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Abstract

E-learning provides an opportunity for the students in a classroom to reccive and par

ticipate in lectures broadcasted from a remote location. For convenience and scalability 

it is preferable to have a microphone array instead of an individual microphone per user 

to capture the signals. A Direction of Arrival (DOA) system can be used to determine 

the angle of arrival of the speech signal so that a camera can be steered in the direction 

of the signal source. In a DOA system for e-learning, Time Delay Estimation (TDE) 

techniques are suitable to determine the relative time difference between the signals 

to reach the microphones in the array. This time difference can be used to find the 

Direction of Arrival (DOA) of the signal. This thesis presents a DOA system called 

Modified yIN based Doa Estimator for e-leaRning (MINDER).

The primary challenge in the DOA estimation in an e-learning environment is to get 

high accuracy of the TDE in the presence of noise and reverberation. The existing algo

rithms for TDE (such as Cross-correlation (CC), Generalized Cross-Correlation Phase 

Transform (GCC-PHAT), Average Magnitude Difference Function (AMDF)) do not 

perform well in the presence of both high noise and reverberation. The YIN algorithm 

is based on the AMDF algorithm and is used to find the fundamental frequency of the 

music and speech signals. This thesis proposes two TDE algorithms based on the YIN 

algorithm. The first algorithm is called the modified YIN based TDE algorithm and 

the second algorithm is called the Weighted YIN based TDE algorithm. The Weighted 

YIN based TDE algorithm is inspired by the Weighted Cross-Correlation (WCC) al-



gorithm proposed by Chen et al. [32]. Simulations presented in this thesis show that 

the modified YIN based TDE algorithm has higher accuracy for TDE when compared 

to WCC, Weighted YIN based TDE and GCC-PHAT algorithms in presence of high 

noise and reverberation. Its accuracy for TDE is comparable and marginally better 

than the contemporary Modified Average Magnitude Difference Function (MAMDF) 

algorithm proposed by Chen et al. [32]. The performance of the Weighted YIN based 

TDE algorithm is similar to the WCC and GCC-PHAT algorithm. MINDER uses the 

modified YIN based TDE algorithm for TDE.

Voice Activity Detection (VAD) is used to detect the presence of speech in a signal. 

It is a useful pre-processing stage to DOA as the number of DOA computations is 

reduced and steering of the video camera in the direction of the undesirable signal 

sources is ehminated. The key steps in designing a VAD system is deciding on the 

classification algorithm and the signal features that can be input to the classifier. This 

thesis proposes a new feature for VAD called the Mel-Spectrum Teager Energy (MSTE) 

coefficients. The performance of MSTE coefficients is on par with the Mel-Prequency 

Cepstrum Coefficients (MFCC) feature that is used in speech processing applications. 

This thesis presents a VAD system based on MSTE coefficients. Other features from 

the existing literature have been included in the feature set used in the VAD system to 

improve the classification. The feature set was optimized using forward feature selection 

in LDA. Simulations in the thesis show that Linear Discriminant Analysis (LDA) and 

radial Support Vector Machine performed well for classification. The VAD system uses 

LDA for classification. In the VAD system the signal is classified into four classes 

namely the voiced speech, unvoiced speech, stationary noise and the non-stationary 

noise. The VAD system is used as a pre-processing stage in MINDER.
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Chapter 1

Introduction

E-learning provides an opportunity for the students in remote classrooms to actively 

participate in the lectures broadcasted from the main classroom. A Microphone Array 

(MA) is used to capture the audio signal. The knowledge of the Direction Of Arrival 

(DOA) of the source signal is used to steer the video camera in the direction of the 

signal source. The geometry of the microphone array can be used to find the source 

location. Detecting the presence of speech in the audio signal (voice activity detection) 

so that the DOA estimation is performed only on parts of audio signal containing 

speech reduces the number of DOA computations and also prevents the steering of the 

video camera in the direction of undesired signal sources.

This thesis deals with the DOA estimation in an e-learning environment. This 

thesis proposes a DOA system called MINDER (Modified yIN based Doa Estimator 

for e-leaRning), consisting of the voice activity detection and the DOA stages, for e- 

learning environment. The first section of the chapter provides a brief introduction to 

the e-learning environment. The DOA system is introduced in the following section. 

Finally the contribution of the thesis and its outline is presented.
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1.1 E-Learning Environm ent

This section focuses on the e-learning environment, on which the entire work of this 

thesis is based. In an e-learning environment a group of classrooms are connected to

gether through the internet. The lecturer is present in any one of the classrooms. For 

convenience the room where the lecturer is present is called the principal classroom 

and the other classrooms are called the remote classrooms. The principal classroom 

is connected to the remote classrooms through the Internet that transmits the audio 

and video data of the lecture being delivered in the principal classroom. The commu

nication between the classrooms is typically duplex so that the students in the remote 

classrooms not only attend the lecture remotely but also benefit from the interaction 

with the lecturer in the principal classroom. This arrangement is convenient for the 

students as they do not have to travel or relocate to gain knowledge. It also encourages 

collaboration between educational institutes by providing more options for the students 

to explore different courses offered to them.

E xisting  Tools

Several e-learning tools are available to make e-learning pleasant for the students. The 

complexity of these tools depends on the functionality they offer. Blackboard [1] is 

a software tool that facilitates interaction between different groups and the lecturer 

through internet. The students are able to hsten to the lecture on their computer and 

interact with the lecturer through text based chat or by voicing their questions by being 

in a queue where the students are allowed to speak on first come first serve (First In 

First Out) basis. This tool also allows to restrict access, setup material such as class 

notes, homework, projects, assignments, solutions and students performance (grades, 

marks etc) information. It also allows recording the lectures so that the student can 

listen to them later at their own convenience.
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Echalk [2, 59] is another powerful e-learning tool that uses an electronic whiteboard 

instead of a chalkboard, a digitizer tablet connected to a computer and a retroprojec- 

tion system in a classroom. The whiteboard is used instead of a chalkboard to write 

and draw directly on the screen. The digitizer tablet can also be used to write on the 

screen. It also provides features such as plotting mathematical functions on the screen, 

evaluating handwritten mathematical expression in real time using handwriting recog

nition, displaying pictures from internet or a computer. The lectures are recorded so 

that the student can listen to them later. Students in remote classrooms are provided 

with the live feed of the lecture that they can access using a Java enabled web browser. 

The students can view the lecturer on the screen and hear the lecture. It also facilitates 

a printable PDF version of the content of the screen so that students can concentrate 

on understanding the lecture instead of trying to take notes.

C lassroom s for e-learning

In e-learning case where educational institutes allocate rooms at the time of the lecture 

so that a group of students can listen to the lecture in a classroom with live feed from 

the principal classroom, the challenge in such a scenario is to localize the student 

interacting with the lecturer. Classroom protocol requires that there is only one talker 

in the room at any instant. This means that when the lecturer is talking then the 

rest of the audience members are listening and when the lecturer is interacting with 

the audience members then only one member of the audience speaks at any instant. 

Assuming that the classroom protocol is adhered to, then at any given instant there 

will be only one speech source in the room.

Some of the source localization systems consist of a camera to localize the member 

of the audience and a microphone for each of the audience members [3]. The audience 

members can press a button associated with the microphone to inform that they wish 

to speak. The camera is steered in the direction of the talker based on the microphone
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location from which the cue to speak was received. This system though simple and 

efficient requires lot of hardware which is expensive and prone to frequent damage as 

it is in direct contact with the audience members.

Another approach is to use a microphone array to capture the signal and estimate 

the Direction Of Arrival (DOA) and the source location based on the geometry of the 

microphone array [27, 79]. In such a system, the DO A of the speech signal is estimated 

on the signals captured by a microphone array located away from the audience. The 

relative time difference of arrival of the signal to reach a pair of microphones in the 

microphone array is used to find the DOA of the signal. The DOA estimates obtained 

from different pairs of microphones can be used to locahze the speech source and steer 

the camera in the direction of the speech source. This thesis concentrates on source 

localization using DOA for an e-learning environment.

The problem associated with finding the direction of arrival of the signal is the 

presence of noise and reverberation in the room that tends to give rise to errors in 

the Direction Of Arrival (DOA) estimates. Excessive levels of noise and reverberation 

also reduce the comprehensibility of speech. This problem is worsened among students 

with hearing disability. American Speech Language Hearing Association (ASHA) [4] 

and the Acoustical Society of America [100] recommend that the Signal to background 

Noise Ratio (SNR) in a classroom should not be less than 10 dB and for students with 

some hearing impairment it should not be less than 15 dB. Similarly the recommended 

reverberation time for classrooms is 0.4 - 0.6 seconds [100].

Apart from the presence of noise and reverberation in the captured signal there 

are instances when the signal received by the microphones in the source localization 

system does not contain speech. The signal contains background noise that comprises 

of the noise made by the electronic equipment present in the classroom such as com

puters/overhead projector fan noise and noise of the Heating, Ventilating and Air 

Conditioning (HVAC) systems. This leads to spurious estimates of the direction of
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Fig. 1.1 : Schematic diagram of the DOA System.

arrival and the camera will be steered in the direction of the background noise source.

Other undesirable signals include human produced sounds such as laugh, cough and 

sneeze and non-human produced sounds like paper shuffle, closing/opening of the door, 

key jangle and sounds from coins. In order to avoid computation of the DOA in the 

absence of speech signal a voice activity detection (VAD) system is used to recognize 

segments of signal that contain speech. The location of the source is estimated only 

on the segments of signal identified as speech. This reduces computations as well as 

prevents steering of camera at spurious locations.

1.2 DOA system

Direction Of Arrival (DOA) system is used to find the DOA of the speech signal and 

steer a camera in the direction of the speech source. The DOA information can also 

be used in beamforming and for source localization. The audio signal captured by the 

microphone array and the distance between the microphones in the microphone array 

is used to find the DOA of the source signal. Figure 1.1 shows a schematic diagram of 

the proposed DOA system.

This thesis presents a DOA system called Modified yIN based Doa Estimator for
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e-leaRning (MINDER). MINDER consists of two stages namely the Voice Activity 

Detection (VAD) stage for signal pre-processing and the DOA stage. The VAD system 

in this work not only detects speech frames but also detects stationary noise and 

non-stationary noise. The captured signal is classified into four classes namely the 

voiced speech, unvoiced speech (refer to section 3.2 for more information on voiced and 

unvoiced speech), stationary noise and the non-stationary noise. The DOA stage finds 

the DOA of the speech source based on the relative time difference of arrival of the 

speech signal received by a pair of microphones in the microphone array. As shown in 

figure 1.1, the DOA stage estimates the DOA of the source in two steps namely Time 

Delay Estimation and Angle Estimation.

1.2.1 Voice A ctiv ity  D etection

Pre-processing the signals to detect the presence of speech in the audio signal is useful 

in speech recognition, speaker recognition and source localization applications. In some 

applications that involve noise cancellation identification of the background noise is of 

primary concern. Voice Activity Detection is used to detect the presence of speech 

signal in the audio signal. The characteristics of the signal called the features are 

employed by a VAD algorithm to distinguish between speech and non-speech signals. 

For VAD the audio signal is divided into small frames of fixed length. The values of 

the features are calculated for each frame and are input to the VAD algorithm.

The number and types of classes into which the audio signal is classified depends on 

the application requirements. For example if an application must distinguish between 

speech and other types of signals, as required in VoIP applications, then the audio 

signal can be classified into two classes namely speech and non-speech. Speech can be 

further classified into voiced speech and unvoiced speech. This is used in applications 

where the DOA estimation is performed on voiced segments of speech. Noise can be 

further classified into stationary noise (background noise) and the non-stationary noise.
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The type of classes that the audio signal is classified into depends on the requirement 

of the application.

VAD can be considered as a pattern classification problem. This work proposes 

to use the supervised machine learning algorithms for VAD for e-learning. Pattern 

classification using supervised machine learning algorithms generally involves solving 

two crucial problems [87, pg. 171]. They are the selection/evaluation of features 

and decision rule for classification. Feature selection involves determining the signal 

features that help to distinguish between the signals. Speech signals can be described 

by some of their properties. But noise signals do not have specific properties. Thus 

determining a good feature set that result in an accurate classification is a challenge. 

Another challenge is to identify a classification algorithm that can classify the signals 

well into their respective classes. A brief discussion of the key steps and the associated 

challenges involved in desiging a VAD system are presented in [106].

In this work, the audio signals are classified into four classes namely the voiced 

speech, unvoiced speech, stationary noise and the non-stationary noise using the Dis

criminant Analysis (DA), Support Vector Machines (SVM) and Artificial Neural Net

works (ANN). Classifying the signal into the four classes is useful for source localization 

as well as post-processing e-learning.

The signal in this work consists of four classes of signals belonging to the speech 

and non-speech signal category. Two of the four signal classes belong to the speech 

category namely the voiced and unvoiced speech signals. Non-speech signal is divided 

into stationary noise and non-stationary noise. Stationary noise consists of the back

ground noise. Non-stationary noise consists of the cough, sneeze, laugh, paper shuffle, 

closing/opening of door, key jangle and sounds of coins.
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1.2.2 D irection  o f Arrival Estim ation

As shown in figure 1.1, the Direction Of Arrival (DOA) of the source signal is found in 

two steps. The first step is to find the relative time delay between the signals received 

by the microphone pair in the microphone array. Second step involves finding the 

actual DOA based on the time delay information from the first step.

Tim e Delay Estim ation

Time Delay Estimation (TDE) is one of the popular methods for DOA estimation 

for single source. This method of finding the DOA is known as Time Difference Of 

Arrival (TDOA) based method. All the microphones in the MA do not receive the 

audio signal simultaneously. The relative time difference for the signal to reach the 

microphones in a given microphone pair is found in signal sample numbers. The time 

delay information is used to find the DOA of the source signal. TDE is obtained 

on various combinations of microphone pairs in the microphone array. Knowledge of 

TDE and array geometry is used for source localization. This method performs better 

than other methods in presence of noise and reverberation. It is also computationally 

practical for real time applications. The primary challenge in the DOA estimation 

in e-learning is to get high accuracy of the TDE in the presence of high noise and 

reverberation. Simulations in chapter 4 suggest that existing TDE algorithms such as 

the Generalized Cross-Correlation Phase Transform (GCC-PHAT) do not perform well 

in the presence of noise and reverberation. This work proposes a modified YIN based 

TDE algorithm for DOA estimation. Another YIN based algorithm called Weighted 

YIN based TDE algorithm is also presented.
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A ngle Estim ation

The formula used for the angle of arrival of the signal source is based on the far-field 

assumption. The formula is given by [115, 91]:

microphones in the array.

1.3 C ontributions

The primary contribution of this thesis is an extension of the YIN algorithm called the 

modified YIN based TDE algorithm that can be used for TDE. Another extension of the 

YIN algorithm called the Weighted YIN based TDE algorithm is also presented. The 

thesis presents simulations comparing the performance of the modified YIN based TDE 

algorithm and the Weighted Yin based TDE algorithm with other TDE algorithms like 

the Generalized Cross-Correlation Phase Transform (GCC-PHAT), Modified Average 

Magnitude Difference Function (MAMDF) and the Weighted Cross-Correlation (WCC) 

for different SNR and fixed reverberation time.

The thesis also proposes a Teager Energy Operator (TEO) based feature known as 

the Mel-Spectrum Teager Energy (MSTE) coefficients for VAD. A VAD system based 

on MSTE that used Linear Discriminant Analysis (LDA) supervised machine learning 

algorithm constitutes the secondary contribution of this thesis. The thesis presents a 

comparison of the performance of the MSTE coefficients and Mel Frequency Cepstrum 

Coefficients (MFCC) for classification along with seven other existing features to clas

sify the signal into four classes namely the voiced speech, unvoiced speech, stationary 

noise and the non-stationary noise. The supervised machine learning algorithms con

sidered for VAD for e-learning are the Discriminant Analysis (DA), Artificial Neural

The angle estimation involves the estimated time delay (r), the velocity of sound (342 

m/s), the signal sampling frequency (fg) and the separation (d) between a pair of
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Network (ANN) and Support Vector Machine (SVM). The seven features considered for 

VAD along with MSTE and MFCC are the log energy of the signal, zero-crossing rate, 

second and third Linear Predictive (LP) coefficients, absolute difference between the 

first two Partial Correlation or Reflection (PARCOR) coefficients, skewness of the LP 

residual signal and the spectral centroid of the signal. A DOA system called Modified 

yIN based Doa Estimator for e-leaRning (MINDER) is presented that combines the 

VAD system based on MSTE coefficients and the modified YIN based TDE algorithm. 

Experimental results for Modified yIN based Doa Estimator for e-leaRning (MINDER) 

are presented.

1.4 Thesis Outline

The remainder of the thesis is organized as follows:

Chapter 2 presents the state of the art of the DOA algorithms and explains the 

YIN algorithm for fundamental frequency estimation.

Chapter 3 explains the background associated with the supervised machine learn

ing algorithms. It explains the features of the speech signal and the feature selection 

process. It also describes the DA, cascade ANN and the SVM algorithms.

Chapter 4 presents the simulation results for the TDE for DOA comparing the 

performance of the GCC-PHAT, contemporary Modified Average Magnitude Difference 

Fimction (MAMDF) and Weighted Cross-Correlation (WCC), proposed modified YIN 

based TDE algorithm and Weighted YIN based TDE algorithm.

Chapter 5 presents the VAD system for the DOA system. This chapter includes 

the initial feature selection and VAD results for selecting the supervised machine learn

ing algorithms for inclusion in the VAD system. It also presents the simulation results 

comparing the performance of the proposed MSTE coefficients and MFCC using the 

LDA and the radial SVM algorithms at different SNR values. It also presents the
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performance of the MTSE with the features that were included in the feature set to 

improve the classification.

C hapter 6 combines the VAD system of chapter 5 and the modified YIN based 

TDE algorithms to form the DOA system. It presents the experimental results on 

signal with VAD and parabohc interpolation.

C hapter 7 presents the conclusion of the thesis.
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Chapter 2 

State of the Art: D irection of 

Arrival Estim ation for Source 

Locahzation.

This chapter presents the theory associated with the Direction Of Arrival (DOA) algo

rithms and the state of art of the DOA algorithms for source localization. As discussed 

in section 1.2, a Direction Of Arrival (DOA) system consists of a pre-processor stage 

and a TDE stage that is used for the DOA estimation. In this chapter the signal model 

is introduced with the basic theory behind DOA estimation. It also describes and dis

cusses the DOA algorithms for source localization. This is followed by a description 

of the YIN algorithm that is utihzed for fundamental frequency estimation. This is 

required to understand the primary contribution of this thesis which is a YIN based 

novel approach for Time Delay Estimation (TDE).
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2.1 Signal M odel

The Signal model used in the DOA algorithms is provided in this section. The DOA 

algorithms exploit the properties of the signal to estimate the DOA of the source signal. 

The signal model presented in this section is utilized by the DOA algorithm categories 

mentioned in section 2.7.

Assuming that there is more than one signal source in the room the signal received 

by the microphone (xi(t)) in the microphone array is represented by [91]:

Q
Xi{t) = Y^hi j { t )  * S j { t )  + rii{t) (2.1)

j = i

where S j { t )  is the signal from the source, h i j { t )  is the cascade of the impulse 

responses of the room and the response of the microphone for the source, is 

the convolution operator, rii{t) is the additive noise component and Q is the number of 

signal sources. All the acoustic paths (direct and reflected signal components) between 

the source and the microphone are represented by the room impulse response. The 

impulse response of the room depends on the position of the microphone with respect 

to the source, the characteristics of the propagation medium and contents of the room. 

When the position of the source and the microphones is fixed, over short time interval 

the impulse response of the room can be considered to be time-invariant [24, pg. 165]. 

The microphone response includes the gain of the microphone. The additive noise 

component consists of the ambient noise and the noise of the microphone. The additive 

noise signal and the source signal are assumed to be uncorrelated [91].

For a single source the signal received by the microphone is given by [24, pg. 

165]:

^i{t) = hi{t) * s{t) +  rii{t) (2.2)

where s{t) is the source signal, hi{t) is the cascade of the impulse response of the room 

and the response of the microphone for the source signal and rii{t) is the additive
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noise component.

For time difference of arrival computation, when interest is particularly on the direct 

path component, the signal received by the microphone can be rewritten as [24, pg. 

165]:

Xi{t) = — s{t -  Ti) * gi{t) + rii{t) (2.3)
ri

where rj is the distance between the source and the microphone, Qi{t) is the impulse 

response of the room due to the other reflected components and the microphone 

(consists of all the components of h i { t )  of equation 2.2 except the direct path compo

nent), Ti is the delay due to the direct path component.

Assuming that the impulse response {gi{t)) in equation 2.3 is similar for all the 

microphone signals in the microphone array, the signal received by the microphones 

with respect to the reference microphone in the microphone array will consist of a 

scaled and time shifted version of the signal received by the reference microphone [24, 

pg. 166]. Thus the signals received by the microphones with respect to the reference 

microphone (/) in the microphone array is given by:

X i { t )  = tti s{t -  Ti -  Ti^i) + r i i { t )  (2.4)

where s{t — ti) is the signal received by the reference microphone I, ai is the scaling

factor for the received signal s{t —  t i )  for the microphone, Ti^i  is the time shift (time

difference of arrival) of the signal between the reference microphone {I) and the 

microphone (Ti — ti).

The model of the signal vector relative to the source signal s(t — Tq) translated to 

the reference microphone / =  0, of the M element microphone array is represented by:

x(t) =  [ao s ( t  -  To -  To,o) ai s{t  -  Tq -  ro ,i) s{t -  tq -  tq,2) • • •

cm -i s(i -  To -  ro,M-i)]^ +  [no{t) rii{t) n2{t) ■ • • nM-i{t)]'^ (2.5)

In the equation 2.5, the term Tq represents the time delay for the source signal (s{t)) 

to arrive to the reference microphone {I = 0). The term tq̂m - i represents the relative
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time difference of arrival of the signal between the reference microphone (̂  =  0) and 

the {M — element of the microphone array. Since the term tq is common to all the 

microphone and it does not affect the relative time difference of arrival estimates the 

term can be omitted. The term ro,o is zero.

The model of the signal vector relative to the source signal s{t) translated to a 

reference element 0 of the array in equation 2.5 is rewritten as;

x(i) =  [aos(0 a is(i-T o ,i)  a2 s{t -  to,2 ) ••• -  to^m-i)V

+  [no(0 ni{t) n2{t) ••• nM-i{t)f  (2.6)

where tq,, is the relative time delay between the reference microphone (/ =  0) and

microphone. Discrete Fourier transform [37, pg. 86-92] of signal vector x{t) gives 

the frequency domain representation of the signal. The signal vector in the frequency 

domain X{uj) is represented by:

X(u;) == [0 0 5 (0;) ai5(u;) a2S{uj) ■■■ 5(o;)

+  [Noiu) N,{lo) N2{u ) ••• iVM-i(u;)F (2.7)

Equation 2.7 can be written as:

X{u) = S{oj) A{u) +  N(u;) (2.8)

where 5(0;) is the Fourier transform of the source signal s{t), uj is the frequency of 

the source signal, N(o;) =  [Â o(‘̂ ) - î(<̂ ) N 2 {uj) ■ ■ ■ is the Fourier transform

of the noise vector and A(o;) is the array response vector also called the steering vector 

or direction vector [116]. The steering vector is given by:

A(o;) =  [co ai a2 exp~-’‘̂ '̂ °’̂  ••• om-i (2.9)

In far-field where the distance between the adjacent microphones in the array is very

small compared to their distance from the signal source, with identical microphones in
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Fig. 2.1 : Direction Of Arrival (DOA) estimation.

the array the gain value can be assumed to be unity and A{uj) can be written as [115, 

pg- 12]:

A(w) =  [1 (2.10)

After a description of the signal model, the formula to find the direction of arrival of 

the signal based on the far-field assumption is discussed in the next section.

2.2 A ngle o f arrival

This section presents the formula employed to estimate the Direction Of Arrival (DOA) 

based on the fax-field assumption for known value of the Time Delay Estimate (TDE). 

Figure 2.1 shows a signal source and a uniform linear array (ULA) consisting of M  

microphones d cm apart. In an ULA, all the microphones are on the same plane and 

adjacent microphones are equidistant spaced. The geometry of the microphones in the
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array plays an important role in the determination of the source location.

The signal emanating from a source is a spherical wavefront. As the wavefront move 

away from the source its curvature decreases and it becomes planar. ULA is referred as 

microphone array in this thesis. Consider a microphone array consisting of M  elements 

spaced d cm apart. According to the far-field assumption if the distance between the 

microphone array and the signal source is very large compared to the distance between 

microphone pair (d), then the signal wavefront received by the microphones in the array 

can be assumed to be planar [102, pg. 13], [47, pg. 43], [86]. The additional distance 

the wavefront covers to reach a microphone compared to the other is dcos{9) [109]. The 

relative time difference (tij) for a signal to reach a pair of microphones {i,j)  traveling 

with a velocity of c m /s  is given by:

di i cos 9
=  —  (2 .11)

The value of c is approximately 342 m / s  [102]. The direction of arrival 9ij of the 

signal for a pair of microphone based on the far-field assumption is given by:

9i,j = cos~̂  (“̂ )
The estimated 9ij is an approximate value of the DOA of the source signal. Relative 

time difference, ti j, can be expressed in terms of the signal samples (Tij) and the 

sampling frequency (/s) by:

k j  = ^  (2.13)
Js

By substituting equation 2.13 in equation 2.12, the DOA of the source signal is found 

by the equation:

As the distance between the ULA and the source increases compared to the distance 

between the microphone pairs in the array, the error in the DOA estimation due to the
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far-field assum ption decreases. The error in the DOA estim ate is also dependent on 

the closeness of the relative time difference in terms of the signal sample.

The next section presents the restriction applicable on the microphone array based 

on the type of signal for time delay estimation.

2.3 Spatia l A liasing

Signals can be broadly grouped into wideband signals and narrowband signals. W ide

band signals are also known as broadband signals. They do not have any particular 

characteristic wavelength as their power is distributed over a wide frequency range. 

The ratio of their highest frequency to the lowest frequency component is relatively 

large. Narrowband signals on the other hand assume th a t the signal has a very narrow 

bandw idth [45] and thus have a nominal wavelength. Speech signal are broadband 

signals as their power is distributed over a wide range of frequencies [31].

W hen phase information is used to find the DOA of a narrowband signal the distance 

between the microphones in the array is restricted by the frequency of the signal. This 

is due to  spatial aliasing. Phase lag or lead between a signal and its shifted version can 

be found if the phase shift is in the range of [—t t , + 7t ]. If the phase shift does not fall 

within the range, wrapping in the phase occurs th a t makes it impossible to distinguish 

w hether the phase shift is a lead or lag in phase. Figure 2.2 shows a sine wave th a t 

has a phase lead of ^  =  tt +  |  and sine wave th a t has a lag of ^  =  tt — Both the 

waves are same and compared to  the original signal it is difficult to find if there is a 

lead of ^  or a lag of ^  in the phase of the shifted signal. This results in incorrect 

DOA estimation.

For the broadband signal let Amin correspond to the wavelength associated with the 

maximum frequency ( f m a x )  of the signal. The phase shift is restricted by the relation:

‘̂T^fmaxt < 7T (2.15)
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Fig. 2.2: Example of Spatial Aliasing

where t is the time delay. Using the relation between t and cos 6 of equation 2.11, 

equation 2.15 can be rewritten as:

dcos 9
2 f m a x --------  < 1 (2.16c

where d is the distance between any microphone pair in the array for which the phase

shift is being computed and c is the velocity of sound. The maximum value of cos 6 = 1

at 0 =  0. Substituting cos ^ =  1 in equation 2.16 can be rewritten as:

< 1 (2.17)
c

But =  ^min- Hence equation 2.17 can be rewritten to provide a relation between
J m a x

the distance between any microphone pair in the microphone array and the wavelength 

of the signal. This relation is given as:

d < ^  (2.18)
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For narrowband signals if the distance between the microphone pair, for which 

the phase shift is being computed for time delay estimation, in a microphone array is 

greater than then spatial aliasing occurs [115]. Spatial aliasing leads to incorrect 

DOA estimation in the algorithms using TDE based on relative phase difference of the 

signal. To avoid this problem the distance (d) between the adjacent microphones in 

the array is restricted by the equation 2.18 [115, 91].

The above assumption is not applicable to the TDE on broadband signals using the 

cross-correlation method since the signal processing is done in the time domain [115]. 

Section 2.10 discusses cross-correlation based TDE algorithms for DOA estimation. 

Next section describes the methods applied to improve the resolution of time delay 

estimates for finer DOA estimates.

2.4 DOA R esolution

As shown in equation 2.14 of section 2.2, DOA estimate using far-field assumption 

formula involves the estimation of the relative time difference for the signal to reach a 

pair of microphones. The time difference is expressed in terms of the signal samples 

( tj  j ) .  Time Difference in signal samples is referred to as time delay ( r j j )  in this work. 

Relation between the time difference, time delay and sampling frequency is given by:

h i  = ^  (2.19)
Is

where fa is the sampling frequency.

Thus ti j is expressed in terms of the integer values of the signal sample (Tj j) 

depending on the sampling rate fa of the signal. The DOA formula based on the 

far-field assumption given by equation 2.14 in section 2.2 is computed using cos~^(.) 

operation. The number of possible DOA estimates is hmited to the angle range of 

[0, 7t ] based on the range of cos function of [1,-1]. The number of time delays can 

be increased to obtain finer angular resolution by increasing the sampling frequency of
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the signal, by upsamphng or by increasing the distance between the microphone pair. 

Increasing the samphng rate of the signal or upsampling the signal to increase the 

sampling rate leads to higher storage and computational requirements. The distance 

between the microphones is restricted to satisfy the far-field assumption which states 

that the distance between the microphone pair in the microphone array should be very 

less compared to the distance between the signal source and the microphone array.

Interpolation is also used to improve the DOA resolution [32, 26]. This m ethod is 

useful in the Time Difference Of Arrival (TDOA) based algorithms for DOA estimation  

discussed in section 2.10. In the case of TDOA based algorithms after initial estim ate 

of the time delay in terms of integer value of the signal sample is obtained, parabolic 

interpolation is applied to obtain the time delay in terms of non-integer value of the 

signal sample. Parabolic interpolation is not computationally intensive. In this way 

DOA resolution is improved without increased storage requirements and with a small 

increase in the computation requirement.

The next section presents Lagrange’s parabolic interpolation method that is suitable 

for the algorithms discussed in section 2.10.

2.5 Parabolic Interpolation

Interpolation is useful in obtaining the approximate intermediate values between known 

points of a function by modeling it by a logical functional form [89, pg. 99]. Given N  

known points (x i, / ( x i ) ) ,  (x2 , • • • , /(x^v)) the Lagrange’s classical formula

for interpolation to obtain the unknown value of a function ( / (x ) )  at a point x is given 

by [85]:
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S r f  .  { x ~ X 2 ) { x - X 3 ) - - - { x - X n ) { x - X i ) { x - X 3 ) - - - { x - X n )
f { x )  =  f { Xi ) ~---------- ------------ ^ ^ -----------   +  f { X2) -

( X i  -  X 2 ) { X I  -  X 3 )  • • • ( X i  -  X n ) {x 2 -  X i ) { x 2  ~  X 3 )  ■ ■ ■ { X2  ~  X n )

, N (a: -xi ) (x-x2) - - - (x-x;v- i )
+  • • • +  ------------ 77------------ -̂---- 7----------------T (2 .2 0 )

[ X n  -  X i ) { x m  -  X 2 ) - - -  [ x n  -  â iv-i)

A function closely related to a polynomial can be interpolated using the polyno

mial as the modeling function. The order of the polynomial used in interpolation is 

given by the number of points minus one. The parabolic interpolation or Lagrange’s 

interpolation with three points is expressed as:

=  y (^ ,)  +  / ( X , ) +  /(X ,)
( l i  -  I 2 ) ( l l  -  1 3 )  ( 1 2  -  I i ) ( l 2  -  I 3 )  ( X a  -  I i ) ( l 3 -  I 2 )

(2 .21)

where f { x )  is the interpolated value of the function for the desired value of x  and 

f ( xi ) ,  /(X 2 ), / { xs )  are the already known values of the function for the values of Xi, 

X2 , X3  respectively. Parabolic interpolation is also known as second order, quadratic 

interpolation or three point interpolation.

For time delay estimation, parabolic interpolation has been used in [32, 36] to 

improve the resolution of the obtained direction of arrival by finding the fractional 

sample delays. Parabolic interpolation is appropriate for the function involved in the 

time difference of arrival based algorithms for DOA estimator discussed in section 2.10 

since they are close in form to a parabola around their maximum or minimum values. 

In this work parabolic interpolation has been used to improve the resolution of the 

DOA estim ates by finding the delay that is a non-integer signal sample value.

Next section discusses some of the problems encountered in a classroom environ

ment.
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2.6 C lassroom  Environm ent

Classroom environment play an important role in the performance of a Direction Of 

Arrival (DOA) algorithms. Two main problems encountered in a classroom are the 

noise in the room and the room reverberation. Noise refers to the ambient (back

ground) noise present in the room. This noise is due to the presence of mechanical 

equipments such as the heating system, HVAC and ventilation system in the classroom. 

Other equipments that contribute towards the background noise are the computers and 

projectors.

Presence of background noise affects the speech intelligibility. In the presence of 

high background noise, speech intelligibility suffers which makes it difficult for students 

to understand the lecture. This situation is worsened for students that have certain 

hearing disability.

Intensity measures the perceived loudness of the sound waves. Sound intensity is 

measured in decibel (dB). dB scale is logarithmic. Signal to Noise Ratio (SNR) is 

the ratio of the signal power to the noise power present in a classroom. It enables to 

estimate the understandability of the speech in a room. Both signal and noise power 

are measured in dB and hence SNR is the difference between the signal and noise power 

in dB [100].

The signal to noise ratio is given by:

where Pg and are the source signal and noise power respectively [91].

SNR of the room varies in the room due to different levels of signal and noise at 

different locations in the room. SNR is lowest at two locations in a classroom. One 

of the locations is the back of the classroom which is farthest from the lecturer’s or 

teacher’s location. The other location is nearest to the source of background noise 

where background noise is the maximum. A technical report by Acoustical Society

SN R  = 10 log (2 .22)
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of America [100] recommends a SNR to be above 10 dB for speech intelligibiUty and 

above 15 dB for children with certain hearing disability. American Speech-Language- 

Hearing-Association (ASHA) [4] guidelines recommend SNR to be greater than 15 dB.

Reverberation is another problem in a room. Reverberation is the echo of the 

signal [100]. When the signals in a room come into contact with the surfaces of the 

room they are absorbed, transmitted, diffused or reflected. The reflected and diffused 

signals interfere with the next words that are spoken. Depending on the degree of 

interference the speech intelligibility varies. Acceptable reverberation level in a room 

is measured in terms of reverberation time. Reverberation time (RT60) is a measure 

of the time it takes for the sound to decay to 60 dB of its original value. Volume 

as well as the surface materials of the room influence RT60 of the room. A small 

amount of reverberation is desirable as it helps in the propagation of useful sounds in 

the classroom. Recommended reverberation time is 0.4 - 0.6 seconds [100]. Bistafa et 

al. [23] recommend 0.4 - 0.5 seconds of RT60 for 100% intelligibility.

Following sections present state of the art for the Direction Of Arrival (DOA) 

algorithms for source localization.

2.7 D irection  O f Arrival A lgorithm  T axonom y

According to [24] source localization algorithms can be classified into three algorithm 

categories based on the signal processing approach for DOA estimation. They are:

1. Steered Beamformer based algorithms.

2. High Resolution Spectral Estimation based algorithms.

3. Time Difference of Arrival (TDOA) based algorithms.

In section 2.8, steered beamformer based algorithms are explained and a discussion 

of their role in the DOA estimation is presented. This is followed by an explanation
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and discussion of high-resolution spectral estimation based algorithms and the Time 

Difference Of Arrival (TDOA) algorithms.

2.8 Steered Beamform er Based Algorithm s

Beamforming involves focusing the microphone array to capture signals from certain 

directions in presence of interfering signals. It involves spatial filtering where the spatial 

filter of the array is focused towards the desired direction through the signal processing 

algorithms rather than physically focusing the array in the desired direction [60, pg. 

112], [116]. By spatial filtering two signals consisting of same frequencies are separated 

provided that they are generated in different locations [116]. The beam in the desired 

direction is formed by summing weighted signals of the microphones in the array [46, 

pg. 237]. Beamforming is mainly used in communications systems. Antenna arrays 

are used for beamforming. The concept of beamforming has been extended to the field 

of speech signal processing. The applications of beamforming include DOA estimation, 

steering a null in the direction of the undesired signal and signal enhancement [115].

Steered beamformer based algorithms are used to find the DOA of the source signal 

and also for signal source localization. The steered beamformer based algorithms utilize 

the Maximum Likelihood (ML) principle. The source locaHzation by these algorithms 

depends upon maximizing the steered response power of a beamformer. A beam is 

steered in all the possible directions and the output power is calculated for every 

direction. The angle, at which maximum output power is obtained, is taken as the 

DOA of the signal source.

DOA estimation using beamforming is performed on narrowband signals. For DOA 

on broadband signals the signal is divided into smaller frequency bands. Narrowband 

and broadband signals are introduced in section 2.3. Each frequency band is considered 

to be a narrowband signal on which the DOA estimation is performed. The results of
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DOA of these frequency bands is combined to get the overall DOA estim ate [115].

Consider a narrowband signal similar to the one given in equation 2.6 captured 

through a ULA of M elements. The output of a beamformer for the signal is given by:

M - l

y{t) =  w* Xi{t) (2.23)
t = 0

where X i { t )  is the signal captured by microphone in the microphone array and 

Wi  is the corresponding complex weight. The weight performs the spatial filtering such 

th a t the signal from a particular direction also called the look direction is emphasized 

[91, 45].

Equation 2.23 can be w ritten as:

y { t )  =  w "  x(i) (2.24)

where w  is the complex weighting vector and x(f) is the microphone array signal vector.

W hen the signal is a zero mean stationary process the mean ou tpu t power of the 

beamformer for a given weight vector is [45]:

P (w ) =  E[y{t) y*{t)] (2.25)

£'[.] is the expectation operator.

Speech signals change rapidly and hence are not stationary. The signal is divided 

into smaller sections called frames. The signal when divided into smaller frames can be

considered to be stationary. Thus the mean output power for the signal with L frames

is given by [91]:

^(w) =
t = i  

1 ^
=  x (0  x ^ ( i)  w ,

t=l

=  w "  R  w  (2.26)
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where R  =  ;̂  Y lt= i  ^ ^ ( 0  =  ^ [^ (0  is the correlation m atrix of the array.

For the DOA estim ation the angle at which the output power of the array is max

imum is taken as the DOA of the source signal. The weights vector distinguishes 

between different types of beamformers.

In this section, beamforming in the time and frequency domain is presented. Ini

tially the delay and sum beamformer is discussed. It is an example of the beamforming 

in the time domain. Beamforming in the frequency domain is described next.

2.8.1 D elay and Sum  Beam form er

The delay and sum beamformer (DSB) is one of the oldest and the simplest beamform

ers [60, pg. 112]. DSB is shown in Figure 2.3. It is also known as the conventional 

beamformer. As the name suggests in this approach the signals captured by the mi

crophones in the microphone array are delayed by the sample values corresponding to 

the relative time delay with respect to the reference microphone signal in the micro

phone array and added to  form the DSB. The aim of DSB is to reinforce the signal 

arriving from a particular direction by delaying the signals captured by microphones 

in the microphone array by the appropriate sample values. The delay value in terms 

of signal samples depend on the time taken by the signal wavefront to  travel from the 

source to the microphones in the microphone array [60, pg. 112]. The mean output 

power of this beamformer in the direction of the source is equal to the source power. 

In this beamforming process instead of mechanically steering the array in the direction 

of the signal source it is steered electronically by adjusting the phase of the signal. 

Moreover in the absence of interfering signals from other directions and the presence 

uncorrelated noise maximum possible signal to noise ratio (SNR) obtained using this 

beamformer [45]. For the DOA estimation the delayed versions of the signals captured 

by different microphones in the microphone array is added to the reference microphone 

signal to form beams focusing in different directions. The delays (in terms of signal
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Fig. 2.3: Delay and Sum Beamformer.

sample) are dependent on the relative time difference of arrival of the signals between 

the microphones in the microphone array [24, pg. 159]. The output of a DSB for signal 

arriving from a particular direction 9 is given by:

M - l

y{U) = ^  w* x{t -  Ti ê) (2.27)
i=0

where yite) is the output of the delay and sum beamformer(DSB) for angle 6, Wi is the 

weight associated with the microphone and x{t — g) is the signal received by 

microphone delayed by with respect to the reference microphone.

The power of the DSB for a frame of length K is given by:

K - l

(2.28)
t=o

The output power vector for the possible k angles is given by:

p(0) = [p(^o),m),. . . . (2.29)
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The DOA of the source signal corresponds to the angle associated w ith maximum 

value of power in the P ( 0 )  vector.

The DSB can be used on broadband signals. It estimates the location of the signal 

source by estim ating the likelihood of the presence of a signal source a t a particular 

location based on the energy measures obtained for tha t location. Birchfield [21] ex

plains th a t the DSB equation consists of two terms. The first term  is a measure of 

the pair-wise similarity between the signals received in the array and the second term  

represents the to tal energy of all the signals. DSB is similar to  Bayesian formulation 

in term s of maximizing the likelihood of the signal source being present a t a particular 

location. The difference between the two is in the weights used for the energy terms. 

For stationary signals, the energy term  does not affect the likelihood of the presence of 

the source at a particular location. This results in equal DSB and Bayesian equations.

For a DSB, the resolution in the estimated angles is dependent on the sampling 

ra te  of the signal. To get a higher resolution in angle the sampling rate of the signal 

has to be increased. This is because the delay is in integer values of the signal sample. 

Higher sampling rate translates to higher storage requirement and increased processing 

power. To overcome the problem of improved resolution in angle w ithout increasing 

the sampling frequency, frequency domain beamforming is employed [91]. Frequency 

domain beamforming is described in the next section.

2.8.2 Frequency D om ain Beam form ing

As mentioned at the beginning of section 2.8, frequency domain beamforming is per

formed on narrowband signals. The frequency domain representation of a narrowband 

signal w ith central frequency Uc given in equation 2.8 is given by;

X { u , )  = S{uJc)A{uj,) +  N(o;e) (2.30)
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The corresponding beamformer output is:

Y(u;c) =  w^X(u;e) (2.31)

where w is the complex weight vector given by w =  [wq,W\, .. . . ,w m - \ Y  ^

the number of elements in the microphone array. The choice of weight vector is based 

on the requirement that all the signals for the look direction are summed coherently [91, 

115] and the gain is high for signals in look direction whereas the signals from other 

directions are attenuated [115].

The power spectral density (PSD) of the beamformer is:

$Yv(u;J =  Y(a;,) Y*(u;,),

=  X (a;c) X *(u;c),

= w " $ xx  (î c) w (2.32)

The DOA of the source signal is taken as the direction for which the value of 

<I>y y (<^c )  is maximum. $ x x ( ^ c )  is the M  x M  PSD matrix of the input signals.

Since beamforming was developed for applications involving narrowband signals, in 

order to perform frequency domain beamforming on a broadband signal like the speech 

signal, the spectrum for the signal received by ea<;h microphone in the microphone ar

ray is obtained by Discrete Fourier Transform (DFT). The signals are then converted 

to narrowband signal by dividing them into smaller frequency bins. Individual nar

rowband spectrums with the corresponding frequency are multiplied by the suitable 

complex weight and summed.

The resolution in angle using a beamformer is dependent on the number of micro

phones in the microphone array. The maximum angle resolution that can be obtained 

with a ULA consisting of M elements, in radians is given by:

27T
=  —  radians  (2.33)
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While accuracy of the DOA estimates using beamforming is adequate, finer reso

lution in angles is obtained for higher sampling rates. Higher sampling rate requires 

more computational power rendering it unsuitable for real-time implementation [91], 

Moreover since beamforming was developed for narrowband signals, the performance 

of the beamformer on broadband signals such as speech deteriorates in the presence of 

reverberation [91].

The performance of the beamformer for DOA estimation can be improved by using 

a priori information. Duraiswami et al. [95] have exploited the a priori information 

about the enclosed space dimensions and its relationship with the signal wavelength to 

perform coarse-to-fine both in the frequency and space for efficient source localization 

beamforming.

D iscussion

Delay and sum beamformer appears to be very practical for the purpose of source 

localization in e-learning environment due to its simplicity. The drawback with this 

approach is that finer angular resolution cannot be obtained without increasing the 

sampling rate of the signal. Increased sampling rate leads to higher storage and com

putational requirements making it impractical for real time applications.

Beamforming in the frequency domain provides improved resolution in the angle 

estimates. Since they were proposed for narrowband signals, more computation is 

required to make them suitable for broadband signals such as speech. The performance 

of the beamforming algorithms deteriorates in the presence of reverberation [91]. The 

algorithm based on the coarse to fine search [95] requires a priori information that is 

not known beforehand rendering it unsuitable for the purpose of source localization.

Next section presents the second category of the Direction of Arrival (DOA) algo

rithms known as the high resolution spectral estimation based algorithms. The section
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starts  w ith an introduction to  the algorithms of this category a discussion about the 

advantages and disadvantages of the algorithms of this category w ith respect to  its 

application for DOA estim ation in an e-learning environment.

2.9 H igh R esolution Spectral E stim ation  Based  

A lgorithm s

The algorithms belonging to this category are suitable for narrowband signals. These 

algorithms are applied on broadband signals hke speech similar to the way frequency 

domain beamforming is applied on the broadband signal. As mentioned in section 2.8.2 

broadband signal is transformed to obtain its spectrum  using the DFT. The signal 

spectrum  is divided into several narrowband frequency bins [91]. The narrowband 

algorithm is applied on each narrowband frequency bin and then the results of all the 

narrowband frequency bins are combined to obtain an overall result for the broadband 

signal. Subspace based algorithms or eigen structure methods are prominent examples 

of the high resolution spectral estimation based algorithms category.

2.9.1 Subspace Techniques

In this section a brief introduction is provided on the subspace techniques. The al

gorithms based on the subspace techniques are based on two properties of the Cross- 

Correlation m atrix of the signal. The first property states th a t the space spanned by 

the eigenvectors of the signal can be divided into two orthogonal subspaces namely the 

signal subspace and the noise subspace. The second property states th a t the steering 

vector corresponding to the directional sources are part of the signal subspace since 

they too are orthogonal to the noise subspace [45].

For a narrowband signal with center frequency u>c the cross-correlation m atrix is a

32



M X M  matrix given by:

R(u;e) -  X(u;,) {ujc) (2.34)

Assuming that the rank of R  is full and the number of sources present (P) is less 

than the number of microphones in the array (M). The eigen decomposition of the R  

is expressed as [91]:
M

R  = Y ^  Aie,ef (2.35)
i=l

where Aj is the eigenvalue and 6i is the eigenvector.

The eigen decomposition of R  results in a P-dimensional signal subspace and 

(M — P)-dimensional noise subspace. The eigenvalues are arranged in the descending 

order. The highest P  eigenvalues represent the signal subspace and their corresponding 

eigenvectors span the signal subspace. The rest of the eigenvalues represent the noise 

subspace which is spanned by their corresponding eigenvectors.

These algorithms search for the directions for which the corresponding steering 

vectors are orthogonal to the noise subspace and belong to the signal subspace [91]. 

The length of the signal frame should be large enough to ensure that the rank of R  is 

full. Small frame size can lead to error in the detection of the number of sources and 

estimation of the DOA [91].

A discussion about the suitability of the algorithms of the high resolution spectral 

estimation based algorithm is presented next.

D iscussion

The algorithms of this category are found to be very efficient for DOA estimation es

pecially in the presence of multiple sources. The main drawback of these algorithms 

is that they are meant for narrowband signals. They can be applied on the broad

band signals such as speech. The spectrum of the speech signal is divided into smaller
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frequency band to form narrowband signal and the algorithms are performed on the in

dividual bands. The results of all the bands are combined to get the DOA of the speech 

signal. The algorithms are computational intensive. The computational requirements 

are further increased to facilitate their application on the speech signal. Furthermore 

the performance of these algorithms deteriorates in the presence of noise and reverber

ation. Thus the computation requirement along with a poor performance in presence 

of noise and reverberation makes the algorithms of this category less appealing for real 

time applications such as e-learning.

Next section discusses the third category of source localization algorithms known as 

the time difference of arrival (TDOA) based algorithms. These algorithms axe suited 

for broadband signal processing.

2.10 T im e D ifference O f Arrival B ased  A lgorithm s

In case of Time Difference Of Arrival (TDOA) based algorithms the DOA is carried 

out in two steps. First the Time Delay Estimation (TDE) is performed on the sig

nals received by the microphones in microphone array. TDE is computed on various 

combinations of microphone pairs in the microphone array. The second step involves 

using the TDE information and the knowledge of array geometry for source local

ization. Compared to the algorithms of the other two categories of DOA algorithms 

discussed in section 2.8, 2.9, these algorithms are not complex to implement and are 

computationally efficient [32]. They are also computationally practical for real time 

applications. The main disadvantage of the TDOA algorithms is that the presence of 

a single source is assumed for DOA [24, pg. 163]. Based on the e-learning scenario 

discussed in section 1.1 this disadvantage in not of great significance as it is expected 

that for communication only one person is the primary talker at any given instant. 

Thus they are suitable for source localization in e-learning.
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FVom the hterature Time Delay Estimation (TDE) can be divided into two promi

nent categories of algorithms based on their approach for TDE estimation. They are 

the Generalized Cross-Correlation (GCC) based algorithms and the Average Magni

tude Difference Function (AMDF) based algorithms. Before describing the GCC based 

algorithms and AMDF based algorithms, cross-correlation that is a part of most the 

TDE algorithms is discussed in the next section.

2.10.1 C ross-correlation

The cross-correlation algorithm finds the relation between two different signals. Based 

on the signal model presented in section 2.1, signals received by a pair of microphones 

in the microphone array can be represented as;

Xi(t) — Si{t) +  riiU) (2.36)

X2 {t) =  a  S i { t  — t ) n 2 {t) (2.37)

where Xi{t) is the signal received by the reference microphone that consists of the 

source signal s\{i)  corrupted by the additive noise n\{t).  Similarly X2 {t) is the signal 

received by the second microphone consisting of a time shifted version of the source 

signal s\{t)  scaled by a factor a and corrupted by the additive noise n 2 {t). The noise 

signals and n2 {t) are assumed to be uncorrelated to each other and to the source 

signal.

The cross-correlation of two microphone signals Xi{t) and X2 {t) is given by:

K - l

Rn i r )  =  +  t ) (2.38)
t=o

where K  is the length of the signal frame, r  =  0,1,2,  ••• and R\ 2 {t )  is the cross

correlation value at a delay r. The cross-correlation (i?i2 (r)) is found for different delay

r values. All the R\ 2 {t)  for different r values form the Cross-Correlation Function
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(CCF). Cross-Correlation Function (CCF) denoted by ( R c c f ) can be found by the 

Fourier transform and is given by:

R c c f  = F-^[X,{k)X;{k)]  (2.39)

where Xi{k)  and X 2 {k) are the Fourier Transforms of Xi(^) and X2 {t) respectively 

and is inverse Fourier transform operation. The term X\{k)  X^ ik )  is known as

the cross-spectrum of the two signals [114]. Maximum Likelihood (ML) principle is 

applied on the CCF to identify the delay (r) at which the two signals resemble each 

other the most. According to the ML principle the value of the r  that corresponds to 

the peak value of the CCF is the estimated time delay. The Cross-Correlation Function 

(CCF) is sensitive to noise signals [79] and amplitude changes [36].

Since in real time implementation the signal frame size is fixed thus the overall 

cross-correlation function is biased towards zero delay. This is because the shift in the 

second signal with respect to the first signal, ends up in an overall cross-correlation 

term, associated with a particular r  (other than zero shift), with less number of terms 

that are multiplied and added. As the shift moves away from the zero delay the cross

correlation value tends to decrease as the number of terms multiplied and added to the 

function decreases.

The simplest method to reduce the effect of bias is to use signal frames which 

are long compared to the total number of delay values. However, to get an accurate 

estimate r  it should be ensured that the signal is statistically stationary. This is not 

possible for very long frames. Thus there is a trade-off between the degree of bias of the 

cross-correlation algorithm and signal frame length. In addition, longer signal frames 

cause computational load to be significantly increased since the order of computations 

is O(K^) where K  is the size of the signal frame. The complexity can be reduced by a 

frequency domain implementation that reduces the complexity to 0 ( K  Ioq2  K)  [114].

Another way to reduce the effect of bias is to normalize the R u i r )  function by 

dividing it by the difference of the signal frame size and the r  value associated with
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the particular shift. This method is known as unbiased cross-correlation and can be 

written as:

where 0 < |r | <
{K -  |r |)  “

After presenting a discussion on the cross-correlation of the 

Cross-Correlation (GCC) based Time Delay Estimation (TDE) 

cussed in the next section.

2.10.2 G CC based algorithm s

One of the simplest way to find the time delay r  is to calculate the cross correlation 

of the signals received by pair of microphones. The delay value corresponding to the 

maximum value of the cross correlation function gives the relative time difference of 

arrival of the signal for that microphone pair. Even though two microphones are enough 

to estimate the DOA of the source by this approach its performance deteriorates in 

presence of noise and reverberation. More microphones can be used to increase the 

robustness and resolution of the result [114] and for source localization.

Since the adjacent speech samples are highly correlated, the cross-correlation func

tion peak obtained is very wide [114]. A wide peak does not pose a problem in case of 

a single delay but when the signal has multiple delays (in presence of more than one 

source or reverberation) wide peaks are not desirable. The cross-correlation peak in 

the presence of many delays can spread into each other to produce a cross-correlation 

function with broad local maximum. This can result in incorrect TDE since the peak 

corresponding to the actual delay can be overshadowed by other peaks [70], [24, pg. 

167].

For better time-delay resolution sharp peaks are desirable. Fixed length signal 

frames introduce errors in sharp peaks in case of low signal-to-noise ration (SNR). To 

overcome this problem weighting function or pre-filters for the cross-spectrum of the
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cross-correlation function have been proposed by Knapp et al. [70, 29]. The cross

correlation function obtained from the inverse fourier transform of the pre-filtered 

cross-spectrum is known as the Generalized Cross-Correlation (GCC). These weighting 

functions sharpen the peaks of the cross-correlation function.

The normalized cross-correlation function can be expressed as;

Ru i r )  =  F-^[i ; ik)Xi{k)X;{k)]  (2.41)

where represents the weighting fimction.

The prominent effective weighting functions proposed for GCC are presented below:

1. T h e  R o th  P ro ce sso r: This weighting function was proposed by Roth. It is 

give by:

^  X, {k) Xl { k)

The Roth processor suppresses the frequency regions where the noise is large as 

weights are assigned to the correlation function in accordance with the character

istics of the noise and signal [70]. The problem with this approach is th a t the a 

priori information about the noise and signal statistics is unavailable in many ap

plications [29]. The problem of source localization in a room is an example of the 

application where a priori information regarding the signal and noise statistics is 

unavailable.

2. S m o o th e d  C o h e re n c e  T ra n s fo rm  (S C O T ): C arter et al. [30] proposed the 

SCOT weighting function. It was proposed for TDE to localize an underwater 

acoustic source in the presence of strong undesired sinusoidal interference [98]. It 

is given by:

P̂{k) =   ̂ (2.43)
y/X, {k)Xl {k)X2{k)X^{k)

The SCOT weighting function is used to whiten the signal before finding the 

cross-correlation of the signal. W hitening of the signals sharpens the peak of
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the cross-correlation function [114]. Kuhn [72] proves with experimental results 

on broadband signal with different signal to noise ratio, th a t the SCOT pre

filtering is suitable for TDE on broadband signals. W hen X \ { k ) X l { k )  is equal to 

X 2 {k ) X 2 {k) then this function is equal to the Roth weighting function. The pre

whitening of the signal is not enough in this case to sharpen the cross-correlation 

peak. SCOT function suppresses frequency bands tha t contain higher noise con

ten t [70]. Experim ental results by Scarbrough [98] show th a t for TDE in presence 

of non-sinusoidal interfering (additive uncorrelated white Gaussian noise) signals, 

SCOT weighting functions performance is worse compared to  the unbiased cross

correlation function.

3. P h a s e  T ra n s fo rm  fu n c tio n  (P H A T ); The PHAT weighting function involves 

whitening the cross spectrum of the signals. The PHAT function is given by:

=  \xi(k)x;(k)\

This weighting function gives equal weight to all the frequency components in 

the signal. The TD E is based on the phase difference of the two signals. The per

formance of the cross-correlation due to m ulti-path improves by using the PHAT 

weighting. The main drawback of this method is th a t since all the frequencies 

including all the ones where noise dominates are given equal weight this method 

is less robust to noise and makes speech detection difficult [114], This results 

in poor performance of the PHAT in conditions of low reverberation and high 

noise [24, pg. 162].

4. T h e  E c k a rt F il te r :  The Eckart filter weighting function is given by [70, 29]:

^  X,{k)X*,{k)
’ N, {k) N*i k)N, {k)N^{k)   ̂ ’

where Ni{k)  and N 2 {k) are the Fourier transform of the noise signals rii{t) and

n 2 {t) respectively. The ratio of the change in the mean correlation output due
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to  the presence of the signals (si(t) and S2 {t)) and the standard  deviation of 

correlation ou tput due to noise is known as the deflection criterion. The Eckart 

Filter aims to maximize the deflection criterion by maximizing the num erator 

and minimizing the denominator. Similar to the SCOT function it tends to give 

less weight to frequency bands th a t have high noise content and zero weight to 

noise only frequency bands. The main drawback of this function is th a t the 

denom inator includes the spectrum  of the noise signals. Thus a priori knowledge 

of the signal as well noise spectrum  is required to implement it [70]. The a priori 

information of the noise spectrum and the source spectrum  is not known or only 

approximate information is available in some applications [29].

5. T h e  H T  P ro ce sso r: The HT Processor proposed by Knapp et al. [70] is also 

known as the ML estimator. This assumes th a t the speech signal and the noise 

signals are Gaussian processes [70, 29]. The HT processor is given by:

where

X,(k)X;(k)X2{k)X^{k)  * ' *

The ML weighting function is proposed for uncorrelated signals whereas in real 

time environment in presence of reverberation the noise and signals are highly 

correlated [108]. Moreover the performance of this weighting function degrades in 

reverberant environment [25]. The performance results obtained for this weight

ing function suggests tha t in the absence of reverberation this m ethod performs 

well for low SNR. It performance degrades for SNR less than  10 dB. But in 

reverberant environment its performance degrades even at high SNR values. 

C arter [29] emphasizes th a t in order to achieve good performance for TDE, it 

is necessary th a t the weighting functions are properly designed so th a t including

40



the pre-filtering process contributes towards improving the performance of the 

time delay estimators.

6. Pitch  based frequency weighting function: Another GCC weighting func

tion for TDE, proposed by Brandstein [25, 26] involves weighting the frequencies 

of the signal based on the signals pitch. The frequency bands containing the 

voiced parts of speech are emphasized whereas the parts containing high noise 

are given low weights. The speech signal frames maintain their periodicity in 

the presence of reverberation. To find the fundamental frequency of the sig

nal a Multi-Band Excitation speech vocoder generates excitation spectrum E{u)) 

for different fundamental frequencies. This excitation spectrum along with the 

room transfer function H{u>) is used to generate speech spectrum. The differ

ence between the actual speech spectrum X{uj) and generated speech spectrum 

for different fundamental frequencies is calculated. The equation for the error is 

given by:

e = —  [  \X{uj)-H{uj)E{uj)\^duj  (2.48)
27T J - n

The error for each harmonic associated with a fundamental frequency is found by 

dividing the frequency band into various bands centered about the harmonics of 

the fundamental frequencies. The error for each harmonic is found and added to 

get the overall error for that fundamental frequency band. The formula to find 

the error for harmonic is given by:

= ^  t  " (2.49)
27̂  4,1

where /jj and /j,2 are the lower and upper frequency limits with the harmonic 

as the center and Ai is given by:
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{ X { uj)E*{lo)(Lj 

j ; ; ; : \E { u W d ^

The error value for different fundamental frequencies of interest is found and 

the frequency that has the minimum error value is taken as the fundamental 

frequency of the signal.

The closeness of the estimated fundamental frequency spectral region to the ac

tual spectral region is found by calculating normalized error for harmonic

by:

E, = ------ ;— - (2.51)
±J!;;^\X{u W cL.

Low value of Ei indicate strong voiced harmonic region and high values of Ei 

indicate presence of high noise and non-periodic signal. The weighting function 

for the harmonic with limits and is given by:

, i \  — m a x ( E i i E i 2 ) V  , .
,1 (2.52)|A i(a;)A2(a;) |

where Ei^\ and E i 2 are the normalized error for harmonic of signal X \ [ u )  

and X 2 {uj) respectively. The values of 7 is taken between 1 and 2. By us

ing the above mentioned weighting the signal spectral regions containing strong 

voiced characteristics are emphasized while the spectral regions containing noise 

like characteristic are deemphasized. At low SNR values the performance of 

this weighting function degrades especially in the presence of high reverberation. 

The estim ation of the fundamental frequency for this method is computationally 

demanding as a resolution of 1 Hz in the case of higher harmonics for the funda

mental frequency is required. A coarse to fine search method can be used where 

coarse search of the region where the fundamental frequency may be present can
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be identified and a fine search for the fundamental frequency can be performed 

in this region.

7. G C C -C E P : Apart from the above weighting function using cepstral pre-filtering 

as a weighting function to reduce the impact of reverberation has been proposed 

in [108] for TDE. This weighting function is known as GCC-CEP. The complex 

cepstrum of a signal is obtained by taking the inverse Fourier transform of the 

complex logarithm of the Fourier transform (frequency spectrum) of the signal. 

The cepstrum of a signal can be decomposed into two components namely the 

minimum phase component and the all pass component. Any modifications made 

to the all pass component effects the TDE but slight modifications to the min

imum phase component does not effect the TDE. By subtracting the minimum 

phase component of the channel cepstrum from the signal cepstrum the TDE can 

be improved, based on the assumption that minimum phase component of the 

signal cepstruni varies for all the frames and has zero mean whereas the mininmm 

phase component of the channel cepstrum varies slowly.

The channel cepstrum is calculated frame by frame. An exponential window 

is applied on the frame before the cepstrum pre-filtering. The minimum phase 

components are emphasized compared to the all pass components using the ex

ponential window since these components can be modified to reduce the effect of 

reverberation on the time delay estimates. The channel cepstruni is calculated 

recursively which is subtracted from the signal cepstrum. The resultant is trans

formed into time domain signal and inverse exponential window is applied. GCC 

is performed on this signal to get the time delay [108]. This method requires 

frames to have stationary speech signal which is possible for small frames but for 

de-convolving the effects of reverberation using the cepstrum requires long frames 

as the impulse response of the room can be very long. Stephenne et al. [108] have
I

tested the GCC-CEP algorithm on the Gaussian noise as the source signal.
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D iscussion

As suggested by Chen et al. in [32], GCC is a prominent algorithm used for the 

TDE. Among the weighting functions used in TDE through the GCC algorithms, the 

filtered cross-spectrum obtained using PHAT weighting function involves the channel 

responses for the source signal without involving the signal itself [32]. For wideband 

signals, GCC-PHAT weighting is independent of the characteristics of the signal [86]. 

The performance of GCC using the PHAT weighting is better compared to using other 

weighting functions for signal characteristics that change in time [32], [24, pg. 167]. 

The characteristics of noise and the speech signal need not be modeled for PHAT 

weighting function.

2.10.3 A verage M agnitude Difference Function (A M D F )

AMDF is another algorithm that is used for TDE [32, 58]. This algorithm involves 

taking the sum of the absolute value of the difference between the microphone signals 

at different time delays. The delay value at which the difference between the signals is 

minimum is taken as the estimated time delay.

AMDF is given by:

1
R a m d f { t )  =  ^  X] +  t ) |  (2.53)

n=0

where K  is the signal frame length. This algorithm has low computational complex

ity as it does not involve any multiplications. Its performance degrades in the presence 

of reverberation and noise [32].

Another algorithm that is used is the Average Square Difference Function (ASDF). 

This is a variation of the AMDF where the sum of the squares of the difference of the 

microphone signals for different delays is taken for TDE. The estimated time delay is 

equal to the delay corresponding to the minimum value of the ASDF.
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ASDF is written as:

1
R a s d f { t )  =  —  J ^ ( x i ( n )  -  X 2 { n  +  r ) f  (2.54)

n = 0

Average Mean Sum Function (AMSF) is another algorithm that takes into consid

eration the sum of the signals unlike the AMDF. It is given by:

R a m s f { t )  =  ^  ^  \xi{n) +  X 2 { n  +  r ) | (2.55)
n = 0

Like AMDF this algorithms also does not involve any multiplication operations 

and hence has a low computational complexity. Compared to the cross-correlation 

algorithm, AMDF and ASDF perform well in the presence of medium to high noise [58]. 

The performance of AMDF deteriorates in the presence of reverberation.

Chen et al. [32] have recently proposed two TDE algorithms based on the GCC- 

PHAT, AMDF and AMSF algorithms. The first algorithm namely the Weighted Cross- 

Correlation (WCC) estimator aims to merge the robustness of the GCC algorithm and 

the accuracy of the AMDF algorithms. The second algorithm known as the Modified 

AMDF (MAMDF) combines the AMDF and the AMSF algorithms for TDE.

The WCC algorithm is given by:

r> Rcccij)  / oRwccu) -  (2.56)
R a m d f [ t  ) + e

where R g c c { t )  and R a m d f { t )  are given by the equations 2.41 and 2.53 respectively. 

The value of the weighting function for R g c c  is the PHAT function of equation 2.44. 

A small positive value e is added to prevent division overflow. The r  value that corre

sponds to the minimum value of the Rwcc function is the estimated time delay. 

MAMDF algorithm is given by the equation:

R m a m d f (t ) =  (2-57)
R a m s f Kt ) +  e
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where R a m d f { t ) and R a m s f { t )  are given by the equations 2.53 and 2.55 respectively, 

e is a small positive value added to the denominator to prevent division overflow. The r  

value that corresponds to the maximum value of the R m a m d f  function is the estimated 

time delay.

Based on the experimental results in [32], both the algorithms perform equally well 

in the presence of reverberation and are better than GCC-PHAT. In the presence of 

noise their performance is better than the AMDF algorithm.

2.10.4 Others

Apart from the algorithms based on the GCC and AMDF, hemisphere sampling is an

other method proposed for DOA estimation. This algorithm employs the GCC-PHAT 

given in equation 2.44 for TDE. The cross-correlation vectors obtained by this method 

for diff^erent pair of microphones are mapped to a common coordinate system. This 

coordinate system is called the sampled unit hemisphere whose center is the micro

phone array [22]. The DOA is estimated based on the accumulated sum of the mapped 

correlation vectors where the hemisphere’s maximum cells give both the azimuthal and 

the elevation angles. The authors claim that the method is robust to noise and re

verberation, can handle any microphone configuration and does not suffer from blind 

spots. Blind spot are the locations for which the DOA cannot be found [22].

More recently Talantzis et al. [110] have proposed DOA estimation based on the 

information theory. This algorithm estimates the DOA for a single source in a highly 

reverberant environment. It is based on the finding the TDE by maximizing the mutual 

information that one microphone has on the other in a microphone pair. For a signal 

source with zero-mean Gaussian distribution, the mutual information for the signal 

received by a microphone pair is given by:



where det [ ]  is the determinant operator and C { t ) is the joint covariance matrix.

The mutual information obtained is not sufficient to obtain robust TDE in rever

berant environments. Thus the information between the microphones is estimated by 

considering jointly ‘N’ neighboring samples of the signals. This gives the marginal 

mutual information which can be used to find the TDE. For a very long frame the 

diagonal elements of the C{r) are independent of r. The relative time delay is equal to 

the delay value that maximizes the value of MI given in equation 2.58. In the presence 

of reverberation this algorithm performs better than GCC-PHAT but its performance 

degrades with the increase in the room reverberation.

2.11 D iscussion and Conclusions

The Time Difference Of Arrival (TDOA) based algorithms are suitable for real time 

implementation as they are not computationally intensive. Another advantage of these 

algorithms is that finer resolution in angle can be obtained by applying interpolation 

to obtain time delay estimates in terms of fractional signal samples.

The main drawback with using the cross-correlation algorithm for Time Delay Esti

mation (TDE) is that it is very sensitive to amplitude changes which results in spurious 

Direction Of Arrival (DOA) estimates. The cross-correlation function also has wide 

peaks which is not desirable when the signal consists of multiple time delays and also for 

finer resolution in the DOA estimate. The Generalized Cross-Correlation algorithms 

have been proposed to provide sharper peaks by using a weighting function with the 

cross-correlation function. Among the proposed weighting functions the performance 

of the GCC-PHAT is the best in the presence of noise and reverberation. The perfor

mance of algorithms based on the Average Magnitude Difference Function (AMDF) 

for TDE deteriorates in the presence of reverberation. Among the recently proposed 

TDE algorithms, MAMDF algorithm appears to perform better than GCC-PHAT in
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the presence of noise and reverberation.

Steered beamformer based algorithm such as delay and sum beamformer though 

simple to implement requires higher sampling rate for finer resolution in the DOA 

estimates. This increases storage and computation requirements making it impractical 

for real time implementation. Beamforming in the frequency domain increases the 

resolution in the DOA estimates without increasing the signal sampling rate. But this 

method is suitable for narrowband signals. It can be applied on broadband signals like 

speech but this requires increased processing power. Moreover the performance of the 

algorithms deteriorates in the presence of reverberation.

The high resolution spectral estimation based algorithms are efficient for DOA esti

mation especially in the presence of multiple sources. The algorithms are computational 

intensive. The main drawback of these algorithms is that are suitable for narrowband 

signals. They are applicable on broadband signal such as speech at additional com

putation requirements. Furthermore the performance of these algorithms deteriorates 

in the presence of noise and reverberation. Thus the computation requirement along 

with a poor performance in presence of noise and reverberation makes the algorithms 

of this category less appealing for real time applications such as e-learning.

The Time Difference Of Arrival (TDOA) based algorithms are suitable for real time 

applications as they are not computationally intensive. They are suitable for DOA 

estimates in an e-learning environment since they assume presence of a single signal 

source which is in agreement with the classroom environment discussed in section 1.1 

that during lecture there is only a single signal source. Finer resolution in the DOA 

estimate can be obtained by interpolation instead of upsamphng the signal or increasing 

the sampling rate. From the discussion in section 2.8, 2.9 and 2.10, it can be concluded 

that for real time source localization in an e-learning environment DOA estimation 

using TDOA algorithms is practical.

The Generalized Cross-Correlation (GCC) algorithms have been proposed to pro-
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vide sharper peaks by using a weighting function with the cross-correlation function. In 

the presence of noise and reverberation the performance of the GCC-PHAT is the best 

among the proposed GCC weighting functions. The performance of algorithms based 

on the Average Magnitude Difference Function (AMDF) for TDE deteriorates in the 

presence of reverberation. Among the recently proposed TDE algorithms, MAMDF 

algorithm appears to perform better than GCC-PHAT in the presence of noise and 

reverberation.

2.12 The YIN Algorithm

This section describes and explains the YIN algorithm. YIN algorithm [36] is used for 

estimating the fundamental frequency of a signal. Modification to the YIN algorithm 

for TDE, primary contribution of this thesis, is presented in section 4.1 of chapter 4.

The fundamental frequency of a periodic signal is equal to the inverse of its period. 

YIN algorithm is used to find the period of a speech or music signal which in turn 

is used to find the fundamental frequency of the signal. The objective of the YIN 

algorithm is to find the period of the signal based on the similarity of the signal and 

it’s shifted or delayed version. YIN utihzes the difference between the actual signal 

and a shifted version of the signal at different time lags to find the period of the signal. 

It assumes that the actual signal and its shifted version will be most similar (in ideal 

case will be equal) at the time lag value that is the period of the signal.

The TDE algorithm aims to find the relative time difference for a signal to reach a 

pair of microphones in a microphone array. The solutions to the TDE problem is based 

on finding the time delay by measuring the similarity between the received signals at 

different lag values. TDE algorithms assume that the signals will be most similar (in 

ideal case will be equal) at the actual time delay. Due to the similarity in operation 

of the YIN algorithm and the TDE algorithms, it will be shown in chapter 4 how the
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YIN algorithms can be used for TDE.

YIN algorithm consists of 5 steps. They are as follows;

1. Step 1: Calculate the difference function which is equal to the sum of the squares 

of differences of the signal and its delayed version. The difference function for 

the signal is given by:

K - l
c?(r) = ^ ( x ( n )  — x(n + r))^ (2.59)

Tl =  0

where x { n )  is the input signal, x { n  + r) is the input signal delayed by an integer 

sample value represented by r  and K  is the length of the signal frame.

The equation 2.59 when expanded gives:

K - l  K - l  K - l
(1{t ) = x^{n)  + x^{n  + r) — 2 x { n ) x { n  + r) (2.60)

n = 0  n = 0  n = 0

The first two terms on the right hand side of the equation 2.60 represent the 

energy of the signal. The second energy term is not constant and varies with the 

value of T. The final term is the autocorrelation of the signal at the lag value [36].

With an increase in the signal amplitude with time, the peak of the autocorrela

tion function of the signal increases instead of remaining constant. This results 

in the incorrect lag estimate that will be higher than the expected lag as the peak 

of the autocorrelation will move away from the expected lag value to higher lag 

values. This problem is known as “too low” error. “Too high” error occurs when 

decrease in the signal amplitude with time results in reduction of the peak of the 

autocorrelation function of the signal instead of remaining constant. In this case 

the peak of the autocorrelation function will coincide with the lag value which 

is smaller than the expected lag value. The difference function given by equa

tion 2.59 is insensitive to the problem of “too low” error as change in amplitude, 

with lag, increases the period-to-period dissimilarity [36].
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2. Step 2: A problem with the difference function given by equation 2.59 is that it 

tends to be zero for zero lag and non-zero at the actual period value. Thus a 

lower limit of one lag value is used on the period search range. Another problem 

encountered with difference function is that a strong resonance at the first formant 

(refer to section 3.2) of the speech signal might lead to incorrect identification of 

the formant as the period [36]. To avoid both the problems the difference function 

is normalized to form the cumulative mean normalized difference function. The 

cumulative mean normalized difference function is given by:

, f 1 {for  r  =  0)

“  I (otherwise)
V 7  2 ^ 1 = 1

Due to normalization of the difference function, the cumulative mean normalized 

difference function reduces the “too high” error. This step also eliminates the 

necessity to limit the higher search range of the period. The lag value corre

sponding to the minimum of the cumulative mean normalized difference function 

is taken as the period of the signal.

3. Step 3: The calculation of (r) is followed by the selection of the signal period 

based on absolute threshold. Absolute threshold is used to reduce the error in 

the estimated signal period. The absolute threshold value is not constant and is 

decided by the user. The lag that corresponds to the minima that is below the 

absolute threshold value and is closest to it is taken as the period of the signal.

4. Step 4: Parabolic interpolation follow absolute threshold step. Parabolic interpo

lation (discussed in section 2.5) is used to improve the resolution of the periodicity

measure [36].

5. Step 5: The final step involves finding the period of the signal based on the best 

local estimate. This step is used to further reduce the error in period estimation. 

The first four steps are implemented on the signal where the upper limit on the
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frequency range does not exist. In the final step the cumulative mean normalized 

difference function is found for the signal around the pitch estim ate with a re

striction on the search range which is given by the range of [ t —  i and

comes up with the best periodicity measure. T ^ a x  is the largest expected period 

and t  is the time instant at which the period of the signal is estim ated [36]

This algorithm is suited for high pitched voice and music signals as no restriction is 

placed on the frequency upper search range [36].

2.13 Summary

In this chapter the background literature associated with the DOA algorithms was 

presented. These included the signal model, the formula for DOA estim ation based on 

far field assumption, spatial aliasing, resolution of the DOA, parabolic interpolation, 

problems encountered in a classroom environment th a t interfere with the performance 

of DOA estimation. This was followed by a description, advantages and disadvantages 

of the steered beamformer based algorithms, high resolution spectral estim ation based 

algorithms and Time Difference Of Arrival (TDOA) based algorithms. It was concluded 

th a t for e-learning environment DOA estimation from TDE is practical as they are 

suitable for real time implementation. Finally the YIN algorithm th a t is used to find 

the fundamental frequency of the speech and music signals was described in detail. 

The YIN algorithm is the basis of the primary contribution of the thesis which is a 

TDE algorithm th a t performs well in presence of noise and reverberation.
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Chapter 3

State of the Art: Voice A ctiv ity

D etection

This chapter presents the background hterature associated with Voice Activity Detec

tion (VAD) and the various stages in designing of a VAD system. The chapter begins 

with a high level overview of a VAD system. This is followed by a description of speech 

signal characteristics that can be used for VAD. Audio signal features used for VAD 

in the existing literature are presented next. The chapter ends with a description of 

feature selection and supervised machine learning algorithms.

3.1 V oice A ctiv ity  D etectio n  (V A D ) S ystem

Voice Activity Detection (VAD) is an important pre-processing stage to TDE in a DOA 

system as shown in Figure 1.1. VAD involves distinguishing between speech and noise 

signals [82]. It is beneficial as a pre-processing stage for applications such as VoIP [97, 

88], mobile telephony [19, 20, 39], source localization [69], speech recognition [120] and 

speaker recognition. In VoIP, bandwidth is saved by identifying parts of signal that is 

speech as only speech packets are transmitted. In mobile telephony, it saves bandwidth
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Fig. 3.1 : Schematic diagram of the VAD System.

which helps to increase the number of simultaneous users and also to save power of the 

handset [75]. In conference applications such as e-learning it reduces the number of 

computations and errors by finding the DOA only on the signal segments that consist 

of speech.

A block diagram of a VAD system is presented in Figure 3.1. The VAD process 

is executed in two steps. In the first step the features of the signal frame required 

for VAD are computed. A feature is a characteristic of the signal that is input to 

the classification algorithm to determine the signal types. The second step involves 

the classification algorithm that determines the class of the signal frame based on the 

value of the features. Audio signal properties and features used in various classification 

algorithms are discussed in section 3.2 and section 3.3 respectively. Section 3.4 presents 

the theory associated with the selection of the signal features for classification. The 

discussion on the classification algorithms for voice activity detection is presented in 

section 3.6.

3.2 Speech Signal Characteristics

The speech signal received by a listener is a sound pressure wave produced by a talker 

and is made up of a sequence of sounds that convey the thoughts of the talker in the 

accepted rules of communication between humans. Speech signal waveforms change
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Fig. 3.2 : Voiced (left) and Unvoiced (right) Speech Signals

rapidly in few milliseconds (ms) [61, pg. 225] and have non-stationary spectral char

acteristics [61, pg. 104], Thus short duration frames of the speech signals are taken 

during which the signal is considered to be stationary.

According to the literature on human speech production in [87, 61], the lungs and 

trachea, the larynx and the vocal tract are the three main subsystems of the human 

vocal organ. The lungs provide the compressed air and influence the loudness of the 

speech. In the speech production process larynx plays an important role as it is the 

organ for producing voice. Vocal tract mainly consists of the two cavities namely the 

pharyngeal (throat) and the oral (mouth). Vocal cords, velum, tongue, teeth and lips 

are other significant anatomical features for producing speech. The resulting speech is 

modulated by the vocal tract.

Speech sounds can be grouped into two broad classes namely the voiced and the 

unvoiced (see figure 3.2). Voiced speech has characteristics of a deterministic waveform 

whereas unvoiced speech is more noise like [61, pg. 29 - 30]. In the English alphabets, 

voiced speech comprises of all the vowels and a few consonants. Unvoiced speech 

consists of consonants [87, pg. 66].

The Larynx contains and controls the vocal cords [87, pg. 61]. It is the source of the 

periodic excitation for voiced speech [61, pg. 103]. The excitation causes oscillations
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of the vocal cords known as the phonation. The glottal pulses produced during phona- 

tion have a repetition rate called the pitch of the pulses [87, pg 64-65, 133]. Voiced 

speech contain phonation due to the periodic excitation whereas unvoiced sounds do 

not contain phonation as their excitation is noise like [87, pg. 65], [61, pg. 109]. For 

a male talker pitch ranges from 80 Hz to 160 Hz and for female talker it varies from 

160 Hz to 400 Hz. The rate of vibration of the vocal cords is known as fundamental 

frequency of the phonation. Fundamental period is the time between successive open

ings of the vocal cords [61, [pg. 112]. Fundamental frequency and fundamental period 

are inversely related. The term  pitch is used interchangeably with the fundamental 

frequency and is usually denoted by Fq [36], [61, pg. 114].

The vocal tract is a tube and has natural resonant frequencies known as the for

m ants [87, pg. 66, 103]. The vocal tract has non-uniform cross section and for a male 

talker vocal tract is approximately 17 cm long, for female talker it is approximately 14 

cm long and for children it about 10 cm long [61, pg. 102]. The shape and physical 

dimensions of the vocal tract determine the location of the formants in the frequency 

domain [61, pg. 107]. For a tube with uniform cross-section the resonant frequencies 

will occur at the frequency values given by:

=  f o r  i =  1, 2,3, 4, . . .  (3.1)

where fi  is the formant frequency, c is the velocity of speech signal and I is the 

length of the vocal tract. However due to the non-uniform cross-section of the vocal 

tract the formants do not occur at the exact value. For speech recognition first three 

formant frequencies are used [87, 103-104]. A correspondence exists between the vowel 

sound and the formant frequencies [87, pg. 104]. This is useful in detecting voiced 

speech and also in speech/speaker recognition.

The glottal pulse train  which is an excitation signal for voiced speech is periodic 

and contains harmonics. This pulse when applied to the vocal trac t results in a speech 

signal th a t is the glottal pulse train  convolved with the impulse response of the vocal
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Fig. 3.3 : Power Spectral Density for Voiced and Unvoiced Speech Signals

tract. As a result the output of the vocal tract appears periodic with a interspacing 

of glottal pulse period [87, pg. 115]. The spectrum of the glottal pulse train has a 

spectral roll-off of approximately 12 dB/Octave in the frequency range of 0.8 - 1 kHz. 

The sound spectrum undergoes a boost of 6 dB/Octave while the speech is emanated 

from the lips (see figure 3.3). Thus the output speech spectrum will have a net 6 

dB/Octave roll-off between the first two formants for vowels [87, pg. 115-116].

3.3 A udio  Signal Features

Several classification algorithms have been proposed based on the signal characteristics 

for different applications. The features used in the VAD classification algorithms are 

discussed below.

1. Short term energy and low band to full band energy ratio: One of the signal 

features used in the VAD algorithms is the short-term power or short-term en

ergy [80, 82, 16], [94, pg. 120-126] of the signal. Short term energy of a signal 

frame is the sum of the squares of the amplitude of the signal samples within the 

frame. Some algorithms take the logarithm of the energy as the measure of short 

term energy [18, 44, 67]. Since the short term energy values obtained are very
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small, the logarithm of the energy is taken as the the short term energy. Log 

Energy is given by:
K - \

E = log io 'y^x ’̂ ji) (3.2)
1 = 0

where K  —> Number of signal samples in the frame and x{i) —>■ signal sample 

in the frame.

Energy of the signal divided by the number of samples in the frame gives the 

short-term power of the signal. Short-time log power is given by the logarithm of 

the average short-term energy [68]. Both energy and power of the signal frame 

provide similar information about the signal but short term energy is preferred 

as it involves less computation [61, pg. 246].

Short-term energy helps to distinguish between vowels (usually voiced) and con

sonants (usually unvoiced) parts of speech [87, pg. 293]. The voiced speech has 

higher energy than the unvoiced speech [121]. In some scenarios it can also be 

used to distinguish between the background noise and other signals especially 

voiced speech at high SNR since the energy of the speech signal is greater than 

that of the background noise [ i l l ,  107]. In the presence of high Signal to Noise 

Ratio (SNR) it is used to detect silence periods in the speech signal. However, 

the short-term energy of the signal by itself is not sufficient to classify the signal 

in presence of low SNR as it becomes difficult to distinguish between speech and 

noise [107].

Other features related to the energy of the signal used in the VAD algorithms 

include root mean square energy of the input signal [104], peak amphtude of the 

signal [104], ratio of the signal energy to the noise energy [67], energy distance 

measure [17, 93] and different frequency band energies. Energy distance mea

sure gives an idea of the closeness of the signal frame to the average signal of a 

particular class. It is the normalized Euclidean distance given by the difference
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between the log energy of the current frame and the known average log energy 

for the signal of a particular class normalized by the standard deviation of the 

the log energy for the signal of that class [17, 93].

Low band energy is taken in the range of 0-1 kHz and the high band energy is 

calculated in the frequency range of 2-4 kHz [103, 50]. High band energy helps to 

detect consonants [103] as they tend to have less energy in the low band [75] and 

high spectral concentration in the high band [74]. In contrast the low band energy 

of the voiced signals is high. Gaussian like noise signals have low full band energy 

and a mid level of low band energy [75]. Several algorithms have used different 

forms of the band energies in the VAD algorithms. Some of the variations include 

differential power/energy in 0 - 1 kHz band [18, 40, 42], differential power/energy 

over the whole band [19, 40, 42], variance of ratio of high frequency band to low 

frequency band energy [17], low band to full band energy ratio [75], ratio of the 

energy of the signal is greater than 4kHz to the low band energy [104].

2. Zero-crossing rate: Zero-crossing rate is a prominent feature used in the VAD [112, 

93, 111, 28, 104, 94, 118] and speech recognition algorithms [62]. I t’s value in

dicates the number of times a signal has changed its sign within the frame [61, 

pg. 245]. Thus when the speech signal energy is high its zero-crossing rate tends 

to be low and vice versa [50]. It indicates the dominant frequency in the frame 

duration [66]. Zero-crossing rate of the signal is given by:

= — ^  \s'̂ 9n{x{i)} ~ sign{x{i -  1)}\
2

i= 0

where sign{x{n)} =  -f-1 for x{n) > =  0, sign{x{n)} =  —1 for x{n) <  0 and K  is 

the frame length.

Voiced speech will have lower zero-crossing measurements compared to unvoiced 

signals [61, pg 251], [121]. Deller et al. [61] mention that short-term energy of the
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signal with zero-crossing is useful in identifying speech signal. Noise signals too 

have high zero-crossing rate. Variance of the zero-crossing ra te  [66], zero-crossing 

difference [73, 18, 42], delta zero-crossing rate [28], ratio  of frame zero-crossing 

rate to the zero-crossing rate of the noise signal [67] are the variations of this 

feature utilized for VAD. Like short term  energy, in low SNR, zero-crossing is not 

very effective for VAD [103].

3. LP coefficients, LP residual energy and PARCOR coefficients: Linear Predictive 

Coding (LPC) is used in speech compression [77]. The analysis of the speech 

signal gives the filter coefficients known as the Linear Predictor (LP) coefficients 

th a t can be used to synthesize the speech signal. The speech signal is synthesized 

by filtering an impulse signal with pitch period equal to the pitch of the signal for 

voiced speech and a zero mean, unity variance, uncorrelated noise signal for the 

unvoiced speech [61, pg. 267]. LP coefficients are obtained during the analysis 

of the speech signal. The future signal samples can be predicted using the LP

coefficients, the past and the current signal samples. For classification feature

sets the first two LP coefficients are considered.

The signal sample at instant ‘n ’ is given by:

where x{n — i) is the previous n — i signal samples, a(z) are the LP coefficients 

and p  is the number of LP coefficients.

The LP coefficients can be computed from the autocorrelation function of the 

signal. The autocorrelation function of the signal is given by:

K - l

Rxx{k) =  ^  x{i)x{i  -  k) (3.5)
2 =  0

where K  is the length of the signal frame and A; =  0,1, 2, • • •.

p

(3.4)
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The autocorrelation function {R) and the LP filter coefficient vector (>1) are 

related by the equation RA  = M, where

R x x { 0 ) R x x { 2 ) R x x  ( p  1 )

R x x { l ) • R i x ( o ) i ? x x ( l ) R x x ( p  -  2 )

R  =
• R x i ( 2 ) ^ x x ( l ) R x x { o ) R x x  ( p  3 )

R x x i p  1 )  R x x i p  2 ) R x x i p  3 ) R x x ( o )

A^ = a ( l )  a ( 2 ) a ( 3 )  • • • a(p)

= [ / ? x x ( l )  R x x { 2 ) R x x ( 3 ) • R x x ( p )

The filter coefficients are determined by solving the following equation;

A = R-^M (3.6)

The first few LP coefficients are used for voice activity detection as they contain 

more information about the signal [16, 104]. They are more robust in low SNR 

conditions [76]. Typical filter order used is 8-10 [61, pg. 285], [82].

The difference between the signal synthesized from the LP coefficients and the 

original signal is called the LP residual signal. The LP residual energy for the 

frame is given by:
K - l

^ re s ( k ) ^ (3-7)
i=0

where K  is the length of the signal frame. In [61, pg. 288-289] the LP filter 

order versus the LP residual energy plot shows that for voiced sounds the LP 

residual energy is lower compared to that of the unvoiced sounds. The LP residual 

energy of the signal is utilized to distinguish between voiced sounds and unvoiced
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sounds [16, 103, 61]. LPC distance measure [92] and log of sum of the square 

of the LP coefficients [68], maximum LP residual autocorrelation peak [71] are 

other LPC based features used for VAD.

Partial correlation or reflection (PARCOR) coefficients are generated during the 

analysis of the signal along with the LP coefficients [87, pg. 144]. The PARCOR 

coefficients are useful as the stability of the filter is ensured if their magnitude 

is less than 1. They are used in the lattice filter structure for the vocal tract 

model [87, pg. 155]. The first ‘n ’ PARCOR coefficients values do not change if 

the order of the filter is increased from ‘n’ to a higher order. The PARCOR coeffi

cients also contain information about the signal like the LP coefficients hence are 

used for VAD. The absolute difference between the first two PARCOR coefficients 

is another signal feature for classification [55].

P A R = \ b { l ) - b { 2 ) \  (3.8)

where 6(1) and 6(2) are the first and second PARCOR coefficients.

4. Higher Order Statistics (HOS): Higher order statistics (HOS) like the skewness 

and the kurtosis of the signal can be used to distinguish between Gaussian noise 

and non-Gaussian signals [82]. Skewness and kurtosis are the third and fourth 

standardized moments respectively.

Skewness of the signal frame consisting of K  samples is given by:

,3.8)
Kurtosis of the signal frame of K  samples is given by: 

where x  is the mean of the signal frame given by:

K u r t =  (3.10)

j=0
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For a Gaussian signal their value is zero. The values of skewness and kurtosis of 

the speech signals especially voiced is non-zero. Kurtosis is useful in detecting 

voiced parts of speech [103]. The HOS of the LP residual signals are used as they 

are effective in low signal to noise ratio (SNR) conditions [82]. Their values for 

speech signal is different from that of the Gaussian noise and they are immune 

to Gaussian noise. Hence they can be used in low SNR for speech detection [82].

5. Pitch and Formants: Pitch is relevant in detecting voiced speech [28, 94, 118]. 

Pulse period of the glottal pulses also known as the pitch of the signal is an impor

tant time domain property of the vowel waveform. Pitch of the signal gives the 

periodicity of the signal. Formant frequencies are the resonant frequencies of the 

vocal tract. Pitch and formant frequencies are discussed in section 3.2. For short 

duration voiced signal can be considered periodic. Accurate estimation of pitch 

is of importance as error can occur which will lead to error in classification [104].

6. Spectral slope, spectral roll-off point and spectral centroid: Spectral slope of the 

vowel waveform is an important frequency domain property of the vowels (voiced 

speech). It has a spectral slope roll-off of 12 dB/octave in the frequency range of 

0.8 -1 kHz [87, pg. 116]. A 6 dB/octave boost is introduced during the radiation 

of the speech from the lips. This overall results in a slope that has a 6 dB/octave 

roll-off [87, pg. 116]. Spectral slope is calculated by taking the difference of the 

logarithmic amplitudes of the first two formants. It can be used to distinguish 

between voiced speech and other signals [55].

Another feature is the spectral roll-off point also known as spectral roll-off. Spec

tral roll-off point is the point below which c% of the magnitude distribution of 

the spectrum of the signal, obtained by the Fourier transform, is present. The 

spectral roll-off point is the bin number ( P s r ) that satisfies the following equa-
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tion [113, 381];
PsR K - l

(3 ‘2)
i=0 i=0

where Psr is the spectral roll-off point and X[i)  is the signal in the frequency 

domain and K  is the number of Discrete Fourier Transform (DFT) coefficients.

The spectral roll-off point provides a measure of the concentration of the spectral

energy of the signal and the skewness of the spectrum. The spectrum with

brighter sounds has a right-skewed shape and hence the spectral roll-ofT value 

is high [118, 113]. It distinguishes between voiced and unvoiced signals. For 

voiced speech most of the energy is contained in the low frequency band (left 

skewed) whereas for unvoiced speech most of the energy is contained in the higher 

frequency band (right skewed). The value of c is taken as 95% [99].

Spectral centroid is defined as the balancing point of the power spectrum of 

the signal. It also helps to distinguish between voiced and unvoiced speech sig

nals [99]. Spectral centroid of the signal frame is given by:

r . p _  . 0 . 0 ^

where K  is the length of the signal frame and X{i)  denotes the frequency spec

trum of the signal.

Spectral centroid gives a measure of the shape of the spectrum where high value 

of spectral centroid corresponds to the presence of high energy in the higher 

frequency band indicating the presence of unvoiced speech [113, pg. 381].

7. Normalized autocorrelation coefficient of the signal at unit sample delay: This 

value is obtained by normalizing the autocorrelation of the signal frame for a 

single sample delay. It is equal to [16]:

(3 14)
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Sub-band 1 2 3 4 5 6 7 8 9 10
Critical band 

center frequency 
(Hz)

100 200 300 400 500 600 700 800 900 1000

Sub-band 11 12 13 14 15 16 17 18 19 20
Critical band 

center frequency 
(Hz)

1148 1318 1514 1737 1995 2291 2630 3020 3467 4000

T able 3.1: Center frequency of 20 critical bands 

where K  is the signal frame length.

The normalized autocorrelation coefficients of the signal at unit sample delay 

measures the correlation between adjacent signal samples. Since adjacent signal 

samples of voiced sounds are highly correlated, for voiced sounds its value is 

higher compared to other sounds.

8. Cepstral Coefficients and Mel-Prequency Cepstral Coefficients (MFCC): Cep- 

strum features have also been utilized for speech recognition [61, pg. 398], speaker 

recognition [87, pg. 340], speech and audio classification [94, 35]. The cepstrum 

of a signal is equal to the inverse Fourier transform of the logarithm of the Fourier 

transform of the signal [113, pg. 375]. The cepstrum of the signal can be written 

as:

c{n) = F-^[logio\X{u)\] (3.15)

where i^~ [̂-] represents the inverse Fourier Transform operator and c{n) are the 

cepstral coefficients for signal x{n). The obtained coefficients are an approximate 

value of the cepstral coefficients [94, pg. 377].

The first LP predictor coefficient and the first sample of the Cepstrum of the
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Fig, 3.4 : Relation between the signal frequency in Hz and perceived signal frequency 
in Mel units.

signal are equal [104]. The variance of the cepstra of the noise is lower than that 

of the speech [49]. Other cepstral features employed for VAD include the cepstral 

distance [49], LPC cepstral coefficients [94].

Mel Frequency Cepstral Coefficients (MFCC) is another important signal fea

ture [118, 94, 80]. MFCC is useful for endpoint detection [73] and word isola

tion [33] in speech recognition. It is a data reduction process that in essence 

preserves the speech signal information [117]. Perceived pitch or frequency is 

measured in mel unit. Physical frequency of the signal and mel are not linearly 

related. For frequencies below 1 kHz their relation is linear and for frequencies 

above 1 kHz they are logarithmically related [61, pg. 380]. Figure 3.4 shows the 

relationship between the perceived frequency in mel units and the real frequency 

of the signal in Hz. An approximate relation between the real frequency (mea

sured in Hz) and the perceived frequency (measured in mel) scales is given by [61,
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where Fmei and F^z are the perceived and actual frequencies.

Tones of different frequencies form complex sounds as perceived by the auditory 

system. The auditory system cannot distinguish between the tones of sound tha t 

are present in a particular band known as the critical band. The perception of 

a particular frequency in a critical band is influenced by the frequencies present 

around the frequency in the critical band [61, pg. 381]. Table 3.1 presents 

the center frequencies of first twenty critical bands. For complex sounds having 

bandw idth smaller than  the critical bandwidth around the center frequency, the 

perceived sound is a single tone at the center frequency of the critical band. The 

loudness of this sound is a scaled average of the loudness of the tones present in 

the sound. The bandwidth of the critical band depends on the frequency [113, 

I>g. 378]. It increases uniformly for frequencies below I k H z  with a bandwidth 

of 100//z and increases logarithmically for frequencies above \ k H z  [61, pg. 381- 

382].

MFCC are constructed from the frequency spectrum  of the signal such th a t they 

reflect the sounds as perceived by the auditory system [113, pg. 378]. The are 

equal to the inverse Fourier transform of the coefficients obtained by taking the 

sum of the weighted log energy of the frequencies in each critical band around 

the mel frequencies of the band [61, pg. 382].

In order to  compute the MFCC coefficients, first frequency spectrum  of the signal 

is obtained by taking the Fourier transform of the input signal. The log magnitude 

of the D FT coefficients for each critical band is given by:

Y(k, )  = '^ i o s i „ \ X ( k ) \ H ,{ ^ j p j  (3.17)



where Y{ki) is the sum of weighted log magnitude of the frequency components 

of the signal {X{k)) for the critical band, i =  0,1, 2, • ■ • , K  . K'  is the total 

number of point used in the computation of the DFT of the signal. Range of k 

is limited to the bandwidth of the critical band [61, pg. 383], [113, pg. 380]. 

Hi{.) is the triangular weighting window for the critical band.

The relation between band center frequency (/j) and sampling rate (/«) is 

given by:

= (3.18)

The coefficients obtained by the weighted sum of the log magnitude of the DFT

coefficients of each critical band are Inverse Discrete Fourier Transformed (IDFT)

to get the mel-frequency cepstral coefficients [61, pg. 383-384], [113, pg. 380].

The equation for mel-frequency cepstral coefficients is:
/

T  ̂  ̂ 27TT77'/? ^
Cmeijn) =  —  Y{m)exp i j  j  where n =  0,1,2, • • • , A " -1. (3.19)

m=0 ^ ^

and

{y{ki) ( for  m. = ki, where z =  1, 2, • • • , Af)
 ̂ ^ ; 3̂ 20)

0 {otherwise)

M  is the number of critical bands and K  is the length of the signal frame.

The mel-frequency cepstral coefficients are very significant in the area of speech 

as well as audio recognition and classification and are described as the most 

powerful features for these applications [113, pg. 380].

3.4 Feature Selection for Classification

Features are the characteristics of the input signal that are employed for distinguish

ing between different signal classes during the classification process. As described in
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section 1.2.1 feature selection/evaluation is the first step in designing a VAD system. 

In this section the process of feature selection/evaluation is discussed. The algorithms 

that can be used to obtain the best feature subset are also explained.

3.4.1 Feature Selection

Pattern classification problems generally involve solving two crucial problems. They are 

the selection/evaluation of features and decision rule for classification. The problem of 

feature selection and evaluation is more complex and important compared to the prob

lem of finding the decision function for classification [87, pg. 171]. Feature Selection 

involves identifying the features that are relevant for a specific classification problem 

and presenting them in a compact and intelligible manner by discarding unimportant 

information [87, pg. 175]. Feature evaluation comprises of determining the significance 

of each feature towards cleissification. In the existing literature [48, 81, 84, 51, 119] 

concerned with selection of features for classification the problem of feature evaluation 

is discussed as feature selection. So in this thesis the term feature selection is used for 

feature evaluation.

While designing a classifier an early step is to identify the features that are relevant 

to the classification problem and hence can be used for classification. Desirable prop

erties of features adopted for classification include the ease in measurement, statistical 

independence, stability for longer time periods, insensitivity to the influence of other 

(external) variable and possessing different values for different classes [87, pg. 175].

The supervised machine learning algorithms are trained by example data for each 

class known as the training data. Each data example of the training data is a vector 

consisting of the values of the features and the class label associated with it. All the 

features together form the feature set. The performance of the classifier is then assessed 

by another set of data (that is not a part of the training data) called as testing data 

in this work.
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If the training data size is infinite then additional features improve the accuracy of 

classification since more training data for different scenarios is available for training. 

For finite training data size in spite of the features being statistically independent 

the performance of the classifier, beyond a certain stage, degrades with additional 

features [81]. This is known as the ‘peaking phenomenon’. To avoid the peaking 

phenomenon, feature selection is used to improve the classifiers performance.

The objective of feature selection is to provide an optimal feature subset from the 

feature set such that it improves the prediction rate of a classifier [48]. Moreover feature 

selection improves the computational complexity by reducing the number of features 

to be calculated, economy by reducing the cost of measuring undesired features and 

also the understanding of the classification problem [81]. In cases where computation 

complexity and economy are not relevant, feature selection is still important as the 

analysis presented by Amir et al. [81] suggests that the usage of too many features 

gives rise to the classification error that is equal to the that obtained by chance.

The main aim of feature selection is to select the features from the feature set 

such that it increases the interclass distance and decreases the intra-class variance 

for better classification [113, pg. 214]. There are several approaches for performing 

feature selection which use different selection criteria to perform the task of feature 

selection. One of the approaches towards feature selection is to obtain the significance 

of each feature individually based on its discriminating ability by statistical hypothesis 

testing [113, pg. 216] or Receiver Operating Characteristics (ROC) curves [113, pg.

223] and form the feature subset by including the features from the feature set that 

are able to separate the classes best. The main drawback of this approach is that it 

ignores the correlation of the features that can result in poor classification [113, pg.

224].

In case of multi-class pattern classification, machine learning algorithms such as 

Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) can be em-
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ployed for feature selection [48]. These algorithms take into consideration the correla

tion between the features. They select the feature subset from the feature set based 

on its ability to meet the class separability criteria. The class separability criterion 

depends on the algorithm being used for feature selection. In the case of DA the class 

separability criteria is to reduce the variance within the group and increase the distance 

between the centroids of different groups. In the case of support vector machines this 

criteria is to keep the ratio of the difference between the margin of hyperplane that 

separates the classes, with all the features and the one with selected features to the 

margin of hyperplane with all the original features as small as possible [15, pg. 192].

In some cases for feature selection, the classification hit rate of the classifier for 

which the feature selection is being done is taken as the criteria for feature selection 

instead of the class separability criteria. Classification results are presented using the 

parameters classification Hit Rate (HR) [54, pg 83] representing the percentage of data 

correctly classified into a particular class and False Alarm Rate (FAR) representing 

the percentage of data of other classes that are incorrectly classified into a particular 

class.

Classification hit rate is defined as:

No. o f  correctly classified data
Total No. o f  data 

Classification error rate is defined as:

No. o f  incorrectly classified data

X 100 (3.21)

Total No. o f  data 

Hit Rate (HR) for a class is defined as:

No. o f  correctly classified data o f  type k

X 100 (3.22)

Total No. o f  data o f  type k

False Alarm Rate (FAR) for a class is defined as:

No. o f  incorrectly classified data into type k 
Total data o f  other types
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In this approach the feature subset that gives the minimum error rate is utihzed 

for classification [113]. This approach is suitable for small training data set only as 

for large training data set this approach is computationally intensive. Cross-validation 

also known as the leave one out method can be performed on the training data to 

obtain the hit rate [15, pg. 194], In this method all the class data sample but one 

is used to form the classification rule. The excluded data is then classified using the 

classification rule and the group assigned by the classifier for the data is compared to 

its actual group. This method is applied on all the data of the training set and the 

classification hit rate is computed.

The resultant feature subset from feature selection process using different feature 

selection algorithms may not be the same. The feature subset obtained from feature 

selection for classification depends on the algorithm and the approach used for feature 

selection.

3.4.2 Backward and Forward selection

As described in the previous section feature selection involves identifying the features 

that are relevant for a particular classification problem. The approaches that can be 

taken for evaluating the relevance of a feature or feature set were discussed in sec

tion 3.4.1. In this section the algorithms that can be used to decide on the feature 

subsets from the feature set that is input to the feature selection algorithm are pre

sented. The multi-class feature selection algorithms mentioned in section 3.4.1 utilize 

the feature subsets as the input to come up with the feature subset that is best for 

classification purpose. These algorithms are used in the feature selection algorithms 

mentioned in section 3.4.1.

This problem of deciding on feature subset to be considered in the feature selection 

process becomes crucial when the feature set is large. This is because, large number 

of features give rise to large number of feature subsets to be considered for feature

72



selection. This problem is made simple if the size of the feature subset to be selected is 

known a priori. To select I features from the feature set of m  features a total of 

feature subsets have to be evaluated [113, pg. 234], Since the feature subset knowledge 

(the number of features that will be present in the selected feature subset) is not known 

a priori, evaluating all the feature subsets for all the possible variable combinations is 

computationally cumbersome [87, pg. 180-181]. To overcome this problem suboptimal 

searching techniques (also known as the greedy search techniques) such as the forward 

selection and the backward selection are employed [113, pg. 243], [48], [87, pg. 180-181].

Backward selection starts with an assumption that all the features in the feature set 

are significant. The class separability criteria for the feature set is computed. In the first 

iteration, the class separability or selection criteria for all the possible subsets with one 

less feature are found. The feature subset with the best value of the criteria is retained. 

This means that the feature that is not included in the selected subset is assumed to 

be insignificant and discarded. Discarded features are not considered further. This 

process is repeated until removal of another feature does not improve the accuracy 

of the classifier or when certain predetermined condition is met [87, pg. 181]. This 

method reduces the number of feature combination searches to 1 - I -  2{ m (m +i ) - i { i+ i ) )  

pg. 234].

Forward selection starts with an empty feature set. The class separability or selec

tion criteria for each feature are computed and the feature with the best value of the 

criteria is included in the feature subset. Features included in the feature subset are 

always included in all the further iterations. In the next iteration the class separability 

or selection criteria is computed for all the feature combinations of the selected features 

and other features. The subset with the best value of the criteria is included in the fea

ture subset. This process is repeated until addition of another feature does not improve 

the accuracy of the classifier or when a predetermined condition is reached [87, 181]. 

This method reduces the number of feature combination searches to [113^ p g
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235],

The choice of backward selection or forward selection depends on the problem. 

Backward selection is comparatively computationally efficient than forward selection 

when the value of I is closer to m than to 1 [113, pg. 235]. It is argued that forward 

selection comes up with weaker subsets as the significance of features is not obtained 

relative to other features that are yet to be included in the feature subset. On the other 

hand, by using backward selection features that are most important in classification 

may be discarded as they do not perform well with some other features in the feature 

set [48].

3.5 Classifier for Voice A ctiv ity  D etection

This section discusses the formation of the decision function for VAD.

In video conferencing or a classroom environment, an audio signal is captured with 

microphones. The microphones can be the clip-on microphones or a microphone ar

ray. Apart from the speech signals other undesirable sounds such as cough, sneeze, 

paper shuffle and background stationary noise from the computer, projector, heating 

and ventilation system, air-conditioner in the room are also captured. Voice Activity 

Detection (VAD) is a useful to distinguish between the speech signals and other signals 

in order to process the signal appropriately for the application.

In the case of a clip-on microphone due to their closeness to the signal source 

background stationary noise level may not be very high when compared to the speech 

signal but sounds of breathing, paper shuffle are amplified along with the speech signal. 

Thus background noise in this case is not a significant problem. In the case of signals 

captured by a microphone array background stationary noise and other undesirable 

sound levels can be comparable to the captured speech signal which makes the VAD 

difficult.
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The number of features required for VAD depends on the number of classes of the 

signal. The decision function for classification is based on the threshold value of one 

or more features. This decision function is used to classify the signal into a particular 

class by comparing the feature value with the threshold values of the decision function. 

For classifying the signal into speech and background noise (varying level) features such 

as signal energy levels, zero-crossing rate and periodicity may be employed.

Prom the VAD results by Tanyer et al. in [112], signal energy gives an overall Hit 

Rate (HR) of less than 80% at 10 dB SNR and approximately 90% at 50 dB at SNR. 

Zero-crossing rate of the signal results in a classification HR of approximately 70% at 

10 dB SNR and approximately 85% at 50 dB SNR. Periodicity of the signal gives a 

HR of approximately 90% and 96% at 10 and 50 dB respectively. Lie et al. [75] use 

the logarithm of the kurtosis of the LP residual of the signal and low band to full band 

energy ratio to detect speech and noise frames in presence of car and street noise. The 

maximum HR for speech signal was 95.7% at 18 dB in the presence of street noise and 

96.1% in the presence of car noise.

The main advantage of the user defined threshold approach is that the user has 

more control over the VAD as the threshold value for the features is user defined. 

The main disadvantage of this approach is the decision regarding the threshold value. 

For small amount of data the threshold for different features can be found by visual 

inspection but this data may not contain enough examples to generalize the decision 

function for that particular scenario. For large amount of data obtaining the threshold 

values may not be simple. Similarly using large number of features for classification 

can be very tedious. For a small class set setting a threshold value for the features may 

not be a difficult task as the feature set required may not be very large. But when the 

class set is large then a larger feature set may be required to distinguish between the 

signal classes. Getting threshold values for a larger class set with larger feature set can 

be complicated.
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Another approach for VAD is to employ the machine learning pattern classification 

algorithms. Based on the approach adopted by the algorithms for pattern classification 

the machine learning algorithms can be broadly divided into two groups namely the 

unsupervised machine learning algorithms and the supervised machine learning algo

rithms. Unsupervised machine learning algorithms take unlabeled data and arrive at 

the possible number of class clusters contained in the data based on pre-defined pat

tern set or cost function provided by the user [38, 17]. Clustering is an example of this 

algorithm.

The supervised machine learning algorithms require training data to construct a 

decision function that distinguishes between signals of different classes predefined by 

the user. They train on the labeled data known as the training data. Based on the 

feature values for different classes decision function is formulated to classify the signal 

in the pre-defined classes. The user controls the classification process by providing the 

training data that is crucial in creating the decision function.

The advantage of using the supervised machine learning algorithms is that they 

can handle large feature sets. Another advantage is that a larger feature set can be 

considered initially and the feature subset consisting of the most significant features for 

classification can be finally utilized. The main disadvantage of these algorithms is that 

to get a decision function for acceptable classification rate the training data provided 

should be sufficiently large to train for each class and include as many scenarios as 

possible from the environment for which the classifier is being trained. Another dis

advantage is that some of these algorithms may be parametric. Parametric classifiers 

assume the distribution of the data. Based on the feature values for different classes 

decision function is formulated to classify the signal in the predefined classes. Dis

criminant Analysis (DA), Artificial Neural Networks (ANN), Support Vector Machines 

(SVM) and logistic regression are the well-known algorithms of the supervised machine 

learning algorithm category.
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3.6 Classification U sing Supervised M achine Learn

ing A lgorithm s

This section involves the discussion regarding the decision rule for classification which 

constitutes the second stage of the pattern classification using the supervised machine

learning algorithms. It gives a brief introduction to the concepts of the Gaussian distri

bution and the Bayes decision theory that are a part of some of the supervised machine

algorithms described in this work are Discriminant Analysis (DA), the Artificial Neural 

Network (ANN) and the Support Vector Machine (SVM). The performance of these 

three supervised machine learning algorithms is evaluated for Voice Activity Detection 

(VAD) in this thesis.

3.6.1 M ultivariate G aussian D istribution

Pattern Classifiers are either Parametric or Non-parametric. Parametric classifiers as

sume knowledge of the distribution of the data and exploit this information to form 

the decision rule for classification. The multivariate normal or Gaussian density is the 

commonly used data distribution. Figure 3.5 shows a two dimensional Gaussian distri

bution. I t’s significance is due to analytical simplicity and also since it is appropriate 

in situations where the feature vectors of a particular class are continuous-valued and 

randomly corrupted forms of a standard vector [38, pg. 31].

The univariate normal or Gaussian density function of a input variable x  is given

where /i and are the mean (expected value) and variance of the input x  respectively.

learning algorithms used for pattern classification. This is followed by a description 

of the supervised machine learning algorithms. The three supervised machine learning

by;

(3.25)
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Fig. 3.5: Plot of 2-dimensional Gaussian Distribution.

The Gaussian distribution is described by its mean (/i) and variance (a^). It is denoted

byiV( /x ,a2)  [38  ̂ pg 32].

/i, the mean of the input x  is:

/OO
xp{x)dx

■00

and a, the variance of the input x  is:

/OC

{x — fx)^p{x)dx
•0 0

The multivariate Gaussian density function is given by:

p(x) -
1

( 2 7 r ) i | i : | 2
exp

-1

(3.26)

(3.27)

(3.28)

where x  is I element column vector, /x is the I element mean vector and E  is a / x / 

dimensional covariance matrix. |S | is the determinant of the covariance matrix and 

E “Ms its inverse.
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The covariance matrix is given by:

E  =  £ [ ( x - ^ ) ( x - ^ ) ^ ]  (3.29)

where £'[.] is the expected value of signal.

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) 

assume that the class has a multivariate Gaussian distribution.

3.6.2 Bayes Decision Theory

Existing pattern classification algorithms such as the DA use Bayes Decision Theory to 

find the probability of the input data belonging to a particular class. This probability 

is used to classify a signal into one of the pre-specified classes. Bayes Decision Theory 

takes into consideration the a priori or prior probability P(cj) of an event in order to 

obtain the posienor probability of an event. The a priori probability is the information 

that the user is aware of regarding a particular event taking place. For classification 

purpose Bayes formula is given by:

,  p ( x | C i ) P ( C j )
  (3-30)

In equation 3.30, x. is a I dimensional data vector. The term P(cj|x) is the posterior 

probability that indicates the likelihood of occurrence of an event Cj for a given input 

vector x. p(x|ci) is the likelihood of the event conditional probability density function 

for X  conditioned on true event being Cj and i is the total number of events. The term 

p(x) in the denominator is a scaling factor that ensures that the sum of the posterior 

probabilities for all the possible events is unity [38, pg. 24]. The numerator in equation 

3.30 is critical in the determination of the posterior probability of an event. In case 

of the P(ci) being equal for all the events the decision is based on the term p(x|cj) 

and vice versa. Bayes Decision Theory combines both the terms in order to obtain 

minimum probabihty of error [38, pg. 23].
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The data of unlabeled data is assigned to the class i by the following rule:

P(cj|x) > P(cj|x) fo r  all i ^  j  (3.31)

The value of P(cj|x) is found by equation 3.30. The data is assigned to the class 

that has the maximum posterior probability [90, pg. 71].

3.6 .3  Supervised  M achine Learning A lgorithm s

This section presents the theory of the Discriminant Analysis which are parametric 

classifiers and the non-parametric classifiers like the cascade neural networks and the 

Support Vector Machine (SVM).

Param etric Classifiers

In this section, a brief description of the parametric classifiers considered for classifi

cation in this work is presented.

D iscrim inant Analysis; Discriminant Analysis classifiers are parametric classi

fiers and assume that the signal class has a multivariate Gaussian distribution. Discrim

inant analysis when used to predict the class of the given data is known as Predictive 

Discriminant Analysis (PDA) and when used to find the class difference is known as 

the Descriptive Discriminant Analysis (DDA) [54, pg. 28]. PDA algorithms are used 

here for Voice Activity Detection (VAD). DA involves training the classifier by find

ing a classification function. This classification function is found from an example 

data set whose group membership is already known also called the training data. The 

classification function in turn is used to classify data whose class is unknown based 

on the classification rule. Quadratic Discriminant Analysis (QDA), Linear Discrimi

nant Analysis (LDA) and Mahalanobis Distance (MD) are the important algorithms 

belonging to the PDA category.
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1. Q uadratic D iscrim inant A n alysis (Q D A ): QDA is quadratic in the unla

beled data. Assuming that the classes have a multivariate normal distribution 

with respect to the input data the hkelihood of conditional probability density 

function for x  conditioned on true class being Cj is given by:

P(x|ci) =  } 1 exp
( 2 7 r ) 2 | E i | 2

(3.32)

where z =  1, 2, • • • , A: is the total number of pre-defined classes, is the expected 

value of data vector for class Cj, Ej is a / x / covariance matrix, |Ej| is the 

determinant of the covariance matrix and is the inverse of the covariance 

matrix.

The covariance matrix for class is given by:

Ej =  E  [(x -  ^ J ( x - (3. 33)

From the Bayes formula for posterior probability in equation 3.30, the likelihood 

of occurrence of class Cj for a given input x  is given by:

P(c.|x) =  (3.34)

Substituting equation 3.33 in equation 3.34 and taking the logarithm, ln{.) of the 

resultant P(cj|x) the quadratic discriminant function is given by:

QFi(x) =  ln P(cj) -  i [ ( x - /X i)^ E -^ (x - /x J ]  -  ^ In2 7 t - ^ In |E,I (3.35)

The term ^  27t is a constant. When the a priori probability of all the classes

is equal, In P(cj) is equal for all the classes. Thus neglecting both the terms 

equation 3.35 can be rewritten as:

QF,(x) =  -^ [ ( x  -  -  Hi)] -  ^ In |Ei| (3.36)
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The unlabeled data is assigned to the group c, such that:

QFi{x.) > QFj{-x)‘, fo r  all i ^  j  (3.37)

where i , j  = 1, 2, • • • , k

2. Linear D iscrim inant A nalysis (LDA): LDA is a special case of the QDA 

where the covariance matrix for all the classes is equal and a common pooled 

covariance matrix is taken [81], [113, pg. 21-22], LDA is a named so as it is 

linear in the unlabeled data.

Consider the equation 3.35. When expanded the equation is written as:

QF,(x) =  - i x ^ s - ^ x + i x ^ s - v «  -

+  In P(cj) — ^ ln27T — ^ In |Ej| (3.38)

When the covariance matrix of the classes are equal then in equation 3.38 the 

first term which is the quadratic in the input data can be neglected as it is same 

for all the classes. The constant terms — |ln27r — i l n | S j |  can be neglected as 

they are equal for the classes. Thus equation 3.38 can be rewritten to give the 

linear discriminant analysis function:

LFi{x) =  + In  P(ci) (3.39)

The unlabeled data is assigned to the group Cj such that:

LFi(x) > LFj(x); fo r  all i ^  j  (3.40)

where i, j  = 1,2, ■ ■ ■ , k

3. M ahalanobis D istance (M D): The MD algorithm is the simplest of the DA 

algorithms. It measures the distance of the input data from the centroid of each
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class. It is a special case of the function provided in equation 3.35. When all the 

classes have equal probability of occurrence (P(cj)) and all the classes have same 

covariance matrix then equation 3.35 can be rewritten as:

QFt{^) =  ^ [ ( x  -  -  ^li)] (3.41)

For non-diagonal covariance matrix maximizing QFi{x) of equation 3.41 is equiv

alent to minimizing the norm of the covariance matrix [113, pg. 25]. This distance 

measure is known as the Mahalanobis distance given by:

A (x ) =  [(x -  (3.42)

For diagonal covariance matrix the equation 3.42 is reduced to the Euclidean 

distance given by:

A (x ) =  | | x - / i J I  (3.43)

The unlabeled data is assigned to the class for which the Di{x.) value is minimum 

indicating that the data is closest to the centroid of that class [54, pg. 55-56].

LDA and QDA are among the most popular classifiers as they are suitable for 

different applications. LDA and QDA are computationally demanding since for a large 

number of features large numbers of unknown parameters have to be computed in high 

dimensional feature space. Moreover, they need a large number of training data to 

provide acceptable classification results [113, pg. 28].

N on-Param etric Classifiers

In this work a number of non-parametric classifiers are also considered as decision 

engines. A brief outHne of each of the schemes follows.
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1. C ascade C o rre la tio n  M ultilayer A rtificial N eu ra l N etw orks: Artificial 

Neural Networks (ANN) attem pt to act as simplified models of the human brain. 

They are usually nonlinear and non-paranietric machine learning classifiers. ANN 

consists of an input layer, an output layer and layers between the input and output 

layer known as the hidden layers. All the layers consist of processing elements. 

A processing element maybe connected to other processing element and to itself. 

The topology of the neural networks is defined by the interconnection between 

the processing elements [90, pg. 101].

The output of each processing element is a weighted sum of the inputs into the 

element and is dependent on the threshold function known as the activation 

function being used by the neural network. The value of the weighted sum of 

inputs is compared with the threshold function value and output is generated 

accordingly [90, pg. 102]. The threshold function is known as the activation 

function. Most commonly used activation function is the sigmoid function. The 

output range of the sigmoid activation function is between 0 and 1. 0 represents 

low input values to the processing element and 1 represents high value input to 

the processing element [83]. Using the processing elements, ANN constructs the 

discriminant functions for classification. The number of discriminant functions 

and their shape is dependent on the topology of the ANN [90, pg. 101].

ANN learns from the training data that consists of the examples related to the 

classification problem. During training, the training data is input and output 

is computed. The output is compared to the desired response and the error is 

obtained. The error value is then used to adjust the weights of the processing 

elements using the training algorithms. For changing the weights, all the training 

data is used and the process is repeated till the convergence criteria is satisfied. 

Determining the shape/number of discriminant functions and the location of the 

discriminant function in the pattern space are the two prominent issues encoun-
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tered in designing the ANN for classification with minimum error [90, pg. 101].

The cascade correlation also known as the cascade architecture is an iterative 

construction algorithm that is employed to build an artificial neural network [96, 

pg. 172]. Initially the input and output processing elements are connected di

rectly without any hidden layers. The processing elements of the hidden layers 

are later included in the network one at a time [96, pg. 172], [38, pg. 329],

The processing elements in the hidden layer have two type of weights associated 

with them. The first type of weights connects the new processing element to 

the input layer processing elements and also to the output of the previously 

added processing elements in the hidden layer. The weights associated with 

the connection between the previously added processing elements and the newly 

added processing element is -1. This is done in order to stop the new hidden 

processing element from learning function that have already been taken care of 

by the previously added hidden processing elements [38, pg. 330].

The weights connecting the input of newly added processing element to the out

put of the input layer processing elements are trained such that the correlation 

between the newly added processing elements output and the residual error signal 

at the networks output prior to the inclusion of the new processing element is 

maximum. The value of these weights once computed is not changed [113, pg. 

152].

The second type of weights connects the new processing elements to the output 

layer processing elements. These weights undergo adaptive training and hence 

are updated such that the sum of squares error cost function is minimized. The 

training process is complete when a pre-specified network performance value is 

obtained [113, pg. 152].

Cascade correlation architecture has a layered structure and does not perform
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global optimization i.e. it does not update all the weights periodically. Updating 

weights periodically results in smaller networks th a t have better generalization 

ability compared to the cascade architecture but take more time to  train  [96, pg. 

172-173]. Thus training cascade correlation neural network is faster since all the 

weights are not updated at a given time [38, pg. 330].

The Next section provides a brief description of the third type of machine learn

ing algorithm used in this thesis for performance comparison for Voice Activity 

Detection (VAD).

2. Support Vector Machine:

Support Vector Machine (SVM) is a non-parametric supervised machine learn

ing algorithm tha t is used for pattern  classification. It is a supervised machine 

learning algorithm since it trains on data  with labeled class and classifies the 

unlabeled data  based on the training. SVM uses training data to find an opti

mal hyperplane th a t separates different classes of the training data. This is done 

by transforming the data  into higher dimension space. The dimension of the 

transformed da ta  space is greater than  th a t of the original data. A non-linear 

mapping function (0(.)) is used to transform the training data  to the higher di

mension space such th a t the da ta  of two classes can always be separated by an 

optimal separating hyperplane [38, pg. 258]. The performance of SVM is not 

affected by the dimension of the training data.

Consider the input training da ta  represented by (xj) where i  =  1, 2, 3, • • • , m; 

and m is the number of input training da ta  examples. Using the nonlinear map

ping function 0(.), the input da ta  is transformed to a higher dimension space. 

The transformed da ta  is represented by yj. Thus the relation between the input 

da ta  (xj) and transformed da ta  (yj) is given by:

yi =  0(xi); i =  1,2, • • • ,m . (3.44)

86



>1

Optimal Separating 
H ^eip lane

>1

% 0  - S ifpertvec te is

O  - Traming data

F ig . 3.6: Example of separable problem of SVM in a 2 dimensional space

The discriminating function obtained that separates the data classes into one of 

the two classes is given by:

/ ( y )  =  w ^ y (3.45)

where w  =  [uii, i(;2 , • • • , is the weight associated with each element in the 

transformed vector yj. The class is also given a numerical value. In the two class 

case let the values of the classes (zj) be ± 1 .

The association of the transformed data and the class is given by:

For  Zi =  1, f ( y i )  >  1 and For  Zi =  - 1 ,  / ( y i )  <  1 (3.46)

The separating hyperplane separates the two classes based on the following rule:

Z i f { y i ) > l  z =  l , 2 ,  (3.47)

The distance between the separating hyperplane and the class boundary is called 

the margin (b). The aim of the training algorithm is to find a separating hyper-

87



plane th a t maximizes the value of the margin {b). The equation to be satisfied 

is:

where the aim is to find an optimal hyperplane by selecting the values of weight 

vector (w) such th a t the value of the margin b is maximized.

The optimal separating hyperplane maximizes the distance between itself and the

plane then the generalization ability of the classifier is maximized provided tha t 

the unlabeled da ta  follows the same probability rule as the training function and 

also if the training d a ta  does not contain any outliers [15, pg. 16].

The solution obtained for equation 3.48 has several hyperplanes. A constraint 

is applied on the solution of equation 3.48 where b ||w|| =  1. This constraint 

is apphed so th a t the value of margin b is maximized while the value of weight 

vector w  is minimized. Thus finding the optimal hyperplane is a constrained 

optimization problem solved by Lagrangian multiplier method [38, pg. 262]. The 

constrained problem (L(a, a ) )  is represented as:

weight vector and the value of multiplier aj. The aim is to obtain weight vector 

th a t minimizes the equation 3.49 and the value of multipliers th a t maximize the 

equation.

The problem when reformulated gives rise to the optimization problem th a t max-

(3.48)

class boundary of the training da ta  of the classes th a t it separates (see figure 3.6). 

The generalization ability of the SVM depends on the location of the separating 

hyperplane. Thus if the optimal hyperplane is chosen as the separating hyper-

(3.49)
i=l

where cij is a multiplier bounded by Oj >  0. Equation 3.49 is solved to obtain the
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imizes [38, pg. 264], [78]:

(3.50)
i=l ij=l

where the constraint on the equation 3.50 is;

m

1 = 1

All the training data is not used to obtain the position of the optimal hyperplane. 

The data that is used to train the SVM in order to maximize the distance be

tween the class boundary and the hyperplane are called support vectors. Support 

vectors provide most of the information for classification purpose. The support

where S  is the indices of the set of support vectors [15, 24],

If the optimal separating hyperplane is able to separate the training data without 

any errors then the expected value of the probability of error while classifying 

unlabeled data is bounded by the value that depends on support vectors only. 

The bound on the probability of error (P r(error)) [38, pg. 263] is given by:

where £'[.] is the expectation operator, Dsv is the number of support vectors and 

m  is the number of training data.

vectors determine the location of the hyperplane and their inclusion or exclusion 

during the training influences the location of the hyperplane and the width of 

the margin [34].

The decision function is given by:

where i E S (3.52)

E[Pr{error)] < (3.53)
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The generahzation ability of the SVM will be better if the optimal hyperplane 

is constructed with smaller number of support vectors compared to the size of

error. Thus for the right choice of non-hnear transformation function 0 (.), in the 

presence of smaller number of support vectors the probability of error will be 

smaller [38, pg. 263].

Kernel functions are applied on the data to transform them so that they are 

linearly separable [52]. They employ scalar products of the mappings, 0(.) in 

feature spaces [78]. These functions are given by the relation:

input space. The data need not be mapped into higher dimensional space. 

The hnear kernel is given by:

(b) Radial Basis Function (RBF): The Radial Basis Function kernel is given by:

the training data [34], Higher generalization ability leads to lower classification

(3.54)

The decision function is given by:

where i E S  (3.55)

where S is the indices of set of support vectors [15, 26]. 

Four basic kernels used in SVM are given below:

(a) Linear kernel: This kernel is used if the data can be classified linearly in the

(3.56)

/C (xj,xj) =  e x p ( - 7 ||xi -  Xjll^), 7 > 0 (3.57)

where 7  is a parameter that controls the radius [15, 27].
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(c) Polynomial kernel; The polynomial kernel is given by:

( 7 x f x j + r ) ‘̂ , 7 >  0 (3.58)

where d is the degree of the polynomial kernel.

(d) Sigmoid kernel: The sigmoid kernel is given by:

K{xi,y.j) = tanh(7x fx j  +  r) (3.59)

The two class classification problem can be extended to multi-class classification 

problem. SVM can be trained as “one against all” , “one against one” or “directed 

acyclic graph” to obtain the decision functions. The decision functions provide 

the probability of the unlabeled data  belonging to a particular class.

In the case of “one against all” , the number of SVM models constructed is equal 

to the number of classes in the classification problem. The training da ta  is divided 

into two groups for each SVM model. The class for which the decision function 

is being obtained is treated as one of the classes whereas the rest of the classes 

in the classification problem are grouped together to form the second class. The 

decision fimction for each class provides the probability of the unlabeled da ta  

belonging to the respective class. The unlabeled da ta  is assigned to the class for 

which the probability of the da ta  belonging to th a t class is maximum [53].

For the “one against one” case the number of SVM’s constructed is Mkiii where 

k is the number of classes in the classification problem. The SVM’s are trained by 

taking a pair of classes and ignoring the rest of the classes. The SVM’s are trained 

for all the combinations of the classes taking two different classes at a time. In 

this case a voting scheme is used to assign the unlabeled da ta  to a particular 

class. Every constructed SVM model indicates the class th a t the data  might 

belong to compared to the other class. The vote of the class to which the SVM 

model indicates the unlabeled data  belongs to is incremented. The accumulated
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votes for all the classes is compared and the unlabeled data is assigned to the 

class with maximum votes [53].

In the Directed Acyclic Graphs (DAG) approach the SVM’s are constructed sim

ilar to the “one against one” method. They differ in the class assignment proce

dure for the unlabeled data. The DAG method uses a directed acyclic graph for 

class assignment. The probability of the signal belonging to one of the first two 

classes is compared and the class that has smaller probability is eliminated as a 

prospective class of the unlabeled data. The process of eliminating the classes 

continues till only two classes are remaining. The probability of the unlabeled 

data belonging to one of the two classes is compared. The unlabeled data is 

assigned the class with higher probability of the data belonging to that class [53].

3.7 Sum m ary

This chapter discussed different aspects of designing a Voice Activity Detection (VAD) 

system using a machine learning algorithm. The speech signal characteristics were dis

cussed. The characteristics of speech are useful in identifying the features that can be 

employed in the design of the voice activity detection (VAD) system. The features used 

in different VAD algorithms were discussed next. Feature selection and the choice of 

the classifier are the two problems encountered while designing a VAD system. Feature 

selection deals with the selection of a feature subset from the feature set in a convenient 

but reasonable manner in order to improve the classifiers performance. Identifying the 

classification algorithm involves deciding on the classification algorithm that performs 

the best for the VAD with the selected features. Finally a description of the supervised 

machine learning algorithms such as the Discriminant Analysis (DA), the cascade cor

relation Artificial Neural Network (ANN) and the Support Vector Machine (SVM) was 

provided.
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Chapter 4

DOA Studies

The primary contribution of this thesis is the modified YIN based TDE and the 

Weighted YIN based TDE algorithms, a YIN [36] based approach, for TDE. Stud

ies comparing the performance of the modified YIN based TDE algorithm and the 

unbiased cross-correlation algorithm are presented in [105]. This chapter presents the 

simulation results to evaluate the performance of the modified YIN based TDE and the 

Weighted YIN based Time Delay Estimation (TDE) algorithms relative to the WCC, 

MAMDF and GCC-PHAT TDE algorithms. The chapter starts with a description of 

the modified YIN based TDE and the Weighted YIN based TDE algorithms. This 

is followed by a section on the metrics used to evaluate the performance of the TDE 

algorithms through simulations and the simulation setup section. The simulation re

sults are presented in the next section. The chapter concludes with an observation and 

conclusion section.

4.1 YIN for TDE

For the TDE using the YIN algorithm [36] (discussed in section 2.12) only the dif

ference function, cumulative mean normalized difference function and the parabolic
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interpolation steps are employed. The signal x{n) and its shifted version x{n + r)  in 

the equation 2.59 are replaced by the signals received by a pair of microphones Xi(n) 

and X2 {n) for TDE. The difference between the signals is squared and summed to give 

the difference function for different time delays. The time delay (r) value associated 

with the lowest difference function value is taken as the estimated time delay.

The difference function of the YIN algorithm is written as:

N - l

d { T )  = Y^ixiin)  -  X2 { n  + t))'^  (4-1)
n = 0

The equation when expanded gives:

N - l  N - l  N - l

^  xl{n) + ^  xl{n + r) -  2 ̂  xi{n)x 2 {n + r) (4.2)
n = 0  n = 0  n=0

The first two terms in the equation represent the energy of the two signals and the

third term is equal to the cross-correlation of the two signals. This algorithm does 

not give the minima at the same r  value at which the cross-correlation function gives 

the maxima. This is due to different values of the energy of the second signal for 

different time shifts. This algorithm may however suffer from the same problem that is 

encountered in the cross-correlation i.e. it may be biased to certain r  values due to the 

presence of the sum of the squares of more sample difference terms compared to other r  

values. To overcome this problem the function is normalized such that the normalized 

difference function term associated with the actual delay has the least value [36].

In this step, for a particular r  value, the difference function at each time delay is 

divided by the normalization function. Normalization function is equal to the mean 

of the difference function associated with delay values starting from zero delay to the 

current delay. Since the YIN algorithm is originally meant to find the fundamental 

frequency, the zero delay r  term has been avoided by starting the normalization at first 

delay. To make the algorithm applicable to the TDE, the normalization starts with the 

zero delay instead of first delay value. For the YIN algorithm, the function obtained by
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dividing the difference function values for different time delays by the corresponding 

normalization function is called the Cumulative Mean Normalized Difference Function 

(CMNDF).

The Cumulative Mean Normalized Difference Function (CMNDF) for the modified 

YIN based TD E algorithm represented by R y d f u  is given by:

Rv DFni T)  —  <

1 (t  =  0)

~

L
The delay r  value associated with the lowest R y d f u  function value is taken as the 

estim ated delay. The main difference between the cross-correlation algorithm and the 

modified YIN based TDE algorithm is th a t the former is highly sensitive to amplitude 

changes whereas the latter is not as it takes into account the am plitude changes in 

terms of the energy changes associated with different time shifts [36].

Absolute threshold is used in the YIN algorithm for period calculation to prevent 

getting higher period values instead of the actual period as they may have the minimum 

value of the CMNDF. This stage is useful in the period calculation as theoretically no 

upper limit has been set on the search range of the period. In practice the period range 

is limited by the frame size used during implementation. In the case of TDE, the upper 

limit of the tim e delay is dependent on the formula used to find the direction of arrival 

using the time delay value as discussed in section 2.2. Since the time delay limit is very 

small compared to the signal frame size used this step is not included in the modified 

YIN based TD E algorithm.

Finally second-order Lagrange interpolation also known as the parabolic interpo

lation can be included to improve the resolution of the estim ated time delay. The 

parabolic interpolation for modified YIN based TDE algorithm is similar to the one 

used in [32] and is presented in section 2.5. For the purpose of fractional TDE, the 

values of Xi, X 2 , in equation 2.21 of section 2.5 are replaced by the values of r  — 1,
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T and r +  1 respectively where r is the estimated time delay. Similarly f { x i ) ,  /(X 2 ), 

/(x s )  are replaced by the values of R y d f i 2 { t  — 1), R y d f i 2 { t )  and R y o F u i T  +  1) re

spectively. Between r — 1, r four points are interpolated and between r, r +  1 four 

points are interpolated. Finally the time delay corresponding to the minimum value of 

R y d f i 2 for all the delays between r  — 1 and r +  1 is taken as the estimated time delay.

4.2 W eighted Y IN

Another algorithm proposed is the Weighted YIN based TDE algorithm. It is inspired 

by the Weighted Cross Correlation (WCC) algorithm proposed by [32] given by the 

equation 2.56 of section 2.10.3. For TDE the Weighted YIN based TDE algorithm 

combines the GCC-PHAT algorithm and the modified YIN based TDE algorithms. 

The Weighted YIN based TDE algorithm is given by:

„ / R g c c {t )
R w y d f {t ) — j z  , > ■ (4.4)

R y d f \2 \t) +  e

where r =  0, ±1, ±2, • ■ ■; R g c c {'t )  is given by equations 2.41 and 2.44. R y d f i 2 { t )  is 

given by the equation 4.3 respectively. A small positive value e is added to prevent 

division overflow. The r value that corresponds to the maximum value of the R w y d f  

function is taken as the estimated time delay. Similar to the modified YIN based TDE 

algorithm the resolution of the DOA estimate can be improved by applying parabolic 

interpolation on the estimated time delay to obtain the fractional sample delays.

4.3 Perform ance Evaluators for Tim e Delay  

Estim ator

The accuracy of the algorithm is used to compare the performance of the algorithms for 

TDE [101]. The total number of delay estimates at each time delay by each algorithm
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is presented in the form of histograms or bar plot for different signal to noise ratio 

(SNR). A good TDE is expected to have higher estimated delays at the expected time 

delays.

The expected value of the estimated time delay for an unbiased estimator is equal to 

the true value. In practice estimators may not be unbiased. Even though an unbiased 

estimator does not imply that the estimator is good still a biased estimator is not 

preferable [91]. The performance of the estimators is commonly compared by the 

Mean Squared Error (MSE) [91, 32].

The bias of the estimator is given by the equation:

Dias = E[t ] — T (4.5)

£■[.] is the expectation operator, f  is the estimated delay and (r) is the actual or 

expected delay value.

Mean Squared Error (MSE) is equal to the square of the difference between the 

estimated value (f) and the expected value r  of the parameter. It is given by:

M S E  = E[{f  -  r)2] (4.6)

MSE provides an estimate of the average variance of the error around the expected 

delay value. A good TDE algorithm has a smaller MSE value. The comparison of the 

performance of the TDE algorithms is presented as bar plots providing the accuracy 

of the algorithms and the MSE plots.

4.4 Sim ulation Setup

The impulse response of the room for the simulations to compare the performance of 

the Generalized Cross-Correlation Phase Transform, modified YIN based TDE algo

rithm, Weighted YIN based TDE algorithm. Modified Average Magnitude Difference 

Function and Weighted Cross-Correlator time delay estimator was generated by the
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Unifbrm Linear Array

Fig. 4.1 : Source locations for simulations.

EASE software [5]. The dimensions of the room are 6m x 3.5m x 2.5m and the re

verberation time {RT60 introduced in section 2.6) is 0.5 s. The dimensions and the 

reverberation time of the room are approximately equal to that of the classroom for 

which the experimental results are presented in chapter 6.

A Uniform Linear Array (ULA) consisting of 4 microphones with the adjacent mi

crophones spaced 3.4 cm apart was placed (considering the plan view of figure 4.1) in 

the center of the room horizontally and a meter vertically from the wall. The source lo

cations are shown in figure 4.1. The signal source locations were: 49°, 64°, 110°, 113.3°. 

The signal source and the microphone array were on the same plane. The impulse re

sponse generated by the EASE software [5] was convolved with the clean speech signal 

from the TIMIT database [6] to obtain the source signal. The four source locations 

consisted of two female source locations corresponding to 49° and 110° and two male 

source locations corresponding to 64° and 113.3°.

The white Gaussian noise generated in the Cool Edit Pro 2.0 package [7] was used
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d (cm) Delays in terms of signal samples and corresponding angles
-4 -3 -2 -1 0 1 2 3 4

3.4 - - - 129° 90° 51° - - -
6.8 - 161° 129° 108.4° 90° 71.6° 51° 19° -

10.2 147° 129° 115° 102° 90° 78° 65° 51° 33°

T able 4.1: Delay values in signal sample number and their corresponding source angles 
for different separation between microphone pair (d) at sampling frequency =  16kHz

as the background noise. The sampliiag rate of the source and the noise signal was 16 

kHz. The velocity of sound was taken as 342 m/s. The Signal to Noise Ratio (SNR) is 

introduced in section 2.6. The signal power in equation 2.22 is the power of the source 

signal and the noise power corresponds to the power of the noise signal generated in 

Cool Edit Pro 2.0. The SNR values used in the simulations are 10, 15 and 20 dB. 

These values were chosen taking into consideration the minimum required SNR value 

in a classroom as mentioned in section 1.1. Signal frames of 20 ms were taken for the 

simulations with no overlap between the adjacent frames.

The performance of the Phase Transform Generalized Cross-Correlator (GCC- 

PHAT), modified YIN based TDE, Weighted YIN based TDK, Modified Average 

Magnitude Difference Function (MAMDF) and Weighted Cross-Correlator (WCC) was 

compared using the accuracy of the time delay estimates and the mean squared error 

(MSE) plot. The accuracy of the algorithms is displayed in the bar plots for each TDE 

algorithm for different SNR values. The MSE plot for the algorithms is also provided. 

The x-axis of the MSE plot corresponds to the SNR value and the y-axis corresponds 

to the MSE.
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4.5 Sim ulation R esults

This section presents the simulation results comparing the performance of the Gen

eralized Cross-Correlation Phase Transform (GCC-PHAT), modified YIN based TDE 

(YDF), Weighted YIN based TDE (WYDF), Modified Average Magnitude Difference 

Function (MAMDF) and Weighted Cross-Correlator (WCC). The GCC-PHAT algo

rithm is labeled as the GCC in the plots.

Using equation 2.14 the possible angles for microphone separation of 3.4 cm are 129°, 

90° and 51° corresponding to the delays -1, 0 and 1. A negative delay indicates that 

the second microphone in the microphone pair receives the signal before the reference 

microphone. A positive delay indicates that the reference microphone receives the 

signal before the second microphone in the microphone pair. Zero delay indicates that 

both the microphones in the microphone pair receive the signal simultaneously.

Figure 4.2(a), 4.2(b), 4.2(c) presents the bar plot for time delay estimates at 10, 

15, 20 dB respectively for female speech source at an angle 110° when the separation 

between the microphones (d) in the ULA is 3.4 cm. The expected delay is between 

-1 and 0. The delay is taken as -1. The accuracy of the modified YIN based TDE 

algorithm (YDF) is the best for all the SNR values followed by the MAMDF algorithm. 

The accuracy of both the algorithms improves with the increase in SNR. The GCC- 

PHAT, WCC and WYDF algorithms performance degrades with the increase in SNR. 

The MSE plot in figure 4.2(d) shows that the MSE of the modified YIN based TDE 

algorithm and the MAMDF algorithm is the lower than other algorithms considered 

in this work.

When the separation between the microphones (d) is increased to 6.8 cm, the valid 

angles from the table 4.1 are 161°, 129°, 108.4°, 90°, 71.6°, 51° and 19° corresponding to 

the delays -3, -2, -1, 0, 1, 2 and 3 respectively. The expected delay for the female source 

is between -1 and 0. Since 110° is closer to 108.4°, the expected delay value is taken as 

-1. From the bar plots of figure 4.3(a), 4.3(b), 4.3(c) peak of all the algorithms is at -1
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(a) SNR =  10 dB (b) SNR =  15 dB

1' ” ^

12 13 14 15 16 17 la  Id 20

(c) SNR =  20 dB (d) MSE plot

Fig. 4.2: Plot for female speaker with microphone separation (d) =  3.4 cm
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(c) SNR =  20 dB (d) MSE plot

Fig. 4.3 ; Plot for female speaker with microphone separation (d) =  6.8 cm

delay. At the -1 delay, the modified YIN based TDE (YDF) algorithm has the highest 

accuracy followed by the MAMDF. WCC and Weighted YIN based TDE (WYDF) 

algorithm have similar performance and GCC-PHAT has the lowest accuracy. From 

the MSE plot in figure 4.3(d), the WCC, Weighted YIN based TDE algorithm and 

GCC-PHAT have the lowest MSE and the modified YIN based TDE algorithm has the 

maximum MSE.

From the table 4.1, a t d =  10.2 cm the expected time delay for the female source 

is between -1 and -2. The delay is closer to -2 hence the expected delay is taken as -2. 

Figures 4.4(a), 4.4(b), 4.4(c) present the accuracy of the algorithms at 10, 15 and 20 dB
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Fig. 4 .4  : Plot for female speaker with microphone separation (d) =  10.2 cm

respectively. At 10 dB SNR, MAMDF has the highest accurate delay estimates. As the 

SNR increases modified YIN based TDE (YDF) algorithm, Weighted YIN based TD E 

(W YDF) algorithm and WCC perform equally well to MAMDF. The GCC-PHAT 

algorithm has the lowest accuracy. The MSE plot for different SNR is presented in 

figure 4.4(d). The GCC-PHAT algorithm has the highest MSE whereas the MAMDF 

algorithm has the lowest MSE. The MSE of the modified YIN based TD E algorithm 

decreases w ith the increase in SNR and has the lowest MSE after MAMDF at 20 dB.

Figure 4.5 shows the accuracy and MSE plots for second female source position at 

49°. Figures 4.5(a), 4.5(b), 4.5(c) are the bar plots at 10, 15 and 20 dB respectively
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Fig. 4.5: Plot for female speaker with microphone separation (d) =  3.4 cm
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F ig . 4.6: Plot for female speaker with microphone separation (d) =  6.8 cm

for d =  3.4 cm. Prom table 4.1, the expected delay is 1. Modified YIN based TDE 

algorithm (YDF) has the highest accuracy at all the SNR with MAMDF having the 

second highest accuracy. GCC-PHAT algorithm has the lowest accuracy. Prom the 

MSE plot of figure 4.5(d), Weighted YIN based TDE (WYDP) algorithm and WCC 

have the lowest MSE. All the other algorithms have similar MSE values. All the 

algorithms except GCC-PHAT have similar MSE value at 20 dB.

For d =  6.8 cm, the accuracy and MSE plots are presented in figure 4.6. From ta 

ble 4.1 the expected delay at this position is 2. The bar plots in figure 4.6(a), 4.6(b), 4.6(c) 

for 10, 15 and 20 dB respectively show th a t modified YIN based TDE (YDF) algorithm
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F ig . 4. 7: Plot for female speaker with microphone separation (d) =  10.2 cm

has the highest accuracy followed by the MAMDF algorithm. At high SNR, Weighted 

YIN based TDE (WYDF) algorithm performs better than  WCC. GCC-PHAT has the 

lowest accuracy. The MSE is lowest for MAMDF followed by the modified YIN based 

TDE. At 15 dB SNR both  the algorithms have approximately equal MSE value. GCC- 

PHAT algorithm has the highest MSE at all SNR. The WCC and Weighted YIN based 

TDE algorithm have similar MSE values.

The accuracy and MSE plots for d  =  10.2 cm are presented in figure 4.7. From ta 

ble 4.1 the expected delay at this position is 3. The bar plots in figure 4.7(a), 4.7(b), 4.7(c) 

for 10, 15 and 20 dB respectively show th a t the modified YIN based TD E (YDF) al-
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F ig . 4 .8  ! Plot for male speaker witli microphone separation (d) — 3.4 cm

gorithm has the highest ax;curacy at 10 dB but at 15 and 20 dB the WCC and the 

Weighted YIN based TDE (WYDF) algorithm respectively have highest accuracy com

pared to the other algorithms. GCC-PHAT has the lowest accuracy. The MSE is lowest 

for the Weighted YIN based TDE algorithm and WCC. Modified YIN based TDE al

gorithm has the highest MSE th a t decreases with the increase in SNR.

For d =  3.4 cm, the accuracy and MSE plots for male source at 113.3° are presented 

in figure 4.8. The expected delay at this position is between -1 and 0. Since the angle 

is closer to 129° compared to 90° in value, the expected delay is taken as -1. The 

bar plots in figure 4.8(a), 4.8(b), 4.8(c) for 10, 15 and 20 dB respectively show that
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F ig . 4.9: Plot for male speaker with microphone separation (d) =  6.8 cm

modified YIN based TDE (YDF) algorithm has the highest accuracy closely followed by 

the MAMDF algorithm. At high SNR, Weighted YIN based TDE (WYDF) algorithm 

performs sUghtly better than  the WCC. GCC-PHAT has the lowest accuracy. From 

the MSE plot in figure 4.8(d) Weighted YIN based TDE algorithm and the W CC have 

the lowest MSE whereas the modified YIN based TDE algorithm has the highest MSE. 

The MSE of all the algorithms decreases with the increase in SNR.

For d =  6.8 cm, the accuracy and MSE plots are presented in figure 4.9. The 

expected delay at this position is between -2 and -1. Since the difference between the 

angle and 108.4° is smaller than the difference between the angle and 129° the expected
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Fig . 4.10: Plot for male speaker with microphone separation (d) =  10.2 cm

delay is taken as -1. The bar plots in figure 4.9(a), 4.9(b), 4.9(c) for 10, 15 and 20 

dB respectively show th a t the modified YIN based TDE (YDF) algorithm has the 

highest accuracy followed by the MAMDF algorithm. At all the SNR values, Weighted 

YIN based TD E (WYDF) algorithm performs better than  WCC. GCC-PHAT has the 

lowest accuracy. From figure 4.9(d), the MSE is lowest for the GCC-PHAT, the WCC 

and the Weighted YIN based TDE algorithm. It is highest for the modified YIN based 

TDE algorithm. The MSE for all the algorithms decreases with an increase in the SNR 

value.

The accuracy and MSE plots are for d  =  10.2 cm are presented in figure 4.10.

109



I GCC 
|UAMl»
lYDf 
I WCC 
IWYOf

(c) SNR =  20 dB (d) MSE plot

F ig . 4.11: Plot for male speaker with microphone separation (d) =  3.4 cm

The expected delay at this position is taken -2 since 113.3° is closer in value to 115° 

compared to 102°. The bar plots in figure 4.10(a), 4.10(b), 4.10(c) for 10, 15 and 20 

dB respectively show that MAMDF algorithm has the highest accuracy at 10, 15 and 

20 dB. The performance of the Weighted YIN based TDE (WYDF) algorithm and 

the WCC is similar and next to the MAMDF algorithm. GCC-PHAT has the lowest 

accuracy. The MSE is lowest for the Weighted YIN based TDE algorithm and WCC. 

The modified YIN based TDE (YDF) algorithm has the highest MSE. The MSE for 

all the algorithms tends to decreases with an increase in the SNR.

For d  —  3.4 cm, the accuracy and MSE plots for male source at 64° are presented
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Fig. 4.12: Plot for male speaker with microphone separation (d) =  6.8 cm

in figure 4.11. The expected delay at this position is taken as 1. The bar plots in 

figure 4.11(a), 4.11(b), 4.11(c) for 10, 15 and 20 dB respectively show that the modified 

YIN based TDE (YDF) algorithm has the highest accuracy followed by the MAMDF 

algorithm. The Weighted YIN based TDE (WYDF) algorithm and the WCC algorithm 

have similar performance. GCC-PHAT has the lowest accuracy. From the MSE plot in 

figure 4.11(d) MAMDF has the lowest MSE followed by the modified YIN based TDE 

algorithm. The Weighted YIN based TDE algorithm, the WCC and the GCC-PHAT 

have the highest MSE. The MSE of all the algorithms decreases when the SNR value

mcreases.
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For d =  6.8 cm, the accuracy and MSE plots are presented in figure 4.12. The 

expected delay at this position is between 1 and 2. The angle being closest to the 

angle for delay =  1, the expected delay value is taken as 1. The bar plots in fig

ure 4.12(a), 4.12(b), 4.12(c) show the accuracy of the algorithms for SNR of 10, 15 and 

20 dB respectively. The modified YIN based TDE (YDF) algorithm has the highest 

accuracy at all the SNR values. At 10 dB, the Weighted YIN based TDE (WYDF) 

algorithm and the MAMDF algorithms have the second highest accuracy whereas the 

GCC-PHAT and the WCC have the lowest accuracy. At 15 and 20 dB SNR, the 

Weighted YIN based TDE algorithm has the second highest accuracy and the GCC- 

PHAT has the lowest accuracy at this SNR. From figure 4.12(d) the MSE is highest for 

MAMDF. The GCC-PHAT, the WCC, the Weighted YIN based TDE algorithm have 

low MSE values. The MSE of all the algorithms decreases as the SNR value increases.

From the table 4.1, at d =  10.2 cm the expected time delay for the male source is 2. 

Figures 4.13(a), 4.13(b), 4.13(c) present the accuracy of the algorithms at 10, 15 and 

20 dB respectively. The Weighted YIN based TDE (WYDF) algorithm has the highest 

accuracy at all the SNR values. At 10 dB SNR, the modified YIN based TDE (YDF) 

algorithm has the second highest accuracy. At 15 dB SNR the WCC has the second 

highest accuracy and at 20 dB SNR both the WCC and the modified YIN based TDE 

algorithms have the second highest accuracy. GCC-PHAT has the lowest accuracy at 

all the SNR values. The MSE plot for different SNR is presented in figure 4.13(d). 

The MAMDF algorithm has the lowest MSE. The MSE of all the algorithms decreases 

with an increase in the SNR value.

4.6 Observations and Conclusion

The number of valid delays is dependent on the separation between the microphones (d) 

(see equation 2.14 of section 2.2 and table 4.1). The number of valid delays increases
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with the increase in the separation between the microphones in the microphone pair. 

More number of delays improves the resolution of the angle estimates as the differ

ence between the possible angle estimates is reduced. As mentioned in section 2.10.2, 

adjacent samples of speech signal are highly correlated. This strong correlation leads 

to incorrect delay estimation which will results in the decrease in the accuracy of the 

estimate and increase the MSE.

Prom the results presented in section 4.5 it is observed that an increase in the 

distance between the microphone pair (d) results in a decrease in the accuracy of the 

algorithms. The MSE of the algorithms for TDE increases with the decrease in the 

SNR. This is due to the presence of more noise in the signal which results in incorrect 

time delay estimates. Similarly increase in the SNR decreases the MSE value of the 

algorithms.

Among the three values of the separation between the microphones (d) (3.4 cm, 

6.8 cm and 10.2 cm) considered in this work, 6.8 cm is a good compromise in terms 

of accuracy and angle resolution. This is based on the consideration that the TDE 

accuracy of the algorithms at this value is greater than that at 10.2 cm but lower than 

that at 3.4 cm. It also provides four more angles to improve the resolution in angles 

compared to the distance value of 3.4 cm and two angles less than the distance value 

of 10.2 cm.

Prom the simulation results when the inclination of the algorithms in the incorrect 

time delay estimates is compared the GCC-PHAT, the WCC and the Weighted YIN 

based TDE (WYDP) algorithm are biased towards the zero delay corresponding to an 

angle of 90°. These algorithms tend to have a large number of delay estimates at this 

value. The modified YIN based TDE (YDP) algorithm and the MAMDF algorithms 

tend to have large number of incorrect time delay estimates at the extreme delay values.

Prom the simulation results in section 4.5 the GCC-PHAT, the WCC and the 

Weighted YIN based TDE algorithms have small MSE. This is due to their bias towards
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the zero delay. The WCC and the Weighted YIN based TDE algorithms are better than 

the GCC-PHAT algorithm but not as good as the modified YIN based TDE algorithm 

and the MAMDF in terms of the accuracy. The modified YIN based TDE algorithm 

and the MAMDF emerge as strong contenders for the DOA estimation using TDE. In 

terms of the MSE, the MAMDF algorithm is slightly better than the modified YIN 

based TDE algorithm as it has lower MSE but in terms of the accuracy the modified 

YIN based algorithm is better than the MAMDF algorithm.
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Chapter 5

VAD Feature Selection Studies

The secondary contribution of this thesis is a Voice Activity Detection (VAD) system 

that classifies the signal into four classes for source localization and post-processing 

e-learning. As described in section 3.4, identifying the features for classification and 

applying feature selection on these features to obtain the best feature subset is first of 

the two steps in designing a voice activity detection (VAD) system. The first section 

of this chapter introduces a Teager Energy Operator (TEO) based feature called the 

Mel-Spectrum Teager Energy (MSTE) coefficients for classification. The next section 

describes the simulation setup that was used to generate the data for feature selec

tion using features described in chapter 3. This is followed by a section presenting 

the results for supervised machine learning algorithm selection comparing the perfor

mance of Discriminant Analysis (DA), Cascade Artificial Neural Network (ANN) and 

Support Vector Machine (SVM) classifiers for VAD. Feature selection results for the 

feature subset consisting of the proposed feature and other features from chapter 3 that 

enhance the classification performance is presented next. This is followed by a section 

presenting the simulation results for classification comparing the performance of the 

selected classification algorithms using the selected feature set. In the end observations 

and conclusion of the chapter is presented.

116



5.1 M el-Spectrum  Teager Energy Coefficients

Teager Energy based features are used in signal processing applications such as speech 

recognition [123, 56, 124] and noise suppression [122]. Teager energy gives a measure 

of the energy required to produce a signal [63]. Teager’s Energy Operator (TEO) for a 

signal is non-linear and was introduced by Kaiser [63]. It is based on the fundamentals 

of simple harmonic motion where the energy required to produce sinusoidal oscillations 

is proportional to the square of the product of the amplitude and frequency of the signal. 

TEO of the signal is given by:

^^[x(i)] =  [x{t)Y — x{t) x{t) (5.1)

where x{t) is the input signal, x{t) is and x{t) is

For the discrete signal, x{n), TEO ( '̂d[2 (̂?^)])is given by:

^'d[a:(n)] — x{n)'^ — x{n — 1) x{n + 1) (5.2)

where x{n) is the input signal. TEO represents the local property of the signal 

as for each point the computed TEO involves only three signal samples which are the 

signal sample and its adjacent samples.

For oscillating input signal x(n) =  Acos{Qn +  (/>)), the TEO is given by:

'I'(i[x(n)] =  A ‘̂ sin^{fl) (5.3)

where A is the amplitude of the signal, 4> is the initial phase in radians and Vt is 

the digital frequency of the signal in radians/sample [63]. H is related to the sampling 

frequency fs and the signal frequency f  hy Q = The relation ^'[x(n)] =  A^sm^{Q) 

holds only if < | .  |  is equivalent to

The Mel-Spectrum Teager Energy (MSTE) coefficients used in this work involves 

finding the average TEO of the signal spectral sub-bands. The signal spectrum sub

bands are the ones used in computing the MFCC introduced in section 3.3. Coefficients
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similar to MSTE have been introduced by Firas et al. [56, 57] as an interm ediate stage 

for com puting the TEO C EP coefficients and have been named as sub-signal average 

Teager energy. The difference between the sub-signal average Teager energy and MSTE 

coefficients is th a t the sub-bands for both the coefficients and the approach adopted 

to compute the coefficients is different. The sub-bands used to compute the TEO C EP 

coefficients are the ones proposed by Erzin et al. [41], Bandpass filters are used to 

obtain the sub-band and compute the sub-signal average Teager energy in the time 

domain. All the sub-signal average Teager energy is then log compressed and inverse 

Discrete Cosine Transformed (DCT) to  obtain the TEO C EP coefficients.

The Mel-Spectrum Teager Energy coefficients for VAD are com puted by a simpler 

approach as introduced in the paper by Kavanagh et al. [65]. Firstly, the signal spec

trum  (X{k) )  is obtained by the Short Term Fourier Transform (STFT) of the signal. 

The TEO of the spectrum  is computed on the magnitude (amplitude) spectrum  of the 

signal using the relation between the TEO, amplitude and signal frequency in equa

tion 5.3 resulting in the non-linear energy spectrum of the signal. The non-linear energy 

spectrum  of the signal is divided into sub-bands based on the mel-scale. The center 

frequencies of the critical bands for MFCC presented in table 3.1 form the limiting 

frequencies of each sub-band. The average energy of each sub-band is the computed 

to obtain the MSTE coefficient for each sub-band. The MSTE coefficient for each 

sub-band is given by:
 ̂ P(a)

'Amelia)
^ k=l(a)

where a  are the number of mel sub-bands and a  = 1,2, ■ ■ ■ ,20. /(„) and p{a) are the 

lower and upper limit of a  mel sub-band respectively. (3 is the difference between the 

upper and lower limit of a  mel sub-band. For a signal frame, twenty MSTE coefficients 

are computed.

Another variation in using the MSTE coefficients for VAD is th a t the coefficients 

are computed on the LP residual of the signal instead of computing on the actual
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signal. LP residual is discussed in section 3.3.

5.2 Setup

The VAD system aims to distinguish between four type of signals. They are the voiced 

speech, unvoiced speech, non-stationary noise and the stationary noise. The voiced 

speech and the unvoiced speech sample signals were obtained from the TIMIT [6] 

database. Speech signals were labeled as voiced speech and unvoiced speech from the 

table available in [64]. The stationary (background) noise was the white Gaussian noise 

generated from the Cool Edit Pro 2.0 software [7]. The stationary noise is included 

to represent signals such as computer fan noise and air conditioner noise. The non- 

stationary noise signals were recorded in a classroom. These signals included human 

produced sounds like coughs, sneezes, clearing of throat and non-human produced 

sounds generated by coins, keys, shutting of doors, plastic bags, books falling and 

paper shuffle.

Two data sets consisting of the features for all the four classes were generated 

for simulations. The data set used to train the classification algorithms is called the 

training data and the data set used to evaluate the performance of the classification 

algorithms is called the testing data. The data included in the training data and the 

testing data were different. The signals used in this work were sampled at 16 kHz.

Features were calculated on 20ms long signal frames with no overlap. Feature selec

tion was performed by Linear Discriminant Analysis (LDA) in the SPSS software [8]. 

Both forward and backward selection methods were employed to find the best feature 

subset. The features of different signal classes were generated in MATLAB [9]. For DA 

classifier, the DA implementation in the statistical toolbox [10] of MATLAB was used. 

The hbsvm [11] was used for the SVM classifier. The FANN [12] library was used 

for the neural network classifier. The ANN was created using the cascade-classifier
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supervised training algorithm [43] which determines the size and the topology of the 

ANN itself.

The parameters used to evaluate the performance of the classifiers for VAD are the 

Hit rate (HR) and False Alarm Rate (FAR) for each class and the overall Hit Rate for 

VAD. The HR and the FAR axe introduced in section 3.4.1.

5.3 Supervised M achine Learning A lgorithm  Selec

tion  for VAD

This section describes the process that was employed to select the supervised machine 

learning algorithms for VAD in this work. Initially VAD simulations study was per

formed on the supervised machine learning algorithms discussed in section 3.6.3 with 

a few signal features to compare their performance for classifying the signal into four 

classes. The study provides an indication of the performance of the algorithms for VAD 

in this work. Different feature set (consisting of additional features and some of the fea

tures from the studies in this section) was employed to compare the performance of the 

selected supervised machine algorithms for VAD in section 5.4. Discriminant Analysis 

(Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), Ma- 

halanobis Distance (MD)), cascade Artificial Neural Networks (ANN), radial Support 

Vector Machine (SVM), linear SVM, polynomial SVM and sigmoid SVM supervised 

machine learning algorithms were considered for VAD.

The signal features considered were the short term signal energy, zero-crossing rate, 

second and third LP predictor coefficients, absolute value of the difference between the 

first two PARCOR coefficients, low to high frequency band energy ratio, LP residual 

energy, skewness, kurtosis, pitch, first three formants and spectral slope. The pitch 

and the first three formants were computed using the MATLAB code available in the 

speech processing toolbox COLEA [13].
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Voiced
Speech

Unvoiced
Speech

Non-
Stationary

Noise
Stationary

Noise
HR FAR HR FAR HR FAR HR FAR

QDA 89.4 12.9 82.8 8.1 72.1 13.9 42.8 3.7
LDA 89.4 7.4 81.9 8.1 62.6 4.8 94.5 6
MD 88.6 12.4 90 13.7 69.1 15.7 0.1 0.4

ANN 81.1 16.7 89.7 26.5 0 0 98.7 8.3
Radial SVM 89 5.2 83.4 7.2 77 10.8 70.6 2.4
Linear SVM 89 4.8 82.5 7 77.3 19.6 35.8 2.1

Polynomial SVM 88.1 5.7 83 7.9 74.8 14 56.1 2.6
Sigmoid SVM 34.9 3.5 57.3 7.3 16.8 5 99.9 52.2

T able 5.1: The Hit Rate (HR) and False Alarm Rate (FAR) for classifying the test 
d a ta  into four classes.

VAD experiments were performed on audio signal consisting of four types of signals 

namely voiced speech, unvoiced speech, non-stationary noise and stationary noise. The 

training data  was approximately 10.5 minutes long. The number of cases for the noise 

and speech class in the training data  was approximately equal. Testing d a ta  was 10 

minutes long. The frames consisting of two or more signal classes were not included in 

both the training and the testing data.

From the forward and backward feature selection using LDA in SPSS, all the fea

tures were found to be significant for VAD. These features were used as input to the 

machine learning algorithm for training and testing. The results for each machine 

learning algorithm presenting the Hit Rates (HR) and False Alarm Rates (FAR) for all 

the classes and the overall HR are presented in table 5.1. HR and FAR are described 

in section 3.4.1.

A good classifier generally has a high HR for every class, a low FAR for every class 

and a high overall HR. A high HR for each class indicates th a t the signals are being 

correctly classified by the classifier into their respective classes w ith high accuracy. A
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low FAR for a class indicates that signals of other class are not being incorrectly clas

sified into the class. High overall HR indicates that the classifier has high classification 

accuracy.

FVom the simulation results in table 5.1 QDA had a low HR of 42.8% for the 

stationary noise. MD had a 0.1% HR for stationary noise. The neural network was 

not able to classify any of the non-stationary noise frames correctly as it had a HR of 

0%. Linear SVM had a low HR of 35.8% for the stationary noise and a high FAR of 

19.6% for non-stationary noise. Polynomial SVM had a low HR of 56.1% for stationary 

noise and a high FAR of 14% for non-stationary noise. Sigmoid SVM had a high HR of 

99.9% for only stationary noise. But it also had a high FAR of 52.2% for the stationary 

noise signal. Based on the studies to classify the signal into four classes QDA, MD, 

neural network, polynomial, linear and Sigmoid SVM were not considered further for 

the VAD system in this work.

5.4 Features and Feature Selection  R esu lts

The features considered in the feature set after the simulation on the supervised ma-

chine learning algorithm selection for VAD are:

1. The MSTE coefficients.

2. MFCC.

3. Log energy.

4. Zero-crossing rate.

5. Second and third LP predictor coefficients.

6. Log of LP residual energy.

7. Skewness and kurtosis of the LP residual signal.
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8. Absolute value of the difference of the first two PARCOR coefficients.

9. Skewness and kurtosis of the signal.

10. Log of the low to high band energy.

11. Log of the low to high band energy product.

12. Log of low band to full band energy ratio.

13. Log of the low band to full band energy product.

14. Pitch.

15. The first three formants.

16. Spectral centroid.

17. Spectral roll-off point.

18. Normalized autocorrelation coefficient at unit sample delay.

19. Spectral slope.

20. First ten Cepstrum coefficients.

The details of these features were presented in section 3.3.

Initial classification results comparing the performance of the LDA and radial SVM 

indicated that the MSTE coeflScients and MFCC on their own are able to classify the 

signal into four classes with a high HR for each class and overall classification. Thus 

features that improved the classification rate along with MSTE coefficients or MFCC 

were added to the feature subset using forward selection in LDA. MFCC coefficients 

were computed using the MATLAB module from [14],

The features that were found to be significant in the feature selection process and 

were included in the feature subset are:
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1. Log energy.

2. Zero-crossing rate.

3. Second and third LP filter coefficients.

4. Skewness of the LP residual.

5. Spectral centroid.

6. The absolute difference between the first two PARCOR coefficients.

5.5 VAD Four Class Classification R esults

The simulation results comparing the performance of the LDA and the radial SVM with 

3 feature sets have been presented at 10, 15 and 20 dB SNR where the classification 

algorithms were trained at the same SNR values. The training and the testing data 

set were a subset of the training and testing data used in section 5.3. This was done 

in order to have approximately equal number of data for all the classes in both the 

data sets. The training data was 31.4 s long whereas the testing data was 31.7 s long. 

The Signal to Noise Ratio (SNR) is introduced in section 2.6. The signal power in 

equation 2.22 is the power of the source signal and the noise power corresponds to the 

power of the noise signal generated in Cool Edit Pro 2.0. The SNR values used in 

the simulations are 10, 15 and 20 dB similar to the values used in TDE simulations of 

chapter 4.

Classification results at each SNR with six different feature set are presented for 

Linear Discriminant Analysis (LDA) and Radial SVM (RSVM). The first feature set 

consisted of only MFCC, the second feature set had only MSTE coefficients and the 

third feature set called the Other Feature Set (OFS) consisted of log energy, zero- 

crossing rate, skewness of the LP residual, spectral centroid, absolute difference between

124



Feature Set Voiced
Speech

Unvoiced
Speech

Non-
Stationary

Noise
Stationary

Noise
Overall

HR FAR HR FAR HR FAR HR FAR HR
MFCC 89.98 4.97 82.13 6.26 75.41 5.66 100 0.25 87.13
MSTE 92.36 5.15 86.6 6.68 74.86 2.46 100 0.75 88.77
OFS 78.28 4.63 84.37 3.04 81.42 8.03 100 2.86 85.99

MFCC +  OFS 92.36 3.17 88.59 3.55 92.35 2.13 100 0.08 93.31
MSTE 
+  OFS

92.84 3.26 87.59 3.98 92.1 1.89 100 0.08 93.12

MSTE +  
MFCC +  OFS

93.08 2.74 87.84 3.64 93.44 2.13 100 0.08 93.56

Table 5.2; The hit rate (HR), false alarm rate (FAR) for each class and overall hit 
rate for LDA at SNR of 10 dB.

the first two PARCOR coefficients and the second and third LP coefficients. The fourth 

feature set consisted of the MFCC and the features of the OFS. The fifth feature set 

had the MSTE coefficients with the features of the OFS. The final feature set consisted 

of all the MFCC, MSTE coefficients and features of the OFS.

From table 5.2, both MFCC and MSTE coefficients on their own to be able to 

classify signals of all the classes better than the non-stationary noise class signals at 10 

dB SNR when LDA is employed for classification. In the case of speech signals MSTE 

coefficients classify both voiced and unvoiced signals better than the MFCC. Other 

Feature Set (OFS) classifies unvoiced signals better than the MFCC and non-stationary 

noise signals better than both MFCC and MSTE coefficients. The performance of the 

MFCC is improved when OFS is included in the feature set. Similarly the performance 

of MSTE coefficients improves when OFS are included in the feature set. In both the 

cases the False Alarm Rate (FAR) also is reduced for all the classes. The improvement 

in classification of the non-stationary noise signal is noticeable. The classification 

performance with all the features together (MFCC, MSTE coefficients and OFS) is
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Feature Set Voiced
Speech

Unvoiced
Speech

Non-
Stationary

Noise
Stationary

Noise
Overall

HR FAR HR FAR HR FAR HR FAR HR
MFCC 89.49 4.89 82.88 6.43 75.68 5.66 100 0 87.26
MSTE 91.41 5.06 87.59 7.02 75.14 2.54 100 0.3 88.83
OFS 75.89 4.2 83.13 3.05 82.79 8.2 100 3.96 85.36

MFCC +  OFS 92.36 3 89.08 3.55 93.17 1.97 100 0 93.62
MSTE 
+ OFS

92.36 2.49 89.09 4.57 93.72 2.46 100 0 92.81

MSTE +  
MFCC +  OFS

91.65 2.32 88.59 3.55 95.08 2.21 100 0.25 93.75

Table 5.3: The hit rate (HR), false alarm rate (FAR) for each class and overall hit 
rate for LDA at SNR of 15 dB.

marginally improved compared to the case where OFS is used with either MFCC or 

MSTE coefficients.

Table 5.3 presents the classification results using LDA for all the six feature sets 

at 15 dB SNR. The performance of MFCC and MSTE coefficients is similar to their 

performance at 10 dB SNR. Except for the non-stationary noise signal the features on 

their own are able to classify signals of other classes with HR greater than 82%. The 

MSTE coefficients classify both voiced and unvoiced signals better than the MFCC. 

When OFS is included in the feature set the HR increases for all the classes and the 

FAR decreases for all the classes except the stationary noise where the FAR is already 

0% compared to when only MFCC features are used on their own. Similarly the 

performance of MSTE coefficients improves when OFS are included in the feature set. 

Here too the improvement in classification of the non-stationary noise signal is more 

than in the case of other classes. The classification performance with all the features 

together (MFCC, MSTE coefficients and OFS) is marginally improved compared to 

the case where OFS is used with either MFCC or MSTE coefficients.
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Feature Set Voiced
Speech

Unvoiced
Speech

Non-
Stationary

Noise
Stationary

Noise
Overall

HR FAR HR FAR HR FAR HR FAR HR
MFCC 89.26 4.63 82.88 6.77 75.41 5.74 100 0 87.19
MSTE 91.65 4.72 87.34 7.45 74.59 2.71 100 0.25 88.7
OFS 70.88 2.74 83.87 3.21 78.96 8.86 100 7.24 83.34

MFCC +  OFS 91.41 2.32 90.32 3.64 95.36 1.8 100 0 94.19
MSTE 
+  OFS

91.65 2.4 90.32 3.98 94.81 1.39 100 0.08 94.13

MSTE + 
MFCC +  OFS

91.65 1.89 89.08 3.64 96.45 2.13 100 0.08 94.2

Table 5.4: The hit rate (HR), false alarm rate (FAR) for each class and overall hit 
rate for LDA at SNR of 20 dB.

Table 5.4 presents the classification results using LDA for all the six feature sets 

at 20 dB SNR. The performance of MFCC and MSTE coefficients is similar to their 

performance at 10 and 15 dB SNR. In this case too the MSTE coefficients classify both 

voiced and unvoiced speech signals better than the MFCC. When OFS is included with 

MFCC in the feature set the HR increases for all the classes and the FAR decreases for 

all the classes except stationary noise where the FAR is already 0% compared to when 

only MFCC features are used on their own. Including the OFS feature in the feature 

set along with MSTE coefficients increases the FAR for stationary noise slightly. The 

improvement in HR of the non-stationary noise is higher compared to that of other 

classes. The classification performance with all the features together (MFCC, MSTE 

coefficients and OFS) is marginally improved compared to the case where OFS is used 

with either MFCC or MSTE coefficients.

From table 5.5, both MFCC and MSTE coefficients are able to classify signals of all 

the classes better than the non-stationary noise signal at 10 dB SNR when radial SVM 

is employed for classification. The classification rates are lower than that of the LDA at
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Feature Set Voiced
Speech

Unvoiced
Speech

Non-
Stationary

Noise
Stationary

Noise
Overall

HR FAR HR FAR HR FAR HR FAR HR
MFCC 90.93 4.63 81.64 6.85 76.5 5.17 100 0 87.51
MSTE 92.12 4.89 85.61 6.43 78.42 3.04 100 0 89.27
OFS 79.71 3.17 84.62 3.05 90.98 8.37 100 0.42 88.64

MFCC -j- OFS 92.36 3.6 90.07 4.91 87.71 1.4 100 0 92.62
MSTE 
+  OFS

92.84 3.69 88.59 3.64 90.71 1.97 100 0 93.06

MSTE +  
MFCC +  OFS

92.36 3.26 91.81 4.06 90.16 1.15 100 0.08 93.63

T able 5.5: The hit rate (HR), false alarm rate (FAR) for each class and overall hit 
rate for Radial SVM at SNR of 10 dB.

the same SNR. In case of the speech signals MSTE coefficients classify the voiced speech 

better than the MFCC. OFS classifies non-stationary signals better than the MFCC 

and the MSTE coefficients. The performance of the MFCC is improved when OFS is 

included in the feature set with a decrease in the FAR for unvoiced speech. The HR 

for non-stationary noise increases. Similarly the performance of the MSTE coefficients 

improves when OFS is included in the feature set. In both the cases the False Alarm 

Rate (FAR) is also reduced for all the classes except for the stationary noise where the 

FAR remains unchanged. The improvement in classification HR of the non-stationary 

noise signal is noticeable. The classification performance with all the features together 

(MFCC, MSTE coefficients and OFS) is marginally improved compared to the case 

where OFS is used with either the MFCC or the MSTE coefficients.

Table 5.6 presents the classification results using radial SVM for all the six feature 

sets at 15 dB SNR. The performance of MFCC and MSTE coefficients is similar to their 

performance at 10 dB SNR. In this case too the MSTE coefficients classify both voiced 

and unvoiced signals better than the MFCC. OFS are unable to classify voiced speech
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Feature Set Voiced
Speech

Unvoiced
Speech

Non-
Stationary

Noise
Stationary

Noise
Overall

HR FAR HR FAR HR FAR HR FAR HR
MFCC 90.69 4.55 81.39 6.77 76.78 5.41 100 0 87.45
MSTE 92.12 4.89 87.1 6.68 77.87 2.46 100 0 89.53
OFS 76.37 2.49 83.87 2.96 93.17 9.84 100 0.42 88.08

MFCC +  OFS 92.12 3.09 90.32 4.48 89.62 1.72 100 0 93.06
MSTE 
+  OFS

92.6 3 89.08 3.64 92.62 1.97 100 0 93.57

MSTE + 
MFCC +  OFS

92.84 3.09 91.32 3.72 92.35 1.07 100 0 94.13

Table 5.6: The hit rate (HR), false alarm rate (FAR) for each class and overall hit 
rate for Radial SVM at SNR of 15 dB.

as well as the signals of other classes and has a higher FAR for non-stationary noise 

compared to other signal classes. When OFS and the MFCC are included in the feature 

set the HR for voiced speech, unvoiced speech and non-stationary noise increases and 

the FAR for these classes decreases compared to using only MFCC. In the case of MSTE 

coefficients with OFS in the feature set, the FAR for voiced speech, unvoiced speech 

and non-stationary noise decreases and the HR for these classes increases compared 

to the performance of only MSTE coefficients. The classification performance with 

all the features together (MFCC, MSTE coefficients and OFS) is marginally improved 

compared to the case where OFS is used with either MFCC or MSTE coefficients.

Table 5.7 presents the classification results using radial SVM for all the six feature 

sets at 20 dB SNR. Among the MFCC, MSTE coefficients and OFS feature sets, MSTE 

coefficients have the best overall HR. It also has the best HR for voiced speech and 

unvoiced speech class. OFS has the highest HR for the non-stationary noise class. Both 

MFCC and MSTE coefficients have lower HR for non-stationary noise compared to the 

HR for other classes. In the case of OFS with MFCC or MSTE coefficients, the HR
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Feature Set Voiced
Speech

Unvoiced
Speech

Non-
Stationary

Noise
Stationary

Noise
Overall

HR FAR HR FAR HR FAR HR FAR HR
MFCC 90.69 4.46 80.89 6.68 77.05 5.66 100 0 87.38
MSTE 92.12 4.72 87.1 6.6 78.7 2.46 100 0 89.72
OFS 75.66 2.4 84.37 3.05 93.44 9.76 100 0.51 88.08

MFCC +  OFS 92.36 2.92 90.32 4.48 89.62 1.81 100 0 93.12
MSTE 
+  OFS

92.6 2.83 89.33 3.72 92.9 1.89 100 0 93.69

MSTE +  
MFCC +  OFS

92.6 2.74 91.56 3.81 93.44 0.98 100 0 94.39

T ab le  5.7: The hit rate (HR), false alarm rate (FAR) for each class and overall hit 
rate for Radial SVM at SNR of 20 dB.

increases and FAR decreases for all the classes except the stationary noise where the 

HR and FAR remains unchanged. There is a marginal improvement in the classification 

with all the features together (MFCC, MSTE coefficients and OFS) compared to the 

case where OFS is used with either MFCC or MSTE coefficients.

5.6 O bservations and C onclusion

From the classification tables in section 5.4 it can be seen that for all SNR’s the 

corresponding overall classification HR for all MFCC, MSTE coefficients and OFS 

feature sets in LDA and radial SVM are below 90%. When OFS is included in the 

feature set with MFCC or MSTE coefficients the overall HR is above 90%. When all 

the three features are included in the feature set, the overall HR for both the classifiers 

improves marginally compared to the classifiers performance when OFS with MFCC 

or MSTE coefficients feature sets are employed. All the feature sets are able to classify 

the stationary noise signal with a high HR and very low FAR in case of both the
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classification algorithms.

For the other three classes (voiced speech, unvoiced speech and non-stationary 

noise), both MFCC and MSTE coefficients have a higher HR for voiced speech com

pared to the unvoiced speech and have the lowest HR for the non-stationary noise for 

both the classification algorithms. MSTE coefficients have a higher HR for both the 

classes (voiced and unvoiced speech) compared to the MFCC. OFS has a high HR and 

a high FAR for the non-stationary signal class for both the classification algorithms. 

I t’s HR for non-stationary noise is higher for radial SVM compared to that of the LDA. 

It has the lowest HR for the voiced speech for both the classification algorithms.

MFCC with OFS improves the HR for the voiced, unvoiced and non-stationary 

noise classes compared to the HR of that of only MFCC. The improvement is more 

noticeable in the case of non-stationary noise and unvoiced speech signal classes. MSTE 

coefficients with OFS also have improved HR for non-stationary noise and unvoiced 

speech classes compared to the HR with only MSTE coefficients. The performance of 

MFCC with OFS, MSTE coefficients with OFS is similar to each other. The overall 

classification HR is marginally improved when MFCC, MSTE coefficients and OFS are 

included in the feature set.

For MFCC with OFS, LDA and radial SVM have similar HR for all the classes. 

In the case of MSTE coefficients, both linear and radial SVM have similar overall 

HR. LDA has a better HR than radial SVM for non-stationary noise for feature sets 

of MFCC with OFS, MSTE coefficients with OFS and OFS with MFCC and MSTE 

coefficients. The overall HR for both the classifiers is almost the same with the HR 

of LDA marginally better than that of the radial SVM. Thus both the classifiers are 

suitable for VAD. Since MSTE coefficients computation is simpler compared to the 

MFCC and all the features (MFCC, MSTE coefficients and OFS) together perform 

marginally better than the performance of MSTE coefficients with OFS thus MSTE 

coefficients with OFS feature set is suitable for VAD.
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Chapter 6 

DOA System

This chapter presents the experimental results for TDE when applied to the voiced 

speech segments of the audio signal recorded in a classroom. The DOA system consists 

of the Time Difference Of Arrival (TDOA) based DOA estimator and a supervised ma

chine learning algorithm based VAD system. The time delay estimator is the modified 

YIN based TDE from chapter 4. The voiced speech is identified by the Linear Dis

criminant Analysis (LDA) supervised machine learning algorithm and selected signal 

features of chapter 5. The DOA system is called MINDER (Modified yIN based Doa 

Estimator for e-leaRning). Experimental setup is described in the first section of this 

chapter. This is followed by sections on the experimental results for the MINDER and 

the conclusion of the chapter.

6.1 Experim ental Setup

An audio signal consisting of speech by both male and female talkers, silence and 

non-stationary noise was played through a loudspeaker and recorded by a ULA in a 

classroom situated next to a busy street. The audio signal was of 4.5 s duration of 

which the voiced speech was approximately 1.1s. The windows of the room were closed
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Fig. 6.1 : Source locations for DOA system experiment.

due to the presence of Heating, Ventilating, Air Conditioning (HVAC) systems. The 

closed windows reduced the noise from the street. The sampling rate of the signals 

was 16 kHz. The silence in the audio signal was introduced to record the background 

noise signal present in the room. The background noise in the room consisted of the 

noise from HVAC and a low level traffic noise. The non-stationary noise consisted of 

the paper shuffle, male and female cough signals. The dimensions of the room were 

6m X 3.5m x 2.5m and the RT60 of the room was 0.5 s. The simulation results for 

TDE for the same room are presented in section 4.5 of chapter 4.

A Uniform Linear Array (ULA) consisting of two microphones with the microphones 

spaced 6.8 cm apart was placed in the room. The source locations are shown in 

figure 6.1. The source locations were chosen such that they covered three areas (left, 

center and right) of the room with respect to the ULA. The signal source locations 

were: position 1: 57°, position 2: 90° and position 3; 131° with respect to the ULA. 

The signal source and the microphone array were on the same plane. The source at
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Feature Set Voiced
Speech

Unvoiced
Speech

Non-
Stationary

Noise
Stationary

Noise
Overall

HR FAR HR FAR HR FAR HR FAR HR
LDA with 

Mel-TEC +  OFS 
feature set

100 1.75 71.88 3.13 68.5 3.97 96.97 12 84.82

T able 6.1: Hit Rate (HR), False Alarm Rate (FAR) for each class and overall HR for 
the experimental signal using LDA.

position 1 was beside the window and hence closest to the traffic noise.

Signal frames of length 20 ms were taken for DOA calculation with no overlap 

between the adjacent frames. The TDE was performed on the signal frames identified 

as voiced speech by the LDA based VAD system. The features included in the feature 

set were the MSTE coefficients and the Other Feature Set (OFS) of chapter 5. The 

features in the OFS included the log energy, zero-crossing rate, skewness of the LP 

residual signal, spectral centroid, absolute difference between the first two PARCOR 

coefficients and the second, third LP coefficients. The separation distance between 

the microphones in the microphone pair was set at 6.8 cm based on the simulation 

results of chapter 4. It is a compromise between the 3.4 cm separation where the 

number of delays is less to provide higher angle resolution and 10.2 cm separation 

where the number of delays is more, leading to higher angle resolution, but also has a 

lower accuracy in TDE. Parabolic interpolation (discussed in section 2.5) in steps of 

0.2 sample value was used to improve the angular resolution.

134



1) vs 1 ) ------- Actual Class
2  )  Predicted Class

others 

2) V S

others

Fig. 6.2: VAD Experimental results classifying the audio signal into Voiced Speech 
(VS) and others (consisting of the unvoiced speech, stationary noise and the non- 
stationary noise signals).

6.2 D irection of Arrival System  Experim ental 

R esults

Table 6.1 presents results for classifying the audio signal into four classes. Figure 6.2 

shows the classification of the signal into voiced speech and others (unvoiced speech, 

stationary noise and non-stationary noise together) classes. All the voiced speech 

signals were identified correctly. Some of the non-stationary noise signal frames (cough) 

were classified as the voiced speech resulting in the FAR of 1.75%.

The TDE was performed only on the voiced speech signal. The experimental results
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for TDE are presented as histograms of the delay estimates in terms of signal samples, 

indicating the accuracy of the estimate. For the source at position 1 (57°), the signal 

reaches the reference microphone before the other microphone in the microphone pair. 

The expected delay for the microphones separated by 6.8 cm is 1.71 samples, which 

when rounded to the nearest integer value gives 2 samples without interpolation and 

is 1.6 or 1.8 with interpolation in steps of 0.2 samples.

Figure 6.3 presents the results of TDE on the source signal at position 1. The 

peak of the delay estimates without VAD is at the expected sample delay of 2. The 

maximum number of the delay estimates with VAD is also at the expected sample 

delay of 2. With VAD, incorrect delay estimates at sample delay -3 are eliminated. 

The sample delay estimates with VAD and parabolic interpolation are equal in number 

at the fractional sample delays of 1.6 and 2.2. Sample delays of 1.6 and 2.2 correspond 

to 59.8° and 46° respectively. Note that rouding the interpolated values yields the 

integer accurate estimate of 2.0 samples.

The experimental results of TDE for the source at 90° are presented in figures 6.4. 

The expected delay is 0 with and without parabolic interpolation. The peak of the 

histogram is at the expected delay without VAD and parabolic interpolation. The 

histogram of delay estimates with VAD on voiced speech results in a peak at the 

expected delay. With VAD the incorrect delays due to other signals at delay values of 

3 and -3 are eliminated. Applying parabolic interpolation on the delay estimates results 

in a maximum number of delay estimates at the expected delay. But here the number 

of delay estimates at the expected delay is less than the number of delay estimates 

without parabolic interpolation. Large numbers of delay estimates have values of 0.2 

and -0.2. 0.2 and -0.2 correspond to 86.4° and 93.6° respectively.

Figure 6.5 presents the TDE results for source at an angle of 131° (position 3). The 

expected delay is -2.1. Without parabolic interpolation the expected result is -2 and 

with parabolic interpolation the expected delay is -2 or -2.2. This position being closest
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Fig. 6.3: Position 1: TDE results for source at 57°.
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Fig. 6.4: Position 2: TDE results for source at 90°.
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Fig. 6.5; Position 3; TDE results for source at 131°.
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to the window, the delay estimates for it are more affected by the traffic noise than the 

delay estimates for the other two source positions. W ithout VAD, the peak of the delay 

estimates is at the sample delay of -3 (which is towards the traffic noise). W ith VAD, 

the peak of the delay estimates is still at -3 but the difference between the number of 

delay estimates at -3 and -2 is reduced. When parabolic interpolation is applied on 

the delay estimates, the number of delay estimates at delay value of -3 decreases. The 

delay estimates around the value of 2.2 increases. For this source position the benefits 

of applying VAD before TDE is noticeable.

6.3 Conclusion

This chapter demonstrated the performance of the MINDER combining the modified 

YIN based TDE algorithm of chapter 4 and the VAD system of chapter 5 for DOA in 

a classroom environment. The experimental results of VAD for classifying the signal 

into all the four classes was presented in section 6.1. FYom the results it is observed 

that in the presence of low background noise the proposed VAD system was able to 

classify voiced speech with a high HR and low False Alarm Rate (FAR). The FAR was 

due to the presence of human produced non-stationary noise signal. The HR for the 

unvoiced speech and non-stationary noise signals were lower than the other two class 

signals. Stationary noise had a high HR of approximately 97% but it also had a very 

high FAR of 12%.

Since the TDE for DOA estimation was performed on the voiced speech frames, 

the VAD using LDA and MSTE with OFS features was found to be suitable for this 

application as it was able to identify the voiced speech signal with high accuracy and 

low FAR. It was also shown that by applying VAD to identify voiced speech signal 

frames in order to perform time delay estimation only on voiced speech reduced the 

number of incorrect TDE computations due to presence of other type of signals.
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The time delay estimates using the modified YIN based TDE on voiced speech 

provided a greater number of correct delay values at the expected sample delay without 

parabolic interpolation. When parabolic interpolation was employed to improve the 

angular resolution, its effect on the results was not alike in all the cases. Employing 

parabolic interpolation improved the resolution in the obtained angles as the fractional 

sample delay estimates moved towards the expected fractional delay values.

This chapter successfully combined the proposed VAD system and the proposed 

TDE algorithm for DOA estimation in a classroom.
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Chapter 7

Conclusion

This chapter first presents the summary of the thesis followed by the future work.

7.1 T hesis Sum m ary

Time Difference Of Arrival (TDOA) approach is suitable for Direction Of Arrival 

(DOA) estimation for a single source. As discussed in section 2.10, the DOA estimation 

using the TDOA approach is suitable for e-learning environment. In the TDOA ap

proach first the relative time difference between the signals to reach a microphone pair 

in the microphone array is computed. This information is used to compute the DOA of 

the source signal. Cross-correlation on the microphone pair signals can be used to com

pute the time delay value. However, presence of noise and reverberation in a classroom 

leads to incorrect DOA estimation of the signal source location using Cross-Correlation 

(CC). Furthermore the performance of Time Difference Of Arrival (TDOA) algorithms 

such as Generalized Cross-Correlation Phase Transform (GCC-PHAT), Average Mag

nitude Difference Function (AMDF) while giving some improvement over simple CC 

also deteriorate in the presence of both high noise and reverberation.

This thesis presented a novel approach for DOA using the modified YIN based TDE
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algorithm. The original YIN algorithm was proposed for estimating the fundamental 

frequency of a signal. As explained in section 2.12 the YIN algorithm provides the 

fundamental frequency estimate by finding the similarity between the signal and its 

delayed versions. The delay value at which the signals are most similar is taken as the 

fundamental frequency of the signal. The TDE is performed by on the signals received 

by a pair of microphones by delaying one of the signals with respect to the other and 

finding the similarity between the two signals at each delay value. The delay value at 

which the signals are most similar is taken as the time delay. Due to the similarity 

between the way YIN estimates the fundamental frequency of the signal and the TDE 

computation the thesis shows that a modified YIN algorithm is suitable for TDE.

Simulation results comparing the performance of GCC-PHAT, contemporary al

gorithms such as Modified Average Magnitude Difference Function (MAMDF) and 

Weighted cross-correlation (WCC), proposed modified YIN based TDE algorithm and 

the Weighted YIN based TDE algorithm were presented in section 4.1 and section 4.2 

respectively. The performance of the algorithms was compared in terms of their accu

racy and the Mean Square Error (MSE) for different values of SNR. The SNR values 

considered for simulations were 10, 15 and 20 dB because as mentioned in section 2.6 

the acceptable SNR in a classroom is greater than 10 dB.

The simulation results showed that the modified YIN based TDE algorithm had 

the best accuracy as defined by the maximum mode of the distribution of the delay 

estimates but it had a higher MSE compared to the other algorithms. The contem

porary MAMDF algorithm was best next to the modified YIN based TDE algorithm : 

but had lower MSE compared to the modified YIN based algorithm. The WCC algo-  ̂

rithm and the Weighted YIN based TDE algorithm had similar performance in both 

accuracy and MSE. The GCC-PHAT had the worst performance in terms of accuracy.^ 

The GCC-PHAT, WCC and the Weighted YIN based TDE algorithm were found to 

be biased towards the zero delay value which resulted in lower MSE whereas the other
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two algorithms were biased towards the extreme delay values in the valid delay value 

set leading to higher MSE. Since for DOA estimation, accuracy is important hence for 

Time Delay Estimation (TDE) in the proposed DOA system for e-learning modified 

YIN based TDE algorithm was used.

As mentioned in section 1.2, a pre-processing Voice Activity Detection (VAD) sys

tem that identifies part of speech that contain speech is another part of the proposed 

DOA system. VAD is useful in avoiding DOA computations on parts of audio signal 

that do not contain speech. The VAD pre-processing stage not only reduces the num

ber of DOA computations but also prevents steering the video camera in direction of 

undesired signal sources.

The VAD process classified the signal into four categories namely the voiced speech, 

unvoiced speech, stationary noise and the non-stationary noise. The signal was classi

fied into four classes for TDE on the voiced speech and for post processing e-learning. 

Supervised machine learning algorithms such as the Discriminant Analysis (DA), Arti

ficial Neural Network (ANN) and Support Vector Machine (SVM) were considered for 

classification.

Initially for VAD, supervised machine learning algorithms such as the Quadratic 

Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA) and the Maha- 

lanobis Distance (MD) belonging to the DA category; cascaded ANN and radial, linear, 

polynomial and sigmoid kernel SVM were considered for VAD. The features used in the 

initial classification to decide on the supervised machine learning algorithm suitable 

for classifying the signal into four classes are mentioned in section 5.3 and discussed in 

section 3.3.

Features were computed on 20ms long signal frames. Forward and backward feature 

selection using DA was performed on the feature set to assess the significance of the 

features in classification and remove the features that do not contribute towards clas

sification. All the features were found to be significant. The classification algorithms
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were trained and then tested for classification. The training data and the testing data 

were different. For training and testing purpose all the signal frames consisting of two 

or more signal classes were excluded. Based on the classification Hit Rate and False 

Alarm Rate for each class in section 5.3 only LDA and radial kernel SVM were further 

considered for inclusion in the VAD stage of the DOA system.

This thesis also proposes a novel mel-spectrum and Teager Energy Operator based 

feature called the Mel-Spectrum Teager Energy (MSTE) coefficients. These features 

are presented in section 5.1. The performance of these features was compared with 

the frequently used Mel Frequency Cepstrum Coefficients (MFCC) in speech signal 

processing applications. As shown is section 5.5 the MSTE coefficients were found 

to perform as well as or marginally better than the MFCC for classifying the signal 

into four classes at the considered SNR of 10, 15 and 20 dB for both LDA and radial 

SVM. The advantage of these coefficients is that they are simpler to compute than the

The MSTE coefficients on their own were not able to effectively classify all the 

classes especially the non-stationary noise class signal. The MFCC coefficients also 

suffered from this problem. Forward feature selection in DA was performed on the 

feature set mentioned in section 5.4. Forward feature selection was employed because 

the aim of performing feature selection was to find the features that perform well with 

the MSTE coefficients in the feature set. The features that were found to be significant
I

for classification along with the MSTE coefficients are presented in section 5.4. All the 

selected features except the MSTE were grouped into Other Feature Set (OFS).

The results of the performance of the MSTE coefficients with the OFS and MFCC 

with OFS using LDA and radial SVM are presented in section 5.5 for 10, 15 and 

20 dB SNR. Both the feature sets performed equally well for classification into four 

classes with a high HR and low FAR for all the classes. The classification results for

classification with only OFS was also presented to assess their classification

MFCC.
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MSTE coefficients. OFS was able to classify non-stationary noise signal well but had 

a low HR for the voiced speech signal. The performance of all the features together 

was also presented in section 5.5. All the features together performed marginally better 

than only MSTE with OFS or MFCC with OFS. Based on the simulation results MSTE 

with OFS was included in the final feature set for VAD.

Comparing the classification results of LDA with radial SVM in section 5.5 for the 

above mentioned feature sets (only MFCC, only MTSE, only OFS, MFCC with OFS, 

MTSE with OFS and all the three together), the performance of LDA was found to 

be marginally better than that of the radial SVM hence LDA was chosen for VAD. 

Thus the final VAD stage in the proposed DOA system consisted of the LDA machine 

learning algorithm with MTSE and OFS features.

Finally in chapter 6 the LDA classification algorithm with MTSE and OFS features 

for VAD was combined with the TDE using the modified YIN based TDE algorithm 

to form the DOA system. The results of the experimental results of the DOA system 

on the data recorded in a classroom are presented in section 6.2. In the experimental 

results the frames consisting of two or more signal classes were not included. The 

LDA was trained with the training data and the signal recorded in the classroom was 

classified into four classes.

TDE was performed on the signal frames classified as voiced speech. The VAD 

system was able to identify all the voiced speech frames and had a low False Alarm 

Rate (FAR). The FAR was due to the classification of some of the non-stationary noise 

signals into voiced class. Parabolic interpolation (described in section 2.5) was used on 

the TDE to improve the resolution of the angle estimates.
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7.2 Future Work

From the experimental results for TDE in section 4.5 it was concluded that modified 

YIN based TDE has higher accuracy than the other algorithms but there is still a 

scope for improving the accuracy of the TDE. In section 4.6 it was also mentioned that 

modified YIN based TDE is biased towards the extreme delay value of the TDE when 

the delay estimate is incorrect. In this context, further investigation is required to add 

post TDE logic correction in order to improve the accuracy of the TDE. The DOA 

information from different microphone pairs can be used to find the source location.

Another aspect of the TDE was using the parabolic interpolation to improve the 

resolution in the angle. The experimental results with parabolic interpolation were 

presented in section 6.2. The parabolic interpolation was not as helpful in all the 

cases. Further research into the suitable interpolation method can be done.

Since the work concentrated on finding the DOA based on TDE on voiced speech, 

hence even though the signal was classified into four classes the primary concern was 

to identify voiced speech signals with high HR and low FAR. This was achieved in 

the work. Further research into identifying undesirable noises such as cough, sneeze, 

paper shufilie with high accuracy so that they can be effectively removed automatically, 

without much human intervention, for post-processing e-learning so that the students 

are able to access the lectures online or on a Compact Disc (CD) is required.

A limitation of the VAD work presented in this thesis is that the frames consisting 

of two or more signal classes (non-overlapping) have not been included for training 

or testing. In real time application these frames will be classified into one of the 

four classes depending on the training algorithm. This will result in incorrect VAD I 
decision. Further research on identifying the frames consisting of two or more classes 

so that they can be classified into the other class (not voiced speech) to reduce incorrect 

VAD decisions is required.

Moreover for post-processing e-learning the word boundaries have to be exactly
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identified which is not required in the case of TDE. This is because a few ms of missing 

signal can change the meaning of the words that are being spoken whereas a camera 

can be steered a few ms after the words have been spoken. The frames with mixed 

signals can be further worked on to identify the word boundaries to improve the post

processing e-learning.

Another aspect that was not considered in this work was the overlap of signals of 

different classes (different class signals are present simultaneously) in a frame. All the 

frames that were considered in the work consisted of a single class signal. For VAD 

simulations in different SNR, white Gaussian noise was taken as the background noise. 

Scenarios where the voiced speech is present with other signal class in the backgroimd 

were not included. Further investigations on classifying the signals consisting of speech 

with non-stationary noise in the background will be desirable to make the VAD system 

more robust to identify speech especially voiced for TDE. Since the MSTE coefficients 

perform on par with the MFCC, their application in speech recognition and speaker 

recognition applications using the Hidden Markov Models should be explored.
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