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Abstract

Artificial Intelligence systems have reached a level of sophistication and accuracy which
means that they can now be confidently used as decision aids in real world situations.
However, although these systems are accurate, users are still reluctant to use them. Unlike
domain experts such systems are unable to present convincing explanations in support of
the recommendations that they make. This is a major shortcoming, as without this
reassurance, people are naturally reluctant to accept unsupported recommendations.

This is an issue which has plagued the Artificial Intelligence community since the
early work on Expert Systems in the 1970s. Early solutions to this problem involved
the presentation of rules used in the reasoning mechanism of the system to the user as
a means of explanation. Such efforts were of limited success, as the rules used by the
system were not easily interpretable and served as poor explanations. However, despite
this, Rule-based explanations are still commonly used today.

Case-based Reasoning explanations represent an alternative approach which has in-
herent advantages in terms of transparency and user acceptability. Case-based reasoning
explanations are based on a naturalistic concept of presenting similar past examples in
support of and as justification for recommendations made. However, the traditional ap-
proach in Case-based Reasoning applications of simply supplying the nearest neighbour
has been found to have shortcomings in terms of providing satisfactory explanations. The
relevance of the explanation case may not be clear to the end user as it is retrieved using
domain knowledge which they themselves may not have.

In this thesis we describe a framework for generating convincing Case-based expla-
nations which addresses the shortcomings of the traditional approach in a flexible and
adaptable manner. Our Framework finds cases that form the most convincing arguments
and is able to explain the relevance of the selected case in terms of discursive text. By

providing useful explanatory feedback we hope to instil greater confidence in the user of



CBR system’s recommendations. The framework we have developed uses a localised so-
lution which is in keeping with the CBR philosophy and uses Logistic Regression models
to extract information useful to the explanation process. This approach supports contin-
ued incremental learning and eliminates the need for expert domain knowledge. We have
carried out a user evaluation of our explanation framework to establish its effectiveness.
Another issue with the deployment of decision support systems is the maintenance
of user confidence in the long term. Although the provision of convincing explanations
may help instil confidence in the user in the short term, if the system makes mistakes
that confidence will be quickly lost. As a means of ameliorating this damage, measures of
confidence in a systems prediction can be given to alert the user to when the system might
be making a mistake. The Framework we have developed also has potential in terms of

assessing the level of confidence that should be placed in recommendations:
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Chapter 1

Introduction

“Computers are useless. They can only give you answers.” Pablo Picasso

Computer technology has come a long way from the time when it simply comprised of
giant machines used to crunch numbers and churn out solutions to calculations that were
too tedious and time-consuming to be carried out by people. Computer systems are now
routinely used to perform tasks that we ourselves don’t fully understand and in contexts
we would never have before envisioned. As computer systems are entrusted with ever more
critical tasks and play more prominent roles in everyday life there has been a demand for
such systems to do more than merely produce solutions and carry out their duties silently.
In many cases, people using such systems are suspicious of them and reluctant to accept
without question the solutions they produce. This problem is typified in a very dramatic
fashion in Douglas Adam’s The Hitchhikers Guide to the Galaxy. A massively powerful
computer called Deep Thought is designed and set the task of calculating the answer to
the Ultimate Question of Life, the Universe, and Everything. When Deep Thought returns
its answer, 7427 its creators are understandably irate, confused and disappointed. They
immediately seek an explanation as to what the question was so that they can understand
the answer. Although extreme, Deep Thoughts response exemplifies a problem which is
common in many computer systems today. As the tasks set to be performed by computer
systems have become more sophisticated and ambitious, the emphasis has shifted away
from their ability to simply produce solutions to their ability to explain and justify those
solutions.

Machine learning research has proven successful in developing increasingly more accu-

rate decision support systems capable of reliably acting as decision aids for human users.




Although more reliable systems are welcomed, the issue of providing useful human in-
terpretable explanations has been largely ignored. Where explanations are provided by
decision aid systems they are usually in the form of rules. Such rules, although useful in
the internal reasoning mechanism of the system, are often not interpretable by users and
serve as poor explanations. This, not surprisingly, has proven to be a major stumbling
block in the application of such systems to real world scenarios (Andrews et al. 1995). In
this thesis we describe a framework for generating convincing explanations for Case-based
Reasoning (CBR) systems. By providing useful explanatory feedback we hope to instil

greater confidence in the CBR system’s recommendations in the user.

1.1 Case-based Reasoning

Case-based Reasoning is an artificial intelligence methodology for solving problems by
using or adapting solutions to old problems (Riesbeck and Schank 1989). Unlike other
machine learning techniques CBR does not try to model the problem domain directly,
instead a set of past examples called cases are retained. Each case is made up of a
description of a past example or experience and its attached solution. The full set of
past experiences encapsulated in cases is called the case-base. When a new problem is
presented the case-base is searched and similar past examples are used to find a solution.

CBR is referred to as a lazy learning technique as the ”learning” process isn’t carried
out until a problem is presented and the case-base is searched. Other machine learning
techniques are referred to as eager learners as they build models of the problem domain
in advance of any problem being presented and use the model to make future recom-
mendations. The approach to learning taken by CBR has a number of advantages that
distinguish it from other machine learning techniques.

The CBR methodology also supports incremental learning. Mistakes the system makes
can be quickly corrected by adding a case representing the correct solution to a problem.
Other techniques would require that the domain model be recompiled. CBR has also
proven to be successful in solving weak-theory problems. These are problems for which
little insight exists and where the problem domain may be complex. Another important

advantage of CBR that is often cited is in terms of user acceptance, Leake (1996):

“...neural network systems cannot provide explanations of their decisions and

rule-based systems must explain their decisions by reference to their rules,




which the user may not fully understand or accept. On the other hand, the
results of CBR systems are based on actual prior cases that can be presented

to the user to provide compelling support for the system’s conclusions.”

However, although CBR does inherently have advantages in terms of providing user
feedback, the case-based solution isn’t without fault and there are still outstanding issues

that need to be addressed.

1.2 Contributions of this Thesis

The primary contribution of this thesis is the development of a flexible explanation frame-
work for Case-Based Reasoning. The Framework was developed in response to the in-
creased demand for machine learning tools that can offer explanations of their recommen-
dations and so instil greater confidence in those recommendations in the user. Although
CBR has inherent advantages in terms of providing explanatory feedback it has been recog-
nised that the traditional approach to CBR explanations is not a perfect solution and that
there are issues to be addressed. The framework we have developed addresses these issues
in binary classification tasks while maintaining the strengths of the CBR approach. Our

approach has a number of novel features;

e it applies a lazy approach to explanation production that utilises localised logistic

regression models,

e it selects cases that form the most convincing arguments in an automated way and

without domain knowledge,

e it provides discursive texts describing the effects of differences in feature-values be-

tween the Query Case and the Explanation Case without prior domain knowledge.

e it provides a measure of confidence in the system’s prediction to alert the user to

when there is doubt about a system decision,

e it is not resticted purly to CBR systems and we demonstrate that Case-based reason-
ing explanations can be used to provide explanaions for Black Box machine learning

algorithms.




1.3 Publications Related to this Thesis

e Conor Nugent, Padraig Cunningham and Doénal Doyle.: 2005, The Best Way to
Instil Confidence is by Being Right; An Evaluation of the Effectiveness of Case-
Based Explanations in providing User Confidence, 6th International Conference on
Case-Based Reasoning, eds. H.Munoz-Avila and F. Ricci, pp368-381, Springer LNAI
3620.

e Conor Nugent, Dénal Doyle and Padraig Cunningham.: Gaining Insight through
Case-Based Explanation. To appear in CBR in Knowledge Discovery and Data
Mining, eds. S. Pal, D. Aha and K. Moy Gupta, Wiley.

e Conor Nugent and Péadraig Cunningham.: A Case-Based Explanation System for
Black Box Systems. To appear in Artificial Intelligence Review , ed. D. McSherry,
D. Leake.

e Donal Doyle, John Loughrey, Conor Nugent, Lorcan Coyle, Padraig Cunningham.:
2005, Fionn: A Framework for Developing CBR Systems, in Ezpert Update 8(1),
11-14.

e Conor Nugent and Pédraig Cunningham.: 2004, A Case-Based Explanation Sys-
tem for 'Black Box Systems’; In Gervs, P. & Gupta, K.M. (eds.) Proceedings of
the ECCBR 2004 Workshops, Technical Report 142-04, Departamento de Sistemas
Informticos y Programacin, Universidad Complutense de Madrid, Madrid, Spain.

165-174.

1.4 Summary and Structure of this Thesis

In brief: Chapter 2 describes how explanations are produced in other machine learn-
ing techniques. Chapter 3 describes the case-based reasoning methodology, reviews the
history of explanations in machine learning and in particular CBR. Chapter 4 describes
the Explanation Framework we have developed. Chapter 5 describes how our Explana-
tion Framework was implemented. Chapter 6 contains evaluations of our Explanation
Framework and the thesis is concluded with Chapter 7.

In more detail: In Chapter 2 we briefly describe how providing explanations has




been approached in other machine learning technologies as well as highlighting the short-
comings and limitations of such approaches.

In Chapter 3: we describe the basic CBR methodology with a particular focus on its
potential in terms of providing explanations. We then present a review of explanations in
CBR. We highlight the advantages of the CBR approach in contrast with others but also
highlights issues of this approach that need to be addressed.

Chapter 4 describes the Explanation Framework that we have developed. It points out
the issues that the Framework attempts to address and describes the approach taken in
addressing these issues. It provides step by step examples of how each of the component
parts of the Framework are carried out and examples of the explanations produced by the
Framework.

Chapter 5 describes Fionn, the machine learning workbench that we have developed
and in which the Explanation Framework was implemented. We outline the basic structure
of the Fionn workbench and describe the case representation technology underpinning it,
CBML. We then outline briefly how two classifiers, k-NN and Logistic Regression, were
implemented as part of the Fionn workbench. Once we’ve described these basic elements
we outline how they were used to implement the Framework.

Chapter 6 contains the evaluations that we have carried out on the various aspects of
our Explanation Framework. We present the findings of a user evaluation we carried out
on the Framework to determine its effectiveness in improving user confidence. We also
evaluate the localised logistic regression as a classification method in comparision with
K-NN and globalised approaches. Finally we investigate the potential effectiveness of the
estimates of confidence produced by our Framework.

Finally Chapter 7 concludes the thesis and describes some further work that could be

investigated.




Chapter 2

Machine Learning and

Explanations

In this Chapter we briefly review how explanations are produced by other machine learning
technologies. We highlight the shortcomings of some of the approaches taken and the
lessons that have been learnt in those past attempts. The earliest attempts at providing
users with explanations stemmed from work that was done on Expert Systems in the
1970s. This work first highlighted the need for explanations and the weaknesses of artificial
intelligence techniques in providing them. Importantly, it also generated discussion on
what a good explanation would be and how it could be provided. Although the Rule-
based approach used in Expert Systems was found to be of limited use, it is this form
of explanation that has persisted in the machine learning community. Decision Trees
are often used to produce explanations as they are deemed to be interpretable models
which can be easily transformed into rule form. Other machine learning systems lack any
transparency in the way they operate and are so complex that they are deemed to be
Black Boxes. The provision of an explanatory component for such systems has proven
to be a major problem. Instead of provding explanations based directly on the system,
special explanation components are developed. Many of these explanatory systems are
again rule-based approaches. We will begin this chapter with a review of the work on

Expert Systems before moving on to Decision Tree and Black Box approaches.




2.1 Expert Systems

Expert Systems seek to encapsulate the knowledge and expertise of a particular domain in
the form of rules. Using this knowledge the Expert System can then assist users in making
decisions in an interactive way. One of the earliest examples of such a system is MYCIN
(Shortliffe 1976) which was developed in the 1970’s and inspired many other Expert Sys-
tems (Jackson 1986). MYCIN is an interactive program that diagnoses certain infectious
diseases, prescribes anti-microbial therapy, and can explain its reasoning in detail. The
ability to explain its reasoning was added to offer a greater degree of transparency into
the reasoning process of the system and so instil greater trust in it’s recommendations.
Users could ask the system why it was asking for certain information.

However, the explanations offered by the system were soon found to be inadequate and
confusing. The explanations offered by MYCIN were formulated in terms of the rule-based
structure used internally by the system for reasoning and weren’t readily interpretable
by users. Later Expert Systems such as NEOMYCIN and XPLAIN sought to improve
on this short-coming (Clancy and Bock 1982, Swartout 1983). The XPLAIN system
supplemented its explanations with background information and references to literature
thus giving greater credence to its actions.

Although efforts were made to improve the explanations produced by early Expert
Systems these efforts largely failed as the rule-based explanations they produced were
incomprehensible to users. It was realised that the requirements of users in requesting
explanations were not being properly addressed (Majchrzak and Gasser 1991). This led
many people to investigate what the requirements of users seeking explanations were and
what criteria explanations produced must meet in order to fulfil those requirements.

Swartout and Moore (1993) made the first attempt to address the issue and proposed
five requirements for explanations; fidelity, low construction overhead, efficiency and that
they are understandable and sufficient. The requirements of low construction overhead
and efficiency refer to how easily explanations can be generated at runtime and reflect
concerns about the level of computational power available which although relevant at that
time can be largely ignored now. The requirements of fidelity and being sufficient refer to
the belief that the explanations produced should reflect exactly the knowledge stored in
the system and that there should be sufficient knowledge within the system to answer any

question users might have. Most of the requirements refer to the mechanics of producing




an explanation with the exceptions that explanations be understandable and have fidelity
to the Expert System. These two requirements would seem to be in conflict with each
other as the information stored in an Expert System is often incomprehensible to users.
Wick and Thompson (1992) take a much more user centric approach and they argue
strongly against fidelity being a requirement of an explanation. They view the explanation
provision task as being separate to that of the Expert System’s diagnostic task. They
propose three goals which explanations produced by a system might serve which reflect

the requirements of three very different types of user;

e Verification: to help the end user verify the knowledge used by the system. This
form of explanation is intended for knowledge engineers who are interested in and

comfortable with the inner workings of the Expert System.

e Duplication: reproduce the knowledge in the system in a form that is acceptable

to domain Experts.

e Ratification: the explanation should increase the end user’s confidence in the sys-

tem’s recommendation.

Importantly Wick and Thompson realised that the explanation process can and should
in some cases be decoupled from the reasoning process. The single greatest requirement
of any explanation should be the needs and goals of the user and that this should be
the primary criterion for any explanation. Presenting explanations based purely on the
reasoning process in some cases will fail to meet these needs.

Construction of the knowledge base of rules on which Expert Systems rely is a time-
consuming task that requires continued access to domain experts and consultation with
Knowledge Engineers. Such access may not always be possible. In the next section we

discuss Decision Trees which can be used to automatically extract rules from raw data.

2.2 Decision Trees

Decision Trees are an extremely popular machine learning technique that model classifi-
cation tasks in a natural and intuitive form. The technique models the decision process as
a series of linked test conditions. Each test condition forms a node in the tree structure

and depending on the outcome of that condition the decision process continues along a




branch from that node to the next. This process is continued until a terminating node is
reached and the decision process is completed. For example, Figure 2.1 depicts a Decision

Tree that models the decision as to whether to play tennis or not (Mitchell 1997).

Outlook
/’\
Sunny Overcast Rainy
Humidity ° Wind
High Normal Strong Weak

D

Figure 2.1: An example of a Decision Tree for deciding whether to play tennis or not

The process begins with the root node where the outlook attribute is tested. There
are three possible outcomes to this test and these are represented by the branches. If the
outlook attribue was sunny then the decision process would move on to a second node
and the humidity node would be tested. Finally based on the result of that test a decsion
would be made as to whether to play tennis or not.

Decision Trees must first be contructed from raw data using some form of induction
algorithm. In designing a Tree induction algorithm a number of choices must be made.
For example, the type of conditions contained in the nodes and selection criteria to be
used in chosing which attributes to test. The choices made for such decisions distinguish
the one Decision Tree algorithm from the next. The fundamental choices in the design of

Decision Tree induction algorithm can be summarised as;

e The Splitting Function: This is the scheme used to split the sample space at
each successive node. Normally a single attribute value is tested as in Figure 2.1
but other more complex multivariable schemes have been used (see Section 3.2.3).
Schemes using a single variable are called univariate while the others are known as

multivariate.

e Splitting Criterion: Once a splitting function has been defined the manner in




which the various possible function parameters are selected needs to be considered.
Most Tree algorithms operate by constructing the Tree in a greedy non-back tracking
manner. This makes the choice of splitting parameters critical since choices cannot
later be revised. The splitting parameters are usually selected based on some sta-
| tistical measure of how likely the resulting split is to lead to a successful terminal

split.

e Leaf Node Function: How data that reaches a terminal node is represented is
another point where Tree induction algorithms can deviate. For classification Trees
the leaf node is usually assigned the majority class of the samples that reach that
node but k-NN algorithms have also been used. For regression tasks the leaf node
is usually assigned the average value of all samples that reach it. However, some
algorithms may use simple representational models of the data that reaches a leaf
node. In such cases simple models such as linear regression equations are used to

approximate regions of the sample space.

e Stopping Criteria: Trees can be potentially grown until there are nearly as many
leaf nodes as there are data samples. To do so would drastically affect the Trees in-
terpretability and generalisation properties. So some measures are needed to control
the growth of the Tree. These measures can either be global, looking at the over-
all structure of the Tree, or local, applied at the level of node partitioning. Global
schemes usually predetermine the overall structure of the Tree; they define how many
internal nodes a Tree might have. Local schemes might limit the further expansion
of a node if the extra accuracy gained on the training set is below a certain thresh-
old. In practice, such stopping measures may miss unpromising Tree expansions that
later lead to useful informative expansions. To counteract such an event, Trees are

usually grown liberally and later pruned back to a desired level of complexity.

e Pruning Scheme: Once a Tree has been grown it may be necessary to collapse back
the nodes so as to improve the generalisation and interpretability of the model. The
manner in which this is done, the criterion for determining the nodes for collapsing,

is a further point where induction algorithms may differ.

Some popular algorithms include for classification tasks include ID3 (Quinlan 1986),

its successor C4.5 (Quinlan 1993) and ASSISTANT (Kononenko et al. 1984, Cestnik et al.
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1987). Descision Tree algorithms have also been developed for regression tasks such as
CART (Breiman et al. (1984)) and Quinlan’s M5 (Quinlan (1992)).

One of the major reasons for the popularity of Decision Trees is their advantages
in terms of interpretability. As each path from the root to a leaf corresponds to one
conjunction of tests the paths can be written down as a set of IF-THEN rules. One
method of producing rules is C4.5 (Quinlan 1993). These rules can then be used as
the basis for an explanation. For example consider a hot humid sunny day with a high
temperature and weak winds. From Figure 2.1 we can see that this type of day is not
suitable for playing tennis. The leaf node for this decision is the bottom left node of the
Decision Tree. Therefore an example rule that can be used as an explanation for this path

is:

Rule: IF(Outlook=Sunny) AND (Humidity=High) THEN NO

Explanation: As the outlook is sunny and humidity is high it is not suitable to

play tennis today.

Explanations of this form are not always as simple for a user to understand as that
shown in Figure 2.1. As the depth of a Decision Tree increases so to does the complexity
of the generated rules. Complex problems can quickly lead to Decision Trees that are so
large and complex that they interpretable qualities are completely lost. As we shall see in

Section 2.3.1 this can often be the case.

2.3 Explanations for Black Box Systems

In machine learning research the quest for increasingly more accurate and stable classifiers
has led to ever more complicated algorithms. Ensemble approaches and algorithms such as
Support Vector Machines and Neural Networks have reached a level of complexity where
they are not readily interpretable. Such approaches are commonly referred to as black-box
algorithms owing to their lack of transparency with regard to the reasoning behind the
predictions they make.

Although increases in accuracy are welcomed, research has highlighted the need for
interpretability and transparency as a critical aspect in the implementation of machine
learning techniques in real world applications (Andrews et al. 1995). People are under-

standably reluctant to accept without question predictions from black-box systems.
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This has led to the development of explanation systems that strive to offer an insight
into the workings of the black-box systems. Many different approaches have been taken
but commonly the explanation systems try to build machine learning systems that are
inherently interpretable such as Tree-based or Rule-based systems that describe the un-
derlying Black Box e.g. (Andrews et al. 1995, Tickle et al. 1998, Zhou and Jiang 2003).
The relevant rules or a Tree structure is then used as evidence in support of the black
box’s prediction. Such systems use the Black Box as an oracle capable of supplying an
unlimited amount of training data. The hope is that, with an abundance of training data,
the explanation system should offer a good description of the underlying black-box system.

However, in reality such systems are limited in the level of fidelity that they can
achieve while maintaining some level of interpretability. The differing bias of the black-
box algorithm and that of the one being used for explanations means that it can be difficult
to fully capture the operation of the black-box system. Domingos (1998) focused on how
well an explanation facility captured the improvements gained through the use of ensemble
techniques. He found that it retained just 60% of the gains. More accurate descriptions of
the operation of the black box often come at the cost of increasingly more complex Tree
and rule-based systems. This trade off in interpretability versus fidelity means that such
approaches are of limited use as a convincing explanation system when the underlying
problem is complex and the credibility of the system can be damaged by bad, inaccurate
or convoluted explanations (Majchrzak and Gasser 1991). An example of such an approach

is the Decision Tree based approach called TREPAN.

2.3.1 TREPAN

TREPAN is a Decision Tree based approach to providing explanations for Black Box
Systems (Craven and Shavlik 1996). TREPAN seeks to extract the information trapped in
the Black Box and deliver it in a more intrepretable form, as a Decision Tree. TREPAN is
an algorithm that maintains a pedagogical approach, utilising the Black Box as an oracle
from which extra task specific information can be gleaned during the learning process.
TREPAN differs significantly from other popular Decision Tree algorithms such as CART

and C4.5 in a number of ways;

e Membership Queries and the Oracle: TREPAN queries the network as to the

class of various instances. Theses queries are used in two ways. Initially they are



used to establish the classes of the training instances. This is carried out to ensure
that the data used to train the Decision Tree reflects the function that has been
learnt by the Black Box.The data is relabelled depending on how the Black Box

would label it.

Secondly, TREPAN ensures that at any point it has a predefined number of instances
at a node before assigning it a class or defining a splitting criterion. If a situation
is reached where there are not enough instances the network is pooled with relevant
queries until the deficit is depleted. The relevant queries are based on the set of

constraints needed to reach the given point in the tree.

e Tree Expansion: TREPAN uses a best-first criterion to expand the Tree, unlike
most Decision Tree algorithms which are based on a depth-first greedy search. The
notion of the best node, in this case, is the node at which there is the greatest

potential to increase the fidelity of the extracted Tree to the network.

e Splitting Tests: Each non-leaf node in a Tree contains a test that is used to split
the instance space at that node. C4.5 and CART use simple single feature tests
whereas TREPAN uses M-of-N type expressions as splitting criteria. An M-of-N
rule is a Boolean expression that is specified by an integer threshold, M, and a set
of n Boolean literals. The rule is true if any M of the N Boolean literals are true.

By using M-of-N tests its hoped that a more concise Tree will be produced.

TREPAN has been applied successfully to a number classification problems including
ensembles of Neural Networks. Although great care is taken to try and ensure that the
Decision Trees produced are small and concise the Trees produced are not easliy inter-
pretable.

An example of a Decision Tree produced by the Trepan algorithm for a predicting
whether stock prices are going to go up or down can be seen in Figure 2.2. In this example
there is a large root node which contains a large set of M of N conditions. Although these
nodes are especially designed to produce a concise interpretable Tree it is difficult to see
if any real insight into the domain can be garnered by such Trees.

The second example in Figure 2.3 is of the Tree produced to predict which way a
voter is likely vote, either democrat or republican. Here, although the functions contained

within each node are relatively simpler than those in Figure 2.2, the overall Tree structure
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Figure 2.2: A Decision Tree produced by Trepan

-

is much larger. Again it is difficult to see whether such Trees or portions of them could
serve as convincing explanations to users who aren’t themselves experts in both the domain

in question and also in machine learning itself.

2.4 Summary

It is clear that there has been a demand for interpretable explanations in Artificial Intel-
ligence technologies from a very early stage in the development of the field. However, as
the field has grown and more sophisticated techniques have been developed, the need for
explanations has been largely ignored. Decision Trees do have explanatory potential which
quickly breaks down as problems become more complex and the Tree structure grows.
Importantly, as Wick and Thompson (1992) point out the user’s demands and goals

must be taken into account in designing explanations. Rule-based approaches represent at-
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Figure 2.3: A Decision Tree produced by Trepan

tempts by machine-learning designers to build interpretable models but these approaches
have not been designed with the intention of explaining individual decisions or recommen-
dations. This task is different and the use of Decision Trees in this context represents
a poor solution. The explanations produced by such systems have been found to be too
complex for users to understand. Case-based reasoning has an inherent advantage in terms
of providing humanly interpretable explanations and in the next Chapter we will discuss

the CBR methodology as well existing research in CBR in providing explanations.
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Chapter 3

Case-based Reasoning and

Explanations

Case-Based reasoning (CBR) is a machine learning technique that differs fundamentally
in its approach to problem solving in comparison with other techniques. Most other tech-
niques such as Decision Trees and Neural Networks are model-based and try to generate
general models of the problem domain which can then be used to solve future problems. In
the case of Neural Networks the model is encoded in the structure of its neurons and their
attached weighted connections. In Tree-based and Rule-based systems the knowledge is
described by an explicit set of rules. CBR in contrast contains no explicit model of the
problem domain, instead a set of past examples called cases are retained. Each case is
made up of a description of a past example or experience and its attached solution. The
full set of past experiences encapsulated in individual cases is called the case-base. As an
example of a simple case please consider the one shown in Table 3.1 which is taken from
the Blood Alcohol Content (BAC) case-base (Cunningham, Doyle and Loughrey 2003).
The task in this domain is to predict whether an individual is over the legal drink driving
limit or not. The features such as Weight and Meal are used to describe the past examples
and characterise the present problem. Each case in the case-base has its solution attached
which in this case is just the label Under, reflecting that the individual was found to be
under the drink-driving limit.

In CBR problems are solved ” by using or adapting solutions to old problems” (Riesbeck
and Schank 1989). When a new problem is presented, the case-base is searched and similar

past examples are found and used to solve that problem. The need to detect and model
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Table 3.1: Example from the Breathalyser Domain

Features Sample
Case
Weight 76
Duration 60
Gender Male
Meal Full
Units 2.9
BAC Under

general patterns in the problem space is avoided. For example in the BAC domain, to
determine whether a particular individual is under or over the drink-driving limit their
characteristics such as Weight and what kind of meal they’'ve had are recorded and the
case-base is searched for similar past cases. Using these cases a classification for the present
problem is determined.

The very different approach taken to problem solving in CBR has a number of ad-
vantages. CBR has proven to be successful in solving weak-theory problems, problems
for which little insight into the problem exists and the problem domain may be complex.
Instead of having to formulate a set of rules which can be applied to solving the problem
a set of past examples is used. In CBR problems are solved using the cases that are most
relevant to that problem. This localised approached taken in CBR means that it is suited
to problems that are complex and non-linear in nature. Cases can often be found readily
available in form of records in a database. It is for this reason that CBR can result in
lower knowledge engineering cost in comparison to other techniques (Cunningham 1998).
Where rules can be generated reasonably easily, for example by Decision Trees, CBR still
maintains a number of advantages. One particular advantage is in terms of maintenance.
CBR is a lazy learning technique which means that it defers all problem solving effort until
runtime. Given the lazy learning approach taken and given that one of the main sources
of knowledge in CBR system is the case-base, the system can easily be updated when
new information becomes available by simply adding new cases to the case-base. Other
techniques would require that the entire model is recompiled. The CBR methodology also
supports incremental learning. Mistakes the system makes can be quickly corrected by
adding a case representing the correct solution to a problem. However, in reality in order

to ensure the continued accuracy of a case-base system care must be taken as to how it is
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maintained. This includes examining the contribution of each case within the case-base to
the system’s performance and altering the case-base accordingly as well as looking at the
other areas of knowledge within the CBR system. Schemes for performing such tasks have
become an important area of research with the CBR community (Smyth and McKenna
2001, Delany et al. 2005, Delany and Cunningham 2004b).

Another advantage of CBR that is often cited is in terms of user acceptance (Leake
1996). The lack of ability of many machine learning techniques to provide users with
explanations has proven to be a major failing when used in real world environments. It
has previously been taken for granted that CBR does not suffer this same shortcoming.
However, although CBR does inherently have advantages in terms of providing user feed-
back the issue is less straightforward than previously thought and has recently become
the focus of much interest in the research community. Addressing the issues surrounding
CBR explanations in classification forms the main focus of this thesis and we will review
the issues in this area along with the relevent research in Section 3.4. Before we look at
CBR explanations we will first outline in more detail the important aspects of the CBR
methodology with a particular emphasis on CBR as a classification technique and also

look at the historical origins of CBR in Sections 3.1 and 3.2 .

3.1 Origins Of CBR

Ideas on the role of analogy and the use of past experiences in reasoning can be traced
back to the work of Thagard, Gentner, Schank and Wittenstein among others (Holyoak
and Thagard 1989, Gentner 1983, Schank and Abelson 1975, Wittgenstein 1943). For
instance Wittenstein observed that natural concepts such as tables and chairs are in fact
polymorphic and cannot be classified by a single set of necessary and sufficient features but
instead can be defined by a set of instances cases with family resemblances (Wittgenstein
1943). This work has been cited by Aamodt and Plaza as the philosophical basis for CBR
and suggests the need for a case-based approach in weak-theory domains (Aamodt and
Plaza 1994).

The work of Thagard, Gentner and Schank all comes from the cognitive science field.
Thagard and Gentner focused on a cognitive model of thinking based on analogy and
Thagard also went on to investigate the important role of analogy in explanations (Thagard

1989). Gentner’s research has mainly focused on the role of analogy in learning (Gentner
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et al. 2001). Although the research into the role of analogy in reasoning is very much
related to CBR the work of Roger Schank and his research group very much defined CBR
as it is known today (Schank 1999).

3.2 The CBR Methodology

The CBR methodology has a logical step-like structure that can be broken down into four
distinct phases. These phases are often referred to as the 'Four REs’ cycle as described by
(Aamodt and Plaza 1994). Figure 3.1 shows a diagram of this system. This cycle contains
four phases which we will first list and describe very briefly before discussing each phase

in greater detail:

Problem
Description
Retrieve

Y

Retrieved
Case

Learned
Case

General

Knowledge \
Retain K j Reuse

Solved
Revise Case

Proposed
Solution

Tested/
Repaired
Case

Confirmed
Solution

Figure 3.1: The CBR Cycle (Aamodt and Plaza 1994)

Retrieval To begin with, the case-base is searched and the most similar cases to present

problem description are sought out and retrieved.
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Reuse The retrieved cases are then used to generate a solution to the presented problem

description.
Revision The proposed solution is evaluated and validated.

Retention Once a satisfactory solution has been reached the problem description and

solution are then added to the case-base.

3.2.1 Retrieval

The retrieval stage is generally held to be the most important phase of the CBR method-
ology as so much is dependent on finding a good set of cases given the problem case.
There are a number of ways in which this can be done. Some apporaches taken include
indexed-based retrieval and use database methods but the method most commonly used
in classification tasks is the k Nearest Neighbours (k-NN) retrieval algorithm. In the k-NN
algorithm a case representing the present problem is compared with each case in the case-
base and a similarity score is calculated. The similarity score calculated for two cases is
based on the amalgamation of the similarities scores for each of the features that describe
a case. For clarity we will refer to similarities between features as local similarities. Local
similarity scores can be calculated using simple functions such as the Euclidean distance
in the case of real-values features or exact match criteria for nominal features. However,
more sophisticated measures are commonly used. For example in the case of unordered
symbolic features a similarity table can be defined or a value difference metric can be de-
fined (Salzberg 1991). There has also been much research on learning similarity measures
(Wettschereck et al. 1997, Stahl and Gabel 2003, Stahl 2002). In this case the similarity
function is learnt in much the same way that many other machine learning tasks are.
Once a satisfactory set of local similarity measures have been decided they can be used
in the amalgamation function to define the overall similarity between two cases. Similarity
between two cases Q and C' is usually defined as the sum of the local similarity values
multiplied by their relative importance:
$im(Q,C) =Y wy X oy (3.1)
fer
where o is the local similarity function for feature f and wy reflects its weight (or im-

portance). F' is the set of all features in Q. Again the determination of what weight to

attach to each feature is a very important issue. The k-NN algorithm is very sensitive
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to the presence of irrelevant or noisy features. Finding a good set of feature weights can
greatly improves the performance of the CBR system and it is a topic that has received a

lot of attention (Stahl 2001, Aha 1997).

3.2.2 Reuse

After the retrieval phase the CBR system is left with one case or more from which to
derive the solution. In the case of classification tasks this is usually a relatively trivial
task. Either the most similar case’s solution is used or the majority solution found within
a certain number of the most similar cases is used. When CBR is used in knowledge
intensive domains the returned solutions are often more complex then a simple class label.
A solution may constitute a set of actions to be taken or a set of ingredients to manufacture
viable tablets (Bergmann 1993, Craw et al. 1998). In these cases the solutions often have
to be adapted to take into account differences in the problem specification and this can be
a complex task. It often requires considerable domain knowledge in order to perform the
adaptation process and information may not be easily encoded in weak-theory domains.
This knowledge gap has led Watson (1997) to refer to the adaptation process as the
Achilles’ heel of CBR.

3.2.3 Revision

CBR systems inevitably make mistakes and before any suggested solution is added to the
case-base it is first validated. In this way the CBR system can fine tune and improve its

performance in a real time learning scenario.

3.2.4 Retention

The retention phase involves updating the CBR system based on any feedback received.
This normally means the addition of a new case when the system has made an error but
can also mean adjustments to other elements of the system such as altering the similarity
measures. In some systems operating in complex domains the case representation that is
added to the system can also include additional information on the outcome of the solution,
which may also include fine-grained information on how well the solution addressed systems
goals Goel et al. (1991). Similarly other systems record more than just the result and

record the problem solving process itself Veloso and Carbonell (1994).
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3.3 The Knowledge Contained in CBR Systems

Unlike rule-based systems but like techniques such as neural networks, all the knowledge
contained in a CBR system isn’t stored in one easily identifiable place. Although cases
form the most obvious source of knowledge much other knowledge can be distributed across
other elements of the system. In providing explanations we need to draw on knowledge
stored within the system and it is important to realise where this knowledge can lie.
Richter has identified four different ways in which knowledge can be represented in a CBR
system (Richter 1995, 1998). He has named these knowledge containers and they have
met wide acceptance as a natural organisation of knowledge in CBR. Richter’s knowledge

containers are:

Vocabulary Knowledge The attributes and predicates that can be used to describe the

cases.

Case Knowledge consists of the problem episodes or instances represented as cases that

can be used to solve similar problems in the future.

Similarity Knowledge represents the similarity measures which are used to match cases

in a particular domain.

Adaptation Knowledge is knowledge used to adapt the solution of the matching case

for the target problem.

The knowledge for the vocabulary, similarity measure and solution transform is struc-
tured and used at compile time and the knowledge in the case-base plays its role only at
run time. Richter suggests that this is the major advantage of CBR because the knowledge
acquisition of cases is easy. Although the acquisition of knowledge in the other containers
is more difficult to obtain, shifting knowledge from the case-base to another container can
lead to significant improvements in the system. As highlighted in Section 3.2.1 much of
a CBR system’s performance is dependent on its similarity measures and much effort can
go into ensuring that these measures are effective. This means that much of the knowl-
edge in a CBR system can end up being stored as similarity knowledge. It is clear that
knowledge encapsulated in a CBR system may not be explicitly expressed to the user in a
classification task. The user may see the benefits of case and similarity knowledge in the

classification presented to them, however this knowledge is still hidden away from the end
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user. This is a particular problem in case-base explanations as we shall see in the next

section.

3.4 Case-based Explanations

In Chapter 2 we discussed how explanations are produced by other machine learning tech-
niques. It was clear that many machine learning techniques lacked any inherent ability to
produce explanations while those that do are limited in the scope in which their expla-
nations are applicable. Conversely CBR systems have an inherent transparency that has

particular advantages for explanations as Leake (1996) points out:

“...neural network systems cannot provide explanations of their decisions and
rule-based systems must explain their decisions by reference to their rules,
which the user may not fully understand or accept. On the other hand, the
results of CBR systems are based on actual prior cases that can be presented

to the user to provide compelling support for the system’s conclusions.”

At this stage it is useful to make the distinction between knowledge-intensive and
knowledge-light explanations. Knowledge-intensive approaches involve designing the case
structure with explanations in mind and inserting explanation patterns (Schank 1986).
The most notable and influential work was that by Leake (1992) on SWALE. The SWALE
project investigated the potential of CBR to produce creative explanations of anomalous
events. It produces explanations based on the retrieval and application of especially con-
structed cases storing explanations to prior events. These explanation patterns are then
retrieved and used to explain new events. The name SWALE came from a young suc-
cessful race horse that died suddenly and unexpectedly in 1984. After the horse’s death
many people hypothesised as to the cause of death. Providing many different interesting
explanations of this event served as the test scenario for the SWALE system. For instance
given the Janis Joplin explanation pattern stored within the system, SWALE hypothesises
that a possible cause of death was a drugs over-dose. Another more recent example of
a knowledge intensive approach to explanations is the DIRAS system (Armengol et al.
2001).

In contrast to the Knowldge-Itensive approach the Knowledge-light explanations rely
on revealing the cases used in the reasoning process as they are. The focus of this the-

sis is on explanations produced in an automated fashion which is in keeping with the
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knowledge-light approach. The focus of the rest of this Section will be on knowledge-light

explanations.

3.4.1 Goals, Advantages and Limitations in CBR Explanations

The concept of an explanation is intuitively understood by most people, we use them
effortlessly throughout our everyday lives. However the vast array of contexts and ways
in which explanations are used means that the concept of an explanation is an extremely
difficult one to concretely define. What might be considered a valid and good explanation
in one context might have no meaning in another. The slippery nature of the explanation
concept of course impacts on the way in which explanations can be evaluated. There is no
one fixed criteria on which all explanations can be judged. Explanations can only really
be evaluated in terms of how effectively they meet the objectives that necessitated the
creation of the explanation.

However, within the machine learning community explanations are usually used within
a restricted range of contexts and with clear objectives. Sormo and Cassens (2004) define
a set of goals that explanations might serve in CBR systems that was inspired by the
categorisation proposed by Swartout and Smoliar for explanations in early rule-based
systems (Section 2.1). They defined five categories based on the goals that the explanation

might serve:

e Transparency: The goal of the explanation is to impart an understanding of how

the system found an answer.

e Justification: This is the goal of increasing the confidence in the advice or solution
offered by the system by giving some kind of support for the conclusion suggested

by the system.

e Relevance: An explanation of this type would have to justify the strategy pursued

by the system.

e Conceptualization: The explanation serves to make clear to the user the knowl-

edge and vocabulary used by the system.
e Learning: The primary role of an explanation is to impart knowledge to the user.

The goal that most explanation systems in knowledge-light classification tasks serve

is primarily justification. The typical form of explanation used in the knowledge-light
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domain is presenting the user with the most similar case. For example, consider Table 3.2.
Here we have aTarget Case representing the present problem for which the system has
predicted the subject is under the drink-drive limit. Beside the Target Case we can see
the Ezplanation Case presented to the user as support for the prediction given. Implicit
in this form of explanation is the argument that given the precedent of the Ezplanation

Case and its similarity to the present situation the proposed solution is justified.

Table 3.2: Sample knowledge-light explanation from the BAC Domain

Features Target Explanation
Case Case

Weight 76 76

Duration 60 60

Gender Male Male

Meal Full Full

Units 2.9 2.6

BAC Predicted Under
Under

This type of explanations and the insight it offers to the end user differ considerably

from those found in rule-based and other approaches in a number of ways:

e Natural Form of Explanation: Research in cognitive science and other areas sug-
gests that explanation by analogy is a natural form of explanation in some domains
and one people can quickly relate to. Cunningham, Doyle and Loughrey (2003)
conducted a trial in which they compared users’ satisfaction with simple case-based
explanations as seen in Table 3.2 and alternatively with rule-based explanations.
They found that in general users had a preference for case-based explanations. Gen-
tner et al. (2003) investigated the role of analogy in learning and although referring
to more elaborate text based cases argue cases and examples are concrete, they are

more engaging and more easily understood than abstract, domain-general principles.

e Use of Real Evidence: In CBR the user is presented with actual cases that repre-
sent past experiences. In most applications these cases are undoubtedly true and so
their validity isn’t in question, this is the great strength of case-based explanations.
Users who are unfamiliar or suspicious of a system are more likely to be convinced

by explanations that contain factual evidence than by unsupported rules.
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e Fixed and Simple Form of Explanation: CBR explanations avoid the inter-
pretability versus fidelity trade off that can plague some other techniques. In other
forms of explanation such as rule-based, the explanations can grow more and more
complex in line with the complexity of the problem. This can lead to explanations
that aren’t intrepretable. In case-based explanations the explanation presented to

the user, a case, is independent of the complexity of the problem.

Although simply presenting the most similar case can be perfectly adequate as an
explanation, there has been a growing realisation among the CBR community that the case
alone might not always fully suffice as a satisfactory explanation. The major challenge with
case-based explanations lies in ensuring the perceived appropriateness of the presented
cases to the validity of the prediction. The task of ensuring that the cases are deemed

appropriate and convincing can be broken down into two challenges:

e Selecting the Best Case to Present to the User: The major driving force for
the provision of explanations is to offer a justification for a prediction. The goal
of providing a convincing argument may not always be best served by supplying
the user with the nearest neighbours. Convincing explanations are domain and
user dependent (Sormo and Cassens 2004), and this should be reflected in the case
retrieval process. As discussed in Section 3.3 the utility for which the cases are to
be used should be reflected in the similarity measures used. Taking the domain and
user details into account, the retrieval process should be adjusted to select the cases
that form the most convincing argument. We will describe work that addresses the

retrieval process in this way in Section 3.4.2.

e Explaining the details and relevance of retrieved cases: This is an issue that
has recently received a lot of attention in the CBR community (Nugent and Cun-
ningham 2005, McSherry 2004, Sormo and Cassens 2004). In CBR explanations, the
ability of the user to make meaningful comparisons between feature values in the
query and the retrieved explanation cases is of critical importance to the success of
the explanation. CBR systems are not wholly transparent and much domain knowl-
edge can be contained within the similarity metrics used in the system as highlighted
in Section 3.2.1. It is implicitly assumed in simple CBR explanations system that the
user has this same domain knowledge and so the appropriateness of the explanation

case is clear. However, this may not be the case and the relevance of the retrieved
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case may be lost on novice users. By providing users with extra explanatory feed-
back further insights into the problem are given in addition to further reassuring the

user.

A further challenge to using explanations to foster user confidence is to do so in the
long run. The primary motivation in providing users of CBR systems with interpretable
explanations is to increase their confidence in the system. However, as is pointed out by
Cheetham and Price (2004), people can quickly lose confidence in a system if it makes
predictions which then turn out to be incorrect. This may well be further compounded
if the suggested incorrect solution was supported by an explanation (Watson 1997). To
address this issue Cheetham and Price propose using confidence measures so as to alert
the user to when a system may be making a mistake.

Already these issues have begun to be addressed by the CBR research community and

in the next section we will highlight and discuss some systems that address these issues.

3.4.2 CBR Explanation Systems
ProCon

The issue of transparency is one that McSherry has addressed in his ProCon System
(McSherry 2003). McSherry has focused on making the relationship between the feature
values within a case and its predicted value explicit. He argues that simply presenting
the feature values in the most similar cases may be misleading. The relationship between
feature values and the predicted value may not always be a positive one; the presence of
some feature values may in fact be evidence against the prediction. Simply supplying the
user with a case may lead them to incorrectly infer the relationship between feature-values
and the prediction. To combat this McSherry provides the user with extra relational
information about the case feature-values and the predicted class-value. To infer the
feature-values to class-value relationships, a Naive Bayes model is built on the entire
training set and from this the relational information is derived. Using the Naive Bayes
model it is possible to infer the effect of different feature-values and so inform the user
whether a particular feature-value is a supporter or opposer of a given prediction. In table
3.3 we can see an example of the ProCon-2 system’s output as seen in (McSherry 2003).

Although this approach does succeed in providing the end user with information on the

relationships between feature-values and the predicted outcome, the manner in which it
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Table 3.3: Sample ProCon-2 Output from (McSherry 2003)

ProCon-2:  Please describe the target problem.
User: weight=79, duration=90, sex=male, meal=full, units=10.1
ProCon-2: The 3 most similar cases are:

Case 13: 79, 240, male, full, 9.6, over-limit(0.97)
Case 26: 73, 120, male, full, 9, not-over-limit(0.96)
Case 56: 79, 120, male, full, 7.2, not-over-limit(0.96)

The predicted outcome is: over-limit.

User: why

ProCon-2:  Features of the target problem that SUPPORT the predic-
tion:
units=10.1

Features of the target problem that OPPOSE the prediction:

weight=T9
duration=90
sex=male
meal=full

The most similar case is:
Case 13:79, 240, male, full, 9.6, over-limit

The outcome in this case was over-limit in spite of the opos-
ing evidence that:

! weight=79
sex=male
meal=full

is done may limit it to very simple problems. The Naive Bayes approach induces a global
model of interactions and this may not always be appropriate as the influence of features
may vary over the problem space. Indeed, it might be argued that global models are not
in the spirit of CBR which is a local approach to learning. As highlighted earlier, much
of the strength of CBR lies in its abilities to deal with weak-theory and complex domains
and support incremental learning. Naive Bayes models are also extremely simple and view

each feature in isolation. The conditional probability of a given class label is calculated for
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each feature given its value. No interaction between features is taken into account. Bayes
rule is then used to calculate the joint probability and make a prediction. It is very likely
that in more complex domains the explanations produced may seem counter intuitive and
the derived relational information may not reflect the reality in the problem space. Some

of the limitations of this approach are discussed in Doyle (2005).

A Fortiori Arguments

As highlighted in Section 3.4.1 The nearest neighbour may not always form the most
convincing argument. This is an issue that Doyle et al. (2004) have addressed. They use
specially designed similarity meaures to form a fortiori arguments in favour of the CBR
system’s prediction. Most parents are familiar with the use of a fortiori arguments by
children'. A fortiori arguments are used to argue a case beyond reasonable doubt. Let
us consider an example of a child using an a fortiori argument to plead their case to
see the latest Harry Potter movie. Figure 3.2 shows an example of a child called Mark
(the triangle) who wants to see the latest Harry Potter movie. The circles represent the
children who have seen the movie and the squares the children who have not. Mark knows
that Kate is the closest in age to him and she has seen the movie. But Mark knows that
the older you are the more likely you are to be allowed to see the movie. If Mark were
to use Kate as an argument to convince his parents to let him go to the movie, there is
a possibility that Mark’s parents can argue that Mark is still a little too young to go.
However Mark knows that if he uses John who is younger than him as his argument to
see the movie, he has a stronger case.

Doyle et al argue that the same principle applies in classification tasks whereby cases
that are between the query case and the decision boundary provide more convincing ex-
planations. That is, cases that are more marginal on the important criteria are more
convincing. With such cases the user is better able to assess whether the classification of
the target case is justified. To form such arguments Doyle et al. have developed a system
that attempts to select a case nearer the decision boundary than the nearest meighbour.
A major step in this process is to use explanation utility measures (Doyle et al. 2004).
These measures are dependent on the classification of the case being explained and based

on domain knowledge of the effects of feature-values on the class value. Figure 3.3 shows

1«q fortiori - adv. for similar but more convincing reasons: if Britain cannot afford a space program,

then, a fortiori, neither can India.” - Collins English Dictionary
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Figure 3.2: Using a fortiori arguments

the explanation utility measure for the feature Age when the classification is Allowed to
See Harry Potter. When calculating the utility between a case z and a query case g, if
the age of z is older than ¢, the utility measure for age is in the range of 0-1. However
if ¢ is older than x the utility is 1. Therefore the utility for the Allow argument works
by favouring younger cases than the query case. Alternatively when trying to argue that
someone should not be allowed to the cinema an alternative graph that favours older cases

would be used.
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Figure 3.3: Explanation Utility graph for the Age feature and the ’Allowed’.



Once the utility measures for each feature and classification combination has been
defined, the most convincing case to support a particular classification is selected using

the following process:

1. Get Nearest Neighbours.
2. Perform Classification using Nearest Neighbours.
3. Select explanation utility measures to use based on classification.

4. Reorder Nearest Neighbours of the same class using selected explanation utility

measures.

As an example of the kind explanations produced by this system please consider Table
3.4. Here we can see both the nearest neighbour which would normally be selected as
the explanation case and the actual explanation case selected using especially designed
utility measures. In this case the implicit argument is; given that a previous individual
was both lighter, had consumed more units of alcohol and was discovered to be under the
limit then it is reasonable to assume that the target case is too. This does form a more
convincing argument but it is worth noting that it requires domain information in order
to design the utility measures and it is dependent on the user having that same domain
knowledge. Without such domain knowledge the argument may be lost on novice users and
the effects of differences between the feature values in the explanation case and the target
case may be off-putting. This is an issue Doyle et al. later addressed by supplementing

their explanations with texts explaining the effects of feature-value differences.

Table 3.4: Sample a- Fortiori Explanation

Features Target Nearest Explanation
Case Case Case

Weight 76 76 i3

Duration 60 60 60

Gender Male Male Male

Meal Full Full Full

Units 2.9 28 5

BAC Under Under Under
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CBR Explanations for Black Box Systems

As we saw in Section 2.3 providing interpretable explanations for Black Box systems is a
difficult task. We investigated the prospect of introducing CBR explanations as a means
of explaining the output of Black-Box Systems such as Ensembles, Neural Networks and
Support Vector Machines (Nugent and Cunningham 2005). Such systems have proved to
be effective in modelling non-linear problems but are plagued by a lack of interpretability
in application to real-world problems. As we saw in Section 2.3 various rule-based and
decision tree systems have been developed but these often fail to capture the workings of
the Black Box System and can led to poor and convoluted explanations (Andrews et al.
1995, Tickle et al. 1998, Zhou and Jiang 2003).

Given the characteristics of case-based explanations discussed in Section 3.4.1 we de-
veloped a CBR explanation system for Black-Box Systems used in regression tasks. Key
components in our approach were the use of the Black-Box as an oracle and the use of
local models to describe the feature-space in the area of interest. In using the Black Box
as an oracle we simply present it with sets of feature values similar to those of the target
problem and record its output. In this way we can build up an artificial case-base around
the point of interest in the feature space. To try and capture the information stored in this
artificial case-base about feature importance and influences we build a locally weighted
linear regression model on the data (Atkeson and Moore 1997). Once we have this infor-
mation we can then use it in selecting an explanation case and offering the user an insight
into the influences of the different features.

To make this process a little clearer consider the following simple example. Imagine we
have a neural network model that predicts the Blood-Alcohol content (BAC) in a person’s
blood after they have consumed a certain number of units of alcohol and stopped drinking.
The graph of the function learnt by the neural network (NN) might look something like
the one in Figure 3.4. As the consumed units are absorbed into the body the BAC value
increases until it has reached a maximum value from where the level then begins to fall
back down as the body processes the alcohol.

The function learnt by the NN is of course unknown to us and so when we ask it to
provide a prediction for the BAC level for time T we will simply be presented with a
prediction P(T) with no insight on how this prediction was derived. We can then begin to

interrogate the NN with cases similar to our query case (QP) and build a case base that
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Figure 3.4: The function learnt by the NN-BAC vs. Time
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Figure 3.5: Artificial Data Points AC1 and AC2 are created around QC

describes the NN’s function around QP as seen in Figure 3.5.

Once we have built an artificial case-base around QP that accurately describes the
black box’s function in that area we are then left with the problem of how best to extract
feature rankings from it. For regression tasks, multivariate linear regression models would
seem to be the best candidate for deriving such information. A linear regression model
provides us with a set of coefficients for each feature that can then be used to infer how

sensitive the prediction is to changes in each feature’s value and so its relative importance.
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Figure 3.6: Fitting a linear model to the artificially created data

The coefficients also provide information about whether a feature is negatively or posi-
tively correlated with the prediction variable at that point. In our particular example the
coefficient would give us the rate at which BAC is changing with time at that particular
point. However, care must be taken to ensure the linear model derived truly reflects the
NN'’s function. If we were simply to build our model on the locally built case base without
attention to each case’s relation to a query case we would end up with a model like that
shown in Figure 3.6.

This would be an un-weighted linear model and is not a good model of the NN’s
behaviour at point QP. To overcome such problems locally weighted linear regression can
be used Atkeson and Moore (1997). Local linear regression allows us to weight each case
based on its similarity to the query case. In the case of our implementation we use an un-
weighted Euclidean distance measure as the weighting function. For instance AC1 would
be given a lower weight than AC2 and so would have less of an impact on the derived
model. This gives us a model that is close to a tangent to the curve at QP and gives us a
slope value that truly reflects the NN’s function as can be seen in Figure 3.7.

The above example is quite simple and the information extracted may not seem to be
very useful, but in a multi-dimensional problem such information is extremely useful. In
such a case, a hyperplane is produced and each coefficient of that model gives us a sense
of how each feature relates to the predicted value. How the feature salience information
is used in the final explanation stage is very much dependent on the context the system is

being used in; on what is deemed most effective and useful for a particular domain and the
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Figure 3.7: Fitting a locally weighted linear model

Table 3.5: An Example of CBR Explanation of a Black Box System

Query Explanation
Case Case
Weight (kgs) 85 80
Duration (mins) 60 60
Gender Male Male
Meal Lunch Lunch
Amount (Units) 4.9 4.9
BAC 12:0 14.0

Explanation:

: The important features in determining this preidction,
listed in order of impact, are: Amount, Duration, Gender,
Weight and Meal

Weight being smaller in the explanation case has the effect
of increasing its BAC value

users in that domain. As an example of the type of explanation produced by this system
consider the explanation displayed in Table 3.5. This case-based from of explanation has
advantages in terms user acceptability and the use of real evidence as outlined in Section
3.4.1. The addition of discursive text helps inform the user as to the relevance of the
retrieved Explanation Case and explains the effects of any differences that might exist

between it and the Query Case.
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3.4.3 Assessing Confidence in CBR

Predicting confidence in a system’s predictions is not a new idea and in fact it was a
feature in some early Knowledge-Based and Expert Systems (Davis (1982), Watson and
Gardingen (1985)). Systems designers have long realised that it is better for the system
to admit that it simply doesn’t have enough information to answer confidently then to
speculate wildly. Such systems were designed to recognise and handle situations where
the system is inadequate. Information on how to recognise such situations was encoded
in the meta-level knowledge of the system which controls how the system operates by the
system designers.

Many CBR systems act as decision aids too and as mentioned in Section 3.4.1 predict-
ing confidence is an issue for CBR Systems too. McLaren and Ashley recently addressed
the issue in CBR with an approach that is very similar to that taken in Knowledge-Based
and Expert Systems. Their system uses Meta-Rules as a means of detecting possible er-
rors. If the conditions of the rules are met than the system is deemed to be going beyond
its capabilities. Their System, SIROCCO, operates in an engineering ethics domain which
highlights some of the error sensitive domains for which CBR systems can be used.

Alternatively other researchers have taken a far more CBR-light orientated approach
to the task (Cheetham and Price 2004, Delaney et al. 2005a). Both have looked at using
measures based on similarity information derived from the cases used in any decision as

indicators of confidence. Examples of the kind of measures considered are:

The similarity distance between the target case and its nearest neighbour.

Percentage of number of cases retrieved with the predicted class value.

Average similarity of cases with the predicted class value.

Sum of the similarities of retrieved cases with the predicted class.

e Average similarity of retrieved cases without the predicted class value.

It is easy to imagine that many such indicators could be created and indeed Cheetham
and Price (2004) propose 12 such measures. However both Cheetham et al. and Delaney et
al. have found such measures used individually to be poor confidence measures. However
both sets of researchers have looked at means of combining the measures so that a more

robust aggregate confidence measure can be produced. Cheetham et al. used a decision
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tree to learn when it is best to use certain measures and then combined the selected
measures. Alternatively Delaney et al. used an ensemble-like approach to combine a set
of simple base indicators. While Cheetham et al. found their approach to be of limited
success Delaney et al. found their approach to be very promising in the very sensitive
spam domain. However it is clear that confidence measures based on case similarities
don’t seem to offer any real insight in system confidence. Most of the simple measures
strive to capture the marginality of a prediction, to describe how close a case was to the
decision boundary. None of the measures so far considered seem to reliably reflect the
case’s marginality and so fail as confidence measures. Using combinations of indicators
has been found to be more effective but perhaps there is a more direct way of reflecting

case the marginality of a case.

3.5 Conclusion

We have reviewed the CBR methodology and highlighted where knowledge is stored in
the CBR system. It is clear that although aspects of the CBR approach are transparent
the methodology isn’t wholly so and this limits the effectiveness of traditional CBR-light
explanations. We have reviewed research in the area that has addressed these issues
and highlighted some limitations. Our review has made it clear that a successful CBR

explanation framework would have to contain

e a means of providing user feedback that reflects the CBR methodology and the

knowledge in the system,
e a means of selecting good explanation cases,

e a means of providing reliable confidence measures.

In the next section we discuss the development of our Explanation Framework and

how it addressed these issues.
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Chapter 4

Explanation Framework

The general realisation within the machine learning community that the tools that we
build need to be interpretable to real life users has spurred a renewed interest in designing
systems that provide explanatory output. As is clear from Section 3.4 Case-based Rea-
soning has a legacy of research and many favourable characteristics in terms of providing
explanations. However, the traditional approach in CBR-light applications of simply sup-
plying the nearest neighbour has been found to have shortcomings in terms of providing
satisfactory explanations. We have highlighted two issues in particular that need to be

addresed in order to create satisfactory and convincing explanations:

e The selection of cases to present to the user

e Explaining the details and relevance of retrieved cases

The primary motivation in providing users of CBR systems with interpretable explana-
tions is to increase their confidence in the system. However, as is pointed out by Cheetham
and Price (2004), people can quickly lose confidence in a system if it makes recommenda-
tions which then turn out to be incorrect. As a means of combating the possible loss of
user confidence, researchers have tried to devise mechanisms capable of determining when
a the system might be making a mistake. Such mechanisms strive to determine the level
of certainity which the system can attach to its recommendation. This information is then
delivered to the end-user is terms of a confidence measure. By alerting users to when the
system might be making an error, long-term user confidence can be maintained even when

the system does make mistakes.
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As we have seen in Section 3.4, these are all issues which have recently been addressed
by researchers. However, we wished to develop a single unified solution to all of these
problems which was in keeping with the characteristics that set CBR apart from other
machine learning techniques. We also wished to develop a solution which could potentially
be applied to many different domains without specialist knowledge from that domain
having to be encoded into the system.The system as developed by Doyle et al. (2004)
required that a domain specialist be consulted so that explanation utility measures could
be designed and a fortiori cases found. The system we have developed strives to avoid this
effort. To realise these aims we have developed a solution that tackles all three problems
in a localised way. We envisioned a solution that, like our work in CBR explanations for
Black Box systems, would build local models on selected small portions of the case-base
(Nugent and Cunningham 2005). By applying this localised approach we can provide
users with informative feedback that reflects the case-base in the relevant region of the
feature-space and at that time.

CBR is particularly suited to weak theory domains. Such domains are characterised
by the fact that simple generalised principles don’t apply universally across the entire
solution space. By applying local models we can generate explanations that reflect the
nature and charcteristics of such domains. The framework we have developed has three

key facets:

e [t selects cases that form a fortiori arguments in an automated way and without

domain knowledge,

e It provides discursive texts describing the effects of differences in feature-values be-

tween the Query Case and the Explanation Case,

e [t provides a measure of confidence in the system’s recommendation to alert the user

to when there is doubt about a system decision.

This Chapter describes the design of our general framework for case-based explanations
and each of the component stages of that process. We begin in the next section with a
general outline of the approach taken before discussing each stage in the process in more

detail
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4.1 Design Of General Framework

Each explanation produced by our framework is especially tailored to each recommenda-
tion made by the underlying CBR recommendation system. The flow of execution of the
explanation process carried out by our framework can be broken down into five distinct
phases as can be seen in fig. 4.1. In each of these stages, particular tasks necessary for

producing the explanation are carried out. We will now discuss each stage in turn:

®

Query Case
Explanation Case
Local Case-base Retrieval
Builder o
(' Local Model - e Final Explanation

Figure 4.1: Flow diagram of the Operation of the Framework

1. Query Case: Each explanation produced is tailored to the particular set of inputs
on which the underlying CBR system has made a recommendation. These set of
inputs along with the systems recommendation form a Query Case and this case is

then used to seed the rest of the explanation process.

2. Local Case-base Builder: In the second phase we wish to capture the information
that lies in the region of the case-base around the Query Case. We do this by building
a local case-base. The local case-base is a subset of cases from the original case-base
that traverse the decision boundary at that point in the feature space. This ensures
that we have captured information about the local relationships between feature-
values and the class label. The manner in which we do this will be discussed in more

detail in Section 4.1.2.
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3. Local Model The next task is to transform the information stored in the local

case-base into a more interpretable and useful form. To do this we build a model on
the local case-base which will offer us an insight into the information stored within.
The choice of model we use is very much determined by the information we need to
extract and the tasks that we would like to use the model to drive. There are three

tasks for which we would like to use our localised model:

A Selection of an explanation case
B Explaining the effects of feature differences

C Determining how certain a recommendation is

The model we have selected to perform these tasks is the Logistic Regression model.
It is a simple but powerful statistical model which is probabilistic and offers insights
into the feature-value relationships in a natural and intuitive way. We will discuss
this model, why we selected it and how we use it further in Sections 4.1.1, 4.1.3 and

4.1.4.

. Explanation Case Retrieval: In the case retrieval process we wish to select the
case that forms the most convincing argument in favour of the system’s recommen-
dation. As we saw in Section 3.4 selecting cases that form a fortiori arguments is
an effective way of achieving this. This means finding cases that are more marginal,
that lie nearer the decision boundary. Previously this has been done by using spe-
cially designed similarity metrics which encapsulate domain knowledge about the
relationship between features and class labels. We find a fortiori cases in an auto-
mated way which avoids the insertion of domain knowledge. We do this by using the
Logistic Regression model’s probabilistic characteristics to determine which cases

are the most marginal. We will explain this process in more detail in Section 4.1.3.

. Final Explanation Stage: In the final explanation stage two important tasks are
carried out; feature-value differences between the explanation and the Query Case
are explained and the confidence in the underlying CBR system’s recommendation is
determined. To explain the feature-value differences the Logistic Regression model
is again employed. The characteristics of the design of the logistic regression model
mean that it can explain the effects of such differences in a natural way. The design

of the logistic regression model is explained in Section 4.1.1 and how we use it to

41




explain the feature difference in Section 4.1.4. Since the logistic regression model
is probabilistic, it is a trivial task to generate a probability of a given Query Case
being of a certain class. If the probability is below a certain threshold then we can
determine that confidence in a recommendation is low or alternatively that there is
a high degreee of confidence in the recommendation. How such a threshold can be

determined is discussed in Section 4.1.5.

This process is carried out at run-time and for each recommendation that requires an
explanation. A key component of out framework is the use of Logistic Regression as our
local model as it is then used in many of the other processes in the framework. In the
next section we will discuss the selection of this model, its key characterisitics and how it

works.

4.1.1 Choice of Local Model

At first glance the approach that we have taken in fitting a statistical model to the data in
the case-base and using it to determine the effects of feature differences may look similar
to the approach taken by McSherry which we described in Section 3.4.2. However, there
are a number of important differences in both the model that we use and in the manner in
which it is employed that mean that the approaches are in fact quite different. Firstly we
do not attempt to fit the model to the entire case-base. We argue that fitting a gobal model
over a local learning system isn’t in keeping with the CBR philosophy. As we highlighted
in the introduction to Chapter 3 some of the main characteristics that distinguish CBR

from other machine learning techniques are:

e it is a lazy learning method that supports incremental learning

e it is effective at solving weak-theory problems

Fitting a model to the entire case-base prior to the system being used is to fit an eager
learning method over a lazy method. The explanations produced by such a system may
not reflect the case-base if it is updated. Furthermore, CBR has advantages in terms of
tackling weak-theory problems and complex problems. These are problems in which simple
statistical models fail to capture the underlying patterns in the data. These problems
have a complexity and non-linear nature which violates many of the assumptions made

in simpler statistical methods. To overcome these problems we apply our model on small
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portions of the case-base at runtime. This ensures that we are not only using the most
up-to-date data available but also that we are not fitting a simple model over complex
data. Although simple models may not be able capture the trends throughout the case-
base they are adequate when applied to localised regions of the case-base. This localised
approach is used extensively in statistics and we have used it previously in our work on
CBR explanations for black-box systems. In fact, localised logistic regression techniques
have been used in text classification (Zhang and Yang 2004).

In terms of statistical models, Naive Bayes and Logistic Regression represent two fun-
damentally different approaches to problem solving. Naive Bayes is a generative statistical
method while Logistic Regression is a discriminative method. Generative classifiers learn
a model of the joint probability of the features and the corresponding class label and make
decisions by using Bayes rule to compute the posterior probability of the class variable.
In the case of Naive Bayes this means building a separate probability distribution for each
feature that relates it to the class label. For a given set of inputs the probability of a given
class is calculated for each feature-value and then Bayes rule is used to combine the indi-
vidual probabilities and make a recommendation. Logistic regression is a discriminative
method and this means that it tries to calculate the probability of a class directly given the
the full set of inputs. Thus feature relations are taken into account and noisy features are
naturally tuned out. The logistic regression model is also designed with the interpretation
of relationships between feature-values and class value in mind. We have discussed, in
broad terms, the strengths of the logistic regression model and how it is employed within
our framework without really describing the model itself. We will now discuss the model
in greater detail before describing each of the ways in which the model is used within the

framework.

A Local Model: Logistic Regression

Hosmer and Lemeshaw have written an excellent and comprehensive book on the subject
of Logistic Regression (Hosmer and Lemeshow 2000). In the preface to the second edition
they point out the huge increase in the use of the modeling technique from its original use
within epidemiologic research to use within fields as diverse as “biomedical research, busi-
ness and fiance, criminology, ecology, engineering, health policy, linguistics and wildlife
biology”. Logistic regression is a data analysis technique that offers an insight into the re-

lationship between input variables and a target, or class variable. It is specifically designed
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for binary classification problems and the increase in popularity of the modeling technique
is understandable as it offers powerful insights while maintaining model simplicity.
Logistic regression, like linear regression, produces a set of coefficients from which the
relationship of an input variable to the target class variable can be deduced. However,
unlike linear regression, logistic regression coefficients don’t directly correspond to slope
values in the same way. In logistic regression tasks, the two possible class values are coded
as being either 0 or 1. Because the value predicted by the model, the conditional mean, is
no longer an unbounded value as in linear regression but a value between 0 and 1, the data
is fitted to a distribution that ensures the outputted value always meets this bounding
criteria. To do this, the logistic distribution is applied as can be seen below (4.1).

ePotbiz

Y(z) (4.1)

= TPt

Here Y (z) is the conditional mean for a particular value of  while By and (3, are the
model parameters. The distribution produces the conditional mean, a value between 0
and 1, for any given inputted value of z. Importantly, for binary problems the conditional
mean is in fact the probability of class 1 given .

At first glance this model looks quite intimidating and seems to offer no hope of
offering an insight into the relationship between = and our class variable. However, the
logistic distribution is chosen because it can be easily transformed into another form which
has many of the desirable properties of a linear regression model. By applying the logit

transform, equation 4.2, we end up with a simple and interpretable model, the logit (4.3).

i
9(z) =In— Y @) (4.2)
9(z) = Bo + p1x (4.3)

The parameters of the logit model can easily be converted into odds ratios. The odds
ratio of an event is the odds of that event occurring over the odds of it not happening.
For instance, if someone were to state the odds ratio of smokers to non-smokers getting
cancer is 2, then this would mean smokers are twice as likely to develop cancer as non-
smokers. Alternatively, if we looked at the relationship the other way round, non-smokers
to smokers, we would get a odds ratio of 0.5. This means that non-smokers are half

as likely to get cancer. In general an odds ratio greater then one for possibility A over

44




possibility B means A makes the event more likely than the alternative while and odds
ratio of less then one means it makes it less likely. The logistic regression model makes the
calculation of odds ratios quite easy and this is extremely useful and informative. It is this
simple relationship between the model coefficients and the odds ratio and their natural
interpretation that has made logistic regression such a popular tool. We will first discuss
in a very general sense how this is done as it will be of use in Section 4.1.4 and then focus
on a particular example that highlights why logistic regression has proved so popular.

In order to extract the odds ratio, two steps are taken. First the logit difference is
found. Imagine we are interested in the odds ratio of two different events, x = ¢ and
x = d. the logit difference can be calculated as in equation 4.4. The logit difference, ld,
is simply the difference in the logit function for the two values of x we are interested in.
Once this value has been obtained it can then be converted into odds ratio, see equation

4.5.

LogitDif ference(z = ¢, 2 = d) = glc) — gld) = 1d (4.4)

OddsRatio(x = ¢,z = d) = €@ (4.5)

The trick with the logistic regression model is that in many cases it isn’t necessary to
calculate the logit difference. If the model variables have been properly coded then the
desired information can usually be got by simply looking at the model coefficients. As an
example, consider a hypothetical situation where we have developed a model that relates
smoking to the development of cancer. Our hypothetical model might look something like

that shown in equation 4.6.

g(Smoker) = 0.3 + 0.69Smoker (4.6)

If we code our smoking variable as being equal to 1 if someone smokes and 0 if they
don’t then the calculation of the logit difference is simply equal to the Smoker coefficient

(4.7).
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:

g(Smoker = 1) — g(Smoker =0) = 0.3+ 0.69(1) — (0.3 4 0.69(0)) (4.7)
= 0.69
OddsRatio(Smoker) = %%
OddsRatio(Smoker) = 2
(4.8)

As can be seen above in 4.6 we need not have bothered calculating the logit difference
and instead just used the model coefficient. This is also true for continuous and multi-
value nominal variables if they are coded correctly (Chapter 4, Hosmer and Lemeshow
(2000)). Once we have the odds ratio the relationship between input variable and the
class variable is clear. We have focused most of our discussion on examples with only a
single input variable for simplicity sake but the above observations are also true in multi-
variable problems. In the next section we discus how information derived from the logistic

regression model can be used to provide convincing explanations.

4.1.2 Creating a Local Case-base

A very important element of the approach that we have taken is the generation of a local
case-base. A key characteristic of the local case-base that we generate is that we want to
ensure that it contains cases from both sides of the decision boundary. We use a simple

iterative algorithm to do this:

1. We begin with an ordered list of the cases in the case-base based on their similarity
to the Query Case and an empty local case-base. The similarities of each case are

calculated using the k-NN algorithm.

2. We then add copies of cases to the local case-base iteratively until we have at least
Q cases of each class type and the similarity of the Nth+1 case and the Nth case
of the ordered list are not equal. The last clause of our stopping condition ensures

that if there are ties in similarities between cases that all the cases are included.

To make this process clearer consider Figure 4.2. On the left hand side we have an

ordered list of cases and on the right an empty local case-base. The different class values
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It then fills the Local Case-
base iteratively.

R

Figure 4.2: Building a local Case-base

of each case are represented by their different colour schemes, blue strips for one class and
red for the other. We then start to add cases iteratively as can be seen in Figure 4.3.

In this example we have set the parameter QQ to be two. Eventually we end up with the
situation in Figure 4.4. Here we can see that our local case-base has been filled. In this
particular case we ended up with 3 cases from each class but there are different reasons
for the inclusion of extra case of each class. In the case of the blue class there is an extra
case included because Case K was reached before two cases of the red class were found.
The extra red case, P, was included because it actually had the same similarity score as
case X. In this situation we have no way of distinguishing between each case and so they
are both included. Finally Case R isn’t included since it has a lower similarity score and
the quota for each class type has been met.

This approach ensures that we have cases from both sides of the decision boundary.
As an example of how the local case-base might look in the feature space consider Figures
4.5.a and 4.5.b. In Figure 4.5.a we can see the decision boundary and how the cases are
distributed around it. The three nearest neighbours used to make the original recommen-
dation are surrounded by a dotted circle. We wish to expand around these cases so that
we have a case-base with a good representation of the deciding factors in class values. To

do this we use the iterative algorithm described earlier and the resulting local case-base
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Figure 4.3: The local Case-base is filled iteratively
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Figure 4.4: The final Local Case-base
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Figure 4.5: The distribution of cases and the local case-base

can be seen in Figure 4.5.b. This algorithm requires that one parameter, Q, is set. In

Section 4.1.5 we will discuss how the best value for (3 can be chosen.

4.1.3 Finding a-Fortiori Cases

In selecting a case to present to the user as an explanation we would like to form as
strong an argument as possible. In the framework we have developed this is done by
selecting cases that form a fortiori arguments. This means finding cases that are more
marginal, that lie nearer the decision boundary. Previously this has been done by designing
special similarity measures that encode domain knowledge about the relationship between
feature-values and class-values (Doyle et al. 2004). Using the local Logistic Regression
model we can generate a fortiori arguments dynamically and without any prior domain
knowledge. As discussed in Section 4.1.1 Logistic Regression models allow us to generate
a probability for a given set of inputs, a case, being a certain class. In the Explanation
Case retrieval process we can then use this to find an explanation case that is nearer the
decision boundary and so a more convincing argument. We consider each of the cases in
our localised case-base as a candidate case for inclusion in the explanation. By passing
each of our candidate explanation cases through our local logistic model using Equation
4.1 we can generate a probability for each of being a particular class. A case that is nearer
the decision boundary and of the same class as our CBR system has predicted will have a
more marginal probability and so this should be the case we select. However, finding the

most marginal case is not always the best policy if the selected case is so different to the
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Query Case that it seems irrelevant. This was noted by Doyle, Cunningham, Bridge and
Rahman (2004) and they adjusted the explanation similarity measures appropriately. In
our case we can ensure that the selected case is reasonably similar to the Query Case as

it selected from the Local Case-base.

Table 4.1: The Query Case and the Candidate Explanation Cases

Features Query Nearest Nearest Nearest

Case Neighbour | Neighbour | Neighbour
il 2 3

Weight 88 82 79 76

Duration 120 120 120 120

Gender Male Male Male Male

Meal Full Full Full Full

Units D2 5.0 (2 4.6

BAC Under Under Under Under

Probability | 0.98 0.97 0.89 0.96

To make this process a little clearer we will discuss it in relation to an example which
again is taken from the BAC domain. In Table 4.1 we can see a Query Case, its pre-
dicted classification and three candidate explanation cases which are in fact the Nearest
Neighbours used to classify it. In order to select a case to use as an Explanation Case we
first run each of the cases (including the Query Case) through our local logistic regression
model. This gives us the set of probabilities that can also be seen in Table 4.1 which were
calculated using Equation 4.1. The logistic regression model is built on the entire local
case-base and the parameters of the model are estimated by minimising an error function
using standard approaches as we describe in Section 5.2.3. We can see that Nearest Neigh-
bour 2 has the lowest probability and so is the case nearest the decision boundary. We
then select Nearest Neighbour 2 as our Explanation Case as can be seen in 4.2. Although
the case that we have selected forms a better argument than if we had selected the nearest
neighbour it does contain feature-value differences that may make it seem quite different
and irrelevant to the present Query Case. The case we have selected does however form a
better argument since: ”although the Explanation Case had consumed more units of alco-
hol and weighed less, they were under the limit so it seems reasonable that our Query Case
should be too”. However such an argument is made in a implicit fashion and is dependent
on the user having the same domain knowledge.

We can make this argument more explicit to the end user by explaining the effects
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Table 4.2: The Query Case and Selected Explanation Case

Features Query Explanation
Case Case

Weight 88 79

Duration 120 120

Gender Male Male

Meal Full Full

Units 5.2 T2

BAC Under Under

of the feature differences between the Query Case and Explanation Case. In the next
Section we will explain how the influence of the feature differences that exist between the
Query and Explanation Case can be explained using information extracted from the Local

Logistic Regression model.

4.1.4 Describing Feature-Value Differences

As we stated in Chapter 3 the success of a case-based explanation lies in ensuring that the
case presented to the end user seems relevant and the argument posed by the presented
case is clear. In order to ensure this, we need to explain to the end-user the effect of
any feature-value differences that might exist between the Query and the Explanation
Case. To do this using only the knowledge that is stored in the case-base we again use the
Logistic Regression model. One of the great strengths of the Logistic Regression model

is that it can extract information about the influences of feature-values on the class value

in terms of odds ratios. Using Equations 4.4 and 4.5 from Section 4.1.1 we can substitute
each of the feature differences into the equations individually and get an odds ratio for
each. Using the odds ratio we can then determine the effect of the change. As discussed in
section 4.1.1 an odds ratio greater than 1 means that a feature difference makes an event
more likely and vice versa. Looking at each feature difference in turn we can then make
lists of features differences that make the classification more likely and those that have
the opposite effect.

As an example of this process we will extend the example used in Section 4.1.3. As
can be seen in Figure 4.3 there are feature-value differences in terms of weight of the
two subjects and in terms of the number of units consumed by each. Using the Logistic

Regression model we can determine the effects that feature-value differences would have
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Table 4.3: The Odds Ratios of Associated with each Feature-value Difference

Features Query Explanation | Odds

Case Case Ratio
Weight 88 79 2.3
Duration 120 120 1
Gender Male Male 1
Meal Full Full 1
Units 52 7.2 Gl
BAC Under Under

if they were substituted into the Query Case. On the right hand side of Table 4.3 we can
see the odds ratio produced for each feature by the Logistic Regression model. For the
features Duration, Gender and Meal the odds ratio is 1 since there are no feature-value
differences between the two cases for those features. Both Weight and Units have a odds
ratio greater than 1 meaning the differences that exists in these features have the effect of
making the Query Case more likely to be under the limit than the Explanation Case. By
simply looking through each of the odds ratios produced we can quite easily make lists
of the feature differences that make a classification more likely and those that have the
opposite effect. These lists can then be used with simple text templates to form discursive
texts describing the effects of feature-value differences to the end user. Examples of the

texts produced can be seen in Section 4.2.

4.1.5 Providing Confidence Measures

Another key facet of the framework that we have developed is that it can produce confi-
dence measures so that users can be alerted to when there is a suspicion that the system
is making a mistake. The Logistic Regression model can produce a probability of a case
belonging to a particular class and this can be used to determine the confidence we should
have in a recommendation. As shown in Table 4.1 we can pass the Query Case through
the model and this gives us a probability of the recommendation being correct. If the
probability is below a certain threshold we can alert the user that we have low confidence
in that recommendation. However this then requires us to define a threshold of confidence
and this is not a straightforward issue.

A key issue in providing any confidence measure is ensuring that we don’t give false

confidence in the system’s recommendations. When the system alerts the user that it is




confident in a recommendation it is important that the recommendation is in fact correct.
If the system is falsely confident the user will quickly lose faith in the system and the
whole purpose of providing confidence measures is undermined. Conversely bringing too
many correct recommendations into question is damaging also. Constantly supplying
users with recommendations attached with a cavet expressing uncertainty about that
recommendation is also bound to damage their confidence in the system. There often is
a trade-off between these two conflicting desires and a threshold level where there is a
suitable balance must be chosen.

We can characterize our wish for accurate confidence as being our Confident Correct
Rate (CCR) as defined in Equation 4.9. Likewise we can encapsulate our need to minimise

pessimism in the Not Confident Correct Rate (NCCR) as defined in Equation 4.10.

G
e a5
NECC
WOCE - See TG i)

Where CC' is the number of times the measure is confident and the system is correct
and C1 is the number of times measure is confident and the system is incorrect. Likewise
NCC is the number of times the measure is not confident and the system is correct and
NCI is the number of times the system is not confident and is right to be so. To make
the definition of these parameters a little clearer we have displayed them in the form of

truth table in Table 4.4.

Table 4.4: A Truth Table Defining the Equation Parameters
Incorrect | Correct
Confident CI ccC

Not Confident NCI NCC

Clearly we would like to maximise the Confident Correct Rate while minimising the Not
Confident Correct Rate. In reality this isn’t ever possible as to do so would in fact mean
discovering an improved classifier. If it is possible to accurately predict when the system
is making a mistake while also ensuring that we are not attaching uncertainty to correct
recommendations then when confidence is low we could just reverse our recommendation.

Improvements in one criterion will come at the cost of the other. One way to set a
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threshold is to choose the level that balances the trade-off. This can be found by finding
the threshold that minimises Equation 4.11. However, the issue isn’t often that simple and

in some domains there may be more of a cost associated with one criterion over another.

NCCR
CCR

In the spam domain the cost of incorrectly classifying a mail as spam is extremely

Trade-Off = (4.11)

high. This has lead researchers to investigate the use of confidence measures as a means
of sorting spam into definite spam and probable spam categories (Delaney et al. 2005a).
The probable spam folder contains mail which is classified as spam but for which there is
low confidence. The user can then occasionally check the probable folder to see if any mail
has been misclassified. Ideally in such a system the number of mails in the definite spam
folder is maximised while the number in the probable folder is minimised so as to reduce
the load on the user. However there would be a heavy penalty to pay for misclassifying
a mail as definite spam and such a mistake could not be tolerated. Reducing the number
of misclassified definite spam is equivalent to maximising the Confident Correct Rate and
this can only be done at the cost of the Not Confident Correct Rate. However, in the spam
domain this balance is swung in favour of the minimising the Confident Correct Rate as
such mistakes can prove far more costly than on the other criterion.

A further complication is that confidence assessment mechanisms often involve para-
meters which must be set. In our own confidence system we must chose the number of each
class value we would like to have included in our local case-base. Choosing the parameter
that maximises performance while also choosing the threshold that satisfies the criteria of
the domain for the CC and NCC rates can be a confusing process. Here, the threshold
refers to the level of confidence that must exist before a recommendation is labelled as
being confident. For instance, a level of 90% might be chosen as the threshold. Looking
at table 4.1 the probabilities attached to each of the cases mean that if they were to be
recommendations Nearest Neighbour 1 and 3 would be labelled confident while Nearest
Neighbour 2 would be labelled as Not Confident.

The characteristics of the factors involved in this problem have led us to investigate
a concept similar to Receiver Operating Characteristics (ROC) analysis as means of ex-
amining the factors involved (Flach et al. 2003). ROC Analysis originated from signal
detection theory, as a model of how well a receiver is able to detect a signal in the pres-

ence of noise. Its key feature is the distinction between hit rate (or True Positive Rate)
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Figure 4.6: The Characteristic Confidence Curve for the UCI Spam Case-base

and false alarm rate (or False Positive rate) as two separate performance measures. It has
been introduced to machine learning relatively recently, in response to classification tasks
with varying class distributions or misclassification costs. A large part of ROC analysis
is the plotting of ROC curves. ROC curves plot the True Positive Rate against the False
Positive Rate. Each point on a ROC curve represents a different classifier. The character-
istics of the performance of a classifier can be plotted as the parameters of that classifier
are changed. ROC curves serve as an excellent tool for visualising the trade-offs involved
and assessing the true performance of different classifiers over a range of criteria.

The measures that we have defined, CCR and NCCR, are not dissimilar to the True
Positive Rate and the False Negtive Rate and so it was natural to extend the idea of ROC
curves to the confidence domain (Nugent, Cunningham and Doyle 2005). To investigate
the various parameter options for a particular domain we can plot Characteristic Confi-
dence Curves which are simply the CCR against NCCR. An example of one can be seen
in Figure 4.6. Here we can see three different curves which represent different choices of
K, the number of each class to be included in the local case-base. The different points
along each curve represent different choices of threshold value. It is quite easy using the
characteristic curves to find the scheme that best suits the requirements of the domain and

investigate the various trade-offs. In the absence of any preference for one criterion over
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Figure 4.7: The Characteristic Confidence Curve for the E-Clinic Case-base

another the point that lies nearest the top left hand corner maximises the trade-off and
is the best solution. However, which criterion to favour may not always be a straightfor-
ward issue and the Characteristic Curves provide a neat way of investigating the options
available. It is also possible to eliminate certain schemes as being definitely worse than
another just as in ROC curves. If the curve of one scheme lies entirely inside another then
it is definitely worse than that scheme as under no circumstances does it out perform the
other.

In the case of Figure 4.6 the schemes where K equals 5 and 9 are definitely better
than the K equal 2 scheme under all possible criteria. The K equal 5 and 9 schemes are
better than each other under different possible criteria which are reflected in the manner
in which their curves weave over one another. In the absence of any domain requirements
the point that lies closet the top left corner lies on the K equal 9 curve so this parameter
along with threshold value represented by that point should be the options that we chose.

Another example can be seen in Figure 4.7. In this case the case-base is the e-clinic.
Here the scheme with K equals 9 is clearly superior to the other two options.

Using the Logistics Regression model’s probabilistic qualities and the methodology
we have described it is possible to provide users with an insight into the performance of

confidence measures over a range of threshold values and parameters settings. Using this
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information the user can then decide on settings that best meet their requirements. This
can be useful when it isn’t known clearly in advance what the costs of different trade-offs
are. However, in some applications, such as spam filtering, these costs are well defined. In
such cases a more robust system of deciding threshold and parameter settings chould be
used such as Decision Theory (Lewis 1995, Amati and Crestani 1999).

In the next Section we will demonstrate how we have combined confidence measures
we generate along with discursive texts and our selected Explanation Case to form useful

convincing explanations.

4.2 Explanations Produced

We have seen how the explanation framework we have developed can produced a lot of
information that can then be presented to the user. As we highlighted in Section 3.4.1
generating effective explanations is a user dependent task. Using the Logistic Regression
model it is possible to generate a lot of information about the exact effects of feature
differences. However, in the explanations that we produce we are primarily concerned with
demonstrating how the framework can be used to produce simple and effective explanations
that can be used across many domains. An example of the explanation produced by the
framework can be seen in Table 4.5. This is again an example taken from the BAC domain.
The Query and the Explanation Cases are presented along with a discursive text and a
measure of confidence in the system’s recommendation. In this case the confidence in the
explanation is high; however this will not always be the case. When there is doubt in
the system’s recommendation we can use the framework to help provide the user with
extra information that might help them in determining the correct classification. In the
next Section we will describe the simple measures we take to help assist the user in low

confidence situations.

4.2.1 Low Confidence

When confidence is low in a recommendation we would like to assist the end-user as
much as possible in deteremining what the correct classification is. By presenting the
user with similar cases that lie either side of the decision boundary we can help them
make a more informed decision. This kind of approach has previously been introduced by

Leake et al. (2001) who used bracketing cases to help delineate the limits of the problem
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Table 4.5: Sample Explanation

Query Explanation
Case Case
Weight (kgs) 57.0 79.0
Duration (mins) 240.0 240.0
Gender Male Male
Meal Full Full
Amount (Units) 12.6 9.6
BAC Over

The prediction for the individual in the Quey Case is: Over the limit

The confidence that this prediction is correct is: high

Discursive Text:

In support of this prediction we have the person presented by the Explanation
Case who was also Over the limit. Weight being lighter and Amount being bigger
have the effect of making the Query individual more likely to be Over the limit
than the Explanation individual.

being considered. When confidence is low we can adopt a similar approach: presenting
the user with cases from either side of the decision boundary and using discursive texts
to explain how the feature values affected the different classifications. Again using the
logistic regression model in the same way that it was used to find a fortiori arguments,
it is possible to find the nearest case on the opposite side of the decision boundary. We
can see an example of the kind of recommendation that we can produce in Table 4.6.
Here we can see the Query Case flanked either side by the Explanation Case and the
Counter Example. By looking at the feature-value differences across the case and text
accompanying them the user may be able to determine what the correct recommendation
st

4.3 Conclusion

We have presented an explanation framework that provides interpretable CBR explana-
tions that does not require specialist domain knowledge and maintains CBR’s advantages
in terms of lazy learning approach and its applicability to weak-theory domains. The ex-

planations produced by the framework contain three important elements which all address
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Table 4.6: Sample Explanation with Counter Example

Explanation Query Counter

Case Case Example
Weight (kgs) 52.0 53.0 73.0
Duration (mins) 270.0 330.0 210.0
Gender Male Female Male
Meal Lunch Lunch Lunch
Amount (Units) 9.1 10.4 9.0
BAC Over Under

The prediction for the individual in the Query Case is: Over the limit

The confidence that this prediction is correct is: low

Discursive Text:

In support of this prediction we have the person represented by the Explanation
Case who was also Over the limit. Gender being Female and Amount being bigger
have the effect of making the Query individual more likely to be Over the limit
than the Explanation individual. However, Weight being heavier and Duration
being longer have the effect of making the Query individual less likely to be Over
the limit than the Explanation individual.

As there is low confidence in the prediction we also have a counter example of
someone who is similar but Under the limit for you to inspect.

Duration being longer has the effect of making the Query individual more likely
to be Under the limit than the counter example. However, Weight being lighter,
Gender being Female and Amount being bigger have the effect of making the
Query individual less likely to be Under the limit than the counter example.

short-comings that existed in the traditional CBR-light approach to explanations:

e [t selects cases that form a fortiori arguments in an automated way and without

domain knowledge,

e [t provides discursive texts describing the effects of differences in feature-values be-

tween the Query Case and the Explanation Case,

e [t provides a measure of confidence in the system’s recommendation to alert the user

as to when there is doubt about a system decision.

In the next Section we will describe how the framework was implemented.
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Chapter 5

Implementation

In this Chapter we describe how the Explanation Framework was implemented and the
technologies used. The Explanation Framework was developed as part of the Knowledge
Discovery Project! which was funded by Science Foundation Ireland 2. The Knowledge
Discovery Project encompasses projects on many different aspects of machine learning.
It quickly became apparent that the development of a unified workbench which defined
some of the basic components of machine learning would greatly improve the usability
of techniques and code developed as part of project. This led the author to initiate the
developement of Fionn — a workbench for the development of machine learning tools with
a special emphasis on CBR systems (Doyle et al. 2005). The Explanation Framework was
developed using Fionn and integrated into it so that it provided a generic CBR explanation
component.

Case-bases need to be described in and stored in some useful form. Fionn is built
upon a CBML base which describes how case-bases should be defined using XML. In the
following sections we will describe CBML and the Fionn workbench itself. We will then
describe the various components we developed and integrated into Fionn thus providing

it with a generic Case-based Explanation Component.

5.1 CBML

Case-base reasoning is dependent on the retrieval and reuse of cases so it is important that

the cases are represented and stored in a way that supports the manipulation of cases and

!The Knowledge Discovery Project https://www.cs.tcd.ie/research_groups/mlg/kdp/
2Science Foundation Ireland http://www.sfi.ie
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their underlying stucture. One prominent Case Representation format was created by the
INRECA group in the form of CASUEL (Manago et al. 1994). CAUSEL was based on
ASCII files and used Extended Backus Naur Form (EBNF) representation format (Wirth
1977). The current standard for marking up structured, knowledge-rich data is XML,
the eXtensible Mark-up Language. XML is a description language that supports meta-
data descriptions for particular domains and these meta-descriptions allow applications
to interpret data marked-up according to this format. A representation language based
on XML has many advantages: interoperability, ease of reuse, as well as the application-
independent exchange of data over existing network protocols. Most importantly it allows
the developer access to the entire XML tool-set. This tool-set includes fast, reliable doc-
ument parsers, e.g. SAX and DOM, validating documents e.g. DTDS and XML-Schema,
and document transformers, e.g. XSLT. The earliest work in the CBR community on an
XML-based case representation language was the introduction of CBML by Hayes et al.
(1998). They called this language CBML (CBMLv1).

CBML was further developed and the current version is CBMLv3? (Coyle et al. 2003,
2004). The XML community recognised the limitations of the early DTD model and
developed an alternative which allows for structural and type validation called XML-
Schema. The maturity of XML-Schema led to the redevelopment of CBML and now the
description of CBML is stored in an XML-Schema document — the CBML Schema.
Only documents that follow this schema exactly can be considered valid CBML.

The use of CBML ensures that case-bases are well defined and documentated. CBML

provided the solid base on which Fionn was developed.

5.2 Fionn — The Machine Learning Framework

Fionn was developed on the 1.4 Java platform®. The purpose of Fionn was to provide ab-
stract descriptions of much of the common functionality encountered in machine-learning
in terms of interfaces and basic objects. By providing this basic structure Fionn provides
the means by which code can be developed in a reusable way. The Fionn Framework

contains three important elements that form the bedrock of the framework;

case object The simplist and most fundamental element of any case-based system is a

3The CBML web page is located at http://www.cs.tcd.ie/research_groups/mlg/CBML/
“The Java homepage http://java.sun.com/
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case.

casebase object The case-base object represents a list of cases and allows them to be
manipulated in a defined way. It is is populated from the CBML XML description
of a case-base. All other components within the Fionn framework are designed to

interface with this defined abstraction of a case-base.

classifier interface This is an abstract description of the functionality of a machine
learning classifier. It defines in an abstract non-alogorithm specific manner how a
classifier should be built and how it can be called on to perform classficiations. For
instance, to build any classifier the build method must be called and a casebase
object passed in. Each classifier that is added to the classifier suite within Fionn

must meet the criteria defined by the classifier interface. Other componets within

the Fionn Framework can then be designed to operate on classifier objects and
this means that components can be designed in a non-specific manner which allows
greater flexibility and usability. For instance Fionn contains feature selection and
evaluation components which can then be used on any classifier types. The suite
of classifiers developed for Fionn include k-NN, Support Vector Machines, Neural
Nets, Logistic Regression, Naive Bayes and Ensemble based approaches. Fionn
also contains regression tools such Linear Regression and specially adapted Neural

‘ Network and k-NN models.

Using these basic compoents, higher order functionality has been provided such as

an Evaluation Suite, Feature Selection and Weighting, and Noise Reduction components.
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There are four applications which have benn in developed using the Fionn Framework:

The Personal Travel Assistant An application developed to assist users in finding on-

line flights that best meet their individual travel requirements and perferences.

Spam Filtering Application Delany and Cunningham are working on a spam filtering
application called ECUE (E-mail Classification Using Examples) that dynamically
adapts to the changing nature of spam e-mails (Cunningham, Nowlan, Delany and
Haahr 2003, Delany et al. 2005). Because of the volume of spam e-mail and to
its evolving nature their application uses several case-base maintenance techniques
that remove noisy and redundant cases (Delany and Cunningham 2004a). Their
application uses many features of the Fionn framework including the k-NN classifiers

and evaluation framework.

Medical Decision Support Doyle and Cunningham have developed a decision support
application that was used in the medical domain. This application was designed to
support a doctor in making the decision to admit or discharge a child with bronchi-
olitis to hospital for observation. The system makes a prediction and backs it up
with a compelling explanation based on a fortiori arguments (Doyle et al. 2004). Us-
ing the Fionn framework, they were able to concentrate on developing explanations

while reusing existing feature selection, noise reduction and evaluation components.
A Generic Case-based Explanation System As described in this thesis.

Part of the classifier suite in the Fionn core is an efficient implementation of a k-NN
retrieval algorithm and a Logistic Regression classifier. These two Fionn components
provide key aspects of the functionality of the Explanation Framework. In the next two

Sections we will describe each of these components in turn.

5.2.1 Case Retrieval Nets

The standard k-NN algorithm calculates similarity on a case-by-case basis. This approach
is quite inefficient in domains where there is feature-value redundancy and/or missing
features in cases, e.g. in the spam filtering domain (Cunningham, Nowlan, Delany and

Haahr 2003, Delany and Cunningham 2004a). A Case Retrieval Net (CRN) is a structured

net constructed from the case base to retrieve similar cases to a presented problem-case




(Lenz et al. 1998). CRNs are also able to deal with ambiguous terms, can handle partial

cases and are reasonably scalable. They are made up of a number of components:
Case Nodes These represent the cases in the case-base.
Information Entities (IEs) These represent feature-value pairs within cases.

Relevance Arcs These link case nodes with the IEs that represent them. They have
weights relating to the level of importance between the connected IE and the case

(i.e. the weight of that IE’s feature).

Similarity Arcs These interconnect IEs that refer to the same features. These have
weights relating to the similarity between the values of connected IEs. The weight
of a similarity arc is analogous to the local similarity between the feature-values of

the two IEs they connect.

The idea behind the CRN architecture is that if a target case is connected to the net
via a set of relevance arcs, and activated, this activation will spread across the net. As
activation spreads along arcs in the net, it is attenuated by their weights. Each of the
other case nodes will accumulate an activation score relating to its similarity to the target
case. The case nodes with the highest activation represent the most similar cases to the
target case.

Figure 5.2 illustrates the structure of a case retrieval net using data from the travel
case base (Lenz 1993). In this figure each case node is associated with a set of information
entities using relevance arcs. We can see that many offers shares information entities.
For example, Offer 20219 and Offer 500122 have a number of features in common and
this is reflected arcs linking each of these offers to information entities such as Crete,
Matala and swimming. The advantages of CRNs are that local similarity calculations are
only performed once and that missing feature values are ignored. By caching the local
similarities between individual cases and reducing feature-value redundancies speed ups

in operation are achieved.

5.2.2 Fionn’s k-NN Implementation

Fionn’s k-NN implementation uses a combination of case-by-case similarity calculations
and CRN optimisations. There is a significant cost associated with initialising a CRN. As

such there is a trade-off between time spent initialising the net and faster retrieval times.
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Figure 5.2: The case retrieval net structure (from Lenz and Burkhard 1996)

The CRN-derived speed-ups are counter-productive if there is little or no redundancy in

feature values in the case-base. Therefore the speed-ups should not be used unless there
are features in the case-base which will benefit from the net structure.

Fionn needs to determine which features will benefit from inclusion in the CRN struc-
ture. Features that are not included in the CRN structure will have their local similarities
| calculated on a case-by-case basis. Our k-NN implementation has a net-initiator function
which assesses the features in a domain in order to determine which ones will benefit
from inclusion. It reads the case structure document and automatically leaves out double
and string feature types as they are unlikely to have much feature-value redundancy.

symbol and boolean types will most likely benefit and so they are flagged for inclusion.

The integer feature type may also be flagged depending on the estimated feature-value




redundancy — if the range of an integer feature is less than half the size of the case-base
it is flagged for inclusion.

Fionn then loads the cases one-by-one into the k-NN structure and adds IEs to the
net structure as needed. On presentation of a target case, activation is spread to the
case nodes through the CRN. The relevance and similarity arcs in the CRN structure
are kept in place between retrievals, therefore subsequent retrievals should be quicker.
This is because local similarities are effectively cached in the similarity arcs. Next, Fionn
calculates the similarity contributions of the non-included features. It goes through these
features and calculates the local similarities directly between the target case and each
case in the case-memory, adding the similarity values to that case’s global similarity. On
subsequent retrievals, the local similarity values of non-included features will have to be

recalculated.

5.2.3 Fionn’s Logistic Regression Implementation

Fionn contains a Logistic Regression classifier that is in keping with its classifier inter-
face. A Logistic regression model is defined by the set of parameters that form the logit
function (Equation 4.1.1). Building a logistic regression model involves fitting these para-
meters to the data and involves a directed search through the parameter space. Fionn’s
implementation of the logistic regression model does this using a globally convergent New-
ton’s Method adapted from numerical recipes in C (le Cessie and van Houwelingen 1992).
This alogorithm had originally been ported into Java for use in Weka’s machine learn-
ing framework ° but we then adapted and modified the Java version of the algorithm
exstensively so that it fitted into the Fionn Framework.

Once the model has been built the logsitic regression system is set to act as classifier.
As a classifier the logistic regression model will just return a simple class label, howevever
we are more interested in the probabilistic qualities of the model. In the next Section we
outline how the Fionn Framework and the two classifiers we have described are used in

the Explanation Framework.

®The Weka homepage http://www.cs.waikato.ac.nz/ml/weka/




5.3 The Explanation Framework in Fionn

We will now briefly outline how the functionality of the Explanation Framework we de-
scribed in the previous chapter is implemented using Fionn. The code which performs the
entire explanation process is the explanationBuilder object. As can be seen in Figure
5.3 this object contains within it the case-base used to generate explanations and utilises
a number of other objects which encapsulate the functionality of various aspects of the
Framework that we have described. We will now discuss each of these objects and the

funcationality that they provide in turn;

explanationBuilder

casebase

casebaseBuilder

textGenerator

Figure 5.3: The explanationBuilder object

casebaseBuilder: this carries out the function of producing a local case-base as defined
in Section 4.1.2. It is built using the case-base that is to be used to generate ex-
planations and an integer defining the number of cases of each class that must be
included in each local case-base. To generate a local case-base the buildCasebase
method is called and a case representing the Query Case is passed in. Fionn’s im-
plementation of the k-NN algorithm is then used to order the list of cases stored in

the casebaseBuilder’s case-base based on similarity to the Query Point passed in.
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A new empty casebase is created and is filled with references to cases based on
the local case-base algorithm we have defined (Section 4.1.2). Once filled, the local

case-base that has been created is then returned.

logisticExplainer: provides the means through which explanation cases can be selected
and feature differences between cases described. The logisticExplainer object is
intended to be built on local case-bases produced by the casebaseBuilder. The
logsiticExplainer object extends Fionn’s logistic regression classifier and so con-

tains all of its functionality but adds two important methods;

getExplanationCases: this method takes in a string indicating the class of the
Query Case for which a explanation case is being selected. The casebase is
then searched by the logisticExplainer for an Explanation Case. It does
this using the probabilistic qualties of the underlying logistic regression model

as as described in Section 4.1.3. The best case is selected and returned.

getOddsRatio: This method provides the means through which the effects of dif-
ferences can be quantified. As described in Section 4.1.4, coefficients of logistic
regression model can be used to calculate the odds ratio of different feature-
values. The getExplanationCases method takes in two cases, the Query Case
and the Explanation Case, and returns an array of double objects contain-
ing the odds ratio for each feature difference between the Explanation Case
and Query Case. The method uses the underlying coefficients representing the
Logistic Regression Model and Equations 4.4 and 4.5 from Section 4.1.1 to
calculate the effects if a value from the Query Case was substituted into the
Explanation Case. In this way the odds ratio is calculated from each feature

and returned in the array of doubles.

The extra functionality contained within the logisticExplainer object allows the
underlying logistic regression model to be used in the explanation process in an easy

accessible way.

textGenerator: handles the generation of discursive texts given the information extracted
from logistic regression model. Importantly, it itself also takes in two objects in
its constructor; a featureDifferenceMapper object and a featureMapper object.

These objects are used to generate the correct term to describe the differences in
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feature-values and to generate more user friendly names for the feature names. By
default the featureDifferenceMapper objects just returns the string values bigger
or smaller values and the featureMapper, the normal feature names. However, these
objects can be extended. We developed an extended version of this object for work
on the BAC case-base so that more natural and user friendly language relevant to the
domain can be used in the discursive text. Using these objects, the dialogGenerator

can generate text specific to certain domains or else the defaults can be used.

The textGenerator: conatins one important method, getDiscursiveText. This
method takes in the Query Case, a list of explanation cases and a reference to a
logisticExplainer object. The list of explanation cases either contains one or two
cases. In cases where the system has low confidence in a prediction a extra case, the
counter example is also supplied. The 1ogistic‘Exp1ainer is used fo get the ddds
ratios for each feature difference that there may be in the explanation cases. Using

these a discursive text is generated and returned in the form of a string

explanation: is asimple wrapper object which contains the generated explanation text as
well as the explanation case(s). This is is the object returned by explanationBuilder

each time it is called to provide an explanation.

Figure 5.4: The flow of execution
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The explanationBuilder uses each of these objects to produce the case-based explana-
tions. The getExplanation object is called with a Query Case being passed in and each
of the objects that we have described is then used to generate the explanation. The flow
of excecution undertaken by the explanationBuilder can be broken down into a number

of distinct stages as can be seen in Figure 5.4. We will now describe each of these stages;

1. First a case is passed into the underlying prediction system and a classification is
made. This case and the recommendation assigned to it are then used to seed the

explanation process.

2. The buildCasebase method of the casebaseBuilder object is then called with the

Query Case being passed in and a local case-base is produced.

3. The local case-base is then used to build a logisticExplainer object. A method
called getExplanationCases of this object is then used to find the cases to use as the
basis of a case-based explanation. These cases are then passed to the textGenerator

along with a reference to the logisticExplainer object itself.

4. The textGenerator uses its reference to the logisticExplainer to find the effects
of any feature differences that exist between the Query Case and Explanation Case(s)
using the getOddsRatio method. It then uses the featureDifferenceMapper and
featureMapper objects to generate discursive text describing the effects of the dif-

ferences

5. Finally the explanation case(s) are combined with the generated text and encapsu-

lated in a explanation object.

This process is carried out each time a recommendation is requested. It is important to
note that in this implementation no assumption is made about the underlying classifier for
which explanations are being provided. The implementation allows for CBR explanations

to be provided for any of the classifiers in the Fionn suite.

5.4 Summary

We have describe Fionn the machine learning Framework we have developed along with
how it was used to implement our Explanation Framework. In the next Chapter we

describe how we evaluated our Explanation Framework
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Chapter 6

Evaluation

The concept of an explanation is intuitively understood by most people, we use it effort-
lessly throughout our everyday lives. However the vast array of ways and contexts in
which explanations are used means that the concept of an explanation is an extremely
difficult one to concretely define. What might be considered a valid and good explanation
in one context might have no meaning in another. The slippery nature of the concept of an
explanation of course impacts on the way in which explanations can be evaluated. There
is no one fixed criterion on which all explanations can be judged. Explanations can only
really be evaluated in terms of how effectively they meet the objectives that necessitated
their creation.

However within the machine learning community, explanations are usually used within
a restricted range of contexts and with clear objectives. As highlighted in Section 3.4.1,

Sormo et al. defined five goals that explanations in CBR might serve:

e Transparency

Justification

Relevance

Conceptualization

Learning

The primary role that the framework for explanations we have developed serves is
in justification, we want to reassure the user of the system’s recommendation and instil

confidence in them in that system. Although, as we have explained in Section 1, CBR
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explanations have great potential to deliver on this issue, presenting the nearest case in
its rawest form may not be enough. In Chapters 4 and 5 we discussed how we developed
our approach to providing more convincing explanations. We begin this Chapter with a
discussion of the merits of our approach for tackling issues in CBR explanations. Following
this we describe a User Evaluation of our framework designed to establish whether our
approach does indeed improve user confidence and we discuss our results.

Although the primary objective of our Explanation Framework was to provide expla-
nations that improve user confidence, the design of the Framework also has potential in
terms of providing assessments of confidence and as a recommendation strategy. Using
the probabilistic qualities of the Local Logistic Regression model it is possible to produce
a probability of the Query Case belonging to one class or another. In some domains this
might prove a more powerful and effective recommendation strategy. In Section 6.3 we
evaluate our Local Logistic Regression model as a recommendation strategy in comparison
with k-NN and global logistic models. In Section 6.4 we evaluate the effectiveness of our
systems ability to provide confidence measures. Finally we end this chapter with some

concluding remarks in Section 6.5.

6.1 The Merits of Our Approach

One of the principle shortcomings of the traditional knowledge-light approach to expla-
nations is its dependence on the users ability to appreciate and understand the similarity
between the query and the explanation cases (Sormo and Cassens 2004, McSherry 2003,
Nugent and Cunningham 2005). This is a key concern when the goal of the explanation
is to generate user confidence in the CBR system. We developed an approach to tackling
this problem which utilises locally built models to extract local information and build con-
vincing explanations. There are a number of advantages to the approach we have taken

and we will talk about each of these in turn.

6.1.1 Ability to Deal with Complex or Incomplete Data

One of the great strengths of Case-based Reasoning is the ability to deal with weak theory
problems and to learn incrementally. Many weak theory domains are non-linear in nature
and are best suited to being described on an instance by instance basis by local models.

Previous attempts have used global models to provide users with supplemental information
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(McSherry 2003). However, such models may be unsuitable in some complex weak-theory
domains and may produce unsatisfactory explanations that don’t truly reflect the case-
base (Nugent and Cunningham 2005). Our approach sidesteps this issue by building an
explanation around the point of interest and so capturing the interactions of the feature-
values in that area of the feature space.

Our approach also supports incremental learning as it applies a lazy approach to build-
ing explanations. Information is only gathered as the explanation is needed and so always
uses the most up-to-date information to generate its explanations. This approach reflects
the lazy and incremental learning qualities of CBR which are considered some of the
methodology’s strengths (Aha 1997). This means that the explanations generated reflect
more truly the knowledge captured within the case base. However it is worth noting that if
the case-base lacks coverage in certain areas of the feature space then this can be reflected
in the explanations produced and they may seem counter intuitive. For instance consider
example 6.1.

In this example the case-base in that area of the feature space doesn’t adequately
represent the problem. In this area of the case-base the feature duration is heavily
correlated with units and so a larger duration value is seen as evidence in favour of
being over the limit when the reality is the opposite. In some cases this may alert expert
users to system failures and deficiencies in the case-base. However, it may well either cause

confusion or go unnoticed amongst non-expert users.

6.1.2 Little Expert Knowledge Needed:

One of the great strengths of our approach is from the Knowledge Discovery perspective
(Nugent, Doyle and Cunningham to appear 2005). We are able to extract information
about the interactions of feature-values on the recommendation task without any prior
knowledge of the domain. This means that our Explanation Framework can easily be
used in many different domains and without lengthy consultations with experts from
those areas. Table 6.2 shows an example from the BAC domain. It is clear that the
feature information is in line with our intuitive understanding of the problem. This is all
achieved without the intervention of domain experts. However our Framework isnt limited
to purely producing explanations in the BAC domain.

We can quickly generate explanations for different domains without any prior knowl-

edge as can be seen in Table 6.3. This is an example that was built on the UCI Credit-card
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Table 6.1: Incomplete Case Base

Query Explanation
Case Case
Weight (kgs) 88 63
Duration (mins) 90 120
Gender Male Male
Meal Full Full
Amount (Units) 5.2 512
BAC Under

The prediction for the individual in the Quey Case is: Under the limit

The confidence that this prediction is correct is: high

Discursive Text:

In support of this prediction we have the person presented by the Explanation
Case who was also Under the limit. Weight being heavier and Duration being
shorter have the effect of making the Query individual more likely to be Under
the limit than the Explanation individual.

case-base. The problem involves using information about an individual’s status to assess
whether they should be given a loan or not. In the BAC domain we used a small amount
of linguistic knowledge to help describe the feature differences in a more natural way. For
example, instead of describing differences in weight as being larger or smaller the text tem-
plates used the terms lighter and heavier. However, in this example we have inserted no
extra knowledge of any sort but are still left with an interpretable and useful explanation.

We have also been able to provide explanations which use a fortiori arguments with-
out consulting a domain expert and constructing explanation-specific similarity measures.
Using the probabilistic qualities of the Logistic Regression Model we can find the most
marginal cases without knowledge as to what the effects of different features are on the

recommendation.

6.1.3 Confidence Measures

Researchers have recently highlighted the dangers of seeming to be confident in a recom-
mendation when it is false (Sormo and Cassens 2004, Cheetham 2000). This can seriously

damage the long term confidence of users in a system. Explanations can have an impor-
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Table 6.2: An Example Containing Discovered Domain Knowledge

Query Explanation

Case Case
Weight (kgs) 60 73
Duration (mins) 60 140

Gender Female Male

Meal Full Lunch
Amount (Units) 2.6 5.7

BAC Under

The prediction for the individual in the Quey Case is: Under the limit

The confidence that this prediction is correct is: high

Discursive Text:

In support of this prediction we have the person presented by the Explanation
Case who was also Under the limit. Meal being Full and Amount being smaller
have the effect of making the Query individual more likely to be Under the limit
than the Explanation individual. Although confidence in the prediction is high it
is worth noting Weight being lighter, Duration being shorter and Gender being
Female have the effect of making the Query individual less likely to be Under the
limit than the Explanation individual.

tant role in highlighting system failures and as we saw in Section 6.1.1 our system can
highlight deficiencies in the case-base. Our approach also provides us which a meaure of

confidence in a given recommendation which can then supply to the end user.

6.2 User Evaluation

Although our Framework addresses the perceived deficiencies in CBR explanations we
needed to establish whether the explanations produced by our Framework were in fact
effective. To do so we carried out a user evaluation. In designing the user trial there were

three principle questions we wished to address;

1. Do people find the explanations understandable and useful?
2. Do the explanations increase users’ confidence in the case-based system?

3. Can the explanations alert users to when the system might be in error?
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Table 6.3: Credit Card Data Set Example

Query Explanation
Case Case
Checking Status 0- 0-
Duration 6.0 21.0

Credit History

critical/other ex-
isting credit

critical /other ex-
isting credit

Purpose radio/tv new car
Credit Amount 1169.0 571.0
Savings Status no known savings 100-
Installment Commitment 7+ Tt
Personal Status 4.0 4.0
Residence Since single male male single
Property Magnitude real state real estate
Age 67.0 65.0
Other Payment Plans none none
Housing own own
Existing Credits 2.0 2.0

Job skilled skilled
Number of Dependents 1.0 1.0

Own Telephone Yes none
Foreign Worker Yes Yes

Grant Loan?

Granted a Loan

The recommendation for the individual in the Quey Case is: Granted a Loan

The confidence that this recommendation is correct is: high

Discursive Text:

In support of this recommendation we have the person represented by the Ex-
planation Case who was also Granted a Loan. Duration being smaller, Purpose
being radio/tv, Savings Status being no known savings and Own Telephone?
being yes have the effect of making the Query individual more likely to be Granted
a Loan than the Explanation individual. Although confidence in the recommen-
dation is high it is worth noting Credit Amount being bigger and Age being
bigger have the effect of making the Query individual less likely to be Granted a
Loan than the Explanation individual
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The case-base on which the trial was carried out was the blood alcohol case-base as
descibed in previous Sections. We built a simple Nearest Neighbour algorithm on the data
set and applied our framework to providing explanations of it’s recommendations.

In the trial, subjects were given a questionnaire in which they were shown three dif-

ferent forms of explanation;

e The Framework Explanation: This is an explantion that includes the selected
a fortiori explantion case, a discursive text and a measure of confidence as seen in

table 4.5.

e Case-based Explanation: In this form of explanation the subject is just shown

the selected a fortiori case as evidence in favour of the recommendation.

e No Explanation: The user is just presented with the feature-values of the query

and the systems prediction.

The trial subjects were shown four examples of each type of explanation which were

selected at random and asked two questions after each example shown;

1. Do you think the prediction is correct?

2. How would you rate this Explanation?

Below each question the trial subject had five options to select from. In question one
the options were; No, Maybe No, Don’t Know, Maybe Yes and Yes. In question two the
options were; Poor; Fair; Okay, Good and Very Good.

To assess the use of explanations in terms of alerting users to when the system might be
in error, one of the four examples shown of each explanation type was a mis-classification.
Examples of each type of explanation shown to the users and the structure of the ques-
tionnaire can be seen in Appendix A. The Framework explanations were structured as
outlined in Chapter 4. In the case of the incorrect Framework explanation the confidence
in the recommendation was labelled as being low. In cases of low confidence we presented
users with additional counter examples as outlined in Section 4.2.1 and as can be seen in
Appendix A.4.

Twelve people from a number of different backgrounds took part in the evaluation. In
the next section we will discuss how we analysised the data and we then move on to the

results of our analysis.
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6.2.1 Analysis of Data:

The first step in analysing the user responses was to encode them so that they could
be interpreted. To do this we translated the reponses into a simple numeric scale. The
responses clearly have a natural ordering and we coded them into values between 1 and
5. Scores that indicated positive responses in favour of a explanation scheme were given
higher numeric scores such as 5. In Question One, the responses No to Yes were coded as
being 1 to 5 respectively. Likewise in Question T'wo the responses Poor to Very Good were
coded as 1 to 5. In the case of recommendations that were incorrect the encoding scheme
was reversed with Yes to No being coded 1 to 5 respectively. There was no reversal of the
ratings of the responses to Question Two when the system was incorrect. Once we had
encoded the users reponses we were then able to analyse the data.

In analysing the data from our user evaluation we would like to establish whether
one explanation technique is statistically better or worse than another. Our evaluation
was designed so that each survey participant rated examples of each type of explanation.
This allows us to consider the average rating a participant gives one explanation scheme
linked with the average rating that they give another scheme. This is often referred to as
a patred result and this is an important characteristic as it allows us to use a Student’s
paired t-test to compare our different explanation schemes. The Student’s paired t-test is
a parametric test that can be used to determine whether the differences scores for one
scheme and another are significant. It is a test designed for use on data with small sample
sizes and assumes that underlying data is normally distributed. The ratings scores of each
explanation scheme follow normal distributions which is evident in Figures 6.4 and 6.3.
Our small sample size and the distribution of data mean that the Student’s paired t-test
is ideally suited for analysing the results of the user evaluation.

The Student’s paired t-test can be calculated in the following way. Let z; and y; be
the average user rating for user i using on explanation scheme A and B respectively. We

use the following equation to calculate a value for the paired t:

where T is the overall average rating of scheme A and 7 is the average rating of strategy B,

n is the number of users (12) and s is the standard deviation of the differences in ratings
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between scheme A and scheme B, i.e.

PP \/2?21 (-Ti i Z/i)2
n—1

For the paired t-test the null hypothesis supposes that the difference between the two
samples is 0. If there is enough doubt in the null hypothesis we can reject it and say
that one strategy is better than the other. In practice the t-value returned allows us to
determine with a level of certainity whether the difference that exists between one scheme

and another is significant.

6.2.2 User Trial Results:
Question One: Do you think this prediction is correct?

The first question was designed to test how each of the explanation schemes affected
users’ confidence in the system’s recommendations. We can see the average ratings for
each scheme when the systems recommendations were correct in Figure 6.1. It is clear
that the explanations given by the framework instil greater confidence in the system than
either of the other two schemes. The survey participants answered Yes 88% with just
four answers being anything other than yes. Three people answered Maybe Yes, one Don’t
Know and there were no negative answers. This result is statistically significant as can
be seen in Table 6.4. When the system is correct the users were far more confident in
recommendations that were accompanied with the full framework explanation than when

simply supplied with an explanation case.

Table 6.4: Summary of statistics for the difference in ratings in Question One for the
Framework and Case-based explanations when the system is correct.

Statistic Value
Number Of Samples (n) 12

Degrees Of Freedom (d) 11

Sample Mean of Framework Ratings () 4.86
Sample Mean of Case-based Ratings (7) 3.72
Student’s t (t) 4.16
99 Percentile Student’s t Distribution (tg9) | 3.106

We also found case-based explanations to be an improvement on providing no ex-
planation at all although the improvement is more modest than that of the Framework

explanation (see Table 6.5). The average rating for the case-base explanation is 3.7 while
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Average Rating

Framework Case No Explanation
Explanation Type

Figure 6.1: The ratings in Question One for each explanation scheme when the System
was correct

supplying no explanation has an average rating score of 2.97. These ratings translate into
responses somewhere between Don’t Know andMaybe Yes for the case-based approach
and of Don’t know when no explanation is supplied. Both these response patterns reflect
that there is an element of doubt in users of the system when supplied with either no
explanation or a case-based explanation. Although the average rating for the case-base
approach is higher than supplying no explanation this difference is significant at a lower
level. Simply supplying an explanation case instils more confidence than not supplying
any explanation however a large element of doubt still persists. This further reinforces
the value of the framework explanation and justifies the concerns expressed by researchers
about simple case-based explanations (Section 3.4.1).

We also examined the user’s responses when the system had made an incorrect clas-
sification and the results can be seen in Figure 6.2. Each schemes’ average rating drops
down to around 3, the Don’t Know mark. In the case of the Framework explanations this
is a significant drop as can be seen in Table 6.6. When the system is incorrect users seem

to be unsure of the system. In fact there is no significant difference in the performance of

80




Table 6.5: Summary of statistics for the difference in rating in Question One of Case-
based explanation and no explanation when the System is correct.

Statistic Value
Sample Mean of Case-based Ratings (T) 312
Sample Mean of Ratings for no explanation (g) | 2.97
Student’s t (t) 2.58
99 Percentile Student’s t Distribution (¢.99) 3.106
95 Percentile Student’s t Distribution (¢.95) 2,201

"lilliSystem Correct
" |mSystem Incorrect

Average Rating
N
o

Framework Case No Explanation
Explanation Type

Figure 6.2: The ratings for each explanation scheme in Question One when both System
was correct and incorrect.

either algorithm when the system is incorrect (Table 6.7). This may seem to be a positive
result, as at least users don’t seem to believe that the system is definitely right. However,
ideally we would like users to realise that the system is incorrect as a Don’t Know reponses
reflect uncertainity and confusion.

The level of confusion that exists can clearly be seen if we look at the distribution
of responses behind the the average ratings. In Figure 6.3 we can see the distribution of

responses for each explanation scheme when the system is correct. We can see that the
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Table 6.6: Summary Statistics for the ratings for Framework explanations when system
correct and when the system is incorrect.

Statistic Value
Sample Mean when System was correct (Z) 4.96
Sample Mean when System was incorrect (7) | 3.08
Student’s t (t) 5.93
99 Percentile Student’s t Distribution (¢.gg) 3.106

Table 6.7: Summary of statistics for Question One of Framework and Case-based expla-
nations when the System was incorrect.

Statistic Value
Sample Mean of Framework Ratings (7) 3.08
Sample Mean of Case-based Ratings () 2.66
Student’s t (t) 0.86
99 Percentile Student’s t Distribution (t.99) | 3.106
80 Percentile Student’s t Distribution (¢gp) | 1.36

average rating for the framework explanation reflects the mean of a very tightly pointed
distribution centered on Yes response. This reflects certainty of the users and the con-
fidence in the system that has been instilled in them. Conversely, the distibutions of
the other two explanation schemes are far flatter reflecting the uncertainty and lack of
confidence that exists when a case-based or no explanation is used.

The graph of frequencies of responses when the system is incorrect reveals a very
different user response pattern (Figure 6.4). Although no one responded Yes in the case
of the explanations produced by the framework there is far less certainty in the users’
responses. When the system was incorrect the distribution for each of the schemes is quite
flat and all centred around the Don’t Know; clearly there is a high degree of variance in
the responses. It is encouraging that no users thought that the system’s prediction was
definitely correct in the case of the framework explanation and it is clear that they heeded
the warning about low confidence. However, it is also clear that users weren’t sure if the
system was correct, or incorrect, a level of doubt remained that was indistinguishable from
that experienced under the other two schemes.

It is clear that the explanations that are produced by the framework are effective at
instilling confidence in users and that they represent a considerable improvement on simple

case-based explanations. However, when the system is incorrect they proved to be no more
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Figure 6.3: The distribution of user responses in Question One when the system predic-
tions were correct

effective than any other explanation scheme in limiting confusion and alerting the user as

to the correct prediction.

Question Two: How would you rate this explanation?

In question two we were trying to determine how satisfactory people found the explana-
tions. We can see the average rating value given to each explanation scheme in Figure 6.5.
Clearly people found the framework explanations to be far more satisfying then the other
two schemes and generally the rating level for the framework explanation was quite high
with an average rating of 4.2 when the system was correct. This equates to most users
rating the explanations as being somewhere between Good and Very Good. The average
ratings for the case-based explanation and no explanation when the system was correct
are 2.3 and 1.05 respectively. This places the responses for the case-based approach be-
tween Fair and Okay while the ratings for no explanation are understandably firmly set
in the Poor categorey. The difference in rating between the framework and case-based

explanation is strongly statistically significant indicating the greater user satisfaction in
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Figure 6.4: The distribution of user responses in Question One when the system predic-

tions were wrong

the Framework Explanation as can be seen in Table 6.8. A Students t-value of 3.106 is

required to ensure that there is 99% confidence that there is a significant difference. The

Students t-value is twice that needed for 99% confidence so we can say that the results

are strongly statistically significant.

Table 6.8: Summary of statistics for the difference in ratings in Question Two for the
framework and case-based explanations.

Statistic Value
Sample Mean of Framework (Z) 4.22
Sample Mean of Case-based (7) 2.83
Student’s t () 6.62
99 Percentile Student’s t Distribution (t.g99) | 3.106

We also examined the situation when the system made an incorrect recommendation

and the ratings for each explanation can be seen in Figure 6.6. There is a drop in the rating

for both the framework and case-based explanations while the rating for no explanation has
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Average Rating

Framework Case No Explanation
Explanation Type

Figure 6.5: The average rating Scores for Question Two of the explanations produced
by each different Scheme

naturally stayed the same. In the case of the framework explanation the ratings dropped
from being between Good and Very Good to Good and Okay. This drop is significant but
not strongly so as can be seen in Table 6.9. As we saw in the analysis of the results from
question one, the Framework Explanations proved unable in this domain to alert users
that the prediction was definitely incorrect. However, user satisfaction in the Framework
Explanations has dropped but remained reasonably high. This is despite the increased
cognitive load associated with explanations produced when confidence in a prediction is
low. As described in Section 4.2.1 users are presented with counter examples when the
confidence is low. This leads to longer explanations as can be seen in Table 4.6.

There is also a drop in level of satisfaction in the case-based approach when the system
is incorrect. This may reflect the perceived lack of relevance of the explanation case
retrieved. The retrieved case in this circumstance is a poor explanation case reflecting
the lack of coverage in that point of the case-base. The average rating for the case-based
explanation drops from being Fair to Okay to being Poor to Fair. However, it is clear

that the level of satisfaction in the case-based approach when the selected explanation
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each different Scheme when both the system was correct and incorrect

cases are good and the system is correct is already very poor to begin with. The level

of satisfaction in the framework explanations is still greatly superior and significantly so

(Table 6.10).

Table 6.9: Summary of statistics of the difference in ratings in Question Two of the

Framework explanations when the System was correct and incorrect.

It

comparison with the the case-based approach even when the system has made an incorrect
prediction 6.10. It would appear that satifaction in the framework explanations is reason-

ably robust even under the extra cognitive load experienced when there is low confidence

Statistic Value
Sample Mean when System correct () 4.22
Sample Mean when System incorrect(7) 3.5

Student’s t (t) 1.96
99 Percentile Student’s t Distribution (tg9) | 3.106
90 Percentile Student’s t Distribution (t.g0) | 1.79

is clear that users show far greater satisfication in the framework explanations in
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in the system’s prediction. Satisfaction levels in the case-based approach are unaccept-
ably low in both circumstances and this again reinforces the need for the explanatory texts

supplied with the framework explanations.

Table 6.10: Summary of statistics of the difference in ratings in Question Two of the
Framework and Case-base explanations when the system was incorrect.

Statistic Value
Sample Mean of Framework () 3.5

Sample Mean of Case-based (7) 1.75
Student’s t (t) 4.47
99 Percentile Student’s t Distribution (t.99) | 3.106

6.2.3 Discusion of Results

The evaluation that we have carried out has demonstrated that there is much value in
the explanations produced by the framework. Simple case-based explanations have their
short-comings which is evident in the user ratings of such explanations. Both in terms
of increasing user confidence and in the level of satisfaction expressed by users, simple
case-based explanations performed poorly. The case-based explanations only proved to
be marginally effective in increasing user confidence in the system and as can be seen in
Figure 6.3 much confusion still remained. Likewise the level of satisfaction expressed by
users in the explanations was quite low being at best between Fair and Okay.

Conversely, the framework explanations proved to extremely effective at instilling con-
fidence as is evident in the strong yes response expressed by users when presented by
framework explanations (Figure 6.3). User satisfaction ratings of the explanations were
also far higher. It is clear that generating discursive texts explaining the effects of feature-
value differences greatly improves upon simple case-based explanations.

However, in terms of our goal of alerting users to when the system is making a mistake,
the framework explanations only proved a limited success. There was a marked difference
in the users’ responses to the different explanations produced when system was correct
and incorrect. Although encouragingly users heeded the confidence warning and no one
responded that the system was definitely correct it is clear that users were none the wiser
as to what the correct recommendation should be as is evident in Figure 6.4. Perhaps this

reflects their lack of domain expertise as satisfaction levels in the framework explanations
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still remained high. These results may indicate that it may be extremely difficult to

maintain user confidence in a system that makes mistakes.

6.3 Local Logistic Regression as a Classifier

As we acknowledged in Nugent, Cunningham and Doyle (2005) providing explanations
can maintain confidence but if the underlying system is inaccurate confidence will be
lost regardless of these efforts. A fundamental requirement to maintaining confidence is
that the underlying recommendation system is sufficiently accurate. We have used the
Local Logistic Regression Model as an aid to providing explanations but it is also possible
to use the locally produced model to provide recommendations. Using the probabilistic
model of the local feature space it is possible to produce of probability of the Query Case
belonging to one class or another. In some domains this might prove a more powerful
and effective classification strategy than that normally employed by k-NN. Likewise, the
localised logistic regression might prove more effective than use a global logistic regression
model. The local approach might be able to approximate patterns in the data locally
that are lost when the logistic model is applied to the data in its entirety. In this Section
we examine the effectiveness of out localised logistic regression model as a classification
strategy. We evaluated it on a number of different case-bases and compared the results
with those of the k-NN and Logistic Regression strategies. In the next Section we will

describe the experimental setup before going on to discuss our results.

6.3.1 Experimental Setup

In order to evaluate the three different recommendation schemes we user Leave-one-out
cross validation on each scheme for each 13 UCI case-bases. Leave-one-out cross-validation
is an evaluation method used to assess the likely real world performance of a system on
unseen data. Using leave-one-out cross-validation, all the cases in the case-base except one
are used to construct the classification model. The remaining case that has been excluded
is then passed into the constructed model and a recommendation for that case is produced.
This process is repeated for each case in the case-base leaving us with a classification for
each.

Both k-NN and Local Logistic Regression models have parameters that must be set.

In the case of k-NNmodel it is K; the number of neighbours used to determine the class.
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In the localised logistic regression model we must choose the number of each class we
want to guarantee will be present in the local case-base. We evaluated the performance of
both schemes using different parameter settings in the range from 1 to 15 in both cases.
We selected the parameter on which the best performance was recorded and used it as
representative of the best performance for that classification scheme. In the next section

we present and discuss the results of our evaluation.

6.3.2 Experimental Results

The results of the evaluation carried out can be seen in Table 6.11. For each of case-bases
used in the evaluation we have recorded the accuracy of each classifier. In the case of the
k-NN and Local Logistic Regression schemes the accuracy score is accompanied by the
parameter setting used in brackets after the accuracy score. The results show that in all
but three cases the Local Logsitic Regression model is as accurate or more accurate than
simple k-NN. In just four cases the Local approach is the best recommendation strategy.
The poor performance of the Local appraoch is extemely surprising when compared to

that of the global approach.

Table 6.11: The Accuracies of the Different Classification Schemes

Case-base Global Logistic K-NN Local Logistic
Regression Regression
DNAp 86.79 85.85 (2) 89.62 (6)
ionosphere 89.17 88.89 (2) 86.89 (9)
e-clinic2 98.66 98.66 (2) 99.33 (3)
diabetes 7773 73.7 (4) 75.78 (10)
vote 93.79 92.64 (2) 92.64 (10)
German Credit 75.10 74.7 (10) 69.60 (2)
spam 93.75 89.75 (2) 95.75 (6)
BAC 83.67 82.65 (2) 86.73 (3)
e-clinic 96.32 86.96 (6) 94.98 (13)
Breast Cancer 70.40 76.90 (4) 69.68 (6)
Bronchiolitis 66.87 71.08 (6) 66.87 (11)
Heart 82.96 82.96 (10) 141 (11}
Liver 68.41 67.54 (2) 68.12 (4)

It is worth nothing that the Local and Global Logistic Regression schemes are equiva-
lent if the local case-base is grown to be so large that it encompasses the entire case-base.

This may seem to be moot point but it means the local scheme is guaranteed to be as
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good as the global scheme. The restricted range of values we tried for defining our local
case-base means that the results presented may not reflect the best possible accuracy. To
investigate this further we extended the range used on two case-bases; e-clinic and BAC.

Figures 6.7 and 6.8 depict the change in accuracy of the Local Logistic Regression
approach as the number of cases of each class to be included in the local case-base is
increased. As we can see in Figure 6.7 the localised approach quickly reaches an optimal
value using extremely small local case-bases. As the local case-base size increases the
accuracy drops before slowly increasing again until it levels out at 83.67 which is the
equivalent to the global model.

However, in the case of the e-clinic case-base a very different form of behaviour is
observed. The model very slowly reaches an optimal performance and then very slowly
drops back to that of the global model. The optimal performance is reached with the local
case-base needing to contain at least 56 of each class value. This represents a far larger

local case-base than that used in BAC case-base.
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Figure 6.7: The change in accuracy for different parameter settings using Local Logistic
Regressionon the BAC case-base

It appears that, for the Local Logistic Model, the optimal size of local case-base is very
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Figure 6.8: The change in accuracy for different parameter settings using Local Logistic
Regression on the e-clinic case-base

much case-base dependent and that it can be much larger than those we had used in our
evaluation. With this in mind we repeated our evaluation this time extending the range of
values tested for the Local Logistic Regression Model until the performance of the model
was equivalent to that of the globel model. The results of this second evaluation can be
seen in Table 6.12. After extending the range of parameter values tested it is clear that
Local Logistic Regression model is indeed as strong as the global model and that in many
cases it is stronger than k-NN. However there is a need for a parameter setting excercise

to determine how large the local neighbourhood should be.

6.3.3 Discussion of Results

It is clear that Local Logistic Regression shows some promise as a classification strategy. It
performs as well as the other schemes in many of the case-bases we tested and outperformed
the other recommendation schemes on some case-bases. For case-bases such as Liver,
German Credit, BAC and Spam it represents a substantial improvement over the other

recommendation schemes with improvements of a least 2% over the rival schemes. In
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Table 6.12: The Accuracies for Local Logistic with Extended Parameter Range

Case-base Global Logistic K-NN Local Logistic
Regression Regression
DNAp 86.79 85.85 (2) 89.62 (6)
ionosphere 89.17 88.89 (2) 90.31 (25)
e-clinic2 98.66 98.66 (2) 99.33 (3)
diabetes 77.73 73.7 (4) 77.99 (117)
vote 93.79 92.64 (2) 94.25(128)
German Credit 75.10 74.7 (10) 77.1 (109)
spam 93.75 89.75 (2) 95.75 (6)
BAC 83.67 82.65 (2) 86.73 (3)
e-clinic 96.32 86.96 (6) 97.56 (65)
Breast Cancer 70.40 76.90 (4) 75.45(72)
Bronchiolitis 66.87 71.08 (6) 69.88 (37)
Heart 82.96 82.96 (10) | 84.44 (109)
Liver 68.41 67.54 (2) 74.48 (38)

all cases the Local logistic regression approach outperforms the global approach but in
many case-bases such diabetes and vote the improvements are quite modest and not
particularly significant. In two case-bases, Breast Cancer and Bronchiolitis, the k-NN
outperformed the Local Logistic Regression approach. Although the Local Logistic model
is considerably better than the global approach on these case-bases the k-NN is the overall
best recommendation strategy being at least 1% better than the Local Logistic model in
both cases.

In the course of our evaluation it also became apparent that the Local Logistic Re-
gression Model’s performance was very sensitive to the size of local case-base used. The
sensitivity encountered means that, although the performance of the model is very strong,

parameter selection must be performed carefully.

6.4 Confidence Measure Evaluation

In this section we examine the potential of the framework to produce an estimate of con-
fidence. As we stated in Section 4.1.5 designing confidence mechanisms requires choosing
between many different possible parameter settings so as to maximise performance on a
domain dependent set of criteria. In the absence of specific domain problems we have
examined the performance of our framework on a number of different case-bases using cri-

teria we ourselves defined. We used the criteria to investigate the flexibility and potential
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of the confidence measures that we can produce. In the next section we will describe the
experimental setup that we used to perform this investigation before going on to discuss

the results

6.4.1 Experimental Setup

Previously in Section 4.1.5 we defined two criteria that could be used to assess the perfor-
mance of our confidence measures. These are the Confident Correct Rate (CCR) as defined

in Equation 6.1 and the Not Confident Correct Rate (NCCR) as defined in Equation 6.2.
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Where CC is the number of times the measure is confident and the system is correct
and CI is the number of times the measure is confident and the system is incorrect.
Likewise NCC is the number of times the measure is not confident and the system is
correct and NC1 is the number of times the system is not confident and right to be so.

Our mechanism for assessing confidence requires two parameters that need to be set; K,
the number cases of each class type value that is required in order to stop the local case-base
building process and the threshold value. As we have discussed, changing these parameters
can affect performance and they must be choosen based on domain requirements. To
investigate the performance of our confidence measure we decided to fix the value of K for
each case-base and investigate the performance of the mechanism at different threshold
levels. We chose that K value for each case-base on which the maximum performance in
balancing the two criteria was achieved. We performed leave-one-out cross-validations on
each case-base recording the probablilty predicted by our confidence measure for each case.
This allowed us to investigate the performance of the mechanism at different threshold
values.

Leave-one-out cross-validation is an evaluation method used to assess the likely real
world performance of a system on unseen data. Using leave-one-out cross-validation,
all the cases in the case-base except one are used to construct our k-NN model and
confidence mechanism too. The remaining case that has been excluded is then passed into

the contructed models and their performance on this unseen case is recorded. This process
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is repeated for each case in the case-base leaving us with probability value for each.
We used these criteria to investigate the performance of our confidence mechanism in

two different scenarios;

1. When no particular emphasis was put on one criterion over another

2. When we wished to eliminate all assessments of high confidence on incorrect recom-

mendations.

In first situation we found the threshold that best balanced the two criteria based on
Equation 4.11. In the second case situation we found the threshold value which minimised
the number of incorrect predictions given confident ratings. In the next Section we will

discuss the results of our investigation.

6.4.2 Results of Investigations

The results for each case-base under the first scenario can be seen in Tables 6.13 and 6.14.
In Table 6.13 there is a column outlining each combination of confidence prediction and
whether the prediction was correct or not. The left most column is the accuracy of the
k-NN model on each case-base. Ideally, in this situation we would like to minimise the
values in the Confident Incorrect and Not Confident Correct columns while maximising
the performance in the other two columns, Confident Correct and Not Confident Incorrect.
These two desires are captured by our criteria shown in equations 6.1 and 6.2 and these
can be seen in Table 6.14.

The Confident Correct Rate represents the percentage of times that we make a predic-
tion of confidence and are right to do so. This rate is reasonably high for most case-bases;
being in the late 90’s for 7 of the case-bases and in the 75 to 90 range for the remaining
6 case-bases. However, the Confident Correct Rate cannot be looked at in isolation as,
although we might be predicting confidence accurately, we would also like to minimise the
number of correct predictions which get a not confident rating. We would like to achieve
high Confident Correct Rates while also attaining low Not Confident Correct Rates.

This is achieved with some degree of success on four of the case-bases. On the DNAp,
e-clinic2, spam and e-clinic case-bases Confident Correct Rates in the high 90’s are
combined with Not Confident Correct Rates below 0.3. However, it it is clear that the

confidence mechanism isn’t always sucessful. Notably for the Diabetes, Breast-Cancer,
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Table 6.13: Confidence Results for Scenario One

Case-base k-NN Confident | Confident | Not Confident | Not Confident
Accuracy | Correct | Incorrect Correct Incorrect

DNAp 85.85 88 7 3 8
ionosphere 88.89 279 16 33 23
e-clinic2 98.66 295 1l 0 3
diabetes 7370 79 27 487 175
vote 92.64 381 13 22 19
German Credit 74.70 485 103 262 150
spam 89.75 357 113 2 28
BAC 82.65 73 5 8 12
e-clinic 86.96 250 5 10 34
Breast Cancer 76.90 98 29 115 35
Bronchiolitis 71.08 30 4 88 44
Liver 67.54 180 57 53 55
Heart 82.96 192 29 32 157

Bronchiolitis, Liver and Heart case-bases the performance of the mechanism isn’t
great with lower Confident Correct Rates being combined with high Not Confident Correct
Rates.

We can look at the trade-off by examining the results of Equation 6.3 from Section

4.1.5 for each case-base. As we stated earlier we would like to minimise this value.

NCCR

Trade-Off = CCR

(6.3)

In Table 6.14 we can see the Trade-off results for each case-base. As expected the values
for the DNAp, e-clinic2, spam and e-clinic case-bases are quite low while the values
for the Diabetes, Breast-Cancer, Bronchiolitis, Liver and Heart case-bases are
much higher. Comparing the accuarcy results for k-NN on each case-base with the trade-
off value for that case-base there would appear to be a clear relation. The confidence
mechanism performs far better on case-bases which appear to have a higher level of com-
petence reflected in the higher accuracy result achieved by the k-NN. This trend can be
clearly seen in Figure 6.9. There is quite a strong linear trend in the data which is clearly
visible and reflected by a Pearson’s correlation figure of 0.63. It appears that the perfor-
mance of our confidence mechanism is dependent on the competence of the case-base and
the higher the level of competence the better the performance.

In the second situation we examined the performance of our confidence mechanism

when we wished to minimise incorrect predictions that we were confident about. As
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Figure 6.9: Graph of the Balance of Rate against k-nn’s accuracy for each case-base

Table 6.14: Confidence Rates for Scenario One

Case-base k-NN Confident Correct | Not Confident Correct | Trade Off
Accuracy Rate Rate
DNAp 85.85 0.93 0327 0.29
ionosphere 88.89 0.95 0.59 0.62
e-clinic2 98.66 0.99 0.0 0.0
diabetes 8.7 0.75 0.74 0.98
vote 92.64 0.97 0.54 0.55
German Credit 4.7 0.83 0.64 Ok
spam 89.75 0.96 0.07 0.06
BAC 82.65 0.94 0.4 0.42
e-clinic 86.96 0.94 0.19 0.20
Breast Cancer 76.9 (877 O%7 0.99
Bronchiolitis 71.08 0.88 0.67 0.76
Liver 67.54 0:75 0.44 0.65
Heart 82.96 0.87 0.65 0.75
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outlined in Section 4.1.5 this involves setting the confidence level threshold so that this
can be minimised. The results can be seen in Tables 6.15 and 6.16. In this case we are
trying to minimise the Confident Correct column at the cost of the making more Not
Confident predictions and this can be clearly seen as the values in the Confident Incorrect
column are far lower then those in Table 6.13. The mistakes in confidence haven’t been
entirely eliminated in many of the case-bases as this proved impossible without defaulting
to predicting Not Confident all of the time. The decreased number of Confident Incorrect
predictions come at the cost of reduced Confident Correct predictions and an increase in
the number of cases being given Not Confident ratings. This clearly reflects the trade-off
that is involved in choosing threshold values.

This trade-off is particularly apparent in a number of case-bases such as in Spam and
Vote. In the case of the Spam case-base the number of Confident Incorrect predictions is
reduced from 13 to 0 and in Vote from 13 to 6. However the improvement in both cases
comes at a cost. In the case of the Vote case-base 33.3% of predictions are now labelled
as Not Confident whereas previously 9.4% were. In the Spam case-base the number of

predictions given Not Confident labels jumps from 7.5% to 65.5%.

Table 6.15: Confidence Results for Scenario T'wo

Case-base k-NN Confident | Confident | Not Confident | Not Confident
Accuracy | Correct Incorrect Correct Incorrect
DNAp 85.85 62 0 29 il
ionosphere 88.89 167 1 145 32
e-clinic2 98.66 286 0 9 4
diabetes 3T 39 22 5217 180
vote 92.64 284 6 119 26
German Credit 74.7 58 3 689 250
spam 89.75 138 0 221 41
BAC 82.65 67 3 14 14
e-clinic 86.96 228 1 32 38
Breast Cancer 76.9 54 13 159 il
Bronchiolitis 71.08 4 2 114 46
Liver 67.54 66 20 167 92
Heart 82.96 44 8 180 36

The confidence rates for Scenario Two can be seen in 6.16. The Not Confident Correct
Rate is increased in all case-bases in comparison with those in Scenario One reflecting

the increased number of cases that are given Not Confident ratings. In all but 3 of the

9



case-bases the Not Confident Correct Rate is over 0.60 meaning that over 60% of cases
that are classified as being not confident predictions are in fact correct predictions. In the
case of the ionosphere, vote and spam case-bases over 80% of cases are being mislabelled
as being Not Confident predictions.

There are modest increases in the Confident Correct Rates in most case-bases however
not in all. In the Diabetes and Bronchiolitis case-bases the Confident Correct Rate
decreases. This is as a result of the decreased number of predictions given a confident
label. Although the number of Confident Incorrect predictions has decreased the number
that are still made represent a higher proportion of the number of predictions labelled as
being confident.

Although on case-bases such as Spam the decrease in the number of Confident Incorrrect
predictions is reduced, it is at the cost of quite a large increase in Not Confident Correct
Rate this is not a entirely general trend. In the BAC, DNAp and e-clinic case-bases the
reduction in Confident Incorrect predictions comes at a much more modest increase in
the Not Confident Correct Rate. It would appear that the cost in reducing the Confident
Incorrect predictions varies and is dependent on the characteristics of the particular case-

base.

Table 6.16: The Confidence Rates for Scenario Two

Case-base k-NN Confident Correct | Not Confident Correct
Accuracy Rate Rate
DNAp 85.85 1.0 0.66
ionosphere 88.89 0.96 0.81
e-clinic2 98.66 1.0 0.69
diabetes (3 0.64 0.75
vote 92.64 0.98 0.82
German Credit AT 0.95 0.73
spam 89.75 1.0 0.84
BAC 82.65 0.96 0.5
e-clinic 86.96 0.99 0.5
Breast Cancer 76.9 0.80 0.46
Bronchiolitis 71.08 0.66 0.71
Liver 67.54 0.77 0.64
Heart 82.96 0.85 0.82
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6.4.3 Discussion of Results

It appears that our confidence mechanism has the potential to work reasonably well but
performance is very much dependent on the underlying case-base and the requirements
of the domain. In terms of maintaining a high Confident Correct Rate while maintaining
a low Not Confident Correct Rate the performance of our mechanism is very much cor-
related to the competence of the underlying case-base. The ideal situation of a perfect
Confident Correct Rate combined with a zero Not Confident Correct Rate is unattainable
and decisions must be made on a domain by domain basis on how to best balance the
trade-off that exits between these two conflicting criteria. This is clearly demonstrated
in the varying degree of cost incurred in terms of increased Not Confident Correct Rate
when we tried to minimise Confident Incorrect predictions. This reinforces the value of
the methodology we proposed for investigating the factors involved in designing confidence
mechanisms.

The difficulty in creating good confidence measures has been well documented and our
results reflect this same difficulty (Delaney et al. 2005b, Cheetham and Price 2004). It
is worth noting that there is a subtle but important difference in the objective that we
have investigated compared with that of predicting confidence in the spam domain. We
have tried to predict confidence prioritising accuracy on both classes equally. In the spam
domain this same symmetry doesn’t exist and inaccurately predicting confidence on spam
that has been classified as real mail isn’t as costly as predicting confidence on real mail
that has been classified as spam.

In conclusion, we have shown a mechanism for assessing classifier confidence that is
quite effective when the classifier has high accuracy (greater than 90%). However, the
need for confidence assessments is greater in classifiers that are less accurate so that the

impact of errors can be ameliorated.

6.5 Conclusions

We have developed an Explanation Framework that has many favourable characteristics;
e [t applies a lazy approach in keeping with the strengths of the CBR methodology
e Little Expert Knowledge Needed
e Predicting Confidence
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We have evaluated the performance of our framework and found that it successfully ad-
dresses the short-comings of traditional case-based explanations. High satisfaction ratings
among users of the explanations produced by the framework were recorded. In terms of
instilling confidence, the framework also proved successful, however in cases of low confi-
dence doubt and confusion still remained. Given the difficulties in accurately predicting
confidence this result reinforces the sentiment expressed in our previous work that long
term user confidence can only really be maintained if the underlying system is accurate
(Nugent, Cunningham and Doyle 2005).

We have also shown that Localised Logistic Regression is a extremely effective rec-
ommendation strategy. However, careful attention must be paid to choice of parameter
dictating the size of local case-base as the performance is quite sensitive to this. The dif-
ference in performance of our localised approach compared with global logistic regression
further reinforces that idea that there are local feature interactions which can only be

captured by a local approach.
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Chapter 7

Conclusions and Future Work

As we discussed in Chapter 1 it has been apparent since the early days of Expert Systems
in the 1970s that there has been a need for Artificial Intelligence technologies to somehow
explain and justify the recommendations that they make. It is a problem that persists to
this day. People are still understandably often suspicious of such systems and reluctant
to accept their recommendations without question. The provision of explanations by such
systems should help alleviate any suspicion the user might have and instil confidence in
them in the system’s prediction. However, in practice, the explanations provided by such
systems are in terms of rules which are often not usefully interpretable and have proved
unsuccessful in reassuring users.

CBR represents an alternative approach which has inherent advantages in terms of
transparency and user acceptance as discussed in Chapter 3. However, the traditional
approach in CBR-light applications of simply supplying the nearest neighbour has been
found to have shortcomings in terms of providing satisfactory explanations. In this thesis
we have described the Explanation Framework we have developed to address these issues.

The primary issues we addressed were;

e The selection of a fortiori cases as explanation cases without use of domain knowl-

edge,
e Explaining the details and relevance of retrieved cases without domain knowledge.
e Providing measures of confidence.

The Framework we developed uses a localised solution to these problems which is in keeping

with the CBR philosophy and uses Logistic Regression models to extract information useful
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to the explanation process. This approach supports continued incremental learning and
eliminates the need for expert domain knowledge. We have also demonstrated that Case-
based explanations can be used for non-CBR systems and our current implementation is
not restircted to such systems.

The approach we have taken also has potential in terms of assessing confidence and
also as a classifier mechanism. We have also evaluated our Framework in terms of these
two objectives. First, however, we will discuss the merits of our Framework in terms of
addressing its primary purpose, providing improved CBR explanations that instil users

with confidence.

7.1 Improving Case-based Explanations

The Explanation Framework we have developed addresses the shortcoming of the tradi-
tional CBR-light explanations of not making the relationships between the feature values
in the Query Case and Explanation Case explicit. We performed a user evaluation of the
Framework using the BAC data and found results to be largely in favour of the explana-
tions produced by our framework.

The Evaluation we carried out highlighted the level of confusion and uncertainty that
can exist when the system supplies no explanation. Our evaluations also showed that
although Case-based explanations are an improvement on no explanation some uncertainty
still remained.

Conversely, the framework explanations proved to be extremely effective at instilling
confidence. Users expressed a strong conviction that the systems prediction was correct
when presented with framework explanations and user ratings of those explanations were
very high. It is clear that generating discursive texts explaining the effects of feature-value
differences greatly improves upon simple case-based explanations.

However, in terms of our goal of alerting users to when the system is making a mistake,
the framework explanations only proved a limited success. Although it is encouraging that
users heeded the confidence warning and no one responded that the system was definitely
correct it is clear that users were none the wiser as to what the correct recommendation
should be. These results indicate that it may be extremely difficult to maintain user
confidence in a system that makes mistakes.

The primary role of the explanations we provide is in justification as we want to reassure
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the user of the systems predictions. In trying to achieve this, our explanations also touch
on other goals as define by Cassens (2004) such as transparency, relevance and learning.
In providing a set of goals Sormo and Cassens were defining a spectrum on which expla-
nations could be placed. Most importantly they highlighted that the purpose for which
an explanation is intended and the user are of primary importance in defining an expla-
nation scheme. Providing explanations is a domain dependent task and each individual
explanation needs to be addressed with the targeted audience of the explanations in mind.
The framework explanations that we have developed will not be universally acceptable as
in some domains the requirements of the user may not be met buy such explanations. In
some cases the style of explanations produced by the framework may need to be adjusted
to meet the demands of the domain they are operating in. For example, we added a small
amount of linguistic information for the BAC domain. The explanations provided by the
framework as we have implemented it are also limited to binary classification tasks.
However, we have demonstrated that, in a domain were traditional CBR explanations
are acceptable, the framework explanations provided a much more effective solution. The
framework addresses many of the general shortcomings of the traditional CBR explanation

approach for instilling confidence and does so in a flexible manner.

7.2 Assessing Confidence

Our Framework also has potential in terms of assessing confidence in recommendations.
Providing confidence measures is very much a domain dependent task with many conflict-
ing criteria needing to be balanced depending on the demands of that domain. We have
described how the use of ROC-like curves can be used to assess in a clear visual manner
the effects of different model parameters on the performance of the confidence assessment
mechanism. In this way the optimal performance can quickly be identified.

We investigated the effectiveness of our Framework at assessing confidence on 13 UCI
case-bases and in two different scenarios. We found that our confidence mechanism has
the potential to work reasonably well but the performance is very much dependent on the
underlying case-base and the requirements of the domain. Our mechanism proved to be
quite effective when the classifier has high accuracy (greater than 90%). However, the
need for confidence assessments is greater in classifiers that are less accurate so that the

impact of errors can be ameliorated. To do so accurately when there is low case-base
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competence appears to be quite difficult. We are not the first to discover this limitation
and it is a problem which as been remarked upon by other researchers (Delaney et al.

2005b, Cheetham and Price 2004).

7.3 Classification using Local Logistic Regression

The use of Local Logistic Regression Models proved to be quite effective as a classification
mechanism. We evaluated this scheme on 13 UCI case-bases and compared it with global
Logistic Regression and the k-NN model. The Local Logistic Regression approach proved
to be more accurate than the other two classification schemes on many of the case-bases.
We found the local logistic approach to be more accurate than the global approach on
all the case-bases that we have tested. However, we also found the performance of the
classification scheme to be very sensitive to parameter selection which must be carried out

carefully.

7.4 Future Work

7.4.1 Local Logistic Regression as a Classifier

The primary focus of this Thesis has been on producing useful and interpretable explana-
tions however we have also demonstrated that Local Logistic Regression is effective as a
classification method. In the future we would like to investigate this further. We would
like to develop more sophisticated ways of defining a local case-base that are automated,

parameter free and based on the characteristics of the case-base being used.

7.4.2 Further work on Case-Based Explanations

Many of the case-bases that we have presented in this thesis have relatively small numbers
of features. This may not always be the case and we would like to investigate how the
information that we can extract from our Local Logistic Regression model could be used

to filter out irrelevant features and select the most useful to present to the user.
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Appendix A

User Evaluation

This appendix contains examples of the explanations presented to users in the evaluation
as well as the coversheet. Question three was dropped from the evaluation as the results

were found to be inconclusive

113



Computer Generated Explanations Evaluation

Thank you very much for agreeing to partake in this evaluation!

Computer based decision support systems are a popular subject of research in medical
informatics. Although these systems have proved to be quite accurate they do sometimes
make mistakes and people are reluctant to use them. One major source of suspicion in such
systems is that they offer no insight into the means by which they have come to a particular
prediction or conclusion. The end user is simply supplied with a prediction and no further
information.

For this reason offering human interpretable explanations as to why a particular prediction has
been reached has become an important focus for research. By offering explanations we can
reassure a user as to why a particular prediction is reasonable and perhaps help them identify
when a mistake has been made.

One form of explanation that is being investigated is Case-based explanation. A Case could
be a set features that describe a particular patient. For instance in the following evaluation the
Cases describe people who have been consuming alcohol and whether they were over the
limit or not. A Case looks like this:

Features A Person
Weight (Kgs) 76.0
Duration (minutes) 60.0
Gender Male
Meal Full

Units of Alcohol 2.9
Over or Under the Tisder

Limit

The features describe the individual and their consumption of alcohol. Duration describes
how long in minutes the individual has been drinking, Units of alcohol how much
they have consumed and Meal how much they have eaten. Meal has four possible values;
None, Snack, lunch, Full.

Each case represents a real event were someone’s details have been recorded and they have
been breathalysed to see if they are over the limit.

In the following evaluation you will be presented with a set of features that describe an
individual as well a computer system prediction as to whether that person is Over or Under
the limit. When an explanation accompanies a prediction it will be based on recorded Cases
of real past events. After each individual prediction and explanation you will be asked three
of short questions. You will be asked to assess 12 predictions and explanations in all.

Figure A.1: Cover Sheet of Questionaire
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Example A:

Features Query
Weight (Kgs) 79.0
Duration
(minutes) et
Gender Male
Meal Full
Units of Alcohol 2

The prediction for the individual in the query case is: Under the limit

Q1: Do you think the prediction is correct?

No | MaybeNot | Don’t Know | Maybe Yes | Yes

Q2: How would you rate the accompanying explanation?

Poor | Fair I Okay | Good | Very Good

Q3: Did the explanation help you make a decision for Q1?

I

No | MaybeNot | Don’tKnow | Maybe Yes | Yes

Figure A.2: An example of when no explanation was presented
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Example E:

Explanation

Features Query Cide
Weight (Kgs) 82.0 73.0
Duration 60.0 140.0
(minutes)
Gender Male Male
Meal Full Lunch
Units of Alcohol 2.6 5.7/
Over or Under
the Limit Under

The prediction for the individual in the query case is: Under the limit

The confidence that this prediction is correct is: high

Explanatory Text:

In support of this prediction we have the person represented by the Explanation Case

who was also Under the limit. Weight being heavier, Meal being Full and
Amount being smaller all have the effect of making the Query individual more likely
to be Under the limit than the Explanation individual. Although confidence in the
prediction is high it is worth noting Duration being shorter has the effect of
making the Query individual less likely to be Under the limit than the Explanation
individual

Q1: Do you think the prediction is correct?

I No | MaybeNot | Don’tKnow | Maybe Yes | Yes |

Q2: How would you rate the accompanying explanation?

i Poor | Fair | Okay ] Good | VeryGood |

Q3: Did the explanation help you make a decision for Q1?

| No | MaybeNot | Don’tKnow | Maybe Yes | Yes

Figure A.3: An example of a Framework explanation when the system was correct
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Example H:

Explanation L
Features pCase Query Unlike
Neighbour

Weight (Kgs) 53.0 48.0 55.0
Duration (minutes) 330.0 300.0 240.0
Gender Female Female Female
Meal Lunch Snack Lunch
Units of Alcohol 10.4 7.8 9.1
O_ve!' or Under the o i Ot
Limit

The prediction for the individual in the query case is: Under the limit

The confidence that this prediction is correct is: low

Explanatory Text:

In support of this prediction we have the person represented by the Explanation Case who was also
Under the limit. However, Weight being lighter, Duration being shorter, Meal being Snack and
Amount being smaller all have the effect of making the Query individual less likely to be Under the
limit than the Explanation individual

As there is low confidence in the prediction we also have a counter example of someone who is similar
but Under the limit for you to inspect

Weight being lighter, Meal being Snack and Amount being smaller all have the effect of making the
Query individual more likely to be Over the limit than the counter example individual. However,
Duration being longer has the effect of making the Query individual less likely to be Over the limit
than the counter example individual

Q1: Do you think the prediction is correct?
No | MaybeNot | Don’tKnow | Maybe Yes | Yes |

Q2: How would you rate the accompanying explanation?
[ Poor I Fair ] Okay I Good |  Very Good |

Q3: Did the explanation help you make a decision for Q1?
o | MaybeNot | Don’tKnow | Maybe Yes | Yes |

Figure A.4: An example of a Framework explanation when the system was incorrect
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Example K:

Explanation

Features Query s
Weight (Kgs) 63.0 69.0
T 120.0 140.0
(minutes)
Gender Male Male
Meal Full Lunch
Units of Alcohol 12 6.6
Over or Under o
the Limit

The prediction for the individual in the query case is: Over the limit

Explanatory Text:

In support of this prediction we have the person represented by the Explanation Case
who was also Over the limit.

Q1: Do you think the prediction is correct?

D | MaybeNot | Don’tKnow | Maybe Yes | Yes

Q2: How would you rate the accompanying explanation?

[ Poor RS e TR R Okay | Good | Very Good

Q3: Did the explanation help you make a decision for Q1?

L% N | MaybeNot | Don’tKnow | Maybe Yes | Yes

Figure A.5: An example of a case-based explanation

118




