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Abstract

The study of electronic transport in molecular devices is one of much research inter-
est, with potential applications in a range of different fields. These devices have been
experimentally constructed using many different techniques, and also modelled using
several computational methods. The method most commonly used to perform such
calculations is the non-equilibrium Green’s function formalism combined with density
functional theory (DFT). However, DFT calculations based on local exchange and
correlation functionals contain self-interaction errors. The primary purpose of this
work is to investigate the effects of these errors on electronic transport calculations.
We describe the origin of the self-interaction error in DFT, as well as its consequences
including the absence of the derivative discontinuity in approximate local exchange-
correlation potentials. Exact and approximate self-interaction corrections to remove
these errors are also described.

Transport calculations were performed using the non-equilibrium Green’s func-
tion code SMEAGOL for a variety of metal-molecule junctions. We use a tight-
binding Hamiltonian to show that the derivative discontinuity can open conductance
gaps in the [-V curves. An atomic self-interaction correction (ASIC) to DFT is
used to investigate the effect of correcting the alignment between the energy levels
in the molecule and the Fermi level in the metal. Both of these methods improve
the agreement between theory and experiment.

Finally, the use of SMEAGOL to simulate STM tunnelling current measurements
for alkanethiol molecules is investigated. We show how the difference in the strength
of the interaction between the molecule and the tip compared to the substrate can

lead to strong asymmetry in the -V curves.
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Chapter 1

Introduction

The field of molecular electronics began with the suggestion of Aviram and Ratner
that an organic molecule could be used as a logic gate [1]. In recent years, several
examples of molecular devices in the form of metal-molecule-metal junctions have
been constructed using a variety of methods such as mechanical break junctions
and scanning tunnelling microscopes (STM). The study of the electronic transport
properties of such devices is currently becoming one of much research interest.

Possible applications of such devices range from novel computer architectures
(2, 3, 4, 5], which will be smaller, faster, cheaper to manufacture and consume less
power; to highly sensitive chemical sensors [6, 7, 8]; to diagnostic medical tools which
can identify individual viruses or proteins [9]. Another interesting application which
has been suggested recently is to use molecular electronics to sequence strands of
DNA, where individual base-pairs are distinguished by their transverse conductivity
[ 1L

One major advantage of molecular electronics over traditional semiconductor elec-
tronics is that circuits can be manufactured via self-assembly. Lithographic fabrica-
tion is becoming increasingly expensive as microchip components continue to shrink,
and self-assembly, whereby molecules are deposited on the surface, would allow cir-
cuits with component sizes an order of magnitude smaller than those in current
commercial computer processors to be manufactured at much lower cost. It is also
possible that molecules could be selected to give very low “off” currents, thus reduc-
ing power usage and cooling requirements. Another possible application for molecular
electronics is in the manufacture of cheap, fast, high-density, non-volatile memory,
similar to the concepts proposed for magnetic random access memory (MRAM)[12].

However, the applications related to computing are only a small section of the
possibilities offered by molecular electronic devices. There have been several pro-

posals for chemical and biological sensors, in which molecules, viruses, antibodies,



Introduction 2

proteins, etc. are detected by their effects on the electronic properties of nanotubes
[6, 7] or nanowires [8]. There is also a lot of research currently being done on the
electronic transport properties of DNA, from sequencing strands of DNA by mea-
suring the conductivity of individual base pairs[10, 11], to understanding how DNA
molecules can transport charge along their length [13, 14, 15]. Research is also being
performed on using strands of DNA as a template to position molecular devices in
electronic circuits [16, 17]. Because of the base-pairing mechanism in DNA, where
each type of base will only bond to one other base, it is possible to set up lock
and key type mechanisms, so that a molecular device with a short strand of DNA
attached will attach to a specific point on a DNA wire. Also, metal atoms, such as
silver or gold, can then be deposited on the exposed parts of the DNA strands after
the molecular devices have been positioned in order to form a conducting circuit.

A typical molecular device consists of a thiolated organic molecule sandwiched
between two metallic electrodes. The sulfur atoms in the thiol groups anchor the
molecules to the metal surfaces. The metal normally used for such experiments is
gold, due to its high conductivity and resistance to corrosion. Nickel electrodes are
also used in spintronic experiments, where spin polarised currents are measured [18].
However, nickel has the disadvantage of oxidising relatively rapidly (compared to gold
or silver), with nickel oxide forming on the surface and making repeated measure-
ments difficult. The organic molecules used fall into two main groups: conjugated
molecules such as benzenedithiol (BDT), biphenyldithiol (BPD) and triphenyldithiol
(tricene) which have delocalised carbon 7 bonds across the molecule and thus rel-
atively high conductivities; and non-conjugated molecules such as alkanethiols, or
benzenedimethanethiol (BDMT) in which the 7 conjugation is broken by the methyl

groups.

A) B) C)

Figure 1.1: Simple organic molecules used in molecular electronics experiments: (A) Ben-
zenedithiol (BDT), (B) benzenedimethanethiol (BDMT),(C) biphenyldithiol
(BPD). Colour code: C=black, S=brown, H=blue.

Several different methods have been used to construct such devices, such as



3 Introduction

mechanically controllable break junctions [19, 20, 21, 22, 23, 24, 25], STM tips
[25, 26, 27, 28], lithographically fabricated nanoelectrodes [29], and colloid solutions
[30]. Break junction molecular devices are created by attaching a thin metal wire
to a flexible substrate, where the wire is surrounded by a solution containing the
molecule. The molecules form a self-assembled monolayer (SAM) over the surface of
the metal. The wire is then stretched by bending the flexible substrate. When the
wire breaks, one of the molecules on the metal surface may bridge the gap formed.
The bending is usually controlled by the elongation of a piezoelectric element placed
underneath the substrate as shown in figure 1.2(a), so that the width of the gap in
the wire can be controlled with extreme precision. In a typical experiment, the gap is
closed and reformed multiple times, so that several devices are formed and statistical

measurements can be taken.
[a)] Mechanical Breaking Junction 'b)| STM Break Junction
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Figure 1.2: Schematic of experimental set up for (a) mechanical breaking junction and
(b) STM breaking junction. In a mechanical breaking junction, a metallic
nanowire is coated with a layer of molecules and then stretched to breaking
point. A single molecule is thus trapped in the gap formed. In the STM
breaking junction, a metallic substrate is coated with sparse layer of molecules.
One of the molecules is then located and contacted to the tip, which is then
pulled upwards to form the device.

The devices can also be constructed using an STM breaking junction [26, 27, 28],
as shown in figure 1.2. A sparse monolayer of molecules can be deposited on a

surface of the metal, which forms one electrode. Then, the STM tip, which is formed
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from the same metal as the surface, can be used to contact the top of one of the
molecules. This forms a circuit, allowing the [-V characteristics of the molecule to
be investigated. The tip can then be pulled upwards to stretch the contact until
it breaks. Once again, this procedure can be repeated multiple times to obtain
statistical measurements. Alternatively, metal nanoparticles can be attached to the
top of the molecules which are attached to a substrate. The nanoparticles are then
contacted by the tip of an STM [31, 32] or an atomic force microscope (AFM) [33],

completing the circuit and allowing transport measurements to be made.

The electrodes can also be fabricated using lithographic techniques, with the size
of the gap between the electrodes being manufactured to be equal to the length
of the molecule in question. The molecules can then be deposited in the gap [29].
Their presence is usually monitored and confirmed by a scanning electron microscope
(SEM). Finally, instead of directly depositing the molecules in the gap, the molecules
can be combined with a solution of colloid nanoparticles of the metal, so that a metal
particle attaches to each end of the molecule. These structures are then deposited
between the lithographically fabricated nanoelectrodes, with their presence in the

gap being confirmed using a tunnelling electron microscope (TEM) [30].

Unfortunately, there is much disagreement between the experimental results ob-
tained using these different methods for these and other molecules. For example, for
BDT contacted to gold the values of the zero-bias conductance vary from 107Gy [19]
observed with a mechanical break junction, to 0.011Gy [26] measured by an STM.
In order to explain these differences, researchers have turned to theoretical mod-
els. Different computational methods used to investigate such systems range from
the non-equilibrium Green’s function formalism (NEGF) [34, 35, 36] combined with
electronic structure methods [37, 38, 39, 40, 41, 42] such as density functional theory
(DFT)[43, 44, 45]; to empirical tight-binding methods [46, 47, 48, 49|, many-body
methods [50, 51, 52, 53, 54, 55, 56] and time-dependent density functional theory
(TDDFT) [57, 58]. However, these methods also disagree on the results, and they
show that the electronic transport properties of a metal-molecule junction can be

highly sensitive to how the molecule attaches to the metal surface.

The NEGF formalism combined with DFT [37, 38, 39, 40, 41, 42], using a local
exchange correlation functional such as the local density approximation (LDA) [44]
or the generalised gradient approximation (GGA)[59, 60, 61], is the most commonly
used ab initio method for electronic transport calculations. It has the advantage
of combining accurate results with good scaling - there are methods which are cur-

rently under development which scale linearly with the number of atoms [62]. Un-



5 Introduction

fortunately, often the results obtained with NEGF-DFT do not match those of the
experiments, giving zero-bias conductances for a variety of metal-molecule anchoring
geometries higher than those measured experimentally [63, 64, 65, 66, 67, 68, 69, 70].
Some of these problems may be due to the fact that the true metal-molecule contact
geometry is unknown. Another possibility is that the problem lies in the approxi-
mations made to the electronic structure methods used. DFT is only valid for the
ground state of a system, and so, strictly speaking, it is not correct to use it when
a finite potential bias is applied. TDDFT [57] has been formulated to deal with
this problem, as well as to calculate excited states. However, TDDFT is compu-
tationally quite heavy, and to date has mainly been applied to single atoms and
simplified models. Finally, the local exchange correlation functionals usually used
with DFT contain self-interaction errors [71], which can result in the energy levels of
the molecule being in the wrong place. This error can also result in the suppression
of the derivative discontinuity [72, 73], which would affect how the molecular orbitals
respond to changes in their occupation. It is the effects of these self-interaction errors
on electronic transport calculations [74], as well as possible solutions to the problem

[75, 76], that are the main focus of the research presented in this thesis.

Figure 1.3: Decanethiol molecule (a) with CHs-endgroup and (b) with CF3-endgroup.
Colour code: C=black, S=brown, H=blue, F=purple.

The electron transport properties of organic molecules can also be studied with-
out actually forming two contacts, by using a scanning tunnelling microscope [77, 78].
If the molecules are attached to a metallic surface, the STM probe tip can be placed
in the vicinity of the molecule end group, and the tunnelling current through the
molecule can be measured. Normally, calculations for such systems are performed
using the Tersoff-Hamann method [79, 80|, in which the tip is assumed to be suffi-
ciently far from the molecule that it does not affect its electronic structure. However,

if the STM tip is close to the molecule, then the interaction between the tip and the
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molecule will become important, and a method such as NEGF combined with DFT
will need to be used. One such set of measurements is that performed by Pflaum
et. al. [81] on CH3- and CFj-terminated decanethiol, as shown in figure 1.3. In this
set of experiments, a much stronger asymmetry was observed in the /-V curves for
the CF3-endgroup than for the CHs-endgroup. It was suggested that this difference
was due to the interaction between the molecule endgroup and the STM tip with an
applied bias. This type of effect cannot be investigated using the Tersoff-Hamann

model, instead requiring a method such as NEGF.

1.1 Dissertation Layout

In this thesis, I will describe the methods used to perform electronic structure and
transport calculations for molecular devices. I will present the results of such cal-
culations for a variety of different metal-molecule junctions. In particular, I will
investigate how errors in the approximations made in electronic structure theory
affect the results of electron transport calculations.

In chapter two, I will give a brief introduction to density functional theory (DFT)
[43], including the Kohn-Sham formalism [44] and the SIESTA [82, 83, 84] imple-
mentation. The self-interaction problem [71] and its consequences will be described,
including the absence of the derivative discontinuity in approximate local exchange-
correlation potentials [72, 73]. Both exact and approximate self-interaction correc-
tions (SIC) [71, 75] to remove these errors will then be described.

In chapter three, I will describe a simple model for electron transport in molecules
[85]. Using this model, I will demonstrate how certain features of the electronic
structure of metal-molecule junctions, such as the level alignment, the strength of
the interaction between the leads and the molecule, and the response of the level to
changes in its occupation, affect the conductance.

In chapter four, the non-equilibrium Green’s function formalism (NEGF) [34, 35,
36] will be described. It will be shown how this method has been combined with
DFT to form the SMEAGOL program [37, 38, 39], and then used to calculate the
electronic structure of infinite, non-periodic systems which have an external potential
bias applied. T will also show how to use this method to calculate transmission
probabilities and /-V curves for such systems.

In chapter five, I will present the results of electron transport calculations for the
BDT molecule attached to gold electrodes [74]. These calculations were performed

using a self-consistent tight-binding Hamiltonian, which incorporated discontinuities
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into the dependence of the molecular orbitals on their occupation. This system will
be used to study the effect of the derivative discontinuity on electron transport in
molecular devices under a variety of different conditions.

In chapter six, the results of electron transport calculations for a variety of molec-
ular devices performed using self-interaction corrected DFT are presented. An ap-
proximate SIC, the atomic self-interaction correction (ASIC) [75], has been incorpo-
rated in to SIESTA, which forms the basis for the non-equilibrium transport code
SMEAGOL. This method was used to perform calculations for molecular devices
formed from BDT, BPD and BDMT sandwiched between gold electrodes, and the
results are discussed.

In chapter seven, we move away from the self-interaction problem, and instead
look at simulating STM electron transport measurements using SMEAGOL. In par-
ticular, the results of some ongoing calculations for alkanethiols on a gold surface
will be presented. A comparison to some experimental measurements performed on
a similar system [81] will be made, and future directions for these calculations will
be suggested.

Finally, the conclusions which can be drawn from this work will be discussed.
Some suggestions for solving some of the remaining problems highlighted by the

work in this thesis will also be discussed.
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Chapter 2

Density Functional Theory and
Self-Interaction Errors

The molecular devices described in this thesis contain of the order of one hundred
atoms, while the valence orbitals which need to be described may number in the
thousands. Describing such devices accurately using computational techniques which
will produce results within a reasonable time frame is a major electronic structure
problem. Many-body problems with large numbers of particles do not have analytical
solutions, and the exact numerical methods are infeasible as they do not scale well
with increasing system size. Therefore, any electronic structure method used to
calculate the properties of such devices will have to contain approximations. These
include empirical methods such as the tight-binding method, and ab initio methods
such as Hartree-Fock theory and density functional theory (DFT) [45, 86].

DFT is one of the most popular ab initio methods, particularly for large systems
and electronic transport calculations, due to its blend of accuracy and computa-
tional efficiency. The main approximation in this method is in using local exchange-
correlation functionals, which may contain self-interaction errors - the interaction of
an electron with its own potential. Corrections to remove this self-interaction error
will be described in this chapter, and the effects of these corrections on electronic
transport calculations for metal-molecule junctions will be explored in later chapters.

The basic problem to be solved for any many-particle system in quantum mechan-
ics is the many-body Schrodinger equation, which takes the form of an eigenvalue
problem for a Hamiltonian operator H acting on a many-body wave function 1),

giving an energy F

Hy = Ey. (2.1)
The full quantum mechanical Hamiltonian operator H for the many-body system

9
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has the form

Ne Ny 27 -
1 € ZIZJ
H= —_— 2.2
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where r; is the position operator for the i-th electron and R; is the position
operator for the /-th nucleus. The first and second terms represent the kinetic energy
for the the electrons with mass m, and the nuclei with mass M;. The third term
represents the Coulomb interaction between the nuclei, the fourth term represents
the Coulomb interaction between the nuclei and the electrons, and the fifth term
represents the electron-electron interaction.

The first approximation which can be made to help simplify this problem is the
Born-Oppenheimer approximation, in which the nuclear motion and the electronic
parts of the wave function are separated. The masses of the nuclei are much larger
than those of the electrons, so that in classical terms they move at a far lower speed
than the electrons. Hence the electronic wave function can be separated from that

of the nuclei as follows

'l/) = ‘l/)(l‘],l'g,...,I‘i,...,I‘NE;Rl,RQ,...,R[,...,RNN) (24)
= 'lf)e(l‘l,rz,...,I‘i,...,I‘Ne)l/)N(RI,RQ,...,R],...,RNN). (25)

Hence, an electronic structure theory can treat the positions of the nuclei as being
fixed, and just solve for the many-body electron wave function.

Once the Born-Oppenheimer approximation has been made, and the nuclear part
of the Hamiltonian separated out, the Hamiltonian H for a system of interacting

electrons can be written in the form

H:T+\7ee+2v(ri) ! (2.6)

where 7' is the kinetic energy, V.. is the energy due to the electron-electron
interaction, and ), v(r;) is the external potential, which includes contributions due

the interaction of the electrons with the nuclei, as well as with applied electric fields.
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2.1 Hartree-Fock Theory

One of the most popular methods for solving the electronic Schrodinger equation
for many-particle systems is that of Hartree-Fock [45, 86]. It involves solving self-
consistently for the many-body electron wave function.

Since electrons are fermions, the total electronic wave function must be antisym-
metric. This condition is trivially satisfied for a Slater determinant of single-particle
wave functions ¢;(r;), and so this makes a good initial approximation for the many-

body electronic wave function.

. il
HF = 75

The single-particle wave functions ¢;(r;) are usually modelled as localised orbitals,

det [¢i(r;)] . (2.7)

such as linear combinations of Gaussian-type orbitals. These orbitals are then used
in a self-consistent calculation to minimise the total energy, which corresponds to

the ground state of the system.

BE= Y <f§,’f“ﬁ§7’§‘> i (2.8)
e o HFI*HF

Hartree-Fock theory can be extended by using linear combinations of Slater deter-
minants to approximate the many-body electronic wave function. These additional
determinants describe different configurations of the electrons in the molecule, i.e.
they describe excited states of the system. This approach is known as configuration
interaction [45, 86], and can be used to describe excitations and calculate electron
correlation.

Unfortunately, Hartree-Fock calculations do not scale well with system size. The
size of the calculation increases as N°, where N is the number of basis functions.
Therefore, while it is useful for small molecules and systems with periodic boundary
conditions with small unit cells, it is not practical for calculating the large, extended

molecule type devices with hundreds of atoms which are described in this thesis.

2.2 Density Functional Theory

Density functional theory (DFT) [45, 86] was originally proposed by Hohenberg and
Kohn [43]. They demonstrated that finding the ground-state many-body wave func-
tion is equivalent to obtaining the ground-state charge density. They also showed

that the ground state charge density for a given potential is unique. Kohn and Sham



Density Functional Theory and Self-Interaction Errors 12

[44] then used this to formulate a method where a system of non-interacting single
particle equations were solved instead to obtain the ground-state charge density of

the real system.

2.2.1 Hohenberg-Kohn Theorem

Hohenberg and Kohn [43] showed that the potential of a system of electrons is
uniquely specified by the ground-state charge density for that system. This can be
proved by reductio ad absurdum by showing that there being two different potentials
which give the same ground state charge density p(r) will result in a contradiction.

The fact that the charge density for a specific system is unique allows it to be
used as the relevant variable instead of the many-body wave function. This is hugely
beneficial in terms of making large electronic structure problems tractable, as while
the wave function has to be calculated for each particle, the charge density is given by
a single value at each point in space. Thus, the 3/V! variables required to specify the
wave function at a point in space are reduced to the 3 variables required to describe
the charge density.

Note that, strictly speaking, this theorem is only valid for ground states. For
example, unoccupied states have zero charge density, and thus are meaningless in
standard DFT. Therefore, DFT should not be used for applications which involve
empty states such as calculating band gaps in semiconductors. One solution to
this problem is to used time-dependent DFT (TDDFT) [57], in which electrons are

temporarily excited into higher states, allowing them to be calculated.

2.2.2 Kohn-Sham Equations

The Hohenberg-Kohn theorem shows that finding the ground state of the system
is equivalent to finding the ground state charge density. Kohn and Sham [44] were
able to map the problem of finding the ground state charge density onto that of
solving a system of non-interacting single-particle Schrodinger equations. This offers
a practical method of solving DFT problems, which in principle can include any
many-body ground state electronic structure problem.

In order to derive these equations, we start by defining the universal functional F'
of the charge density p(r) to be the minimum expectation value of sum of the kinetic

energy operator T and electron-electron interaction potential V..

Flor, py] = min(T + V..) (2.9)
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where p; and p| are the spin-up and spin-down charge densities. This universal

functional F' can be broken into three parts

Flpr, p] = Tlpr, p1] + Ulpl + Exclpr, pi] - (2.10)

where T'[py, p;] is the “non-interacting” kinetic energy, U[p] is the “Hartree” en-
ergy (i.e. the classical Coulomb energy), and Exc|pr, p;] is the “exchange-correlation”
energy. The spin charge densities, p,, can then be written as a sum over a set of

orthonormal orbitals 1),,(r), which are weighted by Fermi functions 0 < f,, <1

=Y faclbao(®)P ;0= pt +p1 (2.11)

The “non-interacting” kinetic energy, 7'[p1, p;] can be defined in terms of these
orthonormal orbitals as shown in equation (2.12), where the minimum is taken over

the all possible values of f,, and ,, which produce the given spin charge densities.

T(py, py] = min [Z Fao (Yo (1)) (—%vz) |z/)m<r>>} . (2.12)

The Hartree energy, U[p], is the energy due to the classical Coulomb electron-

electron interaction, and so has the form

/CP /d”‘ PE)p(r) B0
|r < r’l

The exchange-correlation energy, Exc, contains the remaining part electron-
electron interaction energy. The exact form of this energy is as yet unknown, and
must be approximated. Various approximations to this energy which are currently
in use are described in section 2.2.4.

The variational principle gives that (fl ) > ESS5 where E©® is the ground state

energy, so that

Flpr, p] + Zv r)p(r) > ECS (2.14)

where v(r;) is the part of the potential which is not due to electron-electron
interactions, and includes the potential of the atomic nuclei as well as any external
applied electric fields. Next we can introduce E’, which is the expectation value of the

many-body electron Hamiltonian, with respect to the orthonormal orbitals 1., (r)
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E = Flonpl+ [ @)
i Z faa<wcw(r)| (_%VQ) |waa(r)> * U[p]

+Exclor,pil + [ @ro(p(r).

To find the ground state of the system, this has to be minimised with respect
to the orthonormal orbitals 1., (r), subject to the constraint that the orbitals are
normalised. To handle this constraint, introduce the Lagrangian multipliers €,q foo

to get the Euler equation

5 ; , r
59ae (T) [E ¥ Zfa'a'fa'a' / d’r lw(m(r)F] =0. (2.15)

a’o’

Differentiating E with respect to the wave function oo (r), using the relationship
between the wave function and the charge density given in equation (2.11), gives the
following result

)
0Yao(T)

Inserting the result from equation (2.16) into equation (2.15), an equation for €,

X iRl
F = Z |:—§V2 + UEFF} fa(r‘l//«'(wr(r) 5 (216)

and 1,, can be obtained

1
Z faa [_§v2 I VEFF:‘ waa(r) s Z /aaﬁaa'l/)ao(r) = 0 < (217)

This can be separated into a set of Schrodinger-like equations for the effective
potential vfpp, with eigenvalues €,,. These are the Kohn-Sham equations, and can

be written as follows

Iy
[_§V2 i Vb()fFF:| 'lr/}cw(r) -, faawaa(r) : (218)

The effective potential, Vifzp, in the Kohn-Sham equations is defined as

Vier = v(r) + Vu(p) + Vxc(p, 1) - (2.19)

The Coulomb or Hartree potential, Vii(p(r)), is given by the derivative of the
Coulomb energy Ul[p] with respect to the charge density p(r)

Valple)) = s Ulel = [ 2L (2.20)
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The Hartree potential for a given charge density p(r) can be obtained by solving

the Poisson equation for that charge density

—V?Vau(r) = p(r) . (2.21)

Similarly, the exchange-correlation potential, V., is given by the derivative of

the exchange-correlation energy Fxc with respect to the charge density p(r)

3 )
Ve = S Exclpr, p1] - (2.22)

The Kohn-Sham set of equations (2.18) can then be solved to obtain the Kohn-
Sham eigenvalues ¢,, and the Kohn-Sham eigenvectors 1, and these are then used
to construct a new charge density p(r). The new potential (which is a functional of
the charge density) is then calculated, and the procedure is repeated self-consistently
until the charge density converges. Since the Hohenberg-Kohn theorem shows that
the ground-state charge density is unique, this will be the charge density of the actual
system.

The Kohn-Sham eigenvalues are the eigenvalues of the fictitious, non-interacting
Kohn-Sham orbitals, and as such do not necessarily correspond to physical observ-
ables. The actual observables obtained from DFT are additive properties such as
the total energy or the charge density. For example, the total electronic energy of a
system is equal to the sum over the eigenvalues ¢; of the occupied Kohn-Sham states,

along with terms to correct the electron-electron interaction [45],

ETOT = Zf(ﬁi = EF)Ei = %/Bl(rr—)_pﬁrl%)drdrl + Ex(;[p] = /’ch(l")[)(l‘)dl‘, (223)

where [ is the Fermi distribution and Ef is the Fermi energy. To get the total
energy of the system, the energy due to the interactions between the nuclei would
also have to be included. The expression for the charge density is the sum over
the Kohn-Sham orbitals, weighted by a set of Fermi functions as shown in equation
(2.11).

2.2.3 Kohn-Sham eigenvalues

The Kohn-Sham eigenvalues, ¢,,, are the eigenvalues of the single-particle Kohn-
Sham equations. They are the eigenvalues corresponding to the Kohn-Sham orbitals,
which are a set of fictitious, non-interacting orbitals. As such, they do not necessarily

correspond to the single-particle energy levels of the real system. However, in practice
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Kohn-Sham eigenvalues are often used to calculate band structures for materials, i.e.
they are interpreted as single-particle energies. Additionally, in electronic transport
calculations, the resonances in the transmission coefficients correspond to the position
of these eigenvalues. Hence, it is important to understand what these eigenvalues
do physically correspond to. Janak [87] showed that the Kohn-Sham eigenvalue is
the derivative of the total energy with respect to its occupation, and hence that the
highest occupied Kohn-Sham eigenvalue (the Kohn-Sham HOMO) is equal to the
negative of the ionisation energy of the system.

In order to prove this theorem, the function E is first rewritten so that the

dependence on the orbital occupation, f,,, is explicit

- ‘ 1 ‘ -
E = Z faa<waa| - §v2i'lr/)aa> s Zfao(d)aaiVEF‘}?i'M/ytya> . (224)

ao ao

Differentiating E with respect to the orbital occupation f,, gives

5
0fao

But, using the Kohn-Sham equation (2.18) and assuming the wave functions are

- il [
B= [ drui(5)[-5 7 + Vireltos (). (225)

normalised gives

' | S .
[Era gV + lbaols) = [ @05, (eartin )
= faa/dgrw:m(r)waa(r) = €ao -

Hence, the derivative of the energy with respect to the occupation of a state is

equal to the Kohn-Sham eigenvalue of that state

s el (2.26)

0 fao

This allows the eigenvalue of highest occupied Kohn-Sham orbital, 53, to be
interpreted as the ionisation potential of the system, as removing one electron from
this level changes the total energy of the system by an amount €fj3,,o. Therefore,
in principle, this eigenvalue should correspond to the highest occupied orbital of the
real system. This is the only energy level among all of the Kohn-Sham states which

is directly interpretable in terms of a single-particle energy.
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2.2.4 Exchange-Correlation Energy

The exchange-correlation (XC) energy, Exc, includes all of the contributions to the
energy coming from non-classical electron-electron interactions, including the fact
that the “real” many-body wave function may not be a simple Slater determinant.
Unfortunately, there is no analytic or numerical expression for the exact form of Fxc.
The exact form of the exchange energy, Egxx, which is used in Hartree-Fock theory,

is given by

1 Y, (1 g a'o Yoo y
EEXX = §ZZfaafa’d/dBT/dsrll/aa(r)dagi(:)_wr/I (r)l/ (r) . (227)

o a,a

However, this expression is non-local and involves calculating complicated inte-
grals. Also, it does not include electron correlation effects, and so is not the full XC
energy.

Generally, in DFT calculations, approximated local exchange-correlation poten-
tials are used. The two approximations which are used most often are the Local
Density Approximation (LDA) [44] and the Generalised Gradient Approximation
(GGA) [59, 60, 61]. Both of these are local approximations in that the potential at
a particular point only depends on the charge density and/or its derivatives at that
point. More sophisticated approximations include “exact exchange” formulations,
which use the full, exact form for the exchange energy [88] with local correlation.
However, these methods are more demanding computationally, and have not yet been
implemented for finite bias calculations.

The simplest approximation for Fx¢ is LDA, and its spin-polarised version, the
Local Spin Density Approximation (LSDA) [44]. In this, the exchange-correlation
energy at a point is taken to be equal to that of a uniform electron gas of that density

at that point

ERh = /d?’rp(r)Exc(pT-pi% (2.28)

where exc is the exchange-correlation energy density for the uniform electron gas.

This approximation can be extended to produce GGA [59, 60, 61] by including
terms depending on the gradient of the charge density. One formulation of GGA is
the Perdew-Burke-Enzerhof (PBE) [61] form

Exch = /d3rF(pT,pl-VpT~Vpl)- (2.29)
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GGA should describe systems in which the charge density fluctuates rapidly bet-
ter than LDA does. GGA is popular in the chemistry community where it is used
to calculate bond lengths in molecules, which are corrected somewhat compared to
LDA. However, for bulk materials such as metals in which the charge density does

not vary rapidly, LDA may give results which compare better to experiments.

Unfortunately, there are problems with both GGA and LDA functionals, partic-
ularly when describing strongly correlated systems where the charge density varies
rapidly or is extremely localised, i.e. for systems which are very different from a ho-
mogenous electron gas. One of the most significant of these is the self-interaction er-
ror described in section 2.6, where an electron interacts with the exchange-correlation
potential generated by itself. This in turn can have the effect of obscuring the deriva-
tive discontinuity described in section 2.6.1. Also, ionisation potentials in molecules
and the position of the valence band in semiconductors are frequently calculated
incorrectly using these potentials. Local potentials such as LDA and GGA also fail

to describe non-local effects, such as Van der Waal’s forces.

Another failure of local XC functionals is their response to an external applied
electric field. The part of the field originating from the XC potential induced in
response to the applied field should be such as to counteract the external field. This
is the case with exact XC potentials. However, for LDA or GGA, the induced field
is in the same direction as the external field. This results in the polarisability of
molecules being overestimated, particularly conjugated polymers. This may have
important implications for electronic transport calculations, where an electric field is
applied to a molecular junction. Such a failure can be corrected using exact exchange

based functionals, or by using self-interaction corrected functionals [89, 90]

One method of correcting for the effects of strong localisation is the LDA+U
scheme [91], in which the exchange-correlation energies of highly localised orbitals
is replaced by the Hubbard U energy [92]. This method involves two parameters,
U and J, which need to be fitted for each orbital of each species for which they are
used, so that the calculations are no longer strictly ab initio. The self-interaction

error can also be removed directly, as described in section 2.6.

Other formulations for the exchange-correlation potential include hybrid function-
als such as B3LYP [93, 94], which involves combining LDA, GGA and Hartree-Fock
exchange and is mainly used in chemistry. There are also “meta-GGAs” [95] which

incorporate higher order derivatives of the charge density.
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2.3 Pseudopotentials

Most of the chemical, electronic and structural properties of materials are determined
by interactions between the outermost or “valence” electrons. The energy of the inner
or “core” electrons is usually much lower, and so they are unlikely to be available
for bond formation or electrical conduction. Therefore, it is often not necessary to
explicitly include these core orbitals in the self-consistent calculation.

The pseudopotential approximation involves removing the core electrons and the
nuclear potential and replacing them by a weaker effective potential called a “pseu-
dopotential” [86, 96]. This has the advantage of reducing the total number of particles
in the calculation, which in turn can significantly improve computational efficiency.
For example, a set of valence orbitals consisting of just the 5d, 6s, and 6p orbitals
tends to describe gold very well, with all of the lower energy electrons, in the 1s, 2s,
2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, and 5p orbitals included in the pseudopotential. In
this way, a gold atom can be described by just 11 electrons, and not by 79. Which
orbitals are required to be included in the self-consistent calculation will vary from
species to species, and will also depend on which properties need to be described
accurately.

This pseudopotential acts on a set of pseudo wave functions rather than on the
true valence wave functions. The true wave functions may oscillate wildly near
the core in order to be orthogonal to the core states. However, the pseudo-wave
functions can be constructed so that they behave smoothly in the core. This in turn
will improve computational efficiency and stability, removing singularities which may
cause problems. The pseudo-wave function is constructed so as to match the true
wave function outside of a certain cut-off radius r., as shown in figure 2.1.

The pseudopotential wave functions are constructed such that the scattering prop-
erties of the atomic orbitals are preserved. As these are, in general, different for each
angular momentum channel, the pseudopotential is angular momentum dependent.
Hence, a pseudopotential must be constructed for each angular momentum channel
used in the calculation [86, 96].

There are several different methods which can be used to generate pseudopo-
tentials. The method generally used in calculations presented in this work is the
Troullier-Martins parameterisation [96].

To calculate the pseudopotential for an angular momentum channel [, the radial
Kohn-Sham equation is solved self-consistently to obtain the all-electron atomic wave

function for angular momentum channel [, **, and its eigenvalues ¢
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Figure 2.1: True (all-electron) and pseudo wave functions as a function of atomic radius r.
Inside the cut-off radius r., the true wave functions oscillate rapidly whereas
the pseudo wave functions do not. The two wave functions match outside the
radius r..
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2 dr? 2r2

where V(p,r) is the total DF'T potential for the atom given by

+ V(p,r)| rpAF = eury®. (2.30)

V(p,r) = =2 + Valp,r) + Vie(o(r)) (2.31)

The charge density for the atom, p(r), is the sum over the atomic wave functions
Zn‘l YAE. The pseudo-wave-functions, wzs, are then constructed such that they have
no nodes, that they match the true atomic wave functions outside some cut-off radius
r. as shown in figure 2.1, that charge is conserved, and so that they give the same

eigenvalues ¢,; as the true wave functions

B ¢, ¢, i
B (P =000 r 0 / [YES (r)[2r2dr = / [WAE(r)|2r2dr . (2.32)
0 0

Once these pseudo-wave-functions have been constructed, the corresponding pseu-

dopotential can be obtained by inverting the radial Schrodinger equation

l(l+1) 1 gl
2r2 + 2rpFS(r) W{m/)"l

nl

VPS(p’T) = Enlis (I") : (233)

However, this is the screened pseudopotential, i.e. the potential screened by
the valence electrons. The screening by the valence electrons depends on the envi-

ronment in which they are placed, so this pseudopotential cannot be used for bulk
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calculations. Instead, the ionic pseudopotential, V{23 (r), is calculated by subtracting
off the Hartree and exchange-correlation potentials due to the valence pseudo-wave-
functions, Vi{A(r) and V@& (r)

Vion(r) = VP(r) = Vi (r) = Vxe (r) - (2.34)
Note that each angular momentum component [ sees a different potential. Thus,

the ionic pseudopotential operator can be split up into a local part, and a non-local

part which is angular momentum dependent

lION( ) ‘A/I}Z)?\F,Local + L ‘/ION Nonlocal[ )Pl d (235)

where P, is an operator which projects out the {* angular momentum component
of the wave function. Thus, the non-local part of the pseudopotential for angular

momentum channel [ is

Vlg?‘\J.Nonlocal,(' )= VION,( )= VI}())%I.Local(r) . (2.36)

The non-local part of the pseudopotential, ‘/I}())%,Nonlocall(r)' is actually semi-local

in that it has a radial dependence which is local and an angular momentum depen-
dence which is non-local. This introduces long range interactions into the Hamilto-
nian, thus increasing the number of matrix elements of the Hamiltonian which have
to be calculated. Hence, it is transformed to a fully non-local form using Kleinman-

Bylander projectors [97]

VKB )= [Viox Nonlocal,( )¢P ( )><¢ S(r)Vic ION, Nonlocal,( r)|
Bt <¢ ( )I ION Nonlocall(r)lqbol( )> '

where (ﬁgl 5(r) is the atomic pseudo-wave-function for angular momentum channel

(2.37)

Thus, a pseudopotential for each atomic species in the calculation can be con-
structed in advance. A pseudopotential must be constructed for each angular mo-
mentum channel present in the calculation. Care must be taken to use the same
exchange-correlation functional to generate the pseudopotential as is used in the self-
consistent calculation for the valence electrons. Pseudopotentials should be tested
before use to check that they produce the same energy levels as an all-electron calcu-
lation for a variety of electron configurations. This ensures transferability, allowing
the pseudopotentials to be used for systems where there is charge transfer between

atoms.
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2.4 The Basis Set

In order to solve the Kohn-Sham equations, either equations must be solved directly
in real space by writing the wave functions and the charge density over a numerical
grid (which can be computationally expensive), or the Kohn-Sham orbitals must be
written over a basis set. One, relatively conceptually simple basis set is constructed

from a linear combination of plane waves

%i(r) = ) Ai(k)exp(ik -r). (2.38)
k

Plane wave basis sets have the advantage of being easy to improve systematically
by increasing the number of plane waves. Operators and the charge density are
also easy to calculate with this type of basis set, due to the efficiency of the Fast
Fourier Transform algorithm. However, they have the disadvantage of needing a
large number of functions to describe localised orbitals, and also of using many basis
functions to describe vacuum regions where there is little charge density. Hence, they
tend to be more useful for describing bulk systems, particularly metals, but rather
inefficient when it comes to describing isolated molecules.

Another type of basis set which can be used is a localised basis set, where Kohn-

Sham wave functions are approximated by a linear combination of atomic orbitals

%i(r) = ) Cit(r). (2.39)
l

Here, ¢;(r) are atomic-like orbitals. These can be Gaussian, Slater or numerical
orbitals. The advantage of such a basis set is that it describes localised orbitals well,
and does not waste a large number of basis functions describing vacuum. However,

they are more difficult to improve systematically than plane wave basis sets.

2.5 The SIESTA Implementation of DFT

There are several different numerical implementations of density functional theory
available. They mostly differ in the form of the basis set used to represent the Kohn-
Sham orbitals. The implementation used to perform the calculations described in
this thesis is that contained in the “Spanish Initiative for the Estimation of Systems
with Thousands of Atoms” or “SIESTA” [82, 83, 84]. SIESTA uses a localised basis

set consisting of numerical atomic orbitals which are the product of a numerical radial
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function and a real spherical harmonic. The atomic wave function for an orbital n

on an atom [ located at position R; is given by

Primn = P1in(T1)Yim(¥1) - (2.40)

The angular momentum numbers are [ and m, and r; = r — R;. The radial
functions ¢y, are defined numerically using a cubic spline interpolation on a fine
mesh.

To calculate a minimal basis set (known as a single-C basis set), the method of
Sankey and Niklewski [98] is used, where the basis orbitals are the eigenfunctions
of the pseudoatom. The radial function ¢; for angular momentum channel [ is the
eigenfunction of the pseudopotential for that angular momentum, V;'S, for an energy
€, + 0¢;, where d¢; is chosen so that the first node of the eigenfunction occurs at the
cut-off radius r{

I o (l+1)
“ordre 24

where ¢;(rf) = 0. Alternatively, d¢; can be fixed instead, and then rf for that

+ VP(r)| du(r) = [e0 + del]u(r) - (2.41)

orbital will be the position of the first node in the wave function. This radial cut-off
of the basis functions reduces the number of overlap integrals, increasing the sparsity
of the Hamiltonian and thus improving computational efficiency.

To allow more variational freedom in the calculation, a “multiple-(” basis set can
be used, where there is more than one basis function per atomic orbital. The spherical
harmonics remain the same, but new “higher-(” radial functions are constructed. To
generate such a basis in SIESTA, the “split-valence” method is adapted to numerical
atomic orbitals [82; 83]. The “higher-¢” functions have the same tail as the first ¢
(original) function beyond a split radius r}, but change to a polynomial behaviour

inside this radius. Hence, the second ( orbital is of the form

l 2 : s
gex =) e <'vp;
e(r) = { d)llc(r) e 2 rk 2ed)

The constants a; and b; are determined by condition that both the wave function
and its first derivative must be continuous at r = r}.

Polarised orbitals can also be constructed to account for the deformation induced
by bond formation. These are basis orbitals in which the spherical harmonics with

higher orbital momentum are included while the radial functions remain unchanged

d)l’,n.m = ¢l,n)/l+l,m . (243)



Density Functional Theory and Self-Interaction Errors 24

Once the basis orbitals have been constructed, the Kohn-Sham Hamiltonian ma-

trix elements can be obtained from integrals of the form

H= i BV R;)d Ry) Virr Ry)d 2.44
i —%/ff)i(l‘— 1)V ¢;(r— J)fl"+/¢i(r— 1) Verr(r)o;(r—Ry)dr. (2.44)

where Ry is the position of the I*" atom.

Verr(r) is the effective Kohn-Sham potential described in equation (2.19), which
is a functional of the charge density. First, an initial charge density, po, is constructed
from the atomic charge densities. The exchange-correlation potential part of Vipg(r)
can be calculated as described in section (2.2.4). The Hartree potential, V}, can be
calculated by solving the Poisson equation (2.21) in reciprocal space using a Fast
Fourier Transform (FFT') algorithm. Therefore, this part of SIESTA method requires
the system to have periodic boundary conditions.

This Hamiltonian matrix can then be diagonalised to obtain the eigenvalues, ¢;,
and eigenvectors, 1;(r), of the Kohn-Sham equations. The Kohn-Sham eigenvectors

are linear combinations of the SIESTA basis functions

W= ddy. (2.45)
)

These can then be used to calculate the new density matrix, which in turn can
be used to calculate a new effective potential. This procedure is repeated until the
density matrix converges.

This localised basis set allows SIESTA to accurately describe systems with thou-
sands of orbitals without using an unreasonable amount of computing resources. In
fact, there is a method under development which would allow SIESTA to scale lin-
early with system size - the so-called order-N method [62]. Also, the tight-binding
like Hamiltonian which the localised basis set produces is easily incorporated into
the non-equilibrium Green’s function method, which is the formalism which is used

to calculate the electron transport.

2.6 The Self-Interaction Error

In the local and semi-local exchange-correlation potentials used in DFT calculations
such LDA and GGA described above, there is a problem in that the interaction of
an electron with itself is non-zero. This must be corrected for in order to accu-
rately describe highly localised systems in particular [71]. These self-interaction er-

rors are responsible for local functionals producing incorrect ionisation potentials for
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molecules due to the extra electron-electron interaction energy. They also contribute
to incorrect positions being calculated for the valence bands for semiconductors and
to the absence of a derivative discontinuity in the energy at integer occupation.

For a = o/, i.e. the interaction of an electron with itself, the exact exchange

energy given in equation (2.27) becomes

EEXX[paa,O] = QZthio/da /dB /W)aa r|_|1/:‘olc’r7( )| (246)
= /d3 /d3 /Pas _p‘“’ Z(/[pw] (2.47)

Therefore, for exact exchange, the self-interaction errors in the Coulomb and

exchange energies cancel each other out

U[p(w] 1 EExx[paa, 0] =) (2.48)

g : A
However, for an approximate local exchange-correlation energy Ey&™™ ™, such as

LDA or GGA, the self-interaction energy can be non-zero.

Ulpao) + E2Z (000, 0] # 0 . (2.49)

This is the self-interaction error. The self-interaction corrected exchange correla-

tion energy, F5«, can then be defined as [71]

F)S(Ig - Q(I;DFOX P%pl] i Z 601(7 . (250)

where d,, 1s the self-interaction correction for t.he Kohn-Sham orbital 1., and is

equal to the sum of the Coulomb and exchange-correlation self-interaction energies

dac = Ulpas] + E)/zgpmx[pam 0], (2.51)

where pae = |tao|? is the charge density associated with the Kohn-Sham orbital
Yas- There is now a new system of single-particle Schrodinger equations from which

one can calculate a new set of orbitals ¢, and occupations f

[—§V2+VEFFJ% r) = €o Yo (T} (2.52)

The new effective potential V;;F is orbital dependent and is given by

Virr = [v(r) + Vi (p) + Ve (0, )] = [Vir (Pac; T) + Viges PP ([Pao, O]; 7)) . (2.53)



The term which has been subtracted off in equation (2.53) is the SIC potential

for orbital g, VSIC

Vi W (o) - Ve T W) (2.54)

Thus the SIC affects the eigenvalues of the system in two ways: directly via the
correction to the potential and indirectly via the changes to the orbitals in going
from 1, to ¥, .

The problem of finding the energy minimum is complicated by the fact that the
potential is orbital dependent and EJS is not invariant under unitary rotations of
the occupied KS orbitals, which instead leave p invariant. This can be avoided by
introducing a second set of orbitals ¢ related to the canonical KS orbitals ¢*? by

a unitary transformation M
/l/"Y(YU — Z A[aa7n¢aa 3 (255)
m

The energy functional can then be minimised by varying both the KS orbitals and
the unitary transformation M, leading to the system of KS-like equations

HZ, = [H§ + AV, lthao(r) = 65 Yao(r) (2.56)

oo

where H{ is the Hamiltonian for the approximate uncorrected exchange-correlation

functional, The new SIC potential, AVSIC can then be written as

AVSIC = Z MamVS‘C@z =Sl

ao QL’ m
ao
m m

where P? is the projector [0, SR

m

2.6.1 Derivative Discontinuity

In the electronic transport calculations using the NEGF formalism described in this
work, the total number of particles on the molecule is not necessarily conserved.
Therefore, it is possible for there to be a non-integer number of electrons on the
molecule. Hence it is important that the formulation of DFT used for transport
calculations gives accurate results for fractional occupation.

Perdew et. el. [72, 73] extended DFT to work for non-integer occupation. In doing
so, they showed that the exact exchange-correlation functional (which is unknown)
must have a “derivative discontinuity” in the energy at integer occupations, otherwise

molecules would dissociate with non-integer particle number at large separation. This
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“derivative discontinuity” refers to a discontinuity in the derivative of the energy with
respect to occupation.

To extend DFT to describe charge densities for a non-integer number of electrons,
let N = M +w, where M is a non-negative integer and 0 < w < 1. The wave function
will then be a statistical mixture of 1), (the wave function of the M electron state
giving a density pys) and ¥p41 (the wave function of the M + 1 electron state giving
a density pary1). The respective probabilities of each state are 1 — w and w, since
(1 —w)M 4+ w(M + 1) = M + w. Hence the final charge density is given by

p(r) = (1 — w)pm(r) + wpmia(r) . (2.58)
Minimising the total energy with respect to number conserving variations of the

charge density p(r) yields the lowest average energy that can be achieved by M + w

electrons

= (1 == w)EM + wFEMpyr - (259)

This is true for all ensembles giving density p(r) with M + w electrons provided
En o vs. M is concave upward (which it usually is for electrons [71]). A plot of
this energy E versus particle number N is shown by the solid line in figure (2.2).
The energy changes linearly between integer occupations. There is a kink at integer
occupation which is the derivative discontinuity.

Given that the chemical potential is p = %% and N = M +w, where M is a fixed
integer, we find that g—f = U.

If Z is the nuclear charge, and hence the number of electrons on the neutral atom,
thenfor Z—-1< N < Z, M =7 —1, uis given by

gl

H= (1 = w)EZ_1 +wEz; = u= i E;,—FE; 4. (260)

Similarly, for Z < N < Z+1, M = Z, p is given by

oFE
E=(1—W)EZ+UJEZ+1:>,U,:%:E2+1 —EZ. (261)

Now, the ionisation potential [ is F;_; — F'; and electron affinity Ais F; —FE 4.

Therefore

H:{_[:EZ—EZ_I le—].<N<Z; (262)

—A=FEz;,—FE; fZ<N<Z+1.
Therefore, for N tending to Z from below; i.e. N — Z, N < Z; then g—f, =—1.
However, for N tending to Z from above; i.e. N — Z, N > Z; then % = —A.
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Figure 2.2: A schematic illustration of the energy as a function of occupation. The “exact”
energy is that given by the extension introduced by Perdew et. al. described
here. The energy given by LDA does not have a derivative discontinuity at
integer occupation. Hartree-Fock does have a derivative discontinuity, but the
total energy is usually higher than it should be.

Hence, there is a discontinuity in g—’,; of size I — A at integer occupations. This is
the derivative discontinuity.

From equation (2.26), we have that the derivative of the energy with respect to
the occupation of highest occupied Kohn-Sham orbital (the HOMO orbital) is equal
to the Kohn-Sham eigenvalue associated with that orbital. Hence, a discontinuity in
the derivative of the energy would correspond to a discontinuity in the KS eigenvalue,
as shown in figure 2.3.

Note also that the chemical potential, u, of the system has already been shown
to be equal to u = g—f, where w is the occupation of the final orbital. Therefore, the
chemical potential is the same as the eigenvalue of the highest occupied Kohn-Sham
orbital. Thus, the discontinuity in the KS HOMO is the same as the discontinuity
in the chemical potential.

This derivative discontinuity explains the dissociation of atoms at large separa-
tion. Consider two well-separated atoms X and Y in an otherwise empty universe.
The two atoms have different chemical potentials px and py, with gy < px, as
shown in the diagram in figure 2.4.

Then shifting d Ny > 0 electrons from X to Y will reduce the energy by a factor

0Exy = (uy — px)0Ny < 0. (2.63)
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Figure 2.3: A schematic illustration of the derivative of the energy as a function of oc-
cupation. The “exact” energy is that given by the extension introduced by
Perdew et. al. [72, 73] described here. The energy given by LDA does not
have a derivative discontinuity at integer occupation. Hartree-Fock does have
a derivative discontinuity, but the total energy is usually higher than it should
be.

Therefore the total energy Fxy would be minimised by having a net positive
charge on X and a net negative charge on Y. This would be true for any separation,

but is not true in reality.

The existence of the derivative discontinuity of size I — A at integer occupation
as described above solves this problem. Adding an infinitesimal charge ¢ to a previ-
ously unoccupied orbital would cause it to jump discontinuously. Hence, the lowest
unoccupied molecular orbital (LUMO) of the N electron system would not be the
same as the highest occupied molecular orbital of the N + § electron system; i.e.
efimo(N) # efiSyuo(N + 8). Instead of the energy of a KS eigenstate increasing lin-
early as charge is added, it should shift in a stepwise fashion as shown in figure 2.3,
so that adding a fraction of an electron would cause the level to move up to the same
point as adding a full electron. The chemical potential and /{5, coincide, so p also
jumps discontinuously by I — A when a fractional charge is added. Hence, transfer-
ring a fraction of an electron from atom X to atom Y would cause py to change by
I — A, while py remained the same. Since I — A > 0 for all atoms, this would not
be energetically favourable, and hence fractional charges are not exchanged between

atoms at large separation.

The exchange-correlation potential, vxc, is given by the derivative of the exchange-

correlation energy Fxc with respect to the charge density. Hence, the derivative
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Hx Ny

Energy

Figure 2.4: Two well-separated atoms X and Y, with puy < px. Does a transfer of charge
0Ny result in a lowering of the total energy of the system?

discontinuity in the energy implies that there is also a discontinuity present in the
potential.

Part of the reason for the absence of the derivative discontinuity in approximate
local functionals such as LDA and GGA is due to the self-interaction error. The
interaction energy between two electric charges is proportional to the product of
these charges. Hence, if the charge density on a specific orbital is p,.,, then the
self-interaction energy due to that orbital will be proportional to p?,. Therefore,
a total energy calculated using a Hamiltonian which contains self-interaction errors
will contain a term which is quadratic in the occupation of a specific orbital 9, .
Hence, the derivative of the energy with respect to p,, (which, from Janak’s theorem

is the Kohn-Sham eigenvalue of that state, €,,) will have a term which is linear in

Pac

oFE
€oo=— ~Pas+ ... . (2.64)
Opac
Therefore, the self-interaction error causes the derivative of the energy with re-
spect to the occupation to be linear rather than discontinuous. A full self-interaction
correction should remove this linear term, and at least partially restore the discon-

tinuity.
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Figure 2.5: Two well-separated atoms X and Y, where the LUMO of Y is below the
HOMO of X. If no derivative discontinuity is present, a fractional charge can
be transferred between the atoms, and the levels will move in proportion to the
amount of charge exchanged as shown. However, if the derivative discontinuity
is present, transferring a fraction of an electron onto the LUMO of Y will cause
it to shift upwards as if an integer electron was transferred, while the HOMO
of X will not shift downwards until an entire electron is transferred out.

2.6.2 Atomic-SIC

The full self-interaction correction described above is orbital dependent and compu-
tationally very costly. It is difficult to implement for extended systems and periodic
boundary conditions, which are required by the SIESTA implementation. These
problems can be solved by using an atomic approximation to the full self-interaction
correction known as ASIC [75]. This approximation is based on pseudo-SIC method
in which the self-interaction corrections are included in the pseudopotential, as sug-
gested by Vogel et. al [99] and extended by Filipetti et. al [100].

First, the orbitals ¢, introduced in equation (2.55) which minimise the SIC func-

tional are assumed to be atomic-like orbitals @, , so that the SIC potential becomes

Y vIep: N vIChy, (2.65)
where 051 and R;‘; are the potential and projector associated with the atomic orbitals
D

The potential for each atomic orbital ®, is already calculated at the pseudopo-
tential generation stage. Therefore, the self-interaction correction to the potential
can be calculated for each atomic orbital, and then added on to the pseudopotential

for that orbital. The Kohn-Sham single particle all-electron equation for an orbital



Density Functional Theory and Self-Interaction Errors 32

« in an atom using a self-interaction corrected LDA exchange-correlation potential

1S

27 N,
[_v2 il 7— ar VH( ) VLDA( ) . VH(pa) VLDA Pa T ](La = 5[( ll//‘a . (266)
Replacing the potential term —21—_2 by a pseudopotential Vpg, gives the equation

for the pseudoatom

[ V24 Vosa+ V() + VEEX (0) = Vir(Pa) = VXE ™ (Part, 0)[¥ps.a = €5 Ypsa, (2.67)

where p’ is the total charge density of the valence pseudo-wave-functions. Thus,

a self-interaction corrected pseudopotential for orbital a, Vi<, can be defined as

Vit = Vs.a — Vi(pa) = VA& (Part, 0) = Vs + VIC. (2.68)

However Vpg ., has a long range tail and so needs to be adjusted to perform bulk
calculations. Fortunately, atomic charge densities are localised so long range tails
have only a small effect on the energy eigenvalues. The important term is that of
the SIC Coulomb potential acting on the wave function, i.e. Vij(pa)t¥ps.o. To remove
the problem, a cut-off radius 7. is defined beyond which the difference made to the
to both sides, the

eigenvalues by SIC is insignificant. Then, by adding a term ”2‘

potentials will go to zero at ry,. and can be cut off at this point. This only has the

effect of redefining the zero of the energy scale. The Kohn-Sham equation becomes

; e, 0 . 2 , :
[_V2 e VPS,a+()VaSl( I A & ‘/I{(,D ) V[ DA( )]‘/'PS& - <((S)(I( T3 _) YPS,« - (269)

T'loc T'loc

Hence the final SIC pseudopotential is now given by

sY/SIC 2 IF ok e
VSI( e { VPS,(Y + OVG + m 1f 7 S ,[0(‘7 (270)

O T ¢ it = e
The total atomic SIC potential can be cast as in terms of nonlocal projectors,
similar to the Kleinman-Bylander projectors for the nonlocal part of the pseudopo-

tential

(2.7

D= |[Vii(pa) + VXEA (Pa; 0)]9a(r)) (da(r) [Vii(pa) + vLDA( o 0)]]
(Pa(T)I[VH(pa) VLDA (Pas 0)]|@a(r) '
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¢, are the pseudo-atomic orbitals. The pseudo-SIC Kohn-Sham equations now

become

[—V2 + Vps + VH + V)%(DA == VSIC]wn = EndJn 3 (272)

The above corrections are calculated for an orbital with occupation p,, the oc-
cupation of that orbital in the neutral atom. However, if the orbital is in a bulk
material, the occupation of that orbital may change as it hybridises with the orbitals
on other atoms. The orbital may be fractionally occupied, in which case apply-
ing the pvseudo—SIC potential as if the orbital was fully occupied would result in an
overcorrection.

One option would be to solve these equations fully self-consistently, with the
SIC potential being recalculated for each value of p, at each iteration. This would
increase the computational cost of the correction. To avoid this, a linear scaling can

be imposed. The occupation of an atomic orbital, p,, is given by

In the bulk system, the occupation number p, can be calculated by projecting

the atomic orbital onto the Kohn-Sham states

Po =Y fn{thnl|Ba)(Baltn) - (2.74)

The total SIC correction can then be calculated initially for p, = 1, i.e. for the

atomic orbital fully occupied, and then rescaled by the actual value of p,

Vslc(pa) oo VH(pa) + VXC(paaO) o pa[VH(pa(pa = 1)) + VXC(pa(pa = 1)* 0)] : (275)

The drawback of this linear approximation is that interesting effects, such as
discontinuities in the potential like the derivative discontinuity described above, may
be lost.

This approximation for the self-interaction correction has been implemented in
SIESTA and tested for a variety of different systems including molecules, metals and
semiconductors. In particular, the agreement between experimental ionisation poten-
tials for organic molecules and those calculated with DFT is dramatically improved

using the atomic-SIC correction [75].
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2.7 Conclusion

Density functional theory is a reliable and efficient electronic structure theory for a
variety of different many-electron systems. In principle the theory itself is exact for
ground state systems, although strictly speaking it is not valid for excited states.
However, the exact form of the exchange-correlation potential is unknown, and has
to be approximated. Commonly used approximations include LDA and GGA. Un-
fortunately, these approximate local potentials may contain self-interaction errors,
which may cause the highest occupied molecular orbital to be in the wrong place, or
cause the suppression of the derivative discontinuity. ’

These errors can be removed by the self-interaction corrections described in this
chapter. The atomic self-interaction correction (ASIC) which has been implemented
in SIESTA produces ionisation potentials which agree remarkably well with experi-
mental values. However, the atomic and linear scaling approximations used in this
method remove the derivative discontinuity. To at least partially obtain the deriva-
tive discontinuity, either the full-SIC or an exact-exchange based functional would
need to be used. Unfortunately, both of these methods are orbital dependent and
have not as yet been extended to finite bias. In the following chapters, the effects
of these errors on calculations of the electronic transport properties of a variety of

metal-molecule junctions will be explored in detail.



Chapter 3

Simple Model for Electron
Transport

Using density functional theory [43, 44], as described in chapter 2, the calculation of
the electronic structure of molecular devices containing hundreds of atoms becomes
possible. DFT can then be combined with the non-equilibrium Green’s function
formalism [34, 35, 36] described in chapter 4 to calculate the electronic transport
properties of such devices [37, 38, 39, 40, 41, 42|. However, while being able to
perform ab initio calculations for large systems is very useful, the complexity of such
methods, as well as the sheer number of variables involved, can make them difficult
to understand intuitively. Therefore, simple models along the lines of that described
by Datta et. el. [85], which capture some of the key aspects of electronic transport
in these devices can be valuable in illustrating the role played in quantum transport
by the different features of the electronic structure.

The molecular electronic devices currently under investigation typically consist
of a molecule sandwiched between two metallic electrodes or “leads”, as shown in
figure 3.1. The leads could be surfaces or nanowires, while the molecule could be a
point contact, a single organic molecule, or in general something which generates a

scattering potential.

Left Electrode

Right Electrode

Figure 3.1: Diagram of the typical set-up for molecular electronics experiments. A single
molecule is sandwiched between two metallic electrodes or “leads”.

Electron transport at low bias through molecular junctions usually involves only

35
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a small number of the orbitals on the molecule. This allows us to construct a simple
model in which the electronic structure of the molecule is represented by a single
energy level. Such a model already incorporates many of the physical properties
which are important for transport. In this chapter, we will use this approach to
illustrate some of the basic features of electron transport in molecular junctions.
In particular, it will be shown how the conductance of the device depends on the
strength of the coupling between the level and the electrodes, on the alignment
between the molecular level and the states in the electrodes, and on the response of

the level to changes in its occupation [74].

3.1 The Simple Model

Iy
Ix

ot

E
Left /
Lead Molecular . Hr
Ol |
S Lead

Figure 3.2: Energy level diagram for simple model. The molecule is represented by a single
energy level €, coupled to two metallic leads. When a potential bias is applied,
the two leads will have different chemical potentials, p7, and pugr. The strength
of the interaction or “coupling” between the leads and the molecule is described
by parameters I'y, and I'r, which control the rate at which electrons can enter
or leave the molecular level.

A molecule can be modelled by a single orbital of energy ¢, which is connected
to two leads, as shown in figure 3.2. The leads are modelled as electron reservoirs
which are kept at two different chemical potentials p, and pg. The charge in the
system then redistributes. The left lead will try to impose an occupation Ny, on the
molecular orbital (i.e. it will try to establish an equilibrium situation), and the right

lead will try to impose a charge Ng,

Np/r = 2f(€, pLy/R) , (3.1)

where f(e, pr/r) are the Fermi functions of the left and right leads respectively
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1
1+ exp (;—;—’%)

The level is assumed to be spin degenerate so that it can hold up to two electrons.

fle,p) = (3.2)

This is accounted for by the factor of 2 in the expression for the occupation.

Thus the “average” charge N on the molecule can be calculated by using a simple
balance between the electron flow from the left lead into the level and the electron
flow out into the right lead. The current from the left lead into the orbital, I, is
proportional to the difference between the actual occupation of the orbital, N, and

the “equilibrium” occupation the lead is trying to impose, Ny,

el';,
I = TI (N — N) . (3.3)
Similarly, the current from the right lead into the molecular orbital, Iy, is given
by
T
o PTR (B~ M), (3.4)

where I';/h is the transmission rate between the i*" contact and the molecule. T
depends on the strength of the interaction or “coupling” between the molecular level
and the lead.

In a steady state situation where the charge on the molecular level is constant,
the rate at which electrons enter the level will be the same as the rate at which they
leave, and so the two currents described above should be equal, i.e., I}, = Ig. This

can be used to obtain an equation for the average charge on the level, N

o (Tufle, p) +Trf (€, pr)
v oo (L) Tt} o

Note that if the transmission rates between the molecule and the two different

contacts, I'y, and I'y, are equal, then the equation for the occupation becomes

N = f(ewu'L) +r f(fuuR) ) (36)

i.e. the level occupation is now independent from the transmission rates I'y, and
[gr.

If the level is below the chemical potential of both of the leads, then it will be
full, i.e. it will contain two electrons, and if it is above the chemical potential of
both of the leads, it will contain zero electrons. However, if the leads have different

chemical potentials and the level is in between them, then it will have an occupation
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between zero and two. In the case where the coupling to both leads is the same, the
level will contain one electron when it is positioned between the chemical potentials
of the two leads. In the same framework the steady state current can be calculated

from the condition I;, = —Ip to be

2% Iilw
BT ET

Self-consistency can be added to the problem by assuming that the energy of the

1 (f(e, o) — f(€ pr)) - (3.7)

molecular orbital, ¢, is dependent on its occupation, N

€ = ¢ + Uscr(N) (3-8)

where Uscp is a self-consistent or “charging” potential. The actual form of Uscp
will be discussed later, and it will be demonstrated that it can have a significant
effect on the electron transmission.
The interaction of the molecule with the infinite leads has the effect of broadening the
orbitals. To account for this, discrete level can be replaced by a Lorentzian density
of states (DOS)
1 I'

DLE) = G T ) (3.9)

with I' = I', +I'g. This Lorentzian is centred at /¥ = ¢ and its width is determined
by I'. The stronger the coupling of the orbital to the leads, the broader the density
of states for that orbital will be. The occupation is then given by an integral over

energy of the density of states multiplied by the probability of a state being occupied

% I'Lf(E Inf(E,
N:2/ dED(E) v/‘FLZ:Fr;f( )

(3.10)

The occupation and position of the energy level can then be calculated self-
consistently as shown the flowchart in figure 3.3. First, an initial value is taken
for the level occupation N and position €, and this is then used to calculate the
density of states D(FE). Then the integral in equation (3.10) is solved to obtain the
new value of N, the occupation of the level. The new position of the level is then
calculated and the procedure is repeated until the difference between the values of N
for two separate iterations is less than a certain tolerance. This is analogous to the
self-consistent procedure used to obtain the charge density in more complex methods
such as DFT as described in chapter 2, where single level occupation N replaces the

charge density p and the single level energy ¢ replaces the Hamiltonian .
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Hamiltonian (large system): H(p

T

{Check for Convergence: Level Occupation (Simple Model): N

Level (Simple Model): €(N) sty OF States D(E)J
) [

Finish if converged;
Repeat loop if not.

Charge Density matrix (large system):p

Figure 3.3: Self-consistent loop for the calculation of the level occupation. An initial ap-
proximation is taken for the level occupation N and position €, and this is then
used to calculate the density of states D(E). D(F) is then integrated as shown
in equation (3.10) to get a new value for the occupation, and the procedure
is repeated until the level occupation converges. This method is analogous to
that for calculating the charge density and Hamiltonian for a more complex
system using DFT as described in chapter 2.

Finally, when the level occupation has converged the current can be obtained
from the following energy integral
i

' I'r
I = — dED(E)——
h —00 ( )FL+FR

(f(E,p) — f(E, pr)) - (3.11)

The integrand is only non-zero in the region in which f(F,u) — f(E, ur) # 0.
Therefore, this integral only needs to be performed over an energy window around the
chemical potentials j;, and pur known as the “bias window”, as f(FE, u) — f(E, pur)
approaches zero rapidly outside such a window. Thus the /-V curve will depend on
the density of states of the molecule in this bias window, and on the strength of the

coupling between the level and the leads, I';, and I'g.

3.1.1 Effect of Level Position

The I-V curve will depend on the position of the level, ¢, as the density of states,
D(FE), is centred around this energy. The closer the level is to the chemical potential
of the leads, the smaller the conductance gap of the molecule. This can be seen in
the I-V curves shown in figure 3.4.

Here the chemical potential of both electrodes is -5.0eV at zero bias, and no
charging effects have been included (i.e. the position of the level does not change
with its occupation). When the energy level is aligned with the Fermi level of the
leads, it starts to conduct as soon as a voltage is applied. However, when the level
is further away from the Fermi level, it will not start to conduct until it is between
the chemical potentials of the two leads - i.e. until it is within the bias window.

Thus, the resonances in the transmission probability correspond to energy levels in
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Figure 3.4: I-V curves for different positions of the energy level . The Fermi energy of the
leads is located at -5.0eV. The coupling to each lead is symmetric and equal to
0.2eV. As can be seen, moving the level further from the chemical potential of
the leads opens up the conductance gap.

the molecule, as shown in figure 3.5. The total size of the conductance gap (the gap
between the positive and negative bias points where the system starts to conduct)
is given by 4|e¢ — po|, where p is the chemical potential of both of the leads at zero

bias.

3.1.2 Effect of Coupling Strength

The I-V curve also depends on the strength of the coupling between the level and the
left and right leads, I'y, and I'p. Obviously, the stronger the coupling, the larger the
total current I would be expected to be. This can be seen in the [-V curves shown
in figure 3.6. However, stronger coupling also means that the density of states of the
level, D(F), will be broader. Therefore, the shape of the [-V curve also changes.
The stronger the coupling, the broader the level and thus the smoother the /-V curve
will be.

3.2 Charging Effects

The effect of the charging of the level on the electronic transport depends on the
form of the charging potential Uscp, and on the strength of the interactions I';, and

['r between the level the leads. The simplest dependence of the energy of the level
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8LUMO

E Window
K,

HOMO

T(E)

Figure 3.5: Diagram showing (a) energy levels of two molecular orbitals and (b) trans-
mission coefficients. The resonances in the transmission probability, 7'(E),
correspond to energy levels in the molecule. The current is the integral over
the transmission coefficients within the bias window.

on its occupation would be a linear one

€ =(()‘+‘(](]V—N()), (312)

where U is a constant and Ny is the occupation of the level when it is at energy
€o. This is what would be expected from the molecule if it was acting as a simple
capacitor.

For U = 0.0eV, i.e. where the energy of the level is independent of its occupation,
the current will reach its maximum quickly (for small biases V'), as shown in figure
3.7. In this case, the size of the conductance gap will be 4|eq— 0|, as before. However,
if U is non-zero, the level will shift as it charges, so that it remains partially outside
the bias window. The conductance gap will remain 4|y — 0], but the maximum in
the current will not be reached until the bias reaches 2|¢y — pg| + 2U, as shown in
figure 3.7.

A second effect due to charging is the introduction of asymmetries into the -V
curves if [';, and I'g are not equal. As can be seen from equation (3.11), and as can
be seen from figure 3.9, if U = 0.0eV (i.e. if the energy of the level is independent
of its occupation), then the I-V curve will be symmetric even if the coupling to
the leads is asymmetric (i.e. if I'y, # I'r). However, with asymmetric coupling, the
electrons can enter and leave from one lead more easily that the other. Hence, if the

direction of the bias is such that the lead with the stronger coupling to the level is
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Figure 3.6: I-V curves for strength of coupling leads-molecule coupling I'. The Fermi
energy of the leads is located at -5.0eV. The coupling to each lead is symmetric,
and the level is at -6.0eV. As can be seen, increasing the strength of the coupling
increases the size of the current, and also changes the shape of the I-V curve.

at the higher chemical potential, then the steady-state occupation of the level in the
bias window will be greater than one electron, as shown in figure 3.8a. Similarly if it
has the lower chemical potential, then the steady-state occupation of the level will
be less than one electron.

Therefore, if [U| > 0.0eV so that the energy of the level depends on its occupation,
then its position will be altered depending on the bias direction, as shown in figure
3.8b. In the case where I', > 'y and U = 1.0eV, the level tracks py, for positive
bias as the level charges due to the strong coupling with the left lead, but remains in
approximately the same position for negative bias. Since the level remains outside
the bias window for longer at positive bias, the I-V curve will be asymmetric, as

shown in figure 3.9.

3.2.1 Effect of Discontinuity in Charging Potential

The linear dependence of the energy of the molecular orbitals on their occupations
is a good approximation to the most commonly used exchange-correlation potentials
in DFT such as LDA [44] and GGA [59, 60, 61] . However, as explained in chapter
2, both of these have problems - they lack the presence of the derivative disconti-

nuity [72, 73]. To demonstrate the effect of a derivative discontinuity on electronic
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Figure 3.7: I-V curves for simple model for different values of U. For U = 0eV, the energy
level does not shift as its occupation changes, and so it reaches its maximum
current straight away. However, for U = 1eV, the level starts to shift upwards
as it is filled, and so is not completely inside the bias window until the bias
reaches 3V. The coupling between the level and the contacts is symmetric with
both I';, and I'r equal to 0.02eV; €y is —4.5eV and pg is —5.0eV.

transport, we will now introduce a discontinuous charging potential for this simple

model. The energy of the level as a function of its occupation is described as follows

Uy Uy

— + g (3.13)
T+ o (GY) 1+ exp (5

Uscr =

)

where N is the occupation of the level, Cy, and C; are parameters which control the
positions of the discontinuities, U, and U; are parameters which control the height of
the two steps, and W is a parameter which controls the width of the discontinuities.
The values chosen for these parameters are 0.05 for C, 1.05 for C}, % for Uy, % for
U, and 0.01 for W. These values give a function of the form shown in figure 3.10.

The discontinuous potential rises sharply from zero occupation, then levels off,
and then rises sharply again at an occupation of one electron. This approximates
the derivative discontinuity in the energy which has been shown to be present in the
true DFT potential at integer occupation. Note that the energy increase required
to populate the orbital with two electrons is much larger than needed to populate
with just one electron. The linear potential is then constructed so as to match the
discontinuous potential at occupations of 0.0, 0.5, and 1.5 electrons [101]. Note that

our linear potential flattens out at an occupation of ~ 1.6 electrons, when it goes
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Figure 3.8: Plot of (a) level occupation and (b) level position as a function of bias for simple
model for asymmetric coupling for different values of U. For both values of U,
the level charges asymmetrically, having higher occupation at positive bias
where pp, > 0. For U = 0eV where there are no charging effects the level
remains at the same energy. However, for U = 1eV, the different occupation of
the level depending on the bias direction does affect its position. It moves up
with the chemical potential of the left (strongly coupled) lead at positive bias,
and remains in the same position for negative bias. The coupling between the
level and the contacts is asymmetric with T'y, = 0.2eV and 'y = 0.02eV; €q is
-4.5eV and pq is -5.0eV.

above 0.0eV. This is an actual problem with approximate XC potentials such as LDA
where certain negative ions are calculated to be unbound, but which are stable in
reality.

The discontinuous potential can have the effect of preventing the level from charg-
ing or discharging, which in turn should affect the transport characteristics of the
system. The size and nature of this effect will depend on the strength of the coupling
between the leads and the molecular orbital, and on the alignment of the level with

the chemical potentials of the leads.

Figure 3.11 shows the /-V curve and plots of the level occupation and position
as a function of applied bias when the coupling between the leads and the molecule
is weak. I'y, and I'g are both set equal to 0.02¢V, and the Fermi level of the leads
is set to -5.0eV. As shown in panel (a), with the discontinuous potential the level
cannot start to fill until a bias of ~ 2.0V is applied, whereas it can start to charge
at 0.0V with the linear potential. This is because the discontinuous potential causes

the level to rise rapidly as soon as any charge is added. Therefore, as shown in panel
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Figure 3.9: I-V curves for simple model for asymmetric coupling for different values of U.
For U = 0.0eV where there are no charging effects, the I-V curve is symmetric
despite the coupling to the leads being asymmetric. However, for U = 1.0eV,
the different occupation of the level depending on the bias direction affects its
position, and hence the I-V curve is asymmetric with respect to bias. The
coupling between the level and the contacts is asymmetric with I't, = 0.2eV
and I'g = 0.02eV; ¢ is -4.5eV and pyg is -5.0eV.

(b), the level will remain pinned just above the higher of the two chemical potentials
until the plateau in the charging potential at ~ —3.8eV is reached. This occurs at a
bias of ~ 2.0V. At this point the level can fill rapidly without moving. This has a
major effect on the I-V characteristics of the system. If the level is pinned outside
the bias window and cannot charge, then it will not conduct. Therefore, as shown in
panel (c¢) of figure 3.11, the discontinuous charging potential has the effect of opening
up a gap in the /-V curve compared to the linear potential. This conductance gap
is from —2.0V to 2.0V, which corresponds to the applied bias required to bring the
level to the top of the discontinuity.

For the linear potential, on the other hand, the level can start to charge as soon
as it is in the bias window. As shown in panel (b), the level is pinned right at
the chemical potential, rather than just above it as in the case of the discontinuous
potential. Therefore, the level can start to conduct as soon as a bias is applied, and
there is no conductance gap.

When the coupling between the level and the leads is strong however, the discon-
tinuous charging potential has much less of an effect on the -V curve. Figure 3.12

shows plots of the occupation and position of the level and the /-V curve with both
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Figure 3.10: Self-consistent potentials for simple transport model. One potential shows
discontinuities at integer occupation, while the other is linear and is fitted so
that it matches the discontinuous potential at occupations of 0.0, 0.5, and 1.5
electrons.

['r, and I'g equal to 1.2eV.

Strong coupling between the leads and the molecular level causes its the density
of states to be broadened to a much greater extent. Therefore, even if the centre of
the DOS is pinned above the bias window, some of its tail will be within the bias
window, allowing conduction. The DOS at zero bias for both potentials for strong
coupling are shown in figure 3.13. Part of the Lorentzian will be below the Fermi level
at zero bias and so the level fills and rises until the centre reaches the first plateau in
the charging potential. Thus as the bias window is opened, the level can now charge
or discharge without changing energy, instead remaining fixed in position, as shown
in figure 3.12(b).

This may actually be physically realistic since stronger coupling between the level
and the contacts would allow electrons to delocalise, allowing fractional charging and
hence a more linear increase in the energy (as predicted by LDA for the homogeneous
electron gas).

The behaviour is somewhat different when the chemical potential of the leads at
zero bias is at or just above that required for there to be integer (i.e. one or two
electrons) occupation of the molecular level, as is shown in figure 3.14. For example,
if the chemical potential of the leads is in such a position so that the conducting

level is fully occupied by two electrons at zero bias (i.e. if conduction is through
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Figure 3.11: Occupation (a) and position (b) of molecular energy level, and I-V curves
(¢) for weak symmetric coupling between the leads and the orbital. I'y, and
I'r are both equal to 0.02¢V, and pq (the Fermi level of the leads) is set to
-5.0eV. For the discontinuous charging potential, the level remains outside the
bias window and does not charge until a certain voltage is reached, as shown
in panels (a) and (b). This in turn opens up a conductance gap in the I-V
curve, as shown in panel (c).

the HOMO), then it will lose almost an entire electron without moving as soon as it
enters the bias window, as shown in figure 3.14. Thus, the level in a discontinuous
potential may have a higher conductance under these circumstances than in a linear

potential.

3.3 Conclusion

Our simple model illustrates some of the key concepts underpinning the theory of
electron transport through molecules. Electron transport through a molecule at-
tached between two electrodes with different chemical potentials will occur through
a particular orbital if that molecular orbital is coupled to the electrodes and lies

between their chemical potentials. The occupation of the molecular level will be
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Figure 3.12: Occupation (a) and position (b) of molecular energy level, and I-V curves (c)
for strong symmetric coupling between the leads and the orbital. T'r, and 'y
are both equal to 1.2eV, and po (the Fermi level of the leads) is set to -5.0eV.
For the both the linear and discontinuous charging potentials, the levels are
broad and increasing the bias does not alter the occupation of the level very
much, as shown in panel (a). The energy of the level does not change much,
and the nature of the charging potential has only a small effect on the I-V
curve.

determined by its position relative to the chemical potentials of the electrodes, and
the symmetry of the coupling between the level and the electrodes. If the energy
of the level itself is dependent on its occupation, this, combined with asymmetric
coupling to the electrodes, can lead to asymmetry in the -V curves for the device.

The nature of the dependence of level on its occupation can strongly affect the
transport properties of the system. A discontinuous charging potential can open
up conductance gaps in the I-V curve, depending on the relative positions of the
molecular orbitals and the chemical potential of the leads. This effect is particu-
larly significant for weak coupling between the molecule and the leads, and tends to
disappear for stronger coupling.

In the following chapters, this method for calculating electronic transport will
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Figure 3.13: DOS of level at zero bias for strong coupling. I';, and I'g are both equal to
1.2eV, and pg (the Fermi level of the leads) is set to -5.0eV. Note how part of
the tail of the DOS lies below the chemical potential of the leads for both types
of charging potential. Therefore, for the discontinuous charging potential, the
level will contain enough charge to move up to the flat part of the potential
where it will conduct.

be generalised and extended to more realistic systems. The effects of level position,
coupling strength and asymmetry, and the nature of the response of the level to
changes in occupation will all be studied in detail for a variety of metal-molecule

junctions.
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Figure 3.14: Occupation (a) and position (b) of molecular energy level, and I-V curves
(¢) for weak symmetric coupling between the leads and the orbital. T'y, and
I'r are both equal to 0.02eV, and pp (the Fermi level of the leads) is set to
-0.5eV. The linear and discontinuous charging potentials are still the same as
for the previous calculations. The occupation and position of the levels drop
with bias, remaining within the bias window so that there is no conductance

gap.



Chapter 4

Non-Equilibrium Green’s Function
Formalism

Modern electronic devices have been now been reduced to a size where it is necessary
to use a full quantum mechanical description to model their behaviour. The elec-
tronic transport properties of molecular devices need to be calculated using quantum
mechanical scattering theory to determine the transmission probabilities. There are
several methods for doing this. Among them, the most popular is the non-equilibrium
Green’s function formalism (NEGF) [34, 35, 36, 38, 102] combined with an electronic
structure method such as density functional theory (DFT) [43, 44, 45, 86]. Other
schemes include time-dependent DFT [57, 58] or many-body methods [50, 51, 52,
53, 54, 55, 56]. The calculations described in this thesis are performed using the
NEGF combined with a tight-binding Hamiltonian; and with the SMEAGOL pro-
gram [37, 38, 39|, in which NEGF is combined with the DFT program SIESTA
[82, 83, 84]. There are also several other numerical implementations of NEGF with
DFT [40, 41, 42].

The typical system modelled using these methods is shown in figure 4.1. In
the calculations described in this thesis, the device typically consists of an organic
molecule sandwiched between two metallic electrodes. However, the method de-
scribed here can also be applied to other types of devices, such as constrictions in
metal or semiconductor nanowires, or to solid state devices consisting of multiple
thin layers of different materials.

The electrodes, usually referred to as “leads”, are typically treated as being pe-
riodic in the direction of the electronic transport and their Hamiltonian is usually
written in terms of “principal layers”. The entire system is unbounded, so that the
Hamiltonian of the full system would be infinite in size, but it is not periodic due
to the translational symmetry being broken by the presence of the scattering re-

gion. For the problem to be solved computationally, this infinite system has to be

51
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mapped onto a finite one. This can be done by writing the problem in terms of the
retarded Green’s function for the entire system, as described in section 4.2. A few
of the principal layers of the leads are usually included with the molecule to form a
“scattering region”. The Hamiltonian for the scattering region is finite and can be
calculated using an electronic structure method such as DFT. However, this finite
Hamiltonian is non-Hermitian, which corresponds to the total number of particles in

the scattering region not necessarily being conserved.

Scattering Region
EAETR fre 4 [E._2¥) L4
Left Lead ~ Right Lead

L 'UU.DD'DUDU

B Prmcipal

Layer
of Leads

Molecule

Figure 4.1: The typical system investigated in transport calculations is broken into three
parts: a left and right “lead” and a “scattering region”

The Hamiltonian of the scattering region combined with the self-energies of the
leads produce a finite effective Hamiltonian for the entire system. This can then be
used to calculate the transport properties of the molecule, such as the transmission

coefficients and the I-V curves.

4.1 Green Functions for Simple Model

In chapter 3, a simple model for electron transport through a single molecular level
was introduced. This model can be reformulated in terms of Green’s functions [85,
103]. This formulation of the simple model will serve as an introduction to Green’s
functions, and their use in calculating electron transport.

The Green’s function for an operator O is defined to be the function which, when

operated on by O, gives the delta-function

OG(r,r') =é(r—r'). (4.1)

By converting to matrix notation, i.e. by expanding (i over a finite basis set, the

o-function is replaced by the identity matrix I to get
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0G=1. (4.2)

If the function t(r) is an eigenvector of the operator O, then the eigenvalue

equation can be written in the form

Oy(r) = Ey(r). (4.3)

where F is the eigenvalue. By writing this equation in matrix format we get

(ES—O0)p=0. (4.4)

where S is the overlap matrix and v is a column vector. In the case of an
orthogonal basis set, the overlap matrix will simply be equal to the identity matrix.
The Green’s function, G(E) for the operator (O — ES) is then given by

(ES-O0)GE)=1. (4.5)

For transport calculations, the relevant operator is the Hamiltonian of the scat-
tering region. For the simple model, the Hamiltonian describes only the position of
the level ¢, with a broadening due to the coupling to the leads, I'; and I'p. Thus,

the Green’s function for the simple model is given by

=
TM) 7 (4.6)

2

where F is the energy. The density of states for the system is then given by the

G(E) = <E—6+

imaginary part of the Green’s function

D(E) = —%Im(G(E)) . (4.7)

The number of electrons on the level is once again an integral over the occupied

states

= %/_m dE (|G(B)|’TLf(E, p) + |G(E)|*Trf(E, ur)) - (4.8)

oo

Finally, the current is given by an energy integral of the form

1= %[m dEFLFR‘G(E)F (f(Ev IUL) i f(E’,UR)) : (49)

In the next section, this formulation will be generalised to more realistic sys-
tems, using more complex Hamiltonians and considering leads with realistic band

structures.
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4.2 Green Functions for Open System

The typical system calculated using the NEGF formalism is shown in figure 4.2.
It is assumed to be described by a Hamiltonian written over some finite basis set
formed by atomic orbital like functions. A scatterer such as an organic molecule is
sandwiched between two conducting electrodes or “leads”. These leads are periodic
in the transport direction and are ideally broken into sections called principal layers.
Each layer is described by a matrix Hamiltonian Hy. The interaction between two
neighbouring principal layers are described by a Hamiltonian /; in one direction, and
H _ in the opposite direction. For systems which preserve time-reversal symmetry,
H_, = H].

The scattering region is described by a finite Hamiltonian Hy, and the interaction
with the left and right leads are described by matrices Hyy and Hgy respectively.
Typically, a sufficiently large number of principal layers of the leads are included
in the scattering region to allow the charge density to converge to its bulk value,
thus screening the potential of the molecule. This allows the leads to be calculated
independently of the scattering region, i.e. it is assumed that the presence of the
molecule does not alter the electronic structure of the leads beyond a certain distance.

The full Hamiltonian, H, of this infinite system is given by

R ol < SR .
Ry e AR -
Bhe= e s e T e O (4.10)
G R R )

0 H, Hy, H 0

The Schrodinger equation associated with this Hamiltonian is

Hy = ESy, (4.11)

where S is the overlap matrix (the identity matrix in the case of an orthogonal
basis set), ¢ is the wave function (the eigenvectors of this Hamiltonian) and F is the
energy. Broadening 0 is added to the energy, and the Green’s function equation for

the entire system becomes

(lim(E +i6)S — H)G(E) = 1. (4.12)
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(S
ot

where § > 0 gives GR, the retarded Green’s function, and § < 0 gives G*, the
advanced Green’s function. We will use the retarded Green’s function G® here, in

which ¢ tends to zero from above.

Left Lead Right Lead
I BB 0 HEN
ﬂfhu% Ao N | [H] ]

Principal Layer of Leads Scattering Region

Figure 4.2: Diagram of the system investigated in electron transport calculations, showing
the left and right leads and a scattering region in the middle

The matrices in equation (4.12) are infinite, so it is useful to break the Hamilto-
nian into three parts: the scattering region in the middle, (Hy), the left and right
leads, (Hy, and Hg respectively), as shown in figure 4.2. The full Hamiltonian H of

the infinite system can be written in block matrix form

Hy Hia 0
H=} Hyg Hyg "Hu | - (4.13)
0 Hgrm Hg
The interaction between the scattering region and the leads is described by the
semi-infinite submatrices Hyn, Hur, Hrwv, and Hyg, as shown. The matrices which
describe the leads, H;, and Hg, are infinite. Since principal layers are included
between the scattering region on each side, the non-zero part of these submatrices
effectively consists of the Hamiltonians describing interaction between two principal
layers in the leads, H; and H_;.
The overlap matrix S can be broken up into sections in a fashion similar to that

of the Hamiltonian, where a similar notation to that in equation (4.13) applies

S, Smwm O
51— Svr, Sm Sumr : (4.14)
0 Skm Sk

If the Green’s function G and the identity matrix [ are also broken up in a similar
manner, then equation (4.12) for the Green’s function can also be written in block

matrix form
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&S —Hr eSpm— Hry 0 GL Gum Gir
eSML — Hur, €Sw—Hm  e€Smr — Hur Gur Gu  Gur
0 €¢Srm — Hrm  €Sr — HRr Gr. Grm  Gr
(0] £ (0!
S I
(0] e

where Jy is the N x N identity matrix, with N being the number of basis orbitals
in the scattering region. For convenience, we have defined ¢ = (lims_o(E + i9)).
When the two matrices in equation (4.15) are formally multiplied, the central row

of (¢S — H) multiplied by the central column of G(F) gives the following equation

(eSmL — Humi)Grm + (eSu — Hu)Gy + (6Svr — Hur)Grvm = Iy (4.16)

Similarly, expressions for GG,y and Gry can be obtained by multiplying the first
and third block rows of (¢S — H) by the central column of G(F) and then rearranging

Gim = —(eSy, — Hy,) 7 (eSum — Hum)Gr - (4.17)
Gru = —(eSr — Hr) ' (eSrm — Hrm)Gw - (4.18)

The Hamiltonians describing the isolated leads (i.e. the semi-infinite leads where
no scattering region is present) are Hy, and Hg. Hence the retarded Green’s func-
tions of the isolated leads, G® and G}, which are the retarded Green’s functions

calculated at the last principal layer of the isolated leads, are

(6B — Hp )Gl = I = GE = (eS;, — Hi) ., (4.19)
(66x — Hp )G =1 = G0 = (eSh — Hy) ™. (4.20)
R

By substituting the expressions for Gy and Gry from equations (4.17) and
(4.18) back into equation (4.16), we obtain an expression for the Green’s function of

the scattering region, Gy

—(eSmL — Hyp )G (eSpm — Him)Gym + (6Sm — Hy)Gy
—(eSmr — Hur)GR¥(eSrm — Hrm )Gy = Iy - (4.21)

We now introduce the self-energies, ¥;, and ¥R, of the left and right leads, which

have the form
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2L = (eSmr — Huu)GRY(eSum — Him) (4.22)
ZR = (ESMR = HMR)G%R(ESRM S HRM) 5 (423)

These self-energies contain all of the information about how the leads affect the
scattering region. Hence we obtain an expression for the Green’s function of the

scattering region, (7, in terms of the H),; and the self-energies of the leads

(%1&1)(]? + 7(5)8 — Hy — %, — ER)GM =N (424)

Therefore, the Green’s function of the scattering region, (Gj;, can be obtained by

inverting equation (4.24)

GM = ((lSIII(l)(E + 1,5)5 o HM i== ZL s ZR)_l : (425)
From this, we can define the effective Hamiltonian, Hgpp, for the scattering region

in the presence of the leads as the sum of the Hamiltonian of the scattering region

Hy and the leads self energies ¥p, and Xy

Hgpr = Hy + X, + Zgr - (4.26)

Note that this Hamiltonian is non-Hermitian. This is because it is the Hamilto-
nian of an open system; charge can enter and leave the scattering region from the
leads so that the total number of particles is not necessarily conserved.

The non-Hermitian part of Hgpp is due to the self-energies ¥ and ¥g. The
anti-Hermitian part of these self-energies controls the rate, I', at which electrons can

enter and leave the scattering region

FL/R = 7[ZL/R = ZL/R] . (427)

Analogous to the coupling terms in chapter 3, 'y, and 'y are matrices which
describe the rate at which electrons are transferred between the scattering region
and the left and right leads, respectively.

For convenience, we can combine the left and right self-energies into one

3/ U5 5 MU (4.28)

Hence, in general, the retarded and advanced Green'’s functions for the the scat-

tering region, G® and G*, can be written as

G® = (lim (E + i8)S — Hy - T®)L, (4.29)

3—0+
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Figure 4.3: Diagram of system showing how the left and right leads can be downfolded into
self-energies.

G* = (lim (E 4+ i6)S — Hy — Z*)'. (4.30)

5—0
where ¥R and ©# are the retarded and advanced self-energies, calculated using
the retarded and advanced Green’s functions for the leads as shown in equations
(4.22) and (4.23). Similarly, the overall net rate at which electrons are transferred

between the leads and the scattering region, is given by I' = I'y, + I'g = X/ — ¥4,

4.3 Calculating the charge density with NEGF

In the case of a mean field theory such as density functional theory (DFT), the

Hamiltonian of the scattering region, Hyy, is a functional of the charge density p

Hy = Hylg)- (4.31)

In order to calculate the charge density p of the scattering region connected to
the leads, we need to use the non-equilibrium Green’s function formalism [34, 35,

36, 38, 102] to find the relationship between p and the retarded Green’s function
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for the scattering region, G®. We start by introducing the lesser Green’s function,
G<(k,k';t,t'), which is effectively a generalisation of the distribution function f(k;¢).
This is also proportional to the correlation between wave functions, so that G< ~

Y(r)y*(r'). The density matrix, is given by G< calculated at t = ¢’

plle k1) = i |Gl Kbt (4.32)

Using a Fourier Transform to go from the time representation to the energy
representation, the density matrix for the scattering region can be written as an

integral over energy of the lesser Green’s function

= % G<(E)dE . (4.33)

Let us consider the equilibrium case first, where the charge distribution is given

by the product of the density of states and the Fermi function of the leads. The
spectral function, A(E) = i[GR(E)—GA(F)), is a generalised density of states, whose
trace in fact corresponds to the density of states, D(FE) = 2—17;’]’T[A(E)] . Hence, the
lesser Green’s function, which is the charge density as a function of energy, is given at
equilibrium (zero bias) by G<(F) = —ifo(F)A(FE), where fo( E) is the Fermi function
of the leads assumed at equilibrium. Since GA(FE) = G®(FE), the spectral function
is given by A(FE) = 2Im[Gf(F)], and so the equation for the lesser Green’s function

at equilibrium becomes

G< = 2iIm[G*(E)|f(E — ), (4.34)

where p is the chemical potential of the system. This allows the density matrix
of the scattering region to be calculated in terms of the retarded Green’s function.

However, this expression is only true at equilibrium. When the system is out of
equilibrium, e.g. when a finite bias is applied, the different contacts are at different
chemical potentials. Therefore the charge distribution in the scattering region is no
longer described by a single Fermi function, and equation (4.34) can no longer be
used. Instead, an expression must be derived for G< in terms of G® and the chemical
potentials of each lead.

In order to describe the more general non-equilibrium situation, we first need to
introduce the “in-scattering” and “out-scattering” functions ¥ and L°YT which
describe the rate at which electrons can enter and leave the scattering region. It can
be shown [34] that G< is related to G and =N by the expression in equation (4.35)
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G< = —iGRENGR = —iGRZINGA . (4.35)

Hence, we now have an expression for the lesser Green’s function (and hence the
charge density p) in terms of the Green’s functions of the scattering region and the
in-scattering function. Now, I' describes the net rate at which electrons enter and
leave the scattering region, so I' = LN 4+ ¥OUT  T' can also be expressed in terms
of the difference of inverse of the retarded and advanced Green’s functions given in
equations (4.29) and (4.30)

e Rl s i ) (4.36)

Therefore, by multiplying equation (4.36) on the left by G® and on the right by

GA we obtain expression for the spectral function A(F)

RIGH) ! — (GY)1G* = iGRTG:. (4.37)
= A(E) = —i[G* - G} = G*T'G* . (4.38)

From the discussion for the equilibrium case above, the lesser Green’s function
was related to the spectral function by G<(FE) = —ifo(E)A(F), where f; is the
equilibrium Fermi distribution. This can be used to combine equation (4.35) with

equation (4.38) to obtain an expression for X in terms of I'

G5 = " ENG* = i f(BYA(E) = —ifo[E)GPTG" . (4.39)

Hence, at equilibrium, the in-scattering and out-scattering functions ¥ and

YOUT are simply given by

N ET B =T S E ] (T (4.40)

For the non-equilibrium case with multiple leads, assume that each lead p is in

equilibrium with a Fermi distribution f,(F). Then the in-scattering function for each
lead p will be given by

E;N = fo(E)Tp, (4.41)

and the total in-scattering function X' is given by a sum over all of the leads p.
In the case of two leads, left (L) and right (R), we have

SN = fL(E)IL + fa(E)Tx . (4.42)
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Hence, in the non-equilibrium case, for two leads with chemical potentials p, and
pur which are coupled to the scattering region by I'y, and 'y respectively, the lesser

Green’s function is given by

G< = iGN [f(E — p)T + f(E — pr)TRIGY - (4.43)

Therefore, the density matrix p can be evaluated for the scattering region in the

presence of a potential bias by integrating this expression for G< over the energy I

1 3 !
A= /[G&FLGW(E — ) + GNTRGy [ (E — pw)|dE . (4.44)

This is the central result of the non-equilibrium Green’s function formalism
(34, 35, 36, 38, 102], linking the charge density p of the scattering region to the
retarded Green’s function G*®. It allows the electronic structure of a scattering re-
gion connected to two semi-infinite leads to be calculated self-consistently at a finite
applied bias.

However, this integral is hard to perfrom numerically since it is unbound and the
Green’s function has poles on the real axis. To solve these problems, the integrands
are split into an equilibrium part which is calculated in the complex plane using
a contour integral, and an out of equilibrium part, which is non-zero over a finite
energy window.

The lesser Green’s function, Gy, can, in fact, be written as

Gyi = iIGNTLGY f(E — pw) + iGRTRGY f(E — pg) - (4.45)

By adding and subtracting the term iGﬁFRG&Tf(E — 1), we obtain

Gy = ilGNTLGY f(E — p) + GNTRrGy f(E — p)]
FiCE PG IR < ) =G TG L FE = )]
= iGR[[L + TRIGE f(E — )
+GWTRGy f (B — pr) — f(E — pi)].- (4.46)

If we now substitute the result T' = i[(G}yy) ' — (GX) "] from equation (4.36) into

the equation for Gy, we obtain
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M= igGI\RfI[(G&T)_l — (Gy) G YR]Lf( E— )
+HGNTRGY [f(E — pr) — f(E — p1)]
= —[GY — GWIf(E — pw) + iGNTRGY [f(E — pr) — f(E — )]
= —2%Im|GRIf(E — p) + iGRTRGY [f(E — pr) — f(E — )] . (4.47)

The first part is the same as the expression for Gy at equilibrium, so the equi-

librium part of density matrix, prq, is given by

PEQ = —%/(ZF Im|GR|f(E — L) . (4.48)

Note that this integral is the same as that which would be obtained by using the
expression for the lesser Green’s function at equilibrium. This integral runs from
—o0 to 400, and the Green’s function has poles along the real axis. Hence, this
integral is calculated using the contour integral shown in figure 4.4. This contour
runs along the line segment L and the circle segment €| and then along the real
axis from Fg + id to oo + i, where Ejy is a point on the real energy axis below the
bottom of the valence band (i.e. below the lowest energy state being treated in the

calculation).

Im[E‘

Poles of Fermi .
Function o
| =
Eg ~—— Lowest Bound E ,iz Re[E]

for Integration

Figure 4.4: Contour used to integrate equilibrium part of density matrix.

The residue theorem states that the integral around a contour is equal to 27

times the sum over the residues, which leads us to the result

%d GR(2) = QWZZRes[(‘R 2)fu(2)] . (4.49)
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The only poles enclosed by the contour are the poles of the Fermi function which
occur at 2z, = (2n + 1)imkgT, and the residues of the Fermi function are —kpgT.

Therefore the contour integral becomes

j{de&(z)fL(z) = —2mikpl Z[Gﬁ(zn)] ! (4.50)

The integral along the contour can be broken into three parts, the first along the
real axis, the second along the circle segment ', and the third along the line segment
L

o
j{dz(}},z}(z)f[‘(z) = / dzGR(2)fu(2) +/‘ dzGH(2) fu(2) +/de§{1(z)fL(z).

s : A (4.51)

The integral we are actually interested in calculating is that along the real axis

from Fp to oo. Using the expression for the integral around the full contour in

equation (4.49), this can be written in terms of the integral over the segments C' and

L and the sum over the residues

/%dEGi‘l(E)fL(E —p) =— /( dzGy(2) fu(2)

Eg
g /1 d=GR(2) fu(2) — 2rikpT S [GR(z0)] (4.52)

A Gaussian quadrature [104] can be used to calculate the integral along C' and
L, as the Green’s function is well-behaved away from the real axis.

The remainder of the density matrix, pngpq, is given by

e = - [ GATRGHUI(E = ) — (B - ). (453

This is only non-zero in the region where f(E — pugr) and f(F — py,) are not equal,
which corresponds approximately to the bias window with some broadening due to
temperature. Therefore, this integral can be calculated with reasonable accuracy
by taking a finite energy window and using a technique such as Simpson’s Rule, as
shown in figure 4.5.

We can now finally describe a self-consistent procedure to calculate the density
matrix of the scattering region. First, a trial charge density, typically starting either
from a previously converged ground state electronic structure calculation (which in
turn would typically use the atomic charge densities as the starting configuration) is

used to compute the Hamiltonian of the scattering region, Hy
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Figure 4.5: Energy window for integration of non-equilibrium part of density matrix.

Hy = Hulp’(r)];  p°(r) = (x|pylr) - (4.54)

This can then be used to calculate the Green’s function, which in turn can be
used to construct a new charge density as described above. This new charge density
is then used to calculate an updated Hamiltonian, and so on until the convergence

criterion is met

Max|| 0 — o] < 6. (4.55)

This means that the density matrix is converged when the difference between

1

each matrix element at the j' iteration and the corresponding matrix element at

the j 4+ 1'" iteration is less than some tolerance parameter J.
This density matrix can then be used to calculate other properties of the open

system such as the density of states or transmission probabilities.
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4.4 Calculating the Current with NEGF

Once the charge density and effective Hamiltonian of the scattering region have been
calculated, the next step is to calculate the conductance and [-V characteristics of
the device.

Using the Landauer-Biittiker formalism [105], the conductance of a device can
be associated with the transmission probability of an electron wave function to cross
a scattering potential. Consider the simple scattering potential shown in figure 4.6.

k2 in general has a component re~*** which is reflected

Scattering
Potential

An incoming wave function e

1kx
€
%
1kx
ik te
re Fp——
T

—-
X

Figure 4.6: One-dimensional scattering potential with incoming wave function e***, which

has transmitted and reflected components, te’** and re=***

ikx

by the potential, and a component te”* which is transmitted through the potential.

The total flux is conserved, i.e. |r|?+|t|* = 1. In a periodic system with no scattering
potential, each electron wave function contributes ‘;7—2 to the current per spin. If the
system is spin degenerate, then each conduction channel can carry two electrons,
and so each will contribute one quantum of conductance, Gy = 2% For multi-
dimensional systems, there can be multiple scattering states with the same energy.
The transmission and reflection coefficients, ¢ and r, will then be matrices, where,
for example, element ¢;; is the coefficient for a wave function being transmitted from
the i scattering state or channel on the left of the scattering potential into the j*
channel on the right.

The total Landauer-Biittiker conductance, I', at a given energy F, can then be

defined as being the trace of the product of the transmission matrix with its adjoint
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[ = GoTr|tt!] . (4.56)

The total current, /, in the linear response limit is then given by

I = Go(pr, — pr)Tr[tt'] (4.57)

where py, and pg are the chemical potentials of the left and right lead, and ¢ is
calculated at the Fermi level of the leads.

Alternatively, the current can be expressed in terms of the Green’s function for
the scattering region GE [34, 107] by using expressions for the probability current
density J(r) and the Hamiltonian of the scattering region Hy;. This can be extended

to finite bias, yielding

e f : ¥ ; :
1= [ dB TGN TR GRI(E — ) = F(E = ). (@59
From the expression for the Landauer-Bittiker current, the transmission coeffi-

cients can be identified with the term T7[[ Gy TrGY]

T(E,V) = Tr[[LGHTrRGY] . (4.59)

Thus, the current [ is essentially the integral over energy of the transmission
coefficients 7'(F, V') in the region in which the Fermi functions of the leads are not
equal to each other (i.e. the bias window). The transmission coefficients T'(F, V)
correspond to the probability of an electron being transmitted from one side of the
scattering region to the other at an energy FE. They are generally dependent on
the potential bias V' applied to the system. The position and width of the peaks in
transmission coefficients are determined by the positions of the molecular orbitals
and the strength of the coupling between those orbitals and the leads.

The full self-consistent procedure for calculating the charge density, the transmis-
sion and the current using the non-equilibrium Green'’s function formalism is shown

in figure 4.7.

4.5 NEGTF for Periodic Boundary Conditions

The NEGF method as described up to this point applies to one-dimensional or quasi-
one dimensional systems. However, the devices investigated in the experiments mod-

elled in this thesis typically involve the molecules being attached to relatively large
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Lead’s Self-energy
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Figure 4.7: Flowchart showing the self-consistent procedure used to calculate the density
matrix and the current using the non-equilibrium Green'’s function formalism

metallic electrodes, the cross-sections of which have far more atoms than it is feasible
to perform calculations for. Unfortunately, modelling the contacts as nanowires with
perhaps as few as nine atoms in the cross-section can introduce artificial gaps into
the band structure due to quantum confinement. This causes serious problems with
electronic transport calculations, creating artificial gaps in the transmission coeffi-
cients. Hence, if possible, it is preferable to introduce periodic boundary conditions
in the directions perpendicular to that of the transport.

From Bloch’s theorem, the Hamiltonian of a 3D system can be written in the

form

N
Ho— S it (4.60)
j=0

where H; is the Hamiltonian coupling the 0" unit cell to the j unit cell, r; is
position of the j™ unit cell relative to the 0" one, and k is the reciprocal lattice

vector. The Schrédinger equation associated with this Hamiltonian is

N N
Z Hje™*%iuy, — E Z S;e*Tiy, =0, (4.61)
j=0 Jj=0
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where uy is a function with the same periodicity as the lattice. Note that these
equations are separable, so that the problem can be solved by diagonalising Hy for
each value of k. The integral of the resulting eigenvectors, ¥X, with respect to k
gives the density matrix of the system.

Similarly, the retarded Green’s function for the scattering region, G®, as given in

equation (4.29), can be adapted to the case of periodic boundary conditions

GE(E k) = (llsin(l)(E +10)S(FE,k)) — Hu(E, k) - Z}(E k). (4.62)

This Green’s function can be calculated separately for each value of k. The
density matrix is then obtained by integrating the k-dependent density matrix over

all the values of k in the Brillouin zone

ik [IGATLGN (B = ) + GATRGA (B - )i (463)

This integral can be performed by splitting it into equilibrium and non-equilibrium
parts, as shown in equations (4.48) and (4.53).

For the ab wnitio transport calculations described in this thesis, two k-points were
sampled in each of the directions perpendicular to the transport. For the calculations

of electronic structure of the unit cell of the leads, 100 k-points were sampled.

4.6 Calculating Self-Energies and Green’s Func-
tions for the Leads

From equations (4.22) and (4.23), we have that the self-energies for the left and right
leads, ¥;, and ¥R, are given by

YL = (eSmL — HML)G?JR(GSLM — Hinm) , (4.64)
ZR = (6SMR = HMR)G%R(ESRM = I]RM) ¢ (465)

G® and G are the retarded Green’s functions of the isolated leads. Due to the
inclusion of principal layers in the scattering region on both sides, Hyy, and Hygr
usually consist of the Hamiltonians describing the interactions between principal
layers in the leads, H, and H_;. Therefore, constructing the self-energies reduces
to calculating the retarded Green’s functions of the leads. In SMEAGOL, these are

calculated semi-analytically using the scheme introduced by Sanvito et. al. [108].
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There are also recursive algorithms available to calculate these functions, although
they have not been implemented in SMEAGOL.

As explained previously, the leads are assumed to be periodic in the direction of
the transport, with H, being the Hamiltonian describing each principal layer, and
H, describing the coupling between principal layers. Since each layer only interacts

with its neighbouring layer, the Hamiltonian of the leads is in block tridiagonal form

DI W R e
R0 ANERET T i S S R (4.66)
0 H, Hy H 0

The Schrodinger equation for this system is of the form

Hoy, + Hit,11 + H 19,1 = ESY, . (4.67)

where H_, = III in the case of time reversal symmetry. For an infinite, quasi-

one-dimensional system such as this, the wave function takes the form of Bloch states

¥, = ViRegy (4.68)

where k is the reciprocal lattice vector and /ny is a normalisation factor. Sub-

stituting this into equation (4.67) gives

[(Hy — ES,) + (Hy — ESy)e™ + (H_y — ES_1)e *]¢x = 0. (4.69)

Solving this equation for e*** allows the value of k to be determined for a given

value of F. This is done be rewriting the above equation in matrix form so that

i 0 eﬁikd)k
o eFer \ _ ik( o >
= < o ) = €T | kg, (4.70)

The eigenvalues and eigenvectors of this matrix are ¢’* and ¢y, respectively. There-
g k p )

( =y — PR N — B = B SR ) ( bk )

fore, k as a function of F can be obtained by diagonalising this matrix. Problems
with this method may occur when (H; — E.S)) is singular and so cannot be inverted.
For an orthogonal basis set the retarded Green’s function of the doubly infinite

system can be calculated from ¢, and k. This retarded Green’s function, G,./, has
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the form of a wave function except at the source point, z = z’, and so we use the

following ansatz [108]

S g 2> o
Gz;' — N __ikiz—2") Tl Y. (471)
h D3 wy, 25z
where k = —k, with k representing the right and left moving plane waves, and
w,tl and w%l are vectors whose form is to be determined. The summation runs over
all possible scattering channels.
(i.. is a Green’s function, and thus must satisfy the equation
(ES — H)G,y = 0, (4.72)

where H is the Green’s function of a doubly infinite lead. .., must also be
continuous at z = 2/, i.e. the values given by the expressions for z > 2z’ and 2 < 2/
should be the same at this point. These conditions can be used to show that the

Green’s function for the doubly infinite lead is of the form

N . iki(z—2") 1t Vi kel

S \ORE . i,
G = Zlﬁl T i%l(zfz’)q?]’;l 171 . ; 0 (473)

21 Pre d’;, ol =ik
where V' is given by

N ~ T o~

V=) (H.,— ES_,)[¢re "¢} — qb;l(f”k’gb%h] . (4.74)
I=1

This is the Green’s function for a quasi-one dimensional system (i.e. one which is
periodic in the transport direction), and which extends to infinity in both directions.
The leads for the system we wish to study only extend to infinity in one direction,
as they end at the interface with the scattering region. Consider the left lead which
runs from z = —o0 to z = 2y — 1 (the scattering region starts at z = z5). Then
the boundary condition is that the Green’s function must vanish at z = z,. This

condition can be obtained by subtracting from (. a wave function of the form

N
A ) = Zcb;he““"zAh;(z, 20) - (4.75)
Lh

The surface Green’s function, G,./(20) is then given by

Grow(20) = Gow — A,(7, 20) - (4.76)

If we take A,(2', zp) to be of the form
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N
B2 20) = ) ¢p, e C0L g eiIgL vt (4.77)
L,h

Then for z = 2y, so that 2’ is in the lead and z > 2/

N
GZOz’(zO) — Z ¢kleik[(z0—z')¢};[v—l
=1
N A 2 o~
il Z %helkh(ZO—ZO)(ﬁ%h(ﬁklelkl(zo—z’)¢',tlV"l =0. (478)
L,h

Similarly, for 2’ = 2z, so that z is in the lead and 2z < 2/, GZOZI(ZO) — (0f
The surface Green'’s function is the Green’s function for the last slice of the leads,
which for the left lead will be at zo — 1. At this point 2 = 2’ = 2y — 1, so that

Ty T O s ~ > 5
et*1(z=2") = 1 Hence, the surface Green’s function, G;, = G.._1.._1(20), is given by
3 16/ 20—1,20—1\ 20 g ]

N N
GL = Gaporn0-1(20) = Y Gl V™ = D b, ™0l dpe™g V. (4.79)
l,h

=1

N
= GL=[I-) ¢re gl gretigllV". (4.80)
L,h

Similarly, for the right lead, the first slice is taken to be at zy + 1, and the lead

runs to +oo. Hence the corresponding surface Green’s function, G, is given by

N
Gr = Gaps1,041(20) = [[ = ) $re™d) dp, e ™ gL V. (4.81)
L,h

The main weakness of using this method for calculating the Green’s functions of
the leads is that it requires the inversion of the matrix (H, — £S;). For certain sys-
tems, particularly when the orbitals of the atoms in the leads are strongly localised,
this matrix can be singular.

This can also occur if the unit cell of the leads is not chosen carefully, for example
if it is unnecessarily long. For example, consider the linear atomic chain shown in
figure 4.8.

Each atom is coupled only to its nearest neighbour with hopping parameter 7.
In the first case, each unit cell only contains one atom, and so H; is just equal to

v, and so is invertible. However, in the second case, we consider two atoms in each
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Figure 4.8: Linear atomic chains of atoms with (a) one and (b) two atoms in the unit
cell. If the atoms are only coupled with their nearest neighbours, then in chain
(b), the matrix H; describing the coupling between neighbouring cells will be
singular.

principal layer, and the left atom in one principal layer will not interact with the left

atom in the next principal layer. Hence, H, for this particular system has the form

0 0
= 4 R9
1, ( X 0) (4.82)

This matrix is obviously not invertible. In this case, the problem can be solved
easily by choosing a different unit cell for the leads. However, for more realistic
systems with multiple orbitals this is not always possible. Transition metals can be
particularly troublesome due to the highly localised nature of the “d” orbitals.

This problem can be solved by performing a generalised singular value decompo-
sition [109], combined with a decimation procedure to remove the degrees of freedom

which do not couple to the other principal layers [38].

4.7 Conclusion

The non-equilibrium Green’s function formalism described here can be used to per-
form calculations for open systems which are not at equilibrium, such as nanoscale de-
vices with have an applied bias. As such, it can be used to calculate electron transport
processes in a variety of systems, from metal-molecule junctions, to nanowires and
multilayer devices. It allows the effects of finite bias to be modelled self-consistently,
and can be used to plot the transmission coefficients and /-V curves of such systems.
It can be used with different electronic structure methods such as tight-binding or
density functional theory. This method has been combined with the density func-
tional theory code SIESTA [82, 83, 84] described previously to form the SMEAGOL
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[37, 38, 39] program.
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Chapter 5

Molecular Electronics and the
Derivative Discontinuity

Nanoelectronics has now advanced to the point where devices are being constructed
from single molecules. Such molecular devices have the potential to revolutionise
multiple diverse fields, from computer architecture (2, 3, 4, 5, 12] to chemical sensors
[6, 7, 8] and medical diagnostics [9, 10, 11].

One of the first molecular devices was manufactured by Reed et. al. [19] in 1997.
It consisted of a benzenedithiol (BDT) molecule connected between two gold point
contacts, constructed by using a mechanically controlled breaking junction (MCBJ)
as described in the introductory chapter of this thesis. Electronic transport mea-
surements performed on this device found very low conductivity, with a conductance
gap between -1V and 1V, and a current of the order of 0.3uA at 5V. To put this
current in perspective, the quantum of conductance, Gy, is equal to 77uS, so that the
current through a single open conductance channel would be 77pA at 1V and 3854 A
at 5V, assuming a linear /-V curve. The zero-bias conductance was very low, of the
order of 107°Gy. However in more recent experiments, such as that of Xiao et. al.
[26], a zero-bias conductance of 0.011G( was obtained for the same molecule using an
STM breaking junction. This is three orders of magnitude higher than that observed
by Reed et. al. No significant conductance gap was observed, and a current of the
order of 1uA was measured at 0.7V. In the same work, transport measurements were
also performed on benzenedimethanethiol (BDMT) using the same method. For this
molecule, a conductance of 6 x 107G, was observed, with a current of the order
of 50nA being measured at a bias of 0.6V. It should be noted that in the work of
Xiao et. al., several hundred measurements were made for each molecule, with a
new molecular junction being constructed for each measurement. This allows statis-
tical histograms of the conductance to be plotted for each molecule, increasing the

reliability of the results.
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Another MCBJ experiment has been performed since for BDT attached to gold
electrodes by Tsutsui et. al. [24]. They found two sets of zero bias conductances: one
set of “low-conductance states” where they observe conductance values of 0.004G)),
0.005Gy and 0.011Gy, which are values similar to those observed by Xiao et. al.
[26]; but also a set of “high-conductance” peaks, with values of 0.09G), 0.14G, and
0.23Gy. Both the MCBJ and STM breaking junction methods were used by Ulrich
et. al. [25], with the STM measurements being performed at room temperature
(293K) and the MCBJ experiments being performed at low temperature (30K). For
the room temperature measurements for BDT, clear peaks could not be observed
in the conductance histograms, but in the case of the low temperature mechanical
break junction measurements, a peak was discernible at 0.011G/, the same value as
that observed by Xiao et. al. For the configuration giving this conductance value, a
current of the order of 3uA was measured at 1V, with no conductance gap observed.
The transport properties of BDMT were also investigated in this work, with the

observed conductance values being between 0.0002G and 0.004Gy.

Ghosh et. al. [29] used a combination of electron-beam lithography and electromi-
gration to fabricate gold electrodes, and then deposited BDT and BDMT molecules
in the gap between them. They observed high conductances for BDT, of the order
of 0.1Gy (similar to the high conductance regime observed by Tsutsui et. al.). A
current of the order of 30uA was observed at 2V, with no conductance gap in the /-V
curve. For BDMT, a conductance of 5 x 104G, was observed, similar to that mea-
sured by Xiao et. al., with a current of order the order of 200nA at 2V. Dadosh et.
al. [30] investigated the transport properties of BDMT and biphenyldithiol (BPD)
by mixing a solution of the molecules with a gold colloid, so that the molecules would
attach to the gold nanoparticles, tethering two of them together. The resulting dimer
was then trapped between two electrodes and the transport properties measured. In
this work, very low conductances were observed, with BPD giving a conductance of
the order of 107°G), while BDMT gave a conductance of the order of 10~7Gl.

Thus, there are large variations in the experimentally measured results for the
transport properties of these molecular junctions, even when very similar methods
are used to perform the measurements. The usual explanation given for this large
spread in the data is that of variation in the contact geometry between the molecule
and the metal surface. Other possibilities include there being different numbers of
molecules present in the junction, or the molecule not being chemically bonded to

one or both of the electrodes.

Unfortunately, to date ab initio quantum transport calculations have not been of
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much assistance in solving this problem. Calculations using NEGF and DFT with
local exchange-correlation (XC) functionals give results for the conductance which
are even higher than those obtained by any of the experiments [63, 64, 65, 66, 67, 68,
69, 70]. One of the earliest calculations performed for the BDT molecular junction
was that by DiVentra et. al. [63]. Their results showed a conductance gap in the -V
curve between -1V and 1V similar to that observed in Reed et. al.’s experiments, but
obtained a current of 150puA at 5V. For a different configuration, with the molecule
attached to a single gold adatom on each surface, the current dropped to 6uA at 5V.
However, these calculations were performed using a jellium model for the electronic

structure of the electrodes.

Calculations in which the leads are treated more realistically include those of
Xue et. al. [64, 65], which were performed using the BPW91 GGA XC functional to
calculate the electronic structure of the extended molecule with a modified version
of GAUSSIANGYS. For BDT, they find a zero bias conductance of the order of 0.1G.
with a current of the order of 50pA at 4V. For BPD, the zero bias conductance of the
order of 0.02G,, with a current of the order of 40uA at 4V. However, the extended
molecule which they use for their calculations only includes six atoms from each lead,

and the leads themselves are described semi-empirically.

Stokbro et. al. [68] used the TranSIESTA method to investigate BDT attached
to gold using both LDA and GGA XC functionals. They obtained similar results
for both LDA and GGA, with conductances in the range of 0.36G| to 0.44G,, which
are higher than that observed in any of the experiments, and a current of the order
of 100uA at 5V. Basch et. al. [66] also used the TranSIESTA method with an
LDA XC functional to calculate the transport properties for both BDT and BDMT
attached to gold leads. The set up in both of these calculations and those of Stokbro
et. al. are very similar to our own as described in Chapter 6. Their results show
zero bias conductances in the range of 0.2Gy to 0.8G/y depending on the anchoring
geometry, with a current of the order of 25uA at 0.6V. For BDMT attached to gold
electrodes, they obtained zero bias conductance in the range of 0.006G, to 0.05G,
with a current of the order of 300nA to 500nA at 0.6V.

Many body methods have also been used to investigate electronic transport in
BDT attached to gold leads. Delaney et. al. [51] used a method based on the
configuration interaction formalism. They obtained an /-V with a conductance gap
between -2V and 2V, with a current of the order of 3uA at 5V. The zero-bias conduc-
tance observed was of the order of 1073G. However, this method uses distribution

functions to describe the effect of the semi-infinite leads, instead of self-energies as
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in the non-equilibrium Green’s function formalism. This in turn may lead to the
broadening of the molecular orbitals being incorrectly described, which may explain
the large conductance gap.

Several of these ab initio calculations also demonstrate that altering the contact
geometry to reduce the strength of the interaction between the molecule and the
metal results in the HOMO of the molecule being pinned to the Fermi level of the
metal, so that a high zero-bias conductance is still observed [64, 65, 66, 67]. This is
discussed at length in chapter 6, where DFT calculations are performed for multiple
anchoring configurations of the BD'T molecule on the gold surface.

One explanation as to why the calculations fail to describe any of the experiments
is that the local exchange-correlation (XC) functionals used in the calculations con-
tain self-interaction errors, as described in chapter 2. One effect of the self-interaction
error is to suppress the derivative discontinuity, which should be present in the true
XC functional. In chapter 3, the effect on the electronic transport of a non-linear
dependence of the energy of the level on its occupation was demonstrated using a
simple model. Here, a similar concept is applied to the system of BDT sandwiched
between gold electrodes, to investigate the effects of a discontinuous potential on
the conductance of this junction [74]. However, in order to recover the derivative
discontinuity in DFT, the full self-interaction correction would have to be applied
self-consistently [71]. This is difficult to implement for extended systems and is also
computationally very costly. Therefore, we instead modelled the system using a self-
consistent tight-binding Hamiltonian, in which the dependence of the energy of the
energy level of the valence orbitals for each atom on the occupation was calculated

using self-interaction corrected DFT [101].

5.1 Self-Consistent Tight-Binding Hamiltonian

The non-equilibrium Green'’s function formalism (NEGF) [34, 35, 36, 38] works with
a number of different Hamiltonians, such as the DF'T Hamiltonian described previ-
ously. In order to examine the effect of a derivative discontinuity on the electronic
transport properties of a metal-molecule junction, we used the NEGF method with
a self-consistent tight-binding Hamiltonian [110, 111]. This is a relatively simple
Hamiltonian, which helps to prevent the calculations from becoming too computa-
tionally expensive. This is important, since the discontinuous charging potentials
being investigated here can cause some convergence problems. Also, since it is not

an ab initio Hamiltonian, the various parameters used can be varied independently
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in order to study their effect on the system.
To introduce the tight-binding method, first consider an infinite linear chain of

identical atoms, as shown in figure 5.1. Allow one state, |j), per atom. The wave

Yi-1, Yij+1
£ £
XX XX
j-1 ] j+1

Figure 5.1: Infinite linear chain of atoms, labelled by index j. In the tight-binding approx-
imation, each atomic orbital is characterised by an “on-site energy” €;, and the
nearest neighbour hopping parameters 7; ;1.

function of the entire chain, [¢), will be a linear combination of atomic orbitals.

N
V=) Wil (5.1)
g=1

where |j) are the atomic orbitals. These are assumed to be orthonormal, so that
(1]j) = 6;5. The Schrodinger equation for this system is H|¢) = E|¢), where H is

the Hamiltonian and F are the eigenvalues. By expanding the wave function [¢)

over the basis |j) and projecting over the state |i) gives

Zz/a(ilHIj) = EZ%—(H]’). (5.2)

If we assume that the atomic orbitals are tightly bound to the nucleus (the
“tight-binding” approximation), so that only the matrix elements between nearest

neighbour orbitals do not vanish, we obtain

e ifi=3;
lH) = vy =gl (5.3)
0  Otherwise.

Here, ¢; is the “on-site energy” of atom j, which is energy of the atomic state if
the atom is disconnected from the rest of the chain, modified to take into account
the effect of the crystal field. The “hopping parameter”, v,;, describes the hopping
between orbitals situated on neighbouring atoms. The rate at which electrons can
move between two orbitals is given by % For a chain of identical atoms, where
¢;j = ¢ and v;_;; = v;;41 = 7 for all j, the Schrodinger equation associated with

atom j becomes



Molecular Electronics and the Derivative Discontinuity 80

YYi-1 + €5 + YY1 = Ev; . (5.4)

Take v; = €™ as a trial solution for equation (5.4). For atom j, this gives

7eRU=1) 4 ceihd 4 netklU+D) = Beiki (G.5)

= (e = E) +le ® +&%) =0, (5.6)

Since e~ + e* = 2 cos(k), we get a dispersion relation for the energy F in terms
of k

E=¢€¢+2ycos(k)=0. (5.7)

From this, it can be seen that the tight-binding Hamiltonian has two main pa-
rameters: the on-site energy ¢ and the “hopping” parameter v. The on-site energy
represents the potential energy. It determines the energy of the orbital in an atom,
or the position of the centre of the band in a solid. In our Hamiltonian, the on-
site energy of a particular orbital is a function of the electronic occupation of that
orbital. The form of this function will be discussed later. The hopping parameter,
or coupling, represents the kinetic part of the Hamiltonian. It corresponds to the
probability of an electron “hopping” between atoms. From equation (5.7), it can be

seen that it is the parameter which determines the width of a band.

a) b)
$SO S
g
ppo ppT

Figure 5.2: Different types of hoppings for s and p orbitals: (a) sso hopping, between
two s orbitals; (b) spo hopping, between an s and p orbital; (¢) ppo hopping,
between two p orbitals oriented along the same axis; (d) ppm hopping, between
two p orbitals oriented along parallel axes

The tight-binding method can be extended to three-dimensional systems by con-

sidering the interactions between the nearest neighbour atoms in every direction.
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As shown in equation (5.8), the value of 7 depends on both the type and relative

orientation of the orbitals, and the distance d between the atoms [111].

W N
L (5.8)

The parameter 7, depends on the type of hopping in question, (sso, spo, ppm,

Yim =

etc), i.e. on the geometry of the orbitals relative to each other, as shown in figure 5.2.
The distance between the atoms is d, h is Planck’s constant and m, is the electron
mass.

These parameters can be determined by fitting experimental band structures and
orbital spectra, or they can be calculated using ab initio methods such as DFT [112].
The values for 7y, for s and p orbitals are given in table 5.1, and are taken from
Harrison [111].

Coupling Type Relative Strength

Naeo -1.40
Moo 1.84
Topo 3.24
. -0.81

Table 5.1: Table showing relative coupling strengths of different bond types between s and
p orbitals [111].

In the case where the orbitals are at an angle # with respect to each other as
shown in figure 5.3, the p orbital should be broken into components parallel and

perpendicular to the axis joining the two atoms.

Figure 5.3: Interaction between s and p orbitals at an angle 0 to each other. The p-orbital
is split into components parallel and perpendicular to the bond axis. The
perpendicular component does not interact with the s-orbital due to symmetry,
so the bond is vy, cos .

The component of the p-orbital which is perpendicular to the direction of the

axis joining the two atoms does not interact with the p-orbital due to symmetry.
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The interaction is therefore between the s-orbital and the component of the p-orbital
along the axis joining the two molecules, and is equal to 7,,, cosf . In the case of
an interaction between two p-orbitals at an angle to each other, the orbitals should
both be split into parallel and perpendicular components to give a sum over ppo and

ppm interactions.

5.2 Self-Consistent Potential

As described above, the on-site energy is a function of the occupation of the orbital
it is associated with. As for the simple model described in chapter 3, this can be
written as

€ = € + Uscr(p) - (5.9)

where ¢, refers to the neutral atom, and Uscp(p) is a self-consistent potential. As
in the simple model, two different potentials are considered; one which is obtained
from a self-interaction corrected (SIC) DFT calculation for the free atom, and the
other calculated in the same way for the LDA potential. In particular, the SIC-
type potentials for sulphur (S) and carbon (C) atoms were calculated using a self-
interaction corrected plane-wave DFT code [101]. They are the energy eigenvalue of

the relevant orbital as a function of its occupation. As for the simple model, the LDA

5 u L) R ) FRNRL 3 L P I F ) (R
il — LDA s s N | — LDA
& = > Ofb)——SIC
) i D) g
— 5 — -5_" (
> k >~._10 4
OD'IO OD
— —
@ Q 13 d
{5 15§ ] [5 20 4
n i N | L Il L | | L | ; Il L
'200 0.5 1 1.5 2 '250 0.5 1 1.5 2

Occupation Occupation

Figure 5.4: Self consistent potentials for (a) carbon and (b) sulphur. The SIC-type po-
tentials are calculated using self-interaction corrected DF'T for the free atom
[101]. The energy of the atomic eigenvalue is calculated as a function of its
occupation. The LDA-type potential was then fitted to match the SIC-type
potential at occupations of 0.0, 0.5, and 1.5 electrons. Note the discontinuities
in the SIC-type potential at integer occupation.

and SIC-type potentials should match at occupations of 0.0, 0.5, and 1.5 electrons
[101]. Hence, the LDA-type potential was fitted to the SIC-type potential so that the
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sum of the square of the distance between the two potentials at these occupations
was minimised. The LDA and SIC-type potentials for C and S are shown in figure
b4

The SIC-type potential is only applied to the orbitals used to represent the
molecule, i.e. the C and S 7 orbitals. The gold leads are assumed to be metal-
lic with highly delocalised electrons, allowing local fractional charging. Therefore,
for the gold atoms Uscp is assumed to be directly proportional to the charge, i.e.
Uscr = N — Ny, where N is the occupation of the local orbital at neutrality.

These self-consistent potentials are for the position of the atomic orbitals as a
function of occupation. These atomic orbitals form the basis set for the calculation.
To calculate the occupation of the atoms at a given potential bias, the density of
states and the corresponding density matrix are calculated using the NEGF method
described in chapter 4. This gives the occupation of the molecular orbitals, which
are linear combinations of atomic orbitals. The charge density can then be projected
over the atomic orbital basis set, and the self-consistent potential is then calculated
for each atomic orbital as a function of its occupation. This determines the new on-
site energy for each orbital, which is then used to to construct the new Hamiltonian.
The procedure is then repeated iteratively until convergence.

Note that this means that the self-consistent potentials, and hence the positions
of the discontinuities, are calculated based on the occupation of the atomic orbitals
rather then the molecular orbitals. This may cause problems in that the disconti-
nuities may occur at the wrong place if, for example, the molecular orbitals have
integer occupation but the the atomic orbitals do not due to electrons being delo-
calised across several atoms. The result of this is that there are fewer, larger steps

in the level energy as a function of occupation.

5.3 Calculation Detalils

The system we wish to study here is a benzenedithiol (BDT) molecule attached to
fce (100) Au leads, as is shown in figure 5.5. The yellow atoms are gold, the brown
are sulphur, the black are carbon, and the blue are hydrogen.

In order to simplify the calculations, only one orbital per atom is used. For the
gold atoms just the 6s orbitals are used, as the Fermi level lies in the s band, with
the d orbitals more localised and about 2eV below the Fermi level. They are thus less
likely to contribute to the current at low bias. The density of states (DOS) obtained

from a DF'T-LDA calculation which shows the positions of all of the valence orbitals
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Figure 5.5: BDT attached to fcc (100) gold leads. Colour code: Au=yellow, C=black,
S=brown, H=blue.
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Figure 5.6: Density of States (from DFT with LDA) for the molecular orbitals for (a) BDT
on Gold and (b) isolated BDT Molecule.

of the molecule is shown in figure 5.6. From this DOS, it can be seen that the only
molecular orbitals which are close to the Fermi level are the S and C 7 orbitals,
which are the p orbitals lying perpendicular to the plane of the benzene ring. They
are coupled to each other via a ppm bond (see figure 5.2), and are delocalised across
the entire molecule, so they will conduct electrons. None of the other carbon orbitals
lie near the Fermi level. The only other state which is near the Fermi level is the S
“p,” state just below Ep. However, this state is perpendicular to the C 7 orbitals,
and so will not interact with them. Therefore, the state is not delocalised across the
molecule and will not conduct. For this reason, the sulphur and carbon atoms can
be described just using the the p orbitals which lie perpendicular to the plane of the
benzene ring. The hydrogen atoms not considered since the molecular orbitals to

which they contribute are far from the Fermi level.

In the calculations described in this chapter, the BDT molecule is attached to a
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Figure 5.7: BDT attached to fcc (100) gold leads. The angle between the end gold atom
and the sulphur atom can be adjusted to control the strength of the interac-
tion between the molecule and the leads. Colour code: Au=yellow, C=black,
S=brown, H=Dblue.

gold fee (100) nanowire. The nanowire ends in a tip, going from a 3x3 cross-section,
to 2x2, to a single atom. The S atoms of the BDT molecule are attached to these
last gold atoms. However, because of symmetry, the s orbital of the gold will not
couple to the 7 orbital of the sulphur when the molecule is in line with the gold
atoms at the tip, and so no current will flow at all. To overcome this problem, the
angle between the gold and the sulphur is varied from 5° to 30° as shown in figure
5.7 to allow the s and p orbitals to interact. By changing this angle, the strength of
the coupling between the molecule and the leads can be controlled and so the effect
of this on the I-V curve can be investigated.

The band alignment between the gold and the molecule was chosen so as to give
results for the /-V curve which, with an LDA-style potential matched those which
had been calculated using SMEAGOL for the same geometry [113]. Thus, for the
calculations in which the effect of coupling strength on the transport properties is
investigated, the Fermi level is set to -7.1eV. However, the effect of changing the

band alignment and the Fermi level is also investigated.

5.4 Effect of derivative discontinuity for different
coupling strengths.

The effect of derivative discontinuity on the conductance of the Au-BDT molecular
junction was investigated for a variety of different coupling strengths. The strength of

the metal-molecule coupling is extremely sensitive to the Au-S angle shown in figure
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Figure 5.8: I-V Curves for BDT on Au fec (100) for different coupling strengths between
the molecule and the metal. This coupling strength is adjusted by changing
the gold-sulphur angle shown in figure 5.7. Increasing this angle from 5° to 30°
can cause the size of the current to increase by up to two orders of magnitude.

5.7, and so this parameter can be used to control the size of the interaction between
the molecule and the leads. As the size of the angle is increased, the interaction
between the s and p orbitals increases and so the coupling strength increases. This
in turn has a major effect on the magnitude of the current, as shown in figure 5.8.
Changing this one angle from 5° to 30° can cause the size of the current to increase
by up to two orders of magnitude. Thus the /-V characteristics of this system are
highly dependent on the exact geometric configuration of the contact between the

metal and the molecule. Similar results to this have been reported elsewhere [47].

To investigate the effect of the derivative discontinuity in the limit of weak cou-
pling between the leads and the molecule, the sulphur-gold angle was set to 5°. The
density of states for this system is shown in figure 5.9 for both types of potentials.
These have been calculated using the NEGF method, and so include the effect of
the infinite leads. The sulphur and carbon 7 states are relatively narrow due to the
weak metal-molecule coupling. For both types of potentials, the two molecular states
on either side of the gold Fermi level mainly consist of hybridised C and S 7 and
7* states, with Ep pinned just below the 7 level. For convenience, these particular
states will be referred to as the 7 and 7* states, and in this case they form the HOMO

and the LUMO of the molecular junction.
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Figure 5.9: Density of states for tight-binding (a) LDA and (b) SIC for BDT on Gold for
the weak coupling limit in which the gold-sulphur angle is set to 5°. Note how
the two states on either side of the gold Ep are mostly due to the sulphur 7
and 7* states. The gold Ef is pinned just below the 7* state for both types of
charging potentials. The molecular levels are narrow due to the weak coupling
to the leads.

The occupation and position of the HOMO and the LUMO (the 7 and 7* states),
and the 7-V curves for this configuration are shown in figure 5.10, while the transmis-
sion coefficients are shown in figures 5.11 and 5.12. To understand the relationship
between the level occupations and their position relative to the bias window, first
recall the discussion of the simple model in chapter 3. If the molecule is coupled
symmetrically to the leads, then if the level is below the chemical potential of both
leads, it will be fully occupied (i.e. it will contain two electrons, assuming it is spin
degenerate). If it is above both chemical potentials, it will be empty, and if it is be-
tween the two potentials (i.e. if it is inside the bias window), it will be half-occupied

(i.e. it will contain one electron).

With this in mind, the results in figures 5.10, 5.11 and 5.12 can be understood.
For the LDA-type potential, the Fermi level of the metal is at the centre of the 7*
state. As such, it is partially occupied, as shown in figure 5.10(a). It charges slightly
as the voltage is increased, and the level position tracks the position of the higher
chemical potential as shown in figure 5.10(b), so that part of the level is within
the bias window. From figures 5.11 and 5.12, the resonance in the transmission
coefficients which corresponds to this level is also partially within the bias window.
Hence, as shown in panels (c¢) and (d) of figure 5.10, there is no conductance gap
in the /-V curve, and the current increases rapidly at low bias. Up to 1V, the
conduction will be through the 7* state only. Above 1V, the bias window becomes

large enough to also include the 7 state, and conduction can now take place through
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Figure 5.10: The (a) occupation and (b) position of the 7 and 7* states for both the LDA-
type and SIC-type charging potentials for BDT on Gold. I-V curves for (c)
bias range from -5V to +5V, and (d)from -2V to +2V. Note conductance gap
from -1V to +1V with the SIC-type potential. This is the weak coupling limit,
where the Au-S angle is set to 5°.

this state also.

For the SIC-type potential, as for the discontinuous potential for the simple
model, the energy of a level increases rapidly as soon as any charge is added. At
zero bias, the 7* state is pinned just above the gold Fy and is unoccupied, as shown
in panels (a) and (b) of figure 5.10. As the voltage is increased so that the 7* state
would move into the bias window, the leads will try to impose an occupation of
one electron on it. However, as soon as any charge is inserted into this level, the
discontinuous potential causes its energy to increase sharply. This keeps the level
pinned above the higher chemical potential and outside of the bias window. The
corresponding resonance in the transmission coefficients is also pinned outside the
bias window, as shown in figures 5.11 and 5.12. This suppresses the current at low
bias, opening up a conductance gap in the [-V curve. At 1V, the bias window is now

large enough to contain both the 7 and 7* states. At this point, the leads will try to
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Figure 5.11: Transmission Coeflicients calculated at 0.5V bias intervals for BDT on Gold
in the weak coupling limit (Au-S angle = 5°): (a) LDA-type potential and (b)
SIC-type potential.. The red vertical lines show the positions of the chemical
potentials of the leads, so that the region between them is the bias window.
The resonances in the transmission coefficients near the bias window corre-
spond to the 7 and 7* states in the DOS, and are narrow because of the weak
coupling between the leads and the molecule.

impose an occupation of one electron on each molecular level. This results in a re-
arrangement of the charge inside the molecule, with one electron moving from the 7
state to the 7* state, as shown in figure 5.10(a). Since both states are mainly due to
the sulphur p orbitals, this does not actually involve any change in the occupation of
the atomic orbitals. Therefore, the values of the self-consistent potentials, and thus
the matrix elements of the Hamiltonian, are unaffected, and so the energies of the
molecular orbitals are unchanged. Both levels now start to conduct simultaneously
and the current increases rapidly, as shown in panels (c¢) and (d) of figure 5.10. Thus,
in the weak coupling limit, the derivative discontinuity has the effect of opening up
a conductance gap between -1V and 1V. Note that this gap is the same size as that

observed in the experiments conducted by Reed et. al. [19].
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Figure 5.12: Transmission Coefficients calculated at 0.2V bias intervals for BDT on Gold
in the weak coupling limit (Au-S angle = 5°): (a) LDA-type potential and (b)
SIC-type potential. The red vertical lines show the positions of the chemical
potentials of the leads, so that the region between them is the bias window.
The resonances in the transmission coefficients near the bias window corre-
spond to the 7 and 7* states in the DOS, and are narrow because of the weak
coupling between the leads and the molecule.

To explore the effect of increasing the strength of the metal-molecule coupling,
the sulphur-gold angle was increased to 15°. As shown in the DOS in figure 5.13,
increasing the coupling strength causes the molecular energy levels to broaden. As
for the 5° angle, the SIC-type potential again causes the 7* state to be pinned above
the gold Fp. For the LDA-type potential, the 7* state is also centred slightly above

Fy, although a large proportion of its tail is below the Fermi level.

As shown in figure 5.14(a), this has the same result as for the 5° angle, with the
m* state having a much lower occupation at zero bias for the SIC-type potential than
for the LDA-type potential. As the voltage is increased, the SIC-type potential again
keeps the 7* state pinned somewhat above the bias window up to approximately 1V.

The corresponding resonance in the transmission coefficients, shown in figure 5.15,
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Figure 5.13: Density of states for tight-binding (a) LDA and (b) SIC for BDT on Gold
where the Au-S angle is set to 15°. Note how the two states on either side of
the gold Ef are mostly due toc the sulphur 7 and 7n* states. The gold Ef is
pinned just below the 7* state for both types of charging potentials, although
it is closer to the 7* state for the LDA-type potential. The molecular levels
are broader than those shown in figure 5.9 due to the stronger coupling to the
leads.

is also pinned outside the bias window. This again leads to the suppression of the
low bias current as shown in figure 5.14(c).

However, the effect is not as strong as it was in the case when the Au-S angle
was 5°. This is because the resonances in the transmission coefficients corresponding
to the m and 7* states shown in figure 5.15 are broader, and they even overlap to
some extent. Therefore, the transmission around Ey in the region between the two
molecular levels is non-zero. This results in some conductance in the -1V to 1V bias
window with the SIC-type potential, although the current in this region is still lower

than that obtained for the linear potential.

Above 1V, the bias window is once again large enough to contain both the 7 and
7* states and the charges rearranges inside the molecule, as shown in figure 5.14(a).

The current increases rapidly as conduction takes place through both of the levels.

In order to investigate the effect of the derivative discontinuity in the strong
coupling limit, the Au-S angle was increased further to 30°. As can be seen from the
DOS plotted in figure 5.16, the gold Fy is once more situated between the 7 and 7*
molecular levels, which are greatly broadened by the strong coupling to the leads,
so that they overlap to a large extent. Thus when the potential bias is applied the
7 state discharges while the 7* charges (figure 5.17(a)) in such a way that the total
charge on the atoms in the molecule does not change very much. Therefore, as shown

in figure 5.17(b), neither level moves much with bias, so that the exact nature of the
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Figure 5.14: The (a) occupation and (b) position of the 7 and 7* states for both the LDA-
type and SIC-type charging potentials for BDT on Gold, with the Au-S angle
set to 15°. I-V curves (c) for bias range from -2V to +2V. The conductance
gap between -1V and +1V for the SIC-type potential is now not as distinct
as it was in the weak coupling limit.

charging potential is relatively unimportant. The resonances in the transmission
coefficients shown in figure 5.18 are also very broad, and the transmission at the
gold FEp is very high. Thus, although the 7* state is pinned at a slightly higher
energy, its precise position is not as important as in the weak coupling limit. The
zero-bias conductance for both types of potentials is high, and the /-V curves are

very similar, as shown in figure 5.17(c).

5.5 Effect of derivative discontinuity for different
level alignments
In the calculations described in the previous section, the alignment between the gold

6s band and the molecular orbitals was set artificially so as to give an I-V curve

similar to that produced by SMEAGOL. An advantage of using the tight-binding
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Figure 5.15: Transmission Coefficients at 0.5V bias intervals for BDT on Gold (Au-S angle
= 15°): (a) LDA-type potential and (b) SIC-type potential. The red vertical
lines show the positions of the chemical potentials of the leads, so that the
region between them is the bias window. The resonances in the transmission
coefficients near the bias window correspond to the m and 7* states in the
DOS. They are broader than the resonances shown in figure 5.11 because of
the stronger coupling between the leads and the molecule. Therefore, even
though the centre of the level is pinned outside the bias window with the
SIC-type potential, there is still some transmission at zero bias.

method is that parameters such as the position of band centres can be adjusted
easily to investigate the effect of altering the level alignment. The impact of the
level alignment on the effect of the derivative discontinuity on the conductance of
the device will now be described for the weak coupling limit (i.e. for the gold-sulphur
angle set to 5°).

The Au band centre was first shifted upwards by 2eV. The DOS for this system
is shown in figure 5.19. For the LDA-type potential, the gold Fp cuts across the
7 state, while for the SIC-type potential it is pinned just below it. As shown in
figure 5.20(a), this state already contains one electron at zero bias for the LDA-type

potential, and so its occupation does not change much when the potential bias is
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Figure 5.16: Density of states for tight-binding (a) LDA and (b) SIC for BDT on Gold
for the strong coupling limit where the Au-S angle is set to 30°. Note how
the two states on either side of the gold Ey are mostly due to the sulphur 7
and 7* states. The molecular levels are very broad due to the strong coupling
between the molecule and the leads.

applied. Thus as the voltage is increased, the state remains at the centre of the
bias window, and it starts to conduct at zero bias. However, because the levels do
not move much, the 7 state remains outside the bias window at 1V and will not
conduct until a higher bias is applied. For the discontinuous potential, the 7* state
is still pinned above the gold Fr. However, the Fermi level is now closer to the top
of the charging potential of the atoms, so the dependence of the level position on its
occupation is no longer as steep as before. As shown in figure 5.20(b), the level is
now closer to the bias window, and while the low bias current is still suppressed, it
is larger than it was for the previous level alignment.

The gold band centre and Fermi level is then lowered by 2eV with respect to
the position used in section 5.4. The DOS for this configuration is shown in figure
5.21. For the SIC-type potential, the gold Fp is still pinned to the 7* state of the
molecule. However, for the LDA-type potential, Fy is just above the 7 state. Thus
for the the LDA-type potential the 7* state is unoccupied at low bias because of the
position of the Fermi level (figure 5.22(a)). The 7 state is not full, and it possesses
some amplitude in the bias window. Therefore, the conductance is initially through
the 7 state rather than the 7* state.

For the SIC-type potential, the 7* state is pinned just above the bias window.
As for the original case, the discontinuity prevents the level from charging, keeping
it out of the bias window, as shown in panels (a) and (b) of figure 5.22. Once again,
there is a conductance gap present in the /-V curve between -1V and 1V.

The final band alignment configuration investigated is where the gold 6s band
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Figure 5.17: The (a) occupation and (b) position of the 7 and 7* states for both the LDA-
type and SIC-type charging potentials for BDT on Gold. I-V curves for (c)
bias range from -5V to +5V, and (d)from -2V to +2V. The conductance gap
from -1V to +1V with the SIC-type potential has now disappeared, and the
I-V curves for both types of potentials are very similar. This is the for the
strong coupling limit, where the Au-S angle is set to 30°.

centre and Fermi level were raised by 4eV relative to the molecular orbitals. The
DOS for this configuration (again in the weak coupling limit) is shown in figure 5.23.
In this case, the gold Fy is just above the 7* state for both the LDA and SIC type

charging potentials.

As shown in panels (a) and (b) of figure 5.24, both the 7 and 7* states are
below the gold Fy at zero bias, and thus both are almost fully occupied. Therefore,
molecular levels will be in the flat part near the top of the SIC-type potentials as
shown in figure 5.4. Hence for this potential, the level can discharge to a large extent
without moving very much. As the voltage is increased, the level remains near the
centre of the bias window and will conduct strongly. The LDA-type potential, on
the other hand, behaves linearly. As the voltage is increased, it discharges more

gradually and remains pinned to the lower chemical potential. Therefore it does not
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Transmission Coefficients at 0.5V bias intervals for BD'T on Gold in the strong
coupling limit (Au-S angle = 30°): (a) LDA-type potential and (b) SIC-type
potential. The red vertical lines show the positions of the chemical potentials
of the leads, so that the region between them is the bias window. The res-
onances in the transmission coefficients near the bias window correspond to
the m and 7* states in the DOS, and are broad because of the strong cou-
pling between the leads and the molecule, to the point where they overlap
extensively at Ep, leading to a high zero bias conductance for both types of
charging potential.

conduct as strongly as in the case of the SIC-type potential. This result is similar to

the case described in chapter 3, when the Fermi level was placed near the top of the

charging potential.

5.6 Conclusion

Under certain conditions, the derivative discontinuity can have a dramatic effect on

the [-V characteristics of molecular devices. If the molecule is weakly coupled to

the metallic leads, and the Fermi level of the metal is pinned just below a molecular

state, the discontinuity will prevent the state from charging and will keep it out
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Figure 5.19: Density of states for tight-binding (a) LDA and (b) SIC for BDT on Gold for
the weak coupling limit where the Au-S angle is set to 5°. The gold bands
and Fermi level have been shifted upwards by 2eV relative to the molecule.
The gold Ff is still pinned just below the 7* state for the SIC-type charging
potential, and is at the 7* state for the LDA-type charging potential.

of the bias window. This will open up a conductance gap in the /-V curve which
would not be present if a continuous exchange-correlation potential such as LDA is
used. For BDT attached to gold, this conductance gap is from -1V to 1V, which
is of the same size as the gap found in one of the experiments [19]. This might
be a coincidence due to the choice of parameters in the approximate Hamiltonian
used. The effect of the discontinuity also highlights the importance of calculating the
[-V curve self-consistently at finite bias instead of simply integrating the zero-bias
tranmission coefficients.

This conductance gap gradually disappears as the strength of the interaction
between the molecule and the metal is increased. The molecular levels and the
corresponding resonances in the transmission coefficients are broadened by stronger
coupling, so that the transport properties are no longer as sensitive to the exact
position of the level. Also, as the levels become broader, they charge more slowly as
the bias window is opened, and hence do not respond as sharply to voltage changes.

The effect of the derivative discontinuity will also depend to some extent on the
alignment of the molecular levels with the Fy of the leads. The discontinuity strongly
suppresses the conductance when the Fermi level of the metal is pinned just below an
unoccupied level in the molecule, as it will prevent this level from charging and keep
it out of the bias window. Shifting the band alignment by 2eV in either direction did
not have much effect on the /-V curve, with the conductance gap still being present
for the SIC-type potential. However, if the band alignment is altered sufficiently so

that Fp is just above an occupied level, then the SIC-type potential allows such a
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Figure 5.20: The (a) occupation and (b) position of the 7 and 7* states for both the LDA-
type and SIC-type charging potentials for BDT on Gold. I-V (c) curves for a
bias range from -2V to +2V. The gold bands and Fermi level have been shifted
upwards by 2eV relative to the molecule. The conductance from -1V to +1V
with the SIC-type potential is somewhat higher than for the original band
alignment, although it is still much lower than for the LDA-type potential.
This is the for the weak coupling limit, where the Au-S angle is set to 5°.

level to discharge easily and so the conductance can be large at low bias.

The electronic structure method used in this chapter is not an ab initio one.
As such, certain features of the results may be artifacts of the approximations used.
Therefore, it will still be necessary at some point to perform electron transport calcu-
lations for this system using an ab initio electronic structure method which naturally
incorporates the derivative discontinuity. For DFT, methods which at least partially
restore the derivative discontinuity include the full self-interaction correction to LDA
[71] and exact-exchange [88, 114, 53]. Unfortunately, these methods are orbital de-
pendent, and as yet there is no implementation of them for finite bias transport

calculations.
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Figure 5.21: Density of states for tight-binding (a) LDA and (b) SIC for BDT on Gold for
the weak coupling limit where the Au-S angle is set to 5°. The gold bands
and Fermi level have been shifted downwards by 2eV relative to the molecule.
The gold Ep is still pinned just below the 7* state for the SIC-type charging
potential, but is now at the 7 state for the LDA-type charging potential.
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Figure 5.22: The (a) occupation and (b) position of the 7 and 7* states for both the LDA-
type and SIC-type charging potentials for BDT on Gold. I-V (c) curves for a
bias range from -2V to +2V. The gold bands and Fermi level have been shifted
downwards by 2eV relative to the molecule. The conductance gap from -1V
to +1V is still present for the SIC-type potential, and the low bias current for
the LDA-type potential is lower than for the original band alignment. This is
the for the weak coupling limit, where the Au-S angle is set to 5°.
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Figure 5.23:

Density of states for tight-binding (a) LDA and (b) SIC for BD'T on Gold for
the weak coupling limit where the Au-S angle is set to 5°. The gold bands and
Fermi level have been shifted npwards by 4eV relative to the molecule. The
gold Ey is now just above the 7* state for both types of charging potential.
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The (a) occupation and (b) position of the 7 and 7* states for both the LDA-
type and SIC-type charging potentials for BDT on Gold. I-V (c¢) curves for
a bias range from -2V to +2V. The gold bands and Fermi level have been
shifted upwards by 4eV relative to the molecule. The low bias conductance is
now higher for the SIC-type potential than the LDA-type potential. This is
the for the weak coupling limit, where the Au-S angle is set to 5°.
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Chapter 6

ASIC and Electron Transport in
Organic Molecules

In the last decade, several examples of devices consisting of a single organic molecule
sandwiched between two metallic electrodes have been constructed. Possible appli-
cations of molecular devices include high-performance computer components [2, 3,
4, 5, 12], which will be smaller, faster, consume less power and be cheaper to man-
ufacture; highly sensitive chemical sensors [6, 7, 8], disposable electronics, as well
as possible medical applications [9]. Another interesting application which has been
suggested recently is to use electronic transport measurements to sequence strands
of DNA, where individual base-pairs are distinguished by their conductance [10, 11].

Organic molecules for which transport measurements have been made include
benzenedithiol (BDT), benzenedimethanethiol (BDMT') and biphenyldithiol (BPD).
Such devices have been constructed using mechanically controllable break junctions
[19, 24, 25], STM tips [25, 26], lithographically fabricated nanoelectrodes [29], and
colloid solutions [30]. Unfortunately, there is much disagreement between the val-
ues obtained for the conductance using the different methods for these and other
molecules. For BDT, values for the zero-bias conductance vary from as low as 107°G|
[19] up to 0.011Gy [26] or possibly even higher [24].

In order to explain the variations between the experiments, as well as to further
understand the physics of electronic transport in such devices, several calculations
have been performed using many different computational methods. These include
NEGF [34, 35, 36] with empirical Hamiltonians such as tight-binding [46, 47, 48, 49,
ab initio Hamiltonians such as DFT [43, 44, 37, 38, 39, 40, 41, 42], and many-body
methods such as Hartree-Fock with configuration interaction [50, 51, 52, 53, 54, 55,
56]. However, the results obtained using different methods also vary, and tend not
to reproduce the experiments well either [63, 64, 65, 66, 67, 68, 69, 70]. Calculations

using NEGF and DFT with local XC functionals give results for the conductance
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which are even higher than those obtained by any of the experiments. Altering the
contact geometry to reduce the strength of the interaction between the molecule and
the metal results in the HOMO of the molecule being pinned to the Fermi level of
the metal, so that a high zero-bias conductance is still observed.

One explanation as to why the calculations fail to describe any of the experi-
ments is that the local exchange-correlation (XC) functionals used in the calculations
contain self-interaction errors [71], as described in chapter 2. The effect of the sup-
pression of the derivative discontinuity [72, 73] on electronic transport in molecules
[74] was explored in chapter 5. In this chapter, the results of calculations investigat-
ing another effect arising from the self-interaction correction, the correction of the
band alignment between the molecule and the metal, will be presented. An atomic
self-interaction correction (ASIC) [100, 75], as described in chapter 2, has been im-
plemented in the localised atomic orbital code SIESTA [82, 83, 84] which is the DFT
platform for our transport code SMEAGOL (37, 38, 39]. This ASIC gives good re-
sults for ionisation potentials for isolated molecules [75] compared to those obtained
from uncorrected LDA.

The electronic transport properties for three different molecules have been cal-
culated using LDA only and LDA with ASIC: 1,4-benzenedithiol (1,4-BDT), ben-
zenedimethanethiol (BDMT), and biphenyldithiol (BPD). In all cases, the molecule
is attached via the sulphur atom to fcc (111) gold electrodes on each side. Gold is
the metal normally used for such experiments, due to its high conductivity and its
resistance to corrosion. The sulphur atoms on the thiol molecules also form strong
bonds with the gold surface. In the case of BDT, we investigate several different an-
choring geometries, demonstrating how the transport properties vary with changes
in the strength of the interaction between the molecule and the metal. In the case

of BDMT, we investigate two different isomers of the molecule.

6.1 Calculation Details

The ASIC corrections are not applied to the gold atoms in the leads in the calculations
presented here, as the self-interaction error for metals is small [75]. Unless otherwise
specified, we use a double zeta polarised basis set [82, 83, 84] for carbon (C) and
sulphur (S) s and p orbitals, double zeta for the 1s orbitals of hydrogen (H) and
6s-only double zeta for gold (Au). The mesh cut-off is 200 Ry and we consider 500
real and 80 complex energy points for integrating the Green’s function. Calculations

were also performed using double zeta 6s and single zeta bd and 6p orbitals for Au
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in order to investigate the effect of these extra orbitals on the transport properties
of the system. Results for calculations using both basis sets are presented in this
chapter, with the 6s-only basis set used unless otherwise indicated in the legend of
the relevant figure. For geometry optimisations and total energy calculations, the
5d6s6p basis set is used, as the 6s-only basis set gives incorrect lattice constants for
gold. In calculating the I-V curves, the potential bias is always incremented in steps
of 0.1V.

Five layers of gold atoms are included with the molecule to form the scattering
region. This allows the potential and the charge density to converge to their bulk
values. The shape of the unit cell and the ordering of the layers is chosen so that
the end layers match up properly as SIESTA uses periodic boundary conditions in
the transport direction to solve the Poisson equation. Each layer contains nine gold
atoms. The size and shape of the unit cells of the lead in the directions perpendic-
ular to the transport is chosen so that the gold atoms fill the unit cell. When the
periodic boundary conditions are applied, this forms a surface in these directions.
The advantage of this over forming a nanowire where there is a layer of vacuum in
the unit cell is that it prevents the appearance of artificial band gaps due to quantum

confinement effects.

6.2 Benzenedithiol

The first system which we applied this correction to was 1,4-benzenedithiol (1,4-
BDT) on the gold fce (111) surface. This is the same molecule that was investigated
using the tight-binding method in chapter 5.

We consider a variety of anchoring geometries for the sulphur atoms, including
the hollow site, the top site, the bridge site, (see figure 6.1), as well as asymmetric
coupling where the sulphur atoms are attached to an adatom on one side and to
the hollow site on the other. We also examine the effect of altering the angle which
the molecule makes with the metal surface, and of varying the distance between the
sulphur atom and the surface (i.e. varying the strength of the coupling between the
molecule and the metal). Finally, we investigate the effect of leaving the hydrogen
atoms attached to the sulphur atoms in the thiol group when the molecule is attached
to the metal surface.

The actual contact geometry present in the experiments is unknown. Some elec-
tronic structure calculations indicate that the lowest energy configuration for the

molecule attached to the surface occurs when the sulphur atom attaches to the hol-
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Figure 6.1: (a) The “sulphur-surface separation” is the separation between the sulphur
atom and the plane of the gold surface. (b) Different possible anchoring sites
of the sulphur atom (black dots) on the Au fee (111) surface. A is the hollow
site, B is the top site, and C is the bridge site. Colour code: Au atoms=yellow,
S atoms=brown.

low site, whereas other calculations suggest that the bridge site configuration has a
lower energy [115]. Recent X-ray standing wave measurements suggest that molecules
in monolayers prefer to attach to adatoms on the metal surface [116]. Additionally,
breaking junction experiments involve placing the molecule-metal interface under
strain, and so the preferred anchoring geometry at equilibrium would not necessarily
be the one present in the experiments. Hence, it is important to explore several
different possible configurations in order to complete a thorough analysis of this
system.

The orbital resolved density of states (DOS) for the isolated molecule is shown
in figure 6.2, calculated with both regular LDA and with ASIC. Note how the ASIC
lowers the energy of the occupied orbitals by about 4 eV, thus opening up the HOMO-
LUMO gap. The highest occupied molecular orbital (HOMO, eK3,,) is moved from
-4.69 eV to -8.19 eV. Generally speaking, the ¢K3,,, obtained from ASIC tends to
match the experimental values for the ionisation potentials very well for organic
molecules such as BDT. For example, ASIC places ¢K3,,, for 1,2-BDT (a different
isomer from the one used in these calculations) at 8.47 eV to compare with the LDA
value of 4.89 eV and the experimental ionisation potential ~8.5 eV [117].

From figure 6.2, it can be seen that the 7 orbitals on the sulphur and carbon atoms
are the ones which are closest to the Fermi level. From the local DOS plots shown in
figure 6.3, it can be seen that these states are delocalised across the entire molecule,
particularly the HOMO in panel (b), due to strong hybridisation between the carbon
and sulphur orbitals. Therefore, these states would be expected to conduct strongly

when bias is applied.
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Figure 6.2: Orbital resolved DOS for the isolated BDT molecule. The left plots correspond
to LDA and the right ones to ASIC. The upper panels ((a) and (b)) are the
DOS of all of the orbitals on the molecule for each atomic species. The lower
panels are the DOS of the S and C 7 orbitals ((¢) and (d)), which are the
orbitals closest to the Fermi level and thus are the orbitals involved in low bias
transport. The orange vertical lines labelled Ef separate the highest occupied
and lowest unoccupied orbitals of the molecule.

In order to calculate its transport properties, the molecule was first placed be-
tween two gold surfaces with the sulphur atom attached to the gold hollow site
between three surface atoms, as shown in figure 6.4. The distance of the sulphur
atom from the gold surface is optimised to a value of 1.9A, which corresponds to
a distance of 2.53A between the sulphur atoms and the nearest gold atoms on the

surface. This is in agreement with the results of previous calculations [65, 118].

The local DOS for the BDT molecule attached to the gold hollow site are shown
in figure 6.5. Panel (a) shows the HOMO, panel (b) shows the LUMO, and panel
(c) shows the level above the LUMO. Both states are derived from the molecular
7 orbitals which are delocalised across the molecule, although the LUMO state is
somewhat more localised over the sulphur atoms. The peaks in the transmission
coefficients on each side of Ey in figure 6.6 correspond to the states shown in panels
(a) and (c).



ASIC and Electron Transport in Organic Molecules 108

a)

Figure 6.3: Local density of states (molecular orbital isosurface) for the BDT molecule,
calculated with LDA. The LDOS for the level below the HOMO and the HOMO
are shown in panels (a) and (b), and the LDOS of the LUMO and the level
above the LUMO are shown in panels (c) and (d). Note how the orbitals are
delocalised across all of the sulphur and carbon atoms, except in the case of
the LUMO, which is somewhat restricted to the carbon atoms.

The orbital resolved DOS, transmission coefficients and /-V curves for this con-
figuration are presented in figure 6.6 for both LDA and ASIC. From the DOS (panels
(a) and (b)) it is clear that the effect of ASIC is that of shifting the occupied orbitals
downwards relative to Fy of the gold. The HOMO-LUMO gap is considerably larger
than that of the LDA, and most importantly in the case of ASIC there is little DOS
originating from the molecule at Fp. This has profound effects over the electron
transmission. The LDA peaks of the transmission coefficients 7T'(F) arising from oc-
cupied orbitals are shifted downwards in energy and away from Fp. In contrast to
LDA (figure 6.6(c)), where T'(Fr) is dominated by the resonance corresponding to
€qomo, the ASIC transmission (figure 6.6(d)) is through the BDT HOMO-LUMO
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Figure 6.4: BDT molecule attached to the hollow site of the Au (111) surface. The sulphur-
surface distance is 1.9A. Colour code: Au=yellow, C=black, S=brown, H=blue.
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Figure 6.5: Local DOS (molecular orbital isosurface) for the BD'T molecule attached to
gold, calculated with LDA. The HOMO is in (a), the LUMO is in (b), and
the LUMO+1 is in (c). Note how the orbitals are delocalised across all of
the sulphur and carbon atoms. Colour code: Au=yellow, C=black, S=brown,
H=blue.

gap. The current at this energy is thus due to tunnelling, which results in a dras-
tic reduction of the low-bias current when going from LDA to ASIC (figure 6.6(e)).
The ASIC-calculated conductance at zero bias is now about 0.06G, (Go = 2¢*/h),
compared to 0.23G, of LDA. A conductance of 0.06(G, is much closer to the value of
0.011G obtained by Xiao et. al. [26] and is actually lower than values 0.09-0.14G,
obtained by Tsutsui et. al. [24].

The basis set on the gold atoms was then changed to include 5d and 6p orbitals.
The orbital resolved DOS, transmission coefficients and -V curves are presented
in figure 6.7 for both LDA and ASIC for this new basis set. As can be seen, the
alteration of the basis set does not have a large effect on the electronic transport,
particularly at low bias. As can be seen from figure 6.7e, the I-V curves calculated
with the 6s-only basis set on the gold are approximately the same as those calculated
with the 5d6s6p basis up to about 1V for both LDA and ASIC cases. The zero-bias
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Figure 6.6: Transport properties of a BDT molecule attached to the gold (111) hollow
site. The left plots correspond to LDA and the right ones to ASIC. The upper
panels are the DOS of the S and C 7 orbitals ((a) and (b)), the middle are the
transmission coefficients as a function of energy for various bias ((c¢) and (d))
and the lower are the I-V curves. Figure (f) is a zoom of (e) and compares our
results with experiments from reference [26]. The vertical lines in (c¢) and (d)
mark the bias window.

conductances, from the transmission plots in panels (¢) and (d) of figure 6.7, are very
similar to those for the 6s-only basis with values of 0.21Gq for LDA and 0.06G, for
ASIC. This demonstrates that the 6s-only basis gives reliable results for electronic

transport properties at low bias.

Next, the transport properties of the system are calculated for different sulphur-
surface separations, as well as for different angles of the molecule with respect to the
direction of the transport. The S atoms remain attached to the hollow site on both
sides, while the sulphur-surface separation is increased. Calculations are performed
for distances of 1.8A, 2.1A and 2.5A, and the resulting I-V curves are presented in
figure 6.9(a). The results for the molecule angled at 30° with respect to the direction

of transport (figure 6.8) but still connected to the gold hollow site on both sides are
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Figure 6.7: Transport properties of a BDT molecule attached to the gold (111) hollow site
for the 5d6s6p Au basis. The left plots correspond to LDA and the right ones
to ASIC. The upper panels are the DOS of the S and C 7 orbitals ((a) and
(b)) and the middle are the transmission coeflicients as a function of energy for
various bias ((c¢) and (d)). The lower ((e) and (f)) are the I-V curves, including
a comparison with the results shown in figure 6.6 for the 6s-only basis set on
the gold atoms. Figure (f) is a zoom of (e) and compares our results with
experiments from reference [26]. The vertical lines in (¢) and (d) mark the bias
window.

presented in figure 6.9(b). The -V curves for this system remain reasonably stable

with these changes to the contact geometry. This is especially true in the case of the

current calculated with ASIC in the bias range investigated here as shown in figure

6.9, where neither small changes to the sulphur-surface separation (panel (a)) nor

changes in the contact angle (panel (b)) have a large effect on the current.

This stability of the current as a function of anchoring geometry calculated with

ASIC is interesting since, experimentally, stable conductance histograms were ob-

served when pulling on the molecule with an STM tip [26]. Also, note that the

magnitude of the conductance may actually increase with sulphur-surface separa-

tion, especially at low bias. The zero bias conductance values calculated with LDA
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Figure 6.8: BDT molecule attached to the hollow site of the Au (111) surface at an angle of

30° to the direction of transport. The sulphur-surface distance is 1.9A. Colour
code: Au=yellow, C=black, S=brown, H=blue.
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Figure 6.9: I-V curves for BDT attached to gold contacts at (a) different sulphur-surface
separations and (b) different angles. Note how little the I-V for \ASIC changes
with small change in distance from the equilibrium value of 1.9A.

are 0.16Gy, 0.23Gy, 0.32Gg, and 0.77Gq for sulphur-surface separations of 1.8A,
1.9A, 2.1A and 2.5A respectively. The values for the same separations calculated
with ASIC are 0.05Gq, 0.06Gq, 0.07Gy, and 0.14Gy. While counterintuitive, this is
consistent with previous results [65, 67], and is due to the realignment of the HOMO
of the molecule so that it gets closer to the gold Fp. This can be seen in the plot
of the zero-bias transmission coefficients for different sulphur-surface separations in
figure 6.10. As the distance between the molecule and the gold surface is increased,
the transmission peaks (which correspond to molecular orbitals) become narrower as
expected due to the weakening of the coupling. However, the charge transfer between
the molecule and the metal is also affected, so that there are now more electrons on
the actual molecule. This extra charge increases the energy of the molecular orbitals,

so that the HOMO moves closer to Fp. This upward shift of the transmission peaks
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closer to Ep compensates for the weaker coupling, increasing the low bias conduc-
tance. This effect can also be seen when the molecule is attached to adatoms on
the metal surface, as shown below in figures 6.13, 6.15, 6.16 and 6.18. Because of
this realignment of the HOMO, efforts made previously to explain the discrepancy
between theory and experiment by adjusting the contact geometry to reduce the
metal-molecule coupling may be misleading if the band alignment is not calculated

self-consistently [63].
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Figure 6.10: Transmission coefficients for BDT attached to gold contacts at different
sulphur-surface separations. The left plots correspond to LDA and the right
ones to ASIC. Note how the peaks narrow and how the HOMO peak moves
closer to the gold Ex as the sulphur-surface separation is increased. This re-
alignment of the HOMO of the molecule has the effect of compensating for
the weakening of the coupling, even producing counterintuitive results such
as an increase in the low bias conductance with increased sulphur-surface
separation.

A second contact geometry investigated is that where the sulphur atom is con-
nected to the bridge site of the gold fcc (111) surface, as shown in figure 6.11. The
position of the bridge site on the fec (111) surface is shown in figure 6.1(b). Some
DFT total-energy calculations suggest that this configuration, with a sulphur-surface

separation of 2.09A, has a lower energy than that where the sulphur is joined to the
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Figure 6.11: BDT molecule attached to the bridge site of the Au (111) surface. The
sulphur-surface distance is 2.09A. Colour code: Au=yellow, C=black,
S=brown, H=blue.

hollow site [115]. Therefore, it is important to explore the effect of this configuration
on the transport, although the anchoring geometry which would actually be present
in a device under strain, such as would be the case in a breaking junction, is unknown.
Figure 6.13(a) shows a comparison between [-V curves calculated for the molecule
anchored to the bridge site and to the hollow site. The zero bias conductance for
the bridge site is calculated to be 0.1Gy with LDA, which is lower than the value
of 0.23G calculated for the hollow site. The low bias current for the bridge site is
lower than that for the hollow site with LDA, as shown in the /-V curve in figure
6.13(a). For the bridge site, ASIC has the effect opening up the HOMO-LUMO gap,
hence suppressing the current through the molecule in a manner similar to what
happens in the case of the hollow site. The zero bias conductance for the bridge site
is calculated to be 0.06G, using ASIC, the same the hollow site. Hence, whether
the molecule is anchored to the hollow site or the bridge site makes relatively little
difference to the ASIC-calculated low-bias transport properties.

The transport properties of the molecule connected to the Au top site as shown
in figure 6.12 are the next to be investigated. The position of the top site on the fcc
(111) surface is shown in figure 6.1(b), and the sulphur-surface separation is set to
2.39A. Figure 6.13(b) shows a comparison between the I-V curves calculated for when
the molecule is connected to the top site on the gold surface and those calculated
for the hollow site. The LDA zero-bias conductance is calculated to be 0.65Gy,
which is somewhat larger than the value of 0.23G| calculated for the hollow site. In
contrast, the ASIC conductance is calculated to be 0.12G, showing a reduction of
a factor of four compared to the LDA result. As in the situation where the sulphur-
surface distance is increased when the bond was to the hollow site, the increase in

the conductance for the top site anchoring geometry is due to a realignment of the
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Figure 6.12: BDT molecule attached to the top site of the Au (111) surface. The sulphur-

surface distance is 2.39A. Colour code: Au=yellow, C=black, S=brown,
H=Dblue.

HOMO of the molecule, which is now closer to the gold Fr. Hence, although the
coupling between the molecule and the surface is weaker for the top than for the

hollow or bridge sites, the current is larger, at least in the bias region investigated

here.
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Figure 6.13: I-V curves for BDT attached to gold contacts with (a) the sulphur atoms
attached to the gold bridge site and (b) the sulphur atoms attached to the
gold top site.

The effect of an asymmetric contact geometry was investigated by attaching one
of the S atoms to a gold adatom (figure 6.14) and the other to the hollow site. The
usual sulphur-surface separations are the equilibrium values of 1.9A and 2.39A re-
spectively for the hollow and top sites. Recent X-ray standing wave experiments [116]
demonstrate that S atoms in thiol groups on gold may actually join more favourably
to adatoms.

The orbital resolved DOS, transmission coefficients and /-V curves for this system

are presented in figure 6.15 for both LDA and ASIC. This configuration shows the
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Figure 6.14: BDT molecule attached asymmetrically to the Au (111) surface. BDT is
attached on one side to the hollow site with a sulphur-surface distance of
1.9A as before, and on the other side to a single gold adatom. Colour code:
Au=yellow, C=Dblack, S=brown, H=blue.

largest difference between the conductance calculated with LDA with respect to that
calculated with ASIC. The LDA-only conductance is 0.32G,, whereas when ASIC
is applied the conductance drops by one order of magnitude to 0.03G,. Because of
the weaker interaction between the 7 orbitals on the molecule and the gold in this
configuration, the molecular orbitals in the DOS (figure 6.15a and figure 6.15b) and
hence the peaks in the transmission coefficients (figure 6.15¢ and figure 6.15d) are
narrower than those for the case where both of the sulphur atoms are attached to the
hollow site. These narrower levels are closer to Fy, which results in the relatively high
zero bias conductance. An effect similar to this is observed every time the strength
of the coupling between the sulphur atoms and the metal is adjusted: strengthening
the coupling causes the HOMO to broaden and shift downwards away from Fg;
whereas weakening the coupling causes the HOMO to narrow and shift closer to Fy.
This motion of the HOMO is usually large enough to compensate for the change in
coupling strength at low bias. In some cases, it can produce the counterintuitive
results seen in figure 6.9(a) and figure 6.10, where reducing the coupling strength
actually causes an increase in the low bias conductance.

As in the case of the hollow site anchoring configuration, the basis set for the
gold was changed to include the 5d and 6p orbitals. The orbital resolved DOS,
transmission coefficients and /-V curves are presented in figure 6.16 for both LDA
and ASIC for this new basis set. Similar to the case of the hollow site, the -V
curves for the two basis sets are very similar up to a bias of about 1V. The LDA-only
conductance for this basis is 0.47Gy, and when ASIC is applied the conductance
drops to 0.05G,. This is a drop of about one order of magnitude, similar to that
obtained with the 6s-only basis.

Figure 6.17 shows the BDT molecule attached to an adatom at both surfaces.
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Figure 6.15: Transport properties of a BD'T molecule attached asymmetrically to the gold
(111) surface. The left plots correspond to LDA and the right ones to ASIC.
The upper panels are the DOS of the S and C 7 orbitals ((a) and (b)), the
middle are the transmission coefficients as a function of energy for various bias
((c) and (d)) and the lower are the I-V curves. Figure (f) is a zoom of (e)
and compares our results with experiments from reference [26]. The vertical
lines in (¢) and (d) mark the bias window.

In this case, the coupling is very weak, and the transmission coefficients have sharp
peaks, as shown in figure 6.18. The LDA-only zero bias conductance calculated with
the Au 5d6s6p basis is 0.43Gy, and when ASIC is applied the conductance drops to
0.19G,. The HOMO transmission peak is pinned at the Ep of the system, similar
to the weak coupling case discussed in chapter 5 using the tight-binding method
[74]. In this situation, the derivative discontinuity, if present in the XC functional
used, would be expected to have a significant effect on the transport properties of
the molecule. Unfortunately, this discontinuity is not present in ASIC and so the

conductance remains relatively large.

The final configuration to be studied is again for hollow site anchoring, but now

the hydrogen atoms which are attached to the sulphur atoms in the thiol groups do
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Figure 6.16: Transport properties of a BDT molecule attached asymmetrically to the gold
(111) surface calculated with a 5d6s6p basis set for gold. The left plots cor-
respond to LDA and the right ones to ASIC. The upper panels are the DOS
of the S and C 7 orbitals ((a) and (b)), the middle are the transmission co-
efficients as a function of energy for various bias ((c¢) and (d)) and the lower
are the I-V curves. Figure (f) is a zoom of (e) and compares our results with
experiments from reference [26]. The vertical lines in (¢) and (d) mark the

bias window.
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Figure 6.17: BDT molecule attached to adatoms on both of the Au (111) surfaces. Colour
code: Au=yellow, C=black, S=brown, H=Dblue.

not dissociate. This set-up is shown in figure 6.19. The total energy for this system
is calculated with DFT-LDA to be 1.465eV higher than for the case where the H
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Figure 6.18: Transmission coefficients for a BDT molecule attached to adatoms on the gold
(111) surface with a 5d6s6p basis set for gold. Note how the HOMO is pinned
at the Fermi level.

atoms dissociate and form H,. However, there may be an energy barrier to their
dissociation which may cause them to remain attached to the molecule, which makes

investigating their effect important.

Figure 6.19: BDT molecule with hydrogen atoms still attached to the sulphur atoms and
anchored to the hollow site. The sulphur-surface distance is 1.9A. Colour
code: Au=yellow, C=black, S=brown, H=Dblue.

The orbital resolved DOS, transmission coefficients and -V curves for this system
are shown in figure 6.20. As can be seen from the DOS in panels (a) and (b) and
the transmission coefficients in panels (¢) and (d) of figure 6.20, the transport is
now through the LUMO of the system, the energy of which is lowered slightly by
ASIC. Hence, the conductance of 0.09G, calculated using ASIC is higher than that
of 0.06Gy calculated with LDA. However, this shift of the unoccupied orbitals is an
artifact of the atomic nature of ASIC, as unoccupied states have no self-interaction
error.

In conclusion, for the molecular device consisting of benzenedithiol attached to
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Figure 6.20: Transport properties of a BD'T' molecule for the configuration shown in figure
6.19. The left plots correspond to LDA and the right ones to ASIC. The upper
panels are the DOS of the S and C 7 orbitals ((a) and (b)), the middle are
the transmission coefficients as a function of energy for various bias ((¢) and
(d)) and the lower are the I-V curves for the system both with and without
the hydrogen atoms attached to the sulphur. Figure (f) is a zoom of (e) and
compares our results with experiments from reference [26]. The vertical lines
in (c) and (d) mark the bias window.

gold, ASIC tends to reduce the low bias conductance by a factor of about four for
the majority of the anchoring geometries investigated. The zero bias conductances
for the different anchoring geometries calculated with both LDA only and with ASIC

are summarised in table 6.1.

A comparison of the results calculated with SMEAGOL for both LDA and ASIC
for BD'T attached to the Au hollow site to various other theoretical and experimental
results is shown in table 6.2. As shown, previous NEGF-DFT calculations in partic-
ular tend to give very high zero-bias conductances, whereas ASIC tends to lower the

conductance, thus improving the agreement with experiment
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Anchoring d (A)  Gipa (Go) Gasic (Go)

Ho 1.9 0.23 0.06
Ho 5 0.16 0.05
Ho 2.1 0.32 0.07
Ho 2.5 0.77 0.14
Ho (30°) 1.9 0.18 0.04
Br 2.09 0.11 0.06
Ad 2.39 0.11 0.10
Asy Ho 1.9/2.3 0.33 0.06
Ho/Ad 19/249 035 0.03

Table 6.1: Zero-bias conductance for different configurations of BDT on gold (111). The
anchoring configurations investigated are: hollow site (Ho), bridge site (Br),
Au adatom (Ad). Ho (30°) describes a hollow site with BDT at a 30° angle
with respect to the transport direction, and the two last rows correspond to
asymmetric anchoring to the two electrodes. d is the sulphur-surface distance.

Method G (Gy)
Theory

SMEAGOL LDA [76] 0:16, 0,23, 0.32, 0.77
SMEAGOL ASIC [76] 0.05, 0.06, 0.07, 0.14
TranSIESTA LDA [68] 0.36
TranSIESTA LDA [66] 0.47, 0.56, 0.79
CI [51] 103
Experiment

MCBJ [19] e

STM Break Junc. [26] 0.011

MCBJ [24] 0.004, 0.005, 0.011, 0.09, 0.14, 0.23
MCBJ [25] 0.011

Lith. Fab. Elec. [29] 0.1

Table 6.2: Zero-bias conductance for BDT attached to gold electrodes calculated or mea-
sured with a variety of different computational and experimental methods. Com-
putational methods include NEGF combined with DFT (SMEAGOL (38, 76|
and TranSIESTA [40, 66, 68]) and configuration interaction (CI) [51]. For the
computational results listed, the molecule is connected to the hollow site, and a
range of results for different sulphur-surface separations are shown where avail-
able. Experimental methods for manufacturing the molecular devices include
mechanically controlled breaking junctions (MCBJ (19, 24, 25]), STM breaking
junctions (STM break junc. [26]) and lithographic fabrication of the electrodes
(Lith. Fab. Elec., [29]). In the MCBJ experiments performed by Tsutsui et. al.
[24], a range of conductances were observed and are listed here.
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6.3 Benzenedimethanethiol

The second system investigated is that of benzenedimethanethiol (BDMT) on the
fce (111) gold surface. There are two different isomers for this molecule, as shown in
figure 6.21 and the electronic transport properties of both are investigated here. In
the first isomer, the sulphur atoms are in the plane of the benzene ring, and in the

second isomer they are out of the plane.

a)

b)

Figure 6.21: Two different isomers of the BDMT molecule. Colour code: C=black,
S=brown, H=blue.

The DOS for first isomer of BDMT is shown in figure 6.22. The HOMO-LUMO
gap is somewhat larger than that of BDT. As for BDT, ASIC has the effect of lowering
the energy of the occupied orbitals, making this gap even larger. However, because of
the atomic nature of ASIC, it will also incorrectly affect unoccupied orbitals, reducing
their energy also. This can be seen in figure 6.22, where the LUMO calculated with
ASIC is noticeably closer to the Fermi level.

The local DOS for the first isomer of BDMT is shown in figure 6.23. The HOMO
(in panel (a)) is mainly localised on the sulphur atoms, whereas the LUMO (in panel
(b)) is mainly localised on the benzene ring. The 7 conjugation across the molecule
is broken by the extra methyl groups. Therefore, there are no states near the Fermi
level which are fully delocalised across the molecule in a way similar to that of BDT,
and so the conductance of this molecule at low bias is expected to be lower.

In order to calculate the electronic transport properties, the first BDM'T isomer is
attached to the gold (111) hollow sites as shown in figure 6.24, with a sulphur-surface
separation of 1.9A. The local DOS for the HOMO and the LUMO of this device are
shown in figure 6.25. As for the isolated molecule, the HOMO is mainly localised on
the sulphur atoms, whereas the LUMO is mainly localised on the benzene ring.

The orbital resolved DOS, transmission coefficients and /-V" curves for this system
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Figure 6.22: Orbital resolved DOS for the first isomer of the BDMT molecule. The left
plots correspond to LDA and the right ones to ASIC. The upper panels ((a)
and (b)) are the DOS of all of the orbitals on the molecule for each atomic
species. The lower panels are the DOS of the S and C 7 orbitals ((¢) and
(d)), which are the orbitals closest to the Fermi level and thus are the orbitals
involved in low bias transport. The orange vertical lines labelled Ep separate
the highest occupied and lowest unoccupied orbitals of the molecule.

are presented in figure 6.26 for both LDA and ASIC. In this case however, as can
be seen from the DOS, the HOMO-LUMO gap is much larger than that for BDT.
Again, the ASIC has the effect of shifting the occupied orbitals downwards. The gap
between the resonances in the transmission due the HOMO and LUMO orbitals is
also much larger, with the resonances lying outside of the bias region investigated
in both cases. Therefore, although the size of the gap is increased with ASIC, the
actual transmission in the bias window does not change very much. The conductance
at zero bias is calculated to be 0.004G, with ASIC, compared to 0.006G, with LDA
only. Both of these values are an order of magnitude larger than the experimental
value of 0.0006G, obtained by Xiao et. al. [26]. Hence, the [-V curves for LDA
with and without ASIC are quite similar, and are also an order of magnitude lower
than those for BDT. To see the difference in the /-V curves caused by ASIC, a much

higher bias needs to be applied.
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a)

b)

Figure 6.23: Local DOS (molecular orbital isosurface) for first isomer of the BDMT
molecule, calculated with LDA. The LDOS for the HOMO and the LUMO
are shown in panels (a) and (b). Note how the HOMO is localised on the
sulphur atoms, whereas the LUMO is localised on the benzene ring. Colour
code: C=black, S=brown, H=Dblue.
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Figure 6.24: BDMT molecule attached to the hollow site of the Au (111) surface.
The sulphur-surface distance is 1.9A. Colour code: Au=yellow, C=black,
S=brown, H=blue.

The properties of the second BDMT isomer (with the S atoms out of the benzene
plane) are also investigated. The DOS for second isomer of BDMT is shown in figure
6.27. The HOMO-LUMO gap in this case is similar to that of the first isomer, being
somewhat larger than that for BDT. Again, ASIC has the effect of lowering the
energy of the occupied orbitals, making this gap even larger.

The local DOS for the second isomer of BDMT is shown in figure 6.28. The
HOMO (panel (a)) is mainly distributed on the S atoms, whereas the LUMO (panel
(b)) is mainly distributed on the benzene ring. As for the first isomer, the 7 conjuga-
tion across the molecule is broken by the extra methyl groups, and so the conductance
of this molecule at low bias is expected to be low also.

In order to calculate the electronic transport properties of this second BDMT
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Figure 6.25: Local DOS (molecular orbital isosurface) for the Au/BDMT junction, calcu-
lated with LDA. The LDOS for the HOMO and the LUMO are shown in (a)
and (b) respectively. Note how the HOMO is localised on the suphur atoms,
whereas the LUMO is distributed over the benzene ring, similar to the case of
the isolated molecule. Colour code: Au=yellow, C=black, S=brown, H=blue.

isomer, the sulphur atoms are attached to the gold (111) hollow sites as shown in
figure 6.29 (sulphur-surface separation is 1.9A). The local DOS for the HOMO and
the LUMO of this device are shown in figure 6.30. As for the isolated molecule, the
HOMO is mainly localised on the S atoms, whereas the LUMO is mainly distributed
over the benzene ring.

The orbital resolved DOS, transmission coefficients and /-V curves for this second
isomer are presented in figure 6.31 for both LDA and ASIC. The calculated current
for this isomer is larger by about a factor of three than that of the other isomer, as
shown in panel (e). The LDA conductance at zero bias is now 0.015G, compared to
a value of 0.013Gy when ASIC is applied. As for the first isomer, the fact that ASIC
has little effect on the I-V curve is due to the large HOMO-LUMO gap.

A comparison of the results calculated with SMEAGOL for both LDA and ASIC
for BDMT attached to the Au hollow site to various other theoretical and experi-
mental results is shown in table 6.3. In contrast to the results for BDT, ASIC does
not appear to improve the agreement with experiment for either isomer of BDMT.
The large HOMO-LUMO gap means that adjusting the position of the resonances in
T(F) does not have a large effect on the conductance around Ep. The most signifi-
cant source of error for this system probably lies in calculating the matrix elements
between the gold surface and the sulphur atom. This would not be improved by

ASIC, and more sophisticated approaches are required. In addition, here we have in-
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Figure 6.26: Transport properties of first BDMT isomer attached to the gold (111) hollow
site. The left plots correspond to LDA and the right ones to ASIC. The upper
panels are the DOS of the S and C 7 orbitals ((a) and (b)), the middle are the
transmission coeflicients as a function of energy for various bias ((¢) and (d))
and the lower are the I-V curves. Figure (f) is a zoom of (e) and compares
our results with experiments from reference [26]. The vertical lines in (c¢) and
(d) mark the bias window.

vestigated only one contact geometry, and a more extensive study is probably needed

in order to compare directly to experiments.

6.4 Biphenyldithiol

The third and final system investigated is that of biphenyldithiol (BPD) attached
to gold. This molecule consists of two benzene rings, which are rotated at an angle
known as the torsion angle relative to each other. The optimum value for this torsion
angle is 37° [119]. The orbital resolved DOS for the isolated molecule is shown in
figure 6.32, calculated with both regular LDA and with ASIC. Note how the ASIC

again lowers the energy of the occupied orbitals by about 4 eV, thus opening up the
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Figure 6.27: Orbital resolved DOS for the second isomer of the BDMT molecule. The left
plots correspond to LDA and the right ones to ASIC. The upper panels ((a)
and (b)) are the DOS of all of the orbitals on the molecule for each atomic
species. The lower panels are the DOS of the S and C 7 orbitals ((¢) and
(d)), which are the orbitals closest to the Fermi level and thus are the orbitals
involved in low bias transport. The orange vertical lines labelled Er separate
the highest occupied and lowest unoccupied orbitals of the molecule.

HOMO-LUMO gap.

From figure 6.32, it can be seen that the 7 orbitals on the sulphur and carbon
atoms are the ones which are closest to the Fermi level. From the local DOS plots
shown in figure 6.33, it can be seen that these states are delocalised across the
entire molecule, particularly for the case of the HOMO in panel (b), due to strong
hybridisation between the carbon and sulphur orbitals. Therefore, these states are

expected to conduct strongly when a bias is applied.

To calculate the electronic transport properties, the molecule is attached to the
gold (111) hollow sites as shown in figure 6.34, with a sulphur-surface separation
of 1.9A. The local DOS for the HOMO and the LUMO of this device are shown in
figure 6.35. As for the isolated molecule, both of these states are delocalised across
the entire molecule, and so would be expected to conduct strongly when inside the

bias window.
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Figure 6.28: Local DOS (molecular orbital isosurface) for second isomer of the BDMT
molecule, calculated with LDA. The LDOS for the HOMO and the LUMO are
shown in panels (a) and (b). Note how the HOMO is localised on the suphur
atoms, whereas the LUMO is distributed over the benzene ring. Colour code:
C=black, S=brown, H=Dblue.

Figure 6.29: The second isomer of the BDMT molecule attached to the hollow site of
the Au (111) surface. The sulphur atoms are now in the same plane as the
benzene ring. The sulphur-surface distance is 1.9A. Colour code: Au=yellow,
C=black, S=brown, H=Dblue.

The orbital resolved DOS, transmission coefficients and I-V curves for this system
are presented in figure 6.36 for both LDA and ASIC. Once again, ASIC has the effect
of lowering the energy of the occupied molecular orbitals, as can be seen from the
DOS (panels (a) and (b)). This has the effect of opening up the conductance gap in
the transmission coefficients. For this molecule, the HOMO is near Fy as in BDT,
giving a conductance of 0.07Gy at zero bias with LDA only. When ASIC is applied,
the HOMO is shifted downwards out of the bias window and the conductance drops
to 0.018Gy at Egr. This results in the low-bias [-V curve being suppressed, again

similar to what happens for BDT.
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Figure 6.30: Local density of states (molecular orbital isosurface) for the Au/BDMT junc-
tion, calculated with LDA. The LDOS for the HOMO and the LUMO are
shown in panels (a) and (b) respectively. Note how the HOMO is localised on
the S atoms, whereas the LUMO is distributed over the benzene ring, simi-
lar to the case of the isolated molecule. Colour code: Au=yellow, C=Dblack,
S=brown, H=Dblue.

The optimum angle between the planes of the benzene rings (i.e. the torsion
angle) is 37° [119]. However, this may fluctuate due to temperature or when the
molecule is put under strain in a breaking junction. In fact, the total energy difference
for the molecule with a 37° torsion angle and one where the torsion angle is 0° is
only of the order of 150meV. Panel (e) of figure 6.36 shows the -V curves calculated
for the equilibrium torsion angle of 37°, whereas panel (f) shows the result for the
case when the benzene rings are in the same plane (i.e. when the torsion angle is
0°). Reducing the torsion angle causes an increase in the transmission since the
overlap between the 7 orbitals located on the two benzene rings is increased. The
conductance at zero bias for a torsion angle of 0° is 0.09G, with LDA only, and
0.024Go when ASIC is applied.

These results show that ASIC has an effect on BPD similar to the one it has
on BDT, shifting the HOMO downwards and reducing the zero-bias conductance.
However, the results differ from those obtained experimentally by Dadosh et. al.
[30] by several orders of magnitude. However, as in the case of BDMT, only one
anchoring geometry has been investigated here, and a more comprehensive study

would again be required in order to be able to compare directly to experiment.
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Figure 6.31: Transport properties of second BDMT isomer attached to the gold (111) hol-
low site. The left plots correspond to LDA and the right ones to ASIC. The
upper panels are the DOS of the S and C 7 orbitals ((a) and (b)), the middle
are the transmission coefficients as a function of energy for various bias ((c)
and (d)) and the lower are the I-V curves. Figure (f) is a zoom of (e) and
compares our results with experiments from reference [26]. The vertical lines

in (c¢) and (d) mark the bias window.

6.5 Conclusion

ASIC is a simple, computationally efficient method for removing the self-interaction

error present in local DF'T exchange-correlation functionals. In particular, it corrects

the ionisation potentials of organic molecules, giving remarkably good agreement

with experimental values [75]. For electronic transport calculations, it corrects the

metal-molecule band alignment, and opens up the HOMO-LUMO gap. This has the

effect of reducing the low bias conductance for certain 7 conjugated molecules such

as BDT and BPD, again improving the agreement with experimental results. It has

less of an impact on molecules such as BDMT, in which the HOMO-LUMO gap is

already quite large, and so whose low bias transport properties are not particularly
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Method G (Gy)
Theory

SMEAGOL LDA 0.006, 0.015
SMEAGOL ASIC 0.004, 0.013
TranSIESTA LDA [66] 0.16, 0.017, 0.23
Experiment

STM Break Junc. [26] 0.0006
MCBJ [25] 0.0002 to 0.004
Lith. Fab. Elec. [29] 0.0005
Col. Dimer [30] -’

Table 6.3: Zero-bias conductance for BDMT attached to gold electrodes from a variety
of different computational and experimental methods. Computational meth-
ods include NEGF combined with DFT (SMEAGOL (38, 76| and TranSIESTA
(40, 66]). For both computational methods, the molecule is connected to the
gold hollow site. Conductances from SMEAGOL calculations for both of the
BDMT isomers investigated are listed. For the TranSIESTA, the range of results
presented are for different sulphur-surface separations. Experimental methods
for manufacturing the molecular devices include mechanical breaking junctions
(MCBJ [19, 24, 25]), STM breaking junctions (STM break junc. [26]), litho-
graphic fabrication of the electrodes (Lith. Fab. Elec., [29]), and formation of
molecule-nanoparticle dimers by mixing gold colloid with solution (Col. Dimer,
130)).

sensitive to the exact position of the HOMO.

However, some disagreement between theory and experiment still remains. For
the anchoring geometries investigated, the zero-bias conductance was still larger
than the experimental value [26] by a factor of 3 to 5. Reducing the strength of the
coupling between the metal and the molecule results in egomo moving closer to the
gold Fy, which can actually cause the low bias conductance to increase. One possible
explanation is that ASIC still overestimates the polarisability of molecules [89, 90],
with a quantitatively incorrect prediction of the response exchange and correlation
field. Secondly, we have applied the ASIC only to the molecular degrees of freedom,
without correcting the Au atoms. It is thus likely that the Au 6s orbitals at the
surface are too extended, leading to a larger current. It is possible that the use of
XC potentials constructed from exact charge densities [120, 121] and correcting both

the molecule and the metallic surfaces, may offer a solution to this problem.
Finally, ASIC does not contain the derivative discontinuity. As demonstrated in
chapter 5, this discontinuity can have a profound effect on the -V characteristics of

molecular junctions. In particular, if the molecule is weakly coupled to the leads, a

-
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Figure 6.32: Orbital resolved DOS for the BPD molecule. The left plots correspond to
LDA and the right ones to ASIC. The upper panels ((a) and (b)) are the
DOS of all of the orbitals on the molecule for each atomic species. The lower
panels are the DOS of the S and C 7 orbitals ((c) and (d)), which are the
orbitals closest to the Fermi level and thus are the orbitals involved in low
bias transport. The orange vertical lines labelled Ep separate the highest
occupied and lowest unoccupied orbitals of the molecule.

state can become pinned just above Fy, as shown in figure 6.18. The derivative dis-
continuity would prevent this state from charging, keeping it out of the bias window
and possibly opening up a conductance gap in the /-V curve.

Therefore, the ideal exchange-correlation potential for electronic transport cal-
culations needs to be self-interaction free. It needs to give accurate results for the
ionisation potentials of the molecules being investigated, and reproduce the correct
derivative discontinuity for the molecular orbitals. It would also need to correctly de-
scribe the polarisability of the molecule and the long range behaviour of the orbitals.
LDA with the full self-interaction correction [71], or exact-exchange methods [88, 70]
have many of these properties, but both of these methods are orbital dependent.
Although some calculations have been performed in the linear response limit [53],
there are no implementations for finite bias. Finally, it would need to be combined

with time-dependent DFT [57, 58], as when a finite bias is applied the system is no
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Figure 6.33: Local density of states (molecular orbital isosurface) for the BPD molecule,
calculated with LDA. The LDOS for the HOMO and the LUMO are shown
in panels (a) and (b). Note how the orbitals are delocalised across all of the
sulphur and carbon atoms. Colour code: C=black, S=brown, H=blue.

Figure 6.34: BPD molecule attached to the hollow site of the Au (111) surface.
The sulphur-surface distance is 1.9A. Colour code: Au=yellow, C=black,
S=brown, H=blue.

longer in a ground state.
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Figure 6.35: Local density of states (molecular orbital isosurface) for the Au/BPD junction,
calculated with LDA. The LDOS for the HOMO and the LUMO are shown
in panels (a) and (b). Note how the orbitals are delocalised across all of the
sulphur and carbon atoms, similar to that of the isolated molecule. Colour
code: Au=yellow, C=black, S=brown, H=blue.
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Figure 6.36: Transport properties of a BPD molecule attached to the gold (111) hollow
site. The left plots correspond to LDA and the right ones to ASIC. The
upper panels are the DOS of the S and C 7 orbitals ((a) and (b)), the middle
are the transmission coefficients as a function of energy for various bias ((c)
and (d)) and the lower are the I-V curves. Figure (e) is the I-V curve for a
torsion angle of 37° and (f) is for a torsion angle of 0°. The vertical lines in
(c¢) and (d) mark the bias window.
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Chapter 7

Simulating STM Transport in
Alkanes

The Scanning Tunnelling Microscope (STM) [77, 78] is a tool with multiple appli-
cations in molecular electronics. It consists of an atomically sharp probe-tip con-
structed from a heavy metal such as platinum, tungsten or iridium. It can be used
to map the positions of atoms and defects on surfaces, and to probe the local density
of states of surfaces. It can also be used for depositing atoms and molecules on a
surface to form nanoscale devices. A potential bias can be applied between the sub-
strate and the STM tip, and thus the [-V characteristics of molecules and surface
structures can be investigated.

In the past, calculations of STM currents were based on approximations such as
that of Tersoff-Hamann [79, 80]. In this method, the tip is assumed to be sufficiently
far from the molecule that it does not affect its electronic structure. However, such
methods are not self-consistent with applied potential bias, i.e. they do not take into
account the changes to the electronic structure caused by the interaction between
the molecule and the probe. They are thus not reliable when the tip is relatively
close to the molecule. Therefore, it is important to explore the use of self-consistent
transport methods such SMEAGOL (37, 38, 39] to simulate STM experiments.

However, there are some specific problems with using SIESTA [82, 83, 84] or
SMEAGOL to perform calculations for STM experiments. These occur when mea-
suring tunnelling currents for probes far from the surface. Since SIESTA uses a
localised basis set, the orbitals are artificially cut off beyond a certain radius, so
there are no basis functions to describe the vacuum region. Hence, if the tip-surface
separation is greater than a certain distance, the current will be artificially cut off.
One solution to this problem is to insert ghost orbitals, which do not have an as-
sociated pseudopotential, into the vacuum region between the surface and the tip.

However, this has to be done very carefully, as the spacing of the ghost orbitals can

137
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create artificial oscillations in the conductance as a function of distance.

Figure 7.1: Decanethiol molecule (a) with CHsz-endgroup and (b) with CF3-endgroup.
Colour code: C=black, S=brown, H=blue, F=purple.

This problem will not occur if the STM tip-sample distance is sufficiently small.
An example of an experiment where this is the case is that performed by Pflaum et.
al. [81], in which a monolayer of alkanethiol molecules are deposited on a gold surface,
and the transport properties are then probed using an STM tip. The resulting zero-
bias conductance is low, being of the order of 107Gy at zero bias. The I-V curves
are asymmetric, and this asymmetry increases noticeably when the hydrogen atoms
attached to the end carbon atom in the alkane chain (i.e. the one nearest to the
STM tip) are replaced by fluorine atoms. The authors of the paper speculate that
the extra asymmetry with the CF3z-endgroup is due to a rearrangement of the charge
distribution near the end of the molecule caused by the high electronegativity of
the fluorine atoms. This in turn causes an electrostatic forces between the STM tip
and the molecule, the direction of which depends on the bias of the tip. This will
cause the molecule to be repelled for one bias direction and attracted for the other,
changing the tip-molecule distance and hence the current.

Calculations using the Tersoff-Hamann method have been performed for pen-
tanethiol molecules on gold [122]. However, the nature of the Tersoff-Hamann
method requires a large tip-molecule separation, and the current obtained in these
calculations is an order of magnitude lower than that observed in the experiment.
Also, tip-molecule interactions cannot be studied using this method.

In this chapter, some results of ongoing calculations for this system will be pre-
sented. The mechanism behind the asymmetry in the /-V curves will be discussed.
However, the calculation of forces at finite bias has not yet been implemented in
SMEAGOL, so the mechanism suggested by the experimentalists for the differences
between the CHz-endgroup and with CFj-endgroup has not yet been investigated
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quantitatively.

7.1 Electronic Structure of the Molecules

The molecules used in the experiment were methyl-terminated alkanethiols and
fluorine-terminated alkanethiols. A range of different alkane chain lengths were stud-
ied, but the molecules predominantly used were decanethiol, as shown in figure 7.1(a),
and decanethiol with the CF3-endgroup, as shown in figure 7.1(b). Decanethiol con-
sists of an alkane chain of ten carbon atoms, with a thiol (-SH) group at one end.
The sulphur atom in the thiol group forms a strong bond with gold, and will an-
chor the molecule to the surface to form the monolayer. The CH3z-endgroup can be
replaced by a CFs-endgroup to form fluorine-terminated decanethiol, as shown in
figure 7.1(b).
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Figure 7.2: Orbital resolved DOS for the isolated decanethiol molecule with the CHs-
endgroup showing (a) the molecular valence states for the sulphur, carbon and
hydrogen atoms and (b) the sulphur and carbon states due to the p orbitals
perpendicular to the axis of the molecule. The orange vertical lines labelled Ep
separate the highest occupied and lowest unoccupied orbitals of the molecule.

The orbital resolved density of states (DOS) for the isolated CHjz-terminated
decanethiol molecule is shown in figure 7.2. The HOMO-LUMO gap is quite large,
being of the order of 5eV. The HOMO state is about 2eV above the other occupied
orbitals, and is mostly formed from the sulphur p states.

The local DOS for the isolated CHs-terminated decanethiol molecule is shown in
figure 7.3. The state below the HOMO is shown in (a), the HOMO is shown in (b)
and the LUMO is shown in (¢). The HOMO in particular is localised around the
thiol group at one end of the molecule. Thus, it is unlikely to be able to transport

charge across the molecule, and so would not be expected to contribute strongly to
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the transmission. In contrast, the level below the HOMO is delocalised over most of

the molecule, and so is more likely to conduct.

b) | C)

Figure 7.3: Local DOS (molecular orbital isosurface) for the isolated decanethiol molecule
with the CHg-endgroup showing (a) the HOMO-1 state (b) the HOMO and (c)
the LUMO. Colour code: C=black, S=brown, H=blue, F=purple.

The orbital resolved DOS for the isolated decanethiol molecule with the CF;-
endgroup is shown in figure 7.4. The HOMO-LUMO gap is similar to that for
CHjs-terminated decanethiol, being about 5eV. The HOMO state is again about 2eV
above the other occupied orbitals, and is mostly formed from the sulphur p states.
The fluorine p orbitals are situated about 3eV above the Fermi level and about 4eV

below, mainly contributing to the LUMO and to the levels below the HOMO.
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Figure 7.4: Orbital resolved DOS for the isolated decanethiol molecule with the CF3-
endgroup showing (a) the molecular valence states for the sulphur, carbon,
fluorine and hydrogen atoms and (b) the sulphur and carbon states due to the
p orbitals perpendicular to the axis of the molecule, and the fluorine p orbitals.
The orange vertical lines labelled E separate the highest occupied and lowest
unoccupied orbitals of the molecule.
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The local DOS for the isolated CF3-terminated decanethiol molecule is shown in
figure 7.5. As for CHs-terminated decanethiol, the HOMO in particular is localised
around the thiol endgroup, and so probably will not contribute strongly to the cur-
rent. In contrast, the level below the HOMO is delocalised over most of the molecule

and so would be expected to conduct.

a) b) C)

Figure 7.5: Local DOS (molecular orbital isosurface) for the isolated decanethiol molecule
with the CF3-endgroup showing (a) the state below the HOMO, (b) the HOMO
and (c¢) the LUMO. Colour code: C=black, S=brown, H=blue, F=purple.

7.2 Calculating the Transport Properties

To calculate the transport properties of these molecules, the sulphur atoms were
attached to the gold fec (111) hollow site with a sulphur-surface distance of 1.9A.
This is the equilibrium distance for this configuration [118], as discussed in chapter
6. The arrangement of the molecule on the surface and the tip is shown in figure
7.6 for the original CHz-endgroup, and in figure 7.7 for the CF3-endgroup. In the
experiment, the molecules are tilted at an angle of ~ 32°. However, in order to
simplify the calculations, the molecules are placed perpendicular to the surface. This
allows the unit cell used to be smaller, which greatly reduces the computational
requirements. A second simplification is the modelling of the STM tip by a gold
electrode instead of using tungsten or platinum-iridium, as used in the experiments.
As discussed in chapter 6, the gold leads can be represented by just the 6s basis
set for transport calculations, which again dramatically reduces the computational
requirements. Secondly, using two leads which are made of the same material also
simplifies the calculations since they both have the same Fermi level. The STM tip
itself is not modelled as atomically sharp, but it is slightly blunter. This improves

the stability of the calculations.
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Figure 7.6: Decanethiol molecule attached to gold surface with STM tip with CHjs-
endgroup. Colour code: Au=yellow, C=black, S=brown, H=blue, F=purple.
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Figure 7.7: Decanethiol molecule attached to gold surface with STM tip with CFj3-
endgroup. Colour code: Au=yellow, C=black, S=brown, H=blue, F=purple.

The size of the current is extremely sensitive to the distance between the tip and
the molecule. By adjusting this distance, we can match the magnitude of the current
obtained in experiments. Note that the direction of the [-V has been reversed in
this graph, as in our calculations the convention for negative and positive bias is
the opposite to that used in the experiment of reference [81]. As shown in the plot
of the I-V curves for different distances shown in figure 7.8, the best match is for
a distance between the last carbon atom in the molecule and the plane of the gold
tip of 5.25A. The results presented in the rest of this chapter will all be for this

tip-molecule separation.
The orbital resolved DOS for CHj-terminated decanethiol on gold is shown in
figure 7.9. Note that the HOMO is relatively close to the gold Fr. However, as can

be seen from the plot of the local DOS of the molecule in an energy window around
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Figure 7.8: I-V curves for CHz-terminated decanethiol attached to a gold surface for dif-
ferent distances between the end carbon atom on the molecule and the probe
tip. Changing this distance by 0.1A causes the size of the current to change
by approximately one order of magnitude at 1V. Panel (b) is a zoom in (along
the y-axis) of panel (a), showing the region between -30pA and 20pA.
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Figure 7.9: Orbital resolved DOS for the CHs-terminated decanethiol molecule on the gold
surface. All of the carbon and sulphur valence orbitals are shown in (a), and
the p orbitals perpendicular to the axis of the molecule are shown in (b). The
HOMO-LUMO gap is large, although the HOMO is about 1eV below Ef.

the HOMO (figure 7.10), this state is mainly localised around the single sulphur
atom. The delocalised orbitals which are capable of transporting charge across the
molecule are due to the carbon p orbitals, and are further away from the Fermi
level. Thus a large conductance gap would be expected for this molecule, with just a
tunnelling current present at low bias. This can be seen from both the transmission
coefficients in figure 7.13 and the /-V curves in figure 7.14. There is a large gap in
the resonances in the zero bias transmission coefficients of about 5eV on each side of

the Fermi level, indicating that the HOMO does not contribute much to the electron
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Figure 7.10: Local DOS (molecular orbital isosurface) for the CHs-terminated decanethiol

molecule on the gold surface, showing (a) the level

below the HOMO, (b) the

HOMO, and (c) the LUMO. Note how the HOMO is localised around the

Al

thiol endgroup. Colour code: Au=yellow, C=Dblack, S=brown, H=blue.

transport. The current at 2V is of the order of 0.1nA, which is about five orders

of magnitude less than that observed for the m-conjugated molecules discussed in

chapter 6.

The orbital resolved DOS for decanethiol with the CF3-endgroup on gold is shown
in figure 7.11. As for the CHj-terminated molecule, the HOMO is relatively close to

the gold F. However, as can be seen from the plot of the local DOS of the molecule in
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Figure 7.11: Orbital resolved DOS for the decanethiol molecule

with the CF3-endgroup on

the gold surface. All of the carbon, sulphur and fluorine valence orbitals are
shown in (a), and the p orbitals perpendicular to the axis of the molecule are
shown in (b). The HOMO-LUMO gap is large, although the HOMO is about

1eV below Ef.
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an energy window around the HOMO shown in figure 7.12, this state is again mainly
localised in the single sulphur atom. The delocalised orbitals which are capable of
transporting charge across the molecule are due to the carbon p orbitals, and are
further from the Fermi level. Thus a large conductance gap would be expected for

this molecule, with just a tunnelling current present at low bias. This can be seen

Figure 7.12: Local DOS (molecular orbital isosurface) for the CF3-terminated decanethiol
molecule on the gold surface, showing (a) the level below the HOMO, (b) the
HOMO, and (c¢) the LUMO. Note how the HOMO is localised around the
thiol endgroup. Colour code: Au=yellow, C=black, S=brown, H=Dblue.

from both the transmission coefficients in figure 7.13 and the I-V curves in figure
7.14. As for the CHs-endgroup, there is a large gap in the resonances in the zero
bias transmission coefficients of about 5eV on each side of the Fermi level. The
current at 2V is of the order of 0.1nA, which is again similar to that obtained for
CHj-terminated decanethiol and is about five orders of magnitude less than that
observed for the m-conjugated molecules discussed in chapter 6.

The most noticeable feature of the /-V curves and differential conductance shown
in figure 7.14 is their asymmetry. The conductance at positive bias is about 2-3
times smaller than that for negative bias. The reason for this is the difference in the
strength of the coupling between the molecule and the gold surface on one side, and
the molecule and the STM tip on the other side. The sulphur atom in particular
forms quite a strong bond with the gold surface, whereas as the tip is much further
from the CH3- and CF3-endgroups. Therefore, as discussed in chapter 3 and as shown

in the schematic illustration in figure 7.15(a), electrons can be transferred more easily
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Figure 7.13: Transmission coefficients at zero bias for decanethiol attached to gold surface
with (a) CHz-endgroup and (b) CF3-endgroup. Note the gap in the transmis-

sion of about 5eV on either side of the Fermi level.
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Figure 7.14: (a)l-V curves and (b) differential conductance for decanethiol with both CHg
and CF3-endgroups. Note the asymmetry with respect to bias direction, with
the conductance at negative bias being 2-3 times larger than that for positive

bias.

endgroup.

The conductance is also lower for the CFjz-endgroup than the CHg-

between the molecule and the surface than the molecule and the tip. Thus, when

the direction of bias is such that the chemical potential of the surface is higher than

that of the tip, the molecule gains electrons. This extra charge increases the energy

of the molecular orbitals, causing them to move closer to Fp. This can be seen in the

plots of the transmission coefficients for different voltages shown in figures 7.16 and

7.17. At negative bias, the levels shift upwards so that the occupied levels are closer

to the bias window. This increases the transmission in the bias window, which in

turn increases the current. At positive bias, the electrons leave the molecule as the

more strongly coupled lead has a lower chemical potential. Therefore, the occupied
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Figure 7.15: (a) Schematic energy level diagram. The molecule is more strongly coupled
to the surface than to the tip, so when the chemical potential of the surface is
higher, charge is transferred into the molecule from the surface. When the bias
is reversed, the charge leaves into the surface faster than it can enter from the
tip. (b) Schematic showing electrostatic interaction between tip and molecule
endgroup. The CF3-terminated decanethiol molecule forms an electric dipole,
and so will be attracted or repulsed by the STM tip, depending on the bias
direction.

levels shift downwards away from the bias window, and the current is lower. The

total shift in the transmission coefficients from -2V to 2V is approximately 1eV.

This change in the occupation of the molecules as a function of the applied bias
can be seen in the plots of their total Mulliken populations as a function of voltage
shown in figure 7.18. As the bias increases from negative to positive, the molecule
loses electric charge as the chemical potential of the substrate is lowered. This causes
the occupied levels to shift downwards away from Ey, opening up the HOMO-LUMO
gap and reducing the conductance.

The asymmetry in the conductance observed in these results is due to the asym-
metry in the coupling to the leads. Asymmetry was also observed in the experimental
conductance measurements for these molecules [81]. However, in the experimental
results, the CF3-endgroup was found to produce a far more asymmetric /-V curve
than the CHjs-endgroup. This was not observed in our calculations described here,

where the asymmetry for both types of endgroup was similar. In the experimental
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Figure 7.16: Transmission coefficients for positive and negative bias for decanethiol with
the CHs-endgroup. Note how the resonances in the tranmission coefficients
due to the occupied states move up closer to the bias window at negative bias,
and move downwards for positive bias.

work, it was argued that this asymmetry was due to a repositioning of the molecule
due to electrostatic interactions between the endgroup and the STM tip, as indicated
in the schematic illustration in figure 7.15(b). The high electronegativity of the flu-
orine atoms would be expected to attract a large net charge, which would then be
strongly attracted or repelled by the STM tip, depending on its bias direction. Fig-
ure 7.19 shows a plot of the net charge on each group of atoms as a function of their
distance along the axis of the molecule. Replacing the hydrogen atoms by fluorine
atoms causes an increase in the occupation of the endmost carbon atom, although
the endmost fluorine atom has a net positive charge. However, the total net charge
on the CF3-endgroup would be negative (as it has extra electrons), whereas the total
net charge on the CHs-endgroup is positive. Thus, the end of the molecule would be
attracted towards the tip when it is at positive bias, reducing the separation and in-
creasing the conductance, whereas it would be repelled when the tip is at a negative

bias.
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Figure 7.17: Transmission coefficients for positive and negative bias for decanethiol with
the CF3-endgroup. Note how the resonances in the tranmission coeflicients
due to the occupied states move up closer to the bias window at negative bias,
and move downwards for positive bias.
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Figure 7.18: Mulliken populations for decanethiol molecule with (a) CHs and (b) CF3-
endgroups attached to gold surface. Note how the occupation of the molecule
for both endgroups drops as the bias increases from negative to positive.
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Figure 7.19: Net occupation of the atoms as the function of position along the axis of the
molecule. The fluorine atoms in the CFjs-endgroup attract extra electrons
onto the end carbon atom.

However, the calculation of forces at finite bias has not yet been implemented
in SMEAGOL, so full self-consistent molecular dynamics simulations have not yet
been performed. Hence, the strength of the interaction between the tip and the
dipole in the endgroup cannot be calculated accurately. If this effect is not large,
the asymmetry in the conductance due to the asymmetrical coupling between the
molecule and the leads may swamp any effects due to the movement of the molecule.

The effect of ASIC [75] on this system was also investigated briefly. However,
the HOMO-LUMO gaps in these molecules are relatively large, similar to the gap
for the BDMT molecule discussed in chapter 6. Thus, although ASIC has the effect
of lowering the occupied orbitals, it did not have much of an affect on the transport

properties.

7.3 Conclusion

SMEAGOL can be used to simulate STM-type experiments, provided the tip-sample
distance is sufficiently small that the basis orbitals have not been artificially cut off

(i.e. where the vacuum region between the tip and the surface is still well described).
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This allows the study of systems in which the tip is close to the molecule, and allows
the effects of finite bias on the electronic structure of the molecule to be incorporated.

Calculations for alkanethiol molecules with in STM-type arrangements show strong
asymmetry in the /-V curves, which can be explained by the asymmetry in the cou-
pling to the two different leads. However, the asymmetry observed in these calcu-
lations is similar for both CH3- and CF3-terminated decanethiol, in contrast to the
experimental measurements which showed a far stronger asymmetry for the CF3-
endgroup. The authors of the experimental work speculate that this asymmetry
is due to electrostatic tip-endgroup interactions, which causes the distance of the
molecule from the STM tip to change. However, this hypothesis cannot be tested as
of yet, since calculations of the forces at finite bias have not yet been implemented
in SMEAGOL.

The work described in this chapter is still in progress, and the effect of the tilt
angle of the molecules on the transport properties is currently being tested using
an enlarged unit cell. The effect of using tungsten or platinum-iridium tips instead
of gold would also need to be investigated. Finally, the calculation of forces at
finite bias is in the process of being implemented in SMEAGOL. This would allow
molecular dynamics simulations to be performed for the molecule in the presence of
an STM tip at finite bias. Hence, it should be possible to investigate the mechanism
proposed to explain the difference between the conductance properties of CHsz- and
CFs-terminated decanethiol. However, such calculations would be very expensive
computationally, as the basis set on the gold would have to be extended to at least
include the 5d orbitals so as to give accurate values for the interatomic distances.

The results presented in this chapter were calculated using LDA. As discussed at
length throughout this dissertation, LDA has several problems which can strongly
affect electron transport calculations. However, approximate self-interaction correc-
tions such as ASIC [75] are unlikely to offer much of an improvement, since the
conductance is due to tunnelling, and would not be particularly sensitive to the
exact position of the molecular orbitals. However, for these molecules, accurately
calculating the electric polarisability would be important, and this is overestimated
by LDA and only partially corrected by ASIC [89, 90].
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Chapter 8

Conclusion

Molecular devices have a diverse range of potential applications. In the last few
years, it has become possible to fabricate these devices, using a variety of different
methods. Unfortunately, the values measured for the conductance of such devices,
particularly those formed from 7-conjugated molecules such as benzenedithiol, can
vary by up to several orders of magnitude depending on which method is used to
construct them [19, 26]. Researchers have thus turned to computational modeling
to explain these discrepancies, as well as to help in understanding the transport
mechanisms. However, electron transport calculations for these systems, particularly
those using DFT-LDA, give higher conductances than those obtained from any of
the experiments [63, 64, 65, 66, 67, 68, 70]. Explanations which have been suggested
for these discrepancies include the fact that the exact geometry of the anchoring
configuration between the molecule and the metal is unknown, as well as the errors

inherent in the approximations used in the electronic structure methods.

The main focus of this dissertation has been on the effect of various aspects of
the self-interaction error [71] contained in approximate exchange-correlation func-
tionals used in DFT on electron transport calculations. In chapter two, I introduced
DFT, including the problem of the self-interaction error, and showed how such an
error could help in suppressing the derivative discontinuity which should occur in
the energy at integer occupations [72, 73]. In chapter three, I used a simple model
to show how a discontinuous charging potential, such as would be produced by the
derivative discontinuity, can strongly affect the transport properties under certain
circumstances, including opening up conductance gaps in the -V curves [74]. This
idea was taken further in chapter five, where a self-consistent tight-binding Hamil-
tonian which incorporated the derivative discontinuity was used to perform electron
transport calculations for BDT attached to gold. Here, it was found that although

the derivative discontinuity had little effect when the molecule was strongly coupled
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to the leads, in the weak coupling limit it could open up a conductance gap. In
this weak coupling limit, a molecular level is pinned at the Fermi level of the metal.
With a continuous charging potential this level can be occupied as soon as a bias
is applied and thus starts to conduct immediately. However, with a discontinuous
potential, the level cannot charge and is pinned outside the bias window until its en-
ergy increases sufficiently for it to overcome the derivative discontinuity and accept
one entire electron. This has the effect of opening up a conductance gap in the -V
curve. In fact, this conductance gap is the same size as that observed in one of the
experiments [19], although this may have been an artifact of the model Hamiltonian

used.

An approximate self-interaction correction in the form of ASIC [75] had been
incorporated into SIESTA [82, 83, 84] and thus SMEAGOL [37, 38, 39], and this
was used to investigate the self-interaction errors in ab initio transport calculations.
Although ASIC does not contain the derivative discontinuity due to the atomic and
linear scaling approximations, it does produce remarkably accurate values for the
lonisation potentials of a variety of different molecules; which can be off by up to
4eV with standard LDA. This corrects the band alignment between the occupied
states in the molecule and the Fermi level of the metal. In the case of BDT attached
to gold leads, this results in a reduction of the low bias conductivity, improving

agreement with experiments [76].

It now appears that the results of theory and experiment are starting to con-
verge for these systems, although some discrepancy still remains. First of all, the
exact form of the anchoring geometry between the metal and the molecule remains
unknown. Another problem in LDA, which is only partially solved by ASIC, is the
overestimation of the electric polarisability [89, 90]. Thirdly, while ASIC corrects
the level alignment between the molecule and the metal, it does not reproduce the
derivative discontinuity in the energy, which in chapter four was shown to have a
strong effect on electron transport in the weak coupling limit. On the other hand, the
calculations performed in chapter four using discontinuous potentials involved using
a tight-binding Hamiltonian, and thus some of the results obtained may be artifacts
of this model. Therefore, in order to understand the complete picture, calculations
would have to be performed using an ab wnitio electronic structure theory which
produced both the correct band alignment and the derivative discontinuity. These
calculations would need to be performed for a variety of different metal-molecule con-
figurations. The electronic structure would need to be recalculated at each bias step,

as simply integrating over the zero bias transmission coefficients may not reproduce
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some of the effects of the derivative discontinuity. Such work could potentially shed
some light on the differences between some of the experimental results.

Potentials which both reproduce the derivative discontinuity and correct the band
alignment include the full SIC [71], and exact exchange [88, 114, 53] with local cor-
relation. These are currently in the process of being implemented in SMEAGOL,
and it will be interesting to observe their effect on electronic structure calculations
of molecular junctions. These methods should also help correct the electric polaris-
ability of the molecules. Unfortunately, such methods are orbital dependent, and so
are difficult to implement within NEGF at finite bias.

Finally, I presented the results of some ongoing calculations involving the sim-
ulation of STM transport measurements of CH3;- and CFj3-terminated alkanethiol
monolayers on a gold surface [81]. The I-V curves were found to be strongly asym-
metric due the molecules being coupled far more strongly to the substrate than
to the probe tip. In the experimental measurements, the conductance for CF3-
terminated decanethiol was found to be far more strongly asymmetric than that for
CHj3-terminated decanethiol, although this was not observed in our calculations. The
authors of the experimental work speculate that this may be due to tip-molecule elec-
trostatic interactions causing the molecule to move, but I have not yet investigated
this using SMEAGOL.

These calculations are still in progress. The effect of a tilting angle on the trans-
port properties is currently being investigated, and the effect of having the STM tip
made of the same metal as that used in the experiments will need to be tested. The
calculation of interatomic forces at finite bias is currently in the process of being
implemented in SMEAGOL, which will allow the investigation of the effect of elec-
trostatic interaction between the molecule and the tip on the molecule’s position. It
can then be tested whether or not this interaction is sufficient to explain the differ-
ence in the /-V curves for the CHs- and CF3-terminated decanethiol observed in the
experiments [81].

In conclusion, I have demonstrated that accurate electron transport calculations
of molecular devices require electronic structure theories which accurately reproduce
both the derivative discontinuity and the correct band alignment between the metal
and the molecule. These conditions require the method to be self-interaction free.
Correcting these problems would dramatically increase the utility of computational
methods in the design of molecular devices, which have the capacity to revolutionise

a broad range of technological fields.
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e Self-Interaction Errors in Density-Functional Calculations of Electronic Transport,
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e Effects of self-interaction corrections on the transport properties of phenyl-based
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e Simulation of STM Quantum Transport Measurements in Alkanes, in preparation,
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e Use of Embedding Method for Non-equilibrium Transport Calculations, C. Toher,
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