Simon 1955)[p. 438).

This model leads to the Yule distribution, given by

where > 0, /9 > 0 are constants and B{i , p + 1) is the Beta function of

i, p + 1, defined as

f { i) = A B { i , p + \) , (2.23)

(0 < i;0 < p < oo). (2.24)

CH APTER 2. SK E W P R O B A B IL IT Y D ISTRIBU TIO NS 32

Simon shows th a t as i oo, this distribution approaches

/ (i) ~ r (p + l) r < ^ + i) (2.25)

where F is the Gamma function, and tha t therefore the Yule distribution

approximates the power law distribution which Simon defines as

m = (J) y. (2.26)

where a, b and k are constants with b approximately equal to 1.

In his discussion of the application of this model to income distribu

tion, Simon notes th a t Champernowne’s model, although very different in

appearance and inspiration, satisfies these assumptions and that therefore

“the underlying structure is the same” (Simon 1955)[p. 438]. Simon’s model

incorporates the elements of minimum size and birth and death, death be

ing introduced later in the paper and resulting in a very similar generalised

Yule distribution, although it does not appear th a t these concepts were in

troduced specifically for the purpose of addressing the variance issue, rather

they seem to be an natural feature of the model.

Simon updated and reframed his model specifically in terms of firms in

the modern classic, “Skew Distributions and the Sizes of Business Firms” (Ijiri

and Simon 1977). The income stream metaphor is now expressed in terms

of new opportunities of which arise over time. An opportunity is simply a

unit increase in the size of the economy, it can take the form of a new firm

entering the economy or a unit increase in the size of an existing firm. The

probability of a new entrant firm taking up the opportunity is a constant

a , and, therefore, with probability 1 — a an existing firm takes up the new

opportimity, the probability of a particular firm doing so being proportional

to the size of th a t firm.

2.3.2 Gabaix’s Approach

Gabaix, in a paper on city sizes, proves th a t the power law distribution is

the unique steady state distribution possible in a system in which G ibrat’s

Law holds (Gabaix 1999). He expresses G ibrat’s Law as “homogeneity of

CH APTER 2. S K E W P R O B A B ILITY DISTRIBUTIONS 33

growth processes”, i.e. every city’s stochastic growth process has the same

mean and variance as every other city. He further shows tha t the slope of

the power law must be 1 in the standard case, and then gives conditions

under which it may differ from 1 .

The existence of a power law can be thought of as due to a simple

physical principle: scale invariance. Because the growth process

is the same at all scales, the final distribution process should be

scale-invariance. This forces it to be a power law. To see why

the exponent of the power law is 1 , a concrete situation might

help. Suppose tha t cities are on a discrete grid, and that at

each point in time a city might double, or halve in size. Because

we nmst satisfy the constraint tha t the average size (understood

as share of the total population) be constant, the probability

of doubling has to be and the prol)ability of halving | (the

expected growth is | ■ 2 + | • ̂— 1 = 0). To see how the number

of cities of a given size can be constant, take a size S. One can

quickly convince oneself that the number of cities of size 25

should be half the number of cities of size S, and the number of

cities of size ^ should be double. This is precisely an expression

of Zipf’s law. (Gabaix 1999) [pp. 744-745]

Gabaix illustrates the physical mechanism at work behind his m athem at

ical reasoning with an economic example in which young workers migrate to

a city of their choice, their utility being based upon wages and urban ameni

ties, where they will remain for the rest of their lives. In physical terms,

he describes his model as incorporating reflected Brownian motion, with

a barrier which prevents cities falling below an exogenous minimum size.

Gabaix shows tha t a power law distribution with an exponent of 1 holds

provided the “appearance rate of new cities i/ is lower than the growth rate

of existing cities 7 ” (Gabaix 1999)[p. 751]. If, instead, 1/ > 7 , a power law

distribution with slope greater than 1 will occur. Finally, Gabaix explains

the irregularity tha t small and medium cities often have a power law expo

nent of less than 1 by showing th a t a relatively higher variance can account

for this.

CH APTE R 2. S K E W PR O B A B IL IT Y DISTRIBUTIONS 34

For cities we have u < 'y, so that the resulting exponent does

not depend on the details of the country’s situation: it is just 1,

or very close to it. For incomes we have «/ > 7 , in which case the

exponent depends finely on the situation’s parameters, v, 7 , a,

which explains why [the power law exponent] loses its constancy

across economic structures and has cross-sectional and possibly

time series variations. (Gabaix 1999) [p. 760]

In particular, when > 7 the power law exponent can be calculated as

the positive root of

M C) = C " - (l - 2 ^) C - 2 ^ , (2.27)

where is the variance of 7 .

2.4 Scale Invariance and Power Laws

The power law distribution is closely tied to the conce^pt of scale invariance,

as we have just seen in our discussion of Gabaix’s model. “Speaking about

a (material or mathematical) object, scale invariance refers to its invari

ance over changes of scales of observation.” (Dubrulle, Graner, and Sornette

1997) [p. 2]. A fractal, which looks similar at any level of magnification, has

no obviously “correct” scale and is a canonical visual example of scale in

variance. While it is possible to calculate the mean size of a firm in the Irish

economy, a firm which happens to be that size is in no way a prototypical

or stylised example of a firm. Unlike in normally distributed systems, the

average (mean) does not imply average (typical). It is quite trivial to estab

lish the link between scale invariance and the power law. If an observable

variable 0{ l) changes by factor /i(A) when the scale is changed by a factor

A, then the observable must have solution 0{ l) = C l ° (Dubrulle, Graner,

and Sornette 1997)[p. 3], i.e. a power law, with a =

Power laws also have a deeper link with the concept of scale invariance,

and the idea of a phase transition. In physics, researchers trying to under

stand phase transitions, for example water freezing and thereby transform

ing from a random, chaotic liquid into an ordered, structured solid, found

C H APTER 2. S K E W P R O B A B IL IT Y DISTRIBU TIO NS 35

power laws in their observations of many phenomena around the point of

transition. Kenneth Wilson developed the theory of renormalization by

assuming th a t “in the vicinity of a critical point the laws of physics ap

plied in an identical manner at all scales” (Barabasi 2003) [p. 76], i.e. scale

invariance, and was therefore able to predict the appearance of power laws.

If power laws are the signature of systems in transition from

chaos to order, what kind of transition is taking place in complex

networks? If power laws appear in the vicinity of a critical point,

what tunes real networks to their own critical point, allowing

them to display a scale-free behavior? (Barab&i 2003) [p. 78]

The boundary between chaos and order is a region in which complex

structures can exist. Chaos itself is not a fertile environment, complex

structures do require some regularity. While a complex structure can exist

in a highly ordered environment, such a structure will be rigid and brittle,

and will not survive in a competitive and changing world. Stuart Kauffman,

in an epic yet readable tome, explores theoretical mathematical underpin

nings of evolutionary biology and argues tha t complex systems “achieve a

‘poised’ state near the boundary between order and chaos, a state which

optimizes the complexity of tasks the systems can perform and simultane

ously optimizes evolvability.” (Kauffman 1993) [p. 173]. Biological evolution,

Kauffman argues, results from two ingredients: self-organisation and selec

tion. Self-organisation creates complex entities, selection destroys those

which are less fit, allowing those which survive to evolve further. The two

forces, combined and iterated over time, give us the biological diversity we

observe in nature, and also the ecological context in which those biological

organisms exist.

Returning to economics, could the presence of power laws be a signa

ture of the phase transition between order and chaos, and therefore be an

indicator of a healthy self-organising complex dynamic system, ideally sit

uated to perform complex tasks and remain resilient and adaptable in the

face of inevitable internal and external shocks? Is the power law distribu

tion of firm sizes and the highly inequitable Pareto distribution of income a

fundamental property of a vibrant market-based diversified economy?

CHAPTER 2. SKEW PROBABILITY DISTRIBUTIONS 36

We can begin, not to answer these questions but to explore them, by

experimenting with a self-organising system which generates a power law

distribution.

C hapter 3

An A gent-Based Firms

Framework

We face the paradox in agent-based modelling th a t in order to study our

models in a simulated context, we must make seemingly arbitrary decisions

about implementation. Should our agents make decisions sequentially or

randomly? Synchronously or asynchronously? Should they be organised

into a lattice structure with a geographic neighbourhood, or into an un

structured soup where neighbours are defined by a social network? How

much information should agents have access to, how accurate should it be,

how up-to-date should it be? All of these decisions, many of which are not

specifically relevant to the economic question being considered, will have

an impact on the simulation. How, then, do we isolate the pure effects of

the economics from our simulation results? One answer is tha t we cannot,

and furthermore we should not! The specifics of the implementation are a

fundamental part of the simulation, and the strength of ABM is tha t it al

lows us to understand our economic models and ideas in a physical context

(which is of course where they will be in the real world). W hat we can do is

improve our understanding of the interrelationship between economics and

environment by {1) treating the environmental assumptions as experimental

variables and observing the impact that changes have on the results and (2)

creating one or more standard reference environments and substituting a

37

C H APTER 3. A N AG EN T-BASED FIRM S FRAM EW O RK 38

variety (or a combination) of economic models into these well-understood

environments, i.e. treating the economic models as experimental variables.

In this thesis we will be doing both of these. We implement all of our mod

els, having very different economic content, in a single framework so tha t we

can focus on the differences between models, and we also experiment with

many of the environmental parameters to learn about the impact they have

on the results.

We consider a general framework in which agents within a simulation

create, join and leave firms with no centralised co-ordination, tha t is, firms

are created and structured endogenously. The economy consists of N agents,

indexed by i = 1 , . . . , Â . Agents in a firm are also referred to as employees.

Whilst the population of agents remains fixed throughout the simulation,

firms can be created or destroyed. A firm dies when its last employee leaves.

Agents are randomly assigned n friends during the initialisation of the

simulation, the default is n = 2. Friendship is unidirectional, and so the

friendship network forms a random directed graph (digraph). Agents can

only obtain information about their own firm and their friends’ firms, hence

agents are said to be myopic. In principle, the more friends, the more

information is available to agents although it is possible for some or all

friends to be in the same firm, in which case there would be fewer unique

observable firms. Whilst each agent has n friends, i.e. n outward links in the

graph, the number of inward links is variable. For example, in Figure 3.1,

no agents are linked to Agents 4, 8, 13 or 16 whilst five agents are linked to

Agent 2.

Firms are created endogenously in this framework, agents create new

firms and move between firms in order to maximise their utility. Agents

are activated at random, and when activated will join the firm at which

they can maximise their utility. The choices available to an activated agent

are represented in Figure 3.2. An agent can remain in their current firm,

join the firm of a friend, or create a new firm. If the agent creates a new

firm then, initially, they will be the only employee of that firm. This is

referred to as a singleton firm. The simulation is initialised with each agent

in a singleton firm. An example showing agents grouped into firms with

CHAPTER 3. A N AGENT-BASED FIRMS FRAMEWORK 39

Figure 3.1: Example of a friendship network with 20 agents, n = 2.

friendship links between agents is shown in Figure 3.3.

a g e n t 's firm friend 1 's firm

^ ^ g e n T ^ - - ^ ^ i e n ^ ^ ^

hyp o th e tica l new firm '>

V ' - " v
i a g e n t

friend 2 's firm

friend 2

Figure 3.2: Options available to an agent when activated.

Whilst the precise nature of an agent’s utility function and a firm’s

production function depend upon the specific model under investigation,

we expect that a firm will have a production function which will depend

somehow upon the labour of the firm’s employees. Employee income will be

derived from the firm’s production, either explicitly or implicitly, and agent

utility will depend in part or in full upon the level of income they receive

from being an employee of a particular firm.

All models implemented using this framework will produce the same

basic simulation output. Every simulation will produce a distribution of

CHAPTER 3. A N AGENT-BASED FIRMS FRAMEWORK 40

Figure 3.3: Friendship links (green directed lines) between agents (yellow

circles) in firms (blue rectangles).

CHAPTER 3. A N AGENT-BASED FIRMS FRAMEWORK 41

firm sizes, and distributions of firm output and agent utility, although in

the latter two cases scales may differ between models. Additionally, each

model will have input parameters and output statistics particular to it.

CHAPTER 3. A N AGENT-BASED FIRMS FRAMEWORK

Chapter 4

A Variable Effort M odel

4.1 Introduction

The model in this chapter is based upon a model by Robert Axtell (Ax-

tell 1999). The friendship framework used for all the models is also taken

from Axtell’s original model, although in tha t model it was not a separate

component as it is here. While Axtell’s emphasis was on the analytical foun

dations of his model, with some descriptive statistics, here we will focus on

gaining a more detailed understanding of the mechanism which generates

the power law distribution of firm sizes. There are numerous graphs and

plots in this thesis which have been carefully designed to reveal the inner

workings of the simulations. Frequently this process involved returning to

the simulation’s source code and defining new data sources, then running

fresh simulations and evaluating the usefulness of the new statistics. This

iterative process took far more time than implementing the basic structure

of the model itself, and it can be argued tha t the creative process of defining

and extracting data from simulations is the real “work” of the technique.

The agents in this model have Cobb-Douglas utility functions for income

and leisure. Income is derived from being an employee within a firm and

receiving a share of tha t firm’s output. Agents exert a level of effort be

tween 0 and 1,6*, and leisure is defined to be 1 — e,. The combined effort

of employees within a firm is converted to firm output with a production

43

C H APTER 4. A VARIABLE EFFORT MODEL 44

function th a t has increasing returns to scale. A firm j has a set of employees

denoted J with cardinality N j . The aggregate effort of agents within a firm

j , Ej , is

Ej = y ' gfc, (4-1)
keJ

where represents the effort level of Agent k. The corresponding output

function is

0 (E j) == aEj + b { E j f , (4.2)

where a and b are simulation parameters which determine the extent of the

returns to scale. The default values are a = 1 and 6 = 1 . We can make

explicit a single employee’s contribution to the output function

0 {E j , Cj) = a {^Ej + + b ^Ej + , (4.3)

where Ej represents the combined effort of all employees in Firm j excluding

Agent i.

Agents in a firm share the firm’s production equally, so for an agent in

Firm j , income will be Agents have Cobb-Douglas utility functions,

they seek both income and leisure and the parameter 0 determines the

relative value of income versus leisure. High 9 agents obtain more utility

from income, low 0 agents prefer leisure. T hat is,

0 6 (0 ,1) . (4.4)

In a singleton firm, where firm production and hence agent income is com

pletely dependent upon the agent’s own effort, the relationship between

effort and utility is:

Ui = [aci + befY ' (1 - . (4.5)

Each agent is randomly assigned a value of 0i at initialization, chosen from

a uniform distribution between 0 and 1.

The effort of the other employees in a firm is taken as given, and so using

Equation 4.3 we can express utility as a function of individual effort

CHAPTER 4. A VARIABLE EFFORT MODEL 45

0. (E j + Ci^ + b (E j + 6i\ \
U^i e ,) =\ - ^ ---------------------------- ^ (1 - e i) ' - ^ ' 0 6(0,1).

(4.6)

In the following sections we examine results from simulation runs. Unless

otherwise specified, the simulation was run with N = 10,000 for 1,000

time periods. Some time series data is gathered at the end of each time

period. For a small detail time period, a snapshot is taken after each agent

is activated, resulting in N = 10,000 time series data points per period.

4.2 Case Studies

In this section we look at the histories of two firms, one very large firm and

a more modest medium-sized firm (which is nonetheless much larger than

the mean firm size of 2.7). These case studies allow us to gain an intuitive

feel for the processes at work in this simulation before we move on to more

impersonal aggregate statistics in later sections.

4.2.1 Large Firm Case Study

In this section we will examine the history of a firm which, starting as a

singleton, grows to a size of 218 before declining. The firm was formed in

Period 161 of the simulation by an agent with 6 — 0.981. This is a very

high 6, close to 1, and we will discuss the relationship between firm size and

the 6 of the founding agent of a firm in Section 4.3.

In Figure 4.1, we see th a t the singleton entrepreneur starts out with a

high level of effort (red), close to 1, but average effort decreases sharply as

new agents join the firm. Utility (black) is high initially, as the employees

enjoy the benefits of the increasing returns to scale, but it begins to decline

along with total output after Period 168 (see Figure 4.2 for the time series

of firm size and output). During Period 168, even though the firm size

continues to increase, the total output of the firm begins to decrease due

to the decline in average effort levels. In Period 169, the population of the

firm peaks and begins to decrease.

C H APTER 4. A VARIA BLE EFFO RT MODEL 46

In Figure 4.3, we can observe the utihty of agents at various time periods

during the life of the firm. The red points represent the employees at the end

of Period 166. By this time the firm is well established, and about to begin

its dramatic size increase. We see th a t almost all employees are “above” the

purple curve which represents the level of utility which a singleton agent of

given 6 can achieve. Any agent above this line is better off than they would

be as a singleton. No agent will choose to be below the purple curve as they

have the option to create a singleton firm and thus achieve a utility level on

the purple curve.

By the end of Period 167, the firm has increased to a population of

146 agents, and we see th a t agents are better off than they were in the

previous time period. All but a handful of very high 6 agents are above the

purple curve now, and these few are on or just below the curve. By the

following period, however, things have changed dramatically. As the olive

green points show, agents with 6 > 0.6 are now below' the purple curve. By

Period 169, the population of the firm is collapsing as high 9 agents leave.

It is apparent that the longevity of the firm is due in part to the fact that

agents are unable to leave whenever they wish. Agents can only move when

they are activated, and with random activation an agent may have to wait

for several time periods before being activated. In a model with sequential

activation, the longest an agent would remain with a suboptimal firm would

be 1 time period.

The mean 9 of agents in the firm decreases throughout the life of the

firm, as shown in Figure 4.1, caused initially by low 9 agents joining the

firm and later by higher 6 agents leaving. In this example, the firm attracts

some high 9 agents and remains small until approximately period 166, when

a large immber of low 9 agents “discover” the firm and the mean value of 9

within the firm can be seen steadily declining. The ability of agents to free

ride, to enjoy high levels of income based upon the effort of other agents,

causes both the rise and fall of the firm. It a ttracts the large ninnbers, but

those large numbers dilute the income of the high 9 agents and cause them

to leave. It is this process, on a large scale such as in this (unusually large

and long-lived) firm, or on a small scale in a more typical small firm, which

CHAPTER 4. A VARIABLE EFFORT MODEL 47

drives the dynamic firm population in this model.

4.2.2 M edium Firm Case Study

In this section we perform an abbreviated case study with a medium-size

firm. As shown in Figure 4.5, this firm achieves a maximum size of 13. The

life span of this firm is shorter, it lasts for 6.0 periods as compared with the

large firm’s life span of 13.3 periods. (The relationship between firm size

and age is explored in Figure 4.11.) However, despite these differences, a

similar pattern of growth followed by decline is seen in the life of this firm.

Figure 4.4 shows a time series profile of the firm. We see th a t the founder

remains a singleton for more than a period at the beginning of the firm’s

life. After the second member joins the firm, the firm grows quickly and

then declines at a slightly more leisurely pace, see Figure 4.5. O utput peaks

before the firm size peaks, again suggesting tha t many agents are joining

the firm and contributing little effort, they are joining with the intention

of free-riding. (The output peak now suggests itself as a leading indicator

of a firm’s decline.) Although the plot in Figure 4.6 is more sparse than

its counterpart in the previous section, we can still observe the relationship

between the singleton optimum utility curve and the declining slope of the

agents’ utility-0 “line”.

CHAPTER 4. A VARIABLE EFFORT MODEL

% _
CM

■co
3= u,
111 -

5

162 164 166 168 170 172 174

Period

Figure 4.1: Average employee utility (black), effort (red) and 6 (green)

the large case study firm over time.

CHAPTER 4. A VARIABLE EFFORT MODEL 49

8

Q .
Do §

o

162 164 166 168 170 172 174

Period

Figure 4.2: Firm size (black) and total output (yellow) in the large case

study firm over time.

CHAPTER 4. A VARIABLE EFFORT MODEL 50

• Period 166 (F irm Size: 44)
• Pe riod 167 (F irm Size: 146)
• Period 168 (F irm Size: 194)
• Period 169 (F irm Size: 67)
• Period 170 (F irm S ize: 31)
• Period 171 (F irm S ize: 13)
• P e riod 172 (F irm S ize: 6)
• P e riod 173 (F irm Size: 2)
• P e riod 174 (F irm Size: 1)

__

0.2 0.4 0.6 0.8 1

Figure 4.3: Utility of members of the large case study firm at the end of the

indicated time periods, plotted against their 9.

CHAPTER 4. A VARIABLE EFFORT MODEL 51

tfo
3=
LU

D °

164 165 166 167 168

Period
169 170

Figure 4.4: Average employee utility (black), effort (red) and 9 (green) in

the medium case study firm over time.

CHAPTER 4. A VARIABLE EFFORT MODEL 52

O

164 165 166 167 168 169 170

Period

Figure 4.5: Firm size (black) and total output (yellow) over time in the

medium case study firm over time.

CHAPTER 4. A VARIABLE EFFORT MODEL 53

> P eriod 163 (F irm Size: 1)

P eriod 164 (F irm Size: 1)

> P eriod 165 (F irm Size: 11)

> P eriod 166 (F irm Size: 10)

> P eriod 167 (Firm Size: 5)

« P eriod 168 (F irm Size: 2)

0 0.2 0.4 0.6 0.8 1

e

Figure 4.6: Utility of members of the medium case study firm at the end of

the indicated time periods, plotted against their Q.

CHAPTER 4. A VARIABLE EFFORT MODEL 54

4.3 0 , Effort, U tility and the Firm

The case studies demonstrated a typical hfe-cycle pattern for medium and

large firms. In this section we explore some of the factors which might

determine whether a firm will grow to a large size.

4.3.1 Founder’s 9

Being founded by an agent with high 0 is a helpful but not sufficient con

dition for a firm to grow to a large size. Figure 4.7 shows the relationship

between the maximum size a firm reaches in its lifetime and the 8 of the

agent which founded the firm. Our large case study firm, shown in red, has

both large size and very high founder’s 6, but it is evident that many other

firms with equally high or higher founder’s 8 stay as singletons or very small

firms. The medium case study firm, visible in green, has a relatively high

founder’s 0 but we see that other firms with this founder’s ff grew to be

much larger.

Figure 4.8 confirms the intuition that high-0 agents are more likely to

be founders of firms. This histogram shows the number of firms created by

agents of various 6, and the relationship is very obvious. Another perspec

tive on this is shown in Figure 4.9, which shows that as 9 increases, agents

are likely to create a higher number of firms over the course of the simula

tion, but the variance is extremely high. Some high-0 agents are extremely

prolific, others not at all. The histogram in Figure 4.10 shows the total

number of firms founded per agent. The most prolific agent founded 728

firms, whilst 1181 agents didn’t voluntarily create any firms.

The relationship between the age of a firm and its maximum size is shown

in Figure 4.11. In our two case studies, the larger firm had the longer

lifespan, and we see that there is indeed a positive relationship between

lifespan and maximum size, at least initially. Firms which die at a very

young age don’t have time to reach a large size. However, we also observe

in this graph that the very long-lived firms tend to be quite small. So

some extreme firms live fast and die young, others have a long, quiet life of

isolation. The majority of firms, however, have a short lifespan, as shown in

CHAPTER 4. A VARIABLE EFFORT MODEL 55

tlie histogram in Figure 4.12. The extremely long-lived “hermit” firms are

all founded by very high-0 agents, as shown in Figure 4.13. This agrees with

our intuition tha t a low-0 agent is unlikely to remain a singleton for long,

being willing to join even a relatively unproductive firm, rather than having

to exert effort to maintain income, whereas a high-0 agent would prefer to

work in isolation than to join an unproductive firm.

If there is a guaranteed predictor of a newly-formed firm’s fate, we have

not uncovered it in this section. We have seen th a t factors such as the 0 of

the foimder of a firm do have an impact on the expected size and life span

of the firm, but it is not a simple, predictable relationship and certainly not

a linear one. An agent, whose 0 and whose neighbours haven’t changed,

can start several identical singleton firms which may have vastly different

outcomes, a point which is clearly illustrated by Figure 4.14.

The difference in outcomes between two firms founded by the same agent

can only arise from the different state of the rest of the system. Other

competing opportunities are available. At one time, the agent’s new firm

may be the best thing going in the neighbourhood and it gains momentum

quickly as other agents flock to join, at another time the founder may find

a better opportunity and leave before the firm has a chance to grow.

4.3.2 Agent Income, Effort and U tility

When agents are activated, they have three options and the proportion of

agents choosing each option is remarkably stable throughout the simulation.

47% will move to an existing firm (a friend’s firm), whilst 41.5% will stay

where they are, and the final 11.4% will start a new firm.

The relationship between agent utility and 9 is complex and interesting,

and understanding this relationship sheds light on the dynamics of the sim

ulation. An agent with a very low 6, close to 0, will always have a utility

of close to 1. An agent with higher 9 may achieve a higher utility in some

periods, but a t the risk of very low utility in other periods. High 9 agents

are workaholics with a high risk, high reward lifestyle. In Figure 4.15, the

blue dots represent the utility of a low 9 agent with 0 = 0.1, whilst the black

dots represent the utility of a high 9 agent with 9 = 0.8. The low 9 agent

CH APTER 4. A VARIA BLE EFFORT MODEL 56

has a utihty level of approximately 1 which does not change throughout the

simulation. In contrast the high 9 agent has highly volatile utility.

Figure 4.16 shows the relationship between utility and 0 for a single time

period of the simulation. This plot is similar to Figure 4.3 and Figure 4.6,

but it contains all agents in the simulation for a single time period rather

than snapshots of agents in a particular firm over several time periods. The

risk-reward relationship can be seen clearly here, along with some other

interesting patterns. The points in green represent agents who are members

of the largest firm in the simulation. The points in yellow are agents in

singleton firms, and the violet line represents the highest possible utility for

a singleton firm. All agents above this line are better off than they would

be in a singleton firm, those below this line worse off. The green “line” made

up of agents in the largest firm crosses the yellow line at around 6 = 0.4, so

firm membership is beneficial for agents with 6 < 0.4, but the high 0 agents

are stuck in a sub-optimal firm. At some point in the past, the largest firm

was a utility-maximising option for these high 0 agents, or they would not

have joined it. Another feature of this plot is the red curve marking minimal

utility. This is actually an artefact of the numerical optimisation algorithm

and it represents the lowest achievable effort level, effectively zero effort.

A few agents have high levels of utility, but the majority have a utility

of less than 1, shown in Figure 4.17. When plotted in double logarithmic

coordinates (see Figure 4.18), the distribution of employee utility takes a

strongly kinked shape, perhaps a double-Pareto distribution (Mitzenmacher

2003). The plot of the distribution of employee effort, shown in Figure 4.19,

is in linear coordinates and shows an apparent linear decline in effort until

the level zero is reached, and we observe tha t nearly half of all agents are

contributing negligible effort.

CHAPTER 4. A VARIABLE EFFORT MODEL 57

0 of Firm Founder

Figure 4.7: Tiie maximum size which a firm will reach in its hfetime plotted

against the 9 of the founder of the firm. The red firm is that in the large firm

case study, the green firm is that in the medium firm case study. Includes

all firms which died after the first period and prior to the end of the last

period of the simulation.

CH APTER 4. A VARIABLE EFFORT MODEL 58

Figure 4.8: Histogram of the number of firms created per agent, categorised

by 6. Includes all firms created after the first period of the simulation.

CHAPTER 4. A VARIABLE EFFORT MODEL 59

0 0.2 0.4 0.6 0.8 1

0 of Agent

Figure 4.9; For each agent in the simulation, the number of firms created

by tha t agent plotted against the agent’s 6. The red agent is the founder of

the large case study firm, the green agent is the founder of the medium case

study firm. Includes all firms created after the first period of the simulation.

CHAPTER 4. A VARIABLE EFFORT MODEL 60

oo

CO §
CO

•D
c
13 8
o w

U-

8O

o hiIn.^.
200 400 600 800

Firms Founded
1000

Figure 4.10: Histogram of the number of firms created per agent. Includes

all firms created after the first period of the simulation.

CHAPTER 4. A VARIABLE EFFORT MODEL 61

(U
N

CO

a

50 100 150

Lifespan

Figure 4.11: The largest size a firm achieves in its lifetime, plotted against

the lifespan of the firm in periods. The red firm is th a t in the large firm

case study, the green firm is tha t in the medium firm case study. Includes

all firms which died after the first period and prior to the end of the last

period of the simulation.

CHAPTER 4. A VARIABLE EFFORT MODEL 62

L
10 15 20 25 30

Lifespan

Figure 4.12: Histogram of lifespan of firms. Includes all firms which died

after the first period and prior to the end of the la^t period of the simulation,

except tha t 281 firms (0.02% of dataset) with lifespan longer than 30 periods

are excluded.

C H APTER 4. A VARIABLE EFFORT MODEL 63

0 of Firm Founder

Figure 4.13: Lifespan of a firm plotted against the founder’s 9. The red firm

is th a t in the large firm case study, the green firm is tha t in the medium

firm case study. Includes all firms which died after the first period and prior

to the end of the last period of the simulation.

CHAPTER 4. A VARIABLE EFFORT MODEL 64

<D
N

CO

E
3
E
X
03

• * • ' jS*
• Ji ••

10 15

Lifespan

20

Figure 4.14: Lifespan and maximum size of firms started by a particular

agent over the course of the simulation run. The red firms are those started

by the founder of the large case study firm, the large case study firm itself

is indicated by a black diamond. The green firms are those started by the

founder of the medium case study firm, the medium case study firm itself

is indicated by a black diamond. Includes all firms founded by these two

agents which died after the first period and prior to the end of the last

period of the simulation.

C H APTER 4. A VARIABLE EFFORT MODEL 65

Utility of Low, High 0 Agent

inc\i

0 200 400 600 800 1000

Period

Figure 4.15: Time series of the utility of an agent with low 0 (0.062) shown

in blue and an agent with high 0 (0.815) shown in black.

C H APTER 4. A VARIA BLE EFFORT MODEL 66

Employee Utility vs. 6

ir>

Tj-

0 0.2 0.4 0.6 0.8 1

0

Figure 4.16: Utility of all agents in the simulation at the end of Period 1000,

plotted against their 9. The green agents are members of the largest firm

in the simulation at this time. The yellow agents are singleton agents. The

purple curve represents optimum singleton utility. The red curve represents

the utility of singleton agents with the minimum possible nonzero effort level

of 0.00502.

CHAPTER 4. A VARIABLE EFFORT MODEL 67

I

0 2000 4000 6000 8000 10000

Rank

Figure 4.17: Distribution of employee utility for all agents in the simulation

at the end of Period 1000.

CHAPTER 4. A VARIABLE EFFORT MODEL 68

0)
CD
O
Q .
E

L U

i

10 100

Rank

1000 10000

Figure 4.18: Distribution of employee utility for all agents in the simulation

at the end of Period 1000, in double logarithmic coordinates.

CHAPTER 4. A VARIABLE EFFORT MODEL 69

Employee Effort

■c
CO
d

o
3 =
LU CO

0) d

CD
o
Q . d

E
LU CM

d

0 2000 4000 6000 8000

Rank

10000

Figure 4.19: Distribution of employee effort for all agents in the simulation

at the end of Period 1000.

CHAPTER 4. A VARIABLE EFFORT MODEL 70

4.4 Firm Size Distribution

For all the chaos and unpredictability at the micro level, the aggregate

statistics of the simulation show a remarkable stability. After an initial

adjustment period, the average firm size settles down to a constant value

of approximately 2.7 agents. With N = 10,000, this results in an average

number of 3,650.3 firms. Whilst the total immber of firms remains more or

less the same throughout the simulation, the firms themselves are constantly

changing. An average of 1,142.6 firms (31.3% of firms) die in every time

period (see Figure 4.20). The birth rate is equal to the death rate and so

the total number of firms is stable (see Figure 4.21).

The firm size distribution is presented as a bar chart in Figure 4.22.

We see straight away that there is a highly skew distribution, with a large

number of singleton firms present in the firm population, 1,867 or 50.3% of

firms.

Figure 4.23 shows the firm size distribution plotted with double logarith

mic axes. The relationship here is not strictly linear, but it is a robust skew

distribution which is at least power-law like. The data points have been

overlaid with a fitted discrete power law. Whether or not these data do

in fact have an underlying power law distribution, the power law exponent

is useful as a summary statistic. As a reminder, the discrete form of the

probability density function for the power law distribution is:

j . —(fc+i)

Using maximum likelihood estimation, we obtain a fitted value for k of

0.951. The distribution of firm sizes remains skew with roughly the same

shape throughout the simulation, despite the constant turnover of firms.

The productive output of a firm is determined by aggregating the con

tributions of employees’ effort and applying the output function which has

positive returns to scale, given by Equation 4.2. An individual employee’s

effort can range between 0 and 1, thus we have a theoretical maximum eco

nomic output represented by the situation of all employees exerting an effort

of 1 in a single firm. This would result in 100,010,000 units of production.

C H APTER 4. A VARIABLE EFFORT MODEL 71

While some agents exert close to their maximum possible effort, others do

almost no work and the average effort is around 0.3. The actual total out

put in the entire economy averages around 8,306.329 units, or 0.00831%

of the potential output. The average output per firm remains fairly stable

throughout the simulation at a level of 2.3 units of production. The mini

mum output is close to zero, whilst the maximum output is highly volatile,

varying between 50.6 and 526.2.

4.5 D iscu ssion

Returning to the discussion in Section 2.3 of the importance of b irth /death

and proportional growth to a skew distribution, it is easy to identify the

elements of birth and death in our simulation. Firms are born when an

agent decides tha t their utility would be highest in a new singleton firm,

and they die when their last agent leaves to seek higher utility elsewhere.

Proportional growth, too, seems likely, at least to an extent. W hat is partic

ularly interesting about this model is tha t the counteracting forces of birth

(increasing the number of small firms) and proportional growth (increasing

the size of large firms) are both achieved. The ingredients within the model

th a t lead to this are the economies of scale (output is of the order of effort

squared), and the potential for free riding. Economies of scale promote the

growth of larger firms, but are counteracted by free riding.

CHAPTER 4. A VARIABLE EFFORT MODEL 72

V)

^ o
ir 8

C O *

200 400 600 800 1000

Period

Figure 4.20: Time series of the number of firms which are born (green) and

die (red) in each period.

I

CHAPTER 4. A VARIABLE EFFORT MODEL 73

rirnm-mTTijinnfiwr
0

JD

200 400 600 800 1000

Period

Figure 4.21: Time series of the total number of firms in each period.

CHAPTER 4. A VARIABLE EFFORT MODEL

V)
E

0)

I I I
10 20 30 40

Size
50

Figure 4.22: Firm size distribution.

CHAPTER 4. A VARIABLE EFFORT MODEL 75

CO o
^ o • *
O i

5 10 20 50

Frequency

Figure 4.23: Firm size distribution plotted with double logarithmic axes

and showing fitted discrete power law with k = 0.951.

CHAPTER 4. A VARIABLE EFFORT MODEL

Chapter 5

Extensions of a Variable

Effort M odel

Ju s t as extrem e and unusual medical conditions can help to illum inate the

functioning of a healthy hum an body, extending the basic variable effort

model w ith the intention of “breaking” the skew firm size d istribution may

help us to understand it better. Some of the modifications in this section

will have only a minimal effect on the firm size d istribution , others will be

m ore noticeable.

5.1 Sequential A ctivation

In our original sim ulation runs, agents were activated randomly. A period

of sim ulation tim e is defined to be every N agent activations where N is the

to ta l population of agents. If the agents are activated in sequence, then each

agent will be activated exactly once per period. If the agents are activated

randomly, then an agent may be activated once, more th an once, or not a t

all in a given period. We saw in the case studies presented in Sections 4.2.1

and 4.2.2 th a t some agents rem ained in suboptim al firms for several tim e

periods because they had not been activated and hence were unable to leave

the ir firm. In th is section, we exam ine results from sim ulations where agents

are activated sequentially.

77

CH APTER 5. EXTEN SIO N S OF A VARIA BLE EFFORT MODEL 78

The plot in Figure 5.1 confirms the intuition that, with sequential ac

tivation, agents would not remain in a sub-optimal firm for more than 1

period. This firm’s life cycle is delightfully blunt. The singleton firm in

Period 167 is, of course, on the purple optimum singleton utility curve. At

the end of Period 168, there are 9 agents enjoying extremely high utility,

well above the purple curve. Things are still going well in Period 169 and

the firm has grown dramatically to 163 agents. During the course of Period

170, however, things decline rapidly, and by the end of the period all agents

having 0 > 0.2 are in a suboptimal situation. It is no surprise that by the

end of Period 171 the firm is defunct.

Firms are larger on average but shorter-lived in a simulation with se

quential activation. The mean firm lifespan is 2.2 and the median is 1.9,

compared with the standard case’s mean firm lifespan of 3.2 and median

of 2.6. The mean firm size (calculated over all the firms in the simulation,

rather than a cross-sectional snapshot) is 5.8 in the case of sequential activa

tion with a median firm size of 3.0. For non-sequential standard activation

the mean is 4.2 and the median 2.0.

The firm size distributions for both the standard and sequential models

are shown in Figure 5.2, there are slightly fewer firms of size 1 and 2 in the

sequential case, but more firms of almost every larger size, with a larger

maximum firm size. As shown in Figure 5.3, however, large firms have a

very short lifespan with sequential activation. This same plot also indicates

th a t other firms, very small firms, have extremely long lives and can last for

several hundred periods. We have already seen why we can expect such a

short lifespan for most firms: sequential activation allows agents to escape

from suboptimal firms within 1 period, but why does sequential activation

also allow some firms to survive for such a long life?

The histogram in Figure 5.4 has a very striking and telling feature, a

spike indicating th a t some agents found as many as 999 firms, th a t’s a

new firm in every period. (Compare this with the standard case shown in

Figure 4.10.) Why might this be? W ith sequential activation, it is possible

for agents to spend much or all of the simulation trapped in repeating loops.

One such loop might be as follows: an agent in a singleton firm is joined by

CHAPTER 5. EXTENSIONS OF A VARIABLE EFFORT MODEL 79

a neighbour, making the firm a twosome. When the original agent is next

activated, he decides to leave and create a new singleton firm, leaving the

neighbour by himself. If no other agents become involved, and if no more

tem pting choices present themselves to either of these two, it is possible for

this loop to repeat indefinitely since both agents will always be activated in

the same sequence and, given the same situation, will always make the same

decisions. This cyclicality, although not th a t particular scenario, can be

seen in Figure 5.5, which shows the utility choices available to an agent. The

pattern shows distinctly repetitive elements, if not a purely cyclical pattern.

By contrast, a similar diagram for a typical agent under non-sequential

activation shown in Figure 5.6 shows no regularity or predictability in the

utility choices available. Every time an agent is activated, the simulation

space of firms will be very different. In theory, it might be possible for a

repeating loop to develop with non-sequential activation, but a scenario in

which the order of activation of the two agents didn’t m atter is more difficult

to construct. Even if one did appear by chance it would be a rare exception

and not a dominant feature of the simulation. In some small simulations

with sequential activation, the entire simulation can become a repeating

loop, see Figure 5.7 for an illustration. As an aside, this has implications for

the study of business cycles using agent-based models, sequential activation

of agents can introduce artificial cyclicality. Returning to the question of the

long-lived very small firms, we can easily envisage a scenario now where, with

two agents locked in the repeating loop described above, a third singleton

agent nearby is left in peace for hundreds of periods.

If we think of all the possible configurations of the simulation as a state

space, we can think of sequential activation as resulting in a smaller search

of such space, restricted by cyclical behaviour which hmits the number of

states th a t can be explored by the system. Clearly, unless there is a com

pelling reason to choose sequential activation, it should not be a default

choice as it introduces many arbitrary behaviours into a system. The im

pact of sequential activation on the firm size distribution can be quantified

by considering the fitted power law slope parameter k. The fitted value for

sequential activation is 0.857, compared with the standard model’s 0.951.

C H APTER 5. EXTENSIO NS OF A VARIABLE EFFORT MODEL 80

This lower value indicates a flatter slope, as can be seen in Figure 5.2, and

corresponds to a higher level of market concentration (more large firms,

fewer small firms).

CH APTER 5. EXTENSIONS OF A VARIABLE EFFORT MODEL 81

If)
• Period 167 (Firm Size: 1)

• Period 168 (Film Size: 9)

^ CO • Period 169 (Firm Size: 63)

3 ^ • Period 170 (Firm Size: 73)

o

0 0.2 0.4 0.6

0

0.8 1

Figure 5.1: Utility of firm’s employees, plotted against 6, at the end of

various time periods.

C H APTER 5. EXTENSIO NS OF A VARIABLE EFFORT MODEL 82

ca q 'V*.
^ o “-V ,
O

' i ' - ,
• — , • •• • s' •

• • • V s• • V 5 •• • • • ># .

5 10 20 50 100

Frequency

Figure 5.2: Comparison of firm size distribution for standard model (black)

and with sequential activation (green) plotted with double logarithmic axes

and showing fitted discrete power law with k = 0.951 (standard model) and

k = 0.857 (sequential model).

CH APTER 5. EXTENSIONS OF A VARIA BLE EFFORT MODEL 83

0
■ - 9W I

E ^
X oca °

100 200 300 400 500 600 700

Lifespan

Figure 5.3; The largest size a firm achieves in its lifetime, plotted against

the lifespan of the firm in periods. The red firm is th a t in the firm case

study.

C H APTER 5. EXTEN SIO N S OF A VARIA BLE EFFORT MODEL 84

(i>
-ac
3o

hhi
200 400 600 800 1000

Number of Firms Founded

Figure 5.4: Histogram of the number of firms founded per agent during a

simulation with sequential activation.

CH APTER 5. EXTEN SIO N S OF A VARIA BLE EFFORT MODEL 85

CO

<N

O

165 170 175

Period

Figure 5.5: Utility calculated by an agent in a simulation with sequential

activation for the agent’s various options: staying in current firm (blue),

creating a new firm (black), joining the first friend’s firm (red) or joining

the second friend’s firm (purple). Vertical green lines indicate a change of

firm.

C H APTER 5. EXTEN SIO N S OF A VARIA BLE EFFORT MODEL 86

CO

O

165 170 175

Period

Figure 5.6: Utility calculated by an agent in a simulation with random

activation for the agent’s various options; staying in current firm (blue),

creating a new firm (black), joining the first friend’s firm (red) or joining

the second friend’s firm (purple). Vertical green lines indicate a change of

firm.

C H APTER 5. EXTEN SIO N S OF A VARIABLE EFFORT MODEL 87

Period

Figure 5.7: Time series of the number of firms present in a simulation with

N = 200 agents, showing a loop which repeats every 10 periods.

C H APTER 5. EXTENSIONS OF A VARIABLE EFFORT MODEL 88

5.2 M yopia

Agents have a hmited number of firms to choose from. In the standard

model, each agent is assigned n = 2 friends and those friends’ firms are the

only ones an agent is able to “see” and potentially move to. Limiting agents

to local information is referred to as myopia. In this section we examine the

impact of assigning more friends to an agent, reducing the degree of myopia.

Figure 5.8 shows the firm size distribution for the standard n = 2 case

and also for n = 3, n = 5, n = 10, n = 20 and n = 50, along with the

fitted power law line in each case (except n = 50). Increasing the number of

friends has a definite effect on the firm size distribution. The more friends

each agent has, the larger firms grow, and the fewer small firms are seen.

Only 50 agents are in singleton firms when n = 50, compared with 1,867

agents in the standard case of n = 2.

The source of this difference can be seen in Figure 5.9, which illustrates

how the choices agents make change as the number of friends increase. When

n = 2, 47.0% of agents choose to join a friend’s firm, by n = 50, this value

has increased to 92.5%. W ith so many more firms to choose from, it stands

to reason tha t one of these firms is likely to offer a higher level of utility

than either staying in one’s current firm or creating a new firm. Reducing

the agents’ myopia in this way has virtually cut off the birth component

in our model, it seldom makes sense to create a new firm when you have

50 friends, leaving the proportional growth component free to concentrate

agents in larger firms.

In Figure 5.10, we see tha t firms are only founded by extremely high-

9 agents, which is to be expected. Low-0 agents are very unlikely to find

th a t creating a new singleton firm is their best option. In fact, no agents

with 6 less than 0.8 create firms in this simulation. More surprising is the

extremely large size which is achieved by some firms, over 6,000 agents (60%

of the population) in a few cases. Firms live longer, the mean firm lifespan

with n = 50 is 4.0, compared with the standard mean firm lifespan of 3.2.

Looking at Figure 5.12, this appears to be a simple consequence of the larger

firm size, it takes longer for larger firms to complete their life cycle.

W ith n = 50, we observe an im portant tradeoff in this model. Agents

CHAPTER 5. EXTENSIONS OF A VARIABLE EFFORT MODEL 89

have higher utility and exert lower effort due to the greater efficiency of

large firms, as shown in Figure 5.13. Agents spend more time in large

firms since they are able to observe and take part in good opportunities.

Large firms last longer, since more agents join them. The price to be paid

for this is that v/e have a higher market concentration, there are virtually

no singleton firms left. In some (albeit exceptional) periods, a majority

of agents are in a single firm. Of course, it is not really possible to make

value judgements about the ideal firm size in this model without a frame

of reference. And, in this model even the very large firms are not able to

exert any monopoly influence as they begin to decline in due course. W hat

we can say is tha t myopia has a very strong role in determining the slope of

the firm size distribution in a model such as this. The fact tha t agents can

only see or join a small rmmber of firms is responsible for the high rate of

new firm creation and hence the high proportion of singleton firms for the

low n simulation runs.

5.3 D iscussion

In this chapter we reviewed the impact of sequential iteration and myopia on

the simulation behaviour in general and the firm size distribution in particu

lar. The relationship between myopia and the power law slope param eter k

was quite striking, illustrating the application of that parameter as a market

concentration indicator. W ith n = 2 friends, the slope was approximately

1, with n = 20, the slope was 0.5. If this parameter belatedly comes to be

employed regularly as a market concentration indicator, it will be interest

ing to observe the development of intuition as to what characterises, say, a

k = 0.9 economy. In the next two chapters we discuss additional models,

and we return to a discussion and analysis of all the models in Chapter 8.

CHAPTER 5. EXTENSIONS OF A VARIABLE EFFORT MODEL 90

(0
X)o

'V.
r 4 iL • ■

wfl*. t* • •t •>

• ' " t ■ " "

• •

• • • N

1 2 5 10 20 50 100 200 500

Frequency

Figure 5.8: The firm size distribution for 2 (black), 3 (green), 5 (blue),

10 (purple), 20 (red) and 50 (orange) friends per agent, plotted in double

logarithmic coordinates with fitted discrete power law having k parameter

of 0.95 (n = 2), 0.83 (n = 3), 0.71 (n = 5), 0.56 (n = 10) and 0.47 (n = 20).

CHAPTER 5. EXTENSIONS OF A VARIABLE EFFORT MODEL 91

O

2 3 5 10 20 50

Number of Friends

Figure 5.9: Number of agents in each period who join a friend’s firm (blue),

stay in their current firm (red) and create a new firm (green) for various

values of n.

C H APTER 5. E XTEN SIO N S OF A VARIABLE EFFORT MODEL 92

0 of Firm Founder

Figure 5.10: Maximum size of a firm plotted against the founder’s 0. In

cludes all firms which died after the first period and prior to the end of the

last period of the simulation.

CH APTER 5. EXTENSIONS OF A VARIABLE EFFORT MODEL 93

c
CO
CL«

0.2 0.4 0.6 0.8

0 of Firm Founder

Figure 5.11: Lifespan of a firm plotted against the founder’s 0. Includes all

firms which died after the first period and prior to the end of the last period

of the simulation.

CH APTER 5. EXTEN SIO N S OF A VARIABLE EFFORT MODEL 94

Lifespan

Figure 5.12: The largest size a firm achieves in its lifetime, plotted against

the lifespan of the firm in periods. Includes all firms which died after the

first period and prior to the end of the last period of the simulation.

CHAPTER 5. EXTENSIONS OF A VARIABLE EFFORT MODEL

0 10 20 30 40 50

Number of Friends

Figure 5.13: Mean agent utility (green) and efFort(red) for various n.

CHAPTER 5. EXTENSIONS OF A VARIABLE EFFORT MODEL

Chapter 6

An Exogenous Birth

M odel

In our discussion of the history of G ibrat’s Law in Section 2.3, we saw

how Champernowne, Simon and others proposed a variety of mechanisms

to prevent the undesirable increase in firm size variance over time which

was the result of G ibrat’s basic model.^ The Simon and Ijiri firms model

specifies an exogenous increase in the size of the overall economy in each

time period, with a proportion a of new opportunities leading to the creation

of new singleton firms (in our terminology) and the remaining proportion

1 — a being allocated to existing firms with probability proportional to their

size. Mathematically, this leads to a Yule distribution, close to a power law

distribution(Ijiri and Simon 1977).

We ask two questions in this chapter. Firstly, does an exogenous birth

model such as the Simon-Ijiri model lead to a skew firm size distribution

when implemented as an agent-based model? Secondly, what are the differ

ences, if any, between an exogenous birth process and the endogenous birth

and growth observed in the variable effort model presented in Chapter 4 and

discussed further in Chapter 5. In the variable effort model the birth rate

of new firms and the growth patterns of existing firms are not programmed

^Simon’s original work was not, as we saw, specifically intended by him to address

this problem in Gibrat’s model but it did so nonetheless.

97

CHAPTER 6. A N EXOGENOUS BIRTH MODEL 98

into the simulation, instead they are emergent properties of the interaction

of agents.

6.1 Im plem enting Exogenous B irth w ith A gents

We will, of course, implement this model as an Agent-Based Model using the

framework developed in Chapter 3. Thus the concepts of friendship, firm

membership and agent activation are such as we have already discussed. In

this instance, due to the nature of this model, there is no real meaning for

firm output or agent utility.

Agents will obey two simple behavioural rules each time they are ac

tivated. Firstly, with probability a an agent will create and join a new

singleton firm (unless they are already in a singleton firm in which case

they take no action and remain there). W ith probability 1 — a the agent

joins one of firms visible to it (via its friends) with probability proportional

to the size of each firm. Hence, for example, if the agent belongs to a firm of

size So and has two friends belonging to firms of size Si and S2 respectively

then the probability of remaining in the same firm after activation is:

(1 - q) ------------------- . (6 .1)
So + *1 + ^2

Figure 6.1 illustrates all the options available to the agent in this scenario

and their corresponding probabilities.

This is not entirely identical to the Simon-Ijiri model, in particular we

are not actually increasing the size of our simulation in each time step.

We are creating new firms at the rate a, but to create these firms we are

removing agents from existing firms.

This model has two system-wide parameters, a and n, the number of

friends per agent. Agents are homogeneous in this simulation, there are no

agent-specific parameters. The parameter a, the birth rate of new firms,

can take values between 0 and 1, with both 0 and 1 permissible values

corresponding to degenerate cases. When a = 0, agents will never create

a new singleton firm, when a = 1, agents will never join an existing firm.

In Section 6.2, we explore the impact of different values for a and n on the

CH APTER 6. A N EXOGENOUS BIRTH MODEL 99

a g e n t 's firm (size Sq)
size s

frien d 2 's firm
________(size Sj)

friend 2 J

h y p o th e tica l new firm

Figure 6.1; Example of the options and corresponding probabilities available

to an activated agent in the Simon-Ijiri firms model.

sinmlation.

6.2 A Survey of the Param eter Space

The contour plot in Figure 6.2 shows the mean number of firms present in

the simulation for various values of a and n. This plot incorporates the

results of 99 individual simulation runs with a population of = 10,000

agents in each case, a was assigned values between 0 and 1 inclusive with

an increment of 0.1, and n took integer values from 1 to 9 inclusive. The

number of firms was averaged over 700 periods of a 1,000 period simulation,

the first 300 periods were excluded to allow the system to stabilise.

We can see tha t the number of firms in the simulation increases as the

birth rate a of new firms increases, which agrees with our intuition. The

light beige coloured regions show close to 10,000 individual agents, or almost

every agent, in a singleton firm. By contrast, the purple and dark blue

regions indicate a very small total number of firms. It is clear from this

contour plot that the firm size distribution generated by this simulation will

look very different depending upon the value of a chosen.

CHAPTER 6. A N EXOGENOUS BIRTH MODEL 100

The number of friends also has an impact on the mean number of firms,

but it appears tha t this is a secondary effect, much less strong than the

impact of a. In general, having more friends results in a smaller number

of firms, ceteris paribus, however the number of friends only has an impact

for some values of a. The behaviour of the system with extreme values of

a does not change due to the number of friends.

The maximum firm size, averaged over the last 700 periods, shown in

Figure 6.3, decreases as the birth rate increases. For middling values of a ,

an increase in the number of friends also increases the maximum firm size.

Maximum firm size is plotted again in Figure 6.4 for fixed n = 2 to show

more clearly the relationship with the parameter a. Increasing the number

of agents changes the scale but not the shape of the relationship between

maximum firm size and a. We see from this plot tha t there seems to be

three distinct regions of behaviour: one for 0 < a < 0.2, another when

0.2 < a < 0.6 and a third for 0.6 < a < 1, and we will discuss the firm size

distribution in each of these three regions in the next section.

Considering again the total number of firms in the simulation, in Fig

ure 6.5 we observe tha t the variance of the number of firms is very small

near a = 0 and q = 1, increasing significantly between them. When a = 0

or a = 1, the number of firms will be close to 1 or 10,000 respectively.

As a increases from 0 or decreases from 1, the number of firms can take

many different values which will be determined by random interactions in

the simulation and so the increased variance makes sense given what we

have already learned about the system.

CHAPTER 6. A N EXOGENOUS BIRTH MODEL 101

Mean N um ber of Firms

8000

6000

0.0 0.2 0.4 0.6 0.8 1.0

a

Figure 6.2: Mean number of firms averaged over Periods 300-1000 for various

values of a and n.

CH APTER 6. A N EXOGENOUS BIRTH MODEL 102

M axim um Firm S ize

8000

0.0 0.2 0.4 0.6 0.8 1.0

a

Figure 6.3: Mean maximum firm size averaged over Periods 300-1000 for

various values of a and n.

CHAPTER 6. A N EXOGENOUS BIRTH MODEL 103

Maximum Firm Size

O
O
O

Q)
N

CT)
E

U-

E3
E
X
(0

0.2 0.4 0.6 0.8

a

Figure 6.4: Mean maximum firm size averaged over Periods 300-1000 for

various values of a with n = 2.

CHAPTER 6. A N EXOGENOUS BIRTH MODEL 104

V ariance of N um ber of Firm s

0.0 0.2 0.4 0.6 0.8 1.0

a

Figure 6.5: Variance of number of firms averaged over Periods 300-1000 for

various values of a and n.

CHAPTER 6. A N EXOGENOUS BIRTH MODEL 105

6.3 Firm Size D istribution

In this section we assume n = 2, unless stated otherwise.

6.3.1 A “Super” Firm

Firm Size Number of Firms

1 1012

2 6

8976 1

Table 6.1: Period 1000 of Simon Model with n = 2, q = 0.1 and 10000

agents.

In the region 0 < a < 0.2, the maximum firm size is close to the total

number of firms in the simulation. This implies th a t most of the agents in

the simulation are members of a single “super” firm. For example, Table 6.1

shows the firm size distribution for Period 1000 of a simulation run with

Q = 0.1. In this example, most of the agents in the simulation are members

of a single firm of size 8,976.

The red line in Figure 6.4 shows what the maximum firm size would be

if all agents, except the proportion a just forced into creating new singleton

firms, were grouped into a single “super” firm. For a < 0.2, this in fact

appears to be the situation, the observed maximum firm sizes are almost on

the red line. The singleton firms, and the handful of 2-agent firms, shown in

Table 6.1, are present because 10% of agents are assigned to new singleton

firms in each time period. The 90% (or 1 — a) of activated agents who select

a new firm based on proportional growth will, with high probability, choose

to join (or remain in) the super firm. Not only is a super firm attractive

in itself, since the agents are programmed to prefer large firms, but a super

firm is likely to be the only option available to an agent as most if not all of

the agent’s friends will already be members of the super firm. For a = 0.1

and n = 2, the average number of distinct firms available to an agent is 1.3,

much less than the theoretical maximum of 3. If we increase the number

CH APTER 6. A N EXOGENOUS BIRTH MODEL 106

of friends in the simulation to 5 or 10, then the reduction in the number

of available firms from the theoretical maximum is more marked. W ith 5

friends, the mean number of firms available is 1.6, with 10 friends it is 2.1.

Figure 6.6 illustrates for various values of a and n, the steeper slope with

which the purple (q = 0.8) points rise indicating the more normal increase

in the number of available firms as the number of friends increase.

6.3.2 More D iversity

Firm Size Number of Firms

1 5490

2 481

3 106

4 33

5 8

6 2

7 3

10 1

3015 1

Table 6.2: Period 1000 of Simon Model with n = 2, a = 0.5 and 10000

agents.

For 0.2 < a < 0.6, there is still a very large firm dominating the simula

tion, but the deviation away from the red line in Figure 6.4 indicates that

some agents are choosing to join or remain in smaller firms. As shown in

Table 6.2, the distribution of firm sizes now includes many more sizes of

small firm. The growing diversity of firm sizes reflects the fact th a t, with so

many singletons, many agents will be singletons and also have both friends

as singletons, so will not have the option of joining the “super” firm. These

agents will cluster into larger firms which may, eventually, lead them to be

able to join the “super” firm, but in the mean time these agents support a

greater number of firm sizes. Figure 6.7 shows the number of distinct firm

sizes present for various param eter values.

C H APTER 6. A N EXOGENOUS BIRTH MODEL 107

6 .3 .3 Sm all F irm s O nly

Firm Size Number of Firms

1 8544

2 552

3 81

4 20

5 3

6 1

8 1

Table 6.3; Period 1000 of Simon Model with n = 2, a = 0.8 and 10000

agents.

Finally, in the region 0.6 < a < 1 the very large firm disappears entirely.

The firm size distribution as shown in Table 6.3 consists entirely of small

to medium-sized firms. The firm size distributions for all three sections are

shown plotted together in Figure 6.3.3.

CHAPTER 6. AN EXOGENOUS BIRTH MODEL 108

_0)

CO><
w
E

Mean Number of Firms Available

6 8 10

Friends

Figure 6.6: Mean number of firms available for a = 0.1 (blue), a = 0.5

(green) and a = 0.8 (purple) and various values of n.

CH APTER 6. A N EXOGENOUS BIRTH MODEL 109

C ount of Different Firm Sizes

0.0 0.2 0.4 0.6 0.8 1.0

a

Figure 6.7: Count of number of distinct firm sizes in Period 1000 of a run

of Simon’s model over various values of a and n with 1,000 agents.

C H APTER 6. A N EXOGENOUS BIRTH MODEL 110

6.4 D iscussion

The exogenous birth model presented here does result in a skew firm size

distribution, however the presence of a “super” firm for many param eter val

ues distorts this distribution away from the power law like distributions we

observed with the variable-effort model. In order to prevent the appearance

of a “super” firm we were obliged to set the a parameter to an extremely

high value, it is not likely th a t Simon intended for the a parameter to be

anything like as large as we have experimented with in this model, given

its interpretation as a growth rate for the economy. We do see hints of a

skew distribution in places, and it is easy to imagine tha t if the “super” firm

were not present at lower values of a then the system would achieve a skew

distribution closer to the lognormal or power law.

In answer to our questions posed at the beginning of the chapter, we

do not obtain a skew firm size distribution in the way we expected, and so

there does seem to be a difference between an exogenous birth process and

an endogenous one. Although occasionally very large firms were seen in the

variable effort model, they did not persist and did not distort the firm size

distribution in the way th a t the “super” firm in the exogenous birth model

did.

The endogenous instability of large firms in the variable effort model

is the key to understanding the difference between these two models. The

birth of new firms in the variable effort model came at the expense of older

large firms, due to the older firms’ inherent unattractiveness. By contrast,

the exogenous birth of new firms does not mean tha t large firms are any less

attractive, and the presence of the “super” firm confirms this. This model

could, perhaps, be modified to prevent the appearance and persistence of a

“super” firm. Large firms could be culled or divided into smaller firms when

they reach a certain size. Such an approach, however, would be ultimately

less satisfying than a model in which the large firms regulated themselves.

C H APTER 6. A N EXOGENOUS BIRTH MODEL 111

10 100 1000 10000

Firm S i z e

Figure 6.8; Firm Size Distribution for a = 0.2 (purple), a = 0.5 (black) and

Q = 0 .8 (green).

CHAPTER 6. A N EXOGENOUS BIRTH MODEL

C hapter 7

A Cost Curve M odel

In this chapter we attem pt to forge stronger links between our agent-bfised

analysis of firm size distributions and mainstream industrial organisation.

This quote from Sutton nicely summarises the contemporary dilemma con

cerning firm sizes;

The two aspects of structure — the cross-industry differences in

concentration, and the within-industry skewness — sat uneasily

side by side. The students made no attem pt to relate the two

stories. Neither did their textbooks. (Sutton 1998) [p. xiii]

The skew distribution has not been a central theme in industrial organisa

tion, either as a source of inspiration or as a stylised fact which theories

of the firm should endeavour to address, as Simon and Ijiri lament; “The

classical theory would admit a normal distribution, a rectangular one, or a

single size for all the firms in an industry as readily as it would admit the

skew distributions (whether they be Pareto, Yule or log normal) tha t are

actually observed.” (Ijiri and Simon 1977) [p. 8-9]. Industrial organisation

theory, when it addresses firm size at all, does so in terms of the cost curve

facing a firm and hence tells the story that “the size and the number of the

firms in an industry are related to the degree of returns of scale.” (Tirole

1997)[p. 18]. This can be interpreted to mean tha t all firms within an indus

try will have the same size, if they share a common cost curve, or th a t the

firm size distribution will depend upon the distribution of cost curves where

113

CHAPTER 7. A COST CURVE MODEL 114

they are heterogeneous. We will explore an agent-based implementation of

a cost-curve firm size model in this chapter.

7.1 Im plem enting C ost Curves w ith A gents

Within our standard friendship network framework, each agent is initialised

into a singleton firm which is allocated a random unit cost. Agents will

have a utility function which tells them to seek the firm with the lowest

unit cost. The intuition behind seeking a firm with low unit cost is that the

profits of such a firm will be higher, corresponding to higher agent income.

Since we ignore the demand side in this model in the interest of simplicity,

the relationship between low unit cost and high agent income/utility is very

simple, agent utility is equal to 1 minus the effective unit cost of the firm

they are a member of.

With this as our starting point, we then consider a variety of scaling

regimes, where the unit cost of a firm changes with the market share of the

firm, where market share is defined to be the proportion of agents in the

simulation who are members of that firm. The taxonomy of scaling regimes

is based upon work by Mazzucato who used replicator dynamics rather than

agent based modelling to consider the relationship between cost curves and

market structure (Mazzucato 2000). We distinguish here betw'een initial

unit cost, which is the random value allocated to the firm as its starting

point, and the effective unit cost which is the initial unit cost adjusted for

the market share of the firm according to the relevant scaling regime.

7.1.1 Static Econom ies o f Scale

Each firm, indexed by an integer j , has a unit cost function Cj which depends

upon the market share Sj of the firm (measured by the number of employees

divided by total employee population):

C j { s j) = Cj { l + 4> - S j) S j)

= Cj (l + 24>uSj — (j)ŝ)

(7.1)

(7.2)

CHAPTER 7. A COST CURVE MODEL 115

dc
= Cj (2 4 > i / — 2 (p S j) (7.3)

dSj

= 2c j (j) { v — S j) (7-4)

d'^Cj

d s]

C onstant R eturns To Scale

2cj(t> (7.5)

4> = 0

C j = 9
d c ^_^

d S j
= 0

d ^ C 4

d s]
= 0

(7.6)

(7.7)

(7.8)

(7.9)

In this scenario, the market share does not have an impact on fitness. Even

tually, all employees will end up in that firm which happened to be given

the lowest unit cost at the initialisation of the simulation (unless some em

ployees are disconnected from that firm, although this is highly unlikely).

D ecreasing R eturns to Scale

(p < 0 (7.10)

= 2cj4>{y-Sj) (7.11)

 ̂ > 0 if Sj > J/ (7-12)

dcj
dsj

dsj
d c '

< 0 if Sj < 1/ (7-13)

(7.14)

When the parameter 4> < 0, we have static decreasing returns to scale.

That is, the unit cost increases as the firm size grows above a market share

of Sj — V. If 7 = 0, that is all firms have same initial unit cost, we would

expect employees to organise themselves into firms of size S = i^N or as

close as they can achieve.

CHAPTER 7. A CO ST CURVE MODEL 116

Increasing R eturns to Scale

4> > 0 (7.15)

(7.16)

< 0 if Sj > V
dS j

dCj rt -c> 0 if s, < i/
dS j

(7.18)

(7.19)

(7.17)

In static increasing returns to scale, unit costs decrease as the firm mar

ket share grows above the critical value of u. Thus we should probably

assume i/ = Q to have sensible behaviour. Just as in the case of constant

returns to scale, all employees will end up in one firm, and it will be a firm

which had a relatively low initial unit cost, but not necessarily the lowest.

A firm which grows quickly, thus reducing its unit cost, will be more com

petitive than a firm which perhaps started with a lower initial unit cost but

added employees at a slower rate. There are many possible equilibrium out

comes in this scenario. The friendship network may come into play strongly

here, the number of inward links into a particular firm will determine its

growth rate in the first time period of the simulation and may be crucial in

determining the final winner.

7.1.2 Dynam ic Econom ies of Scale

We multiply the last term in Equation 7.1 by a factor of (1 — \f3sj). We

can set /3 = 0 and revert to Equation 7.1. Since dynamic returns are an

extension of the Increasing Returns scenario, we assume zv = 0, </> > 0.

(7.20)

(7.21)

Hr
= Cj { -2 (j)S j + !3(j)s]) (7.22)

(7.23)

CHAPTE R 7. A CO ST CURVE MODEL 117

Since <p > 0, 0 < p < 1, 0 < S j < 1, we have ^ < 0. This corresponds

to static increasing returns, i.e. the cost is decreasing as firm size increases.

(7.24)

(7.25)

If /3 = 1, then ^ < 0 for all values of Sj. This corresponds to increas

ing returns to scale, as firm market share increases, unit cost decreases at

an increasing rate. If 0 < /3 < 1, then for Sj < p we have increasing re

turns and for Sj > /3 we have decreasing returns. This case corresponds to

Mazzucato’s definition of dynamic decreasing returns which are decreasing

above an implicit cutoff point. Note that if 1 < /3 < 2, we have dynamically

increasing returns for all Sj with no critical point within the domain of the

Sj. We would expect such a system to behave similarly to the case of simple

increasing returns to scale, i.e. /3 = 0.

Table 7.1 summarises the coefficients and parameters of the system^

Sj Market Share of Firm j

Cj Original Unit Cost of Firm j (Assigned Randomly At Initialisation of Simulation)

7 Std Deviation of Probability Distribution used to generate Cj

(p Coefficient for Increasing/Decreasing Returns

y Critical Point for Increasing/Decreasing Returns

p Critical Point for Dynamically Increasing/Dynamically Decreasing Returns

'w h ilst these equations are similar in intent and were inspired by the equations given

by Mazzucato, there are some differences relating to the differing methods of computa

tional implementation (Mazzucato 2000). The parameters v and /3, explicit here, are

implicit in the Mazzucato equations and similarly the Mazzucato parameters A and a ,

which determine the speed of adjustment, are implicit here. The parameter cj>, which de

termines the nature of the scaling regime, corresponds to Mazzucato’s / and g functions.

Table 7.1: Parameters for the cost curve model.

C H APTER 7. A CO ST CURVE MODEL 118

7.2 R esults

7.2.1 Static Econom ies o f Scale

C onstant R eturns to Scale

Recall th a t we expect an equilibrium outcome with all agents in the firm

which had lowest unit cost a t initialisation, and this is indeed the outcome

we observe. A time series of the number of firms in the simulation, shown

in Figure 7.1, shows tha t the firm population drops from its initial value

of 1,000 to its final value of 1 within 10 time periods. The simulation has

reached a steady state at this point and does not change after this. The

minimum, maximum and mean unit cost is plotted in Figure 7.1, these lines

converge as all the agents join the firm with lowest unit cost. By contrast,

if we assume a homogeneous distribution of initial unit costs, then agents

will remain in singleton firms (or whatever size firm they are initialised in),

there being no benefit to joining a different firm.

D ecreasing R eturns to Scale

If we initialise all firms with homogeneous unit cost of 0.5 (i.e. 7 = 0), then

with N = 1,000 agents and 1/ = 0.1 we would expect to see an equihbrium

outcome of 10 firms of approximately 100 agents each. In fact, Table 7.2

shows th a t instead agents group into 6 equally sized firms. This is not the

only possible outcome, but it is the most common. Occasionally we observe

a grouping into 7 firms.

Firm Size Number of Firms

166 2

167 4

Table 7.2: Firm size distribution for <f> = —1.00, = 0.10, /3 = 0.00 and

7 = 0 .00 .

The reason for this suboptimal outcome can be determined by consid

ering the unit cost function, which for these parameter values is Cj{sj) =

CHAPTER 7. A COST CURVE MODEL 119

Cj (l — 0.2sj + s^). This equation is plotted in Figure 7.3 (the purple curve)

and it shows tha t while the optimum market share is indeed 0.1 (indicated

by the red vertical mark), the equilibrium outcome of 6 firms (indicated by

the orange dot) is superior to the market share of singleton firms (indicated

by the green horizontal line and the green dot), and this fact is sufficient

for the 6 firm state to be a stable outcome.

All agents begin in singleton firms, at the green dot. After 1 period, the

blue dots indicate tha t the largest firms in the simulation are approaching

the optimal market share. However, once they reach th a t market share

agents will continue to join them and they will contirme to grow, despite the

fact tha t the unit cost is now increasing. These large firms are still preferable

to the agents’ existing firms. When they reach a size of approximately g

market share, agents finally stop joining them and join smaller firms which

are now preferable, until eventually the simulation reaches the distribution

in Table 7.2.

The agents do achieve a balanced equilibrium, they divide themselves

evenly into firms, however they are not able to divide themselves into opti

mal firms. This is the result of the agents’ simplicity, they are not able to

strategize or to understand th a t 0.1 is an optimal value. It is also the result

of allowing free entry into firms. If the agents within a firm were able to

restrict new members when it was not in their interest a t accept them, then

the large firms would “freeze” when they reached 100 agents. However this

might not result in a superior overall outcome, some agents might become

isolated in small, sub-optimal firms if all of their friends were in 100-agent

frozen firms. The process as it stands is rapid, equitable and robust, if not

optimal. W ith heterogeneous initial unit costs, agents will again organise

themselves into firms with equal unit costs adjusted for market share, but

these will not necessarily be equal sized firms. W ith homogeneous initial

unit cost, the identity of the six surviving firms is random, with heteroge

neous initial unit costs the final six firms will be ones which happened to

have low initial unit cost.

CHAPTER 7. A COST CURVE MODEL 120

Increasing R eturns to Scale

W ith increasing returns to scale, the equihbrium outcome is for all agents

to be in a single firm, the outcome is effectively indistinguishable from the

case of heterogeneous constant returns to scale. The convergence of the

maximum, minimum and mean unit costs for this case is shown in Figure 7.4.

7.2.2 Dynam ic Econom ies o f Scale

Dynamic economies of scale, as an extension of increasing returns to scale,

has a similar outcome, in th a t all agents end up in a single firm. The

convergence of the maximum, minimum and mean unit costs for this case

is shown in Figure 7.5.

CH APTER 7. A CO ST CURVE MODEL 121

Period

Figure 7.1: Time series of the number of firms in the simulation for (p = 0.

D ata is collected after the end of each time period and so the initial firm

population of 1,000 which corresponds to time 0 is not visible here.

CHAPTER 7. A COST CURVE MODEL 122

O

0 5 10 15 20

Period

Figure 7.2: Time series of the maximum (red), minimum (green) and mean

unit cost (purple) for (f) = 0.

CHAPTER 7. A COST CURVE MODEL 123

d

lO
d

d

O)

d

§
d

0 0.05 0.1 0.15 0.2 0.25 0.3

Market Share

Figure 7.3: The purple curve represents the unit cost function. The green

horizontal line represents the achievable singleton market cost. The red line

indicates the optimal market share. The market share distribution after

period 2 is shown in blue, and after period 15 in orange.

CH APTER 7. A COST CURVE MODEL 124

COo
O

10

Period
15 20

Figure 7.4: Time series of the maximum (red) and minimum (green) initial

unit cost, and the mean effective unit cost (purple) for (f> = 1. The effective

unit cost reaches 0 when the largest firm reaches a market share of 1.

CHAPTER 7. A COST CURVE MODEL 125

C /) CO

0 5 10 15 20

Period

Figure 7.5: Time series of the maximum (red) and minimum (green) initial

unit cost, and the mean effective unit cost (purple) for P = 0.1. The effective

unit cost reaches a minimum value, which is greater than 0, when the largest

firm reaches a market share of 1.

CHAPTER 7. A COST CURVE MODEL 126

7.3 D iscussion

The models in this chapter result in either a single firm containing all agents

in the simulation, or uniformly-sized firms within which the population is

evenly divided (or close to it). This is a very different outcome from our

other models. Also noteworthy is that, as we progressed from constant

returns to scale, to increasing returns to scale, to dynamically increasing

returns to scale, ever more refined and subtle models, the outcome and

dynamics of the agent-based simulations scarcely changed, despite the very

different economic implications of these scenarios. The case of decreasing

returns to scale provided another im portant illustration of how intuition

about an analytical model can be misleading when the model is implemented

in an agent-based framework.

Chapter 8

Conclusions

The variable effort model produces a skew distribution of firm sizes, we

propose, due to the presence within the model of endogenous birth and

proportional growth forces. These forces result from the instantiation within

an agent-based model of contradictory microeconomic tendencies, namely

the free riding tendency due to Cobb-Douglas income leisure preferences

and the increasing returns to scale of the firm production function. All of

these elements have a role to play in the resultant generation of a skew firm

size distribution.

The agent-based model implementation provides an environment where

information is gathered and decisions are made asynchronously, with my

opia/local neighbourhood interaction. We saw tha t myopia was an im

portant part of the variable effort model, when this was relaxed the skew

distribution changed shape, first slightly and then more dramatically at ex

trem e values such as n = 50. The agent-based implementation provided the

scaffold which allowed the counteracting microeconomic tendencies to be

translated into macroeconomic forces having an impact on simulated firms

which resembled birth and proportional growth sufficiently to yield a skew

firm size distribution.

An im portant possibility is tha t the specifics of the variable effort model

are not of fundamental importance. This analysis does not suggest tha t

the specific factors of income-leisure preferences and increasing returns to

127

CHAPTERS. CONCLUSIONS 128

scale are necessarily responsible for the skew distribution of firm sizes, but

rather it suggests th a t any two (or more) microeconomic attributes which

interact with each other in a similar way can result in similar macroeconomic

behaviour. How do such factors need to interact with each other? The

specifics can be determined experimentally (perhaps with another model

implemented in this same framework), but a good starting point may be that

the income-leisure preferences and increasing returns to scale can potentially

interact both positively and negatively with each other. Innovation is a

category which jumps to mind as having many microeconomic models and

the potential for positive and negative interactions, and so may have the

necessary dichotomous nature to lead to a skew distribution.

This necessary endogenous tension is reminiscent of the discovery in

physics tha t a power law is a sign of a phase transition, and it is evocative

of the concept th a t an economy demonstrating a skew distribution is poised

in the complex and challenging border between order and chaos. If we take

the view tha t these tensions are healthy and necessary, tha t an economy

which becomes stable will soon become stagnant, then we are left with the

implication tha t the inequality implied by a skew distribution is a funda

mental fact of life. The Pareto distribution of income, the 80/20 rule, is not

something which can ever be permanently remedied, although we may be

able to alter its slope.

The cost curve and exogenous birth models each provided interesting

counterexamples to the ideas brought out by the variable effort model. Ex

ogenous birth, the blunt force solution proposed by Simon to counteract the

monopolistic trends of a proportional growth regime, proved to be ineffective

as an add-on. The cost curve model provided many interesting insights into

what can change when an analytical or computational model is implemented

in an agent-based framework. The model quickly reached a steady state,

making it have limited interest compared with the rich turnover apparent

in the variable effort model.

The unification, or at least reacquaintance, of the G ibrat’s Law branch

of the theory of the firm with the modern industrial organisation strand

is a promising and fertile field for future research, with the aid of new

C H A P TE R S. CONCLUSIONS 129

perspectives which can combine the positive attributes of both approaches.

We can view Gibrat’s Law as a consequence, rather than an assumption, of

economic theory. The skew distribution of firm sizes can be seen as a styhsed

fact which should be explained by a model in an agent-based context, and

not necessarily outside of that. Perhaps the industrial organisation theorists

were right to ignore the skew distribution of firm sizes after all. It may not be

an implication of microeconomic theory itself, but of the imperfect physical

manifestation of that theory in an asynchronous, myopic world.

CHAPTER 8. CONCLUSIONS

Bibliography

Adamic, Lada A. (2006). Zipf, Power-laws, and Pareto - a ranking

tutorial, h t t p : //www.h p l . h p . co m /re se a rc h /id l/p a p e rs /rsm k in g /

rank ing .h tm l.

Anonymous (c. 1000). Beowulf, h ttp ://w w w .g u te n b e rg .o rg /e te x t/9 8 1 .

Axtell, Robert (1999). The Emergence of Firms in a Population of Agents:

Local Increasing Returns, Unstable Nash Equilibria, and Power Law

Size Distributions. Brookings Center on Social and Economic Dynam

ics (CSED) Working Paper No. 3. h ttp ://w w w .b ro o k in g s .ed u /e s /

d y n am ics /p ap e rs /firm s/F irm s.pdf.

Barabasi, Albert-Laszlo (2003). Linked. Plume.

Bi, Zhiqiang , Christos Faloutsos, and Flip Korn (2001, August). The

”DGX” Distribution for Mining Massive, Skewed Data. In The Seventh

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining.

Cefis, Elena , Matteo CiccareUi, and Luigi Orsenigo (2004). Testing

G ibrat’s Legacy: A Bayesian Approach to Study the Growth of Firms.

Technical Report 05-02, Tjalling C. Koopmans Research Institute.

Champernowne, D. G. (1952, October). The Graduation of Income Dis

tribution. Econometrica 20(4), 591-615.

Dubrulle, B. , F. Graner, and D. Sornette (1997). Foreword. In

B. Dubrulle, F. Graner, and D. Sornette (Eds.), Scale Invariance and

Beyond. Springer.

Gabaix, Xavier (1999, August). Zipf’s Law for Cities: An Explanation.

131

B IBLIO G RAPH Y 132

The Quarterly Journal of Economics 114{S), 739-767.

Gleick, James (1987). Chaos. Abacus.

Ijiri, Yuji and Herbert A. Simon (1977). Skew Distributions and the Sizes

of Business Firms. Amsterdam: North Holland.

Kalecki, Michael (1945, April). On the Gibrat Distribution. Economet-

rica 13{2), 161-170.

Kauffman, S tuart A. (1993). The Origins of Order. Oxford University

Press.

Krugman, Paul R. (1996). The Self-Organizing Economy. Blackwell.

Laherrere, Jean and Didier Sornette (1998). Stretched exponential distri

butions in nature and economy: ”fat tails” with characteristic scales.

The European Physical Journal B, 2, 525-539.

Mazzucato, Mariana (2000). Firm Size, Innovation and Market Structure.

Edward Elgar.

Mitzenmacher, Michael (2003). A Brief History of Generative Models for

Power Law and Lognormal Distributions. Internet Mathematics 1 (2),

226-251.

Simon, Herbert A. (1955, December). On a Class of Skew Distribution

Functions. Biometrika 425-440.

Steindl, Josef (1965). Random Processes and the Growth of Firms: A

Study of the Pareto Law. Griffin.

Sutton, John (1997, March). G ibrat’s Legacy. Journal of Economic Lit

erature 35(I), 40-59.

Sutton, John (1998). Technology and Market Structure: Theory and His

tory. The MIT Press.

Tirole, Jean (1997). The Theory o f Industrial Organization. The MIT

Press.

Uetz, Peter and EMBL Heidelberg (2005). The EMBL Reptile Database.

h t tp :/ /w w w .re p ti le -d a ta b a s e .o rg Accessed 19 September 2005.

Weisstein, Eric W. (2005). Riemann Zeta Function. From Mathworld -

A Wolfram Web Resource.

BIBLIO G RAPH Y

BIBLIO G RAPH Y 133

Yule, G. Udny (1925). A M athematical Theory of Evolution, Based on

the Conclusions of Dr. J. C. Willis, F.R.S. Philosophical TVansactions

of the Royal Society of London. Series B, Containing Papers o f a

Biological Character, 213, 21-87.

Zipf, George Kingsley (1965). Huw,an Behavior and The Principle o f Least

Effort. Hafner Publishing Company.

B IB LIO G R A P H Y

B IB LIO G RA P H Y 134

BIBLIO G RAPH Y

A ppendix A

Source Code

C ontents
A .l F r a m e w o r k ... 137

A .1.1 S irnp leF irm sM odel.java .. 137

A. 1.2 Employee.java ... 167

A. 1.3 F irm .ja v a ... 176

A .2 D a ta C o l le c t io n .. 179

A.2.1 CollectionSum m ary.java.. 179

A.2.2 M axN um ericD ataSource.java.. 182

A.2.3 A rrayD ataS ource.java.. 183

A.2.4 D istributionD ataSource.java... 185

A.2.5 A rraylntD istributionD ataSource.java.. 187

A.2.6 G raphv izD ataS ource.java ... 189

A .3 U t i l i t i e s .. 191

A.3.1 B oundedD ouble.java... 191

A.3.2 F u n c tio n .jav a .. 193

A .4 V aria b le E ffo rt M o d e l ..199

A.4.1 VariableEffortModel.java ... 199

A.4.2 VariableEffortEmployee.java..211

A.4.3 V ariableEfFortU tilityFunction.java..216

A.4.4 V ariab leE ffo rtF irm .java...218

A.4.5 V ariableE ffortF irm O utputFunction.java..226

135

APPENDIX A. SOURCE CODE 136

A .5 E xogen ou s B irth M o d e l ...227

A.5.1 ExogenousBirthM odel.java ... 227

A.5.2 ExogenousBirthEm ployee.java... 230

A.5.3 E xogenousB irthF irm .java...234

A .6 C ost C urve M o d e l ...236

A.6.1 CostCurveModel.java ... 236

A.6.2 CostCurveEmployee.java.. 240

A.6.3 C o stC u rv eF irm .jav a ...241

A.6.4 C ostCurveFirm CostFunction.java... 244

A PPE N D IX A. SOURCE CODE

A .l Framework

137

The classes in this section: SimpleFirmsModel, Emploj'’ee and Firm, form the core of the

friendship-firms framework. They are intended to be subclassed with the model-specific

behaviour, for example in the Variable Effort model they are subclassed by VariableEffort-

Model, VariableEffortEmployee and VariableEffortFirm respectively. For some models,

it might not be necessary to subclass all three, the default behaviour may suffice.

A .1.1 Sim pleFirm sM odeI.java

package i e . t e d .e c o n o m ic s . f ir m s ;

im p o r t j a v a . l a n g . R u n t im e ;

im p o r t J a v a . la n g .P r o c e s s ;

im p o r t j a v a . i o . * ;

im p o r t j a v a . u t i l . A r r a y L is t ;

im p o r t J a v a .u t i l . I t e r a t o r ;

im p o r t J a v a . u t i l . D a t e ;

im p o r t u c h ic a g o . s r c . s im . a n a l y s i s .DataRecorder;

im p o r t u ch ica g o . s r c . s im . e n g in e . SimpleModel;

public c lass SimpleFirmsModel e x te n d s SimpleModel {

J / i i i r n i i n i i / t o t a l > l u j i l d i j i (s Unii ' i h i t i o n ' ^

p r o te c te d in t numberEmployees;

' H d i i n u n n i f r i t n d s p i / (u / i n f : -

p ro te c te d in t numberFriends;

H d i r n i i i i i i j jK ■■ ■ ' / > ■ ■

A. 1.1. SimpleFirmsModel.java

A PPE N D IX A. SO U RCE CODE 138

p r o te c te d in t stopA tP eriod;

H i i i f n i di i t j < ni 'ploi/(I s j)i r f i r m s h o u l d u ini t i (i t i s< :

I ' si ial l i j s f f f n 1 i o s i i n i in s i n i i l r t o i i f i r n i s

p r o te c te d in t in it ia lF ir m S iz e = 1;

’ D r f i n i fi H i m pi r io i l d u r i n g i r l n ch l i i i /hl i i d i f i i i l i d s i n n i l a l i o n i lnf i i

^ a n r o l l i i i i d . C ' o l U i H n f] d i i u i h d d u i u f o r Un i i i f i n s i ni i i lai i o n

' IS II n iK 11 s s a r i / a n i l f i n i i - roi i . s i rni ini j .

p u b lic in t d e ta ilS ta r tP e r io d ;

p u b lic in t d e ta ilS to p P e r io d ;

* R i P i i s f p r o r i d i s a gi ni n i l i>i t ((/cr T i r k . t h i s r u s t i n n T i r k

* l (f s u s b r i n k (i i r h T i c k i i i io n i i n i h i r F n i p l o i / i i s s i i l i t i i k s .

* S o i f w r h d i ' i m o iii/i I l f s i n f h (s i i i i i i l i i f i o n . a f t i r f h i

* , t i rs f o n e i s a r f i r a f c d ire w i l l hi a t f i l m D.DI . t h r u I).II.! i f r.

' T h i s i i l l o i r s f o r m o n d v i u i h d f i i m si ri t s t i i k i n i / a s m i p s h o f

i i f f c r I ar i l ai / i l i t i i c t i v i i f io i i ,

p r o te c te d double customTick;

* T h i s i s a v u r i n h U t o h o l d u d (s i r e d i 'u I i k f o r f l u r n n d o i u S i < d

* i i n f i l i f c a n In p n s s t - d f o f h (i i n d i l i i / ini^ R i P a s t f n r r m i ror k .

p riva te lon g randomSeed;

A. 1.1. SimpIeFirmsModeI.java

APPE N D IX A. SOURCE CODE 139

1 n l < ii III' h i n i l i i i i K n: , : , villi': I n n : ^ /■ - s l n i i i l m f in ' -

A r r d i / L i . ' ^ i . I ' s i / I I m i i (n i 1 i n (j f h i n i i f i h n i l f i r n i ^ .

p ro te c te d A rray L is t< F irm > f irm s L is t;

' S h o u l d ii (/ i iif.<. I i n i i t i l l (i j i t i i t i i 111 r r i d t i u 11(11' I-^i i i i / h f o i l I f i n i l ^

p ro te c te d boolean allowNewFirms = t ru e ;

' lt< n i f i ii(/i I l fs ill SI ijiii n i l III nu i i l o i u l i i ' (

p ro te c te d boolean i te r a te S e q u e n t ia l ly = f a ls e ;

' I f iiiji I l l s ((III 1)1 f o r c d l f o r r i d f i III i r s i i i i / h f o n f i r m s .

’ irifli irhdf i>r(ili(iliilifii will fh(i/ crnifi ik ti' firms''

p ro te c te d double fo rceN ew S in g le to n P ro b ab ility ;

* \ i iri(i l i l<s n i d f i i i f j f o i ld f d col l f r f i o t i . E a c h D d f n R t v o n h r h a s d

* c o r n s p o n d i v ; } b o o U a a p r i f i r i i i c i f o r t rh i fh< r il i s a c f i r t o r i iof .

* d l lo i r i i i i j f h (in f o Ik n i s i l i j s i r i f c h i d of f ' i rh(n n o t i n r d f d .

p riv a te in t new Firm sThisPeriod;

p r iv a te in t deadFirm sT hisPeriod;

p r iv a te i n t [] sizeO fF irm Joined;

p r iv a te in t [] s izeO fF irm L eft;

p r iv a te i n t [] sizeO fFirm Stayed;

A. 1.1. SimpleFirmsModel.java

A PPE N D IX A. SOURCE CODE 140

protected boolean recordModelDetail = true;
protected DataRecorder recorder;

protected boolean recordFirmSizeDistribution = true;
protected int recordPirmSizeDistributionlnterval = 1;
private DatciRecorder firmSizeDistributionRecorder;

protected boolean recordCumulativePirmSizeDistribution = true;
private DataRecorder cumulativeFirmSizeDistributionRecorder;

protected boolean recordPirmSizeJoinedLeftStayed = false;
private DataRecorder firmSizeJoinedRecorder;
private DataRecorder firmSizeLeftRecorder;
private DataRecorder firmSizeStayedRecorder;

public static boolean recordEmployeeTimeSeries = true;
public static DatciRecorder employee?imeSeriesRecorder;

public static boolean recordEmployeeCrossSection = true;
public DatciRecorder employeeCrossSectionRecorder;

public static boolesm recordEmployeeCrossSectionCaseStudy = true;
public DataRecorder employeeCrossSectionCaseStudyRecorder;

public boolean recordPirmCrossSection = true;
public DataRecorder firmCrossSectionRecorder;

public boolean recordPirmTimeSeries = false;
public int firmTimeSeriesInterval = 20;
public DataRecorder fimiTimeSeriesRecorder;

public static boolean recordPirmTimeSeriesDetail = false;

A. 1.1. SimpleFirmsModel.java

A PPEN D IX A. SOURCE CODE 141

p u b lic s ta tic boolean recordF riendshipN etw ork = t r u e ;

p u b lic DataRecorder friendsh ipN etw orkR ecorder;

p u b lic s ta tic boolean reco rd P irm L ifeS ta ts = f a ls e ;

p u b lic DataRecorder f irm L ife S ta tsR e c o rd e r;

p r iv a te double f irm Lif eS ta tA ge;

p r iv a te double f irm LifeStatW ho;

p r iv a te double f irm LifeStatM ajcSize;

p u b lic s ta tic boolean re co rd P irm B irth S ta ts = f a ls e ;

p u b lic DataRecorder f irm B irth S ta tsR e c o rd e r;

p u b lic s ta tic boolean re co rd P irm Jo in in g S ta ts = t r u e ;

p u b lic DataRecorder f irm Jo in in g S ta tsR e c o rd e r;

p r iv a te double f irm Jo in in g S ta tS iz e ;

p r iv a te in t firinJoiningStatW hoEmployee;

p r iv a te in t firm JoiningStatW hoFirm ;

p u b lic s ta tic boolean recordE m ployeeD ecisionS tats = t r u e ;

p u b lic DataRecorder em ployeeD ecisionS ta tsR ecorder;

p ro te c te d double em ployeeDecisionStatW ho;

p ro te c te d double em ployeeDecisionStatPirm StayW ho;

p ro te c te d double em ployeeD ecisionS tatP irm S tayS ize;

p ro te c te d double em p lo y ee D ec is io n S ta tS tay U tility ;

p ro te c te d double em ployeeD ecisionStatPirm JoinlW ho;

p ro te c te d double em p lo y eeD ecis io n S ta tP irm Jo in lS ize ;

p ro te c te d double e m p lo y e e D ec is io n S ta tP irm Jo in lU tility ;

p ro te c te d double em ployeeD ecisionStatPinnJoin2W ho;

p ro te c te d double em ployeeD ecisionS tatP irm Join2Size;

p ro te c te d double em p lo y eeD ec is io n S ta tP irm Jo in 2 U tility ;

p ro te c te d double em p lo y eeD ec is io n S ta tP irm C rea teU tility ;

p ro te c te d in t num berStayingCurrentPirm ;

A. 1.1. SimpleFirmsModel.java

A PPE N D IX A. SOURCE CODE 142

p ro te c te d i n t numberCreatingNewFirm;

p ro te c te d i n t num berJoiningFriendsFinn;

' (/I i In i i P(i r <u) i l I i i sui i l l i / n i i u i i s (in t i rn i f i o f s t r / i u / s >~p((/[(/ ini /

" p<i r i i i i i (f (i s . H(r< i n t h i s t o i i l l o i r s i /hc l ds s i iH/ i i iofli Is t o

* a d d th(i r o w n p d i r i n i s t o l i s t .

* n i (i i i i l i i i t P (i r< ni i () f / i i ' t s p a r a n K ti r s n h r d i i t t o S i m p U F i n u s M o d i t

* (i d d i t i o n (i U i i i t P (i r (i i i i s l i i t i i d s t i n p d K i m i t< r s a d i U d hi/ s u l x l a s s i i o j

* m o d i Is.

public StringL] m ain ln itParam O {

S t r i n g [] params = {"modelName", "codeVersion",

"numberEmployees", "numberFriends", " s topA tP er iod" ,

"randomSeed", " in i t i a l F i r m S i z e " , "allowNewFirms",

" i t e r a t e S e q u e n t i a l l y " , " fo rceN ew S ing le tonP robab il i ty " ,

" d e t a i l S t a r tP e r io d " , " d e ta i lS to p P e r io d " } ;

r e tu r n params;

}

public StringL] g e t ln i tP a ram O {

r e tu r n m ain ln itParam O ;

}

public S t r i n g [] a d d i t io n a l ln i tP a r a m s (S t r in g [] add it ionalParam s)

{
S t r i n g [] mainParams = m ain ln itP aram O ;

S t r i n g [] params = new String[m ainParam s. len g th +

ad d i t io n a lP a ram s . l e n g t h] ;

System .arraycopy(m ainParam s, 0, params, 0, mainParams. l e n g t h) ;

S y s te m .a r ra y c o p y (a d d i t io n a lP a ra m s , 0, params,

mainPaxams. le n g th , ad d i t io n a lP a ram s . l e n g t h) ;

A. 1.1. SimpleFirmsModel.java

A PPE N D IX A. SOURCE CODE 143

return params;
}

I n i f i i i l / s i r i n i i l d i i i S ' < (I h (i (.

■' i f i n s(i i f (IS (I pr< f i r(iii-(h i i i r i f i r / l l o n ri i ' ri t< t h i s r i i l t K .

public void setup () {
super. setup 0 ;
rauidomSeed = System.currentTimeMillisO ;

}

public void buildModelO {
if (recordFirmSizeJoinedLeftStayed) {

sizeOfFirmJoined = new int[numberEmployees];
sizeOfFirmLeft = new int[numberEmployees];
sizeOfFirmStayed = new int[numberEmployees];

}

/ / S i I t h) H i I ’l i s f t i n i i p r i ' iD i ! i i i n i i i r h I n -<li)ji.

this.setStoppingTime(stopAtPeriod);
, , S i i t i l l U t P a s i h ’l i i i d i i n i S c i il.

this.setRngSeed(randomSeed);

firmsList = new ArrayListO ;

initializeDataRecordersO;

, ' (i i i ' i s i Di i i j i / l i r I r r o r i f i m f i i i i f i i i l i s i il.

Firm firmToJoin = null;

for (int i = 0; i < numberEmployees; i++) {
Employee emp = createEmployee(i);

A. 1.1. SimpleFirmsModel.java

A PPE N D IX A. SOURCE CODE 144

agentList.add(emp);
if (i 7« initialFirmSize ==0) {

emp.createAndJoinFirmO;
firmToJoin = emp.firm;

> else {

if (firmToJoin == null) {
throw new R u n tim eE xception (

"firmToJoin not initialised!");
} else {

emp.joinFirm(firmToJoin);
}

>

>

for (Iterator it = agentList. iterator (); it.hasNextO ;) {
((Employee)it.next()).makeFriendsO;

>

stepDataRecorders0;

I ' s d l pr inKir i l t j in l<st/n(j triii r< in i l i in' f iriiiit 1o i lnla n r o i ' d i i -

' a n d will V(fill II ri i iisi I .rri p t iDiis in l i s t i f n o t s i r i l r l i i d off'.

public void disableRecordersO {
recordModelDetail = false;
recordFirmSizeDistribution = false;
recordCumulativeFirmSizeDistribution = false;
recordEmployeeTimeSeries = false;
recordEmployeeCrossSection = false;
recordEmployeeCrossSectionCaseStudy = false;
recordFirmCrossSection = false;
recordFirmTimeSeries = false;

A. 1.1. SimpleFirmsModel.java

A PPE N D IX A. SOURCE CODE 145

recordFriendshipNetwork = false;
recordFirmSizeJoinedLeftStayed = false;
recordPirmLifeStats = false;
recordFirmBirthStats = false;
recordFirmJoiningStats = false;
recordEmployeeDecisionStats = false;

}

Tln> u n f h o d s h o u l d Ik <i i ’(n r r iH< ii m sdliclu'^-

public Employee createEmployee(int i) {
System. out. pr int In (

"Overwrite createEmployeeO in your model.");
return new Employee (this, i) ;

}

public void preStepO {
customTick = getTickCount();
newFirmsThisPeriod = 0;
deadFirmsThisPeriod = 0;
numberStayingCurrentFirm = 0;
numberCreatingNewFirm = 0;
numberJoiningFriendsFirm = 0;

if(iterateSequentially) {
for (int i = 0; i < agentList. sizeO ; i++) {

getAgent(i).activate();
customTick += 1.0/agentList.sizeO;
if (recordFirmTimeSeries &&

recordFirmTimeSeriesDetail && inDetailPeriodO)
{

firmTimeSeriesRecorder.recordO;

A. 1.1. SimpleFirmsModel.java

APPEN D IX A. SOURCE CODE 146

}
>

} else {

R i i i i d o i n l f i Si l t d (!(/ (I l f s f o r iii f i r<i t ini i

for (i n t i = 0; i < a g e n tL i s t . s i z e () ; i++) {

i n t j = getNextIntFromTo(0, a g e n t L i s t . s i z e () - l) ;

g e tA g en t(j) . a c t i v a t e O ;

customTick += 1 . 0 / a g e n t L i s t . s i z e () ;

if (recordFirmTimeSeries &&

recordF irm T im eSeriesD eta il && in D e ta i lP e r io d O)

{
f i rm T im eS er ie sR ec o rd e r .re co rd O ;

}
}

}
}

pub lic vo id s t e p O {

for (I te r a to r i t = f i r m s L i s t . i t e r a t o r () ; i t .h a s N e x t () ;) {

((Firm) i t .nex t ()) . s t e p O ;

}
}

pub lic vo id p o s tS te p O {

stepDatciRecorders 0 ;

if (th is .ge tT ickC oun tO % 50 == 0 M in D e ta i lP e r io d O) {

w ri teD ataR ecordersO ;

}

public vo id atEndO {

w ri teD a taR eco rd e rsO ;

}

A. 1.1. SimpleFirmsModel.java

A PPE N D IX A. SOURCE CODE 147

public void destroyFimi(Firm exFirm) {
firmsList.remove(exFirm);
if (recordFirmLifeStats) {

firmLifeStatAge = exFirm.getExactAgeO;
firmLifeStatWho = exFirm.getWho();
firmLifeStatMaxSize = exFirm.getMaxSize();
firmLifeStatsRecorder.record();

}
deadFirmsThisPeriod++;

>

public void addFirm(Firm newFirm) {
f irmsList.add(newF irm);
if (recordFirmBirthStats) {

firmBirthStatsRecorder.recordO;
}
newFirmsThisPeriod++;

}

/ / Arf(

public String getModelNameO {
return this.getClassO .getNameO ;

}

' T h i s UK i h o d q u t h i IS t i n S i i h n r s i o i i r od (v(I ' s i on n i m i h f r i r h i c h /s s i o i r i l

’■ (IS (I p u r i n i K t(r i i i i il p i i i i l i d t i i i f m iliifii p h s . s o f l m f f lu I'i r s io i i a f

c o d i i i s i i l f o p i ' o d i i n (I (j i n n l i i i i ih i s k i i o i r i i .

public String getCodeVersionO {
int exit = -1;

A. 1.1. SimpleFirmsModel.java

APPEN D IX A. SOURCE CODE 148

S tr in g l i n e = " " ;

S tr in g r e s u l t S t r = "" ;

R u n t im e r t im e = R u n t im e .g e tR u n t im eO ;

t r y {

P ro ce s s c h i ld = r t i m e . exec("svnvers ion

I n p u tS t r e a m R e a d e r inputStreamReader = new

I n p u tS t r e a m R e a d e r (c h i ld .g e t ln p u tS t r e a m O);

B u ffe red R ea d e r re a d e r = new

B u ffe red R ea d e r(in p u tS tream R ea d e r) ;

do {

r e s u l t S t r += l i n e ;

l i n e = r e a d e r . re ad L in e () ;

} w hile (l i n e != n u l l) ;

r e a d e r . c lo s e O ;

e x i t = c h i ld .w a i tF o r 0 ;

} ca tch (E x c ep t io n ex) {

r e s u l t S t r = "Not D e te c te d " ;

}
r e tu r n r e s u l t S t r ;

}

/

G i f f l l ((l(/l Ilf a f p o s i t i o n ! it! i l l ! Illjl i i t L i s t

pub lic Employee g e tA g e n t(in t i) {

r e tu r n (E m p lo y e e)a g e n tL is t .g e t (i) ;

>

A. 1.1. SimpleFirmsModel.java

A PPEN D IX A. SOURCE CODE 149

p u b lic i n t getNumberEmployees() {

r e tu r n n\imberEmployees;

}

p u b lic vo id setNumberEmployees(in t newNumberEmployees) {

numberEmployees = newNumberEmployees;

>

p u b lic i n t getN um berFriends() {

re tu r n num berF riends;

>

p u b lic vo id setN um berF riends(in t newNumberFriends) {

num berFriends = newNumberFriends;

}

p u b lic i n t ge tS topA tP eriodO {

re tu r n stopA tP eriod ;

>

p u b lic vo id se tS to p A tP e rio d (in t argS topA tPeriod) {

S topA tPeriod = argS topA tPeriod ;

}

p u b lic i n t getN ew Firm sThisPeriodO {

r e tu r n new Firm sThisPeriod;

}

p u b lic in t getD eadFirm sT hisPeriodO {

r e tu r n deadFirm sThisPeriod;

>

p u b lic in t getNumberFirmsO {

A. 1.1. SimpleFirmsAIodeI.java

A PPEN D IX A. SOURCE CODE 150

return firmsList,size();

>

public void setRandomSeed(long newRandomSeed) {
randomSeed = newRandomSeed;

}

public long getRandomSeedO {
return randomSeed;

•»r

public double getNumberStayingCurrentFirmO {
return numberStayingCurrentFirm;

}

public double getNumberCreatingNewFirmO {
return numberCreatingNewFirm;

}

public double getNumberJoiningFriendsFirmO {
return numberJoiningFriendsFirm;

}

public double getCustomTickO {
return customTick;

>

public void setInitialFirmSize(int arglnitialFirmSize) {
initialFirmSize = arglnitialFirmSize;

}

public int getlnitialFirmSizeO {
return initialFirmSize;

A. 1.1. SimpleFirmsModel.java

A PPE N D IX A. SOURCE CODE 151

}

public void setAllowNewFirms(boolean argAllowNewFirms) {
allowNewFirms = argAllowNewFirms;

>

public boolean get AllowNewFirms () {
return allowNewFirms;

}

public void setlterateSequentially(boolean arglterateSequentially)
{

iterateSequentially = arglterateSequentially;
}

public boolean getlterateSequentially() {
return iterateSequentially;

}

public void addSizeOfFirmJoined(int sizeOfFirm) {
if (recordFirmSizeJoinedLeftStayed) {

SizeOfFirmJoined[sizeOfFirm]++;
>

}

public void addSizeOfFirmLeft(int sizeOfFirm) {
if (recordFirmSizeJoinedLeftStayed) {

sizeOfFirmLeft[sizeOfFirm]++;

>

>

public void addSizeOfFirmStayed(int sizeOfFirm) {
if (recordFirmSizeJoinedLeftStayed) {

A. 1.1. SimpIeFirmsModel.java

A PPEN D IX A. SOURCE CODE 152

s izeO fF irm Stayed[sizeO fFirm]++;

}
>

public double getF irm Lif eStatAgeO {

r e tu r n f irm L ife S ta tA g e ;

>

public double getFirm LifeStatW ho() {

r e tu r n f irm LifeSta tW ho;

}

pub lic double getF irm LifeS tatM axSizeO {

r e tu r n f irmLif eStatMajcSize;

}

public void se tF o rceN ew S in g le to n P ro b ab il i ty (double

newForceNewSingletonProbability) -[

fo rceN ew S ing le tonP robab il i ty =

new ForceN ew SingletonProbability ;

}

pub lic double g e tP orceN ew S ing le tonP robab il i ty () {

r e tu r n fo rceN ew S in g le to n P ro b ab il i ty ;

}

pub lic boolecin in D e ta i lP e r io d O {

r e tu r n th is .g e tT ick C o u n tO > d e t a i l S t a r t P e r i o d &&

th is .g e tT ick C o u n tO < d e ta i lS to p P e r io d ;

}

pub lic boolecin d e c i s i o n S t a t s () {

r e tu r n recordEm ployeeDecisionStats && in D e ta i lP e r io d O ;

A. 1.1. SimpleFirmsModel.java

A PPE N D IX A. SOURCE CODE 153

}

public void recordDecisionStatsO {
employeeDecisionStatsRecorder.recordO;

>

public void setDetailStartPeriod(int newDetailStartPeriod) ■[
detailStartPeriod = newDetailStartPeriod;

}

public int getDetailStartPeriodO {
return detailStartPeriod;

}

public void setDetailStopPeriod(int newDetailStopPeriod) {
detailStopPeriod = newDetailStopPeriod;

}

public int getDetailStopPeriodO {
return detailStopPeriod;

}

public void setFirmJoiningStatSize(double newFirmJoiningStatSize)
{

firmJoiningStatSize = newFirmJoiningStatSize;
>

public double getFirmJoiningStatSizeO {
return firmJoiningStatSize;

}

public void setFirmJoiningStatWhoEmployeeC
int newFirmJoiningStatWhoEmployee) {

A. 1.1. SimpleFirmsModel.java

APPEN D IX A. SOURCE CODE 154

firmJoiningStatWhoEmployee = newFirmJoiningStatWhoEmployee;
>

public double getFirmJoiningStatWhoEmployee() {
return firmJoiningStatWhoEmployee;

>

public void setFirmJoiningStatWhoFirm(int newFirmJoiningStatWhoFirm)

firmJoiningStatWhoFirm = newFirmJoiningStatWhoFirm;
}

public double getFirmJoiningStatWhoFirmO {
return firmJoiningStatWhoFirm;

}

public double getEmployeeDecisionStatWhoO {
return employeeDecisionStatWho;

>

public double getEmployeeDecisionStatFirmStayWhoO {
return employeeDecisionStatFirmStayWho;

}
public double getEmployeeDecisionStatFirmStaySizeO {

return employeeDecisionStatFirmStaySize;
>

public double getEmployeeDecisionStatStayUtilityO {
return employeeDecisionStatStayUtility;

}
public double getEmployeeDecisionStatFirmJoinlWhoO {

return employeeDecisionStatFirmJoinlWho;
>

public double getEmployeeDecisionStatFirmJoinlSizeO {
return employeeDecisionStatFirmJoinlSize;

A. 1.1. SimpleFirmsModel.java

A PPE N D IX A. SOURCE CODE 155

public double getEmployeeDecisionStatFirmJoinlUtility() {
return employeeDecisionStatFirmJoinlUtility;

}
public double getEmployeeDecisionStatFirmJoin2Who() {

return employeeDecisionStatFiniiJoin2Who;
}
public double getEmployeeDecisionStatFirmJoin2Size() {

return employeeDecisionStatFinnJoin2Size;
}
public double getEmployeeDecisionStatFirmJoin2Utility() {

return employeeDecisionStatFirmJoin2Utility;
}
public double getEmployeeDecisionStatFirmCreateUtility() {

return employeeDecisionStatFirmCreatelltility;
}

Ddfii Ri rordi IS

public void initializeDataJlecorders() throws
NullPointerException {
long filenameTimeStamp = System.currentTimeMillisO ;

if (recordModelDetail) {

recorder = new DataRecorder (" ./output/"+
filenameTimeStamp + "_model.txt",
this, "Random Seed;\t"+ getRngSeedO) ;

recorder.createNumericDataSource(
"number_of_firms", firmsList, "size");

recorder.createNumericDataSource(
"new_firms", this, "getNewFirmsThisPeriod");

recorder.createNumericDataSource(

A. 1.1. SimpleFirmsModeI.java

A PPEN D IX A. SOURCE CODE

"dead_firms" , this, "getDeadFirmsThisPeriod");

156

recorder.addNumericDataSource("total_employees", new
TotalNiimericDataSource (firmsList) {
public double getValue(Object argObject) {

return (double)((Finn)argObject).getSizeForStatCollector();
>

»:

recorder.addNmnericDataSource("max_firm_size", new
MaxNumericDataSource(firmsList) {
public double getValue (Object argObject) {

return (double)((Firm)argObject).getSizeForStatCollector();
}

»;

recorder.addNumericDataSource("max_firm_age", new
MaxNumericDataSource(firmsList) {
public double getValue (Object argObject) {

return (double)((Firm)argObject).getAgeO;
}

»:

recorder,addNumericDataSource("avg_firm_age", new
AverageNumericDataSource(firmsList) {
public double getValue (Object argObject) {

return (double)((Firm)argObject).getAgeO;
}

});

recorder.addNumericDataSource("avg_firm_size", new
AverageNumericDataSource(firmsList) {

A. 1.1. SimpleFirmsModel.java

APPENDIX A. SOURCE CODE 157

public double get Value (Object argObject) {
return (double)((Firm)argObject)
■getSizeForStatCollectorO;

}
»;

recorder.addNumericDataSource("max_utility", n e w
MaxNumericDataSource(agentList) {
public double getValue(Object argObject) {

return (double)((Employee)argObject).getUtility();
}

});

recorder.addNumericDataSource("miii_utility", n e w
MinNumericDataSource(agentList) {
public double getValue (Object argObject) •[

return (double)((Employee)argObject).getUtilityO;
}

}) ;

recorder.addNumericDataSource("avg_utility", n e w
AverageNumericDataSource(agentList) {
public double getValue (Object argObject) •[

return (double)((Employee)argObject).getUtility();
}

»:

recorder.createNumericDataSource("number_staying_current_firm",
this, "getNumberStayingCurrentFirm");

recorder.createNumericDataSource("number_creating_new_f irm",
this, "getNumberCreatingNewFirm");

recorder.createNimiericDataSource("n\amber_joining_friends_firm",
this, "getNumberJoiningFriendsFirm");

A. 1.1. SimpleFirmsModel.java

A P P E N D IX A . S O U R C E C O D E 158

recorder.addNumericDataSourceC"cohabitationRate", new
AverageNumericDataSource(agentList) {
public double getValueCObject argObject) {

return (double)((Employee)argObject)
■getCohabitationRateO;

>

}

if (recordEmployeeTimeSeries) {
employeeTimeSeriesRecorder = new DataRecorder("./output/"+

filenameTimeStamp + "_employee_time_series.txt",
this, "Random Seed:\t"+ getRngSeedO) ;

}

if (recordEmployeeCrossSection) {
employeeCrossSectionRecorder = new DataRecorder("./output/"+

filenameTimeStamp + "_employee_cross_section.txt",
this, "Random Seed:\t"+ getRngSeedO);

>

if (recordEmployeeCrossSectionCaseStudy) {
employeeCrossSectionCaseStudyRecorder = new

DataRecorder("./output/"+ filenameTimeStamp
+ "_employee_cross_section_case_study.txt",
this, "Random Seed:\t"+ getRngSeedO);

if (recordFirmCrossSection) {
firmCrossSectionRecorder = new DataRecorder("./output/"+

filenameTimeStamp + "_firm_cross_section.txt",

A. 1.1. S im pleF irm sM odeijava.

APPEN D IX A. SOURCE CODE 159

this, "Rcindom Seed:\t"+ getRngSeedO) ;
}

if (recordFirmTimeSeries) {
firmTimeSeriesRecorder = new DatcLRecorder("./output/"+

f ilenaimeTimeStaiDp + "_finn_time_series.txt",
this, "Random Seed:\t"+ getRngSeedO);

if (recordPirmTimeSeriesDetail) {
firmTimeSeriesRecorder.createNumericDataSourceC
"custom_tick", this, "getCustomTick");

}
}

if (recordFirmSizeDistribution) {
firmSizeDistributionRecorder = new DataRecorder("./output/"+

filenameTimeStamp + "_firm_size_distribution.txt",
this, "Random Seed:\t"+ getRngSeedO);

f irmSizeDistributionRecorder.addObj ectDataSource("",
new DistributionDataSource(
firmsList, numberEmployees, false, true) {
public int getValue (Object argObject) {

return ((Firm)argObject).getSizeO;
>

});

}

if (recordCumulativeFirmSizeDistribution) {
cumulativeFirmSizeDistributionRecorder = new DataRecorder(

"./output/"+ filenameTimeStamp +
"_cum_firm_size_distribution.txt",
this, "Random Seed:\t"+ getRngSeedO);

cumulativeFirmSizeDistributionRecorder.addObjectDataSource(
"", new DistributionDataSource(

A. 1.1. SimpleFirmsModel.java

A PPE N D IX A. SOURCE CODE 160

f i rm s L is t , numberEmployees, t r u e , t r u e) {

pub lic i n t g e tV a lu e (O b jec t argO bject) {

r e tu r n ((F i rm)a rg O b je c t) .g e tS iz e O ;

}
» ;

if (recordF irm SizeJo inedL eftS tayed) ■[

firm SizeJo inedR ecorder = new DataRecorder(" . /o u tp u t /" +

filenameTimeStamp + " _ f i i 'm _ s iz e _ jo in e d . tx t" ,

th i s , "Random S e e d : \ t"+ getRngSeedO);

f irm S izeJo inedR ecorder .addO bjec tD ataSourceC " , new

A rray In tD is tr ibu tionD ataS ource (s izeO fF irm Jo ined ,

numberEmployees, "Size of Firm J o in e d ")) ;

f irm SizeL eftR ecorder = new DataRecorder(" . /o u tp u t /" +

filenameTimeStamp + " _ f i r m _ s iz e _ l e f t . t x t " ,

th i s , "Random S e e d : \ t"+ getRngSeedO);

f i rm S izeL e f tR eco rd e r .addObjectDataSource(" " , new

A rray In tD is tr ib u t io n D a taS o u rce (s izeO fF irm L eft ,

numberEmployees, "Size of Firm L e f t ")) ;

firm SizeStayedRecorder = new D ataR ecorder(" . /o u tp u t /" +

filenameTimeStamp + " _ f i rm _ s iz e _ s ta y e d . tx t" ,

th i s , "Random S e e d : \ t"+ getRngSeedO);

f irm SizeS tayedR ecorder.addO bjectD ataSource(" " , new

A rrayIn tD is tr ibu tionO ataS ource(s izeO fF irm S tayed ,

numberEmployees, "Size of Firm S tay ed ")) ;

}

if (recordFriendshipNetwork) {

friendshipNetworkRecorder = new D ataR ecorde r(" . /o u tp u t / " +

filenameTimeStamp + "_ fr ie n d sh ip _ n e tw o rk . tx t" ,

A. 1.1. SimpleFirmsModel.java

APPEN D IX A. SOURCE CODE 161

this, "Random Seed;\t"+ getRngSeedO);
friendshipNetworkRecorder.addObjectDataSourceC", new

GraphvizDataSource(agentList, "Friendship Network"));
}

if (recordFirmLifeStats) {
firmLifeStatsRecorder = new DataRecorder("./output/"+

filenameTimeStamp + "_firm_life_stats.txt",
this, "Rcindom Seed: \t"+ getRngSeedO) ;

firmLifeStatsRecorder.createNumericDataSource("age",
this, "getFirmLifeStatAge");

firmLifeStatsRecorder.createNumericDataSource("who",
this, "getFirmLifeStatWho");

firmLifeStatsRecorder.createNumericDataSource("maxSize",
this, "getFirmLifeStatMaxSize");

if (recordFirmBirthStats) {
firmBirthStatsRecorder = new DataHecorder("./output/"+

filenameTimeStamp + "_firm_birth_stats.txt",
this, "Random Seed;\t"+ getRngSeedO);

>

if (recordFirmJoiningStats) {
firmJoiningStatsRecorder = new DataHecorder("./output/"+

filenameTimeStamp + "_firm_joining_stats.txt",
this, "Random Seed:\t"+ getRngSeedO);

firmJoiningStatsRecorder.createNumericDataSource("size",
this, "getFirmJoiningStatSize");

firmJoiningStatsRecorder.createNumericDataSource("employeeWho",
this, "getFirmJoiningStatWhoEmployee");

firmJoiningStatsRecorder.createNumericDataSource("firmWho",
this, "getFirmJoiningStatWhoFirm");

A. 1.1. SiinpleFirmsModel.java

A P PE N D IX A. SOURCE CODE 162

}

if (recordEmployeeDecisionStats) {
employeeDecisionStatsRecorder = new DataRecorder(

"./output/"+ filenameTimeStcunp +
"_employee_decision_stats.txt",
this, "Random Seed:\t"+ getRngSeedO);

employeeDecisionStatsRecorder.createNumericDataSource(
"customTick", this, "getCustomTick");

employeeDecisionStatsRecorder.createNumericDataSource(
"who", this, "getEmployeeDecisionStatWho");

employeeDecisionStatsRecorder.createNumericDataSource(
"firmStayWho", this,
"getEmployeeDecisionStatFirmStayWho");

employeeDecisionStatsRecorder.createNumericDataSource(
"firmStaySize", this,
"getEmployeeDecisionStatFirmStaySize");

employeeDecisionStatsRecorder.createNumericDataSource(
"f irmStaylltility", this,
"getEmployeeDecisionStatStayUtility");

employeeDecisionStatsRecorder.createNumericDataSource(
"firmJoinlWho", this,
"getEmployeeDecisionStatFirmJoinlWho");

employeeDecisionStatsRecorder.createNumericDataSource(
"firmJoinlSize", this,

"getEmployeeDecisionStatFirmJoinlSize");
employeeDecisionStatsRecorder.createNumericDataSource(

"firmJoinlUtility", this,

"getEmployeeDecisionStatFirmJoinlUtility");
employeeDecisionStatsRecorder.createNumericDataSource(

"firmJoin2Who", this,

"getEmployeeDecisionStatFirmJoin2Who");
employeeDecisionStatsRecorder.createNumericDataSource(

A. 1.1. SimpleFirmsModel.java

A PPEN D IX A. SOURCE CODE 163

"firmJoin2Size", this,

"getEmployeeDecisionStatFirmJoin2Size");
employeeDecisionStatsRecorder.createNiomericDataSource(

"firmJoin2Utility", this,
"getEmployeeDecisionStatFirmJoin2Utility");

employeeDecisionStatsRecorder.createNumericDataSource(
"firmCreateUtility", this,
"getEmployeeDecisionStatFirmCreateUtility");

pubhc void stepDataBecorders() {
if (recordModelDetail) {

recorder.recordO ;

}

if (recordEmployeeTimeSeries) {
employeeTimeSeriesRecorder.record0;

}

if (recordEmployeeCrossSection &&
this.getTickCount() 7, 100 == 0) {
employeeCrossSectionRecorder.record();

}

if (recordEmployeeCrossSectionCaseStudy &&
inDetailPeriodO) {

employeeCrossSectionCaseStudyRecorder.recordO;

}

if (recordPirmTimeSeries) {
firmTimeSeriesRecorder.recordO;

A. 1.1. SinipleFirmsModel.java

A PPE N D IX A. SOURCE CODE 164

}

if (recordFirmCrossSection &&
this.getTickCount() ‘/, 100 == 0) ■[
firmCrossSectionRecorder.recordO;

}

if (recordFirmSizeDistribution &&
this.getTickCount() %

recordFirmSizeDistributionlnterval == 0) {
f irmSizeDistribut ionRecorder.record();

}

if (recordCumulativeFirmSizeDistribution) {
cumulativeFirmSizeDistributionRecorder.recordO;

}

if (recordFirmSizeJoinedLeftStayed) {
firmSizeJoinedRecorder.recordO;
firmSizeLeftRecorder.recordO;
firmSizeStayedRecorder.recordO;

>

if (recordFriendshipNetwork && this.getTickCountO == 1) {
friendshipNetworkRecorder.recordO;

}

}

public void writeDataRecorders() {
if (recordModelDetail) {

recorder.writeToFileO;
}

A. 1.1. SimpleFirmsModel.java

A PPEN D IX A. SOURCE CODE 165

if (recordEmployeeTimeSeries) {
employeeTimeSeriesRecorder.writeToFile();

}

if (recordEmployeeCrossSection) {
employeeCrossSectionRecorder.writeToFile();

}

if (recordEmployeeCrossSectionCaseStudy) ■[
employeeCrossSectionCaseStudyRecorder.writeToFile();

}

i f (recordFirmTimeSeries) {
firmTimeSeriesRecorder.writeToFileO ;

}

if (recordFirmCrossSection) {
firmCrossSectionRecorder.writeToFile();

>

i f (recordFinnSizeDistribution) {
firmSizeDistributionRecorder.writeToFileO;

}

if (recordCumulativeFirmSizeDistribution) {
cumulativeFirmSizeDistributionRecorder.writeToFileO;

}

i f (recordFirmSizeJoinedLeftStayed) {
firmSizeJoinedRecorder.writeToFileO;
f irmSizeLeftRecorder.writeToFile();
f irmSizeStayedRecorder.writeToFile();

A. 1.1. SimpleFirmsModel.java

A PPEN D IX A. SOURCE CODE 166

>

if (recordFriendshipNetwork) {
friendshipNetworkRecorder.writeToFileO;

}

if (recordFirmLifeStats) {
firmLifeStatsRecorder.writeToFileO;

}

if (recordFirmBirthStats) {
firmBirthStatsRecorder.writeToFileO;

}

if (recordFirmJoiningStats) ■[
firmJoiningStatsRecorder.writeToFile();

}
}

}

A. 1.1. SimpleFirmsModel.java

APPENDIX A. SOURCE CODE

A .1.2 Em ployee.java

package ie . te d .e c o n o m ic s . f i rm s ;

i m p o r t u ch ica g o . s r c . s im . a in a ly s is . DataRecorder;

im p o r t u ch ica g o . s r c . s im . a n a l y s i s . NumericDataSource;

p u b lic class Employee {

p ro te c te d Firm firm ;

p ro te c te d I n t e g e r [] f r ie n d s ;

p ro te c te d SimpleFirmsModel model;

p ro te c te d i n t who;

p ro te c te d s ta t ic final i n t STAY_CURRENT_FIRM_OPTION = 0;

p ro te c te d s ta t ic final i n t CREATE_NEW_FIRM_OPTION = -1;

p ro te c te d s ta t ic final i n t JOIN_EXISTING_FIRM_OPTION = -2;

p u b lic Employee (SimpleFirmsModel newModel, i n t i) -[

who = i ;

model = newModel;

dataiRecordersO ;

}

p u b lic vo id a c t i v a t e () {

joinM aximum UtilityFirm O;

>

O p f i o t K i l h ; (l i t i i l l s i i h c l i i s K .

pub lic double c a lc u l a t e C u r r e n tU t i l i t y () {

r e tu r n calculateMcLximumUtilityAtFirm(firm);

}

167

A. 1.2. Employee.java

APPENDIX A. SOURCE CODE 168

O c t l i . - . . . :

public double calculateMaximumUtilityAtFirmCFirm firm) {
return 0;

>

(s t i n n u m i n i s a f f r i< i i d s h i p m t t r o r k s . T h i s n i d h o i l n i i l i a l / j s

f l i d f f i ' i (n d s h i j i m l n t t rk hi / c i d i l / n i j o m - i r t i t i f r ' n ndsUip l i n ks f i i r i i i i i l d n i l i /

* SI l(l i i t l I inpl<)i/((s i r i t h i i i i l u n t od t l . T i n i i i i i i i h i r i i f i i n i i j t i t f r i i n i l s

* i i s s i i j i i i d III I a r i l (i i i j) l i i i ; i i is a i i i i i d i I p i i r i i i i i i l i r.

public void makeFriendsO {
if (model.niamberFriends > model.numberEmployees - 1) {

throw new RuntimeExceptionC
"Must have fewer friends than employees in simulation.");

}
friends = new Integer [model. numberFriends] ;
for (int i = 0; i < friends.length; i++) {

Integer friendCandidate;
boolecin newFriend;
do {

friendCandidate = new Integer(model.getNextIntFromTo(
0, model.numberEmployees - 1));

newFriend = true;
for (int j = 0; j < i; j++) {

if (friends[j].equals(friendCandidate)) {
newFriend = false;
break;

}
>

} while ((friendCandidate. intValueO == who) I I InewFriend);

A. 1.2. Employee.Java

A PPE N D IX A. SOURCE CODE 169

friends[i] = friendCandidate;
}

>

l.nijili)t/(I s j o in llii p n n ni u'liich ih(ij c du i ichi i r< Ihi lu(/li(si iitililij.

l h (II f . rani i i i i a l l i iriiiliihli p n i i s (ihi n ri i rr(iif l irni . j i rn is dJ al l f r i i nils.

(I l i i /polhi I t ra l s i iniUUti i p r n i IIk i/ r u n r r i d t i) . an i l l i i o ns f ibi hi sf

i i j i i ion.

protected void joinMaximumUtilityFirmO {
double maxUtility = 0;
double utility = 0;

int option = STAY_CURRENT_FIRM_OPTION;
Firm firmToJoin = null;

if (!forceNewSingletonO) {
/ / I l i l i f i / lit llii r i i r n III f i rm.

majcUtility = calculateMaximumUtilityAtFirm(firm);

if (model.decisionStatsO) {
model.employeeDecisionStatFirmStayWho = firm.getWhoO;
model.employeeDecisionStatFirmStaySize = firm.getSizeO;
model.employeeDecisionStatStayUtility = maxUtility;

>

/ / I f i l i t i / III II III ir s i iu j l i l i i n p r i n .

/ / I f iri a n alrui i l i i a sini / l i f un lin n i r i l In ilii lliis.

if (model.allowNewFirms && firm.getSizeO != 1) {
Firm temporaryFirm = createNewFirmO;
utility = calculateMciximumUtilityAtFirm(temporaryFirm);
temporaryFirm = null;

A. 1.2. Einployee.java

APPENDIX A. SOURCE CODE 170

if (utility > maxUtility) {
option = CREATE_NEW_FIRM_OPTION;
maxUtility = utility;

}

if (model.decisionStatsO) {
model.employeeDecisionStatPinnCreateUtility =

utility;
>

>

for (int i = 0; i < friends.length; i++) {
Firm friendsFirm = getFriend(i).firm;
if (!friendsFirm.equals(firm)) ■[

utility = calculateMaximumUtilityAtFirm(friendsFirm);

if (utility > maxUtility) {
option = JOIN_EXISTING_FIRM_OPTION;
firmToJoin = friendsFirm;
maxUtility = utility;

>

if (model.decisionStatsO) {
switch (i) {

case 0 :
model.employeeDecisionStatFirmJoinlWho =

friendsFirm.getWhoO ;
model.employeeDecisionStatFirmJoinlSize =

friendsFirm.getSizeO;
model.employeeDecisionStatFirmJoinlUtility

= utility;
break;

A. 1.2. Employee.Java

APPEN D IX A. SOURCE CODE 171

case 1:
model.employeeDecisionStatFirmJoin2Who =

friendsFirm.getWhoO;
model.employeeDecisionStatFirmJoin2Size =

friendsFirm.getSizeO ;
model.employeeDecisionStatFirmJoin2Utility

= utility;
break;
}

}
}

}
} else {

I'lirn II III ir .'iiiK/li Ion prill

if (model.allowNewFirms && firm.getSizeO != 1) {
option = CREATE_NEW_FIRM_OPTION;

>

}

switch (option) {
case CREATE_NEW_FIRM_OPTION:

model.addSizeOfF irmLeft(f irm.getSize());
createAndJoinFirmO ;
model.numberCreatingNewFirm++;
model.addSizeOfFirmJoined(l);
break;

case JOIN_EXISTING_FIRM_OPTION:
model.addSizeOfF irmLeft(f irm.getSize());
joinFirm(firmToJoin);
model.numberJoiningFriendsFirm++;
model.addSizeOfFirmJoined(firmToJoin.getSizeO);
break;

A. 1.2. Employee.java

APPENDIX A. SOURCE CODE 172

case STAY_CURRENT_FIRM_OPTION:

model. addS izeO fP irm S tayed (f irm .ge tS izeO);

model.numberSt ayingCurrentPirm++;

>

if (m o d e l .d e c is io n S ta ts O) {

model. employeeDecisionStatWho = who;

model. em p lo y eeD ecis io n S ta tsR eco rd er .reco rd O ;

}
}

I. ((Iff riirrt iii p rn i . ijdr}!/. m id j o i n fli(j i n n i>(iss((l as (iiyirint n1

“ ptirauis IK i i 'F/nii F i n n Id hi J o in uL

public void jo inFirm (F irm newFirm) {

if (f irm != n u l l) {

if (f irm .equa ls(new F irm)) {

th ro w new R u n t im e E x c e p t io n (

"Employee t ry in g to j o i n a f i rm they a re a l re ad y i n . ") ;

>

f irm .loseE m ployee(th is) ;

}
th i s . f i r m = newFirm;

newFirm.gainEmployee(this) ;

if (model. in D e ta i lP e r io d O) {

model. setFirmJoiningStatWhoEmployee(who);

model. setFirmJoiningStatWhoF irm(newF irm .getWho()) ;

model. se tF irm Jo in ingS ta tS ize (new Firm .ge tS ize 0) ;

model. f i rm Jo in in g S ta tsR e c o rd e r . r e c o r d () ;

}

A .1.2. Employee.Java

APPENDIX A. SOURCE CODE 173

>

II l l ' i i p i i i i a n d j i i i i i li.

public void createAndJoinFirmO {
Firm newFirm = createNewFirmO ;
this.joinFirm(newFirm);
model.addFirm(newFirm);

}

Ett i j ih i j id s (ID n sjiiiiis/hli f o r i ri (itiiif/ n< ir J i r ins . H< iii i i iii li siihi lass

iij h iiijiloi/i I m i i s i (}i'(rri(l((r< iii< \ (i r F i n i i to < r(iit< fh< (•ori'(spoii(liii(/

■ siihi-his.'^ o f h m u . l l i i s slioiilil oiili/ hi ciilli il f r o m rri <ifi A n i I J on i l - ' i rn i I)

Miii/lii ni(ik(p r i r i i t i ':

public Firm createNewFirmO {
return new Firm (model) ;

}

protected boolean forceNewSingletonO {
return model.getNextDoubleFromTo(0,1) <

model.forceNewSingletonProbability;
}

' W'Ik i I j)(rci ntiifii o f nii/ in i f ihhoi irs a n in t in s a i n i p n n as nii r

private double cohabitationRateO {
double total = 0;
for (int i = 0; i < friends.length; i++) -[

A. 1.2. Employee.Java

APPENDIX A. SOURCE CODE 174

Firm fr ien d sF irm = g e t F r i e n d (i) . firm ;

if (f r ie n d s F irm .e q u a ls (f i rm)) {

t o t a l + + ;

>

}
r e tu r n t o t a l / (doub le)f r i e n d s . len g th ;

}

.4 rrf .s.sn/.s

pub lic double g e t U t i l i t y O {

r e tu r n c a l c u l a t e C u r r e n tU t i l i t y () ;

}

public Employee g e tF r ie n d (in t i) {

r e tu r n model .g e t Agent (f r ie n d s [i] . in tV a lu e O) ;

}

pub lic double getWhoO {

r e tu r n who;

}

pub lic double ge tC o h ab i ta t io n R a teO {

r e tu r n c o h a b ita t io n R a teO ;

}

/ /D d td B(cordt rs

pub lic vo id da taR ecordersO {

if (model. recordEmployeeTimeSeries &&

who Vo (model.numberEmployees/20) == 0) {

m odel. employeeTimeSeriesRecorder. addNumericDataSource(

"choice_"+ who, n ew F irm C h o iceO);

A. 1.2. Employee.java

APPENDIX A. SOURCE CODE 175

model. employeeTimeSeriesRecorder. addNumericDataSource(

" u t i l i t y _ " + who, new E m p loyeeU ti l i ty ()) ;

}
}

class FirmChoice im p le m e n ts NumericDataSource ■[

pub lic double e x e c u te () {

r e tu r n -999;

}
>

class Em ployeeU tility im p le m e n ts NumericDataSource {

pub lic double e x e cu te ()

r e tu r n c a lc u l a t e C u r r e n tU t i l i t y () ;

>

}

A. 1.2. Employee.j&va

APPENDIX A. SOURCE CODE 176

A .1.3 Firm .java

p a c k a g e i e . te d .e c o n o m ic s .f i rm s ;

im p o r t j a v a .u t i l .A r r a y L i s t ;

p u b lic c la ss Firm {

p r o te c te d Sim pleFirm sM odel m odel;

p r iv a te i n t age = 0;

p r iv a te i n t s i z e = 0;

p r iv a te i n t m axSize = 0;

p r iv a te do u b le bornOnCustom Tick;

p r o te c te d A rray L is t< E m p lo y ee> em ployees = n ew A r r a y L is tO ;

p r o te c te d i n t who;

p r o te c te d s ta t ic i n t whoCounter = 0;

p u b lic F irm (Sim pleFirm sM odel newModel) {

model = newModel;

who = whoCounter++;

bornOnCustomTick = m odel.custom T ick ;

}

p u b lic v o id gainEm ployee (Employee newEmployee) {.

i f (em p lo y ees. co n ta in s(n ew E m p lo y ee)) {

th ro w n e w R u n t im e E x c e p t io n (

"T ry in g to add em ployee to a f irm th e y ’r e a lr e a d y i n . ") ;

}
em p lo y ees. add(new Em ployee);

if (c a lc u la te S iz e O > m axSize) {

m axSize = c a lc u l a t e S iz e O ;

}
>

p u b lic v o id loseEm ployee(Em ployee exEmployee) {

A. 1.3. Firm.java

AP P E N D IX A. SOURCE CODE 177

if (! em ployees.contains(exEm ployee)) {

th ro w new R un tim eE xcep tionC

"Trying to remove employee from a f irm th e y ’re not i n . ") ;

}
employees.remove(exEmployee);

if (e m p lo y e es .s iz e0 == 0) {

model. d e s t ro y F i rm (th is) ;

}
}

pub lic void s t e p O {

age++;

s iz e = c a lc u la te S iz e O ;

}

'alciildtor^

p r iv a te i n t c a lc u la te S iz e O {

r e tu r n employees. s i z e () ;

}

p r iv a te i n t calculateSizeExcludingEmployee(Employee emp) {

if (employees, co n ta in s (emp)) -[

r e tu r n c a lc u la te S iz e O - 1;

} else {

r e tu r n c a lc u l a t e S iz e O ;

}
}

\cr< ssn/>

p u b lic i n t ge t Age () {

r e tu r n age;

A. 1.3. Firm.Java

APPENDIX A. SOURCE CODE 178

>

p u b lic in t g e tS iz e O {

re tu r n c a lc u la te S iz e O ;

}

p u b lic in t getSizeExcludingEm ployee(Em ployee emp) {

r e tu r n ca lcu lateS izeE xcludingE m ployee(em p);

}

p u b lic i n t g e tS iz e F o rS ta tC o lle c to r () ■[

r e tu r n s iz e ;

}

p u b lic boolean containsEmployee(Employee emp) {

r e tu r n em ployees.con ta ins(em p);

>

p u b lic in t getM axSizeO {

r e tu r n maxSize;

}

p u b lic in t getWhoO {

r e tu r n who;

}

p u b lic double getExactA geO {

re tu r n m odel. customTick - bornOnCustomTick;

>

A .1.3. Firm.java

APPE N D IX A. SOURCE CODE 179

A .2 D ata C ollection

The classes in this section are concerned with the collection of data during simulation

runs and outputting tha t data to text files. The CollectionSummary class is subclassed

by MaxNumericDataSource, MinNumericDataSource, AverageNumericDataSource and

TotalNumericDataSource. Only MaxNumericDataSource is shown here as the others are

trivially similar. As the names suggest, these classes collect summary data. Generally

they will summarise over the list of employees or the list of firms, so for example they

might calculate the mean employee utility or the meiximum firm output.

The ArrayDataSource class, by contrast, does not summarise data but records it in

detail. It also operates on a list such as the list of employees or the list of firms, but it will

record every data point rather than aggregating them. The DistributionDataSource and

ArraylntDistributionDataSource classes produce size distribution tables, i.e. Frequency-

Count data. The GraphvizDataSource produces output which can be imported into

the GraphViz application with minimal processing, this is used to record the friendship

network and to subsequently plot it as a network with GraphViz. This is impractical

when the number of agents is greater than 100.

A. 2.1 C ollectionSum m ary. Java

package ie . t e d .e c o n o m ic s . f ir m s ;

im p o rt J a v a . u t i l . C o llec tio n ;

im p o rt j a v a . u t i l . I tera to r;

p u b lic cIeiss CollectionSunmiary{

C o llec t io n o b je c tC o l le c t io n ;

pub lic CollectionSummary (C o llec t io n a rgO b jec tC o llect ion) {

o b j e c tC o l le c t io n = argO bjectC ollect ion ;

}

p u b lic double g e tT o ta lO {

double to tV alue = 0;

A .2.1. CollectionSummary.java

APPENDIX A. SOURCE CODE 180

for (I te r a to r i t = o b j e c t C o l l e c t i o n . i t e r a t o r O ; i t .h a s N e x tO

;) {

double nextValue = g e tV a lu e (i t . n e x t O) ;

to tV alue += nextValue;

>

r e tu r n to tV alue ;

pub lic double getAverageO {

if (o b j e c tC o l l e c t io n . s i z e O == 0) {

th ro w new R u n t im e E x c e p t io n (

"Trying to tak e an average with no items in c o l l e c t i o n . ") ;

}
r e tu r n g e tT o t a l O / o b j e c tC o l l e c t i o n . s i z e O ;

>

public double getMinimumO {

if (o b j e c tC o l l e c t io n . s i z e O == 0) {

th ro w new R u n t im e E x c e p t io n (

"Trying to c a lc u l a t e minimum with no items in c o l l e c t i o n . ") ;

}
' S i t f o rcr i / l<iiy(rt i l in so i n a n s u n to In l< s s fhi in fli/s.

double minValue = Double.MAX_VALUE;

for (I te r a to r i t = o b j e c t C o l l e c t i o n . i t e r a t o r O ; i t .h a s N e x tO

:) {

double nextValue = g e tV a lu e (i t .n e x tO) ;

if (nextValue < minValue) {

minValue = nextValue;

>

}
r e tu r n minValue;

A.2.1. Collectionsummary.java

A P P E N D I X A . S O U R C E C O D E 181

pub lic double getMaximumO {

if (o b j e c tC o l l e c t io n . s i z e O == 0) {

th ro w new R u n t im e E x c e p t io n (

"Trying to c a lc u l a t e majcimum with no items in c o l l e c t i o n . ") :

>

S(t lo r- iii si iKill I ' a l i K , ' • '- ■ '. '/ r t o h< i/r<(if(r I I k i i i

double maxValue = -Double.MAX_VALUE;

for (I t e r a to r i t = o b j e c t C o l l e c t i o n . i t e r a t o r () ; i t .h a s N e x tO

;) {
double nextValue = g e t V a l u e (i t . n e x t O) ;

if (nextValue > maxValue) {

maxValue = nextValue;

}
}

r e tu r n maxValue;

}

' ()i'< i irrH< thi s iiK t l iod in sii liclass.

* Th(Vdluf t/oii I r i s h t o t n k (t h i n i i n / i i i i i . i / t i > t i i l / (H ' (r(i(/(f t c . i i f ,

pub lic double getValue (O b je c t co l le c t io n O b je c t) {

r e tu r n 0 .0 ;

}
>

A .2.1. CollectionSummary.java

A PPE N D IX A. SOURCE CODE 182

A .2.2 M axN um ericD ataSource.java

package ie . te d .e c o n o m ic s . f i rm s ;

im p o r t J a v a .u t i l . L i s t ;

im p o r t uch icag o . s r c . s im . a n a l y s i s . NumericDataSource;

pub lic class MaxNijmericDataSource e x te n d s CollectionSummary

im p le m e n ts NumericDataSource {

pub lic MaxNumericDataSource(List a rg O b jec tL is t) {

s u p e r (a r g O b je c tL i s t) ;

>

pub lic double e x e cu te () {

r e tu r n getMaximumO ;

>

}

A.2.2. MaxNumericDataSource.java

APPENDIX A. SOURCE CODE 183

A. 2.3 A rrayD ataSource. Java

package ie . te d .e c o n o m ic s . f i rm s ;

im p o r t J a v a .u t i l . L i s t ;

im p o r t j a v a . u t i l .L is t l t e r a to r ;

im p o r t u ch ica g o . s r c . sim. a n a ly s i s . D a ta S o u rc e ;

.1 iliitn < (}lli < f imi i ldMS dtsi(}i i(d to on ipu l a ri is ioni i sabl i iirraij o f mh:: s.

' U(i(it< s o n r (I l/.'il. p n n l s (ik Ii r<ilii< s i j x i r a i i d hij ii coiiinid.

public class ArrayDataSource im p le m e n ts D a ta S o u rc e {

L ist o b j e c t L i s t ;

S tr in g name;

pub lic ArrayDataSource (List a rg O b je c tL is t , S tr in g argName) {

name = argName;

o b je c tL i s t = a rg O b jec tL is t ;

}

pub lic O b je c t e x e cu te () {

S tr in g B u ffe r buf = new StringBufFer () ;

buf .append("\n"+this .nam e+"\n") ;

L i s t l t e r a to r i t = o b j e c t L i s t . l i s t l t e r a t o r () ;

b u f . a p p e n d (g e tV a lu e (i t .n e x t ())) ;

for (; i t . h a s N e x t () ;) {

b u f . append(" , "+ g e t V a lu e (i t . n e x t ())) ;

}
b u f . append(" \n ") ;

r e tu r n buf . to S t r in g O ;

}

A.2.3. ArrayDataSource.java

A P P E N D IX A . SO U R C E CO D E 184

Oi l nr: flu I ill 0(1

p u b lic double getV alue (O b je c t l is tO b je c t) {

retu rn 0;

>

}

A .2.3. ArrayDataSource.java

APPENDIX A. SOURCE CODE 185

A. 2.4 DistributionD ataSource.java

p a c k a g e i e . t e d . e c o n o m i c s . f i r m s ;

i m p o r t J a v a . u t i l . L i s t ;

i m p o r t J a v a . u t i l . L i s t l t e r a t o r ;

im p o r t u c h ica g o . s r c . s im .a n a ly s i s . D a ta S o u r c e ;

' C i i l r i i l d h s II n i i t i i i l i s l ril>ii1 i o n I Fr i ijiii n i i/. (’u t i i i f i l i if i i I f r n i i i a r o l l i r i i i n i

' Il f r i i i r nl i s i n ' u h o n s a n i l j u i n l H I n a p l i .

i

p u b l ic c la ss D is t r ib u t io n D a ta S o u r c e im p le m e n t s D a t a S o u r c e {

L is t o b j e c t L i s t ;

i n t maxSize;

b o o le a n c u m u la t iv e ;

booleein d i s p l a y S e p a r a t e T a b le ;

i n t [] d i s t r i b u t i o n A r r a y ;

p u b l ic D i s t r ib u t io n D a ta S o u r c e (L i s t a r g O b j e c t L i s t , i n t argM axSize,

b o o le a n a rg C u m u la t iv e , b o o lean a rg D is p la y S e p a ra te T a b le) {

t h i s . o b j e c t L i s t = a r g O b je c tL i s t ;

th is .m a x S iz e = argMaxSize;

t h i s . cu m u la t iv e = a rgC um ula tive ;

t h i s . d i s p la y S e p a r a te T a b le = a rg D is p la y S e p a ra te T a b le ;

}

p u b l ic O b j e c t e x ecu te () {

StringBufFer buf = new S tr ingB ufFerO ;

if (! cu m u la t iv e I | d i s t r i b u t i o n A r r a y == n u l l) {

d i s t r i b u t i o n A r r a y = n e w i n t [m axSize+1];

>

A.2.4. DistributionDataSource.java

APPENDIX A. SOURCE CODE 186

for (L i s t l t e r a to r i t = o b je c tL i s t . l i s t l t e r a t o r O ; i t .h a s N e x tO

:) {

d i s t r i b u t io n A r r a y [g e tV a lu e (i t . n e x t ())]++ ;

}

if (d isp layS epara teT ab le) {

b u f . append(" \n \n F requency\tCount") ;

for (i n t i = 1; i <= maxSize; i++) {

if (d i s t r ib u t io n A r ra y [i] >0) ■[

b u f .append("\n"+ i + " \ t " + d i s t r i b u t i o n A r r a y [i]);

}
}
b u f . append("\ n ") ;

} else {

b u f ,a p p e n d (d is t r ib u t io n A r ra y [0]) ;

for (i n t i = 1; i <= maxSize; i++) {

b u f . append(" , ") ;

b u f . a p p e n d (d i s t r ib u t io n A r ra y [i]) ;

}
}
r e tu r n buf . to S t r in g O ;

>

/Jf:

Ihis nuthoi l ni

i

public i n t g e tV a lu e (O b jec t l i s tO b je c t) {

r e tu r n 0;

>

}

A.2.4. DistributionDataSource.java

APPENDIX A. SOURCE CODE 187

A .2.5 A rrayln tD istrib u tion D ataS ou rce.java

package ie . te d .e c o n o m ic s .f i rm s ;

im p o r t J a v a .u t i l . L i s t ;

im p o r t j a v a . u t i l . L i s t l t e r a t o r ;

im p o r t u c h ica g o . s r c . s im .a n a ly s is .D a ta S o u rc e ;

P r i n f s (I !)si()iKil (i i rd i / t n a i ahU iri f l i I h i (i rrai / h i d i . i

^ <is [■)'(ijiK i i c y (i iut till . s toi ' td I 'aliii a s C o u n t .

F u r (III (. r i i i i ipl i I l f ni l arr i i i i t o hi p r n i t i i l i i sn i i j i h i s rln.ss

.‘il l S i n i i i l i l ' / n i i s M o i l (l . i i i l i l Sr . i () f l ' i r i i i . l o i i i i ill I n i i i l r i l i i t i i l .

public class A rray ln tD is tr ib u tio n D a taS o u rce im p le m e n ts D a ta S o u rc e ■[

i n t [] in tA rray ;

S tr in g name;

i n t maxSize;

pub lic A rray ln tD is tr ib u t io n D a ta S o u rce (i n t [] a rg ln tA rray ,

i n t argMaxSize, S tr in g argName) {.

name = argName;

in tA rray = a rg ln tA rray ;

maxSize = argMatxSize;

>

public O b je c t execute () {

S tr in g B u ffe r buf = new S tr in g B u ffe r () ;

b u f . append(" \n \n F req u en cy \tC o u n t") ;

for (i n t i = 1; i <= maixSize; i++) {

if (in tA rray [i] >0) {

b u f . append("\n"+ i + " \ t " + i n t A r r a y [i]) ;

A.2.5. ArraylntDistributiouDataSource.java

APPENDIX A. SOURCE CODE 188

}
}
buf.append("\ n");

return buf . toStringO ;

>

>

A.2.5. ArraylntDistributionDataSource.java

APPENDIX A. SOURCE CODE 189

A .2.6 G raphvizDataSource.java

package ie . te d .e c o n o m ic s . f i rm s ;

im p o r t J a v a . u t i l . L i s t ;

im p o r t j a v a . u t i l . L i s t l t e r a t o r ;

im p o r t u ch icag o . s r c . sim. a n a ly s i s .D a ta S o u r c e ;

public class GraphvizDataSource im p le m e n ts D a ta S o u rc e {

L ist o b je c tL i s t ;

S tr in g name;

pub lic GraphvizDataSource (L ist a r g O b je c tL i s t , S tr in g argName) {

name = argName;

o b je c tL i s t = a rg O b jec tL is t ;

}

public O b je c t e x e c u te () {

S tr in g B u ffe r buf = new S tr in g B u ffe r () ;

b u f . append(" \n d ig raph u n t i t l e d { \n ") ;

f o r (L i s t I te r a to r i t = o b j e c t L i s t . l i s t l t e r a t o r O ; i t .h a s N e x t () ;) {

Employee thisEmployee = (E m p lo y ee) i t .n ex t () ;

f o r (i n t i = 0; i < thisEmployee.model.numberFriends ; i++)

{
buf.append(thisEmployee.who+" - > "+

th i s E m p lo y e e . f r i e n d s [i] + " \n ") ;

}
}

b u f . append(" } \ n \ n ") ;

b u f . append(" -----\n ") ;

r e tu r n buf . to S t r in g O ;

}
>

A.2.6. GraphvizDataSource.java

APPEN D IX A. SOURCE CODE 190

A.2.6. GraphvizDataSource.java

APPENDIX A. SOURCE CODE 191

A.3 Utilities

A .3.1 BoundedDouble.java

p ac k a g e ie . te d .e c o n o m ic s .f i rm s ;

. 4 c u n i r i i / f i i i (i rrapjH f f a r t h) (loi ibl i rla.ss i i i i i c h i iif<iir(s i hu1 v u I i k k a n k (p i

III a n (i p p r o p r i a i i i v i n i i . j o t (i d t u p l t (t i l l .

p u b lic c la ss BoundedDouble {

p r iv a te doub le v a lu e ;

f in a l p r iv a te d o u b le MAX_VALUE;

f in a l p r iv a te d o u b le MIN_VALUE;

. ' * C r i a f i s II n i ir i i i s tai i i - i i i j B o i i n i l i (IDoi i l i l i

p u b lic BoundedDouble(d o u b le argM inV alue, d o u b le argMajcValue) {

i f (argM inV alue < argMcixValue) {

MAX_VALUE = argM axValue;

MIN_VALUE = argM inV alue;

/ / s i i ri i l iK f o a n i l h c / a l ri i l in

v a lu e = MIN.VALUE - 1;

} e lse {

th ro w n e w R u n t im e E x c e p t io n (

"Majc V alue m ust be s t r u c t l y g r e a t e r th a n Min V a lu e .") ;

>

}

p u b lic BoundedDouble(d oub le argM inV alue, d o u b le argM axValue,

d o u b le in i t ia l iz e T o V a lu e) {

th is (a rg M in V a lu e , argM axV alue);

t h i s . s e tV a lu e (in i t i a l iz e T o V a lu e) ;

A.3.1. BoundedDouble.java

APPENDIX A. SOURCE CODE 192

>

p u b lic double ge tV alueO {

if (va lue < MIN.VALUE) {

th ro w new R u n tim e E x c e p tio n (

"Value has no t been i n i t i a l i z e d . ") ;

} else {

r e tu r n v a lu e ;

}
>

pub lic vo id se tV alu e(d o u b le argValue) {

if (argV alue < MIN_VALUE) {

th ro w new R u n tim eE x cep tio n ("V a lu e "+ argV alue +

" must be g re a te r than minimum of "+ MIN_VALUE);

} else if (argV alue > MAX_VALUE) {

th ro w new R u n tiin e E x c e p tio n ("Value "+ argV alue +

" must be le s s than maximum of "+ MAX_VALUE);

} else {

value = argV alue;

}
>

pub lic double getMaxO {

re tu r n MAX.VALUE;

>

p u b lic double getM inO {

r e tu r n MIN.VALUE;

>

>

A.3.1. BoundedDouble.java

APPENDIX A. SOURCE CODE 193

A .3.2 Function.java

/(/] . ' () () () TIk Dr/)okin</s Iiisti fni/on. Al l Bitjhis Hi rri(i

P i rni/sfi/oii to iis< this sofiiriin nnil ils dovnnit n futnm fo r itDii-coiiuiii ri iul

" pui j)u>ii s mill intlioiif fi I IS III n Ini ijnintiil. prnriiliil Hus i iiiiijrii/ht stiiti nii nf

ik nirliiili d. J ’lidsi roii iai i us Joi jii I'linss/oii for ri ilisl rihiit inn ii nil otiii r iisi s.

' B l i O O K I X C S .\JA K E S X(> n E P P E S E X r A T I O X S OR ir.4 R R A X T I E S .1 n O E T T H E

SI I T ABU. T T Y OE

" T H E S O E T W A R E . E I T H E R E X P R E S S O R IM PL IED . I X C H D I X G I3ET X O T

LI METED

TO T H E I M P L I E D W A R R A X ' T I E S OF M E R d l A X T A U I I . T T Y . E I T X E S S EO R .4

P A R T I C T I . A R PI R P O S E .

' OR X O X - I X E R I X C E M E X T . D R O O K I X G S S H A L L X O T B E L I A B L E E O R .l.V l

DA .M A GE S S E E E E R E D B Y

* L K E X S E E A S .1 R E S E L L OE E S I X G THI S S O E T W A R E OR I T S D E R I V . V H V E S .

* M ih s Piirki r

' iiipiii'l i r <1 liriiiil'. I ilii

’ littp: ‘/ irivir.liviiiik.i ilii,'i .̂ . ' i li/iiuni/rs/niodi h / n s t iipi .

Llii Briioliiiijs Inst i iui ion

Wii.'^hiiii/lon. D.C.

package i e . te d .e c o n o m ic s . f i r m s ;

im port Java, i o . Serializable;

.4 Oiii -iliiiii iisninal fiiiii hr.

A .3.2. Fanction.java

APPENDIX A. SOURCE CODE 194

"(i i i fhoi Mil(s Pal i -

<‘ n r s i () i i l . l l

<l .si l lC(1.1)

p u b l ic a b s t r a c t c lass F u n c t io n im p le m e n ts S e r ia l iz a b le , C lo n e a b le {

■' T a i l " n i d f / / ' - " i i a i i i l x r. <i j i j)r(i .r. I . (i] S(l . - i

p u b l ic s ta t ic f in a l d o u b le ta u = (1 + M a t h . s q r t (5)) / 2 ;

- >

* L(i r t / ((I I I ! o f (/ o l d i II s i i f i i i i i . i i j i p ro . r . . (i l S I I !

p u b l ic s ta t ic f in a l d o u b le s e c tL a rg e = ta u - 1;

/ * *

* (I I I ! o f i i dI i I i i i s i d i o i i . approx. .■■iSI!)'/

p u b l ic s ta t ic f in a l d o u b le s e c tS m a ll = 1 - s e c tL a rg e ;

* D (s i i ((i i r . ' i d l i i f i un o f i i i a . i i i i i i r j i f / o n .

V
p u b l ic s ta t ic f in a l d o u b le r e s o lu t io n = 0 . 0 1 ;

/ *

‘ T h t f i r. ' ^t i iK a s u n i iK n i o f f h (c v r i r i i f i i i f t i n i l .

* F o r m i n o r p (r f o r n i i n i c f n i i . ' i o i i s . f h i s i i i i i l o f l i i r u n i i s i i i i i i k n 1 s a n n o t

■ i n i f i i i l i : . ((l i n t i n h o d i / o f t h e n i a x i i n i z o t i o n f i i n c f i o i i . ' i .

* Th is can (as i l i / tx c l ian f j i d i f di K in d.

* . A l . s o . p U a s f n o t f - t h a t t h i . s r l i i . ‘<s i s _ i i o t ^ i l i r (a d s o f t : i n o r d t r f o t n a k i i t

* s o . s i n i j i l y i n i t i a l r j t i n f o l l o i r i i i f i r a r i u h U s v i t l i i n a i - o n f r i i c f o r l o r i n f l u m e t h o d

A.3.2. Function.java

A P PEN D IX A. SOURCE CODE 195

hodiii . lut ik ■ ' ' ' / n m r . i f lu n u f h o d s t: j.

p ro te c te d s ta tic double x l = 0.0;

T I k n i t n i l III I l f f l i (r { i r i (n t i u f i i r u ! .

p ro te c te d s ta tic double x2 = 0.0;

I Ik th i rd n i l iisiiri n i l Il f nj tin n i r r - nl i n t i r rn l .

p ro te c te d s ta tic double x3 = 0.0;

rill four th n i l i i f i i iri n i (nt o f tin r i i rn nl iui(r r a i

p ro te c te d s ta tic double x4 = 0.0;

Till I'l siilf riiliii fo r ihf s t c o n d rni t imirnnr nl.

p ro te c te d s ta tic double f2 = 0.0;

Tht II sui t riiliii for til! thi rd ni f i i s i in nil nt.

p ro te c te d s ta t ic double f3 = 0.0;

Th(A ii.vi-i (](]p til t i n (II till p r s t a n d s t r a n d i nd i s i i n nn nts

p ro te c te d double gapl = 0;

A .3.2. Function.Java

APPENDIX A. SOURCE CODE 196

T i l l A a.ns i/ i i j) III t i l ' l l II t i l l s (v o n d m i d t h i r d n i i i isi i r< i n i m s

f i i f t r r m u i i i i i i si i r i i n i n t lia.s hi i n d r o p p i d. I i i i r / i i i i t l i r a t i / t i i l . i

protected double gap2 = 0;

M a . n t i u : . ! t in o a t p u t o f t h i s f i i n r t i o n . i i s s i r i i i i i i i j f i i n i i i i i n / s i i i i i n i i i d i i l .

‘ i i s i r i i j II i jo ld i 11 SI i t i o n s (i i n h s t r a t i i/n.

* S i i P i t ss. F h i n n i ' r i / . Ti i ikolshi / . Vi t t i r l i n g ^ . X i i n i i r i r i i l h’ l r i p i s n i

’ f u r i j i I I I rat i / i i i d i I h i i s. hut no t f n r spi r i p i i i i i p l i i i i r i i t i i t i m i .

’ ‘ ' r i t i r r i i t h i n p t i i n i i l i n p u t r i i r i i i h l i

public double maximize() {
xl = 0.0;
x2 = sectSmall;
x3 = sectLarge;
x4 = 1.0;
double gap = 1.0;
. / F o r ’ i j i h i r i n i i n i i i i i h i r o f i t i r u t inns.

/ / r u t i l l r = l>

while (gap > resolution) {
f2 = solveFor(x2);
f3 = solveFor(x3);
if (f2 < fS) {
gapl = x3 - x2;
gap2 = x4 - x3;

xl = x2;
if (gapl > gap2) {
x2 = x3 - gapl * sectSmall;
f2 = solveFor(x2);
gap = gapl;

A .3.2. Fiinction.java

A P P E N D IX A . SO U R C E CO D E 197

}
else { . i / ii jiJ ' -
x2 = x3;
x3 = x2 + gap2 * sectSmall;
f2 = f3;
fS = solveFor(x2);
gap = gap2;

>

}
else { / / v i V < =

gapl = x2 - xl;
gap2 = x3 - x2;

x4 = x3;
if (gapl > gap2) {
x3 = x2;
x2 = x3 - gapl * sectSmall;
f2 = solveFor(x2);
gap = gapl;
}
else { / /q n p f l ! < = ■ '■;<'

x3 = x2 + gap2 + sectSmall;
f2 = f3;
fS = solveFor(x2);
gap = gap2;

>

>

}
return f2 > f3 ? x2 : x3;
}

* Solr(this l sniy l (-r (i r i (i hl i i f i incti()ii . O n rridi f a d c f i in i/fiiir oii'ii f i incfioii.

<> iMiraiii r fh(rai ' idhh nipi i t pdnni i i h i

A .3.2. Function.java

APPEN D IX A. SOURCE CODE 198

’ ■ ' ' : - i i i r i i f i n () i i f j) i i i r u U t t

p u b lic double so lveF or (double x) {

re tu r n x;

}

/' t-

 ̂ ('loiK s ih/s fiiiiciioii.

p u b lic O b je c t c lone () {

t r y {

F unction c lone = (F unction) s u p e r .c lo n e () ;

r e tu r n c lone;

y c a tc h (C Io n e N o tS u p p o rte d E x c e p tio n e) {

t h i s s i K i i i I . i h i ' t h a p i K I I . ' ::!(■(i n iii> C I d i k i i h l i

th ro w new In te rn a lE r ro r () ;

}
>

}

A .3.2. Function.Java

APPENDIX A. SOURCE CODE 199

A .4 Variable Effort M odel

A .4.1 VariableEfFortModel.java

package ie .te d .e c o n o m ic s .f irm s ;

im p o rt u ch icag o . s r c . sim . a n a ly s i s . D ataR ecorder;

im p o rt u ch icag o . s r c . sim . e n g in e . S im ln it ;

p u b lic class V ariab leE ff ortM odel ex ten d s SimpleFirmsModel {

p r iv a te double minTheta = 0;

p r iv a te double maxTheta = 1 ;

p ro te c te d boolean useMaxTheta = t ru e ;

p riv a te double minLeimbda = 1 ;

p r iv a te double maxLambda = 1 ;

p ro te c te d boolean useMaxLambda = t r u e ;

p ro te c te d in t firmToWatchOne;

p ro te c te d in t firmToWatchTwo;

p riv a te double firm L ifeS ta tP o u n d ersT h e ta ;

p riv a te in t firm LifeStatPoundersW ho;

p riv a te double firm B irth S ta tP o u n d ersT h e ta ;

p riv a te in t firm B irthStatPoundersW ho;

p u b lic V ariab leE ff ortM odel () {

s u p e r 0 ;

allowNewPirms = t ru e ;

}

p u b lic s ta tic vo id m a in (S tr in g [] a rg s) {

S im ln it i n i t = new S im ln it () ;

i n i t . loadModel (new V ariab leE ff ortM odel 0 , n u l l , f a l s e) ;

A .4.1. VariableEffortModel.java

A PPEN D IX A. SOURCE CODE

}

pub lic S tr in g [] g e t ln i tP a ra m O -[

StringC] params = {"m inTheta", "maxTheta", "useMaxTheta",

"minLambda", "firmToWatchOne", "firmToWatchTwo"};

r e tu r n s u p e r .a d d i t io n a l ln i tP a r a m s (p a r a m s) ;

>

pu b lic vo id buildModelO {

s u p e r .buildM odelO ;

ad d i t io n a lD a taR e co rd e rs0 ;

Var iab leE f f o r tF i rm . f irmsToWat c h . add (new In te g e r (

getF irmToWatchOne())) ;

Var iab leE f f o r tF i rm . f irmsToWatch. add (new In te g e r (

getFirmToWatchTwoO));

>

pub lic Employee crea teE m ployee(in t i) {

r e tu r n new V ariab leE ffo rtE m ployee(th is , i) ;

>

public void destroyFirm (F irm exFirm) {

f irm L ifeS ta tF oundersT he ta =

C (V ariab leE ffo rtF irm)exF irm).ge tF oundersT he taO ;

firmLifeStatFoimdersWho =

((V ariab leE ffortF irm)exF irm).ge tFoundersW hoO ;

s u p e r .d e s t ro y F irm (e x F irm);

>

public void addFirm(Firm newFirm) {

f irm B irthS ta tF oundersT heta =

((V ariab leE ffortF irm)new Firm).getFoundersT hetaO ;

firmBirthStatFoundersW ho =

200

A .4.1. VariabIeEffort.ModeI.java

APPENDIX A. SOURCE CODE 201

((V ariab leE ffo rtF irm)new F irm).getFoundersW hoO ;

s u p e r . addFirm (newFirm);

}

A c '

p u b lic double getM inThetaO {

r e tu r n minTheta;

}

p u b lic vo id setM inT heta(double argM inTheta) {

minTheta = argM inTheta;

}

p u b lic double getM axThetaO {

if (useMaxTheta) {

r e tu r n maxTheta;

} else {

r e tu r n 1 - m inTheta;

}
}

pub lic vo id setM axTheta(double argMaxTheta) {

maxTheta = argMaxTheta;

>

p u b lic boolecin getUseMaxThetaO {

re tu rn useMaxTheta;

}

p ub lic vo id setUseMcLxTheta(boolean argUseMaxTheta) {

useMaxTheta = argUseMaxTheta;

}

A .4.1. VariahleEffortModeI.java

APPE N D IX A. SOURCE CODE 202

p u b lic double getMinLambdaO {

r e tu r n minLambda;

}

p u b lic vo id setMinLambda(double argMinLambda) {

minLambda = argMinLaunbda;

}

p u b lic double getMaxLambda() {

if (useMaxLambda) {

r e tu r n maxLambda;

} else {

r e tu r n 1 - minLajnbda;

}
}

p u b lic vo id setMcixLambda (double argMaxLambda) {

maxLcimbda = argMaxLeunbda;

>

p u b lic i n t getFirmToWatchOneO {

r e tu r n firmToWatchOne;

>

p u b lic vo id setFirm ToW atchOne(int argFinnToWatchOne) -[

firmToWatchOne = argFirmToWatchOne;

}

p u b lic i n t getFirmToWatchTwoO {

r e tu r n firmToWatchTwo;

}

A .4.1. VariableEfFortModeI.java

A PPEN D IX A. SOURCE CODE 203

public void setFirmToWatchTwo(int argFirmToWatchTwo) {

firmToWatchTwo = argFirmToWatchTwo;

}

public double getF irm L ifeS ta tFoundersT hetaO {

r e tu r n f irm L ifeS ta tFoundersT he ta ;

}

public double getFirmLifeStatFoundersWhoO {

r e tu r n firmLifeStatFoundersW ho;

>

public double getF irm B irthS ta tFoundersT hetaO {

r e tu r n f irm B irthS ta tF oundersT heta ;

}

public double getFirmBirthStatFoundersW ho() {

r e tu r n firm BirthStatFoundersW ho;

>

. Htronli rs

public void add it io n a lD a taR eco rd e rsO {

if (recordM odelDetail) {

recorder.addN um ericD ataSource("m ax_effort" , new

MajcNumer icDataSource (a g en tL is t) -[

pub lic double g e tV a lu e (O b jec t argO bject) {

r e tu r n (d o u b le) ((V ariab leE ffo rtE m ployee)argO bject)

.g e t E f f o r t O ;

}
»:

recorder.addN iam ericD ataSource("m in_effort" , new

A .4.1. VariableEfFortModel.java

APPENDIX A. SOURCE CODE 204

MinNTimericDataSource(agentList) {

pub lic double g e tV a lu e (O b jec t argO bject) {

r e tu r n (doub le)((V ariab leE ffortE m ployee)a rgO bjec t)

■ g e tE f f o r tO ;

>

»:

recorder.addN um ericD ataSource("avg_eff o r t " , new

AverageNumericDataSource(agentList) •(

public double getValue (O b je c t argO bject) {

r e tu r n (doub le)((V ariab leE ffortE m ployee)a rgO bjec t)

■ g e tE f f o r t 0 ;

>

» ;

reco rd e r .a d d N u m er icD a taS o u rce (" to ta l_ e f fo r t" , new

T otalN um ericD ataSource(agentList) {

pub lic double getValue (O b je c t argO bject) {

r e tu r n (doub le)((V ariab leE ffortE m ployee)a rgO bjec t)

.g e tE f f o r tO ;

}
});

recorder.addNum ericD ataSource("m ax_output" , new

MaLxNumericDataSource(firmsList) {

pub lic double getValue (O b je c t argO bject) {

r e tu r n (d o u b le) ((V ariab leE ffo rtF irm)argO bjec t)

-getOutput 0 ;

}
» ;

recorder.addNvunericDataSource("min_output", new

MinNuinericDataSource(firmsList) {

A.4.1. VariableEffortModeLjava

APPEN D IX A. SOURCE CODE 205

public double g e tV a lu e (O b jec t a rgO bjec t) {

r e tu r n (d o u b le) ((V a r iab leE ffo r tF in n)a rg O b jec t)

■ getO u tpu tO ;

}
}):

recorder.addN um ericD ataSource("avg_output" , new

AverageNumericDataSource(firmsList) {

pub lic double getValue (O b je c t argO bjec t) {

r e tu r n (d o u b le) ((V a r iab leE ffo r tF irm)arg O b jec t)

■ getO u tpu tO ;

}
});

reco rd e r .ad d N u m ericD a taS o u rce (" to ta l_ o u tp u t" , new

TotalN um ericD ataSource(firm sList) {

pub lic double getValue (O b je c t a rgO bjec t) {

r e tu r n (d o u b le) ((V ar iab leE ffo r tF irm)arg O b jec t)

. getOutput 0 ;

>

» ;

recorder.addN uinericD ataSource("m ax_effic iency", new

McLxNumericDataSource(firmsList) {

pub lic double getValue (O b je c t a rgO bjec t) {

r e tu r n (d o u b le) ((V a r iab leE ffo r tF irm)a rg O b jec t)

.g e tE ff i c ie n c y O ;

}
});

reco rder.addN um ericD ataSource("m in_effic iency" , new

MinNumericDataSource(firmsList) {

pub lic double getValue (O b je c t a rgO bjec t) {

A.4.1. VariableEffortModel.java

A PPE N D IX A. SOURCE CODE 206

r e tu r n (d o u b le) ((V a r iab leE ffo r tF irm)a rg O b jec t)

■ getEf f ic ie n c y O ;

}
}):

recorde r .addN m nericD ataS ource ("avg_eff ic iency" , new

AverageNumericDataSource(firmsList) {

pub lic double g e tV a lu e (O b jec t argO bject) {

r e tu r n (d o u b le) ((V a r iab leE ffo r tF irm)a rg O b jec t)

.g e tE f f ic ie n c y O ;

}
});
}

if (recordF irm C rossSection) {

t h i s . f i rm C rossSectionR ecorder. addObj ec tD ataSource(" " , new

A rrayD a taSource(f irm sL ist , "Output") {

pub lic double getValue (O b je c t argO bject) {

r e tu r n ((V a r iab leE f fo r tF irm)a rg O b je c t) .g e tO u tp u t() ;

}
» ;
t h i s . f irmCrossSect ionR ecorder.addObj ec tD ataSource(" " , new

A rray D a taS o u rce(f irm sL is t , "S ize") {

pub lic double getValue (O b je c t argO bject) {

r e tu r n ((V a r ia b le E f fo r tF i rm)a rg O b je c t) .g e tS iz e O ;

>

»;
th is .f i rm C rossS ec tionR ecorder .addO bjec tD ataS ource ("" , new

A rray D a taS o u rce(f irm sL is t , " E f fo r t") {

pub lic double getValue (O b je c t argO bject) {

r e tu r n ((V a riab leE ffo rtF irm)arg O b jec t)

.g e tT o ta lR e a l iz e d E f fo r t 0 ;

}

A.4.1. VaiiableEffoTtModel.java,

APPENDIX A. SOURCE CODE 207

});

}

if (recordEmployeeCrossSection) {
this.employeeCrossSectionRecorder.addObj ectDataSource("",

new ArrayDataSource(agentList, "Who") {
public double getValue (Object argObject) {

return ((Employee)argObject).getWhoO;
}

»;
this.employeeCrossSectionRecorder.addObj ectDataSource("",

new ArrayDataSource(agentList, "Theta") •[
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject)
.getThetaO ;

}
});
this.employeeCrossSectionRecorder.addObjectDataSource("",

new ArrayDataSource(agentList, "Lambda") {
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject)
■ getLambdaO ;

}
});
this.employeeCrossSectionRecorder.addObj ectDataSource("",

new ArrayDataSource(agentList, "Effort") ■[
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject)
■ getEffortO ;

}
}) ;
this.employeeCrossSectionRecorder.addObjectDataSource("",

new ArrayDataSource(agentList, "Utility") -[

A.4.1. VariableEffortModel.java

APPENDIX A. SOURCE CODE 208

public double getValue(Object argObject) {
return ((VariableEffortEmployee)argObject)
• getUtilityO ;

>

»:
this.employeeCrossSect ionRecorder.addObj ectDataSource("",

new ArrayDataSourceCagentList, "Firm") {
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject).firm.who;
>

}) ;
this.employeeCrossSect ionRecorder.addObj ectDataSource("",

new ArrayDataSource(agentList, "FirmSize") {
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject).firm
.getSizeO ;

>

});

}

if (recordEmployeeCrossSectionCaseStudy) {
this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource(

new ArrayDataSource(agentList, "Who") {
public double getValue (Object argObject) {

return ((Employee)argObject).getWhoO;
>

}) ;
this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource(

new ArrayDataSource(agentList, "Theta") -[
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject)
.getThetaO ;

>

A.4.1. VariableEffortModeI.java

APPENDIX A. SOURCE CODE 209

this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource(
new ArrayDataSource(agentList, "Lambda") {

public double getValue (Object argObject) {
return ((VariableEffortEmployee)argObject)
■ getLambdaO ;

}
});

this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource(
"", new ArrayDataSource(agentList, "Effort") {
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject)
■ getEffortO ;

}
});
this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource(

new ArrayDataSource(agentList, "Utility") {
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject)
■ getUtilityO ;

>

}):
this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource(

new ArrayDataSource(agentList, "Firm") {
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject).firm.who;
>

»:
this.employeeCrossSectionCaseStudyRecorder.addObjectDataSource(

new ArrayDataSource(agentList, "FirmSize") {
public double getValue (Object argObject) {

return ((VariableEffortEmployee)argObject).firm
.getSizeO ;

A .4.1. VariableEffortModel.java

A PPE N D IX A. SOURCE CODE 210

}
});

}

if (recordFirmLifeStats) {
firmLifeStatsRecorder.createNijmericDataSource(

"foundersTheta", this,
"getFirmLifeStatFoundersTheta");

f innLifeStatsRecorder.createNuinericDataSource(
"foundersWho", this,
"getFirmLifeStatFoundersWho");

}

if (recordFirmBirthStats) ■[
f irmBirthStatsRecorder.createNumericDataSource(

"foundersTheta", this,
"getFirmBirthStatFoundersTheta");

f irmBirthStatsRecorder.createNumericDataSource(
"f oundersWho", this,
"getFirmBirthStatFoimdersWho");

}
}

>

A .4.1. VariableEffortModeI.java

APPEN D IX A. SOURCE CODE

A .4.2 VariableEfFortEmployee.java

package ie . te d .e c o n o m ic s . f i rm s ;

im p o r t u ch icago . s r c . sim. a n a ly s i s .NumericDataSource;

pub lic class VariableEffortEm ployee e x te n d s Employee {

p r iv a te BoimdedDouble c u r r e n tE f f o r t = new BoundedDouble(0,l ,0)

p r iv a te BoundedDouble t h e t a = new BoundedDouble(0,1) ;

p r iv a te BoundedDouble lambda = new BoundedDouble (0 ,1) ;

pub lic V ariab leE ff ortEmployee (

V ariableEffortM odel newModel, i n t i) {

super(newModel, i) ;

t h e t a . setValue(newModel.getNextDoubleFromTo(

newModel.getMinThetaO,

newModel .getMaxThetaO)) ;

Icimbda. setValue(newModel.getNextDoubleFromTo(

newModel.getMinLambdaO,

newModel-getMaxLambdaO)) ;

a d d i t io n a lD a taR eco rd e rs0 ;

>

public Firm createNewFirmO -[

r e tu r n new V ariab leE ffo r tF irm (m o d e l) ;

}

public void a c t i v a t e O {

s e tE f f o r t (O) ;

s u p e r . a c t i v a t e O ;

c a lc u la teA n d S e tC u rre n tE f fo r t0 ;

}

(' (i l i i i l d t i i i

211

A .4.2. VariableEHoTtEmployee.ja.va.

APPEN D IX A. SOURCE CODE 212

p u b lic double calculateM aximumUtilityAtFirm(Firm argFirm) {

V a r ia b le E f f o r tU t i l i ty F im c t io n u t i l i t y F u n c t i o n = new

V a riab leE ffo r tU ti l i ty F u n c t io n C a rg F irm , th is) ;

r e tu r n u t i l i t y F u n c t i o n . u t i l i t y (

u t i l i t y F u n c t i o n . effortForMcixiniuinUtility()) ;

>

pub lic double c a l c u l a t e C u r r e n tU t i l i t y () ■[

r e tu r n new V ar iab leE ffo r tU ti l i ty F x in c tio n C f irm, th is)

.u t i l i t y (cu rren tE f f o r t . g e tV a lu e()) ;

}

pub lic double c a l c u l a t e S in g l e to n U t i l i t y () -[

V a r ia b le E f fo r tU t i l i ty F u n c t io n u t i l i t y F u n c t i o n = new

V a r ia b le E f f o r tU t i l i ty F u n c t io n (0 , 0, g e tT h e ta O , getLambdaO);

r e tu r n u t i l i t y F u n c t i o n .u t i l i t y C

u t i l i t y F u n c t i o n . ef f ortForMaLximumUtilityO) ;

}

pub lic double b e t te rO ffT h an S in g le to n O {

if (c a l c u l a t e C u r r e n t U t i l i t y 0 >= c a lc u l a t e S in g l e to n U t i l i t y 0) {

B(it(r off.

r e tu r n 1 ;

} else {

. off! n ’(V/ Ih ht t i (rof f ' on our own.

r e tu r n 0;

>

>

pub lic void c a lc u la teA n d S e tC u rre n tE f fo r t () {

se tE f f o r t (new V ariab leE ff o r tU t i l i ty F u n c t io n (f i rm , th is)

. effortForMajcimumUtility0) ;

}

A .4.2. VariableEfFortEmployee.java

APPENDIX A. SOURCE CODE 213

public double calculateFriendsThetaO -[
double total = 0;
for (int i = 0; i < model.numberPriends; i++) {

VariableEffortEmployee friend = (VariableEffortEmployea)
model .getAgent (this.friends [i] . intValueO);

total += friend.getThetaO;
}
return total;

}

. lr((.'.■'fi;’'

public double getEffortO {
return currentEffort.getValueO;

}

public void setEffort(double argEffort) {
((VariableEffortFirm)firm)

.subtractContribution(getRealizedEffort 0);
currentEffort.setValue(argEffort);
((VariableEffortFirm)f irm).addContribution(getRealizedEffort());

>

public double getRealizedEf fort () {
return currentEffort.getValueO + lambda.getValue();

}

public double getThetaO {
return theta.getValueO ;

}

public double getLambdaO {

A.4.2. VariableEffortEmployee.Java

A PPE N D IX A. SOURCE CODE 214

return lambda.getValue();
}

public double getFriendsThetaO {
return calculateFriendsThetaO;

>

■ Ddfii / ? !

public void additionalDataRecorders() {
if (model.recordEmployeeTimeSeries &&

who '/. (model .numberEmployees/20) == 0) {
model.employeeTimeSeriesRecorder.addNumericDataSource(

"theta_"+who, new EmployeeThetaO);
model.employeeTimeSeriesRecorder.addNumericDataSource(

"effort_"+who, new EmployeeEffort());
model.employeeTimeSeriesRecorder.addNumericDataSource(

"lambda."+who, new EmployeeLambdaO) ;
}

}

class EmployeeTheta implements NumericDataSource {
public double execute () {

return getThetaO ;
}

}

class EmployeeLambda implements NumericDataSource {
public double execute () {

return getLambdaO ;
>

>

A.4.2. VariableEffortEmpIoyee.java

APPENDIX A. SOURCE CODE 215

class F rien d sT h eta im p le m e n ts NumericDataSource {

p u b lic double execu te () {

r e tu r n g e tF r ie n d sT h e ta O ;

}
}

class EmployeeEff o r t im p le m e n ts NmnericDataSource {

p u b lic double execu te () {

r e tu r n g e tE f fo r tO ;

}
>

A.4.2. VariableEfFortEmployee.java

APPENDIX A. SOURCE CODE 216

A .4.3 VariableEffortUtilityFunction.java

p ackage ie . te d .e c o n o m ic s . f i rm s ;

pub lic class V a r ia b le E f fo r tU t i l i ty F u n c t io n e x te n d s U t i l i ty F u n c t io n {

p ro te c te d double re s tO fF irm R e a l iz e d E ffo r t ;

p r o te c te d double res tO fF irm Size ;

p r o te c te d BoundedDouble t h e t a = new BoundedDouble(O.l);

p r o te c te d BoundedDouble lambda = new BoundedDouble(0,1) ;

pu b lic V a r iab leE ffo r tU ti l i ty F u n c t io n C

double a rgR estO fF irm R ea lizedE ffo rt ,

double argRestO fFirm Size, double a rgT heta , double argLambda)

{
re s tO fF irm R ea lized E ffo r t = a rgR estO fF irm R ealizedE ffort;

res tO fFirm Size = argRestOfFirmSize;

t h e t a . s e tV a lu e (a r g T h e ta) ;

lambda. setValue(argLcUnbda);

}

pub lic V a r ia b le E f fo r tU t i l i ty F u n c t io n (F i rm f irm ,

VariableEffortEm ployee emp) {

t h i s (((V a r iab leE ffo r tF irm)f i rm)

■getTotalRealizedEffortExcludingEmployee(emp),

((V ariab leE ffortF irm)firm).ge tS izeE xclud ingE m ployee(em p),

em p.getThetaO , emp.getLambdaO) ;

}

pub lic double e ffortForM axim um U tility () {

r e tu r n th is .m axim ize() ;

}

pub lic double so lv eF o r(double a rg E f fo r t) {

BoundedDouble e = n ew BoundedDouble(0 ,1) ;

A.4.3. VariableEffortUtilityFunction.java

A PPE N D IX A. SO U RCE CODE 217

BoundedDouble re = new Bo\mdedDouble(0,1) ;

, A s s i i i n i i u j f (i II i l D i i i i l i l i i i i i f o i n i i i i c i i l l i j t (s i s f m j i i ' ap i r c i i l u i s .

e . s e tV a lu e (a r g E f f o r t) ;

r e . s e tV a lu e (a r g E f fo r t * la m b d a .g e tV a lu e O);

r e tu r n M a th ,p o w ((V ar iab leE ffo r tF irm O u tp u tF u n c t io n .g e tO u tp u t(

re s tO fF irm R ea lized E ffo r t + r e .g e tV a lu e O) /

(res tO fF irm Size + 1)) ,

t h e t a .g e tV a lu e ()) * M a th .p o w (l - e .g e tV a lu e O ,

1 - t h e t a .g e tV a lu e O);

}
}

A .4.3. VariahleEffortUtilityFimction.Java

APPENDIX A. SOURCE CODE 218

A .4.4 VariableEfFortFirm.java

p ackage i e . ted .eco n o m ics . f i r m s ;

im p o r t J a v a . u t i l . I t e r a t o r ;

im p o r t u ch icag o . s r c . s im . a n a l y s i s . DataRecorder;

im p o r t u ch icag o . s r c . s im . a n a l y s i s . NumericDataSource;

im p o r t j a v a . u t i l . A r ra y L is t;

pub lic class V ariab leE ffo r tF irm e x te n d s Firm {

p r iv a te double cachedRealizedEff o r t = 0;

p r iv a te s ta t ic double d e fau l tT o le ran c e = 0.00000000001;

p ro te c te d s ta t ic A r r a y L is t< In te g e r> firmsToWatch = new A r r a y L is tO ;

p r iv a te double foimdersTheta;

p r iv a te i n t foundersWho;

pub lic V ariableEffcrtFirm (Sim pleFirm sM odel newModel) {

super(newM odel);

if (Var iab leE f f o r tF i rm . f irmsToWatch. co n ta in s (new In teg e r (who))) {

ad d i t io n a lD a ta R e c o rd e r s O ;

}
>

p u b lic void s t e p O ■[

s u p e r . s t e p O ;

double c a lc u la te R e a l iz e d E f fo r t =

c a lc u la te T o ta lR e a l i z e d E f fo r t0 ;

if (M a th , abs (c a lcu la teR ea liz ed E f f o r t - cachedRealizedEff o r t)

< 0 . 001) {

cachedR ea lizedE ffo rt = c a lc u la te R e a l i z e d E f f o r t ;

}
}

pub lic vo id fa ilO nC achedR ea lizedE ffortD isc repancy(

AAA. VasiableEffortFirm.java

APPENDIX A. SOURCE CODE 219

double tolerance) {
if (!checkCachedEffortDiscrepancy(tolerance)) ■[

throw n e w RuntimeExceptionC "Cached effort " +
cachedRealizedEffort +
" out of sync with actual effort "+
calculateTotalRealizedEffort());

}
}

public void failOnCachedRealizedEffortDiscrepancy() {
failOnCachedRealizedEffortDiscrepancy(

VariableEffortFirm.defaultTolerance);
>

public void gainEmployee(Employee newEmployee) {
if (getSize()==0 && getAge()==0) {

foundersTheta = ((VariableEffortEmployee)newEmployee)
■ getThetaO ;

foundersWho = ((VariableEffortEmployee)newEmployee).who;
}
super.gainEmployee(newEmployee);

private double calculateEff iciency () {
double totalEffort = getTotalRealizedEffort();
return VariableEffortFirmOutputFunction

.getOutput(totalEffort)/totalEffort;
>

private double calculateTotalOutput () {
return VariableEffortPirmOutputFunction

AAA. VariableEfFortFirm.java

APPENDIX A. SOURCE CODE 220

. g e tO u tp u t (g e t T o t a l R e a l i z e d E f f o r t 0) ;

}

p r i v a t e doub le c a l c u l a t e T o t a l R e a l i z e d E f f o r t () {

doub le r e s u l t = 0;

for (I t e r a t o r i t = e m p lo y ees . i t e r a t o r () ; i t . h a s N e x t () ;) {

r e s u l t += ((V a r ia b le E ffo r tE m p lo y e e) i t . n e x t O)

■ g e t R e a l i z e d E f f o r t O ;

}
r e t u r n r e s u l t ;

}

p r i v a t e doub le c a lc u la te T o ta lR e a l iz e d E f fo r tE x c lu d in g E m p lo y e e C

V a r ia b le E ffo r tE m p lo y e e emp) {

doub le r e s u l t = 0;

if (em p lo y ees . c o n ta in s (e m p)) {

r e s u l t = g e t T o t a l R e a l i z e d E f f o r t () - e m p .g e t R e a l i z e d E f f o r t O ;

if (g e t S i z e O == 1 && r e s u l t >

V a r ia b le E f fo r tF i rm .d e f a u l tT o le r c in c e) {

t h r o w n e w R u n t i m e E x c e p t i o n (

"Nonzero r e s t of f i r m e f f o r t i n s i n g l e t o n f i r m . ") ;

}
} e lse {

r e s u l t = g e t T o t a l R e a l i z e d E f f o r t () ;

>

r e t u r n r e s u l t ;

>

p r i v a t e doub le c a c h e d E f fo r tD is c re p a n c y O {

r e t u r n M a t h . abs (c a c h e d R e a l i z e d E f fo r t -

c a l c u l a t e T o t a l R e a l i z e d E f f o r t 0) ;

}

AAA. VariableEffortFirm.java

APPENDIX A. SOURCE CODE 221

p r iv a te double c a lc u la te A v e ra g e l l t i l i ty () {

if (g e tS iz e O == 0) {

r e tu r n 0;

} else {

double r e s u l t = 0;

for (I te r a to r i t = employees. i t e r a t o r () ; i t .h a s N e x t () ;)

{
r e s u l t += ((VariableEffortEm ployee) i t . n e x t O)

. c a l c u l a t e C u r r e n tU t i l i t y 0 ;

}
r e tu r n r e s u l t / g e tS iz e O ;

}
}

p r iv a te double ca lcu la teP ercen tB e t te rO ffT h an S in g leo n O {

if (g e tS ize O == 0) {

r e tu r n 0;

} else {

double r e s u l t = 0;

for (I te r a to r i t = e m p lo y e e s . i t e r a to r () ; i t .h a s N e x t () ;)

{
r e s u l t += ((VariableEffortEm ployee) i t . n e x t O)

.betterOffThcUiSingletonO ;

}
r e tu r n r e s u l t / g e tS iz e O ;

>

>

p r iv a te double ca lcu la teA verageT hetaO {

if (g e tS ize O == 0) ■[

r e tu r n 0;

} else {

double r e s u l t = 0;

A .4.4. VariableEffortFirin.java

APPENDIX A. SOURCE CODE 222

for (I te r a to r i t = employees. i t e r a t o r () ; i t .hasNextO ;)

{
r e s u l t += ((VariableEffortEm ployee) i t . n e x t O)

. g e tT h e taO ;

}
r e tu r n r e s u l t / g e tS i z e O ;

>

>

. 1(17 .ysdl'.'

pub lic double ge tE ff i c i e n c y () {

r e tu r n c a lc u la te E f f ic ie n c y O ;

}

p u b lic double getO u tpu tO {

r e tu r n c a lc u la te T o ta lO u tp u t () ;

>

pub lic double g e tT o ta lR ea lized E f f o r t () -[

r e tu r n ca ch ed R ea l iz ed E ffo r t ;

}

pub lic double getTotalRealizedEffortExcludingEm ployeeC

VariableEffortEm ployee emp) {

r e tu r n ca lcu la teT ota lR ealizedE ffortE xc lud ingE m ployee(em p);

}

pub lic void addC on tr ibu tion(double c o n t r ib u t io n) {

cachedR ea lizedE ffort += c o n t r ib u t io n ;

}

pub lic void s u b t ra c tC o n tr ib u t io n (d o u b le c o n t r ib u t io n) {

AAA. VariableEffortFirm.java

APPENDIX A. SOURCE CODE 223

cachedR ea lizedE ffort -= c o n t r ib u t io n ;

>

pub lic boolean checkCachedEffortD iscrepancy(double to le ra n c e) {

r e tu r n cachedE ffortD iscrepancy() < to le ra n c e ;

}

pub lic boolecin checkCachedEff ortD iscrepancy () {

r e tu r n checkCachedEffortD iscrepancy(

V a r ia b le E f fo r tF i rm .d e fa u l tT o le r a n c e) ;

}

pub lic double getFoundersThetaO {

r e tu r n foundersTheta;

}

pub lic i n t getFoundersWho () {

r e tu r n foundersWho;

}

■ Diitd I{(c(ir(l(I S

pub lic vo id ad d it io n a lD a taK eco rd e rs () ■[

if (model. recordFirmTimeSeries) {

model. firmTimeSeriesRecorder.addNumericDataSource(

"f irm_size_"+ who, new F irm S ize O);

model. f irm Tim eSeriesR ecorder.addNumericDataSource(

" to ta l_ e f fo r t_ " + who, new T o t a l E f f o r t ()) ;

model. f irm Tim eSeriesR ecorder. addNumericDataSource(

"average_em ployee_util i ty_"+ who, new

A v e ra g e U ti l i ty 0) ;

m odel. f irm Tim eSeriesR ecorder. addNumericDataSource(

"average_employee_theta_"+ who, new A verageThetaO);

AAA. VariableEffortFirm.java

APPENDIX A. SOURCE CODE 224

model. firm Tim eSeriesR ecorder. addNumericDataSourceC

" p e rc e n t_ b e t te r_ o ff_ th a n _ s in g le to n _ "+ who, new

Percen tB ette rO ffT hcinS ing le tonO);

}
}

class FirmSize im p le m e n ts NumericDataSource {

pu b lic double execute () {

t r y {

r e tu r n V a r ia b le E f fo r tF i rm . th is .g e tS iz e O ;

} ca tc h (N u l lP o in te rE x c e p t io n ex) {

r e tu r n 0;

}
>

}

class T o ta lE f fo r t im p le m e n ts NumericDataSource {

pub lic double ex e c u te () {

t r y {

r e tu r n V a r ia b le E f fo r tF i rm . th is .g e tT o ta lR e a l iz e d E ffo r tO ;

} c a tc h (N u l lP o in te rE x c e p t io n ex) {

r e tu r n 0;

}
>

}

class A v e rag eU ti l i ty im p le m e n ts NumericDataSource {

p u b lic double execute () {

t r y {

r e tu r n V a r ia b le E f fo r tF i rm .th is . c a lc u la te A v e ra g e U ti l i ty O ;

} c a tc h (N u l lP o in te rE x c e p t io n ex) {

r e tu r n 0;

}

AAA. VariableEfFortFirm.java

A PPE N D IX A. SOURCE CODE 225

}
>

c lass AverageTheta im p lem en ts NvimericDataSource {

p u b lic double ex e c u te () {

t r y {

re tu r n V a riab leE ffo rtF irm .th is .c a lc u la te A v e rag eT h e ta O ;

} c a tc h (N u llP o in te rE x c e p tio n ex) -[

r e tu r n 0;

}
}

>

class P ercen tB e tte rO ffT h an S in g le to n im p le m e n ts NumericDataSource {

p u b lic double e x e cu te () {

t ry {

r e tu r n V a ria b le E ffo rtP irm .th is .

c a lc u la te P e rc e n tB e tte rO f fThcinSingleonO ;

} c a tc h (N u llP o in te rE x c e p tio n ex) {

r e tu r n 0;

}
}

}
>

A . 4.4. VariahleEffortFirm.java

APPENDIX A. SOURCE CODE 226

A .4.5 V ariableE ffortF irm O utputF unction .java

package i e . ted .eco n o m ics . f i r m s ;

p u b lic class V ariab leE ffortF irm O utpu tFunction {

final s ta t ic p ro te c te d double A = 1 ;

final s ta t ic p ro te c te d double B = 1 ;

final s ta t ic p ro te c te d i n t EXP = 2;

p u b lic s ta t ic double g e tO u tp u t(double e f f o r t) {

if (e f f o r t < 0 && M a t h . abs (e f f o r t) > 0.0000000000001) {

th ro w new R u n t im e E x c e p t io n (

"C a l l in g V ariab leE ffo rtF irm O utpu tF unc tion .ge tO u tpu t"

+ " w ith n eg a tiv e e f f o r t . ") ;

}
r e tu r n A * e f f o r t + B * M a th .p o w (e f f o r t , EXP);

>

}

A .4.5. VasiableEfFortFirmOutputFunction.Java

A PPE N D IX A. SOURCE CODE 227

A .5 Exogenous B irth M odel

A .5.1 E xogenousB irth M od el.java

package ie . te d .e c o n o m ic s . f i rm s ;

pub lic class ExogenousBirthModel e x te n d s SimpleFirmsModel {

pub lic ExogenousBirthModel 0 {

s u p e r () ;

>

pub lic void buildM odelO {

s u p e r .buildM odelO ;

a d d i t io n a lD a ta R e c o rd e r s O ;

}

pub lic Employee createE m ployee(in t i) {

r e tu r n new ExogenousBirthEmployee(this, i) ;

}

pub lic void add it io n a lD a taR eco rd e rsO {

if (recordM odelDetail) {

r e c o r d e r . addNumericDataSource(" f i rm s _ a v a i l a b le " , new

AverageNumericDataSource(agentList) {

pub lic double getValue (O b je c t argO bject) {

r e tu r n (d o u b le) ((ExogenousBirthEmployee)argObject).

getCountO fA vailableFirm s0 ;

>

»;
>

if (recordFirm CrossSection) {

A .5.1. ExogenousBirthModel.java

APPENDIX A. SOURCE CODE

this.finnCrossSectionRecorder .addObjectDataSourceC" , new
ArrayDataSourceCfirmsList, "Who") {
public double get Value (Object argObject) -[

return ((ExogenousBirthFirm)argObject).who;
}

»;
this.finnCrossSectionRecorder.addObjectDataSourceC"", new

ArrayDataSourceCfirmsList, "Size") -[
public double getValueCObject argObject) {

return CCExogenousBirthFirm)argObject).getSizeC);
}

});

>

if CrecordEmployeeCrossSection) {
this.employeeCrossSectionRecorder.addObj ectDataSource C"",

new ArrayDataSourceCagentList, "Who") {
public double getValueCObject argObject) {

return CCExogenousBirthEmployee)argObject).who;
}

»;
this.employeeCrossSectionRecorder.addObjectDataSourceC"",

new ArrayDataSourceCagentList,
"CountOfAvailableFirms") ■[

public double getValueCObject argObject) {
return CCExogenousBirthEmployee)argObject).

getCountOfAvailableFirmsC);
}

»:
>

}
}

228

A .5.1. ExogenousBirthModel.java

A P P EN D IX A. SOURCE CODE 229

A .5.1. ExogenousBirthModel.java

APPENDIX A. SOURCE CODE 230

A .5.2 ExogenousBirthEm ployee.java

p ackage i e . ted .eco n o m ics . f i rm s ;

im p o r t j a v a .u t i l .H a s h S e t ;

im p o r t j a v a .u t i l . I t e r a t o r ;

im p o r t u ch icag o . s r c . s im .a n a ly s is . Num ericDataSource;

p u b lic class ExogenousBirthEmployee ex te n d s Employee {

p r iv a te double randomDouble;

p r iv a te in t countO fA vailab leF irm s;

p r iv a te double com binedSizeO fA vailableFirm s;

p u b lic ExogenousBirthEmployee(SimpleFirmsM odel newModel, in t i) {

su p e r (newModel, i) ;

}

p u b lic Firm createNewFirmO {

re tu r n new E xogenousB irthFirm (m odel);

}

■ / T h i s (iiK IS t oo n iii 1o f o l l o w t in s f n i u h n y l inoii(l .

' ' • ô Jl i s t I'ri ru ' r i i ' i i i i j iMa.t i n n m i l f i l i f t / F / n n

p ro te c te d void joinM axim um UtilityFirm O {

in t o p tio n = STAY_CURRENT_FIRM_OPTION;

Firm firm ToJoin = n u l l ;

if (IforceN ew Single tonO) {

H a sh S e t av a ila b le F irm s = new H a sh S e tO ;

CollectionSummary firmSizeSummary = new

C ollectionS iim m ary(availab leF irm s) {

p u b lic double g e tV a lu e (O b jec t c o lle c tio n O b je c t) ■[

A.5.2. ExogenousBirthEmployee.java

A PPEN D IX A. SOURCE CODE 231

return ((Firm)collectionObject).getSizeO;
>

};

availableFirms.add(firm);

for (int i = 0; i < friends.length; i++) {
availableFirms.add(getFriend(i).firm);

}

countOfAvailableFirms = availableFirms.size();

double combinedSizeOfFirms = firmSizeSummary.getTotalO;
combinedSizeOfAvailableFirms = combinedSizeOfFirms;

if (model.allowNewFirms && firm.getSizeO != 1) {
l l n n k (ihoiil <i siii(/I(t o n til '"'-

combinedSizeOfFirms++;
}

double random = model.getNextDoubleFromTo(0,1);
double accum = 0;

for (Iterator it = availableFirms. iterator (); it.hasNextO;)

Firm thisFirm = (Firm)it.next();
accum += (double)thisFirm.getSizeO;
if (accum/combinedSizeOfFirms > random) {

if (! thisFirm. equals (firm)) {,

option = JOIN_EXISTING_FIRM_OPTION;
firmToJoin = thisFirm;

}
break;

A .5.2. ExogenousBiTthEmployee.ja.va

APPENDIX A. SOURCE CODE 232

>

}

if (model.allowNewFirms && firm.getSizeO != 1) {
if (accmn/combinedSizeOfFirms < random) {

option = CREATE_NEW_FIRM_OPTION;
}

}

} else {
' F o r n (I IK tr sivf j i i foil p i i:

if (model.allowNewFirms && firm.getSizeO != 1) {
option = CREATE.NEW_FIRM_OPTION;

}
}

switch (option) {
case CREATE_NEW_FIRM_OPTION:

model.addSizeOfF irmLef t(f irm.getSize());
createAndJoinFirmO ;
model.nimberCreat ingNewF irm++;
model.addSizeOfFirmJoined(l);
break;

case JOIN_EXISTING_FIRM_OPTION:
model.addSizeOfFirmLeft(firm.getSize());
joinFirm(firmToJoin);
model,numberJoiningFriendsFirm++;
model.addSizeOfF irmJoined(f irmToJoin.getSize());
break;

case STAY_CURRENT_FIRM_OPTION:
model.addSizeOfF irmStayed(f irm.getSize());

A .5.2. ExogenousBirthEmployee.java

A PPEN D IX A. SOURCE CODE 233

m odel.num berStayingC urrentF irm++;

}
}

.1

p u b lic double getC ountO fA vailab leF irm s() {

r e tu r n countO fA vailab leF irm s;

}

p u b lic double getC om binedSizeO fA vailableFirm sO {

r e tu r n com binedSizeO fA vailableFirm s;

>

l) (i ’ - h ‘ i i " i (l (i . '

class CountOf A vailab leF irm s im p le m e n ts NumericDataSource {

p u b lic double ex e c u te () {

re tu r n getC ountO fA vailab leF irm s() ;

>

}

class CombinedSizeOf A vailab leF irm s im p le m e n ts

NumericDataSource {

p u b lic double e x e c u te () ■[

re tu r n getC om binedSizeO fA vailableF irm sO ;

}
}

}

A .5.2. ExogenousBirthEmpIoyee.java

APPENDIX A. SOURCE CODE 234

A .5.3 ExogenousBirthFirm .java

package i e . ted .eco n o m ics . f i r m s ;

im p o r t u ch icag o . s r c . s im . a n a l y s i s . D ataRecorder;

im p o r t u ch icag o . s r c . s im .c in a ly s is . NumericDataSource;

im p o r t j a v a . u t i l . A r r a y L i s t ;

' T h i s siiliscld.ss (i f F / n n i sn ' t n((d(d f o r h(l}<ivi(iiir. j ns1 fi> / ikI / i 'iiI ikiI f i , ni ohs(i i n s.

pub lic class ExogenousBirthFirm e x te n d s Firm {

p ro te c te d s ta t ic A r ra y L is t< I n te g e r> firmsToWatch = new A r ra y L is tO ;

pub lic ExogenousBirthFirmCSimpleFirmsModel newModel) {

super(newM odel);

if (ExogenousBirthFirm. firmsToWatch. co n ta in s (new In te g e r (who))){

add it io n a lD a taR eco rd e rsO ;

>

}

public void ad d it io n a lD ataR eco rd ersO {

if (model .recordFirmTimeSeries) -[

m odel. firmTimeSeriesRecorder.addNumericDataSource(

"firm _size_"+ who, new F irm SizeO) ;

}
}

class FirmSize im p le m e n ts NumericDataSource {

pub lic double e x e cu te () {

t r y {

r e tu r n E xogenousB ir thF irm .th is .ge tS izeO ;

> c a tc h (N u l lP o in te rE x c e p t io n ex) {

r e tu r n 0;

}
}

A.5.3. ExogenousBirthFirm.java

APPENDIX A. SOURCE CODE 235

}
}

A. 5.3. ExogenousBirthFirm .Java

APPENDIX A. SOURCE CODE 236

A .6 Cost Curve M odel

A .6.1 C ostC urveM odel.java

package ie . te d .e c o n o m ic s . f i rm s ;

im p o r t j a v a . u t i l . I t e r a t o r ;

im p o r t u ch icag o . s r c . s im . e n g in e . S im ln i t ;

im p o r t u ch icag o . s r c . s im . u t i l . R a n d o m ;

pub lic class CostCurveModel e x te n d s SimpleFirmsModel {

p r iv a te double gamma = 0 .5 ;

p r iv a te double ph i = 0;

p r iv a te double nu = 0;

p r iv a te double b e ta = 0;

pub lic CostCurveModel() -[

s u p e r () ;

}

pub lic s ta t ic vo id main (S t r in g [] a rgs) {

S im ln it i n i t = new S im ln it () ;

i n i t . loadModel (new CostCurveModel 0 , n u l l , f a l s e) ;

>

pub lic S tr in g [] g e t ln i tP a ram O ■[

S tr in g [] params = {"gamma", "p h i" , "n u " , "be ta"} ;

r e tu r n s u p e r .a d d i t io n a l ln i tP a rc u n s (p a ra m s) ;

>

pub lic Ejnployee createE m ployee(in t i) {

r e tu r n new CostCurveEmployee(this, i) ;

>

A.6.1. CostCurveModel.java

A PPE N D IX A. SOURCE CODE 237

p u b lic vo id buildM odelO {

su p e r .buildM odelO ;

a d d itio n a lD a ta R e c o rd e rsO ;

}

p u b lic vo id s te p O {

s u p e r .S te p O ;

S (f u p F i n n <l<it(i n (■<>r(l(I S ii f f i r I s i s l i p .

"^ i f (this. (/< t T i c h C d i i i i t i I ■■ 11 {

f a r l U t n i t o r i1 p r i i i s i . i s i . ii< n i t o i i I: i i . l i i i s X i r i i I: I {

(' l i s t (' u r n F i n n f i r m I (' o s i C m n F i n u l i i . i n . v i l L

i j I f i rni . i i r i S iP. f 11 III \

J l n i l . a i l d i i i d i K i l D i i t a l i (c i i n i i r s i j:

I
I

}

1 »'■ , f

}

. ' : \ l I ! s^-- '.

p u b lic double getGammaO {

r e tu r n gamma;

}

p u b lic vo id setGeunma (double argGamma) {

gamma - argGamma;

}

p u b lic double g e tP h iO {

r e tu r n p h i ;

}

A.6.1. CostCurveModeI.java

APPENDIX A. SOURCE CODE 238

pub lic vo id se tP h i (double argPhi) {

ph i = a rg P h i ;

}

pub lic double getNuO {

r e tu r n nu;

>

pub lic vo id setNu(double argNu) {

nu = argNu;

>

pub lic double g e tB e taO {

r e tu r n b e ta ;

}

pub lic vo id se tB e ta (doub le argBeta) {

b e ta = argBeta;

}

, D(i1(i Rt i i inn r.s

pub lic vo id add it io n a lD a taR eco rd e rsO {

if (recordM odelDetail) -[

r e c o r d e r . addNumericDataSource("min_unit_cost", new

MinNumericDataSource(firmsList) {

pub lic double g e tV a lu e (O b jec t argO bject) {

r e tu r n (d o u b le) ((CostCurveFirm)argObject)

■ getU nitC ost 0 ;

>

»;

recorder.addNum ericD ataSource("m ax_iin it_cost" , new

A .6.1. Cost Cur veModel.Java

APPENDIX A. SOURCE CODE 239

MaxNiunericDataSource(firmsList) {

pub lic double getValue (O b je c t argO bject) {

r e tu r n (d o u b le) ((CostCurveFirm)argObject)

■ g e tU n itC o s tO ;

}
});

}
}

}

A .6.1. CostCurveModel.java

APPENDIX A. SOURCE CODE 240

A .6.2 C ostC urveE m ployee.java

package ie.ted.economics.firms;

public class CostCurveEmployee extends Employee •[

public CostCurveEmployee(SimpleFirmsModel newModel, int i){
super(newModel, i);

}

public Firm createNewFirmO {
return n e w CostCurveFirm(model) ;

}

public double calculateCurrentUtility() ■[
return calculateMaximumUtilityAtFirm((CostCurveFirm)firm);

}

public double calculateMaximumUtilityAtFirm(
Firm firmForUtility) {
if (firmForUtility.containsEmployee(this)) {

return ((CostCiirveFirm)firmForUtility).getPerCapitalncomeO;
} else {

return CostCurveFirmCostFunction.calculatePerCapitaIncome(
(CostCurveFirm)f irmForUtility,
((CostCurveFirm)firmForUtility).getMarketSharePlusOne(),
firmForUtility.getSizeO + 1);

}
}

}

A.6.2. CostCurveEmployee.java

APPENDIX A. SOURCE CODE 241

A .6.3 CostCurveFirm.java

package ie.ted.economics.firms;

import j ava. lang. M a t h ;
import uchicago. src. sim. analysis .DataRecorder;
import uchicago.src.sim.analysis.NumericDataSource;

public class CostCurveFirm extends Firm -[

protected double unitCost;

public CostCurveFirm(SimpleFirmsModel newModel) -[
super(newModel);
double gamma = ((CostCurveModel)model).getGammaO;

'■‘r u i d n : : . m / l C o s i 1 n i : . : h p n h i i f ' f K i U . ’1 H n .

unitCost = model.getNextDoubleFromTo(0.5 - gamma, 0.5 + gamma);
additionalDataRecorders0;

}

(' (i lcuhi lors

private double calculatePerCapitalncomeO {
return CostCurveFirmCostFunction.calculatePerCapitalncome(this,

calculateMarketShareO , getSizeO);
>

private double calculateMarketShareO {
return (double)getSizeO / (double)model.numberEmployees;

>

private double calculateMarketSharePlusOneO {
return ((double)getSizeO + 1.0) / (double)model.numberEmployees;

}

A .6.3. CostCurveFirm.java

APPENDIX A. SOURCE CODE 242

.4 .

pub lic double getPerC apita lncom eO {

r e tu r n ca lc u la teP erC ap i ta ln co m e() ;

}

public double getM arketShareO {

r e tu r n ca lcu la teM ark e tS h a re () ;

}

public double getM arketSharePlusOne() {

r e tu r n ca lcu la teM arke tSha reP lusO neO ;

}

pub lic double ge tU n itC os tO {

r e tu r n u n i tC o s t ;

>

. ' / D a t a !?(r o . . '

pub lic void ad d i t io n a lD a taR eco rd e rsO {

if (model. recordFirmTimeSeries) {

m odel. f irmT im eSeriesR ecorder. addNumericDataSource(

"m arket_share_"+hashCode(), new M arketShareO) ;

m odel. firm Tim eSeriesR ecorder. addNumericDataSource(

"un it_cost_"+ hashC ode() , new U n i tC o s tO) ;

}
}

class MarketShare im p le m e n ts NumericDataSource {

pub lic double execute () {

r e tu r n CostC urveFirm .th is .getM arketShareO ;

>

A .6.3. CostCurveFirm.java

APPENDIX A. SOURCE CODE 243

class UnitCost im p le m e n ts NumericDataSource {

pub lic double e x e c u te () {

r e tu r n C ostC urveF irm .th is .ge tU n itC ostO ;

}
}

A .6.3. CostCurveFirm.java

APPENDIX A. SOURCE CODE

A .6.4 C ostC urveF irm C ostF unction .java

package ie . te d .e c o n o m ic s . f i rm s ;

pub lic class CostCurveFirmCostFunction {

pub lic s ta t ic double calcu la teU nitC ost(CostC urveF irm f irm ,

double marketShare) {

double ph i = ((C ostC urveM ode l)f irm .m ode l) .ge tP h iO ;

double nu = ((CostCurveM odel)f irm .m odel).getN uO;

double b e ta = ((C ostC urveM odel)f irm .m odel) .getB etaO ;

if (marketShare < 0) {

th ro w new R u n t im e E x c e p t io n (

"marketShare Cannot Be Less Than 0 ") ;

} else if (marketShare > 1) ■[

th ro w new R u n t im e E x c e p t io n (

"marketShare Cannot Be G rea te r Than 1");

>

r e tu r n f i rm .u n i tC o s t * (1 + phi * (2 * nu - marketShare) *

marketShare * (1 - b e ta * m arketShare)) ;

}

public s ta t ic double ca lc u la te T o ta lC o s t (

CostCurveFirm f i rm , double m arketShare, i n t f irm S ize) {

r e tu r n c a lc u la te U n i tC o s t (f i rm , marketShare) * f irm S ize ;

}

pub lic s ta t ic double ca lcu la teT o ta lIncom e(

CostCurveFirm f i rm , double marketShare, i n t f irm S ize) {

r e tu r n f irm S ize - c a lc u la te T o ta lC o s t (

f i rm , m arketShare, f i rm S ize) ;

244

A .6.4. CostCurveFirmCostFimction.java

APPEN D IX A. SOURCE CODE 245

public static double calculatePerCapitalncome(
CostCurveFirm firm, double marketShare, int firmSize) {
return calculateTotallncome(

firm, marketShare, firmSize) / firmSize;
}

A .6.4. CostCurveFirmCostFunctionJava

