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Sum m ary

For the last fifteen years, carbon nanotubes have piqued the interest of many in the 

materials research community, due to their superlative individual characteristics. 

One possible route to their technological exploitation may lie through utilising their 

interactions with other materials. Proposed uses for nanotubes, which depend cru

cially on their behaviour when exposed to such foreign substances, variously include 

use as sensors, as interconnects in electronic devices, as non-conventional transistor 

elements, as conductive agents in non-conductive plastics, as hydrogen storage de

vices and as components in super-tough fibres, capable of being used in light-weight 

body armour. In each case of crucial importance is the detailed interaction tha t 

occurs between the nanoscopic carbon cylinders and other materials.

To this end, we have performed a range of theoretical investigations into the 

interaction between carbon nanotubes and foreign agents. Among other things, we 

have proposed a theoretical framework caj)able of modeling the electronic interaction 

between nanotubes and doping bodies based on the existence of well-known sum 

rules for interaction-induced changes in the density of states of the system. Using 

simple models for the electronic structm 'e of the dopant and the nanotube, we have 

investigated the effect tha t different dopants have on the electronic structure of the 

combined structure. M athematically transparent, and numerically light-weight, the 

scheme allows not simply qualitative analysis, but also quantitative. To this end 

we have utilised the method to perform calculations for the electronic structure of 

nanotubes doped with atoms and small molecules. Our analysis has allowed us 

to derive a scheme capable of parameterising semi-empirical electronic structure 

calculations involving many dopants, by using the outputs of ab-initio calculations 

for a few foreign objects. Our method also allows us to show the existence of 

correlations between the binding energy and the charge transfer tha t takes place 

between the parts, when a dopant is brought into contact with a nanotube.

Furthermore, we have treated the interaction between a nanotube and a wrap-



pitig polymer by treating it as a polarising perturbation to the electronic structure of 

the nanotube. Through the calculation of the electronic contribution to the binding 

energy of a wrapped nanotube, we show how it is possible for a spontaneous chiral 

order to form in a nanotube /  wrapping molecule system, due to the existence of 

energetically favourable wrapping angles. We have investigated how the electronic 

structure of a nanotube responds when exposed to a polarising, wrapping pertur

bation, such as is the case when a charged polymer attaches itself to the surface 

of a nanotube in a helically ordered fashion. In particular, we have investigated 

the maimer in which the coiling angle, the strength of the interaction, and the role 

of coverage impact on the density of states of the nanotube. In addition a simple 

classical model is used to investigate the interfacial adhesion between a nanotube 

and a wrapping polymer, which leads to a clarification of how nanotubes may be 

capable of reinforcing a polymer /  nanotube composite.
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Chapter 1

Introduction

1.1 H istorical perspective

The discovery of the carbon nanotubes is commonly attributed to the Japanese 

scientist Sumio lijima, who first described them in 1991 [1]. lijirna used state-of- 

the-art high resolution transmission electron microscopy to image what he referred 

to as nanoscopic needles of carbon. While there is convincing evidence tha t this 

was not the first time tha t nanotubes had been synthesized, what is certain is tha t 

he was the first to give a detailed description of the form and structure of these 

remarkable structiu’es.

It soon became clear tha t carbon nanotubes were an intriguing material with 

interesting physical properties. Early theoretical predictions of the electronic prop

erties of the single walled nanotubes raised the prospect th a t a subclass of them may 

be electrically conductive [2]; subsequent experiments showed the accuracy of such 

early predictions. A crucial step in this dem onstration was showing the stability 

of the structure against the so-called Peierl’s distortion - the symmetry breaking 

mechanism which ensures tha t undoped one-dimensional structures have a vanish

ing density of states (DOS) at the Fermi level, and thus cannot carry an electric 

current. Carbon was already known to form useful materials: graphite is one of the

1
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Figure 1.1: Ball and stick models for a graphene sheet. Displayed are the unit cell, 
delim ited by the dashed lines, the unit vectors di and a-i-, and the chiral vector 
for a (4,0) nanotube. T he two inequivalent sites A and /i are also labelled.

best lubricants we have, while diam ond is both the hardest m aterial and the  best 

therm al conductor known. P artly  by analogy with the known electronic struc tu re  of 

graphite, nanotubes were quickly predicted to  have remarkable therm al, mec:hanical, 

electronic and electrical properties, which would see them catapulted  to the forefront 

of the  nascent field which had the aim of utilising nanostructures for technological 

applications.

Before giving details of those properties th a t excited suc'h early interest in these 

nanoscale s tructu res, it is w orth addressing the question: just w hat are these carbon 

nanotubes?

1.2 G eom etry of nanotubes

We begin by describing the geom etry of carbon nanotubes. Carbon is one of the  

m ost versatile elem ents, in the  sense th a t structures of pure carbon can occur which 

are essentially OD (fullerenes), ID (nanotubes), 2D (graphene), and 3D (diam ond, 

graphite). Of these forms, perhaps the  m ost familiar is gra[)hite (diam ond being the  

o ther form m et in everyday life). G raphite  consists of stacked layers of carbon atom s

2



arranged  into a  hexagonal honeycomb lattice. Successive layers are spaced by about 

3.5A and are a ttra c te d  to  each other through a weak van der W aals interaction, 

'rh e  weakness of th is in teraction  is w hat allows the  layers to  slide over one another, 

th e  property  which makes g raphite  such an excellent lubricant. A single sheet of 

g raph ite  is w hat is referred to  as graphene, a m aterial th a t  is only recently coming 

in to  sharp  focus for the  research com m unity in its own right [3, 4, 5]. In fact, the 

geom etry of nano tubes is m ost easily described in term s of th a t  of graphene, which 

is a  hexagonal, p lanar structu re . At each vertex resides a carbon atom , and the 

edges of the  la ttice  correspond to strong sp^-hybridised chemical bonds. As carbon 

has four valence electrons, and it forms three bonds w ith neighbours (each of length 

abou t 1.42A), we m ust account for one ex tra  electron per atom . This ex tra  electron 

goes into a dum b-bell shaped orbital perpendicular to  the  graphene plane, and the 

electronic s tru c tu re  of the  graphene sheet is essentially determ ined by these so-called 

TT-orbitals. G raphene has a trigonal Bravais lattice spanned by vectors di and a2 

w ith a two atom  basis, the  inequivalent atom s being labelled A  and B. T he geom etry 

of a  graphene sheet is specified in Fig. 1.1. An im portan t param eter is the  length of 

these basis vectors, which we will sim ply denote by the  symbol o; it is the  distance 

between nearest equivalent atom s.

T he s tructu res th a t  in terest us in this work are the  essentially one-dim ensional 

nanotubes. A single-walled carbon nano tube (SW N T) is like a parallelogram -shaped 

section of a graphene sheet w ith four equivalent carbon atom s (all of type A  or of 

type B)  a t the  corners, which is deform ed into a cylindrical s truc tu re  such th a t the 

slanted lines are  coincident. Double-walled nanotubes consist of two such concentric 

cylinders, while tubes w ith m ore th an  two walls are called m ulti-walled nanotubes. 

T he shortest vector in the  graphene plane th a t  connects two carbon atom s th a t  are 

to  be rolled on top  of each o ther is called the  chiral vector, C^- The chiral vector 

for a (4,0) zigzag nano tube  is displayed in Fig. 1.1. W ith  reference to  unit vectors 

d\ and 0 2  of graphene, we usually refer to  a (n, m )-nano tube as th a t nano tube th a t

3
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Figure 1.2: Ball and stick models for two nanotubes. In panel (a) we display the 
schematic for 6 fundam ental unit cells of a m etalhc (7,7) nanotube. This achiral 
naiiotube displays no helicity, in contrast to  the (6,3) nanotube, displayed in panel 
(b), which displays a clear helicity.

is uniquely generated by choosing Ch — na\ +  nia-ii and n and rn are called the 

chiral :ndices of the nanotube. Due to the  variety of ways in which a graphene 

sheet can be rolled upon itself, we see the  existence of a plethora of different types 

of nanotubes, each specified by its chiral indices. Theory, and indeed experim ent, 

show taa t properties such as the intrinsic conduc'tance of nanotubes are governed 

by their chiral indices. In particu lar, it is found th a t a nanotube th a t has n =  m is 

inherei.tly m etallic, and such tubes are called armchair nanotubes. Together with 

the  zig-zag tubes, characterised by rn =  0, we have the set of achiral nanotubes. 

These ;nolecules are identical to  their m irror images. All other tubes fall into the 

class of achiral tubes. T he geom etry of an achiral (a (7,7) arm chair nanotube) and 

a chiral tu b e  (a (6,3) nano tube) is depicted in Fig. 1.2, where the “tw ist” of the 

lattice is readily  apparent in the  chiral tube, bu t non-existent for the achiral tube.

As regards their size, typical single-walled nanotubes tend to have diam eters of 

the order of a nanom etre, w ith thicker tubes tending to undergo structm -al defor

m ation T here seems to  be no upper lim it on the length of nanotubes; reports have 

indicated grow th of up to  4cm [6] (an apparently  apparatus lim ited upper bound).

4



However, typical lengths are in the micro-metre range, giving an extremely large 

aspect ratio [7]. Snch a large aspect ratio is what allows us to view the nanotubes as 

being one-dimensional structures. As grown, carbon nanotubes tend not to be found 

in this pristine form. They can suffer a range of defects, including substitutional 

defects (where a carbon atom can be replaced by an atom such as boron), vacancy 

defects, and Stone-Wales type defects (where a bond is rotated by 90 degrees in the 

plane of the moleciile). In real life, things are further complicated by the propensity 

of nanotubes to aggregate together to form bundles.

1.3 Intrinsic properties o f nanotubes

Much research into carbon nanotubes is driven by their remarkable electronic, ther

mal and mechanical properties. Nanotubes can display high levels of purity, and a 

low level of defects, as evidenced by microscopy. W'hile typical defects that can oc

cur in nanotubes, including topological defects and vacancy defects, certainly have 

an impact on the i)hysical properties, crucially the defected structures still possess 

exceptional intrinsic properties. It is worth noting in passing that the amount of 

defects in the uanotube is usually determined by how they are grown, be it by laser 

ablation, arc-discharge or chemical vapour deposition. Typically, those nanotubes 

grown by arc-discharge possess a higher concentration of defects, which can impact 

on the as-measured physical properties of the structure. It is w^orth spelling out 

some of the most exceptional properties that as-grown nanotubes possess, which I 

now do.

1.3.1 Electronic properties

It has already been stated that the so-called chiral indices (n, m) play a crucial role 

in determining the electronic properties of nanotubes. In fact, theory predicts that 

single-walled nanotubes can be conducting (m =  n), semiconducting with a tiny
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Figure 1.3: Density of states per atom for two different acliiral nanotubes as calcu
lated within the zone-folding approach (see the text), (a) Corresponds to an (8,2) 
chiral nanotube, while (b) corresponds to a (6,2) nanotube. The red lines indicate 
the distance between the first van Hove singularities above and below the band, 
known as A/n transitions in the case of metallic tubes and S’n transitions in the 
case of the semiconducting. As per the zone-folding theory, (a) has rn — n =  6  and 
is metallic , while (b) has m. ^  n mod 3 and is semiconducting. The parameter 7  

has the dimensions of energy, and has a value of about 2.7eV.

gap (m =  n mod 3, rn 7  ̂ n), or semiconducting with a diameter dependent gap 

(m ^  n mod 3). The tiny gap, which is opened when m = n mod 3, vanishes 

if the curvature of the tube is neglected. Such is the case in the so-called zone- 

folding approach, where we extract the electronic structure of a nanotube from that 

of graphene through the imposition of suitable boundary conditions, hi contrast, 

pristine armchair nanotubes remain conducting, even \vh(>n a non-isotropic electronic 

hopping is used. These predictions ha\'e been bornc' out by experiments which show 

that about 2/3 of single walled nanotubes behave as semiconductors, in line with 

theory [8 ]. The DOS for two chiral nanotubes, calculated within the zone-folding 

approach, is displayed in Fig. 1 .3. Besides from the absence or presence of an energy 

gap between the conduction and valence bands, another characteristic feature of the 

band structure of these quasi-one-dirnensional systems is the so-called van Hove 

singularities. These features were originally elucidated in the elastic structure of 

crystals, and are a general feature of the single i)article DOS in low dimensional 

systems [9]. These refer to the clearly observable spikes in the DOS in Fig. 1.3, and
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have been observed experim entally through th e  investigation of the local density 

of s ta te s  through the  use of scanning tunnelling microscopy [10]. W ith in  the  zone- 

folding approach, the  van Hove singularities can be viewed as the energies a t which 

th e  lines of allowed reciprocal lattice vectors are  tangent to the appropriate  iso

energy surface of the  underlying graphene sheet.

It has been shown th a t  carbon nanotubes can  display quantised conductance 

[11], which is due to  circum ferential confinem ent of the wavefunction. Electronic 

tra n sp o rt w ithin m etallic carbon nanotubes is essentially ballistic over distances 

large com pared to  the  nanoscale, m eaning th a t they  can carry high currents with 

little  heating over such distances, w ith the  p rim ary  source of resistance in these tul)es 

coming from a contact resistance due to the  interface w ith macroscopic electrodes. 

Due to  im perfections tran sp o rt over longer distances becomes diffusive. As regards 

the  m obility for nanotubes in the diffusive regime (a quantity  th a t determ ines how 

easily the  carriers can be induced to drift by the  application of an electric field), 

reports indicate m obilities greater th an  th a t  of any o ther sem iconductor [12].

1.3 .2  M echanical properties

A nother area of in terest is the superlative m echanical properties of nanotubes. N an

otubes possess extrem ely high Young’s moduli. T he Y oung’s m odulus is convention

ally defined as the  initial slope of a stress-strain  curve. One problem  w ith defining 

the  Young’s m odulus of a  single walled nano tube is th a t  it is a hollow cylinder. 

Since the  definition of the  stress requires the  area over which a force acts, it would 

seem th a t  the Y oung’s m odulus may be ill-defined. On the  o ther hand, the  surface 

area of a bundle of nanotubes is indeed a well-defined quantity. By perform ing ex

perim ents to ascertain  the  modulus of bundles, the  results can be norm alised by the 

num ber of nano tubes in the  bundle, to  yield a Y oung’s m odulus for an individual 

tube. Experim ents on bimdles have led to  reported  Y oung’s m odulus values for in

dividual nanotubes of betw een 320 G P a  and 1470 G P a [13]. By way of comj^arison,
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theory says th a t the Young’s moduhis of a small diameter SWNT should be of the 

order of 1000 G Pa (which is roughly the in-plane tensile modulus of graphite) [14], 

but should decrease as the diameter increases. Nanotubes also have exceptional 

strength. Composites made with nanotubes have been shown to have exceptional 

toughness, defined as the total energy to break. By way of a reference, it is useful 

to compare this value with the Young’s modulus of steel, which is commonly cjuoted 

as being about 200 GPa.

1.3.3 T herm al P rop erties

Due to the strength of the sp^ and sp^ bonds that carbon can form, materials bjised 

on it are found to have excellent thermal properties. While graphite itself is ex

tremely good at transporting therm al currents, it is a different allotrope of caribou 

tha t is best in class; diamond. Experiments on diamond at room temperature show 

a therm al conductivity of the order of SOOOW/mK [15], and orders of magnitude 

higher at cryogenic temperatures. Recent experimental investigations into the ther

mal conductivity of individual freely suspended (multi-walled) nanotubes [16] find 

a diam eter-dependent thermal conductivity of about 2000\\7niK, which is com

parable with, if somewhat lower than, the value of about 3000W/mK which has 

previously been reported for multi-walled tubes [17]. These values are to be com

pared with early theoretical predictions [18] of conductivity of about 6500W /mK for 

single walled nanotubes; recent calculations [19] indicate such high values of therm al 

conductivity may only be the case for nanotubes with lengths of the order of tens of 

micrometers. This high thermal conductance has led to nanotubes being proposed 

as components in devices which produce a lot of heat, with the aim of using them 

as connections between the hot device, and a thermal sink.
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1.4 N anotubes in com posite structures

In th is section, I wiU briefly detail some of the  results of investigations perform ed 

w ith the  aim of in tegrating nanotubes into useful structures. As we have seen, theory 

and experim ent have shown th a t carbon nanotubes are a prom ising candidate for a 

next generation m aterial due to  their rem arkable intrinsic tra its . To m aximise the 

u tility  of these rem arkable structu res, they m ust however be combined w ith o ther 

s tructu res. For example, if nanotubes are to  be used as transisto r elem ents, they 

m ust m ake contact a t the tips of the  tubes w ith m acroscopic m etallic electrodes. If 

a bad contact is m ade, the intrinsic resistance of the  transisto r can be dwarfed by 

the  contact resistance a t the  interface. Since the in teraction  w ith o ther substances 

can crucially determ ine the  usefulness of nanotube-based devices, it is na tu ra l to 

question how it will be possible to  in tegrate nanotubes w ith existing m aterials to 

form com posite structures. As a sidenote, in this work, I will often use the  word 

com posite in its m ost general sense to refer to  a com bination of nanotubes and o ther 

struc tu res, which m aintains the  d istinct morphology of the  nanotubes.

1.4.1 U tilis in g  m echanical properties

One particvilarly prom ising area of application for carbon nanotubes is as fillers in 

carbon nano tube /po lym er composites. A polym er s tran d  is a macroniolecule, which 

consists of covalently bonded elem entary units, called m onomers, which bind to 

gether to form a chain [20]. O rganic polym ers have a sp^ hybridised backbone of 

carbon atom s, w ith different polym ers having different groups of atom s bonded to 

the backbone. Typically polym ers form a tangled mess, due to  interactions between 

different m onomers. Experim ent has shown th a t  such polym ers readily form com

posites w ith nanotubes [21, 22]. Typically in such com posites, up to  a few percent 

by volume of carbon nanotubes are added to a polym er m atrix  with the aim of 

enhancing its physical properties. For instance, it is well known th a t  polym ers are
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typically poor electrical conductors, since they suffer a Peierls distortion which de

stroys their conductivity. However, the addition of a small quantity of nanotubes 

can increase the electrical conductivity of the sample, with the resulting increase in 

the conductivity being normally explained through percolation theory [23].

Another area where nanotubes promise an imj^rovement over the pure polymer 

is in the realm of mechanical reinforcement. When we think of polymers, we tend to 

think cf their macroscopic realisation in the form of plastics, so called because of their 

plasticity. It is not surprising then, tha t polymers tend to form bulk aggregates tha t 

are mechanically weak. However, it is found tha t the addition of small quantities 

by volrme of the far stronger and stiffer carbon nanotubes to a polymer sample 

can greatly affect the mechanical properties of the coini)osite material. It is often 

desired tha t such changes be made using iniimte quantities, in order not to adversely 

affect those properties of the polymer tha t we find desirable (such as malleability). 

One of the major successes to day in the field is that new composite materials with 

world-record toughness (defined as the total energy a material can absorb before 

structural failure) have been synthesized, leading to the i)rosi)ect of light-weight 

protective textiles, which may find application as light-weight bulleti)roof vests [24].

As far as the elastic properties of composites arc concerned, a number of theo

retical tools are used to model the effect of nanotube loading. One of the tools is the 

so-called rule of mixtures, which is used in rnacroscoi)ic i)hysics and in engineering 

to predict the mechanical properties of a composite material made from different 

species. This relation formula is found experimentally to overestimate the Young’s 

modulus of the composite in the case of multi-walled carbon nanotubes. This has 

been attributed to a low load being carried by the iimer tubes inside the multi-walled 

tubes, due to sliding of the inner layers relative to the outer layers [25]. However, 

as pointed out in [21], the same experimental observations may be attributable to 

poor sjress transfer across the polymer /  nanotube interface, as opposed to across 

the interface between different sheets of the multi-wall. Understanding, and indeed
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quantifying, the interfacial stress transfer between a polymer /  nanotube interface 

is an open topic which may be crucial for further improvements in the properties of 

composites.

W ith regard to the morphology of composites it has been reported that certain 

polymers, such as polyvinal-alcohol (PVA) and PmPV, crystallize about carbon nan

otubes which are loaded into a polymer matrix. Transmission electron microscopy 

reveals a substantial ordered layer of polymer tha t surrounds the multi-wall nan

otubes [26]. Such a coating has been linked with the observed strength increase when 

Young’s modulus experiments are performed on multi-wall /  PVA composites [27], 

in contrast with reports of substantially smaller strength increases when a polymer 

which tloes not crystallize, poly(9-vinyl carbazole), is used.

Furthermore, when certain polymers bind to carbon nanotubes in a crystalline 

coating, it is often observed th a t they bind in a helical geometry [26]. The he

lical pitch does not seem to be random preferential coiling angles for different 

nanotube/i)olym er system have been observed. A simple, classical model based on 

geometric considerations [28] sought to explain the existence of spontaneous chiral 

order in such structures by examining the balance between the coiling induced stress 

in a wrapping molecule and the surface dependent affinity such molecules have. In

deed, this fact has been proposed to be a central element of a scheme to separate 

carbon nanotubes by chirality and electronic properties [29].

1.4.2 N anotubes in electronic devices

At the time of writing, the material of choice for the semiconductor industry is sil

icon, as it has been for decades. In order to get more and more transistors onto a 

given size wafer of silicon requires th a t the components be shrunk, smaller transistors 

leading to faster computer chips. However, the components cannot be shrunk indef

initely. In recent years, nnich attention has been focused on the field of molecular 

electronics, first proposed in the 70s, partly due to improvements in characterisation
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techniques. The basic idea of molecular electronics is to replace the current bulky 

transistors with small molecules which are capable of eiimlatiug their characteris

tics. This may provide a possible alternative to the current miniturization schemes 

employed by the semiconductor industry. In fact, it has been proposed tha t the 

underlying properties of nanotubes may allow them to play a role in this budding 

domain. The combination of the existence of semiconducting nanotubes with their 

reported high mobility seems to make them ideal candidates for constituents of tran

sistors. Indeed, some of the most exciting early experiments on nanotubes showed 

the ability of nanotubes to act as device elements [30], [31].

Another promising applications for uanotubes is as nanoscale sensing devices. 

One remarkable feature of carbon nanotubes (NT) is that their conductance is 

strongly affected by the interaction with certain foreign objects (FO), Atoms, molecules 

and nanoparticles are some of the objects known to interact strongly with NT, paving 

their way to being used as nanoscopic sensors. Nanotubes have been shown to ex

perience large changes in their resistance upon exposure to oxygen [32], nitrogen 

dioxide and ammonia [33]. In this light it may be possible to utilise the properties 

of nanotubes to generate selective sensitive nanoscale devices. A recent review of the 

nascent field of carbon-based electronics has appeared in [34], while a more general 

treatm ent of the electronic transport properties of nanotubes has recently appeared 

in [35].

1.5 The crucial role o f control

Perhaps the biggest problem facing those who wish to utilise the tantalising proper

ties of nanotubes is their sheer variability. Nanotubes can be single-walled, double

walled and multi-walled. In a multi-walled tube, the different layers are isomorphic 

to the walls of a single walled nanotube. Since there is a definite relationship between 

the diameter of the tube and its chirality, and the various walls of the multi-wall
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must have different diameters, it is clear tha t many different chiralities must be 

present in the same tube. Bearing in mind the decisive influence th a t the chiral 

indices have on the electronic structure of a nanotube, we see tha t in principle some 

of the walls of the nanotube will be conducting and some not (under the assumption 

tha t the different walls don’t interact with each other). If we take as a rule of thumb 

tha t one third of single walled nanotubes are metallic, we see the difficulty in finding 

a semiconducting multi-wall tube.

Even if we are able to restrict ourselves to considering only single walled nan

otubes, we still run into problems. While nanotubes of very small chiral indices are 

not found since they are energetically unstable, there is still a plethora of different 

chiral indices th a t are allowed. The problem is tha t for a useful technological device, 

there is often call for a certain chirality of nanotube. For example, a metallic nan- 

otube will not be a useful component where the need is for a semiconducting one. 

Current manufacturing methods allow only a poor control over the chiral indices of 

the nanotubes in a sample. While there can be some control over the spread of diam

eters tha t are grown in a sample [36], since there exist semiconducting and metallic 

tubes with similar diameters, this does not give you control over the metallicity of 

a sample.

Furthermore, just as successive layers of graphene in graphite are attracted  via 

van der Waals forces, so exists a similar nanotube-nanotube interaction. The effect 

of this attraction is tha t nanotubes tend to aggregate into what are called bundles, 

which consist of a collection of coaxial nanotubes in close proximity to each other. 

This is a serious issue for those who want to use nanotubes in devices. Usually, 

applications call for the components of the device to possess certain properties. 

Seeing as each of the tubes in the bundle may possess different properties, and 

bearing in mind tha t the interaction with nearby structures is capable of altering 

these properties, it is clear tha t isolated nanotubes are preferred for applications to 

those in bundles. The lack of knowledge of how to breakup these bundles without
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causing damage to the tubes or irreversibly altering their properties in some way is, 

as of now, one of the most fundamental barriers to the connnercial exj)loitation of 

nanotubes.

On the other hand, if the nanotube experiences a dramatic dependence on its 

environment, it may be possible to control its properties through controlling what is 

in its vicinity. For example, it has been shown tha t the conductance of a nanotube 

can be strongly altered by letting oxygen adhere to its surface [32], We will often 

refer to such an interaction as a doping process, by analogy with the conventional 

definition of the term. By far the most dramatic success of doping in technology, and 

in the sciences, is in the addition of foreign species to pure semiconductors to increase 

the number of possible electrical current carriers, a crucial step in the manvifacture 

of modern logic devices. Since a semiconductor is characterised by an energy gap 

between the conduction and valence electrons, a non-trivial amount of energy must 

be added to the material in order to promote some electrons to the conduction band 

in order to allow an electrical current to flow. However, the introduction of atoms 

of a different valence into the crystal introduces free carriers that can dramatically 

increase the conductance of the material. If such extrinsic control could be exerted 

over nanotubes, it could overcome deficiencies in as-grown samples, and j)rovide a 

path towards their integration in technological devices.

1.6 T he desire for a general formalism

In the light of the foregoing discussions, it is clear tha t a theoretical understanding 

of the doping process for carbon nanotubes is highly desirable, and the elucidation 

of a framework capable of accounting for the changes induced is one of the main 

aims of this work.

As things stand, the interaction between carbon nanotubes and foreign objects 

is usually treated by performing two separate studies: one which addresses what
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conditions a foreign object will bind to a nanotube, and one which investigates 

the effects tha t this interaction brings to the electronic properties of the device. 

Typically, the first step is performed by utilising ab-imtio calculations to provide the 

energy change th a t occurs when the foreign object adheres to the nanotube, while 

the second considers the conductance of the structure in the presence of a finite 

concentration of dopants. To take into account a disordered array of molecules on 

the surface of a nanotube, an ensemble average must be performed. Since we have 

to average over a large number of configurations computationally expensive ab-initio 

evaluations are miattractive, and so parameterised semi-empirical Hamiltonians are 

often used. Besides from the large demand on com putational resources this puts, 

one reason this approach is dissatisfying is a lack of mathematical transparency in 

the first part; the ab-initio calculation is treated as a “black-box” , and the chance 

to make general statem ents about the binding process can be lost.

W hat form would an alternative approach take? There are undoubtedly certain 

(haracteristics th a t we would desire a calculational framework to possess, so it is 

worth spelling out in detail what properties such a formalism should have. First and 

foremost, the scheme utilised must provide an accurate reflection of what happens 

ill nature. If the method is unable to reproduce accurately the properties of hybrid 

ftructures, it nmst be rejected. The scheme should be able to not only tell under 

what circumstances tha t binding will take place, bu t also be capable of accoimting 

i)r changes in the physical properties of the system. While ab-initio calculational 

schemes such as density functional theory set the standard for accuracy, it is at a 

eteep price in terms of com putational resources, particularly if we wish to model 

cisordered systems. W ith this in mind, we would wish tha t the scheme should be 

(apable of giving quantitatively accurate values for those properties tha t are of in

terest, but should be less intensive in terms of resources. Seeing as there is a huge 

lange of possible dopants of interest, ideally the scheme should be able to treat 

c wide variety of disparate doping entities under the same framework. Since the
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in troduction  of a foreign object natu rally  destroys the transla tional invariance of 

the  u n pertu rbed  system , the m ethodology m ust be capable of calculating quantities 

in direct space; however, since we would also like to  be able to  trea t certain  peri

odic pertu rbations, it is desired th a t the  scheme be extendable to utilise the  Bloch 

theorem  and work w ithin a supercell representation.

Lloyd’s form ula m ethod (LFM ) provides one candidate  for such a formalism 

which m eets the  criteria  above. This scheme utilises m athem atical rules which ex

press induced changes in the  density of sta tes in term s of the  properties of the 

isolated  subsystem s and the  coupling between the parts  to  calculate physical prop

erties of interest; it will be one of the  m ain tools used in this thesis. As well as the 

fact it is capable of m eeting the criteria  outlined above, another point in favour of 

the  LFM  is th a t it utilises Green Function (G F) techniques. The usefulness of G F 

(see A ppendix  A) techniques lies in the  fact th a t the density of s ta tes  of a system  is 

in tim ately  related  to the trace of the GF. Green functions can be used in disordered 

systems; G F m ethods need not rely on the existence of translational sym m etries 

of the system . Since the process of adding a dopant to a carbon nano tube breaks 

transla tional sym m etry, using G F m ethods can avoid the  need for a supercell repre

sentation. Furtherm ore, w ithin the  LFM , we are free to  choose whichever electronic 

stru c tu re  m odel is m ost suited to  the  problem  at hand.

For instance in the case of nanotubes the  functional form for the zone-folded 

Green function m atrix  elements in real space is well known [37], so it m ay be a t

trac tive  to work with this choice of basis set. If, however, it becomes clear th a t a 

m ore sophisticated  choice of electronic struc tu re  model is necessary, we are free to 

use our expressions w ith th is more sophisticated model. In this work, we will work 

on the  basis th a t the details of the  isolated subsystem s are well known, and view 

the  configuration of the system  after the interaction as the  desired unknown.

To sum m arise, th is thesis addresses the problem  of theoretically  describing the 

doping process in carbon nanotubes. We aim to introduce a m athem atically  trans-
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[)arent scheme which allows the extraction of both  qualitative and quan tita tive  infoi'- 

m ation  abou t the  binding process. Moreover, we intend to  adopt a  formalism which 

allows th e  trea tm en t of a diverse range of dopants w ithout m ajor m odifications. As 

such we will apply this m ethod to  a range of dopants of interest, such as atom s and 

sm all molecules, to  investigate the properties of the combined struc tu res so formed.

1.7 Layout o f the thesis

In order to  enhance the  readability  of th is work, I will here give details of the 

layout of the rem ainder of this thesis, which is composed of six chapters. The next 

chap ter will serve to introduce the m athem atics and concepts th a t  will be needed 

to  investigate changes induced in the electronic s truc tu re  of a general system  due to 

th e  in troduction  of a contact potential. This gives me an opportun ity  to  provide a 

detailed  exposition of the general formalism, which will be the  prim ary goal of the 

chai)ter. I will then  use to illustrate  how the  m athem atical clarity  of the  expressions 

perm its the  derivation of certain  analytical results. C hai)ter T hree will utilise the 

general formalism presented in C hap ter Two, and will be specific to  the  case of 

atom s and small molecules adhering to  the  surface of m etallic nanotubes. In this 

chap ter, we will show how it is possible to  show correlations betw een the  charge 

transfer between the  parts and the  electronic contribution to  the  binding energy. 

Furtherm ore, we will investigate the  dependence of the correlation on the  details of 

the  atom ic s truc tu re  of the adsorbed atom . We will show how it is possible to utilise 

the  afore-m entioned sum rules to ex tract details abou t the detailed  s truc tu re  of the 

coupling between the  parts.

In the  fourth chapter, we will consider the case where the pe rtu rb ing  entities are 

no longer sim ple molecules, bu t are polym er strands or DNA molecules, which we 

view as one dim ensional charge distributions. In th is chapter we perform  calculations 

th a t  suggest the  possibility th a t a helical ordering m ay be an energetically favourable
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structure, irrespective of the underlying chiral order of the host nanotube. We will 

also perform calculations to investigate how the changes induced in the electronic 

structure of the system depend on details such as the strength of the coupling 

perturbation, the width of the perturbing strand, and indeed the angle at which the 

one dimensional charge distribution coils.

In the fifth chapter, we will change emphasis somewhat, and focus on an at

tem pt to understand the mechanical properties of non-covalently bonded comi)os- 

ites. To this end, we will utilise a simple classical model for the structure of both 

the nanotube and the coiling polymer, which nonetheless suffices to investigate the 

interface between the nanotube and the embedding matrix. A possible mechanism 

for reinforcement in such systems is proposed, and a diameter dependence of the 

reinforcement is predicted. The final chapter will contain smnmary and conclusions, 

and propose further work tha t can build on my research.
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C hapter 2 

The Lloyd Formula M ethod

2.1 M otivation and layout

In order to understand, and ultimately to predict the physical properties of doped 

carbon nanotubes, it is desirable to have a theoretical forinalisni based on which 

these properties can be evaluated. When a system with known properties is per

turbed by an external potential, its electronic structure is affected in a way which is 

reflecterl by changes in its global density of states. Those physical properties of the 

system tha t are directly governed by the total density of states will consequently 

change. Likewise, a number of ancillary quantities such as to tal energy, conduc

tance, and occupation, to name but a few, will also be modified. This suggests that 

a study of how doping impacts on the physical properties of a composite material 

should include a description of how the total density of states changes in response 

to such a perturbation.

In this work we are interested in developing a method th a t is capable of de

scribing the necessary transformation in the density of states in a mathematically 

transparent fashion. Such a mechanism already exists, and relies on the existence 

of certain sum rules for changes in the single-particle Green functions induced by 

an external perturbation. These sum rules provide a simple operator equation that
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relates changes in the total density of states to matrix elements of both the Green 

function of the isolated system and the perturbation matrix itself. It is one goal of 

this work to adapt this existing formula in such a way that suits the study of doped 

carbon nanotubes.

For the sake of clarity, it is worth describing the layout of ideas in this chapter. 

Lloyd’s formula in its general form, which gives information about the global density 

of states of the structure in terms of the Green function of the unpertiu’bed system 

and a perturbative potential will be introduced in the first section. This will then 

be adapted to take into account the specific geometry relevant to iianotube doping. 

We do this by deriving a closed form expression for the variation in the to tal density 

of states appropriate to the interaction between initially disconnected sub-systems 

tha t are allowed to come into contact. The remainder of the chapter investigates 

the consequences of the adapted formula, and indicates some uses to which it can be 

put. Calculations based on the mathematically straightforward case of a jjerturbed 

linear chain will be presented for illustration purposes.

2.2 Canonical form of Lloyd’s formula

Extensive use has been made of Lloyd’s formula in this work. This equation allows 

one to calculate the change in the total density of states due to a perturbation, and 

as such is useful in the modeling of doped materials. Initially introduced in the 

1960s [38], it has found extensive use in multiple scattering theory, and has recently 

been put on a rigorous mathematical footing by Zeller [39]. Despite its extensive 

use in a wide variety of systems since its original derivation, it has only recently 

been applied to the case of low dimensional systems such as iianotubes. In the last 

few years it has been used to model the contact induced potential between magnetic 

atoms and non-magnetic substrates [40] [41], as well as in the study of magnetic 

coupling between impurities in metallic systems [42] and in nanotubes [37]. Other
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uses include modeling of the physical properties of disordered alloys [43]. 

In its canonical form Lloyd’s formula can be written concisely as

Ap{u)  =  - ^ ^ I m  (Tr (log(l -  g( E) V (2 . 1)
E = u )

Here, g{E)  is the single-particle Green function of the total Hamiltonian before the 

perturbation is introduced, while 1 is the identity operator. V  is the perturbation 

Hamiltonian; it is necessary tha t this be independent of energy. We will refer to 

1 — g{E) V  as the Lloyd matrix. A formal derivation of this expression is included 

in Appendix B of this thesis. The log function maps linear operators into linear 

operators according to the definition

l o g ( i - j V ' )  = - j ( ' - ^ - 2 ^ - . . .  (2.2)

which echoes the familiar definition of the Log function via the Laurent series for 

complex numbers [44].

Taking the trace of the logarithm for each energy produces a complex number 

which makes the trace of the logarithm a complex function of energy. Once we take 

the imaginary part, we have a simple real valued function of energy, which we must 

then differentiate. The external factor of gives the correct normalisation of this 

function, and takes into account spin degeneracy. If spin degeneracy is absent, the 

external factor is but the m atrix will have twice as many rows and columns. We 

will also use a com putationally more convenient form of this equation, which takes 

advantage of the useful relation

Tr (log {A)) = log (det {A)) (2.3)

which holds for a large class of operators with square m atrix A (including all tha t we 

have considered in this work). Substituting this into Eq. (2.1), we find an alternative
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form of Lloyd’s formula

A p {lj) = (log(det (̂ 1 -  g { E) V^) ^ (2.4)
E = u )

While the logarithm may be regarded as a multivalued function of a complex vari

able, we will trea t it as a single-valued function defined on multiple Riemami sheets 

in the following fashion. Letting det = r{E)e'"^^^\r{E)  > 0 ,0 (7?) gM

and fixing (t>{E) —> 0 as i? ^  —cxo,

(2.5)

Having presented the necessary mathematics to utilise Eq. (2.4), it is worth 

emphasizing its physical usefulness. One point in its favour is tha t the derivation 

of Eq. (2.4), as presented in the Appendix, includes nmltiple scattering events 

of all orders through the use of the full T  matrix. Another point in its favour 

is that Lloyd’s formula allows one to derive an expression for the change in the 

luiniber of particles in a system, by performing an elementary integral over energy. 

Furthermore, a knowledge of the change in the density of states allows the calculation 

of physically relevant quantities such as the electronic contribution to the total 

energy. A final point in its favour is tha t since the expression is in operator form it 

is model independent, in so far as the same expression holds regardless of the choice 

of Hamiltonian. For the sake of simplicity, we will often use simple models such as 

the tight-binding model with Eq. (2.4), but we are by no means restricted to this 

approach; if it is found tha t the choice of such a simple Hamiltonian is insufficient for 

accurate calculations, the same expressions will hold with whichever Hamiltonian is 

necessary.

One alternative to the use of Eq. (2.4) would be to calculate directly the Green 

function of the composite system by brute-force. In general, this would require the 

evaluation of the Green function at each site |i) up to a cutoff N . The disadvantage of
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2 -  N =  30 
N ~ inf

—  L loyd’s Formula result

0

Q .
2
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2 20

Energy (t)

Figure 2.1: Change in the total density of states for a linear chain, whose Hamil
tonian is / /  =  Y^j t \ j ) { j  ±  1|, subject to a perturbation potential V = ^5o|0)(0|5 
calculated within the tight-binding model. Different curves refer to different cutoff 
radii for the brute-force api)roach (see the text). Here N  is tlie distance from the 
perturbation site at which cutoff occurs. The continuous black curve (as per Lloyd’s 
formula) agrees with the limit —> oo (red circles). In this example Sq = —1.9/.

this approach is tha t the calculation of the composite Green function is a numerically 

expensive operation which must be done for a large number of sites, due to a large 

cutoff radius. The need for a large cutoff radius is due to the fact that perturbations 

tend to have long-ranged effects in low-dimensional systems. This is illustrated in 

Fig. 2.1, where we display how the results converge on the Lloyd formula result 

in the case of a diagonal perturbation of a linear chain. While not miexpected, it 

is worth emphasizing tha t Eq. (2.4), as evidenced by the continuous black curve, 

reproduces exactly the converged change in density of states, as shown by the red 

circles.

Another approach would be to directly evaluate the eigenvalues of the Hamil

tonian. However, a localized perturbation will destroy the translational symmetry, 

stopping the wavenumber k from being a good quantum number. Bloch’s theorem
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cannot then be apphed, and in principle the evaluation of the eigenvalues and eigen

states must be done in real space for an infinite dimensional matrix. The standard 

procedure to get around this in most ab-imtio calculations is to include periodic 

repetitions of the perturbation through the use of a supercell. While the size of 

the supercell is chosen as large to reduce the interaction between impurities within 

adjacent unit cells, tlie exact result is only achieved in the limit L —> oo.

hi contrast, as shown in Appendix C, to utilise Lloyd’s formula in the case of a 

localized perturbation, we need only work with sub-matrices which involve only those 

m atrix elements connecting states involved in the binding. When combined with the 

simplicity with which the electronic structure of nanotubes can be described, this 

method seems to be a promising way of describing the doping process in nanotubes.

2.3 M odeling doping via contact potentials

Wlien a system of known electronic structure is perturbed, the change in the total 

density of states engenders changes in a number of ancillary quantities (suc^h as 

electronic binding energy). Here our interest lies in establishing a simple mechanism 

tha t allows us to obtain this change in a mathematically transparent way. To this 

end, we have specialised Eq. (2.4) to deal with the change in the total density of 

states which occurs when two initially isolated subsystems are allowed to come into 

contact. We typically label the two subsystems by the indices O (for the host) and 

A (for the adsorbate). A schematic of the situation is presented in Fig. 2.2. While 

this use of language may suggest tha t the method is applicable only to the case of 

adsorbed molecules on surfaces, this is not the case; however this will be the most 

common usage in this work. Usually I will take the host be a single walled carbon 

nanotube, and the adsorbates to be adatoms, adsorbed small molecules or adsorbed 

polymers. However this is not the limit of applicability; indeed the contrasting (and 

yet related) case of substitutional defects can also be addressed within the same
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scheme.

Before th e  in teraction, the electronic characteristics of isolated subsystem s are 

governed by a to ta l H am iltonian /?,. In the case of an adsorbate, the H am iltonian 

before in teraction can be w ritten  as the sum  of the  H am iltonians of the  isolated 

svibsystems:

h =  ho +  h-A (2.6)

where refers only to the  host, while refers only to the  adsorbate. If the  Hilbert 

space of s ta tes  of subsystem  O has basis { |o i), I02), • • •} and th a t of subsystem  A  has 

basis { |o i), 10-2), • • •} then the  H ilbert space of the combined system  is assum ed to 

have basis { |oi), I02), • • •, |o i), |a2), • ■ •}. Such a scheme is well-known from the fa

m iliar linear com bination of molecular orbitals m ethod, in which the  aforem entioned 

s ta tes  correspond the  molecular orbitals of the  isolated subsystem s. Often, as far as 

the  nano tube is concerned, we will assume th a t  the set of s ta tes  corresponding to the 

carbon l/;^) s ta tes  of graphene will suffice to  describe the electronic s truc tu re  of the 

nano tube, since these are the  s ta tes  th a t lie closest to  the Fermi level. W ith  reference 

to  Fig. 1.1, we can make the identification { |oi), I02), • • •} =  { |/? i ,/I ) , | / ? i , / i ) ,  • • •}, 

where it is understood th a t |/? i , / l )  corresponds to the pz o rb ita l localized about 

the  carbon atom  of type A located in the supercell a t position Ri.  Furtherm ore, 

unless explicitly s ta ted , we will assum e t ha t all basis s ta tes  are orthonorm al; this is 

a reasonably good approxim ation in the case carbon nanotubes, especially if one is 

concerned only w ith the  electronic struc tu re  up to the Fermi level.

In the  particu lar case of a contact potential, we assume th a t  only the  states 

{ |o i), I02), • • •, |o„)} (corresponding to  those sites in the  green region of Fig. 2 .2) and 

{k 'i)i 1^2), • • ■, |«m)} (corresponding to  those sites in the purple region of Fig. 2 .2 ) 

are involved. In o ther words, we assum e th a t V\oi) — {oi\V = V\a.j) = {aj\V  =  0 if 

i >  n , j  > ni. In th is case, we can formally w rite down a p e rtu rbation  H am iltonian 

of the  form

-  Ao +  A,,i +  f  +  f t .  (2.7)
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(a) O

(b) OA

Figure 2.2: Schematic representation of host and adsorbed dopant (a) before and 
(b) after a contact interaction. Only matrix elements corresponding to sites in 
the vicinity of the contact are perturbed. The green area denotes the region in 
sub-system O where the contact induced perturbation is non-zero, while the purple 
region plays the corresponding role for sub-system A.

Here, the first term corresponds only to changes localized on the system O; the 

second term corresponds to changes located on system A; while the two remaining 

terms are responsible for coupling the two initially discomiected systems together. 

With a tight-binding like Hamiltonian in mind, Aq will include any changes to onsite 

energies for atoms in region O, as well as any induced changes in hopping-integrals 

between states in O; A  ̂ performs an identical role for sub-system A; and f  and its 

Hermitian conjugate directly couple a state from O with one in A. Changes in onsite 

potentials may be induced by a polarization interaction, while changes in couplings 

within either system A or O may be necessitated by geometrical rearrangement of 

atoms. It is worth emphasizing that each of these terms in principle acquires both 

a multi-site and multi-orbital matrix character, which may also include spin degrees 

of freedom.
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Figure 2.3; Linear chain characterized by onsite e and hopping integral t phis ad
sorbed single level impurity with characteristic eigenvalue a. Graphical display of 
tight-binding parameters both (a) before and (b) after the systems are allowed to 
interact. Within the efficient screening hypothesis (see the text) only those sites on 
the chain nearest to the atomic impurity undergo a correction to their onsite.

2.4 U sing L loyd’s formula: a case study  

2.4.1 Linear chain  w ith  adsorbed  im purity

By way of an introduction to Lloyd’s formula, I now present the example of the 

linear chain perturbed by an adsorbed single level atomic dopant. This pedagogical 

system may serve as a simple model for interaction between carbon nanotubes and 

isolated adsorbed impurities. In common with the nanotube, the linear chain is a 

one-dimensional system, and in the absence of the inclusion of a Peierls distortion 

is metallic (as are approximately one third of nanotubes). One advantage of this 

system is that it has a particularly simple Green function (as do the 7r-bands of 

nanotubes) that allows us a degree of mathematical transparency. A schematic of 

the imperturbed system is displayed in Fig. 2.3a, while Fig. 2.3b displays the system 

after the perturbation.

One of the simplest models for the electronic properties of a solid is the linear 

chain of identical atoms. The linear chain consists of an infinite sequence of identical
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orbitals |j ) ,  separated  by cornnioii distance a, representing atom s bonded together 

into a long molecule. In the nearest neighbour approxim ation, the H am iltonian of 

the  chain is determ ined by ju st two characteristic energies e and t, and the  to ta l 

H am iltonian is given as

II = E + E' di Xi  + i| + liXi -  i|). (2.8)
j j

where j  runs over all the  sites of the  molecule. The eigenvalues of this H am iltonian 

are obtained using Bloch’s theorem ; the corresponding band struc tu re  is displayed 

in Fig. 2.4a.

As far as th is work is concerned, we take as an effective definition of the Green 

function at energy J? of a system  governed by H am iltonian h the  expression

g { E ) =  run {1{E + trj) -  h ) - \  (2.9)
7 ; ^ 0 t

where ij] is a small positive im aginary num ber which ensures th a t the Green function 

is well defined.

It can be shown th a t the real space Green function elem ents for the linear chain

are

( 2 . 10)

where c o s /cq =  9oo{E) = 2 t s in fc o (£ )• ^here are two d istinct values of

ko th a t satisfy the  given equation; they a re negatives of each other. The only

one which lies inside the  in tegration contour, and hence by C auchy’s theorem  will 

contribute, is the  one with a negative im aginary part. This ensures the selection of 

the  retarded  Green function, one m atrix  elem ent of which is p lo tted  in Fig. 2.4b.

As regards the  electronic s truc tu re  of the  isolated atom ic impurity, we m ust 

specify the position of its energy levels. One way of doing this is to identify the
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k (a ') E( t )

Figure 2.4: (a) T ight-binding band stru c tu re  of the  unpertu rbed  hnear chain in the 
nearest neighbour approxim ation. The bandw idth  is seen to  be 4t, and is centred 
a t E  = e. (b) Real and im aginary parts  of the Green function (0| g |0) of the  linear 
chain. The Green function is seen to be pure im aginary inside the Ijand.

ionization po ten tia l {Ui) of the  atom  (the energy th a t m ust be added to  the  atom  

to  excite its highest energy electron sufficiently to a scattering  sta te ). U nder the 

assum ption th a t we can identify a conmion vacmmi level w ith the host, for whom the 

work function (M') plays the  role equivalent to  the  ionization potential, we can make 

the  identification th a t q  =  IV — Uj.  T he  relative position of a , E f  and the  rest of 

these param eters is schem atically depicted in Fig. 2.5. However, to  characterize the 

atom ic im purity  we nm st also give inform ation abou t the  occupancy of th a t level; 

we denote the  num ber of particles on the  site a in the  absence of the  pertu rbation  

as Co-

2.4.2 The Lloyd Formula M ethod

An investigation of the  linear chain plus adsorbed single level im purity  provides the 

opportun ity  to  in troduce w hat will be hereafter referred to as the L loyd’s formula  

method  (LFM ). T he utility  of the LFM  lies in th e  crucial role th a t the  density  of 

s ta tes  plays in determ ining the  physical properties of electronic system s. In partic

ular, knowledge of the change in the density of s ta tes  allows the direct calculation 

of changes in global properties of the  system , such as the  to ta l energy of the  sys-
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E(Y)

Figure 2.5: Schematic representation of the electronic structure of the unperturbed 
system. The host is represented by a half-filled band, while the single level is denoted 
by a delta function. Here W  is the work function of the host, Ey  its Fermi level and 
a  is the energy level of the isolated impurity which has ionization potential Uj. The 
relation between the characteristic energies is displayed, which leads to the effective 
definition a  =  W  — Uj.

tem. Combined with the fact that knowledge of the Green function of the composed 

system allows direct evaluation of the local density of states at each site, a set 

of non-linear equations can be derived that allows direct evaluation of measiu’able 

properties of the system in terms of the elements of the perturbation matrix.

To model the interaction, we allow the initially isolated atom to interact directly 

with that chain atom at location j  — 0. The interaction Hamiltonian displayed in 

Eq. 2.7 in this case specialises to

V =  ^o|0)(0| +  (^a|«)(a| +  'r|a)(0| -I- r*|0)(a|, (2-11)

where and r  are no longer matrices but now simple scalars. Here 5q reflects a

change in the electrostatic environment at the site 0; 5a a corresponding change on 

the atomic impurity; and the hopping integral r  couples the atomic level directly 

to site 0 and reflects the possibility of transfer of particles between the parts. In 

principle, there is no reason that the only onsite on the chain to be altered by the 

presence of the polarizing entity should be the one which is closest to it, and in 

general it will not be, as discussed earlier. On the other hand, it is reasonable to
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assume tliat those sites which are closest to the nearest point of contact should be 

affected the most, since it is a well known characteristic of a metallic system that 

the charge density of the metal can change in such a way as to screen out extraneous 

electric fields. While this ability is somewhat suppressed in low-dimensional systems, 

for the sake of simplicity we will initially assume tha t the only onsite on the chain 

th a t is affected by the interaction is tha t of the site closest to the impurity. This 

presumption will later be referred to as the efficient screening hypothesis] we will 

subsequently have to relax this and deal with finite-sized screening clouds when we 

are considering the case of nanotube-adatom  interaction, and wish to compare with 

ab-initio calculations.

In the case a t hand, the rank of the perturbation m atrix is n =  2. In line with 

w'hat has been outlined thus-far, we must form the 2 x 2  m atrix of Green functions. 

I ’he Green function of the unperturbed linear chain is given by Ecj. (2.10) while the 

Green function of the bound orbital has a particularly simple form:

 ̂ ( 2 . 12)
E  +  iO+ -  Q

The cross terms go„ and /7„o both vanish, since the atomic level is initially dis

connected from the host. It is straightforward to show tha t in the case of the 

linear chain /  adsorbed impurity system, the determinant of the Lloyd m atrix is 

1 “  (̂ 0.900 — <^a.9aa +  g009aa{^0^a ~  kP)-

In the light of the foregoing, I now show how a set of non-linear equations can 

be derived tha t show the relation between the param eterisation of the perturbation 

and some cjuantities tha t depend on changes in the density of states, in the case 

tha t there is initially Cq electrons with energy a  on the doubly degenerate atomic 

level |n).
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2.4 .3  T he charge n eu tra lity  condition

As previously mentioned, the Lloyd formula equations allow us to investigate the 

increase in the number of particles A N  due to the presence of the interaction in 

a mathematically transparent fashion. We consider the linear chain as the host 

(labelled O) and the dopant as an isolated doubly spin-degenerate single level im

purity (labelled a). We assume tha t the isolated level is characterized by an energy 

a, and the host is characterized by onsite param eter e and hopping 7 . Initially, we 

assume tha t a  < Ep  and tha t the isolated atomic level is occupied by Co particles 

(Co =  0,1 or 2). We allow the atom to come into contact with the chain, and model 

this interaction by the previously presented perturbation Hamiltonian, as displayed

Before the parts are allowed to interact, there are Cq electrons on the atom. The 

variation in the number of particles due to perturbation, A N ,  is naturally defined 

as

where Na and N q are the initial number of electrons on the adsorbate and the 

chain respectively, and Â oa is the number of particles in the touching system. Due

expression contains two numbers th a t are divergent: Noa and N q. Concerns about 

such divergences can be dealt with by considering these quantities in the case of 

a very long, but not infinite chain. We can then formally form a sequence AA„ 

of values corresponding to the change in number of particles when the chain is of 

length n atoms. We then put A N  = lim„^oo hi this fashion, similar concerns

about quantities such as binding energies can also be addressed.

The total number of particles in the system before interaction is:

in Eq. (2.11).

A N  := Noa -  No - (2.13)

to the fact th a t the linear chain has in principle an infinite number of sites, this

be fo r e (2.14)
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Since the isolated level is doubly degenerate, and a < Ep, we have

f  "dEpa(E) = 2 (2.15)
J  — OO

[ % E p , { E ) - C o  = 2 - Co (2.16)
J  — OO

{ 2 - C o ) +  r ^ d E  pa{E). (2.17)
J  — OO

Cn =

This expression can be substituted back in to Eq. (2.14) to yield:

p E f

^ b e f o r e  —  — { 2  — Cq) + / dE (pufxiE) + Pa{E)) . (2.18)
J  — OO

I 'h e  num ber of particles after the interaction is simply given as

r E p

N a f t e r =  d E p t o t ( E ) ,  (2.19)
J  — OO

so the change in the  num ber of particles th a t  results from the in troduction of per

tu rba tion  V  is

/•Ef

A N  =  Na f t e r  — ^before  =  (2  — C q) +  /  d E  { p t o t { E )  — P n t { E )  ~  p a ( E ) )
J  — DC

p E f

= (2 -  Co) +  /  d E  A p { E )  (2.20)
J  — OO

In this fashion we can w rite the  change in the  to ta l num ber of particles in term s 

of the change in the  global density of states. In the  case of the  linear chain pertu rbed  

by an adsorbed adatom , we can use Lloyd’s form ula to write

A N  =  (2 -  Co) -  -  [  d E  j ^ I m  (log ( l -  500^0 -  9aaSa +  900gaa{SoSa ~  k P ) - ) )
^  J—00 Q i-/

( 2 .21 )

Here the external factor of 2 takes into account the different spin channels.

We can pull the “Im aginary p a rt” past the  derivative, as the derivative of the
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im aginary p a rt is the im aginary part of the derivative, and indeed past the integral, 

as we are in tegrating  along the real axis, and hence the differential is pure real. So

A N  =  (2 — C o )  Im
7T

d E  77 ;log (l -  gooSo -  gaJa  +  .9oo9aa(<^o4 -  I t H )  
, (Xtj

( 2 .22 )

Applying the fundam ental theorem  of calculus,

AjV =  (2 -  Co) -  (log (1 -  C/oô o -  9 a J a  + gmQaai^o^a ~  • (2.23)

T he vanishing of the  Green function at a rb itrarily  large negative energies leads to

Before I move onto the  derivation of the next of our equations, I wish to  point 

out one consequence of Eq. (2.24): since allowing two system s to touch cannot 

change the num ber of particles in our system , we must dem and th a t A N  = 0. For 

this reason, Eq. (2.24) has been referred to  as the charge neutrality equation. We 

see th a t this dem and imposes a constrain t on the  three param eters ((5o,5„,t)

2 .4 .4  E lectron ic con trib u tion  to  the b inding energy

Bearing in m ind the preceding discussion on how we will trea t quantities th a t  are 

formally divergent, we can w rite down inunediately a form ula for the electronic 

contribution to  the  binding energy, defined here as the  difference in electronic energy

2
A N  =  (2 -  Co) -  -  Im (log ( l -  goo^o -  gaJa + Qmgaai^o^a -  kl"))) Ly  • (2-24)

(2 -  Co) =  -  I m ( l o g ( l  -  C/oo(̂ 'o -.gaa< '̂a +  .g00.gaa((̂ 0()'a -  |t |^ ))) |^ ^ ,

7T •
=» 2 +  C/00.9aa(<̂ '0̂ a “  k P ) ) )  • (2-25)

34



between the final and initial configurations

n E p

j^ b e jo re  — ~  Co)oi + /  (\E E{po{E) + Pa{E)). (2.26)
J  — OO

The total electronic energy after interaction is

nEp

R a f t e r  = d E  E  Ptot, (2.27)
J  — OO

so the total change in electronic energy is given as

/ E y

d E  E  Ap

•00

2
=> A E  =  (2 -  Co) a  +  -  / d E  E  Im (log (l -  QooSq -  Qaâ a +  gmQaai^oSa -  |r p ) ) )  .

^  J —oo

(2.28)

In Eq. (2.28) we have the second of our LFM equations. It constitutes a second

constraint on the values of the parameters {6o,6a,T).

2.4 .5  C harge transfer to  adsorbed  atom

Thus far, we have successfully established two relations between the microscopic

param eters of the perturbation and a few physical observables. Even if these were

linear equations (they are not), we would have an under-determined system of equa

tions. However, a third constraint can be imposed by considering the variation in

the number of electrons on the atomic site due to the perturbation, as I now show.

The charge on the atomic site is given as the integral of the local density of states

up to the Fermi level. This can in turn  be written in terms of the Green function of

the composed structure as

( ' a f t e r  =  ~  Im ( G a a )  (2.29)
^  J — OO
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where, as usual, Gaa — (a| G |a) is the relevant matrix element of the Green function 

for the connected system. The site originally had 6 0  electrons on it, so the increase 

in the number of particles on the site is given as

AC = -C o +  —  /  dE Im (G„„). (2.30)
^  j  —00

It can be shown that in the case of a simple adsorbed atomic impurity (see Appendix 

D), this expression becomes

AC =  -C o +  —  [ % E  Im ( --------- ------ -----------------------------  \  (2 .3 1 )
^  J - 0 0  V  1 “  .900^00 “  ,9aaOa +  yoo5aa(0oo<!>a “  P I ) /

It is worth emphasizing that while this expression does not utilise Lloyd’s formula, 

it complements it, and allows us to write down three equations in terms of three

unknowns. One final point is that the integration involved in Eq. (2.31) will usually

have to be performed numerically. In this case, it is often useful to perform the 

integration in the complex plane. In fact, such an approach is often of use in 

evaluating Eq. (2.28), where it can be of use in avoiding any complications due 

to occasional crossings of branch-cuts. The details of such a transformation are 

displayed in Appendix E.

2.4.6 U ses o f the formalism

If we were to choose a triple of parameters at random (do,5a,'r), and plugged them 

into Eqs. (2.28) and (2.31), we would certainly be able to calculate values for the 

electronic contribution to the binding energy AE,  and to the increase in the number 

of electrons on site a, AC. This would raise the question whether such an arbitrary 

choice of parameters leads to a physically allowed configuration. Bearing in mind 

the charge neutrality condition, Eq. (2.24), we woiild strongly suspect not. In 

fact, in the next section, I derive analytical expressions for the constraints on the
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triple {Sq, 5 „ , t ) that narrow down the allowed configurations. Such analysis is only 

possible due to the particularly simple nature of the perturbation potential, and a 

similar analysis would be much tougher (or at least more tedious) in the case of 

imperfect screening. However, even in this case, we see that all constraints can be 

implemented numerically.

To illustrate the numerical implementation of this point, I consider a singly 

occvipied atomic level a  < Ep, bound to a linear chain. In light of the constraint 

Eq. (2.24), we postulate Sa and <5o, and we allow r  to vary from 0 to an energy 

far higher than any other characteristic of the problem. For each value of r  we 

record the value of the change in the number of particles, A N {So, 6a, t ) .  Since we 

have a closed system, the rnimber of particles is a constant, and the perturbation 

mtist respect this constraint. If, for a given pair ((5̂ , 5q) it is not possible to find a 

value of r  such that A N  — 0, we conclude that such a perturbation represents an 

unphysical situation and reject it. In Fig. 2.6 we plot a typical function A N { t )  as 

a function of the single parameter r. Here e =  0, / =  1, a  =  —0.75, do =  —0.40 

and S„ — 0.30. It is seen that for asymptotically large values of t  (compared to the 

other microparameters) we have the destruction of one half of one electron. We also 

see how it is possible to graphically solve this equation to get a unique value for r  

that will satisfy charge neutrality. Of course, choosing different values of (5q and 6a 

will give different values of AC and AE.  In particular, both 6a and do may assume 

values that are inconsistent with the charge neutrality condition; this is illustrated 

in Fig. 2.7.

In this simple system, we can see that different values of do and 6a lead to dif

ferent vahies for (AC, AE).  It is instructive to follow the map from the “parameter 

space” (different values of the microstructure parameters) into the “observable space” 

(different values of the binding energy and the charge transfer). Such a diagram is 

plotted in Fig. 2.8. The entire unit disk in the 6a-6o plane was probed, but only a 

section of the lower half plane is filled in. All other states in the unit disk do not
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Figure 2.6: C haracteristic  dependence of the change in the num ber of particles when 
a single level im purity  binds to a linear chain according to the H am iltonian in Ecj. 
2.11, as a fvmction of the m icrostructure param eter r .  Here e =  0,  ̂ =  1, a  =  —0.75, 
(5o =  —0.40 and 6a =  0.30. T he horizontal line indicates the  charge neutrality  
condition, which is met for |r |  =  0.42.
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Figure 2.7: C haracteristic  dependence of the  change in the num ber of particles when 
a single level im purity  binds to a linear chain according to  the H am iltonian in Eq. 
2.11, as a function of the  m icrostructure param eter r .  Here e = 0, t =  I, a  =  —0.75 
and (5o =  —0.40. The do tted  line indicates the  charge neu trality  condition, which 
can be m et for Sa < 0.75. Larger values would move the atom ic level above the 
Fermi level.
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Figure 2.8: Plot of the m apping from the param eter space to  the observable space 
for the case of an adsorbed im purity  w ith a  = —2.5 bonded to an infinite linear chain 
(/ =  !,£ =  E f  =  0). Regions of the  same colour m ap into each other. In particu lar, 
we see th a t  the green, blue and orange coloured sets correspond to configurations 
w ith a negative binding energy.

respect charge neutrality, and thus are disregarded. Such diagram s will be further 

developed in the  next chapter where they  will be introduced as A E  — A C  diagram s, 

and will be instrum ental in ex tracting  inform ation on the  interaction between nan

o tubes and atom s. In th is case the  host will no longer be a simple linear chain, bu t 

ra ther a m etallic nanotube. In the case of the linear chain, we can see th a t  for those 

values th a t  convergence occurs, th a t the  m ap is one-to-one.



2.5 A nalytic Investigation of the LFM equations

One of the advantages of the LFM as presented is the apparent analytical clarity of 

the expressions involved. In this section, I dem onstrate some of the uses to which 

this clarity can be put. The first will concern some results derivable from the charge 

neutrality equation, while the second will be concerned with the physically im portant 

case of w'eak binding between the parts. While the results here presented are for 

the case of a single level impurity on a linear chain, these results are directly of use 

in the study of adatoms bound to metallic nanotubes; this is due to the similarity 

between the Green functions of the linear chain and of armchair nanotubes.

2.5.1 A nalysis of the charge neutrahty condition

As in the previous sections, we again consider an adsorbed single level im purity on 

a linear chain. In this case, it is possible to investigate analytically some of the 

consequences of the charge neutrality equation, as displayed in Eq. (2.25). To do 

this, I assume tha t a < Ep, and treat separately the cases with different values of

a .

C ase: Cq = 1

If Co =  1, the LHS of Eq. (2.25) is tt/2. By the properties of the logarithm function, 

this means tha t the argument of the logarithm must lie along the positive imaginary 

axis. Let this number be r i, where r  > 0 is a real positive number.

Then

ri = I — goo^o — Qaâ a +  9009aa(^0^a ~  kP )- (2.32)

We can now use a fundamental property of the Green functions of the linear chain 

and tha t of the isolated atom; the Green function matrix element of the linear chain 

is purely imaginary at the Fermi level, while tha t of the atomic level is purely real 

(this fails when a  =  Ep, a case we will not treat). We can equate real and imaginary
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parts of this equation to give two constraints. Firstly, by equating tlie real parts

0  ~  1  9aa  I  E = E f

5a =  —  (2.33)
Qaa

which can be seen to be the same as 5a — Ep — a. On the other hand, equating the 

imaginary parts gives

ri =  -gooSo +googaa{SoSa-\Tf)\j^^j^^ (2.34)

We can use the first constraint in this new equation to yield

1 2 ^

E = E f

= > r i  =  - g o o g a a \ T \ ^ \ E = E ^

ri =  -goÔ O +googaai^o |t | )
Qaa

which can be rewritten aii |r|^ =  ~ ĝ (̂EE)g (Ep)' second equation makes sense 

for all positive values of r, since ,9oo(^'F)5aa(^F) is a negative imaginary number, and 

so the second constraint gives us no new information. For each pair r  > 0 and (5q G M, 

we can find a solution of the above form to the charge neutrality condition. This 

solution can then be used as the appropriate tight-binding parameters to calculate 

the charge transfer and the electronic contribution to the binding energy. In this 

fashion, we can consider r  and 5o to be independent parameters, calculate 5a(r, 5q), 

and then generate a — AC diagram, as described in the previous section.

Case: Co =  0

If Co = 0, the LHS of Eq. (2.25) is tt; as such, the determinant must lie on the 

negative real axis (note that we can place the branch-cut of the logarithm on the

41



negative imaginary axis to avoid unnecessary complications). So

- r  gOoSo-Qaa5a +g00gaa{^05a-\T\^), T > 0. (2.36)

Equating real parts:

r =  gaa{EF)Sa -  1- (2.37)

Since Qaa > 0 (as the level lies below Ep) this is only possible for (5<j >

Equating imaginary parts gives

0 =  —500<̂ 0 +  googaai^o^a ~  k P ) • (2.38)

c/00 ^  0, so

^0  =  -gaa{EF){SoSa ~ |t |'̂ )

<5o(l +  C/aa(^F)< '̂a) =  C/aa(^i.’) k |2

, j  gaa{Ep)\T\‘̂
1 9 a a \ ^ F j ^ a

In order to interpret Eqs. (2.37) and (2.39) we note that since g(„„ > 0 (as the 

level lies below Ep) Eq. (2.39) can only hold for Sa > — ■ So i5o > 0. Considering
9 a a

the second constraint we note that the RHS of Eq. (2.39) involves only positive 

terms. So, given |r|^ > 0, we can pick 6a > and calculate uniquely (*)'o(r,<5„). 

Negative 5o are not allowed. The triple can then be placed into the Lloyd equations, 

to yield values for A E  and AC, with the guarantee that A N  = 0.

Case: Cq — 2

If Co = 2, the LHS of Eq. (2.25) vanishes; the determinant must lie on the positive 

real axis. So equating the real part gives

r = I -  gaa{EF)Sa, T > 0. (2.40)
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while equating the  im aginary part

^ 5 a a ( £ ^ F ) | r pT, TF'TT- (2.41J1 ” 1”  d a a i E p j O a

Again, these results require in terpretation. Since r  >  0, Eq. (2.40) can hold only 

if 1 — gaa{Ep)Sa > 0, or gaa{EF)5a < 1. So wc have the constraint

<5a <  — . (2.42)
Qaa

Given | r p  >  0, we can pick (5a >  and calculate uniquely (5o(r, 5q). Since the  

num erator of Eq. (2.41) can take arb itrarily  large values, and the denom inator can 

take on both  positive and negative values, all values of <5q are allowed, as com puted 

according to  Eq. (2.41).

2.5 .2  W eak binding in th e  Lloyd form ula m eth od

T he second piece of analytical inform ation th a t  can be ex tracted  from the  LFM  

ecjuations involves the case of weak binding. It is often the case th a t we will en

counter weak binding between the subsystems. Such may be the  case for noble 

gas atom s bound to the  surface of nanotubes, for example. A nother exam ple may 

be in the case of a polarizing in teraction characterised by a small binding energy. 

In th is case, we expect th a t the m icro-structure param eters So,Sa,T will be small 

(having m agnitude ^ 1 ) .  So we can investigate approxim ations to A p and ancillary 

quantities. Intuitively, we expect th a t if the  combined system  is characterised by 

given physical p roperty  F , while the  combined isolated system s are characterised by 

property  Fq, as (Sa,So,T) (0 ,0 ,0 ).

For example, consider the case where is the  to ta l electronic energy and consider
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A P =  F -  Pn

A P  =  -
7T

/ t,F
Iin (log ( l  -  SoQoO -  SaQaa +  i/00.9aa(<̂ 'o5a “  k H ) )

-oo

/Ep pEip

Im ( lo g (l -  Sogoo)) -  /  Ini ( lo g (l -  6 agaa))

•OO J  —OO

By the  p roperty  of logs, we have

^ Im A og (  ^ ~  ~  ^aOaa +  g o o g a a ~  k P
7T 7^00 V V (1 -  <^a3aa)(l “  <̂ 0.900)

E f

Im log I 1 + 9 0 0 9 a a i^ 0 ^ a

1 — ^a9aa ~  ^0900  +  ^a<Jaa^0900

If 9aa9oo is small, th is term  tends to  zero as { S a , S o , T )  (0 ,0 ,0 ).

(2.43)

(2.44)

On the  o ther hand, for energies where 9 aa9 oo is large, this term  is

A P (2.45)

B ut all the  term s in the  argum ent of the  Logarithm  are real, so A P  ~  0. In o ther 

words, as {6 a , 6 o , T )  —>■ (0 ,0 ,0 ), we have

/ Ep /• E f 
i m  (log (1 -  6o900 -  Sa9aa +  9 0 0 9 aa{So6 a ~  k P ) ) )  /  Im (log (1 -  5o(/oo))

•oo «/—oo
rEp

+  /  Im ( lo g ( l  -  6 a9 aa) )  
J —oo

(2.46)

Bearing in m ind the  formulae established for the  change in electronic energy, for 

weak binding, we m ay write

A E  -> - ( 2  -  C ) a  +  A Ea +  A7?o (2.47)
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where AEa — \  Im (log (1 — S^gaa)) is related only to changes on the atom, and

A/?o =  f  In i ( lo g (l — dodoo)) refers only to changes on the perturbed atom on

the chain. In fact, we can go further; there is a general result that states that for a 

square m atrix X  w ith small entries we have the formula

d e t( l -  X )  ~  1 - T r ( X )

=> l o g ( d e t ( l - X ) )  ~ - T r ( X ) .  (2.48)

In this fashion, we can approximate the Lloyd formula determinant in the case of 

the adsorbed linear chain as

log ( l  -  d'ogoo -  SafJaa +  gOOfjaaiSoSa ~  k n )  “  0̂300 “  (̂ a.̂ /aa (2.49)

Integrating up to the Fermi level gives

A E  =  a ( 2 - 6 o )  +  - /  Im (log ( l  -  5o5oo -  <̂'a£/aa +  .9oo5aa(<̂ 'o<5a -  k P ) ) )
^  J — CO 

2
~  a{2 — Co) H—  / Im (—5o.9oo ~ ^a9aa)

^  J- o c

~  « ( 2  — C o )  +  <̂ 0 +  2(5q

(2.50)

This gives an approximate expression for the change in the binding energy as calcu

lated using the LFM. We see that the change is approximately linear in both and 

Sa- Also, since r  appears only to second order, to first order A E  is independent of

T.
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2 .5 .3  Linear C hain w ith  su b stitu tion a l im purity  as a lim it

ing case o f th e  adsorbed  one

T he substitu tiona l im purity  on a linear chain is modeled by the  particu larly  simple 

j)ertu rbation  H am iltonian

V =  <5o|0)(0| (2.51)

In th is case, the  rank  of the  pertu rbation  m atrix  is 1, and the Lloyd m atrix  is a 

sim ple scalar, identical to  its determ inant, det^;

dets =  1 — SqQoq. (2.52)

In th e  lim it of weak coupling, we have seen th a t quantities such as the  binding 

energy can be approxim ated as being allocatable to  each of the parts separately. 

In th is  fashion, if we are concerned prim arily w ith changes induced in the  host in 

th e  lim it of weak coupling, and we neglect any induced changes in the dopan t, we 

see th a t we can approxim ate the Lloyd determ inant of the adsorbate-host system  as 

1 ^  9 00) which is equivalent to  the expression for a substitu tional impurity.

Use will be m ade of th is observation in C hap ter 4, where we trea t a polarizing 

polym er w rapping around a nano tube by considering only its effect on the nanotube, 

while neglecting any influence the nano tube has on the polymer.

2.6 Conclusions

In th is chapter I have introduced a num ber of concepts th a t will be of use in the 

investigation of the properties of doped carbon nanotubes. One of the m ain th ru sts  

of th is  chapter is to  provide a detailed in troduction to  the  Lloyd form ula method, a 

calculational scheme th a t has been used throughout this thesis. I have used the  linear 

chain model for a one dimensional m etal to illustrate  the  concepts; I have introduced 

the  A E  — A C  d iagram  for a given dopant and shown how to generate it in th e  case of
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the hnear chain. We see how it can be vised in two distinct ways: in the “forward” 

direction we can use knowledge of the detailed structure of the perturbation we 

can evaluate c}uantities such as changes in the local charge density and the binding 

energy. On the other hand, I have shown tha t under certain circumstances, it is 

possible to draw a bijection between the param eter space and the observable space. 

Accordingly, it is possible to utilise a knowledge of the physical properties of the 

system to derive appropriate values of the elements of the perturbation matrix. 

In fact, as will be discussed in the next chapter, such a scheme has already been 

implemented to provide values of the elements of the perturbation m atrix in the 

im portant case of impurities binding to carbon nanotubes. In the final part of the 

chapter, I have performed investigations into the analytical expressions utilised in 

the Lloyd formula method, and included explicitly contributions due to charge on 

adatonis. This allowed me to show the existence of general constraints on the allowed 

combinations of microstructure parameters. While these results have been derived in 

the i^edagogical case of the linear chain, due to the mathematical similarity between 

the Green function of the nanotube and tha t of the linear chain, similar results may 

be utilised in the study of changes induced in the electronic structure of nanotubes 

])y bound adatonis.
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Chapter 3 

A pplications of the general 

m ethod

3.1 Introduction

3.1 .1  M o tiv a t io n

I ’he use of carbon nanotubes (CN) as components in functional electronic devices 

is currently a primary focus of the research connnunity and is primarily driven by 

the miniaturisation strategies of the electronics and computer industries. Hopes run 

high that nanotubes may prove useful as nanoscale intercoimects [45] and even as 

transistor elements [46]. Such a strategy requires an understanding of transport 

properties of nanotube-based materials, in order to control them. One route to 

achieve this is to tune the conductivity of the sample through controlled doping 

processes. Such a scheme has indeed been the backbone of the conventional semi

conductor industry for many years [47, 48]. Substitutional impurities, chemisorbed 

and physisorbed adatoms, nanoparticles and molecules are some of the examples 

tha t have already been considered as possible doping agents for nanotubes, both on 

the experimental and theoretical fronts [49, 50, 51, 52].

The experimental achievements in this field have indeed been outstanding. To
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take one exam ple, nitrogen-doped CNs have been carefully synthesised; these were 

subsequently characterised by scanning tunnelling spectroscopy [53]. Regarding the 

doping effect on the tran sp o rt properties, a strong n-type donor s ta te  near the 

Fermi level was identified as being prim arily responsible for altering the  conductance 

of the doped stru c tu re  from th a t of the clean structu re , in good agreem ent w ith 

theoretical predictions [53]. As regards using nanotubes in actual devices, field- 

effect transisto rs w ith an n -type  current have been produced by doping carbon 

nanotubes w ith random ly dispersed potassium  atom s [54], Furtherm ore, the  ability 

to change the  conductance of a nano tube exposed to dispersed gaseous molecules 

is stim ulating  the research to  build extrem ely sensitive devices capable of detecting 

m inute concentrations of specific substances. T he idea here, succinctly, is th a t 

if th e  conductance of a nano tube changes in a m anner characteristic of a certain  

dopant, then  the nano tube can be used to  check for the  presence of such dopan ts by 

checking its conductance. Bearing in m ind the diversity in the electronic properties 

of nanotubes of different chirality, and the p lethora of different molecules th a t we 

may wish to be able to  detect, we see the  existence of a vast num ber of different 

n an o tu b e /d o p an t system s whose combined electronic characteristics we would like 

to understand.

As such, it is somehow discouraging th a t  the advances on the com putational 

front have not progressed at a sim ilar pace, m ainly due to  the large com putational 

complexity of calculations involving doped structures. W hereas m odern ab-initio 

techniques based on Density Functional Theory (D FT), which typically scale as the 

cube of the  num ber of orbitals per un it cell, can achieve a good degree of accuracy to 

describe the  electronic struc tu re  of pristine crystalline m aterials, they  are som ew hat 

restricted  when dealing with disordered system s. The complexity increase results 

from the need to  include a large num ber of atom s in the  unit cell to investigate 

disorder, w ith consequent increased dem ands both  on processor tim e and on com

pu ter memory. For even a lim ited nm nber of im purity  atom s A/, the  calculation
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for the electronic structure of the system, which has N  states in the unit cell will 

typically scale as the cube of this larger number forming an obvious barrier against 

useful predictions. Typically, today’s desktop computers can cope with hundreds of 

atoms in a given unit cell, with large scale computational research facilities allowing 

perhaps an order of magnitude increase on this figure. Coupled with the demand 

to average over a large number of different configurations, to correctly simulate the 

supposedly random dispersion of dopants over the surface of a nanotube, it is clear 

th a t to trea t this problem using ab-initio methods is a non-trivial task.

In fact, DFT calculations for doped nanotubes have indeed been performed but 

have always been limited to a very small number of impurities, in order to main

tain the low concentration limit. For instance, studies of transition-metal-doped 

nanotubes investigated their electronic and magnetic properties both in isolation, 

and in nanotube bundles, but were restricted to a maximum of 3 impurities per 

unit cell [55]. DFT was again used to investigate the inclusion of Li'*̂  ions inside 

nanotubes to assess whether nanotubes could be used as lithium-based batteries; in 

this case only a single Li atom was considered. Such calculations may give indica

tions of the effects tha t doping has on certain electronic proj)erties, but as far as 

the conductance of a doped system is concerned, the limitation to a small number 

of impurities can be misleading. Multiple scattering events, which naturally reduce 

the extended character of the electronic wave functions, cannot be fully taken into 

account if one is restricted to a very few impurities, which suggests tha t the effect 

of disorder on the transport properties may be somewhat underestimated in those 

cases. Even when large unit cells are considered, which in principle allows calcula

tions with an increased number of impurities, the results often bear little statistical 

significance, since many different configurations are needed to truly represent the 

statistical ensemble of the disordered system.

The obvious route to overcome this problem is to use less computationally de

manding techniques. A combination between tight-binding (TB) methods and ab-

51



initio calculations seems a natural choice. The advantage of this type of combi

nation is in the facility with which one can include scattering effects generated by 

randomly distributed impurities without major compromises to accuracy. One of 

the suggested methods for combining the two techniques is by fitting the zone-folded 

TB band structure to tha t obtained from DFT calculations [56, 57]. While this is 

certainly a valid candidate strategy, it may involve fitting eigenvalues above the 

Fermi energy. Such states do not contribute directly to changes in the ground state 

energy, which, along with the electronic density, is the quantity known to be the 

most reliable output in a DFT calculation. Moreover, the fitting may not be unique 

since it is necessarily dependent on a particular choice of points in the Brillouiu zone 

where the two band structures (the tight-binding and the DFT) nmst agree.

The somewhat unsatisfactory nature of simple band structure fitting has spurred 

recent attem pts to find an alternative approach. At the time of writing, perhaps the 

most promising of these is the novel approach taken in [58]. In this work, the authors 

calculate the transport properties of the disordered system through the use of the 

Kubo formalism in real space. To do this, they first investigate the effect that a single 

im purity has on the electronic structure of the doped system by using the SIESTA 

D FT code. In particular, they parameterise the semi-empirical Hamiltonian used 

to calculate the transport properties of the disordered configuration, not tlu’ough 

the use of band-structure fitting, but rather by directly extracting the value of the 

induced changes in the onsite potential in the case of an individual impurity.

To the same end, in the next section of this chapter, I suggest another alternative 

to band structure fitting, which relies on ab-initio evaluations for quantities such as 

the binding energy and the charge transfer, which are subsequently used to provide 

the appropriate values for the tight-binding parameters. Our scheme is based on the 

previously introduced Lloyd formula method which relates the change in the total 

density of states to changes in both the local charge density and in the total energy. 

By relating all these quantities under a common framework, we can not only obtain
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th e  appropriate  tight-binding param eters, b u t m ay also see the effects th a t  doping 

m ay bring to  the  physical properties of a nano tube in a tran sparen t fashion.

3.1.2 Layout of this chapter

This chapter, like the next, is essentially divided into two distinct, bu t yet closely 

related , parts. T he overarching aim of th is chap ter is to  s tudy  the interaction 

betw een m etallic nanotubes and isolated atom ic and small m olecular im purities, 

using the Lloyd’s techniques th a t  we have developed, and th a t  were introduced in 

the  previous chapter. These techniques are highly efficient in calculating changes in 

the  electronic struc tu re , and consequently in calculating those physical properties 

th a t  are dependent on these changes. One reason for the efficiency of th is m ethod 

it th a t  it can utilise preexisting knowledge of the  electronic s tru c tu re  of the  isolated 

parts. Indeed, one of the m ajor advantages in using th is m ethod for th e  system s 

th a t  we have is the  chance to  use existing analytic  forrruilae for the  Green functions 

(G F) of arm chair and zigzag carbon nanotubes.

T he first p a rt of the chapter concerns itself w ith an exposition of the  m ethod for 

the  technologically relevant case of nanotubes which are bound to  hydrogen atom s. 

Relationships between the pertu rbation  H am iltonian and a num ber of physical ob

servables, such as the electronic contribution to  the overall binding energy (the 

“electronic binding energy” ) and the charge transfer between th e  hydrogen atom  

and the  nano tube are derived. We then  use these relationships as inpu t param e

ters to  calculate m atrix  elem ents of the pertu rbation  H am iltonian. For the  sake of 

com parison, we show th a t the  pertu rbation  m atrix  elem ents so derived lead to  a 

band  s tru c tu re  th a t bears a striking resemblance to  the  Kohn-Sham  band structure . 

I 'h e  final p a rt of the section uses the  calculated tight-binding param eters, inside the 

K ubo formalism, to  investigate how the electronic tran spo rt characteristics of an 

arm chair nano tube depends on the  concentration of random ly d istribu ted  hydrogen 

atom s bound to  its surface.
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Tlie second part of tlie chapter moves away from the focus on hydrogen atoms as 

dopants, and seeks to make general statem ents about the binding process. Currently, 

calculations on properties of nanotube /  dopant systems are usually performed on 

an ad-hoc basis. T hat is to say, a certain chirality of nanotube is chosen, a certain 

species of dopant is chosen, and the properties, such as charge transfer and binding 

energy, of the combined system are calculated. There are, as of yet, no general 

guidelines available on which pair (nanotube /  dopant) should be chosen, if one 

wishes to maximise the variation in the physical properties of the system. Since 

an effective sensor requires large variations to overcome noise, and in light of the 

usefulness of such a guidelines in the search for a suitable combination that would 

lead to effective nanoscale sensors, one goal of this work is to implement an inverse 

modeling approach to determine what characteristics a nanotube /  foreign object 

pair must intrinsically possess to make tha t nanotube a good sensor for tha t foreign 

object. To this end, we have looked at the binding between nanotubes and dopants of 

various different types, such as atoms and some simple molecules. In a similar fashion 

to Chapter 2, where we showed tha t the pair A E  and A C were not uncorrclated for 

the somewhat artificial case of a single level impurity bound to a linear chain, we 

will show a similar correlation in the case of nanotube /  adatom systems through 

the existence of A E  — A C  diagrams. When further explored, we show how the use of 

these A E  — A C  diagrams can give general guidelines on what properties we should 

seek in nanotubes and dopants such tha t a structure composed of these parts will 

have specified characteristics.
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3.2 M odeling the effect o f random ly dispersed adatom s 

on carbon nanotubes

3.2.1 Electronic structure o f nanotubes

We s ta r t  by considering, first, a situation  in which a nanotube and a single-atorn im

purity  are initially decoupled. As we shall see, one of the advantages of our m ethod is 

th a t it uses inform ation about the  electronic struc tu re  of the system  in its decoupled 

configuration; th is is som ething which happens to  be well known in the  case of nan

otubes. The decoupled system  is described by a H am iltonian //q =  h o  -f h a ,  where 

h o  and h a  correspond to the individual H am iltonians of the tube and the  im purity  

atom , respectively. For the  sake of simplicity, we choose to  represent the  electronic 

s tru c tu re  of the nano tube by a single 7r-band H am iltonian and assum e th a t the 

s ta tes are nnitually  orthogonal. The 7r-state is known to be the  relevant electronic 

orbital a t the Fermi level, and as such it determ ines the tran sp o rt properties of nan

otubes. It is worth m entioning th a t the  use of such a simplified H am iltonian for h o  

is prim arily chosen to  ease the presentation of the  m ethod and bears no lim itation to 

its apj)licability. In fact, it is relatively straightforw ard to  generalise the procedure 

described here to  a m ulti-orbital representation of the nanotube. T he H am iltonian 

h o  is w ritten  in opera to r form as

where |i) is a H ilbert-space vector representing an electron localised on a  carbon 

atom  labelled by the  index i ,  and |j)  is a nearest neighbour orbital to  atom  i .  The 

quantities e and 7 are the on-site energy and hopping integral param eters for the

and positive. Since this param eter will only ever appear in equations as |7 p , there

(3.1)
j

carbon atom s of the  pristine tube, respectively. T he la tte r  is assum ed to  be real

is no loss in generality in doing this. The H am iltonian h a  for the isolated atom  is
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concisely w ritten as ha = |a )a (a |, where |a) represents the atomic orbital associated 

with the level a , and follows the same definitions as for the linear chain in Chapter 

Two. Here we choose to represent the electronic structure of the atomic impurity 

by a single level, once again for simplicity. This is easily extendable to more levels, 

where this demand is relaxed.

When decoupled, both nanotube and impurity atom can be accurately described 

by suitable values for the TB param eters for the Hamiltonians ho and ha th a t re

produce well the features of their electronic structure [2, 59]. However, changes 

in those param eters must occur when the two sub-systems are brought into con

tact. We assume tha t there is one carbon atom on the nanotube tha t lies closest 

to the dopant; furthermore, as a first approximation, we assume tha t the nanotube 

is highly efficient in screening any local charge variation and tha t only the on-site 

energy of tha t carbon atom nearest to the impurity is to be affected. I have previ

ously introduced this as the efficient screening hypothesis. Efficient screening is not 

an essential feature of our method, and will be later relaxed to account for screening 

clouds of finite radius.

In light of the foregoing, it is reasonable to conclude tha t the param eters to be 

corrected should correspond to m atrix elements which correspond to states localised 

in the vicinity of the contact between tube and impurity. Similarly, the on-site 

potential energy of the impurity atom is also allowed to change. Finally, the direct 

coupling between tube and the im piuity atom is modelled by an added electronic 

hopping between them. In summary, the coupling between nanotube and impurity 

is represented by the following contact potential

V = |0)f^o(0| -I- |a)r^a(o| +  |0 )r(a | -I- |a)r*(0|, (3.2)

where 5o and 5a are the corrections to the on-site potentials on the nearest carbon 

site (labelled 0) and on the impurity atom (labelled a), respectively. This is a specific
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Figure 3.1: Schematic of the binding geometry between a (6,6) carbon nanotube 
and a hydrogen atom. The hydrogen atom is bonded directly to one single carbon 
atom, which we refer to as a type-I adsorbate in the text, (a) depicts the case 
where we assmne perfect screening, while (b) relaxes this requirement to allow the 
onsite energy of the next nearest neighbours to the bonded carbon to change. In 
this fashion screening clouds of arbitrary size can be included.

case of the Hamiltonian presented in Eq. 2.7, where what were matrices are here 

simi)le scalars. I emphasise that this Hamiltonian is for the case when the dopant 

atom lies directly above one of the carbon atoms, which we will refer to as a type-I 

dopant. This is for instance the case for H adatoms bound to nanotubes. Other 

atoms, such as Lithium, preferably bind to a site located in the centre of one of the 

hexagons. Such an impurity will here be called type-II. The geometry involved in 

type-I binding is displayed in Fig. 3.1, while that in type-H is shown in Fig. 3.2. 

The hopping r  is responsible for coupling the nanotube to the impurity atom. It is, 

in principle, a complex number that has the dimensions of energy. Again, however, 

examination of the relevant equations later will show us that r  will only appear 

in our equations in the form |r^|. Similarly to 7 , we can thus take r  to be a real 

positive quantity, and I do so. There are no such concerns about <5o and Sa, which 

correspond to diagonal elements of a Hermitian matrix: they are real energies, and 

rna}̂  be either positive or negative.



Figure 3.2: Schem atic (before s truc tu ra l optim isation) of the t)indiiig between the  
(6,6) carbon nano tube and a type-II adsorbate. T he case of perfect screening is 
illustrated; th is can be relaxed through a process sim ilar to  th a t for a type-I defect

Bearing in m ind the  efficient screening hypothesis, it is clear th a t the  set (()a, ^o, t ) 

of corrective param eters is the m inim al set necessary to  take into account any 

changes in the  H am iltonian. Since it allows the  determ ination of the to ta l Ham il

tonian //o +  V (and hence its eigenvalues and eigenstates), a knowledge of the 

pertu rb ing  po ten tia l fully determ ines the changes th a t the  coupling brings to the 

electronic s tru c tu re  of the  system , and consequently how it affects the tran sp o rt 

properties of the  structu re . One of the  aims of our work has been to introduce a 

simple procedure to  determ ine this contact-induced pertu rbation , given knowledge 

of quantities th a t  can be evaluated by ab-initio calculations, such as the binding 

energy and the  charge transfer (for instance).

The binding energy is defined as the  difference of to ta l energies between the  cou

pled and decoupled configurations and it refiects the  degree of in teraction between 

the  two constituen t parts. In m athem atical term s, the  binding energy A E  is defined 

as the difference of to ta l energies given by A E  =  £ ’x(N T  - I -  A) — £ 't(N T ) — i?T(A), 

where E y { N T  +  A) represents the to ta l energy for the  coupled configuration, E t(N T ) 

is the  to ta l energy for the  isolated nano tube and E t(A ) the to ta l energy for the  im-



purity  atom . It is clear from the definition above th a t contributions to  the to ta l 

energy th a t  are conmion to  both  configurations play no role in the  binding energy 

because of cancellations. Such a role may be played by low energy core s ta tes  which 

are far below the  Fermi level, which partially  justifies their absence in th is tre a t

m ent. Furtherm ore, in the so-called tight-binding to ta l energy calculations, the to ta l 

energy is given as the sum  of two terms;

E t  =  E bs +  E r  (3.3)

Here, the quan tity  Ebs is the band struc tu re  contribution to  the to ta l energy, and 

En is a repulsive term . Ebs  is a negative energy th a t reflects the  fact th a t  electrons 

are bound to  the ionic lattice, while En  is a positive energy. In the framework of 

the  so-called tight-binding to ta l energy m ethods, one can w rite the  to ta l energy as 

the electronic s tru c tu re  contribution added to  a repulsive energy term  [60, 61, 62], 

in which the  la tte r  has been given a formal correspondence w ith m odern density 

fmictional theory  [63]. Moreover, as shown by Papaconstantopoulos and coworkers 

[60], this la tte r  contribution can be accounted for by including it in the  electronic on

site po ten tia l associated w ith the  tight-binding Ham iltonian. In this way, the to ta l 

energy can be w ritten  as a sum over the eigenvalues of the  electronic H am iltonian, 

which in tu rn  allows us to express the binding energy as a function of A p,  the  change 

in the density  of states. In the case of hydrocarbons, it is possible to  evaluate the 

repulsive energy term  through the use of a param eterised sum  [64]. Calculation 

shows th a t  th is contribution tends to  be small enough to  neglect. It is also worth 

em phasising th a t  in all cases we are interested in energy changes, so th a t term s 

which are com m on to  both  configurations need not be taken into accoimt explicitly.

Instead of using the H am iltonian explicitly, we will describe all th e  relevant 

quantities in term s of the corresponding single-particle Green functions, which we 

have found to  be extrem ely convenient in dealing w ith to ta l energy variations. P a rt
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of the reason for this is the existence of ra ther straightforw ard analytical (in the  case 

of achiral nanotubes) and senii-analytical (in the case of chiral nanotubes) formulae 

for the single particle  G F in real space. For instance, the Green function gij between 

arb itrary  sites i and j  of a pristine tube  is obtained from th a t of graphene (itself 

derivable using simple renorm alisation techniques based on D yson’s equation) by 

the  im position of appropriate  boundary conditions. This approach is referred to 

as the so-called zone-folding  approach. For the sake of completeness, I present the 

formulae for the  Green function m atrix  elem ents in the case of arm chair tubes; these 

will be used later in th is chapter.

In the  case of (n, n )-a rm chair nanotubes, there are two relevant m atrix  elements. 

If the carbon atom s are crystallographically equivalent (both  in the  sam e place in 

the m iit cell of Fig. 1.1), then  the m atrix  elem ent a t energy E  is

fcx Qp COS sin q,, + 2 sin f/p cos qp

(3.4)

while if the atom s are inequivalent

1 9{E)  . /  , /  , /  /t;\ .(3.5)
fcx Qp COS j  sin qp + 2 sin q^ cos q^

The sum  runs over the  n  d istinct values kx G {0, -7^ ,  • • •, j .  T he sum’ \ / 3 a n ’ V3an^  ’ VSan ‘

over qp runs over those two values of g, which have a positive im aginary p a rt in the

set {171,<72,(73, 9 4} where



.] I  — b  —  \ / h ' ^  — 4c
f/4 =  27t — cos I  --------- -— —  (3.6)

with

(  C lk x y / i^ \
0 =  COS ----------------I 2 )

/?2 —  i h  —  { f ^ x ,  i ^ y )  is the  relative separation vector of the  relevant sites in the  un

w rapped scheme. Similar formvilae exist for the zigzag nanotubes [37]. T he Green 

function for the  m atrix  elem ent (^R.i,A g{E) R \ ,A ^  for a (6,6) nano tube is pre

sented in Fig. 3.3. We see th a t the  real part is an odd fmiction of energy (taking 

the  energy zero to  be a t the  carbon onsite). Consequently it m ust necessarily vanish 

a t E  —  e .  So the  Green function is purely im aginary at E  =  Ep{= e). T his bears a 

striking sim ilarity  to  the case of the  pedagogical linear chain, whose Green function 

also ha-s vanishing real part at the Fermi level. On the o ther hand, the im aginary 

part of the Green function is even, and purely negative. For the  nanotube, there is 

one electron per carbon atom , so the Fermi level is coincident w'ith the centre of the 

(spin-degenerate) band. Likewise, the  Green function Q a a  associated w ith the iso

lated adatom  is a simple expression th a t  results from the  definition of the operator

g =  { E - f l o ) - \

W hile it is true  th a t such formulae provide a useful shortcu t to  the  evaluation 

of the  G F, it is w orth bearing in m ind th a t even in the  general case, where no 

such form ula exist, the  GF will always be am enable to  num erical evaluation. A 

num erical approach may be more suited to a m ulti-walled nanotube, for example, 

or if we require the  use of more basis s ta tes  to  represent the nano tube itself.
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Figure 3.3: Real and imaginary parts of the g  R i , A j  Green function of a
(6,6) armchair nanotube as calculated using Eq. (3.4). The imaginary part is an 
even function of energy and is non-zero at the Fermi level { E f  =  e) ,  while the real 
part is an odd function of energy, and so vanishes there.
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3.2.2 Evaluation o f tight-binding param eters by the Lloyd 

formula m ethod

The param eters associated with the potential V  in Eq. (3.2) can be obtained by 

solving the Lloyd formula equations. This method is based on the existence of special 

sum rules for the total density of states in the presence of a localised perturbation. 

In our case, the localised nature of V  leads to an expression for the variation of the 

to tal electronic density of states A p  th a t reads

Ap{E)  =  - -  Tm Tr -^ lo g [ l  -  g{E)V]
7T a £ /

(3.8)

where Tr is the trace operator, which provides us with a complex number, Im takes 

the imaginary part of tha t complex number and g(E)  contains the decoupled Green 

fmictions in block-diagonal form for electrons of energy E.  While the above formula 

holds generally, with respect to the ordered basis |0 ),|o ), in this case the matrix 

g(E)  is given by

,9oo(^) 0

0  , 9 a a ( ^ )

where goo{E) and gaa{E) are the appropriate matrix elements of the unperturbed 

Green Function g = lim,,^+ (i?-|-ir/—//o)“ ' projected on sites |0) and |a), respectively. 

In m atrix form, Eq. (3.2) is rewritten as

(3.9)

\ /  = (3.10)

Making use of the energy derivative in Eq. (3.8), both the total energy variation 

A E  and change in the total number of electrons in the system A N  ( “charge varia

tion” ) are easily derived. The former is obtained by a simple integration by parts
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which gives

A E ^ -  I  In iT rlo g [i -  ^(7i)\/] , (3.11)
^  J  — OO

whereas the la tte r  is w ritten  as

A N  = —  I rnTrlog[i -  g{Ep)V] . (3.12)
7T

E f  in the  equations above stands for the  Fermi level of the system , which is the  same 

as th a t of the  nanotube, since a  < e (in the  case considered here). Eqs.(3.11) and 

(3.12) are two of the  fundam ental expressions in our m ethod in the  sense th a t they 

describe the change of two key quantities, nam ely to ta l energy and to ta l num ber 

of particles, as a result of the interaction between the  tube  and the  impm’ity atom . 

At this point it is w orth reiterating  th a t in the operator form presented here, the 

above expressions are valid not only for ho and ha defined above bu t for whichever 

H am iltonian is chosen to  represent the  electronic struc tu re  of the  system , the  only 

difference being in the  precise form of the m atrix  elements of the  operators g and 

V . T he size of the m atrices will always be determ ined as M  x  M , where M  is the 

imniber of sta tes, on either the nano tube or the dopant, which undergo a change in 

occupation num ber due to  the binding (see A ppendix C).

S ubstitu ting  Eqs.(3.9) and (3.10) into Eqs.(3.11) and (3.12) we have

2
A E  ^  -  dE Im  {log {l  -  goflSo){l -  9a,a^a) -  go,0 9a,ar"^)) (3.13)

^  J  — OO 

—2
[(1 “  ^0 ,0 (̂0 )(l -  9a,aSa) ~  90,0 9a,a T^])

As presented thus far, there are not sufficient equations to  determ ine a solution for 

the  tight-binding param eters. However, a th ird  equation may be derived by tak ing  

into account th e  charge transfer between tube  and imi)urity. D yson’s equation allows 

us to obtain  the  change in the local density of s ta tes  on the im purity  site, which 

can be further in tegrated  to  express the  charge transfer AC  from the  tube  to  the
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im purity as follows:

A C = - ; ^ y  (IE I m | [ 5 j  -<5a -  (1 -goo^o) ^QOo t '̂ ] (3.15)

The set of equations (3.13), (3.14) and (3.15) relates three basic quantities, namely 

the binding energy, the change in the total number of particles and the charge 

transfer, with the parameters <5o, and r  associated with the potential V. If we 

remember tha t Eq. (3.14) must reflect the charge neutrality of the system, we must 

impose tha t the total charge be conserved, i.e, A N  — 0. Therefore, the knowledge 

of A E  and A C is in principle sufficient to determine the potential V. Rather than 

relying on band structure fitting, which depends on which portions of the Brillouin 

zone are chosen to be reproduced, here we propose to use ab-initio-evaluated binding 

energies and charge transfers as input values to obtain the correct param eters of the 

potential V . In this way, the param etrisation of the perturbing potential is done in 

a imicjue fashion since it does not depend on any choice of fitting points.

3 .2 .3  R e su l t s

It is worth noting the similarity of the expressions derived in the last section to 

those derived in the pedagogical case of a linear chain perturbed by a single atomic 

impurity. In reality, there is no structure yet discovered tha t corresponds to the 

simple linear chain. Even a simple poly-acetylene molecule (which would seem to 

be the ideal candidate to have its electronic structure described by the linear chain 

Hamiltonian) suffers a Peierls distortion, leading to a dinierisation of the molecule, 

which inevitably destroys its metalicity. The fact tha t nanotubes are known to bind 

with atoms and simple molecules allows us to test our method.

We have tested the method described above by applying it to the case of hydro

gen atoms adsorbed to metallic nanotubes. The geometry of the problem (before 

structural optimisation) is illustrated in Fig. 3.1a. We start by considering a (6,6)
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armchair nanotube in the presence of a single hydrogen atom. This choice of system 

meets the criterion that the potential be short-ranged (the metallic nanotube is effi

cient at screening the potential) and allows us to make use of the analytical formula 

for the Green function of the nanotube previously presented. Ab-initio calculations 

were used to evaluate the binding energy and charge transfer between the tube 

and the impurity atom. The calculations were performed using the SIESTA code 

[65, 66] within the LDA approach for the exchange-correlation potential [67]. Norm 

conserving pseudopotentials and a split-valence double-^ basis of pseudoatomic or

bitals were used. The unit cell consisted of 73 atoms (72 for the (6,6) nanotube plus 

the hydrogen atom) was used. This corresponds to three fundamental miit cells 

for the carbon nanotube. While the code requires that we have a periodic system, 

the in-plane lattice parameter was chosen to be large enough (~  60A) to ensure 

a negligible interaction between periodic CN images. The structural geometry was 

optimised by conjugate gradient methods with a force tolerance of 0.05 eV/A.

The geometrical optimisation showed that the sp^ hybridisation (graphene-like) 

of the carbon atom linked to the hydrogen is converted to an sp^-hybridisation 

(diamond-like), calling for a slight distortion of the carbon from its equilibrium 

position - it gets lifted off the surface of the nanotube. The C-H bond length was 

found to be 1.149A, which is similar to that found in typical hydrocarbons such 

as the methane molecule (~  1.10 A) .  The calculated values for the total energy 

variation and the charge transfer to the adatoin were A E  =  —2.74eV and AC =  

—0.357e, respectively. Entering as input values in Eqs. (3.13) and (3.15), and using 

the appropriate tight-binding Green functions for the component parts, allowed us 

to obtain the corresponding values of (̂ o == —3.027, Sa =  3.357 anti =  1.957 

where 7 was taken to have a value 2.66 eV. The solution of these highly non-linear 

equations required the use of an efficient numerical routine package, which was found 

to converge on a unique solution.

Although the Lloyd’s formula method (LFM) does not rely on band structure
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Figure 3.4: Folded band structures for a doped (6,6) nanotube with a single H atom 
per unit cell. The left and right panels are obtained by the Lloyd’s formula method, 
tlie former within the efficient-screening assumption and the latter considering a 
screening cloud up to second nearest neighbours. The middle panel is the ab-initio 
result.

fitting, it is interesting to compare the ab-initio energy bands, as per the SIESTA 

calculation, with those obtained using the tight-binding parameters calculated us

ing our scheme. W ith the set of parameters 5q, 6a and r  fully determined for a 

single impurity, we can reproduce the periodic boundary conditions used in the 

DFT calculations and obtain the corresponding energy dispersion. The band struc

ture comparison is shown in Fig. 3.4 in which the DFT band structure (middle 

panel) is juxtaposed with the energy levels obtained by the Lloyd’s forirmla method 

(left panel). Both diagrams display unmistakable similarities in the way their energy 

bands are distributed, which places the efficient screening hypothesis of the Lloyd’s 

formula method as an excellent first approximation to describe the effect of impurity



atoms on the electronic structure of nanotubes. One source of difference between 

the two band structures could be our neglect of curvature effects, appropriate to 

such a small diameter nanotube, which would require a non-orthogonal basis set to 

be taken into account.

Despite the resemblance in the dispersion relations in the left and middle panels, 

the LFM parameterised bands are unable to reproduce some features of the band 

structure; the level at the Fermi energy is too fiat, and the three-fold degeneracy at 

the G annna point remains. Since it is crucial tha t we correctly trea t those electrons 

at the Fermi level, this is worrying. It is worth recalling that the use of E(i. (3.2) 

with only three distinct undetermined parameters relies on the assumj^tion of totally 

efficient screening by the conduction electrons of the nanotube. In other words, it 

assumes that any charge imbalance in the system due to the perturbing potential 

is screened, to the extent tha t only the on-site potential of the atom nearest to the 

pertm bation is affected. Api)arently, this is not a good assumption, as indicated by 

the local charge distribution tha t results from the DFT calculation. Despite the fact 

the system is indeed metallic, its low-dimensionality (ID) is one factor that acts to 

reduce its screening efficiency. In fact, the calculations point to a electronic charge 

distribution tha t is not entirely concentrated around a single atom but to one tha t 

is spread around a few nearest neighbours in the vicinity of the perturbation. The 

efficient-screening assumption must therefore be relaxed if we wish to improve the 

agreement between the band structures.

As already hinted at, imperfect screening can easily be included in our formalism 

if we consider tha t the perturbing potential V  can now take into account changes 

in the onsite energies of the atoms beyond the nearest neighbours surrounding the 

contact region. Naturally, the simplest extension to our model is to include those 

atoms tha t correspond to next-nearest neighbours of the contact carbon atom. Al

though this increases the size of the matrix V , Eq. (3.8) is still valid in expressing 

the change in the total density of states due to the contact between the impurity
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and the  tube. The potential V  will now involve two more m atrix  elem ents, nam ely 

and 6^, which are corrections to  the  on-site potentials on the  two non-equivalent 

nearest-neighbour carbon atom s. To comply w ith the  ex tra  undeterm ined m atrix  

elem ents, an equal num ber of additional constrain t equations are required. In this 

case, the  two additional equations are expressions for the  local charge variations on 

the nearest-neighbour atom s, which can also be read out from the D F T  results. It 

tu rns out th a t  the efficient-screening hypothesis is not a lim itation of our approach 

in th e  sense th a t we can always consider screening clouds of a rb itra ry  sizes, the 

only difference being in the  num ber of equations required to  obtain  the adequate 

param eters. The set of five equations is straightforw ardly derived from Eq. (3.8) 

bu t no t displayed here for brevity. W hen solved, the  equations provide the  following 

results; =  I .2 6 7 , Sq =  — I .2O7 , =  —0.257, =  O.287 and r  =  O.7 6 7 , which

lead to  the band s tructu re  displayed in the  rightm ost panel of Fig. 3.4. C om paring 

w ith the  results derived in the case of the efficient screening hypothesis, we see th a t 

there is an appreciable difference between the two sets of results. Intuitively, one 

would expect th a t as one ex])ands the size of the screening cloud, th a t  one would see 

a gradual convergence of the  param eters, som ewhat contrary  to  our findings. One 

reason for this may be th a t there exist a num ber of com binations of the  param eters 

( ( 5 o ,  ^ 0 , ^ 0 , T ,  5 a )  th a t satisfy all the Lloyd equations simultaneously. This is possible 

due to  the  inherent non-linearity of th is system  of equations. Consequently, we may 

be converging on a solution on a different branch; th a t is to  say one which is not 

close to  th a t of the efficient screening hypothesis.

Evidence for this may be garnered by focusing on the details of the  behaviour of 

the bands in the vicinity of the Fermi level. We see th a t  the threefold degeneracy 

at the  G am m a point is indeed lifted. Furtherm ore, there appears to be a weakly 

dispersive level in the vicinity of the  Fermi level. On the  o ther hand the ordering 

of the  bands seems to  be incorrect; the  weakly dispersive im purity  band near the 

Fermi level [68] appears to  be a t too low an energy. T he effect of this is to  induce
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an apparent avoided crossing [69] with the highest of the carbon valence bands. 

Since the position of this level is largely controlled by the value of 6a, we see that 

the far lower value of this parameter found in the case of the imperfect screening 

may indicate that we are picking out an unphysical solution to our Lloyd formula 

equations. Nevertheless, bearing in mind that matching the DFT band structure is 

not a primary aim of this work, we will proceed with the results of the imperfect 

screening scenario in the remainder of this section.

As mentioned previously, the key advantage of mapping the first-principles re

sults into a tight-binding calculation with a set of corrected parameters is that we 

do not have to restrict om’selves to a single impurity, and can in principle include a 

non-zero concentration of adsorbed atoms to model a truly disordered configuration. 

This allows us to investigate how the transport properties of carbon nanotubes are 

affected by a given concentration of impurity atoms along their length. Using our 

scheme for correcting the parameters of the electronic Hamiltonian, we have been 

able to include a large number of impurities randomly dispersed within a section 

of the nanotube. Each added impurity requires parameter corrections according to 

the size of the screening cloud, which here we have not let extend beyond the atoms 

connected to the binding site. The only constraint in the otherwise random distri

bution is that impurities are forced to always remain sufhciently far apart to avoid 

overlap between the screening clouds. If we wish to allow overlap of the screening 

clouds, new parameters must be calculated according to a procedure which is similar 

to the one already outlined. In this case, we perform the calculation in the presence 

of a pair of impurities, and extract tight-binding parameters which are appropriate 

in the case of a doubly perturbed system.

We have used the parameters ((5q, (5o> derived in the imperfect screening

case, to calculate the electrical response of the disordered system according to the 

Kubo formalism[70, 71]. As regards the geometry of the system, we may concep

tualise it in the following fashion. From the left, we have a semi-infiiiite armchair
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carbon nanotube, which terminates with a cleavage plane on the right. This tube 

extends infinitely far to the left. To the right, we have a similar semi-infinite tube, 

terminated at the left with a cleavage plane, and which extends infinitely far to the 

right. The central section corresponds a finite tube and is our scattering region; the 

perturbation is restricted to this region.

As far as the calculation is concerned, we proceed slightly diff'erently. Here we 

have only two sections. As before, on the right hand side, we have a semi-infinite 

tube terminated by a cleavage plane on the left. The other section consists of the 

clean, semi-infinite tube, considered together with the scattering region.

To use the Kubo formula, we must calculate the appropriate surface Green futic- 

tions of both the left and the right sections. To calculate the surface Green function 

of the left hand section, we utilise an adlayer approach. The surface Green function 

6\),o for a clean tube is a known quantity. We assume that the scattering region 

can be viewed as consisting of uncoupled rings of carbon atoms (with the zth ring 

characterised by known Green function Ri,i) which are coupled together through an 

a])propriate Hamiltonian We proceed to calculate the Green function G u  of

the semi-infinite chain coupled together to the first ring, through the use of Dyson’s 

ecjuation, which yields:

Gi,i — {I — R\,\li,oGo.oTo,\) (3.16)

In a similar fashion, it can be shown that

(3.17)

for z > 0.

In the scattering region, we have of the order of 1000 rings, leading to a scattering 

region of the order of 0.25//rn. For each fixed configuration of scatterers, we can
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calculate the  zero-bias conductance through the use of the  Kubo form ula

r(Ef-) = ^ T r  (f„Jm  7 ;jm  (̂ G>,a) + (̂ Gab) i lJ m  

-fafcim  fb a lm  (C a a ^  ~  TbJm  (^Gaa^ (<̂fcb)) • (3.18)

Here the index a corresponds to  the  rightm ost ring of the  scattering  region, while the 

index b correpsonds to  the  beginning of the  clean tube  to  the right of the scattering  

region. Upon averaging over a large num ber of disordered configurations (w ith the 

sam e concentration of scatterers) we can calculate the conductance as a function 

of the  position of the Fermi level. In Fig. 3.5a such average conductances are 

displayed for four different concentrations of im purities. As is expected, the  clean 

tube  produces a well defined conductance (dotted  line) which is always an integral 

m ultiple of the  quantum  of conductance, 2 ^  jh . By sym m etry, there  is only one 

unique configuration in the  case of a single scattering  centre (dashed line). Higher 

concentrations of im purities are seen to correspondingly reduce the  conductance 

(thick curves).

The concentration dependence of the  conductance, as a function of the position 

of the Fermi level, is displayed in Fig. 3.5b. This shows the logarithm  of the average 

conductance as a  function of defect concentration, and indicates how a nano tube 

responds to  H-doping. As expected, an exponential dependence on the im purity  

concentration is observed a t sufficiently high concentrations.

A lthough the  results presented in this section have been based on a highly sim 

plified description for the  electronic struc tu re  of bo th  the  nano tube and the atom ic 

im purity  (which nonetheless has been shown to agree well w ith the  results of our 

ab-initio calculation), it is straightforw ard to  generalise our procedure to account 

for more degrees of fi'eedom. For instance, we may wish to take account of the 

m ulti-orbital character of the unpertu rbed  H am iltonian H q. T he param eters r ,  <5o 

and Sa acquire a m atrix  character th a t  reflects the additional degrees of freedom of

72



6
ta)

5
-1 —

CN

t
V
_c

-3 -

3

V 2

0 0 0.02  0.04  0.06 0.08  0.12 0 21
energy (y )̂

Figure 3.5: (a) Average conductance as a function of tlie Ferrni energy for d istinct 
concentrations of Hydrogen atom s d istribu ted  random ly along a (6 , 6 ) carbon nan- 
o tube. The d o tted  line is the average conductance for a pristine tube; the  dashed 
line corresponds to a carbon nanotube with only 1 adsorbed atom , th inner full line 
corresponds to  1% im purities while the broad full line is for x =  3% of im purities, (b) 
Logarithm  of the  average conductance (scaled by the conductance for the  pristine 
tube) as a function of the concentration for d istinct Fermi energies: th in  (upper) line 
for Ej.' = 0.0 and broad (lower) line for E p  =  I .2 7 . T he  dashed red lines correspond 
to  linear fittings in the localised regime. Calculation perform ed by C. G. Rocha.

the  constituen t parts. The set of non-linear equations needed to  ob tain  the  corrected 

param eters ai'e still based on the fundam ental equations (3.11) and (3.12). Once 

again, an increase in the  num ber of param eters requires the in troduction  of more 

('(juations, w ith one for each ex tra  degree of freedom th a t is introduced. Following 

the  sam e steps as before, we can use quantities from a simple D F T  calculation as 

inpu t to  our set of non-linear equations. In addition to  the binding energy and the 

overall charge transfer, we may require inform ation abou t how th e  charge is dis

trib u ted  in their respective degrees of freedom, which again is readily available from 

D F T  calculations.
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3.3 A n inverse m odeling approach to the gas sen

sor problem

3.3.1 M otivation

Nanotube-based sensors depend on significant conductivity changes induced by dop

ing. Predictions of which nanotube /  foreign object (FO) combination provides 

efficient sensor characteristics tend to be made on an ad hoc basis, and involve a 

study of how a particular nanotube responds to the presence of a s])ecific doping 

agent. W ith a m ultitude of possible combinations, this approach is unable to address 

questions of a general nature; for instance, what are the necessary features tha t the 

components must have, in order to produce certain physical properties in the device? 

Questions of this nature call for an inverse modeling scheme in whi(-h information 

about the components can be extracted from the knowledge of a few physical ciuan- 

tities demanded by the sensor, hi this section we make use of the mathematical 

transparency of the Lloyd formalism, applying the method to adatorns and simi)le 

molecules adsorbed to nanotubes. We obtain a range of possible values for the ion

isation j)otential tha t an impurity nmst have to meet specified requirements for the 

binding energy with, and for the charge transfer to, the nanotube host. Suc'h an 

inverse modeling scheme allows a reduction in the m ultitude of possibilities tha t are 

generally considered by standard ad hoc approaches. We argue tha t this method can 

be further extended to j)rovide general guidelines on the absorption process and can 

be used to narrow the search for the ideal combination of tube and doping agents 

required to produce efficient nanoscopic sensors.

To do this we explore another use for the Lloyd formula equations, namely, tha t 

they indicate the existence of a correlation between binding energy anti charge trans

fer. For a given N T /FO  pair, A E  and A C are not independent quantities but are 

constrained by their respective expressions above. Of course, the actual relationship
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between tliem depends on the specific vakies of the parameters 6q, 6a and r , which 

themselves are constrained by the charge neutrality equation, as described in Chap

ter 2. In what follows, we assume that will be determined by the global charge 

neutrality condition A N  =  0, and view and r  as essentially free parameters. If we 

were to choose those parameters arbitrarily, there is no guarantee that they would 

provide realistic figures for the binding energy and for the charge transfer. However, 

by varying the parameters up to rnaxinnim values 5q and f , one finds the corre

sponding range of possible vahies for both A E  and AC. In this fashion, a A E  — AC  

fliagram can by created, as in the case of the linear chain and adsorbed impurity in 

Chapter 2. While this may be too broad a range, depending on the choice of and 

f , this approach highlights the relationship between those two quantities and, more 

importantly, points to an even broader range of incompatible combinations for A E  

and AC’.

3.3.2 Calculations

For the case of adatoms on a (6,6) armchair NT, the relevant Green function elements 

for the (6,6) nanotube are obtained by setting n =  6 in Eqs. (3.4) and (3.5). In 

the case of a type-I defect, such as an adsorbed Hydrogen atom, the only relevant 

nanotube Green function is (0, /1| g |0, A) ~  qoq. With type-I defects, the analytical 

techniques described in Chapter 2 can be used to calculate the allowed range of values 

(^„,5o,r. When we consider a type-II defect, however, the Lloyd matrix is much 

larger: it is a 7 x 7 symmetric matrix, involving Green function elements between 

the six sites on the hexagonal ring. In this case, we found it more reasonable to 

sj)ecify values for {5o, t ) and numerically solve for Sa to satisfy the charge neutrality 

condition.

Calculated AE-AC  diagrams are displayed in Fig. 3.6 for two different adatoms 

on a (6,6) tube. The left panel displays the results for a H adatoni, which is a type-I 

FO, while the right panel displays the results for a Li adatom, which is a type-II
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FO. The shaded region of Fig. 3.6 is the set of vahies mapped into by the allowed 

triples {Sa,So,T). The boundary of this contiguous region gives ranges containing 

the binding energies and charge transfers associated with those particular NT/FO 

pairs. The black dots, representing the corresponding DFT evaluations of both A E

0

1.5

2
3 04 1

_  - 0.4

0.6

- 0.8

Figure 3.6: A E / A C  graphs displaying the regions of allowed values for the binding 
energy and charge transfer for (a) a Hydrogen adatom and (b) a Lithium adatoni, 
both on a (6,6) NT. hi plotting Fig.3.6, the thick lines were obtained by selecting 
4  =  2.07

and AC,  lie within the predicted range.

The shaded regions of Fig. 3.6, are delimited by curves whose equations can 

be described by ACu = U{AE)  and AC/ = L{AE),  where the functions U{x) and 

L{x) describe the upper and lower limit of the charge transfer for a energy change 

X ,  respectively. By knowing the functions U and L one can easily determine the 

whole range of possible values for A E  and AC. Furthermore, assuming either of 

the two quantities is known, possibly by an isolated measurement, one can use the 

functions L and U to predict the range of allowed values that the other quantity 

may have. For instance, if only the charge transfer AC is known for a given NT/FO 

pair, the range of possible values for the corresponding binding energy is delimited 

by L” ^(AC) and by U~^{AC),  where is the inverse of function F. Likewise, if
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only tlie binding energy A E  is known, tlie corresponding charge transfer is certain 

to fall within the range delimited by L{AE)  and U{/\E).  Since the curves are 

clearly smooth, both L and U can be approximated by polynomial functions of AE,  

described by ACi = l j {AEy  and ACu = [ A E y  for the lower and upper limit, 

respectively. For the cases depicted in Fig. 3.6 the non-zero coefficients Ij and uj are 

lo =  -0 .2 8 , / i  =  -0 .01 , 12 =  5.00 X 1 0 - 4 , k ^ 2 x  lQ-4, Uo = -0.45, =  0.10,7/2 =

0.14,7/3 =  0.12 for the hydrogen bonding, while Iq =  —0.02,/i =  2.43, ^2 = 0.88, 

I3  = 0.80, 'Uq =  7.78, Ui = 10.58, U2  = 5.30, 7/3 =  1.27 for the Lithium atom.

The results of Fig. 3.6 are of course only valid for the specific NT/FO pairs 

considered, i.e., H and Li adatorns on a (6,6) NT. A different pair will indeed lead to a 

different Ai? —AC-diagram. However, it is here that the mathematical transparency 

of Eq. (3.13), (3.14) and (3.15) becomes really useful. Because both equations are 

given not only in terms of the ^/-parameters but also in terms of goo and Qaa, which 

carry specific information about the NT and the FO, respectively, changes in either 

component of the pair will have a j)redictable effect on the relationship between 

A E  and AC,  and therefore on their corresponding diagram. Put in another way, 

the functions L{AE)  and U{AE)  can be described by polynomial fimctions whose 

coefficients depend on specific features of the NT/FO pair. By determining how the 

coefficients depend on those features, we can not only predict how the A E  — A C  

diagram changes but, more importaiitly, establish which featm’es our pair must have 

to meet specific requirements regarding their binding energy and/or charge transfer.

To illustrate this point we assmne the same NT as used in Fig.3.6 but this time we 

consider a type-I dopant with a variable energy level a. Bearing in mind our earlier 

definition, this corresponds to considering foreign objects with different ionisation 

potentials. The a-dependence of the coefficients Ij and Uj indicates, through the 

functions L and U, how the AE'-AC-diagram changes as different FO are considered. 

More specifically, by determining the coefficients l j { a )  and U j { a ) ,  we are able to work 

out the respective functions L{AE)  and U{AE),  thus predicting the allowed range
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of values for their binding energy and charge transfer.

It is natural to compare the predicted ranges with the actual values of binding 

energies and charge transfers obtained by separately evaluated ab-initio results. In 

addition to the H and Li adatoins already presented in Fig. 3.6, a number of 

additional FO were considered, among which a variety of other adatoms as well as 

a few simple molecules.

FO Type a A E AC L ~ \ A C ) f/-i(A C ) L(AE) U{AE) A p ( Ef )
p ( E f )

H I -5.04 -1.03 -0.357 - - -0.491 -.266 0.44
Xe I -4.49 0.07 -0 .0 1 0 0.949 -0.163 -0.076 0.003 0.017
Ar II -5.84 0.03 -0 .0 1 1 1.945 -0.493 -0.070 0 .0 0 0 0 .0 1 2

Li II -1.99 -0.30 -0.360 -0.134 -0.973 -0.693 1.095 1 .8 6

Na II -1.90 -0.08 -0.170 -0.043 -0.972 -0.334 6 .1 0 2 2.33
N2 II -5.77 -1 .2 -0 .0 1 1 1.901 -0.407 -0.038 0.031 0.097

Table 3.1; Table of the ionisation potentials (a), binding energies (A/?), charge 
transfer (AC), and A E  — AC diagram parameters for various foreign objects in 
the vicinity of a carbon nanotube. Energies are given in multiples of 7  and charges 
in nniltiples of the magnitude of the electron charge. The final column lists the 
fractional change in the DOS for each configuration.

Table 3.1 shows those results for A E  and AC associated with all the listed 

NT/FO pairs. It is remarkable that despite the simple description of the electronic 

structure of the separate parts, all results lie well within the predicted ranges.

At this point we are ready to answer some of the general questions posed earlier 

regarding the type of FO necessary to meet certain requirements. We can ask what 

features a FO must have to produce a specific set of binding energy AE^  and charge 

transfer AC^ . The answer to such an inverse problem is now straightforward and 

follows from the solution of AC° < U{AE^)  and AC^  > L{AE^),  which gives a 

range of possible values for a.

For instance, if one is looking for a FO on a (6 ,6 ) NT for which the binding 

energy is around AE'^ = —O.I6 7  and has AC° =  —O.lOe, our method suggests that 

good candidates are type-II foreign objects whose ionisation potentials are in the 

range —1.247 > Uj > —2.36. This range reduces the universe of possibilities one
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wonkl have to try  by the forward modehiig approach. The vahies of A E ^  and AC° 

hsted above correspond to those found in the case of a potassium adatom adsorbed 

to a (6,6) NT. Being a type-II FO, the ionisation potential of f// =  —1.637 naturally 

meets the above requirements.

Moreover, although we have varied the parameter th a t characterises the FO, we 

could also change the parameters defining the NT. In this case, both the diameter d 

and the chiral angle 6 of the NT host can be varied through the GF goo- A similar 

analysis would follow, this time providing a set of values for 0 (and subsequently d) 

tha t meets the specific requirements of binding energy and charge transfer.

Finally, it is worth mentioning tha t having written Ap{Ep), A E  and A C  under 

a common framework, these quantities are no longer evaluated in a disconnected 

fashion. Eqs. (3.8), (3.13), (3.15) and (3.14) are able to relate the DOS change with 

the respective values of binding energy and charge transfer. Listed as a percentage 

of the unpertm’bed original DOS, Table 3.1 makes use of Eq. (3.8) to ex})ress how 

Ap{E}.') is affected by the presence of each FO, indicating Na as the one causing 

the largest variation. Bearing in mind tha t changes in the physical properties are 

intrinsically associated with changes in the DOS, this procedure indicates how ef

fective a FO is in altering the NT transport properties, which in turn  determines 

how good a sensor the N T/FO  pair may turn out to be.

3.4 Chapter sum m ary

This chapter dealt with two facets of the binding between carbon nanotubes and 

localised molecular impurities. In the first part, we have presented a method that 

l)rovides a simple way of accounting for disorder effects on the transport properties 

of doped nanotubes. Ab-initio evaluations of the electronic structure of a nanotube 

with a single doping atom have been used as inputs to generate the corresponding 

changes to the tight-binding-like param eters in the vicinity of the impurity. Our
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method makes use of special sum rules for the single-particle Green functions that 

provide a closed-form expression for the variation of the total density of states, 

which in turn  can be used to relate the desired parameters with quantities like 

binding energy and charge transfer. These latter quantities, when evaluated by 

first principles, give a direct way of determining the unknown parameters. It is 

worth stressing tha t unlike band structure fitting, we do not depend on the choice 

of Brillouin zone points to be matched against. On the contrary, a finite number 

of equations give unique solutions to the parameters tha t can be used to evaluate 

the corresponding conductances. By averaging over a large ensemble of disordered 

configurations, we can obtain results with statistical significance tha t are likely to 

reproduce measurable results.

In the second part, we have expressed the DOS variation Ap, the electronic 

binding energy A E  and the charge transfer A C that result from the interaction 

between a metallic carbon nanotube and an unspecified molecular foreign object 

imder a common framework. W ritten in terms of a set of undetermined perturba

tion parameters, these expressions establish a constraint between those quantities, 

in particular the latter two. By varying the potential param eters up to selected 

maximum values we are able to find a limited range of perm itted values for both 

A E  and AC. Separately evaluated ab-initio results for a number of foreign object 

lie within the predicted ranges. Finthermore, the mathematical transparency of 

our expressions allows us to distinguish the contributions coming from both parts 

involved in the interaction, enabling us to trace how the predicted range of values 

changes with variations of the nanotube/foreign object pair. This can be used to 

solve the inverse problem of finding foreign object meeting specific requirements on 

their binding energy and charge transfer. In the cases of simple atomic adsorbates, 

this leads to a range of values for the ionisation potentials tha t indicates possible 

candidates for desirable doping agents. More importantly, this method can be useful 

to provide general guidelines in the search for ideal nanotube-based sensors.
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The work presented in this chapter has been pubhshed, and can be found in 

references [72], [73] and [74],
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Chapter 4

M odeling helically ordered 

perturbations of nanotubes

4.1 Introduction

4.1.1 M otivation

Nanotubes are one example of low-dimensional nanoscopic structures tha t have been 

at the forefront of intensive scientific investigation for more than a decade. As well 

as their remarkable intrinsic physical properties and enormous potential for techno

logical applications, doped nanotuhes have also been in focus due to the possibility 

of engineering desirable characteristics in nanotube-based devices.

Typically impurities are randomly dispersed in relation to the nanotube; as such 

they are spatially uncorrelated and are responsible for multiply scattering the elec

trons tha t travel across the structure. As a result of this scattering, the amplitude of 

the transm itted wave functions are reduced and so, as a consequence, is the overall 

conductance of the material. This is the case, for instance, in conductance modula

tion of nanotubes through both atomic and molecular doping as has been reported 

by a number of authors [57, 56, 58]. To give a concrete example of one way of 

utilising this effect, the ability to change the conductance of a nanotube exposed
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to certain gaseous molecules is driving the research to build sensitive nanodevices 

capable of detecting minute concentrations of specific substances [75].

Of a very different nature, geometrically ordered doping agents can also affect the 

conductivity of a host material but examples are not as plentiful and common as their 

disordered counterparts. Having nanotubes as hosts, the list of examples in which 

impurities are spatially ordered is even more limited. Although the underlying lattice 

remains the same, in this case the spatially ordered perturbing potential that acts on 

the nanotube due to the impurities may follow a different geometrical arrangement. 

Depending on the strength of the perturbation as well as on its spatial geometry, 

this can in principle lead to interference effects, both constructive and destructive, 

tha t must affect the overall band structure of the material. Rather than a purely 

abstract and speculative hypothesis, here we argue that this may actually occur 

with nanotubes helically wrapped by linear charge distributions.

Among a plethora of possible doping agents, charged l-dirnensional-like struc

tures such as polymers and DNA molecules are known to interact with nanotubes 

and to produce unusual physical properties: the former affecting the mechanical 

[24], thermal [18, 17] and electronic [76] properties of nanotube-polymer composite 

materials and the la tter being used as a technique to separate nanotubes of different 

nature [77]. As a result of this interaction, these molecules can sometimes coat the 

walls of a nanotube. One common feature observed in the coating morphology is the 

fact tha t the molecules tend to wrap around the tubular structures in a helical fash

ion [78, 79, 80, 81], as displayed in Fig. 4.1. Despite previous suggestions tha t this 

helicity should follow the chirality of the nanotube [82], there have been suggestions 

tha t these bulky molecules are not capable of resolving the atomic structure of the 

underlying lattice [28]. Therefore, a physical mechanism tha t favours chiral order 

without depending on the underlying atomic structure is a possible candidate to 

explain the helical wrapping of molecules. It is our goal to show tha t the electronic 

contribution to the total energy is one such possible mechanism.
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Figure 4.1: A STM image of PmPV-coated single wall nanotubes [78]. There is a 
notable ordering in the PmPV coating in the lower tube, with an obvious helicity to 
the coating. The wrapping angle is well defined, and is about 19° to the nanotube 
axis. These SWNTs are found to be coated with only 1 or 2 layers of PmPV.

While the DNA and some of the polymer molecules may have many differences, 

they share the common characteristic of being classifiable as quasi-linear charge dis

tributions. Motivated by this commonality, I have investigated the energetics of he

lically ordered 1-dimensional-like charge distributions around nanotubes. It is worth 

emphasising that this geometry must result from the favourable balance between the 

entropic, elastic and electronic contributions to the free energy of the system [83, 28]. 

However, under the assumption tha t the latter two are the dominant contributions 

to the energy balance [28], especially at low temperatures, we are particularly in

terested in the electronic part of the total energy. Our investigations have shown 

tha t this contribution can lead to the existence of energetically-favourable wrapping 

directions tha t result from quantum interference patterns between different sections 

of a wrapping strand.

Rather than providing an exact quantitative description for the full energetic 

balance, in this research we focus on simple models for the electronic structure of 

both the cylinder and the linear charge distribution with the purpose of highlighting 

cjualitative features tha t must also appear in more quantitatively accurate methods. 

Furthermore, since the total energy evaluated here is based on the electronic struc

ture of the system under investigation, this study may be of hel[) to understanding 

some of the electronic properties of DNA- and polymer-wrapped nanotubes.
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4.1.2 Layout o f this chapter

Tliis chapter can be considered as consisting of two distinct, but closely related parts. 

In the first part, we start off by considering a one-diinensional free electron gas and 

show tha t a periodic perturbation of localised scatterers induces an energy change 

tha t depends non-nionotonically on the common spacing of the scatterers. We do 

this by calculating a fornmla for the relevant Green function element in a mixed 

basis, and utilising the Lloyd’s fonimla method, as has been introduced in previous 

chapters. We also consider the similar case of a two dimensional free electron gas 

perturbed by a series of line delta functions. We show how this problem can be 

viewed as being equivalent to a series of one-dimensional problems. Again, we utilise 

the Lloyd’s formula method as an efficient way of calculating the energy change due 

to the perturbation. We then show how the problem tha t we ultimately wish to 

solve, tha t of a free electron gas cylinder wrapped by a polarising potential, can be 

considered as a limiting case of the two dimensional free electron gas perturbed by 

a series of line delta functions, albeit with the inclusion of appropriate boundary 

conditions. The energy change due to different coiling angles is calculated, and the 

existence of favourable inter-scatterer distances, and thus favourable coiling angles 

is shown.

In the second part, we treat the nanotube within the tight-binding model and 

treat the influence of the charged coiling perturbation on the nanotube by consid

ering various coiling square well potentials on the nanotubes surface. I again show 

tha t there is a non-monotonic dependence on binding energy for different coiling 

angles, when this more realistic model for the electronic structure of the nanotube 

is utilised. Investigations have been performed into the effects tha t such a pertur

bation has on the electronic structure of the tube, as characterised by parameters 

such as the size of perturbation-induced mini-gaps and the energy of the first opti

cal transition, in terms of param eters which characterise the perturbation, such as 

amplitude, width of the well, and coiling angle. The work in this chapter is based in
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part on work done witli M auro S. Ferreira, and lias been published in [84] and [85].

4.2 M odeling nanotube polym er interaction via  

free electron gas

4.2.1 Overview

My overall aim in this portion of the  work was to  model the  nano tube as a 2- 

dim ensional free electron gas closed into an infinitely long cylinder of nanoscale 

radius R ,  and investigate w hat effect a helical charge distribu tion  would have on the 

electronic s tru c tu re  of the  cylinder. Due to the extrem ely high aspect ratio  of m ost 

nanotubes, it is quite  a good approxim ation to  take the length as tending to  infinity. 

Because the  presence of a charge distribu tion  near the tube  (such as th a t  carried 

on the backbone of a wrajiping DNA molecule) will polarise the electron density 

in its proximity, we include a helically sym m etric po ten tia l to reproduce th is effect. 

Considering m etallic nanotubes, we assum e th a t the electron gas is highly efficient at 

screening electric fields due to ex tra  charge appearing in the system , which suggests 

th a t  a short-ranged potential is appropriate . Taking the  m ost extrem e limit of 

this, we have assum ed a delta-function potential. W hile th is may not be the  m ost 

convincing model for the  effect of a w rapping molecule, it does allow us to evaluate 

the  key quantities analytically, bringing a degree of transparency  to our results. I 

wish to  em phasise th a t perfect screening is not an essential ingredient in our model, 

and can be relaxed by assum ing a longer-range potential, such as a square well 

po ten tial. In fact, as will be seen later in this chapter, when we move to  a tight- 

binding model, we find th a t this brings no qualitative difference to  neither our results 

nor conclusions.

W ith  these simplifications, we have m apped the problem  of a helical charge dis

tribu tion  surrounding the surface of a nano tube into th a t  of a cylindrical electron
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(a)

2nR
Figure 4.2: Schem atic diagram  of the geom etry involved in helical wrapping, (a) A 
single s tran d  is assum ed to  wind around an infinitely long cylinder of radius R  a t 
a constan t angle 9. (b) In the  two dimensional depiction, the  unw rapped tube  is 
represented by a stripe  of free electron gas of w idth 2nH.  The coiling angle 9 defines 
a unit cell of length 2-k R /  tan  9. Equivalence of the two representations is established 
by dem anding th a t the value of the wavefunction at the left hand boundary of the 
rectangle m atches th a t  on the  point on the right hand side, a t the sam e height.

gas subject to  a helically-synnnetric delta-function potential. Fig. 4.2a shows the 

geom etry of the  potential in three dimensions, while Fig. 4.2b displays the cor

responding unw rapped version in the  plane. The process by which the electronic 

stru c tu re  of the  tube  can be ex tracted  from th a t of the unw rapped periodic case is 

described later in the chapter, and is in the sam e spirit as the  zone-folding approach 

to  ex tracting  the  band struc tu re  of nanotubes from th a t of a graj)hene sheet. By 

calculating the  energetics of th is system  our aim was to root ou t preferential w rap

ping angles which minimise the to ta l electronic energy of the system , and thus show 

th a t  even if we neglect the detailed geom etry of the nanotube, it is possible for a 

coiling p e rtu rbation  to  coil preferentially a t certain  angles.

To calculate the electronic energy levels of a given m aterial, the choice of a su it

able coordinate system  th a t reflects the  underlying synnnetry of the problem  under 

investigation is usually called for. Here, given the coiling geom etry of the problem , 

one would expect the use of a helical coordinate system  to  solve the  single particle 

Schroedinger equation. However, trea ting  the  system  in its unw rapped form, as

2nR
tan0
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shown in Fig. 4.2b, avoids this. Usefully, in this form we can see tha t the helical 

potential is equivalent to an array of equally-spaced line delta functions embed

ded in a 2-dimensional electron gas, under the imposition of appropriate boundary 

conditions on the electronic wave function. There is a striking similarity between

more general Kronig-Penney model) where electrons experience a periodic potential 

formed by equidistant delta functions. In tha t case the total energy depends non- 

monotonically on the scatterer separation, suggesting the existence of preferential 

spacings. The basic idea of this research is to investigate this similarity and show 

th a t the total electronic energy of the helical charge distribution displays similar 

non-monotonicities as a function of the separation D (see Fig. 4.2b), and conse

quently as a fimction of the wrapping angle 6.

4.2.2 Perturbed Free Electron Gas in ID  

F in ite  N um ber o f Scatterers

We start with the well known text-book problem [86] of a 1-dimensional electron gas, 

perturbed by a single delta function, weighted by a param eter V̂ (a:) =  \  6{x — X q ) -  

'riie im perturbed system is a free electron gas in one dimension, and we investigate 

only one spin chamiel. We assume tha t the gas is confined to a circle of length 

N a, A' —> cx) (j)eriodic boundary conditions). If we denote the eigenstates of position 

by |.x), it is well known tha t the eigenstates of the Hamiltonian are the completely 

delocalised states \k), where

In principle, to calculate the total energy for this system requires the calculation 

of the spectrum of the Hamiltonian and summing over the occupied energy levels.

this representation and the familiar Dirac-comb potential (one limiting case of the

(4.1)

I'lie sta te  k has crystal momentum hk and enei'gy eigenvalue
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However, we are interested only in changes in the total energy, a quantity that gives 

an idea of how energetically favourable this interaction is. In terms of Green func

tions (GF), this calculation becomes extremely simple due to the localised nature 

of the perturbing potential. Up to now, I have only used Lloyd’s formula (as in 

chapters 2 and 3) with reference to a discrete system, such as tha t of the linear 

chain of atomic orbitals. However, the form of Lloyd’s formula holds also for the 

continuum case, which after all can be viewed as the same as a cellularised space in 

the limit of vanishing cell size.

Indeed, it is straightforward to show tha t the effect of the delta function on 

the total density of states of the non-interacting single-spin electron gas is fully 

accounted for by Lloyd’s formula [39],

Ap{E)  = - - ^ I m { l o g ( l  -  A(a:o|5ko))} • (4.2)
7T a P j

Ap{E)  is the variation in the total density of states p for electrons with energy E,  

g{E) = {{E -f- iO"'')! — / / ) “ ' is the GF operator associated w'ith the free-electron 

Hamiltonian / / ,  and the (juantum basis \x) labels the eigenvectors of the position 

operator.

A simple integration by parts provides the total energy variation 5ei due to the 

presence of a single delta function impurity. It is given by

5e\ = — [  d E 'Im lo g ( l —A (;ro| ^ l-̂ ô)) • (4.3)
^  J —oo

The Green function matrix element appearing in Eqs. (4.2) and (4.3) is derived in 

Appendix F, and is given by:

where h — l , me  = 1 and iO"*" is a small positive imaginary energy tha t ensures we
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select the retarded Green function. The quantity Ep is the Fermi level and regulates 

the electronic occupation of the system; at zero temperature, all states with energy 

lower than Ep are fully occupied, while those above are empty. As energy reference 

we choose the total energy of the perturbation-free electron gas, which means that 

the total electronic energy of the system with a single perturbation is given by 5ci. 

The quantity A is the weight of the associated delta function.

We can then study how the total energy of a system of N  identical localised 

perturbing potentials depends on their common separation, D. In this case, due to 

quantum interference effects, the total energy of the system 5cn{D) will differ from 

N5e\ in general. To be precise, we should have lim^^oo 5cn{D) = N5ei.  It is simple 

to generalise Eq. (4.3) to express the energy variation due to the introduction of N  

perturbations. With the perturbing potential now described by V{x) = A S{x— 

JD),  the total energy change reads

6 c n { D )  =  i  y "^dEI m( ^ l og ( de t ( i - Ay \ 7 ) ) )  (4.5)

In the equation above, 1 is the identity matrix and M is & N  x N  matrix whose ele

ments are [A/]  ̂„j =  {iD\ g \m.D), the kets and bras being eigenstates of the position 

operator. Having given the relevant expressions in the case of a finite number of 

scatterers, I now develop similar results in the case of an infinite array of scatterers.

Infinite Number of scatterers

Having given the relevant expressions in the case of a finite immber of scatterers, I 

now develop similar results in the case of an infinite array of scatterers. The system 

now undergoes a periodic perturbation, so we can utilise Bloch’s theorem. The 

perturbation Hamiltonian is given as

N

^  =  A jim  V  |jo )(ja |, (4.6)
N —>oo ^ '  

j = 0
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where A is a continuous param eter th a t determ ines tlie strength  of the  perturbation. 

This corresponds to a weighted Dirac comb potential in real space.

If we cellularise the  system  according to  the  rule

x' =  j a  +  X (4.7)

where j  labels cells and x  is an intra-cell index, then  we can w rite the  pertu rbation  

H am iltonian as
N

V ^ X l i m  J 2 \ j , 0 ) { j , 0 \ ,  (4.8)
N —>oo ^ '

j= 0

where

\ j , x )  \ ja + x).  (4.9)

Here j  is an intercell index, while x  is an intracell index. We introduce the mixed  

basis \ k,x) ,  where

\ k ,x)  =  \k)\x)  (4.10)

and

j = 0

Here k is & wavenumber; since we have (discrete) translational synnnetry, we can

apply the Bloch theorem . T he quan tity  x  labels the points inside a single unit cell.

W ith  th is definition a little  algebra leads to

27T
a

l> =  A lim V|A:,0)(/c,0|, (4.12)
TV — * 0 0

k=0

where

(4.13)

In the special case th a t we can w rite both  the  Green fmiction of the unpertu rbed
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system  and the  pe rtu rbation  H am iltonian in the form

0  = Y . d k ,  (4.14)
k

where

( \ : ^ { k \ d \ k ' ) S ^ , ,  (4.15)

is a partial projection of the  relevant operator, we can w rite the  Lloyd form ula as

“  9 k ( E ) V k ) ^ ) ^  ■ (4-16)

In the  present case, it is possible to  shov.  ̂ th a t  both  g and V  can be w ritten  in the  

form of Eq. (4.15), where

Vk = X\k,Xo){k,Xo\  (4,17)

and

9 k — /  d x \ k , x )  { k , x \ g \ k , x )  {k,x\ .  (4-18)
Jo

Furtherm ore, as has been discussed in chapter 2 in the case of a single im purity, 

the  determ inan t collapses to the simple scalar function 1 — A { k ,  Xo| g |A’, X q) .  S o  the 

change in the density of s ta tes  is given as

-^p (^ ) =  ^  (log (1 -  A { k ,  jjol g |A:, Xq)))^ . (4.19)

l b  evaluate the  quan tity  { k ,  Xo\  g \ k , X o ) ,  we s ta r t w ith the  observation th a t the  real 

space m atrix  elem ent of the Green function of a free electron gas in one dim ension 

is given by the  form ula

{x \g\x ' )  = {xo\g\xo)e^^’>^^^\^-^\ (4.20)

where goo :=  (̂ ôl .9 lias already been introduced in Eq. (4.4), and kp{E) —
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± \ / 2 E  + 'iO+, Im (kp) > 0. By Eq. (4.11) and presumed orthonormality of the real 

space kets,
^ i j k a

( j , x \ k , x o )  ^ - ^ 6 { x  -  Xo) .  (4.21)

W ith this result we can calculate { k , x o \  g  \ k , Xo) :

p N a  p N a

g =  /  dx'\x){x'\g^^^:
Jo Jo

3,f

=  V  T d x  £  dx' \ j ,x )  i f ,  (4.22)

This can be projected down to yield:

ra  pa
k p \ { j - f ) a + x - x ' \

ra pa
{ k , X o \ g \ k , x o )  =  J  J  d x ' { k , X o \ j ,  x ) { f , x'\k, X o)gm e'^ '’

j j '
_  S ^ ’̂ ^^tak{j'-j)^ikpa\{j-j')\ (4 23)

i j '

which by shifting the index (in the limit tha t N  —>■ oo) is the same as

OO

(k,Xolglk,Xo) = goo ^  e“ '=̂ ei a k j  ikpa\ j \

] = -oo

( - 1  oo ^
giafcjgtfcpaljl ^  ^ i a k j ^^ k ,a \ i \  + 1

j = - o o  j = l  j

(OO CXD \

j=l j=l /
/ g i a ( k p - k )  ^ ia{kp+k)

I 2   f , i a{kp-k )    gia{kp+k) ^
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Figure 4.3: Relative energy change per pertu rbation  for a one-dim ensional free elec
tron  gas p e rtu rbed  by a series of equally spaced delta-function scatterers for (i) 2 
scatterers (dashed line), (ii) 7 scatterers (continuous line), (iii) Infinite num ber of 
scatterers (do tted  line). Ayv is a dimensionless quantity, and is defined in Eq. (4.25). 
T he am plitude of the scattering  potential is A =  —0.3 in all cases. T he distance 
between successive m inim a (m axim a) is where k f  is the  Fermi-wavemmiber of 
the gas.

R esults and interpretation

To illustrate  the  separation dependence of the to ta l energy for a given configuration, 

we s tudy  the dimensionless quan tity  A n {D)  defined as

(4.24)

(4.25)

Fig. 4.3 plots th is quantity  as a function of the spacing D  for different values of 

N . Also depicted is the  lim iting case for A'' =  oo. In th is case, the  expression for



5coc becomes

I) r i
6e<^{D) = ^  y J Irn (log (l -  A(/c^,0|g|A:^,0))). (4.26)

As anticipated previously, tlie total electronic energy depends non-monotonically on 

the perturbation spacing I) and each curve for A/v(D) shows a series of regularly 

spaced minima. This non-monotonicity points to the existence of preferential sepa

ration values for which the total electronic energy is minimised. The overall trend 

of damped oscillations corroborates the expected result tha t only in the asymptotic 

limit of infinitely large separation D  does the total energy 5cn{D) agree with

If we choose units such tha t rrig = h — \ the Fermi vector of the host gas is given by 
^.2

the equation Ep — The hypothesis tha t these oscillations result from quantum 

interference effects tha t reflect the electronic characteristics of the embedding elec

tron gas is supported by the fact tha t neighbouring energy minima are separated by 

k{,' being the Fermi wave vector of the gas, a quantity independent of the details 

of the perturbation.

4.2 .3  P ertu rb ed  Free E lectron  G as in 2D

Next, we extend the above argument to deal with 2-dimensional perturbations. 

This is an intermediate step in our calculation, tha t should serve as a limiting case 

to model a tube of infinite radius. As shown in Fig. 4.2, a helically symmetric 

delta function potential surrounding an infinitely long nanotube can be represented 

by an array of equally spaced line delta functions spanning the finite-width stripe 

th a t one obtains from unwrapping the tube. To characterise a tube, this unw^rapped 

representation must include periodic boundary conditions, equivalent to juxtaposing 

identical stripes (as per Fig. 4.2b). This gives a 2-dimensional array of infinitely long 

linear delta functions tha t can be mathematically expressed as V{x,  y) = X 6{x — 

j O ) .
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Similarly to the one-dimensional case, we calculate the total energy variation due 

to the introduction of a single line delta function, and then generalise to an infinite 

number of equally spaced pertm 'bations. In the single line case, the major difference 

with the 1-dimensional case lies in the utilisation of a Fourier transform along the 

translationally invariant y-direction. This leads to a new mixed representation \x,  ky)  

in which the y  direction is treated in reciprocal space while the x  direction remains 

in real space. Adopting the same notation as before, it is straightforward to show 

tha t the energy variation per unit length of perturbation due to a single line delta 

function located at x  = xq becomes

Y roo p E p

S t i  ^  —  I  d k y  J  d E l m \ o g { l  -  X { x o , k y \ g \ x o . k y ) ) . (4.27)

One major difference between this expression and tha t in Eq. (4.3) is tha t 

this value is the energy per unit length of perturbation. The other substantiative 

differences are in the ap{)earance of an integral over ky and also in the new GF 

m atrix element {x q , ky\  g  \xo,  ky) .

For the case of an infinite number of line delta functions separated by a common 

distance D, the total energy change Se^o per length of perturbation is given by the 

similar expression

I )  f v  f ^ F
5 t o o  =  J  J  J d E ' l o g ( l - A  { k ^ , ( ) , k y \ g \ k : r . , 0 , k y ) )

(4.28)

where the first index of the ket \ka;, 0, ky) corresponds to the discrete symmetry in the 

x-direction, the second the position of the perturbation inside the uit cell, while 

the third reflects the continuous symmetry in the y—direction. It is straightforward 

to show th a t the GF in this new basis reads the same as Eq. (4.4), albeit with E
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replaced hy E  —

(^0? ^y \ 9 1̂ 0) ^y') ^
1

(4.29)
2{E + iO+ -  k l /2 ) '

The integration hmits for the integral in Eq. (4.28) reflect the periodicity along

acter in the direction parallel to the perturbation.

Again A n {D), as per Eq. (4.25) is useful to elucidate the distance dependence 

of the total energy as a fraction of the overall interaction. Shown in Fig. 4.4a for 

N  = oo, the expected non-monotonicity of Aoo{D) is confirmed, again hinting at the 

existence of preferential values for the spacing D. Such preferential spacings should 

correspond to preferential wrapping angles 6, as the two quantities are directly 

related.

This speculation can be tested only if boundary conditions appropriate for heli

cally wrapped tubes are imposed. This requires the following quantization conditions 

for the variables and ky\

where m  is an integer, and 9 ^ 0 .  Each value of m defines a different straight line in

of those lines is evidently ^-dependent and the spacing between them  is inversely

finite width, the integration over kx and ky appearing in Eq. (4.28) must then be 

performed under the constraint imposed by Eq. (4.30), tha t is, k^ and ky vary 

over a set of discrete lines. Our speculation is finally confirmed after A n {D) is 

evaluated with the aforementioned quantization constraints and still displays sim

ilar non-monotonic behaviour in the separation-dependent total energy. Fig. 4.4b

the X  direction whereas those for the integral over k y  reflects the free-electron char-

(4.30)

reciprocal space tha t labels the possible electronic states in the system. The slope

proportional to the tube’s radius. Rather than spanning an infinite-long stripe of

98



plots Aoo as a function of D  for a tube of radius R = 5(Iq and two arbitrary val

ues of Ep.  The periodicity of Aao{D) depends on the Fermi level but all curves 

display several minima at specific values of D. Following Fig. 4.2b, the relation 

I) = 2'kR cosO means tha t preferential values for the spacing D  correspond to en

ergetically favourable wrapping angles 0. This is confirmed in the inset of Fig. 4.4 

th a t shows how the total energy scales with the angle 9.

As far as the electronic contribution to the total energy is concerned, the exis

tence of preferential coiling angles does not determine the final wrapping direction of 

one-dimensional strands surrounding a nanotube. This nmst obviously be weighed 

against other energy contributions such as the elastic cost of folding the strands as 

well as other geometrical factors [28]. Only the balance from all these contributions 

can determine the overall favourable alignment. In fact, according to Fig. 4.4b, the 

optimal angle tha t minimises the total electronic energy is close to 9 — -k/2. This 

wrapj)ing angle would bring significant costs in terms of elastic energy. A compro

mise angle is likely to arise as a result of the adequate balance tha t accounts for the 

different contributions to the energy. Although the simplicity of our model is not 

capable of addressing the precise weights in this balance, it serves the pm'pose of 

pointing this contribution as a possible mechanism tha t favours chiral order without 

depending on the underlying atomic structure.

Generally, the electronic structure of carbon nanotubes is poorly described within 

a free electron gas model. However, the electronic structure of nanotubes is known to 

be well described by the simple single-orbital tight-binding model. To test whether 

the non-rnonotonicities of the total energy also appear in such more realistic models, 

we have performed similar calculations within the tight-binding model, which I 

present in the next section.
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Figure 4.4: Dimensioiiless relative energy change, as defined in Eq. (4.25), taken per 
unit length of perturbation for (a) a two-dimensional free electron gas perturbed by 
an infinite array of equally spaced delta-function scatterers {Ep — 2.0) and (b) a free 
electron gas cylinder in the presence of a coiling perturbation for two separate Fermi 
levels {Ep = 0.5, solid line and Ep  =  1-0, dashed line). A series of energy minima 
is obtained, indicating the existence of energetically favourable coiling angles. Inset 
in (b) is a graph of Aqo as a function of the coiling angle 6. The amplitude of 
the scattering potential is A =  —0.3 in all cases. The distance between successive 
minima (maxima) is again seen to be where kp  is the Fermi-wavenumber of the 
gas.
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4.3 Tight binding studies

While the preceeding section details one mechanism whereby chiral order can be 

introduced into a system where none previously existed, there is still the strong 

suspicion tha t such a simple model may miss some im portant underlying features. 

In this section the detailed atomic structure of the underlying tube is assumed to be 

im portant, and the electronic structure is no longer treated as an electron gas. Again, 

we consider the case of a coiling charged polymer, whose presence is accounted for 

by assuming th a t what lies in its neighbourhood becomes polarised. In this case, 

it polarises some of the carbon atoms on the tube. The polarised atoms will follow 

the same helical path as the charge distribution and thus acquire a different on-site 

energy to their non-polarised counterparts.

Under the initial assumption that these bulky molecules camiot resolve the 

atomic structure of the underlying lattice [28, 84], the tubes may then be exposed 

to two different helical pitches: the intrinsic chirality of the nanotube and tha t as

sociated with the wrapping potential. For simplicity’s sake, we treat the wrapping 

molecule as a continuous charge distribution of uniform width wrapped around the 

nanotube at a constant angle 6, as depicted in Fig. 4.5. We assume tha t the induced 

])olarisation represented by the perturbing potential in Eq. (3.2) affects all carbon 

atoms immediately below the charged stripe in an identical fashion. The lateral 

dimension of the wrapping molecule, together with the distance of the molecule 

from the tube, determines the width W  of this stripe. In principle, the angle 9 

may bear no direct relation to the chiral angle a  of the underlying nanotube, and 

we treat these two parameters as both being independent. It is our goal here to 

investigate the effect tha t this combination of chiralities may have on the nanotube 

band structure and, in particular, on its electronic density of states (DOS).

In this model, nanotubes are described by the following effective tight-binding
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H am iltonian

//o =  \j)l{j'\ , (4.31)
hi'

where |j)  represents the 7r-orbital centred a t atom  j ,  \j') is a nearest-neighbour 

orb ita l centred on atom  / ,  and 7 is the  nearest-neighbour electronic hopping, which 

we will choose to  be our energy unit. The to ta l H am iltonian is given as / i  =  IIq +  V , 

where

l/ =  ^ A |m ) ( r n |  (4.32)
m

accounts for th e  polarisation of the  pertu rbed  atom s under the  stripe. Here, m  labels 

those atom s affected by the proxim ity to  the w rapping molecule and A represents 

the corresponding shift in their on-site potential due to  the  induced polarisation.. 

A can in principle be determ ined in accordance w ith the  m easiued binding energy 

between the nano tube and its w rapping molecules. Also, the fact th a t ionic doping 

agents can affect the am ount of charge carried on the  DNA backbone suggests th a t 

we m ay consider a range of values for A,  which we will for the moment regard as a 

free param eter.

To assess how the electronic s truc tu re  of a  nanotube is influenced by the w rap

ping po ten tia l, I have perform ed a system atic study  of how the  electronic DOS is 

affected as some of these different param eters are varied. In particular, we will 

take advantage of the  fact th a t the  quasi-one-dimensional nanotubes have densities 

of s ta tes  containing several distinctive van Hove singularities (VHS). These are lo

cated  a t values of energy for which an arb itrarily  large num ber of electrons can l)e 

in s ta tes  of the  same energy. Consequently, allowed transitions between van Hove 

singularities is a key feature of tlie optical absorption spectrum . By locating these 

singularities and tracking how they evolve as the  aforem entioned param eters are var

ied, one can view, a t least from a qualitative point of view, how nanotubes res])ond 

to such pertu rbations. Such response could, in principle, be tracked by com paring 

the optical absorption spectrum  of coated nanotubes w ith th a t of pristine tubes.
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Figure 4.5: Schem atic representation of a hehcally w rapped nanotube. In (a) we 
display a polym eric molecule represented by a continuous charge d istribu tion  of 
constan t w idth 11' coiling at an angle 0 around the surface of the nanotube. In (b) 
we display the corresponding geom etry in the im w rapped representation. T he atom s 
to  be pertu rbed  are indicated by the  dark (blue) balls, while the  unpertiu 'bed atom s 
are the  light (yellow) balls. D  is defined in the picture as the d istance between 
ecjuivalent atom s of neighbouring stripes. Also depicted is the circumference of the 
nano tube {2-k R)  where /? is the  nano tube radius.
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Tlie sequence adopted in this section is as follows: in the next section, we discuss 

the details of our calculations, as well as defining some useful concepts; in the 

following section, we present results for the dependence of a few physical observables 

on the inicrostructure param eters A,^ and W; and in the final section we present 

conclusions and discussion.

4.3.1 C alcu lational deta ils

To calculate the electronic structure of the system in the nearest neighbour tight- 

binding model, we have directly solved the Schroedinger equation in reciprocal space, 

which requires the introduction of a repeating unit cell. We assume tha t the j)er- 

turbing potential makes P  full twists in the space of Q primitive unit cells of the 

nanotube, and tha t P  and Q are positive integers with no common factor. Then if 

T  is the translational vector of the nanotiibe’s unit cell, the perturbed structm e is 

periodic along the tube axis (chosen as oiu’ z —axis), with period Q|7'|. As a concrete 

example, the system depicted in Fig. 4.5b has P  = 2, Q = 9, and 7’ =  az, where 

a is the distance between two crystallographically equivalent atoms in a graphene 

lattice, and i  is a unit vector along the tube axis. The coiling angle is given by the 

formula

the coiling angle appropriate to tha t system will lie arbitrarily close to tha t of a 

commensurate system, provided we allow P  and Q to be sufficiently large.

Since we have now constructed a periodic system, we can apply Bloch’s theorem

(4.33)

where C  is the chiral vector of the tube. While it is conceivable tha t the perturbation 

could follow an incommensurate configuration (^  irrational), it is also clear tha t

to write H = H^, where k is the wave number in reciprocal space. If there are N

electronic states in this supercell, for each value of k G [0, we must diagonalise
V M  I

the square m atrix (/| 11̂  \m) to obtain the N  eigenvalues
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To construct the density of s ta tes  per atom , p(E) ,  we use the eigenvahie repre

sentation  for the  single particle Green function as discussed in cliapter 2:

Once we have the  DOS per atom , we can calculate auxiliary quantities such as 

the  Fermi level of the  com posite m aterial, determ ined by dem anding th a t

This last follows from the observation th a t there should be one electron per 

carbon atom  on the average, while allowing the  possibility th a t the in teraction causes 

some charge to  be transferred  from the  w rapping molecule to  the nanotube. Since 

the p e rtu rbation  is spatially  extended, the Fermi level of the composed system  will 

in principle differ from th a t  of the unpertu rbed  system , in con trast to  the  case 

of a localised pertu rbation . W hile we have not here considered charge transfer 

between the sub-system s, such a constrain t can easily be relaxed in our apjjroach 

by appropriately  modifying the RHS of Eq. (4.34) as described.

O f particu lar interest to us is the behaviour of the DOS. T he DOS of a semi

conducting nano tube in the  absence of a pertu rbation  can be characterised by a 

d iam eter dependent energy gap, together with a series of van Hove singularities. For 

p e rtu rbation  free m etallic tubes, sim ilar peaks are separated  by a fiat, dispersion-less 

region abou t the  Fermi level. However, it can be shown th a t the m etallic character 

of these tubes is sensitive to various perturbations. Perhaps the m ost famous of 

these is the fact th a t zig-zag nanotubes, which otherwise would be considered as 

m etallic, display curvature induced mini-gaps. T he cases we have considered have 

jjroved no different: in every case tested , we have seen an induced m ini-gap due to 

the  helical pertu rbation . However, we will show th a t  under certain  circum stances, 

these gaps are so small th a t it is likely th a t this effect will be m asked by therm al

(4.34)

(4.35)
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effects, or perhaps by charge transfer between the parts. Even so, it is im portant 

to quantify the size of these gaps, so tliat we can identify at what tem perature such 

effects win become apparent. The characterisation of these mini-gaps as a function 

of the perturbation parameters has been one aim of this work. More specifically, we 

have investigated how the VHS (and thus indirectly the optical transitions) change 

in response to the three independent param eters tha t characterise the perturbation, 

9, A and W.

4.3.2 Location o f van Hove singularities

It is well known tha t the VHS associated with a SWNT have a simple geometric in

terpretation. The Brillouin zone of graphene corresponds to a hexagon in recijjrocal 

space, and the effect of wrapping a graphene sheet into a nanotube confines the elec

tronic wavefunction in the circumferential direction. This leads to a quantization of 

the circumferential component of the wave vector. Accordingly, the electronic struc

ture of the resulting nanotube is obtained by considering only those states which lie 

in a series of discrete equally spaced lines overlaid on the Brillouin zone of graphene. 

If one plots the iso-energy surfaces for the graphene sheet for different energies, one 

sees tha t the VHS in the DOS of the nanotube correspond precisely to those energies 

where the allowed wave vector lines touch the iso-energy surfaces tangentially.

One can apply the same reasoning in the case of our perturbed system. In this 

case, however, the Brillouin zone will be contained in a parallelogram, due to the 

oblique shape of our real space unit cell. Again, the spatial confinement of the 

electronic wavefunctions induces a wave vector quantization. Unsurprisingly, the 

VHS of the composed system can be tracked in the same fashion as in the case of 

the unperturbed system, as the points of tangency of these quantized lines to the 

iso-energy surfaces appropriate to the perturbed system. It is worth stressing that 

the constant-energy surfaces are no longer determined by the electronic structure 

of a simple graphene sheet. In this case, it corresponds to the electronic states
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associated with a sheet of hexagoiially ordered atoms whose on-site potentials display 

the striped geometry depicted in Fig. 4.5b. This is illustrated in Fig. 4.6. On the left 

panel, Fig. 4.6a, we plot the DOS of a (4,4) nanotube perturbed by a helical potential 

defined hy 0 = 7r /3rad, W  — 2.0Aand A =  —0.87. Two vertical dashed lines are 

also included, one E  — 0.0 and another at E  — 0.687. former (thick line) 

marks the on-site energy of the unperturbed carbon atoms and the latter (thin line) 

coincides with a VHS displayed in the DOS. The right panel, Fig. 4.6b, shows the 

corresponding constant-energy plots in reciprocal space superimposed with equally 

spaced lines representing the allowed wave vectors that the electronic states can have. 

Once again the thick-line iso-surface corresponds to E =  0 whereas the thin-line 

curves are associated with E — 0.687. is evident that, for E — 0, the iso-surface 

intersects (non-tangentially) the quantized wave vector lines indicating the existence 

of extended electronic states at that energy, also confirmed by the finiteness of its 

DOS. In contrast, for E = 0.687, the thick-line iso-surface tangentially intersects the 

quantized lines, proving that the geometrical interpretation mentioned above is also 

valid for the nanotube in the presence of the helical perturbation. With such a simj)le 

geometrical {)icture, one can easily trace how the VHS positions are affected by the 

helical potential. Bearing in mind that optical transitions are usually dependent on 

the distance between neighbouring VHS, this picture seems useful to study how the 

electronic structure of a nanotube is affected by the wrapping perturbation. In what 

follows we adopt the standard notation of and Sjj  for the separation between 

the VHS for metallic and semiconducting tubes, respectively. Following a similar 

notation, we represent the perturbation-induced mini-gaps in metallic tubes by the 

quantity m.n.

4 .3 .3  W id th  d ep en d en ce o f  p erturbation

The effect of the helical potential on the nanotube atoms can be separated into two 

disjoint contiguous subsets: a stripe of polarised atoms, and another in which the
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Figure 4.6: (a) The DOS for a (4,4) armchair nanotube perturbed at an angle of 
B =  |r a d  by a 2.0A wide stripe of amplitude A =  —0 . 8 7 . The dashed line cor
responds to the onsite energy of the unperturbed nanotube, while the dotted line 
marks the maximum of the first VHS above the Fermi level, (b) The corresponding 
energy iso-surfaces in reciprocal space for a graphene sheet perturbed by a series of 
equally spaced stripes. The straight lines depict the quantized wave vectors that 
are permitted due to the boundary conditions. Two distinct iso-energy surfaces are 
presented, corresponding to the two energies highlighted in (a). The iso-surface cor
responding to the VHS energy is seen to touch the lines of quantization tangentially, 
in contrast to that of the lower energy.

atoms are unperturbed. W  is an upper bound for the perpendicular distance between 

any two perturbed atoms, as measured normal to the direction of the perturbation. 

Following Fig. 4.5b, we define D as the distance between two equivalent atoms of 

neighbouring stripes. It follows from these definitions that W  must range between 

0 and D. It is worth noting that stripe widths such that W / D ^  Q (low coverage) 

are somewhat equivalent to the cases of nearly full coverage in which W/ D k, 1. 

In each of these limiting cases, we expect the shape of the DOS to approach that 

of the uniform tube, albeit in the second case with a rigid shift of its centre of 

mass from Ep  =  0 to the value Ep =  A. Despite the fact that W  can take any 

value in the range [0, D], the dependence of the quantities of interest as a function 

of W  must acquire a step-like quality. This is because for any value W,  there is a 

minimum quantity A W  that the stripe must be widened by in order to contain a new 

perturbed atom. This is illustrated in Fig. 4.7a where we show how m.n depends
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Figure 4.7: (a) Dependence of the m n  on the width W  for an (18,0) nanotube 
coiled by a uniform stripe at angle 9 = 0.978rad and A =  —0 .8 7 . The maximum 
value of m il occurs at W / D  =  0.5 and is used liere as a reference. The smooth 
solid line is a quadratic fitting. The overall trend is of a non-nionotonic increase 
in the perturbation-induced mini-gap. (b) Dependence of the transition M u on the 
width W  for the (18,0) nanotube (dashed, black ciu've) together with a quadratic 
regression (continuous curve) in units of the unperturbed transition A/°i =  O.5 7 7 . 
A =  —0.3 ,̂ in all cases. The overall trend is towards a red-shifting of the transition, 
with a energy change of at most about 11%.

on U ’ for an (18,0) nanotube with A =  —0 .8 7  and 9 = 0.978rad. P lotted in units of 

m il for \ \ y D  = 0.5, which is the maximum value for the mini-gap (m-n =  O.OO5 6 7 ), 

we see tha t the mini-gap scales approximately quadratically with the ratio W/ D.  

I ’he locations of the main VHS are also affected by the perturbation. In this case, 

the energy distance between the first VHS on either side of the Fermi level, here 

labelled M u  by analogy with the unperturbed tube, is plotted in Fig. 4.7b as a 

function of the width Vi' for the same set of parameters, in units of the unpertiu’bed 

transition energy 71/°]. Once again the step-like behaviour of the calculated results 

are smoothed by fitting the curve to a quadratic regression to the da ta  points. The 

overall trend is towards a red-shifting of the transition, with a maximum change 

of approximately 11%. The duality between the unperturbed and the perturbed 

atoms is highlighted by the degree to which the curve is symmetric about the point 

W / D  =  0.5.
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4 .3 .4  A ngular d ep en d en ce o f  p erturbation

An interesting question to ask is what is the quahtative behaviour of the quantities 

of interest when the angle 6 is varied. In our scheme, the coihng angle is given by 

the formula

that the coiling angle appropriate to that system will lie arbitrarily close to that of 

a commensurate system, provided we allow P  and Q to be sufficiently large. Since 

we nmst have a periodic system, 6 caimot be varied continuously, but must increase 

in discrete steps, similarly to the width-dependence results presented above. We 

have investigated the angular dependence of these quantities for an (18,0) zigzag 

nanotube. Such a tube is an ideal candidate for these investigations since the fun

damental unit cell is only ^  in length, but 18a in width, where a is the lattice 

parameter of the graphene structure. This allows one to consider a wide range of 

angles. Holding both the width of the stripe H' =  6.7 A and the amplitude of the 

perturbation A =  —0.37 constant. Fig. 4.8 shows both m u and Mu  transitions as a 

function of the coiling angle. Panel (a) displays rrin in units of 7 for various coiling 

angles and panel (b) does the same for M u  in which it is expressed in units of the 

imperturbed transition yi/°j. Each graph has a smoother curve acting as a guide 

to the eye which reflects the overall trend of the above quantities and how they 

depend on the coiling angle. What is evident from panel (a) is that the stepwise 

fluctuations that surround the smooth curve becomes much more pronounced at val

ues of 6 corresponding to coiling angles that are perfectly connnensurate with the 

high synmietry directions of the nanotube. In those cases the perturbation-induced 

mini-gaps can be as large as 40 rneV. As far as the M\\ transition is concerned, 

one can clearly see in panel (b) that at low coiling angles there is a noticeable blue-

6 = arctan (4.36)

where C  is the chiral vector of the tube. While it is conceivable that the perturba

tion could follow a truly incommensurate configuration (^  irrational), it is also clear
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Figure 4.8: (a)A  plot of rrt\\, for various coiling angles (full line, w ith points). This 
plot is in units of 7 . (b) A plot of the energy difference between the two VHS on 
either side of the  Fermi level for an (18,0) zigzag nano tube (corresponding to  the  M n  
transition  in the  pure tube) for different coiling angles. The plot is norm alised to  the  
size of the transition  for th e  clean tube A /fJ . The am plitude of the  pertvu'bation is 
held constan t a t —0 .8 7 , and so is the w idth of the  pertu rbation  a t W  =  6.7 A. T he 
sm ooth lines corresponds to  a high order polynomial approxim ation to the curve, 
and are intended as a guide to  the  eye.

shifting of the transition , w hereas a t m id to  high coiling angles there  is a decrease 

in the transition  energy. Such a non-m onotonic behaviour in the  angle-dependent 

electronic s tru c tu re  has been reported  for the  case of helical short-range potentials 

in cylindrical geom etries [84].

4 .3 .5  A m p litu d e d ep en d en ce  o f pertu rb ation

Intuitively, one expects th a t  the features of the DOS investigated here will vary 

continuously as a function of the  param eter A, in con trast to  the  discontinuous 

behaviour found as a function of W  and of 9. This would m ean th a t the  VHS 

separations should vary continuously as a function of the p e rtu rbation  am plitude. 

As depicted in Fig. 4.9, we indeed find th a t they depend continuously on the 

am plitude of the  p e rtu rbation  A. In the  case of the  (6 ,0 ) zigzag and (6 , 6 ) arm chair 

nanotubes which are m etallic in the absence of a pertu rbation , we find th a t  for 

small pertu rbation  am plitudes, the  m ini-gaps grow m onotonically as we increase 

the  m agnitude of the  pertu rbation . In contrast, for the  sem iconducting (7,0) tube,
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we see the opposite trend in 5 n . In this case, the gap decreases as a function of A. 

This shows th a t as we increase the strength of the hehcal perturbations, metalhc 

tubes are driven into becoming more semiconducting-hke; whereas the originally 

semiconducting tubes undergo a reduction in the size of their gaps.

The systematic study carried out above shows how the DOS may respond to 

a coiling perturbation tha t represents the effect of helically wrapping molecules 

surrounding a nanotube. Two characteristic features of the DOS were investigated, 

namely the perturbation-induced mini-gaps m u as well as those associated with the 

transitions A/n and Sn .  They were shown to depend on the characteristic features 

of the perturbing potential such as the wrapping angle 9, the polarising width W  

and the strength of the polarising potential A. More than a purely academic exercise, 

this is a valuable point to assess how some physical quantities may respond to the 

presence of a wrapping charge distribution.

For the sake of illustration, rather than treating A as a free parameter, it is 

instructive to estimate its value by equating the perturbation-induced change in 

total energy to the measured binding energy between the wrapping molecules and 

nanotubes. While the polarisation interaction is certainly not the only component of 

the measured binding energy, under the assumption that other contributions such as 

the elastic energy and the van der Waals interaction are small, it will be the dominant 

contribution. This allows us to estimate how strongly bound the parts must be before 

any perceptible change occurs in the DOS. Following Fig. 5a, absent any charge 

transfer, we find tha t to open a gap comparable to room tem perature requires a 

value of A of about leV  in the case of a wrapped (6,6) nanotube, and tha t larger 

mini-gaps require monotonically larger A. For the case of organic polymers, [87] we 

find the magnitude of A to be too small to produce a mini-gap of this magnitude. 

Likewise, for the case of undoped DNA molecules [88] it is also not sufficiently 

strong to produce significant alterations in their electronic structure features. These 

examples seem too weakly bound to produce dram atic changes in the electronic
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s truc tu re  of the  host nanotube. This suggests th a t ex tra  charge m ust be required 

on the  backbone of the w rapping molecule to  increase its polarising effect and, in 

tu rn , its binding energy. In fact, ionic doping has been reported  to  affect the  optical 

response of D N A -nanotube composites [89] by increasing the  am ount of charge on 

the  DNA backbone, which seems consistent w ith our findings.
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Figure 4.9: (a) A plot of the size of the rnini-gap rrin  as a function of the polarisation 
s treng th  param eter A for two different chiralities and coiling angles. T he solid (black) 
curve corresponds to  a (6,6) nanotube pertu rbed  by a s tripe  a t an angle of 64.3°, 
while the dashed (red) curve corresponds to  a (6,0) nano tube subject to  a stripe  at 
an angle of 34.7°. T he do tted  line indicates where the  mini-ga[) energy is equivalent 
to  room  tem peratiu 'e. In (b) we plot the fundam ental sem iconducting transition  as 
it depends on the pertu rbation  am plitude for a (7,0) nanotube w rapped by a stripe 
a t angle 39.0°. A m onotonic red shifting of the gap is observed in the  range of 
interest. In all cases the  w idth of the  pe rtu rbation  is 5.33A.

4.3 .6  A ngular d ep en d en ce o f change in electron ic  energy

Similarly to the electron gas case, we can use the variation in the density  of states 

to evaluate the energy variation due to  the in troduction of such a  polarising per

tu rbation . Fig. 4.10 shows the results for the  tight-binding calculations of a (9,0) 

zigzag nanotube w rapped by a th in  charge distribu tion  th a t  form an angle 9  w ith the 

tube  axis. The non-m onotonicity in the  angular dependence of the to ta l energy can 

also be seen in this case, proving th a t  it is not an exclusive feature of the  electron 

gas model. It is w orth noting th a t  in addition to  a non-m onotonic sm ooth  curve
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Figure 4.10: Angular dependence of the relative energy change Ayv for helical wrap
ping on a (9,0) zigzag nanotube. An overall non-monotonic trend depicted by 
the dashed line is superimposed by strong fluctuations tha t correspond to high- 
syrnmetry angles of the perturbation, as well as the discontinuous nature of the 
change in the perturbation.

depicted by the dashed line, strong fluctuations are also identified which are most 

pronounced at the high-symmetry angles of the tube. Although these narrow-angle 

fluctuations may be reduced, for instance by increasing the width of the linear charge 

distribution, we have found that the smooth behaviour depicted by the dashed line 

is robust enough to remain in other geometries and configurations.

4.4 Chapter Sum m ary

We have performed a systematic study of the effect of a coiling, polarising potential 

on the electronic structure of carbon nanotubes. Utilising Lloyd’s formula, we have 

shown tha t the electronic contribution to the total energy of nanotubes wrapped 

by helical continuous charge distributions displays a non-monotonic behaviour as 

a function of the wrapping angle, using both a free electron approach and a tight 

binding one. The origin of these oscillations can be understood as a result of the
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formation of an interference pattern in the electronic wave functions. Following an 

analogy drawn with the Kronig-Penney model, it is simple to understand the origin 

of these total energy oscillations on a helically-wrapped nanotube. The proximity 

of the continuous linear charge distribution polarises the nanotube and induces a 

localised short-range potential that affects the electronic structure of the tube. These 

localised potentials produced by different sections of the wrapping strand generate 

a quantum interference pattern that appears in the electronic wave functions of the 

underlying nanotube. Such a pattern is therefore responsible for the occurrence of 

the size-dependent oscillations of the total energy.

We have also investigated the dependence of the induced changes in electronic 

structure on the details of perturbation. The perturbation characterised by the 

wrapping angle 9, the polarising width W and the polarisation strength A intro

duces an additional geometrical chirality that may not necessarily coincide with the 

intrinsic chiral angle of the nanotube. While the largest changes are seen to occur 

in cases where this additional chirality is commensurate with the chiral angle of the 

tube, even when this chirality bears no relation to that of the tube, changes occur. 

Features of the electronic density of states such as the perturbation induced mini- 

gaps and the VHS transitions were seen to depend on 6, W and A with different 

degrees of sensitivity. Regarding the VHS, a geometrical representation similar to 

the one used for pure nanotubes was used to trace how those singularities evolved 

with changes of the perturbation parameters. Furthermore, we have estimated a 

minimum binding energy between the tube and the wrapping molecules to generate 

a perceptible change in the electronic DOS. Finally, we found that while it is in prin

ciple possible to alter the electronic structure of nanotubes by wrapping a charge 

distribution around them, noticeable changes tend to occur for the cases in which 

the binding energy molecules are more strongly bound to the nanotubes. We ar

gue that changes in the optical response induced by ionic doping on DNA-nanotube 

composites may be one such example.
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Chapter 5 

M echanism  for m echanical 

reinforcem ent in 

nanotube-polym er com posites

5.1 Introduction

The material presented in this chapter is in a somewhat chfferent vein to the rest of 

the work presented tlius-far. While the primary focus of my research has been into 

the electronic properties of nanotube-based hybrid structures, one other interesting 

area tha t I have carried out research in has been the mechanical properties of such 

composites. In particular, work has been carried out into what effect the presence of 

a nanotube has on the ability of a bonded polymeric molecule to stretch in response 

to an external stress, and the consequences tha t this has for the Young’s modulus 

of the composite. While slightly different in thrust, this work still falls within the 

scope of my thesis on the physical properties of nanotube composites, and as such 

will be presented here.

While the focus thus-far has been on the electronic properties of nanotubes, 

another interesting quality th a t they possess is immense physical strength as well as
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near world-record stiffness. In fact, these properties were predicted as a consequence 

of the particularly strong hybridised bonds between the carbon atoms in the lattice, 

combined with the cylindrical geometry of the nanotube. In the last few years, 

careful experiments on individual nanotubes have borne out such predictions.

The possibility of utilising these exceptional mechanical properties at the macro

scale is indeed a tantalising prospect. In the previous chapter, I have already men

tioned tha t the nanotube-polymer interaction is one example tha t illustrates how 

effectively nanotubes can transform the physical attributes of a composite structure. 

Mechanically very strong and good conductors of therm al and electronic currents, 

it is not surprising tha t nanotubes make excellent fillers in polymeric composite 

materials and can substantially improve their mechanical, electronic and thermal 

responses.

One particular area where experiment shows a significant enhancement is in the 

increase in the Yomig’s modulus of nanotube-polymer composites. This increase is 

often correlated with the formation of an apparently crystalline layer of polymers 

surroimding the nanotubes. The evidence for this crystallinity lies in high-resolution 

microscopy and in differential scamiing calorimetry experiments. These last display 

a so-called melting peak tha t corresponds to a transition from the ordered to dis

ordered phase. Although the increase in the Young’s modulus has been attributed 

to an improved stress transfer between the stiffer nanotubes and the softer poly

mer matrix, the actual physical mechanism for this improvement is still unclear. 

To clarify this m atter, we have modeled the polymer-nanotube composite by har

monic chains interacting with a rigid periodic potential, an extension of the so-called 

Frenkel-Kontorova model. We have identified a possible origin of the reinforcement 

with the occurrence of a templating transition, in which a fraction of [polymers are 

constrained by the periodic potential of the underlying nanotube.

Concerning the mechanical properties, nanotube/polym er composites provide 

order-of-niagnitude increases in strength and stiffness of thin films when compared to
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typical carbon-fibre/polym er composites. Stress-strain measurements in nanotube- 

polymer composite films find tha t their Young’s modulus can be increased by a factor 

4 when less than 1% of nanotubes are added to the polymer m atrix [27]. The ap

pearance of large values of reinforcement with such a minute amount of nanotubes 

has been directly correlated with the formation of a crystalline layer of polymer 

siuroimding the immediate vicinity of the nanotube surface. Further evidence for 

this correlation is given by the fact tha t similar nanotubes in the presence of non

crystalline polymers display much lower levels of reinforcement [26]. Concerning the 

morphology of this crystalline layer, experimental observations at low coverage show 

th a t polymers tend to coil at well-defined angles to the nanotube axis. This is con

sistent with molecular dynamics simulations [77] and agrees with the mathematical 

concept tha t strings constrained within a cylindrical geometry are optimally packed 

in a helical orientation [83]. In fact, a recent macroscopic model describing the basic 

mechanisms for this type of crystallisation points to a range of preferential coiling 

angles tha t polymers may follow when coating the walls of a nanotube [28].

Despite the experimental evidence, there is little convincing theoretical support 

for the correlation between crystallinity and mechanical reinforcement in polymer- 

nanotube composites. Based on pm'ely macroscopic arguments, the physical origin of 

the mechanical reinforcement is commonly attributed to the improved stress transfer 

th a t results from the formation of a crystalline coating surrounding the nanotubes. 

In other words, the rigidity of the embedded carbon nanotubes can only be probed 

in the composite structure if stress is efficiently transferred across a well-ordered 

nanotube-polymer interface. Although this must be a relevant factor, it is not 

sufficient to provide a quantitative description of reinforcement. This is confirmed 

by the fact tha t the so-called rule-of-rnixtures, displayed in Eq. (5.1), a traditional 

method for calculating the mechanical response of macroscopic composite structures, 

overestimates the Young’s modulus of nanotube-polymer composites by more than
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one order of m agnitude.

yc  =  yaVa +  ybVb (5.1)

Here Yc, Vf, and Ya are Young’s m oduli of com posite, species a  and species b respec

tively, and Vi is the fraction of species i  by volume.

This failure results from the  erroneous assum ption of perfect stress transfer be

tween the  different constituent phases of the comi)osite m aterial. W ithou t a way 

of quantifying the  stress transfer across the nanotube-polynier interface we cannot 

reproduce the  observed levels of reinforcement in a reliable m anner.

This does not seem possible in a simple continuum  elastic m acroscopic formalism 

and calls for an a lternative approach th a t involves the microscopic struc tu re  of the 

com ponent parts. W ith  such a m otivation, in this chapter I have proposed a model 

th a t  is able to  bridge th is gap between the  micro- and macroscopic scales, giving a 

quan tita tive  estim ate  of the stress transfer across the nanotube-i)olynier interface. 

As a result, the  physical m echanism  for the enhanced m echanical response in com

posite m aterials is clarified. In addition to  reproducing the  general trends observed 

in reinforcem ent experim ents, the  model i>oints to a non-m onotonic reinforcement 

dependence on the nano tube diam eter. Such a non-m onotonic behaviour indicates 

the  possibility of predicting the  adequate com bination of m aterials to  optim ise the 

m echanical reinforcem ent in such structures.

As regards layout, th is chapter is divided into three sections. T he first sec

tion describes the  geom etry of the  problem , as well as introducing the  calculational 

m ethod. T he second section contains the  details of our calculational scheme, as well 

as an exam ple of a typical calculation, while the th ird  and final section deals w ith 

the  in te rp re ta tion  of these results. T he work presented in this chap ter has been 

published, and can be found in [90].
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5.2 M odeling the interaction

5.2.1 G eom etry o f the problem

We start by modeling the polymer-coated nanotubes as infinitely long cylindrical 

graphene sheets of radius r  wrapped around by semi-flexible strands. Since we are 

interested in the stress transfer across the polymer-nanotube interface, it seemed 

sufficient to study this transfer for a single monolayer of polymer coating, imder the 

assumption tha t there is essentially perfect stress transfer both within each separate 

phase and between any further interfaces. The polymer strands are represented by 

monomers separated by harmonic springs of natural length Iq and lie on a cylindrical 

surface of radius /? =  r  -I- dr, where dr is the van-der-Waals distance to the tube 

surface, hereafter considered to be constant {dr = 3.5A). Following experimental 

evidence [91], we assume tha t the polymers coil around the nanotube surface at a 

well-defined angle 9 relative to the axial direction, as schematically shown for a single 

strand in Fig. 5.1. The ge'onietry of this problem is similar to that met in chapter 4. 

The atomic structure of the nanotube is depicted by the hexagonal lattice both on 

the cylindrical wall Fig. 5.1a and on the flat surface tha t results from unwrapping 

the nanotube Fig. 5.1b.

The effect th a t the hexagonal potential, produced by the underlying nanotube, 

has on the ability of the polymer strands to stretch has been investigated to address 

the issue of stress transfer in crystalline composite materials. Were it to have no 

effect on their ability to stretch, the i)olymers which encase the nanotube would bear 

all of the brunt of a Young’s modulus type experiment, and the inherent stiffness of 

the nanotube would not be probed. In this scenario, no stress would be transferred 

across the interface. Under those circumstances, the nanotubes would not be able to 

provide any contribution to the reinforcement, and would contribute only indirectly 

to the Young’s modulus of the composite - perhaps by promoting the formation 

of a crystalline layer which has itself a Young’s modulus higher than  tha t of the
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Figure 5.1: Schem atic representation of a single polym er strand  coiling along the 
nano tube axis a t an angle 6. T he strand  is represented by monomers connected 
by elastic springs. In the  two-dim ensional depiction, the  unwrapi)ed tube  is repre
sented by a stripe  of w idth 2-k R  and the coiling angle 6 defines a un it cell of length 
27t/Z/ tan 0 .

am orphous polymeric gel.

5.2 .2  N an otu b e-p o lym er in teraction  and th e  Frenkel-K ontorova  

m odel

W ith the  preceding geometric set-up, the  dependence of the  Young’s m odulus of the 

com posite can be investigated and contrasted  with th a t of the  polym er m atrix. The 

definition taken of the  Young’s m odulus is the  initial slope of a stress-strain  curve.

T h a t is,

V =  (6.2)

where /q is the original length of the sam ple and A / is the change in length associated 

w ith a stress cr. Accordingly, the higher the Yomig’s m odulus of an object, the stiffer 

it is.

We m ust then  find how the  stress-induced stra in  experienced by a polym er strand  

is affected by the  presence of the  hexagonal potential of the underlying nanotube
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lattice. A suitable model th a t accounts for the effect of this potential is the so-called

Frenkel-Kontorova model, traditionally used for describing an adsorbed monolayer 

on an atomically flat surface. In its original form, which describes a harmonic 

chain of atoms interacting with a periodic one dimensional potential, the model’s 

Hamiltonian takes the form

Taking V{xj )  =  (/(!  — cos(27ra:j/A)), the Hamiltonian represents a one-dimensional 

system of monomers interacting via harmonic springs, in the presence of an external 

sinusoidal potential of wavelength A and corrugation deptii U.

The ground state  features of this model have been extensively studied in which 

the static equilibrium configuration of the system results from the interplay of the 

two characteristic length scales (/q and A), the confining potential U and the re

sistance to stretching k. It is intuitively obvious tha t the natural monodisperse 

distribution of interparticle distances of an isolated chain must be altered l)y the 

presence of the external potential, but despite local fluctuations of these distances, 

the total length of the chain can be fully described by the average inter-particle 

separation, which will hereafter be denoted by u>.

This ciuantity can be evaluated by finding the ground-state configuration of the 

system, for which we used two different approaches; firstly via a force equilibrium 

approach, and secondly the method of effective potentials due to Griffiths and Chou

5.2.3 The force equilibrium  approach

The force equilibrium method relies on the fact that the condition for an equilibrium 

solution {xj}  of Eq. (5.3) is

(5.3)

[92].

(5.4)
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Perfonniiig the  differentiation, it is found th a t the  condition for equihbriuni is:

This gives a recipe for generating equilibrium  configurations ~ pick any two values 

for X \  and 2 : 2  (say), and calculate the  rest of the  X j  recursively using Eq. (5.5). To 

find a  global m inim um  energy configuration, subsequently evaluate the energy of the 

configuration using the  H am iltonian function. Perform ing a two param eter search 

over x \  and X 2 to  find the pair th a t  m inimised the energy function should thus give 

the  ground s ta te  configuration.

This algorithm  was im plem ented immerically, but was found not to  yield true 

g round-state  configurations. The problem  is th a t the set {xj}, generated by this 

algorithm , is num erically unstable. For example, in the case th a t Iq =  X =  a,  

the  ground s ta te  solution is, by inspection, X j  =  a j  Vj. The filtering outlined 

above was unable to reproduce even this simple case. T he reason for this is tiiat 

the  m ap above is an area-preserving dynam ical m ap which is inherently unstable 

against round-off error. Consequently, this m ethod had to be shelved, and another 

approach sought. Thankfully, the m ethod of Chou and Griffiths (described in the 

next section) provides a com putationally  efficient way of obtaining the  equilibrium  

positions for the  particles th a t are subjected  to  the external periodic poten tial, from 

which we can then derive the value of lu.

5.2.4 M ethod of effective potentials

Chou and Griffiths [92] have developed an ingenious m ethod (the so-called “m ethod 

of effective poten tia ls” ) of deriving the  ground s ta te  of a wide range of H am iltonians 

sim ilar to  th a t  of Eq. (5.3). In the cited paper, they outline an algorithm  to  find the 

ground s ta te  of the system , through the  solution of a non-linear eigenvalue problem. 

They do this by finding a  quan tity  which they refer to as the “effective po ten tia l”
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tha t a iiioiiomer feels due to the total potential (internal +  external potential en

ergy). The so-called method of effective potentials has by now become a standard 

tool used to study the ground state of Hamiltonians similar to Eq. (5.3) [93], [94], 

[95]. A computer program, adaptable to whatever periodic external potential is nec

essary, was written to implement their algorithm. Their algorithm, which amounts 

to solving a non-linear eigenvalue problem on a finite real-space grid, is still seen as 

the most com putationally efficient method to find the ground states of Eq. (5.3).

Since we are interested in the mechanical response of the chain in the presence 

of the periodic potential, we need to investigate how the value of w depends on 

the stretching force. The effect of this force can be mapped into an increase of the 

natural bond length /q, which makes the function u){lo) the relevant quantity to be 

investigated. As has been stated before, the ground state  configuration gives a value 

for the so-called winding number, ui, the average distance between monomers in the 

ground state. Since the effect of applying an external tensile force F at both ends 

of the chain is to increase the natural bond length of the chain, the dependence of 

u  on Iq was the (luantity to be investigated.

As has been highlighted by other authors, two distinct cases can be identified; 

either the polymer is incommensurate with the underlying lattice, or it is conunen- 

surate with the lattice [96]. The polymer is said to be commensurate with the 

lattice if and only if there are integers m. and n such tha t rnus =  nA, where A is 

the wavelength of the potential. This means tha t rn monomers are to be found for 

every n complete cycles of the potential, with the pattern  repeating periodically. If 

the polymer is not commensurate, it is said to be incommensurate. For the case 

of incommensurate distribution, it has been shown tha t the ground state  value for 

u  can be infinitesimally shifted by a gradual increase of the bond length Iq. This 

means tha t despite small rearrangements of the particles, the average particle dis

tance increases linearly with the length Iq and should reflect the intrinsic stiffness of 

the atomic chain. In the connnensurate case, on the other hand, the particles are
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Figure 5.2: A plot of two lim iting cases of the  uj{lo) diagram s for a sinusoidal po
tential. (a) P lo ts the case of extrem ely deep m inim a (U /k  =  1). In this case the 
diagram  is composed of a series of large p lateaus, and the system  should not respond 
well to  stress, (b) P lots the  case of vanishing potential corrugation. No plateaus are 
observed, and the  chain is free to move in response to a stress.

trap p ed  by the  m inim a of the external potential. In th is way, there is a range of 

values of /q for which the average separation u  does not change. This corresponds 

to  the  case in which the chain follows the  sam e periodicity as the external potential 

and will be referred to  as being tem plated  by the potential.

T here  are a few special cases th a t  are worthy of investigation in the  lim it of

very stiff springs (or shallow potentials, which am ounts to the same th ing), it has 

been found th a t  the percentage of the  graph which is taken up by plateaus tends 

to zero. On the  o ther hand, for deep m inim a, it is found th a t the graph becomes 

alm ost com pletely step-like. I have utilised my program  to investigate these lim its 

and found results in agreem ent with [96], among others, and gives confidence th a t 

the im plem entation of the  algorithm  used is accurate. The resulting graphs for these 

lim iting cases are displayed in Fig. 5.2.

If lo has a value such th a t for small A/q, to{lo + A/q) =  w(/o — A/q) =  u;(/o) 

i.e. oj{lo) is in a plateau, then  the  application of an external tensile force (wdiich 

acts to  change Iq) is unable to  change the  average inter-m onom er distance. It is 

thus not possible to probe the Young’s m odulus of the polymer, and ra ther it is the 

Young’s m odulus of the  host substra te  which is probed (which is modeled by the
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rigid poten tial).

This can be seen in Fig. 5.3 where the average equilibrium  inter-particle  d istance 

oj of an atom ic chain is plo tted  as a function of the bond length /q for the sinusoidal 

po ten tia l depicted  in the inset. P lateaus in the Iq curve corresponding to  th e  com

m ensurate regime are surrounded by linearly varying regions th a t  characterise the  

incom m ensurate case. Also known as (an incom plete) Devil’s staircase [97], th is d i

agram  provides inform ation abou t the tem plating  capacity  of the poten tial. Bearing 

in m ind th a t the  chain ultim ately  represents a  polym er s tran d  and th a t the po ten tia l 

is the x'esult of the  interaction w ith the  nanotube lattice, in the  tem plated  I'egime 

the  strand  displays not its intrinsic elastic response b u t th a t associated w ith the  

underlying nanotube. In o ther words, the  plateaus of the  Devil’s staircase represent 

the  situa tion  in which the polymers experience the significantly superior stiffness of 

the  nanotube. Therefore, by identifying the  conditions for the  appearance of the 

plateaus in th e  corresponding Devil’s staircase, one can in principle control the  re

inforcem ent levels in a com posite m aterial. A lthough this argum ent was based on 

results for 1-dimensional chains in the i)resence of sinusoidal potentials, it can be 

easily extended to  the case of polym er strands adsorbed onto the walls of a nanotube.

In the case of polym er strands coiling around the nano tube walls, it is convenient 

to visualise the  polym er strands on top  of the unw rapped iianotubes, as seen in Fig. 

5.1b. R ather th an  simple sinusoidal potentials, the in teraction  w ith the  hexagonally 

sym m etric nano tube atom s generates periodic poten tials w ith more th an  one Fourier 

com ponent, which will be described in the next section.

5.2 .5  D eta ils  o f  in teraction  p oten tia l

In the  case of a polym er in teracting w ith a carbon nanotube, it is assum ed th a t 

the interaction is via the van der W aals force only. This is justified by the  fact 

th a t  carbon nariotubes are known to be very chemically inert, and do not readily 

form covalent bonds w ith o ther species. It is w orth stressing th a t no account is
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Figure 5.3: Average particle  separation w as a function of the  na tu ra l bond length 
Iq displaying a typical D evil’s staircase found in the Frenkel-Kontorova model. Both 
cjuantities are expressed in Angstrom s. The conm iensurate phases represented by 
the  p lateaus are surrounded by linearly varying sections characterising the incom
m ensurate  ones. This is seen to  be a case in term ediate to  those foimd in Figs. 5.2a 
and 5.2b. The inset depicts the sinusoidal potential in equivalent un its to  those used 
in generating the staircase. (b)Sim ilar Devil’s staircases obtained for strands coiling 
around a (5,0) zigzag iianotube (lattice param eter a  — 2.45A) at different coiling 
angles (^ =  0° for the continuous blue line and 6 =  74° for the dashed red line). 
T he inset shows the  corresponding potentials. Continuous (dashed) lines are read 
on th e  left (right) vertical axis.

taken of a possible polarisation interaction, an assum ption th a t would fail if the 

bound polym er is charged. Under the assum ption th a t it is the carbon backbone of 

the  polym er strand  which in teracts w ith the  nanotube, a carbon-carbon potential 

th a t  has the  requisite am plitude for the  in teraction (about 30 nieV, according to 

[98]), as well as the requisite hexagonal sym m etry, can be derived by using the first 

few Fourier com ponents of the Lennard-Jones 6-12 potential for carbon binding to 

graphite. T he detailed form of such a potential can be calculated by introducing 

appropriate  Lennard-Jones param eters and sum m ing over the contributions due to 

each pair. In principle, there is nothing to  stop such a calculation, b u t th is is not 

the  approach th a t we took.

Irrespective of the fine details of the potential, we do know about its spatial 

sym m etries. The po ten tia l th a t would be felt by one monomer in teracting  w ith an 

ideal graphene sheet m ust have the  sam e sym m etry as the hexagonal array  of atom s.
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Figure 5.4: Contour plot of the potential as per Eq. (5.6). Darker regions correspond 
to the regions where the potential well is deep, while lighter regions are where it is 
shallow.

We assume that the atoms are most strongly bound when they are directly above 

the centre of a hexagon (in the same position as a type II impurity, as described 

previously in chapter 3 of this thesis). In terms of the usual Cartesian coordinates, 

a suitable potential which satisfies this description is given by:

V(x,  y) =  Vo 3 -  cos
27T /  X  \ 27T f  — X  \ A t t x

cos Ws^V. —  COS
. V

+

1

— COS

1

(5.6)

This potential has the correct corrugation, and takes values in the range [0,4.5Vo]. 

Assuming tha t Vq is positive, we see tha t the potential minima lie at the points 

nidi + n<i2  where rn., n  G Z, =  (a,0) and 0 .2  =  ( | , ^ ^ ) .

Since experimental evidence indicates tha t the polymer strand coils at a definite 

coiling angle, we fix the angle 6. To do this, we assume tha t the strand passes over 

two distinct minima of the potential, (0,0) and m a\ +  n a 2 . This engenders a one 

dimensional periodic potential, Ug{x), where 9 is given by simple geometry as

tan(6*) =
y/3n/2  +  777. \/3n  +  2777

n /2
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We tlien solve for the  ground s ta te  configuration of the polym er strand  embedded

Figure 5.5: 3D plot of the potential as [)er Eq. (5.G). The preferential l)inding sites 
are seen to  correspond to the centre of the hexagons.

in this one dimensional potential, giving the winding num ber u). To calculate the 

fraction of cases for which tem plating  occurs, hereafter referred to  as the  ternplat- 

ing fraction and denoted by Tj,  we perform  the calculation for a large num ber of 

d istinct pairs (n ,m ), chosen such th a t the resulting set of 6{m.,n) is uniformly dis

trib u ted  between 0 and |  radians. In fact, a non-uniform  angular d istribu tion  can 

be introduced by the  simple expedient of an angle dependent weighting factor.

W hile this analysis suffices for the  case of polym er strand  in terac ting  with a 

uniform  graphene sheet, a sim ilar analysis is possible in the case of nanotubes, 

albeit w ith a subtlety. In this case, we em bed the potential onto a cylinder of radius 

appropriate  to th e  chiral indices of the  tubes. The chirality of the  naiio tube can be 

taken into account by ro ta ting  the potential. We then  project th is ro ta ted  potential 

onto a second concentric cylinder of radius r  -I- dr, where dr  is the  van der Waals 

radius, assum ed to be 3.45A throughout. In practice, the only effect th is has on the 

calculation is a stretching of distances in the  radial direction.
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5.2 .6  R esu lts and discussion

As a result of the synmietry of the hexagonal potential, the effective potential expe

rienced by the polymer strands has more local minima within a given period than 

a  simple sinusoidal potential, which by construction has only one local mininunn 

per period. Such a higher density of local minima is likely to enhance the density 

of commensurate phases and consequently the tem plating capacity of the potential 

(provided the local minima are sufficiently deep). Such suspicions are confirmed by 

Fig. 5.3b, which shows two distinct calculated Devil’s staircases associated with 

their respective potentials (shown in the inset). Such potentials correspond to dif

ferent slices of the previously discussed potential.

Both the staircases and the potentials have been displaced along the vertical axis 

for the sake of distinction but each individual cvirve corresponds to a different coiling 

angle. Since the appearance of plateaus indicate tha t strands are being templated by 

the  unflerlying periodic potential, it is useful to calculate the frequency with which 

these plateaus api^ear for a given type of nanotvibe. By averaging over all possible 

coiling angles for a fixed natural bond length, we define a templating fraction Tj  tha t 

gives the fraction of polymer strands experiencing the stiffness of the nanotube. In 

this way, rather than  assuming tha t all polymer strands surrounding the nanotube 

display j)erfect stress transfer, as implied by the standard rule-of-mixtures, we can 

(}uantify the fraction of cases for which this optimal transfer takes place.

To calculate the mechanical reinforcement of the composite material one has to 

consider not only the Young’s modulus of the hybrid cylinder made of a nanotube 

coated by a crystalline layer of polymer, but also the fact tha t this hybrid structure 

is embedded in a m atrix of amorphous polymer. For the purposes of the present 

work, it is sufficient to focus on the reinforcement of the hybrid structure, thus 

disregarding the effect of the surrounding matrix. Certainly, any reinforcement 

produced in the hybrid will lead to an enhancement in the mechanical response of 

the entire composite material. The Young’s modulus associated with the hybrid
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structure can then be expressed as

Y, =  V fY ^rT f +  (1 -  Vf)Yj,, (5.8)

where VyvT and Yp are the Young’s modulus of the nanotube and the polymer, 

respectively, and Vj is the fractional volume taken by the nanotube. It is worth 

mentioning that the only difference to the usual rule-of-mixtures expression for the 

Young’s modulus of composite structures is in the introduction of the templating 

fraction T j in the first term on the right-hand side of the equation. This always 

serves to reduce the calculated Young’s modulus, and as such reflects the imperfect 

stress transfer.

One immediate consequence of this expression is that the Young’s modulus of 

the hybrid structure scales linearly w ith  the volume fraction of nanotubes, a feature 

that is also observed in measurements of the elastic moduli of polymer-nanotube 

composite structures. It is evident from the expression above that the larger the 

templating fraction, the larger the Young’s modulus of the hybrid structure, which 

means that a reliable way of calculating the templating fraction is im{)ortant to 

provide a good estimate for the mechanical reinforcement induced by the nanotubes.

For a given polymer w ith a well-defined bond length Iq, the obvious way of 

calculating T f consists of selecting a large number of coiling angles. Inside this 

formalism, a value for T j can be derived by fixing a value of /q (which in effect 

fixes the polymer), and obtain the ground state configuration for each individual 

angle and count the fraction of cases for which the polymer lies inside a templating 

plateaux for a large range of coiling angles (assuming im plic itly  that each angle is 

as probable as any other).

This counting-by-inspection procedure is slow and computationally intensive 

since reliable results for T j requires a large number of angles. Furthermore, the 

graph so obtained is quite noisy, but displays definite trends. The results of such a
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calculation are displayed in Fig. 5.6a. In particular, there are a number of readily 

observable peaks th a t stand out.

5.2 .7  Graphical m ethod for the tem plating fraction

It is clear from Fig. 5.3b that the occurrence of plateaus in the staircases correlates 

w ith the existence of a high concentration of local minima, which suggests tha t 

there might be a way of obtaining the templating fraction by associating it with 

the distribution of those minima. In fact, analysis of a few Devil’s Staircase graphs 

yielded a geometric interpretation tha t simplifies the counting procedure. It consists 

of projecting the hexagonal lattice of the nanotube of radius r onto a cylinder of 

radius r + dr. Simple geometry shows tha t while distances in the axial direction 

are unchanged, projected distances in the circumferential direction are scaled by a 

factor 1 +  —.r

I must emphasise tha t the plateaus do not occur randomly; rather they are cor

related with the positions of the potential minima of this ID section of the projected 

lattice. More precisely, the plateaus appear every time a polymer atom lies in the 

proximity of a potential minimum, tha t is, in the proximity of an edge of the pro

jected lattice. How close the polymer atoms must be to the local minima depends 

on the size of the corresponding templating plateau. Therefore, by superimposing 

the polymer strands (at a given bond length /q) onto the projected hexagonal lattice 

one can graphically check whether or not the former is tem plated by the latter, a 

much sim])ler procedure than the counting-by-inspection method. This suggest tha t 

for a given angle we can construct a pseudo-staircase, which approximates the real 

one. Such staircases will have plateaus at those values of Iq tha t correspond to local 

minima for tha t angle.

Despite the tremendous simplification, the agreement between the two count

ing methods is remarkable, as shown in Fig. 5.6a, where the tem plating fraction 

calculated by both methods is plotted as a function of the bond length /q- Except
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Figure 5.6: (a) Tem plating fraction T f  as a function of the  bond length /q (in A), 
T he full line displays T f  calculated by averaging over a large m nnber of possible 
coiling angles and counting the  fraction of cases in which a given value of Iq lies 
inside a plateaux. T he dashed line is obtained by the  graphical m ethod (see text). 
Despite small fluctuations, the agreem ent is evident, (b) T em plating fraction as a 
function of nano tube radius (zigzag) for two different values of /q =  2.45A for the 
full line and Iq =  3.0A for the  dashed lined. The elastic constan t was chosen to be 
k  =  21 eV/A2, in accordance w ith estim ated  values for poly-vinyl alcohol.

for small fluctuations, the full line representing the couuting-by-inspection m ethod 

agrees w ith the  graphical m ethod represented by the  dashed line. T he figure shows 

th a t the  tem plating  fraction reaches periodical m axim um  values, which indicates 

th a t the  right choice of polym er param eters m ight lead to  increased levels of rein

forcement. U nfortunately, such set of param eters cannot be varied in a continuous 

fashion due to  the  lim ited num ber of polym er types.

5.2 .8  D iam eter  d ep en d en ce o f  th e  reinforcem ent

A more controllable quan tity  th a t can be contiiuiously varied is the nano tube di

am eter. By p lo tting  the tem plating  fraction (obtained by the graphical m ethod) 

as a fim ction of the nano tube radius, we show in Fig. 5.6b th a t  T f  also behaves 

non-monotonically. M axim mn values of the  ten ip lating  fraction a t certain  diam eters 

predict th a t an adequate selection of diam eters is capable of optim ising the  level of 

m echanical reinforcem ent in polym er-nanotube composites. Different types of poly

mers lead to  d istinct optim al diam eters indicating th a t it is possible to  select a right
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combination of materials to maximally enhance the mechanical properties of these 

composites.

It should perhaps be noted in passing, tha t while it is not possible to continuously 

vary the radius of zig-zag nanotube, th a t the difference between the radii of zig-zag 

ttibes of adjacent radii is where a is the lattice constant of a nanotube: 2.45A. 

I ’his means tha t the radius can be varied in steps as small as 0.4 A, thus justifying 

the treatm ent of the variable r  as continuous. Realistic parameters k — 21eV/A”'̂  

and corrugation 30 nieV were used, and the results are displayed in Fig. 5.6b.

Finally, we can test our model by comparing the estimated value of Yc with ex

perim ental data  available in the literature. It is im portant to stress tha t we have 

chosen a system with a thin crystalline phase. Thicker crystalline coatings are ex

pected to affect the degree of reinforcement but would require an extension of the 

present model to include the volumetric contribution of this phase. Fig. 5.7 shows 

the measured Young’s modulus of nanotube/poly-vinyl alcohol (PVA) composites 

as a fimction of the volume fraction, V), of inserted nanotubes. Arc discharge mul

tiwalled nanotubes (diameter 24 run) were blended with poly-vinyl alcohol with 

volume fraction Vf ranging from 0% to 0.16%. The full line is the standard rule 

of mixtures expression and clearly overestimates the observed levels of reinforce

ment represented by the points. The dashed line representing our results with the 

calculated tem plating fraction 7 / =  0.2 for a nanotube of corresponding diameter 

obtained from Fig. 5.6b displays significant improvement in the comparison with 

the measured values. The disagreement between our results and the observed values 

may be explained by the fact tha t a small but finite thickness for the intrinsically 

tougher crystalline phase enhances the reinforcement of the system.

5.2.9 The effect of crystallin ity

Of course, increasing thicknesses of crystalline polymer will increase the strength 

of the composite, if for no other reason than the higher Yoimg’s modulus of the
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Figure 5.7; Y oung’s m odulus of nanotube-polym er com posites for small loadings 
of nanotubes. P rediction based on the  rule of m ixtures (assum ing perfect stress 
transfer) is given by the continuous (purple) line. The experim ental results are 
m arked by the  crosses, while our prediction based on T j  =  0.2 (see the  tex t) is given 
by the dashed (blue) line.

crystalline phase, as com pared to the am orphous phase. Recent investigations [99], 

sparked by our prediction of a iion-m onotonic diam eter dependence of reinforcement, 

into polyvinal-alcohol carbon nano tube composites have, however, suggested th a t 

the  crystallin ity  may in fact play a more direct role in the increase in Young’s 

m odulus th an  our model allows. In th is case, a stiffer and stronger region of ordered 

polymer is formed in a roughly cylindrical shell about the tube, of non-negligible 

thickness. T heir conclusions point to  th is stiffer shell being the  prim ary m echanism  

for reinforcem ent, and conclude th a t  the  interfacial stress transfer does not play a 

significant role. If this is the case, th is pu ts a lim it on the u tility  of the m ethod th a t 

we have developed. W hile our m ethod should be of quan tita tive  use in the case of 

a monolayer of ordered coating abou t th e  nanotube, the form ation of a th ird  phase 

of significant thickness would require th a t  we take this directly into account. It is 

w orth noting th a t  one finding of this work is th a t of an apparent Young’s m odulus 

of the nano tube of 71GPa, albeit w ith a large m argin of error. This is substan tia lly  

lower th an  quoted values for the Y oung’s m odulus of arc discharge grown nanotubes, 

for example. T hey conclude th a t there  is poor load transfer from the  ordered m atrix  

to  the nanotube. O ur model accounts for poor load transfer between the  phases.
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5.3 Sum m ary and conclusions

In suniniary, we have presented a model describing how the interaction of crystalline 

polymers surrounding the carbon nanotubes may affect the mechanical properties 

of nanotube-polyrner composites. Rather than assuming full stress transfer between 

the different phases of the composite, the model suggests tha t only a fraction of 

the polymer layers are tem plated to the underlying nanotube lattice. This fraction 

of teinplated polymers experiences the significantly larger stiffness of the nanotube 

and is responsible for the enhancement of the mechanical response of the composite. 

Furthermore, the model predicts tha t by tuning the nanotube diameter one can 

optimise the ternplating fraction for each type of polymeric material, thus maximally 

enhancing the mechanical properties of the composite. In other words, we suggest 

that an appropriate set of polymers and nanotubes diameters can be combined to 

maximise the mechanical response of the structure.
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Chapter 6

Conclusions

6.1 Sum m ary o f work undertaken

In this thesis, I have presented the work undertaken over tlie course of the last 

four years. The primary focus of my research has been in studying doped carbon 

nanotube structures through the use of simple models, with the aim of shedding 

light on the properties tha t composed structures have been shown to possess. The 

motivation for this research is tha t if we wish to utilise the remarkable properties 

of nanotubes through their interaction with foreign objects, we should be able to 

predict and understand the properties of so-formed hybrid structures. In this work I 

have investigated theoretically the physical properties of a wide range of technolog

ically interesting coni[)osite systems, including carbon atoms bound both covalently 

and non-covalently to simple adatoms and adsorbed small molecules, as well as 

polymer strands adsorbed on the surface of a nanotube.

6.1.1 Overview of chapter one

In the first chapter, I have presented a introduction to the field of nanotubes. I high

lighted their superlative intrinsic physical properties of these nanoscopic molecules, 

both predicted and found experimentally, and discussed possible routes to best utilise
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them in useful materials. I also outlined the desirability of a scheme to model the 

interaction between carbon nanotubes and foreign objects, and sunnnaries some 

features tha t such a formalism which is capable of predicting and explaining the 

properties of hybrid nanotube based structures should possess.

6.1 .2  O verview  o f chapter tw o

hi chapter 2, I have presented the details of such a formalism. Based on Green 

function methods, and utilising the well-known Lloyd simi rule, the method was 

introduced in its general form. I have shown how we have specialised the scheme to 

deal with the case of contact potentials, appropriate to modeling the interaction that 

occiu's when a foreign body is introduced into the vicinity of a host. This method 

is predicated on the fact tha t the electronic structure of the isolated components 

is well known; in the case of carbon nanotubes that happens to be the case. The 

pedagogical case of a linear chain which is pertiu'bed by a simple atomic level was 

presented to illustrate what I have referred to as the Lloyd formula method (LFM), 

and an analytical treatm ent was performed to investigate im{)osed constraints on 

the matrix elements of the tight-binding perturbation.

6.1 .3  O verview  o f chapter three

In chapter 3, we have considered doped metallic nanotubes by utilising the LFM. 

This chapter was essentially divided into two parts. In both sections, we modeled the 

electronic structure of single walled carbon by using the zone folded tight-binding 

approach. In the first section, we considered the special case of externally adsorbed 

hydrogen atoms in contact with the surface of the nanotube. By modeling the inter

action between the nanotube and the perturbing hydrogen atom through a contact 

potential similar to tha t introduced in chapter 3, we were able to show tha t it is 

possible to extract information about the underlying tight-binding param eters tha t 

characterise the coupling, when given knowledge of a few properties of the combined
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system. To this end, we utihsed a density functional theory cofle to calculate values 

for the charge transfer between the parts, A C and the electronic contribution to the 

binding energy, /S.E. W ith this knowledge, we showed how it was possible to solve 

the set of non-linear eqviations, which give these quantities in terms of the Green 

functions of the isolated parts of the system, for the m atrix elements of the per

turbation Hamiltonian. We showed a good agreement between the band structures 

generated with these param eters and the Kohn Sham band structure, which comes 

from the more sophisticated density functional calculation. The agreement was seen 

to improve as we relaxed the assumption of perfect screening, and considered a 

screening cloud of finite radius.

In the second part of chapter three, we utilised the same Green function methods 

to investigate a range of adsorbed impurities, again through the use of a simple 

contact potential. In this section, we showed th a t it is possible to find correlations 

betw'een A E  and AC’. Given knowledge of either of these, this correlation allows 

us to extract information about the possible range of values tha t the other has, 

even when no details are known about the contact potential. We showed how it 

is possible to investigate a wide range of impurities, with the aim of finding the 

ideal combination of nanotube /  dopant pair to maximise changes in the physical 

properties of the system, something which is especially desirable if we are to utilise 

nanotubes as molecular sensors. When compared to ab-initio calculations, good 

agreement was found.

I 'he  work presented in this chapter been published in [74], [73], and [72].

6.1.4 Overview of chapter four

The fourth chapter of this thesis focused on trying to understand some aspects of the 

reported helical coiling observed for some polymeric molecules boimd to the surface 

o: nanotubes. Again, the chapter was composed of two sections. In the first section, 

we asked if it was possible tha t spontaneous helical order could arise in a simple
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model for the polymer /  nanotiibe interaction. Here, we treated the nanotube 

by considering a two dimensional free electron gas confined to the surface of a 

nanoscale cylinder. The interaction with the cylinder was modeled by the inclusion 

of a highly localised perturbing potential, which was allowed to coil around the tube 

at a constant angle. By drawing an analogy with the Kronig-Penney model, we were 

able to utilise the LFM equations for the change in the binding energy to suggest 

tha t there were certain spacings between adjacent images of the perturbing potential 

tha t extremised the change in the total energy of the system. Since different coiling 

angles correspond exactly to different spacings between adjacent images, we were 

able to show a non-monotonic dependence of the binding energy on the coiling angle. 

This may give a hint tha t a wrapping polymer need not restrict itself to following 

the inherent chirality of the nanotube tha t it wraps around.

To this end, we considered a somewhat more sophisticated model for the nan

otube /  polymer binding, where we again treat the nanotube within the tight-binding 

model. Since we do not have the precise details of the makeup of the polymer strand, 

and bearing in mind the possibility of placing charge on the wrapping molecule, we 

chose instead to consider the effect th a t a charged one dimensional stripe wrapping 

around the nanotube has.

In order to clarify the effects tha t the different properties of the perturbing 

molecule can have on the electronic structure of the nanotube, we calculated the de

pendence of a number of quantities of physical interest on three different param eters 

tha t characterise the potential: the width, the coiling angle and the am plitude of 

the potential. Quantities investigated included the size of the perturbation-induced 

mini-gaps, the electronic contribution to the binding energy, and the position of the 

van Hove singularities. To do this, we modeled the effect th a t the polymer had on 

the electronic structure of the nanotube via a polarisation potential, which corre

sponds to the weak coupling limit of the LFM. As in the first section of the chapter, 

we saw a non-monotonic dependence of the total energy of the system on the coiling
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angle; however, in this case, we saw tha t the most dram atic changes in the binding 

energy did indeed correspond to the high symmetry directions of the nanotube.

The work in this chapter has been published in [85] and [84].

6 .1 .5  O verview  o f chapter five

This chapter again dealt with understanding the interaction between polymer strands 

and a nanotube th a t they wrap around. The tenor of this chapter is somewhat dif

ferent to what went before, however; whereas in previous chapters we focused on 

using (luantum mechanical models to vmderstand changes induced by doping in the 

electronic structure of the nanotube, here we used an extension of the classical 

Frenkel-Kontorova model to investigate the mechanical properties of wrapped nan

otubes. In this chapter, we modeled a polymer strand wrapping about a nanotube 

via a ball and sjiring chain embedded in an external hexagonal potential. We ar

gued tha t the effect of imperfect stress transfer across a nanotube /  polymer-matrix 

interface suppresses the al)ility of the nanotubes to mechanically reinforce a com

posite containing a small amount of nanotubes. In this work, we have identified the 

occurrence of efficient stress transfer across the interface with a tem plating of the 

polymer onto the walls of the nanotube. Comparison with experiment showed tha t 

a uniform angular distribution leads to a prediction for reinforcement quite similar 

to tha t observed. Our model was also fomid to predict a non-monotonic dependence 

of the reinforcement on the average nanotube radius. Investigations of this predic

tion have incidentally further clarified the role tha t nanotubes play in nucleating a 

thick crystalline coating, which seems to act as the jjrimary agent of reinforcement 

in poly-vinyl alcohol /  nanotube composites [99].

The work i)resented in this chapter has been published in [90].
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6.2 Possible extensions of this work

Throughout this work, I have consistently utilised simple models to try to under

stand the properties of nanotxibes which interact with foreign objects. The general 

formalism to trea t doped nanotubes presented in chapters two and three was utilised 

within the zone-folded approach for the electronic structure of the nanotube. While 

this allows us to use existing formulae for the Green fvmctions of the nanotube, it 

comes at the price tha t we do not take curvature into account. There is, in princi

ple, no need to restrict ourselves to this approach. A tight-binding method based 

on a non-isotropic hopping integral will be able to reproduce the curvature induced 

rnini-gaps in those tubes which are over-metallised by the zone folding approach. It 

is also well known tha t the use of a non-orthogonal basis set is needed to account for 

tha t portion of the band structure of a nanotube which lies above the Fermi level. 

While this was not of concern to us, since we have looked at ground state  properties, 

this is another area where the general model can be extended.

Perhaps the most im portant extension of the formalism over its presentation here 

is to include multiple orbitals per atom. Such an approach will necessitate more 

complicated coupling matrices, involving more param eters to be determined. This 

will require the introduction of more Lloyd formula relations; suitable candidates 

are local density of states relations between the tight-binding param eters and the 

change in the integrated local density of states. Similar correlations between the 

binding energy and the energy transfer to the adsorbate are expected in this case.

As regards the work performed in chapter five, this model has already been ex

tended to model a polymeric monolayer at the surface of the nanotubc. A similar 

approach, based on an investigation of a two dimensional ball-and-string lattice ar

ranged as a monolayer around a nanotube, and carried out within oiu’ group by 

Kenneth Treacy as a summer project, displayed similar features to the one dimen

sional model presented in chapter five. Again, we were able to see th a t sections 

of the net favoured to go into registry with the underlying potential, in a similar
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fashion to the argument presented in this worl^.

As far as the work on coihng polymers is concerned, one of the obvious weaknesses 

is tha t we have left the param eters tha t characterise the potential as free variables. 

It may be useful to try  to study a simple polymer. In the same vein, while we used a 

square well potential to model the polarisation interaction, there is no need to restrict 

ourselves to this shape. It seems reasonable to suppose th a t the introduction of a 

distribution function for A (the amplitude of the perturbing potential) as both a 

function of the width, and of the distance traversed along the polymer strand may 

be necessary to model the various one dimensional charge distributions th a t occur 

in nature.
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A ppendix A

Green Functions

The time independent properties of an isolated electronic system are most familiarly 

described in terms of the time-independent Schrodinger equation

/7 |^ ) =  (A .i)

where I I  is a linear operator called the Hamiltonian, |̂ />) describes the (}uantuni 

eigenstate of the system, and is the energy of the system when it is in the 

eigenstate |'0). The so-called electronic structure of the system then corresponds to 

a knowiedge of these allowed energies.

In the independent electron model, which will be assumed throughout this work, 

it is assumed tha t electrons in a solid interact only with the ionic lattice, and not 

with one another. In this fashion, we are able to write the Hamiltonian of the system 

as a product of Hamiltonians for single electrons. For an isolated molecule inside 

the independent electron apin’oxirnation, the electronic structure of the molecule 

corresponds to a sequence of bound state  energies E q ,  E \ ,  E 2 , ■ ■ •, ordered from the 

lowest to the highest. In the absence of magnetic interactions, there is a spin degen

eracy of 2, since each state  can be occupied by two electrons with different values 

of the magnetic spin quantum number, w ithout violating the Pauli principle. Fur

thermore, there may exist further symmetries of the molecule tha t mean tha t some
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of the energy levels are equal.

For an extended system which is periodic, Bloch’s theorem tells us that we can 

write the Hamiltonian of the total system as the sum of Hamiltonians of electrons 

with definite crystal momentum k. While the energy levels of an atom generally 

fall into a sets of points, in a solid the allowed energies fall into bands. For exam

ple, there may be allowed states in the range {Eo,Ei) ,  none in the range { E \ ,E 2 ) 

and some more in the range {E2 ,Ez).  For a truly infinite system (a mathematical 

idealisation tha t nonetheless is an excellent approximation for solids with at least 

one macroscopic dimension due to the sheer size of Avogadro’s number), the usual 

way of characterising the electronic structure of the system is through the use of the 

so-called density of states. The density of (single-electron) states is formally defined 

as the number of states tha t lie in the range [E, E  + SE)  in the limit tha t SE  —> 0, 

normalised to the size of the interval.

Lloyd’s formula utilises information about the isolated subsystems not by di

rectly considering their individual Hamiltonians, but rather through using the corre

sponding single particle Green function (in this work, the phrases “Green function” 

and “single particle Green function” will be used interchangeably, as we will not 

consider any many-body Green functions). Roughly speaking, the Green function 

(which will here almost exclusively be denoted by some variant of the letter g) gives 

an idea about the causal connection between two states at a given energy, E.  If 

g{E)  is the Green function of the Hamiltonian corresponding to the system O, then 

g{E)\oi) = Cj{E)\oj) for some complex functions Cj{E),  and (oi| g{E) \oj) will be 

a complex function of energy E  (in principle non-zero). On the other hand, under 

the assumption tha t the state |aj) is orthogonal to all the |oj) and tha t G is the com- 

bhied Green function of the isolated subsystems then {aj\G\oi) — {oi\G\iij) = 0, 

for all j :  the Green function matrix element between initially disconnected parts of 

the system vanishes.

It is apparent from the definition tha t m atrix elements of the Green function
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carries cliniensionality of inverse energy. A series of rem arks are worth m aking at 

th is point. F irst off concerns the  u tih ty  of the Green function approach. As far as 

we are concerned, the  m ost useful property  th a t  the Green function has is the  fact 

th a t  it is in tim ately  related  to the  partial density of s ta tes  for electrons on orbital 

\(j)) by the relation

=  — Im ((<̂ 1 9 (A.2)
7T

Since the  to ta l density of sta tes is ju s t got by sum m ing over all orbitals (p

P{E)  =  — Im g \(p)) = — Tr (Im { g{ E) ) ) . (A.3)
^ '  7T 7T

<t>

In this fashion, w ith the knowledge of the  Green function, we can plot the  density 

of sta tes, and make inferences abou t the  physical properties of the corresponding 

m aterial. T he lim it can be a tta ined  by evaluating g{E)  for successively smaller 

values of r/. This approach breaks down if there is a divergence in the  density 

of states. T he density of s ta tes  should be viewed as a d istribu tion  function; like 

D irac’s de lta  function it should appear as a factor in an in tegrand, the integral of 

which is finite. Even so, it is w orth pointing out th a t for non-zero eta, a Lorentzian 

broadening allows us to  work w ith a sufficiently close approxim ation to  the true 

density of s ta tes  (or m ore often in this work, the  change in density  of sta tes), which 

does not diverge (or diverges only in proportion to  the  system  size).

Secondly, if the H am iltonian is of a partictilarly  simple form, / /  =  ele)(e| then

g{E)  =  lim (|e )(e |(E  +  zr/) -  e|e)(c|) ^
77—

=  hm  — . (A.4)
7;—0 + E  + ir] — e

Such a  H am iltonian will be m et when I consider the electronic s truc tiu ’e of an 

adsorbed atom , where the  in terp reta tion  of a  will be th a t of the  ionisation potential 

of the  atom .
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A final point is th a t  even if the H am iltonian is more com plicated th an  th a t of 

the  simple atom , if we can still find its eigenbasis \k, (3) (where we are foreshadowing 

the use Bloch theorem  to  use k as & quantum  num ber th a t partially  diagonalises the 

H am iltonian), then  we can again w rite

g{E)  =  lim ( i ( E  +  M/) - / / ) - *
J/— 0  !

= li™ ( y ]  \̂ k,0){^kAE + iv) -  y'eMkM)(efc,/3l)"'
7}—»0   ̂ ------

=  y  i i „ ,  . ( A . 5 )
^  ^-0+ E  + IT] -  tk,!3
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A ppendix B

Derivation of Lloyd’s formula

To derive Lloyd’s formula we assume th a t the system is initially described by a 

Green function g, the coupling Hamiltonian is V  and the coupled Green function is 

denoted by G.  We assume that Dyson’s equation holds:

C — g + g VG  

^ C -  g V G = g 

^ { \ - g V ) G  =  g

^ G  ^  { i - g V y ^ g  (B .l)

Dyson’s equation can then be formally solved to yield

(7 =  g + g v { l - g v y ^ g  (B.2)

where the operator V{\  — gV)~^ is commonly called the T-matrix and denoted T. 

Even if V  is independent of energy, T  is, in general, not. The change in the density

of states is then given as Ap(£') =  ^ I m  ^Tr (^G{E) — g{E)^'^,  which is

Ap(7?) =  : ^ I m ( T r ( ,g T g ) )  (B.3)
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Which by the cychc property of tlie Trace of the prochict of operators gives

Ap(£;) =  ^ I m ( T r ( f 5 2 ) ) .  (B.4)

By the definition of the Green function,

f  =  ( E i - / / ) - "

=  (B-5)

which can be inserted into Eq. (B.4) to yield

A p  =

= ) (B.6)

However, since V  is energy independent.

Comparing Eq. B.6 with the imaginary part of B.7 gives Lloyd’s fornnila in its 

usual form

A p  = ^ I m  ("xr ( ^ l o g  ( i  -  . (B.8)
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A ppendix C 

Lloyd’s formula for a localised  

perturbation

In this ajipendix, I aim to show how we can hmit the evaluation of the determinant of 

the infinite-dimensional Lloyd matrix (introduced in Chapter 2), to a much smaller 

sub-matrix, in the case of a localised perturbation.

We write our localis('d basis set as |i). The determinant is invariant under choice 

of basis set, so we may as well work in this basis. We assume that the perturbation 

V all but the first n of the |/) lie in the kernel of V (this amounts to nothing more 

than a reordering of our basis). We take this as an effective definition of a localised 

perturbation. That is, we assume that

and denote it as Vij otherwise. It is not necessary to assume that any of the cjij vanish. 

We must form the (in principle infinite dimensional) matrix However,

due to the way that the determinant is constructed, it can be shown that the matrix

l/|i) =  0, i > n (C.l)

then

(C.2)
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( i |l  — g{E)V\ j)  lias the same determinant as the square sub-matrix consisting only 

of the first n rows and n  columns. This is due to the sparse nature of the matrix of 

the perturbation potential.

To show this explicitly, consider the ]th row of the m atrix g{E)V,  where j  > n. 

The ith entry in this row is the number since j  > n, Vkj =  0 for all

k, and so the m atrix element is zero. So for all j  > n, the jth column of the matrix 

of g{E)V  is a column of zeroes. This means tha t the only non-zero entry in the ]th 

column of the m atrix of 1 — g{E)V  is the entry 1 in the ]th row. In this fashion 

we show tha t the determ inant of the total matrix is the same as th a t of the much 

smaller n x n  matrix of the first n rows and columns.

To illustrate, consider the concrete example where we have only 4 states, of which 

only two are affected by the perturbation

/  \  /gn gi2 gi3 gu

g2\ fl'22 i/23 f/24

fl'31 .932 g'ii 534

941 .942 943 .944 /

Vii Vi2 0 0

V2I ^22 0 0

0 0 0 0

0 0 0 0

^  ^  911^^11 +  .912V2 I 9 1 1 ^ 1 2 + 9 1 2 ^ 2 2  0

921^11 +  922 ̂ 21 921 ^ 2  +  .922^22 0

931^11  +  9 3 2 V21 9 3 1 ^ ^ 1 2 + 9 3 2 ^ 2 2  0

^ 941K 1 +  942^21 941 V̂ 12 +  942^22 0

(C.3)

So th a t the determ inant of the m atrix |i) l — g(E)V( j j  is

det =

1 “  911^11  “  912V21 —91 1 ^1 2  — 91 2 ^2 2  0 0

—921̂ 1̂1 — 922^21 1 — 921^12 — 922^22 0 0

~931 Vll “  932^21 “ 931 V̂12 — 932^22 1 0

— 94i Kl1 — 942^21 “ 941 ^̂ 12 — 942 ̂ 2  0 1

(C.4)

Expanding in minors from the lower right hand corner, we see tha t the only choice 

from the third row is the third entry: all others require the selection of a zero entry
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from the third cohiinn. So

det =
^ — 9X1^11 — 9X2^21 — 9 1 1 ^1 2  — 9 1 2 ^ 2 2

“ <?2 l V l l  — .<722^21 1 ~  521^^12 ~  .9 2 2 V 22

(C.5)

This n  X n determinant may then be evahiated either analytically, for example by 

expanding in minors, or by a numerically stable algorithm. From this point on, any 

reference to the matrix 1 — g{E)V will refer to this sub-matrix, which restricts our 

attention only to those sites which are involved in the perturbation.
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A ppendix D

Calculation of com posite Green  

function for perturbed linear chain

Here we ra lcu la te  the  com posite Green function for a linear chain pertu rbed  by an 

adsorbed atom ic im purity  as required in Section 2.4.5. By definition,

(7 =  A G  +  g

By Dyson,

For a general m atrix  elem ent,

C ^ g  + g V G

-  9jj' + ^ gja gjo ^
Sa T 

T *  5o

G.

a
a f

So th a t in particu lar (setting  j  — a),



Rearranging gives

1 0 

0 1 V 0 9oo

Sa r

T *  5o

Gaf

Goj'

9aj'

9oj'

or equivalently

-
(  o  \ (  r  \ -

(  \
G a j ' I 1 0 9 a a ^ a  ̂9a a 1 9 a j '

O o j '  j 1° V y  9 0 0 T *  9 0 0 ^ 0 y \ 9 o j '  !

So

/ c  ^

\  Ooj' J

1 Qaâ a '̂ 9aa 

 ̂ —QooT* 1 — goo^o y

\ - W  \
9aj'

S»f /

Which by the elementary formula for the determinant of a 2 x 2 m atrix gives

/
Gaf

Goj'

]
clet

1 — 900^0 T9aa

^ 9oqT  1 9aa^a J

\ / \
9aj'

\  Sof

where

det — 1 — Sa9aa ~  ^0900 — 9aa900{\'T'^\ ~  '^a'^o)-

We are interested in the m atrix element Gaa which, bearing in mind ^oa =  0, can 

be read off the top line of the above m atrix equation (j’=a);

Gaa ] ^?aa(l 900^0)det

^  ^ G a a  J  9 a a ( l  900^0) 9aa ( ^ - 1 )det

We write the increase in number of particles on site a as A C (which is ^  times the 

increase in positive charge). Using the fact tha t the diagonal element (a |G |a )  of 

the to tal GF give the local density of states on orbital a, (as described in Chapter
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One), we have

^  g a a U  <700^00)^  ̂ ^

1 “  ,900<^00 “  Qaa^a +  ^OOf^aa(^OO^a ~  k P )
(D.2)
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A p p en d ix  E 

A com m ent on num erical 

im plem entation

T he m ost conventional and stra igh t forward way to  calculate the necessary integrals 

is to  sim ply view the  integrand as a function of a real variable E  and to  perform  

the  in tegration numerically, w ith a sufficiently large negative num ber being taken 

as the  lower lim it of integration. It is necessary to introduce a small positive rj in 

place strictly  tak ing  the  lim it r/ —̂ 0 There are a num ber of com plicating factors 

for th is approach. F irst off, since we are in one dimension, the Green functions will 

display Van Hove singularities. These m anifest them selves as sharp  Lorentzian-type 

peaks in the  Green function. T he height of these peaks scales inversely proportional 

to  the  size of the  small num ber r;, while the  w idth scales in proportion to  r/. To 

perform  the  in tegration, we need to  sam ple the  integrand a t energy scales smaller 

th an  the w idth  of such features. If we choose a  constant step  size, this can lead 

to  a very high num ber of points a t which we have to sam ple the integrand. This 

suggests th a t  we use a variable step  size algorithm  to perform  these integrals, such 

as G aiissian-K ronrod c}uadrature.

There is one point th a t I m ust raise, however. Since we are dealing w ith the 

logarithm  of a complex num ber z, it is clear th a t the im aginary p a rt of logz will
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always lie in the range [0, 27t) (or some contiguous interval of equal size). In other 

words, the complex number z is restricted to the first Riemann sheet. Every time 

the number z passes through the branch cut (as we vary E),  we see a discontinuity 

of size ±2?: in the integrand (depending on which direction we pass the braiichcut.

Since the position of the branch cut is arbitrary, we see immediately tha t such 

discontinuities are unphysical, and should be corrected. To do this, we tabulate the 

value of the integrand in the domain of integration. We check the integrand for 

sudden jumps of size ~  2n. We can keep track of the branch cut by using a tracking 

function B{E)  which takes the discrete values • • •, —27t, 0,2n ■ ■ ■. Then the integral 

log (2 (E)).

One way around this is to extend the integral to the complex plane. The basic 

idea is tha t we have some sort of integral of the form

j -Ep

/ =  /  d E lo g (z (E )) (E .l)
J —oo

which is immerically expensive due to the discussed features of the integrand. If ŵ e 

can be assured tha t there are no poles of this function in the upper half plane (as we 

are for sums and products of retarded Green functions), we may form the contour 

displayed in Fig. E .l

The integrand has no poles in the upper-half plane. On the large circular arc, the 

Green function g{z) can be shown to be approximated as  ̂ (where \z\ is extremely 

large). It can be shown tha t

/E f poo i-n'Yx (V )
d E  log(2 (£;)) = - i  d E  \og{z{iE + E p ) )  z  (E.2)

oo Jo ^

where both integrals are carried out over a straight line path.
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Im(E)

Re(E )

Figure E .l: Schematic of the integration contour chosen in the complex plane to 
ease numerical integration. The horizontal contour corresponds to the integration 
we originally sought, the arc is assumed to be taken in the limit of infinite radius, 
while the vertical line extends from the Fermi energy parallel to the imaginary axis.
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A ppendix F 

Calculation of real space Green  

function for ID  free electron gas

As an illustration as to how contour integration can be used to provide analytical 

formulae for matrix elements of certain Green functions, I here provide a derivation 

of the formula for the diagonal element of the real space Green fvmction matrix 

element of a one dimensional free electron gas.

Here, we assume tha t the eigenstates Ix) of the position operator X  form a 

continumn indexed by the real numbers between \—L, L\, where we will ultimately 

take the limit Ltooo.

We define the Fourier transform of the states |a;) through the expression

m  ^ ( F . l )

Taking the scalar product with a real space ket, we see



where we have used the orthonom ahty relationship between the real space kets. It 

can be shown tha t the states |A:) diagonalise the free electron Hamiltonian, with 

corresponding eigenvalue where m  is the mass of the particle of interest.

Correspondingly, we may write the Green function of the gas as

g ( £ ) = V - ^ ^ l < y -----  (F.3)
^  E  + iO+ -  Ekk

We wish to evaluate {x\g{E)  |3;'). To do this we project with the relevant bra and 

ket, and use Eq. (F.2) (and its complex conjugate) to find

 ̂ E  + ?'0+ — Ek
I ^ik( x- xo)

E  + m  -  ^k 2m

To perform the sum, we approximate it with an integral, which it will agree with 

in the limit tha t we take L oo. The allowed values of k in the case of a finite L are 

the integral multiples of as determined by tlie imposition of periodic boundary 

conditions. This means tha t A k  = f  is the difference between two succesive values 

of k. We pass from the sum to the integral through the prescription:

Y ^ A k f i k )  = f d k f i k )  (5)
k •'

(6)

where /  is the function whose values we wish to sum over. Applying this presciption 

to Eq. (F.4), we have

1 T /"oo p ifc (x -x o )
" ‘ dk{ A s W )  =  ~ f _

2m
1 /■ '» p i k { x - x o )

^  /  dk  ---- ^ (7)
27t J_^ E +-O O  ^  I 2m
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il in(k)

X Re(k)
X

Figure 1: Schematic of the rectangular integration contour chosen to evaluate The 
Green function of the ID free electron gas. The horizontal section near the real axis 
corresponds to the integration we originally sought, and the end points are chosen 
so tha t one of the poles (marked with an x) lies inside the contour. By choosing 
the vertical sections to lie equidistant from the imaginary axis, the evenness of the 
integrand ensures that their contributions mutually cancel. The other horizontal 
section is taken in the limit Im(/.:) ^  oo.

I ’his integral is readily performed through the use of contour integration. First off, 

we note that the integrand possesses two simple poles in the complex plane: at 

k — ka{E) = V2nr|+i01 'Pq perform the integration, we use a rectangular contour

in the complex A'—plane. If the quantity x — Xq is positive, we close the contour in 

the upper half plane, and in the lower otherwise. The contour is displayed in Fig. 

F for the case of positive x — xq.

oo ^ i k { x —xo) p  ^ i k { x —xo)

(8)

By using Cauchy’s theorem [44], we may evaluate the second of these as

2 m m (9 )

Here we have used the fact if we can write f {k)  — as the ratio of two holomorphic

functions p and q of complex k, then the residue of /  at simple pole ko is where
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q'{ko) is the derivative of q at ko. The overall sign is dictated by the fact we traverse 

the contour in an anticlockwise sense. Including the appropriate prefactors, and 

plugging in for the value of ko, we have

(x\g\xo)  =  —i m  ,.....  . (10)
' ' ' ' hy/2m.E +  ?0+

If we choose units such th a t m = h =  1, the diagonal element becomes

{xo\g\xo) =  ~ ^ \ l  2E I  iO+'

as claimed in Eq. 4.4.
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