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A bstract

Artificial Intelligence systems have reached a level of sophistication and accuracy which 

means tha t they can now be confidently used as decision aids in real world situations. 

However, although these systems are accurate, users are still reluctant to use them. Unlike 

domain experts such systems are unable to present convincing explanations in support of 

the recommendations tha t they make. This is a major shortcoming, as without this 

reassurance, people are naturally reluctant to accept unsupported recommendations.

This is an issue which has plagued the Artificial Intelligence community since the 

early work on Expert Systems in the 1970s. Early solutions to this problem involved 

the presentation of rules used in the reasoning mechanism of the system to the user as 

a means of explanation. Such efforts were of limited success, as the rules used by the 

system were not easily interpretable and served as poor explanations. However, despite 

this. Rule-based explanations are still commonly used today.

Case-based Reasoning explanations represent an alternative approach which has in­

herent advantages in terms of transparency and user acceptability. Case-based reasoning 

explanations are based on a naturalistic concept of presenting similar past examples in 

support of and as justification for recommendations made. However, the traditional ap­

proach in Case-based Reasoning applications of simply supplying the nearest neighbour 

has been found to have shortcomings in terms of providing satisfactory explanations. The 

relevance of the explanation case may not be clear to the end user as it is retrieved using 

domain knowledge which they themselves may not have.

In this thesis we describe a framework for generating convincing Case-based expla­

nations which addresses the shortcomings of the traditional approach in a flexible and 

adaptable manner. Our Framework finds cases tha t form the most convincing arguments 

and is able to explain the relevance of the selected case in terms of discursive text. By 

providing useful explanatory feedback we hope to instil greater confidence in the user of

V



CBR system’s recommendations. The framework we have developed uses a localised so­

lution which is in keeping with the CBR philosophy and uses Logistic Regression models 

to extract information useful to the explanation process. This approach supports contin­

ued incremental learning and eliminates the need for expert domain knowledge. We have 

carried out a user evaluation of our explanation framework to establish its effectiveness.

Another issue with the deployment of decision support systems is the maintenance 

of user confidence in the long term. Although the provision of convincing explanations 

may lielp instil confidence in the user in the short term, if the system makes mistakes 

tha t confidence will be quickly lost. As a means of ameliorating this damage, measures of 

confidence in a systems prediction can be given to alert the user to when the system might 

be making a mistake. The Framework we have developed also has potential in terms of 

assessing the level of confidence that should be placed in recommendations.
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Chapter 1

Introduction

“Computers are useless. They can only give you answers. ” Pablo Picasso

C om puter technology has come a long way from the tim e when it simply comprised of 

giant m achines used to crunch numbers and churn out solutions to  calculations th a t were 

too tedious and time-consuming to  be carried out by people. Com puter systems are now 

routinely used to  perform tasks th a t we ourselves don’t fully understand and in contexts 

we would never have before envisioned. As com puter system s are entrusted with ever more 

critical tasks and play more prom inent roles in everyday life there has been a demand for 

such system s to  do more than  merely produce solutions and carry out their duties silently. 

In m any cases, people using such systems are suspicious of them  and reluctant to  accept 

w ithout question the solutions they produce. This problem is typified in a very dram atic 

fashion in Douglas Adam ’s The Hitchhikers Guide to  the Galaxy. A massively powerful 

com puter called Deep Thought is designed and set the task  of calculating the answer to 

the U ltim ate Question of Life, the Universe, and Everything. W hen Deep Thought returns 

its answer, ”42” , its creators are understandably irate, confused and disappointed. They 

im m ediately seek an explanation as to  w hat the question was so th a t they can understand 

the answer. A lthough extreme. Deep Thoughts response exemplifies a problem which is 

common in m any com puter systems today. As the tasks set to  be performed by computer 

systems have become more sophisticated and ambitious, the emphasis has shifted away 

from their ability to  simply produce solutions to  their ability to  explain and justify those 

solutions.

M achine learning research has proven successful in developing increasingly more accu­

rate decision support systems capable of reliably acting as decision aids for hum an users.
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Although more reliable system s are welcomed, the issue of providing useful hum an in­

terpretable explanations has been largely ignored. W here explanations are provided by 

decision aid systems they are usually in the form of rules. Such rules, although useful in 

the  internal reasoning mechanism of the system, are often not interpretable by users and 

serve as poor explanations. This, not surprisingly, has proven to  be a  m ajor stum bling 

block in the application of such systems to  real world scenarios (Andrews et al. 1995). In 

this thesis we describe a framework for generating convincing explanations for Case-based 

Reasoning (CBR) systems. By providing useful explanatory feedback we hope to  instil 

greater confidence in the CBR system ’s recom mendations in the user.

1.1 C ase-based R easoning

Case-based Reasoning is an artificial intelligence methodology for solving problems by 

using or adapting solutions to old problems (Riesbeck and Schank 1989). Unlike other 

machine learning techniques CBR does not try  to  model the problem dom ain directlj^, 

instead a set of past examples called cases are retained. Each case is m ade up of a 

description of a past example or experience and its attached solution. The full set of 

past experiences encapsulated in cases is called the case-base. W hen a new problem  is 

presented the case-base is searched and similar past examples are used to  find a solution.

CBR is referred to  as a lazy learning technique as the ’’learning” process isn’t carried 

out until a problem is presented and the case-base is searched. O ther machine learning 

techniques are referred to  as eager learners as they build models of the problem dom ain 

in advance of any problem being presented and use the model to  make future recom­

mendations. The approach to  learning taken by CBR has a number of advantages th a t 

distinguish it from other machine learning techniques.

The CBR m ethodology also supports incremental learning. Mistakes the system  makes 

can be quickly corrected by adding a case representing the correct solution to a problem. 

O ther techniques would require th a t the dom ain model be recompiled. CBR has also 

proven to  be successful in solving weak-theory problems. These are problems for which 

little insight exists and where the problem dom ain may be complex. Another im portant 

advantage of CBR th a t is often cited is in term s of user acceptance, Leake (1996):

“...neural network systems cannot provide explanations o f their decisions and

rule-based systems m ust explain their decisions by reference to their rules,
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which the user may not fu lly  understand or accept. On the other hand, the 

results o f CBR systems are based on actual prior cases that can be presented 

to the user to provide compelling support fo r  the system ’s conclusions.”

However, although CBR does inherently have advantages in term s of providing user 

feedback, the case-based solution isn’t w ithout fault and there are still outstanding issues 

th a t need to  be addressed.

1.2 C ontributions o f th is Thesis

The prim ary contribution of this thesis is the development of a flexible explanation frame­

work for Case-Based Reasoning. The Framework w'as developed in response to  the in­

creased demand for machine learning tools th a t can offer explanations of their recommen­

dations and so instil greater confidence in those recom m endations in the user. A lthough 

CBR has inherent advantages in term s of providing explanatory feedback it has been recog­

nised th a t the trad itional approach to  CBR explanations is not a perfect solution and th a t 

there are issues to  be addressed. The framework we have developed addresses these issues 

in binary classification tasks while m aintaining the strengths of the CBR, approach. Our 

approach has a num ber of novel features;

• it applies a lazy approach to  explanation production th a t utilises localised logistic 

regression models,

•  it selects cases th a t form the most convincing argum ents in an au tom ated  way and 

w ithout dom ain knowledge,

• it provides discursive tex ts describing the effects of differences in feature-values be­

tween the Query Case and the Explanation Case w ithout prior dom ain knowledge.

•  it provides a  measure of confidence in the system ’s prediction to  alert th e  user to  

when there is doubt about a system decision,

• it is not resticted purly to  CBR systems and we dem onstrate th a t Case-based reason­

ing explanations can be used to  provide explanaions for Black Box machine learning 

algorithms.
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1.3 P ublications R elated  to  th is Thesis

•  Conor Nugent, Padraig Cunningham  and Donal Doyle.: 2005, The Best Way to 

Instil Confidence is by Being Right; An Evaluation of the Effectiveness of Case- 

Based Explanations in providing User Confidence, 6th International Conference on 

Case-Based Reasoning, eds. H.M unoz-Avila and F. Ricci, pp368-381. Springer LNAI 

3620.

• Conor Nugent, Donal Doyle and Padraig Cunningham.: Gaining Insight through 

Case-Based Explanation. To appear in CBR in Knowledge Discovery and Data 

Mining, eds. S. Pal, D. A ha and K. Moy G upta, Wiley.

• Conor Nugent and Padraig Cunningham.: A Case-Based Explanation System for 

Black Box Systems. To appear in Artificial Intelligence Review  , ed. D. McSherry, 

D. Leake.

• Donal Doyle, John Loughrey, Conor Nugent, Lorcan Coyle, Padraig Cunningham.: 

2005, Fiomi: A Framework for Developing CBR Systems, in Expert Update 8(1), 

11-14.

•  Conor Nugent and Padraig Cunningham.: 2004, A Case-Based Explanation Sys­

tem  for ’Black Box System s’; In Gervs, P. & G upta, K.M. (eds.) Proceedings of 

the  EC CBR 2004 Workshops, Technical Report 142-04, D epartam ento de Sistemas 

Informticos y Program acin, Universidad Com plutense de M adrid, M adrid, Spain. 

165-174.

1.4 Sum m ary and Structure o f th is Thesis

In b rie f : C hapter 2 describes how explanations are produced in other machine learn­

ing techniques. C hapter 3 describes the case-based reasoning methodology, reviews the 

history of explanations in machine learning and in particular CBR. C hapter 4 describes 

the Explanation Framework we have developed. C hapter 5 describes how our Explana­

tion Framework was implemented. C hapter 6 contains evaluations of our Explanation 

Framework and the thesis is concluded with C hapter 7.

In  m o re  d e ta il:  In C hapter 2 we briefly describe how providing explanations has
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been approached in other machine learning technologies as well as highlighting the short­

comings and lim itations of such approaches.

In C hapter 3: we describe the basic CBR m ethodology with a particular focus on its 

potential in term s of providing explanations. We then  present a review of explanations in 

CBR. We highlight the advantages of the CBR approach in contrast w ith others bu t also 

highhghts issues of this approach th a t need to  be addressed.

C hapter 4 describes the Explanation Framework th a t we have developed. It points out 

the issues th a t the Framework attem pts to  address and describes the approach taken in 

addressing these issues. It provides step by step examples of how each of the  component 

parts of the Framework are carried out and examples of the explanations produced by the 

Framework.

Chapter 5 describes Fionn, the machine learning workbench th a t we have developed 

and in which the Explanation Framework was implemented. We outline the basic structure  

of the Fionn workbench and describe the case representation technology underpinning it, 

CBML. We then  outline briefly how two classifiers, k-NN and Logistic Regression, were 

implemented as part of the Fionn workbench. Once we’ve described these basic elements 

we outline how they were used to  implement the Framework.

C hapter 6 contains the evaluations th a t we have carried out on the various aspects of 

our Explanation Framework. We present the findings of a user evaluation we carried out 

on the Framework to  determ ine its effectiveness in improving user confidence. We also 

evaluate the localised logistic regression as a classification m ethod in comparision with 

K-NN  and globalised approaches. Finally we investigate the potential effectiveness of the 

estim ates of confidence produced by our Framework.

Finally C hapter 7 concludes the thesis and describes some further work th a t could be 

investigated.
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Chapter 2

Machine Learning and 

Explanations

In this Chapter we briefly review how explanations are produced by other machine learning 

technologies. We highlight the shortcomings of some of the approaches taken and the 

lessons that have been learnt in those past attem pts. The earliest attem pts at providing 

users with explanations stenuned from work tha t was done on Expert Systems in the 

1970s. This work first highlighted the need for explanations and the weaknesses of artificial 

intelligence techniques in providing them. Importantly, it also generated discussion on 

what a good explanation would be and how it could be provided. Although the Rule- 

based approach used in Expert Systems was found to be of limited use, it is this form 

of explanation tha t has persisted in the machine learning community. Decision Trees 

are often used to produce explanations as they are deemed to be interpretable models 

which can be easily transformed into rule form. Other machine learning systems lack any 

transparency in the way they operate and are so complex tha t they are deemed to be 

Black Boxes. The provision of an explanatory component for such systems has proven 

to be a major problem. Instead of provding explanations based directly on the system, 

special explanation components are developed. Many of these explanatory systems are 

again rule-based approaches. We will begin this chapter with a review of the work on 

Expert Systems before moving on to Decision Tree and Black Box approaches.
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2.1 E xpert System s

E xpert Systems seek to encapsulate the knowledge and expertise of a particular dom ain in 

the  form of rules. Using th is knowledge the E xpert System can then assist users in m aking 

decisions in an interactive way. One of the earliest examples of such a system is MYCIN 

(Shortliffe 1976) which was developed in the 1970’s and inspired many other E xpert Sys­

tem s (Jackson 1986). MYCIN is an interactive program  th a t diagnoses certain infectious 

diseases, prescribes anti-microbial therapy, and can explain its reasoning in detail. The 

ability to  explain its reasoning was added to offer a greater degree of transparency into 

the  reasoning process of the system  and so instil greater tru s t in i t ’s recommendations. 

Users could ask the system whj^ it was asking for certain information.

However, the  explanations offered by the system  were soon found to  be inadequate and 

confusing. The explanations offered by MYCIN were fornm lated in term s of the rule-based 

structu re  used internally by the system for reasoning and weren’t readily interpretable 

by users. L ater Expert Systems such as NEOM YCIN and XPLAIN sought to improve 

on this short-com ing (Clancy and Bock 1982, Sw artout 1983). The XPLAIN system 

supplem ented its explanations with background information and references to  literature 

thus giving greater credence to its actions.

A lthough efforts were made to  improve the explanations produced by early E xpert 

Systems these efforts largely failed as the rule-based explanations they produced were 

incom prehensible to  users. It was realised th a t the requirem ents of users in requesting 

explanations were not being properly addressed (M ajchrzak and Gasser 1991). This led 

m any people to  investigate w hat the requirem ents of users seeking explanations were and 

w hat criteria explanations produced m ust meet in order to  fulfil those requirements.

Sw artout and Moore (1993) made the first a ttem p t to  address the issue and proposed 

five requirem ents for explanations; fidelity, low construction overhead, efficiency and th a t 

they  are understandable and sufficient. The requirem ents of low construction overhead 

and efficiency refer to  how easily explanations can be generated at runtim e and refiect 

concerns about the level of com putational power available which although relevant a t th a t 

tim e can be largely ignored now. The requirem ents of fidelity  and being sufficient refer to 

the belief th a t  the explanations produced should reflect exactly the knowledge stored in 

the  system  and th a t there should be sufficient knowledge w ithin the system to answer any 

question users might have. Most of the requirem ents refer to  the mechanics of producing
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an explanation with the exceptions th a t explanations be understandable and have fidelity 

to  the E xpert System. These two requirem ents would seem to be in conflict w ith each 

other as the information stored in an E xpert System is often incomprehensible to  users.

Wick and Thom pson (1992) take a much more user centric approach and they argue 

strongly against fidelity being a requirem ent of an explanation. They view the explanation 

provision task as being separate to th a t  of the Expert System ’s diagnostic task. They 

propose three goals which explanations produced by a system might serve which reflect 

the requirem ents of three very different types of user;

•  V e rif ica tio n : to  help the end user verify the knowledge used by the system. This 

form of explanation is intended for knowledge engineers who are interested in and 

comfortable with the inner workings of the Expert System.

• D u p lic a tio n : reproduce the knowledge in the system in a form th a t is acceptable 

to  dom ain Experts.

• R a tif ic a t io n :  the explanation should increase the end user’s confidence in the  sys­

tem ’s reconnnendation.

Im portantly  Wick and Thom pson realised th a t the explanation process can and should 

in some cases be decoupled from the reasoning process. The single greatest requirem ent 

of any explanation should be the needs and goals of the user and th a t this should be 

the prim ary criterion for any explanation. Presenting explanations based purely on the 

reasoning process in some cases will fail to meet these needs.

C onstruction of the knowledge base of rules on which Expert Systems rely is a  time- 

consuming task  th a t requires continued access to  domain experts and consultation with 

Knowledge Engineers. Such access may not always be possible. In the next section we 

discuss Decision Trees which can be used to autom atically ex tract rules from raw data.

2.2 D ecision  Trees

Decision Trees are an extremely popular machine learning technique th a t model classifi­

cation tasks in a natural and intuitive form. The technique models the decision process as 

a series of linked test conditions. Each test condition forms a node in the tree structure  

and depending on the outcome of th a t condition the decision process continues along a



branch from tha t node to the next. This process is continued until a terminating node is 

reached and the decision process is completed. For example, Figure 2.1 depicts a Decision 

Tree that models the decision as to whether to play tennis or not (Mitchell 1997).

Sunny O vercast R ainy

Yes

High N orm al Strong W eak

No No YesYes

O utlook

H um idity W ind

F ig u re  2.1: An example of a Decision Tree for deciding whether to play tennis or not

The process begins with the root node where the ou tlook  attribute is tested. There 

are three possible outcomes to this test and these are represented by the branches. If the 

outlook attribue was sunny then the decision process would move on to a second node 

and the hum idity  node would be tested. Finally based on the result of tha t test a decsion 

would be made as to whether to play tennis or not.

Decision Trees must first be contracted from raw data using some form of induction 

algorithm. In designing a Tree induction algorithm a number of choices must be made. 

For example, the type of conditions contained in the nodes and selection criteria to be 

used in chosing which attributes to test. The choices made for such decisions distinguish 

the one Decision Tree algorithm from the next. The fundamental choices in the design of 

Decision Tree induction algorithm can be summarised as;

• T h e  S p littin g  F unction : This is the scheme used to split the sample space at 

each successive node. Normally a single attribute value is tested as in Figure 2.1 

but other more complex multivariable schemes have been used (see Section 3.2.3). 

Schemes using a single variable are called univariate while the others are known as 

multivariate.

•  S p lit tin g  C rite rio n : Once a splitting function has been defined the manner in
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which the various possible function parameters are selected needs to be considered. 

Most Tree algorithms operate by constructing the Tree in a greedy non-back tracking 

manner. This makes the choice of sphtting parameters critical since choices carmot 

later be revised. The splitting parameters are usually selected based on some sta­

tistical measure of how likely the resulting split is to lead to a successful terminal 

split.

• L eaf N o d e  F unction : How data tha t reaches a terminal node is represented is 

another point where Tree induction algorithms can deviate. For classification Trees 

the leaf node is usually assigned the majority class of the samples tha t reach that 

node but k-NN  algorithms have also been used. For regression tasks the leaf node 

is usually assigned the average value of all samples tha t reach it. However, some 

algorithms may use simple representational models of the data tha t reaches a leaf 

node. In such cases simple models such as linear regression equations are used to 

approximate regions of the sample space.

• S to p p in g  C rite r ia : Trees can be potentially grown until there are nearly as many 

leaf nodes as there are data samples. To do so would drastically affect the Trees in- 

terpretability and generalisation properties. So some measures are needed to control 

the growth of the Tree. These measures can either be global, looking at the over­

all structure of the Tree, or local, applied at the level of node partitioning. Global 

schemes usually predetermine the overall structure of the Tree; they define how many 

internal nodes a Tree might have. Local schemes might limit the further expansion 

of a node if the extra accuracy gained on the training set is below a certain thresh­

old. In practice, such stopping measures may miss unpromising Tree expansions that 

later lead to useful informative expansions. To counteract such an event. Trees are 

usually grown liberally and later pruned back to a desired level of complexity.

• P ru n in g  Schem e: Once a Tree has been grown it may be necessary to collapse back 

the nodes so as to improve the generalisation and interpretability of the model. The 

manner in which this is done, the criterion for determining the nodes for collapsing, 

is a further point where induction algorithms may differ.

Some popular algorithms include for classification tasks include ID3 (Quinlan 1986), 

its successor C4.5 (Quinlan 1993) and ASSISTANT (Kononenko et al. 1984, Cestnik et al.
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1987). Descision Tree algorithms have also been developed for regression tasks such as 

CART (Breirnan et al. (1984)) and Quinlan’s M5 (Quinlan (1992)).

One of the major reasons for the popularity of Decision Trees is their advantages 

in terms of interpretability. As each path from the root to a leaf corresponds to one 

conjunction of tests the paths can be written down as a set of IF-TH EN  rules. One 

method of producing rules is C4.5 (Quinlan 1993). These rules can then be used as 

the basis for an explanation. For example consider a hot humid sunny day with a high 

temperature and weak winds. From Figure 2.1 we can see that this type of day is not 

suitable for playing tennis. The leaf node for this decision is the bottom left node of the 

Decision Tree. Therefore an example rule that can be used as an explanation for this path 

is:

Rule: IF(Outlook=Sunny) AND (Humidity=High) THEN NO

Explanation: As the outlook is sunny and humidity is high it is not suitable to 

play tennis today.

Explanations of this form are not always as simple for a user to understand as that 

shown in Figure 2.1. As the depth of a Decision Tree increases so to does the complexity 

of the generated rules. Complex problems can quickly lead to Decision Trees that are so 

large and complex tha t they interpretable qualities are completely lost. As we shall see in 

Section 2.3.1 this can often be the case.

2.3 E xplanations for Black B ox System s

In machine learning research the quest for increasingly more accurate and stable classifiers 

has led to ever more complicated algorithms. Ensemble approaches and algorithms such as 

Support Vector Machines and Neural Networks have reached a level of complexity where 

they are not readily interpretable. Such approaches are commonly referred to as black-box 

algorithms owing to their lack of transparency with regard to the reasoning behind the 

predictions they make.

Although increases in accuracy are welcomed, research has highlighted the need for 

interpretability and transparency as a critical aspect in the implementation of machine 

learning techniques in real world applications (Andrews et al. 1995). People are under­

standably reluctant to accept without question predictions from black-box systems.
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This has led to the development of explanation systems tha t strive to offer an insight 

into the workings of the black-box systems. Many different approaches have been taken 

l)ut commonly the explanation systems try  to build machine learning systems tha t are 

inherently interpretable such as Tree-based or Rule-based systems tha t describe the un­

derlying Black Box e.g. (Andrews et al. 1995, Tickle et al. 1998, Zhou and Jiang 2003). 

The relevant rules or a Tree structure is then used as evidence in support of the black 

box’s prediction. Such systems use the Black Box as an oracle capable of supplying an 

unlimited amount of training data. The hope is that, with an abundance of training data, 

the explanation system should offer a good description of the underlying black-box system.

However, in reahty such systems are limited in the level of fidelity tha t they can 

achieve while maintaining some level of interpretability. The differing bias of the black- 

box algorithm and tha t of the one being used for explanations means tha t it can be difficult 

to fully capture the operation of the black-box system. Domingos (1998) focused on how 

well an explanation facility captured the improvements gained through the use of ensemble 

techniques. He found that it retained just 60% of the gains. More accurate descriptions of 

the operation of the black box often come at the cost of increasingly more complex Tree 

and rule-based systems. This trade off in interpretability versus fidelity means tha t such 

approaches are of limited use as a convincing explanation system when the underlying 

problem is complex and the credibility of the system can be damaged by bad, inaccurate 

or convoluted explanations (Majchrzak and Gasser 1991). An example of such an approach 

is the Decision Tree based approach called TREPAN.

2 .3 .1  T R E P A N

TREPAN is a Decision Tree based approach to providing explanations for Black Box 

Systems (Craven and Shavlik 1996). TREPAN seeks to extract the information trapped in 

the Black Box and deliver it in a more intrepretable form, as a Decision Tree. TREPAN is 

an algorithm tha t maintains a pedagogical approach, utilising the Black Box as an oracle 

from which extra task specific information can be gleaned during the learning process. 

TREPAN differs significantly from other popular Decision Tree algorithms such as CART 

and C4.5 in a number of ways;

• M em b ersh ip  Q u eries  an d  th e  O racle: TREPAN queries the network as to the 

class of various instances. Theses queries are used in two ways. Initially they are
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used to  establish the classes of the training instances. This is carried out to ensure 

th a t the d a ta  used to  tra in  the Decision Tree reflects the function th a t has been 

learnt by the Black Box.The da ta  is relabelled depending on how the Black Box 

would label it.

Secondly, TREPAN ensures th a t a t any point it has a predefined num ber of instances 

a t a node before assigning it a class or defining a splitting criterion. If a situation 

is reached where there are not enough instances the network is pooled with relevant 

queries until the deficit is depleted. The relevant queries are based on the set of 

constraints needed to reach the given point in the tree.

• T re e  E x p a n s io n : TREPAN uses a best-first criterion to  expand the Tree, unlike 

most Decision Tree algorithm s which are based on a depth-first greedy search. The 

notion of the best node, in this case, is the node at which there is the greatest 

potential to increase the fidelity of the extracted Tree to  the network.

• S p l i t t in g  T e s ts : Each non-leaf node in a Tree contains a test th a t is used to split 

the  instance space a t th a t node. C4.5 and CART use simple single feature tests 

whereas TREPAN uses M-of-N  type expressions as splitting criteria. An M-of-N  

rule is a Boolean expression th a t is specified by an integer threshold, M, and a set 

of n Boolean literals. The rule is true  if any M  of the N  Boolean literals are true. 

By using M-of-N  tests its hoped th a t a more concise Tree will be produced.

TREPA N  has been apphed successfully to  a num ber classification problems including 

ensembles of Neural Networks. A lthough great care is taken to  try  and ensure th a t the 

Decision Trees produced are small and concise the Trees produced are not easily inter­

pretable.

An example of a Decision Tree produced by the Trepan algorithm  for a predicting 

w hether stock prices are going to go up or down can be seen in Figure 2.2. In this example 

there is a large root node which contains a large set of M  of  N  conditions. Although these 

nodes are especially designed to produce a concise interpretable Tree it is difficult to  see 

if any real insight into the dom ain can be garnered by such Trees.

The second example in Figure 2.3 is of the Tree produced to  predict which way a 

voter is likely vote, either dem ocrat or republican. Here, although the functions contained 

w ithin each node are relatively simpler than  those in Figure 2.2, the overall Tree structure
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Figure 2.2: A Decision Tree produced by Trepan

is iiuich larger. Again it is difficult to see whether such Trees or portions of them covdd 

serve as convincing explanations to users who aren’t themselves experts in both the domain 

in question and also in machine learning itself.

2.4 Sum m ary

It is clear that there has been a demand for interpretable explanations in Artificial Intel­

ligence technologies from a very early stage in the develoj)inent of the field. However, as 

the field has grown and more sophisticated techniques have been developed, the need for 

explanations has been largely ignored. Decision Trees do have explanatory potential which 

(|uickly breaks down as problems become more complex and the Tree structure grows.

Importantly, as Wick and Thompson (1992) point out the user’s demands and goals 

nmst be taken into account in designing explanations. Rule-based approaches represent at-
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F ig u re  2.3: A Decision Tree produced by Trepan

tempts by rnachine-learning designers to build interpretable models but these api)roaches 

have not been designed with the intention of explaining individual decisions or recommen­

dations. This task is different and the use of Decision Trees in this context represents 

a j)oor solution. The explanations produced by such systems have been found to be too 

com{)lex for users to understand. Case-based reasoning has an inherent advantage in terms 

of providing humanly interpretable explanations and in the next Chapter we will discuss 

the CBR methodology as well existing research in CBR, in providing explanations.
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Chapter 3

Case-based Reasoning and 

Explanations

Case-Based reasoning (CBR) is a machine learning technique tha t differs fundamentally 

in its approach to problem solving in comparison with other techniques. Most other tech­

niques such as Decision Trees and Neural Networks are model-based and try  to generate 

general models of the problem domain which can then be used to solve future problems. In 

the case of Neural Networks the model is encoded in the structure of its neurons and their 

attached weighted connections. In Tree-based and Rule-based systems the knowledge is 

described by an explicit set of rules. CBR in contrast contains no explicit model of the 

problem domain, instead a set of past examples called cases are retained. Each case is 

made up of a description of a past example or experience and its attached solution. The 

full set of past experiences encapsulated in individual cases is called the case-base. As an 

example of a simple case please consider the one shown in Table 3.1 which is taken from 

the Blood Alcohol Content (BAC) case-base (Cunningham, Doyle and Loughrey 2003). 

The task in this domain is to predict whether an individual is over the legal drink driving 

limit or not. The features such as Weight and Meal are used to describe the past examples 

and characterise the present problem. Each case in the case-base has its solution attached 

which in this case is just the label Under, reflecting that the individual was found to be 

under the drink-driving limit.

In CBR problems are solved ”by using or adapting solutions to old problems” (Riesbeck 

and Schank 1989). When a new problem is presented, the case-base is searched and similar 

past examples are found and used to solve that problem. The need to detect and model

16



T able 3.1: Example from the Breathalyser Domain

Features Sample
Case

Weight 76
Duration 60
Gender Male
Meal Full
Units 2.9
BAG Under

general patterns in the problem space is avoided. For example in the BAG domain, to 

determine whether a particular individual is under or over the drink-driving limit their 

characteristics such as Weight and what kind of meal they’ve had are recorded and the 

case-base is searched for similar past cases. Using these cases a classification for the present 

problem is determined.

The very different approach taken to problem solving in CBR has a number of ad­

vantages. CBR has proven to be successful in solving weak-theory problems, problems 

for which little insight into the problem exists and the problem domain may be complex. 

Instead of having to formulate a set of rules which can be applied to solving the problem 

a set of past examples is used. In CBR problems are solved using the cases that are most 

relevant to tha t problem. This localised approached taken in CBR means that it is suited 

to problems that are complex and non-linear in nature. Cases can often be foimd readily 

available in form of records in a database. It is for this reason tha t CBR can result in 

lower knowledge engineering cost in comparison to other techniques (Cunningham 1998). 

Where rules can be generated reasonably easily, for example by Decision Trees, CBR still 

maintains a number of advantages. One particular advantage is in terms of maintenance. 

CBR is a lazy learning technique which means tha t it defers all problem solving effort until 

runtime. Given the lazy learning approach taken and given tha t one of the main sources 

of knowledge in CBR system is the case-base, the system can easily be updated when 

new information becomes available by simply adding new cases to the case-base. Other 

techniques would require that the entire model is recompiled. The CBR methodology also 

supports incremental learning. Mistakes the system makes can be quickly corrected by 

adding a case representing the correct solution to a problem. However, in reality in order 

to ensure the continued accuracy of a case-base system care must be taken as to how it is

17



m aintained. This includes examining the contribution of each case w ithin the  case-base to 

the system ’s performance and altering the case-base accordingly as well as looking a t the 

other areas of knowledge w ithin the CBR system. Schemes for performing such tasks have 

become an im portant area of research with the CBR comm unity (Smyth and M cKenna 

2001, Delany et al. 2005, Delany and Cunningham  2004b).

A nother advantage of CBR th a t is often cited is in term s of user acceptance (Leake 

1996). The lack of ability of many machine learning techniques to  provide users w ith 

explanations has proven to  be a m ajor failing when used in real world environm ents. It 

has previously been taken for granted th a t CBR does not suffer this same shortcoming. 

However, although CBR does inherently have advantages in term s of providing user feed­

back the  issue is less straightforw ard than  previously thought and has recently become 

the focus of much interest in the research community. Addressing the issues surrounding 

CBR explanations in classification forms the m ain focus of this thesis and we will review 

the issues in this area along with the relevent research in Section 3.4. Before we look at 

CBR explanations we will first outline in more detail the im portant aspects of the  CBR 

m ethodology with a particular emphasis on CBR as a classification technique and also 

look at the historical origins of CBR in Sections 3.1 and 3.2 .

3.1 Origins Of CBR

Ideas on the role of analogy and the use of past experiences in reasoning can be traced 

back to  the work of Thagard, Centner, Schank and W ittenstein among others (Holyoak 

and Thagard  1989, Centner 1983, Schank and Abelson 1975, W ittgenstein 1943). For 

instance W ittenstein  observed th a t natu ral concepts such as tables and chairs are in fact 

polymorphic and cannot be classified by a single set of necessary and sufficient features but 

instead can be defined by a set of instances cases w ith family resemblances (W ittgenstein 

1943). This work has been cited by Aam odt and P laza as the philosophical basis for CBR 

and suggests the  need for a case-based approach in weak-theory domains (Aam odt and 

P laza 1994).

The work of Thagard, Centner and Schank all comes from the cognitive science field. 

Thagard and Centner focused on a cognitive model of thinking based on analogy and 

Thagard also went on to  investigate the im portant role of analogy in explanations (Thagard 

1989). C en tner’s research has mainly focused on the  role of analogy in learning (C entner
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et al. 2001). Although the research into the role of analogy in reasoning is very much 

related to CBR the work of Roger Schank and his research group very much defined CBR 

as it is known today (Schank 1999).

3.2 T he C B R  M ethodology

The CBR methodology has a logical step-like structure tha t can be broken down into four 

distinct phases. These phases are often referred to as the Tour REs’ cycle as described by 

(Aamodt and Plaza 1994). Figure 3.1 shows a diagram of this system. This cycle contains 

four phases which we will first list and describe very briefly before discussing each phase 

in greater detail:

Problem
Description

Retrieve

New Case

Retrieved
Case

Learned
Case

New
Case

Case
Base

General
Knowledge

ReuseRetain

Tested/ 
Repaired 
^  Case ^

Solved
CaseRevi.se

Confirmed
Solution Proposed

Solution

F ig u re  3.1: The CBR Cycle (Aamodt and Plaza 1994)

R e tr iev a l To begin with, the case-base is searched and the most similar cases to present 

problem description are sought out and retrieved.
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R euse  The retrieved cases are then used to generate a sohition to the presented problem 

description.

R ev ision  The proposed solution is evaluated and validated.

R e te n tio n  Once a satisfactory solution has been reached the problem description and 

solution are then added to the case-base.

3.2.1 R etrieval

The retrieval stage is generally held to be the most im portant phase of the CBR method­

ology as so much is dependent on finding a good set of cases given the problem case. 

There are a number of ways in which this can be done. Some apporaches taken include 

indexed-based retrieval and use database methods but the method most commonly used 

in classification tasks is the k Nearest Neighbours (k-NN) retrieval algorithm. In the k-NN 

algorithm a case representing the present problem is compared with each case in the case- 

base and a similarity score is calculated. The similarity score calculated for two cases is 

based on the amalgamation of the similarities scores for each of the features tha t describe 

a case. For clarity we will refer to similarities between features as local similarities. Local 

similarity scores can be calculated using simple functions such as the Euclidean distance 

in the case of real-values features or exact match criteria for nominal features. However, 

more sophisticated measures are commonly used. For example in the case of unordered 

symbolic features a similarity table can be defined or a value difference metric can be de­

fined (Salzberg 1991). There has also been much research on learning similarity measures 

(Wettschereck et al. 1997, Stahl and Gabel 2003, Stahl 2002). In this case the similarity 

fiuiction is learnt in much the same way that many other machine learning tasks are.

Once a satisfactory set of local similarity measures have been decided they can be used 

in the amalgamation function to define the overall similarity between two cases. Similarity 

between two cases Q and C  is usually defined as the sum of the local similarity values 

multiplied by their relative importance:

S i m { Q, C)  = ' ' ^ W f  X Gf (3.1)
f e F

where aj  is the local similarity function for feature /  and Wf reflects its weight (or im­

portance). F  is the set of all features in Q. Again the determination of what weight to 

attach to each feature is a very important issue. The k-NN algorithm is very sensitive
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to  the presence of irrelevant or noisy features. Finding a good set of feature weights can 

greatly improves the performance of the CBR system  and it is a topic th a t has received a 

lot of a tten tion  (Stahl 2001, Aha 1997).

3.2 .2  R euse

After the retrieval phase the CBR system is left w ith one case or more from which to 

derive the solution. In the case of classification tasks th is is usually a relatively trivial 

task. Either the most similar case’s solution is used or the m ajority solution found within 

a certain  num ber of the  most similar cases is used. W hen CBR is used in knowledge 

intensive domains the returned solutions are often more complex then  a simple class label. 

A solution may constitute a set of actions to be taken or a set of ingredients to  m anufacture 

viable tablets (Bergmann 1993, Craw et al. 1998). In these cases the solutions often have 

to  be adapted to  take into account differences in the  problem specification and this can be 

a complex task. It often requires considerable dom ain knowledge in order to  perform the 

adap tation  process and information may not be easily encoded in weak-theory domains. 

This knowledge gap has led W atson (1997) to  refer to  the adap tation  process as the 

Achilles’ heel of CBR.

3.2 .3  R evision

CBR systems inevitably make mistakes and before any suggested solution is added to  the 

case-base it is first validated. In this way the CBR system can fine tune and improve its 

performance in a real tim e learning scenario.

3.2 .4  R eten tion

The retention phase involves updating the CBR system  based on any feedback received. 

This normally means the addition of a  new case when the system has m ade an error but 

can also mean adjustm ents to  other elements of the system such as altering the sim ilarity 

measures. In some systems operating in complex domains the case representation th a t is 

added to  the system can also include additional inform ation on the outcome of the solution, 

which may also include fine-grained inform ation on how well the solution addressed systems 

goals Goel et al. (1991). Similarly other systems record more th an  ju st the result and 

record the problem solving process itself Veloso and Carbonell (1994).
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3.3 T he K now ledge C ontained in C B R  System s

Unlike rule-based systems but like techniques such as neural networks, all the knowledge 

contained in a CBR system isn’t stored in one easily identifiable place. Although cases 

form the  most obvious source of knowledge much other knowledge can be d istributed across 

other elements of the system. In providing explanations we need to draw on knowledge 

stored w ithin the system and it is im portant to  realise where this knowledge can lie. 

R ichter has identified four different ways in which knowledge can be represented in a CBR 

system  (Richter 1995, 1998). He has named these knowledge containers and they have 

m et wide acceptance as a natu ral organisation of knowledge in CBR. R ichter’s knowledge 

containers are:

V o c a b u la ry  K n o w le d g e  The a ttribu tes and predicates th a t can be used to  describe the 

cases.

C a se  K n o w le d g e  consists of the problem episodes or instances represented as cases th a t 

can be used to  solve similar problems in the future.

S im ila r ity  K n o w le d g e  represents the similarity measures which are used to  m atch cases 

in a particular domain.

A d a p ta t io n  K n o w le d g e  is knowledge used to  adapt the solution of the m atching case 

for the target problem.

The knowledge for the vocabulary, sim ilarity m easure and solution transform  is struc­

tu red  and used at compile tim e and the knowledge in the  case-base plays its role only at 

run tim e. Richter suggests th a t this is the m ajor advantage of CBR because the knowledge 

acquisition of cases is easy. Although the acquisition of knowledge in the other containers 

is more difficult to  obtain, shifting knowledge from the case-base to  another container can 

lead to  significant improvements in the system. As highlighted in Section 3.2.1 much of 

a  CBR system ’s performance is dependent on its sim ilarity measures and much effort can 

go into ensuring th a t these measures are effective. This means th a t much of the knowl­

edge in a CBR system can end up being stored as sim ilarity knowledge. It is clear th a t 

knowledge encapsulated in a CBR system may not be explicitly expressed to  the user in a 

classification task. The user may see the benefits of case and sim ilarity knowledge in the 

classification presented to  them , however this knowledge is still hidden away from the end
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user. This is a particular problem in case-base explanations as we shall see in the next 

section.

3.4 C ase-based Explanations

In Chapter 2 we discussed how explanations are produced by other machine learning tech­

niques. It was clear tha t many machine learning techniques lacked any inherent ability to 

produce explanations while those tha t do are limited in the scope in which their expla­

nations are applicable. Conversely CBR systems have an inherent transparency tha t has 

particular advantages for explanations as Leake (1996) points out:

“...neural network systems cannot provide explanations of their decisions and 

rule-based systems must explain their decisions by reference to their rules, 

which the user may not fully understand or accept. On the other hand, the 

results of CBR systems are based on actual prior cases that can be presented 

to the user to provide compelling support for the system ’s conclusions. ”

At this stage it is useful to make the distinction between knowledge-intensive and 

knowledge-light explanations. Knowledge-intensive approaches involve designing the case 

structure with explanations in mind and inserting explanation patterns (Schank 1986). 

The most notable and influential work was that by Leake (1992) on SWALE. The SWALE 

project investigated the potential of CBR to produce creative explanations of anomalous 

events. It produces explanations based on the retrieval and application of especially con­

structed cases storing explanations to prior events. These explanation patterns are then 

retrieved and used to explain new events. The name SWALE came from a young suc­

cessful race horse tha t died suddenly and unexpectedly in 1984. After the horse’s death 

many people hypothesised as to the cause of death. Providing many different interesting 

explanations of this event served as the test scenario for the SWALE system. For instance 

given the Janis Joplin explanation pattern stored within the system, SWALE hypothesises 

tha t a possible cause of death was a drugs over-dose. Another more recent example of 

a knowledge intensive approach to explanations is the DIRAS system (Armengol et al. 

2001 ).

In contrast to the Knowldge-Itensive approach the Knowledge-light explanations rely 

on revealing the cases used in the reasoning process as they are. The focus of this the­

sis is on explanations produced in an automated fashion which is in keeping with the
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knowledge-light approach. The focus of the rest of this Section will be on knowledge-light 

explanations.

3.4.1 G oals, A dvantages and L im itation s in C B R  E xplanations

The concept of an explanation is intuitively understood by most people, we use them 

effortlessly throughout our everyday lives. However the vast array of contexts and ways 

in which explanations are used means that the concept of an explanation is an extremely 

difficult one to concretely define. What might be considered a valid and good explanation 

in one context might have no meaning in another. The slippery nature of the explanation 

concept of course impacts on the way in which explanations can be evaluated. There is no 

one fixed criteria on which all explanations can be judged. Explanations can only really 

be evaluated in terms of how effectively they meet the objectives that necessitated the 

creation of the explanation.

However, within the machine learning community explanations are usually used within 

a restricted range of contexts and with clear objectives. Sormo and Cassens (2004) define 

a set of goals that explanations might serve in CBR systems that was inspired by the 

categorisation proposed by Swartout and Smoliar for explanations in early rule-based 

systems (Section 2.1). They defined five categories based on the goals that the explanation 

might serve:

• Transparency: The goal of the explanation is to impart an understanding of how

the system found an answer.

• Justification: This is the goal of increasing the confidence in the advice or solution 

offered by the system by giving some kind of support for the conclusion suggested 

by the system.

• Relevance: An explanation of this type would have to justify the strategy pursued 

by the system.

• Conceptualization: The explanation serves to make clear to the user the knowl­

edge and vocabulary used by the system.

• Learning: The primary role of an explanation is to impart knowledge to the user.

The goal that most explanation systems in knowledge-light classification tasks serve 

is primarily justification. The typical form of explanation used in the knowledge-light
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domain is presenting the user with the most similar case. For example, consider Table 3.2. 

Here we have ^Target Case representing the present j)roblem for which the system has 

predicted the subject is under the drink-drive limit. Beside the Target Case we can see 

the Explanation Case presented to the user as support for the prediction given. Implicit 

in this form of explanation is the argument tha t given the precedent of the Explanation 

Case and its similarity to the present situation the proposed solution is justified.

Table 3.2: Sample knowledge-light explanation from the BAG Domain

Features Target
Case

Explanation
Case

Weight 76 76
Duration 60 60
Cender Male Male
Meal Full Full
Units 2.9 2.6
BAC Predicted

Under
Under

This type of explanations and the insight it offers to the end user differ considerably 

from those found in rule-based and other approaches in a number of ways:

• N a tu ra l Form  o f E x p lan a tio n : Research in cognitive science and other areas sug­

gests that explanation by analogy is a natural form of explanation in some domains 

and one people can quickly relate to. Cunningham, Doyle and Loughrey (2003) 

conducted a trial in which they compared users’ satisfaction with simple case-based 

explanations as seen in Table 3.2 and alternatively with rule-based explanations. 

They found tha t in general users had a preference for case-based explanations. Cen­

tner et al. (2003) investigated the role of analogy in learning and although referring 

to more elaborate text based cases argue cases and examples are concrete, they are 

more engaging and more easily understood than abstract, domain-general principles.

• U se o f R ea l E vidence: In CBR the user is presented with actual cases tha t repre­

sent past experiences. In most applications these cases are undoubtedly true and so 

their validity isn’t in question, this is the great strength of case-based explanations. 

Users who are unfamiliar or suspicious of a system are more likely to be convinced 

by explanations that contain factual evidence than by unsupported rules.
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• F ix ed  an d  S im ple F orm  o f E x p lan a tio n : CBR explanations avoid the inter- 

pretability versus fidelity trade OS’ tha t can plague some other techniques. In other 

forms of explanation such as rule-based, the explanations can grow more and more 

complex in line with the complexity of the problem. This can lead to explanations 

that aren’t  intrepretable. In case-based explanations the explanation presented to 

the user, a case, is independent of the complexity of the problem.

Although simply presenting the most similar case can be perfectly adequate as an 

explanation, there has been a growing realisation among the CBR community tha t the case 

alone might not always fully suffice as a satisfactory explanation. The major challenge with 

case-based explanations lies in ensuring the perceived appropriateness of the presented 

cases to the validity of the prediction. The task of ensuring tha t the cases are deemed 

appropriate and convincing can be broken down into two challenges:

• S e lec tin g  th e  B est C ase to  P re s e n t to  th e  U ser: The major driving force for 

the provision of explanations is to offer a justification for a prediction. The goal 

of providing a convincing argument may not always be best served by supplying 

the user with the nearest neighbours. Convincing explanations are domain and 

user dependent (Sormo and Cassens 2004), and this should be reflected in the case 

retrieval process. As discussed in Section 3.3 the utility for which the cases are to 

be used should be reflected in the similarity measures used. Taking the domain and 

user details into account, the retrieval process should be adjusted to select the cases 

tha t form the most convincing argument. We will describe work tha t addresses the 

retrieval process in this way in Section 3.4.2.

• E x p la in in g  th e  d e ta ils  a n d  re levance o f re tr ie v e d  CEises: This is an issue that 

has recently received a lot of attention in the CBR community (Nugent and Cun­

ningham 2005, McSherry 2004, Sormo and Cassens 2004). In CBR explanations, the 

ability of the user to make meaningful comparisons between feature values in the 

query and the retrieved explanation cases is of critical importance to the success of 

the explanation. CBR systems are not wholly transparent and much domain knowl­

edge can be contained within the similarity metrics used in the system as highlighted 

in Section 3.2.1. It is implicitly assumed in simple CBR explanations system tha t the 

user has this same domain knowledge and so the appropriateness of the explanation 

case is clear. However, this may not be the case and the relevance of the retrieved
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case may be lost on novice users. By providing users w ith ex tra  explanatory feed­

back further insights into the problem are given in addition to  further reassuring the 

user.

A further challenge to  using explanations to  foster user confidence is to  do so in the 

long run. The prim ary m otivation in providing users of CBR systems with interpretable 

explanations is to increase their confidence in the system. However, as is pointed out by 

Cheetham  and Price (2004), people can quickly lose confidence in a system if it makes 

predictions which then tu rn  out to  be incorrect. This may well be further compounded 

if the suggested incorrect solution was supported by an explanation (W atson 1997). To 

address this issue Cheetham  and Price propose using confidence measures so as to  alert 

the user to  when a system may be m aking a mistake.

Already these issues have begun to  be addressed by the CBR research comm unity and 

in the next section we will highlight and discuss some systems th a t address these issues.

3 .4 .2  C B R  E xplan ation  System s  

ProCon

The issue of transparency is one th a t M cSherry has addressed in his ProCon System 

(McSherry 2003). McSherry has focused on making the  relationship between the feature 

values w ithin a case and its predicted value explicit. He argues th a t simply presenting 

the feature values in the most similar cases may be misleading. The relationship between 

feature values and the predicted value may not always be a positive one; the presence of 

some feature values may in fact be evidence against the prediction. Simply supplying the 

user w ith a case may lead them  to incorrectly infer the relationship between feature-values 

and the  prediction. To combat this M cSherry provides the user with ex tra  relational 

inform ation about the case feature-values and the predicted class-value. To infer the 

feature-values to  class-value relationships, a Naive Bayes model is built on the entire 

train ing set and from this the relational information is derived. Using the Naive Bayes 

model it is possible to  infer the effect of different feature-values and so inform the user 

w hether a particular feature-value is a supporter or opposer of a given prediction. In table 

3.3 we can see an example of the ProCon-2 system ’s ou tpu t as seen in (McSherry 2003).

A lthough this approach does succeed in providing the end user with inform ation on the 

relationships between feature-values and the predicted outcome, the m anner in which it
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T able 3.3: Sample ProCon-2 Output from (McSherry 2003)

ProCon-2: Please describe the target problem.
User: weight=79, duration=90, sex=male, meal=full, units=10.1
ProCon-2: The 3 most similar cases are:

Case 13 
Case 26 
Case 56

79, 240, male, full, 9.6, over-limit(0.97)
73, 120, male, full, 9, not-over-hmit(0.96) 
79, 120, male, full, 7.2, not-over-limit(0.96)

The predicted outcome is: over-limit.

User: w hy
ProCon-2: Features of the target problem tha t SUPPORT the predic­

tion:

units=10.1

Features of the target problem tha t OPPOSE the prediction:

weight=79 
duration=90 
sex=male 
meal=full

The most similar case is:
Case 13:79, 240, male, full, 9.6, over-limit

The outcome in this case was over-limit in spite of the opos- 
ing evidence that:

weight=79
sex=male
meal=full

is done may limit it to very simple problems. The Naive Bayes approach induces a global 

model of interactions and this may not always be appropriate as the influence of features 

may vary over the problem space. Indeed, it might be argued tha t global models are not 

in the spirit of CBR which is a local approach to learning. As highlighted earlier, much 

of the strength of CBR hes in its abilities to deal with weak-theory and complex domains 

and support incremental learning. Naive Bayes models are also extremely simple and view 

each feature in isolation. The conditional probability of a given class label is calculated for

28



each feature given its value. No interaction between features is taken into account. Bayes 

rule is then used to calculate the joint probability and make a prediction. It is very likely 

tha t in more complex domains the explanations produced may seem counter intuitive and 

the derived relational information may not reflect the reality in the problem space. Some 

of the limitations of this approach are discussed in Doyle (2005).

A F ortiori A rgu m en ts

As highlighted in Section 3.4.1 The nearest neighbour may not always form the most 

convincing argument. This is an issue that Doyle et al. (2004) have addressed. They use 

specially designed similarity meaures to form a fortiori arguments in favour of the CBR 

system’s prediction. Most parents are familiar with the use of a fortiori arguments by 

children^. A fortiori arguments are used to argue a case beyond reasonable doubt. Let 

us consider an example of a child using an a fortiori argument to plead their case to 

see the latest Harry Potter movie. Figure 3.2 shows an example of a child called Aiark 

(the triangle) who wants to see the latest Harry Potter movie. The circles represent the 

children who have seen the movie and the squares the children who have not. Mark knows 

that Kate is the closest in age to him and she has seen the movie. But Mark knows that 

the older you are the more likely you are to be allowed to see the movie. If Mark were 

to use Kate as an argument to convince his parents to let him go to the movie, there is 

a possibility tha t Mark’s parents can argue tha t Mark is still a little too young to go. 

However Mark knows tha t if he uses John who is younger than him as his argument to 

see the movie, he has a stronger case.

Doyle et al argue tha t the same principle applies in classification tasks whereby cases 

that are between the query case and the decision boundary provide more convincing ex­

planations. That is, cases that are more marginal on the im portant criteria are more 

convincing. W ith such cases the user is better able to assess whether the classification of 

the target case is justified. To form such arguments Doyle et al. have developed a system 

that attem pts to select a case nearer the decision boundary than the nearest meighbour. 

A major step in this process is to use explanation utihty measures (Doyle et al. 2004). 

These measures are dependent on the classification of the case being explained and based 

on domain knowledge of the effects of feature-values on the class value. Figure 3.3 shows

'  “a fortiori - adv. for similar but more convincing reasons: if Britain cannot afford a space program, 
then, a fortiori, neither can India.” - Colhns English Dictionary
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Not allowed to Allowed to see
see Harry Potter Harry Potter

John
_  ^  Kate

■ ■ ■ •  ^
Mark

 ►
Age

F ig u re  3.2: Using a f o r i io r i  arguments

the explanation u t i l i ty  measure for the feature Age when tlie  classification is A llowed to 

Se(! H arry  Potter. W hen ca lcu la ting the u t i l i ty  between a case x  and a (juery case q, i f  

the age o f x  is older than q, the u t i l i ty  measure for age is in  the range o f 0-1. However 

i f  q is older than  x  the u t i l i ty  is 1. Therefore the u t i l i ty  for the A llow  argument works 

by favouring younger cases than  the query case. A lte rn a tive ly  when try in g  to  argue th a t 

someone should not be allow(Hl to  the cinema an a lte rna tive  graph th a t favours older cases 

would be used.

20 25-25 -20

Difference (q-x)

F ig u re  3.3: Exp lana tion  U t i l i ty  graph for the Age feature and the ’A llow ed’ .



Once the utihty measures for each feature and classification combination has been 

defined, the most convincing case to support a particular classification is selected using 

the following process:

1. Get Nearest Neighbours.

2. Perform Classification using Nearest Neighbours.

3. Select explanation utility measures to use based on classification.

4. Reorder Nearest Neighbours of the same class using selected explanation utihty 

measures.

As an example of the kind explanations produced by this system please consider Table 

3.4. Here we can see both the nearest neighbour which would normally be selected as 

the explanation case and the actual explanation case selected using especially designed 

utility measures. In this case the implicit argument is; given that a previous individual 

was both lighter, had consumed more units of alcohol and was discovered to be under the 

limit then it is reasonable to assume tha t the target case is too. This does form a more 

convincing argument but it is worth noting that it requires domain information in order 

to design the utility measures and it is dependent on the user having that same domain 

knowledge. W ithout such domain knowledge the argument may be lost on novice users and 

the effects of differences between the feature values in the explanation case and the target 

case may be off-putting. This is an issue Doyle et al. later addressed by supplementing 

their explanations with texts explaining the effects of feature-value difTerences.

T ab le  3.4; Sample a- Fortiori Explanation

Features Target
Case

Nearest
Case

Explanation
Case

Weight 76 76 73
Duration 60 60 60
Gender Male Male Male
Meal Full Full Full
Units 2.9 2.6 5.2
BAG Under Under Under
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C B R  E x p la n a tio n s for B lack  B ox  S y stem s

As we saw in Section 2.3 providing interpretable explanations for Black Box systems is a 

difficult task. We investigated the prospect of introducing CBR explanations as a means 

of explaining the output of Black-Box Systems such as Ensembles, Neural Networks and 

Support Vector Machines (Nugent and Cunningham 2005). Such systems have proved to 

be effective in modelling non-linear problems but are plagued by a lack of interpretability 

in application to real-world problems. As we saw in Section 2.3 various rule-based and 

decision tree systems have been developed but these often fail to capture the workings of 

the Black Box System and can led to poor and convoluted explanations (Andrews et al. 

1995, Tickle et al. 1998, Zhou and Jiang 2003).

Given the characteristics of case-based explanations discussed in Section 3.4.1 we de­

veloped a CBR explanation system for Black-Box Systems used in regression tasks. Key 

components in our approach were the use of the Black-Box as an oracle and the use of 

local models to describe the feature-space in the area of interest. In using the Black Box 

as an oracle we simply present it with sets of feature values similar to those of the target 

problem and record its output. In this way we can build up an artificial case-base around 

the point of interest in the feature space. To try and capture the information stored in this 

artificial case-base about feature importance and influences we build a locally weighted 

linear regression model on the data (Atkeson and Moore 1997). Once we have this infor­

mation we can then use it in selecting an explanation case and offering the user an insight 

into the influences of the different features.

To make this process a little clearer consider the following simple example. Imagine we 

have a neural network model that predicts the Blood-Alcohol content (BAC) in a person’s 

blood after they have consumed a certain number of units of alcohol and stopped drinking. 

The graph of the function learnt by the neural network (NN) might look something like 

the one in Figure 3.4. As the consumed units are absorbed into the body the BAC value 

increases until it has reached a maximum value from where the level then begins to fall 

back down as the body processes the alcohol.

The function learnt by the NN is of course unknown to us and so when we ask it to 

provide a prediction for the BAC level for time T we will simply be presented with a 

prediction P(T) with no insight on how this prediction was derived. We can then begin to 

interrogate the NN with cases similar to our query case (QP) and build a case base that
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P(T)

BAG

T minutes 
Time

F ig u re  3.4: Tlie function learnt by the NN-BAC vs. Time

AC1
QP
AC2

Learnt
Curve

BAG

Time

F ig u re  3.5: Artificial Data Points ACl and AC2 are created around QC

describes the NN’s function around QP as seen in Figure 3.5.

Once we have built an artificial case-base around QP that accurately describes the 

black box’s function in that area we are then left with the problem of how best to extract 

feature rankings from it. For regression tasks, multivariate linear regression models would 

seem to be the best candidate for deriving such information. A linear regression model 

provides us with a set of coefficients for each feature tha t can then be used to infer how 

sensitive the prediction is to changes in each feature’s value and so its relative importance.



Un-weighted linear 
approximationAC1

QP 
. AC2

Learnt
Curve

BAC

Time

F ig u re  3.6: Fitting a linear model to the artificially created data

The coefficients also provide information about whether a f(;ature is negatively or posi­

tively correlated with the prediction variable at tha t point. In our particular example the 

coefficient would give us the rate at which BAC is changing with time at that particular 

point. However, care must be taken to ensure the linear model derived truly reflects the 

NN’s function. If we were simply to build our model on the locally built ca.se base without 

attention to each case’s relation to a query case we would end up with a model like that 

shown in Figure 3.6.

This would be an un-weighted hnear model and is not a good model of the NN’s 

b('haviour at point QP. To overcome such j)roblems locally weighted linear regression can 

be used Atkeson and Moore (1997). Local hnear regression allows us to weight each case 

based on its similarity to the query case. In the case of oiu' implementation we use an un­

weighted Euclidean distance measure as the weighting function. For instance ACl would 

be given a lower weight than AC2 and so would have less of an impact on the derived 

model. This gives us a model that is close to a tangent to the curve at QP and gives us a 

slope value tfiat truly reflects the NN’s function as can be seen in Figure 3.7.

The above example is quite simple and the information extracted may not seem to be 

very useful, but in a multi-dimensional problem such information is extremely useful. In 

such a case, a hyperplarie is produced and each coefficient of tha t model gives us a sense 

of how each feature relates to the predicted value. How the feature salience information 

is used in the final explanation stage is very much dependent on the context the system is 

being used in; on what is deemed most effective and useful for a particular domain and the
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Weighted linear 
approximationAC1

QP
AC2

Learnt
Curve

BAC

Time

F ig u re  3.7: Fitting a locally weighted linear model

T able 3.5: An Example of CBR Explanation of a Black Box System

Q uery E x p lan a tio n
C ase C ase

W eigh t (kgs) 8f) 80
D u ra tio n  (m iris) 60 ()0

G en d e r Male Male
M eal Lunch Lunch

A m o u n t (U n its ) 4.9 4.9
BA C 12.0 14.0

E x p lan a tio n :

The important features in determining this preidction,
listed in order of impact, are: Amount, D uration , Gender,
Weight and Meal

Weight being smaller in the explanation case has the effect
of increasing its BAC value

users in that domain. As an example of the type of explanation produced by this system 

consider the explanation displayed in Table 3.5. This case-based from of explanation has 

advantages in terms user acceptability and the use of real evidence as outlined in Section 

3.4.1. The addition of discursive text helps inform the user as to the relevance of the 

retrieved Explanation Case and explains the effects of any differences tha t might exist 

between it and the Query Case.



3 .4 .3  A ssessin g  C onfidence in C B R

Predicting confidence in a system’s predictions is not a new idea and in fact it was a 

feature in some early Knowledge-Based and Expert Systems (Davis (1982), Watson and 

Gardingen (1985)). Systems designers have long realised tha t it is better for the system 

to admit tha t it simply doesn’t  have enough information to answer confidently then to 

speculate wildly. Such systems were designed to recognise and handle situations where 

the system is inadequate. Information on how to recognise such situations was encoded 

in the meta-level knowledge of the system which controls how the system operates by the 

system designers.

Many CBR systems act as decision aids too and as mentioned in Section 3.4.1 predict­

ing confidence is an issue for CBR Systems too. McLaren and Ashley recently addressed 

the issue in CBR with an approach tha t is very similar to tha t taken in Knowledge-Based 

and Expert Systems. Their system uses Meta-Rules as a means of detecting possible er­

rors. If the conditions of the rules are met than the system is deemed to be going beyond 

its capabilities. Their System, SIROCCO, operates in an engineering ethics domain which 

highlights some of the error sensitive domains for which CBR systems can be used.

Alternatively other researchers have taken a far more CBR-light orientated approach 

to the task (Cheetham and Price 2004, Delaney et al. 2005a). Both have looked at using 

measures based on similarity information derived from the cases used in any decision as 

indicators of confidence. Examples of the kind of measures considered are:

•  The similarity distance between the target case and its nearest neighbour.

• Percentage of number of cases retrieved with the predicted class value.

•  Average similarity of cases with the predicted class value.

• Sum of the similarities of retrieved cases with the predicted class.

•  Average similarity of retrieved cases without the predicted class value.

It is easy to imagine tha t many such indicators could be created and indeed Cheetham 

and Price (2004) propose 12 such measures. However both Cheetham et al. and Delaney et 

al. have found such measures used individually to be poor confidence measures. However 

both sets of researchers have looked at means of combining the measures so tha t a more 

robust aggregate confidence measure can be produced. Cheetham et al. used a decision
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tree to learn when it is best to use certain measures and then combined the selected 

measures. Alternatively Delaney et al. used an ensemble-like approach to combine a set 

of simple base indicators. While Cheetham et al. found their approach to be of limited 

success Delaney et al. found their approach to be very promising in the very sensitive 

spam domain. However it is clear that confidence measures based on case similarities

don’t seem to offer any real insight in system confidence. Most of the simple measures

strive to capture the marginality of a prediction, to describe how close a case was to the 

decision boundary. None of the measures so far considered seem to reliably reflect the 

case’s marginahty and so fail as confidence measures. Using combinations of indicators 

has been found to be more effective but perhaps there is a more direct way of reflecting 

case the marginality of a case.

3.5 C onclusion

We have reviewed the CBR methodology and highlighted where knowledge is stored in 

the CBR system. It is clear that although aspects of the CBR approach are transparent 

the methodology isn’t wholly so and this limits the effectiveness of traditional CBR-light 

explanations. We have reviewed research in the area that has addressed these issues 

and highlighted some limitations. Our review has made it clear tha t a successful CBR 

explanation framework would have to contain

• a means of providing user feedback that reflects the CBR methodology and the 

knowledge in the system,

• a means of selecting good explanation cases,

• a means of providing reliable confidence measures.

In the next section we discuss the development of our Explanation Framework and 

how it addressed these issues.

37



Chapter 4 

Explanation Framework

The general realisation within the machine learning community tha t the tools tha t we 

build need to be interpretable to real life users has spurred a renewed interest in designing 

systems tha t provide explanatory output. As is clear from Section 3.4 Case-based Rea­

soning has a legacy of research and many favourable characteristics in terms of providing 

explanations. However, the traditional approach in CBR-light applications of simply sup­

plying the nearest neighbour has been found to have shortcomings in terms of providing 

satisfactory explanations. We have highlighted two issues in particular tha t need to be 

addresed in order to create satisfactory and convincing explanations:

• The selection of cases to present to the user

•  Explaining the details and relevance of retrieved cases

The primary motivation in providing users of CBR systems with interpretable explana­

tions is to increase their confidence in the system. However, as is pointed out by Cheetham 

and Price (2004), people can quickly lose confidence in a system if it makes recommenda­

tions which then turn  out to be incorrect. As a means of combating the possible loss of 

user confidence, researchers have tried to devise mechanisms capable of determining when 

a the system might be making a mistake. Such mechanisms strive to determine the level 

of certainity which the system can attach to its recommendation. This information is then 

delivered to the end-user is terms of a confidence measure. By alerting users to when the 

system might be making an error, long-term user confidence can be maintained even when 

the system does make mistakes.
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As we have seen in Section 3.4, these are all issues which have recently been addressed 

by researchers. However, we wished to develop a single unified solution to all of these 

problems which was in keeping with the characteristics tha t set CBR apart from other 

machine learning techniques. We also wished to develop a solution which could potentially 

be applied to many different domains without specialist knowledge from tha t domain 

having to be encoded into the system.The system as developed by Doyle et al. (2004) 

required tha t a domain specialist be consulted so tha t explanation utility measures could 

be designed and a fortiori cases found. The system we have developed strives to avoid this 

effort. To realise these aims we have developed a solution tha t tackles all three problems 

in a localised way. We envisioned a solution that, like our work in CBR explanations for 

Black Box systems, would build local models on selected small portions of the case-base 

(Nugent and Cunningham 2005). By applying this localised approach we can provide 

users with informative feedback tha t reflects the case-base in the relevant region of the 

feature-space and at tha t time.

CBR is particularly suited to weak theory domains. Such domains are characterised 

by the fact that simple generalised principles don’t apply universally across the entire 

solution space. By applying local models we can generate explanations tha t reflect the 

nature and charcteristics of such domains. The framework we have developed has three 

key facets:

• It selects cases tha t form a fortiori arguments in an automated way and without 

domain knowledge,

• It provides discursive texts describing the effects of differences in feature-values be­

tween the Query Case and the Explanation Case,

• It provides a measure of confidence in the system’s recommendation to alert the user 

to when there is doubt about a system decision.

This Chapter describes the design of our general framework for case-based explanations 

and each of the component stages of tha t process. We begin in the next section with a 

general outline of the approach taken before discussing each stage in the process in more 

detail
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4.1 D esign O f G eneral Framework

Each explanation produced by our framework is especially tailored to each recommenda­

tion made by the underlying CBR reconunendation system. The flow of execution of the 

explanation process carried out by our framework can be broken down into five distinct 

phases as can be seen in fig. 4,1. In each of these stages, particular tasks necessary for 

producing the explanation are carried out. We will now discuss each stage in turn:

Local Model

Query Case

Local Case-base 
Builder

Explanation Case 
Retrieval

Final Explanation

Figure 4.1: Flow diagram of the Operation of the Framework

1. Query Case: Each explanation produced is tailored to  the particular set of inputs 

on which the underlying CBR system has made a reconnnendation. These set of 

inputs along with the systems recommendation form a Query Case and this case is 

then used to seed the rest of the explanation process.

2. Local C ase-base Builder: In the second phase we wish to capture the information 

that lies in the region of the case-base around the Query Case. We do this by building 

a local case-base. The local case-base is a subset of cases from the original case-base 

tha t traverse the decision boimdary at tha t point in the feature space. This ensures 

tha t we have captured information about the local relationships between feature- 

values and the class label. The manner in which we do this will be discussed in more 

detail in Section 4.1.2.
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3. Local M odel The next task is to transform the information stored in the local 

case-base into a more interpretable and useful form. To do this we build a model on 

the local case-base which will offer us an insight into the information stored within. 

The choice of model we use is very much determined by the information we need to 

extract and the tasks tha t we would like to use the model to drive. There are three 

tasks for which we would like to use our localised model:

A Selection of an explanation case 

B Explaining the effects of feature differences 

C Determining how certain a recommendation is

The model we have selected to perform these tasks is the Logistic Regression model. 

It is a simple but powerful statistical model which is probabilistic and offers insights 

into the feature-value relationships in a natural and intuitive way. We will discuss 

this model, why we selected it and how we use it further in Sections 4.1.1, 4.1.3 and 

4.1.4.

4. E x p la n a tio n  C ase R e triev a l: In the case retrieval process we wish to select the 

case tha t forms the most convincing argument in favour of the system’s recommen­

dation. As we saw in Section 3.4 selecting cases tha t form a fortiori arguments is 

an effective way of achieving this. This means finding cases tha t are more marginal, 

tha t lie nearer the decision boundary. Previously this has been done by using spe­

cially designed similarity metrics which encapsulate domain knowledge about the 

relationship between features and class labels. We find a fortiori cases in an auto­

mated way which avoids the insertion of domain knowledge. We do this by using the 

Logistic Regression model’s probabilistic characteristics to determine which cases 

are the most marginal. We will explain this process in more detail in Section 4.1.3.

5. F in a l E x p la n a tio n  S tage: In the final explanation stage two im portant tasks are 

carried out; feature-value differences between the explanation and the Query Case 

are explained and the confidence in the underlying CBR system’s recommendation is 

determined. To explain the feature-value differences the Logistic Regression model 

is again employed. The characteristics of the design of the logistic regression model 

mean tha t it can explain the effects of such differences in a natural way. The design 

of the logistic regression model is explained in Section 4.1.1 and how we use it to
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explain the feature difference in Section 4.1.4. Since the logistic regression model 

is probabilistic, it is a trivial task  to  generate a probability of a given Query Case 

being of a certain class. If the probability is below a certain threshold then  we can 

determ ine th a t confidence in a recom mendation is low or alternatively th a t there is 

a high degreee of confidence in the recommendation. How such a threshold can be 

determ ined is discussed in Section 4.1.5.

This process is carried out a t run-tim e and for each recom m endation th a t requires an 

explanation. A key component of out framework is the use of Logistic Regression as our 

local model as it is then used in many of the other processes in the framework. In the 

next section we will discuss the selection of this model, its key characterisitics and how it 

works.

4.1 .1  C hoice o f Local M odel

At first glance the approach th a t we have taken in fitting a statistical model to the da ta  in 

the case-base and using it to  determ ine the effects of feature differences may look similar 

to the approach taken by M cSherry which we described in Section 3.4.2. However, there 

are a num ber of im portant differences in both the model th a t we use and in the m anner in 

which it is employed th a t mean th a t the approaches are in fact quite different. F irstly we 

do not a ttem pt to  fit the model to  the entire case-base. We argue th a t fitting a gobal model 

over a  local learning system isn’t  in keeping with the CBR philosophy. As we highhghted 

in the  introduction to C hapter 3 some of the m ain characteristics th a t distinguish CBR 

from other machine learning techniques are:

•  it is a lazy learning m ethod th a t supports increm ental learning

•  it is effective a t solving weak-theory problems

F itting  a model to  the entire case-base prior to  the  system being used is to  fit an eager 

learning m ethod over a lazy m ethod. The explanations produced by such a system may 

not refiect the case-base if it is updated. Furtherm ore, CBR has advantages in term s of 

tackling weak-theory problems and complex problems. These are problems in which simple 

statistical models fail to capture the underlying patterns in the data . These problems 

have a complexity and non-linear nature  which violates m any of the assum ptions made 

in simpler statistical m ethods. To overcome these problems we apply our model on small
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portions of the case-base a t runtim e. This ensures th a t we are not only using the most 

up-to-date d a ta  available but also th a t we are not fitting a simple model over complex 

data. A lthough simple models may not be able capture the trends throughout the case- 

base they are adequate when applied to localised regions of the case-base. This localised 

approach is used extensively in statistics and we have used it previously in our work on 

CBR explanations for black-box systems. In fact, localised logistic regression techniques 

have been used in tex t classification (Zhang and Yang 2004).

In term s of statistical models, Naive Bayes and Logistic Regression represent two fun­

dam entally different approaches to  problem solving. NaiVe Bayes is a generative statistical 

m ethod while Logistic Regression is a discrim inative m ethod. Generative classifiers learn 

a model of the jo int probability of the features and the corresponding class label and make 

decisions by using Bayes rule to compute the posterior probability of the class variable. 

In the case of Naive Bayes this means building a separate probability d istribution for each 

feature th a t relates it to the class label. For a given set of inputs the probability of a given 

class is calculated for each feature-value and then  Bayes rule is used to combine the indi­

vidual probabilities and make a recom mendation. Logistic regression is a discriminative 

m ethod and this means th a t it tries to  calculate the probability of a class directly given the 

the full set of inputs. Thus feature relations are taken into account and noisy features are 

naturally  tuned out. The logistic regression model is also designed with the in terpretation 

of relationships between feature-values and class value in mind. We have discussed, in 

broad term s, the strengths of the logistic regression model and how it is employed within 

our framework w ithout really describing the model itself. We will now discuss the model 

in greater detail before describing each of the ways in which the model is used w ithin the 

framework.

A L ocal M odel: L ogistic  R egression

Hosmer and Lemeshaw have w ritten an excellent and comprehensive book on the subject 

of Logistic Regression (Hosmer and Lemeshow 2000). In the preface to  the second edition 

they point out the huge increase in the use of the modeling technique from its original use 

w ithin epidemiologic research to use w ithin fields as diverse as “biomedical research, busi­

ness and fiance, criminology, ecology, engineering, health policy, linguistics and wildlife 

biology Logistic regression is a d a ta  analysis technique th a t offers an insight into the re­

lationship between input variables and a target, or class variable. It is specifically designed
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for binary classification problems and the increase in popularity of the modeling technique 

is understandable as it offers powerful insights while maintaining model simplicity.

Logistic regression, like hnear regression, produces a set of coefficients from which the 

relationship of an input variable to the target class variable can be deduced. However, 

unlike linear regression, logistic regression coefficients don’t directly correspond to slope 

values in the same way. In logistic regression tasks, the two possible class values are coded 

as being either 0 or 1. Because the value predicted by the model, the conditional mean, is 

no longer an unbounded value as in linear regression but a value between 0 and 1, the data 

is fitted to a distribution that ensures the outputted value always meets this bounding 

criteria. To do this, the logistic distribution is apphed as can be seen below (4.1).

pfio+Pix
Y( x )  = ------- 3- - ^  (4.1) ̂ '  1 - 1-  e0o+0ix  ' '

Here Y{ x )  is the conditional mean for a particular value of x  while /3q and /?i are the 

model parameters. The distribution produces the conditional mean, a value between 0 

and 1, for any given inputted value of x.  Importantly, for binary problems the conditional 

mean is in fact the probability of class 1 given x.

At first glance this model looks quite intimidating and seems to offer no hope of 

offering an insight into the relationship between x  and our class variable. However, the 

logistic distribution is chosen because it can be easily transformed into another form which 

has many of the desirable properties of a linear regression model. By applying the logit 

transform, equation 4.2, we end up with a simple and interpretable model, the logit (4.3).

g{x)  =  Po +  Pi x  (4.3)

The parameters of the logit model can easily be converted into odds ratios. The odds 

ratio of an event is the odds of that event occurring over the odds of it not happening. 

For instance, if someone were to state the odds ratio of smokers to non-smokers getting  

cancer is 2, then this would mean smokers are twice as likely to develop cancer as non- 

smokers. Alternatively, if we looked at the relationship the other way round, non-smokers 

to smokers, we would get a odds ratio of 0.5. This means that non-smokers are half 

as likely to get cancer. In general an odds ratio greater then one for possibility A over
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possibility B means A makes the event more likely than the alternative while and odds 

ratio of less then one means it makes it less likely. The logistic regression model makes the 

calculation of odds ratios quite easy and this is extremely useful and informative. It is this 

simple relationship between the model coefficients and the odds ratio and their natural 

interpretation tha t has made logistic regression such a popular tool. We will first discuss 

in a very general sense how this is done as it will be of use in Section 4.1.4 and then focus 

on a particular example that highlights why logistic regression has proved so popular.

In order to extract the odds ratio, two steps are taken. First the logit difference is 

found. Imagine we are interested in the odds ratio of two different events, x = c and 

X = d. the logit difference can be calculated as in equation 4.4. The logit difference, Id, 

is simply the difference in the logit function for the two values of x  we are interested in. 

Once this value has been obtained it can then be converted into odds ratio, see equation 

4.5.

LogitD if  ference{x = c, x — d) = g(c) — g{d) = Id (4.4)

OddsRatio{x — c,x — d) — (4-5)

The trick with the logistic regression model is that in many cases it isn’t  necessary to

calculate the logit difference. If the model variables have been properly coded then the

desired information can usually be got by simply looking at the model coefficients. As an 

example, consider a hypothetical situation where we have developed a model that relates 

smoking to the development of cancer. Our hypothetical model might look something like 

that shown in equation 4.6.

g{Smoker) = 0.3 +  0.69Smoker (4-6)

If we code our smoking variable as being equal to 1 if someone smokes and 0 if they 

don’t then the calculation of the logit difference is simply equal to the Smoker  coefficient 

(4.7).
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g{Smoker — I) — g{Smoker = 0) = 0.3 +  0.69(1) — (0.3 +  0.69(0)) (4.7)

=  0.69 

OddsRatio{Smoker) —

Odds Rations moker) = 2

(4.8)

As can be seen above in 4.6 we need not have bothered calculating the logit difference 

and instead just used the model coefficient. This is also true for continuous and multi­

value nominal variables if they are coded correctly (Chapter 4, Hosmer and Lemeshow 

(2000)). Once we have the odds ratio the relationship between input variable and the 

class variable is clear. We have focused most of our discussion on examples with only a 

single input variable for simplicity sake but the above observations are also true in multi- 

variable problems. In the next section we discus how information derived from the logistic 

regression model can be used to provide convincing explanations.

4.1.2 Creating a Local Case-base

A very important element of the approach that we have taken is the generation of a local 

case-base. A key characteristic of the local case-base tha t we generate is tha t we want to 

ensure that it contains cases from both sides of the decision boundary. We use a simple 

iterative algorithm to do this:

1. We begin with an ordered list of the cases in the case-base based on their similarity 

to the Query Case and an empty local case-base. The similarities of each case are 

calculated using the k-NN algorithm.

2. We then add copies of cases to the local case-base iteratively until we have at least 

Q cases of each class type and the similarity of the Nth+1 case and the Nth case 

of the ordered list are not equal. The last clause of our stopping condition ensures 

tha t if there are ties in similarities between cases that all the cases are included.

To make this process clearer consider Figure 4.2. On the left hand side we have an 

ordered list of cases and on the right an empty local case-base. The different class values
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Ordered List of Cases Local Case-base

Case E Empty

Case C

Case J

Case K

Case X

Case P

Case R

The Local Case-base builder 
begins with a list of the 
cases In the case-base 
ordered based on their 
similarity to the Query Case 
and a empty local case-base. 
It then filis the Local Case- 
base Iteratively.

F igure 4.2: Building a local Case-base

of each case are rei)resented by their different colour schemes, blue strips for one class and 

red for the other. We then s ta rt to  add cases iteratively as can be seen in Figure 4.3.

In this exaniple we have set the param eter Q to  b(; two. Eventually we end up w ith the; 

situation in Figure 4.4. Here we can see th a t our local case-base has been filled. In this 

particular case we ended up w ith 3 cases from eac;h class but there are differe^nt reasons 

for the inclusion of extra case of each class. In the case of the blue class there is an extra 

case included because Case K was reached before two cases of the  red class were found. 

The extra red case, P, was included because it actually had the same sim ilarity score as 

case X. In this situation we have no way of distinguishing between each case and so they 

are both  included. Finally Case R  isn’t  included since it has a lower sim ilarity score and 

the (luota for each class type has been met.

This approach ensures th a t we have cases from both  sides of the decision boundary. 

As an example of how the local case-base might look in the feature space consider Figures 

4.5.a and 4.5.b. In Figure 4.5.a we can see the decision boundary and how the cases are 

distributed around it. The three nearest neighbours used to  make the original recommen­

dation are surrounded by a do tted  circle. We wish to  expand around these cases so th a t 

we have a case-base with a good representation of the deciding factors in class values. To 

do this we use the  iterative algorithm  described earlier and the resulting local case-base
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Ordered List of Cases Local Case-base

Case E

Case C

Case J

Case K

Ca»eX

Case P 

C«»eR

Case E

Until: no. of class 
A and B cases 
equals 2 and the 
similarity score of 
the nth+1 case the 
nth case are not 
equal

Case C

F ig u re  4.3: The local Cas(;-base is filled  ite ra tive ly

Ordered List of Cases Local Case-base

Case E Case E

Case C Case C

Similarity Score 
Case X; 0.5 

Similarity Score 
Case P: 0.5

Case J

Case K Case K

Case X

Case P Case P

CaseR
Similarity Score 

Case R: 0.4

F ig u re  4.4: The fina l Local Case-base
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Classification SetQC QC Local Case-base

©

a. The Nearest Neighbours b. The Local Case-base

F ig u re  4.5: The distribution of cases and the  local case-base

can be seen in Figure 4.5.1). This algorithm  re(iuires th a t one param eter, Q, is set. In 

Section 4.1.5 we will discuss how the best value for Q can be chosen.

4.1 .3  F inding a-Fortiori C ases

In selecting a case to present to the user as an explanation we would like to  form as 

strong an argum ent as j)ossible. In the framework we have developed this is done by 

selecting cases th a t form a fortiori argum ents. This means finding cases th a t are more 

marginal, th a t lie nearer the decision boundary. Previously th is has been done by designing 

special sim ilarity measures th a t encode dom ain knowledge about the relationship between 

feature-values and class-values (Doyle et al. 2004). Using the local Logistic Regression 

model we can generate a fortiori argum ents dynamically and w ithout any prior dom ain 

knowledge. As discussed in Section 4.1.1 Logistic Regression models allow us to  generate 

a probability for a given set of inputs, a case, being a certain  class. In the Explanation 

Case retrieval process we can then use this to  find an explanation case th a t is nearer the 

decision boundary and so a more convincing argum ent. We consider each of the cases in 

our localised case-base as a candidate case for inclusion in the explanation. By passing 

each of our candidate explanation cases through our local logistic model using Equation 

4.1 we can generate a probability for each of being a particular class. A case th a t is nearer 

the decision boundary and of the same class as our GBR system has predicted will have a 

more marginal probability and so this should be the case we select. However, finding the 

most marginal case is not always the best policy if the selected case is so different to  the
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Query Case tha t it seems irrelevant. This was noted by Doyle, Cunningham, Bridge and 

Rahman (2004) and they adjusted the explanation similarity measures appropriately. In 

our case we can ensure tha t the selected case is reasonably similar to the Query Case as 

it selected from the Local Case-base.

T ab le 4.1: The Query Case and the Candidate Explanation Cases

Features Query Nearest Nearest Nearest
Case Neighbour Neighbour Neighbour

1 2 3
Weight 88 82 79 76
Duration 120 120 120 120
Gender Male Male Male Male
Meal Full Full Full Full
Units 5.2 5.0 7.2 4.6
BAC Under Under Under Under
Probability 0.98 0.97 0.89 0.96

To make this process a little clearer we will discuss it in relation to an example which 

again is taken from the BAC domain. In Table 4.1 we can see a Query Case, its pre­

dicted classification and three candidate explanation cases which are in fact the Nearest 

Neighbours used to classify it. In order to select a case to use as an Explanation Case we 

first run each of the cases (including the Query Case) through our local logistic regression 

model. This gives us the set of probabilities that can also be seen in Table 4.1 which were 

calculated using Equation 4.1. The logistic regression model is built on the entire local 

case-base and the parameters of the model are estimated by minimising an error function 

using standard approaches as we describe in Section 5.2.3. We can see tha t Nearest Neigh­

bour 2 has the lowest probability and so is the case nearest the decision boundary. We 

then select Nearest Neighbour 2 as our Explanation Case as can be seen in 4.2. Although 

the case that we have selected forms a better argument than if we had selected the nearest 

neighbour it does contain feature-value differences tha t may make it seem quite different 

and irrelevant to the present Query Case. The case we have selected does however form a 

better argument since: ’’although the Explanation Case had consumed more units of alco­

hol and weighed less, they were under the limit so it seems reasonable that our Query Case 

should be too”. However such an argument is made in a implicit fashion and is dependent 

on the user having the same domain knowledge.

We can make this argument more exphcit to the end user by explaining the effects
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T able 4.2: The Query Case and Selected Explanation Case

Features Query
Case

Explanation
Case

Weight 88 79
Duration 120 120
Gender Male Male
Meal Full Full
Units 5.2 7.2
BAC Under Under

of the feature differences between the Query Case and Explanation Case. In the next 

Section we will explain how the influence of the feature differences that exist between the 

Query and Explanation Case can be explained using information extracted from the Local 

Logistic Regression model.

4.1.4 D escribing Feature-Value Differences

As we stated in Chapter 3 the success of a case-based explanation lies in ensuring tha t the 

case presented to the end user seems relevant and the argument posed by the presented 

case is clear. In order to ensure this, we need to explain to the end-user the effect of 

any feature-value differences tha t might exist between the Query and the Explanation 

Case. To do this using only the knowledge that is stored in the case-base we again use the 

Logistic Regression model. One of the great strengths of the Logistic Regression model 

is that it can extract information about the influences of feature-values on the class value 

in terms of odds ratios. Using Equations 4.4 and 4.5 from Section 4.1.1 we can substitute 

each of the feature differences into the equations individually and get an odds ratio for 

each. Using the odds ratio we can then determine the effect of the change. As discussed in 

section 4.1.1 an odds ratio greater than 1 means tha t a feature difference makes an event 

more likely and vice versa. Looking at each feature difference in turn we can then make 

lists of features differences that make the classification more likely and those tha t have 

the opposite effect.

As an example of this process we will extend the example used in Section 4.1.3. As 

can be seen in Figure 4.3 there are feature-value differences in terms of weight of the 

two subjects and in terms of the number of units consumed by each. Using the Logistic 

Regression model we can determine the effects tha t feature-value differences would have
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T ab le  4.3: The Odds Ratios of Associated with each Feature-value Difference

Features Query
Case

Explanation
Case

Odds
Ratio

Weight 88 79 2.3
Duration 120 120 1
Gender Male Male 1
Meal Full Full 1
Units 5.2 7.2 3.1
BAC Under Under

if they were substituted into the Query Case. On the right hand side of Table 4.3 we can 

see the odds ratio produced for each feature by the Logistic Regression model. For the 

features D uration, Gender and Meal the odds ratio is 1 since there are no feature-value 

differences between the two cases for those features. Both Weight and U nits have a odds 

ratio greater than 1 meaning the differences that exists in these features have the effect of 

making the Query Case more likely to be under the limit than the Explanation Ceise. By 

simply looking through each of the odds ratios produced we can quite easily make lists 

of the feature differences that make a classification more likely and those tha t have the 

opposite effect. These lists can then be used with simple text templates to form discursive 

texts describing the effects of feature-value differences to the end user. Examples of the 

texts produced can be seen in Section 4.2.

4.1.5 Providing Confidence M easures

Another key facet of the framework tha t we have developed is that it can produce confi­

dence measures so that users can be alerted to when there is a suspicion that the system 

is making a mistake. The Logistic Regression model can produce a probability of a case 

belonging to a particular class and this can be used to determine the confidence we should 

have in a recommendation. As shown in Table 4.1 we can pass the Query Case through 

the model and this gives us a probability of the recommendation being correct. If the 

probability is below a certain threshold we can alert the user tha t we have low confidence 

in that recommendation. However this then requires us to define a threshold of confidence 

and this is not a straightforward issue.

A key issue in providing any confidence measure is ensuring tha t we don’t  give false 

confidence in the system’s recommendations. When the system alerts the user that it is
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confident in a recommendation it is important that the recommendation is in fact correct. 

If the system is falsely confident the user will quickly lose faith in the system and the 

whole purpose of providing confidence measures is undermined. Conversely bringing too 

many correct recommendations into question is damaging also. Constantly supplying 

users with recommendations attached with a cavet expressing uncertainty about that 

recommendation is also bound to damage their confidence in the system. There often is 

a trade-off between these two conflicting desires and a threshold level where there is a 

suitable balance must be chosen.

We can characterize our wish for accurate confidence as being our Confident Correct 

Rate {CCR) as defined in Equation 4.9. Likewise we can encapsulate our need to minimise 

pessimism in the Not Confident Correct Rate {NCCR)  as defined in Equation 4.10.

CCR

N C C R  =

CC
CC + C l  

NCC

(4.9)

(4.10)
N CC  + N C I

Where CC is the number of times the measure is confident and the system is correct 

and C l  is the number of times measure is confident and the system is incorrect. Likewise 

N C C  is the number of times the measure is not confident and the system is correct and 

N C I  is the number of times the system is not confident and is right to be so. To make 

the definition of these parameters a little clearer we have displayed them in the form of 

truth table in Table 4.4.

Table 4.4; A Truth Table Defining the
Incorrect C orrect

Confident 
N ot Confident

C l
N C I

CC
NCC

Iquation Parameters

Clearly we would like to maximise the Confident Correct Rate while minimising the Not 

Confident Correct Rate. In reality this isn’t ever possible as to do so would in fact mean 

discovering an improved classifier. If it is possible to accurately predict when the system 

is making a mistake while also ensuring that we are not attaching uncertainty to correct 

recommendations then when confidence is low we could just reverse our recommendation. 

Improvements in one criterion will come at the cost of the other. One way to set a
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threshold is to choose the level tha t balances the trade-off. This can be found by finding 

the threshold that minimises Equation 4.11. However, the issue isn’t often that simple and 

in some domains there may be more of a cost associated with one criterion over another.

NĈ Ĉ  R
Trade-Off = (4.11)

In the spam domain the cost of incorrectly classifying a mail as spam is extremely 

high. This has lead researchers to investigate the use of confidence measures as a means 

of sorting spam into definite spam and probable spam categories (Delaney et al. 2005a). 

The probable spam folder contains mail which is classified as spam but for which there is 

low confidence. The user can then occasionally check the probable folder to see if any mail 

has been misclassified. Ideally in such a system the number of mails in the definite spam 

folder is maximised while the number in the probable folder is minimised so as to reduce 

the load on the user. However there would be a heavy penalty to pay for misclassifying 

a mail as definite spam and such a mistake could not be tolerated. Reducing the number 

of misclassified definite spam is equivalent to maximising the Confident Correct Rate and 

this can only be done at the cost of the Not Confident Correct Rate. However, in the spam 

domain this balance is swung in favour of the minimising the Confident Correct Rate as 

such mistakes can prove far more costly than on the other criterion.

A further complication is tha t confidence assessment mechanisms often involve para­

meters which must be set. In our own confidence system we must chose the number of each 

class value we would like to have included in our local case-base. Choosing the parameter 

tha t maximises performance while also choosing the threshold tha t satisfies the criteria of 

the domain for the CC and NCC rates can be a confusing process. Here, the threshold 

refers to the level of confidence tha t must exist before a recommendation is labelled as 

being confident. For instance, a level of 90% might be chosen as the threshold. Looking 

a t table 4.1 the probabilities attached to each of the cases mean tha t if they were to be 

recommendations Nearest Neighbour 1 and 3 would be labelled confident while Nearest 

Neighbour 2 would be labelled as Not Confident.

The characteristics of the factors involved in this problem have led us to investigate 

a concept similar to Receiver Operating Characteristics (ROC) analysis as means of ex­

amining the factors involved (Flach et al. 2003). ROC Analysis originated from signal 

detection theory, as a model of how well a receiver is able to detect a signal in the pres­

ence of noise. Its key feature is the distinction between hit rate (or True Positive Rate)
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and false alarm rate (or False Positive rate) as two separate performance measures. It has 

been introduced to machine learning relatively recently, in response to classification tasks 

with varying cla«s distributions or misclassification costs. A large part of ROC analysis 

is the plotting of ROC curves. ROC curves plot the True Positive Rate against the False 

Positive Rate. Each point on a ROC curve represents a different classifier. The character­

istics of the performance of a classiher can be plotted as the parameters of tha t classifier 

are changed. ROC curves serve as an excellent tool for visualising the trade-offs involved 

and assessing the true performance of different classihers over a range of criteria.

The measures tha t we have defined, CCR and NCCR, are not dissimilar to the True 

Positive Rate and the False Negtive Rate and so it was natural to extend the idea of ROC 

curves to  the confidence domain (Nugent, Cunningham and Doyle 2005). To investigate 

the various parameter options for a particular domain we can plot Characteristic Confi­

dence Curves which are simply the CCR against NCCR,. An example of one can be seen 

in Figure 4.6. Here we can see three different curves which represent different choices of 

K, the number of each class to be included in the local case-base. The different points 

along each curve represent different choices of tfireshold value. It is quite easy using the 

characteristic curves to find the scheme tha t best suits the requirements of the domain and 

investigate the various trade-offs. In the absence of any preference for one criterion over
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another the point tha t hes nciarest the top left hand corner maximises the trade-off and 

is the best sohition. However, which criterion to favour may not always be a straightfor­

ward issue and the Characteristic Curv(;s provide a neat way of investigating the oj)tions 

available. It is also possible to eliminate certain schemes as being definitely worse than 

another just as in ROC curves. If the curve of one scheme lies entirely inside another then 

it is definitely worse than that scheme as under no circumstances does it out perform the 

other.

In the case of Figure 4.6 the schemes where K equals 5 and 9 are definitely better 

than the K ec}ual 2 scheme imder all possible criteria. The K equal 5 and 9 schemes are 

better than eac^h other under different possible criteria which are reflected in the maimer 

in which their ctirves weave over one another. In the absence of any domain requirements 

the point tha t lies closet the top left corner lies on the K equal 9 curve so this parameter 

along with threshold value represented by tha t point should be the options tha t we chose.

Another example can be seen in Figure 4.7. In this case the case-base is the e-clinic. 

Here the scheme with K equals 9 is clearly superior to the other two options.

Using the Logistics Regression model’s probabihstic qualities and the methodology 

we have described it is possible to provide users with an insight into the performance of 

confidence measures over a range of thr(shold values and parameters settings. Using this
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inform ation the user can then decide on settings th a t best meet their requirem ents. This 

can be useful when it isn’t known clearly in advance what the costs of different trade-offs 

are. However, in some applications, such as spam filtering, these costs are well defined. In 

such cases a more robust system  of deciding threshold and param eter settings chould be 

used such as Decision Theory (Lewis 1995, A m ati and Crestani 1999).

In the next Section we will dem onstrate how we have combined confidence measures 

we generate along with discursive texts and our selected Explanation Case to  form useful 

convincing explanations.

4.2 Explanations Produced

We have seen how the explanation framework we have developed can produced a lot of 

inform ation th a t can then be presented to  the user. As we highlighted in Section 3.4.1 

generating effective explanations is a user dependent task. Using the Logistic Regression 

model it is possible to generate a lot of information about the exact effects of feature 

differences. However, in the explanations th a t we produce we are prim arily concerned with 

dem onstrating how the framework can be used to produce simple and effective explanations 

th a t can be used across many domains. An example of the explanation produced by the 

framework can be seen in Table 4.5. This is again an example taken from the BAG domain. 

The Query and the Explanation Cases are presented along with a discursive tex t and a 

measure of confidence in the system ’s recom mendation. In this case the confidence in the 

explanation is high; however this will not always be the case. W hen there is doubt in 

the system ’s recom mendation we can use the framework to  help provide the user with 

ex tra  information th a t might help them  in determ ining the correct classification. In the 

next Section we will describe the simple measures we take to  help assist the user in low 

confidence situations.

4,2.1 Low Confidence

W hen confidence is low in a recom mendation we would hke to  assist the end-user as 

much as possible in deterem ining w hat the correct classification is. By presenting the 

user w ith similar cases th a t lie either side of the decision boundary we can help them  

make a more informed decision. This kind of approach has previously been introduced by 

Leake et al. (2001) who used bracketing cases to help delineate the limits of the problem
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T able 4.5: Sample Explanation

Q uery E x p la n a tio n
C eisb G ase

W eigh t (kgs) 57.0 79.0
D u ra tio n  (m ins) 240.0 240.0
G en d er Male Male
M eal Full Full
A m o u n t (U n its) 12.6 9.6
BA G Over

The prediction for the individual in the Quey Case is: O ver th e  lim it

The confidence tha t this prediction is correct is: h igh

D iscursive  T ext:

In support of this prediction we have the person presented by the Explanation
Case who was also Over the limit. Weight being lighter and Amount being bigger
have the effect of making the Query individual more likely to be Over the limit
than the Explanation individual.

being considered. When confidence is low we can adopt a similar approach: presenting 

the user with cases from either side of the decision boundary and using discursive texts 

to explain how the feature values affected the different classifications. Again using the 

logistic regression model in the same way that it was used to find a fortiori arguments, 

it is possible to find the nearest case on the opposite side of the decision boundary. We 

can see an example of the kind of recommendation tha t we can produce in Table 4.6. 

Here we can see the Query Case fianked either side by the Explanation Case and the 

Counter Example. By looking at the feature-value differences across the case and text 

accompanying them the user may be able to determine what the correct recommendation 

is.

4.3 Conclusion

We have presented an explanation framework tha t provides interpretable CBR explana­

tions tha t does not require specialist domain knowledge and maintains CBR’s advantages 

in terms of lazy learning approach and its applicability to weak-theory domains. The ex­

planations produced by the framework contain three im portant elements which all address
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T able 4.6: Sample Explanation with Counter Example

E x p lan a tio n  Q uery  C o u n te r
Ceise C ase E xam ple

W eigh t (kgs) 52.0 53.0 73.0
D u ra tio n  (m ins) 270.0 330.0 210.0
G en d er Male Female Male
M eal Lunch Lunch Lunch
A m o u n t (U n its) 9.1 10.4 9.0
BA C Over Under

The prediction for the individual in the Query Case is: O ver th e  lim it 

The confidence tha t this prediction is correct is: low

D iscursive  T ext:

In support of this prediction we have the person represented by the Explanation 
Case who was also Over the limit. Gender being Female and Amount being bigger 
have the effect of making the Query individual more likely to be Over the hmit 
than the Explanation individual. However, Weight being heavier and D uration 
being longer have the effect of making the Query individual less likely to be Over 
the limit than the Explanation individual.

As there is low confidence in the prediction we also have a counter example of 
someone who is similar but Under the limit for you to inspect.

D uration  being longer has the effect of making the Query individual more likely 
to be Under the limit than the counter example. However, Weight being lighter, 
Gender being Female and Amount being bigger have the effect of making the 
Query individual less likely to be Under the limit than the counter example.

short-comings that existed in the traditional CBR-light approach to explanations:

• It selects cases tha t form a fortiori arguments in an automated way and without 

domain knowledge,

• It provides discursive texts describing the effects of differences in feature-values be­

tween the Query Case and the Explanation Case,

• It provides a measure of confidence in the system’s recommendation to alert the user 

as to when there is doubt about a system decision.

In the next Section we will describe how the framework was implemented.
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Chapter 5

Im plem entation

In this Chapter we describe how the Explanation Framework was implemented and the 

technologies used. The Explanation Framework was developed as part of the Knowledge 

Discovery Project^ which was funded by Science Foundation Ireland The Knowledge 

Discovery Project encompasses projects on many different aspects of machine learning. 

It quickly became apparent that the development of a unified workbench which defined 

some of the basic components of machine learning would greatly improve the usability 

of techniques and code developed as part of project. This led the author to initiate the 

developement of Fionn — a workbench for the development of machine learning tools with 

a special emphasis on CBR systems (Doyle et al. 2005). The Explanation Framework was 

developed using Fionn and integrated into it so tha t it provided a generic CBR explanation 

component.

Case-bases need to be described in and stored in some useful form. Fionn is built 

upon a CBML base which describes how case-bases should be defined using XML. In the 

following sections we will describe CBML and the Fionn workbench itself. We will then 

describe the various components we developed and integrated into Fionn thus providing 

it with a generic Case-based Explanation Component.

5.1 CBML

Case-base reasoning is dependent on the retrieval and reuse of cases so it is im portant that 

the cases are represented and stored in a way tha t supports the manipulation of cases and

^The Knowledge Discovery Project h ttps://w w w .cs.tcd .ie/reseaxch ._grou ps/m lg/kd p/
^Science Foundation Ireland h ttp : //w w w .s f i. ie
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their underlying stucture. One prom inent Case Representation form at was created by the 

IN RECA  group in the form of CASUEL (Manago et al. 1994). CAUSEL was based on 

ASCII files and used Extended Backus Naur Form (EBNF) representation form at (W irth 

1977). The current standard  for marking up structured , knowledge-rich da ta  is XML, 

the  extensible M ark-up Language. XML is a description language th a t supports m eta­

d a ta  descriptions for particular domains and these m eta-descriptions allow appHcations 

to  in terpret da ta  m arked-up according to this form at. A representation language based 

on XML has many advantages: interoperability, ease of reuse, as well as the application- 

independent exchange of d a ta  over existing network protocols. Most im portantly  it allows 

the  developer access to the entire XML tool-set. This tool-set includes fast, reliable doc­

um ent parsers, e.g. SAX and DOM, validating docum ents e.g. DTDS and XML-Schema, 

and docum ent transform ers, e.g. XSLT. The earliest work in the CBR com m unity on an 

XM L-based case representation language was the introduction of CBML by Hayes et al. 

(1998). They called this language CBML (CBM Lvl).

CBML was further developed and the current version is CBMLvS^ (Coyle et al. 2003, 

2004). The XML community recognised the lim itations of the early DTD model and 

developed an alternative which allows for struc tu ra l and type validation called XML- 

Schema. The m aturity  of XML-Schema led to the redevelopment of CBML and now the 

description of CBML is stored in an XML-Schema docum ent — the C B M L  S chem a. 

Only docum ents th a t follow this schema exactly can be considered valid CBML.

The use of CBML ensures th a t case-bases are well defined and docum entated. CBML 

provided the solid base on which Fionn was developed.

5.2 Fionn  —  The Machine Learning Framework

Fionn was developed on the 1.4 Java platform^. The purpose of Fionn was to  provide ab­

strac t descriptions of much of the common functionality encountered in machine-learning 

in term s of interfaces and basic objects. By providing this basic structu re  Fionn provides 

the means by which code can be developed in a reusable way. The Fionn Framework 

contains three im portant elements th a t form the bedrock of the framework;

c a se  o b je c t  The simplist and m ost fundam ental element of any case-based system is a

®The CBML web page is located at h ttp ://w w w .cs .tcd .ie /resea rch _ g ro u p s/m lg /C B M L /
^The Java homepage h t t p : / / ja v a .s u n .c o m /
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Application

Personal Travel 
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M edical D ecision 
Support

F ig u re  5.1: The Fionn W orkbench

case.

c a se b a se  o b je c t  The case-base object represents a hst of cases and allows them  to be 

m anipulated in a defined way. It is is populated from the CBML XML description 

of a case-base. All other components w ithin the Fionn framework are designed to 

interface with this defined abstraction of a case-base.

c la ss if ie r  in te r fa c e  This is an abstract description of the functionality of a machine 

learning classifier. It defines in an abstract non-alogorithm  specific m anner how a 

classifier should be built and how it can be called on to  perform classficiations. For 

instance, to  build any classifier the b u i ld  m ethod m ust be called and a ca seb ase  

object passed in. Each classifier th a t is added to  the classifier suite w ithin Fionn 

m ust meet the criteria defined by the classifier interface. O ther componets w ithin 

the Fionn Framework can then be designed to  operate on c l a s s i f i e r  objects and 

this means th a t components can be designed in a non-specific m anner which allows 

greater fiexibility and usability. For instance Fionn contains feature selection and 

evaluation components which can then  be used on any classifier types. The suite 

of classifiers developed for Fionn include k-NN, Support Vector Machines, Neural 

Nets, Logistic Regression, Naive Bayes and Ensemble based approaches. Fionn 

also contains regression tools such Linear Regression and specially adapted Neural 

Network and k-NN models.

Using these basic compoents, higher order functionahty has been provided such as 

an Evaluation Suite, Feature Selection and Weighting, and Noise Reduction components.

CBR Explanations

Feature Selection & 
Feature W eighting

Noise Reduction

Fionn Core

CBM L

Evaluation Fram ew ork

C lassifier Suite
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There are four appUcations which have benn in developed using the Fionn Framework:

T h e  P e rs o n a l  T ra v e l A s s is ta n t  An application developed to  assist users in finding on­

line flights th a t best meet their individual travel requirem ents and perferences.

S p a m  F i l te r in g  A p p lic a t io n  Delany and Cunningham  are working on a spam  filtering 

application called ECUE (E-mail Classification Using Examples) th a t dynamically 

adapts to  the changing nature  of spam  e-mails (Cunningham , Nowlan, Delany and 

Haahr 2003, Delany et al. 2005). Because of the volume of spam e-mail and to  

its evolving natu re  their application uses several case-base m aintenance techniques 

th a t remove noisy and redundant cases (Delany and Cunningham  2004a). Their 

application uses many features of the Fionn framework including the k-NN classifiers 

and evaluation framework.

M e d ic a l D e c is io n  S u p p o r t  Doyle and Cunningham  have developed a decision support 

application th a t was used in the medical domain. This application was designed to 

support a doctor in m aking the decision to adm it or discharge a child w ith bronchi­

olitis to  hospital for observation. The system makes a prediction and backs it up 

w ith a compelling explanation based on a fortiori argum ents (Doyle et al. 2004). Us­

ing the Fionn framework, they were able to  concentrate on developing explanations 

while reusing existing feature selection, noise reduction and evaluation components.

A  G e n e r ic  C a s e -b a s e d  E x p la n a t io n  S y s te m  As described in this thesis.

P a rt of the classifier suite in the Fionn core is an efficient im plem entation of a k-NN 

retrieval algorithm  and a Logistic Regression classifier. These two Fionn components 

provide key aspects of the functionality of the Explanation Framework. In the next two 

Sections we will describe each of these components in turn .

5.2.1 Case Retrieval N ets

The standard  k-NN algorithm  calculates sim ilarity on a case-by-case basis. This approach 

is quite inefficient in domains where there is feature-value redundancy an d /o r missing 

features in cases, e.g. in the spam filtering dom ain (Cunningham , Nowlan, Delany and 

H aahr 2003, Delany and Cunningham  2004a). A Case Retrieval Net (CRN) is a structured 

net constructed from the case base to  retrieve similar cases to a presented problem-case
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(Lenz et al. 1998). CRNs are also able to deal with ambiguous terms, can handle partial 

cases and are reasonably scalable. They are made up of a number of components;

C ase  N odes These represent the cases in the case-base.

In fo rm a tio n  E n titie s  (lE s) These represent feature-value pairs within cases.

R elevance  A rcs These link case nodes with the lEs tha t represent them. They have 

weights relating to the level of importance between the connected IE and the case 

(i.e. the weight of that IE’s feature).

S im ila rity  A rcs These interconnect lEs that refer to the same features. These have 

weights relating to the similarity between the values of connected lEs. The weight 

of a similarity arc is analogous to the local similarity between the feature-values of 

the two lEs they connect.

The idea behind the CRN architecture is tha t if a target case is connected to the net 

via a set of relevance arcs, and activated, this activation will spread across the net. As 

activation spreads along arcs in the net, it is attenuated by their weights. Each of the 

other case nodes will accumulate an activation score relating to its similarity to the target 

case. The case nodes with the highest activation represent the most similar cases to the 

target case.

Figure 5.2 illustrates the structure of a case retrieval net using data from the travel 

case base (Lenz 1993). In this figure each case node is associated with a set of information 

entities using relevance arcs. We can see tha t many offers shares information entities. 

For example, Ojfer 20219 and Offer 500122 have a number of features in common and 

this is reflected arcs linking each of these offers to information entities such as Crete, 

Matala and swimming. The advantages of CRNs are that local similarity calculations are 

only performed once and tha t missing feature values are ignored. By caching the local 

similarities between individual cases and reducing feature-value redundancies speed ups 

in operation are achieved.

5.2.2 Fionn''s k -N N  Im plem entation

Fionn's k-NN  implementation uses a combination of case-by-case similarity calculations 

and CRN optimisations. There is a significant cost associated with initialising a CRN. As 

such there is a trade-off between time spent initialising the net and faster retrieval times.
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Offer
20024Price:

1099,-
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SliemaRegion;

Malta

Distance to beach: 
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Type:
Swimming

Piacc:
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20219Price:
980,-
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Crete

Distance to beach: 
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Offer
500122Price:

850,-

Type:
W inter Sports

Place:
Kufstein

Offer
23456

Region:
Alps

Price:
798,-

[PlaceT^J

Case-NodesPart of a Case Retrieval N et:
(Travel Agency Domain)

lE-Nodes

 O  Relevance - Arcs

► Similarity - Arcs

F ig u re  5.2: The case retrieval net structure (from Lenz and Burkhard 1996)

The CRN-derived speed-ups are counter-productive if there is little or no redundancy in 

feature values in the case-base. Therefore the speed-ups should not be used unless there 

are features in the case-base which will benefit from the net structure.

Fionn needs to determine which features will benefit from inclusion in the CRN struc­

ture. Features tha t are not included in the CRN structure will have their local similarities 

calculated on a case-by-case basis. Our k-NN  implementation has a net-initiator function 

which assesses the features in a domain in order to determine which ones will benefit 

from inclusion. It reads the case structure document and automatically leaves out double 

and s t r in g  feature types as they are unlikely to have much feature-value redundancy, 

symbol and boolean types will most likely benefit and so they are flagged for inclusion. 

The in te g e r  feature type may also be flagged depending on the estimated feature-value
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redundancy — if the range of an in te g e r  feature is less than half the size of the case-base 

it is flagged for inclusion.

Fionn then loads the cases one-by-one into the k-NN structure and adds lEs to the 

net structure as needed. On presentation of a target case, activation is spread to the 

case nodes through the CRN. The relevance and similarity arcs in the CRN structure 

are kept in place between retrievals, therefore subsequent retrievals should be quicker. 

This is because local similarities are effectively cached in the similarity arcs. Next, Fionn 

calculates the similarity contributions of the non-included features. It goes through these 

features and calculates the local similarities directly between the target case and each 

case in the case-memory, adding the similarity values to tha t case’s global similarity. On 

subsequent retrievals, the local similarity values of non-included features will have to be 

recalculated.

5.2.3 F io n n ’s Logistic Regression Im plem entation

Fionn contains a Logistic Regression classifier tha t is in keping with its c l a s s i f i e r  inter­

face. A Logistic regression model is defined by the set of parameters tha t form the logit 

function (Equation 4.1.1). Building a logistic regression model involves fitting these para­

meters to the data and involves a directed search through the parameter space. Fionn's 

implementation of the logistic regression model does this using a globally convergent New­

ton’s Method adapted from numerical recipes in C (le Cessie and van Houwelingen 1992). 

This alogorithm had originally been ported into Java for use in Weka’s machine learn­

ing framework  ̂ but we then adapted and modified the Java version of the algorithm 

exstensively so tha t it fitted into the Fionn Framework.

Once the model has been built the logsitic regression system is set to act as classifier. 

As a classifier the logistic regression model will just return a simple class label, howevever 

we are more interested in the probabilistic qualities of the model. In the next Section we 

outline how the Fionn Framework and the two classifiers we have described are used in 

the Explanation Framework.

®The Weka homepage h ttp ://w w w .cs.w aik ato .ac.nz/m l/w ek a/
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5.3 The Explanation Framework in Fionn

We will now briefly outline how the functionality of the Explanation Framework we de­

scribed in the previous chapter is implemented using Fionn. The code which performs the 

entire explanation process is the ex p lan a tio n B u ild e r object. As can be seen in Figure 

5.3 this object contains within it the case-base used to generate explanations and utilises 

a number of other objects which encapsulate the functionality of various aspects of the 

Framework that we have described. We will now discuss each of these objects and the 

funcationahty tha t they provide in turn;

explanationBuilder

casebase

casebaseBuilder

logisticExplainer

textGenerator

F igure 5.3: The explaoiationB uilder object

casebaseB uilder: this carries out the function of producing a local case-base as defined 

in Section 4.1.2. It is built using the case-base tha t is to be used to generate ex­

planations and an in te g e r  defining the number of cases of each class tha t must be 

included in each local case-base. To generate a local case-base the buildC asebase 

method is called and a case representing the Query Case is passed in. F ionn’s im­

plementation of the k-NN  algorithm is then used to order the list of cases stored in 

the caseb aseB u ild er’s case-base based on similarity to the Query Point passed in.
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A new empty casebase is created and is filled with references to cases based on 

the local case-base algorithm we have defined (Section 4.1.2). Once filled, the local 

case-base tha t has been created is then returned.

lo g is t ic E x p la in e r :  provides the means through which explanation cases can be selected 

and feature differences between cases described. The lo g is t ic E x p la in e r  object is 

intended to be built on local case-bases produced by the casebaseB uilder. The 

lo g s it ic E x p la in e r  object extends Fionn's logistic regression classifier and so con­

tains all of its functionality but adds two im portant methods;

getE xplanationC ases: this method takes in a s t r in g  indicating the class of the 

Query Case for which a explanation case is being selected. The casebase is 

then searched by the lo g is t ic E x p la in e r  for an Explanation Case. It does 

this using the probabilistic qualties of the underlying logistic regression model 

as as described in Section 4.1.3. The best case is selected and returned.

getOddsRatio: This method provides the means through which the effects of dif­

ferences can be quantified. As described in Section 4.1.4, coefficients of logistic 

regression model can be used to calculate the odds ratio of different feature- 

values. The getE xplanationC ases method takes in two cases, the Query Case 

and the Explanation Case, and returns an array of double objects contain­

ing the odds ratio for each feature difference between the Explanation Case 

and Query Case. The method uses the underlying coefficients representing the 

Logistic Regression Model and Equations 4.4 and 4.5 from Section 4.1.1 to 

calculate the effects if a value from the Query Case was substituted into the 

Explanation Case. In this way the odds ratio is calculated from each feature 

and returned in the array of doubles.

The extra functionality contained within the lo g is t ic E x p la in e r  object allows the 

underlying logistic regression model to be used in the explanation process in an easy 

accessible way.

tex tG en era to r: handles the generation of discursive texts given the information extracted 

from logistic regression model. Importantly, it itself also takes in two objects in 

its constructor; a fe a tu re D iff  erenceMapper object and a featureM apper object. 

These objects are used to generate the correct term  to describe the differences in
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feat lire-values and to  generate more user friendly names for the feature names. By 

default the f eatureDif f erenceMapper objects ju st retu rns the string values bigger 

or smaller values and the f eatureMapper, the normal feature names. However, these 

objects can be extended. We developed an extend(>d version of th is object for work 

on the BAG case-base so th a t more natu ral and user friendly language relevant to  the 

dom ain can be used in the discursive text. Using these objects, the dialogGenerator 
can generate tex t specific to  certain dom ains or else the defaults can be used.

The textGenerator; conatins one im portan t m ethod, getDiscursiveText. This 

m ethod takes in the Query Case, a list of explanation cases and a reference to  a 

logisticExplainer object. The list of explanation cases either contains one or two 

cases. In cases where the system has low confidence in a prediction a ex tra  case, the 

counter example is also supplied. The logisticExplainer is used to  get the odds 

ratios for each feature difference th a t there may be in the explanation cases. Using 

these a discursive text is generated and returned in the form of a string

e x p la n a tio n : is a sinijjle wrappc'r object which contains the  generated explanation tex t as 

well as the explanation case(s). This is is the object returned by e x p le in a tio n B u ild e r  

each time it is called to  provide an explanation.

©
Query Case

© ,
system prediction casebaseBuilder

textGenerator

local j

/ /

logisticExplainer
y © explanation

V  J \ J

F ig u re  5.4; The flow of execution
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The explanationBuilder uses each of these objects to produce the case-based explana­

tions. The ge tE x p lan a tio n  object is called with a Query Case being passed in and each 

of the objects that we have described is then used to generate the explanation. The flow 

of excecution undertaken by the ex p lan a tio n B u ild e r can be broken down into a number 

of distinct stages as can be seen in Figure 5.4. We will now describe each of these stages;

1. First a case is passed into the underlying prediction system and a classification is 

made. This case and the recommendation assigned to it are then used to seed the 

explanation process.

2. The buildC asebase method of the casebaseB u ilder object is then called with the 

Query Case being passed in and a local case-base is produced.

3. The local case-base is then used to build a lo g is t ic E x p la in e r  object. A method 

called getE xplanationC ases of this object is then used to find the cases to use as the 

basis of a case-based explanation. These cases are then passed to the te x tG en era to r 

along with a reference to the lo g is t ic E x p la in e r  object itself.

4. The te x tG en e ra to r uses its reference to the lo g is t ic E x p la in e r  to find the effects 

of any feature differences that exist between the Query Case and Explanation Case(s) 

using the getO ddsRatio method. It then uses the fe a tu re D iff  erenceMapper and 

f  eatureM apper objects to generate discursive text describing the effects of the dif­

ferences

5. Finally the explanation case(s) are combined with the generated text and encapsu­

lated in a ex p lan a tio n  object.

This process is carried out each time a recommendation is requested. It is important to 

note tha t in this implementation no assumption is made about the underlying classifier for 

which explanations are being provided. The implementation allows for CBR explanations 

to be provided for any of the classifiers in the Fionn suite.

5.4 Sum m ary

We have describe Fionn the machine learning Framework we have developed along with 

how it was used to implement our Explanation Framework. In the next Chapter we 

describe how we evaluated our Explanation Framework
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Chapter 6

Evaluation

The concept of an explanation is intuitively understood by most people, we use it effort­

lessly throughout our everyday lives. However the vast array of ways and contexts in 

which explanations are used means tha t the concept of an explanation is an extremely 

difficult one to concretely define. W hat might be considered a valid and good explanation 

in one context might have no meaning in another. The slippery nature of the concept of an 

explanation of course impacts on the way in which explanations can be evaluated. There 

is no one fixed criterion on which all explanations can be judged. Explanations can only 

really be evaluated in terms of how effectively they meet the objectives that necessitated 

their creation.

However within the machine learning community, explanations are usually used within 

a restricted range of contexts and with clear objectives. As highlighted in Section 3.4.1, 

Sormo et al. defined five goals tha t explanations in CBR might serve:

• Transparency

• Justification

• Relevance

• Conceptualization

• Learning

The primary role that the framework for explanations we have developed serves is 

in justification, we want to reassure the user of the system’s recommendation and instil 

confidence in them in that system. Although, as we have explained in Section 1, CBR
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explanations have great potential to deliver on this issue, presenting the nearest case in 

its rawest form may not be enough. In Chapters 4 and 5 we discussed how we developed 

our approach to providing more convincing explanations. We begin this Chapter with a 

discussion of the merits of our approach for tackling issues in CBR explanations. Following 

this we describe a User Evaluation of our framework designed to establish whether our 

approach does indeed improve user confidence and we discuss our results.

Although the primary objective of our Explanation Framework was to provide expla­

nations tha t improve user confidence, the design of the Framework also has potential in 

terms of providing assessments of confidence and as a recommendation strategy. Using 

the probabilistic qualities of the Local Logistic Regression model it is possible to produce 

a probability of the Query Case belonging to one class or another. In some domains this 

might prove a more powerful and effective recommendation strategy. In Section 6.3 we 

evaluate our Local Logistic Regression model as a recommendation strategy in comparison 

with k-NN  and global logistic models. In Section 6.4 we evaluate the effectiveness of our 

systems ability to provide confidence measures. Finally we end this chapter with some 

concluding remarks in Section 6.5.

6.1 The M erits o f Our Approach

One of the principle shortcomings of the traditional knowledge-light approach to expla­

nations is its dependence on the users ability to appreciate and understand the similarity 

between the query and the explanation cases (Sormo and Cassens 2004, McSherry 2003, 

Nugent and Cunningham 2005). This is a key concern when the goal of the explanation 

is to generate user confidence in the CBR system. We developed an approach to tackling 

this problem which utilises locally built models to extract local information and build con­

vincing explanations. There are a number of advantages to the approach we have taken 

and we will talk about each of these in turn.

6.1.1 A bility to  Deal w ith Com plex or Incom plete D ata

One of the great strengths of Case-based Reasoning is the ability to deal with weak theory 

problems and to learn incrementally. Many weak theory domains are non-linear in nature 

and are best suited to being described on an instance by instance basis by local models. 

Previous attem pts have used global models to provide users with supplemental information
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(McSherry 2003). However, such models may be unsuitable in some complex weak-theory 

domains and may produce unsatisfactory explanations tha t don’t truly reflect the case- 

base (Nugent and Cunningham 2005). Our approach sidesteps this issue by building an 

explanation around the point of interest and so capturing the interactions of the feature- 

values in tha t area of the feature space.

Our approach also supports incremental learning as it applies a lazy approach to build­

ing explanations. Information is only gathered as the explanation is needed and so always 

uses the most up-to-date information to generate its explanations. This approach reflects 

the lazy and incremental learning qualities of CBR which are considered some of the 

methodology’s strengths (Aha 1997). This means that the explanations generated reflect 

more truly the knowledge captured within the case base. However it is worth noting tha t if 

the case-base lacks coverage in certain areas of the feature space then this can be reflected 

in the explanations produced and they may seem counter intuitive. For instance consider 

example 6.1.

In this example the case-base in that area of the feature space doesn’t adequately 

represent the problem. In this area of the case-base the feature d u ra tio n  is heavily 

correlated with u n i t s  and so a larger d u ra tio n  value is seen as evidence in favour of 

being over the limit when the reality is the opposite. In some cases this may alert expert 

users to system failures and deficiencies in the case-base. However, it may well either cause 

confusion or go unnoticed amongst non-expert users.

6.1.2 Little Expert Knowledge Needed:

One of the great strengths of our approach is from the Knowledge Discovery perspective 

(Nugent, Doyle and Cunningham to appear 2005). We are able to extract information 

about the interactions of feature-values on the recommendation task without any prior 

knowledge of the domain. This means tha t our Explanation Framework can easily be 

used in many different domains and without lengthy consultations with experts from 

those areas. Table 6.2 shows an example from the BAC domain. It is clear tha t the 

feature information is in line with our intuitive understanding of the problem. This is all 

achieved without the intervention of domain experts. However our Framework isnt limited 

to purely producing explanations in the BAC domain.

We can quickly generate explanations for different domains without any prior knowl­

edge as can be seen in Table 6.3. This is an example that was built on the UCI Credit-card
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T able 6.1: Incomplete Case Base

Q u ery E x p la n a tio n
C ase C ase

W eigh t (kgs) 88 63
D u ra tio n  (m ins) 90 120

G en d e r Male Male
M eal Full Full

A m o u n t (U n its) 5.2 5.2
BA C Under

The prediction for the individual in the Quey Case is: U n d e r th e  lim it

The confidence tha t this prediction is correct is: h igh

D iscursive  T ex t:

In support of this prediction we have the person presented by the Explanation
Case who was also Under the limit. Weight being heavier and D uration  being
shorter have the effect of making the Query individual more likely to be Under
the hmit than the Explanation individual.

case-base. The problem involves using information about an individual’s status to assess 

whether they should be given a loan or not. In the BAC domain we used a small amount 

of linguistic knowledge to help describe the feature differences in a more natural way. For 

example, instead of describing differences in weight as being larger or smaller the text tem­

plates used the terms lighter and heavier. However, in this example we have inserted no 

extra knowledge of any sort but are still left with an interpretable and useful explanation.

We have also been able to provide explanations which use a fortiori arguments with­

out consulting a domain expert and constructing explanation-specific similarity measures. 

Using the probabilistic quahties of the Logistic Regression Model we can find the most 

marginal cases without knowledge as to what the effects of different features are on the 

recommendation.

6.1.3 Confidence M easures

Researchers have recently highlighted the dangers of seeming to be confident in a recom­

mendation when it is false (Sormo and Cassens 2004, Cheetham 2000). This can seriously 

damage the long term confidence of users in a system. Explanations can have an impor-
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T able 6.2: An Example Containing Discovered Domain Knowledge

Q uery  E x p lan a tio n
C ase C ase

W eigh t (kgs) 60 73
D u ra tio n  (m ins) 60 140

G en d er Female Male
M eal Full Lunch

A m o u n t (U n its) 2.6 5.7
BAG Under

The prediction for the individual in the Quey Case is: U n d e r th e  lim it 

The confidence tha t this prediction is correct is: h igh

D iscursive  T ex t:

In support of this prediction we have the person presented by the Explanation 
Case who was also Under the limit. Meal being Full and Amount being smaller 
have the effect of making the Query individual more likely to be Under the limit 
than the Explanation individual. Although confidence in the prediction is high it 
is worth noting Weight being lighter, D uration being shorter and Gender being 
Female have the effect of making the Query individual less likely to be Under the 
limit than the Explanation individual.

tan t role in highlighting system failures and as we saw in Section 6.1.1 our system can 

highlight deficiencies in the case-base. Our approach also provides us which a meaure of 

confidence in a given recommendation which can then supply to the end user.

6.2 U ser Evaluation

Although our Framework addresses the perceived deficiencies in CBR explanations we 

needed to establish whether the explanations produced by our Framework were in fact 

effective. To do so we carried out a user evaluation. In designing the user trial there were 

three principle questions we wished to address;

1. Do people find the explanations understandable and useful?

2. Do the explanations increase users’ confidence in the case-based system?

3. Can the explanations alert users to when the system might be in error?
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T able 6.3: Credit Card D ata Set Example

Q u ery  E x p la n a tio n
C ase C ase

C heck ing  S ta tu s 0- 0-
D u ra tio n 6.0 21.0
C re d it H is to ry critical/other ex­ critical/other ex­

isting credit isting credit
P u rp o se radio/tv new car
C re d it A m o u n t 1169.0 571.0
Savings S ta tu s no known savings 100-
In s ta llm e n t C o m m itm en t 7+ 7+
P erso n a l S ta tu s 4.0 4.0
R esidence  Since single male male single
P ro p e r ty  M ag n itu d e real state real estate
A ge 67.0 65.0
O th e r  P a y m e n t P lan s none none
H ousing own own
E x is tin g  C re d its 2.0 2.0
Jo b skilled skilled
N u m b e r o f D ep en d en ts 1.0 1.0
O w n T elephone Yes none
F oreign  W orker Yes Yes
G ra n t L oan? Granted a Loan

The recommendation for the individual in the Quey Case is: G ra n te d  a  L oan 

The confidence tha t this recommendation is correct is: h igh

D iscursive  T ext:

In support of this recommendation we have the person represented by the Ex­
planation Case who was also Granted a Loan. Duration being smaller, Purpose 
being radio/tv, Savings Status being no known savings and Own Telephone? 
being yes have the effect of making the Query individual more likely to be Granted 
a Loan than the Explanation individual. Although confidence in the recommen­
dation is high it is worth noting Credit Amount being bigger and Age being 
bigger have the effect of making the Query individual less likely to be Granted a 
Loan than the Explanation individual
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The case-base on which the tria l was carried out was the blood alcohol case-base as 

descibed in previous Sections. We built a simple Nearest Neighbour algorithm  on the data  

set and applied our framework to providing explanations of i t ’s recommendations.

In the trial, subjects were given a questionnaire in which they were shown three dif­

ferent forms of explanation;

•  T h e  F ra m e w o rk  E x p la n a t io n :  This is an explantion th a t includes the selected

a fortiori explantion case, a discursive tex t and a m easure of confidence as seen in 

table 4.5.

• C a s e -b a s e d  E x p la n a t io n :  In this form of explanation the subject is ju st shown

the selected a fortiori case as evidence in favour of the recommendation.

•  N o  E x p la n a t io n :  The user is ju st presented w ith the feature-values of the query

and the systems prediction.

The tria l subjects were shown four examples of each type of explanation which were 

selected at random  and asked two questions after each example shown;

1. Do you think the prediction is correct?

2. How would you rate  this Explanation?

Below each question the tria l subject had five options to select from. In question one 

the options were; No, M aybe No, Don’t Know, Maybe Yes and Yes. In question two the 

options were; Poor; Fair; Okay, Good and Very Good.

To assess the use of explanations in term s of alerting users to  when the system  might be 

in error, one of the four examples shown of each explanation type was a mis-classification. 

Examples of each type of explanation shown to  the users and the structure  of the ques­

tionnaire can be seen in Appendix A. The Framework explanations were structured  as 

outlined in C hapter 4. In the case of the incorrect Framework explanation the confidence 

in the  recom m endation was labelled as being low. In cases of low confidence we presented 

users w ith additional counter examples as outhned in Section 4.2.1 and as can be seen in 

Appendix A.4.

Twelve people from a num ber of difi'erent backgrounds took part in the evaluation. In 

the next section we will discuss how we analysised the d a ta  and we then move on to  the 

results of our analysis.
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6.2 .1  A nalysis o f D ata:

The first step in analysing the user responses was to encode them so that they could 

be interpreted. To do this we translated the reponses into a simple numeric scale. The 

responses clearly have a natural ordering and we coded them into values between 1 and 

5. Scores tha t indicated positive responses in favour of a explanation scheme were given 

higher numeric scores such as 5. In Question One, the responses No to Yes were coded as 

being 1 to 5 respectively. Likewise in Question Two the responses Poor to Very Good were 

coded as 1 to 5. In the case of recommendations tha t were incorrect the encoding scheme 

was reversed with Yes to No being coded 1 to 5 respectively. There was no reversal of the 

ratings of the responses to Question Two when the system was incorrect. Once we had 

encoded the users reponses we were then able to analyse the data.

In analysing the data from our user evaluation we would like to establish whether 

one explanation technique is statistically better or worse than another. Our evaluation 

was designed so that each survey participant rated examples of each type of explanation. 

This allows us to consider the average rating a participant gives one explanation scheme 

linked with the average rating tha t they give another scheme. This is often referred to as 

a paired result and this is an im portant characteristic as it allows us to use a Student’s 

paired t-test to compare our different explanation schemes. The Student’s paired t-test is 

a parametric test tha t can be used to determine whether the differences scores for one 

scheme and another are significant. It is a test designed for use on data with small sample 

sizes and assumes that underlying data is normally distributed. The ratings scores of each 

explanation scheme follow normal distributions which is evident in Figures 6.4 and 6.3. 

Our small sample size and the distribution of data mean that the Student’s paired t-test 

is ideally suited for analysing the results of the user evaluation.

The Student’s paired t-test can be calculated in the following way. Let x, and yi be 

the average user rating for u se r  i  using on explanation scheme A and B respectively. We 

use the following equation to calculate a value for the paired t:

 ̂^  { x - y ) y / n  
s

where x  is the overall average rating of scheme A and y is the average rating of strategy B, 

n is the number of users (12) and s is the standard deviation of the differences in ratings
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between scheme A and scheme B, i.e.

s = 'T,i=i {xi -  ViY
n — 1

For the paired t-test the null hypothesis supposes that the difference between the two 

samples is 0. If there is enough doubt in the null hypothesis we can reject it and say 

that one strategy is better than the other. In practice the t-value returned allows us to 

determine with a level of certainity whether the difference that exists between one scheme 

and another is significant.

6.2.2 User Trial Results:

Q uestion  One: Do you th ink this prediction is correct?

The first question was designed to test how each of the explanation schemes affected 

users’ confidence in the system’s recommendations. We can see the average ratings for 

each scheme when the systems recommendations were correct in Figure 6.1. It is clear 

that the explanations given by the framework instil greater confidence in the system than 

either of the other two schemes. The survey participants answered Yes 8 8 % with just 

four answers being anything other than yes. Three people answered Maybe Yes, one Don’t 

Know and there were no negative answers. This result is statistically significant as can 

be seen in Table 6.4. When the system is correct the users were far more confident in 

recommendations that were accompanied with the full framework explanation than when 

simply supplied with an explanation case.

Table 6.4; Summary of statistics for the difference in ratings in Question One for the 
Framework and Case-based explanations when the system is correct.

Statistic Value
Number Of Samples (n) 1 2

Degrees Of Freedom (d) 1 1

Sample Mean of Framework Ratings (x) 4.86
Sample Mean of Case-based Ratings {y) 3.72
Student’s t (t) 4.16
99 Percentile Student’s t Distribution (t.9 9 ) 3.106

We also found case-based explanations to be an improvement on providing no ex­

planation at all although the improvement is more modest than that of the Framework 

explanation (see Table 6.5). The average rating for the case-base explanation is 3.7 while

79



5

Framework Case No Explanation

Explanation Type

F ig u re  6.1: The ratings in Question One for each explanation sclienie wlien the System 
was correct

supplying no explanation has an average rating score of 2.97. These ratings translate into 

resj)onses somewhere between Don’t Know ■a.wdMaybe Yes for the case-bascid apj)roach 

and of Don’t know when no explanation is supplied. Both these response patterns reflect 

that there is an element of doubt in users of the system when supplied with either no 

explanation or a case-based explanation. Although the average rating for the case-base 

approach is higher than supplying no explanation this difference is significant at a lower 

level. Simply supplying an explanation case instils more confidence than not supi)lying 

any explanation however a large element of doubt still persists. This further reinforces 

the value of the framework explanation and justifies the concerns expressed by researchers 

about simple case-based explanations (Section 3.4.1).

We also examined the user’s responses when the system had made an incorrect clas­

sification and the results can be seen in Figure 6.2. Each schemes’ average rating drops 

down to around 3, the Don't Know  mark. In the case of the Framework explanations this 

is a significant drop as can be seen in Table 6.6. When the system is incorrect users seem 

to be unsure of the system. In fact there is no significant difference in the performance of
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T able 6.5: Sum mary of statistics for the difference in rating in Question One of Case- 
based explanation and no explanation when the System  is correct.

Statistic Value
Sample Mean of Case-based R,atings (x) 3.72
Sample Mean of Ratings for no explanation {y) 2.97
S tudent’s t  (t) 2.58
99 Percentile S tuden t’s t  D istribution (t.gg) 3.106
95 Percentile S tuden t’s t  D istribution (^.9 5 ) 2 . 2 0 1

□  System Correct 

■  System Incorrect-

Fram ework Case No Explanation

Explanation Type

F igure 6.2: The ratings for each explanation scheme in Question One when both  System 
was correct and incorrect.

either algorithm  when the system is incorrect (Table 6.7). This may seem to  be a positive 

result, as a t least users don’t  seem to  believe th a t the  system  is definitely right. However, 

ideally we would like users to  reahse th a t the system  is incorrect as a D on’t Know  reponses 

reflect uncertainity  and confusion.

The level of confusion th a t exists can clearly be seen if we look at the distribution 

of responses behind the  the average ratings. In Figure 6.3 we can see the distribution of 

responses for each explanation scheme when the system  is correct. We can see th a t the
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T a b le  6 .6 : Summary Statistics for the ratings for Framework explanations when system 
correct and when the system  is incorrect.

Statistic Value
Sample M ean when System was correct (x) 4.96
Sample M ean when System was incorrect (y) 3.08
S tudent’s t  {t) 5.93
99 Percentile S tuden t’s t  D istribution ( .̂9 9 ) 3.106

T a b le  6.7: Summary of statistics for Question One of Framework and Case-based expla­
nations when the System was incorrect.

Statistic Value
Sample Mean of Framework Ratings (x) 3.08
Sample M ean of Case-based R atings (y) 2 . 6 6

S tudent’s t  {t) 0 . 8 6

99 Percentile S tuden t’s t  D istribution ( .̂9 9 ) 3.106
80 Percentile S tuden t’s t  D istribution (i.so) 1.36

average rating for tlu; framework explanation reflects tlu; mean of a very tightly pointed 

d istribution centered on Yes response. This reflects certainty of the users and the con­

fidence in the system  th a t has been instilled in them. Conversely, the distibutions of 

the  other two explanation schemes are far flatter reflecting the \mc(!rtainty and lack of 

confidence th a t exists when a case-based or no explanation is used.

The graph of frecjuencies of responscis when the  system  is incorrect reveals a very 

different user response pattern  (Figure 6.4). A lthough no one responded Yes in the case 

of the  explanations produced by the framework there is far less certainty in the users’ 

responses. W hen the system was incorrect the d istribution for each of the schemes is quite 

flat and all centred around the D on’t Know; clearly there is a high degree of variance in 

the responses. It is encouraging th a t no users thought th a t the system ’s prediction was 

definitely correct in the case of the framework explanation and it is clear th a t they heeded 

the  warning about low conhdence. However, it is also clear th a t users weren’t sure if the 

system  was correct or incorrect, a level of doubt rem ained th a t was indistinguishable from 

th a t experienced under the other two schemes.

It is clear th a t the explanations th a t are produced by the framework are effective at 

instilling confidence in users and th a t they represent a considerable improvement on simple 

case-based explanations. However, when the system  is incorrect they proved to  be no more
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100.00

□ Framework 
■  C ase __
□  None

No Maybe No Don't Know Maybe Yes Yes

F ig u re  6.3: The distribution of user responses in Question One when the system pr('dic- 
tions were (X)rr(!ct

effective than any other exi)lanation scheme in hmiting confusion and alerting the user as 

to the correct prediction.

Q u estio n  Two: H ow would you rate this explanation?

In question two we were trying to determine how satisfactory people found the explana­

tions. We can see the average rating vahie given to each explanation scheme in FigTire 6.5. 

Clearly people found the framework explanations to be far more satisfying then the other 

two schemes and generally the rating level for the framework explanation was quite high 

with an average rating of 4.2 when the system was correct. This equates to most users 

rating the explanations as being somewhere between Good and Very Good. The average 

ratings for the case-based explanation and no explanation when the system was correct 

are 2.3 and 1.05 respectively. This places the responses for the case-based approach be­

tween Fair and Okay while the ratings for no explanation are imderstandably firmly set 

in the Poor categorey. The difference in rating between the framework and case-based 

explanation is strongly statistically significant indicating the greater user satisfaction in
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F ig u re  6.4: The distribution of user resp0ns(!s in Question One when the system  predic­
tions were wrong

tlie Framework Explanation as can be seen in Table 6.8. A Students t-value of 3.1()(i is 

required to  ensure th a t there is 99% confidence th a t there is a significant difference. The 

Students t-value is twice th a t needed for 99% confidence so we can say th a t the results 

are strongly statistically  significant.

T a b le  6.8: Siurnnary of statistics for the difference in ratings in Question Two for the 
framework and case-based explanations.

Statistic Value
Sample M ean of Framework (x) 4.22
Sample M ean of Case-based (y) 2.83
S tuden t’s t  (t) 6.62
99 Percentile S tudent’s t  D istribution (i.gg) 3.106

We also examined the situation when the  system  made an incorrect recom mendation 

and the ratings for each explanation can be seen in Figure 6.6. There is a drop in the rating 

for both  the  framework and case-based explanations while the rating for no explanation has

□  Framework 
■  Case 

.nNona.
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4.5

Framework Case No Explanation

Explanation Type

F igu re 6.5: The average rating Scores for Question Two of the exj)lanations produced 
by each different Scheme

naturally  stayed the same. In the case of the framework explanation the ratings droi)ped 

from being between Good and VeTij Good to  Good and Okay. This drop is significant but 

not strongly so as can be seen in Table 6.9. As we saw in the analysis of the results from 

(question one, the Framework Exj)lanations prov(?d unable in this dom ain to  alert users 

th a t the prediction was dehnitely incorrect. However, user satisfaction in the Framework 

Explanations has dropped but remained reasonably high. This is despite the increased 

cognitive load associated w ith explanations produced when confidence in a prediction is 

low. As described in Section 4.2.1 users are presented w ith counter examj)les when the 

confidence is low. This leads to  longer explanations as can be seen in Table 4.6.

There is also a drop in level of satisfaction in the  case-based approach when the system 

is incorrect. This may reflect the perceived lack of relevance of the explanation case 

retrieved. The retrieved case in th is circum stance is a poor explanation case reflecting 

the lack of coverage in th a t point of the case-base. The average rating for the case-based 

explanation drops from being Fair to  Okay to  being Poor to  Fair. However, it is clear 

th a t the level of satisfaction in the  case-based approach when the select(xi explanation
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4.5

□  System Correct 
■  System Incorrect

Framework Case No Explanation

Figure 6.6: The average rating scores for Question Two of the explanations produced by 
each different Scheme when both tlie system was correct and incorrect

cases are good and the system is correct is already very poor to begin with. The level 

of satisfaction in the framework explanations is still greatly superior and significantly so 

(Table (>.10).

Table 6.9: Summary of statistics of the difference in ratings in Question Two of the 
Framework explanations when the System was correct and incorrect.

Statistic Value
Sample Mean when System correct(x) 4.22
Sample Mean when System incorrect(y) 3.5
Student’s t (t) 1.96
99 Percentile Student’s t Distribution (i.gg) 3.106
90 Percentile Student’s t Distribution (t.go) 1.79

It is clear that users show far greater satisfication in the framework explanations in 

comparison with the the case-based approach even when the system has made an incorrect 

prediction 6.10. It would appear tha t satifaction in the framework explanations is reason­

ably robust even under the extra cognitive load experienced when there is low confidence
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in the system ’s prediction. Satisfaction levels in the case-based approach are unaccept- 

ably low in both circumstances and this again reinforces the need for the explanatory texts 

supplied w ith the framework explanations.

T a b le  6.10: Sum mary of statistics of the difference in ratings in Question Two of the 
Framework and Case-base explanations when the system  was incorrect.

S tatistic Value
Sample M ean of Framework (x) 3.5
Sample M ean of Case-based (y) 1.75
S tudent’s t  {t) 4.47
99 Percentile S tudent’s t  D istribution (i.gg) 3.106

6.2.3 Discusion of Results

The evaluation th a t we have carried out has dem onstrated th a t there is much value in 

the explanations produced by the framework. Simple case-based explanations have their 

short-comings which is evident in the user ratings of such explanations. Both in term s 

of increasing user confidence and in the level of satisfaction expressed by users, simple 

case-based explanations performed poorly. The case-based explanations only proved to 

be m arginally effective in increasing user confidence in the system and as can be seen in 

Figure 6.3 much confusion still remained. Likewise the level of satisfaction expressed by 

users in the explanations was quite low being at best between Fair and Okay.

Conversely, the framework explanations proved to  extremely effective a t instilling con­

fidence as is evident in the strong yes response expressed by users when presented by 

framework explanations (Figure 6.3). User satisfaction ratings of the explanations were 

also far higher. It is clear th a t generating discursive texts explaining the effects of feature- 

value differences greatly improves upon simple case-based explanations.

However, in term s of our goal of alerting users to  when the system is m aking a mistake, 

the framework explanations only proved a lim ited success. There was a m arked difference 

in the users’ responses to the different explanations produced when system was correct 

and incorrect. A lthough encouragingly users heeded the confidence warning and no one 

responded th a t the system was definitely correct it is clear th a t users were none the wiser 

as to  w hat the correct recom mendation should be as is evident in Figure 6.4. Perhaps this 

reflects their lack of domain expertise as satisfaction levels in the framework explanations
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still remained high. These results may indicate th a t it may be extremely difficult to 

m aintain user confidence in a system th a t makes mistakes.

6.3 Local Logistic R egression as a Classifier

As we acknowledged in Nugent, Cunningham  and Doyle (2005) providing explanations 

can m aintain confidence but if the underlying system is inaccurate confidence will be 

lost regardless of these efforts. A fundam ental requirem ent to  m aintaining confidence is 

th a t the underlying recom mendation system is sufficiently accurate. We have used the 

Local Logistic Regression Model as an aid to providing explanations but it is also possible 

to use the locally produced model to  provide recom mendations. Using the probabilistic 

model of the local feature space it is possible to  produce of probability of the Query Case 

belonging to  one class or another. In some domains this might prove a more powerful 

and effective classification strategy than  th a t normally employed by k-NN. Likewise, the 

locahsed logistic regression might prove more effective than  use a global logistic regression 

model. The local approach might be able to approxim ate patterns in the d a ta  locally 

th a t are lost when the logistic model is applied to  the d a ta  in its entirety. In this Section 

we examine the effectiveness of out localised logistic regression model as a classification 

strategy. We evaluated it on a num ber of different case-bases and compared the results 

w ith those of the k-NN  and Logistic Regression strategies. In the next Section we will 

describe the experim ental setup before going on to  discuss our results.

6.3.1 Experim ental Setup

In order to  evaluate the three different recom m endation schemes we user Leave-one-out 

cross validation on each scheme for each 13 UCI case-bases. Leave-one-out cross-validation 

is an evaluation m ethod used to  assess the likely real world performance of a system on 

unseen data. Using leave-one-out cross-vahdation, all the cases in the case-base except one 

are used to  construct the classification model. The rem aining case th a t has been excluded 

is then  passed into the constructed model and a recom m endation for th a t case is produced. 

This process is repeated for each case in the case-base leaving us w ith a classification for 

each.

B oth k-NN  and Local Logistic Regression models have param eters th a t m ust be set. 

In the case of k-NNmodel  it is /S'; the num ber of neighbours used to determ ine the class.



In the locahsed logistic regression model we m ust choose the num ber of each class we 

want to  guarantee will be present in the local case-base. We evaluated the performance of 

bo th  schemes using different param eter settings in the range from 1 to 15 in both  cases. 

We selected the param eter on which the best performance was recorded and used it as 

representative of the best performance for th a t classification scheme. In the next section 

we present and discuss the results of our evaluation.

6.3 .2  E xperim en ta l R esu lts

The results of the evaluation carried out can be seen in Table 6.11. For each of case-bases 

used in the evaluation we have recorded the accuracy of each classifier. In the case of the 

k-N N  and Local Logistic Regression schemes the accuracy score is accompanied by the 

param eter setting used in brackets after the accuracy score. The results show th a t in all 

bu t three cases the Local Logsitic Regression model is as accurate or more accurate than  

simple k-NN.  In ju st four cases the Local approach is the best recom mendation strategy. 

The poor performance of the Local appraoch is extemely surprising when compared to 

th a t of the global approach.

Table 6.11; The Accuracies of the Different Classification Schemes

Case-base Global Logistic 
Regression

K - N N Local Logistic 
Regression

DNAp 86.79 85.85 (2) 89.62  (6)
ionosphere 89 .17 88.89 (2) 86.89 (9)
e-clinic2 98.66 98.66 (2) 99 .33  (3)
diabetes 77.73 73.7 (4) 75.78 (10)
vote 93.79 92.64 (2) 92.64 (10)
G erm an Credit 75.10 74.7 (10) 69.60 (2)
spam 93.75 89.75 (2) 95.75  (6)
BAG 83.67 82.65 (2) 86 .73  (3)
e-clinic 96.32 86.96 (6) 94.98 (13)
Breast Cancer 70.40 76 .90  (4) 69.68 (6)
BronchioHtis 66.87 71.08  (6) 66.87 (11)
Heart 82.96 82 .96  (10) 77.41 (11)
Liver 68.41 67.54 (2) 68.12 (4)

It is worth nothing th a t the Local and Global Logistic Regression schemes are equiva­

lent if the local case-base is grown to be so large th a t it encompasses the entire case-base. 

This may seem to be moot point bu t it means the local scheme is guaranteed to be as
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good as the global scheino. The restricted range of values we tried for defining our local 

case-base means tha t the results presented may not reflect the best possible accuracy. To 

investigate this further we extended the range used on two case-bases; e - c l in ic  and BAG.

Figures 6.7 and 6.8 depict the change in accuracy of the Local Logistic Regression 

approach as the number of cases of each class to  be included in the local case-base is 

increased. As we can see in Figiu’e 6.7 the localised approach quickly reaches an optimal 

value using extremely small local case-bases. As the local case-base size increases the 

acciu-acy drops before slowly increasing again until it levels out at 83.67 which is the 

equivalent to the global model.

However, in the case of the e - c l in ic  case-base a very different form of behaviour is 

observed. The model very slowly reaches an optimal performance anti then very slowly 

drops back to that of the global model. The optimal performance is reached with the local 

cas('-base needing to contain at least 56 of each class value. This represents a far larger 

local case-base than that used in BAC case-base.
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Figure 6.7: The change in accuracy for different parameter settings using Local Logistic 
Regressionon the BAC case-base

It appears that, for the Local Logistic Model, the optimal size of local case-base is very
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F igu re 6.8: Tlie diaiigc in accuracy for different param eter settings using Local Logistic 
Rf'gression on the e - c l i n i c  case-base

much case-base dependent and th a t it can be much larger th an  those we had used in our 

evaluation. W ith this in mind we repeated our evaluation this tim e extending the  range of 

values tested for the Loc'al Logistic Regression Model until the performance of the model 

was equivalent to th a t of the globel model. The results of this second evaluation can be 

seen in Table 6.12. Aft.er extending the range of param eter vahies tested  it is clear th a t 

Loc:al Logistic Regression model is indeed as strong as the global model and th a t in many 

cases it is stronger th an  k-NN. However there is a need for a param eter setting excercise 

to  determ ine how large the local neighbourhood should be.

6 .3 .3  D iscu ssion  o f R esu lts

It is clear th a t Local Logistic Regression shows some promise as a classification strategy. It 

performs as well as the other schemes in many of the  case-bases we tested and outperform ed 

the  other recom mendation schemes on some case-bases. For case-bases such as L iver, 

German C re d it , BAG and Spam it represents a substantial improvement over the other 

reconnnendation schemes with improvements of a least 2% over the rival schemes. In
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T ab le  6.12: The Accuracies for Local Logistic with Extended Parameter Range

Case-base Global Logistic 
Regression

K-NN Local Logistic 
Regression

DNAp 86.79 85.85 (2) 89.62 (6)
ionosphere 89.17 88.89 (2) 90.31 (25)
e-clinic2 98.66 98.66 (2) 99.33 (3)
diabetes 77.73 73.7 (4) 77.99 (117)
vote 93.79 92.64 (2) 94.25(128)
German Credit 75.10 74.7 (10) 77.1 (109)
spam 93.75 89.75 (2) 95.75 (6)
BAC 83.67 82.65 (2) 86.73 (3)
e-clinic 96.32 86.96 (6) 97.56 (65)
Breast Cancer 70.40 76.90 (4) 75.45(72)
Bronchiolitis 66.87 71.08 (6) 69.88 (37)
Heart 82.96 82.96 (10) 84.44 (109)
Liver 68.41 67.54 (2) 74.48 (38)

all cases the Local logistic regression approach outperforms the global approach but in 

many case-bases such d ia b e te s  and vo te  the improvements are quite modest and not 

particularly significant. In two case-bases, B reast Cancer and B ro n c h io lit is ,  the k-NN 

outperformed the Local Logistic Regression approach. Although the Local Logistic model 

is considerably better than the global approach on these case-bases the k-NN  is the overall 

best recommendation strategy being at least 1% better than the Local Logistic model in 

both cases.

In the course of our evaluation it also became apparent tha t the Local Logistic Re­

gression Model’s performance was very sensitive to the size of local case-base used. The 

sensitivity encountered means that, although the performance of the model is very strong, 

parameter selection must be performed carefully.

6.4 Confidence Measure Evaluation

In this section we examine the potential of the framework to produce an estimate of con­

fidence. As we stated in Section 4.1.5 designing confidence mechanisms requires choosing 

between many different possible parameter settings so as to maximise performance on a 

domain dependent set of criteria. In the absence of specific domain problems we have 

examined the performance of our framework on a number of different case-bases using cri­

teria we ourselves defined. We used the criteria to investigate the flexibility and potential
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of the confidence measures that we can produce. In the next section we will describe the 

experimental setup that we used to perform this investigation before going on to discuss 

the results

6.4.1 Experim ental Setup

Previously in Section 4.1.5 we defined two criteria that could be used to assess the perfor­

mance of our confidence measures. These are the Confident Correct Rate {CCR) as defined 

in Equation 6.1 and the Not Confident Correct Rate {NCCR)  as defined in Equation 6.2.

C C

N C C

Where CC is the number of times the measure is confident and the system is correct 

and C l  is the number of times the measure is confident and the system is incorrect. 

Likewise N C C  is the number of times the measure is not confident and the system is 

correct and N C I  is the number of times the system is not confident and right to be so.

Our mechanism for assessing confidence requires two parameters that need to be set; K, 

the number cases of each class type value that is required in order to stop the local case-base 

building process and the threshold value. As we have discussed, changing these parameters 

can affect performance and they must be choosen based on domain requirements. To 

investigate the performance of our confidence measure we decided to fix the value of K for 

each case-base and investigate the performance of the mechanism at different threshold 

levels. We chose that K value for each case-base on which the maximum performance in 

balancing the two criteria was achieved. We performed leave-one-out cross-validations on 

each case-base recording the probability predicted by our confidence measure for each case. 

This allowed us to investigate the performance of the mechanism at different threshold 

values.

Leave-one-out cross-validation is an evaluation method used to assess the likely real 

world performance of a system on unseen data. Using leave-one-out cross-validation, 

all the cases in the case-base except one are used to construct our k-NN model and 

confidence mechanism too. The remaining case that has been excluded is then passed into 

the contructed models and their performance on this unseen case is recorded. This process
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is repeated for each case in the case-base leaving us with probability value for each.

We used these criteria to investigate the performance of our confidence mechanism in 

two different scenarios;

1. When no particular emphasis was put on one criterion over another

2. When we wished to ehminate all assessments of high confidence on incorrect recom­

mendations.

In first situation we found the threshold tha t best balanced the two criteria based on 

Equation 4.11. In the second case situation we found the threshold value which minimised 

the number of incorrect predictions given confident ratings. In the next Section we will 

discuss the results of our investigation.

6.4.2 R esults o f Investigations

The results for each case-base under the first scenario can be seen in Tables 6.13 and 6.14. 

In Table 6.13 there is a column outlining each combination of confidence prediction and 

whether the prediction was correct or not. The left most column is the accuracy of the 

k-NN  model on each case-base. Ideally, in this situation we would like to minimise the 

values in the Confident Incorrect and Not Confident Correct columns while maximising 

the performance in the other two columns, Confident Correct and Not Confident Incorrect. 

These two desires are captured by our criteria shown in equations 6.1 and 6.2 and these 

can be seen in Table 6.14.

The Confident Correct Rate represents the percentage of times tha t we make a predic­

tion of confidence and are right to do so. This rate is reasonably high for most case-bases; 

being in the late 90’s for 7 of the case-bases and in the 75 to 90 range for the remaining 

6 case-bases. However, the Confident Correct Rate cannot be looked at in isolation as, 

although we might be predicting confidence accurately, we would also like to minimise the 

number of correct predictions which get a not confident rating. We would like to achieve 

high Confident Correct Rates while also attaining low Not Confident Correct Rates.

This is achieved with some degree of success on four of the case-bases. On the DNAp, 

e - c l in ic 2 ,  spam and e - c l in ic  case-bases Confident Correct Rates in the high 90’s are 

combined with Not Confident Correct Rates below 0.3. However, it it is clear that the 

confidence mechanism isn’t always sucessful. Notably for the D iabetes, B reast-C ancer,
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T able 6.13; Confidence Results for Scenario One

Case-base k-NN
Accuracy

Confident
Correct

Confident
Incorrect

Not Confident 
Correct

Not Confident 
Incorrect

DNAp 85.85 88 7 3 8
ionosphere 88.89 279 16 33 23
e-clinic2 98.66 295 1 0 3
diabetes 73.70 79 27 487 175
vote 92.64 381 13 22 19
German Credit 74.70 485 103 262 150
spam 89.75 357 13 2 28
BAC 82.65 73 5 8 12
e-chnic 86.96 250 5 10 34
Breast Cancer 76.90 98 29 115 35
Bronchiolitis 71.08 30 4 88 44
Liver 67.54 180 57 53 55
Heart 82.96 192 29 32 17

B ro n c h io li t is ,  L iver and H eart case-bases the performance of the mechanism isn’t 

great with lower Confident Correct Rates being combined with high Not Confident Correct 

Rates.

We can look at the trade-off by examining the results of Equation 6.3 from Section 

4.1.5 for each case-base. As we stated earlier we would like to minimise this value.

Trade-Off = (6.3)

In Table 6.14 we can see the Trade-off results for each case-base. As expected the values 

for the DNAp, e-clinic2, spam and e-clinic case-bases are quite low while the values 

for the Diabetes, Breast-Cancer, Bronchiolitis, Liver and Heart case-bases are 

much higher. Comparing the accuarcy results for k-NN  on each case-base with the trade­

off value for tha t case-base there would appear to be a clear relation. The confidence 

mechanism performs far better on case-bases which appear to have a higher level of com­

petence reflected in the higher accuracy result achieved by the k-NN. This trend can be 

clearly seen in Figure 6.9. There is quite a strong linear trend in the data which is clearly 

visible and reflected by a Pearson’s correlation figure of 0.63. It appears that the perfor­

mance of our confidence mechanism is dependent on the competence of the case-base and 

the higher the level of competence the better the performance.

In the second situation we examined the performance of our confidence mechanism 

when we wished to minimise incorrect predictions tha t we were confident about. As
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Table 6.14: Conficience Rates for Scenario One

Case-bas(! k-NN
Accuracy

Confident Correct 
Rate

Not Confident Correct 
Rate

Trade Off

DNAp 85.85 0.93 0.27 0.29
ionosphere 88.89 0.95 0,59 0.62
e-chnic2 98.66 0.99 0.0 0.0
diabetes 73.7 0.75 0.74 0.98
vote 92.64 0.97 0.54 0.55
German Credit 74.7 0.83 0.64 0.77
spam 89.75 0.96 0.07 0.06
BAG 82.65 0.94 0.4 0.42
e-chnic 86.96 0.94 0.19 0.20
Breast Cancer 76.9 0.77 0.77 0.99
Bronchiolitis 71.08 0.88 0.67 0.76
Liver 67.54 0.75 0.44 0.65
Heart 82.96 0.87 0.65 0.75
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outlined in Section 4.1.5 this involves setting the confidence level threshold so that this 

can be minimised. The results can be seen in Tables 6.15 and 6.16. In this case we are 

trying to minimise the Confident Correct column at the cost of the making more Not 

Confident predictions and this can be clearly seen as the values in the Confident Incorrect 

column are far lower then those in Table 6.13. The mistakes in confidence haven’t been 

entirely eliminated in many of the case-bases as this proved impossible without defaulting 

to predicting Not Confident all of the time. The decreased number of Confident Incorrect 

predictions come at the cost of reduced Confident Correct predictions and an increase in 

the number of cases being given Not Confident ratings. This clearly reflects the trade-off 

tha t is involved in choosing threshold values.

This trade-off is particularly apparent in a number of case-bases such as in Spam and 

Vote. In the case of the Spam case-base the number of Confident Incorrect predictions is 

reduced from 13 to 0 and in Vote from 13 to 6. However the improvement in both cases 

comes at a cost. In the case of the Vote case-base 33.3% of predictions are now labelled 

as Not Confident whereas previously 9.4% were. In the Spam case-base the number of 

predictions given Not Confident labels jumps from 7.5% to 65.5%.

T able 6.15; Confidence Results for Scenario Two

Case-base k-NN
Accuracy

Confident
Correct

Confident
Incorrect

Not Confident 
Correct

Not Confident 
Incorrect

DNAp 85.85 62 0 29 15
ionosphere 88.89 167 7 145 32
e-clinic2 98.66 286 0 9 4
diabetes 73.7 39 22 527 180
vote 92.64 284 6 119 26
German Credit 74.7 58 3 689 250
spam 89.75 138 0 221 41
BAC 82.65 67 3 14 14
e-clinic 86.96 228 1 32 38
Breast Cancer 76.9 54 13 159 51
Bronchiolitis 71.08 4 2 114 46
Liver 67.54 66 20 167 92
Heart 82.96 44 8 180 36

The confidence rates for Scenario Two can be seen in 6.16. The Not Confident Correct 

Rate is increased in all case-bases in comparison with those in Scenario One reflecting 

the increased number of cases tha t are given Not Confident ratings. In all but 3 of the
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case-bases the Not Confident Correct Rate is over 0.60 meaning th a t over 60% of cases 

th a t are classified as being not confident predictions are in fact correct predictions. In the 

case of the io n o sp h e re , v o te  and spam case-bases over 80% of cases are being mislabelled 

as being Not Confident predictions.

There are m odest increases in the Confident Correct Rates in most case-bases however 

not in all. In the D ia b e te s  and B r o n c h io l i t i s  case-bases the Confident Correct Rate 

decreases. This is as a result of the decreased num ber of predictions given a confident 

label. A lthough the num ber of Confident Incorrect predictions has decreased the num ber 

th a t  are still made represent a higher proportion of the num ber of predictions labelled as 

being confident.

Although on case-bases such as Spam the decrease in the num ber of Confident Incorrrect 

predictions is reduced, it is a t the cost of quite a large increase in Not Confident Correct 

Rate  th is is not a entirely general trend. In the  BAG, DNAp and e - c l i n i c  case-bases the 

reduction in Confident Incorrect predictions comes at a much more m odest increase in 

the  Not Confident Correct Rate. It would appear th a t the cost in reducing the Confident 

Incorrect predictions varies and is dependent on the characteristics of the particu lar case- 

base.

T able 6.16: The Confidence Rates for Scenario Two

Case-base k-NN
Accuracy

Confident Correct 
R ate

Not Confident Correct 
Rate

DNAp 85.85 1.0 0.66
ionosphere 88.89 0.96 0.81
e-clinic2 98.66 1.0 0.69
diabetes 73.7 0.64 0.75
vote 92.64 0.98 0.82
G erm an Credit 74.7 0.95 0.73
spam 89.75 1.0 0.84
BAC 82.65 0.96 0.5
e-clinic 86.96 0.99 0.5
Breast Cancer 76.9 0.80 0.46
Bronchiolitis 71.08 0.66 0.71
Liver 67.54 0.77 0.64
Heart 82.96 0.85 0.82
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6.4.3 Discussion of R esults

It appears tha t our confidence mechanism has the potential to work reasonably well but 

performance is very much dependent on the underlying case-base and the requirements 

of the domain. In terms of maintaining a high Confident Correct Rate while maintaining 

a low Not Confident Correct Rate the performance of our mechanism is very much cor­

related to the competence of the underlying case-base. The ideal situation of a perfect 

Confident Correct Rate combined with a zero Not Confident Correct Rate is unattainable 

aud decisions must be made on a domain by domain basis on how to best balance the 

trade-off tha t exits between these two conflicting criteria. This is clearly demonstrated 

in the varying degree of cost incurred in terms of increased Not Confident Correct Rate 

when we tried to minimise Confident Incorrect predictions. This reinforces the value of 

the methodology we proposed for investigating the factors involved in designing confidence 

mechanisms.

The difficulty in creating good confidence measures has been well documented and our 

results reflect this same difficulty (Delaney et al. 2005b, Cheetham and Price 2004). It 

is worth noting that there is a subtle but important difference in the objective that we 

have investigated compared with that of predicting confidence in the spam domain. We 

have tried to predict confidence prioritising accuracy on both classes equally. In the spam 

domain this same symmetry doesn’t exist and inaccurately predicting confidence on spam 

that has been classified as real mail isn’t as costly as predicting confidence on real mail 

that has been classified as spam.

In conclusion, we have shown a mechanism for assessing classifier confidence tha t is 

quite effective when the classifier has high accuracy (greater than 90%). However, the 

need for confidence assessments is greater in classifiers tha t are less accurate so that the 

impact of errors can be ameliorated.

6.5 C onclusions

We have developed an Explanation Framework tha t has many favourable characteristics;

• It applies a lazy approach in keeping with the strengths of the CBR methodology

• Little Expert Knowledge Needed

• Predicting Confidence
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We have evaluated the performance of our framework and found that it successfully ad­

dresses the short-comings of traditional case-based explanations. High satisfaction ratings 

among users of the explanations produced by the framework were recorded. In terms of 

instilling confidence, the framework also proved successful, however in cases of low confi­

dence doubt and confusion still remained. Given the difficulties in accurately predicting 

confidence this result reinforces the sentiment expressed in our previous work that long 

term user confidence can only really be maintained if the underlying system is accurate 

(Nugent, Cunningham and Doyle 2005).

We have also shown that Localised Logistic Regression is a extremely effective rec­

ommendation strategy. However, careful attention must be paid to choice of parameter 

dictating the size of local case-base as the performance is quite sensitive to this. The dif­

ference in performance of our localised approach compared with global logistic regression 

further reinforces tha t idea tha t there are local feature interactions which can only be 

captured by a local approach.
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C hapter 7 

Conclusions and Future Work

As we discussed in Chapter 1 it has been apparent since the early days of Expert Systems 

in the 1970s tha t there has been a need for Artificial Intelligence technologies to somehow 

explain and justify the recommendations tha t they make. It is a problem tha t persists to 

this day. People are still understandably often suspicious of such systems and reluctant 

to accept their recommendations without question. The provision of explanations by such 

systems should help alleviate any suspicion the user might have and instil confidence in 

them in the system’s prediction. However, in practice, the explanations provided by such 

systems are in terms of rules which are often not usefully interpretable and have proved 

unsuccessful in reassuring users.

CBR represents an alternative approach which has inherent advantages in terms of 

transparency and user acceptance as discussed in Chapter 3. However, the traditional 

approach in CBR-light applications of simply supplying the nearest neighbour has been 

found to have shortcomings in terms of providing satisfactory explanations. In this thesis 

we have described the Explanation Framework we have developed to address these issues. 

The primary issues we addressed were;

• The selection of a fortiori cases as explanation cases without use of domain knowl­

edge,

• Explaining the details and relevance of retrieved cases without domain knowledge.

• Providing measures of confidence.

The Framework we developed uses a localised solution to these problems which is in keeping 

with the CBR philosophy and uses Logistic Regression models to extract information useful
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to the explanation process. This approach supports continued incremental learning and 

eliminates the need for expert domain knowledge. We have also demonstrated tha t Case- 

based explanations can be used for non-CBR systems and our current implementation is 

not restircted to such systems.

The approach we have taken also has potential in terms of assessing confidence and 

also as a classifier mechanism. We have also evaluated our Framework in terms of these 

two objectives. First, however, we will discuss the merits of our Framework in terms of 

addressing its primary purpose, providing improved CBR explanations tha t instil users 

with confidence.

7.1 Im proving C ase-based E xplanations

The Explanation Framework we have developed addresses the shortcoming of the tradi­

tional CBR-light explanations of not making the relationships between the feature values 

in the Query Case and Explanation Case explicit. We performed a user evaluation of the 

Framework using the BAC data and found results to be largely in favour of the explana­

tions produced by our framework.

The Evaluation we carried out highlighted the level of confusion and uncertainty that 

can exist when the system supplies no explanation. Our evaluations also showed that 

although Case-based explanations are an improvement on no explanation some uncertainty 

still remained.

Conversely, the framework explanations proved to be extremely effective at instilling 

confidence. Users expressed a strong conviction tha t the systems prediction was correct 

when presented with framework explanations and user ratings of those explanations were 

very high. It is clear tha t generating discursive texts explaining the effects of feature-value 

differences greatly improves upon simple case-based explanations.

However, in terms of our goal of alerting users to when the system is making a mistake, 

the framework explanations only proved a limited success. Although it is encouraging that 

users heeded the confidence warning and no one responded tha t the system was definitely 

correct it is clear tha t users were none the wiser as to what the correct recommendation 

should be. These results indicate tha t it may be extremely difficult to maintain user 

confidence in a system that makes mistakes.

The primary role of the explanations we provide is in justification as we want to reassure
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the user of the systems predictions. In trying to achieve this, our explanations also touch 

on other goals as define by Cassens (2004) such as transparency, relevance and learning. 

In providing a set of goals Sormo and Cassens were defining a spectrum on which expla­

nations could be placed. Most importantly they highhghted that the purpose for which 

an explanation is intended and the user are of primary importance in defining an expla­

nation scheme. Providing explanations is a domain dependent task and each individual 

explanation needs to be addressed with the targeted audience of the explanations in mind. 

The framework explanations tha t we have developed will not be universally acceptable as 

in some domains the requirements of the user may not be met buy such explanations. In 

some cases the style of explanations produced by the framework may need to be adjusted 

to meet the demands of the domain they are operating in. For example, we added a small 

amount of linguistic information for the BAG domain. The explanations provided by the 

framework as we have implemented it are also limited to binary classification tasks.

However, we have demonstrated that, in a domain were traditional CBR explanations 

are acceptable, the framework explanations provided a much more effective solution. The 

framework addresses many of the general shortcomings of the traditional CBR explanation 

approach for instilling confidence and does so in a flexible manner.

7.2 A ssessing Confidence

Our Framework also has potential in terms of assessing confidence in recommendations. 

Providing confidence measures is very much a domain dependent task with many conflict­

ing criteria needing to be balanced depending on the demands of tha t domain. We have 

described how the use of ROC-like curves can be used to assess in a clear visual manner 

the effects of different model parameters on the performance of the confidence assessment 

mechanism. In this way the optimal performance can quickly be identified.

We investigated the effectiveness of our Framework at assessing confidence on 13 UCI 

case-bases and in two different scenarios. We found tha t our confidence mechanism has 

the potential to work reasonably well but the performance is very much dependent on the 

underlying case-base and the requirements of the domain. Our mechanism proved to be 

quite effective when the classifier has high accuracy (greater than 90%). However, the 

need for confidence assessments is greater in classifiers that are less accurate so tha t the 

impact of errors can be ameliorated. To do so accurately when there is low case-base
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competence appears to  be quite difficult. We are not the first to  discover this lim itation 

and it is a problem which as been remarked upon by other researchers (Delaney et al. 

2005b, Cheetham  and Price 2004).

7.3 C lassification using Local Logistic R egression

The use of Local Logistic Regression Models proved to be quite effective as a classification 

mechanism. We evaluated this scheme on 13 UCI case-bases and compared it with global 

Logistic Regression and the k-N N  model. The Local Logistic Regression approach proved 

to be more accurate than  the other two classification schemes on many of the case-bases. 

We found the  local logistic approach to be more accurate than  the global approach on 

all the case-bases th a t we have tested. However, we also found the performance of the 

classification scheme to be very sensitive to  param eter selection which m ust be carried out 

carefully.

7.4 Future Work

7.4.1 Local Logistic Regression as a Classifier

The prim ary focus of this Thesis has been on producing useful and interpretable explana­

tions however we have also dem onstrated th a t Local Logistic Regression is effective as a 

classification m ethod. In the future we would like to  investigate this further. We would 

like to  develop more sophisticated ways of defining a local case-base th a t are autom ated, 

param eter free and based on the characteristics of the case-base being used.

7.4.2 Further work on Case-Based Explanations

M any of the case-bases th a t we have presented in this thesis have relatively small numbers 

of features. This may not always be the case and we would like to  investigate how the 

information th a t we can ex tract from our Local Logistic Regression model could be used 

to  filter out irrelevant features and select the m ost useful to present to  the user.
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A ppendix A

User Evaluation

This appendix contains examples of the explanations presented to users in the evaluation 

as well as the coversheet. Question three was dropped from the evaluation as the results 

were found to be inconclusive
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Computer Generated Explanations Evaluation
Thank you very much for agreeing to partake in this evaluation!

Computer based decision support systems are a popular subject of research in medical 
informatics. Although these systems have proved to be quite accurate they do sometimes 
make mistakes and people are reluctant to use them. One major source of suspicion in such 
systems is that they offer no insight into the means by which they have come to a particular 
prediction or conclusion. The end user is simply supplied with a prediction and no further 
information.

For this reason offering human interpretable explanations as to why a particular prediction has 
been reached has become an important focus for research. By offering explanations we can 
reassure a user as to why a particular prediction is reasonable and perhaps help them identify 
when a mistake has been made.

One form of explanation that is being investigated is Case-based explanation. A Case could 
be a set features that describe a particular patient. For instance in the following evaluation the 
Cases describe people who have been consuming alcohol and whether they were over the 
limit or not. A Case looks like this;

Features A Person

W eight (Kgs) 76.0
Duration (m inutes) 60.0
Gender M ale
Meal Full

Units o f Alcohol 2.9

O ver or Under the 
Limit

Under

The features describe the individual and their consumption of alcohol. D u r a t io n  describes 
how long in minutes the individual has been drinking, U n i t s  o f  a l c o h o l  how much 
they have consumed and M eal how much they have eaten. Meal has four possible values; 
None, Snack, lunch. Full.

Each case represents a real event were someone’s details have been recorded and they have 
been breathalysed to see if they are over the limit.

In the following evaluation you will be presented with a set of features that describe an 
individual as well a computer system prediction as to whether that person is Over or Under 
the limit. When an explanation accompanies a prediction it will be based on recorded Cases 
of real past events. After each individual prediction and explanation you will be asked three 
of short questions. You will be asked to assess 12 predictions and explanations in all.

Figure A .l:  Cover Sheet of Questionaire
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Example A:

Features Query

Weight (Kgs) 79.0

Duration 1 n
(minutes) izu.u

Gender Male

Meal Full

Units of Alcohol 7.2

The prediction for the individual in the query case is; Under the limit

Q l: Do you think the prediction is correct?

No Maybe Not Don’t Know Maybe Yes Yes

Q2: How would you rate the accompanying explanation?

Poor Fair Okay Good Very Good

Q3: Did the explanation help you make a decision for Q l?

No Maybe Not Don’t Know Maybe Yes Yes

F ig u re  A .2: An example of when no explanation was presented
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Example E:

Features Query Explanation
Case

Weight (Kgs) 82.0 73.0

Duration
(minutes) 60.0 140.0

Gender Male Male

Meal Full Lunch

Units of Alcohol 2.6 5.7

Over or Under 
the Limit Under

The prediction for the individual in the query case is: Under the limit

The confidence that this prediction is correct is: high

Explanatory Text:

In support o f this prediction we have the person represented by the Explanation Case 
who was also Under the limit. Weight being heavier, Meal being Full and 
Amount being smaller all have the effect of making the Query individual more likely 
to be Under the limit than the Explanation individual. Although confidence in the 
prediction is high it is worth noting Duration being shorter has the effect of 
making the Query individual less likely to be Under the limit than the Explanation 
individual

Ql: Do you think the prediction is correct?

No Maybe Not Don’t Know Maybe Yes Yes

Q2: How would you rate the accompanying explanation?

Poor Fair Okay Good Very Good

Q3: Did the explanation help you make a decision for Q l?

No Maybe Not Don’t Know Maybe Yes Yes

F ig u re  A .3: An example of a Framework explanation when the system was correct
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Example H:

Features Explanation
Case Query

Nearest
Unlike

Neighbour
Weight (Kgs) 
Duration (minutes) 
Gender 
Meal
Units of Alcohol

Over or Under the 
Limit

53.0
330.0 

Female 
Lunch

10.4

48.0
300.0 

Female 
Snack

7.8

55.0
240.0 

Female 
Lunch

9.1

Under Over

The prediction for the individual in the query case is: Under the limit 

The confidence that this prediction is correct is: low

Explanatory Text:

In support o f this prediction we have the person represented by the Explanation Case who was also 
Under the limit. However, Weight being lighter. Duration being shorter. Meal being Snack and 
Amount being smaller ail have the effect o f  making the Query individual less likely to be Under the 
limit than the Explanation individual

As there is low confidence in the prediction we also have a counter example o f someone who is similar 
but Under the limit for you to inspect

Weight being lighter. Meal being Snack and Amount being smaller all have the effect o f making the 
Query individual more likely to be Over the limit than the counter example individual. However, 
Duration being longer has the effect o f making the Query individual less likely to be Over the limit 
than the counter example individual_______________________________________________________________

Q l: Do you think the prediction is correct?
No Maybe Not Don’t Know Maybe Yes Yes

Q2: How would you rate the accompanying explanation?
Poor Fair Okay Good Very Good

Q3: Did the explanation help you make a decision for Q l?
No Maybe Not Don’t Know Maybe Yes Yes

Figure A .4: An example of a Framework explanation when the system was incorrect
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Example K:

Features Query Explanation
Case

Weight (Kgs) 63.0 69.0

Duration 120.0 140.0(minutes)

Gender Male Male

Meal Full Lunch

Units of Alcohol 7.2 6.6

Over or Under Overthe Limit

The prediction for the individual in the query case is: Over the limit

Explanatory Text:

In support o f this prediction we have the person represented by the Explanation Case
who was also Over the limit.

Q l:  Do you think the prediction is correct?

No Maybe Not Don’t JCnow Maybe Yes Yes

Q2: How would you rate the accompanying explanation?

Poor Fair Okay Good Very Good

Q3: Did the explanation help you make a decision for Q l?

No Maybe Not Don’t Know Maybe Yes Yes

Figure A .5: An example of a case-based explanation
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