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Abstract

The study of electronic transi)ort in molecular devices is one of much research inter­
est, with potential applications in a range of different fields. These devices have been 
experimentally constructed using many different techniques, and also modelled using 
several com putational methods. The method most commonly used to  perform such 
calculations is the non-equilibrium Green’s function formalism combined with density 
functional theory (DFT). However, D FT calculations based on local exchange and 
correlation functionals contain self-interaction errors. The primary purpose of this 
work is to investigate the effects of these errors on electronic transport calculations. 
We describe the origin of the self-interaction error in DFT, as well as its c,onsequences 
including the absence of the derivative discontinuity in approxim ate local exchauge- 
correlation potentials. Exact and approximate self-interaction corrections to  remove 
these errors are also described.

'I'ransport calculations were performed using the non-eciuilibrium G reen’s func­
tion code SMEAGOL for a variety of metal-molecule junctions. We use a tight- 
binding Hamiltonian to show' tha t the derivative discontinuity can open conductance 
gaps in the I -V  curves. An atomic self-interaction correction (ASIC) to D FT is 
used to investigate the effect of correcting the alignment l)etween the energy levels 
in the molecule and the Fermi level in the metal. Both of these methods improve 
the agreement between theory and experiment.

Finally, the use of SMEAGOL to simulate STM tunnelling current measurements 
for alkanethiol molecules is investigated. We show how the difference in the strength 
of the interaction between the molecule and the tip compared to the substrate can 
lead to strong asynunetry in the I -V  curves.
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C hapter 1 

Introduction

Tlie field of molecular electronics began with the suggestion of Avirani and Ratner 
tha t an organic molecule could be used as a logic gate [1]. In recent years, several 
examples of molecular devices in the form of metal-molecule-nietal junctions have 
been constructed using a variety of methods such as mechanical break junctions 
and scanning tunnelling microscopes (STM). The study of the electronic transport 
properties of such devices is currently becoming one of much research interest.

Possible applications of such devices range from novel com]:>uter architectures 
[2, 3, 4, 5], which will be smaller, faster, cheaper to manufacture and consume less 
power; to highly sensitive chemical sensors [6, 7, 8]; to diagnostic medical tools which 
can identify individual viruses or proteins [9]. Another interesting a{)plication which 
has been suggested recently is to use molecular electronics to sequence strands of 
DNA, where individual base-pairs are distinguished by their transverse conductivity 
[10, 11].

One major advantage of molecular electronics over traditional semiconductor elec­
tronics is tha t circuits can be manufactured via self-assembly. Lithographic fabrica­
tion is becoming increasingly expensive as microchip components continue to shrink, 
and self-assembly, whereby molecules are deposited on the surface, would allow cir­
cuits with component sizes an order of magnitude smaller than those in current 
connnercial computer processors to be manufactured at nmch lower cost. It is also 
possible tha t molecules could be selected to give very low “off” currents, thus reduc­
ing power usage and cooling requirements. Another possible application for molecular 
electronics is in the manufacture of cheap, fast, high-density, non-volatile memory, 
similar to the concepts proposed for magnetic random access memory (MR AM) [12].

However, the applications related to computing are only a small section of the 
possibilities offered by molecular electronic devices. There have been several pro- 
j)Osals for chemical and biological sensors, in which molecules, viruses, antibodies.
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Introduction 2

proteins, etc. are detected by their effects on the electronic properties of nanotubes 
[6, 7] or nanowires [8]. There is also a lot of research currently being done on the 
electronic transport properties of DNA, from sequencing strands of DNA by mea­
suring the conductivity of individual base pairs[10, 11], to understanding how DNA 
molecules can transport charge along their length [13, 14, 15]. Research is also being 
performed on using strands of DNA as a tem plate to position molecular devices in 
electronic circuits [16, 17]. Because of the base-pairing mechanism in DNA, where 
each type of base will only bond to  one other base, it is possible to set up lock 
and key type mechanisms, so tha t a molecular device with a short strand of DNA 
attached will attach  to a specific point on a DNA wire. Also, nietal atoms, such as 
silver or gold, can then be deposited on the exposed parts of the DNA strands after 
the molecular devices have been positioned in order to form a conducting circuit.

A typical molecular device consists of a thiolated organic molecule sandwiched 
between two metallic electrodes. The sulfur atoms in the thiol groups anchor the 
molecules to the metal surfaces. The metal normally used for such experiments is 
gold, due to its high conductivity and resistance to corrosion. Nickel electrodes are 
also used in spintronic experiments, where spin polarised currents are measured [18]. 
However, nickel has the disadvantage of oxidising relatively rapidly (compared to gold 
or silver), with nickel oxide forming on the surface and making repeated measure­
ments difficult. The organic molecules used fall into two main groups: conjugated 
molecules such as benzenedithiol (BDT), biphenyldithiol (BPD) and triphenyldithiol 
(tricene) which have delocalised carbon tt bonds across the molecule and thus rel­
atively high conductivities; and non-conjugated molecules such as alkanethioLs, or 
benzenedimethanethiol (BDMT) in which the tt conjugation is broken by the methyl 
groups.

Figure 1.1: Simple organic molecules used in molecular electronics experiments: (A) Ben­
zenedithiol (BDT), (B) benzenedimethanethiol (BDMT),(C) biphenyldithiol 
(BPD). Colour code: C=black, S=browii, H=blue.

Several different methods have been used to construct such devices, such as



3 Introduction

mechanically controllable break junctions [19, 20, 21, 22, 23, 24, 25], STM tips 
[25, 26, 27, 28], lithographically fabricated nanoelectrodes [29], and colloid solutions 
[30]. Break junction molecular devices are created by attaching a thin metal wire 
to a flexible substrate, where the wire is surrounded by a solution containing the 
molecule. The molecules form a self-assembled monolayer (SAM) over the surface of 
the metal. The wire is then stretched by bending the flexible substrate. W hen the 
wire breaks, one of the molecules on the metaJ surface may bridge the gap formed. 
The bending is usually controlled by the elongation of a piezoelectric element placed 
underneath the substrate as shown in figure 1.2(a), so th a t the width of the gap in 
the wire can be controlled with extreme precision. In a typical experiment, the gap is 
closed and reformed multiple times, so th a t several devices are formed and statistical 
measurements can be taken.

a) I Mechanical Breaking Junction

G old
K lectrode o G old

E lectrode

E lectrode E lectrode

F lex ib le  S ubstra te

Piezoelectric

b) STM Break Junction

Gold
STM
Tip

0 0 0

Gold Substrate

Figure 1.2: Schematic of experimental set up for (a) mechanical breaking junction and 
(b) STM breaking junction. In a mechanical breaking jmiction, a metallic 
nanowire is coated with a layer of molecules and then stretched to breaking 
point. A single molecule is thus trapped in the gap formed. In the STM 
breaking junction, a metallic substrate is coated with sparse layer of molecules. 
One of the molecules is then located and contacted to the tip, which is then 
pulled upwards to form the device.

The devices can also be constructed using an STM breaking junction [26, 27, 28], 
as shown in figure 1.2. A sparse monolayer of molecules can be deposited on a 
surface of the metal, which forms one electrode. Then, the STM tip, which is formed
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from the  sam e m etal as the  surface, can be used to  contact the  top of one of the 

molecules. This forms a circuit, allowing the  1-V  characteristics of the  molecule to 

be investigated. T he tip  can then  be pulled upwards to  stre tch  the  contact until 

it breaks. Once again, th is procedure can be repeated  m ultiple tim es to  obtain  

sta tis tica l m easurem ents. A lternatively, m etal nanoparticles can be a ttached  to  the 

top  of the  molecules which are a ttached  to  a substra te . The iianoparticles are then 

contacted  by the  tip  of an STM  [31, 32] or an atom ic force microscope (AFM ) [33], 

com pleting the circuit and allowing tran sp o rt m easurem ents to  be made.

T he electrodes can also be fabricated  using lithographic techniques, w ith the  size 

of th e  gap between the  electrodes being m aim factured to  be equal to  the  length 

of the  molecule in question. The molecules can then be deposited in the  gap [29]. 

T heir presence is usually m onitored and confirmed by a scanning electron microscope 

(SEM ). Finally, instead of d irectly  dej)ositing the  molecules in the gap, the  molecules 

can be combined w ith  a solution of colloid nanoparticles of the  m etal, so th a t a m etal 

particle  a ttaches to  each end of the molecule. These structu res are then  deposited 

between the  lithographically  fabricated  nanoelectrodes, w ith their presence in the 

gap being confirmed using a  tunnelling electron microscope (I'E M ) [30].

U nfortunately, there  is much disagreem ent between the  experim ental results ob­

tained  using these different m ethods for these and other molecules. For examjile, for 

B D T  contacted  to  gold the  values of the  zero-bias conductance vary from [19]

observed w ith a m echanical break junction , to  0.01 IGo [26] m easured by an STM. 

In order to  explain these differences, researchers have tu rned  to  theoretical m od­

els. Different com puta tional m ethods used to  investigate such system s range from 

the non-equilibriurn G reen’s function formalism (N EG F) [34, 35, 36] combined with 

electronic s tru c tu re  m ethods [37, 38, 39, 40, 41, 42] such as density functional theory 

(D FT)[43, 44, 45]; to  em pirical tight-binding m ethods [46, 47, 48, 49], m any-body 

m ethods [50, 51, 52, 53, 54, 55, 56] and tim e-dependent density functional theory 

( I ’D D FT) [57, 58]. However, these m ethods also disagree on the  results, and they 

show th a t  the  electronic tra n sp o rt properties of a m etal-m olecule junction  can be 

highly sensitive to  how the  molecule a ttaches to  the  m etal siuface.

T he N E G F form alism  combined w ith D F T  [37, 38, 39, 40, 41, 42], using a local 

exchange correlation functional such as the local density approxim ation (LDA) [44] 

or the  generalised gradient approxim ation (GGA)[59, 60, 61], is the  m ost connnonly 

used ab initio  m ethod  for electronic tran sp o rt calculations. It has the  advantage 

of com bining accurate  results w ith good scaling - there are m ethods which are cur­

rently  under developm ent which scale linearly w ith the  num ber of atom s [62]. Un-



Introduction

foi'tiuiately, often the results obtained with N EG F-D FT do not match those of the 
experiments, giving zero-bias conductances for a variety of metal-molecule anchoring 
geometries higher than those measured experimentally [63, 64, 65, 66, 67, 68, 69, 70]. 
Some of these problems may be due to the fact th a t the true metal-molecule contact 
geometry is unknown. Another possibility is th a t the problem lies in the approxi­
mations made to the electronic structure methods used. D FT is only valid for the 
ground state  of a system, and so, strictly speaking, it is not correct to use it when 
a finite potential bias is applied. TD D FT [57] has been formulated to  deal with 
this problem, as well as to calculate excited states. However, TD D FT is compu­
tationally quite heavy, and to date has mainly been applied to single atoms and 
simplified models. Finally, the local exchange correlation fmictionals usually used 
with DFT contain self-interaction errors [71], which can result in the energy levels of 
the molecule being in the wrong place. This error can also result in the suppression 
of the derivative discontinuity [72, 73], which would affect how the molecular orbitals 
respond to changes in their occupation. It is the effects of these self-interaction errors 
on electronic transport calculations [74], as well as possible solutions to the problem 
[75, 76], tha t are the main focus of the research presented in this thesis.

Figure 1.3: Decanethiol molecule (a) with CHs-endgroup and (b) with CFs-endgroup.
Colour code: C=black, S=brown, H=blue, F=purple.

The electron transport properties of organic molecules can also be studied with­
out actually forming two contacts, by using a scanning tunnelling microscope [77, 78]. 
If the molecules are attached to a metallic surface, the STM probe tip can be placed 
in the vicinity of the molecule end group, and the tunnelling current through the 
molecule can be measured. Normally, calculations for such systems are performed 
using the Tersoff-Haniann method [79, 80], in which the tip is assumed to be suffi­
ciently far from the molecule th a t it does not affect its electronic structure. However, 
if the STM tip is close to the molecule, then the interaction between the tip and the
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molecule will become im portant, and a method such as NEGF combined with DFT 
will need to  be used. One such set of measurements is tha t performed by Pflaum 
et. al. [81] on CH3- and CFs-term inated decanethiol, as shown in figure 1.3. In this 
set of experiments, a much stronger asymmetry was observed in the I-V  curves for 
the CFs-endgroup than for the CHs-endgroup. It was suggested th a t this difl'erence 
was due to the interaction between the molecule endgroup and the STM tip with an 
applied bias. This type of effect cannot be investigated using the Tersoff-Haniarm 
model, instead requiring a method such as NEGF.

1.1 D issertation  Layout

In this thesis, I will describe the methods used to perform electronic structure and 
transport calculations for molecular devices. I will present the results of such cal­
culations for a variety of different metal-molecule junctions. In particular, I will 
investigate how errors in the approximations made in electronic structure theory 
affect the results of electron transport calculations.

In chapter two, I will give a brief introduction to density functional theory (DFT) 
[43], including the Kohn-Sham formalism [44] and the SIESTA [82, 83, 84] imple­
m entation. The self-interaction problem [71] and its consecjuences will be described, 
including the absence of the derivative (liscontinuity in approximate local exchange- 
correlation potentials [72, 73]. Both exact and approximate self-interaction correc­
tions (SIC) [71, 75] to remove these errors will then be described.

In chapter three, I will describe a simple model for electron transport in molecules 
[85]. Using this model, I will dem onstrate how certain features of the electronic 
structure of metal-molecule junctions, such as the level alignment, the strength of 
the interaction between the leads and the molecule, and the res[)onse of the level to 
changes in its occupation, affect the conductance.

In chapter four, the non-equilibrium Green’s function formalism (NEGF) [34, 35, 
36] will be described. It will be shown how this method has been combined with 
D FT to form the SMEAGOL program [37, 38, 39], and then used to calculate the 
electronic structure of infinite, non-periodic systems which have an external potential 
bias applied. I will also show how to use this method to calculate transmission 
probabilities and 1-V curves for such systems.

In chapter five, I will present the results of electron transport calculations for the 
BDT molecule attached to gold electrodes [74]. These calculations were performed 
using a self-consistent tight-binding Hamiltonian, which incorporated discontinuities
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into the dependence of the molecular orbitals on their occupation. This system will 
be used to study the effect of the derivative discontinuity on electron transport in 
molecular devices under a variety of different conditions.

In chapter six, the results of electron transport calculations for a variety of molec­
ular devices performed using self-interaction corrected D FT are presented. An ap­
proximate SIC, the atomic self-interaction correction (ASIC) [75], has been incorpo­
rated in to SIESTA, which forms the basis for the non-equilibrium transport code 
SMEAGOL. This method was used to perform calculations for molecular devices 
formed from BDT, BPD and BDMT sandwiched between gold electrodes, and the 
results are discussed.

In chapter seven, we move away from the self-interaction problem, and instead 
look at simulating STM electron transport measurements using SMEAGOL. In par­
ticular, the results of some ongoing calculations for alkanethiols on a gold surface 
will be presented. A comparison to some experimental measurements performed on 
a similar system [81] w'ill be made, and future directions for these calculations will 
be suggested.

Finally, the conclusions which can be drawn from this work will be discussed. 
Some suggestions for solving some of the remaining problems highlighted by the 
work in this thesis will also be discussed.
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Chapter 2

D ensity Functional Theory and 
Self-Interaction Errors

The molecular devices described in this thesis contain of the order of one hundred 
atoms, while the valence orbitals which need to be described may number in the 
thousands. Describing such devices accurately using computational techniques which 
w'ill produce results within a reasonable time frame is a major electronic structure 
problem. Many-body problems with large inimbers of particles do not have analytical 
solutions, and the exact numerical methods are infeasible as they do not scale well 
with increasing system size. Therefore, any electronic structure method used to 
calculate the properties of such devices will have to contain api)roximations. These 
include empirical methods such as the tight-binding method, and ab initio methods 
such as Hartree-Fock theory and density functional theory (DFT) [45, 86].

DFT is one of the most popular ab initio methods, particularly for large systems 
and electronic transport calculations, due to its blend of accuracy and computa­
tional efficiency. The main approximation in this method is in using local exchange- 
correlation functionals, which may contain self-interaction errors - the interaction of 
an electron with its own potential. Corrections to remove this self-interaction error 
will be described in this chapter, and the effects of these corrections on electronic 
transport calculations for metal-molecule junctions will be explored in later chapters.

The basic problem to be solved for any many-particle system in quantum mechan­
ics is the many-body Schrodinger equation, which takes the form of an eigenvalue 
problem for a Hamiltonian operator I I  acting on a many-body wave function ip, 
giving an energy E

fl^ = E^.  ( 2 . 1)

The full quantum mechanical Hamiltonian operator I I  for the many-body system

9
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has the  form

( 2 .2 )

( 2 .3 )

where Tj is the  position opera to r for the  i-th  electron and R /  is the  position 

opera to r for the  I - t h  nucleus. The first and second term s represent the  kinetic energy 

for the  the electrons w ith mass mg and the  rmclei w ith mass AJj. T he th ird  term  

represents the  Coulom b in teraction betw een the  nuclei, the foiu’th  term  represents 

the Coulom b in teraction between the  nuclei and the  electrons, and the  fifth term  

represents the  electron-electron in teraction.

T he first apj^roximation which can be m ade to  help simplify this problem  is the 

B orn-O ppeuheim er approxim ation, in which the  nuclear m otion and the electronic 

parts  of the  wave function are separated . T he masses of the  nuclei are much larger 

th an  those of the  electrons, so th a t in classical term s they move at a far lower speed 

th an  the electrons. Hence the electronic wave function can be separated  from th a t 

of the  nuclei as follows

fixed, and ju s t solve for the m any-body electron wave fimction.

Once the  B orn-O ppenheim er approxim ation has been m ade, and the  imclear part 

of the H am iltonian separated  out, th e  H am iltonian / /  for a system  of in teracting 

electrons can be w ritten  in the  form

where T  is the  kinetic energy, Vee is the  energy due to  the  electron-electron 

in teraction, and is the  external po ten tia l, which includes contributions due

the  in teraction  of the electrons w ith the  nuclei, as well as w ith applied electric fields.

=  ^(ri , r2, . . . , r , , . . . , ryv, ;Ri ,R2, - - - , R- / , - - - ,R.NA, )

=  V'e(ri, T2, . . . ,  r», . . . ,  ry v J^ /v (R i, R 2 , . . . ,  R / , . . . ,  R n n ) ■

( 2 .4 )

( 2 .5 )

Hence, an electronic struc tu re  theory  can tre a t the  positions of the nuclei as being

( 2 .6 )
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2.1 H artree-Fock Theory

One of the most popular methods for solving the electronic Schrodinger equation 
for many-particle systems is that of Hartree-Fock [45, 86]. It involves solving self- 
consistently for the many-body electron wave function.

Since electrons are fermions, the total electronic wave function must be antisym­
metric. This condition is trivially satisfied for a Slater determinant of single-particle 
wave functions 4>i{ ĵ)i so this makes a good initial approximation for the many-
body electronic wave fimction.

I'he single-particle wave functions 0j(rj) are usually modelled as localised orbitals, 
such as linear combinations of Gaussian-type orbitals. These orbitals are then used 
in a self-consistent calculation to minimise the total energy, which corresponds to 
the ground state of the system.

Hartree-Fock theory can be extended by using linear combinations of Slater deter­
minants to approximate the many-body electronic wave function. These additional 
determinants describe different configurations of the electrons in the molecule, i.e. 
they describe excited states of the system. This approach is known as configuration 
interaction [45, 86], and can be used to describe excitations and calculate electron 
correlation.

Unfortunately, Hartree-Fock calculations do not scale well with system size. The 
size of the calculation increases as N^, where N  is the number of basis functions. 
I'herefore, w'hile it is useful for small molecules and systems with periodic boundary 
conditions with small imit cells, it is not practical for calculating the large, extended 
molecule type devices with hundreds of atoms which are described in this thesis.

2.2 D en sity  Functional T heory

Density functional theory (DFT) [45, 86] w'as originally proposed by Hohenberg and 
Kohn [43]. They demonstrated that finding the ground-state many-body wave func­
tion is equivalent to obtaining the ground-state charge density. They also showed 
that the ground state charge density for a given potential is unique. Kohn and Sham

(2.7)

 ̂ i n F i n F )
H F

( 2 .8 )
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[44] then  used th is to  form ulate a m ethod where a system  of non-in teracting single 

particle  equations were solved instead to  obtain  the g round-state  charge density of 

the  real system .

2.2.1 H ohenberg-K ohn Theorem

H ohenberg and Kohn [43] showed th a t  the po ten tia l of a system  of electrons is 

uniquely specified by the  g round-sta te  charge density  for th a t  system . This can be 

proved by reductio ad absurdurn by showing th a t  there  being two different potentials 

which give the  sam e ground s ta te  charge density p{r) will result in a contradiction.

The fact th a t  the  charge density for a specific system  is unique allows it to  be 

used as the  relevant variable instead of the  m any-body wave fimction. This is hugely 

beneficial in term s of m aking large electronic struc tu re  problem s trac tab le , as w'hile 

the  w'ave function has to  be calculated for each particle, the charge density is given l)y 

a  single value a t each point in space. Thus, the 3N \ variables required to  specify the 

wave function a t a point in space are reduced to  the 3 variables required to  describe 

the  charge density.

Note th a t, stric tly  speaking, this theorem  is only valid for ground sta tes. For 

exam ple, unoccupied s ta tes  have zero charge density, and thus are m eaningless in 

s tan d a rd  D FT . Therefore, D F T  should not be used for applications w'hich involve 

em pty s ta tes  such as calculating band gaps in sem iconductors. One solution to 

th is problem  is to  used tim e-dependent D F T  (T D D FT ) [57], in w'hich electrons are 

tem porarily  excited into higher sta tes, allowing them  to be calculated.

2.2.2 K ohn-Sham  Equations

T he H ohenberg-K ohn theorem  shows th a t  finding the  groim d s ta te  of the  system  

is eciuivalent to  finding the  ground s ta te  charge density. Kohn and Sham  [44] were 

able to  m ap the  problem  of finding th e  ground s ta te  charge density  onto th a t of 

solving a system  of non-in teracting single-particle Schrodinger equations. This offers 

a practical m ethod  of solving D F T  problem s, which in principle can include any 

m any-body ground s ta te  electronic s tru c tu re  problem.

In order to  derive these equations, we s ta r t  by defining the  universal functional F  

of the  charge density  p{r) to  be the  m inim um  expectation value of siun of the kinetic 

energy o pera to r T  and electron-electron in teraction poten tia l \4e-

^[phPl\ = min(T' +  V e e )  , (2.9)
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where and pi are the  spin-up and spin-dow'n charge densities. This universal

functional F  can be broken into th ree parts

^[pT.Pi] =  T [ P h P i \  +  ^ [ p \  +  E x c [ p ] ^ p i \  ■ (2.10)

where T [ p |,p J  is the “non-in teracting” kinetic energy, U[p] is the  “H artree” en­

ergy (i.e. the  classical Coulom b energy), and Exc[P]^P[] is the  “exchange-correlation” 
energy. The spin charge densities, p„, can then  be w ritten  as a sum  over a set of 

orthonorm al orb ita ls ^ o a (r) , which are weighted by Fermi functions 0 <  faa <  1

P a ^ Y l  ;p = p^ + Pi . ( 2 . 1 1 )

T he “non-in teracting” kinetic energy, T[p],pi \  can be defined in term s of these 

orthonorm al orb ita ls as shown in equation (2.12), where the  m inim um  is taken over 

the  all possible values of and 'ipaa which produce th e  given spin charge densities.

X ^ / a a ( V ' a a ( r ) |  \^ a a { r ) ) ( 2 . 1 2 )

'riie H artree energy, U[p], is the energy due to  th e  classical Coulom b electron- 

electron in teraction, and so has the form

U[p] =  I jd r̂ j  d3̂ ,pir)p(r'} 
|r — r'l

(2.13)

The exchange-correlation energy, Exc ,  contains the  rem aining j^art electron- 

electron in teraction energy. The exact form of th is energy is as yet unknown, and 

m ust be approxim ated. Various approxim ations to  th is energy which are ciuTently 

in use are described in section 2.2.4.

T he variational principle gives th a t  ( / / )  >  E^ ^ ,  where E*^^ is th e  ground sta te  

energy, so th a t

^[pT>Pi] +  - (2-14)
i

where v{Vi) is the p a rt of the  po ten tia l which is no t due to  electron-electron 

in teractions, and includes the  po ten tia l of the  atom ic nuclei as well as any external 

aj^plied electric fields. Next we can in troduce E,  which is the  expectation  value of the  

m any-body electron H am iltonian, w ith resj)ect to  the  o rthonorm al orb itals 'ipaai'^)
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^  =  ^[PhPi \  +  J  d^rv{r)p{r)

= Jaa{'lpaa{r)\ { ) |V'aa(r)) +  U[p]

+  Exc[p],pi ]  +  !  ( f rv{r )p{r )  .

To find th e  ground s ta te  of th e  system , this has to  be m inimised w ith respect 

to  tlie orthonorm al orbitals tpaai^), sub ject to  the constra in t th a t the orb itals are 

norm alised. To handle this constrain t, in troduce the Lagrangian nuiltipliers Caafaa 

to  get the  Euler equation

E  - ^ e a ' a ' f a ' a '  J  d ^ r ' \ j p a a { r ) ( ^ =  0 . (2.15)

D ifferentiating E  w ith respect to  the  wave function using the  relationship

between the  wave function and the  charge density given in equation (2.11), gives the 

following result

(2.16)

Inserting th e  result from equation (2.16) into equation (2.15), an equation for 

and can be obtained

aa
+  K?,EFF (2.17)

a<7

This can be separated  into a set of Schrodinger-like equations for the effective 

po ten tia l w ith eigenvalues These are the  Kolm -Sham  equations, and can

be w 'ritten as follows

V ’a c r ( ^ )  ^ a a ^ a a i ^ )  ■ (2.18)

T he effective poten tial, V^pp, in the  Kolm -Sham  equations is defined as

VITff =  ^ (r)  +  Vnip) +  V^ciP,^)  ■ (2T9)

T he Coulom b or H artree poten tial, I4 i(p (r)), is given by the  derivative of the 

Coulomb energy U[p] w ith respect to  the  charge density  p{r)

( 2 .20 )
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The Hartree potential for a given charge density /9(r) can be obtained by solving 
the Poisson equation for th a t charge density

- W H ( r )  =  p( r ) .  (2.21)

Similarly, the exchange-correlation potential, Vxct is given by the derivative of 
the exchange-correlation energy Exc  with respect to  the charge density p{r)

^ x c  =  j ^ ^ E x c [ P h P l ]  ■ ( 2 .22 )

The Kohn-Sham set of equations (2.18) can then be solved to obtain the Kohn- 
Sham eigenvalues Caa tlie Kohn-Sham eigenvectors ipaa, and these are then used 
to construct a new charge density p(r). The new potential (which is a fimctional of 
the charge density) is then calculated, and the procedure is repeated self-consistently 
until the charge density converges. Since the Hohenberg-Kohn theorem shows th a t 
the ground-state charge density is unique, this will be the charge density of the actual 
system.

The Kohn-Sham eigenvalues are the eigenvalues of the fictitious, non-interacting 
Kohn-Sham orbitals, and as such do not necessarily correspond to physical observ­
ables. The actual observables obtained from DFT are additive properties such as 
the total energy or the charge density. For example, the total electronic energy of a 
system is equal to the sum over the eigenvalues of the occupied Kohn-Sham states, 
along with terms to correct the electron-electron interaction [45],

E’vo t =  X] ./(e, -  Ev)ei -   ̂J  ~  j  ̂’xc(r)p(r)rt'r , (2.23)

where /  is the Fermi distribution and Ep- is the Fermi energy. To get the total 
energy of the system, the energy due to  the interactions between the nuclei would 
also have to be included. The expression for the charge density is the sum over 
the Kohn-Sham orbitals, weighted by a set of Fermi functions as shown in equation 
( 2 . 1 1 ).

2.2.3 K ohn-Sham  eigenvalues

The Kohn-Sham eigenvalues, taa-, are the eigenvalues of the single-particle Kohn- 
Sham equations. They are the eigenvalues corresponding to the Kohn-Sharn orbitals, 
which are a set of fictitious, non-interacting orbitals. As such, they do not necessarily 
correspond to the single-particle energy levels of the real system. However, in practice
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Kohn-Shain eigenvalues are often used to calculate band structures for materials, i.e. 
they are interpreted as single-particle energies. Additionally, in electronic transport 
calculations, the resonances in the transmission coefficients correspond to the position 
of these eigenvalues. Hence, it is important to understand what these eigenvalues

the derivative of the total energy with respect to its occupation, and hence that the 
highest occupied Kohn-Sham eigenvalue (the Kohn-Sham HOMO) is equal to the 
negative of the ionisation energy of the system.

In order to prove this theorem, the function E  is first rewritten so that the 
dependence on the orbital occupation, faa, is explicit

But, using the Kohn-Sham equation (2.18) and assuming the wave functions are 
normalised gives

Hence, the derivative of the energy with respect to the occupation of a state is 
equal to the Kohn-Sharn eigenvalue of that state

interpreted as the ionisation potential of the system, as removing one electron from

in principle, this eigenvalue should correspond to the highest occupied orbital of the 
real system. This is the only energy level among all of the Kohii-Sham states which 
is directly interpretable in terms of a single-particle energy.

do physically correspond to. Janak [87] showed that the Kohn-Sham eigenvalue is

aa aa

Differentiating E with respect to the orbital occupation gives

(2.25)

—  ^ a a  • (2.26)

This allows the eigenvalue of highest occupied Kohn-Sham orbital, enoMo

this level changes the total energy of the system by an amount Chomo- Therefore,
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2.2.4 Exchange-C orrelation Energy

The exchaiige-correlation (XC) energy, E x c - ,  includes all of the contributions to the 
energy coining from non-classical electron-electron interactions, including the fact 
th a t the “real” many-body wave function may not be a simple Slater determ inant. 
Unfortunately, there is no analytic or numerical expression for the exact form of E x c -  

The exact form of the exchange energy, i?EXX) which is used in Hartree-Fock theory, 
is given by

^EXX =  2 ^  ^  f a a f a ' a  J  d ^ r  j

However, this expression is non-local and involves calculating complicated inte­
grals. Also, it does not include electron correlation effects, and so is not the full XC 
energy.

Generally, in D FT calculations, approximated local exchange-correlation poten­
tials are used. The two approximations which are used most often are the Local 
Density Approximation (LDA) [44] and the Generalised Gradient Approximation 
(GGA) [59, 60, 61]. Both of these are local approximations in th a t the potential at 
a particular point only depends on the charge density and /or its derivatives at tha t 
point. More sophisticated api)roximations include “exact exchange” formulations, 
which use the full, exact form for the exchange energy [88] with local correlation. 
However, these methods are more demanding computationally, and have not yet been 
implemented for finite bias calculations.

I ’he simjilest approximation for E x c  is LDA, and its spin-polarised version, the 
Local Spin Density Approximation (LSDA) [44]. In this, the exchange-correlation 
energy at a point is taken to be equal to th a t of a uniform electron gas of th a t density 
at th a t point

Z7.LSDA^xc =  J  dV p(r)exc(p^P^) • (2.28)

where exc is the exchange-correlation energy density for the uniform electron gas. 
This approximation can be extended to produce GGA [59, 60, 61] by including 

terms depending on the gradient of the charge density. One formulation of GGA is 
the Pcrdew-Burke-Enzerhof (PBE) [61] form

I ^ x S ^  =  J  d \ F { p \ p ^ , V p ^ , V p ^ ) (2.29)
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GGA should describe systems in which the charge density fluctuates raj)idly bet­
ter than LDA does. GGA is popular in the chemistry conmiunity where it is used 
to calculate bond lengths in molecules, which are corrected somewhat compared to 
LDA. However, for bulk materials such as metals in w'hich the charge density does 
not vary rapidly, LDA may give results which compare better to experiments.

Unfortunately, there are problems with both GGA and LDA functionals, partic­
ularly when describing strongly correlated systems where the charge density varies 
rapidly or is extremely localised, i.e. for systems which are very difTerent from a ho­
mogenous electron gas. One of the most significant of these is the self-interaction er­
ror described in section 2.6, where an electron interacts with the exchange-correlation 
potential generated by itself. This in turn  can have the effect of obscuring the deriva­
tive discontinuity described in section 2.6.1. Also, ionisation potentials in molecules 
and the position of the valence band in semiconductors are frequently calculated 
incorrectly using these potentials. Local potentials such as LDA and GGA also fail 
to describe non-local effects, such as Van der W aal’s forces.

Another failure of local XC functionals is their response to an external applied 
electric field. The part of the field originating from the XC potential induced in 
response to the applied field should be such as to coimteract the external held. This 
is the case with exact XC potentials. However, for LDA or GGA, the induced Held 
is in the same direction as the external field. This results in the i)olarisability of 
molecules being overestimated, particularly conjugated polymers. This may have 
im portant implications for electronic transport calculations, where an electric field is 
applied to a molecular junction. Such a failure can be corrected using exact exchange 
based functionals, or by using self-interaction corrected functionals [89, 90]

One method of correcting for the effects of strong localisation is the LDA-FU 
scheme [91], in which the exchange-correlation energies of highly localised orbitals 
is replaced by the Hubbard U energy [92]. This method involves two parameters, 
U and J, which need to be fitted for each orbital of each species for which they are 
used, so tha t the calculations are no longer strictly ab initio. The self-interaction 
error can also be removed directly, as described in section 2.6.

O ther formulations for the exchange-correlation potential include hybrid function­
als such as B3LYP [93, 94], which involves combining LDA, GGA and Hartree-Fock 
exchange and is mainly used in chemistry. There are also “rneta-GGAs” [95] which 
incorporate higher order derivatives of the charge density.
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2.3 P seudop otentia ls

Most of the chemical, electronic and structural properties of materials are determined 
by interactions between the outermost or “valence” electrons. The energy of the inner 
or “core” electrons is usually much lower, and so they are unlikely to  be available 
for bond formation or electrical conduction. Therefore, it is often not necessary to 
explicitly include these core orbitals in the self-consistent calculation.

The pseudopotential approximation involves removing the core electrons and the 
nuclear potential and replacing them  by a weaker effective potential called a “pseu- 
dopotential” [86, 96]. This has the advantage of reducing the to tal number of particles 
in the calculation, which in turn  can significantly improve com putational efficiency. 
For example, a set of valence orbitals consisting of just the 5d, 6s, and 6p orbit?Js 
tends to describe gold very well, with all of the lower energy electrons, in the Is, 2s, 
2p, 3s, 3p, 3d, 4s, 4p, 4d, 4 / ,  5s, and 5p orbitals included in the pseudopotential. In 
this way, a gold atom can be described by just 11 electrons, and not by 79. Which 
orbitals are required to be included in the self-consistent calculation will vary from 
species to species, and will also depend on which properties need to be described 
accurately.

This pseudopotential acts on a set of pseudo wave functions rather than on the 
true valence wave fimctions. The true wave functions may oscillate wildly near 
the core in order to be orthogonal to the core states. However, the pseudo-wave 
functions can be constructed so tha t they behave smoothly in the core. This in turn 
will improve com putational efficiency and stability, removing singularities which may 
cause problems. The pseudo-wave function is constructed so as to m atch the true 
wave function outside of a certain cut-off radius T c , as shown in figure 2 . 1 .

The pseudopotential wave fimctions are constructed such tha t the scattering prop­
erties of the atomic orbitals are preserved. As these are, in general, different for each 
angular momentum channel, the pseudopotential is angular momentum dependent. 
Hence, a pseudopotential must be constructed for each angular momentum channel 
used in the calculation [86, 96].

There are several difTerent methods which can be used to generate pseudopo­
tentials. The method generally used in calculations presented in this work is the 
Troullier-M artins param eterisation [96].

To calculate the pseudopotential for an angular momentmn channel /, the radial 
Kohn-Sham equation is solved self-consistently to obtain the all-electron atomic wave 
function for angular momentum channel /, and its eigenvalues e/
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—  True W ave Function
— Pseudo W ave Function

Figure 2.1: lYue (all-electron) and pseudo wave functions as a ftniction of atomic radius r.
Inside the cut-off radius ?’c, the true wave functions oscillate rapidly whereas 
the pseudo wave functions do not. The two wave functions match outside the 
radius ?v.

where V{p , r )  is the to ta l D F T  po ten tia l for the atom  given by

- Z

(2.30)

(2.31)V{p,  r) =  -h Vw{p,r) + Vxc{p{r))  .
r

T he charge density  for the  atom , p (r) , is the  sum  over the  atom ic wave functions 

I '^nF- pseudo-wave-fuuctions, are then constructed  such th a t  they have 
no nodes, th a t  they  m atch the  true  atom ic wave functions outside some cut-off radius 

Tf. as shown in figure 2.1, th a t charge is conserved, and so th a t  they give the  sam e 

eigenvalues e„/ as the  true  wave functions

€ f { r )  =  >  r,; T  \^P^J{r)\^r^dr =  T  \i^::p{r)\^r^dr . (2.32)
^0 Jo

Once these pseudo-wave-functions have been constructed , the corresponding pseu­

dopotential can be obtained by inverting the  radial Schrodinger equation

1
r^nfir (2.33)

2 r ^  ' 2rip^^{r) dr'̂
However, th is is the screened pseudopotential, i.e. the  poten tia l screened by 

the valence electrons. T he screening by th e  valence electrons depends on the envi­

ronm ent in which they  are placed, so th is pseudopotential cannot be used for bulk



21 Chapter 2

calculations. Instead, the ionic pseiidopotential, V^ioN(r), is calculated by subtracting 
off the Hartree and exchange-correlation potentials due to the valence pseudo-wave- 

functions, and Vxci'^)

ViONir) =  V^^r)  -  -  Vxcir)  ■ (2 .3 4 )

Note th a t each angular momentum component I sees a different potential. Thus,
the ionic pseudopotential operator can be split up into a local part, and a non-local
part which is angular momentum dependent

=  '^ION,Local(^) +  ^  , ^lON.Nonlocal, • (2 .3 5 )
I

where Pi is an operator which projects out the angular momentum component 
of the wave function. Thus, the non-local part of the pseudopotential for angular 
momentum channel I is

'^lON.Nonlocal, (^ )  =  ^ O N ,(^ )  “  ^O N,Local(^) • (2 .3 6 )

The non-local part of the pseudopotential, V̂ion Noniocai, ( )̂> i® actually semi-local 
in th a t it has a radial dependence which is local and an angular momentum depen­
dence which is non-local. This introduces long range interactions into the Hamilto­
nian, thus increasing the number of m atrix elements of the Hamiltonian which have 
to be calculated. Hence, it is transformed to a fully non-local form using Kleinman- 
Bylander projectors [97]

I  ^ O N ,N o n lo c a l ,  ( ^ ) ^ 0 , ^ ( ^ ) )  (<?^of(^) '^ IO N ,N onloca l ,  ( ^ )  I  

'  ■  ( C ( ^ ) I ^ . O ^ N , N o n l o c a l , ( ^ ) I C ( ^ ) )

1 / K B  /  \  I I W i N  ,iNUlllUCclJ/ \ /  ' \ / /  \  ' KJI \  / 1 WIN ,lNUlllUCcll/ \  /  I / O

M O N ,N onlocal, “  T^ZPSTZVTTTPS /„ M

where (pQ^(r) is the atomic pseudo-wave-function for angular momentum channel
/ .

Thus, a pseudopotential for each atomic species in the calculation can be con­
structed in advance. A pseudopotential must be constructed for each angular mo­
mentum channel present in the calculation. Care must be taken to use the same 
exchange-correlation functional to generate the pseudopotential as is used in the self- 
consistent calculation for the valence electrons. Pseudopotentials should be tested 
before use to check tha t they produce the same energy levels as an all-electron calcu­
lation for a variety of electron configurations. This ensures transferability, allowing 
the pseudopotentials to be used for systems where there is charge transfer between 
atoms.
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2.4 T he B asis Set

In order to solve the Kohn-Sharn equations, either equations must be solved directly 
in real space by writing the wave functions and the charge density over a numerical 
grid (which can be com putationally expensive), or the Kolm-Sham orbitals must be 
w ritten over a basis set. One, relatively conceptually simple basis set is constructed 
from a linear combination of plane waves

V'i(r) =  X !  exp(<k ■ r) . (2.38)
k

Plane wave basis sets have the advantage of being easy to improve systematically 
by increasing the number of plane waves. Operators and the charge density are 
also easy to calculate with this type of basis set, due to the efficiency of the Fast 
Fourier Transform algorithm. However, they have the disadvantage of needing a 
large number of fimctions to describe localised orbitals, and also of using many basis 
functions to describe vacuum regions where there is little charge density. Hence, they 
tend to be more useful for descriljing bulk systems, particularly metals, but rather 
inefficient when it comes to describing isolated molecules.

Another type of basis set which can be used is a localised basis set, where Kohn- 
Shani wave functions are approximated by a linear combination of atomic orbitals

V;.(r) =  5 ] c ; 0 K r ) .  (2.39)
I

Here, (f>i{r) are atomic-like orbitals. These can be Gaussian, Slater or numerical 
orbitals. The advantage of such a basis set is tha t it describes localised orbitals well, 
and does not waste a large number of basis functions describing vacuum. However, 
they are more difficult to improve systematically than plane wave basis sets.

2.5 T he SIESTA Im plem entation  o f D FT

There are several different numerical implementations of density functional theory 
available. They mostly differ in the form of the basis set used to represent the Kohn- 
Sham orbitals. The implementation used to perform the calculations described in 
this thesis is th a t contained in the “Spanish Initiative for the Estimation of Systems 
with Thousands of Atoms” or “SIESTA” [82, 83, 84]. SIESTA uses a localised basis 
set consisting of numerical atomic orbitals which are the product of a numerical radial
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function and a real spherical harmonic. The atomic wave function for an orbital n  

on an atom /  located at position R/ is given by

The angular momentiun nimibers are I and m, and r/ =  r — R/. The radial 
functions 0/;„ are defined numerically using a cubic spline interpolation on a fine 
mesh.

To calculate a minimal basis set (known as a single-(^ basis set), the method of 
Sankey and Niklewski [98] is used, where the basis orbitals are the eigenfunctions 
of the pseudoatom. The radial function (pi for angular momentum channel I is the 
eigenfunction of the pseudopotential for that angular momentum, K/’®, for an energy 
e; +  Sci, where 6ei is chosen so that the first node of the eigenfunction occurs at the 
cut-off radius r f

w'here 4>i{rf) =  0. Alternatively, 6ei can be fixed instead, and then r f  for that

of the Hamiltonian and thus improving computational efficiency.
To allow more variational freedom in the calculation, a “multiple-^” basis set can 

be used, where there is more than one Vjasis function [)er atomic orbital. The spherical 
harmonics remain the same, but new “higher-^” radial functions are constructed. To 
generate such a basis in SIESTA, the “split-valence” method is adapted to numerical 
atomic orbitals [82, 83]. The “higher-^” functions have the same tail as the first C 
(original) fimction beyond a split radius r f ,  but change to a polynomial behaviour 
inside this radius. Hence, the second orbital is of the form

The constants a; and bi are determined by condition that both the wave function 
and its first derivative must be continuous at r  =  r®.

higher orbital momentum are included while the radial functions remain unchanged

4'Ilm n ■ (2.40)

(2.41)

orbital will be the position of the first node in the wave function. This radial cut-off 
of the basis functions reduces the number of overlap integrals, increasing the sparsity

(2.42)

Polarised orbitals can also be constructed to account for the deformation induced 
by bond formation. These are basis orbitals in which the spherical harmonics with

(2.43)
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Once the basis orbitals have been constructed, the Kohn-Shani Hamiltonian ma­
trix elements can be obtained from integrals of the form

= - ^  J  </>j(r^Ri)VVj(r-R-j)*+y 0 j ( r - R i ) V E F F ( r ) 0 j ( r - R j ) r f r .  (2.44)

where R j is the position of the atom.
^EFp(r) is the effective Kolm-Sham potential described in equation (2.19), which 

is a functional of the charge density. First, an initial charge density, po, is constructed 
from the atomic charge densities. The exchange-correlation potential part of VEFp(r) 
can be calculated as described in section (2.2.4). The Hartree potential, Vu, can be 
calculated by solving the Poisson equation (2.21) in reciprocal space using a Fast 
Fourier Transform (FFT) algorithm. Therefore, this part of SIESTA method requires 
the system to have periodic boundary conditions.

This Hamiltonian matrix can then be diagonalised to obtain the eigenvalues, ĉ , 
and eigenvectors, of the Kohn-Sham equations. The Kohn-Sham eigenvectors
are linear combinations of the SIESTA t>asis functions

= (2.45)
j

These can then be used to calculate the new density matrix, which in turn can 
be used to calculate a new effective potential. This procedure is repeated until the 
density matrix converges.

This localised basis set allows SIESTA to accurately describe systems with thou­
sands of orbitals without using an uiu'easonable amount of computing resources. In 
fact, there is a method imder development which would allow SIESTA to scale lin­
early with system size - the so-called o r d e r - m e t h o d  [62]. Also, the tight-binding 
like Hamiltonian which the localised basis set produces is easily incorporated into 
the non-equilibrium Green’s function method, which is the formalism which is used 
to calculate the electron transport.

2.6 T he Self-Interaction Error

In the local and semi-local exchange-correlation potentials used in DFT calculations 
such LDA and GGA described above, there is a problem in that the interaction of 
an electron with itself is non-zero. This must be corrected for in order to accu­
rately describe highly localised systems in particular [71]. These self-interaction er­
rors are responsible for local functionals producing incorrect ionisation potentials for
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molecules due to  the  ex tra  electron-electron in teraction  energy. They also con tribu te  

to  incorrect positions being calculated for the  valence bands for sem iconductors and 

to  the  absence of a derivative discontinuity  in the  energy a t integer occupation.

For a  =  a ' ,  i.e. th e  in teraction  of an electron w ith itself, th e  exact exchange 

energy given in equation (2.27) becomes

a  a  '

= \  I  <er I  ^  . ( 2 .47 )

Qa

Therefore, for exact exchange, the  self-interaction errors in the  Coulom b and 

exchange energies cancel each o ther out

U[paa] +  E eXx IPoct, 0] =  0 . (2.48)

However, for an approxim ate local exchange-correlation energy such as

LDA or GGA, the self-interaction energy can be non-zero.

f/[Paa] +  ^ x r ° " [ P a - 0 ] 7 ^ 0 .  (2.49)

This is the self-interaction error. The self-interaction corrected exchange correla­

tion  energy, , can then  be defined as [71]

/?xc =  Pll -  E  • (2.50)
a (7

where Saa is the self-interaction correction for the  Kolm -Sham  orbital ipaa, and is 

equal to the sum  of the  Coulom b and exchange-correlation self-interaction energies

<̂ aa =  t / k . ]  +  ^ x ” [Paa,0], (2.51)

where paa =  \i^aa\^ is the  charge density  associated w ith the  K ohn-Sham  orbital 

T here is now a new system  of single-particle Schrodinger equations from which 

one can calculate a new set of orb itals and occupations

[-^V " +  . (2.52)

riie new effective po ten tia l is o rb ita l dependent and is given by

=  ["(r) + V„{p) +  r)| -  r) +  0|; r ) | . (2.53)
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I ’he term  which has been sub trac ted  off in equation  (2.53) is the SIC po ten tia l 
for orbital

=  VniPaa, r)  +  0]; r)  . (2.54)

Thus the  SIC affects th e  eigenvalues of the  system  in two ways: directly via the  

correction to  the poten tia l and indirectly  via the  changes to  the  orbitals in going 

from ip a a  to

The problem  of finding the  energy m inimum is com plicated by the  fact th a t the 

po ten tia l is o rb ita l dependent and is not invariant under un ita ry  ro tations of 

the  occupied KS orbitals, which instead leave p invariant. This can be avoided by 

in troducing a second set of orb itals related to  the  canonical KS orbitals ■0"'̂  by 

a un itary  transform ation  M

lpct(j ^   ̂ ^^acnn4^a<j • ( 2 .0 0 )
m

'H ie energy functional can then  be minimised by varying bo th  the  KS orbitals and 

the  un itary  transform ation  71/, leading to  the system  of KS-like ecjuations

/ / > .  =  [ir, +  A K f f  ]t^„.(r) =  e^*„">„.(r) , (2.56)

w'here / / q is the  H am iltonian for the approxim ate uncorrected exchange-correlation 

fm ictional. T he new' SIC po ten tia l, can then  be w ritten  as

= E = E
Wctam  m

where is the  pro jector \(paa){4^aa\- 

2.6.1 D erivative D iscontinuity

In the  electronic tran sp o rt calculations using the  N E G F formalism described in th is 

work, the to ta l num ber of particles on the  molecule is not necessarily conserved. 

Therefore, it is possible for there  to  be a non-integer num ber of electrons on the

molecule. Hence it is im portan t th a t the form ulation of D F T  used for tran sp o rt

calculations gives accurate results for fractional occupation.

Perdew et. el. [72, 73] extended D F T  to work for non-integer occupation. In doing 

so, they showed th a t  the  exact exchange-correlation functional (which is unknown) 
m ust have a “derivative discontinuity” in the  energy a t integer occupations, otherwise 

molecules would dissociate w ith non-integer particle  im niber a t large separation. This
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“derivative d iscontinuity” refers to  a d iscontinuity  in the derivative of th e  energy w ith 

respect to  occupation.

To extend D F T  to  describe charge densities for a non-integer num ber of electrons, 

let N  = M + lo, where M  is a non-negative integer and 0 <  a; <  1. T he wave function 

will then  be a s ta tis tica l m ix ture  of ipM (the  wave function of the M  electron s ta te  

giving a density  p m ) and 'ipM+i (the wave function of the  M  + 1 electron s ta te  giving 

a density  Pm +i )- T he respective probabilities of each s ta te  are \  — uj and u ,  since 

(1 — (jj)M uj{M + 1) =  M  -I- a;. Hence the  final charge density  is given by

p(r) =  (1 -  oj)pM{r) + ujpM+\{v) ■ (2.58)

M inimising the  to ta l energy w ith respect to  num ber conserving variations of the 

charge density p { y ) yields the  lowest average energy th a t can be achieved l)y M  + to 
electrons

E  = {I -  uj) E m  + u) E m +i . (2.59)

This is true  for all ensembles giving density  p{r) w ith M  +  co electrons provided

E m  vs. M  is concave upward (which it usually is for electrons [71]). A plot of 

th is energy E  versus particle num ber N  is shown by the  solid line in figure (2.2). 

T he energy changes linearly between integer occupations. T here is a kink a t integer 

occupation which is the  derivative discontinuity.

Given th a t  the chemical po ten tia l is p  =  and N  =  M  + u ,  where M  is a fixed 

integer, we find th a t  =  A*-
If Z  is the  nuclear charge, and hence the  num ber of electrons on the  neu tra l atom ,

then  for Z  — 1 <  <  Z , A/ =  Z  — 1, // is given by

d E
E  = {1 — u j )Ez - \  + ioEz  ^  p  =  =  E z  — E z - i  ■ (2.60)

OUJ

Similarly, for Z  <  <  Z  -|- 1, A/ = Z,  p  is given by

B E
E = { 1 -  lo) E z  + u E z + i  ^ p  = —  = Ez+x -  E z  . (2.61)

OU)

Now, the  ionisation po ten tia l I  is E z - i  — E z  and electron afl^inity A  is E z ~  Ez+i-  

Therefore

_  r - I  =  E z - E z - i  i f z - i < y v < z ;
\  - A  = E z +1 - E z  i i Z  < N  < Z + \ .   ̂ ’

Therefore, for N  tending  to  Z  from below; i.e. N  Z , N  < Z\  then  =  —I.

However, for N  tending to  Z  from above; i.e. N  ^  Z,  N  > Z] then  =  —A.
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 Exact
-  -  LDA
 H artree-P’ock

E

0.0 1.0 2.0N

Figure 2.2: A schematic illustration of the energy as a function of occupation. The “exact” 
energy is that given by the extension introduced by Perdew et. al. described 
here. The energy given by LDA does not have a derivative discontinuity at 
integer occupation. Hartree-Fock does have a derivative discontinuity, but the 
total energy is usually higher than it should be.

Hence, there  is a d iscontinuity  in of size /  — /I a t integer occupations. This is 

th e  derivative discontinuity.

From  equation (2.26), we have th a t the  derivative of the  energy with respect to 

the  occupation of highest occupied K ohn-Sham  orbital (the HOM O orbital) is ecjual 

to  the  K ohn-Shain eigenvalue associated w ith th a t orbital. Hence, a discontinuity  in 

the  derivative of the  energy would correspond to  a discontinuity in the KS eigenvalue, 

as shown in figure 2.3.

N ote also th a t  the chemical po ten tia l, //, of the system  has already been show'n 

to  be equal to  // =  where uj is the  occupation of the final orbital. Therefore, the 

chemical po ten tia l is the  sam e as the  eigenvalue of the highest occupied Kohn-Sham  

orb ita l. Thus, the  discontinuity  in the  KS HOM O is the  sam e as the  discontinuity 

in th e  chemical po ten tial.

This derivative discontinuity  explains the  dissociation of atom s at large separa­

tion. Consider two w ell-separated atom s X  and Y  in an otherw ise em pty universe. 

T he two atom s have different chemical po ten tia ls i i x  and //>-, w ith f i y  <  f i x ,  as 

shown in the d iagram  in figure 2.4.

T hen shifting 8 N y  >  0 electrons from X  to Y  will reduce the energy by a factor

SEx y  —  im'  —  0 (2.63)
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HOMO

Exact

LDA

0.0 1.0 N 2.0

Figure 2.3: A schem atic illustration of the derivative of the energy as a function of oc­
cupation. T he “exact” energy is th a t given by the extension introduced by 
Perdew et. al. [72, 73] described here. The energy given by LDA does not 
have a derivative discontinuity at integer occupation. Hartree-Fock does have 
a derivative discontinuity, b u t the to ta l energy is usually higher th an  it should 
be.

T herefo re  th e  to ta l  energy  E \ y  w ould be  m inim ised  by hav ing  a n e t j)Ositive 

charge on X  an d  a  n e t negative  charge on Y . T h is w ould be  tru e  for any  sep a ra tio n , 

b u t is n o t tru e  in reality.

The existence of the derivative discontiiuiity of size /  — >4 at integer occupation 
as described above solves this problem. Adding an infinitesimal charge to a j)revi- 
ously unoccupied orbital would cause it to jumj) discontinuously. Hence, the lowest 
unoccupied molecular orbital (LUMO) of the N  electron system would not be the 
same as the highest occupied molecular orbital of the N  + 5 electron system; i.e.

^HOMo(^ +  (̂ ). Instead of the energy of a KS eigenstate increasing lin­
early as charge is added, it should shift in a stepwise fashion as shown in figure 2.3, 
so tha t adding a fraction of an electron would cause the level to move up to the same 
point as adding a full electron. The chemical potential and Ehomo coincide, so jj, also 
jum ps discontiiniously hy I — A  when a fractional charge is added. Hence, transfer­
ring a fraction of an electron from atom  X to atom  Y  would cause i îy to change by 
I — A, while //>' remained the same. Since /  — 4̂ > 0 for all atoms, this would not 
be energetically favourable, and hence fractional charges are not exchanged between 
atoms at large separation.

The exchange-correlation potential, Vxc-, is given by the derivative of the exchange- 
correlation energy with respect to the charge density. Hence, the derivative
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D)
Q)
C

LU

6 N

Figure 2.4: Two well-separated atoms X and Y, with f i Y  <  M.Y- E)oes a transfer of charge 
6Ny  result in a lowering of the total energy of the system?

discontinuity in the energy implies th a t  there is also a discontinuity present in (he 
I)otential.

Part of the reason for the absence of the derivative discontinuity in approximate 
local functionals such as LDA and GGA is due to the self-interaction error. The 
interaction energy between two electric c'hai’ges is proportional to the product of 
these charges. Hence, if the charge density on a specific orbital is p a a ,  then the 
self-interaction energy due to tha t orbital w'ill be proportional to Therefore, 
a total energy calculated using a Hamiltonian which contains self-interaction errors 
will contain a term  w'hich is quadratic in the occupation of a specific orl)ital i p a a -  

Hence, the derivative of the energy with respect to p a a  (which, from Janak’s theorem 
is the Kolm-Sham eigenvalue of tha t state, C a a )  will have a term which is linear in

Paa

d E
Cq,(j — ~  Paa “!“ • • • •  (2-64)

^ P a a

Therefore, the self-interaction error causes the derivative of the energy with re­
spect to the occupation to be linear rather than discontinuous. A full self-interaction 
correction should remove this linear term, and at least partially restore the discon- 
tiimity.
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W ithout Derivative Discontinuity

X Y —  •  «  ►-
X Y

With Derivative Discontinuity

■ m — • —  ..........................................  — • — «—  — ►

X Y — ►

Figure 2.5: Two well-separated atoms X  and Y, where the LUMC) of Y is below the 
HOMO of X. If no derivative discontinuity is present, a fractional charge can 
be transferred between the atoms, and the levels will move in proportion to the 
amoinit of charge exchanged as shown. However, if the derivative discontinuity 
is present, transferring a fraction of an electron onto the LUMO of Y  will cause 
it to shift upwards as if an integer electron was transferred, while the HOMO 
of X will not shift downwards until an entire electron is transferred out.

2.6.2 Atomic-SIC

The full self-interaction correction described above is orbital dependent and conipu- 
tationally very costly. It is difHcult to implement for extended systems and periodic 
boundary conditions, which are required by the SIESTA implementation. These 
problems can be solved by using an atomic approximation to the full self-interaction 
correction known as ASIC [75]. This approximation is based on pseudo-SIC method 
in which the self-interaction corrections are included in tlie pseudopotential, as sug­
gested by Vogel et. al [99] and extended by Filipetti et. al [100].

First, the orbitals introduced in equation (2.55) which minimise the SIC func­
tional are assiuned to be atomic-like orbitals , so tha t the SIC potential becomes

E  -  E  ’ (2-85)
m m

where and are the potential and projector associated with the atomic orbitals

^ r n  ■

The potential for each atomic orbital is already calculated at the pseudopo­
tential generation stage. Therefore, the self-interaction correction to the potential 
can be calculated for each atomic orbital, and then added on to the pseudopotential 
for tha t orbital. The Kohn-Sham single particle all-electron equation for an orbital
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a  in an atom  using a self-interaction corrected LDA exchange-correlation po ten tia l 

is

9 7
[ - V ^  “  ~  +  ^ x c ^ ( p )  -  Vll(Pa) -  Kxc^(pa,T,O)]'0c. =  • (2 .66)

Replacing the  po ten tia l term  — ̂  by a pseudopotential V"ps,a gives the equation 

for the  pseudoatom

[-V2 +  Vps,a+V^H(p') +  V^XC^P')-V^H(p.)-VSc"c°^(Pa,T,0)]^PS,a =  e ^ ^ P 5 . a  , (2.67)

where p' is the  to ta l charge density of the  valence pseudo-wave-functions. Thus, 

a self-interaction corrected pseudopotential for orb ita l a ,  Kps^, can be defined as

V̂ PŜ a =  W  -  VuiPa) -  V^XC (̂Pa.T, 0) =  KpS.a +  • (2.68)

However, Vpg^ has a long range tail and so needs to  be ad justed  to perform  bulk 

calculations. Fortunately, atom ic charge densities are localised so long range tails 

have only a small effect on the  energy eigenvalues. The im portan t term  is th a t of 

the SIC Coulom b po ten tia l acting on the  wave function, i.e. V u { p a ) ‘iJ^ps ,a - "Fo remove 
the problem , a cut-off radius r i o c  is defined beyond which the  difference m ade to  the  

eigenvalues by SIC is insignificant. Then, by adding a term  —  to bo th  sides, the
^loc

potentia ls w'ill go to  zero a t r i o c  and can be cu t off a t this point. This only has the 

effect of redefining the  zero of the  energy scale. The K ohn-Sham  equation becomes

+ +  +   ^ h(pO +  ^cc^(p0]^ps,a =  f ^  1 </'’PS,Q- (2.69)
 ̂loc V ^loc /

Hence the  final SIC pseudopotential is now given by

V 'S  = I r-" '"  ^ ^  ‘1 ' ' - ' ' ' “ ' (2.70)\  0 if r  >  r io c -

The to ta l atom ic SIC po ten tia l can be cast as in term s of nonlocal projectors, 

sim ilar to  the  K leim nan-B ylander projectors for the  nonlocal p a rt of the pseudopo­

ten tia l

y  _  V -  I[^h (Pc ) +  l4g^(pa ,O )]0q(r))(( /)c .( r)[V n(p^) +  \4 c ^ (P a ^ 0 ) ] l  711

^  (M^Wnipa) + VxC {̂Pa,0)]\M'r))
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(pa are the  pseudo-atom ic orbitals. T he pseudo-SIC K ohn-Sham  equations now 

become

[-V ^  +  Vps +  Kh +  -  Vsic]^n = ■ (2-72)

The above corrections are calculated for an orb ita l w ith occupation the  oc­

cupation of th a t  o rb ita l in the neutral atom . However, if the o rb ita l is in a bulk 

m aterial, th e  occupation of th a t  orbital m ay change as it hybridises w ith  the  orb ita ls 

on o ther atom s. The o rb ita l m ay be fractionally  occupied, in which case apply­

ing the pseudo-SIC po ten tia l as if the  o rb ita l was fully occupied would result in an 

overcorrection.

One option would be to  solve these equations fully self-consistently, w'ith the 

SIC poten tia l being recalculated for each value of pa a t each iteration . This would 

increase the  com putational cost of the  correction. To avoid this, a linear scaling can 

be imposed. The occupation of an atom ic orb ital, /?„, is given by

Pa = Po\<Pa?- (2.73)

In the bulk system , the  occupation num ber p„ can be calculated by pro jecting  

the  atom ic o rb ita l onto the  K ohn-Sham  sta tes

Pa =  5Z/n(^n|</'a)(</>a|V'’n) • (2-74)
n

I ’he to ta l SIC correction can then  be calculated  in itially  for =  1, i.e. for the  

atom ic orbital fully occupied, and then  rescaled by the  actual value of pa

V^a"^(Pa) =  V\\{Pc) +  V kc(Pa,0) =  Pa[V\\{pa{Pa =  1)) +  V x c ip a iP a  =  1),0)] • (2.75)

The draw back of th is linear approxim ation is th a t  in teresting effects, such as 

discontinuities in the  po ten tia l like the derivative d iscontinuity  described above, m ay 

be lost.

This approxim ation for the  self-interaction correction has been im plem ented in 

SIESTA and tested  for a variety  of different system s including molecules, m etals and 

sem iconductors. In particu lar, the  agreem ent between ex[)erimental ionisation p o ten ­

tials for organic molecules and those calculated  w ith D F T  is dram atically  im proved 

using the atom ic-SIC correction [75].
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2.7 Conclusion

Density functional theory is a reliable and efficient electronic structure theory for a 
variety of different niany-electron systems. In principle the theory itself is exact for 
ground state  systems, althougli strictly speaking it is not valid for excito'd states. 
However, the exact form of the exchange-correlation potential is unknown, and has 
to be approximated. Connnonly used approximations include LDA and GGA. Un­
fortunately, these approximate local potentials may contain self-interaction errors, 
which may cause the highest occupied molecular orbital to be in the wrong place, or 
cause the suppression of the derivative discontinuity.

These errors can be removed by the self-interaction corrections described in this 
chapter. The atomic self-interaction correction (ASIC) which has been implemented 
in SIESTA produces ionisation potentials which agree remarkably ŵ ell with experi­
mental values. However, the atomic and linear scaling approximations used in this 
method remove the derivative discontinuity. To at least partially obtain the deriva­
tive discontinuity, either the full-SIC or an exact-exchange bast'd functional would 
need to be used. Unfortunately, both of these methods are orbital dependent and 
have not as yet been extended to finite bias. In the following chapters, the effects 
of these errors on calculations of the electronic transport i)roperties of a variety of 
metal-molecule junctions will be explored in detail.



Chapter 3 

Simple M odel for Electron  
Transport

Using density  functional theory  [43, 44], as described in chapter 2, the  calculation of 

the  electronic s tru c tu re  of m olecular devices containing hundreds of atom s becomes 

possible. D F T  can then  be combined w ith the  non-equilibrium  G reen’s function 

formalism [34, 35, 36] described in chap ter 4 to  calculate the  electronic tran sp o rt 

properties of such devices [37, 38, 39, 40, 41, 42]. However, while being able to 

perform  ab init io  calculations for large system s is very useful, the  com plexity of such 

m ethods, as well as the  sheer nm nber of variables involved, can make them  difficult 

to  understand  intuitively. Therefore, sim ple m odels along the  lines of th a t described 

by D a tta  et. el. [85], which cap tu re  some of the  key aspects of electronic tran sp o rt 

in these devices can be valuable in illustrating  the  role played in quan tum  tran sp o rt 

by the  different features of the electronic s tructu re .

The m olecular electronic devices curren tly  under investigation typically consist 

of a molecule sandwiched between two m etallic electrodes or “leads” , as shown in 

figm'e 3.1. The leads could be surfaces or nanowires, while the  molecule could be a 

point contact, a single organic molecule, or in general som ething which generates a 

scattering  potential.

MoleculeLeft Electrode Right Electrode

Figure 3.1: Diagram of the typical set-up for molecular electronics experiments. A single 
molecule is sandwiched between two metallic electrodes or “leads” .

Electron tran sp o rt a t low bias through  m olecular junctions usually involves only

35
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a small number of the orbitals on the molecule. This allows us to construct a simple 
model in which the electronic structure of the molecule is represented by a single 
energy level. Such a model already incorporates many of the physical jjroperties 
which are important for transport. In this chapter, we will use this approach to 
illustrate some of the basic features of electron transport in molecular junctions. 
In particular, it will be shown how the conductance of the device depends on the 
strength of the coupling between the level and the electrodes, on the alignment 
between the molecular level and the states in the electrodes, and on the response of 
the level to changes in its occupation [74].

3.1 T he Simple M odel

Tl

Left
Lead M olecular

Orbital
Right
Lead

Figure 3.2: Energy level diagram for simple model. The molecule is represented by a single 
energy level e, coupled to two metallic leads. When a potential bias is applied, 
the two leads will have different chemical potentials, and The strength 
of the interaction or “coupling” between the leads and the molecule is described 
by parameters Fi  and F/j, which control the rate at which electrons can enter 
or leave the molecular level.

A molecule can be modelled by a single orbital of energy e, which is connected 
to two leads, as shown in figure 3.2. The leads are modelled as electron reservoirs 
which are kept at two different chemical potentials fii, and //r. The charge in the 
system then redistributes. The left lead will try to impose an occupation on the 
molecular orbital (i.e. it will try to establish an equilibrium situation), and the right 
lead will try to impose a charge N^,

AVR =  2/(e,/iL/R), (3.1)

where / ( c ,/^l / r ) are the Fermi functions of the left and right leads respectively
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/(e,  H) = ---------^ Y  • (3.2)
l + e x p ( g f )

The level is assumed to be spin degenerate so that it can hold up to two electrons. 
This is accovmted for by the factor of 2 in the expression for the occupation.

Thus the “average” charge N  on the molecule can be calculated by using a simple 
balance between the electron flow from the left lead into the level and the electron 
flow out into the right lead. The current from the left lead into the orbital, / l ,  is 
proportional to the difference between the actual occupation of the orbital, N , and 
the “equilibrium” occupation the lead is trying to impose, N\^

/ L - ^ ( / V L - i V )  . (3.3)
n

Similarly, the current from the right lead into the molecular orbital, / r , is given
by

lR = ^ ( N - N n )  , (3.4)h
where T J h  is the transmission rate between the contact and the molecule. F 

flepeuds on the strength of the interaction or “couj)ling” between the molecular level 
and the lead.

In a steady state situation where the charge on the molecular level is constant, 
the rate at which electrons enter the level w'ill be the same as the rate at which they
leave, and so the two currents described above should be equal, i.e., / l =  / r . This
can be used to obtain an equation for the average charge on the level, N

N = 2 /^rL/(e,ML) +  rK/(6,MR)A ^3 3̂
V  T l  +  T r  /

Note that if the transmission rates between the molecule and the two different 
contacts, F l  and F r ,  are equal, then the equation for the occupation becomes

N  = f{e,^iL) + , (3.6)

i.e. the level occupation is now independent from the transmission rates Fi, and
F r .

If the level is below the chemical potential of both of the leads, then it will be 
full, i.e. it will contain two electrons, and if it is above the chemical potential of 
both of the leads, it will contain zero electrons. However, if the leads have different 
chemical potentials and the level is in between them, then it will have an occuj)ation
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between zero and two. In the case where the coupling to both leads is the same, the 
level will contain one electron when it is positioned between the chemical potentials 
of the two leads. In the same framework the steady state current can be calculated 
from the condition = —In to be

'  =  T  ' “ ■> -' i  i  L +  i  R

Self-consistency can be added to the problem by assuming th a t the energy of the 
molecular orbital, e, is dependent on its occupation, N

e — Co +  U s c f { ^ )  (3.8)

where f/scF is a self-consistent or “charging” potential. The actual form of Uscv 
will be discussed later, and it will be dem onstrated tha t it can have a significant 
effect on the electron transmission.
The interaction of the molecule with the infinite leads has the effect of broadening the 
orbitals. To account for this, discrete level can be replaced by a Lorentzian density 
of states (DOS)

with r  =  F l+ F r . This Lorentzian is centred at /? =  f and its width is determined 
by P. The stronger the coupling of the orbital to the leads, the broader the density 
of states for tha t orbital will be. The occupation is then given by an integral over 
energy of the density of states multiplied by the probability of a sta te  being occupied

N =  2 r , ( a io )
J —oc F|̂

I ’lie occupation and position of the energy level can then be calculated self- 
consistently as shown the flowchart in figure 3.3. First, an initial value is taken 
for the level occupation N  and position e, and this is then used to calculate the 
density of states D{E).  Then the integral in equation (3.10) is solved to obtain the 
new value of N , the occupation of the level. The new position of the level is then 
calculated and the procedure is repeated until the difference between the values of N  
for two separate iterations is less than a certain tolerance. This is analogous to the 
self-consistent procedure used to obtain the charge density in more complex methods 
such as D FT as described in chapter 2, where single level occupation N  rejjlaces the 
charge density p and the single level energy e replaces the Hamiltonian // .
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Density o f States D(E)

Check for Convergence: 
Finish if  converged; 
Repeat loop if not.

Level (Simple Model): e(N ) 
Hamiltonian (large system): H(p)

Level Occupation (Simple Model): N 

Charge Density matrix (large system):p

Figure 3.3: Self-consistent loop for the calculation of the level occupation. An initial ap­
proximation is taken for the level occupation N  and position e, and this is then 
used to calculate the density of states D{E). D{E)  is then integrated as shown 
in equation (3.10) to get a new value for the occupation, and the procedure 
is repeated until the level occupation converges. This method is analogous to 
that for calculating the charge density and Hamiltonian for a more complex 
system using DPT as described in chapter 2.

Finally, when tlie level occupation has converged the current can be obtained 
from the following energy integral

7 =  ^  r  d E D { E ) - ^ ^ ^ { f { E , i . H ^ -  f{E,^ in))  . (3.11)
h  J - o o  L L  +  r R

The integrand is only non-zero in the region in which /(E ,//- l)  — /(■^'-/^-r) 7̂  0. 
Therefore, this integral only needs to be performed over an energy window' aroimd the 
chemical potentials and / / r  knowai as the “bias window” , as j {E,n\^)  — f{E,i . in)  
api)roaches zero rapidly outside such a window. Thus the I -V  curve will depend on 
the density of states of the molecule in this bias window, and on the strength of the 
coupling between the level and the leads, F a n d  F /?.

3.1.1 Effect o f Level Position

I ’he I -V  curve will depend on the position of the level, e, as the density of states, 
I){E),  is centred around this energy. The closer the level is to the chemical potential 
of the leads, the smaller the conductance gap of the molecule. This can be seen in 
the I - V  curves shown in figure 3.4.

Here the chemical potential of both electrodes is -S.OeV at zero bias, and no 
charging effects have been included (i.e. the position of the level does not change 
with its occupation). W hen the energy level is aligned with the Fermi level of the 
leads, it starts to conduct as soon as a voltage is applied. How'ever, when the level 
is further away from the Fermi level, it will not s ta rt to conduct until it is between 
the chemical potentials of the two leads - i.e. until it is within the bias window. 
Thus, the resonances in the transmission probability correspond to energy levels in
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e = -5.0eV 
e = -6.0eV 
e = -7.0eV

5.0

■6.0

-20 7.0

-40
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V (Volts)

Figure 3.4: I -V  curves for different positions of the energy level e. The Fermi energy of the 
leads is located at -S.OeV. The coupling to each lead is synniietric and equal to 
0.2eV. As can be seen, moving the level further from the chemical potential of 
the leads opens up the conductance gap.

the molecule, as shown in figure 3.5. The to tal size of the conductance gap (the gap 
between the positive and negative bias points where the system starts to conduct) 
is given by 4|e — //o|, where /io is the chemical potential of both of the leads at zero 
bias.

3 .1 .2  Effect o f C oup ling  S tren gth

The I -V  curve also depends on the strength of the coupling between the level and the 
left and right leads, F a n d  F/j. Obviously, the stronger the coupling, the larger tlie 
to tal current I  would be expected to be. This can be seen in the I -V  curves shown 
in figure 3.6. However, stronger coupling also means tha t the density of states of the 
level, D{E),  will be broader. Therefore, the shape of the I -V  cm've also changes, 
d lie stronger the coupling, the broader the level and thus tlie smoother the I -V  curve 
will be.

3.2 Charging Effects

The effect of the charging of the level on the electronic transport depends on the 
form of the charging potential f/scF) and on the strength of the interactions Fĵ  and 
FK between the level the leads. The simplest dependence of the energy of the level
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E

(a) (b)

-"HOMO

Bias
W indowE

T(E)

Figure 3.5; Diagram showing (a) energy levels of two molecular orbitals and (b) trans­
mission coefficients. The resonances in the transmission probability, T{E),  
correspond to energy levels in the molecule. The current is the integral over 
the transmission coefficients within the bias window.

on its occupation would be a linear one

C = C o + U { N - N o ) ,  (3.12)

where U is a constant and N q is the occupation of the level when it is at energy 
fo- This is what would be expected from the molecule if it was acting as a simple 
capacitor.

For U =  O.OeV, i.e. where the energy of the level is independent of its occupation, 
the current will reach its maximiun quickly (for small biases V),  as shown in figure 
3.7. In this case, the size of the conductance gap will be 4|eo—/io|, as before. However, 
if U is noii-zero, the level will shift as it charges, so tha t it remains partially outside 
the bias window. The conductance gap will remain 4|eo — /fo|, the maxinmm in 
the current will not be reached until the bias reaches 2 |eo — Mo| +  2f/, as shown in 
figure 3.7.

A second effect due to charging is the introduction of asymmetries into the I - V  
curves if F l and F r are not equal. As can be seen from equation (3.11), and as can 
be seen from figure 3.9, if t /  =  O.OeV (i.e. if the energy of the level is independent 
of its occupation), then the I - V  curve will be syrrmietric even if the coupling to 
the leads is asymmetric (i.e. if F l 7̂  F r). However, with asymmetric coupling, the 
electrons can enter and leave from one lead more easily tha t the other. Hence, if the 
direction of the bias is such th a t the lead w'ith the stronger coupling to  the level is
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Figure 3.6: I-V  curves for strength of coupling leads-molecule coupling F. The Fermi 
energy of the leads is located at -S.OeV. The coupling to each lead is synnnetric, 
and the level is at -6.0eV. As can be seen, increasing the strength of the coupling 
increases the size of the current, and also changes the shape of the I-V  curve.

at the higher chemical potential, then the steady-state occupation of the level in the 
bias window will be greater than one electron, as shown in figure 3.8a. Similarly if it 
has the lower chemical potential, then the steady-state occupation of the level will 
be less than one electron.

Therefore, if |^/| > O.OeV so tha t the energy of the level depends on its occui)ation, 
then its position will be altered depending on the bias direction, as show'n in figure 
3.8b. In the case where F l >  F r and U = l.OeV, the level tracks for positive 
bias as the level charges due to the strong coupling with the left lead, bu t remains in 
approximately the same position for negative bias. Since the level remains outside 
the bias window for longer at positive bias, the I -V  curve will be asyimnetric, as 
shown in figure 3.9.

3.2.1 Effect o f D iscontinuity  in Charging P otentia l

The linear dependence of the energy of the molecular orbitals on their occupations 
is a good approximation to the most commonly used exchange-correlation potentials 
in D FT such as LDA [44] and GGA [59, 60, 61] . However, as explained in chapter 
2, both of these have problems - they lack the presence of the derivative disconti­
nuity [72, 73]. To dem onstrate the effect of a derivative discontinuity on electronic
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 U = O.OeV
-  -  U =  l.OeV
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Figure 3.7: I -V  curves for simple model for different values of U. For U — OeV, the energy 
level does not shift as its occupation changes, and so it reaches its maximum 
current straight away. However, for U =  leV , the level starts to shift upwards 
as it is filled, and so is not completely inside the bias window until the bias 
reaches 3V.  The coupling between the level and the contacts is symmetric with
both Fj, and Fr equal to 0.02eV; eo is —4.5eV and //.q is —5.OeV.

transport, we will now introduce a discontinuous charging potential for this simple 
model. The energy of the level as a function of its occupation is described as follows

f ^ C F  =   ------------- \ c t , - N \  +  7 “; \ c t - N \  ’ (3.13)l +  e x p ( % ^ )  l + e x p ( % ^ )

where N  is the occupation of the level, Ch and Ct are param eters which control the 
positions of the discontinuities, Uf, and Ut are param eters which control the height of 
the two steps, and W  is a param eter which controls the width of the discontinuities. 
The values chosen for these param eters are 0.05 for C{,, 1.05 for Ct, |  for Uh, |  for 
Ut, and 0.01 for W.  These values give a function of the form shown in figure 3.10.

The discontinuous potential rises sharply from zero occupation, then levels off, 
and then rises sharply again at an occupation of one electron. This approximates 
the derivative discontinuity in the energy which has been shown to be present in the 
trtie D PT potential at integer occupation. Note tha t the energy increase required 
to populate the orbital with two electrons is nuich larger than needed to populate 
with just one electron. The linear potential is then constructed so as to match the 
discontinuous potential at occupations of 0.0, 0.5, and 1.5 electrons [101]. Note tha t 
our linear potential flattens out at an occupation of ~  1.6 electrons, when it goes
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F igure  3.8: P lo t of (a) level occupation  an d  (b) level position  as a  function  of b ias for sim ple 
m odel for a sy o u n etric  coupling  for different values of U . For b o th  values of U , 
th e  level charges asym m etrically , having higher occupation  a t positive  bias 
w here >  0. For U = OeV w here th e re  are  no charg ing  effects th e  level 
rem ains a t th e  sam e energy. However, for U  =  leV , th e  d ifferent occu p atio n  of 
th e  level depend ing  on th e  b ias d irec tion  does affect its position . It moves up 
w ith  th e  chem ical p o ten tia l of th e  left (strongly  coupled) lead a t positive  bias, 
an d  rem ains in th e  sam e positio n  for negative bias. T h e  coupling  betw een  th e  
level an d  th e  con tac ts  is tisynnnetric  w ith  F|^ =  ().2eV an d  F r  =  0.02eV; fo is 
-4.5eV  and  fiQ is -5 .OeV.

above O.OeV. This is an actual [)roblem with approximate XC potentials such as LDA 
where certain negative ions are calculated to be unbound, but which are stable in 
reality.

The (liscontiiuious potential can have the effect of preventing the level from charg­
ing or discharging, which in turn  should affect the transport characteristics of the 
system. The size and nature of this effect will depend on the strength of the coupling 
between the leads and the molecular orbital, and on the alignment of the level with 
the chemical potentials of the leads.

Figure 3.11 shows the I -V  curve and plots of the level occupation and position 
as a function of applied bias when the coupling between the leads and the molecule 
is weak. F l and F r  are both set equal to 0.02eV, and the Fermi level of the leads 
is set to -5.OeV. As shown in j)anel (a), with the discontinuous potential the level 
carniot start to fill until a bias of ~  2.0V is applied, whereas it can s ta rt to charge 
at O.OV with the linear potential. This is because the discontinuous potential causes 
the level to  rise rapidly as soon as any charge is added. Therefore, as shown in panel
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Figure 3.9: I -V  curves for simple model for asymmctric coupling for different values of U.
For U =  O.OeV where there are no charging effects, the I -V  curve is symmetric 
despite the coupling to the leads being asymmetric. However, for U =  l.OeV, 
the different occupation of the level depending on the bias direction affects its 
position, and hence the I-V  curve is asymmetric with respect to bias. The 
coupling between the level and the contacts is asynnnetric with Fi, =  0.2eV 
and Fh =  0.02eV; eg is -4.5eV and /iq is -S.OeV.

(h), the level will remain pinned just above the higher of the two chemical potentials 
until the plateau in the charging potential at ~  —3.8eV is reached. This occurs at a 
bias of ~  2.0V. At this point the level can fill rapidly without moving. This has a 
m ajor effect on the I -V  characteristics of the system. If the level is pinned outside 
the bias window' and cannot charge, then it w'ill not conduct. Therefore, as shown in 
panel (c) of figure 3.11, the discontinuous charging potential has the effect of opening 
up a gap in the I -V  curve compared to the linear potential. This conductance gap 
is from —2.0V to 2.0V, which corresponds to the applied bias required to bring the 
level to the top of the discontinuity.

For the linear potential, on the other hand, the level can s ta rt to charge as soon 
as it is in the bias window. As shown in panel (b), the level is pinned right at 
the chemical potential, rather than just above it as in the case of the chscontiiuious 
potential. Therefore, the level can s ta rt to conduct as soon as a bias is applied, and 
there is no conductance gap.

When the coupling between the level and the leads is strong however, the discon­
tinuous charging potential has much less of an effect on the I -V  curve. Figure 3.12 
shows plots of the occupation and position of the level and the I -V  curve with both
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Figure 3.10: Self-consisteiit potentials for simple transport model. One potential shows 
discontinuities at integer occupation, while the other is linear and is fitted so 
that it matches the discontinuous potential at occupations of 0.0, 0.5, and 1.5 
electrons.

Fl and P h equal to 1.2eV.

Strong coupling between the leads and the molecular level causes its the density 
of states to be broadened to a much greater extent. Therefore, even if the centre of 
the DOS is pinned above the bias window, some of its tail will be within the bias 
window, allowing conduction. The DOS at zero bias for both potentials for strong 
coupling are shown in figure 3.13. Part of the Lorentzian will be below the Fermi level 
at zero bias and so the level fills and rises until the centre reaches the first plateau in 
the charging potential. Thus as the bias window is opened, the level can now charge 
or discharge without changing energy, instead remaining fixed in position, as shown 
in figure 3.12(b).

This may actually be physically realistic since stronger coupling between the level 
and the contacts would allow electrons to  delocalise, allowing fractional charging and 
hence a more linear increase in the energy (as predicted by LDA for the homogeneous 
electron gas).

The behaviour is somewhat different when the chemical potential of the leads at 
zero bias is at or just above th a t recjuired for there to be integer (i.e. one or two 
electrons) occupation of the molecular level, as is shown in figure 3.14. For example, 
if the chemical potential of the leads is in such a position so tha t the conducting 
level is fully occupied by two electi’ons at zero bias (i.e. if conduction is through
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Figure 3.11; Occupation (a) and position (b) of molecular energy level, and I-V  curves 
(c) for weak symmetric coupling between the leads and the orbital. Fj, and 
Fr are both equal to 0.02eV, and /xq (the Fermi level of the leads) is set to 
-5.0eV. For the discontinuous charging potential, the level remains outside the 
bias window and does not charge until a certain voltage is reached, as shown 
in panels (a) and (b). This in turn opens up a conductance gap in the I-V  
curve, as shown in panel (c).

the HOMO), then it will lose almost an entire electron without moving as soon as it 
enters the bias window, as shown in figure 3.14. Thus, the level in a discontinuous 
potential may have a higher conductance under these circumstances than in a linear 
potential.

3.3 C onclusion

Our simple model illustrates some of the key concepts tmderpinning the theory of 
electron transport through molecules. Electron transport through a molecule a t­
tached between two electrodes with different chemical potentials will occur through 
a particular orbital if th a t molecular orbital is coupled to the electrodes and lies 
between their chemical potentials. The occupation of the molecular level will be
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Figure 3.12: Occupation (a) and position (b) of molecular energy level, and I-V  curves (c) 
for strong synnnetric coupling between the leads and the orbital. F l and F r 
are both equal to 1.2eV, and /io (the Fermi level of the leads) is set to -5.0eV. 
For the both the linear and discontinuous charging potentials, the levels are 
broad and increasing the bias does not alter the occupation of the level very 
much, as shown in panel (a). The energy of the level does not change much, 
and the nature of the charging potential has only a small effect on the I-V  
curve.

determined by its position relative to the chemical potentials of the electrodes, and 
the symmetry of the coupling between the level and the electrodes. If the energy 
of the level itself is dependent on its occupation, this, combined with asymmetric 
coupling to the electrodes, can lead to asymmetry in the I-V  curves for the device.

The nature of the dependence of level on its occupation can strongly affect the 
transport properties of the system. A discontinuous charging potential can open 
up conductance gaps in the l-V  curve, depending on the relative positions of the 
molecular orbitals and the chemical potential of the leads. This effect is particu­
larly significant for weak coupling between the molecule and the leads, and tends to 
disappear for stronger coupling.

In the following chapters, this method for calculating electronic transport will
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Figure 3.13: DOS of levei at zero bias for strong coupling. Fi, and F r are both equal to 
1.2eV, and //q (the Fermi level of the leads) is set to -S.OeV. Note how part of 
the tail of the DOS lies below the chemical potential of the leads for both types 
of charging potential. Therefore, for the discontinuous charging potential, the 
level will contain enough charge to move up to the flat part of the potential 
where it will conduct.

be generalised and extended to  more realistic system s. The effects of level position, 

coupling s treng th  and asym m etry, and the n a tu re  of the response of the level to 
changes in occupation will all be studied in detail for a variety of m etal-niolecule 

junctions.
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Figure 3.14: Occupation (a) and position (b) of molecular energy level, and I-V  curves 
(c) for weak symmetric coupling between the leads and the orbital. F l and 
Fh are both equal to 0.02eV, and /io (the Fermi level of the leads) is set to 
-0.5eV. The hnear and discontinuous charging potentials are still the same as 
for the previous calculations. The occupation and position of the levels drop 
with bias, remaining within the bias window so that there is no conductance 
gap.



Chapter 4 

Non-Equilibrium  G reen’s Function  
Formalism

Modern electronic devices have been now been reduced to a size where it is necessary 
to use a full quantum  mechanical description to model their behaviour. The elec­
tronic transport properties of molecular devices need to be calculated using quantum 
mechanical scattering theory to determine the transmission probabilities. There are 
several methods for doing this. Among them, the most popular is the non-equilibrium 
G reen’s function formalism (NEGF) [34, 35, 36, 38, 102] combined with an electronic 
structure method such as density functional theory (DFT) [43, 44, 45, 86]. Other 
schemes include time-dependent D FT [57, 58] or many-body methods [50, 51, 52, 
53, 54, 55, 56]. The calculations described in this thesis are performed using the 
NEGF combined with a tight-binding Hamiltonian; and with the SMEAGOL pro­
gram [37, 38, 39], in which NEGF is combined with the D FT program SIESTA 
[82, 83, 84], There are also several other numerical implementations of NEGF with 
D FT [40, 41, 42].

The typical system modelled using these methods is shown in figure 4.1. In 
the calculations described in this thesis, the device typically consists of an organic 
molecule sandwiched between two metallic electrodes. However, the m ethod de­
scribed here can also be applied to other types of devices, such as constrictions in 
metal or semiconductor nanowires, or to solid state devices consisting of multiple 
thin layers of different materials.

The electrodes, usually referred to as “leads” , are typically treated as being pe­
riodic in the direction of the electronic transport and their Hamiltonian is usually 
w ritten in terms of “principal layers” . The entire system is unbounded, so tha t the 
Hamiltonian of the full system would be infinite in size, but it is not periodic due 
to the translational symmetry being broken by the presence of the scattering re­
gion. For the problem to be solved computationally, this infinite system has to be

51
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mapped onto a finite one. This can be done by writing the problem in terms of the 
retarded Green’s function for the entire system, as described in section 4.2. A few 
of the principal layers of the leads are usually included with the molecule to form a 
“scattering region” . The Hamiltonian for the scattering region is finite and can be 
calculated using an electronic structure method such as DFT. However, this finite 
Hamiltonian is non-Hermitian, which corresponds to the total number of particles in 
the scattering region not necessarily being conserved.

Scattering Region

Principal
LayerMolecule
of Leads

Figure 4.1: The typical system investigated in transport calculations is broken into three 
parts: a left and right “lead” and a “scattering region”

'riie Hamiltonian of the scattering region combined with the self-energies of the 
leads produce a finite effective Hamiltonian for the entire system. This can then be 
used to calculate the transport properties of the molecule, such as the transmission 
coefficients and the I -V  curves.

4.1 G reen Functions for Sim ple M odel

In chapter 3, a simple model for electron transport through a single molecular level 
was introduced. This model can be reformulated in terms of Green’s functions [85, 
103]. This formulation of the simple model will serve as an introduction to Green’s 
functions, and their use in calculating electron transport.

The Green’s function for an operator O is defined to be the function which, when 
operated on by O, gives the delta-function

O C(r, r') =  5(r — r') . (4.1)

By converting to matrix notation, i.e. by expanding C  over a finite basis set, the 
5-function is replaced by the identity matrix I  to get
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OG =  I  . (4 .2)

If the  function ip(r) is an eigenvector of the  opera to r O,  then  the  eigenvahie 

equation can be w ritten  in the  form

0'ip{r) =  E'ip{r) . (4 .3 )

where E  is the  eigenvahie. By w riting this equation  in m atrix  form at w'e get

{ E S - d ) p  =  Q.  (4 .4 )

where S  is the  overlap m atrix  and i/' is a colum n vector. In the case of an

orthogonal basis set, the  overlap m atrix  will sim ply be equal to  the  identity  m atrix .

The G reen’s function, G{E)  for the  opera to r {O — ES)  is then  given by

{ E S - d ) C { E )  =  I . (4 .5 )

For tran spo rt calculations, the  relevant opera to r is the  H am iltonian of the  sca t­

tering region. For the  sim ple m odel, the H am iltonian describes only the  position of 

the  level e, w ith a broadening due to  the  coupling to  the  leads, F i  and F T h u s ,  
the  G reen’s function for the  simple model is given by

C { E ) = ( ^ E - e  +  t^ ^ ^ ^ ^ ^  , (4 .6 )

where E  is the energy. The density  of s ta tes  for the  system  is then  given by the

im aginary p a rt of the  G reen’s function

D{E)  = - U m { G { E ) )  . (4 .7)
7T

The num ber of electrons on the level is once again an integral over the  occupied 

s ta tes

1 / ‘° °
N =  -  dE{ \ G{E) \ ^rmE, f i , ^)  +  \G{E)\^Tnf{E,^in)) . (4 .8 )

^  J — oo

Finally, the curren t is given by an energy integral of the  form 

2e
/  =  -  /  d ET , X^ \ G{ E) Wf { Ea i L)  -  f{E,^,,n)) . (4 .9)

J —oo

In the next section, th is form ulation will be generalised to  m ore realistic sys­

tem s, using more complex H am iltonians and considering leads w ith realistic band 

structures.
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4.2 G reen Functions for O pen System

T he typical system  calculated using the  N E G F formalism is shown in figure 4.2. 

It is assum ed to  be described by a H am iltonian w ritten  over some finite basis set 

form ed by atom ic orbital like functions. A scatterer such as an organic molecule is 

sandw iched between two conducting electrodes or “leads” . These leads are periodic 

in th e  tra n sp o rt direction and are ideally broken into sections called principal layers. 

Each layer is described by a m atrix  H am iltonian //q. The in teraction  between two 

neighbouring principal layers are described by a H am iltonian II\  in one direction, and 

/ /_ i  in the  opposite direction. For system s which preserve tim e-reversal symm etry, 

/ / _ !  =  H\.
T he scattering  region is described by a finite H am iltonian H u ,  and the  in teraction 

w ith the  left and right leads are described by m atrices / / l m  and / / r m  respectively. 

Typically, a sufficiently large num ber of principal layers of the  leads are included 

in the  scattering  region to  allow the  charge density to  converge to  its bulk value, 

thus screening the  poten tia l of the molecule. This allows the  leads to  be calculated 

inde[)endently of the scattering  region, i.e. it is assum ed th a t the  presence of the 
molecule does not alter the electronic s truc tu re  of the leads beyond a certain  distance. 

The full H am iltonian, / / ,  of th is infinite system  is given by

II =

\

H - i

0
//o 0

/ / - I //o U lu 0
0 H u i luK 0

0 Ifo ffi 0
0 / / - I //o Ifi

(4.10)

I 'h e  Sclnodinger equation associated w ith this H am iltonian is

Il7P = ES-ip,  (4.11)

where S  is the  overlap m atrix  (the identity  m atrix  in the  case of an orthogonal 

basis set), ip is the  wave function (the eigenvectors of this H am iltonian) and E  is the 

energy. B roadening 5 is added to  the  energy, and the  G reen’s function equation for 

the  en tire  system  becomes

[ \hn{E + i5 )S  -  H ) G { E )  = I ,
(5 ^ 0

(4.12)
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where 5 > 0 gives G^,  the retarded Green’s function, and 5 < 0 gives G^,  the 
arlvanced Green’s function. We will use the retarded Green’s function here, in 
which 6 tends to zero from above.

Left Lead Right Lead

LM RM

Principal Layer of Leads Scattering Region

Figure 4.2: Diagram of the system investigated in electron transport calculations, showing 
the left and right leads and a scattering region in the middle

The matrices in equation (4.12) are infinite, so it is useful to break the Hamilto­
nian into three parts: the scattering region in the middle, ( / / m ), the left and right 
leads, ( / / l  and / / r  respectively), as show'n in figure 4.2. The full Hamiltonian //  of 
the infinite system can be written in block matrix form

(4.13)

The interaction between the scattering region and the leads is described by the 
semi-infinite submatrices / / l m , and / / m r , as shown. The matrices which
describe the leads, / / l  and / / r , are infinite. Since principal layers are included 
between the scattering region on each side, the non-zero part of these submatrices 
effectively consists of the Hamiltonians describing interaction between two principal 
layers in the leads. Hi and //_ i.

The overlap matrix S  can be broken up into sections in a fashion similar to that 
of the Hamiltonian, where a similar notation to that in equation (4.13) applies

j(  / / l 0

Huh Hu ^^MR
\
V 0 Hrm / / r

J/  S l 5' lm 0

5  = 1 *5m l 5m 5m r
1I 0 5r m 5r

(4.14)

If the Green’s function G and the identity matrix I  are also broken up in a similar 
manner, then equation (4.12) for the Green’s fmiction can also be written in block 
matrix form
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e S i  -  H i  cS l m  -  U l m  0 \  /  G l  G lm  G l r
c5'ml — c5m — I Iu e5\m — //m r I Gml Gm Gmr

0 C'S'rM — E'S'r — / / r y \  G rL G rm G r

( I  0 0 \
=  0 / m 0 , (4.15)

V o  0 I )

where /m is the N  x  N  identity matrix, with N  being the number of basis orbitals 
in the scattering region. For convenience, we have defined e =  (lim^^o(^' +

W hen the two matrices in equation (4.15) are formally multiplied, the central row 
of {eS — H)  nuiltiplied by the central column of G{E)  gives the following equation

(c-S'ml — / / miJ G lm +  (C'S'm — / / m)Gm +  (cSmr -  / / mr)G rm =  / m . (4.16)

Similarly, expressions for G’lm and G rm can be obtained by multiplying the first 
and third block rows of (e5 —//)  by the central colunm of G (E) and then rearranging

G lm =  —(cSl — / / l) ' ( c-Slm — ^^lm)Ga/ • (4-17)

Grm =  —{cSxi — H r ) ^(eS’km — //rm)Gm . (4.18)

The Hamiltonians describing the isolated leads (i.e. the semi-infinite leads where 
no scattering region is present) are Hi, and H r . Hence the retarded Green’s func­
tions of the isolated leads, G°'^ and Gr'^, which are the retarded Green’s functions 
calculated at the last principal layer of the isolated leads, are

(e5,. -  / / O G ^  =  /  ^  G f  =  (e^L -  / / l) ' '  , (4.19)

{eSn -  H n ) G f  = I  ^  G f  =  (e^R -  / / r ) -*  - (4.20)

By substituting the expressions for G lm and G rm from equations (4.17) and 
(4.18) back into equation (4.16), we obtain an expression for the Green’s function of 
the scattering region, G m

— (C'S'ml — — / / lm)G m +  (e^M — / / m)G m

— (e>5MR — ^MR)GR*^(e5RM — H rm )Gm = 1m ■ (4-21)

We now introduce the self-energies, E l and E r , of the left and right leads, which 
have the form
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S l  =  {eSuL -  //M L)G r(e6\M  -  H i m ) , (4.22)

=  i^Sun  — -f-̂ MR)G'R (̂e5'RM — IIr m) ■ (4-23)

These self-energies contain all of the information about how the leads affect the
scattering region. Hence we obtain an expression for the Green’s function of the
scattering region, G m , in terms of the 7/^/ and the self-energies of the leads

{\im{E + iS)S -  H u  -  S l  -  Sr,)Gm =  l u  ■ (4.24)

Therefore, the Green’s function of the scattering region, G a/, can be obtained by 
inverting equation (4.24)

G m = +  ^(^)5 -  H m -  S l  -  E r ) “ ^  (4.25)
(5 — » 0

From this, we can define the effective Hamiltonian, H e f f , for flie scattering region 
in the presence of the leads as the smn of the Hamiltonian of the scattering region 
H\i and the leads self energies E l and E r

^^EFF =  f h i  + E l +  E r  . (4.2G)

Note th a t this Hamiltonian is non-Hermitian. This is because it is the Hamilto­
nian of an open system; charge can enter and leave the scattering region from the 
leads so tha t the total number of particles is not necessarily conserved.

'File non-Hermitian part of I I e f f  is due to the self-energies E ^  and E r . The 
anti-Hermitian part of these self-energies controls the rate, F, at whicli electrons can 
enter and leave the scattering region

Tl/r =  *[El/r -  E [/,J  . (4.27)

Analogous to the cou{)ling terms in chapter 3, F^ and Fr are matrices which
describe the rate at which electrons are transferred between the scattering region
and the left and right leads, respectively.

For convenience, we can combine the left and right self-energies into one

E l + E r  =  E .  (4.28)

Hence, in general, the retarded and advanced Green’s functions for the the scat­
tering region, G^ and G^, can be written as

G ‘̂  =  ( lim {E + iS)S -  H m ~  E '" )- ' , (4.29)
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Figure 4.3: Diagram of system showing how the left and right leads can be downfolded into 
self-energies.

=  ( lim  (E  +  iS)S -  //m -  . (4.30)
(5 ^0

where and are the retarded and advanced self-energies, calculated using 

the retarded and advanced Green’s functions for the leads as shown in equations 

(4.22) and (4.23). S im ilarly, the overall net rate at which electrons are transferred 

between the leads and the scattering region, is given b y F  =  F L -|-rR  =  E*  ̂ — E"^.

4.3 C alculating the charge density w ith N EG F

In the case of a mean field theory such as density functional theory (D F T ), the 

Ham iltonian of the scattering region, H u ,  is a functional o f the charge density p

//m =  l !u [p\  ■ (4.31)

In order to  calculate the charge density p o f the scattering region connected to 

the leads, we need to  use the non-equilibrium  Green’s function formalism [34, 35, 

36, 38, 102] to  find the relationship between p and the retarded Green’s function
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for the scattering region, C^.  We s tart by introducing the lesser Green’s function, 
G ^(k, k'; t'), which is effectively a generalisation of the distribution function / (k; t).
This is also proportional to the correlation between wave fimctions, so th a t ~
'ip{r)'ip*{r'). The density matrix, is given by calculated at t = t'

p{k,k'-,t) = . (4.32)

Using a Fourier Transform to go from the time representation to the energy
representation, the density m atrix for the scattering region can be w ritten as an
integral over energy of the lesser Green’s function

P = ^ J  G<{E)dE.  (4.33)

Let us consider the eciuilibrium case first, where the charge distribution is given 
by the product of the density of states and the Fermi function of the leads. The 
spectral function, A{E)  = i[G^^{E) — G^{E)],  is a generalised density of states, whose 
trace in fact corresponds to the density of states, D{E)  =  ^ Tr [ A{ E) ]  . Hence, the 
lesser Green’s function, which is the charge density as a function of energy, is given at 
equilibrium (zero bias) by G'^{E) — —ifo{E)A{E) ,  where fo{E)  is the Fermi function 
of the leads assumed at equilibrium. Since G^{E)  = C^^^(E'), the spectral function
is given by A{E) = 2Im[G^(i?)], and so the equation for the lesser Green’s function
at equililniuni becomes

G< =  2i lm[G^{E)]f {E  -  Ĵ.) , (4.34)

where //- is the chemical potential of the system. This allows the density m atrix 
of the scattering region to be calculated in terms of the retarded Green’s function.

However, this expression is only true at equilibrium. W hen the system is out of 
equilibrium, e.g. when a finite bias is applied, the different contacts are at different 
chemical potentials. Therefore the charge distribution in the scattering region is no 
longer described by a single Fermi function, and equation (4.34) can no longer be 
used. Instead, an expression must be derived for G^  in terms of G^  and the chemical 
potentials of each lead.

In order to describe the more general non-equilibrium situation, we first need to 
introduce the “in-scattering” and “out-scattering” functions and which
describe the rate at which electrons can enter and leave the scattering region. It can 
be shown [34] th a t is related to G^j and S™ by the expression in equation (4.35)
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C< =. . (4.35)

Hence, we now have an expression for the lesser Green’s function (and hence the 
charge density p) in terms of the Green’s functions of the scattering region and the 
in-scattering function. Now, F describes the net rate  at w'hich electrons enter and 
leave the scattering region, so F =  F can also be expressed in terms
of the difference of inverse of the retarded and advanced Green’s functions given in 
equations (4.29) and (4.30)

(G ‘̂ )- ' -  ( r ;^ ) - ' =  -  Ê  ̂ =  iV . (4.36)

Therefore, by multiplying equation (4.36) on the left by and on the right l)y
we obtain expression for the spectral function A{E)

G^^[(G^)-' -  (G^)-*]G ^ =  iG'^FG^ . (4.37)

^  A{E)  = - i [ G^  -  =  G^^FG'^ . (4.38)

From the discussion for the equilibrium case above, the lesser G reen’s function 
was related to the spectral function by G^{E)  =  —ifoiE)A{E) ,  where /o is the 
(equilibrium Fermi distribution. This can be used to combine equation (4.35) with 
cc}uation (4.38) to obtain an expression for E^“̂ in terms of F

G< =  -* G ‘̂ E^^G^ =  - i f o { E ) A { E )  = -< /o (E )G ‘̂ FG'^ . (4.39)

Hence, at equilibrium, the in-scattering and out-scattering functions E**̂  and
EOUI gjjjjpiy given by

E™ =  /o(E )F ; E°'^'^ =  F - E ' n =  [ l - / o ( E ) ] F .  (4.40)

For the non-equilibrium case with multiple leads, assume tha t each lead p is in 
equilibrium with a Fermi distribution fp{E).  Then the in-scattering function for each 
lead p will be given by

E 'n =  f , { E ) r ,  , (4.41)

and the to tal in-scattering function E™ is given by a sum over all of the leads p. 
In the case of two leads, left (L) and right {R),  we have

E ™  =  / L ( i ? ) F L  +  / R ( £ ; ) F R (4.42)
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Hence, in the  non-equihbrium  case, for two leads w ith chemical po ten tia ls //j, and 

//R which are coupled to  the scattering  region by F l and F r respectively, th e  lesser 

G reen’s function is given by

G< =  i C l i f i E  -  m l)F l +  f { E  -  //r)F h]G ^^ . (4.43)

Therefore, the density m atrix  p can be evaluated for the scattering  region in the 

presence of a po ten tia l bias by in tegrating  th is expression for over the  energy E

P = Y n J -  / / l )  +  C l F n G l ^ f i E -  ^,.n)]dE . (4.44)

4'his is the  central result of the non-equilibrium  G reen’s function formalism 

[34, 35, 36, 38, 102], linking the charge density  p  of the  scattering  region to  the 

retarded  G reen’s function G^.  It allows the  electronic s tru c tu re  of a scattering  re­

gion connected to  two senii-infinite leads to  be calculated self-consistent ly a t a finite 

applied bias.

However, this integral is hard  to  perfrom  num erically since it is unbound and the 

G reen’s function has poles on the real axis. To solve these problem s, the in tegrands 
are split into an equilibrium  p a rt which is calculated in the  complex plane using 

a contour integral, and an out of equilibrium  p art, which is non-zero over a finite 

energy w'indow.

I 'h e  lesser G reen’s function, can, in fact, be w ritten  as

G< =  i G l T y ^ G l l f { E  -  /xl) +  i G l T n G l l f { E  -  //«) . (4.45)

By adding and sub trac ting  the  term  zG M rR G |^V (^ ~  Âl), we obtain

G< =  t [ G l T ^ G ^ J { E - ^ i ^ )  + G l T , , G l U { E - p ^ ) ]  

+ i [ G t , T ^ G l ^ f { E  -  / . r )  -  G l T n G l l f i E  -  /iO]

= ^6t,[F, + FR,]G^V(/?-/iL)
+tG'^,rnG^^I[f{E -  pn)  ~  f { E  -  P l )] ■ (4.46)

If we now su b stitu te  the  result F =  ?[(C|^/) ' — (G ^ ) '] from equation (4.36) into 

the  equation  for G^j, we obtain
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+ i G ^ ^ r ^ G l l [ f { E  -  Mr) -  f { E  -  //,J]

=  - [ 6 t ,  -  G ^ I U i E  -  //O  +  * G ^ ,rR 6 t / [ / ( i7  -  / / r )  -  f { E  -  /i^)]

=  - 2 i I m [ G l ] f { E  -  / . l )  +  * G |^ ,rR 6 t/ [ /(E  -  /^ r) -  f { E  -  / i j ]  . (4.47)

The firs t part is the same as the expression for at equilibrium , so the equi­

lib rium  part of density m atrix , peq, is given by

PEQ =  - l J  d E  I rn [G^^ ] f {E  -  / i l )  • (4.48)

Note tha t th is integral is the same as tha t which would be obtained by using the 

expression for the lesser Green’s function at equilibrium . This integral nms from 

—oo to -I-CX3, and the Green’s function has poles along the real axis. Hence, this 

integral is calculated using the contour integral show'ii in figure 4.4. This contour 

runs along the line segment L  and the circle segment and then along the real 

axis from E q -|- id to  cx; -|- iS, w'here point on the real energy axis below the

bottom  o f the valence band (i.e. below the lowest energy state being treatt'd  in the 

calculation).

Poles of Fermi 
Function

E Lowest Bound 
for Integration

Re[E]

Figure 4.4: Contour used to integrate equilibrium part of density matrix.

The residue theorem states tha t the integral around a contour is equal to  2ni  

times the sum over the residues, which leads us to the result

j) dzGl^{z)fi^{z) =  2 7 r i^ / ie s [6 t i(2 ) /L (2 ) ] (4.49)
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The only poles enclosed by the contour are the poles of the Fermi function which 

occur at z„ =  {2n +  l ) inkBT,  and the residues of the Fermi function are —kBT.  

Therefore the contour integral becomes

(z ) / l (2) =  -2mkBrY,[Gl ,{z^)]  . (4.50)

The integral along the contour can be broken into three parts, the first along the 

real axis, the second along the circle segment C,  and the third along the line segment 
L

{  d z G ^ i { z ) f i X z )  =  [  d z G M { z ) f L { z )  +  f  d z G M { z ) f i ^ { z )  +  f  d z G M { z ) f i X z )  .
j  J e b  j c  J l

(4.51)

The integral we are actually interested in calculating is that along the real axis 

from E s  to o o .  Using the expression for the integral around the full contour in 

ecjuation (4.49), this can be written in terms of the integral over the segments C  and 

L and the sum over the residues

r  d E G l , { E ) M E  -  fi) =  -  [  d z G U z ) f L { z )
J E b j c

-  j ^ d z G l { z ) f ^ { z ) - 2 m . k B r Y , [ G l { z „ ) \  . (4.52)

A Gaussian quadrature [104] can be used to calculate the integral along C  and 

L, as the Green’s function is well-behaved away from the real axis.

The remainder of the density matrix, /Oneq, is given by

PNEQ =   ̂y G l , r ^ G ^ [ f { E  -  ^ r )  -  / ( E  -  /i ,J] . (4.53)

This is only non-zero in the region where f { E  — fiu) and / ( E  —//jJ are not equal, 
which corresponds approximately to the bias window with some broadening due to 

temperature. Therefore, this integral can be calculated with reasonable accuracy 

by taking a finite energy window and using a technique such as Simpson’s Rule, as 

shown in figure 4.5.

We can now finally describe a self-consistent procedure to calculate the density 

matrix of the scattering region. First, a trial charge density, typically starting either 

from a previously converged ground state electronic structure calculation (which in 

turn would typically use the atomic charge densities as the starting configuration) is 

used to compute the Hamiltonian of the scattering region, / / m
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1

Energy

Bias Window

Integration Window

Fignre 4.5: Energy window for integration of non-equilibriiun part of density matrix.

IIm =  / /M[p“(r)]; /y°(r) =  (r|p^ i|r)  . (4.54)

'I’his can then  be used to  calculate the  G reen’s function, which in tu rn  can be 

used to  construct a new charge density as described above. This new charge density  

is then  used to  calculate an u pdated  H am iltonian, and so on until the  convergence 

criterion is m et

M a x | | p ( , , < 5 .  (4.55)

This m eans th a t the  density  m atrix  is converged when the  difference between

each m atrix  elem ent a t the  ite ration  and th e  corresponding m atrix  elem ent a t

the j  +  I*'*' ite ra tion  is less th a n  some tolerance param eter 5.

This density  m atrix  can then  be used to  calculate o ther properties of the  open 

system  such as the  density of s ta tes  or transm ission probabilities.
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4.4 Calculating the Current w ith  N E G F

Once the charge density and effective Hamiltonian of the scattering region have been 
calculated, the next step is to calculate the conductance and l - V  characteristics of 
the device.

Using the Landauer-Biittiker formalism [105], the conductance of a device can 
be associated with the transmission probability of an electron wave function to cross 
a scattering potential. Consider the simple scattering potential shown in figure 4.6. 
An incoming wave function in general has a component which is reflected

ikx

re -ikx

Scattering
Potential

teikx

Figure 4.6: Oiie-diiiieiisional scattering potential with incoming wave function wliich 
ha« transmitted and reflected coniponents, and

by the potential, and a component which is transm itted through the potential.
The to ta l flux is conserved, i.e. |r p  +  =  1. In a periodic system with no scattering

2
potential, each electron wave function contributes y  to the current per spin. If the
system is spin degenerate, then each conduction channel can carry two electrons,

2
and so each will contribute one quantum  of conductance. Go =  2 ^ .  For multi­
dimensional systems, there can be multiple scattering states with the same energy. 
The transmission and reflection coefficients, t and r, will then be matrices, where, 
for example, element Uj is the coefficient for a wave function being transm itted  from 
the scattering state  or chaimel on the left of the scattering potential into the 
channel on the right.

The to tal Landauer-Biittiker conductance, F, at a given energy /?, can then be 
deflned as being the trace of the i)roduct of the transmission matrix with its adjoint
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|106|

r = Go7V|((t| . (4.56)

The to tal current, / ,  in the linear response limit is then given by

/  =  GoipL -  , (4.57)

where and are the chemical potentials of the left and right lead, and t is 
calculated at the Fermi level of the leads.

Alternatively, the current can be expressed in terms of the Green’s function for 
the scattering region [34, 107] by using expressions for the probability current 
density J ( r )  and the Hamiltonian of the scattering region H m . This can be extended 
to finite bias, yielding

^ = l J d E  7 V [ r ,G t/rR 6 t ,] ( /( i?  -  m,) -  f { E  -  //a)) • (4.58)

From the expression for the Landauer-Biittiker current, the transmission coeffi­
cients can be identified with the term T r[rL G ^/FaG y]

T[E,  V) = 7V [F ,.G t/rR 6t,] • (4.59)

Thus, the current /  is essentially the integral over energy of the transmission 
coefficients T{E,  V) in the region in which the Fermi functions of the leads are not 
ecjual to  each other (i.e. the bias window). The transmission coefhcients ' r{E,V)  
correspond to the probability of an electron being transm itted from one side of the 
scattering region to the other at an energy E. They are generally dependent on 
the potential bias V  applied to tlie system. The position and width of the peaks in 
transmission coefficients are determined by the positions of the molecular orbitals 
and the strength of the coupling between those orbitals and the leads.

The full self-consistent procedure for calculating the charge density, the transm is­
sion and the current using the non-equilibrium Green’s function formalism is shown 
in figure 4.7.

4.5 N E G F  for Periodic Boundary C onditions

The NEGF method as described up to this point applies to one-dimensional or quasi- 
one dimensional systems. However, the devices investigated in the experiments mod­
elled in this thesis typically involve the molecules being attached to relatively large
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Lead’s Self-energy

^L ,H  =  T gL ,R {E )T '

Scatterer’s Green function

Density Matrix

I
Current

^'  T (/(£, w) -  /(£. K»))l<iE

Figure 4.7: Flowchart showing the self-consistent procedure used to calculato the density 
m atrix and the current using the non-equilibriuni Green’s function formalism

nie ta llic  electrodes, the cross-sections of which have far more atoms than it  is feasible 

to perform  calculations for. Unfortunate ly, modelling the contacts as nanowires w ith  

perlmps as few as nine atoms in the cross-section can introduce a rtific ia l gaps in to 

the l)anci structure due to  cjuantum confinement. This causes serious problems w ith  

electronic transport calculations, creating a rtific ia l gaps in the transmission coeffi­

cients. Hence, i f  possible, i t  is preferable to  introduce periodic boundary conditions 

in the directions perpendicular to tha t o f the transport.

From B loch ’s theorem, the H am ilton ian o f a 3D system can be w ritte n  in the 

form

N

//k  =  . (4.60)
j= o

where H j  is the Ham ilton ian coupling the 0*’’ un it cell to the j* ' ’ un it cell, is 

position o f the j'* ' u n it cell relative to the 0*'’ one, and k  is the reciprocal la ttice 

vector. The Schrodinger equation associated w ith  this Ham ilton ian is

N N

j= 0

(4.61)
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where Uî  is a function with tlie same periodicity as the lattice. Note th a t these 
equations are separable, so tha t the problem can be solved by diagonalising //k for 
each value of k. The integral of the resulting eigenvectors, with respect to k 
gives the density m atrix of the system.

Similarly, the retarded Green’s function for the scattering region, as given in 
ec]uation (4.29), can be adapted to  the case of periodic boundary conditions

C ^ { E ,  k) =  {\un{E + i5)S{E,  k)) -  H u{E,  k) -  k ) ) " ‘ , (4.62)
(5—»0

This Green’s function can be calculated separately for each value of k. The 
density m atrix is then obtained by integrating the k-dependent density m atrix over 
all the values of k  in tlie Brillouin zone

P = ^ J  elk j  [ 6 t i r i / , f / / ( / ?  -  / / l ) +  -  t‘R)]dE . (4.63)

This integral can be performed by splitting it into equilibrimn and non-equilibrium 
parts, as shown in equations (4.48) and (4.53).

For the ah initio transport calculations describ('d in this thesis, two k-points were 
samj)led in each of the directions perj)endicular to the transi)ort. For the calculations 
of electronic structure of the unit cell of the leads, 100 k-points were sampled.

4.6 C alculating Self-Energies and G reen’s Func­
tions for the Leads

From equations (4.22) and (4.23), we have th a t the self-energies for the left and right 
leads, S l and E r , are given by

£ l  =  (e^ML -  /4 iL ) G f  (e^LM -  / / l m ) , (4.64)

E r =  (e^MR — //MR)GR*^(e5RM -  / / rm) . (4.65)

and Gr^ are the retarded Green’s functions of the isolated leads. Due to  the 
inclusion of principal layers in the scattering region on both sides, //m l and //m r 
usually consist of the Hamiltonians describing the interactions between principal 
layers in the leads, Hi and //_ i. Therefore, constructing the self-energies reduces 
to calculating the retarded Green’s functions of the leads. In SMEAGOL, these are 
calculated semi-analytically using the scheme introduced by Saiivito et. al. [108].
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There are also recursive algorithms available to calculate these functions, although 
they have not been implemented in SMEAGOL.

As explained previously, the leads are assumed to be periodic in the direction of 
the transport, with / / q being the Hamiltonian describing each principal layer, and 
//] describing the coupling between principal layers. Since each layer only interacts 
with its neighbouring layer, the Hamiltonian of the leads is in block tridiagonal form

/  .

V

/ / - I
0

Ho Hi 0
H-i Ho / /

0 H-i //(
0

\

(4.66)

The Schrodinger equation for this system is of the form

Iloi’z +  IM h+i  + =  ES'il;, . (4.67)

where H i =  H\  in the case of time reversal symmetry. For an infinite, quasi- 
one-dimensional system such tis this, the wave function takes the form of Bloch states

'(pz = . (4.68)

where k  is the reciprocal lattice vector and is a normalisation factor. Sub­
stitu ting  this into equation (4.67) gives

[{Ho -  ESo) + ( // i -  ESi)e^'^' +  ( //_ i -  = 0 . (4.69)

Solving this ecjuation for allows the value of k to be determined for a given 
value of E. This is done be rewriting the above equation in m atrix form so tha t

(  - ( / / ,  -  E S i ) - ^ H o  -  ESo) {Hi -  K 9 i ) - ‘ ( / / - i  -  ES_, )  \  (  <l>k \
\  I  0 A  J

The eigenvalues and eigenvectors of this m atrix are and (pk respectively. There­
fore, k  as a function of E  can be obtained by diagonalising this matrix. Problems 
with this method may occur when {Hi — E S i )  is singular and so cannot be inverted.

For an orthogonal basis set the retarded Green’s function of the doubly infinite 
system can be calculated from (pf. and k. This retarded Green’s function, G^z', lias
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the form  of a wave function except a t the  source point, z = z', and so we use the 

following ansatz  [108]

'^^zz'  — \  , i k i ( z - z ' )  t ^E/=i0fc,e  ̂ -
_  /  E / = i  ^'^wl z  > z'\

k̂i

where k  = —k,  w ith k  representing th e  right and left moving plane waves, and 

w!  and w l  are vectors whose form is to  be determ ined. The sm nm ation runs overki
all possible scattering  channels.

(izzi is a G reen’s function, and thus nm st satisfy the equation

(E 6’ - / / ) 6 V  =  4 z ' (4.72)

where / /  is the  G reen’s function of a doubly infinite lead. G^z' m ust also be 

continuous at 2  =  z ' , i.e. the values given by the expressions for z  > z' and z < z' 

should be the sam e a t this point. These conditions can be used to  show' th a t  the 

G reen’s function for the  doubly infinite lead is of the  form

E(=i
E/=i l/-‘

where V  is given by

N

I ' =  . (4^74)
1 = 1

This is the G reen’s function for a quasi-one dim ensional system  (i.e. one which is 

periodic in the  tran sp o rt direction), and which extends to  infinity in bo th  directions. 

The leads for the  system  we wish to  s tudy  only extend to  infinity in one direction, 

as they  end a t the  interface w ith the  scattering  region. Consider the left lead which 

runs from 2 =  —cxo to z  = zq — 1 (the scattering  region s ta r ts  a t 2  =  2q)- Then 
the boundary  condition is th a t  the  G reen’s function nnist vanish a t z  = Zq- This 

condition can be obtained by sub trac ting  from a wave function of the form

N

A , ( z ' ,  zo) =  2n) ■ (4.75)
t,h

T he surface G reen’s function, Gzgz'{zo) is then  given by

>  2 ';
\  /C.

(4.73)

GzQz'i^o) G^ qz' ^ z {^  ) '2'o) 

If we take A ^(2 ', ^o) to  be of the  form

(4.76)
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N

X { z ' , z o )  =  • (4.77)
l.h

Then for z =  2 q, so that z' is in the lead and z >  z'

N

G.oAz„) =
/=1

N

-  =  0 . (4.78)
l.h

Similarly, for z' =  Zq, so that 2  is in the lead and 2  <  z', Gzgzr{zo) =  0.

The surface Green’s function is the Green’s function for the last slice of the leads, 

which for the left lead will be at zq ~  1- At this point z =  z' =  zq ~  1, so that 
^tki(z-z) _  Hence, the surface Green’s function, (7l =  6 ’2 o_i,2 q_i(zo)) is given by

N N

6Y = (7,„_i.,„_i(zo) = ■ (4-^9)
/=1  l.h

N

=> G Y = | /
l.h

Similarly, for the right lead, the first slice is taken to be at Zq +  1, and the lead 

runs to +CXD. Hence the corresponding surface Green’s function, Gr , is given by

N

G r =  =  | /  -  ^
l.h

The main weakness of using this method for calculating the Green’s functions of 

the leads is that it requires the inversion of the matrix [II\ — ES\) .  For certain sys­
tems, particularly when the orbitals of the atoms in the leads are strongly localised, 
this matrix can be singular.

This can also occur if the miit cell of the leads is not chosen carefully, for example 

if it is unnecessarily long. For example, consider the linear atomic chain shown in 

figure 4.8.

Each atom is coupled only to its nearest neighbour with hopping parameter 7 . 

In the first case, each unit cell only contains one atom, and so H\ is just equal to 

7 , and so is invertible. However, in the second case, we consider two atoms in each
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Y y Y Y Y

y y y y y

Figure 4.8: Linear atomic cliaiiis of atoms with (a) one and (b) two atoms in the unit 
cell. If the atoms are only coupled with their nearest neighbours, then in chain 
(b), the matrix H\ describing the coupling between ncighboiu'ing cells will be 
singular.

principal layer, and the left atom in one principal layer will not interact with the left 
atom in the next principal layer. Hence, H\  for this particular system has the form

/ / i  =
0 0
7 0

(4.82)

I'liis m atrix is obviously not invertible. In this ease, the problem can be solved 
easily by choosing a different unit cell for the leads. However, for more realistic 
systems with nuiltiple orbitals this is not always possible. Transition metals can be 
particularly troublesome due to the highly localised natiu'e of the “d” orbitals.

This problem can be solved by performing a generalised singular value decompo­
sition [109], combined with a decimation procedure to remove the degrees of freedom 
which do not couple to the other principal layers [38].

4.7 Conclusion

The non-equilibrium Green’s function formalism described here can be used to per­
form calculations for open systems which are not at equilibrium, such as nanoscale de­
vices with have an applied bias. As such, it can be used to calculate electron transport 
processes in a variety of systems, from metal-molecule junctions, to nanowires and 
multilayer devices. It allows the effects of finite bias to be modelled self-consistently, 
and can be used to plot the transmission coefficients and I -V  curves of such systems. 
It can be used with different electronic structure methods such as tight-binding or 
density functional theory. This method has been combined with the density func­
tional theory code SIESTA [82, 83, 84] described previously to form the SMEAGOL
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[37, 38, 39] program.
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Chapter 5 

M olecular Electronics and the  
Derivative D iscontinuity

Nanoelectroiiics has now advanced to the point where devices are being constructed 
from single molecules. Such molecular devices have the potential to revolutionise 
multiple diverse fields, from computer architecture [2, 3, 4, 5, 12] to chemical sensors 
[6, 7, 8] and medical diagnostics [9, 10, 11].

One of (he first molecular devices was manufactured by Reed et. al. [19] in 1997. 
It consisted of a benzenedithiol (BDT) molecule connected between two gold point 
contacts, constructed by using a mechanically controlled breaking junction (MCB.J) 
as described in the introductory chapter of this thesis. Electronic transport mea­
surements performed on this device found very low conductivity, with a conductance 
gap between -IV and IV, and a current of the order of 0.3//.A at 5V. To put this 
current in perspective, the (juantum of conductance, Gq, is equal to 77/xS, so that the 
current through a single open conductance channel would be 77//A at IV and 385/iA 
at 5V, assuming a linear I-V  curve. The zero-bias conductance was very low, of the 
order of 10“ '’Go- However in more recent experiments, such as that of Xiao et. al. 
[26], a zero-bias conductance of O.OllGo was obtained for the same molecule using an 
STM breaking junction. This is three orders of magnitude higher than that observed 
by Reed et. al. No significant conductance gap was observed, and a current of the 
order of 1/xA was measured at 0.7V. In the same work, transport measurements were 
also performed on benzenediniethanethiol (BDMT) using the same method. For this 
molecule, a conductance of 6 x 10“‘*Go was observed, with a current of the order 
of 50nA being measured at a bias of 0.6V. It should be noted that in the work of 
Xiao et. al., several hundred measurements were made for each molecule, with a 
new' molecular junction being constructed for each measurement. This allows statis­
tical histograms of the conductance to be plotted for each molecule, increasing the 
reliability of the results.

75
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Another MCBJ experiment has been performed since for BDT attached to gold 
electrodes by Tsutsui et. al. [24], They found two sets of zero bias conductances: one 
set of “low'-conductance states” w'here they observe conductance values of 0.004Go, 
0.005Go and 0.01 IG q, which are values similar to those observed by Xiao et. al. 
[26]; but also a set of “high-conductance” peaks, with values of 0.09G q, 0.14G q and 
0.23Go- Both the MCBJ and STM breaking junction methods were used by Ulrich 
et. al. [25], with the STM measurements being performed at room tem perature 
(293K) and the MCBJ experiments being performed at low tem perature (30K). For 
the room tem perature measurements for BDT, clear peaks could not be observed 
in the conductance histograms, but in the case of the low tem perature mechanical 
break jiniction measurements, a peak was discernible at O.OIIGq, the same value as 
tha t oljserved by Xiao et. al. For the configuration giving this conductance value, a 
current of the order of 3//A was measured at IV, with no conductance gaj) observed. 
The transport properties of BDMT were also investigated in this work, with the 
observed conductance values being between 0.00026’o and 0.0046’o.

Ghosh et. al. [29] used a combination of electron-beam lithography and electronii- 
gration to fabricate gold electrodes, and then deposited BDT and BDMT molecules 
in the gap between them. They observed high conductances for BDT, of the order 
of O.IGq (similar to the high conductance regime observed by Tsutsui et. al.). A 
current of the order of 30yuA was observed at 2V, with no conductance gap in the I-V  

curve. For BDMT, a conductance of 5 x 10“‘̂ Go was observed, similar to th a t mea­
sured by Xiao et. al., with a current of order the order of 200nA at 2V. Dadosh et. 
al. [30] investigated the transport properties of BDMT and biphenyldithiol (BPD) 
l)y mixing a solution of the molecules with a gold colloid, so tha t the molecules would 
attach to the gold nanoparticles, tethering two of them together. The resulting dimer 
was then trapped between two electrodes and the transport properties measured. In 
this work, very low conductances were observed, with BPD giving a conductance of 
the order of 10~^Gq, while BDMT gave a conductance of the order of IO^^Gq-

Thus, there are large variations in the experimentally measured results for the 
transport properties of these molecular junctions, even when very similar methods 
are used to perform the measurements. The usual explanation given for this large 
spread in the data  is th a t of variation in the contact geometry between the molecule 
and the metal surface. O ther possibilities include there being different numbers of 
molecules present in the junction, or the molecule not being chemically bonded to 
one or both of the electrodes.

Unfortunately, to date ab initio quantum  transport calculations have not been of



77 C hapter 5

much assistance in solving this problem. Calculations using NEGF and D FT with 
local exchange-correlation (XC) fimctionals give results for the conductance which 
are even higher than those obtained by any of the experiments [63, 64, 65, 66, 67, 68, 
69, 70]. One of the earliest calculations performed for the BDT molecular junction 
was th a t by DiVeiitra et. al. [63]. Their results showed a conductance gap in the I -V  
curve between -IV  and IV  similar to tha t observed in Reed et. al.’s experiments, bu t 
obtained a current of 150//A at 5V. For a different configuration, with the molecule 
attached to a single gold adatom  on each surface, the current dropped to  6//A a t 5V. 
However, these calculations were performed using a jellium model for the electronic 
structure of the electrodes.

Calculations in which the leads are treated more realistically include those of 
Xue et. al. [64, 65], which were performed using the BPW91 GGA XC functional to 
calculate the electronic structure of the extended molecule with a modified version 
of GAUSSIAN98. For BDT, they find a zero bias conductance of the order of O.IGq, 
with a current of the order of 50/xA at 4V. For BPD, the zero bias conductance of the 
order of 0.02(7o, with a current of the order of 40//A at 4V. However, the extended 
molecule which they use for their calculations only includes six atom s from each lead, 
and the leads themselves are described semi-empirically.

Stokbro et. al. [68] used the TranSIESTA method to investigate BDT attached 
to gold using both LDA and GGA XC functionals. They obtained similar results 
for l)oth LDA and GGA, with conductances in the range of 0.36(7o to  0.44Gq, which 
are higher than  tha t observed in any of the experiments, and a current of the order 
of 100//A at 5V. Basch et. al. [66] also used the TranSIESTA method with an 
LDA XC functional to calculate the transport properties for both BDT and BDMT 
attached to gold leads. The set up in both of these calculations and those of Stokbro 
et. al. are very similar to our own as described in Chapter 6. Their results show 
zero bias conductances in the range of 0.2Go to 0.86’o depending on the anchoring 
geometry, with a current of the order of 25//A at 0.6V. For BDMT attached to gold 
electrodes, they obtained zero bias conductance in the range of O.OO6C0 to 0.05(7o, 
with a current of the order of 300nA to 500nA at 0.6V.

Many body methods have also been used to investigate electronic transport in 
BDT attached to gold leads. Delaney et. al. [51] used a m ethod based on the 
configuration interaction formalism. They obtained an I -V  with a conductance gap 
between -2V and 2V, with a current of the order of 3//,A at 5V. The zero-bias conduc­
tance observed was of the order of 10“^Go- However, this method uses distribution 
fmictions to describe the effect of the semi-infinite leads, instead of self-energies as



M olecular Electronics and th e  Derivative D iscontinuity 78

in the  non-equilibrium  G reen’s function formalism. This in tvu’n may lead to  the 

broadening of the  m olecular o rb ita ls being incorrectly described, which m ay explain 

the  large conductance gap.

Several of these ab initio  calculations also dem onstrate  th a t altering the  contact 

geom etry  to  reduce the  s treng th  of the in teraction between the molecule and the 

m etal results in the HOM O of the molecule being pinned to the  Fermi level of the 

m etal, so th a t  a high zero-bias conductance is still observed [64, 65, 66, 67]. This is 

discussed a t length in chap ter 6, where D F T  calculations are perform ed for iim ltiple 

anchoring configurations of th e  B D T molecule on the  gold surface.

O ne explanation as to  w'hy the  calculations fail to  describe any of the experim ents 

is th a t  the  local exchange-correlation (XC) functionals used in the  calculations con­

ta in  self-interaction errors, as described in chapter 2. One effect of the  self-interaction 

error is to  suppress the  derivative discontinuity, which should be present in the  true  

XC functional. In chapter 3, the  effect on the electronic tran sp o rt of a non-linear 

dependence of the  energy of the  level on its occupation was dem onstrated  using a 

sim ple model. Here, a sim ilar concept is applied to  the  system  of BD T sandwiched 

betw een gold electrodes, to  investigate the  effects of a discontinuous po ten tia l on 

the  conductance of th is junction  [74]. However, in order to  recover the derivative 

discontinuity  in D F T , the full self-interaction correction would have to  be applied 

self-consistently [71]. This is difficult to  im plem ent for extended system s and is also 

com putationally  very costly. Therefore, we instead m odelled the system  using a self- 

consistent tigh t-b inding  H am iltonian, in which the dependence of the energy of the 

energy level of the  valence orb ita ls for each atom  on the  occupation was calculated 

using self-interaction corrected D F T  [101].

5.1 Self-Consistent T ight-B inding H am iltonian

T he non-equilibrium  G reen’s function formalism (N EG F) [34, 35, 36, 38] works w ith 

a num ber of different H am iltonians, such as the  D F T  H am iltonian described previ­

ously. In order to  exam ine the  effect of a derivative discontinuity on the electronic 

tra n sp o rt p roperties of a m etal-m olecule junction , we used the  N EG F m ethod w'ith 

a self-consistent tigh t-b inding  H am iltonian [110, 111]. This is a relatively sim ple 

H am iltonian, which helps to  prevent the calculations from becoming too com puta­

tionally  expensive. This is im portan t, since the  discontinuous charging poten tia ls 

being investigated  here can cause some convergence problems. Also, since it is not 

an ab irntio H am iltonian, the  various param eters used can be varied independently
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in orcier to  s tudy  their effect on the  system.

To in troduce the  tight-binding m ethod, first consider an infinite hnear chain of 

identical atom s, as shown in figure 5.1. AUow one sta te , \ j ),  per atom . T he wave

T j-i.j

•  •  • £j+l

j - l j + i

Figure 5.1: Infinite linear chain of atoms, labelled by index j .  In the tight-binding approx­
imation, each atomic orbital is characterised by an “on-site energy” ej, and the 
nearest neighbour hopping parameters "fjj+i-

function of the  entire chain, \'tp), will be a linear com bination of atom ic orbitals.

N

^  = (5-1)
J = 1

where \ j) are the atom ic orbitals. These are assum ed to  be orthonornial, so th a t

( / |j )  =  Sij. T he Schrodinger equation for this system  is H\'ip) =  where I I  is

the  H am iltonian and E  are the eigenvalues. By expanding the  wave function \ip) 

over th e  basis |j)  and projecting over the  s ta te  |i) gives

N  N

^  e Y . ' P M j )  ■ (5 2̂)
j = l  j = l

If we assum e th a t the atom ic orb itals are tigh tly  bound to  the  nucleus (the 

“tigh t-b ind ing” approxim ation), so th a t  only the  m atrix  elem ents between nearest 

neighbour o rb ita ls do not vanish, we obtain

(  Cj i f  ? =  j ;

=  < l i j  if?: =  j ± l ;  . (5.3)
[ 0 O therwise.

Here, t j  is the  “on-site energy” of atom  j ,  which is energy of the  atom ic s ta te  if 

the  a tom  is disconnected from the  rest of the  chain, modified to  take into account 

the  effect of th e  crystal field. T he “hopping param eter” , 7ij, describes the  hopping 

between o rb ita ls s itua ted  on neighbouring atom s. The ra te  a t which electrons can

move betw een two orb itals is given by For a chain of identical atom s, where

Cj =  e and ' y j - i j  = l j j + \  = 1 for all j ,  th e  Schrodiuger equation associated with 
a tom  j  becomes
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7 ^ j_ i  +  eipj + = E ’tpj . (5.4)

Take as a tria l solution for equation (5.4). For atom  j ,  th is gives

^  ( e - / ? )  +  7 (e-*'= +  e‘*̂) = 0 .  (5.6)

Since + e'^ =  2cos(A:), we get a dispersion relation for the  energy E  in term s

of

E  = e + 2 7 Cos(A:) =  0 . (5-7)

From this, it can be seen th a t the tigh t-b inding  H am iltonian has two m ain pa­

ram eters: the  on-site energy c and the “hopping” param eter 7 . The on-site energy 

represents the  poten tia l energy. It determ ines the energy of the  o rb ita l in an atom , 

or the position  of the centre of the  band in a solid. In our H am iltonian, the  on­

site energy of a particu lar orbital is a function of the electronic occupation of th a t 

orbital. T he form of th is function will be discussed later. The hopi)ing param eter, 

or coupling, represents the kinetic p a rt of the  H am iltonian. It corresponds to  the 

p robability  of an electron “hopj)ing” between atom s. From equation (5.7), it can be 

seen th a t  it is the  param eter which determ ines the w idth of a band.

ssa spa

Figure 5.2: Different types of hoppings for .s and p orbitals: (a) ssa  hopping, between 
two s orbitals; (b) spa hopping, between an s and p orbital; (c) ppa hopping, 
between two p orbitals oriented along the same axis; (d) ppiv hopping, between 
two p orbitals oriented along parallel axes

T he tigh t-b ind ing  m ethod can be extended to  three-dim ensional system s by con­

sidering the  in teractions between the nearest neighbour atom s in every direction.



81 C hapter 5

As shown in equation (5.8), the  value of 7 depends on bo th  the  type and relative 

orien tation  of the orbitals, and the  distance d  between the atom s [111].

l l l ' m  = ------ ^  • (5.8)rrig
T he param eter rju'm depends on the type of hopping in question, {ssa, spa, ppn,  

etc), i.e. on the  geom etry of the orb itals relative to  each other, as shown in figure 5.2. 

The d istance between the  atom s is d, h is P lanck’s constan t and nig is the electron 

mass.

I'liese param eters can be determ ined by fitting  experim ental band  s tructu res and 

orb ita l spectra , or they can be calculated using ab initio m ethods such as D F T  [112]. 

The values for for s and p orb itals are given in tab le  5.1, and are taken from 

H arrison [111].

Coupling Type Relative S trength
^]SS<T -1.40
Vspcr 1.84
f ]ppa 3.24
f ]ppn -0.81

Table 5.1: Table showing relative coupling strengths of different bond types between s and 
]) orbitals [111].

In the  case where the  orb itals are a t an angle 9 w ith respect to each other as 

shown in figure 5.3, the  p  o rb ita l should be broken into com ponents parallel and 

perpend icu lar to  the axis joining tlie two atom s.

p sin

Figure 5.3: Interaction between s and p orbitals at an angle 9 to each other. The p-orbital 
is split into components parallel and perpendicular to the bond axis. The 
perpendicular component does not interact with the ,s-orbital due to synniietry, 
so the bond is ')sp„cos9.

The com ponent of the p-orbital which is perpendicular to  the  direction of the 

axis jo in ing  th e  two atom s does not in teract w ith the p-orbital due to  synmietry.
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The interaction is therefore between the s-orbital and the component of the p-orbital 
along the axis joining the two molecules, and is equal to ^gpa cos 9 . In the case of 
an interaction between two p-orbitals a t an angle to each other, the orbitals should 
both be split into parallel and perpendicular components to give a stun over ppa and 
ppn interactions.

5.2 Self-C onsistent P oten tia l

As described above, the on-site energy is a function of the occupation of the orbital 
it is associated with. As for the simple model described in chapter 3, this can be 
w'ritten as

£ =  «() +  U s c f {p ) ■ (5.9)

where Cq refers to the neutral atom, and Uscp{p) is a self-consistent i)otential. As 
in the simple model, tw'O different potentials are considered; one which is obtained 
from a self-interaction corrected (SIC) D FT calculation for the free atom, and the 
other calculated in the same way for the LDA j^otential. In particular, the SIC- 
type potentials for sulphur (S) and carbon (C) atoms were calculated using a self­
interaction corrected plane-wave D FT code [101]. They are the energy eigenvalue of 
the relevant orbital as a function of its occupation. As for the simple model, the LDA

Occupation Occupation

Figure 5.4: Self consistent potentials for (a) carbon and (b) sulplmr. The SIC-type po­
tentials are calculated using self-interaction corrected DFT for the free atom 
[101]. The energy of the atomic eigenvalue is calculated as a function of its 
occupation. The LDA-type potential was then fitted to match tlie SIC-type 
potential at occupations of 0.0, 0.5, and 1.5 electrons. Note the discontinuities 
in the SIC-type potential at integer occupation.

and SIC-type potentials should match at occupations of 0.0, 0.5, and 1.5 electrons 
[101]. Hence, the LDA-type potential was fitted to the SIC-type potential so th a t the
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sum of the square of the distance between the two potentials at these occupations 
was minimised. The LDA and SIC-type potentials for C and S are shown in figure 
5.4.

The SIC-type potential is only applied to the orbitals used to represent the 
molecule, i.e. the C and S tt orbitals. The gold leads are assumed to be metal­
lic with highly delocalised electrons, allowing local fractional charging. Therefore, 
for the gold atoms UscF is assumed to be directly proportional to the charge, i.e. 
f^scF =  -/V — Â o, where No is the occupation of the local orbital at neutrality.

These self-consistent potentials are for the position of the atomic orbitals as a 
function of occupation. These atomic orbitals form the basis set for the calculation. 
To calculate the occupation of the atoms at a given potential bias, the density of 
states and the corresponding density m atrix are calculated using the NEGF method 
described in chapter 4. This gives the occupation of the molecular orbitals, which 
are linear combinations of atomic orbitals. The charge density can then be projected 
over the atomic orbital basis set, and the self-consistent potential is then calculated 
for each atomic orbital as a function of its occu[)ation. This determines the new on­
site energy for each orbital, which is then used to to construct the new Hamiltonian. 
I ’he procedure is then repeated iteratively imtil convergence.

Note th a t this means th a t the self-consistent potentials, and hence the |)ositions 
of the discontinuities, are calculated based on the occupation of the atomic orbitals 
rather then the molecular orbitals. This may cause problems in th a t the disconti­
nuities may occur at the wrong place if, for example, the molecular orbitals have 
integer occupation but the the atomic orbitals do not due to electrons being delo­
calised across several atoms. The result of this is th a t there are fewer, larger steps 
in the level energy as a function of occupation.

5.3 Calculation D etails

The system we wish to stTidy here is a benzenedithiol (BDT) molecule attached to 
fee (100) Au leads, as is shown in figure 5.5. The yellow atoms are gold, the brown 
are sulphur, the black are carbon, and the blue are hydrogen.

In order to simplify the calculations, only one orbital per atom is used. For the 
gold atom s just the 6s orbitals are used, as the Fermi level lies in the s band, with 
the d orbitals more localised and about 2eV below the Fermi level. They are thus less 
likely to contribute to the current at low bias. The density of states (DOS) obtained 
from a DFT-LDA calculation which shows the positions of all of the valence orbitals
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m m  ^ 3

Figure 5.5; B D T attached to  fee (100) gold leads. Colour code: Au=yellow, C =black, 
S=brow a, H=blue.

—  S px 
  Spy

—— S px 
  Spy

C s C s  
C px
c py 
C k

GO 00
  C py
—  C n

4 5 5 -4 -3 -2 - 1 0 1 2  3 4 5
£-£p (eV) (eV)

Figure 5.6: Density of S tates (from D FT  w ith LDA) for the molecular orbitals for (a) BD T 
on Gold and (b) isolated BDT Molecule.

of the  m olecule is shown in hgure 5.6. From this DOS, it can be seen th a t  the  only 

m olecular o rb ita ls which are close to  the  Fermi level are the  S and C tt orbitals, 

wiiich are the  p  orb itals lying perpendicular to  the plane of the benzene ring. They 

are coupled to  each o ther via a ppir bond (see figure 5.2), and are delocalised across 

the entire molecule, so they  will conduct electrons. None of the o ther carbon  o rb ita ls 

lie near the Fermi level. The only o ther s ta te  which is near the  Fermi level is the  S 

“Pa;” s ta te  ju s t below Ep. However, th is s ta te  is perpendicular to  the  C tt o rb itals, 

and so will no t in terac t with them . Therefore, the  s ta te  is not delocalised across the  

molecide and will not conduct. For th is reason, the sulphur and carbon  a tom s can 

be described ju s t using the the p  orb itals which lie perpendicular to  the  p lane of the 

benzene ring. The hydrogen atom s not considered since the m olecular orb ita ls to  

which they  con tribu te  are far from the  Fermi level.

In the  calculations described in th is chapter, the BD T molecule is a ttach ed  to  a
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M

3
Figure 5.7: BDT attached to fee (100) gold leads. The angle between the end gold atom 

and the sulphur atom can be adjusted to control the strength of the interac­
tion between the molecule and the leads. Colour code: Au=yellow, C=black, 
S=brown, H=blue.

gold fee (100) nanowire. The nanowire ends in a tip, going from a 3x3 cross-section, 
to 2x2, to a single atom. The S atoms of the BDT molecule are attached to these 
last gold atoms. However, because of symmetry, the s orbital of the gold will not 
couple to the n orbital of the sulphur when the molecule is in line with the gold 
atoms at the tip, and so no current will flow' at all. To overcome this problem, the 
angle between the gold and the sulphur is varied from 5° to 30° as shown in figure 
5.7 to allow the s and p orbitals to interact. By changing this angle, the strength of 
the coupling between the molecule and the leads can be controlled and so the effect 
of this on the I -V  curve can be investigated.

The band alignment between the gold and the molecule was chosen so as to give 
results for the I -V  cm've which, with an LDA-style potential matched those which 
had been calculated using SMEAGOL for the same geometry [113]. Thus, for the 
calculations in which the effect of coupling strength on the transport properties is 
investigated, the Fermi level is set to -7.1eV. However, the effect of changing the 
band alignment aiifl the Fermi level is also investigated.

5.4 Effect o f derivative d iscontinuity  for different 
coupling strengths.

The effect of derivative discontinuity on the conductance of the Au-BDT molecular 
junction was investigated for a variety of different coupling strengths. The strength of 
the metal-molecule coupling is extremely sensitive to the Au-S angle shown in figure
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Figure 5.8: I-V  Curves for BDT on Au fee (100) for different coupling strengtfis between 
the molecule and the metal. This coupling strength is adjusted by changing 
the gold-sulphur angle shown in figure 5.7. Increasing this angle from 5° to 30° 
can cause the size of the current to increase by up to two orders of magnitude.

5.7, and so tliis param eter can be used to control the size of the interaction between 
tlie molecule and the leads. As the size of the angle is increased, the interaction 
fietween the s and p orbitals increases and so the coupling strength increases. This 
in tu rn  has a major effect on the magnitude of the current, as shown in figure 5.8. 
Changing this one angle from 5° to 30° can cause the size of the cm'rent to increase 
by up to tw'O orders of magnitude. Thus the I-V  characteristics of this system are 
highly dependent on the exact geometric configuration of the contact between the 
m etal and the molecule. Similar results to tfiis fiave fjeen rejwrted elsewhere [47].

To investigate the effect of the derivative discontinuity in the limit of weak cou­
pling between the leads and the molecule, the sulphur-gold angle was set to 5°. The 
density of states for this system is shown in figure 5.9 for both types of potentials. 
These have been calculated using the NEGF method, and so include the effect of 
the infinite leads. The sulphur and carbon tt states are relatively narrow due to  the 
weak metal-molecule coupling. For both types of potentials, the two molecular states 
on either side of the gold Fermi level mainly consist of hybridised C and S tt and 
7T* states, with Ep pinned just below the n* level. For convenience, these particular 
states will be referred to as the tt and tt* states, and in this case they form the HOMO 
and tlie LUMO of the molecular junction.
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Figure 5.9: Density of states for tight-binding (a) LDA and (b) SIC for BDT on Gold for 
the weak coupling limit in which the gold-siilphur angle is set to 5°. Note how 
the two states on either side of the gold Ep are mostly due to the sulphur tt 
and TT* states. The gold Ep is pinned just below the tt* state for both types of 
charging potentials. The molecular levels are narrow due to the weak coupling 
to the leads.

'riie occupation and position of the  HOM O and the  LUM O (tlie tt and tt* s ta tes), 

and the  I - V  curves for th is configuration are shown in figure 5.10, while the  transm is­

sion coefficients are shown in figures 5.11 and 5.12. To understand  the  relationship 

betw een the  level occupations and their position relative to  the bias window, first 

recall the  discussion of the sim ple model in chap ter 3. If th e  molecule is coupled 

sym m etrically  to  the leads, then  if the  level is below’ the  chemical po ten tia l of bo th  

leads, it will be fully occupied (i.e. it will contain two electrons, assum ing it is spin 

degenerate). If it is above bo th  chemical potentials, it w'ill be empty, and if it is be­

tween the  two po ten tia ls (i.e. if it is inside the bias window), it will be half-occupied 

(i.e. it will contain  one electron).

W ith  th is in m ind, the  results in figures 5.10, 5.11 and 5.12 can be understood. 

For the  LD A -type po ten tia l, the Fermi level of the  m etal is a t the  centre of the  t t *  

sta te . As such, it is partia lly  occupied, as shown in figure 5.10(a). It charges slightly 

as the  voltage is increased, and the  level position tracks the  position of the  higher 

chemical po ten tia l as shown in figure 5.10(b), so th a t p a rt  of the  level is w ithin 

the  bias window. From figures 5.11 and 5.12, the  resonance in the transm ission 

coefficients which corresponds to  th is level is also partia lly  w ithin the bias window. 

Hence, as shown in panels (c) and (d) of figure 5.10, there  is no conductance gap 

in the  I - V  curve, and the  curren t increases rapidly  a t low bias. Up to  IV , the 

conduction will be through the  t t *  s ta te  only. Above IV , the  bias w'iuflow becomes 

large enough to  also include the  t t  sta te , and conduction can now take place through
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Figiu’e 5.10: The (a) occupation and (b) position of the tt and tt* states for both the LDA- 
type and SIC-type charging potentials for BDT on Gold. I-V  curves for (c) 
bias range from -5V to -I-5V, and (d)froni -2V to -h2V. Note conductance gap 
from -IV to +1V with the SIC-type potential. This is the weak coupling limit, 
where the Au-S angle is set to 5°.

this state also.

For the SIC-type potential, as for the discontinuous potential for the simple 
model, the energy of a level increases rapidly as soon as any charge is added. At 
zero bias, the tt* state is pinned just above the gold Ep and is unoccupied, as shown 
in panels (a) and (b) of figure 5.10. As the voltage is increased so that the n* state 
would move into the bias window, the leads will try to impose an occupation of 
one electron on it. However, as soon as any charge is inserted into this level, the 
discontinuous potential causes its energy to increase sharply. This keeps the level 
pinned above the higher chemical potential and outside of the bias window. The 
corresponding resonance in the transmission coefficients is also pinned outside the 
bias window, as shown in figures 5.11 and 5.12. This suppresses the current at low' 
bias, opening up a conductance gap in the I-V  curve. At IV, the bias w'indow' is now' 
large enough to contain both the tt and t t *  states. At this point, the leads will try to
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Figure 5.11: lYansniissioii Coefficients calculated at 0.5V bias intervals for BDT on Gold 
in the weak coupling limit (Au-S angle =  5°): (a) LDA-type potential and (b) 
SIC-type potential.. The red vertical lines show the positions of the chemical 
potentials of the leads, so that the region between them is the bias window. 
The resonances in the transmission coefficients near the bias window corre­
spond to the 7T and tt* states in the DOS, and are narrow because of the weak 
coupling between the leads and the molecule.

impose an occupation of one electron on each m olecular level. This results in a i*e- 

arrangem ent of the  charge inside the  molecule, w ith one electron moving from the  tt 

s ta te  to  the  tt* s ta te , as shown in figure 5.10(a). Since bo th  s ta tes  are m ainly due to 

the  sulphur p  orbitals, th is does not actually  involve any change in the  occupation of 

the  atom ic orbitals. Therefore, the  values of th e  self-consistent po ten tials, and thus 

the  m atrix  elem ents of the  H am iltonian, are unaffected, and so the  energies of the  

m olecular orb itals are unchanged. Both levels now s ta r t to  conduct sinuiltaneously 

and the  current increases rapidly, as shown in panels (c) and (d) of figure 5.10. Thus, 

in the  weak coupling lim it, the derivative discontinuity  has the  effect of opening up 

a conductance gap between -IV  and IV. Note th a t this gap is the  sam e size as th a t  

observed in the  experim ents conducted by Reed et. al. [19].
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Figure 5.12: Transmission Coefficients calculated at 0.2V bias intervals for BDT on Gold 
in the weak coupling limit (Au-S angle =  5°): (a) LDA-type potential and (b) 
SIC-type potential. The red vertical lines show the positions of the chemical 
potentials of the leads, so that the region between them is the bias window. 
The resonances in the transmission coefficients near the bias window corre­
spond to the 7T and tt* states in the DOS, and are narrow because of the weak 
coupling between the leads and the molecule.

To explore the  effect of increasing the  streng th  of the nietal-m olecule coupling, 

the  sulphur-gokl angle was increased to  15°. As shown in the  DOS in figure 5.13, 

increasing the  coupling streng th  causes the  m olecular energy levels to  broaden. As 

for the  5° angle, the  SIC-type poten tia l again causes the tt* s ta te  to  be pinned above 

the  gold E ^ .  For the  LD A -type po ten tia l, th e  tt* s ta te  is also centred slightly above 

Ep, a lthough a large p roportion  of its tail is below the  Fermi level.

As shown in figure 5.14(a), this has the  sam e result as for the 5° angle, w ith  the 

7T* s ta te  having a much lower occupation a t zero bias for the SIC-type po ten tia l th an  

for the LD A -type potential. As the  voltage is increased, the  SIC-type po ten tia l again 

keeps the  t t *  s ta te  pinned som ew hat above the  bias window up to  approxim ately  IV. 

T he corresponding resonance in the  transm ission coefficients, shown in figure 5.15,



91 C hapter 5

C/0

O
Q

T o ta l

7C*
Cn

00
O
Q

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 - 1 0  1 2 3 4 5
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Figure 5.13: Density of states for tight-binding (a) LDA and (b) SIC for BD l' on Gold 
wiiere the Aii-S angle is set to 15°. Note how the two states on either side of 
the gold E p  are mostly due to the sulphur vr and tt* states. The gold E p  is 
pinned just below the tt* state for both types of charging potentials, although 
it is closer to the t t *  state for the LDA-type potential. The molecular levels 
are broader than those shown in hgure 5.9 due to the stronger coupling to the 
leads.

is also piiniecl outside the bias window. This again leads to tlie suppression of the 
low bias current as shown in figure 5.14(c).

How'ever, the effect is not as strong as it was in the case when the Au-S angle 
was 5°. This is because the resonances in the transmission coefficients corresponding 
to the TT and t t *  states shown in figure 5.15 are broader, and they even overlap to 
some extent. Therefore, the transmission around E p  in the region between the two 
molecular levels is non-zero. This results in some conductance in the -IV  to IV' bias 
wiruiow with the SIC-type potential, although the current in this region is still lower 
than th a t obtained for the linear potential.

Above IV, the bias window is once again large enough to contain both the t t  and 
T T *  states and the charges rearranges inside the molecule, as shown in figure 5.14(a). 
The current increases rapidly as conduction takes place through both of the levels.

In order to  investigate the effect of the derivative discontinuity in the strong 
coupling limit, the Au-S angle was increased further to 30°. As can be seen from the 
DOS plotted in figure 5.16, the gold E p  is once more situated between the t t  and t t * 

molecular levels, which are greatly broadened by the strong coupling to  the leads, 
so th a t they overlap to a large extent. Thus when the potential bias is applied the 
TT  sta te  discharges while the t t *  charges (figure 5.17(a)) in such a way th a t the total 
charge on the atoms in the molecule does not change very nnich. Therefore, as shown 
in figure 5.17(b), neither level moves nnich with bias, so tha t the exact nature of the
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Figure 5.14: The (a) occupation and (h) position of the tt and tt* states for both tlie LDA- 
type and SIC-type charging potentials for BDT on Gold, with the Au-S angle 
set to 15°. I -V  curves (c) for bias range from -2V to +2V. The conductance 
gap between -IV and +1V for the SIC-type potential is now not as distinct 
as it was in the weak coupling limit.

charging potential is relatively unim portant. The resonances in the transmission 
coefficients shown in figure 5.18 are also very broad, and the transmission a t the 
gold Ep is very high. Thus, although the tt* sta te  is pinned at a slightly higher 
energy, its precise position is not as im portant as in the weak coupling limit. The 
zero-bias conductance for both types of potentials is high, and the I - V  ciu’ves are 
very similar, as shown in figure 5.17(c).

5.5 Effect o f derivative d iscontinuity  for different 
level alignm ents

In the calculations described in the previous section, the alignment between the gold 
6s band and the molecular orbitals was set artificially so as to give an I -V  curve 
similar to th a t produced by SMEAGOL. An advantage of using the tight-binding
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Figure 5.15; lYaiismission Coefficients at 0.5V bias intervals for BDT on Gold (Au-S angle 
=  15°): (a) LDA-type potential and (b) SIC-type potential. The red vertical 
lines show the positions of the chemical potentials of the leads, so that the 
region between them is the bias window. The resonances in the transmission 
coefficients near the bias window correspond to the tt and tt* states in the 
DOS. They are broader than the resonances shown in figure 5.11 because of 
the stronger coupling between the leads and the molecule. Therefore, even 
though the centre of the level is pinned outside the bias window with the 
SIC-type potential, there is still some transmission at zero bias.

m ethod is th a t param eters such as the position of band centres can be adjusted 
ea.sily to investigate the effect of altering the level alignment. The impact of the 
level alignment on the effect of the derivative discontinuity on the conductance of 
the device will now be described for the weak coupling limit (i.e. for the gold-sulphur 
angle set to 5°).

The Au band centre was first shifted upwards by 2eV. The DOS for this system 
is shown in figure 5.19. For the LDA-type potential, the gold cuts across the 
7T* state, while for the SIC-type potential it is pinned just below it. As shown in 
figure 5.20(a), this sta te  already contains one electron at zero bias for the LDA-type 
potential, and so its occupation does not change nuich when the potential bias is
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Figure 5.16: Density of states for tight-binding (a) LDA and (b) SIC for BDT on Gold 
for the strong coupling limit where the Au-S angle is set to 30°. Note how 
the two states on either side of the gold Ep are mostly due to the sulpluir tt 
and TT* states. The molecular levels are very broad due to the strong coupling 
between the molecule and the leads.

applied. Thus as the voltage is increased, the state remains at the centre of the 
bias window, and it starts to conduct at zero bias. However, because the levels do 
not move much, the tt sta te  remains outside the bias window at IV  and will not 
conduct until a higher bias is applied. For the discontinuous potential, the t t *  state 
is still j)inned above the gold Ep. However, the Fenni level is now closer to the toj) 
of the charging potential of the atoms, so the dependence of the level position on its 
occupation is no longer as steep as before. As shown in figure 5.20(b), the level is 
now closer to the bias window, and while the low bias current is still suppressed, it 
is larger than it was for the previous level alignment.

The gold band centre and Fermi level is then lowered by 2eV with respect to 
the position used in section 5.4. The DOS for this configuration is shown in figure 
5.21. For the SIC-type potential, the gold Ep is still pinned to the tt* s ta te  of the 
molecule. However, for the LDA-type potential, Ep is just above the tt state. Thus 
for the the LDA-type potential the ir* sta te  is unoccupied at low bias because of the 
position of the Fermi level (figure 5.22(a)). The n sta te  is not full, and it possesses 
some am plitude in the bias window. Therefore, the conductance is initially through 
the 7T sta te  rather than the t t *  state.

For the SIC-type potential, the n* sta te  is pinned just above the bias w'indow. 
As for the original case, the discontinuity prevents the level from charging, keeping 
it out of the bias window, as shown in panels (a) and (b) of figure 5.22. Once again, 
there is a conductance gap present in the 1-V  curve between -IV  and IV.

The final band alignment configuration investigated is where the gold 6s band
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Figure 5.17: The (a) occupation and (b) position of the tt and tt* states for both the LDA- 
type and SIC-type charging potentials for BDT on Gold. I-V  curves for (c) 
bias range from -5V to -I-5V, and (d)froni -2V to +2V . The conductance gap 
from -IV  to -I“1V with the SIC-type potential has now disappeared, and the 
I -V  curves for both types of potentials are very similar. This is the for the 
strong coupling limit, where the Au-S angle is set to 30°.

centre and Fermi level were raised by 4eV relative to  the iiiolecular orbitals. T he 

DOS for th is configuration (again in the weak coupling lim it) is shown in figure 5.23. 

In th is case, th e  gold E y is ju s t above the  tt* s ta te  for bo th  the LDA and SIC type 

charging potentials.

As shown in panels (a) and (b) of figure 5.24, bo th  the  tt and tt* s ta tes  are 

below th e  gold a t zero bias, and thus bo th  are alm ost fully occupied. Therefore, 

m olecular levels will be in the  flat p a rt near the  top  of the  SIC -type potentials as 

shown in figure 5.4. Hence for th is po ten tia l, the  level can discharge to  a large ex ten t 

w ithou t m oving very much. As the  voltage is increased, the  level rem ains near the  

centre of the  bias window and will conduct strongly. The LD A -type po ten tia l, on 

the  o ther hand, behaves linearly. As the  voltage is increased, it discharges more 

gradually  and rem ains pinned to  the  lower chemical potential. Therefore it does not



M olecular Electronics and the D erivative Discontinuity 96

O.OV o.ov

0.5V0.5V

l.OVl.OV

1.5 V 1.5 V

2.0V2.0V

5

E-E  ̂(eV)

Figure 5.18: lYansinission Coefficients at 0.5V bias intervals for BDT on Gold in the strong 
coupling limit (Au-S angle =  30°): (a) LDA-type potential and (b) SIC-type 
potential. The red vertical lines show the positions of the chemical potentials 
of the leads, so tliat the region between them is the bias window. The res­
onances in the transmission coefficients near the bias window correspond to 
the 7T and tt* states in the DOS, and are broad because of the strong cou­
pling between the leads and the molecule, to the point where they overlap 
extensively at E’p, leading to a high zero bias conductance for both types of 
charging potential.

conduct as strongly  as in the  case of the  SIC-type poten tial. This result is sim ilar to 

the case described in chap ter 3, when the  Fermi level was placed near the  to p  of the 

charging potential.

5.6 Conclusion

Under certain  conditions, the  derivative d iscontinuity  can have a d ram atic  effect on 

the 1 -V  characteristics of m olecular devices. If the  molecule is weakly coupled to  

the m etallic leads, and th e  Fermi level of the  m etal is pinned ju st below' a m olecular 

s ta te , tlie d iscontinuity  will prevent the  s ta te  from charging and will keep it out
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Figure 5.19; Density of states for tight-binding (a) LDA and (b) SIC for BDT on Gold for 
tlie weak coupling limit where the Au-S angle is set to 5°. The gold bands 
and Fermi level have been shifted upwards by 2eV relative to the molecule. 
The gold £'f is still pinned just below the tt* state for the SIC-type charging 
potential, and is at the tt* state for the LDA-type charging potential.

of the bias window. This w'ill open up a conductance gap in the I -V  curve which 
would not be i)reseut if a continuous exchange-correlation potential such as LDA is 
used. For BDT attached to gold, this conductance gap is from -IV  to IV, which 
is of the same size as the gap found in one of the ex])erimeiits [19]. This might 
he a coincidence due to the choice of param eters in the approxim ate Hamiltonian 
used. The effect of the discontinuity also highlights the im portance of calculating the 
l -V  curve self-consistently at finite bias instead of simply integrating the zero-bias 
tranm ission coefficients.

This conductance gap gradually disappears as the strength of the interaction 
between the molecule and the metal is increased. The molecular levels and the 
corres])onding resonances in tlie transmission coefficients are broadened by stronger 
coupling, so that the transport properties are no longer as sensitive to the exact 
position of the level. Also, as the levels become broader, they charge more slowly as 
the bias window is opened, and hence do not respond as sharply to  voltage changes.

The effect of the derivative discontinuity will also depend to some extent on the 
aligmnent of the molecular levels with the Ep of the leads. The discontinuity strongly 
suppresses the conductance when the Fermi level of the rnetal is pinned just below an 
unocciipied level in the molecule, as it will prevent this level from charging and keep 
it out of the bias window. Shifting the band alignment by 2eV in either direction did 
not have nuich effect on the I - V  curve, with the conductance gap still being present 
for the SIC-type potential. However, if the band alignment is altered sufficiently so 
th a t Ey  is ju st above an occupied level, then the SIC-type potential allows such a
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Figure 5.20: The (a) occupation and (b) position of the tt and tt* states for both the LDA- 
type and SIC-type charging potentials for BDT on Gold. I-V (c) curves for a 
bifis range from -2V to +2V. The gold bands and Fermi level have been shifted 
upwards by 2eV relative to the molecule. The conductance from -IV  to +1V 
with the SIC-type potential is somewhat higher than for the original band 
alignment, although it is still nuich lower than for the LDA-type potential. 
This is the for the weak coupling limit, where the Au-S angle is set to 5°.

level to  disc'harge easily and so the  conductance can be large a t low bias.

I ’he electronic s tru c tu re  m ethod used in this chapter is no t an ah initio one. 

As such, certain  features of the results m ay be artifacts of the approxim ations used. 

Therefore, it will still be necessary a t some point to  perform  electron tra n sp o rt calcu­

lations for th is system  using an ab initio electronic s tru c tu re  m ethod which na tu ra lly  

incorporates the  derivative discontinuity. For D FT , m ethods which a t least j)artially 

restore the  derivative d iscontinuity  include the  full self-interaction correction to  LDA 

[71] and exact-exchange [88, 114, 53]. U nfortunately, these m ethods are o rb ita l de- 

I)endent, and as yet there  is no im plem entation of them  for finite bias tra n sp o rt 

calculations.
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the for the weak couphng limit, where the Au-S angle is set to 5°.
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Chapter 6 

ASIC and Electron Transport in 
Organic M olecules

In the last decade, several examples of devices consisting of a single organic molecule 
sandwiched between two metallic electrodes have been constructed. Possible appli­
cations of molecular devices include high-performance com puter components [2, 3, 
4, 5, 12], which will be smaller, faster, consume less power and be cheaper to m an­
ufacture; highly sensitive chemical sensors [6, 7, 8], dis])Osable electronics, as well 
as possible medical applications [9]. Another interesting application w'hich has been 
suggested recently is to use electronic transport measurements to sequence strands 
of DNA, where individual base-pairs are distinguished by their conductance [10, 11].

Organic molecules for which transport measurements have been made include 
benzenedithiol (BDT), benzenedimethanethiol (BDMT) and biphenyldithiol (BPD). 
Such devices have been constructed using mechanically controllable break junctions 
[19, 24, 25], STM tips [25, 26], lithographically fabricated nanoelectrodes [29], and 
colloid solutions [30]. Unfortunately, there is much disagreement between the val­
ues obtained for the conductance using the different methods for these and other 
molecules. For BDT, values for the zero-bias conductance vary from as low as 10“^Go 
[19] up to 0.01 IGo [26] or possibly even higher [24].

In order to explain the variations between the experiments, as well as to further 
understand the physics of electronic transport in such devices, several calculations 
have been performed using many different com putational methods. These include 
NEGF [34, 35, 36] with empirical Hamiltonians such as tight-binding [46, 47, 48, 49], 
ah initio  Hamiltonians such as D FT [43, 44, 37, 38, 39, 40, 41, 42], and many-body 
m ethods such as Hartree-Fock with configuration interaction [50, 51, 52, 53, 54, 55, 
56]. However, the results obtained using different methods also vary, and tend not 
to reproduce the experiments well either [63, 64, 65, 66, 67, 68, 69, 70]. Calculations 
using NEGF and D FT with local XC fimctionals give results for the conductance

103
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which are even higher th an  those obtained by any of the experim ents. A ltering the 

con tact geom etry to  reduce the  streng th  of the  in teraction between the  molecule and 

the  m etal results in the  HOM O of the molecule being pinned to  the Fermi level of 

the  m etal, so th a t  a high zero-bias conductance is still observed.

O ne explanation as to  why the  calculations fail to  describe any of the  experi­

m ents is th a t  the  local exchange-correlation (XC) functionals used in the calculations 

contain  self-interaction errors [71], as described in chapter 2. The effect of the  sup­

pression of the  derivative discontinuity [72, 73] on electronic tran sp o rt in molecules 

[74] was explored in chapter 5. In th is chapter, the  results of calculations investigat­

ing ano ther effect arising from the  self-interaction correction, the  correction of the  

band  alignm ent between the molecule and the  m etal, will be presented. An atom ic 

self-interaction correction (ASIC) [100, 75], as described in chajjter 2, has been im­

plem ented in the  localised atom ic orbital code SIESTA [82, 83, 84] which is th e  D P T  

platform  for our tran sp o rt code SM EAGOL [37, 38, 39]. This ASIC gives good re­

su lts for ionisation poten tials for isolated molecules [75] com pared to  those obtained  

from uncorrected LDA.

The electronic transport properties for th ree diflerent molecules have been cal­

cu lated  using LDA only and LDA with ASIC: l,4-t)enzenedithiol (1,4-B D T), ben- 

zenediniethanethiol (BD M T), and biphenyldithiol (B PD ). In all cases, the  molecule 

is a ttached  via the  sulphur atom  to fee (111) gold electrodes on each side. Gold is 

the  m etal norm ally used for such experim ents, due to  its high conductiv ity  and its 

resistance to  corrosion. The sulphur atom s on the thiol molecules also form strong  

bonds w ith the  gold surface. In the  case of B D T, we investigate several different an­

choring geom etries, dem onstrating  how the  tra n sp o rt properties vary w ith  changes 

in the  s treng th  of the  in teraction between the molecule and the m etal. In th e  case 

of BD M T, we investigate two different isomers of the  molecule.

6.1 Calculation Details

I 'lie  ASIC corrections are not applied to  the  gold atom s in the  leads in the  calculations 

presented here, as the  self-interaction error for m etals is small [75]. Unless otherw ise 

specified, we use a double zeta  polarised basis set [82, 83, 84] for carbon (C) and 

su lphur (S) s and p  orbitals, double ze ta  for the  Is  orbitals of hydrogen (H) and 

6s-only double ze ta  for gold (An). The m esh cut-off is 200 Ry and we consider 500 

real and 80 complex energy points for in tegrating  the  G reen’s function. C alculations 

were also perform ed using double zeta  6s and single zeta 5d and 6p orb ita ls for Au



105 C hapter 6

in order to investigate the effect of these extra orbitals on the transport properties 
of the system. Results for calculations using both basis sets are presented in this 
chapter, with the 6s-only basis set used unless otherwise indicated in the legend of 
the relevant figure. For geometry optimisations and to tal energy calculations, the 
5d6s6p basis set is used, as the 6s-only basis set gives incorrect lattice constants for 
gold. In calculating the I -V  curves, the potential bias is always incremented in steps 
of 0.1 V.

Five layers of gold atoms are included with the molecule to  form the scattering 
region. This allows the potential and the charge density to converge to  their bulk 
values. The shape of the unit cell and the ordering of the layers is chosen so tha t 
the end layers match up properly as SIESTA uses periodic boundary conditions in 
the transport direction to solve the Poisson equation. Each layer contains nine gold 
atoms. The size and shape of the unit cells of the lead in the directions perpendic­
ular to the transport is chosen so tha t the gold atoms fill the unit cell. W hen the 
periodic boundary conditions are applied, this forms a surface in these directions. 
The advantage of this over forming a nanowire where there is a layer of vacuum in 
the unit cell is th a t it prevents the appearance of artificial band gaps due to cjuantum 
confitiement effects.

6.2 B enzenedith iol

'riie first system which we applied this correction to was 1,4-benzenedithiol (1,4- 
BDT) on the gold fee (111) siu’face. This is the same molecule th a t was investigated 
using the tight-binding method in chapter 5.

We consider a variety of anchoring geometries for the sulphur atoms, including 
the hollow site, the top site, the bridge site, (see figure 6.1), as well as asymmetric 
coupling where the sulphur atoms are attached to an adatom  on one side and to 
the hollow site on the other. We also examine the effect of altering the angle which 
the molecule makes with the metal surface, and of varying the distance between the 
sulphur atom  and the surface (i.e. varying the strength of the coupling between the 
molecule and the metal). Finally, we investigate the effect of leaving the hydrogen 
atoms attached to the sulphrir atoms in the thiol group when the molecule is attached 
to the m etal surface.

The actual contact geometry present in the experiments is unknown. Some elec­
tronic structure calculations indicate tha t the lowest energy configuration for the 
molecule attached to the surface occurs when the sulphur atom attaches to the hoi-
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Figure 6.1: (a) The “sulphur-siirface separation” is the separation between the sulphur 
atom and the plane of the gold surface, (b) Different possible anchoring sites 
of the sulphur atom (black dots) on the Au fee (111) surface. A is the hollow 
site, B is the top site, and C is the bridge site. Colour code: Au atoms=yellow, 
S atoms=brown.

low site, whereas other calculations suggest th a t the bridge site configuration has a 
lower energy [115]. Recent X-ray standing wave measurements suggest tha t molecules 
in monolayers prefer to attach to adatom s on the metal surface [116]. Additionally, 
breaking junction experiments involve placing the moleculc'-metal interface under 
strain, and so the preferred anchoring geometry at equilibrium would not necessarily 
he the one present in the experiments. Hence, it is im portant to explore several 
different possible configurations in order to complete a thorough analysis of this 
system.

'riie orbital resolved density of states (DOS) for the isolated molecule is shown 
in figure 6.2, calculated with both regular LDA and with ASIC. Note how the ASIC 
lowers the energy of the occui)ied orbitals by about 4 eV, thus opening up the HOMO- 
LUMO gap. The highest occuj^ied molecular orbital (HOMO, £homo) nioved from 
-4.69 eV to -8.19 eV. Generally speaking, the Chomo obtained from ASIC tends to 
match the experimental values for the ionisation potentials very well for organic 
molecules such as BDT. For example, ASIC places Chomo 1,2-BDT (a difl'erent 
isomer from the one used in these calculations) a t 8.47 eV to compare with the LDA 
value of 4.89 eV and the experimental ionisation potential ~8.5 eV [117].

From figure 6.2, it can be seen th a t the tt orbitals on the sulphur and carbon atoms 
are the ones which are closest to the Fermi level. From the local DOS plots shown in 
figure 6.3, it can be seen tha t these states are delocalised across the entire molecule, 
particularly the HOMO in panel (b), due to strong hybridisation between the carbon 
and sulphur orbitals. Therefore, these states would be expected to conduct strongly 
when bias is apj)lied.
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Figure 6.2: Orbital resolved DOS for the isolated BDT molecule. The left i)lots correspond 
to LDA and the right ones to ASIC. The upper panels ((a) and (b)) are the 
DOS of all of the orbitals on the molecule for eacli atomic species. The lower 
panels are the DOS of the S and C tt orbitals ((c) and (d)), which are the 
orbitals closest to the Fermi level and thus are the orbitals involved in low bias 
transport. The orange vertical lines labelled Ep separate the highest occupied 
and lowest unoccupied orbitals of the molecule.

In order to calculate its transport properties, the molecule was first placed be­
tween two gold surfaces with the sulphur atom attached to the gold hollow site 
between three surface atoms, as shown in figure 6.4. The distance of the sulphur 
atom  from the gold surface is optimised to a value of 1.9A, which corresponds to 
a distance of 2.53A between the sulphur atoms and the nearest gold atoms on the 
surface. This is in agreement with the results of previous calculations [65, 118].

The local DOS for the BDT molecule attached to the gold hollow site are shown 
in figure 6.5. Panel (a) shows the HOMO, panel (b) shows the LUMO, and panel 
(c) shows the level above the LUMO. Both states are derived from the molecular 
7T orbitals which are delocalised across the molecule, although the LUMO state  is 
somewhat more localised over the sulphur atoms. The peaks in the transmission 
coefficients on each side of in figure 6.6 correspond to the states shown in panels 
(a) and (c).
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Figure 6.3: Local density of states (molecular orbital isosurfaco) for the BDT molecule, 
calculated with LDA. The LDOS for the level below the HOMO and the HOMO 
are shown in panels (a) and (b), and the LDOS of the LUMO and the level 
above the LUMO are shown in panels (c) and (d). Note how the orbitals are 
delocalised across all of the sulphur and carbon atoms, except in the case of 
the LUMO, which is somewhat restricted to the carbon atoms.

The orbital resolved DOS, transmission coefficients and I-V  curves for this con­
figuration are presented in figure 6.6 for both LDA and ASIC. From the DOS (panels 
(a) and (b)) it is clear that the effect of ASIC is that of shifting the occupied orbitals 
downwards relative to E'p of the gold. The HOMO-LUMO gap is considerably larger 
than that of the LDA, and most importantly in the case of ASIC there is little DOS 
originating from the molecule at E^. This has profound effects over the electron 
transmission. The LDA peaks of the transmission coefficients T{E)  arising from oc­
cupied orbitals are shifted downwards in energy and away from E^. In contrast to 
LDA (figure 6.6(c)), where T{Ep) is dominated by the resonance corresponding to 
chomO) file ASIC transmission (figure 6.6(d)) is through the BDT HOMO-LUMO
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Figure 6.4: BDT molecule attached to the hollow site of the Au (111) surface. The sulphur- 
surface distance is 1.9A. Colour code: Au=yellow, C=black, S=browu, H=bhie.

Figure 6.5: Local DOS (molecular orbital isosurface) for the BDT molecule attached to 
gold, calculated with LDA. The HOMO is in (a), the LUMO is in (b), and 
the LUMO+1 is in (c). Note how the orbitals are delocalised across all of 
the sulphur and carbon atoms. Colour code: Au=yellow, C=black, S=brown, 
H^bhie.

gap. T he curren t a t th is energy is thus due to  tunnelling, which results in a dras­

tic reduction of the  low-bias curren t when going from LDA to  ASIC (figure 6 .6 (e)). 

T he A SIC -calculated conciuctance at zero bias is now abou t O.O6 G 0  (Go = 2e^/h),  

com pared to  0.23Go of LDA. A conductance of O.O6 G 0  is much closer to  th e  value of 

0.01 IGo obtained  by Xiao et. al. [26] and is actually  lower th an  values 0.09-0.14Go 

ob tained  by T su tsu i et. al. [24].

T he basis set on the  gold atom s was then changed to  include 5d and 6 p orbitals. 

T he o rb ita l resolved DOS, transm ission coefficients and I - V  curves are presented 

in figure 6.7 for b o th  LDA and ASIC for th is new basis set. As can be seen, the 

a lte ra tion  of the basis set does not have a large effect on the  electronic tran sp o rt, 

particu la rly  a t low bias. As can be seen from figure 6.7e, th e  I - V  curves calculated 

w ith the  6 .s-only basis set on the  gold are approxim ately  the  sam e as those calculated 

w ith th e  5d6s6p  basis up to  abou t IV  for bo th  LDA and ASIC cases. T he zero-bias
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Figure 6.6: lYansport properties of a BDT molecule attached to the gold (111) hollow 
site. The left plots correspond to LDA and the right ones to ASIC. The upper 
panels are the DOS of the S and C tt orbitals ((a) and (b)), the middle are the 
transmission coefhcients as a function of energy for various bias ((c) and (d)) 
and the lower are the I-V cin'ves. Figure (f) is a zoom of (e) and compares our 
results with experiments from reference [26]. The vertical lines in (c) and (d) 
mark the bias window.

conductances, from the transmission plots in panels (c) and (d) of figure 6.7, are very 
similar to those for the 6s-only basis with values of 0.21Go for LDA and O.OGGo for 
ASIC. This dem onstrates tha t the 6s-only basis gives reliable results for electronic 
transport properties a t low bias.

Next, the transport properties of the system are calculated for different sulphur- 
surface separations, as well as for different angles of the molecule with respect to the 
direction of the transport. The S atoms remain attached to the hollow site on both 
sides, w'hile the sulphur-surface separation is increased. Calculations are performed 
for distances of 1.8A, 2.1A and 2.5A, and the resulting I -V  curves are presented in 
figure 6.9(a). The results for the molecule angled at 30° with respect to the direction 
of transport (figure 6.8) but still comiected to the gold hollow site on both sides are
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Figure 6.7: lYaiisport properties of a BDT molecule attached to the gold (111) hollow site 
for the 5d6s6jt; Au basis. The left plots correspond to LDA and the right ones 
to ASIC. The u{)per panels are the DOS of the S and C tt orbitals ((a) and 
(b)) and the middle are the transmission coefhcients as a function of energy for 
various bias ((c) and (d)). The lower ((e) and (f)) are the I-V  curves, including 
a comparison with the results shown in figure 6.0 for the 6s-only bcisis set on 
the gold atoms. Figure (f) is a zoom of (e) and compares our results with 
experiments from reference [26]. The vertical lines in (c) and (d) mark the bias 
window.

presented in figure 6.9(b). The 1-V  curves for this system remain reasonably stable 

with these changes to the contact geometry. This is especially true in the case of the 

current calculated with ASIC in the bias range investigated here as shown in figure 

6.9, where neither small changes to the sulphur-surface separation (panel (a)) nor 

changes in the contact angle (panel (b)) have a large effect on the current.

This stability of the current as a function of anchoring geometry calculated with 

ASIC is interesting since, experimentally, stable conductance histograms were ob­

served when pulling on the molecule with an STM tip [26]. Also, note that the 

magnitude of the conductance may actually increase with sulphur-surface separa­
tion, especially at low bias. The zero bias conductance values calculated with LDA
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Figure 6.8: BDT molecule attached to the hollow site of the Au (111) surface at an angle of 
30° to the direction of transport. The sulphur-surface distance is 1.9A. Colour 
code: Au=yellow, C=black, S=brown, H=blue.
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Figure 6.9: I -V  curves for BDT attached to gold contacts at (a) different sulpliur-surface 
separations and (b) different angles. Note how little the I-V  for ASIC changes 
with small change in distance from the equilibrium value of 1.9A.

are O.I6 G 0 , 0.23G’o, 0.32Gq, and 0.77Go for sulphur-surface separations of 1 .8 A, 
1.9A, 2 . 1  A and 2.5A respectively. The values for the sam e separations calculated 

w ith ASIC are O.OSG’o, O.O6 G 0 , 0.07Go, and 0.14Gq. W hile counterintuitive, th is is 
consistent w ith previous results [65, 67], and is due to  the realignm ent of the HOM O 

of the  molecule so th a t  it gets closer to  the  gold Ep. This can be seen in the  plot 

of the  zero-bias transm ission coefficients for different sulphur-surface separations in 

figure 6.10. As the  distance between the  molecule and the gold surface is increased, 

the  transm ission peaks (which correspond to  m olecular orbitals) become narrow er as 

expected due to  the  weakening of the  coupling. However, the charge transfer between 

the  molecule and the  m etal is also affected, so th a t there are now more electrons on 

the  actual molecule. This ex tra  charge increases the  energy of the m olecular orbitals, 

so th a t the HOM O moves closer to  Ep. This upward shift of the transm ission peaks
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closer to compensates for the weaker coupHng, increasing the low bias conduc­
tance. This effect can also be seen when the molecule is attached to adatoms on 
the metal surface, as shown below in figures 6.13, 6.15, 6.16 and 6.18. Because of 
this realignment of the HOMO, efforts made previously to explain the discrepancy 
between theory and experiment by adjusting the contact geometry to  reduce the 
metal-molecule coupling may be misleading if the band alignment is not calculated 
self-consistently [63].

1.8A
f t  -----------

1.8A0.5 0.5

1.9 A^  0.5 0.5

2.1A 0.5

1 1 / I  I  ' I  H ' lA ' I ' I  ' I  ' I  ' I '
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Figure 6.10: lYansmissioii coefficients for BDT attached to gold contacts at different 
sulphur-surface separations. The left plots correspond to LDA and the right 
ones to ASIC. Note how the peaks narrow and how the HOMO peak moves 
closer to the gold as the sulphur-surface separation is increased. This re­
alignment of the HOMO of the molecule has the effect of compensating for 
the weakening of the coupling, even producing counterintuitive results such 
as an increase in the low bias conductance with increased sulphur-surface 
separation.

A second contact geometry investigated is tha t where the sulphur atom  is con­
nected to the bridge site of tlie gold fee (111) surface, as shown in figure 6.11. The 
position of the bridge site on the fee (111) surface is shown in figure 6.1(b). Some 
D PT total-energy calculations suggest th a t this configuration, with a sulphur-surface 
separation of 2.09A, has a lower energy than tha t where the sulphur is joined to the
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Figure 6.11; BDT molecule attached to the bridge site of the Au (111) surface. The 
sulphiu'-surface distance is 2.09A. Coloiu’ code: Au=yellow, C=black,
S=brown, H=blue.

hollow site [115]. Therefore, it is important to explore the effect of this configuration 
on the transport, although the anchoring geometry which would actually be present 
in a device under strain, such as would be the case in a breaking junction, is unknown. 
Figure 6.13(a) show's a comparison between I-V  curves calculated for the molecule 
anchored to the bridge site and to the hollow site. The zero bias conductance for 
the bridge site is calculated to be O.IGq with LDA, which is lower than the value 
of 0.23Go calculated for the hollow site. The low bias ciu’rent for the bridge site is 
lower than that for the hollow' site with LDA, as shown in the l-V  curve in figure 
6.13(a). For the bridge site, ASIC has the effect opening up the HOMO-LUMO gap, 
hence suppressing the current through the molecule in a manner similar to what 
happens in the case of the hollow site. The zero bias conductance for the bridge site 
is calculated to be 0.06G’o using ASIC, the same the hollow site. Hence, w'hether 
the molecule is anchored to the hollow' site or the bridge site makes relatively little 
difference to the ASIC-calculated low-bias transport properties.

The transport j)roperties of the molecule connected to the Au top site as shown 
in figure 6.12 are the next to be investigated. The position of the top site on the fee 
(111) surface is shown in figure 6.1(b), and the sulphur-surface separation is set to 
2.39A. Figure 6.13(b) shows a comparison between the I-V  curves calculated for when 
the molecule is connected to the top site on the gold siu'face and those calculated 
for the hollow site. The LDA zero-bias conductance is calculated to be 0.65Go, 
which is somewhat larger than the value of 0.23Go calculated for the hollow' site. In 
contrast, the ASIC conductance is calculated to be 0.126’o, showing a reduction of 
a factor of four compared to the LDA result. As in the situation where the sulphur- 
surface distance is increased when the bond was to the hollow site, the increase in 
the conductance for the top site anchoring geometry is due to a realignment of the
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Figure 6.12: BDT molecule attached to the top site of the Au (111) surface. The sulphur- 
surface distance is 2.39A. Colour code: Au=yellow, C=black, S=brown, 
H=blue.

HOMO of the molecule, which is now closer to the gold Ep. Hence, although the 
couphng between the molecule and the surface is weaker for the top than for the 
hollow or bridge sites, the current is larger, at least in the bias region investigated 
here.
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—  LDA, Ho
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—  LDA, Br
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Figiu'e 6.13: I-V  curves for BDT attached to gold contacts with (a) the sulphur atoms 
attached to the gold bridge site and (b) the sulphur atoms attached to the 
gold top site.

The effect of an asymmetric contact geometry was investigated by attaching one 
of the S atoms to a gold adatom  (figure 6.14) and the other to the hollow site. The 
usual sulphur-surface separations are the equilibrium values of 1.9A and 2.39A re­
spectively for the hollow and top sites. Recent X-ray standing wave experiments [116] 
dem onstrate tha t S atoms in thiol groups on gold may actually join more favourably 
to adatoms.

The orbital resolved DOS, transmission coefficients and I -V  curves for this system 
are presented in figure 6.15 for both LDA and ASIC. This configuration shows the
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Figure 6.14: BDT uiolecule attached asymmetrically to the Au (111) surface. BDT is 
attaclied on cue side to the hollow site witli a sulphur-surface distance of 
I .9A as before, and on the other side to a single gold adatom. Coloiu code: 
Au=yellow, C=black, S=brown, H=bhie.

largest difference between the conductance calculated with LDA with respect to tha t 
calculated with ASIC. The LDA-only conductance is 0.32Go, whereas when ASIC 
is applied the conductance drops by one order of magnitude to 0.03Go. Because of 
the weaker interaction between the tt orbitals on the molecule and the gold in this 
configuration, the molecular orbitals in the DOS (figure 6.15a and figure 6.15b) and 
hence the peaks in the transmission coefficients (figure 6.15c and figure 6.15d) are 
narrower than those for the case where both of the sulj)hur atoms are attached to  the 
hollow site. These narrower levels are closer to Ep, which results in the relatively high 
zero bias conductance. An effect similar to this is observed every time the strength 
of the coupling between the sulphur atoms and the metal is adjusted: strengthening 
the coupling causes the HOMO to broaden and shift downwards away from Ep; 
whereas weakening the coupling causes the HOMO to narrow and shift closer to Ep- 
This motion of the HOMO is usually large enough to compensate for the change in 
coupling strength at low bias. In some cases, it can produce the counterintuitive 
results seen in figure 6.9(a) and figure 6.10, where reducing the coupling strength 
actually causes an increase in the low bias conductance.

As in the case of the hollow site anchoring configuration, the basis set for the 
gold was changed to include the 5<i and 6p orbitals. The orbital resolved DOS, 
transmission coefficients and I -V  curves are presented in figure 6.16 for both LDA 
and ASIC for this new basis set. Similar to  the case of the hollow site, the I -V  
curves for the two basis sets are very similar up to a bias of about IV. The LDA-only 
conductance for this basis is 0.47Go, and when ASIC is applied the conductance 
drops to 0.05Gq. This is a drop of about one order of magnitude, sinnlar to  that 
obtained with the 6s-only basis.

Figure 6.17 shows the BDT molecule attached to an adatom at both surfaces.
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Figure 6.15: 'lYansport properties of a BDT niolecule attached asymuietrically to the gold 
(111) surface. The left plots correspond to LDA and the right ones to ASIC. 
The upper panels are the DOS of the S and C tt orbitals ((a) and (b)), the 
middle are the transmission coefficients as a function of energy for various bias 
((c) and (d)) and the lower are the I-V  curves. Figure (f) is a zoom of (e) 
and compares our results with experiments from reference [26]. The vertical 
lines in (c) and (d) mark the bias window.

In th is case, the  coupling is very weak, and the transm ission coefficients have sharp 

j)eaks, as shown in figure 6.18. The LDA-only zero bias conductance calculated  w ith 

the  Au 5d6s6p  basis is 0.43Go, and when ASIC is applied the  conductance drops to 

0.19Gq. T he HOM O transm ission peak is pinned at the  of the  system , sim ilar 

to  the  weak coupling case discussed in chapter 5 using th e  tigh t-b inding  m ethod 

[74]. In th is s itua tion , the derivative discontinuity, if present in the  XC functional 

used, would be expected to  have a significant effect on the  tra n sp o rt p roperties of 

the  molecule. U nfortunately, th is discontinuity is not present in ASIC and so the 

conductance rem ains relatively large.

T he final configuration to  be stud ied  is again for hollow site  anchoring, b u t now 

the  hydrogen atom s which are attacheci to the  sulphur atom s in the  th iol groups do
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bias window.

Figure 6.17: BDT molecule attached to adatoms on both of the An (111) surfaces. Colour 
code: Au=yellow, C=black, S=brown, H=blue.

not dissociate. This set-u{) is shown in figure 6.19. T he to ta l energy for th is system  

is calculated w ith D FT-LD A  to be 1.465eV higher th an  for the  case where the  H
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Figure 6.18: lYansrnissioii coefficients for a BDT molecule attached to adatoms on the gold 
(111) surface with a 5(i6s6p basis set for gold. Note how the HOMO is pinned 
at the Fermi level.

atoms dissociate and form H2 . However, there may be an energy barrier to their 
ciissociation which may cause them to remain attached to the molecule, which makes 
investigating their effect important.

Figure 6.19: BDT molecule with hydrogen atoms still attached to the sulphur atoms and 
anchored to the hollow site. The sulphur-surface distance is 1.9A. Colour 
code; Au=yellow, C=black, S=brown, H=blue.

The orbital resolved DOS, transmission coefficients and I-V curves for this system 
are shown in figure 6.20. As can be seen from the DOS in panels (a) and (b) and 
the transmission coefficients in panels (c) and (d) of figure 6.20, the transport is 
now' through the LUMO of the system, the energy of which is lowered slightly by 
ASIC. Hence, the conductance of O.ODGq calculated using ASIC is higher than that 
of 0.06(7o calculated with LDA. However, this shift of the imoccupied orbitals is an 
artifact of the atomic nature of ASIC, as unoccupied states have no self-interaction 
error.

In conclusion, for the molecular device consisting of benzenedithiol attached to
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Figure 6.20: IVansport properties of a BDT molecule for the configuration shown in figvu'e 
6.19. The left plots correspond to LDA and the right ones to ASIC. The upper 
panels are the DOS of the S and C tt orbitals ((a) and (b)), the middle are 
the transmission coefficients as a function of energy for various bias ((c) and 
(d)) and the lower are the I-V  curves for the system both with and without 
the hydrogen atoms attached to the sulphur. Figure (f) is a zoom of (e) and 
compares our results with experiments from reference [26]. The vertical lines 
in (c) and (d) nuxrk the bias window.

gold, ASIC tends to reduce the low bias conductance by a factor of about four for 
the majority of the anchoring geometries investigated. The zero bias conductances 
for the difl’erent anchoring geometries calculated with both LDA only and with ASIC 
are summarised in table 6.1.

A comparison of the results calculated w ith SMEAGOL for both LDA and ASIC 
for BDT attached to the Au hollow site to  various other theoretical and experimental 
results is shown in table 6.2. As shown, previous N EG F-D FT calculations in partic­
ular tend to give very high zero-bias conductances, w'hereas ASIC tends to lower the 
conductance, thus improving the agreement with experiment
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Anchoring rf(A) G lda (Co) Gasic {Go)
Ho 1.9 0.23 0.06
Ho 1.8 0.16 0.05
Ho 2.1 0.32 0.07
Ho 2.5 0.77 0.14
Ho (30°) 1.9 0.18 0.04
Br 2.09 0.11 0.06
Ad 2.39 0.11 0.10
Asy Ho 1.9/2.3 0.33 0.06
Ho/Ad 1.9/2.39 0.35 0.03

Table 6.1: Zero-bias conductance for different configurations of BD T on gold (111). T he 
anchoring configurations investigated are: hollow site (Ho), bridge site (Br), 
An adatoin (Ad). Ho (30°) describes a hollow site w ith BD T at a 30° angle 
w ith respect to  the tran sp o rt direction, and the two last rows correspond to  
asynnnetric anchoring to  the two electrodes, d is the sulphnr-siirface distance.

Method C  (Go)
Theory
SMEAGOL LDA [76] 0.16, 0.23, 0.32, 0.77
SMEAGOL ASIC [76] 0.05, 0.06, 0.07, 0.14
IranSIESTA  LDA [68] 0.36
TranSIESTA LDA [66] 0.47, 0.56, 0.79
Cl [51] 10-3
Experiment
MCBJ [19] 10 -'
STM Break June. [26] 0.011
MCBJ [24] 0.004, 0.005, 0.011, 0.09, 0.14, 0.23
MCBJ [25] 0.011
Lith. Fab. Elec. [29] 0.1

Table 6.2: Zero-bias conductance for BDT attached to  gold electrodes calculated or m ea­
sured w ith a variety of different com putational and experim ental m ethods. Com­
pu tational m ethods include NEGF combined w ith D F T  (SM EAGOL [38, 76] 
and TranSIESTA [40, 66, 68]) and configuration interaction (Cl) [51]. For the 
com putational results listed, the molecule is connected to  the hollow site, and a 
range of results for different sulphur-surface separations are shown where avail­
able. Experim ental m ethods for m am ifacturing the m olecular devices include 
m echanically controlled breaking junctions (M CBJ [19, 24, 25]), STM  breaking 
junctions (STM  break junc. [26]) and lithographic fabrication of the electrodes 
(Lith. Fab. Elec., [29]). In the M CBJ experim ents perform ed by T su tsu i et. al. 
[24], a range of conductances were observed and are listed here.
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6.3 B enzenedim ethaneth iol

The second system investigated is tha t of benzenedimethanethiol (BDMT) on the 
fee (111) gold surface. There are two different isomers for this molecule, as shown in 
figure 6.21 and the electronic transport properties of both are investigated here. In 
the first isomer, the sulphur atoms are in the plane of the benzene ring, and in the 
second isomer they are out of the plane.

Figure 6.21: Two ciifi'ereut isomers of the BDM T iiiolecule. Colour code: C =black,
S=browii, H =blue.

The DOS for first isomer of BDMT is shown in figme 6.22. The HOMO-LUMO 
gap is somewhat larger than tha t of BDT. As for BDT, ASIC has the effect of lowering 
the energy of the occupied orbitals, making this gap even larger. However, because of 
the atomic nature of ASIC, it will also incorrectly affect unoccupied orbitals, reducing 
their energy also. This can be seen in figure 6.22, where the LUMO calculated with 
ASIC is noticeably closer to the Fermi level.

The local DOS for the first isomer of BDMT is shown in figure 6.23. The HOMO 
(in panel (a)) is mainly localised on the sulphur atoms, wdiereas the LUMO (in panel 
(b)) is mainly localised on the benzene ring. The tt conjugation across the molecule 
is broken by the extra methyl groups. Therefore, there are no states near the Fermi 
level which are fully delocalised across the molecule in a way similar to th a t of BDT, 
and so the conductance of this molecule at low bias is expected to 1)6 lower.

In order to calculate the electronic transport properties, the first BDMT isomer is 
attached to the gold (111) hollow sites as shown in figure 6.24, with a sulphur-surface 
separation of 1.9A. The local DOS for the HOMO and the LUMO of this device are 
shown in figure 6.25. As for the isolated molecule, the HOMO is mainly localised on 
the sulphur atoms, whereas the LUMO is mainly localised on the benzene ring.

The orbital resolved DOS, transmission coefficients and I-V curves for this system
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Figiire 6.22: Orbital resolved DOS for the first isomer of the BD M T molecule. T he left 
plots correspond to LDA and the right ones to ASIC. The upper panels ((a) 
and (b)) are the DOS of all of the orbitals on the molecule for each atom ic 
species. The lower panels are the DOS of the S and C tt orbitals ((c) and 
(d)), which are the orbitals closest to the Fermi level and thus are the orbitals 
involved in low bias transport. The orange vertical lines labelled Ef.' separate 
the highest occupied and lowest unoccupied orbitals o f the molecule.

are presented in figure 6.26 for both LDA and ASIC. In this case however, as can 
be seen from the DOS, the HOMO-LUMO gap is nuich larger than that for BDT. 
Again, the ASIC ha.s the effect of shifting the occupied orbitals downwards. The gap 
between the resonances in the transmission due the HOMO and LUMO orbitals is 
also much larger, with the resonances lying outside of the bias region investigated 
in both cases. Therefore, although the size of the gap is increased with ASIC, the 
actual transmission in the bias window does not change very much. The conductance 
at zero bias is calculated to be 0.004(^0 with ASIC, compared to O.OO6G0 with LDA 
only. Both of these values are an order of magnitude larger than tlie experimental 
value of 0.0006G'o obtained by Xiao et. al. [26]. Hence, the I-V  curves for LDA 
with and without ASIC are cjuite similar, and are also an order of magnitude lower 
than those for BDT. To see the cUfference in the 1-V curves caused by ASIC, a much 
higher bias needs to be applied.
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Figure 6.23: Local DOS (molecular orbital isosurface) for first isomer of the BDMT 
molecule, calculated with LDA. The LDOS for the HOMO and the LUMO 
are shown in panels (a) and (b). Note how the HOMO is localised on the 
sulphur atoms, whereas the LUMO is locahsed on the benzene ring. Colour 
code: C=black, S=brown, H=blue.

Figure 6.24: BDMT molecule attached to the hollow site of the Au (111) surface.
The sulphur-surface distance is 1.9A. Colour code: Au=yellow, C=black, 
S=brown, H=blue.

The properties of the  seconci BD M T isomer (w ith the S atom s out of th e  benzene 

plane) are also investigated. T he DOS for second isomer of BD M T is shown in figure 

6.27. The HOM O-LUM O gap in this case is sim ilar to  th a t of the  first isomer, being 

som ew hat larger th an  th a t for BD T. Again, ASIC has the effect of lowering the 

energy of the  occupied orbitals, m aking this gap even larger.

T he local DOS for the  second isomer of BD M T is shown in figure 6.28. The 

HOM O (panel (a)) is m ainly d istribu ted  on the S atom s, whereas the  LUM O (panel 

(b)) is m ainly d istribu ted  on the benzene ring. As for the  first isomer, the  tt conjuga­

tion across the  molecule is broken by the  ex tra  m ethyl groups, and so the  conductance 

of this molecule at low bias is expected to  be low also.

In order to  calculate the  electronic tran sp o rt ])roperties of this second BD M T
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Figure 6.25: Local DOS (molecular orbital isosurface) for the A u/BD M T junction, calcu­
lated with LDA. The LDOS for the HOMO and the LUMO are shown in (a) 
and (b) respectively. Note how the HOMO is localised on the suphur atoms, 
whereas the LUMO is distributed over the benzene ring, similar to the case of 
the isolated molecule. Colour code: Au=yellow, C=black, S=brown. H=blue.

isomer, the sulphur atoms are attached to the gold (111) hollow sites as shown in 
figure 6.29 (sulphur-surface separation is 1.9A). The local DOS for the HOMO and 
the LUMO of this device are shown in figure 6.30. As for the isolated molecule, the 
HOMO is mainly localised on the S atoms, wdiereas the LUMO is mainly distributed 
over the l)enzene ring.

The orbital resolved DOS, transmission coefficients and I-V  curves for this second 
isomer are presented in figure 6.31 for both LDA and ASIC. The calculated cmrent 
for this isomer is larger by about a factor of three than that of the other isomer, as 
shown in panel (e). The LDA conductance at zero bias is now 0.015Go, compared to 
a value of 0.013(7o when ASIC is applied. As for the first isomer, the fact that ASIC 
has little eiTect on the I-V  curve is due to the large HOMO-LUMO gap.

A comparison of the results calculated with SMEAGOL for both LDA and ASIC 
for BDMT attached to the An hollow site to various other theoretical and experi­
mental results is shown in table 6.3. In contrast to the results for BDT, ASIC does 
not appear to improve the agreement with experiment for either isomer of BDMT. 
The large HOMO-LUMO gap means that adjusting the position of the resonances in 
V’(/?) does not have a large effect on the conductance around E^. The most signifi­
cant som'ce of error for this system probably lies in calculating the matrix elements 
between the gold svuface and the sulphur atom. This would not be improved by 
ASIC, and more sophisticated approaches are required. In addition, here we have in-
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Figure 6.26: IVaiisport properties of first BDMT isomer attached to the gold (111) hollow 
site. The left plots correspond to LDA and the right ones to ASIC. The upper 
panels are the DOS of the S and C tt orbitals ((a) and (b)), the middle are the 
transmission coefficients as a function of energy for various bias ((c) and (d)) 
and tlie lower are the I-V  curves. Figure (f) is a zoom of (e) and compares 
our results with experiments from reference [26]. The vertical lines in (c) and 
(d) mark the bias window.

vestigated only one contact geometry, and a more extensive study is probably needed 
in order to compare directly to experiments.

6.4 B iphenyldithiol

The th ird  and final system investigated is th a t of biphenylditliiol (BPD) attached 
to gold. This molecule consists of two benzene rings, which are rotated at an angle 
known as the torsion angle relative to each other. The optimmn value for this torsion 
angle is 37° [119]. Tlie orbital resolved DOS for the isolated molecule is shown in 
figure 6.32, calculated with both regular LDA and with ASIC. Note how the ASIC 
again lowers the energy of the occupied orbitals by about 4 eV, thus opening up the
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Figure 6.27; Orbital resolved DOS for the second isomer of the BDMT molecule. The left 
plots correspond to LDA and the right ones to ASIC. The upper panels ((a) 
and (h)) are the DOS of all of the orbitals on the molecule for each atomic 
species. The lower panels are the DOS of the S and C tt orbitals ((c) and 
(d)), which are the orbitals closest to the Fermi level and thus are the orbitals 
involved in low bias transport. The orange vertical lines labelled Ep separate 
the highest occupied and lowest imoccupied orbitals of the molecule.

HOMO-LUMO gap.

From figure 6.32, it can be seen tha t the tt orbitals on the sulphur and carbon 
atoms are the ones which are closest to the Fermi level. From the local DOS plots 
shown in figure 6.33, it can be seen th a t these states are delocalised across the 
entire molecule, particularly for the case of the HOMO in panel (b), due to strong 
hybridisation between the carbon and sulphur orbitals. Therefore, these states are 
expected to  conduct strongly when a bias is applied.

To calculate the electronic transport properties, the molecule is attached to the 
gold (111) hollow sites as shown in figure 6.34, with a sulphur-surface separation 
of 1.9A. The local DOS for the HOMO and the LUMO of this device are shown in 
figure 6.35. As for the isolated molecule, both of these states are delocalised across 
the entire molecule, and so would be expected to conduct strongly when inside the 
bias window.
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Figure 6.28: Local DOS (molecular orbital isosurface) for second isomer of the BDMT 
molecule, calculated with LDA. The LDOS for the HOMO and the LUMO are 
shown in panels (a) and (b). Note how the HOMO is locahsed on the suphm- 
atoms, whereas the LUMO is distributed over the benzene ring. Colour code: 
C=black, S=brown, H=blue.

Figure 6.29: The second isomer of the BDMT molecule attached to the hollow site of 
the Au (111) surface. The sulphur atoms are now in the same plane as the 
benzene ring. The sulphur-surface distance is L9A. Colour code: Au=yellow, 
C==black, S=brown, H=bhie.

The orb ita l resolved DOS, transm ission coefficients and I - V  curves for th is system  

are presented in figure 6.36 for bo th  LDA and ASIC. Once again, ASIC has the  effect 

of lowering the  energy of the  occupied m olecular orbitals, as can be seen from the 

DOS (panels (a) and (b)). This has the  effect of oj)ening up the  conductance gap in 

the  transm ission coefficients. For th is molecule, the  HOM O is near Ep  as in BD T, 

giving a conductance of 0.07Go a t zero bias w ith LDA only. W hen ASIC is applied, 

the HOM O is shifted  downwards out of the  bias window and the  conductance drops 

to  O.OlSG’o a t Ep.  This results in the low-bias I - V  curve being suppressed, again 

sim ilar to  w hat happens for BDT.
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Figure 6.30: Local density of states (molecular orbital isosiirface) for the A u/BD M T junc­
tion, calculated with LDA. The LDOS for the HOMO and the LUMO are 
shown in panels (a) and (b) respectively. Note how the HOMO is localised on 
the S atoms, whereas the LUMO is distributed over the benzene ring, simi­
lar to the case of the isolated molecule. Colour code: Aii=yellow, C=black, 
S=brown, H=blue.

'I’he oi)tinium angle between the planes of the benzene rings (i.e. the torsion 
angle) is 37° [119]. However, this may fluctuate clue to temperature or when the 
molecule is put imcier strain in a breaking jiuiction. In fact, the total energy difference 
for the molecule with a 37° torsion angle aiul one where the torsion angle is 0° is 
only of the order of 150meV. Panel (e) of figure 6.36 shows the I-V curves calculated 
for the equilibrium torsion angle of 37°, whereas panel (f) shows the result for the 
case wlien the benzene rings are in the same plane (i.e. when the torsion angle is 
0°). Reducing the torsion angle causes an increase in the transmission since the 
overlap between the n orbitals located on the two benzene rings is increased. The 
conductance at zero bias for a torsion angle of 0° is 0.09Gq with LDA only, and 
0.024Go when ASIC is applied.

These results show that ASIC has an effect on BPD similar to the one it has 
on BDT, shifting the HOMO downwards and reducing the zero-bias concluctance. 
However, the results differ from those obtained experimentally by Dadosh et. al. 
[30] by several orders of magnitude. However, as in the case of BDMT, only one 
anchoring geometry has been investigated here, and a more comprehensive study 
would again be reciuired in order to be able to compare directly to experiment.
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Figure 6.31: lYaiisi)ort properties of second BDMT isomer attached to the gold (111) hol­
low site. The left plots correspond to LDA and the right ones to ASIC. The 
upper panels are the DOS of the S and C tt orbitals ((a) and (b)), the middle 
are the transmission coefficients as a function of energy for various bias ((c) 
and (d)) and the lower are the I-V  curves. Figure (f) is a zoom of (e) and 
compares our results with experiments from reference [26]. The vertical lines 
in (c) and (d) mark the bias window.

6.5 Conclusion

ASIC is a simple, com putationally efficient m ethod for removing the self-interaction 
error present in local D FT exchange-correlation functionals. In particular, it corrects 
the ionisation potentials of organic molecules, giving remarkably good agreement 
with experimental values [75]. For electronic transport calculations, it corrects the 
metal-molecule band alignment, and opens up the HOMO-LUMO gap. This has the 
effect of reducing the low' bias conductance for certain tt conjugated molecules such 
as BDT and BPD, again improving the agreement with experimental results. It has 
less of an impact on molecules such as BDMT, in which the HOMO-LUMO gap is 
already c}uite large, and so whose low bias transport properties are not i)articularly



131 Chapter 6

Method G{Go)
Theory
SMEAGOL LDA 0.006, 0.015
SMEAGOL ASIC 0.004, 0.013
TranSIESTA LDA [66] 0.16, 0.017, 0.23
Experiment
STM Break Junc. [26] 0.0006
MCBJ [25] 0.0002 to 0.004
Lith. Fab. Elec. [29] 0.0005
Col. Dimer [30] 10-^

Table 6.3; Zero-biaa conductance for BDMT attached to gold electrodes from a variety 
of different computational and experimental methods. Computational meth­
ods include NEGF combined with DFT (SMEAGOL [38, 76] and 'IVanSIESTA 
[40, 66]). For both computational methods, the molecule is connected to the 
gold hollow site. Conductances from SMEAGOL calculations for both of the 
BDMT isomers investigated are listed. For the TYanSIESTA, the range of results 
presented are for different sulphur-surface separations. Experimental methods 
for manufacturing the molecular devices include mechanical breaking junctions 
(MCBJ [19, 24, 25]), STM breaking junctions (STM break junc. [26]), htho- 
graphic fabrication of the electrodes (Lith. Fab. Elec., [29]), and formation of 
molecule-nanoparticle dimers by mixing gold colloid with solution (Col. Dimer, 
[30]).

sensitive to the exact j)osition of the HOMO.

However, some disagreement between theory and experiment still remains. For 
the anchoring geometries investigated, the zero-bias conductance was still larger 
than the experimental value [26] by a factor of 3 to 5. Reducing the strength of the 
couj)ling between the metal and the molecule results in ehomo moving closer to the 
gold /sp, which can actually cause the low bias conductance to increase. One possible 
explanation is that ASIC still overestimates the polarisability of molecules [89, 90], 
with a quantitatively incorrect prediction of the response exchange and correlation 
field. Secondly, we have applied the ASIC only to the molecular degrees of freedom, 
without correcting the An atoms. It is thus likely that the Au 6s orbitals at the 
surface are too extended, leading to a larger current. It is possible that the use of 
XC potentials constructed from exact charge densities [120, 121] and correcting both 
the molecule and the metallic surfaces, may offer a solution to this problem.

Finally, ASIC does not contain the derivative discontinuity. As demonstrated in 
chapter 5, this discontinuity can have a profound effect on the I-V characteristics of 
molecular junctions. In particular, if the molecule is weakly coupled to the leads, a
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Figure 6.32: Orbital resolved DOS for the BPD niolecvile. The left plots correspond to 
LDA and the right ones to ASIC. The upper panels {(a) and (b)) are the 
DOS of all of the orbitals on the molecule for each atomic species. The lower 
panels are the DOS of the S and C tt orbitals ((c) and (d)), which are the 
orbitals closest to the Fermi level and thus are the orbitals involved in low 
bias transport. The orange vertical lines labelled separate the highest 
occupied and lowest unoccupied orbitals of the molecule.

state  can become pinned just above as shown in figure 6.18. The derivative dis­
continuity would prevent this sta te  from charging, keeping it out of the bias w'indow 
and possibly opening up a conductance gap in the I-V  curve.

Therefore, the ideal exchange-correlation potential for electronic transport cal­
culations needs to be self-interaction free. It needs to give accurate results for the 
ionisation potentials of the molecules being investigated, and reproduce the correct 
derivative discontinuity for the molecular orbitals. It would also need to correctly de­
scribe the polarisability of the molecule and the long range behaviour of the orbitals. 
LDA with the full self-interaction correction [71], or exact-exchange methods [88, 70] 
have many of these properties, but both of these methods are orbital dependent. 
Although some calculations have been performed in the linear response limit [53], 
there are no implementations for finite bias. Finally, it would need to be combined 
with time-dependent D PT [57, 58], as when a finite bias is applied the system is no
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Figure 6.33: Local density of states (molecular orbital isosurface) for the BPD molecule, 
calculated with LDA. The LDOS for the HOMO and the LUMO are shown 
in panels (a) and (b). Note how the orbitals are delocalised across all of the 
sulphur and carbon atoms. Colour code: C=black, S=brown, H=blue.

Figure 6.34: BPD molecule attached to the hollow site of the Au (111) surface.
The sulphur-surface distance is 1.9A. Colour code: Au=yellow, C=black, 
S=brown, H=blue.

longer in a ground sta te .
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Figure 6.35: Local density of states (molecular orbital isosurface) for the A u/BPD  junction, 
calculated with LDA. The LDOS for the HOMO and the LUMO are shown 
in panels (a) and (b). Note how the orbitals are delocalised across all of the 
sulphur and carbon atoms, similar to that of the isolated molecule. Colour 
code: Au=yellow, C=black, S=brown, H=blue.
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Figure 6.36: 'lYansport properties of a BPD molecule attached to the gold (111) hollow 
site. The left plots correspond to LDA and the right ones to ASIC. The 
upper panels are the DOS of the S and C tt orbitals ((a) and (b)), the middle 
are the transmission coefficients as a fimction of energy for various bias ((c) 
and (d)) and the lower are the I-V  curves. Figure (e) is the I-V  curve for a 
torsion angle of 37° and (f) is for a torsion angle of 0°. The vertical lines in 
(c) and (d) mark the bias window.
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Chapter 7 

Sim ulating STM  Transport in 
Alkanes

I ’he Scanning Tunnelling Microscope (STM) [77, 78] is a tool with multiple appli­
cations in molecular electronics. It consists of an atomically sharp probe-tip con­
structed from a heavy metal such as platinum, tungsten or iridium. It can be used 
to map the positions of atoms and defects on surfaces, and to probe the local density 
of states of surfaces. It can also be used for depositing atoms and molecules on a 
stu'face to form nanoscale devices. A potential bias can be applied between the sub­
stra te  and the STM tip, and thus the I-V  characteristics of molecules and surface 
structures can be investigated.

In the past, calculations of STM currents were based on approximations such as 
tha t of Tcrsoff-Hamarm [79, 80]. In this method, the tij) is assumed to be sufficiently 
far from the molecule tha t it does not affect its electronic structure. However, such 
methods are not self-consistent with applied potential bias, i.e. they do not take into 
account the changes to the electronic structure caused by the interaction between 
the molecule and the probe. They are thus not reliable when the tip is relatively 
close to the molecule. Therefore, it is im portant to explore the use of self-consistent 
transport methods such SMEAGOL [37, 38, 39] to simulate STM experiments.

However, there are some specific problems with using SIESTA [82, 83, 84] or 
SMEAGOL to perform calculations for STM experiments. These occur when mea­
suring tunnelling currents for probes far from the surface. Since SIESTA uses a 
localised basis set, the orbitals are artificially cut off beyond a certain radius, so 
there are no basis functions to describe the vacuum region. Hence, if the tip-surface 
separation is greater than a certain distance, the current will be artificially cut off. 
One solution to this problem is to insert ghost orbitals, which do not have an as­
sociated pseudopotential, into the vacuum region between the surface and the tip. 
However, this has to be done very carefully, as the sj)acing of the ghost orbitals can

137



Simulating STM Transport in Alkaues 138

create artificial oscillations in the conductance as a function of distance.

Figure 7.1: Decauethiol molecule (a) with CH3-endgroup and (b) with CFa-endgroup.
Colour code: C=black, S—brown, H—blue, F=purple.

This problem will not occur if the STM tip-sample distance is sufficiently small. 
An example of an experiment w'here this is the case is that performed by Pflaum et. 
al. [81], in which a monolayer of alkanethiol molecules are deposited on a gold surface, 
and the transport proj)erties are then probed using an STM tip. The resulting zero- 
bias conductance is low, being of the order of 10“^6’o at zero bias. The I-V  curves 
are asymmetric, and this asynunetry increases noticeably when the hydrogen atoms 
attached to the end carbon atom in the alkane chain (i.e. the one nearest to the 
STM tip) are rej)laced by fluorine atoms. The authors of the paper speculate that 
the extra asynnnetry with the CFa-endgroup is due to a rearrangement of tlie charge 
distribution near the end of the molecule caused by the high electronegativity of 
the fluorine atoms. This in turn causes an electrostatic forces between the STM tip 
and the molecule, the direction of which depends on the bias of the tip. This w'ill 
cause the molecule to be repelled for one bias direction and attracted for the other, 
changing the tip-molecule distance and hence the current.

Calculations using the Tersoff-Hamann method have been performed for pen- 
tanethiol molecules on gold [122]. However, the nature of the Tersoff-Hamann 
method requires a large tip-niolecule separation, and the current obtained in these 
calculations is an order of magnitude lower than that observed in the experiment. 
Also, tip-molecule interactions cannot be studied using this method.

In this chapter, some results of ongoing calculations for this system will be pre­
sented. The mechanism behind the asymmetry in the I-V  curves will be discussed. 
However, the calculation of forces at finite bias has not yet been implemented in 
SMEAGOL, so the mechanism suggested by the experimentalists for the differences 
between the CHs-endgroup and with CFa-endgroup has not yet been investigated
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quantitatively .

7.1 E lectronic Structure o f th e  M olecules

T he molecules used in the  experim ent were m ethy l-term inated  alkanethiols and 

fluorine-term inated alkanethiols. A range of different alkane chain lengths were s tu d ­

ied, bu t the  molecules predom inantly  used were decanethiol, as shown in figure 7.1(a), 

and decanethiol w ith the  C Fs-endgroup, as shown in figure 7.1(b). D ecanethiol con­

sists of an alkane chain of ten  carbon atom s, w ith a thiol (-SH) group a t one end. 

'Fhe sulphur atom  in the  thiol group forms a strong  bond w ith gold, and will an­

chor the  molecule to the  surface to  form the  m onolayer. T he CH a-endgroup can be 

replaced by a C F 3 -endgroup to  form fluorine-term inated decanethiol, as shown in 

figure 7.1(b).

E (eV) E (eV)

Figure 7.2: Orbital resolved DOS for the isolated decanethiol molecule with the CH 3 - 
eudgroup showing (a) the molecular valence states for the sulphur, carbon and 
hydrogen atoms and (b) the sulphur and carbon states due to the p orbitals 
perpendicular to the axis of the molecule. The orange vertical lines labelled E y  
separate the highest occupied and lowest unoccupied orbitals of the molecule.

The orb ita l resolved density of s ta tes  (DOS) for the isolated C H a-term inated 

decanethiol molecule is shown in figure 7.2. The HOM O-LUM O gap is qu ite  large, 

being of the  order of 5eV. The HOM O s ta te  is abou t 2eV above the o ther occupied 

orbitals, and is m ostly formed from the sulphur p  states.

The local DOS for the  isolated C H s-tern iinated  decanethiol molecule is shown in 

figure 7.3. T he s ta te  below the  HOM O is shown in (a), the HOM O is shown in (b) 

and the  LUMO is shown in (c). T he HOM O in particu lar is localised around the  

thiol group a t one end of the  molecule. Thus, it is unlikely to  be able to  tran spo rt 

charge across the  molecule, and so would not be expected to  con tribu te  strongly  to
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th e  tran sm issio n . In co n tra s t, th e  level below  th e  H O M O  is delocalised  over m ost of 

th e  m olecule, and  so is m ore likely to  co n d u c t.

F igure 7.3: Local DOS (molecular orbital isosurface) for the isolated decanethiol uiolecule 
w ith the CH 3 -endgroup showing (a) the HOMO-1 s ta te  (b) the HOMO and (c) 
the LUMO. Colour code: C =black, S=brow n, H =blue, F=purple.

T h e  o rb ita l resolved DO S for th e  iso la ted  decaneth io l m olecule w ith  th e  C F 3 - 

en d g ro u p  is show n in figure 7.4. T h e  H O M O -L U M O  gap  is s im ilar to  th a t  for 

C H s-te rm in a te d  d ecaneth io l, being  a b o u t 5eV. T h e  H O M O  s ta te  is aga in  a b o u t 2eV 

above th e  o th e r occupied  o rb ita ls , an d  is m o stly  form ed from  th e  su lp h u r p  s ta te s . 

T h e  fluorine p  o rb ita ls  are  s itu a te d  ab o u t 3eV  above th e  Ferm i level and  a b o u t 4eV 

below , m ain ly  co n tiib u tin g  to  th e  LU M O  an d  to  th e  levels below  th e  H O M O .

-20 -15 -10 -5 0
£(eV)

10-20 -15 -10 -5 0 5 10
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Figure 7.4: O rb ital resolved DOS for the isolated decanethiol molecule w ith the C F 3 - 
endgroup showing (a) the molecular valence states for the sulphur, carbon, 
fluorine and hydrogen atom s and (b) the sulphur and carbon states due to  the 
p  orbitals perpendicular to  the axis of the molecule, and the fluorine p  orbitals. 
T he orange vertical lines labelled E p  separate the highest occupied and lowest 
unoccupied orbitals of the molecule.
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The local DOS for the isolated CFs-term inated decanethiol molecule is shown in 
figure 7.5. As for CHa-terminated decanethiol, the HOMO in particular is localised 
around the thiol endgroup, and so probably will not contribute strongly to the cur­
rent. In contrast, the level below the HOMO is delocalised over most of the molecule 
and so would be expected to conduct.

Figure 7.5: Local DOS (molecular orbital isosurface) for the isolated decaiiethiol molecule 
with the CFs-eiidgroup showing (a) the state below the HOMO, (b) the HOMO 
and (c) the LUMO. Colour code: C=black, S^brown, H—blue, F —purple.

7.2 C alculating the Transport P roperties

l b  calculate the transport properties of these molecules, the sulphur atoms were 
attached to the gold fee (111) hollow site with a sulphur-surface distance of 1.9A. 
This is the e(}uilibrium distance for this configuration [118], as discussed in chapter 
C. The arrangement of t he molecule on the surface and the tip is shown in figure 
7.6 for the original CHs-endgroup, and in figure 7.7 for the CFa-endgroup. In the 
experiment, the molecules are tilted at an angle of ~  32°. However, in order to 
simplify the calculations, the molecules are placed perpendicular to  the surface. This 
allows the unit cell used to be smaller, which greatly reduces the com putational 
requirements. A second simplification is the modelling of the STM tip by a gold 
electrode instead of using tungsten or platinum-iridium, as used in the experiments. 
As discussed in chapter 6, the gold leads can be represented by just the 6s basis 
set for transport calculations, which again dramatically reduces the com putational 
requirements. Secondly, using two leads which are made of the same material also 
simplifies the calculations since they both have the same Fermi level. The STM tip 
itself is not modelled as atomically sharp, but it is slightly blunter. This improves 
the stability of the calculations.
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•rSSWSf'

Figure 7.6; Decanethiol molecule attached to  gold surface w ith STM  tip  w ith CH 3 - 
eiidgroup. Colour code; Au=yellow, C =black, S=brow n, H =blue, F=purple.

^  4i ^  4. ^

^ f c _AV*V*VS^

Figure 7.7: Decanethiol molecule attached to  gold surface w ith STM  tip  w ith C F 3 - 
eudgroup. Colour code; Au=yellow, C =black, S=brow n, H =blue, F = purp le.

The size of the current is extremely sensitive to the distance between the tip and 
the molecule. By adjusting this distance, we can match the magnitude of the current 
obtained in experiments. Note th a t the direction of the I-V  has been reversed in 
this graph, as in om' calculations the convention for negative and positive bias is 
the opposite to th a t used in the experiment of reference [81]. As shown in the plot 
of the I-V  curves for different distances shown in figure 7.8, the best match is for 
a distance between the last carbon atom in the molecule and the plane of the gold 
tip of 5.25A. The results presented in the rest of this chapter will all be for this 
tip-molecule separation.

The orbital resolved DOS for CHa-terminated decanethiol on gold is shown in 
figure 7.9. Note th a t the HOMO is relatively close to the gold E'p. However, as can 
be seen from the plot of the local DOS of the molecule in an energy window around
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Figure 7.8: 1-V curves for C H s-term inated decauethiol a ttached to  a gold surface for dif­
ferent distances between the end carbon atom  on the molecule and the probe 
tip. Changing this distance by 0.1 A causes the size of the current to  change 
by approxim ately one order of m agnitude a t IV. Panel (b) is a zoom in (along 
the y-axis) of panel (a), showing the region between -.'iOpA and 20pA.
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Figure 7.9: O rbital resolved DOS for the C H a-term inated decanethiol molecule on the gold 
surface. All of the carbon and sulphur valence orbitals are shown in (a), and 
the p  orbitals perpendicular to  the axis of the molecule are shown in (b). The 
HOM O-LUM O gap is large, although the HOMO is abou t leV  below Ep.

the HOMO (figure 7.10), this sta te  is mainly localised around the single sulphur 
atom. The delocalised orbitals which are capable of transporting charge across the 
molecule are due to the carbon p orbitals, and axe further away from the Fermi 
level. Thus a large conductance gap would be expected for this molecule, with just a 
tuimelling current present at low bias. This can be seen from both the transmission 
coefficients in figure 7.13 and the I -V  curves in figure 7.14. There is a large gap in 
the resonances in tlie zero bias transmission coefficients of about 5eV on each side of 
the Fermi level, indicating th a t the HOMO does not contribute nuich to the electron
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Figure 7.10: Local DOS (molecular orbital isosurface) for the C H s-term inated decaiiethiol 
molecule on the gold surface, showing (a) the  level below the HOMO, (b) the 
HOMO, and (c) the LUMO. Note how the HOMO is localised around the 
thiol eiidgroup. Colour code: Au=yellow, C =black, S=browii, H=blue.

tra n s p o r t.  T h e  cm re n t a t 2V is of th e  o rder of O.lnA, which is ab o u t five o rd ers  

of n iag n itu d e  less th a n  th a t  observed for th e  7r-conjugateci m olecules d iscussed in 

c h a p te r 6.

T h e  o rb ita l resolved D O S for decan eth io l w ith  th e  CF:3-end g ro u p  on gold is show n 

in figure 7.11. A s for th e  C H a-te rn iin a ted  m olecule, th e  H O M O  is re la tive ly  close to  

th e  gold E p .  However, as can  be  seen from  th e  p lo t of th e  local D O S of th e  m olecule in

- 10-8  -6 -4 -2 0  2 4 6 8 10 - 10-8  -6 -4 -2 0  2 4 6 8 10
£-£p (eV) (eV)

Figure 7.11: O rbital resolved DOS for the decaiiethiol molecule with the CFs-eiidgroup on 
the gold surface. All of the carbon, sulphur and fluoriiie valence orbitals are 
shown ill (a), and the p  orbitals perpendicular to  the axis of the molecule are 
shown ill (b). The HOMO-LUMO gap is large, although the HOMO is abou t 
leV  below E p .



145 C hapter 7

an energy window around the HOMO shown in figure 7.12, this s ta te  is again mainly 
localised in the single sulphur atom. The delocalised orbitals which are capable of 
transporting charge across the molecule are due to the carbon p orbitals, and are 
further from the Fermi level. Thus a large conductance gap would be expected for 
this molecule, with just a tunnelling current present at low bias. This can be seen

Figure 7.12: Local DOS (molecular orbital isosurface) for the CFa-terminated decanethiol 
molecule on the gold surface, showing (a) the level below the HOMO, (b) the 
HOMO, and (c) the LUMO. Note how the HOMO is localised aroimd the 
thiol endgroup. Colour code: Au=yellow, C=black, S=brown, H=blue.

from both the transmission coefficients in figure 7.13 and the I -V  curves in figure 
7.14. As for the CHs-endgroup, there is a large gap in the resonances in the zero
bias transmission coefficients of about 5eV on each side of the Fermi level. The 
current at 2V is of the order of O.lnA, which is again similar to tha t obtained for 
CHs-terminated decanethiol and is about five orders of m agnitude less than th a t 
observed for the 7r-conjugated molecules discussed in chapter 6 .

The most noticeable feature of the I -V  curves and differential conductance shown 
in figure 7.14 is their asymmetry. The conductance at positive bias is about 2-3 
times smaller than th a t for negative bias. The reason for this is the difference in the 
strength of the coupling between the molecule and the gold surface on one side, and 
the molecule and the STM tip on the other side. The sulphur atom in i)articular 
forms quite a strong bond with the gold surface, whereas as the tip is nuich further 
from the CH3- and CFa-endgroups. Therefore, as discussed in chapter 3 and as shown 
in the schematic illustration in figure 7.15(a), electrons can be transferred more easily
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Figure 7.13: IVansniission coefficients at zero bias for decauethiol attached to gold surface 
with (a) CHs-endgroup and (b) CFa-endgroup. Note the gap in the transmis­
sion of about 5eV on either side of the Fermi level.
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Figure 7.14: {‘a)I-V  curves and (b) differential conductance for decanethiol with both CH3  

and CF3 -endgroups. Note the asymmetry with respect to bias direction, with 
the conductance at negative bias being 2-3 times larger than that for positive 
bias. The conductance is also lower for the CFs-endgroup than the CH3 - 
endgroup.

betw een the molecule and the  surface th an  the molecule and the tip . Thus, when 

the  direction of bias is such th a t th e  chemical po ten tia l of the surface is higher th an  

th a t  of the  tip , the molecule gains electrons. This ex tra  charge increases the  energy 

of the  m olecular orbitals, causing them  to  move closer to  E^.  This can be seen in the 

p lots of the  transm ission coefficients for different voltages shown in figures 7.16 and 

7.17. At negative bias, the levels shift upw ards so th a t  the  occupied levels are closer 

to  th e  bias window. This increases the  transm ission in the bias window, w'hich in 

tu rn  increases the  current. A t positive bias, the  electrons leave the molecule as the  

m ore strongly coupled lead has a lower chemical potential. Therefore, the  occupied
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I
Negative Bias

Surface
Tip

Positive Bias

Surface
Tip

b)
Tip Tip

A

Figure 7.15: (a) Schematic energy level diagram. The molecule is more strongly coupled 
to the surface than to the tip, so when the chemical potential of the surface is 
higher, charge is transferred into the molecule from the surface. When the bias 
is reversed, the charge leaves into the surface faster than it can enter from the 
tip. (b) Schematic showing electrostatic interaction between tip and molecule 
endgroup. The CFs-terminated decanethiol molecule forms an electric dipole, 
and so will be attracted or repulsed by the STM tip, depending on the bias 
direction.

levels shift downwards away from the bias window, and the current is lower. T he 

to ta l shift in the  transm ission coefficients from -2V to 2V is approxim ately leV .

Tliis change in the  occupation of the  molecules as a function of the applied l)ias 

can be seen in the  plots of their to ta l M ulliken populations as a function of voltage 

shown in figure 7.18. As the  bias increases from negative to  positive, the molecule 

loses electric charge as the  chemical potential of the su b stra te  is lowered. This causes 

th e  occui^ied levels to  shift downwards away from Ep, opening uj) th e  HOM O-LUM O 

gap and reducing the  conductance.

The asym m etry  in the  conductance observed in these results is due to  th e  asym ­

m etry  in the  coupling to  the  leads. A sym m etry was also observed in tlie experim ental 

conductance m easurem ents for these molecules [81]. However, in the experim ental 

results, the C F 3-endgroup was found to  produce a far more asyrm netric 1 - V  curve 

th an  the  CH s-endgroup. This was not observed in our calculations described here, 

where the  asym m etry  for bo th  types of endgroup was sim ilar. In the experim ental
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Figure 7.16: lYaiisinissioii coefficients for positive and negative bias for decanethiol with 
the CHs-endgroup. Note how the resonances in the tranniission coefficients 
due to the occupied states move up closer to the bias window at negative bias, 
and move downwards for positive bias.

work, it was argued th a t this asymmetry w'as due to  a repositioning of the molecule 
clue to electrostatic interactions betvi^een the endgroup and the STM tip, as indicated 
in the schematic illustration in figure 7.15(b). Tlie high electronegativity of the flu­
orine atoms would be expected to a ttrac t a large net charge, which would then be 
strongly attracted  or repelled by the STM tip, depending on its bias direction. Fig­
ure 7.19 shows a plot of the net charge on each group of atoms as a function of their 
distance along the axis of the molecule. Replacing the hydrogen atoms by fluorine 
atoms causes an increase in the occupation of the endmost carbon atom, although 
the endmost fluorine atom has a net positive charge. However, tlie total net charge 
on the CFa-endgroup would be negative (as it has extra electrons), whereas the to tal 
net charge on the CHs-endgroup is positive. Thus, the end of the molecule would be 
a ttrac ted  towards the tip wdien it is at positive bias, reducing the separation and in­
creasing the conductance, whereas it would be repelled w'hen the tip is at a negative 
bias.
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Figure 7.17: lYansmissiou coefficients for positive and negative bias for decanetfiiol w ith 
the CFa-endgroup. Note how the resonances in tfie tranniission coefficients 
due to  the occupied states move up closer to  the  bias window a t negative bias, 
and move downwards for positive bias.
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Figure 7.18: M ulhken populations for decanethiol molecule w ith (a) CH 3  and (b) C F 3 - 
endgroups attached to  gold surface. Note how the occupation of the molecule 
for bo th  endgroups drops as the bias increases from negative to positive.
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Figure 7.19: Net occupation of the atoms as the function of position along the axis of the 
molecule. The fluorine atoms in the CFa-endgroup attract extra electrons 
onto the end carbon atom.

However, the calculation of forces at finite bias has not yet been iniplenientecl 
in SMEAGOL, so full self-consistent molecular dynamics simulations have not yet 
been performed. Hence, the strength of the interaction between the tip and the 
dipole in the endgroup cannot be calculated accurately. If this effect is not large, 
the asymmetry in the conductance due to the asymmetrical coupling between the 
molecule and the leads may swamp any effects due to the movement of the molecule.

l l i e  effect of ASIC [75] on this system was also investigated briefly. However, 
the HOMO-LUMO gaps in these molecules are relatively large, similar to the gap 
for the BDMT molecule discussed in chapter 6. Thus, although ASIC has the effect 
of lowering the occupied orbitals, it did not have much of an affect on the transport 
properties.

7.3 Conclusion

SMEAGOL can be used to simulate STM -type experiments, provided the tip-sample 
distance is sufficiently small tha t the basis orbitals have not been artificially cut off 
(i.e. where the vacuum region between the tip and the surface is still well described).
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This allows the s tudy  of system s in which the  tip  is close to  the  molecule, and allows 

the  effects of finite bias on the  electronic s tru c tu re  of the molecule to  be incorporated .

C alculations for alkanethiol molecules w ith in STM -type arrangem ents show strong  

asym m etry  in the  I - V  curves, which can be explained by the  asym m etry in the  cou­

pling to  the  two different leads. However, the  asym m etry observed in these calcu­

lations is sim ilar for bo th  CH 3 - and C F 3 -term inated  decanethiol, in con trast to  the 

experim ental m easurem ents which showed a far stronger asym m etry for the  C F 3 - 

endgroup. T he au thors of the experim ental work speculate th a t th is asym m etry  

is due to  e lectrosta tic  tip-endgroup interactions, which causes the  d istance of the  

molecule from the  STM  tip  to  change. However, th is hypothesis cannot be tested  as 

of yet, since calculations of the forces a t finite bias have not yet been im plem ented 

in SM EAGOL.

T he work described in th is chapter is still in progress, and the effect of the  tilt 

angle of the  molecules on the  tran sp o rt properties is currently  being tested  using 

an enlarged un it cell. The effect of using tungsten  or platiiium -iridium  tips instead 

of gold would also need to  be investigated. Finally, the  calculation of forces a t 

finite bia.s is in the process of being im plem ented in SM EAGOL. This w'ould allow 

m olecular dynam ics sim ulations to  be perform ed for the molecule in the presence of 

an STM  tip  a t finite bias. Hence, it should be possible to investigate the m echanism  

proposed to  explain the difference between the  conductance properties of CH 3 - and 

C F 3 - te rm inated  decanethiol. However, such calculations would be very expensive 

com i)utationally, as the  basis set on the  gold would have to  be extended to a t least 

include the  5d orbitals so as to  give accurate  values for the  in teratom ic distances.

T he results presented in th is chap ter were calculated using LDA. As discussed a t 

length th roughou t th is d isserta tion , LDA has several problem s which can strongly 

affect electron tran sp o rt calculations. However, approxim ate self-interaction correc­

tions such as ASIC [75] are tmlikely to  offer much of an improvem ent, since the  

conductance is due to  tunnelling, and would not be particu larly  sensitive to  the 

exact position of the m olecular orbitals. However, for these molecules, accurately 

calculating the  electric polarisability  would be im portan t, and this is overestim ated 

by LDA and only partially  corrected by ASIC [89, 90].
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Chapter 8 

Conclusion

Molecular devices have a diverse range of potential applications. In the last few 
years, it has become possible to fabricate these devices, using a variety of difTerent 
methods. Unfortunately, the values measured for the conductance of such devices, 
particularly those formed from yr-conjugated molecules such as benzenedithiol, can 
vary by up to several orders of magnitude depending on which method is used to 
constrvict them  [19, 26]. Researchers have thus turned to com putational modeling 
to explain these discrepancies, as w'ell as to help in understanding the transport 
mechanisms. However, electron transport calculations for these systems, particularly 
those using DFT-LDA, give higher conductances than  those obtained from any of 
the experiments [63, 64, 65, 66, 67, 68, 70]. Explanations which have been suggested 
for these discrepancies include the fact tha t the exact geometry of the anchoring 
configuration between the molecule and the metal is unknown, as well as the errors 
inherent in the approximations used in the electronic structure methods.

The main focus of this dissertation has been on the effect of various aspects of 
the self-interaction error [71] contained in approxim ate exchange-correlation func­
tionals used in DFT on electron transport calculations. In chapter two, I introduced 
DFT, including the problem of the self-interaction error, and showed how such an 
error could help in suppressing the derivative discontinuity which should occur in 
the energy at integer occupations [72, 73]. In chapter three, I used a simple model 
to show how a discontinuous charging potential, such as would be produced by the 
derivative discontinuity, can strongly affect the transport properties under certain 
circumstances, including opening up conductance gaps in the I-V curves [74]. This 
idea was taken further in chapter five, where a self-consistent tight-binding Hamil­
tonian which incorporated the derivative discontinuity was used to perform electron 
transport calculations for BDT attached to gold. Here, it was found tha t although 
the derivative discontinuity had little effect when the molecule was strongly coupled

153
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to  the  leads, in the  weak coupling lim it it could open up a conductance gap. In 

th is weak coupling lim it, a m olecular level is pinned a t the  Fermi level of the  m etal. 

W ith  a continuous charging poten tia l th is level can be occupied as soon as a bias 

is applied and thus s ta r ts  to  conduct innnediately. However, w ith a discontinuous 

po ten tia l, the  level cannot charge and is piim ed outside the  bias window until its en­

ergy increases sufficiently for it to  overcome the  derivative discontinuity  and accept 

one entire  electron. This has the  effect of opening up a condvictance gap in the  I-V  

curve. In fact, th is conductance gap is the  sam e size as th a t  observed in one of the 

experim ents [19], although this m ay have been an artifac t of the  model H am iltonian 

used.

An approxim ate  self-interaction correction in the  form of ASIC [75] had been 

incorporated  into SIESTA [82, 83, 84] and thus SM EAGOL [37, 38, 39], and this 

was used to  investigate the self-interaction errors in ab initio  tran sp o rt calculations. 

A lthough ASIC does not contain the  derivative discontinuity  due to  the  atom ic and 

linear scaling approxim ations, it does produce rem arkably accurate values for the 

ionisation jjo tentials of a variety of different molecules, which can be off by up to 
4eV w ith s tan d ard  LDA. 'iliis  corrects the  band alignm ent between the occupied 

s ta tes  in the  molecule and the Fermi level of the m etal. In the  case of BD T attached  

to  gold leads, th is results in a reduction of the  low bias conductivity, improving 

agreem ent w ith experim ents [76].

It now api^ears th a t  the  results of theory  and experim ent are s ta rtin g  to  con­

verge for these system s, although some discrepancy still rem ains. F irst of all, the 

exact form  of the  anchoring geom etry between the  m etal and the molecule rem ains 

unknown. A nother problem  in LDA, which is only partially  solved by ASIC, is the 

overestim ation of the electric polarisability  [89, 90]. Thirdly, while ASIC corrects 

the level alignm ent between the  molecule and the  m etal, it does not reproduce the 

derivative d iscontinuity  in the  energy, which in chai)ter four was shown to have a 

strong  effect on electron tran spo rt in the  weak coupling limit. On the  o ther hand, the 

calculations perform ed in chapter four using discontinuous potentials involved using 

a tigh t-b inding  H am iltonian, and thus some of the results obtained m ay be artifacts 

of th is model. Therefore, in order to  understand  the  com plete picture, calculations 

would have to  be perform ed using an ab initio electronic s truc tu re  theory which 

produced b o th  the  correct band alignm ent and the derivative discontinuity. These 

calculations would need to  be perform ed for a variety of diflerent m etal-niolecule con­

figurations. T he electronic s tru c tu re  would need to  be recalculated a t each bias step, 

as sim ply in tegrating  over the zero bias transm ission coefficients m ay not reproduce
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some of th e  effects of the  derivative discontinuity. Such work could po ten tia lly  shed 

some light on the  differences between some of the  experim ental restilts.

P o ten tials which bo th  reproduce the  derivative discontinuity  and correct the  band 

alignm ent include the  full SIC [71], and exact exchange [8 8 , 114, 53] w ith  local cor­

relation. These are currently  in th e  process of being im plem ented in SM EAGOL, 

and  it will be interesting to  observe their effect on electronic s tru c tu re  calculations 

of m olecular junctions. These m ethods should also help correct the electric polaris- 

ability  of the  molecules. U nfortunately, such m ethods are o rb ita l dependen t, and so 

are difficult to  im plem ent w ithin N E G F a t finite bias.

Finally, I presented the results of some ongoing calculations involving the  sim ­

ulation  of STM  tran sp o rt m easurem ents of CH 3 - and C F s-term inated  alkanethiol 

m onolayers on a gold surface [81]. The I - V  curves were found to  be strongly  asym ­

m etric due the  molecules being coupled far more strongly to  the  su b s tra te  th an  

to  the  probe tip . In the  experim ental m easurem ents, the  conductance for C F 3 - 

te rm inated  decanethiol was found to  be far more strongly asym m etric th an  th a t for 

C H s-term inated  decanethiol, although th is was not observed in our calculations. The 

au tho rs of the  experim ental work speculate th a t  th is m ay be due to  tip-m olecule elec­

tro s ta tic  in teractions causing the  molecule to  move, bu t I have not yet investigated 

th is using SM EAGOL.

These calculations are still in progress. The effect of a tilting  angle on the  tran s­

po rt properties is currently  being investigated, and the effect of having the  STM  tip  

m ade of the  sam e m etal as th a t  used in the experim ents will need to  be tested . The 
calculation of in teratom ic forces a t finite bias is currently  in the  process of being 

im plem ented in SM EAGOL, which will allow the investigation of the  effect of elec­

tro s ta tic  in teraction  between the molecule and the tip  on the m olecule’s position. It 

can then  be tested  w hether or not th is in teraction is sufficient to  explain the  differ­

ence in the I - V  curves for the  CH 3 - and C F s-term inated  decanethiol observed in the 

experim ents [81].

In conclusion, I have dem onstrated  th a t accurate  electron tra n sp o rt calculations 

of m olecular devices require electronic s tru c tu re  theories which accurately  reproduce 

bo th  the  derivative discontirm ity and the  correct band alignm ent betw een the  m etal 

and the  molecule. These conditions require the m ethod to  be self-interaction free. 

C orrecting these problem s would dram atically  increase the  u tility  of com putational 

m ethods in the  design of m olecular devices, which have the  capacity  to  revolutionise 

a broad range of technological fields.
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