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Abstract

E-learning provides an opportunity for the students in a classroom to receive and par-
ticipate in lectures broadcasted from a remote location. For convenience and scalability
it is preferable to have a microphone array instead of an individual microphone per user
to capture the signals. A Direction of Arrival (DOA) system can be used to determine
the angle of arrival of the speech signal so that a camera can be steered in the direction
of the signal source. In a DOA system for e-learning, Time Delay Estimation (TDE)
techniques are suitable to determine the relative time difference between the signals
to reach the microphones in the array. This time difference can be used to find the
Direction of Arrival (DOA) of the signal. This thesis presents a DOA system called
Modified yIN based Doa Estimator for e-leaRning (MINDER).

The primary challenge in the DOA estimation in an e-learning environment is to get
high accuracy of the TDE in the presence of noise and reverberation. The existing algo-
rithms for TDE (such as Cross-correlation (CC), Generalized Cross-Correlation Phase
Transform (GCC-PHAT), Average Magnitude Difference Function (AMDF)) do not
perform well in the presence of both high noise and reverberation. The YIN algorithm
is based on the AMDF algorithm and is used to find the fundamental frequency of the
music and speech signals. This thesis proposes two TDE algorithms based on the YIN
algorithm. The first algorithm is called the modified YIN based TDE algorithm and
the second algorithm is called the Weighted YIN based TDE algorithm. The Weighted
YIN based TDE algorithm is inspired by the Weighted Cross-Correlation (WCC) al-

11



gorithm proposed by Chen et al. [32]. Simulations presented in this thesis show that
the modified YIN based TDE algorithm has higher accuracy for TDE when compared
to WCC, Weighted YIN based TDE and GCC-PHAT algorithms in presence of high
noise and reverberation. Its accuracy for TDE is comparable and marginally better
than the contemporary Modified Average Magnitude Difference Function (MAMDF)
algorithm proposed by Chen et al. [32]. The performance of the Weighted YIN based
TDE algorithm is similar to the WCC and GCC-PHAT algorithm. MINDER uses the
modified YIN based TDE algorithm for TDE.

Voice Activity Detection (VAD) is used to detect the presence of speech in a signal.
It is a useful pre-processing stage to DOA as the number of DOA computations is
reduced and steering of the video camera in the direction of the undesirable signal
sources is eliminated. The key steps in designing a VAD system is deciding on the
classification algorithm and the signal features that can be input to the classifier. This
thesis proposes a new feature for VAD called the Mel-Spectrum Teager Energy (MSTE)
coefficients. The performance of MSTE coefficients is on par with the Mel-Frequency
Cepstrum Coefficients (MFCC) feature that is used in speech processing applications.
This thesis presents a VAD system based on MSTE coefficients. Other features from
the existing literature have been included in the feature set used in the VAD system to
improve the classification. The feature set was optimized using forward feature selection
in LDA. Simulations in the thesis show that Linear Discriminant Analysis (LDA) and
radial Support Vector Machine performed well for classification. The VAD system uses
LDA for classification. In the VAD system the signal is classified into four classes
namely the voiced speech, unvoiced speech, stationary noise and the non-stationary

noise. The VAD system is used as a pre-processing stage in MINDER.
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Chapter 1

Introduction

E-learning provides an opportunity for the students in remote classrooms to actively
participate in the lectures broadcasted from the main classroom. A Microphone Array
(MA) is used to capture the audio signal. The knowledge of the Direction Of Arrival
(DOA) of the source signal is used to steer the video camera in the direction of the
signal source. The geometry of the microphone array can be used to find the source
location. Detecting the presence of speech in the audio signal (voice activity detection)
so that the DOA estimation is performed only on parts of audio signal containing
speech reduces the number of DOA computations and also prevents the steering of the
video camera in the direction of undesired signal sources.

This thesis deals with the DOA estimation in an e-learning environment. This
thesis proposes a DOA system called MINDER (Modified yIN based Doa Estimator
for e-leaRning), consisting of the voice activity detection and the DOA stages, for e-
learning environment. The first section of the chapter provides a brief introduction to
the e-learning environment. The DOA system is introduced in the following section.

Finally the contribution of the thesis and its outline is presented.



1.1 E-Learning Environment

This section focuses on the e-learning environment, on which the entire work of this
thesis is based. In an e-learning environment a group of classrooms are connected to-
gether through the internet. The lecturer is present in any one of the classrooms. For
convenience the room where the lecturer is present is called the principal classroom
and the other classrooms are called the remote classrooms. The principal classroom
is connected to the remote classrooms through the Internet that transmits the audio
and video data of the lecture being delivered in the principal classroom. The commu-
nication between the classrooms is typically duplex so that the students in the remote
classrooms not only attend the lecture remotely but also benefit from the interaction
with the lecturer in the principal classroom. This arrangement is convenient for the
students as they do not have to travel or relocate to gain knowledge. It also encourages
collaboration between educational institutes by providing more options for the students

to explore different courses offered to them.

Existing Tools

Several e-learning tools are available to make e-learning pleasant for the students. The
complexity of these tools depends on the functionality they offer. Blackboard [1] is
a software tool that facilitates interaction between different groups and the lecturer
through internet. The students are able to listen to the lecture on their computer and
interact with the lecturer through text based chat or by voicing their questions by being
in a queue where the students are allowed to speak on first come first serve (First In
First Out) basis. This tool also allows to restrict access, setup material such as class
notes, homework, projects, assignments, solutions and students performance (grades,
marks etc) information. It also allows recording the lectures so that the student can

listen to them later at their own convenience.



Echalk [2, 59] is another powerful e-learning tool that uses an electronic whiteboard
instead of a chalkboard, a digitizer tablet connected to a computer and a retroprojec-
tion system in a classroom. The whiteboard is used instead of a chalkboard to write
and draw directly on the screen. The digitizer tablet can also be used to write on the
screen. It also provides features such as plotting mathematical functions on the screen,
evaluating handwritten mathematical expression in real time using handwriting recog-
nition, displaying pictures from internet or a computer. The lectures are recorded so
that the student can listen to them later. Students in remote classrooms are provided
with the live feed of the lecture that they can access using a Java enabled web browser.
The students can view the lecturer on the screen and hear the lecture. It also facilitates
a printable PDF version of the content of the screen so that students can concentrate

on understanding the lecture instead of trying to take notes.

Classrooms for e-learning

In e-learning case where educational institutes allocate rooms at the time of the lecture
so that a group of students can listen to the lecture in a classroom with live feed from
the principal classroom, the challenge in such a scenario is to localize the student
interacting with the lecturer. Classroom protocol requires that there is only one talker
in the room at any instant. This means that when the lecturer is talking then the
rest of the audience members are listening and when the lecturer is interacting with
the audience members then only one member of the audience speaks at any instant.
Assuming that the classroom protocol is adhered to, then at any given instant there
will be only one speech source in the room.

Some of the source localization systems consist of a camera to localize the member
of the audience and a microphone for each of the audience members [3]. The audience
members can press a button associated with the microphone to inform that they wish

to speak. The camera is steered in the direction of the talker based on the microphone



location from which the cue to speak was received. This system though simple and
efficient requires lot of hardware which is expensive and prone to frequent damage as
it is in direct contact with the audience members.

Another approach is to use a microphone array to capture the signal and estimate
the Direction Of Arrival (DOA) and the source location based on the geometry of the
microphone array [27, 79]. In such a system, the DOA of the speech signal is estimated
on the signals captured by a microphone array located away from the audience. The
relative time difference of arrival of the signal to reach a pair of microphones in the
microphone array is used to find the DOA of the signal. The DOA estimates obtained
from different pairs of microphones can be used to localize the speech source and steer
the camera in the direction of the speech source. This thesis concentrates on source
localization using DOA for an e-learning environment.

The problem associated with finding the direction of arrival of the signal is the
presence of noise and reverberation in the room that tends to give rise to errors in
the Direction Of Arrival (DOA) estimates. Excessive levels of noise and reverberation
also reduce the comprehensibility of speech. This problem is worsened among students
with hearing disability. American Speech Language Hearing Association (ASHA) [4]
and the Acoustical Society of America [100] recommend that the Signal to background
Noise Ratio (SNR) in a classroom should not be less than 10 dB and for students with
some hearing impairment it should not be less than 15 dB. Similarly the recommended
reverberation time for classrooms is 0.4 - 0.6 seconds [100].

Apart from the presence of noise and reverberation in the captured signal there
are instances when the signal received by the microphones in the source localization
system does not contain speech. The signal contains background noise that comprises
of the noise made by the electronic equipment present in the classroom such as com-
puters/overhead projector fan noise and noise of the Heating, Ventilating and Air

Conditioning (HVAC) systems. This leads to spurious estimates of the direction of
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Fig. 1.1: Schematic diagram of the DOA System.

arrival and the camera will be steered in the direction of the background noise source.

Other undesirable signals include human produced sounds such as laugh, cough and
sneeze and non-human produced sounds like paper shuffle, closing/opening of the door,
key jangle and sounds from coins. In order to avoid computation of the DOA in the
absence of speech signal a voice activity detection (VAD) system is used to recognize
segments of signal that contain speech. The location of the source is estimated only
on the segments of signal identified as speech. This reduces computations as well as

prevents steering of camera at spurious locations.

1.2 DOA system

Direction Of Arrival (DOA) system is used to find the DOA of the speech signal and
steer a camera in the direction of the speech source. The DOA information can also
be used in beamforming and for source localization. The audio signal captured by the
microphone array and the distance between the microphones in the microphone array
is used to find the DOA of the source signal. Figure 1.1 shows a schematic diagram of
the proposed DOA system.

This thesis presents a DOA system called Modified yIN based Doa Estimator for



e-leaRning (MINDER). MINDER consists of two stages namely the Voice Activity
Detection (VAD) stage for signal pre-processing and the DOA stage. The VAD system
in this work not only detects speech frames but also detects stationary noise and
non-stationary noise. The captured signal is classified into four classes namely the
voiced speech, unvoiced speech (refer to section 3.2 for more information on voiced and
unvoiced speech), stationary noise and the non-stationary noise. The DOA stage finds
the DOA of the speech source based on the relative time difference of arrival of the
speech signal received by a pair of microphones in the microphone array. As shown in
figure 1.1, the DOA stage estimates the DOA of the source in two steps namely Time

Delay Estimation and Angle Estimation.

1.2.1 Voice Activity Detection

Pre-processing the signals to detect the presence of speech in the audio signal is useful
in speech recognition, speaker recognition and source localization applications. In some
applications that involve noise cancellation identification of the background noise is of
primary concern. Voice Activity Detection is used to detect the presence of speech
signal in the audio signal. The characteristics of the signal called the features are
employed by a VAD algorithm to distinguish between speech and non-speech signals.
For VAD the audio signal is divided into small frames of fixed length. The values of
the features are calculated for each frame and are input to the VAD algorithm.

The number and types of classes into which the audio signal is classified depends on
the application requirements. For example if an application must distinguish between
speech and other types of signals, as required in VoIP applications, then the audio
signal can be classified into two classes namely speech and non-speech. Speech can be
further classified into voiced speech and unvoiced speech. This is used in applications
where the DOA estimation is performed on voiced segments of speech. Noise can be

further classified into stationary noise (background noise) and the non-stationary noise.



The type of classes that the audio signal is classified into depends on the requirement
of the application.

VAD can be considered as a pattern classification problem. This work proposes
to use the supervised machine learning algorithms for VAD for e-learning. Pattern
classification using supervised machine learning algorithms generally involves solving
two crucial problems [87, pg. 171]. They are the selection/evaluation of features
and decision rule for classification. Feature selection involves determining the signal
features that help to distinguish between the signals. Speech signals can be described
by some of their properties. But noise signals do not have specific properties. Thus
determining a good feature set that result in an accurate classification is a challenge.
Another challenge is to identify a classification algorithm that can classify the signals
well into their respective classes. A brief discussion of the key steps and the associated
challenges involved in desiging a VAD system are presented in [106].

In this work, the audio signals are classified into four classes namely the voiced
speech, unvoiced speech, stationary noise and the non-stationary noise using the Dis-
criminant Analysis (DA), Support Vector Machines (SVM) and Artificial Neural Net-
works (ANN). Classifying the signal into the four classes is useful for source localization
as well as post-processing e-learning,.

The signal in this work consists of four classes of signals belonging to the speech
and non-speech signal category. Two of the four signal classes belong to the speech
category namely the voiced and unvoiced speech signals. Non-speech signal is divided
into stationary noise and non-stationary noise. Stationary noise consists of the back-
ground noise. Non-stationary noise consists of the cough, sneeze, laugh, paper shuffle,

closing/opening of door, key jangle and sounds of coins.



1.2.2 Direction of Arrival Estimation

As shown in figure 1.1, the Direction Of Arrival (DOA) of the source signal is found in
two steps. The first step is to find the relative time delay between the signals received
by the microphone pair in the microphone array. Second step involves finding the

actual DOA based on the time delay information from the first step.

Time Delay Estimation

Time Delay Estimation (TDE) is one of the popular methods for DOA estimation
for single source. This method of finding the DOA is known as Time Difference Of
Arrival (TDOA) based method. All the microphones in the MA do not receive the
audio signal simultaneously. The relative time difference for the signal to reach the
microphones in a given microphone pair is found in signal sample numbers. The time
delay information is used to find the DOA of the source signal. TDE is obtained
on various combinations of microphone pairs in the microphone array. Knowledge of
TDE and array geometry is used for source localization. This method performs better
than other methods in presence of noise and reverberation. It is also computationally
practical for real time applications. The primary challenge in the DOA estimation
in e-learning is to get high accuracy of the TDE in the presence of high noise and
reverberation. Simulations in chapter 4 suggest that existing TDE algorithms such as
the Generalized Cross-Correlation Phase Transform (GCC-PHAT) do not perform well
in the presence of noise and reverberation. This work proposes a modified YIN based
TDE algorithm for DOA estimation. Another YIN based algorithm called Weighted
YIN based TDE algorithm is also presented.



Angle Estimation

The formula used for the angle of arrival of the signal source is based on the far-field

assumption. The formula is given by [115, 91]:

6 = cos < T;) (1.1)

The angle estimation involves the estimated time delay (7), the velocity of sound (342

m/s), the signal sampling frequency (f;) and the separation (d) between a pair of

microphones in the array.

1.3 Contributions

The primary contribution of this thesis is an extension of the YIN algorithm called the
modified YIN based TDE algorithm that can be used for TDE. Another extension of the
YIN algorithm called the Weighted YIN based TDE algorithm is also presented. The
thesis presents simulations comparing the performance of the modified YIN based TDE
algorithm and the Weighted Yin based TDE algorithm with other TDE algorithms like
the Generalized Cross-Correlation Phase Transform (GCC-PHAT), Modified Average
Magnitude Difference Function (MAMDF') and the Weighted Cross-Correlation (WCC)
for different SNR and fixed reverberation time.

The thesis also proposes a Teager Energy Operator (TEO) based feature known as
the Mel-Spectrum Teager Energy (MSTE) coefficients for VAD. A VAD system based
on MSTE that used Linear Discriminant Analysis (LDA) supervised machine learning
algorithm constitutes the secondary contribution of this thesis. The thesis presents a
comparison of the performance of the MSTE coefficients and Mel Frequency Cepstrum
Coeflicients (MFCC) for classification along with seven other existing features to clas-
sify the signal into four classes namely the voiced speech, unvoiced speech, stationary
noise and the non-stationary noise. The supervised machine learning algorithms con-

sidered for VAD for e-learning are the Discriminant Analysis (DA), Artificial Neural
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Network (ANN) and Support Vector Machine (SVM). The seven features considered for
VAD along with MSTE and MFCC are the log energy of the signal, zero-crossing rate,
second and third Linear Predictive (LP) coefficients, absolute difference between the
first two Partial Correlation or Reflection (PARCOR) coefficients, skewness of the LP
residual signal and the spectral centroid of the signal. A DOA system called Modified
yIN based Doa Estimator for e-leaRning (MINDER) is presented that combines the
VAD system based on MSTE coeflicients and the modified YIN based TDE algorithm.
Experimental results for Modified yIN based Doa Estimator for e-leaRning (MINDER)

are presented.

1.4 Thesis Outline

The remainder of the thesis is organized as follows:

Chapter 2 presents the state of the art of the DOA algorithms and explains the
YIN algorithm for fundamental frequency estimation.

Chapter 3 explains the background associated with the supervised machine learn-
ing algorithms. It explains the features of the speech signal and the feature selection
process. It also describes the DA, cascade ANN and the SVM algorithms.

Chapter 4 presents the simulation results for the TDE for DOA comparing the
performance of the GCC-PHAT, contemporary Modified Average Magnitude Difference
Function (MAMDF) and Weighted Cross-Correlation (WCC), proposed modified YIN
based TDE algorithm and Weighted YIN based TDE algorithm.

Chapter 5 presents the VAD system for the DOA system. This chapter includes
the initial feature selection and VAD results for selecting the supervised machine learn-
ing algorithms for inclusion in the VAD system. It also presents the simulation results
comparing the performance of the proposed MSTE coefficients and MFCC using the
LDA and the radial SVM algorithms at different SNR values. It also presents the
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performance of the MTSE with the features that were included in the feature set to
improve the classification.

Chapter 6 combines the VAD system of chapter 5 and the modified YIN based
TDE algorithms to form the DOA system. It presents the experimental results on
signal with VAD and parabolic interpolation.

Chapter 7 presents the conclusion of the thesis.

11



Chapter 2

State of the Art: Direction of
Arrival Estimation for Source

Localization.

This chapter presents the theory associated with the Direction Of Arrival (DOA) algo-
rithms and the state of art of the DOA algorithms for source localization. As discussed
in section 1.2, a Direction Of Arrival (DOA) system consists of a pre-processor stage
and a TDE stage that is used for the DOA estimation. In this chapter the signal model
is introduced with the basic theory behind DOA estimation. It also describes and dis-
cusses the DOA algorithms for source localization. This is followed by a description
of the YIN algorithm that is utilized for fundamental frequency estimation. This is
required to understand the primary contribution of this thesis which is a YIN based

novel approach for Time Delay Estimation (TDE).
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2.1 Signal Model

The Signal model used in the DOA algorithms is provided in this section. The DOA
algorithms exploit the properties of the signal to estimate the DOA of the source signal.
The signal model presented in this section is utilized by the DOA algorithm categories
mentioned in section 2.7.

Assuming that there is more than one signal source in the room the signal received

by the ** microphone (z;(¢)) in the microphone array is represented by [91]:

z;(t) = Zhij(t) x s;(t) +ni(t) (2.1)

j=1
where s;(t) is the signal from the j™ source, h;;(t) is the cascade of the impulse
responses of the room and the response of the i** microphone for the j* source, ‘*’ is
the convolution operator, n;(t) is the additive noise component and @ is the number of
signal sources. All the acoustic paths (direct and reflected signal components) between
the source and the microphone are represented by the room impulse response. The
impulse response of the room depends on the position of the microphone with respect
to the source, the characteristics of the propagation medium and contents of the room.
When the position of the source and the microphones is fixed, over short time interval
the impulse response of the room can be considered to be time-invariant [24, pg. 165].
The microphone response includes the gain of the microphone. The additive noise
component consists of the ambient noise and the noise of the microphone. The additive
noise signal and the source signal are assumed to be uncorrelated [91].
For a single source the signal received by the i** microphone is given by [24, pg.
165]:
zilt) = hilt) * s(t) +mi(t) (2.2)

where s(t) is the source signal, h;(t) is the cascade of the impulse response of the room

and the response of the i* microphone for the source signal and n;(t) is the additive
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noise component.

For time difference of arrival computation, when interest is particularly on the direct
path component, the signal received by the i* microphone can be rewritten as [24, pg.
165]:

i % TERELE T L (2.3)

where 7; is the distance between the source and the microphone, g;(t) is the impulse
response of the room due to the other reflected components and the i*® microphone
(consists of all the components of h;(t) of equation 2.2 except the direct path compo-
nent), 7; is the delay due to the direct path component.

Assuming that the impulse response (g;(t)) in equation 2.3 is similar for all the
microphone signals in the microphone array, the signal received by the microphones
with respect to the reference microphone in the microphone array will consist of a
scaled and time shifted version of the signal received by the reference microphone [24,
pg. 166]. Thus the signals received by the microphones with respect to the reference

microphone (/) in the microphone array is given by:
zi(t) = a; s(t — 7 — 1) + na(t) (2.4)

where s(t — 7;) is the signal received by the reference microphone [, a; is the scaling
factor for the received signal s(t — ;) for the 7*" microphone, 7; is the time shift (time
difference of arrival) of the signal between the reference microphone (1) and the it
microphone (7; — 7).

The model of the signal vector relative to the source signal s(t — 7) translated to

the reference microphone | = 0, of the M element microphone array is represented by:

x(t) = [ap s(t — 70 — Top) a1 $(t — 70 —T01) a2 S(t — To — Toz2)
ar-1 8(t — 10— Tom-1)]T + [no(t) ni(t) ma(t) -+ nu—1(t)]” (2.5)

In the equation 2.5, the term ¢ represents the time delay for the source signal (s(t))

to arrive to the reference microphone (I = 0). The term 7y ps—1 represents the relative
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time difference of arrival of the signal between the reference microphone (I = 0) and
the (M — 1) element of the microphone array. Since the term 7, is common to all the
microphone and it does not affect the relative time difference of arrival estimates the
term can be omitted. The term 7 is zero.

The model of the signal vector relative to the source signal s(t) translated to a

reference element 0 of the array in equation 2.5 is rewritten as:

x(t) = [aos(t) a18(t —701) a2s(t —To2) -+ am-15(t— TO,M_I)]T
+ [no(t) nl(t) TIQ(t) Phs e nM_l(t)]T (26)

where 7, is the relative time delay between the reference microphone (I = 0) and

i'" microphone. Discrete Fourier transform [37, pg. 86-92] of signal vector x(t) gives

the frequency domain representation of the signal. The signal vector in the frequency

domain X (w) is represented by:

X(w) = [@0S(w) a;S(w)exp ™! @yS(w)exp ™2 ... S(w)exp Iwrom-1]T

+ [No(w) MNi(w) Nao(w) -+ Npq(w)]F (2.7)
Equation 2.7 can be written as:
X(w) = S(w) A(w) + N(w) (2.8)

where S(w) is the Fourier transform of the source signal s(t), w is the frequency of
the source signal, N(w) = [Nyp(w) Ny(w) Nao(w) - -+ Npr—1(w)]T is the Fourier transform
of the noise vector and A (w) is the array response vector also called the steering vector

or direction vector [116]. The steering vector is given by:
A(w) = [ao a exp—jw‘ro,l as exp—jw‘ro,z R TV exp—-jwro,M_l]T (2.9)

In far-field where the distance between the adjacent microphones in the array is very

small compared to their distance from the signal source, with identical microphones in
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C = speed of sound

T = relative time delay of arrival
between microphones measured
in terms of signal samples.

d = distance between adjacent
microphones.

fs = sampling frequency.

Fig. 2.1: Direction Of Arrival (DOA) estimation.

the array the gain value can be assumed to be unity and A(w) can be written as [115,

pg. 12]:
Aw)=[1 exp ™1 exp 2 ... expIwoM-1]T (2.10)

After a description of the signal model, the formula to find the direction of arrival of

the signal based on the far-field assumption is discussed in the next section.

2.2 Angle of arrival

This section presents the formula employed to estimate the Direction Of Arrival (DOA)
based on the far-field assumption for known value of the Time Delay Estimate (TDE).
Figure 2.1 shows a signal source and a uniform linear array (ULA) consisting of M
microphones d cm apart. In an ULA, all the microphones are on the same plane and

adjacent microphones are equidistant spaced. The geometry of the microphones in the
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array plays an important role in the determination of the source location.

The signal emanating from a source is a spherical wavefront. As the wavefront move
away from the source its curvature decreases and it becomes planar. ULA is referred as
microphone array in this thesis. Consider a microphone array consisting of M elements
spaced d cm apart. According to the far-field assumption if the distance between the
microphone array and the signal source is very large compared to the distance between
microphone pair (d), then the signal wavefront received by the microphones in the array
can be assumed to be planar [102, pg. 13|, [47, pg. 43], [86]. The additional distance
the wavefront covers to reach a microphone compared to the other is dcos(6) [109]. The
relative time difference (¢; ;) for a signal to reach a pair of microphones (¢, j) traveling
with a velocity of ¢ m/s is given by:

d; ; cos 8 (2.11)

ti‘=
2] c

The value of ¢ is approximately 342 m/s [102]. The direction of arrival 6; ; of the
signal for a pair of microphone based on the far-field assumption is given by:
R <td+c) (2.12)
i,
The estimated 6; ; is an approximate value of the DOA of the source signal. Relative
time difference, t;j, can be expressed in terms of the signal samples (7;;) and the
sampling frequency (f;) by:

= % (.15

By substituting equation 2.13 in equation 2.12, the DOA of the source signal is found

by the equation:

6 = cos™! (fﬁjd?) (2.14)
s Uiy

As the distance between the ULA and the source increases compared to the distance

between the microphone pairs in the array, the error in the DOA estimation due to the
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far-field assumption decreases. The error in the DOA estimate is also dependent on
the closeness of the relative time difference in terms of the signal sample.
The next section presents the restriction applicable on the microphone array based

on the type of signal for time delay estimation.

2.3 Spatial Aliasing

Signals can be broadly grouped into wideband signals and narrowband signals. Wide-
band signals are also known as broadband signals. They do not have any particular
characteristic wavelength as their power is distributed over a wide frequency range.
The ratio of their highest frequency to the lowest frequency component is relatively
large. Narrowband signals on the other hand assume that the signal has a very narrow
bandwidth [45] and thus have a nominal wavelength. Speech signal are broadband
signals as their power is distributed over a wide range of frequencies [31].

When phase information is used to find the DOA of a narrowband signal the distance
between the microphones in the array is restricted by the frequency of the signal. This
is due to spatial aliasing. Phase lag or lead between a signal and its shifted version can
be found if the phase shift is in the range of [—m, +n]. If the phase shift does not fall
within the range, wrapping in the phase occurs that makes it impossible to distinguish
whether the phase shift is a lead or lag in phase. Figure 2.2 shows a sine wave that
has a phase lead of %" = 7 + % and sine wave that has a lag of %’r = 7 — 5. Both the
waves are same and compared to the original signal it is difficult to find if there is a
lead of %” or a lag of %’T in the phase of the shifted signal. This results in incorrect
DOA estimation.

For the broadband signal let A,,;, correspond to the wavelength associated with the

maximum frequency (fna:) of the signal. The phase shift is restricted by the relation:
2 fruaat < (2.15)
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Fig. 2.2: Example of Spatial Aliasing

where t is the time delay. Using the relation between ¢ and cos 6 of equation 2.11,

equation 2.15 can be rewritten as:

dcos 6
i (2.16)
c
where d is the distance between any microphone pair in the array for which the phase
shift is being computed and c is the velocity of sound. The maximum value of cos § = 1

at # = 0. Substituting cos § = 1 in equation 2.16 can be rewritten as:

2 d
fmaa <1 (2:17)
c
But —— = A\.in. Hence equation 2.17 can be rewritten to provide a relation between

fma:
the distance between any microphone pair in the microphone array and the wavelength

of the signal. This relation is given as:

>

L (2.18)
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For narrowband signals if the distance between the microphone pair, for which
the phase shift is being computed for time delay estimation, in a microphone array is
greater than ﬁgm then spatial aliasing occurs [115]. Spatial aliasing leads to incorrect
DOA estimation in the algorithms using TDE based on relative phase difference of the
signal. To avoid this problem the distance (d) between the adjacent microphones in
the array is restricted by the equation 2.18 [115, 91].

The above assumption is not applicable to the TDE on broadband signals using the
cross-correlation method since the signal processing is done in the time domain [115].
Section 2.10 discusses cross-correlation based TDE algorithms for DOA estimation.
Next section describes the methods applied to improve the resolution of time delay

estimates for finer DOA estimates.

2.4 DOA Resolution

As shown in equation 2.14 of section 2.2, DOA estimate using far-field assumption
formula involves the estimation of the relative time difference for the signal to reach a
pair of microphones. The time difference is expressed in terms of the signal samples
(7). Time Difference in signal samples is referred to as time delay (7; ;) in this work.

Relation between the time difference, time delay and sampling frequency is given by:

fpg = .T_}’_]_ (2.19)

where f, is the sampling frequency.

Thus t;; is expressed in terms of the integer values of the signal sample (7;;)
depending on the sampling rate f; of the signal. The DOA formula based on the
far-field assumption given by equation 2.14 in section 2.2 is computed using cos™!(.)
operation. The number of possible DOA estimates is limited to the angle range of
[0, 7] based on the range of cos function of [1,—1]. The number of time delays can

be increased to obtain finer angular resolution by increasing the sampling frequency of
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the signal, by upsampling or by increasing the distance between the microphone pair.
Increasing the sampling rate of the signal or upsampling the signal to increase the
sampling rate leads to higher storage and computational requirements. The distance
between the microphones is restricted to satisfy the far-field assumption which states
that the distance between the microphone pair in the microphone array should be very
less compared to the distance between the signal source and the microphone array.

Interpolation is also used to improve the DOA resolution [32, 26]. This method is
useful in the Time Difference Of Arrival (TDOA) based algorithms for DOA estimation
discussed in section 2.10. In the case of TDOA based algorithms after initial estimate
of the time delay in terms of integer value of the signal sample is obtained, parabolic
interpolation is applied to obtain the time delay in terms of non-integer value of the
signal sample. Parabolic interpolation is not computationally intensive. In this way
DOA resolution is improved without increased storage requirements and with a small
increase in the computation requirement.

The next section presents Lagrange’s parabolic interpolation method that is suitable

for the algorithms discussed in section 2.10.

2.5 Parabolic Interpolation

Interpolation is useful in obtaining the approximate intermediate values between known
points of a function by modeling it by a logical functional form [89, pg. 99]. Given N
known points (z1, f(z1)), (x2, f(z2)), -+, (zn, f(zx)) the Lagrange’s classical formula
for interpolation to obtain the unknown value of a function (f(x)) at a point x is given

by [85]:
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(x —z3)(x —x3) -+ (T — zN) (x—z1)(z —23) -+ (x — zN)
(@1 — 2)(Z) — 29) - - - (41 = Tw) i) (z2 — 21)(Z2 — 73) - - - (72 — TN)
(z—z1)(z—23)---(x—zN-1)
(zn — z1)(zN — 22) - - - (TN — TN-1) G

f(z) = f(z1)

+ -+ flan)

A function closely related to a polynomial can be interpolated using the polyno-
mial as the modeling function. The order of the polynomial used in interpolation is
given by the number of points minus one. The parabolic interpolation or Lagrange’s

interpolation with three points is expressed as:

(z = 21)(x — 25)

(z3 — 71)(z3 — z2)
(2.21)

(& -2 )ls—33)
(zg — z1)(z2 — 23)

(x — z2)(T — z3)
(21 — z2)(z1 — 23)

f(z) = f(z) + f(z2) + f(as)

where f(x) is the interpolated value of the function for the desired value of x and
f(xy), f(z2), f(x3) are the already known values of the function for the values of z;,
To, T3 respectively. Parabolic interpolation is also known as second order, quadratic
interpolation or three point interpolation.

For time delay estimation, parabolic interpolation has been used in [32, 36] to
improve the resolution of the obtained direction of arrival by finding the fractional
sample delays. Parabolic interpolation is appropriate for the function involved in the
time difference of arrival based algorithms for DOA estimator discussed in section 2.10
since they are close in form to a parabola around their maximum or minimum values.
In this work parabolic interpolation has been used to improve the resolution of the
DOA estimates by finding the delay that is a non-integer signal sample value.

Next section discusses some of the problems encountered in a classroom environ-

ment.
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2.6 Classroom Environment

Classroom environment play an important role in the performance of a Direction Of
Arrival (DOA) algorithms. Two main problems encountered in a classroom are the
noise in the room and the room reverberation. Noise refers to the ambient (back-
ground) noise present in the room. This noise is due to the presence of mechanical
equipments such as the heating system, HVAC and ventilation system in the classroom.
Other equipments that contribute towards the background noise are the computers and
projectors.

Presence of background noise affects the speech intelligibility. In the presence of
high background noise, speech intelligibility suffers which makes it difficult for students
to understand the lecture. This situation is worsened for students that have certain
hearing disability.

Intensity measures the perceived loudness of the sound waves. Sound intensity is
measured in decibel (dB). dB scale is logarithmic. Signal to Noise Ratio (SNR) is
the ratio of the signal power to the noise power present in a classroom. It enables to
estimate the understandability of the speech in a room. Both signal and noise power
are measured in dB and hence SNR is the difference between the signal and noise power
in dB [100].

The signal to noise ratio is given by:

SNR = 10log,, (%) (2.22)

n

where P; and P, are the source signal and noise power respectively [91].

SNR of the room varies in the room due to different levels of signal and noise at
different locations in the room. SNR is lowest at two locations in a classroom. One
of the locations is the back of the classroom which is farthest from the lecturer’s or
teacher’s location. The other location is nearest to the source of background noise

where background noise is the maximum. A technical report by Acoustical Society
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of America [100] recommends a SNR to be above 10 dB for speech intelligibility and
above 15 dB for children with certain hearing disability. American Speech-Language-
Hearing-Association (ASHA) [4] guidelines recommend SNR to be greater than 15 dB.

Reverberation is another problem in a room. Reverberation is the echo of the
signal [100]. When the signals in a room come into contact with the surfaces of the
room they are absorbed, transmitted, diffused or reflected. The reflected and diffused
signals interfere with the next words that are spoken. Depending on the degree of
interference the speech intelligibility varies. Acceptable reverberation level in a room
is measured in terms of reverberation time. Reverberation time (RT60) is a measure
of the time it takes for the sound to decay to 60 dB of its original value. Volume
as well as the surface materials of the room influence RT60 of the room. A small
amount of reverberation is desirable as it helps in the propagation of useful sounds in
the classroom. Recommended reverberation time is 0.4 - 0.6 seconds [100]. Bistafa et
al. [23] recommend 0.4 - 0.5 seconds of RT60 for 100% intelligibility.

Following sections present state of the art for the Direction Of Arrival (DOA)

algorithms for source localization.

2.7 Direction Of Arrival Algorithm Taxonomy

According to [24] source localization algorithms can be classified into three algorithm

categories based on the signal processing approach for DOA estimation. They are:
1. Steered Beamformer based algorithms.
2. High Resolution Spectral Estimation based algorithms.
3. Time Difference of Arrival (TDOA) based algorithms.

In section 2.8, steered beamformer based algorithms are explained and a discussion

of their role in the DOA estimation is presented. This is followed by an explanation
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and discussion of high-resolution spectral estimation based algorithms and the Time

Difference Of Arrival (TDOA) algorithms.

2.8 Steered Beamformer Based Algorithms

Beamforming involves focusing the microphone array to capture signals from certain
directions in presence of interfering signals. It involves spatial filtering where the spatial
filter of the array is focused towards the desired direction through the signal processing
algorithms rather than physically focusing the array in the desired direction [60, pg.
112], [116]. By spatial filtering two signals consisting of same frequencies are separated
provided that they are generated in different locations [116]. The beam in the desired
direction is formed by summing weighted signals of the microphones in the array [46,
pg. 237]. Beamforming is mainly used in communications systems. Antenna arrays
are used for beamforming. The concept of beamforming has been extended to the field
of speech signal processing. The applications of beamforming include DOA estimation,
steering a null in the direction of the undesired signal and signal enhancement [115].

Steered beamformer based algorithms are used to find the DOA of the source signal
and also for signal source localization. The steered beamformer based algorithms utilize
the Maximum Likelihood (ML) principle. The source localization by these algorithms
depends upon maximizing the steered response power of a beamformer. A beam is
steered in all the possible directions and the output power is calculated for every
direction. The angle, at which maximum output power is obtained, is taken as the
DOA of the signal source.

DOA estimation using beamforming is performed on narrowband signals. For DOA
on broadband signals the signal is divided into smaller frequency bands. Narrowband
and broadband signals are introduced in section 2.3. Each frequency band is considered

to be a narrowband signal on which the DOA estimation is performed. The results of
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DOA of these frequency bands is combined to get the overall DOA estimate [115].
Consider a narrowband signal similar to the one given in equation 2.6 captured

through a ULA of M elements. The output of a beamformer for the signal is given by:

y(t) = Y wf @) (2.23)

where z;(t) is the signal captured by i** microphone in the microphone array and
w; is the corresponding complex weight. The weight performs the spatial filtering such
that the signal from a particular direction also called the look direction is emphasized
[91, 45].

Equation 2.23 can be written as:
y(t) = wh x(t) (2.24)

where w is the complex weighting vector and x(¢) is the microphone array signal vector.
When the signal is a zero mean stationary process the mean output power of the

beamformer for a given weight vector is [45]:
P(w) = Ely(t) y*(¢)] (2.25)

E][.] is the expectation operator.

Speech signals change rapidly and hence are not stationary. The signal is divided
into smaller sections called frames. The signal when divided into smaller frames can be
considered to be stationary. Thus the mean output power for the signal with L frames

is given by [91]:

=l R w (2.26)



where R = ZEL:1 x(t) xH(t) = E[x(t) x¥(t)] is the correlation matrix of the array.
For the DOA estimation the angle at which the output power of the array is max-
imum is taken as the DOA of the source signal. The weights vector distinguishes
between different types of beamformers.
In this section, beamforming in the time and frequency domain is presented. Ini-
tially the delay and sum beamformer is discussed. It is an example of the beamforming

in the time domain. Beamforming in the frequency domain is described next.

2.8.1 Delay and Sum Beamformer

The delay and sum beamformer (DSB) is one of the oldest and the simplest beamform-
ers [60, pg. 112]. DSB is shown in Figure 2.3. It is also known as the conventional
beamformer. As the name suggests in this approach the signals captured by the mi-
crophones in the microphone array are delayed by the sample values corresponding to
the relative time delay with respect to the reference microphone signal in the micro-
phone array and added to form the DSB. The aim of DSB is to reinforce the signal
arriving from a particular direction by delaying the signals captured by microphones
in the microphone array by the appropriate sample values. The delay value in terms
of signal samples depend on the time taken by the signal wavefront to travel from the
source to the microphones in the microphone array [60, pg. 112]. The mean output
power of this beamformer in the direction of the source is equal to the source power.
In this beamforming process instead of mechanically steering the array in the direction
of the signal source it is steered electronically by adjusting the phase of the signal.
Moreover in the absence of interfering signals from other directions and the presence
uncorrelated noise maximum possible signal to noise ratio (SNR) obtained using this
beamformer [45]. For the DOA estimation the delayed versions of the signals captured
by different microphones in the microphone array is added to the reference microphone

signal to form beams focusing in different directions. The delays (in terms of signal
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Fig. 2.3: Delay and Sum Beamformer.

sample) are dependent on the relative time difference of arrival of the signals between
the microphones in the microphone array [24, pg. 159]. The output of a DSB for signal

arriving from a particular direction 6 is given by:

M-1
y(ty) = Z w! z(t — Tip) (2.27)

where y(tg) is the output of the delay and sum beamformer(DSB) for angle 8, w; is the
weight associated with the i** microphone and z(t — 7;4) is the signal received by ‘"
microphone delayed by 7; 9 with respect to the reference microphone.

The power of the DSB for a frame of length K is given by:

K1
1
P(6) = — te,)|? 2.28
0 = 7 X It (2:28)
The output power vector for the possible k angles is given by:

P(©) = [P(6o), P(61), ... , P(Ok-1)] (2:29)
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The DOA of the source signal corresponds to the angle associated with maximum
value of power in the P(©) vector.

The DSB can be used on broadband signals. It estimates the location of the signal
source by estimating the likelihood of the presence of a signal source at a particular
location based on the energy measures obtained for that location. Birchfield [21] ex-
plains that the DSB equation consists of two terms. The first term is a measure of
the pair-wise similarity between the signals received in the array and the second term
represents the total energy of all the signals. DSB is similar to Bayesian formulation
in terms of maximizing the likelihood of the signal source being present at a particular
location. The difference between the two is in the weights used for the energy terms.
For stationary signals, the energy term does not affect the likelihood of the presence of
the source at a particular location. This results in equal DSB and Bayesian equations.

For a DSB, the resolution in the estimated angles is dependent on the sampling
rate of the signal. To get a higher resolution in angle the sampling rate of the signal
has to be increased. This is because the delay is in integer values of the signal sample.
Higher sampling rate translates to higher storage requirement and increased processing
power. To overcome the problem of improved resolution in angle without increasing
the sampling frequency, frequency domain beamforming is employed [91]. Frequency

domain beamforming is described in the next section.

2.8.2 Frequency Domain Beamforming

As mentioned at the beginning of section 2.8, frequency domain beamforming is per-
formed on narrowband signals. The frequency domain representation of a narrowband

signal with central frequency w,. given in equation 2.8 is given by:

X(we) = S(we)A(we) + N(w,) (2.30)
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The corresponding beamformer output is:
Y (w.) = wX(w,) {(2.31)

where w is the complex weight vector given by w = [wg, wy, ..., wp—1])7 and M is
the number of elements in the microphone array. The choice of weight vector is based
on the requirement that all the signals for the look direction are summed coherently [91,
115] and the gain is high for signals in look direction whereas the signals from other
directions are attenuated [115].

The power spectral density (PSD) of the beamformer is:

(I)YY(wc) = Y(wc) Y*(wc)’
=wl X(w,) wi X*(w.),

=w dxx (W) w (2:83)

The DOA of the source signal is taken as the direction for which the value of
Pyy(we) is maximum. $xx(w,.) is the M x M PSD matrix of the input signals.

Since beamforming was developed for applications involving narrowband signals, in
order to perform frequency domain beamforming on a broadband signal like the speech
signal, the spectrum for the signal received by each microphone in the microphone ar-
ray is obtained by Discrete Fourier Transform (DFT). The signals are then converted
to narrowband signal by dividing them into smaller frequency bins. Individual nar-
rowband spectrums with the corresponding frequency are multiplied by the suitable
complex weight and summed.

The resolution in angle using a beamformer is dependent on the number of micro-
phones in the microphone array. The maximum angle resolution that can be obtained
with a ULA consisting of M elements, in radians is given by:

2
0o = ﬁw radians (2.33)
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While accuracy of the DOA estimates using beamforming is adequate, finer reso-
lution in angles is obtained for higher sampling rates. Higher sampling rate requires
more computational power rendering it unsuitable for real-time implementation [91].
Moreover since beamforming was developed for narrowband signals, the performance
of the beamformer on broadband signals such as speech deteriorates in the presence of
reverberation [91].

The performance of the beamformer for DOA estimation can be improved by using
a priori information. Duraiswami et al. [95] have exploited the a priori information
about the enclosed space dimensions and its relationship with the signal wavelength to
perform coarse-to-fine both in the frequency and space for efficient source localization

beamforming.

Discussion

Delay and sum beamformer appears to be very practical for the purpose of source
localization in e-learning environment due to its simplicity. The drawback with this
approach is that finer angular resolution cannot be obtained without increasing the
sampling rate of the signal. Increased sampling rate leads to higher storage and com-
putational requirements making it impractical for real time applications.
Beamforming in the frequency domain provides improved resolution in the angle
estimates. Since they were proposed for narrowband signals, more computation is
required to make them suitable for broadband signals such as speech. The performance
of the beamforming algorithms deteriorates in the presence of reverberation [91]. The
algorithm based on the coarse to fine search [95] requires a priori information that is
not known beforehand rendering it unsuitable for the purpose of source localization.
Next section presents the second category of the Direction of Arrival (DOA) algo-

rithms known as the high resolution spectral estimation based algorithms. The section
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starts with an introduction to the algorithms of this category a discussion about the
advantages and disadvantages of the algorithms of this category with respect to its

application for DOA estimation in an e-learning environment.

2.9 High Resolution Spectral Estimation Based
Algorithms

The algorithms belonging to this category are suitable for narrowband signals. These
algorithms are applied on broadband signals like speech similar to the way frequency
domain beamforming is applied on the broadband signal. As mentioned in section 2.8.2
broadband signal is transformed to obtain its spectrum using the DFT. The signal
spectrum is divided into several narrowband frequency bins [91]. The narrowband
algorithm is applied on each narrowband frequency bin and then the results of all the
narrowband frequency bins are combined to obtain an overall result for the broadband
signal. Subspace based algorithms or eigen structure methods are prominent examples

of the high resolution spectral estimation based algorithms category.

2.9.1 Subspace Techniques

In this section a brief introduction is provided on the subspace techniques. The al-
gorithms based on the subspace techniques are based on two properties of the Cross-
Correlation matrix of the signal. The first property states that the space spanned by
the eigenvectors of the signal can be divided into two orthogonal subspaces namely the
signal subspace and the noise subspace. The second property states that the steering
vector corresponding to the directional sources are part of the signal subspace since
they too are orthogonal to the noise subspace [45].

For a narrowband signal with center frequency w, the cross-correlation matrix is a
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M x M matrix given by:
R(w,) = X(we) XH(w.) (2.34)

Assuming that the rank of R is full and the number of sources present (P) is less
than the number of microphones in the array (M). The eigen decomposition of the R

is expressed as [91]:

R=) \eef (2.35)

where ); is the i** eigenvalue and e; is the i*" eigenvector.

The eigen decomposition of R results in a P-dimensional signal subspace and
(M — P)-dimensional noise subspace. The eigenvalues are arranged in the descending
order. The highest P eigenvalues represent the signal subspace and their corresponding
eigenvectors span the signal subspace. The rest of the eigenvalues represent the noise
subspace which is spanned by their corresponding eigenvectors.

These algorithms search for the directions for which the corresponding steering
vectors are orthogonal to the noise subspace and belong to the signal subspace [91].
The length of the signal frame should be large enough to ensure that the rank of R is
full. Small frame size can lead to error in the detection of the number of sources and
estimation of the DOA [91].

A discussion about the suitability of the algorithms of the high resolution spectral

estimation based algorithm is presented next.

Discussion

The algorithms of this category are found to be very efficient for DOA estimation es-
pecially in the presence of multiple sources. The main drawback of these algorithms
is that they are meant for narrowband signals. They can be applied on the broad-

band signals such as speech. The spectrum of the speech signal is divided into smaller
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frequency band to form narrowband signal and the algorithms are performed on the in-
dividual bands. The results of all the bands are combined to get the DOA of the speech
signal. The algorithms are computational intensive. The computational requirements
are further increased to facilitate their application on the speech signal. Furthermore
the performance of these algorithms deteriorates in the presence of noise and reverber-
ation. Thus the computation requirement along with a poor performance in presence
of noise and reverberation makes the algorithms of this category less appealing for real
time applications such as e-learning.

Next section discusses the third category of source localization algorithms known as
the time difference of arrival (TDOA) based algorithms. These algorithms are suited

for broadband signal processing.

2.10 Time Difference Of Arrival Based Algorithms

In case of Time Difference Of Arrival (TDOA) based algorithms the DOA is carried
out in two steps. First the Time Delay Estimation (TDE) is performed on the sig-
nals received by the microphones in microphone array. TDE is computed on various
combinations of microphone pairs in the microphone array. The second step involves
using the TDE information and the knowledge of array geometry for source local-
ization. Compared to the algorithms of the other two categories of DOA algorithms
discussed in section 2.8, 2.9, these algorithms are not complex to implement and are
computationally efficient [32]. They are also computationally practical for real time
applications. The main disadvantage of the TDOA algorithms is that the presence of
a single source is assumed for DOA [24, pg. 163]. Based on the e-learning scenario
discussed in section 1.1 this disadvantage in not of great significance as it is expected
that for communication only one person is the primary talker at any given instant.

Thus they are suitable for source localization in e-learning.
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From the literature Time Delay Estimation (TDE) can be divided into two promi-
nent categories of algorithms based on their approach for TDE estimation. They are
the Generalized Cross-Correlation (GCC) based algorithms and the Average Magni-
tude Difference Function (AMDF) based algorithms. Before describing the GCC based
algorithms and AMDF based algorithms, cross-correlation that is a part of most the

TDE algorithms is discussed in the next section.

2.10.1 Cross-correlation

The cross-correlation algorithm finds the relation between two different signals. Based
on the signal model presented in section 2.1, signals received by a pair of microphones

in the microphone array can be represented as:

Za(t) = a s1(t — 7) + na(t) (2.37)

where z,(t) is the signal received by the reference microphone that consists of the
source signal s;(t) corrupted by the additive noise n;(t). Similarly z,(t) is the signal
received by the second microphone consisting of a time shifted version of the source
signal s;(t) scaled by a factor a and corrupted by the additive noise ns(t). The noise
signals n,(t) and no(t) are assumed to be uncorrelated to each other and to the source
signal.

The cross-correlation of two microphone signals z,(t) and z,(t) is given by:

K-1

Riy(r) = ) zi(t)aa(t +7) (2.38)

t=0
where K is the length of the signal frame, 7 = 0,1,2,--- and Rj3(7) is the cross-
correlation value at a delay 7. The cross-correlation (R;5(7)) is found for different delay

7 values. All the Ry5(7) for different 7 values form the Cross-Correlation Function
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(CCF). Cross-Correlation Function (CCF) denoted by (Rccr) can be found by the

Fourier transform and is given by:
Rocr = F7YX1(k) X5 (k)] (2.39)

where X (k) and X,(k) are the Fourier Transforms of z;(¢) and z5(t) respectively
and F~![] is inverse Fourier transform operation. The term X (k) X;(k) is known as
the cross-spectrum of the two signals [114]. Maximum Likelihood (ML) principle is
applied on the CCF to identify the delay (7) at which the two signals resemble each
other the most. According to the ML principle the value of the 7 that corresponds to
the peak value of the CCF is the estimated time delay. The Cross-Correlation Function
(CCF) is sensitive to noise signals [79] and amplitude changes [36].

Since in real time implementation the signal frame size is fixed thus the overall
cross-correlation function is biased towards zero delay. This is because the shift in the
second signal with respect to the first signal, ends up in an overall cross-correlation
term, associated with a particular 7 (other than zero shift), with less number of terms
that are multiplied and added. As the shift moves away from the zero delay the cross-
correlation value tends to decrease as the number of terms multiplied and added to the
function decreases.

The simplest method to reduce the effect of bias is to use signal frames which
are long compared to the total number of delay values. However, to get an accurate
estimate 7 it should be ensured that the signal is statistically stationary. This is not
possible for very long frames. Thus there is a trade-off between the degree of bias of the
cross-correlation algorithm and signal frame length. In addition, longer signal frames
cause computational load to be significantly increased since the order of computations
is O(K?) where K is the size of the signal frame. The complexity can be reduced by a
frequency domain implementation that reduces the complexity to O(K log, K) [114].

Another way to reduce the effect of bias is to normalize the Rj5(7) function by

dividing it by the difference of the signal frame size and the 7 value associated with
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the particular shift. This method is known as unbiased cross-correlation and can be
written as:
/ RIQ(T)

(1) = =D where 0 < |7| < K (2.40)

After presenting a discussion on the cross-correlation of the signal, Generalized
Cross-Correlation (GCC) based Time Delay Estimation (TDE) algorithms are dis-

cussed in the next section.

2.10.2 GCC based algorithms

One of the simplest way to find the time delay 7 is to calculate the cross correlation
of the signals received by pair of microphones. The delay value corresponding to the
maximum value of the cross correlation function gives the relative time difference of
arrival of the signal for that microphone pair. Even though two microphones are enough
to estimate the DOA of the source by this approach its performance deteriorates in
presence of noise and reverberation. More microphones can be used to increase the
robustness and resolution of the result [114] and for source localization.

Since the adjacent speech samples are highly correlated, the cross-correlation func-
tion peak obtained is very wide [114]. A wide peak does not pose a problem in case of
a single delay but when the signal has multiple delays (in presence of more than one
source or reverberation) wide peaks are not desirable. The cross-correlation peak in
the presence of many delays can spread into each other to produce a cross-correlation
function with broad local maximum. This can result in incorrect TDE since the peak
corresponding to the actual delay can be overshadowed by other peaks [70], [24, pg.
167].

For better time-delay resolution sharp peaks are desirable. Fixed length signal
frames introduce errors in sharp peaks in case of low signal-to-noise ration (SNR). To

overcome this problem weighting function or pre-filters for the cross-spectrum of the
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cross-correlation function have been proposed by Knapp et al. [70, 29]. The cross-
correlation function obtained from the inverse fourier transform of the pre-filtered
cross-spectrum is known as the Generalized Cross-Correlation (GCC). These weighting
functions sharpen the peaks of the cross-correlation function.

The normalized cross-correlation function can be expressed as:

Rua(1) = F~ [y (k) X1 (k) X5 (k)] (2.41)

where (k) represents the weighting function.

The prominent effective weighting functions proposed for GCC are presented below:

1. The Roth Processor: This weighting function was proposed by Roth. It is

give by:
RS o
X1(k) X3 (k)

The Roth processor suppresses the frequency regions where the noise is large as

Y(k) = (2.42)

weights are assigned to the correlation function in accordance with the character-
istics of the noise and signal [70]. The problem with this approach is that the a
priort information about the noise and signal statistics is unavailable in many ap-
plications [29]. The problem of source localization in a room is an example of the
application where a prior: information regarding the signal and noise statistics is

unavailable.

2. Smoothed Coherence Transform (SCOT): Carter et al. [30] proposed the
SCOT weighting function. It was proposed for TDE to localize an underwater
acoustic source in the presence of strong undesired sinusoidal interference [98]. It

is given by:
1
VX1(k) X7 (k)Xo (k) X5 (k)

The SCOT weighting function is used to Whlten the signal before finding the

p(k) =

(2.43)

cross-correlation of the signal. Whitening of the signals sharpens the peak of
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the cross-correlation function [114]. Kuhn [72] proves with experimental results
on broadband signal with different signal to noise ratio, that the SCOT pre-
filtering is suitable for TDE on broadband signals. When X (k) X7} (k) is equal to
X5 (k)X (k) then this function is equal to the Roth weighting function. The pre-
whitening of the signal is not enough in this case to sharpen the cross-correlation
peak. SCOT function suppresses frequency bands that contain higher noise con-
tent [70]. Experimental results by Scarbrough [98] show that for TDE in presence
of non-sinusoidal interfering (additive uncorrelated white Gaussian noise) signals,
SCOT weighting functions performance is worse compared to the unbiased cross-

correlation function.

. Phase Transform function (PHAT): The PHAT weighting function involves
whitening the cross spectrum of the signals. The PHAT function is given by:

1

Y = X

(2.44)

This weighting function gives equal weight to all the frequency components in
the signal. The TDE is based on the phase difference of the two signals. The per-
formance of the cross-correlation due to multi-path improves by using the PHAT
weighting. The main drawback of this method is that since all the frequencies
including all the ones where noise dominates are given equal weight this method
is less robust to noise and makes speech detection difficult [114]. This results
in poor performance of the PHAT in conditions of low reverberation and high

noise [24, pg. 162].

. The Eckart Filter: The Eckart filter weighting function is given by [70, 29]:

e Xy (k) X5 (k)
~ Ni(k) Ny (k)Na(k)N3 (k)

Y(k) (2.45)

where N;(k) and Ny(k) are the Fourier transform of the noise signals n;(t) and

no(t) respectively. The ratio of the change in the mean correlation output due
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to the presence of the signals (s;(¢) and sy(t)) and the standard deviation of
correlation output due to noise is known as the deflection criterion. The Eckart
Filter aims to maximize the deflection criterion by maximizing the numerator
and minimizing the denominator. Similar to the SCOT function it tends to give
less weight to frequency bands that have high noise content and zero weight to
noise only frequency bands. The main drawback of this function is that the
denominator includes the spectrum of the noise signals. Thus a priori knowledge
of the signal as well noise spectrum is required to implement it [70]. The a priori
information of the noise spectrum and the source spectrum is not known or only

approximate information is available in some applications [29].

. The HT Processor: The HT Processor proposed by Knapp et al. [70] is also
known as the ML estimator. This assumes that the speech signal and the noise

signals are Gaussian processes [70, 29]. The HT processor is given by:

[ na (k)2
(X (DI — Pz (R) P

Y (k) (2.46)

where
| X1 (k) X5 (k)|
X1 (k) X7 (k)Xo (k) X5 (K)

|712(k)|2 == (2~47)

The ML weighting function is proposed for uncorrelated signals whereas in real
time environment in presence of reverberation the noise and signals are highly
correlated [108]. Moreover the performance of this weighting function degrades in
reverberant environment [25]. The performance results obtained for this weight-
ing function suggests that in the absence of reverberation this method performs
well for low SNR. It performance degrades for SNR less than 10 dB. But in
reverberant environment its performance degrades even at high SNR values.
Carter [29] emphasizes that in order to achieve good performance for TDE, it

is necessary that the weighting functions are properly designed so that including
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the pre-filtering process contributes towards improving the performance of the

time delay estimators.

. Pitch based frequency weighting function: Another GCC weighting func-
tion for TDE, proposed by Brandstein [25, 26] involves weighting the frequencies
of the signal based on the signals pitch. The frequency bands containing the
voiced parts of speech are emphasized whereas the parts containing high noise
are given low weights. The speech signal frames maintain their periodicity in
the presence of reverberation. To find the fundamental frequency of the sig-
nal a Multi-Band Excitation speech vocoder generates excitation spectrum F(w)
for different fundamental frequencies. This excitation spectrum along with the
room transfer function H(w) is used to generate speech spectrum. The differ-
ence between the actual speech spectrum X (w) and generated speech spectrum
for different fundamental frequencies is calculated. The equation for the error is

given by:

1 ™

€= —
on )

X (w) — Hw)E(w)|%dw (2.48)

The error for each harmonic associated with a fundamental frequency is found by
dividing the frequency band into various bands centered about the harmonics of
the fundamental frequencies. The error for each harmonic is found and added to
get the overall error for that fundamental frequency band. The formula to find

the error for i** harmonic is given by:

1 li2

27T li

E; IX(LU) o AlE(w)|2dw (249)

where /; ; and [;  are the lower and upper frequency limits with the i** harmonic

as the center and A; is given by:
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i X (@) B (@)

- - (2.50)
52 | B(w) [Pdw

The error value for different fundamental frequencies of interest is found and
the frequency that has the minimum error value is taken as the fundamental

frequency of the signal.

The closeness of the estimated fundamental frequency spectral region to the ac-
tual spectral region is found by calculating normalized error for i harmonic

by:

€;
= li
ax i 1 X (W) Pdw

Ui (2.51)
Low value of E; indicate strong voiced harmonic region and high values of E;

indicate presence of high noise and non-periodic signal. The weighting function

for the #*" harmonic with limits /;; and l; 2 is given by:

(1 = max(E,-ylE,-,g))"

%, (@) X3 @)| e

p(w) =

where F;; and E;, are the normalized error for i** harmonic of signal X;(w)
and X,(w) respectively. The values of 7 is taken between 1 and 2. By us-
ing the above mentioned weighting the signal spectral regions containing strong
voiced characteristics are emphasized while the spectral regions containing noise
like characteristic are deemphasized. At low SNR values the performance of
this weighting function degrades especially in the presence of high reverberation.
The estimation of the fundamental frequency for this method is computationally
demanding as a resolution of 1 Hz in the case of higher harmonics for the funda-
mental frequency is required. A coarse to fine search method can be used where

coarse search of the region where the fundamental frequency may be present can
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be identified and a fine search for the fundamental frequency can be performed

in this region.

. GCC-CEP: Apart from the above weighting function using cepstral pre-filtering
as a weighting function to reduce the impact of reverberation has been proposed
in [108] for TDE. This weighting function is known as GCC-CEP. The complex
cepstrum of a signal is obtained by taking the inverse Fourier transform of the
complex logarithm of the Fourier transform (frequency spectrum) of the signal.
The cepstrum of a signal can be decomposed into two components namely the
minimum phase component and the all pass component. Any modifications made
to the all pass component effects the TDE but slight modifications to the min-
imum phase component does not effect the TDE. By subtracting the minimum
phase component of the channel cepstrum from the signal cepstrum the TDE can
be improved, based on the assumption that minimum phase component of the
signal cepstrum varies for all the frames and has zero mean whereas the minimum

phase component of the channel cepstrum varies slowly.

The channel cepstrum is calculated frame by frame. An exponential window
is applied on the frame before the cepstrum pre-filtering. The minimum phase
components are emphasized compared to the all pass components using the ex-
ponential window since these components can be modified to reduce the effect of
reverberation on the time delay estimates. The channel cepstrum is calculated
recursively which is subtracted from the signal cepstrum. The resultant is trans-
formed into time domain signal and inverse exponential window is applied. GCC
is performed on this signal to get the time delay [108]. This method requires
frames to have stationary speech signal which is possible for small frames but for
de-convolving the effects of reverberation using the cepstrum requires long frames
as the impulse response of the room can be very long. Stephenne et al. [108] have

tested the GCC-CEP algorithm on the Gaussian noise as the source signal.
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Discussion

As suggested by Chen et al. in [32], GCC is a prominent algorithm used for the
TDE. Among the weighting functions used in TDE through the GCC algorithms, the
filtered cross-spectrum obtained using PHAT weighting function involves the channel
responses for the source signal without involving the signal itself [32]. For wideband
signals, GCC-PHAT weighting is independent of the characteristics of the signal [86].
The performance of GCC using the PHAT weighting is better compared to using other
weighting functions for signal characteristics that change in time [32], [24, pg. 167].
The characteristics of noise and the speech signal need not be modeled for PHAT

weighting function.

2.10.3 Average Magnitude Difference Function (AMDF)

AMDF is another algorithm that is used for TDE [32, 58]. This algorithm involves
taking the sum of the absolute value of the difference between the microphone signals
at different time delays. The delay value at which the difference between the signals is

minimum is taken as the estimated time delay.

AMDEF is given by:

N

1

% : |z1(n) — z2(n + 7)] (2.53)

RAMDF(T) =

Il
(=}

where K is the signal frame length. This algorithm has low computational complex-
ity as it does not involve any multiplications. Its performance degrades in the presence
of reverberation and noise [32].

Another algorithm that is used is the Average Square Difference Function (ASDF).
This is a variation of the AMDF where the sum of the squares of the difference of the
microphone signals for different delays is taken for TDE. The estimated time delay is

equal to the delay corresponding to the minimum value of the ASDF.
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ASDF is written as:

RASDF —IQ n+’r))2 (254)

Mk

n=0
Average Mean Sum Function (AMSF) is another algorithm that takes into consid-
eration the sum of the signals unlike the AMDF. It is given by:

K
Ramsr(T) = Z ) + xa(n + 7)) (2.55)

=0

Like AMDF this algorithms also does not involve any multiplication operations
and hence has a low computational complexity. Compared to the cross-correlation
algorithm, AMDF and ASDF perform well in the presence of medium to high noise [58].
The performance of AMDF deteriorates in the presence of reverberation.

Chen et al. [32] have recently proposed two TDE algorithms based on the GCC-
PHAT, AMDF and AMSF algorithms. The first algorithm namely the Weighted Cross- |
Correlation (WCC) estimator aims to merge the robustness of the GCC algorithm and
the accuracy of the AMDEF algorithms. The second algorithm known as the Modified
AMDF (MAMDF) combines the AMDF and the AMSF algorithms for TDE.

The WCC algorithm is given by:

Reee(T)
Rampr(T) + €

where Rgoco(7) and Ranpr(7) are given by the equations 2.41 and 2.53 respectively.

Rwce(r) = (2.56)

The value of the weighting function for Rgce is the PHAT function of equation 2.44.
A small positive value € is added to prevent division overflow. The 7 value that corre-
sponds to the minimum value of the Ry ¢ function is the estimated time delay.

MAMDF algorithm is given by the equation:

RAMDF(T)

—RAMSF(T) i (2.57)

Ryampr(T) =
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where Ranpr(7) and Rapsp(7) are given by the equations 2.53 and 2.55 respectively.
€ is a small positive value added to the denominator to prevent division overflow. The 7
value that corresponds to the maximum value of the Ry, 2y pr function is the estimated
time delay.

Based on the experimental results in [32], both the algorithms perform equally well
in the presence of reverberation and are better than GCC-PHAT. In the presence of

noise their performance is better than the AMDF algorithm.

2.10.4 Others

Apart from the algorithms based on the GCC and AMDF, hemisphere sampling is an-
other method proposed for DOA estimation. This algorithm employs the GCC-PHAT
given in equation 2.44 for TDE. The cross-correlation vectors obtained by this method
for different pair of microphones are mapped to a common coordinate system. This
coordinate system is called the sampled unit hemisphere whose center is the micro-
phone array [22]. The DOA is estimated based on the accumulated sum of the mapped
correlation vectors where the hemisphere’s maximum cells give both the azimuthal and
the elevation angles. The authors claim that the method is robust to noise and re-
verberation, can handle any microphone configuration and does not suffer from blind
spots. Blind spot are the locations for which the DOA cannot be found [22].

More recently Talantzis et al. [110] have proposed DOA estimation based on the
information theory. This algorithm estimates the DOA for a single source in a highly
reverberant environment. It is based on the finding the TDE by maximizing the mutual
information that one microphone has on the other in a microphone pair. For a signal
source with zero-mean Gaussian distribution, the mutual information for the signal

received by a microphone pair is given by:

s = —Lpn det O]

2.58
2 C11Cy2 ( )
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where det|[.] is the determinant operator and C(7) is the joint covariance matrix.

The mutual information obtained is not sufficient to obtain robust TDE in rever-
berant environments. Thus the information between the microphones is estimated by
considering jointly ‘N’ neighboring samples of the signals. This gives the marginal
mutual information which can be used to find the TDE. For a very long frame the
diagonal elements of the C(7) are independent of 7. The relative time delay is equal to
the delay value that maximizes the value of MI given in equation 2.58. In the presence
of reverberation this algorithm performs better than GCC-PHAT but its performance

degrades with the increase in the room reverberation.

2.11 Discussion and Conclusions

The Time Difference Of Arrival (TDOA) based algorithms are suitable for real time
implementation as they are not computationally intensive. Another advantage of these
algorithms is that finer resolution in angle can be obtained by applying interpolation
to obtain time delay estimates in terms of fractional signal samples.

The main drawback with using the cross-correlation algorithm for Time Delay Esti-
mation (TDE) is that it is very sensitive to amplitude changes which results in spurious
Direction Of Arrival (DOA) estimates. The cross-correlation function also has wide
peaks which is not desirable when the signal consists of multiple time delays and also for
finer resolution in the DOA estimate. The Generalized Cross-Correlation algorithms
have been proposed to provide sharper peaks by using a weighting function with the
cross-correlation function. Among the proposed weighting functions the performance
of the GCC-PHAT is the best in the presence of noise and reverberation. The perfor-
mance of algorithms based on the Average Magnitude Difference Function (AMDF)
for TDE deteriorates in the presence of reverberation. Among the recently proposed

TDE algorithms, MAMDF algorithm appears to perform better than GCC-PHAT in
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the presence of noise and reverberation.

Steered beamformer based algorithm such as delay and sum beamformer though
simple to implement requires higher sampling rate for finer resolution in the DOA
estimates. This increases storage and computation requirements making it impractical
for real time implementation. Beamforming in the frequency domain increases the
resolution in the DOA estimates without increasing the signal sampling rate. But this
method is suitable for narrowband signals. It can be applied on broadband signals like
speech but this requires increased processing power. Moreover the performance of the
algorithms deteriorates in the presence of reverberation.

The high resolution spectral estimation based algorithms are efficient for DOA esti-
mation especially in the presence of multiple sources. The algorithms are computational
intensive. The main drawback of these algorithms is that are suitable for narrowband
signals. They are applicable on broadband signal such as speech at additional com-
putation requirements. Furthermore the performance of these algorithms deteriorates
in the presence of noise and reverberation. Thus the computation requirement along
with a poor performance in presence of noise and reverberation makes the algorithms
of this category less appealing for real time applications such as e-learning.

The Time Difference Of Arrival (TDOA) based algorithms are suitable for real time
applications as they are not computationally intensive. They are suitable for DOA
estimates in an e-learning environment since they assume presence of a single signal
source which is in agreement with the classroom environment discussed in section 1.1
that during lecture there is only a single signal source. Finer resolution in the DOA
estimate can be obtained by interpolation instead of upsampling the signal or increasing
the sampling rate. From the discussion in section 2.8, 2.9 and 2.10, it can be concluded
that for real time source localization in an e-learning environment DOA estimation
using TDOA algorithms is practical.

The Generalized Cross-Correlation (GCC) algorithms have been proposed to pro-
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vide sharper peaks by using a weighting function with the cross-correlation function. In
the presence of noise and reverberation the performance of the GCC-PHAT is the best
among the proposed GCC weighting functions. The performance of algorithms based
on the Average Magnitude Difference Function (AMDF) for TDE deteriorates in the
presence of reverberation. Among the recently proposed TDE algorithms, MAMDF
algorithm appears to perform better than GCC-PHAT in the presence of noise and

reverberation.

2.12 The YIN Algorithm

This section describes and explains the YIN algorithm. YIN algorithm [36] is used for
estimating the fundamental frequency of a signal. Modification to the YIN algorithm
for TDE, primary contribution of this thesis, is presented in section 4.1 of chapter 4.

The fundamental frequency of a periodic signal is equal to the inverse of its period. ;
YIN algorithm is used to find the period of a speech or music signal which in turn
is used to find the fundamental frequency of the signal. The objective of the YIN
algorithm is to find the period of the signal based on the similarity of the signal and
it’s shifted or delayed version. YIN utilizes the difference between the actual signal
and a shifted version of the signal at different time lags to find the period of the signal.
It assumes that the actual signal and its shifted version will be most similar (in ideal
case will be equal) at the time lag value that is the period of the signal.

The TDE algorithm aims to find the relative time difference for a signal to reach a
pair of microphones in a microphone array. The solutions to the TDE problem is based
on finding the time delay by measuring the similarity between the received signals at
different lag values. TDE algorithms assume that the signals will be most similar (in
ideal case will be equal) at the actual time delay. Due to the similarity in operation

of the YIN algorithm and the TDE algorithms, it will be shown in chapter 4 how the
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YIN algorithms can be used for TDE.

YIN algorithm consists of 5 steps. They are as follows:

1. Step 1: Calculate the difference function which is equal to the sum of the squares
of differences of the signal and its delayed version. The difference function for

the signal is given by:

=

dir)= (z(n) — z(n + 7))? (2.59)

n

Il
o

where z(n) is the input signal, (n + 7) is the input signal delayed by an integer

sample value represented by 7 and K is the length of the signal frame.

The equation 2.59 when expanded gives:

-1 5
d(T)=Z.1‘2( )+Z$2n+7 -221 x(n+7) (2.60)
n=0 n=0

The first two terms on the right hand side of the equation 2.60 represent the
energy of the signal. The second energy term is not constant and varies with the

value of 7. The final term is the autocorrelation of the signal at the lag value [36].

With an increase in the signal amplitude with time, the peak of the autocorrela-
tion function of the signal increases instead of remaining constant. This results
in the incorrect lag estimate that will be higher than the expected lag as the peak
of the autocorrelation will move away from the expected lag value to higher lag
values. This problem is known as “too low” error. “Too high” error occurs when
decrease in the signal amplitude with time results in reduction of the peak of the
autocorrelation function of the signal instead of remaining constant. In this case
the peak of the autocorrelation function will coincide with the lag value which
is smaller than the expected lag value. The difference function given by equa-
tion 2.59 is insensitive to the problem of “too low” error as change in amplitude,

with lag, increases the period-to-period dissimilarity [36].
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2. Step 2: A problem with the difference function given by equation 2.59 is that it
tends to be zero for zero lag and non-zero at the actual period value. Thus a
lower limit of one lag value is used on the period search range. Another problem
encountered with difference function is that a strong resonance at the first formant
(refer to section 3.2) of the speech signal might lead to incorrect identification of
the formant as the period [36]. To avoid both the problems the difference function
is normalized to form the cumulative mean normalized difference function. The
cumulative mean normalized difference function is given by:

1 (for T=0)

1_—‘1;% (otherwise)

T

d (1) = (2.61)

Due to normalization of the difference function, the cumulative mean normalized
difference function reduces the “too high” error. This step also eliminates the
necessity to limit the higher search range of the period. The lag value corre-
sponding to the minimum of the cumulative mean normalized difference function

is taken as the period of the signal.

3. Step 3: The calculation of d (7) is followed by the selection of the signal period
based on absolute threshold. Absolute threshold is used to reduce the error in
the estimated signal period. The absolute threshold value is not constant and is
decided by the user. The lag that corresponds to the minima that is below the

absolute threshold value and is closest to it is taken as the period of the signal.

4. Step 4: Parabolic interpolation follow absolute threshold step. Parabolic interpo-
lation (discussed in section 2.5) is used to improve the resolution of the periodicity

measure [36].

5. Step 5: The final step involves finding the period of the signal based on the best
local estimate. This step is used to further reduce the error in period estimation.

The first four steps are implemented on the signal where the upper limit on the |
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frequency range does not exist. In the final step the cumulative mean normalized
difference function is found for the signal around the pitch estimate with a re-
striction on the search range which is given by the range of [t — Tmaz ¢4 Tmaz] and
comes up with the best periodicity measure. 7,4, is the largest expected period

and t is the time instant at which the period of the signal is estimated [36]

This algorithm is suited for high pitched voice and music signals as no restriction is

placed on the frequency upper search range [36].

2.13 Summary

In this chapter the background literature associated with the DOA algorithms was
presented. These included the signal model, the formula for DOA estimation based on
far field assumption, spatial aliasing, resolution of the DOA, parabolic interpolation,
problems encountered in a classroom environment that interfere with the performance
of DOA estimation. This was followed by a description, advantages and disadvantages
of the steered beamformer based algorithms, high resolution spectral estimation based
algorithms and Time Difference Of Arrival (TDOA) based algorithms. It was concluded
that for e-learning environment DOA estimation from TDE is practical as they are
suitable for real time implementation. Finally the YIN algorithm that is used to find
the fundamental frequency of the speech and music signals was described in detail.
The YIN algorithm is the basis of the primary contribution of the thesis which is a

TDE algorithm that performs well in presence of noise and reverberation.
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Chapter 3

State of the Art: Voice Activity

Detection

This chapter presents the background literature associated with Voice Activity Detec-
tion (VAD) and the various stages in designing of a VAD system. The chapter begins
with a high level overview of a VAD system. This is followed by a description of speech
signal characteristics that can be used for VAD. Audio signal features used for VAD
in the existing literature are presented next. The chapter ends with a description of

feature selection and supervised machine learning algorithms.

3.1 Voice Activity Detection (VAD) System

Voice Activity Detection (VAD) is an important pre-processing stage to TDE in a DOA
system as shown in Figure 1.1. VAD involves distinguishing between speech and noise
signals [82]. It is beneficial as a pre-processing stage for applications such as VoIP [97,
88], mobile telephony [19, 20, 39], source localization [69], speech recognition [120] and
speaker recognition. In VoIP, bandwidth is saved by identifying parts of signal that is

speech as only speech packets are transmitted. In mobile telephony, it saves bandwidth
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Fig. 3.1: Schematic diagram of the VAD System.

which helps to increase the number of simultaneous users and also to save power of the
handset [75]. In conference applications such as e-learning it reduces the number of
computations and errors by finding the DOA only on the signal segments that consist
of speech.

A block diagram of a VAD system is presented in Figure 3.1. The VAD process
is executed in two steps. In the first step the features of the signal frame required
for VAD are computed. A feature is a characteristic of the signal that is input to
the classification algorithm to determine the signal types. The second step involves
the classification algorithm that determines the class of the signal frame based on the
value of the features. Audio signal properties and features used in various classification
algorithms are discussed in section 3.2 and section 3.3 respectively. Section 3.4 presents
the theory associated with the selection of the signal features for classification. The
discussion on the classification algorithms for voice activity detection is presented in

section 3.6.

3.2 Speech Signal Characteristics

The speech signal received by a listener is a sound pressure wave produced by a talker
and is made up of a sequence of sounds that convey the thoughts of the talker in the

accepted rules of communication between humans. Speech signal waveforms change
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Fig. 3.2: Voiced (left) and Unvoiced (right) Speech Signals

rapidly in few milliseconds (ms) [61, pg. 225] and have non-stationary spectral char-
acteristics [61, pg. 104]. Thus short duration frames of the speech signals are taken
during which the signal is considered to be stationary.

According to the literature on human speech production in [87, 61], the lungs and
trachea, the larynx and the vocal tract are the three main subsystems of the human
vocal organ. The lungs provide the compressed air and influence the loudness of the
speech. In the speech production process larynx plays an important role as it is the
organ for producing voice. Vocal tract mainly consists of the two cavities namely the
pharyngeal (throat) and the oral (mouth). Vocal cords, velum, tongue, teeth and lips
are other significant anatomical features for producing speech. The resulting speech is
modulated by the vocal tract.

Speech sounds can be grouped into two broad classes namely the voiced and the
unvoiced (see figure 3.2). Voiced speech has characteristics of a deterministic waveform
whereas unvoiced speech is more noise like [61, pg. 29 - 30]. In the English alphabets,
voiced speech comprises of all the vowels and a few consonants. Unvoiced speech
consists of consonants [87, pg. 66].

The Larynx contains and controls the vocal cords [87, pg. 61]. It is the source of the

periodic excitation for voiced speech [61, pg. 103]. The excitation causes oscillations
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of the vocal cords known as the phonation. The glottal pulses produced during phona-
tion have a repetition rate called the pitch of the pulses [87, pg 64-65, 133]. Voiced
speech contain phonation due to the periodic excitation whereas unvoiced sounds do
not contain phonation as their excitation is noise like [87, pg. 65|, [61, pg. 109]. For
a male talker pitch ranges from 80 Hz to 160 Hz and for female talker it varies from
160 Hz to 400 Hz. The rate of vibration of the vocal cords is known as fundamental
frequency of the phonation. Fundamental period is the time between successive open-
ings of the vocal cords [61, [pg. 112]. Fundamental frequency and fundamental period
are inversely related. The term pitch is used interchangeably with the fundamental
frequency and is usually denoted by Fy [36], [61, pg. 114].

The vocal tract is a tube and has natural resonant frequencies known as the for-
mants [87, pg. 66, 103]. The vocal tract has non-uniform cross section and for a male
talker vocal tract is approximately 17 cm long, for female talker it is approximately 14
cm long and for children it about 10 cm long [61, pg. 102]. The shape and physical
dimensions of the vocal tract determine the location of the formants in the frequency
domain [61, pg. 107]. For a tube with uniform cross-section the resonant frequencies

will occur at the frequency values given by:

& c(2i —1)

fi a

fori=1,2,34,.. (3.1)

where f; is the i formant frequency, c is the velocity of speech signal and [ is the
length of the vocal tract. However due to the non-uniform cross-section of the vocal
tract the formants do not occur at the exact value. For speech recognition first three
formant frequencies are used [87, 103-104]. A correspondence exists between the vowel
sound and the formant frequencies [87, pg. 104]. This is useful in detecting voiced
speech and also in speech/speaker recognition.

The glottal pulse train which is an excitation signal for voiced speech is periodic
and contains harmonics. This pulse when applied to the vocal tract results in a speech

signal that is the glottal pulse train convolved with the impulse response of the vocal
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Fig. 3.3: Power Spectral Density for Voiced and Unvoiced Speech Signals

tract. As a result the output of the vocal tract appears periodic with a interspacing
of glottal pulse period [87, pg. 115]. The spectrum of the glottal pulse train has a
spectral roll-off of approximately 12 dB/Octave in the frequency range of 0.8 - 1 kHz.
The sound spectrum undergoes a boost of 6 dB/Octave while the speech is emanated
from the lips (see figure 3.3). Thus the output speech spectrum will have a net 6
dB/Octave roll-off between the first two formants for vowels [87, pg. 115-116].

3.3 Audio Signal Features

Several classification algorithms have been proposed based on the signal characteristics
for different applications. The features used in the VAD classification algorithms are

discussed below.

1. Short term energy and low band to full band energy ratio: One of the signal
features used in the VAD algorithms is the short-term power or short-term en-
ergy [80, 82, 16], [94, pg. 120-126] of the signal. Short term energy of a signal
frame is the sum of the squares of the amplitude of the signal samples within the
frame. Some algorithms take the logarithm of the energy as the measure of short

term energy [18, 44, 67]. Since the short term energy values obtained are very
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small, the logarithm of the energy is taken as the the short term energy. Log

Energy is given by:
K
E =logio Z r2(3) (3.2)
i=0

where K — Number of signal samples in the frame and z(i) — " signal sample

in the frame.

Energy of the signal divided by the number of samples in the frame gives the
short-term power of the signal. Short-time log power is given by the logarithm of
the average short-term energy [68]. Both energy and power of the signal frame
provide similar information about the signal but short term energy is preferred

as it involves less computation [61, pg. 246].

Short-term energy helps to distinguish between vowels (usually voiced) and con-
sonants (usually unvoiced) parts of speech [87, pg. 293]. The voiced speech has
higher energy than the unvoiced speech [121]. In some scenarios it can also be
used to distinguish between the background noise and other signals especially
voiced speech at high SNR since the energy of the speech signal is greater than
that of the background noise [111, 107]. In the presence of high Signal to Noise
Ratio (SNR) it is used to detect silence periods in the speech signal. However,
the short-term energy of the signal by itself is not sufficient to classify the signal
in presence of low SNR as it becomes difficult to distinguish between speech and

noise [107].

Other features related to the energy of the signal used in the VAD algorithms
include root mean square energy of the input signal [104], peak amplitude of the
signal [104], ratio of the signal energy to the noise energy [67], energy distance
measure [17, 93] and different frequency band energies. Energy distance mea-
sure gives an idea of the closeness of the signal frame to the average signal of a!

particular class. It is the normalized Euclidean distance given by the difference
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between the log energy of the current frame and the known average log energy
for the signal of a particular class normalized by the standard deviation of the

the log energy for the signal of that class [17, 93].

Low band energy is taken in the range of 0-1 kHz and the high band energy is
calculated in the frequency range of 2-4 kHz [103, 50]. High band energy helps to
detect consonants [103] as they tend to have less energy in the low band [75] and
high spectral concentration in the high band [74]. In contrast the low band energy
of the voiced signals is high. Gaussian like noise signals have low full band energy
and a mid level of low band energy [75]. Several algorithms have used different
forms of the band energies in the VAD algorithms. Some of the variations include
differential power/energy in 0 - 1 kHz band [18, 40, 42], differential power/energy
over the whole band [19, 40, 42], variance of ratio of high frequency band to low
frequency band energy [17], low band to full band energy ratio [75], ratio of the

energy of the signal is greater than 4kHz to the low band energy [104].

. Zero-crossing rate: Zero-crossing rate is a prominent feature used in the VAD [112,
93, 111, 28, 104, 94, 118] and speech recognition algorithms [62]. It’s value in-
dicates the number of times a signal has changed its sign within the frame [61,
pg. 245]. Thus when the speech signal energy is high its zero-crossing rate tends
to be low and vice versa [50]. It indicates the dominant frequency in the frame
duration [66]. Zero-crossing rate of the signal is given by:

j |

ey |sign{z(i)} — sign{z(i — 1)}|
ZCR= % 18 = (3.3)

i=0
where sign{z(n)} = +1 for z(n) >= 0, sign{x(n)} = —1 for z(n) < 0 and K is
the frame length.
Voiced speech will have lower zero-crossing measurements compared to unvoiced

signals [61, pg 251], [121]. Deller et al. [61] mention that short-term energy of the
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signal with zero-crossing is useful in identifying speech signal. Noise signals too
have high zero-crossing rate. Variance of the zero-crossing rate [66], zero-crossing
difference [73, 18, 42], delta zero-crossing rate [28], ratio of frame zero-crossing
rate to the zero-crossing rate of the noise signal [67] are the variations of this
feature utilized for VAD. Like short term energy, in low SNR, zero-crossing is not

very effective for VAD [103].

. LP coefficients, LP residual energy and PARCOR coefficients: Linear Predictive
Coding (LPC) is used in speech compression [77]. The analysis of the speech
signal gives the filter coefficients known as the Linear Predictor (LP) coefficients
that can be used to synthesize the speech signal. The speech signal is synthesized
by filtering an impulse signal with pitch period equal to the pitch of the signal for
voiced speech and a zero mean, unity variance, uncorrelated noise signal for the
unvoiced speech [61, pg. 267]. LP coefficients are obtained during the analysis
of the speech signal. The future signal samples can be predicted using the LP
coefficients, the past and the current signal samples. For classification feature

sets the first two LP coefficients are considered.

The signal sample at instant ‘n’ is given by:

i(n) = Za(z’)x(n —) (3.4)

=1
where z(n — i) is the previous n — ¢ signal samples, a(i) are the LP coeflicients

and p is the number of LP coefficients.

The LP coefficients can be computed from the autocorrelation function of the
signal. The autocorrelation function of the signal is given by:

K-
Roo(k) = a(i)z(i — k) (3.5)

=

—

where K is the length of the signal frame and £k =0,1,2,---.
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The autocorrelation function (R) and the LP filter coefficient vector (A) are

related by the equation RA = M, where

sz(l) R”(O) Rzz(l) Rzz(p > 2)
g RM(Z) sz(l) Rmx(o) Ry (p e 3)
AT = [a(1) a(2) a(3) - a(p)]

The filter coefficients are determined by solving the following equation:

A=R'M (3.6)

The first few LP coefficients are used for voice activity detection as they contain
more information about the signal [16, 104]. They are more robust in low SNR

conditions [76]. Typical filter order used is 8-10 [61, pg. 285], [82].

The difference between the signal synthesized from the LP coefficients and the
original signal is called the LP residual signal. The LP residual energy for the

k" frame is given by:
K1

Tres(k) = Z(J?(’L) i j‘(z)) (37)

i=0
where K is the length of the signal frame. In [61, pg. 288-289] the LP filter
order versus the LP residual energy plot shows that for voiced sounds the LP

residual energy is lower compared to that of the unvoiced sounds. The LP residual

energy of the signal is utilized to distinguish between voiced sounds and unvoiced
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sounds [16, 103, 61]. LPC distance measure [92] and log of sum of the square
of the LP coefficients [68], maximum LP residual autocorrelation peak [71] are

other LPC based features used for VAD.

Partial correlation or reflection (PARCOR) coefficients are generated during the
analysis of the signal along with the LP coefficients [87, pg. 144]. The PARCOR
coefficients are useful as the stability of the filter is ensured if their magnitude
is less than 1. They are used in the lattice filter structure for the vocal tract
model [87, pg. 155]. The first ‘n’ PARCOR coefficients values do not change if
the order of the filter is increased from ‘n’ to a higher order. The PARCOR coeffi-
cients also contain information about the signal like the LP coefficients hence are
used for VAD. The absolute difference between the first two PARCOR coefficients

is another signal feature for classification [55].

PAR = |b(1) — b(2)

(3.8)

where b(1) and b(2) are the first and second PARCOR coefficients.

. Higher Order Statistics (HOS): Higher order statistics (HOS) like the skewness
and the kurtosis of the signal can be used to distinguish between Gaussian noise
and non-Gaussian signals [82]. Skewness and kurtosis are the third and fourth

standardized moments respectively.

Skewness of the signal frame consisting of K samples is given by:
K) ¥ (el = 2

Skew s \/( })(§l=0 (Z‘('L) 1:3) (39)

(Xm0 (2(i) — 2)%}2

Kurtosis of the signal frame of K samples is given by:

KT e -5

Kurt = S ERr SR (3.10)
[ s (ali)— 222
where 7 is the mean of the signal frame given by:
| K-l |
z=—9 z(i) (3.11)
K i=0
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For a Gaussian signal their value is zero. The values of skewness and kurtosis of
the speech signals especially voiced is non-zero. Kurtosis is useful in detecting
voiced parts of speech [103]. The HOS of the LP residual signals are used as they
are effective in low signal to noise ratio (SNR) conditions [82]. Their values for
speech signal is different from that of the Gaussian noise and they are immune

to Gaussian noise. Hence they can be used in low SNR for speech detection [82].

. Pitch and Formants: Pitch is relevant in detecting voiced speech [28, 94, 118].
Pulse period of the glottal pulses also known as the pitch of the signal is an impor-
tant time domain property of the vowel waveform. Pitch of the signal gives the
periodicity of the signal. Formant frequencies are the resonant frequencies of the
vocal tract. Pitch and formant frequencies are discussed in section 3.2. For short
duration voiced signal can be considered periodic. Accurate estimation of pitch

is of importance as error can occur which will lead to error in classification [104].

. Spectral slope, spectral roll-off point and spectral centroid: Spectral slope of the
vowel waveform is an important frequency domain property of the vowels (voiced
speech). It has a spectral slope roll-off of 12 dB/octave in the frequency range of
0.8 -1 kHz [87, pg. 116]. A 6 dB/octave boost is introduced during the radiation
of the speech from the lips. This overall results in a slope that has a 6 dB/octave
roll-off [87, pg. 116]. Spectral slope is calculated by taking the difference of the
logarithmic amplitudes of the first two formants. It can be used to distinguish

between voiced speech and other signals [55].

Another feature is the spectral roll-off point also known as spectral roll-off. Spec-
tral roll-off point is the point below which ¢% of the magnitude distribution of
the spectrum of the signal, obtained by the Fourier transform, is present. The

spectral roll-off point is the bin number (Psg) that satisfies the following equa-
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tion [113, 381]:

Psp K-1
> IX() = 5 21X (3.12)

where Psg is the spectral roll-off point and X(z) is the signal in the frequency

domain and K is the number of Discrete Fourier Transform (DFT) coeflicients.

The spectral roll-off point provides a measure of the concentration of the spectral
energy of the signal and the skewness of the spectrum. The spectrum with
brighter sounds has a right-skewed shape and hence the spectral roll-off value
is high [118, 113]. It distinguishes between voiced and unvoiced signals. For
voiced speech most of the energy is contained in the low frequency band (left
skewed) whereas for unvoiced speech most of the energy is contained in the higher

frequency band (right skewed). The value of ¢ is taken as 95% [99].

Spectral centroid is defined as the balancing point of the power spectrum of
the signal. It also helps to distinguish between voiced and unvoiced speech sig-

nals [99]. Spectral centroid of the signal frame is given by:

Kb o1 et
: X
>izo 1 X ()]
where K is the length of the signal frame and X (i) denotes the frequency spec-

trum of the signal.

Spectral centroid gives a measure of the shape of the spectrum where high value
of spectral centroid corresponds to the presence of high energy in the higher

frequency band indicating the presence of unvoiced speech [113, pg. 381].

. Normalized autocorrelation coefficient of the signal at unit sample delay: This
value is obtained by normalizing the autocorrelation of the signal frame for a

single sample delay. It is equal to [16]:

Y. o Z1K=1 z(i)z(i — 1) (3.14)
VK, 22(0) Y5 22()

64




Sub-band 1 2 3 4 5 6 /] 8 9 10

Critical band
center frequency | 100 | 200 300 400 | 500 600 700 | 800 900 | 1000
(Hz)

Sub-band 1l 12 13 14 15 16 L7 18 19 20

Critical band
center frequency | 1148 | 1318 | 1514 | 1737 | 1995 | 2291 | 2630 | 3020 | 3467 | 4000
(Hz)

Table 3.1: Center frequency of 20 critical bands

where K is the signal frame length.

The normalized autocorrelation coefficients of the signal at unit sample delay
measures the correlation between adjacent signal samples. Since adjacent signal
samples of voiced sounds are highly correlated, for voiced sounds its value is

higher compared to other sounds.

8. Cepstral Coefficients and Mel-Frequency Cepstral Coefficients (MFCC): Cep-
strum features have also been utilized for speech recognition [61, pg. 398], speaker
recognition [87, pg. 340], speech and audio classification [94, 35]. The cepstrum
of a signal is equal to the inverse Fourier transform of the logarithm of the Fourier
transform of the signal [113, pg. 375]. The cepstrum of the signal can be written

as:

c(n) = F~"[logio] X (w)]] (3.15)

where F'~1[.] represents the inverse Fourier Transform operator and c(n) are the
cepstral coefficients for signal z(n). The obtained coefficients are an approximate

value of the cepstral coefficients [94, pg. 377].

The first LP predictor coefficient and the first sample of the Cepstrum of the
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Fig. 3.4: Relation between the signal frequency in Hz and perceived signal frequency
in Mel units.

signal are equal [104]. The variance of the cepstra of the noise is lower than that
of the speech [49]. Other cepstral features employed for VAD include the cepstral
distance [49], LPC cepstral coefficients [94].

Mel Frequency Cepstral Coefficients (MFCC) is another important signal fea-
ture [118, 94, 80]. MFCC is useful for endpoint detection [73] and word isola-
tion [33] in speech recognition. It is a data reduction process that in essence
preserves the speech signal information [117]. Perceived pitch or frequency is
measured in mel unit. Physical frequency of the signal and mel are not linearly
related. For frequencies below 1 kHz their relation is linear and for frequencies
above 1 kHz they are logarithmically related [61, pg. 380]. Figure 3.4 shows the
relationship between the perceived frequency in mel units and the real frequency
of the signal in Hz. An approximate relation between the real frequency (mea-

sured in Hz) and the perceived frequency (measured in mel) scales is given by [61,
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pg. 380]:

1000 o
Jrtn 4
Fmer log 2 (H 1000) )

where F},.; and Fy, are the perceived and actual frequencies.

Tones of different frequencies form complex sounds as perceived by the auditory
system. The auditory system cannot distinguish between the tones of sound that
are present in a particular band known as the critical band. The perception of
a particular frequency in a critical band is influenced by the frequencies present
around the frequency in the critical band [61, pg. 381]. Table 3.1 presents
the center frequencies of first twenty critical bands. For complex scunds having
bandwidth smaller than the critical bandwidth around the center frequency, the
perceived sound is a single tone at the center frequency of the critical band. The
loudness of this sound is a scaled average of the loudness of the tones present in
the sound. The bandwidth of the critical band depends on the frequency [113,
pg. 378]. It increases uniformly for frequencies below 1kHz with a bandwidth
of 100H 2 and increases logarithmically for frequencies above 1kHz [61, pg. 381-
382].

MFCC are constructed from the frequency spectrum of the signal such that they
reflect the sounds as perceived by the auditory system [113, pg. 378]. The are
equal to the inverse Fourier transform of the coefficients obtained by taking the
sum of the weighted log energy of the frequencies in each critical band around

the mel frequencies of the band [61, pg. 382].

In order to compute the MFCC coefficients, first frequency spectrum of the signal
is obtained by taking the Fourier transform of the input signal. The log magnitude

of the DFT coefficients for each critical band is given by:

Y (k) = S togolX (01, (22) (3.17)
k
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where Y (k;) is the sum of weighted log magnitude of the frequency components
of the signal (X (k)) for the i** critical band, i = 0,1,2,--- , K. K is the total
number of point used in the computation of the DFT of the signal. Range of k
is limited to the bandwidth of the i critical band [61, pg. 383], [113, pg. 380].

H;(.) is the triangular weighting window for the ' critical band.

The relation between i* band center frequency (f;) and sampling rate (f,) is
given by:
b

fi= ki‘[? (3. 18)

The coefficients obtained by the weighted sum of the log magnitude of the DFT
coefficients of each critical band are Inverse Discrete Fourier Transformed (IDFT)
to get the mel-frequency cepstral coefficients [61, pg. 383-384], [113, pg. 380].

The equation for mel-frequency cepstral coefficients is:

K -1

1 2rmn

Cmei(n) = 7= O ¥ (m)eap (j 7;"") where n =0,1,2,--- ,K—1. (3.19)
m=0

and

Y( ) Y(kl) (fOT = kiawhere 1= 1a27"' 7M) (3 20)
= :
0 (otherwise)

M is the number of critical bands and K is the length of the signal frame.

The mel-frequency cepstral coefficients are very significant in the area of speech
as well as audio recognition and classification and are described as the most

powerful features for these applications [113, pg. 380].

3.4 Feature Selection for Classification

Features are the characteristics of the input signal that are employed for distinguish-

ing between different signal classes during the classification process. As described in
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section 1.2.1 feature selection/evaluation is the first step in designing a VAD system.
In this section the process of feature selection/evaluation is discussed. The algorithms

that can be used to obtain the best feature subset are also explained.

3.4.1 Feature Selection

Pattern classification problems generally involve solving two crucial problems. They are
the selection/evaluation of features and decision rule for classification. The problem of
feature selection and evaluation is more complex and important compared to the prob-
lem of finding the decision function for classification [87, pg. 171]. Feature Selection
involves identifying the features that are relevant for a specific classification problem
and presenting them in a compact and intelligible manner by discarding unimportant
information [87, pg. 175]. Feature evaluation comprises of determining the significance
of each feature towards classification. In the existing literature [48, 81, 84, 51, 119]
concerned with selection of features for classification the problem of feature evaluation
is discussed as feature selection. So in this thesis the term feature selection is used for
feature evaluation.

While designing a classifier an early step is to identify the features that are relevant
to the classification problem and hence can be used for classification. Desirable prop-
erties of features adopted for classification include the ease in measurement, statistical
independence, stability for longer time periods, insensitivity to the influence of other
(external) variable and possessing different values for different classes [87, pg. 175].

The supervised machine learning algorithms are trained by example data for each
class known as the training data. Each data example of the training data is a vector
consisting of the values of the features and the class label associated with it. All the
features together form the feature set. The performance of the classifier is then assessed
by another set of data (that is not a part of the training data) called as testing data

in this work.
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If the training data size is infinite then additional features improve the accuracy of
classification since more training data for different scenarios is available for training.
For finite training data size in spite of the features being statistically independent
the performance of the classifier, beyond a certain stage, degrades with additional
features [81]. This is known as the ‘peaking phenomenon’. To avoid the peaking
phenomenon, feature selection is used to improve the classifiers performance.

The objective of feature selection is to provide an optimal feature subset from the
feature set such that it improves the prediction rate of a classifier [48]. Moreover feature
selection improves the computational complexity by reducing the number of features
to be calculated, economy by reducing the cost of measuring undesired features and
also the understanding of the classification problem [81]. In cases where computation
complexity and economy are not relevant, feature selection is still important as the
analysis presented by Amir et al. [81] suggests that the usage of too many features
gives rise to the classification error that is equal to the that obtained by chance.

The main aim of feature selection is to select the features from the feature set
such that it increases the interclass distance and decreases the intra-class variance
for better classification [113, pg. 214]. There are several approaches for performing
feature selection which use different selection criteria to perform the task of feature
selection. One of the approaches towards feature selection is to obtain the significance
of each feature individually based on its discriminating ability by statistical hypothesis
testing [113, pg. 216] or Receiver Operating Characteristics (ROC) curves [113, pg.
223] and form the feature subset by including the features from the feature set that
are able to separate the classes best. The main drawback of this approach is that it
ignores the correlation of the features that can result in poor classification [113, pg.
224].

In case of multi-class pattern classification, machine learning algorithms such as

Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) can be em-
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ployed for feature selection [48]. These algorithms take into consideration the correla-
tion between the features. They select the feature subset from the feature set based
on its ability to meet the class separability criteria. The class separability criterion
depends on the algorithm being used for feature selection. In the case of DA the class
separability criteria is to reduce the variance within the group and increase the distance
between the centroids of different groups. In the case of support vector machines this
criteria is to keep the ratio of the difference between the margin of hyperplane that
separates the classes, with all the features and the one with selected features to the
margin of hyperplane with all the original features as small as possible [15, pg. 192].

In some cases for feature selection, the classification hit rate of the classifier for
which the feature selection is being done is taken as the criteria for feature selection
instead of the class separability criteria. Classification results are presented using the
parameters classification Hit Rate (HR) [54, pg 83] representing the percentage of data
correctly classified into a particular class and False Alarm Rate (FAR) representing
the percentage of data of other classes that are incorrectly classified into a particular
class.

Classification hit rate is defined as:

No. of correctly classified data
Total No. of data

x 100 (3.21)

Classification error rate is defined as:

No. of incorrectly classified data
Total No. of data

x 100 (3.22)

Hit Rate (HR) for a class is defined as:

No. of correctly classified data of type k

100 3.23
Total No. of data of type k i ( )

False Alarm Rate (FAR) for a class is defined as:

No. of incorrectly classified data into type k « 100 (3.24)
Total data of other types
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In this approach the feature subset that gives the minimum error rate is utilized
for classification [113]. This approach is suitable for small training data set only as
for large training data set this approach is computationally intensive. Cross-validation
also known as the leave one out method can be performed on the training data to
obtain the hit rate [15, pg. 194]. In this method all the class data sample but one
is used to form the classification rule. The excluded data is then classified using the
classification rule and the group assigned by the classifier for the data is compared to
its actual group. This method is applied on all the data of the training set and the
classification hit rate is computed.

The resultant feature subset from feature selection process using different feature
selection algorithms may not be the same. The feature subset obtained from feature
selection for classification depends on the algorithm and the approach used for feature

selection.

3.4.2 Backward and Forward selection

As described in the previous section feature selection involves identifying the features
that are relevant for a particular classification problem. The approaches that can be
taken for evaluating the relevance of a feature or feature set were discussed in sec-
tion 3.4.1. In this section the algorithms that can be used to decide on the feature
subsets from the feature set that is input to the feature selection algorithm are pre-
sented. The multi-class feature selection algorithms mentioned in section 3.4.1 utilize
the feature subsets as the input to come up with the feature subset that is best for
classification purpose. These algorithms are used in the feature selection algorithms
mentioned in section 3.4.1.

This problem of deciding on feature subset to be considered in the feature selection
process becomes crucial when the feature set is large. This is because, large number

of features give rise to large number of feature subsets to be considered for feature
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selection. This problem is made simple if the size of the feature subset to be selected is
known a priori. To select [ features from the feature set of m features a total of ﬁ(—;—’l’l—”,
feature subsets have to be evaluated [113, pg. 234]. Since the feature subset knowledge
(the number of features that will be present in the selected feature subset) is not known
a priori, evaluating all the feature subsets for all the possible variable combinations is
computationally cumbersome [87, pg. 180-181]. To overcome this problem suboptimal
searching techniques (also known as the greedy search techniques) such as the forward
selection and the backward selection are employed [113, pg. 243], [48], [87, pg. 180-181].

Backward selection starts with an assumption that all the features in the feature set
are significant. The class separability criteria for the feature set is computed. In the first
iteration, the class separability or selection criteria for all the possible subsets with one
less feature are found. The feature subset with the best value of the criteria is retained.
This means that the feature that is not included in the selected subset is assumed to
be insignificant and discarded. Discarded features are not considered further. This
process is repeated until removal of another feature does not improve the accuracy

of the classifier or when certain predetermined condition is met [87, pg. 181]. This

method reduces the number of feature combination searches to 1+ 2(m(m+ll)—l(l+1)) [113,
pg. 234].

Forward selection starts with an empty feature set. The class separability or selec-
tion criteria for each feature are computed and the feature with the best value of the
criteria is included in the feature subset. Features included in the feature subset are
always included in all the further iterations. In the next iteration the class separability
or selection criteria is computed for all the feature combinations of the selected features
and other features. The subset with the best value of the criteria is included in the fea-
ture subset. This process is repeated until addition of another feature does not improve
the accuracy of the classifier or when a predetermined condition is reached [87, 181].

This method reduces the number of feature combination searches to lﬂ:gill—) [113, pg.
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235).

The choice of backward selection or forward selection depends on the problem.
Backward selection is comparatively computationally efficient than forward selection
when the value of [ is closer to m than to 1 [113, pg. 235]. It is argued that forward
selection comes up with weaker subsets as the significance of features is not obtained
relative to other features that are yet to be included in the feature subset. On the other
hand, by using backward selection features that are most important in classification
may be discarded as they do not perform well with some other features in the feature

set [48].

3.5 Classifier for Voice Activity Detection

This section discusses the formation of the decision function for VAD.

In video conferencing or a classroom environment, an audio signal is captured with
microphones. The microphones can be the clip-on microphones or a microphone ar-
ray. Apart from the speech signals other undesirable sounds such as cough, sneeze,
paper shuffle and background stationary noise from the computer, projector, heating
and ventilation system, air-conditioner in the room are also captured. Voice Activity
Detection (VAD) is a useful to distinguish between the speech signals and other signals
in order to process the signal appropriately for the application.

In the case of a clip-on microphone due to their closeness to the signal source
background stationary noise level may not be very high when compared to the speech
signal but sounds of breathing, paper shuffle are amplified along with the speech signal.
Thus background noise in this case is not a significant problem. In the case of signals
captured by a microphone array background stationary noise and other undesirable
sound levels can be comparable to the captured speech signal which makes the VAD

difficult.
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The number of features required for VAD depends on the number of classes of the
signal. The decision function for classification is based on the threshold value of one
or more features. This decision function is used to classify the signal into a particular
class by comparing the feature value with the threshold values of the decision function.
For classifying the signal into speech and background noise (varying level) features such
as signal energy levels, zero-crossing rate and periodicity may be employed.

From the VAD results by Tanyer et al. in [112], signal energy gives an overall Hit
Rate (HR) of less than 80% at 10 dB SNR and approximately 90% at 50 dB at SNR.
Zero-crossing rate of the signal results in a classification HR of approximately 70% at
10 dB SNR and approximately 85% at 50 dB SNR. Periodicity of the signal gives a
HR of approximately 90% and 96% at 10 and 50 dB respectively. Lie et al. [75] use
the logarithm of the kurtosis of the LP residual of the signal and low band to full band
energy ratio to detect speech and noise frames in presence of car and street noise. The
maximum HR for speech signal was 95.7% at 18 dB in the presence of street noise and
96.1% in the presence of car noise.

The main advantage of the user defined threshold approach is that the user has
more control over the VAD as the threshold value for the features is user defined.
The main disadvantage of this approach is the decision regarding the threshold value.
For small amount of data the threshold for different features can be found by visual
inspection but this data may not contain enough examples to generalize the decision
function for that particular scenario. For large amount of data obtaining the threshold
values may not be simple. Similarly using large number of features for classification
can be very tedious. For a small class set setting a threshold value for the features may
not be a difficult task as the feature set required may not be very large. But when the
class set is large then a larger feature set may be required to distinguish between the
signal classes. Getting threshold values for a larger class set with larger feature set can

be complicated.

75



Another approach for VAD is to employ the machine learning pattern classification
algorithms. Based on the approach adopted by the algorithms for pattern classification
the machine learning algorithms can be broadly divided into two groups namely the
unsupervised machine learning algorithms and the supervised machine learning algo-
rithms. Unsupervised machine learning algorithms take unlabeled data and arrive at
the possible number of class clusters contained in the data based on pre-defined pat-
tern set or cost function provided by the user [38, 17]. Clustering is an example of this
algorithm.

The supervised machine learning algorithms require training data to construct a
decision function that distinguishes between signals of different classes predefined by
the user. They train on the labeled data known as the training data. Based on the
feature values for different classes decision function is formulated to classify the signal
in the pre-defined classes. The user controls the classification process by providing the
training data that is crucial in creating the decision function.

The advantage of using the supervised machine learning algorithms is that they
can handle large feature sets. Another advantage is that a larger feature set can be
considered initially and the feature subset consisting of the most significant features for
classification can be finally utilized. The main disadvantage of these algorithms is that
to get a decision function for acceptable classification rate the training data provided
should be sufficiently large to train for each class and include as many scenarios as
possible from the environment for which the classifier is being trained. Another dis-
advantage is that some of these algorithms may be parametric. Parametric classifiers
assume the distribution of the data. Based on the feature values for different classes
decision function is formulated to classify the signal in the predefined classes. Dis-
criminant Analysis (DA), Artificial Neural Networks (ANN), Support Vector Machines
(SVM) and logistic regression are the well-known algorithms of the supervised machine

learning algorithm category.
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3.6 Classification Using Supervised Machine Learn-
ing Algorithms

This section involves the discussion regarding the decision rule for classification which
constitutes the second stage of the pattern classification using the supervised machine
learning algorithms. It gives a brief introduction to the concepts of the Gaussian distri-
bution and the Bayes decision theory that are a part of some of the supervised machine
learning algorithms used for pattern classification. This is followed by a description
of the supervised machine learning algorithms. The three supervised machine learning
algorithms described in this work are Discriminant Analysis (DA), the Artificial Neural
Network (ANN) and the Support Vector Machine (SVM). The performance of these
three supervised machine learning algorithms is evaluated for Voice Activity Detection

(VAD) in this thesis.

3.6.1 Multivariate Gaussian Distribution

Pattern Classifiers are either Parametric or Non-parametric. Parametric classifiers as-
sume knowledge of the distribution of the data and exploit this information to form
the decision rule for classification. The multivariate normal or Gaussian density is the
commonly used data distribution. Figure 3.5 shows a two dimensional Gaussian distri-
bution. It’s significance is due to analytical simplicity and also since it is appropriate
in situations where the feature vectors of a particular class are continuous-valued and
randomly corrupted forms of a standard vector [38, pg. 31].

The univariate normal or Gaussian density function of a input variable x is given

by:
y p(z) = 21m exp [—; <z - “)2] (3.25)

where 1 and 02 are the mean (expected value) and variance of the input z respectively.
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Fig. 3.5: Plot of 2-dimensional Gaussian Distribution.

The Gaussian distribution is described by its mean (i) and variance (02). It is denoted
by N(u,0?) [38, pg. 32].

i, the mean of the input z is:

Jii= / zp(x)dz (3.26)
and o, the variance of the input z is:
i / (x — p)?p(z)dz (3:27)
The multivariate Gaussian density function is given by:
() = —7—rem | Flx- WEx- ) (3.28)
p(X)=——F——exp|—(x—p X — ;
@mzzls L2

where x is [ element column vector, g is the [ element mean vector and ¥ is a [ x [
dimensional covariance matrix. |X| is the determinant of the covariance matrix and

¥ 1 is its inverse.
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The covariance matrix is given by:
2 = E[(x— p)(x — p)’] (3.29)

where E[.] is the expected value of signal.
Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA)

assume that the class has a multivariate Gaussian distribution.

3.6.2 Bayes Decision Theory

Existing pattern classification algorithms such as the DA use Bayes Decision Theory to
find the probability of the input data belonging to a particular class. This probability
is used to classify a signal into one of the pre-specified classes. Bayes Decision Theory
takes into consideration the a priori or prior probability P(c;) of an event in order to
obtain the posterior probability of an event. The a prior: probability is the information
that the user is aware of regarding a particular event taking place. For classification

purpose Bayes formula is given by:

- BXIEIP()

Plelx) = 6 (3.30)

In equation 3.30, x is a [ dimensional data vector. The term P(c;|x) is the posterior
probability that indicates the likelihood of occurrence of an event ¢; for a given input
vector x. p(x|c;) is the likelihood of the event conditional probability density function
for x conditioned on true event being ¢; and ¢ is the total number of events. The term
p(x) in the denominator is a scaling factor that ensures that the sum of the posterior
probabilities for all the possible events is unity [38, pg. 24]. The numerator in equation
3.30 is critical in the determination of the posterior probability of an event. In case
of the P(c;) being equal for all the events the decision is based on the term p(x|c;)
and vice versa. Bayes Decision Theory combines both the terms in order to obtain

minimum probability of error (38, pg. 23].
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The data of unlabeled data is assigned to the class ¢ by the following rule:
Plglx).> Ple;lx) forallistj (3.31)

The value of P(c;|x) is found by equation 3.30. The data is assigned to the class
that has the maximum posterior probability [90, pg. 71].

3.6.3 Supervised Machine Learning Algorithms

This section presents the theory of the Discriminant Analysis which are parametric
classifiers and the non-parametric classifiers like the cascade neural networks and the

Support Vector Machine (SVM).

Parametric Classifiers

In this section, a brief description of the parametric classifiers considered for classifi-
cation in this work is presented.

Discriminant Analysis: Discriminant Analysis classifiers are parametric classi-
fiers and assume that the signal class has a multivariate Gaussian distribution. Discrim-
inant analysis when used to predict the class of the given data is known as Predictive
Discriminant Analysis (PDA) and when used to find the class difference is known as
the Descriptive Discriminant Analysis (DDA) [54, pg. 28]. PDA algorithms are used
here for Voice Activity Detection (VAD). DA involves training the classifier by find-
ing a classification function. This classification function is found from an example
data set whose group membership is already known also called the training data. The
classification function in turn is used to classify data whose class is unknown based
on the classification rule. Quadratic Discriminant Analysis (QDA), Linear Discrimi-
nant Analysis (LDA) and Mahalanobis Distance (MD) are the important algorithms
belonging to the PDA category.

80




1. Quadratic Discriminant Analysis (QDA): QDA is quadratic in the unla-
beled data. Assuming that the classes have a multivariate normal distribution
with respect to the input data the likelihood of conditional probability density

function for x conditioned on true class being c¢; is given by:

p [ — ) B (x— py) (3.32)

p(x|e) = 5

— X
(2m)2|%|2

where i = 1,2,--- |k is the total number of pre-defined classes, p, is the expected
value of data vector for class ¢;, ¥; is a | x | covariance matrix, |X;| is the
determinant of the covariance matrix and X; ' is the inverse of the covariance

matrix.

The covariance matrix for it class is given by:
3= B [(x — p)(x — p)7] (3.33)

From the Bayes formula for posterior probability in equation 3.30, the likelihood
of occurrence of class ¢; for a given input x is given by:

i o

(3.34)

Substituting equation 3.33 in equation 3.34 and taking the logarithm, In(.) of the

resultant P(c;|x) the quadratic discriminant function is given by:

QF(x) =In P(e) — 3[(x — ) 57 (x — )] ~ gIn2n — 2 In|S|  (3.35)

The term —‘2—1 In 27 is a constant. When the a priori probability of all the classes
is equal, In P(¢;) is equal for all the classes. Thus neglecting both the terms

equation 3.35 can be rewritten as:

QF(x) = =3[0 — ) TE (x — )] - 5 [ (3.36)
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The unlabeled data is assigned to the group ¢; such that:

QF(x) > QF(x); for all i # j (3.37)
where 4,7 =1,2,--- ,k

. Linear Discriminant Analysis (LDA): LDA is a special case of the QDA
where the covariance matrix for all the classes is equal and a common pooled
covariance matrix is taken [81], [113, pg. 21-22]. LDA is a named so as it is

linear in the unlabeled data.

Consider the equation 3.35. When expanded the equation is written as:

1 1 1 1
QFi(x) = —ox S x + ox 7y — o By + Spi By 'x
2 2 2 2
I 1
+ lIl P(Cl‘) =t 51!127(— §ln|E,| (338)

When the covariance matrix of the classes are equal then in equation 3.38 the
first term which is the quadratic in the input data can be neglected as it is same
for all the classes. The constant terms —i1n27 — £1n|X;| can be neglected as
they are equal for the classes. Thus equation 3.38 can be rewritten to give the

linear discriminant analysis function:

LE(x) = pf5"'x — 2pl S + In P(c) (3.39)
The unlabeled data is assigned to the group ¢; such that:
LFi(x) > LFj(x); for all i # j (3.40)
wheres. 1 =1.2.+-- .k

. Mahalanobis Distance (MD): The MD algorithm is the simplest of the DA

algorithms. It measures the distance of the input data from the centroid of each
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class. It is a special case of the function provided in equation 3.35. When all the
classes have equal probability of occurrence (P(c;)) and all the classes have same

covariance matrix then equation 3.35 can be rewritten as:

1

QFi(x) = '—‘2‘[(3( i P'i)Tz—l(x — ;)] (3.41)

For non-diagonal covariance matrix maximizing QF;(x) of equation 3.41 is equiv-
alent to minimizing the norm of the covariance matrix [113, pg. 25]. This distance

measure is known as the Mahalanobis distance given by:

=

Di(x) = [(x - Nz’)Tz_l(x — ;)] (3.42)

For diagonal covariance matrix the equation 3.42 is reduced to the Euclidean

distance given by:

Di(x) = |Ix — pl| (3.43)

The unlabeled data is assigned to the class for which the D;(x) value is minimum

indicating that the data is closest to the centroid of that class [54, pg. 55-56].

LDA and QDA are among the most popular classifiers as they are suitable for
different applications. LDA and QDA are computationally demanding since for a large
number of features large numbers of unknown parameters have to be computed in high
dimensional feature space. Moreover, they need a large number of training data to

provide acceptable classification results [113, pg. 28].

Non-Parametric Classifiers

In this work a number of non-parametric classifiers are also considered as decision

engines. A brief outline of each of the schemes follows.
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1. Cascade Correlation Multilayer Artificial Neural Networks: Artificial
Neural Networks (ANN) attempt to act as simplified models of the human brain.
They are usually nonlinear and non-parametric machine learning classifiers. ANN
consists of an input layer, an output layer and layers between the input and output
layer known as the hidden layers. All the layers consist of processing elements.
A processing element maybe connected to other processing element and to itself.
The topology of the neural networks is defined by the interconnection between

the processing elements [90, pg. 101].

The output of each processing element is a weighted sum of the inputs into the
element and is dependent on the threshold function known as the activation
function being used by the neural network. The value of the weighted sum of
inputs is compared with the threshold function value and output is generated
accordingly [90, pg. 102]. The threshold function is known as the activation
function. Most commonly used activation function is the sigmoid function. The
output range of the sigmoid activation function is between 0 and 1. 0 represents
low input values to the processing element and 1 represents high value input to
the processing element [83]. Using the processing elements, ANN constructs the
discriminant functions for classification. The number of discriminant functions

and their shape is dependent on the topology of the ANN [90, pg. 101].

ANN learns from the training data that consists of the examples related to the
classification problem. During training, the training data is input and output
is computed. The output is compared to the desired response and the error is
obtained. The error value is then used to adjust the weights of the processing
elements using the training algorithms. For changing the weights, all the training
data is used and the process is repeated till the convergence criteria is satisfied.
Determining the shape/number of discriminant functions and the location of the

discriminant function in the pattern space are the two prominent issues encoun-
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tered in designing the ANN for classification with minimum error [90, pg. 101].

The cascade correlation also known as the cascade architecture is an iterative
construction algorithm that is employed to build an artificial neural network [96,
pg. 172]. Initially the input and output processing elements are connected di-
rectly without any hidden layers. The processing elements of the hidden layers

are later included in the network one at a time [96, pg. 172], [38, pg. 329].

The processing elements in the hidden layer have two type of weights associated
with them. The first type of weights connects the new processing element to
the input layer processing elements and also to the output of the previously
added processing elements in the hidden layer. The weights associated with
the connection between the previously added processing elements and the newly
added processing element is -1. This is done in order to stop the new hidden
processing element from learning function that have already been taken care of

by the previously added hidden processing elements [38, pg. 330].

The weights connecting the input of newly added processing element to the out-
put of the input layer processing elements are trained such that the correlation
between the newly added processing elements output and the residual error signal
at the networks output prior to the inclusion of the new processing element is
maximum. The value of these weights once computed is not changed [113, pg.

152).

The second type of weights connects the new processing elements to the output
layer processing elements. These weights undergo adaptive training and hence
are updated such that the sum of squares error cost function is minimized. The
training process is complete when a pre-specified network performance value is

obtained [113, pg. 152].

Cascade correlation architecture has a layered structure and does not perform

85



global optimization i.e. it does not update all the weights periodically. Updating
weights periodically results in smaller networks that have better generalization
ability compared to the cascade architecture but take more time to train [96, pg.
172-173]. Thus training cascade correlation neural network is faster since all the

weights are not updated at a given time [38, pg. 330].

The Next section provides a brief description of the third type of machine learn-
ing algorithm used in this thesis for performance comparison for Voice Activity

Detection (VAD).

. Support Vector Machine:

Support Vector Machine (SVM) is a non-parametric supervised machine learn-
ing algorithm that is used for pattern classification. It is a supervised machine
learning algorithm since it trains on data with labeled class and classifies the
unlabeled data based on the training. SVM uses training data to find an opti-
mal hyperplane that separates different classes of the training data. This is done
by transforming the data into higher dimension space. The dimension of the
transformed data space is greater than that of the original data. A non-linear
mapping function (¢(.)) is used to transform the training data to the higher di-
mension space such that the data of two classes can always be separated by an
optimal separating hyperplane [38, pg. 258]. The performance of SVM is not
affected by the dimension of the training data.

Consider the input training data represented by (x;) where ¢ = 1,2,3,---,m;
and m is the number of input training data examples. Using the nonlinear map-
ping function ¢(.), the input data is transformed to a higher dimension space.
The transformed data is represented by y;. Thus the relation between the input

data (x;) and transformed data (y;) is given by:
yi=o¢(x); =12 ,m (3.44)
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Fig. 3.6: Example of separable problem of SVM in a 2 dimensional space

The discriminating function obtained that separates the data classes into one of

the two classes is given by:
fly)=w"y (3.45)

where w = [wy, wy, -+ ,wy,| is the weight associated with each element in the
transformed vector y;. The class is also given a numerical value. In the two class

case let the values of the classes (z;) be £1.

The association of the transformed data and the class is given by:
For z=1," fig) > 1ond For ==}, JTlv) = 1 (3.46)
The separating hyperplane separates the two classes based on the following rule:
H Y=l Ca=12 0k 0m (3.47)

The distance between the separating hyperplane and the class boundary is called

the margin (b). The aim of the training algorithm is to find a separating hyper-
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plane that maximizes the value of the margin (b). The equation to be satisfied
is:

A S 5, (3.48)
where the aim is to find an optimal hyperplane by selecting the values of weight

vector (w) such that the value of the margin b is maximized.

The optimal separating hyperplane maximizes the distance between itself and the
class boundary of the training data of the classes that it separates (see figure 3.6).
The generalization ability of the SVM depends on the location of the separating
hyperplane. Thus if the optimal hyperplane is chosen as the separating hyper-
plane then the generalization ability of the classifier is maximized provided that
the unlabeled data follows the same probability rule as the training function and

also if the training data does not contain any outliers [15, pg. 16].

The solution obtained for equation 3.48 has several hyperplanes. A constraint
is applied on the solution of equation 3.48 where b ||[w|| = 1. This constraint
is applied so that the value of margin b is maximized while the value of weight
vector w is minimized. Thus finding the optimal hyperplane is a constrained
optimization problem solved by Lagrangian multiplier method (38, pg. 262]. The

constrained problem (L(a, a)) is represented as:
1 m
L(w,a) = §||w||2 Lt z:; o;lzwly; — 1] (3.49)

where «; is a multiplier bounded by «; > 0. Equation 3.49 is solved to obtain the
weight vector and the value of multiplier ;. The aim is to obtain weight vector
that minimizes the equation 3.49 and the value of multipliers that maximize the

equation.

The problem when reformulated gives rise to the optimization problem that max-
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imizes [38, pg. 264], [78]:

1 m
L(a) = Z X Z 005%:2Y] ¥ (3.50)

i=1 i,j=1

where the constraint on the equation 3.50 is:

m

Zziaizo and o R T R (301

i=1
All the training data is not used to obtain the position of the optimal hyperplane.
The data that is used to train the SVM in order to maximize the distance be-
tween the class boundary and the hyperplane are called support vectors. Support
vectors provide most of the information for classification purpose. The support
vectors determine the location of the hyperplane and their inclusion or exclusion
during the training influences the location of the hyperplane and the width of

the margin [34].

The decision function is given by:

flx) = sign <Z ziogyry + b) where 1€ S (3.52)

i
where S is the indices of the set of support vectors [15, 24].

If the optimal separating hyperplane is able to separate the training data without
any errors then the expected value of the probability of error while classifying
unlabeled data is bounded by the value that depends on support vectors only.
The bound on the probability of error (Pr(error)) [38, pg. 263] is given by:

E[D,]

E[Pr(error)] < =

(3.53)

where E[.] is the expectation operator, Dy, is the number of support vectors and

m is the number of training data.
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The generalization ability of the SVM will be better if the optimal hyperplane
is constructed with smaller number of support vectors compared to the size of
the training data [34]. Higher generalization ability leads to lower classification
error. Thus for the right choice of non-linear transformation function ¢(.), in the
presence of smaller number of support vectors the probability of error will be

smaller [38, pg. 263].

Kernel functions are applied on the data to transform them so that they are
linearly separable [52]. They employ scalar products of the mappings, ¢(.) in

feature spaces [78]. These functions are given by the relation:
K(xi,%;) = ¢(x:)".h(x;) (3.54)
The decision function is given by:

f(x) = sign (Z zogK(x,x;) + b) where i€ S (3.55)

where S is the indices of set of support vectors [15, 26].

Four basic kernels used in SVM are given below:

(a) Linear kernel: This kernel is used if the data can be classified linearly in the
input space. The data need not be mapped into higher dimensional space.

The linear kernel is given by:
Rl %) =% %y (3.56)
(b) Radial Basis Function (RBF): The Radial Basis Function kernel is given by:
K (xi,x;) = exp(—7|jx; —x°), v >0 (3.57)

where 7 is a parameter that controls the radius [15, 27].

90



(c) Polynomial kernel: The polynomial kernel is given by:
K(xi,%;) = (7xTx;+7)% v > 0 (3.58)

where d is the degree of the polynomial kernel.

(d) Sigmoid kernel: The sigmoid kernel is given by:
K (x;,%;) = tanh(yx; x;j +7) (3.59)

The two class classification problem can be extended to multi-class classification
problem. SVM can be trained as “one against all”, “one against one” or “directed
acyclic graph” to obtain the decision functions. The decision functions provide

the probability of the unlabeled data belonging to a particular class.

In the case of “one against all”, the number of SVM models constructed is equal
to the number of classes in the classification problem. The training data is divided
into two groups for each SVM model. The class for which the decision function
is being obtained is treated as one of the classes whereas the rest of the classes
in the classification problem are grouped together to form the second class. The
decision function for each class provides the probability of the unlabeled data
belonging to the respective class. The unlabeled data is assigned to the class for

which the probability of the data belonging to that class is maximum [53].

For the “one against one” case the number of SVM’s constructed is @ where
k is the number of classes in the classification problem. The SVM’s are trained by
taking a pair of classes and ignoring the rest of the classes. The SVM’s are trained
for all the combinations of the classes taking two different classes at a time. In
this case a voting scheme is used to assign the unlabeled data to a particular
class. Every constructed SVM model indicates the class that the data might
belong to compared to the other class. The vote of the class to which the SVM

model indicates the unlabeled data belongs to is incremented. The accumulated
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votes for all the classes is compared and the unlabeled data is assigned to the

class with maximum votes [53].

In the Directed Acyclic Graphs (DAG) approach the SVM’s are constructed sim-
ilar to the “one against one” method. They differ in the class assignment proce-
dure for the unlabeled data. The DAG method uses a directed acyclic graph for
class assignment. The probability of the signal belonging to one of the first two
classes is compared and the class that has smaller probability is eliminated as a
prospective class of the unlabeled data. The process of eliminating the classes
continues till only two classes are remaining. The probability of the unlabeled
data belonging to one of the two classes is compared. The unlabeled data is

assigned the class with higher probability of the data belonging to that class [53].

3.7 Summary

This chapter discussed different aspects of designing a Voice Activity Detection (VAD)
system using a machine learning algorithm. The speech signal characteristics were dis-
cussed. The characteristics of speech are useful in identifying the features that can be
employed in the design of the voice activity detection (VAD) system. The features used
in different VAD algorithms were discussed next. Feature selection and the choice of
the classifier are the two problems encountered while designing a VAD system. Feature
selection deals with the selection of a feature subset from the feature set in a convenient
but reasonable manner in order to improve the classifiers performance. Identifying the
classification algorithm involves deciding on the classification algorithm that performs
the best for the VAD with the selected features. Finally a description of the supervised
machine learning algorithms such as the Discriminant Analysis (DA), the cascade cor-
relation Artificial Neural Network (ANN) and the Support Vector Machine (SVM) was

provided.
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Chapter 4

DOA Studies

The primary contribution of this thesis is the modified YIN based TDE and the
Weighted YIN based TDE algorithms, a YIN [36] based approach, for TDE. Stud-
ies comparing the performance of the modified YIN based TDE algorithm and the
unbiased cross-correlation algorithm are presented in [105]. This chapter presents the
simulation results to evaluate the performance of the modified YIN based TDE and the
Weighted YIN based Time Delay Estimation (TDE) algorithms relative to the WCC,
MAMDF and GCC-PHAT TDE algorithms. The chapter starts with a description of
the modified YIN based TDE and the Weighted YIN based TDE algorithms. This
is followed by a section on the metrics used to evaluate the performance of the TDE
algorithms through simulations and the simulation setup section. The simulation re-
sults are presented in the next section. The chapter concludes with an observation and

conclusion section.

4.1 YIN for TDE

For the TDE using the YIN algorithm [36] (discussed in section 2.12) only the dif-

ference function, cumulative mean normalized difference function and the parabolic
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interpolation steps are employed. The signal x(n) and its shifted version z(n + 7) in
the equation 2.59 are replaced by the signals received by a pair of microphones z;(n)
and z9(n) for TDE. The difference between the signals is squared and summed to give
the difference function for different time delays. The time delay (7) value associated
with the lowest difference function value is taken as the estimated time delay.

The difference function of the YIN algorithm is written as:

N

d(r) = (z1(n) — z2(n +7))° (4.1)

=0

—

S

The equation when expanded gives:

N-1 N-1 N-1
ri(n) + Z z3(n+71) — 2 Z z1(n)ze(n + 7) (4.2)
n=0 n=0 n=0

The first two terms in the equation represent the energy of the two signals and the
third term is equal to the cross-correlation of the two signals. This algorithm does
not give the minima at the same 7 value at which the cross-correlation function gives
the maxima. This is due to different values of the energy of the second signal for
different time shifts. This algorithm may however suffer from the same problem that is
encountered in the cross-correlation i.e. it may be biased to certain 7 values due to the
presence of the sum of the squares of more sample difference terms compared to other 7
values. To overcome this problem the function is normalized such that the normalized
difference function term associated with the actual delay has the least value [36].

In this step, for a particular 7 value, the difference function at each time delay is
divided by the normalization function. Normalization function is equal to the mean
of the difference function associated with delay values starting from zero delay to the
current delay. Since the YIN algorithm is originally meant to find the fundamental
frequency, the zero delay 7 term has been avoided by starting the normalization at first
delay. To make the algorithm applicable to the TDE, the normalization starts with the

zero delay instead of first delay value. For the YIN algorithm, the function obtained by
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dividing the difference function values for different time delays by the corresponding
normalization function is called the Cumulative Mean Normalized Difference Function
(CMNDF).

The Cumulative Mean Normalized Difference Function (CMNDF) for the modified
YIN based TDE algorithm represented by Ry pris is given by:

1 (=)
Rypria(T) = ﬁm (for 7> 0) (4.3)

d(r)
) (for 7= 0}

T

The delay 7 value associated with the lowest Ry ppi2 function value is taken as the
estimated delay. The main difference between the cross-correlation algorithm and the
modified YIN based TDE algorithm is that the former is highly sensitive to amplitude
changes whereas the latter is not as it takes into account the amplitude changes in
terms of the energy changes associated with different time shifts [36].

Absolute threshold is used in the YIN algorithm for period calculation to prevent
getting higher period values instead of the actual period as they may have the minimum
value of the CMNDF'. This stage is useful in the period calculation as theoretically no
upper limit has been set on the search range of the period. In practice the period range
is limited by the frame size used during implementation. In the case of TDE, the upper
limit of the time delay is dependent on the formula used to find the direction of arrival
using the time delay value as discussed in section 2.2. Since the time delay limit is very
small compared to the signal frame size used this step is not included in the modified
YIN based TDE algorithm.

Finally second-order Lagrange interpolation also known as the parabolic interpo-
lation can be included to improve the resolution of the estimated time delay. The
parabolic interpolation for modified YIN based TDE algorithm is similar to the one
used in [32] and is presented in section 2.5. For the purpose of fractional TDE, the

values of x,, o, 3 in equation 2.21 of section 2.5 are replaced by the values of 7 — 1,
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7 and T + 1 respectively where 7 is the estimated time delay. Similarly f(x;), f(x2),
f(x3) are replaced by the values of Ry ppi2(7 — 1), Rypri12(7) and Ry ppi2(T + 1) re-
spectively. Between 7 — 1, 7 four points are interpolated and between 7, 7 + 1 four
points are interpolated. Finally the time delay corresponding to the minimum value of

Ry pr12 for all the delays between 7 — 1 and 7 + 1 is taken as the estimated time delay.

4.2 Weighted YIN

Another algorithm proposed is the Weighted YIN based TDE algorithm. It is inspired
by the Weighted Cross Correlation (WCC) algorithm proposed by [32] given by the
equation 2.56 of section 2.10.3. For TDE the Weighted YIN based TDE algorithm
combines the GCC-PHAT algorithm and the modified YIN based TDE algorithms.
The Weighted YIN based TDE algorithm is given by:

- Riee(T)
Ry pr12(T) + €

Rwypr(T) (4.4)

where 7 = 0,£1,£2,---; Rgece(T) is given by equations 2.41 and 2.44. Ry pp12(7) is
given by the equation 4.3 respectively. A small positive value € is added to prevent
division overflow. The 7 value that corresponds to the maximum value of the Ryypr
function is taken as the estimated time delay. Similar to the modified YIN based TDE
algorithm the resolution of the DOA estimate can be improved by applying parabolic

interpolation on the estimated time delay to obtain the fractional sample delays.

4.3 Performance Evaluators for Time Delay
Estimator

The accuracy of the algorithm is used to compare the performance of the algorithms for

TDE [101]. The total number of delay estimates at each time delay by each algorithm
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is presented in the form of histograms or bar plot for different signal to noise ratio
(SNR). A good TDE is expected to have higher estimated delays at the expected time
delays.

The expected value of the estimated time delay for an unbiased estimator is equal to
the true value. In practice estimators may not be unbiased. Even though an unbiased
estimator does not imply that the estimator is good still a biased estimator is not
preferable [91]. The performance of the estimators is commonly compared by the
Mean Squared Error (MSE) [91, 32].

The bias of the estimator is given by the equation:
Bias=E[f] — T (4.5)

E[] is the expectation operator, 7 is the estimated delay and (7) is the actual or
expected delay value.
Mean Squared Error (MSE) is equal to the square of the difference between the

estimated value (7) and the expected value 7 of the parameter. It is given by:
MSE = E[(? — 7)% (4.6)

MSE provides an estimate of the average variance of the error around the expected
delay value. A good TDE algorithm has a smaller MSE value. The comparison of the
performance of the TDE algorithms is presented as bar plots providing the accuracy

of the algorithms and the MSE plots.

4.4 Simulation Setup

The impulse response of the room for the simulations to compare the performance of
the Generalized Cross-Correlation Phase Transform, modified YIN based TDE algo-
rithm, Weighted YIN based TDE algorithm, Modified Average Magnitude Difference

Function and Weighted Cross-Correlator time delay estimator was generated by the
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Fig. 4.1: Source locations for simulations.

EASE software [5]. The dimensions of the room are 6m x 3.5m x 2.5m and the re-
verberation time (R760 introduced in section 2.6) is 0.5 s. The dimensions and the
reverberation time of the room are approximately equal to that of the classroom for
which the experimental results are presented in chapter 6.

A Uniform Linear Array (ULA) consisting of 4 microphones with the adjacent mi-
crophones spaced 3.4 cm apart was placed (considering the plan view of figure 4.1) in
the center of the room horizontally and a meter vertically from the wall. The source lo-
cations are shown in figure 4.1. The signal source locations were: 49°,64°,110°,113.3°.
The signal source and the microphone array were on the same plane. The impulse re-
sponse generated by the EASE software [5] was convolved with the clean speech signal
from the TIMIT database [6] to obtain the source signal. The four source locations
consisted of two female source locations corresponding to 49° and 110° and two male
source locations corresponding to 64° and 113.3°.

The white Gaussian noise generated in the Cool Edit Pro 2.0 package [7] was used
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d (cm) | Delays in terms of signal samples and corresponding angles
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Table 4.1: Delay values in signal sample number and their corresponding source angles
for different separation between microphone pair (d) at sampling frequency = 16kHz

as the background noise. The sampling rate of the source and the noise signal was 16
kHz. The velocity of sound was taken as 342 m/s. The Signal to Noise Ratio (SNR) is
introduced in section 2.6. The signal power in equation 2.22 is the power of the source
signal and the noise power corresponds to the power of the noise signal generated in
Cool Edit Pro 2.0. The SNR values used in the simulations are 10, 15 and 20 dB.
These values were chosen taking into consideration the minimum required SNR value
in a classroom as mentioned in section 1.1. Signal frames of 20 ms were taken for the
simulations with no overlap between the adjacent frames.

The performance of the Phase Transform Generalized Cross-Correlator (GCC-
PHAT), modified YIN based TDE, Weighted YIN based TDE, Modified Average
Magnitude Difference Function (MAMDF) and Weighted Cross-Correlator (WCC) was
compared using the accuracy of the time delay estimates and the mean squared error
(MSE) plot. The accuracy of the algorithms is displayed in the bar plots for each TDE
algorithm for different SNR values. The MSE plot for the algorithms is also provided.
The x-axis of the MSE plot corresponds to the SNR value and the y-axis corresponds
to the MSE.
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4.5 Simulation Results

This section presents the simulation results comparing the performance of the Gen-
eralized Cross-Correlation Phase Transform (GCC-PHAT), modified YIN based TDE
(YDF), Weighted YIN based TDE (WYDF), Modified Average Magnitude Difference
Function (MAMDF') and Weighted Cross-Correlator (WCC). The GCC-PHAT algo-
rithm is labeled as the GCC in the plots.

Using equation 2.14 the possible angles for microphone separation of 3.4 cm are 129°,
90° and 51° corresponding to the delays -1, 0 and 1. A negative delay indicates that
the second microphone in the microphone pair receives the signal before the reference
microphone. A positive delay indicates that the reference microphone receives the
signal before the second microphone in the microphone pair. Zero delay indicates that
both the microphones in the microphone pair receive the signal simultaneously.

Figure 4.2(a), 4.2(b), 4.2(c) presents the bar plot for time delay estimates at 10,
15, 20 dB respectively for female speech source at an angle 110° when the separation
between the microphones (d) in the ULA is 3.4 ecm. The expected delay is between
-1 and 0. The delay is taken as -1. The accuracy of the modified YIN based TDE
algorithm (YDF) is the best for all the SNR values followed by the MAMDF algorithm.
The accuracy of both the algorithms improves with the increase in SNR. The GCC-
PHAT, WCC and WYDF algorithms performance degrades with the increase in SNR.
The MSE plot in figure 4.2(d) shows that the MSE of the modified YIN based TDE
algorithm and the MAMDF algorithm is the lower than other algorithms considered
in this work.

When the separation between the microphones (d) is increased to 6.8 cm, the valid
angles from the table 4.1 are 161°, 129°, 108.4°, 90°, 71.6°, 51° and 19° corresponding to
the delays -3, -2, -1, 0, 1, 2 and 3 respectively. The expected delay for the female source
is between -1 and 0. Since 110° is closer to 108.4°, the expected delay value is taken as

-1. From the bar plots of figure 4.3(a), 4.3(b), 4.3(c) peak of all the algorithms is at -1
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Fig. 4.2: Plot for female speaker with microphone separation (d) = 3.4 cm
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Fig. 4.3: Plot for female speaker with microphone separation (d) = 6.8 cm

delay. At the -1 delay, the modified YIN based TDE (YDF) algorithm has the highest
accuracy followed by the MAMDF. WCC and Weighted YIN based TDE (WYDF)
algorithm have similar performance and GCC-PHAT has the lowest accuracy. From
the MSE plot in figure 4.3(d), the WCC, Weighted YIN based TDE algorithm and
GCC-PHAT have the lowest MSE and the modified YIN based TDE algorithm has the
maximum MSE.

From the table 4.1, at d = 10.2 cm the expected time delay for the female source
is between -1 and -2. The delay is closer to -2 hence the expected delay is taken as -2.

Figures 4.4(a), 4.4(b), 4.4(c) present the accuracy of the algorithms at 10, 15 and 20 dB
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Fig. 4.4: Plot for female speaker with microphone separation (d) = 10.2 cm

respectively. At 10 dB SNR, MAMDF has the highest accurate delay estimates. As the
SNR increases modified YIN based TDE (YDF) algorithm, Weighted YIN based TDE
(WYDF) algorithm and WCC perform equally well to MAMDF. The GCC-PHAT
algorithm has the lowest accuracy. The MSE plot for different SNR is presented in
figure 4.4(d). The GCC-PHAT algorithm has the highest MSE whereas the MAMDF
algorithm has the lowest MSE. The MSE of the modified YIN based TDE algorithm
decreases with the increase in SNR and has the lowest MSE after MAMDEF at 20 dB.

Figure 4.5 shows the accuracy and MSE plots for second female source position at

49°. Figures 4.5(a), 4.5(b), 4.5(c) are the bar plots at 10, 15 and 20 dB respectively
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Fig. 4.5: Plot for female speaker with microphone separation (d) = 3.4 cm
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Fig. 4.6: Plot for female speaker with microphone separation (d) = 6.8 cm

for d = 3.4 cm. From table 4.1, the expected delay is 1. Modified YIN based TDE
algorithm (YDF) has the highest accuracy at all the SNR with MAMDF having the
second highest accuracy. GCC-PHAT algorithm has the lowest accuracy. From the
MSE plot of figure 4.5(d), Weighted YIN based TDE (WYDF) algorithm and WCC
have the lowest MSE. All the other algorithms have similar MSE values. All the
algorithms except GCC-PHAT have similar MSE value at 20 dB.

For d = 6.8 cm, the accuracy and MSE plots are presented in figure 4.6. From ta-
ble 4.1 the expected delay at this position is 2. The bar plots in figure 4.6(a), 4.6(b), 4.6(c)
for 10, 15 and 20 dB respectively show that modified YIN based TDE (YDF) algorithm
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Fig. 4.7: Plot for female speaker with microphone separation (d) = 10.2 cm

has the highest accuracy followed by the MAMDEF algorithm. At high SNR, Weighted
YIN based TDE (WYDF) algorithm performs better than WCC. GCC-PHAT has the
lowest accuracy. The MSE is lowest for MAMDF followed by the modified YIN based
TDE. At 15 dB SNR both the algorithms have approximately equal MSE value. GCC-
PHAT algorithm has the highest MSE at all SNR. The WCC and Weighted YIN based
TDE algorithm have similar MSE values.

The accuracy and MSE plots for d = 10.2 cm are presented in figure 4.7. From ta-
ble 4.1 the expected delay at this position is 3. The bar plots in figure 4.7(a), 4.7(b), 4.7(c)
for 10, 15 and 20 dB respectively show that the modified YIN based TDE (YDF) al-
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Fig. 4.8: Plot for male speaker with microphone separation (d) = 3.4 ecm

gorithm has the highest accuracy at 10 dB but at 15 and 20 dB the WCC and the
Weighted YIN based TDE (WYDF) algorithm respectively have highest accuracy com-
pared to the other algorithms. GCC-PHAT has the lowest accuracy. The MSE is lowest
for the Weighted YIN based TDE algorithm and WCC. Modified YIN based TDE al-
gorithm has the highest MSE that decreases with the increase in SNR.

For d = 3.4 cm, the accuracy and MSE plots for male source at 113.3° are presented
in figure 4.8. The expected delay at this position is between -1 and 0. Since the angle
is closer to 129° compared to 90° in value, the expected delay is taken as -1. The

bar plots in figure 4.8(a), 4.8(b), 4.8(c) for 10, 15 and 20 dB respectively show that
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Fig. 4.9: Plot for male speaker with microphone separation (d) = 6.8 cm

modified YIN based TDE (YDF) algorithm has the highest accuracy closely followed by
the MAMDF algorithm. At high SNR, Weighted YIN based TDE (WYDF) algorithm
performs slightly better than the WCC. GCC-PHAT has the lowest accuracy. From
the MSE plot in figure 4.8(d) Weighted YIN based TDE algorithm and the WCC have
the lowest MSE whereas the modified YIN based TDE algorithm has the highest MSE.
The MSE of all the algorithms decreases with the increase in SNR.

For d = 6.8 cm, the accuracy and MSE plots are presented in figure 4.9. The
expected delay at this position is between -2 and -1. Since the difference between the

angle and 108.4° is smaller than the difference between the angle and 129° the expected
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Fig. 4.10: Plot for male speaker with microphone separation (d) = 10.2 cm

delay is taken as -1. The bar plots in figure 4.9(a), 4.9(b), 4.9(c) for 10, 15 and 20
dB respectively show that the modified YIN based TDE (YDF) algorithm has the
highest accuracy followed by the MAMDF algorithm. At all the SNR values, Weighted
YIN based TDE (WYDF) algorithm performs better than WCC. GCC-PHAT has the
lowest accuracy. From figure 4.9(d), the MSE is lowest for the GCC-PHAT, the WCC
and the Weighted YIN based TDE algorithm. It is highest for the modified YIN based
TDE algorithm. The MSE for all the algorithms decreases with an increase in the SNR
value.

The accuracy and MSE plots are for d = 10.2 cm are presented in figure 4.10.
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Fig. 4.11: Plot for male speaker with microphone separation (d) = 3.4 cm

The expected delay at this position is taken -2 since 113.3° is closer in value to 115°
compared to 102°. The bar plots in figure 4.10(a), 4.10(b), 4.10(c) for 10, 15 and 20
dB respectively show that MAMDF algorithm has the highest accuracy at 10, 15 and
20 dB. The performance of the Weighted YIN based TDE (WYDF) algorithm and
the WCC is similar and next to the MAMDF algorithm. GCC-PHAT has the lowest
accuracy. The MSE is lowest for the Weighted YIN based TDE algorithm and WCC.
The modified YIN based TDE (YDF) algorithm has the highest MSE. The MSE for
all the algorithms tends to decreases with an increase in the SNR.

For d = 3.4 cm, the accuracy and MSE plots for male source at 64° are presented
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Fig. 4.12: Plot for male speaker with microphone separation (d) = 6.8 cm

in figure 4.11. The expected delay at this position is taken as 1. The bar plots in
figure 4.11(a), 4.11(b), 4.11(c) for 10, 15 and 20 dB respectively show that the modified
YIN based TDE (YDF) algorithm has the highest accuracy followed by the MAMDF
algorithm. The Weighted YIN based TDE (WYDF) algorithm and the WCC algorithm
have similar performance. GCC-PHAT has the lowest accuracy. From the MSE plot in
figure 4.11(d) MAMDF has the lowest MSE followed by the modified YIN based TDE
algorithm. The Weighted YIN based TDE algorithm, the WCC and the GCC-PHAT
have the highest MSE. The MSE of all the algorithms decreases when the SNR value

increases.
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For d = 6.8 cm, the accuracy and MSE plots are presented in figure 4.12. The
expected delay at this position is between 1 and 2. The angle being closest to the
angle for delay = 1, the expected delay value is taken as 1. The bar plots in fig-
ure 4.12(a), 4.12(b), 4.12(c) show the accuracy of the algorithms for SNR of 10, 15 and
20 dB respectively. The modified YIN based TDE (YDF) algorithm has the highest
accuracy at all the SNR values. At 10 dB, the Weighted YIN based TDE (WYDF)
algorithm and the MAMDF algorithms have the second highest accuracy whereas the
GCC-PHAT and the WCC have the lowest accuracy. At 15 and 20 dB SNR, the
Weighted YIN based TDE algorithm has the second highest accuracy and the GCC-
PHAT has the lowest accuracy at this SNR. From figure 4.12(d) the MSE is highest for
MAMDEF. The GCC-PHAT, the WCC, the Weighted YIN based TDE algorithm have
low MSE values. The MSE of all the algorithms decreases as the SNR value increases.

From the table 4.1, at d = 10.2 cm the expected time delay for the male source is 2.
Figures 4.13(a), 4.13(b), 4.13(c) present the accuracy of the algorithms at 10, 15 and
20 dB respectively. The Weighted YIN based TDE (WYDF) algorithm has the highest
accuracy at all the SNR values. At 10 dB SNR, the modified YIN based TDE (YDF)
algorithm has the second highest accuracy. At 15 dB SNR the WCC has the second
highest accuracy and at 20 dB SNR both the WCC and the modified YIN based TDE
algorithms have the second highest accuracy. GCC-PHAT has the lowest accuracy at
all the SNR values. The MSE plot for different SNR is presented in figure 4.13(d).
The MAMDF algorithm has the lowest MSE. The MSE of all the algorithms decreases

with an increase in the SNR value.

4.6 Observations and Conclusion

The number of valid delays is dependent on the separation between the microphones (d)

(see equation 2.14 of section 2.2 and table 4.1). The number of valid delays increases
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Fig. 4.13: Plot for male speaker with microphone separation (d) = 10.2 cm
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with the increase in the separation between the microphones in the microphone pair.
More number of delays improves the resolution of the angle estimates as the differ-
ence between the possible angle estimates is reduced. As mentioned in section 2.10.2,
adjacent samples of speech signal are highly correlated. This strong correlation leads
to incorrect delay estimation which will results in the decrease in the accuracy of the
estimate and increase the MSE.

From the results presented in section 4.5 it is observed that an increase in the
distance between the microphone pair (d) results in a decrease in the accuracy of the
algorithms. The MSE of the algorithms for TDE increases with the decrease in the
SNR. This is due to the presence of more noise in the signal which results in incorrect
time delay estimates. Similarly increase in the SNR decreases the MSE value of the
algorithms.

Among the three values of the separation between the microphones (d) (3.4 cm,
6.8 cm and 10.2 cm) considered in this work, 6.8 cm is a good compromise in terms
of accuracy and angle resolution. This is based on the consideration that the TDE
accuracy of the algorithms at this value is greater than that at 10.2 ecm but lower than
that at 3.4 cm. It also provides four more angles to improve the resolution in angles
compared to the distance value of 3.4 cm and two angles less than the distance value
of 10.2 cm.

From the simulation results when the inclination of the algorithms in the incorrect
time delay estimates is compared the GCC-PHAT, the WCC and the Weighted YIN
based TDE (WYDF) algorithm are biased towards the zero delay corresponding to an
angle of 90°. These algorithms tend to have a large number of delay estimates at this
value. The modified YIN based TDE (YDF) algorithm and the MAMDF algorithms
tend to have large number of incorrect time delay estimates at the extreme delay values.

From the simulation results in section 4.5 the GCC-PHAT, the WCC and the
Weighted YIN based TDE algorithms have small MSE. This is due to their bias towards
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the zero delay. The WCC and the Weighted YIN based TDE algorithms are better than
the GCC-PHAT algorithm but not as good as the modified YIN based TDE algorithm
and the MAMDF in terms of the accuracy. The modified YIN based TDE algorithm
and the MAMDF emerge as strong contenders for the DOA estimation using TDE. In
terms of the MSE, the MAMDF algorithm is slightly better than the modified YIN
based TDE algorithm as it has lower MSE but in terms of the accuracy the modified
YIN based algorithm is better than the MAMDF algorithm.
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Chapter 5

VAD Feature Selection Studies

The secondary contribution of this thesis is a Voice Activity Detection (VAD) system
that classifies the signal into four classes for source localization and post-processing
e-learning. As described in section 3.4, identifying the features for classification and
applying feature selection on these features to obtain the best feature subset is first of
the two steps in designing a voice activity detection (VAD) system. The first section
of this chapter introduces a Teager Energy Operator (TEO) based feature called the
Mel-Spectrum Teager Energy (MSTE) coefficients for classification. The next section
describes the simulation setup that was used to generate the data for feature selec-
tion using features described in chapter 3. This is followed by a section presenting
the results for supervised machine learning algorithm selection comparing the perfor-
mance of Discriminant Analysis (DA), Cascade Artificial Neural Network (ANN) and
Support Vector Machine (SVM) classifiers for VAD. Feature selection results for the
feature subset consisting of the proposed feature and other features from chapter 3 that
enhance the classification performance is presented next. This is followed by a section
presenting the simulation results for classification comparing the performance of the
selected classification algorithms using the selected feature set. In the end observations

and conclusion of the chapter is presented.
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5.1 Mel-Spectrum Teager Energy Coefficients

Teager Energy based features are used in signal processing applications such as speech
recognition [123, 56, 124] and noise suppression [122]. Teager energy gives a measure
of the energy required to produce a signal [63]. Teager’s Energy Operator (TEO) for a
signal is non-linear and was introduced by Kaiser [63]. It is based on the fundamentals
of simple harmonic motion where the energy required to produce sinusoidal oscillations
is proportional to the square of the product of the amplitude and frequency of the signal.

TEO of the signal is given by:

Vlz(t)] = [2(t)])* — (1) @(t) (5.1)

: : N . o delh . .
where z(t) is the input signal, () is id(t—) and Z(t) is

d?x(t)
dt?

For the discrete signal, z(n), TEO (¥,4[z(n)])is given by:
Yy[z(n)] £ z(n)? —z(n—1) z(n +1) (5.2)

where z(n) is the input signal. TEO represents the local property of the signal
as for each point the computed TEO involves only three signal samples which are the
signal sample and its adjacent samples.

For oscillating input signal z(n) = Acos(Qn + ¢)), the TEO is given by:
Wy[z(n)] £ Asin®() (5.3)

where A is the amplitude of the signal, ¢ is the initial phase in radians and 2 is
the digital frequency of the signal in radians/sample [63]. €2 is related to the sampling
frequency fs and the signal frequency f by Q2 = 2—}:[ The relation ¥[z(n)] = A2sin?(Q)
holds only if 2 < 7. 7 is equivalent to %.

The Mel-Spectrum Teager Energy (MSTE) coefficients used in this work involves
finding the average TEO of the signal spectral sub-bands. The signal spectrum sub-

bands are the ones used in computing the MFCC introduced in section 3.3. Coefficients
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similar to MSTE have been introduced by Firas et al. [56, 57] as an intermediate stage
for computing the TEOCEP coefficients and have been named as sub-signal average
Teager energy. The difference between the sub-signal average Teager energy and MSTE
coefficients is that the sub-bands for both the coefficients and the approach adopted
to compute the coefficients is different. The sub-bands used to compute the TEOCEP
coefficients are the ones proposed by Erzin et al. [41]. Bandpass filters are used to
obtain the sub-band and compute the sub-signal average Teager energy in the time
domain. All the sub-signal average Teager energy is then log compressed and inverse
Discrete Cosine Transformed (DCT) to obtain the TEOCEP coefficients.

The Mel-Spectrum Teager Energy coefficients for VAD are computed by a simpler
approach as introduced in the paper by Kavanagh et al. [65]. Firstly, the signal spec-
trum (X (k)) is obtained by the Short Term Fourier Transform(STFT) of the signal.
The TEO of the spectrum is computed on the magnitude (amplitude) spectrum of the
signal using the relation between the TEO, amplitude and signal frequency in equa-
tion 5.3 resulting in the non-linear energy spectrum of the signal. The non-linear energy
spectrum of the signal is divided into sub-bands based on the mel-scale. The center
frequencies of the critical bands for MFCC presented in table 3.1 form the limiting
frequencies of each sub-band. The average energy of each sub-band is the computed
to obtain the MSTE coefficient for each sub-band. The MSTE coefficient for each
sub-band is given by:

P(a)
1
Vet () = 3 > (k) (5.4)
’C:l(a)
where a are the number of mel sub-bands and a = 1,2,---,20. l(,) and p(,) are the

lower and upper limit of o mel sub-band respectively. 3 is the difference between the
upper and lower limit of @ mel sub-band. For a signal frame, twenty MSTE coefficients
are computed.

Another variation in using the MSTE coefficients for VAD is that the coefficients

are computed on the LP residual of the signal instead of computing on the actual
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signal. LP residual is discussed in section 3.3.

5.2 Setup

The VAD system aims to distinguish between four type of signals. They are the voiced
speech, unvoiced speech, non-stationary noise and the stationary noise. The voiced
speech and the unvoiced speech sample signals were obtained from the TIMIT [6]
database. Speech signals were labeled as voiced speech and unvoiced speech from the
table available in [64]. The stationary (background) noise was the white Gaussian noise
generated from the Cool Edit Pro 2.0 software [7]. The stationary noise is included
to represent signals such as computer fan noise and air conditioner noise. The non-
stationary noise signals were recorded in a classroom. These signals included human
produced sounds like coughs, sneezes, clearing of throat and non-human produced
sounds generated by coins, keys, shutting of doors, plastic bags, books falling and
paper shuffie.

Two data sets consisting of the features for all the four classes were generated
for simulations. The data set used to train the classification algorithms is called the
training data and the data set used to evaluate the performance of the classification
algorithms is called the testing data. The data included in the training data and the
testing data were different. The signals used in this work were sampled at 16 kHz.

Features were calculated on 20ms long signal frames with no overlap. Feature selec-
tion was performed by Linear Discriminant Analysis (LDA) in the SPSS software [8].
Both forward and backward selection methods were employed to find the best feature
subset. The features of different signal classes were generated in MATLAB [9]. For DA
classifier, the DA implementation in the statistical toolbox [10] of MATLAB was used.
The libsvm [11] was used for the SVM classifier. The FANN [12] library was used

for the neural network classifier. The ANN was created using the cascade-classifier

119




supervised training algorithm [43] which determines the size and the topology of the
ANN itself.

The parameters used to evaluate the performance of the classifiers for VAD are the
Hit rate (HR) and False Alarm Rate (FAR) for each class and the overall Hit Rate for
VAD. The HR and the FAR are introduced in section 3.4.1.

5.3 Supervised Machine Learning Algorithm Selec-
tion for VAD

This section describes the process that was employed to select the supervised machine
learning algorithms for VAD in this work. Initially VAD simulations study was per-
formed on the supervised machine learning algorithms discussed in section 3.6.3 with
a few signal features to compare their performance for classifying the signal into four
classes. The study provides an indication of the performance of the algorithms for VAD
in this work. Different feature set (consisting of additional features and some of the fea-
tures from the studies in this section) was employed to compare the performance of the
selected supervised machine algorithms for VAD in section 5.4. Discriminant Analysis
(Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), Ma-
halanobis Distance (MD)), cascade Artificial Neural Networks (ANN), radial Support
Vector Machine (SVM), linear SVM, polynomial SVM and sigmoid SVM supervised
machine learning algorithms were considered for VAD.

The signal features considered were the short term signal energy, zero-crossing rate,
second and third LP predictor coefficients, absolute value of the difference between the
first two PARCOR coefficients, low to high frequency band energy ratio, LP residual
energy, skewness, kurtosis, pitch, first three formants and spectral slope. The pitch
and the first three formants were computed using the MATLAB code available in the
speech processing toolbox COLEA [13].

120



Non-

Voiced Unvoiced | Stationary | Stationary
Speech Speech Noise Noise
HR | FAR | HR | FAR | HR | FAR | HR | FAR
QDA 20400 129 1 82.8 | 8.1 1| 721 |'13.9'| 42.8 |\ 3.7
LDA 89.4| 74 | 819 | 81 |626| 48 |945| 6
MD BR.6 |24 | 90 {4 13.7 | 69.1 | 15.7 | O.1 | 64
ANN 1.1 |"16.7 | 89.7 | 265 | 0O 0D {9871 83

Radial SVM 89 2.2 1834 7.2 7 | 108 1706 )| 2.4
Linear SVM 89 48 | 82.5 7 3196 135,812 1
Polynomial SVM | 88.1 | 5.7 | 83 79 | 748 | 14 |[56.1 | 2.6
Sigmoid SVM. | 349 | 3.5 |57.3| 73 [168] 5 1999 /| 52.2

Table 5.1: The Hit Rate (HR) and False Alarm Rate (FAR) for classifying the test
data into four classes.

VAD experiments were performed on audio signal consisting of four types of signals
namely voiced speech, unvoiced speech, non-stationary noise and stationary noise. The
training data was approximately 10.5 minutes long. The number of cases for the noise
and speech class in the training data was approximately equal. Testing data was 10
minutes long. The frames consisting of two or more signal classes were not included in
both the training and the testing data.

From the forward and backward feature selection using LDA in SPSS; all the fea-
tures were found to be significant for VAD. These features were used as input to the
machine learning algorithm for training and testing. The results for each machine
learning algorithm presenting the Hit Rates (HR) and False Alarm Rates (FAR) for all
the classes and the overall HR are presented in table 5.1. HR and FAR are described
in section 3.4.1. |

A good classifier generally has a high HR for every class, a low FAR for every class |
and a high overall HR. A high HR for each class indicates that the signals are being

correctly classified by the classifier into their respective classes with high accuracy. A

121




low FAR for a class indicates that signals of other class are not being incorrectly clas-
sified into the class. High overall HR indicates that the classifier has high classification
accuracy.

From the simulation results in table 5.1 QDA had a low HR of 42.8% for the
stationary noise. MD had a 0.1% HR for stationary noise. The neural network was
not able to classify any of the non-stationary noise frames correctly as it had a HR of
0%. Linear SVM had a low HR of 35.8% for the stationary noise and a high FAR of
19.6% for non-stationary noise. Polynomial SVM had a low HR of 56.1% for stationary
noise and a high FAR of 14% for non-stationary noise. Sigmoid SVM had a high HR of
99.9% for only stationary noise. But it also had a high FAR of 52.2% for the stationary
noise signal. Based on the studies to classify the signal into four classes QDA, MD,
neural network, polynomial, linear and Sigmoid SVM were not considered further for

the VAD system in this work.

5.4 Features and Feature Selection Results

The features considered in the feature set after the simulation on the supervised ma-

chine learning algorithm selection for VAD are:

1. The MSTE coefficients.

2. MFCC.

3. Log energy.

4. Zero-crossing rate.

5. Second and third LP predictor coefficients.

6. Log of LP residual energy.

7. Skewness and kurtosis of the LP residual signal.
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10.

11

12.

13.

14.

15.

16.

i

18.

19.

20.

Absolute value of the difference of the first two PARCOR coefficients.
Skewness and kurtosis of the signal.

Log of the low to high band energy.

Log of the low to high band energy product.

Log of low band to full band energy ratio.

Log of the low band to full band energy product.

Pitch.

The first three formants.

Spectral centroid.

Spectral roll-off point.

Normalized autocorrelation coefficient at unit sample delay.
Spectral slope.

First ten Cepstrum coefficients.

The details of these features were presented in section 3.3.

Initial classification results comparing the performance of the LDA and radial SVM
indicated that the MSTE coefficients and MFCC on their own are able to classify the
signal into four classes with a high HR for each class and overall classification. Thus
features that improved the classification rate along with MSTE coefficients or MFCC

were added to the feature subset using forward selection in LDA. MFCC coefficients |

were computed using the MATLAB module from [14].

The features that were found to be significant in the feature selection process and

were included in the feature subset are:
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1. Log energy.

2. Zero-crossing rate.

3. Second and third LP filter coefficients.
4. Skewness of the LP residual.

5. Spectral centroid.

6. The absolute difference between the first two PARCOR coefficients.

5.5 VAD Four Class Classification Results

The simulation results comparing the performance of the LDA and the radial SVM with
3 feature sets have been presented at 10, 15 and 20 dB SNR where the classification
algorithms were trained at the same SNR values. The training and the testing data
set were a subset of the training and testing data used in section 5.3. This was done
in order to have approximately equal number of data for all the classes in both the
data sets. The training data was 31.4 s long whereas the testing data was 31.7 s long.
The Signal to Noise Ratio (SNR) is introduced in section 2.6. The signal power in
equation 2.22 is the power of the source signal and the noise power corresponds to the
power of the noise signal generated in Cool Edit Pro 2.0. The SNR values used in
the simulations are 10, 15 and 20 dB similar to the values used in TDE simulations of
chapter 4.

Classification results at each SNR with six different feature set are presented for
Linear Discriminant Analysis (LDA) and Radial SVM (RSVM). The first feature set
consisted of only MFCC, the second feature set had only MSTE coefficients and the
third feature set called the Other Feature Set (OFS) consisted of log energy, zero-

crossing rate, skewness of the LP residual, spectral centroid, absolute difference between

124



Non-
Feature Set Voiced Unvoiced Stationary | Stationary | Overall
Speech Speech Noise Noise
HR | FAR | HR | FAR| HR | FAR | HR | FAR HR
MFCC 89.98 | 4.97 | 82.13 | 6.26 | 75.41 | 5.66 | 100 | 0.25 | 87.13

MSTE 92.36 | 5.15 | 86.6 | 6.68 | 74.86 | 2.46 | 100 | 0.75 | 88.77
OFS 78.28 | 4.63 | 84.37 | 3.04 | 81.42 | 8.03 | 100 | 2.86 | 85.99
MFCC + OFS | 92.36 | 3.17 | 88.59 | 3.55 [ 92.35 | 2.13 | 100 | 0.08 | 93.31
MSTE 92.84 | 3.26 | 87.59 | 3.98 | 92.1 | 1.89 | 100 | 0.08 | 93.12

+ OFS

MSTE + 93.08 | 2.74 | 87.84 | 3.64 | 93.44 | 2.13 | 100 | 0.08 | 93.56
MFCC + OFS

Table 5.2: The hit rate (HR), false alarm rate (FAR) for each class and overall hit
rate for LDA at SNR of 10 dB.

the first two PARCOR coeflicients and the second and third LP coefficients. The fourth
feature set consisted of the MFCC and the features of the OFS. The fifth feature set
had the MSTE coefficients with the features of the OFS. The final feature set consisted
of all the MFCC, MSTE coefficients and features of the OFS.

From table 5.2, both MFCC and MSTE coefficients on their own to be able to
classify signals of all the classes better than the non-stationary noise class signals at 10
dB SNR when LDA is employed for classification. In the case of speech signals MSTE
coefficients classify both voiced and unvoiced signals better than the MFCC. Other
Feature Set (OFS) classifies unvoiced signals better than the MFCC and non-stationary
noise signals better than both MFCC and MSTE coefficients. The performance of the
MFCC is improved when OFS is included in the feature set. Similarly the performance
of MSTE coefficients improves when OFS are included in the feature set. In both the |
cases the False Alarm Rate (FAR) also is reduced for all the classes. The improvement
in classification of the non-stationary noise signal is noticeable. The classification

performance with all the features together (MFCC, MSTE coefficients and OFS) is

125




Non-
Feature Set Voiced Unvoiced Stationary | Stationary | Overall
Speech Speech Noise Noise
HR | FAR| HR | FAR | HR | FAR | HR | FAR HR
MFCC 89.49 | 4.89 | 82.88 | 6.43 | 75.68 | 5.66 | 100 | O 87.26

MSTE 91.41 | 5.06 | 87.59 | 7.02 | 75.14 | 2.54 | 100 | 0.3 88.83
OFS 75.80 | 42 |83.13| 3.05 | 8279 | 82 [100]| 3.96 | 85.36
MFCC + OFS | 92.36 3. 4 89,08 4.06 1 9317 | 197 1001 0 93.62
MSTE 92.36 | 2.49 | 89.09 | 4.57 | 93.72 | 2.46 | 100| O 92.81

+ OFS

MSTE + 91.65 | 2.32 | 88.59 | 3.55 | 95.08 | 2.21 | 100 | 0.25 | 93.75
MFCC + OFS

Table 5.3: The hit rate (HR), false alarm rate (FAR) for each class and overall hit
rate for LDA at SNR of 15 dB.

marginally improved compared to the case where OFS is used with either MFCC or
MSTE coefficients.

Table 5.3 presents the classification results using LDA for all the six feature sets
at 15 dB SNR. The performance of MFCC and MSTE coefficients is similar to their
performance at 10 dB SNR. Except for the non-stationary noise signal the features on
their own are able to classify signals of other classes with HR greater than 82%. The
MSTE coefficients classify both voiced and unvoiced signals better than the MFCC.
When OFS is included in the feature set the HR increases for all the classes and the
FAR decreases for all the classes except the stationary noise where the FAR is already
0% compared to when only MFCC features are used on their own. Similarly the
performance of MSTE coefficients improves when OFS are included in the feature set.
Here too the improvement in classification of the non-stationary noise signal is more
than in the case of other classes. The classification performance with all the features
together (MFCC, MSTE coefficients and OFS) is marginally improved compared to
the case where OFS is used with either MFCC or MSTE coefficients.
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Non-
Feature Set Voiced Unvoiced Stationary | Stationary | Overall
Speech Speech Noise Noise
HR | FAR| HR | FAR| HR | FAR | HR | FAR HR
MFCC 89.26 | 4.63 | 82.88 | 6.77 | 7541 | 5.74 [100| O 87.19

MSTE 91.65 | 4.72 | 87.34 | 7.45 | 74.59 | 2.71 | 100 | 0.25 88.7
OFS 70.88 | 2.74 | 83.87 | 3.21 | 78.96 | 8.86 | 100 | 7.24 | 83.34
MFCC + OFS | 9141 | 2.32 | 90.32 | 3.64 | 9536 | 1.8 |100| O 94.19
MSTE 91.65| 24 [90.32| 3.98 | 94.81 | 1.39 | 100 | 0.08 | 94.13

+. OFS

MSTE + 91.65 | 1.89 | 89.08 | 3.64 | 96.45 | 2.13 | 100 | 0.08 94.2
MFCC + OFS

Table 5.4: The hit rate (HR), false alarm rate (FAR) for each class and overall hit
rate for LDA at SNR of 20 dB.

Table 5.4 presents the classification results using LDA for all the six feature sets
at 20 dB SNR. The performance of MFCC and MSTE coefficients is similar to their
performance at 10 and 15 dB SNR. In this case too the MSTE coefficients classify both
voiced and unvoiced speech signals better than the MFCC. When OFS is included with
MFCC in the feature set the HR increases for all the classes and the FAR decreases for
all the classes except stationary noise where the FAR is already 0% compared to when
only MFCC features are used on their own. Including the OFS feature in the feature
set along with MSTE coefficients increases the FAR for stationary noise slightly. The

improvement in HR of the non-stationary noise is higher compared to that of other

classes. The classification performance with all the features together (MFCC, MSTE

coefficients and OFS) is marginally improved compared to the case where OFS is used

with either MFCC or MSTE coefficients.

From table 5.5, both MFCC and MSTE coefficients are able to classify signals of all |

)

the classes better than the non-stationary noise signal at 10 dB SNR when radial SVM |

is employed for classification. The classification rates are lower than that of the LDA at
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Non-
Feature Set Voiced Unvoiced Stationary | Stationary | Overall
Speech Speech Noise Noise
HR |FAR | HR [ FAR| HR | FAR | HR | FAR HR
MFCC 90.93 | 463 | 81.64 | 6.85 | 76.5 | 517 |100]| O 87.51

MSTE 92.12 | 4.89 | 85.61 | 6.43 | 7842 | 3.04 | 100 | O 89.27
OFS 79.71 | 3.17 | 84.62 | 3.06 | 90.98 | 837 | 100 | 0.42 | 88.64
MFCC + OFS | 9236 | 3.6 [90.07] 491 [87.71| 14 [100]| O 92.62
MSTE 92.84 | 3.69 | 88.59 | 3.64 | 90.71 | 1.97 (100 | O 93.06

+ OFS

MSTE + 92.36 | 3.26 | 91.81 | 4.06 | 90.16 | 1.15 | 100 | 0.08 | 93.63
MFCC + OFS

Table 5.5: The hit rate (HR), false alarm rate (FAR) for each class and overall hit
rate for Radial SVM at SNR of 10 dB.

the same SNR. In case of the speech signals MSTE coefficients classify the voiced speech
better than the MFCC. OFS classifies non-stationary signals better than the MFCC
and the MSTE coefficients. The performance of the MFCC is improved when OFS is
included in the feature set with a decrease in the FAR for unvoiced speech. The HR
for non-stationary noise increases. Similarly the performance of the MSTE coefficients
improves when OFS is included in the feature set. In both the cases the False Alarm
Rate (FAR) is also reduced for all the classes except for the stationary noise where the
FAR remains unchanged. The improvement in classification HR of the non-stationary
noise signal is noticeable. The classification performance with all the features together
(MFCC, MSTE coefficients and OFS) is marginally improved compared to the case
where OFS is used with either the MFCC or the MSTE coefficients.

Table 5.6 presents the classification results using radial SVM for all the six feature
sets at 15 dB SNR. The performance of MFCC and MSTE coefficients is similar to their
performance at 10 dB SNR. In this case too the MSTE coefficients classify both voiced

and unvoiced signals better than the MFCC. OFS are unable to classify voiced speech
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Non-
Feature Set Voiced Unvoiced Stationary | Stationary | Overall
Speech Speech Noise Noise
HR {FAR | HR | FAR| HR | FAR'| HR | FAR HR
MFCC 90.69 | 4.55 | 81.39 | 6.77 | 76.78 | 5.41 | 100 | O 87.45
MSTE 92,151 489 | 87.1 | 6.68 | 77.87 | 2.46 | 108:1;. 0 89.53

OFS 76.37 | 2.49 | 83.87 | 2.96 | 93.17 | 9.84 | 100 | 0.42 | 8B8.08
MFCC + OFS | 92.12 | 3.09 | 90.32 | 4.48 | 89.62 | 1.72 | 100 0 93.06
MSTE 92.6 3 89.08 | 3.64 | 92.62 | 1.97 | 100 0 93.57

+ OFS

MSTE + 92.84 | 3.09 | 91.32 | 3.72 | 92.35 | 1.07 | 100 0 94.13
MFCC + OFS

Table 5.6: The hit rate (HR), false alarm rate (FAR) for each class and overall hit
rate for Radial SVM at SNR of 15 dB.

as well as the signals of other classes and has a higher FAR for non-stationary noise
compared to other signal classes. When OFS and the MFCC are included in the feature
set the HR for voiced speech, unvoiced speech and non-stationary noise increases and
the FAR for these classes decreases compared to using only MFCC. In the case of MSTE
coefficients with OFS in the feature set, the FAR for voiced speech, unvoiced speech
and non-stationary noise decreases and the HR for these classes increases compared
to the performance of only MSTE coefficients. The classification performance with
all the features together (MFCC, MSTE coefficients and OFS) is marginally improved
compared to the case where OFS is used with either MFCC or MSTE coefficients.
Table 5.7 presents the classification results using radial SVM for all the six feature

sets at 20 dB SNR. Among the MFCC, MSTE coefficients and OFS feature sets, MSTE

coefficients have the best overall HR. It also has the best HR for voiced speech and

unvoiced speech class. OFS has the highest HR for the non-stationary noise class. Both
MFCC and MSTE coefficients have lower HR for non-stationary noise compared to the
HR for other classes. In the case of OFS with MFCC or MSTE coefficients, the HR
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Non-
Feature Set Voiced Unvoiced Stationary | Stationary | Overall
Speech Speech Noise Noise
HR | FAR| HR | FAR | HR | FAR | HR | FAR HR
MFCC 90.69 | 4.46 | 80.89 | 6.68 | 77.05 | 5.66 | 100 | O 87.38

MSTE 92.12 ' 4.72.1 87.1 | 6.6 | 8.7 1:246°F 100" 0 89.72
OFS 75.66 | 2.4 | 84.37 | 3.05 | 93.44 | 9.76 | 100 | 0.51 | 88.08
MFCC + OFS | 92.36 | 2.92 | 90.32 | 4.48 [ 89.62 | 1.81 (100 | O 93.12
MSTE 92.6.:2.83 | 89.33| 372 | 929 | 1.89 | 100} 0 93.69

+ OFS

MSTE + 92.6 | 2.74 | 91.56 | 3.81 (93.44 ( 098 (100 | O 94.39
MFCC + OFS

Table 5.7: The hit rate (HR), false alarm rate (FAR) for each class and overall hit
rate for Radial SVM at SNR of 20 dB.

increases and FAR decreases for all the classes except the stationary noise where the
HR and FAR remains unchanged. There is a marginal improvement in the classification
with all the features together (MFCC, MSTE coefficients and OFS) compared to the
case where OFS is used with either MFCC or MSTE coefficients.

5.6 Observations and Conclusion

From the classification tables in section 5.4 it can be seen that for all SNR’s the
corresponding overall classification HR for all MFCC, MSTE coefficients and OFS
feature sets in LDA and radial SVM are below 90%. When OFS is included in the
feature set with MFCC or MSTE coefficients the overall HR is above 90%. When all
the three features are included in the feature set, the overall HR for both the classifiers
improves marginally compared to the classifiers performance when OFS with MFCC
or MSTE coeflicients feature sets are employed. All the feature sets are able to classify

the stationary noise signal with a high HR and very low FAR in case of both the
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classification algorithms.

For the other three classes (voiced speech, unvoiced speech and non-stationary
noise), both MFCC and MSTE coefficients have a higher HR for voiced speech com-
pared to the unvoiced speech and have the lowest HR for the non-stationary noise for
both the classification algorithms. MSTE coefficients have a higher HR for both the
classes (voiced and unvoiced speech) compared to the MFCC. OFS has a high HR and
a high FAR for the non-stationary signal class for both the classification algorithms.
It’s HR for non-stationary noise is higher for radial SVM compared to that of the LDA.
It has the lowest HR for the voiced speech for both the classification algorithms.

MFCC with OFS improves the HR for the voiced, unvoiced and non-stationary
noise classes compared to the HR of that of only MFCC. The improvement is more
noticeable in the case of non-stationary noise and unvoiced speech signal classes. MSTE
coefficients with OFS also have improved HR for non-stationary noise and unvoiced
speech classes compared to the HR with only MSTE coefficients. The performance of
MFCC with OFS, MSTE coefficients with OFS is similar to each other. The overall
classification HR is marginally improved when MFCC, MSTE coefficients and OFS are
included in the feature set.

For MFCC with OFS, LDA and radial SVM have similar HR for all the classes.
In the case of MSTE coefficients, both linear and radial SVM have similar overall
HR. LDA has a better HR than radial SVM for non-stationary noise for feature sets
of MFCC with OFS, MSTE coefficients with OFS and OFS with MFCC and MSTE
coefficients. The overall HR for both the classifiers is almost the same with the HR
of LDA marginally better than that of the radial SVM. Thus both the classifiers are ‘
suitable for VAD. Since MSTE coefficients computation is simpler compared to thei
MFCC and all the features (MFCC, MSTE coefficients and OFS) together perform |
marginally better than the performance of MSTE coefficients with OFS thus MSTE‘E
coefficients with OFS feature set is suitable for VAD. '
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Chapter 6

DOA System

This chapter presents the experimental results for TDE when applied to the voiced
speech segments of the audio signal recorded in a classroom. The DOA system consists
of the Time Difference Of Arrival (TDOA) based DOA estimator and a supervised ma-
chine learning algorithm based VAD system. The time delay estimator is the modified
YIN based TDE from chapter 4. The voiced speech is identified by the Linear Dis-
criminant Analysis (LDA) supervised machine learning algorithm and selected signal
features of chapter 5. The DOA system is called MINDER (Modified yIN based Doa
Estimator for e-leaRning). Experimental setup is described in the first section of this
chapter. This is followed by sections on the experimental results for the MINDER and

the conclusion of the chapter.

6.1 Experimental Setup

An audio signal consisting of speech by both male and female talkers, silence and
non-stationary noise was played through a loudspeaker and recorded by a ULA in a
classroom situated next to a busy street. The audio signal was of 4.5 s duration of

which the voiced speech was approximately 1.1 s. The windows of the room were closed
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Fig. 6.1: Source locations for DOA system experiment.

due to the presence of Heating, Ventilating, Air Conditioning (HVAC) systems. The
closed windows reduced the noise from the street. The sampling rate of the signals
was 16 kHz. The silence in the audio signal was introduced to record the background
noise signal present in the room. The background noise in the room consisted of the
noise from HVAC and a low level traffic noise. The non-stationary noise consisted of
the paper shuffle, male and female cough signals. The dimensions of the room were
6m x 3.5m x 2.5m and the RT'60 of the room was 0.5 s. The simulation results for
TDE for the same room are presented in section 4.5 of chapter 4.

A Uniform Linear Array (ULA) consisting of two microphones with the microphones
spaced 6.8 cm apart was placed in the room. The source locations are shown in_}
figure 6.1. The source locations were chosen such that they covered three areas (left, j’
center and right) of the room with respect to the ULA. The signal source locations
were: position 1: 57°, position 2: 90° and position 3: 131° with respect to the ULA.

The signal source and the microphone array were on the same plane. The source at
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Non-
Feature Set Voiced Unvoiced Stationary | Stationary | Overall
Speech Speech Noise Noise
HR | FAR | HR | FAR | HR | FAR | HR | FAR HR

LDA with
Mel-TEC + OFS [ 100 | 1.75 | 71.88 | 3.13 | 68.5 | 3.97 | 96.97 12 84.82
feature set

Table 6.1: Hit Rate (HR), False Alarm Rate (FAR) for each class and overall HR for
the experimental signal using LDA.

1

position 1 was beside the window and hence closest to the traffic noise.

Signal frames of length 20 ms were taken for DOA calculation with no overlap
between the adjacent frames. The TDE was performed on the signal frames identified
as voiced speech by the LDA based VAD system. The features included in the feature
set were the MSTE coefficients and the Other Feature Set (OFS) of chapter 5. The
features in the OFS included the log energy, zero-crossing rate, skewness of the LP
residual signal, spectral centroid, absolute difference between the first two PARCOR
coefficients and the second, third LP coefficients. The separation distance between
the microphones in the microphone pair was set at 6.8 cm based on the simulation
results of chapter 4. It is a compromise between the 3.4 cm separation where the
number of delays is less to provide higher angle resolution and 10.2 cm separation
where the number of delays is more, leading to higher angle resolution, but also has a
lower accuracy in TDE. Parabolic interpolation (discussed in section 2.5) in steps of

0.2 sample value was used to improve the angular resolution.
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Fig. 6.2: VAD Experimental results classifying the audio signal into Voiced Speech
(VS) and others (consisting of the unvoiced speech, stationary noise and the non-
stationary noise signals).

6.2 Direction of Arrival System Experimental

Results

Table 6.1 presents results for classifying the audio signal into four classes. Figure 6.2
shows the classification of the signal into voiced speech and others (unvoiced speech, |
stationary noise and non-stationary noise together) classes. All the voiced speech
signals were identified correctly. Some of the non-stationary noise signal frames (cough) |
were classified as the voiced speech resulting in the FAR of 1.75%.

The TDE was performed only on the voiced speech signal. The experimental results
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for TDE are presented as histograms of the delay estimates in terms of signal samples,
indicating the accuracy of the estimate. For the source at position 1 (57°), the signal
reaches the reference microphone before the other microphone in the microphone pair.
The expected delay for the microphones separated by 6.8 cm is 1.71 samples, which
when rounded to the nearest integer value gives 2 samples without interpolation and
is 1.6 or 1.8 with interpolation in steps of 0.2 samples.

Figure 6.3 presents the results of TDE on the source signal at position 1. The
peak of the delay estimates without VAD is at the expected sample delay of 2. The
maximum number of the delay estimates with VAD is also at the expected sample
delay of 2. With VAD, incorrect delay estimates at sample delay -3 are eliminated.
The sample delay estimates with VAD and parabolic interpolation are equal in number
at the fractional sample delays of 1.6 and 2.2. Sample delays of 1.6 and 2.2 correspond
to 59.8° and 46° respectively. Note that rouding the interpolated values yields the
integer accurate estimate of 2.0 samples.

The experimental results of TDE for the source at 90° are presented in figures 6.4.
The expected delay is 0 with and without parabolic interpolation. The peak of the
histogram is at the expected delay without VAD and parabolic interpolation. The
histogram of delay estimates with VAD on voiced speech results in a peak at the
expected delay. With VAD the incorrect delays due to other signals at delay values of
3 and -3 are eliminated. Applying parabolic interpolation on the delay estimates results
in a maximum number of delay estimates at the expected delay. But here the number
of delay estimates at the expected delay is less than the number of delay estimates
without parabolic interpolation. Large numbers of delay estimates have values of 0.2
and -0.2. 0.2 and -0.2 correspond to 86.4° and 93.6° respectively.

Figure 6.5 presents the TDE results for source at an angle of 131° (position 3). The
expected delay is -2.1. Without parabolic interpolation the expected result is -2 and

with parabolic interpolation the expected delay is -2 or -2.2. This position being closest
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Fig. 6.3: Position 1: TDE results for source at 57°.
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Fig. 6.4: Position 2: TDE results for source at 90°.
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Fig. 6.5: Position 3: TDE results for source at 131°.
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to the window, the delay estimates for it are more affected by the traffic noise than the
delay estimates for the other two source positions. Without VAD, the peak of the delay
estimates is at the sample delay of -3 (which is towards the traffic noise). With VAD,
the peak of the delay estimates is still at -3 but the difference between the number of
delay estimates at -3 and -2 is reduced. When parabolic interpolation is applied on
the delay estimates, the number of delay estimates at delay value of -3 decreases. The
delay estimates around the value of 2.2 increases. For this source position the benefits

of applying VAD before TDE is noticeable.

6.3 Conclusion

This chapter demonstrated the performance of the MINDER combining the modified
YIN based TDE algorithm of chapter 4 and the VAD system of chapter 5 for DOA in
a classroom environment. The experimental results of VAD for classifying the signal
into all the four classes was presented in section 6.1. From the results it is observed
that in the presence of low background noise the proposed VAD system was able to
classify voiced speech with a high HR and low False Alarm Rate (FAR). The FAR was
due to the presence of human produced non-stationary noise signal. The HR for the
unvoiced speech and non-stationary noise signals were lower than the other two class
signals. Stationary noise had a high HR of approximately 97% but it also had a very
high FAR of 12%.

Since the TDE for DOA estimation was performed on the voiced speech frames,
the VAD using LDA and MSTE with OFS features was found to be suitable for this
application as it was able to identify the voiced speech signal with high accuracy and
low FAR. It was also shown that by applying VAD to identify voiced speech signal
frames in order to perform time delay estimation only on voiced speech reduced the

number of incorrect TDE computations due to presence of other type of signals.

140



The time delay estimates using the modified YIN based TDE on voiced speech
provided a greater number of correct delay values at the expected sample delay without
parabolic interpolation. When parabolic interpolation was employed to improve the
angular resolution, its effect on the results was not alike in all the cases. Employing
parabolic interpolation improved the resolution in the obtained angles as the fractional
sample delay estimates moved towards the expected fractional delay values.

This chapter successfully combined the proposed VAD system and the proposed

TDE algorithm for DOA estimation in a classroom.
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Chapter 7

Conclusion

This chapter first presents the summary of the thesis followed by the future work.

7.1 Thesis Summary

Time Difference Of Arrival (TDOA) approach is suitable for Direction Of Arrival
(DOA) estimation for a single source. As discussed in section 2.10, the DOA estimation
using the TDOA approach is suitable for e-learning environment. In the TDOA ap-
proach first the relative time difference between the signals to reach a microphone pair
in the microphone array is computed. This information is used to compute the DOA of
the source signal. Cross-correlation on the microphone pair signals can be used to com-
pute the time delay value. However, presence of noise and reverberation in a classroom
leads to incorrect DOA estimation of the signal source location using Cross-Correlation
(CC). Furthermore the performance of Time Difference Of Arrival (TDOA) algorithms
such as Generalized Cross-Correlation Phase Transform (GCC-PHAT), Average Mag-
nitude Difference Function (AMDF) while giving some improvement over simple CC
also deteriorate in the presence of both high noise and reverberation.

This thesis presented a novel approach for DOA using the modified YIN based TDE
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algorithm. The original YIN algorithm was proposed for estimating the fundamental
frequency of a signal. As explained in section 2.12 the YIN algorithm provides the
fundamental frequency estimate by finding the similarity between the signal and its
delayed versions. The delay value at which the signals are most similar is taken as the
fundamental frequency of the signal. The TDE is performed by on the signals received
by a pair of microphones by delaying one of the signals with respect to the other and
finding the similarity between the two signals at each delay value. The delay value at
which the signals are most similar is taken as the time delay. Due to the similarity
between the way YIN estimates the fundamental frequency of the signal and the TDE
computation the thesis shows that a modified YIN algorithm is suitable for TDE.

Simulation results comparing the performance of GCC-PHAT, contemporary al-
gorithms such as Modified Average Magnitude Difference Function (MAMDF) and
Weighted cross-correlation (WCC), proposed modified YIN based TDE algorithm and
the Weighted YIN based TDE algorithm were presented in section 4.1 and section 4.2
respectively. The performance of the algorithms was compared in terms of their accu-
racy and the Mean Square Error (MSE) for different values of SNR. The SNR values
considered for simulations were 10, 15 and 20 dB because as mentioned in section 2.6
the acceptable SNR in a classroom is greater than 10 dB.

The simulation results showed that the modified YIN based TDE algorithm had
the best accuracy as defined by the maximum mode of the distribution of the delay
estimates but it had a higher MSE compared to the other algorithms. The contem-
porary MAMDF algorithm was best next to the modified YIN based TDE algorithrn;
but had lower MSE compared to the modified YIN based algorithm. The WCC algo-
rithm and the Weighted YIN based TDE algorithm had similar performance in both
accuracy and MSE. The GCC-PHAT had the worst performance in terms of accuracy.
The GCC-PHAT, WCC and the Weighted YIN based TDE algorithm were found to

be biased towards the zero delay value which resulted in lower MSE whereas the other:
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two algorithms were biased towards the extreme delay values in the valid delay value
set leading to higher MSE. Since for DOA estimation, accuracy is important hence for
Time Delay Estimation (TDE) in the proposed DOA system for e-learning modified
YIN based TDE algorithm was used.

As mentioned in section 1.2, a pre-processing Voice Activity Detection (VAD) sys-
tem that identifies part of speech that contain speech is another part of the proposed
DOA system. VAD is useful in avoiding DOA computations on parts of audio signal
that do not contain speech. The VAD pre-processing stage not only reduces the num-
ber of DOA computations but also prevents steering the video camera in direction of
undesired signal sources.

The VAD process classified the signal into four categories namely the voiced speech,
unvoiced speech, stationary noise and the non-stationary noise. The signal was classi-
fied into four classes for TDE on the voiced speech and for post processing e-learning.
Supervised machine learning algorithms such as the Discriminant Analysis (DA), Arti-
ficial Neural Network (ANN) and Support Vector Machine (SVM) were considered for
classification.

Initially for VAD, supervised machine learning algorithms such as the Quadratic
Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA) and the Maha-
lanobis Distance (MD) belonging to the DA category; cascaded ANN and radial, linear,
polynomial and sigmoid kernel SVM were considered for VAD. The features used in the
initial classification to decide on the supervised machine learning algorithm suitable
for classifying the signal into four classes are mentioned in section 5.3 and discussed in
section 3.3.

Features were computed on 20ms long signal frames. Forward and backward feature
selection using DA was performed on the feature set to assess the significance of the
features in classification and remove the features that do not contribute towards clas-

sification. All the features were found to be significant. The classification algorithms
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were trained and then tested for classification. The training data and the testing data
were different. For training and testing purpose all the signal frames consisting of two
or more signal classes were excluded. Based on the classification Hit Rate and False
Alarm Rate for each class in section 5.3 only LDA and radial kernel SVM were further
considered for inclusion in the VAD stage of the DOA system.

This thesis also proposes a novel mel-spectrum and Teager Energy Operator based
feature called the Mel-Spectrum Teager Energy (MSTE) coefficients. These features
are presented in section 5.1. The performance of these features was compared with
the frequently used Mel Frequency Cepstrum Coefficients (MFCC) in speech signal
processing applications. As shown is section 5.5 the MSTE coefficients were found
to perform as well as or marginally better than the MFCC for classifying the signal
into four classes at the considered SNR of 10, 15 and 20 dB for both LDA and radial
SVM. The advantage of these coefficients is that they are simpler to compute than the
MFCC.

The MSTE coefficients on their own were not able to effectively classify all the
classes especially the non-stationary noise class signal. The MFCC coefficients also
suffered from this problem. Forward feature selection in DA was performed on the
feature set mentioned in section 5.4. Forward feature selection was employed because
the aim of performing feature selection was to find the features that perform well with
the MSTE coefficients in the feature set. The features that were found to be significant '1
for classification along with the MSTE coefficients are presented in section 5.4. All the
selected features except the MSTE were grouped into Other Feature Set (OFS).

The results of the performance of the MSTE coefficients with the OFS and MFCC
with OFS using LDA and radial SVM are presented in section 5.5 for 10, 15 and
20 dB SNR. Both the feature sets performed equally well for classification into four
classes with a high HR and low FAR for all the classes. The classification results for

classification with only OFS was also presented to assess their classification without:
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MSTE coefficients. OFS was able to classify non-stationary noise signal well but had
a low HR for the voiced speech signal. The performance of all the features together
was also presented in section 5.5. All the features together performed marginally better
than only MSTE with OFS or MFCC with OFS. Based on the simulation results MSTE
with OFS was included in the final feature set for VAD.

Comparing the classification results of LDA with radial SVM in section 5.5 for the
above mentioned feature sets (only MFCC, only MTSE, only OFS, MFCC with OFS,
MTSE with OFS and all the three together), the performance of LDA was found to
be marginally better than that of the radial SVM hence LDA was chosen for VAD.
Thus the final VAD stage in the proposed DOA system consisted of the LDA machine
learning algorithm with MTSE and OFS features.

Finally in chapter 6 the LDA classification algorithm with MTSE and OFS features
for VAD was combined with the TDE using the modified YIN based TDE algorithm
to form the DOA system. The results of the experimental results of the DOA system
on the data recorded in a classroom are presented in section 6.2. In the experimental
results the frames consisting of two or more signal classes were not included. The
LDA was trained with the training data and the signal recorded in the classroom was
classified into four classes.

TDE was performed on the signal frames classified as voiced speech. The VAD
system was able to identify all the voiced speech frames and had a low False Alarm
Rate (FAR). The FAR was due to the classification of some of the non-stationary noise
signals into voiced class. Parabolic interpolation (described in section 2.5) was used on

the TDE to improve the resolution of the angle estimates.
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7.2 Future Work

From the experimental results for TDE in section 4.5 it was concluded that modified
YIN based TDE has higher accuracy than the other algorithms but there is still a
scope for improving the accuracy of the TDE. In section 4.6 it was also mentioned that
modified YIN based TDE is biased towards the extreme delay value of the TDE when
the delay estimate is incorrect. In this context, further investigation is required to add
post TDE logic correction in order to improve the accuracy of the TDE. The DOA
information from different microphone pairs can be used to find the source location.

Another aspect of the TDE was using the parabolic interpolation to improve the
resolution in the angle. The experimental results with parabolic interpolation were
presented in section 6.2. The parabolic interpolation was not as helpful in all the
cases. Further research into the suitable interpolation method can be done.

Since the work concentrated on finding the DOA based on TDE on voiced speech,
hence even though the signal was classified into four classes the primary concern was
to identify voiced speech signals with high HR and low FAR. This was achieved in
the work. Further research into identifying undesirable noises such as cough, sneeze,
paper shuffle with high accuracy so that they can be effectively removed automatically,
without much human intervention, for post-processing e-learning so that the students
are able to access the lectures online or on a Compact Disc (CD) is required.

A limitation of the VAD work presented in this thesis is that the frames consisting
of two or more signal classes (non-overlapping) have not been included for training ‘
or testing. In real time application these frames will be classified into one of the
four classes depending on the training algorithm. This will result in incorrect VAD
decision. Further research on identifying the frames consisting of two or more classes
so that they can be classified into the other class (not voiced speech) to reduce incorrect
VAD decisions is required.

Moreover for post-processing e-learning the word boundaries have to be exactly |
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identified which is not required in the case of TDE. This is because a few ms of missing
signal can change the meaning of the words that are being spoken whereas a camera
can be steered a few ms after the words have been spoken. The frames with mixed
signals can be further worked on to identify the word boundaries to improve the post-
processing e-learning.

Another aspect that was not considered in this work was the overlap of signals of
different classes (different class signals are present simultaneously) in a frame. All the
frames that were considered in the work consisted of a single class signal. For VAD
simulations in different SNR, white Gaussian noise was taken as the background noise.
Scenarios where the voiced speech is present with other signal class in the background
were not included. Further investigations on classifying the signals consisting of speech
with non-stationary noise in the background will be desirable to make the VAD system
more robust to identify speech especially voiced for TDE. Since the MSTE coefficients
perform on par with the MFCC, their application in speech recognition and speaker

recognition applications using the Hidden Markov Models should be explored.
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