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Abstract
Enforcing solidity of objects within simulations is a major computational overhead. De­
tecting interactions between bodies is a large part of this overhead. Many researchers have 
used hybrid collision detection algorithms to address this issue. Such algorithms use mul­
tiple phases, first to eliminate object pairs that cannot be interacting and then to narrow 
in on the regions of the objects that are in contact.

The second phase of these algorithms, the narrow phase, typically uses a hierarchical 
representation of the objects. A tree traversal algorithm narrows in on the regions of 
contact. While many different geometric primitives have been used for these hierarchies, 
spheres have some distinct advantages, especially for interruptible collision detection sys­
tems. However, large numbers of spheres are often required to approximate the objects’ 
geometries.

Octrees and medial axis techniques have been utilised for the construction of hierar­
chies of spheres, known as sphere-trees. This thesis presents a number of improvements 
to both these techniques. Existing methods have been critically analysed to determine 
their strengths and weaknesses and new algorithms, which build upon them, have been 
developed. As the sphere-trees are intended for use in an interruptible collision detection 
system, which uses the spheres to approximate the collisions as accurately as it can within 
an allowable time-slice, the main focus is on the close approximation of the object and 
fast traversal of the hierarchies.

The main contributions of this thesis include the development of an adaptive medial 
axis approximation algorithm that allows areas of the medial axis to be constructed as 
required. This allows a finer approximation of the medial axis in detailed areas and al­
lows more detail to be added to the approximation when there is insufficient information 
to closely approximate the object. A sphere-tree optimisation algorithm, which further 
improves the tightness of the representation, is also presented. An optimiser based al­
gorithm, which constructs sphere-trees similar to those generated from the medial axis 
without requiring its approximation, is detailed. Finally sphere-trees generated with the 
various algorithms are compared in an interruptible collision detection system.
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Chapter 1

Introduction

Solid objects collide, they do not ghost through each other. No m atter how hard one tries, 
it is not possible to push one solid object through another, unless of course, one of the 
objects pierces the surface of the other^. Thus it can be said tha t if the objects interfere 
with each other, this interference is in the form of a collision. Determining when and 
where these interactions occur is called Collision Detection and the effect caused by the 
interaction is called a Collision Response. Collision detection is a problem of kinematics, 
i.e. relating the motions and positions of objects within an environment, whereas collision 
response is a problem of dynamics, i.e. applying the “laws of physics” to simulate the 
resulting changes in the motions of the objects [76].

The problems of collision detection and response are fundamental to computer graphics 
and simulation of physical situations. A typical example would be a computer animation 
that features an avalanche or a rock fall. While traditional animation relies largely on 
human animators to enforce the solidness of objects, this is impractical for large interactive 
systems. Also the dynamic nature of the environment, and hence the collisions tha t occur 
within it, mean that the collisions are not predetermined. Thus a Collision Handling 
system is necessary to manage the large numbers of collisions.

Collision detection and response are not only fundamental to graphics and simulations, 
but also to other areas. Some of these areas include :

• V ir tu a l P ro to ty p in g . Having used a CAD/CAM system to design a complicated 
mechanical system, a simulation can be used to detect design problems tha t would 
result in components hitting off each other or not interacting correctly. This reduces 
manufacturing costs by reducing the amount of effort tha t needs to be put into the 
construction and testing of physical prototypes. Having evaluated the performance 
of the computer model it is then possible to manufacture the system knowing exactly

‘There is a scientific theory that states that if a pair of quantum particles collide often enough, the 
probability of tunnelling occurring becomes statisticedly significant. However there is no evidence that this 
could happen for objects with pairameters outside of quantum distances.

1



CHAPTER 1. INTRODUCTION 2

how the parts will interact. Held et al. explore techniques for working with massive 
models such as industrial plants [42].

• Collision Avoidance and  P a th  P lann ing . Collision avoidance systems often 
contain a collision detection phase. In this phase the path of the robot (or robotic 
manipulator) will be extrapolated into the future. Having detected an imminent 
collision the system can then plan avoidance manoeuvres or warn the operator 
[8, 31, 38, 95, 96, 101].

• H ap tic  R endering. In order to provide force feedback during simulated interac­
tion, such as virtual surgery and painting, it is necessary to be able to determine 
the interaction between the virtual environment and the probe/manipulator, which 
is under the control of the user. In order to provide quality feedback to the user, 
high processing speeds are necessary [11, 35, 36, 37, 69, 71, 77].

• V irtu a l C rash  Testing. Transport vehicles are usually required to undergo thor­
ough crash test procedures. This is an expensive operation. The use of computer 
simulations can greatly reduce the number of real tests that need to be conducted 
in the early phases of testing^. The information gathered during these simulations 
can then help designers to improve safety. Many of the large vehicle manufacturers 
have started using virtual crash testing as part of their design process^.

• M olecular M odelling. Modelling and visualisation of complex chemical structures 
and their interactions allow chemists to investigate their molecular structure and 
actions in a virtual environment. Collision detection plays a vital role in determining 
how chemical compounds combine and in providing force feedback to the operator 
[52, 102].

Thus, there are many different areas where collision handling systems are necessary. 
For areas such as Virtual Prototyping and Crash Testing the emphasis is on precise de­
tection and response. As these do not require real-time performance the computation can 
be performed to provide precision down to the level of the computer model. While a lot 
of work aims to increase performance, for these areas it is acceptable to spend the order 
of minutes (or even hours) performing the simulations. However, for real-time animations 
and virtual surgery (haptic rendering) it is necessary for the collision handling system

^An example of such a system is PAM-Crash/Safe from Pennsylvania Transportation Institute, The 
Pennsylvania State University (www.vss.psu.edu).

^Some of the companies using virtual crash testing include : DaimlerChrysler, Mercedes-Benz and 
Renault.
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to operate interactively. The next section discusses requirements for interactive collision 
detection and introduces the idea of interruptible collision detection, which trades speed 
for accuracy in order to maintain interactivity.

1.1 Requirements

There are many techniques available for increasing the speed at which a scene can be 
rendered. Graphics workstations and PC-3D accelerators provide fast rendering of scenes 
constructed from triangles. Also, dynamic level-of-detail techniques, such as progressive 
meshes [44, 45, 46], quadric surface simplification [41] and even run-time simplification 
[112] allow the complexity of the scenes to be reduced, see [22, 88] for a comparison of 
various LOD packages. However, none of this aids the provision of real-time collision 
handling. As the number of objects in the simulation increases, any additional processing 
power, such as that available by adding additional CPUs, will soon be used up.

Achieving interactive frame rates is critical in a computer animation and interactive 
simulation. In order for the animation to be reasonably believable we would require at 
least 10 frames per second (fps)^. It is also a requirement that the frames be generated at 
fixed regular intervals, i.e. there needs to be a low variance in the time taken to produce 
each frame. Failure to produce consistent frame rates is thought to cause of a kind of 
motion sickness called simulator sickness [43]. Another requirement of a collision handling 
system is the ability to handle the arbitrary motions that result from user guidance, such 
as manoeuvring a jet, and the complex interactions involving many objects.

Throughout the lifetime of an animation the amount of work required in both rendering 
and collision handling will vary. Take for example an animation of a rock fall where 
thousands of fragments are involved. As the pieces of rock start to break away from the 
rock face there are relatively few collisions involved. However as the rock face continues 
to deteriorate the rocks begin to pile up at the bottom of the ravine. As this pile of 
rubble grows, so does the number of collisions that occur. This increases the amount of 
work required to resolve the collisions, which in turn reduces the achievable frame-rate. 
If we wish to produce a real-time animation of this scenario we have to provide enough 
computing power to handle the worst case.

Interruptible^ collision detection, introduced in [47] and [49], aims to achieve these 
goals in spite of potentially complex scenarios. The interruptible algorithm takes a level- 
of-detail approach to collision detection and resolves the collisions as accurately as it can 
within a given time-slice. Thus, it aims to trade accuracy for computational cost. As 
the computational requirements of the collision handling increases, the accuracy of the 
resulting collisions decreases in order to maintain a consistent frame-rate. To achieve this,

■'By today’s standards this value is very low, most would expect 60fps or higher.
®The term interruptible is used as the algorithm does as much processing as it can before it runs out 

of time, i.e. before the collision detection process is interrupted.
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objects are represented by a hierarchy of successively finer approximations, such as those 
shown in Figure 1.1®. These hierarchies are traversed in a breadth-first manner, which 
incrementally improves the approximation of the collision information.

As the number and complexity of the objects increases, the accuracy at which the 
collisions can be approximated, before interruption occurs, is reduced. This allows the 
simulation to degrade gracefully, while giving it a good chance of maintaining its desired 
frame-rate. With a traditional (non time-critical) algorithm the increase in scene com­
plexity would result in higher processing times. Hence the animation would start to slow 
down and become jerky. The inaccuracies resulting from the interruption of the algorithm 
are often preferred to slow jerky animations.

There are two effects that can result from prematurely interrupting the collision de­
tection algorithm. If the system ignores unresolved collisions the objects can float into 
each other, this is known as inter-penetration, see Figure 1.2(a). However, if the system 
chooses to treat such collisions as definite collisions then the objects can be seen to repulse 
each other, see Figure 1.2(b). Often repulsion is a more favourable artifact than inter­
penetration [81], especially when using the collision detection for planning and avoidance 
in robotic environments [113]. Repulsion also maintains separation between the objects, 
whereas allowing them to interpenetrate could result in objects entering each other and 
then not being able to leave due to a change in the level of approximation being used for 
collision detection (popping).

1.2 Focus of this Thesis

This thesis aims to examine the requirements of the interruptible collision detection algo­
rithm. Specifically, it addresses the construction of tight fitting sphere-trees to provide a 
higher quality of approximation and examines the requirements of using these approxima­
tions for collision response. The main contributions are as follows :

• An adaptive medial approximation technique that allows the medial axis to be con­
structed on demand and focuses on improving the approximation in areas where the 
spheres created from the medial axis ill-fit the object.

• Improved sphere reduction techniques that reduce the spheres generated from the 
medial axis into a manageable set while maintaining a high degree of fit and consis­
tency.

• A generic sphere-tree construction algorithm that decomposes the problem into 
smaller object approximation problems, which can then be solved using the algo­
rithms presented. When dividing the object into sub-regions, the algorithm min-

®Data from http://graphics.cs.uiuc.edu/~gaxland/research/quadrics.html
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(a) Model (b) Level 1

(c) Level 2 (d) Level 3

Figure 1.1: Example of a dragon approximated with 3 levels of spheres.
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\

(a) Penetration

\

\
(b) Repulsion

Figure 1.2: The two cases resulting from premature term ination (interruption) of the 
collision detection algorithm.
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imises the amount of overlap between neighbouring regions so as to eliminate redun­
dancy within the sphere-trees.

• A sphere-tree optimisation algorithm that further improves the degree of fit in the 
approximations.

• Additional approximation algorithms based on generalising the octree sub-division 
to produce tighter approximations, by allowing more freedom in the way spheres are 
placed, while maintaining its good sub-division characteristics.

• A purely optimisation based approximation algorithm that yields similar results to 
those obtained using the medial axis but does not require the overhead of construct­
ing the medial axis approximation.

• The introduction of a hybrid sphere-tree structure that contains both minimum 
error and minimum volume spheres at each node. These sphere-trees provide for 
both spatial localisation and object approximation.

The remainder of this thesis is structured as follows: Chapter 2 reviews the current 
state of the art in collision detection and presents a sphere-tree traversal algorithm; Chap­
ter 3 presents the simplest of the sphere-tree construction algorithms, the Octree Method. 
This method is critically analysed and a new algorithm derived. The resulting algorithm 
approximates the object more closely without reducing the spatial sub-division properties 
of the hierarchy; Chapter 4 details a more sophisticated sphere-tree construction algo­
rithm, the Medial Axis Method; Chapter 5 analyses this method and presents a number of 
improvements for the approximation of the medial axis and the generation of sphere sets 
from that approximation; Chapter 6 details the generic sphere-tree construction algorithm 
and the sphere-tree optimisation algorithms; Chapter 7 compares the different algorithms 
in terms of object approximation and sphere-tree construction. The resulting sphere-trees 
are then evaluated in an interruptible collision detection system; Chapter 8 presents the 
conclusions and comments on further areas of research that could result from this thesis.



Chapter 2

State Of The Art

CoUision handhng is an area of computer graphics that has been receiving much attention 
from researchers. Collision handling consists of several areas, including collision detection, 
contact modelling and collision response. These in turn  can be further divided into sub- 
areas. This chapter reviews some of the work undertaken in the area of collision detection, 
and visits some of the related areas such as collision response and distance computation. 
While many of the algorithms assume rigid (or articulated) objects, usually represented 
by a polyhedral model, some are applicable to higher order models, such as those for 
deformable objects and time dependent parametric surfaces. Lin and Gottschalk present 
a taxonomy for 3D model representations, including polygon meshes, composite solid 
geometry (CSG), implicit and parametric surfaces. They also present many ideas for 
performing collision tests between these different representations [68].

2.1 Basic Collision Detection Algorithm

Collision handling systems are often used within simulations. W ithin these simulations 
a number of objects are undergoing motion. The progress through the simulation is 
represented by an abstract time, known as simulator time. As the simulation advances 
the simulation time increases. As time goes by two main activities are taking place; frames 
are rendered every Sr time units and the motions of the objects are updated every 6s time 
units. Thus the basic simulation can be considered to be made up of a number of steps :

1. Update each object’s position and orientation for the current time-step,

2. Update each object’s velocity (angular and linear) according to its acceleration,

3. Compute the collisions between the objects in their new position,

4. Determine the changes to object velocities resulting from the collisions.

5. Render the frame.
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There are, however, a number of problems associated with trying to achieve the high 
consistent frame rates required for performing interactive simulations and animations. 
These are as follows [47] :

•  Fixed- Timestep Weakness. This weakness arises from the discrete intervals at which 
simulations sample time. The system maintains a simulation time, which it steps 
through. As the animation progresses, a frame is rendered every 6r units in simu­
lator time, and the simulation is updated every 6g units. A larger Sg increases the 
efficiency of simulating the collisions, but increases the chance of missing a collision, 
especially when objects are travelling at high speeds. The inability of an algorithm 
to dynamically adjust its simulation time-step is called the fixed-timestep weakness.

• All-Pairs Weakness. When an algorithm is performing collision tests on a scene 
containing N  objects, there are potentially 0{N^)  pairs of objects that could be in 
contact. Therefore the potential number of colliding pairs increases quadratically 
with the number of objects in the scene. If an algorithm needs to perform a collision 
test for each pair of objects it is said to suffer from the all-pairs weakness.

• Pair-Processing Weakness. Some algorithms have difficulty dealing with trouble­
some circumstances. For example, the Lin-Canny algorithm exhibits cycling be­
haviour when one body is actually penetrating another, thus requiring one to limit 
the number of iterations it is allowed to perform. An algorithm’s shortcomings, in 
terms of robustness and efficiency, when resolving a collision between two objects, 
are collectively referred to as the pair-processing weakness.

Some algorithms address the fixed-timestep weakness through the use of 4D geometry 
[12], space-time bounds [47, 49] and time-bounds for parametric surfaces [107]. Mirtich 
[74] adapted Jefferson’s timewarp [54] algorithm, for performing optimistic synchronisation 
in multi-processor systems, to the arena of collision handling. In his system each object 
maintains its own simulation time, which is only stepped back when a collision is found to 
invalidate the object’s state. This differs from retroactive detection in which all objects 
are stepped back when a collision occurs and conservative advancement which advances all 
objects up to the first discontinuity (i.e. collision), which is conservatively approximated. 
Such algorithms are beyond the scope of this thesis and more information can be found 
in the cited papers.

Many researchers have tackled both the all-pairs and pair-processing weaknesses by 
utilising a multi-phase (hybrid) algorithm for collision detection. The algorithm can be 
considered to have two or three phases. The broad phase efficiently reduces the number of 
the potentially colliding pairs by eliminating objects tha t are obviously too far away from
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each other to be in contact. When two objects are found to be potential colliders a narrow 
phase algorithm is triggered. Narrow phase algorithms, of which there are many, often use 
spatial localisation techniques, such as Bounding Volume Hierarchies {BVH),  to reduce 
the areas of the objects that need to be considered. The final phase, the exact phase, uses 
the results of the narrow phase algorithm to perform accurate collision detection between 
the objects^. The specific nature of each of these phases, and how they fit together, 
depend on the representations used for the model. The following sections review many of 
the strategies adopted for each of these phases.

2.2 Broad Phase Algorithms

The first phase of the hybrid collision detection algorithm is the broad phase. This aims 
to quickly eliminate pairs of objects that cannot possibly be in contact, thus combating 
the all-pairs weakness. This is very im portant as the number of potential pairs of objects 
increases quadratically as the number of objects in the scene increases. A number of 
strategies have been adopted, which are outlined below.

2.2.1 Sweep and Prune

Cohen et al. [17] and Lin et al. [70] present a system called I-COLLIDE, which uses a sort- 
based pruning algorithm for its broad phase processing. This relies on the observation that 
if two axis aligned bounding boxes intersect, there is an overlap between their projections 
onto the basis axes, i.e. the X,  Y  and Z  axes. Inter-frame coherence is exploited to achieve 
near linear performance by maintaining the projections in ordered lists. As objects move 
a limited distance between frames, the interval lists remain almost sorted. This allows 
them to be updated in near linear time using Insertion Sort.

The system performs exact interactive collision detection for large numbers of objects. 
The exact phase of the algorithm uses Voronoi regions, to perform polytope intersections. 
These Voronoi regions represent the areas around the polytope that are closest to each 
face, edge and vertex. In [83], Ponamgi et al. present a hierarchical version of the “sweep 
and prune” algorithm, where each level represents a tighter fitting set of bounding boxes, 
not unlike the AABB-trees to be described in Section 2.3.2.

2.2.2 Overlap Table

Wilson et al. [Ill]  consider the storage implications of using massive models, i.e. the
memory overhead required for large CAD models. The scene is composed of objects and a
pre-computed overlap graph, which represents the proximity of these objects. The collision

*Many researchers consider the narrow phase sind the exa^t phase to be a combined phase. In this 
thesis they Eire treated as two separate phases as this allows interruptible collision detection to be easily 
distinguished from exact collision detection.
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detection is performed while traversing the graph. This requires only a few sub-sections 
of the scene to be loaded into memory at any one time.

Palmer and Grimsdale [82] use a similar scheme. Their broad phase algorithm localises 
objects that might collide, using a global bounding volume table where each object is 
represented by a bounding sphere. When objects are updated they are tested for collisions 
using sphere-trees and exact polygon intersection tests.

2.2.3 4^̂  D im ension

Similarly to Hubbard’s space-time bounds [49], Cameron approaches collision detection as 
a 4D problem, with the dimension being time [12]. As the simulation progresses, the 
objects move through space creating a 4D shape, i.e. the object is swept through some 
period of simulator time. The coUisions are then detected by looking for intersections 
between these 4D representations. However, object rotations and non-linear motions are 
problematic cases for the algorithm because of the complicated shapes created by rotating 
bodies in 4D.

2.3 Narrow Phase Algorithms

Researchers have explored many different structures for narrowing in on the areas of con­
tact, i.e. spatial localisation, during the narrow phase of the collision detection algorithm. 
Researchers have used a variety of different hierarchical structures, known as Bounding 
Volume Hierarchies (BVHs) to achieve the required spatial sub-division. Some im portant 
requirements for a good BVH include :

• the hierarchy conservatively approximates the volume of the object, each level rep­
resenting a  tighter fit than its parent,

• for any node in the hierarchy, its children should cover the parts of the object covered 
by the parent node,

• the hierarchy should be created in a predictable automatic manner, not requiring 
user interaction,

• the bounding volumes within the hierarchy should fit the original model as tightly 
as possible, representing the original model to a high degree of accuracy.

Each BVH can be evaluated using a number of criteria. For interactive simulations the 
emphasis is on achieving high and consistent frame-rates. Therefore a major concern is how 
well the hierarchy facilitates this goal. For an interruptible collision detection algorithm the 
narrow phase algorithm may not fully resolve the collision. Thus the approximate collision 
information, available from the BVH, needs to approximate the points (and types) of
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contact (contact modelling) and the resulting response at every level of the approximation 

[18].
In order to perform a theoretical comparison of the various representations it is nec­

essary to be able to evaluate their performance within the collision detection system. 
The following equation has been used in [33, 57, 58, 61, 104] to evaluate various types of 
bounding volume hierarchies :

T  = Nu X Cu + N y  X Cy (2.1)

where :
T is the total cost function for detecting interference be­

tween a pair of objects represented by bounding volume 
hierarchies,

Nfi is the number of primitives, i.e. bounding volumes, that 
are updated during the traversal of the hierarchies,

Cu is the cost of updating a primitive due to an object’s 
motion,

Ny is the number of overlap tests tha t are performed,
Cy  is the cost of performing an overlap test between a pair

of primitives/nodes from the hierarchies.

There is often a trade-off between the complexity of performing updates (or overlap 
tests) and the number of primitives required to approximate the object’s geometry. As 
the complexity of the primitives in the BVH increases so do the values of Cu and Cy. 
However, such primitives usually have a higher number of degrees-of-freedom and are 
more flexible when trying to form an approximation. This generally reduces the number 
of nodes required to achieve a given level of fit. Hence for more complicated primitives the 
values of iV„ and Ny are lower. There is also a relationship between these values. Each 
primitive is updated at most once per time-step (obviously we only update the nodes that 
are tested for overlap) whereas they are involved in multiple overlap tests. Thus an upper 
bound for iV„ is Ny,  i.e. N^ < Ny.

2.3.1 Sphere-Trees

The simplest of all bounding volume primitives is the sphere. Many researchers have used 
Sphere-Trees as their BVH including Hubbard [47, 48, 49], O’Sullivan and Dingliana [79], 
Quinlan [86] and Palmer and Grimsdale [82]. As a sphere is rotationally invariant, the 
update step involves a simple transformation of the spheres’ center points, Figure 2.1(a) 
illustrates this in 2D. In 3D, this requires 12 multiplications and 9 additions (floating 
point). A pair of spheres overlap (see Figure 2.1(b)) if and only if :
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Transformed Sphere

Transformation

Original Sphere

(a) Update (b) Intersection

Figure 2.1: Update and intersection for a sphere (shown in 2D).

+ B^ + Dl < R i +  R2 ( 2 .2 )

where D is the vector between their centers. Obviously, the most expensive part of this 
overlap test is the square root. However this can easily be removed by squaring both sides 
of the inequality, to give :

which is much more computationally efficient, requiring only 4 multiplications, 3 additions 
and 3 subtractions (to evaluate D).

The ease with which a sphere-tree can be updated and tested leads to very low values 
of Cu and in Equation 2.1. However, complex objects often require a large number of 
spheres to approximate their geometry, which increases Nu and N^. The actual arrange­
ment of the spheres is also an important factor in determining the number required for 
approximation.

The simplest sphere-tree construction algorithm uses an octree, described in [94], to 
arrange a regular grid of spheres into a hierarchy. O’Sullivan and Dingliana use this 
scheme for constructing sphere-trees for interruptible collision detection. Hubbard looked 
at using octrees, simulated annealing and medial axis techniques for constructing sphere- 
trees. The most promising of these approaches uses the object’s medial axis as a guide 
for initial sphere placement. This allows spheres to be placed along the skeleton of the 
object, obtaining a tighter fitting set of spheres.

Dl + Dl + Dl < [Ri R2? (2.3)

2.3.2 AABB-Trees and OBB-Trees

Van den Bergen [104] and many other researchers have used Axis Aligned Bounding Boxes 
[AABBs] for their bounding volumes. Van den Bergen used the AABB-trees not only for 
rigid objects but also for deformable ones. The nodes of the hierarchy are boxes whose
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X -A xis

(a) AABB

X -A xis 

(b) OBB

Figure 2.2: 2D Axis Aligned Bounding Box (AABB) and 2D Oriented Bounding Box 
(OBB) surrounding an entire object.

orientations are fixed to align with the ajces of the enclosed object’s co-ordinate frame. 
Others such cis Gottschalk et al. [32, 33] and Krishnan et al. [60] allow the bounding boxes 
to take on any orientation thus becoming Oriented Bounding Boxes {OBBs). Figure 2.2 
shows 2D representations of both types of primitive.

As is evident from the illustration, OBBs are less restricted in the way they can be 
arranged and therefore can provide a closer fit around each section of the model than 
AABBs. The OBB-tree provides quicker convergence to the underlying geometry of the 
object than the AABB-tree [61]. Thus the AABB-tree generally requires more primitives to 
achieve the same degree of fit as an OBB-tree, which has the effect of increasing the terms 
Nu and Ny in Equation 2.1. When objects represented by AABB-trees are undergoing 
rotation, there is a relative orientation between their local co-ordinate frames. Thus the 
bounding boxes are no longer axis aligned and need to be treated as if they were OBB’s, 
although some simplifications are possible [104].

A simpler test for overlap between two AABBs is to construct new AABBs enclosing 
the rotated versions of the original ones. This then requires only 3 interval overlap tests, 
one on each axis, to test for contact and so results in a vast reduction in Cy at the expense 
of Cu and the tightness of fit.

The simplest algorithm for performing an intersection test between a pair of OBBs is 
to test if any of the edges from one OBB intersect a face on the other (or if one OBB is 
entirely within the other). As there are 12 edges and 6 faces on each OBB, this requires 
2*12*6  =  144 edge-face combinations to be tested for intersection. This would naturally 
be quite expensive (in terms of Cy). In the RAPID  collision detection system, the theory 
of Separating Axes is used to provide a faster test (SAT)  [33, 70]. This states that :

“A line L is a separating axis if and only if the perpendicular projections, 
of two convex polytopes, onto L  are disjoint i.e. the intervals formed by the 
projections do not overlap. If L is a separating ajcis then there exists a plane.



CHAPTER 2. STATE OF THE ART 15

orthogonal to it, which is a separating plane. If no separating axis exists, then 
no separating plane exists, which implies that the polytopes are touching.”

Prom this theory they prove that there is a set of only 15 axes that need to be tested 
to determine if “two arbitrarily positioned and oriented rectangular boxes in 3-space are 
in contact” . This provides for an efficient collision test, requiring at most 200 arithmetic 
operations for a pair of OBBs. Although this is expensive when compared to Cy = 10 for 
the sphere, in practice algorithms based on OBB’s generally perform better than those 
using spheres or AABBs [70]. Van den Bergen’s empirical results suggest that a simplified 
SAT can be used if a small (6%) chance of missing a collision can be tolerated. Chung 
and Wang [15, 16] also use the SAT for convex polytopes.

The H-COLLIDE collision detection system utilises OBB-trees for performing collision 
detection. H-COLLIDE is specifically designed for use in force-feedback systems, which 
require thousands of updates per second [36] and has been used for interactive modelling 
and painting [35]. Hudson et al. [50] propose the use of OBB-trees (with sweep and prune) 
to add object-object collision detection to VRML (V-COLLIDE).

Eberly [19, 20] presents a closed-form algorithm for computing a pending intersection 
between two OBBs under motion. This allows the intersection to be computed over an 
interval rather than relying on discrete static samples taken at regular time intervals.

Barequet et al. [4] present a comparison of BVHs constructed using a number of 
different box-like primitives, referred to as BOXTREEs. They construct hierarchies of 
axis aligned boxes, arbitrarily oriented boxes and arbitrarily oriented pie slices (wedges). 
Their tests show that pie slices, oriented along the shortest principle component of each 
region, are best at eliminating unnecessary regions of the objects.

2.3.3 D iscrete Oriented Polytopes

Discrete Oriented Polytopes (DOP), as described by Klosowski et al. [57, 58], aim to 
provide a low value of while providing tight fitting bounding volumes, i.e. low iV„. 
Similarly to an AABB, the faces of the bounding polyhedra are aligned with certain axes. 
They use pairs of orientations that point in the opposite directions to each other. This 
means that a k-DOP has faces that are normal to |  axes. Thus the contact test simply 
consists of I  interval overlap tests. In fact, an AABB is a 6-DOP as the orientations of 
the faces are restricted to the orientations of the 3 primary ax;es {X, Y  and Z) in both the 
positive and negative directions. In order to ensure that the orientation of each bounding 
plane is limited to the k discrete directions, the boundary must be recomputed as the 
object rotates. It would obviously be very expensive to compute the k-DOPs during the 
animation. Klosowksi et al. pre-compute their k-DOPs and create new ones around them 
when the object rotates. The resulting k-DOPs are guaranteed to bound the original ones 
- but with a looser fit (see Figure 2.3).
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Bounding K -D O P 
Original K - DOP

(a) Original 8-DOP (b) Updated 8-DOP

Figure 2.3: Using 8-DOPs to approximate the boundary of a car.

Object A Object B

OBB

Primary Orientation Slabs
Bounding Planes,

Figure 2.4: Testing for overlap between the primary orientation slabs of an object and the 
OBB of another.

2.3.4 QuOSPO Trees

He’s Quantised Orientation Slabs with Primary Orientations [39] combine OBBs with 
k-DOPS. Each node is represented by an OBB and a large number of planes whose orien­
tations are limited to k discrete orientations, as for k-DOPs but with much larger values 
for k. When performing overlap tests the bounding box of one object is transformed into 
the quantisation space of the other object, i.e. the orientation of each plane is hmited 
to the set of allowable orientations. The set of planes that match the OBB’s faces most 
closely are chosen as the principle orientations. Interval overlap tests are then performed 
between the OBB faces (which have been re-mapped) and the planes for the principle ori­
entations. If the objects are still considered to be in contact, the process is repeated with 
the roles of the objects reversed. This allows for the tightness of OBBs while potentially 
reducing the number of axis overlap tests that are needed. This is due to the formation 
of a pair of bounding boxes that are oriented within a common co-ordinate frame (see 
Figure 2.4).
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2.3.5 Spherical Shells

A spherical-shell is the section of a sphere enclosed between two radii and within a solid 
angle of an orientation vector [61]. While this bounding volume does not share the sphere’s 
rotation invariance, C„ is still quite small. The update requires tha t the center of the 
spheres be re-positioned, and the vector be re-oriented (the total being less than twice 
the value of C„ for a sphere). The cost of performing an overlap test, Cy, is stated to be 
between 2 and 3 times that of an OBB. However the bounding volumes produced using 
spherical shells theoretically provide a tighter fit than OBBs. The spherical-shells are 
reported to exhibit local cubic convergence^ to the underlying geometry provided it is 
smooth and of low curvature. OBB exhibit quadratic convergence and AABBs/spheres 
have only linear convergence. Thus, to approximate a surface to a given degree of accuracy 
theoretically requires fewer spherical shells than OBBs, AABBs or spheres. This reduces 
the terms Ny and Nu, Ny being the more im portant as Cy dominates. In [60] Krishnan 
combines spherical shells with OBBs to construct Shell-Trees when performing collision 
detection between models constructed using Bezier patches.

2.3.6 Swept Sphere Volumes

A Swept Sphere Volume {SSV)  is the convolution of a sphere with some underlying ge­
ometrical shape, i.e. the sphere is swept out across a core primitive. When performing 
proximity queries, Larsen et al. [62] use points, lines and rectangles as the core primitives, 
each one providing a higher convergence to the underlying model. The nodes in the hi­
erarchy can therefore be a sphere, a cylinder with rounded ends (sphere swept along an 
arbitrarily oriented line) or a rectangle with rounded edges/corners (a sphere swept across 
an arbitrarily oriented rectangle).

A rectangle swept sphere provides similar fitting power to that of the OBB, i.e. 
quadratic convergence to the underlying geometry. A line swept sphere’s convergence 
rate is somewhere between this and the linear convergence achieved with spheres. Obvi­
ously, the cost of performing an overlap test depends on the core primitives involved. For 
long thin areas, line swept spheres provide a good fit, with a moderate Cy, whereas rect­
angle swept spheres are suited to flat areas and have quite a high Cy.  Rectangular swept 
sphere volumes are used for distance queries within the PQ P proximity query package 

[63].

2.3.7 C-Trees

Youn and Wohn [114] introduced a collision detection hierarchy called a C-Tree. They use 
this structure to provide a boundary representation for objects tha t contain a conventional 
kinematic hierarchy, i.e. articulated objects where movement of one part of the body also

^Cubic convergence means that the approximation to the surface would be accurate to the second order 
if the surface can be expressed as a Taylor series [61].
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affects the sub-parts. In order to detect colhsions between individual articulated sections 
of an object, the collision algorithm uses a duplicate C-tree treating a single object as 
two distinct ones. The elements of the tree can be a mixture of spheres and convex 
polyhedra. However they do not present an algorithm for the automatic construction of 
such hierarchies. The manual construction of the bounding volume hierarchies makes it 
difficult to accurately approximate the objects, especially for complicated geometries. The 
IRIS performer toolkit uses a similar strategy for performing collision handling [91].

2.3.8 S-Bounds

Cameron [12, 14] presents an algorithm for performing collision detection between models 
constructed using “Composite Solid Geometry” (CSG). This modelling technique uses 
boolean expressions to construct objects using simple primitive shapes e.g. to create a 
hole in an object requires a simple boolean difference between the object and a cylinder. 
He uses bounding functions called S-bounds (super-bounds) to express a collision as a 
non-null region in AC\B  (boolean intersection), where A  and B  are objects represented by 
CSG trees. As the use of S-Bounds can return an answer of “don’t know” , a more definite 
method needs to be employed when the S-Bounds algorithm does not give a definite answer. 
He uses spatial sub-division techniques, to further prune away areas of the CSG tree that 
do not need to be considered, prior to employing a more exhaustive method that uses the 
geometry resulting from the CSG tree to catch the remaining unanswered queries. Zeiller 
et al. [115, 116, 117] also use S-bounds for performing collision detection between CSG 
trees.

2.3.9 Voxel Space

Kitamura et al. [56] and Smith et al [98] propose voxel based collision detection algo­
rithms that can be used for both rigid and deformable objects. When objects are found to 
overlap, the required areas of their polyhedral meshes are inserted into a voxel grid using 
an octree sub-division of the environment’s bounding cube. When triangles from different 
objects are found to occupy the same voxel, an accurate triangle-triangle intersection test 
is performed. Of course, a triangle may occupy many voxels as illustrated in Figure 2.5. 
Smith et al. [97] present an efficient algorithm for using octrees to update voxelisations 
of moving objects. Their algorithm uses a compact octree representation to utilise large 
voxels in areas where sub-division is unnecessary.

Zhang et al. [118] utilise voxelisation within their algorithm, in which triangles from 
one object are checked against edges of the other that share the same voxel. This was used 
to perform efficient interference detection between clothes and a human figure (including 
self-intersection of the cloth).

Garcia-Alonso et al. [28] compute the overlapping regions between the bounding boxes 
of a pair of potentially colliding objects. Active voxels from the overlapping regions are
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Original Position

• New Position

Figure 2.5: As the object moves in voxel space multiple voxels may be occupied when part 
of the object overlaps the voxel boundaries.

transformed into a common voxel space and accurate tests are performed between the 
areas of the objects’ geometries that occupy the same voxels.

He and Kaufmann [40] also discuss collision detection between volumetric objects. To 
combat the problems of working in voxel space they use a more traditional bounding 
volume approach. Each voxel can be represented as an OBB or a sphere. The best case 
scenario for using a sphere is where it approximates a cubic cluster of voxels, which uses 
only 37% of the sphere’s volume. They present a modified OBB test tha t exploits the 
uniform orientation between the boxes and thus is only 2-3 times the cost of a sphere 
overlap test.

2.4 Interruptible Collision D etection

As mentioned in Section 1.1, consistent high frame-rates are extremely im portant for 
real-time simulations. Hubbard’s interruptible collision detection algorithm achieves this 
consistency by utilising a time-critical algorithm that approximates the contact points as 
well as it can in the allowed time [47, 49]. Thus as the number of collisions increases, 
the accuracy of the algorithm degrades in order to maintain the frame-rate. He uses 
space-time approximation to provide a conservative estimate of where the object will be 
in the future. This allows the processing to concentrate on impending collisions and 
guarantees that collisions will not be missed between frames. He also uses a sphere-tree 
as a hierarchical geometric approximation to perform efficient collision testing. A list of 
potentially colliding nodes is maintained throughout the traversal. Initially this list will 
contain the pairs of root nodes for objects that are potentially colliding. As the node pairs 
are tested, those that test positive generate new pairs (from their children), which are then 
added to the list for checking. This process is done in a time-critical fashion and terminates 
when the allotted time slice has expired. As each successive level of the hierarchy forms 
a tighter approximations of the object, the accuracy of the collision information improves
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as the traversal progresses.
O’Sullivan and Dingliana [78, 79, 81] have adapted Hubbard’s work to include Cohen’s 

sweep and prune algorithm [17] for the broad phase. This exploits inter-frame coher­
ence to provide efficient broad phase processing for highly populated scenes. They also 
replace Hubbard’s round-robin breadth-first traversal of the sphere-trees with prioritised 
scheduling algorithms. This allows important collisions to be resolved to a higher degree 
of accuracy, making better use of the available run-time. O’Sullivan [78] discusses a model 
for human perception and introduces a metric for evaluating the importance of a collision. 
This essentially allows the narrow phase processing to be scheduled in such a way as to 
improve the visual plausibility of the animation. Dingliana and O’Sullivan [18] address the 
problem of collision response in an interruptible system. As the collisions are rarely fully 
resolved, only approximate information is available to the response system. The contact 
modelling, and thus the response, can therefore only be applied using the approximate 
data. A relatively simple Dynamics Model is applied to this data to produce plausible 
motion, which often looks less sterile than physically correct motion [6]. The perceptual 
impact of the resulting response is discussed in [80].

2.5 Exact Algorithms

Much research has concentrated on performing exact collision detection between polyhe­
dral models. Almost any surface can be represented as a set of polygons, provided the 
number is sufficiently high to represent any curved areas that may exist. Exact collision 
detection algorithms provide interference tests that are mathematically accurate to the 
level of the underlying mesh. A survey of such algorithms can be found in [55]. Higher 
order representations such cis parametric patches and implicit functions are usually more 
suitable than polyhedral models for curved geometries. However, few algorithms explicitly 
use these representations for collision detection.

Many researchers have used bounding volume hierarchies to narrow in on the regions 
of contact between two models. The leaf nodes of these hierarchies contain lists of the 
triangles that are contained within them. When two bounding volumes are found to be 
overlapping, the triangles within them are tested using a simple triangle-triangle test.

Moore and Wilhelms [76] use an extended version of the Cyrus-Beck line clipping 
algorithm [90] to test for edge-face intersections between convex polyhedra. They deal 
with the collision detection and response for both rigid bodies and those articulated with 
a variety of joint types.

Other researchers have used closest point algorithms for collision detection. Most of 
these algorithms rely on the objects being convex in shape. It is often claimed that these 
can be easily extended to handle non-convex objects by decomposing them into hierarchies 
of convex polytopes, using an algorithm such as that presented by Ehmann et al. [21]. 
However, as the amount of non-convexity increases so does the number of convex elements
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required to represent the object. Thus the amount of work tha t needs to be done by the 
collision detection algorithm increases with the complexity (non-convexity) of the object. 
Therefore, these algorithms can handle some non-convexity within the objects, but become 
more computationally expensive as the objects become more non-convex.

Closest point algorithms for convex polytopes usually fall into two categories: Feature 
based and Simplex based. Feature based algorithms are so-called because they consider 
objects to be composed of a set of features, i.e. faces, edges and vertices. They express 
the collision detection problem in terms of a relationship between these features. Lin et al. 
[65, 67] described the first such algorithm, which uses incremental distance computation 
for determining collisions between convex polyhedra. This algorithm, known as Lin-Canny, 
forms the core of the I-COLLIDE collision detection system. The algorithm tracks the 
closest features between a pair of objects. It exploits inter-frame coherence by using 
“feature-stepping”, which allows the closest features to be quickly updated by examining 
those adjacent to the previously used ones. This enables the algorithm to maintain near 
constant performance between time-steps, for a fixed number of objects. However, it 
does not handle the case where objects inter-penetrate. When this situation occurs the 
algorithm enters a cycle, requiring a limit to be placed on the number of iterations allowed. 
This deteriorates the algorithm’s performance unless the objects are moving slowly relative 
to the time-step. Ponamgi et al. [83] later introduced the notion of pseudo internal Voronoi 
regions to detect when the polytopes are penetrating. An overview of using Lin-Canny 
for non-convex objects, by constructing a hierarchy of convex polytopes, can be found in 
[66].

Mirtich’s V-Clip algorithm addresses the chief drawbacks of the Lin-Canny algorithm 
[73]. This algorithm uses Voronoi planes to search for the closest points between the fea­
tures of the polyhedra. Unlike the Lin-Canny, algorithm V-Clip does not enter a cycle 
when the polyhedra penetrate and does not require any numerical tolerances to be spec­
ified. The V-Clip algorithm is more straightforward to implement as it contains fewer 
special cases and is considered to be the fastest published algorithm for rigid convex ob­
jects.

The second family of “exact” algorithms are the Simplex-based algorithms. These 
approaches define a polyhedron as a set of Simplices, which are a generalisation of the tri­
angle into any dimension, and perform operations on these simplices to track the closest 
points between two objects. Gilbert et al. [30] presented the first such algorithm, com­
monly known as GJK. Unlike the Lin-Canny algorithm, GJK can handle inter-penetrating 
objects and returns a measure of this inter-penetration. Rabbitz [87] improved this al­
gorithm to exploit coherence between frames, while Cameron [13] developed it further to 
produce Enhanced GJK. Van den Bergen [105] presents solutions to the term ination prob­
lems that can result from arithmetic round-ofF errors and provides methods for generating 
simplices on geometric primitives such as boxes, spheres, cones and cylinders. The en­
hanced GJK algorithm has a lower memory requirement than V-Clip and does not require
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any preprocessing, which makes it more suitable for deformable and fracturable objects

[64].
Quinlan [86] also considers distance computation as a method of achieving collision 

detection. Non-convex objects are represented using hierarchies of convex shapes, namely 
spheres. A search routine is used to reduce the time complexity of performing distance 
calculations in robot guidance. By allowing a small relative error in the result, Quinlan 
improves the efficiency of the algorithm. If 100% error is allowed, the returned distance 
is meaningless - however the result is zero if  and only if  a collision has occurred, thus 
allowing non-interruptible collision detection. However this work only considers a single 
object, i.e. the robot, moving in the scene.

2.6 Deformable and Parametric O bjects

Much of the work on collision detection is concerned with rigid or articulated bodies, 
usually represented by a polyhedral mesh. However, some researchers have considered 
deformable objects and objects that are represented by higher order surfaces. This section 
summarises some of the work in these areas.

Moore and Wilhelms [76] deal with collision response in the context of flexible objects 
modelled using polygonal surfaces. As the vertices are in motion, each one defines a 
line between its pervious and current positions. These edges need to be tested against 
the triangles of another object to detect the collisions. This can be quite an expensive 
algorithm if there are large numbers of polygons.

Von Herzen et al. [107] detail a collision detection algorithm for objects that are com­
posed of time-dependent continuous parametric surfaces. The algorithm finds the earliest 
collision or near-miss between objects, thus avoiding the problems caused by fixed time- 
step simulations, i.e. missing collisions that occur between time-steps. When performing 
collision detection between different types of surfaces, analysis is needed only once per 
surface type, as opposed to O(n^) combinations.

Snyder [99] performs interference detection between two parametric surfaces. However, 
the result only indicates if the two objects have collided, not where they touched. This 
data is im portant for the contact modelling phase of collision response, but is unnecessary 
for detecting impending collision when controlling robotic systems. In later work the 
determination of the contact points is addressed [100]. This work also tackles the situation 
where two objects come in contact over a large area by representing the contact area as 
a set of regularly sampled points. This not only applies to static parametric surfaces but 
also to time-dependent surfaces, which change shape as a function of time.

Volino and Thalmann [106] present an algorithm for performing efficient self-collision 
detection on flexible objects such as clothes and between the fabric and other bodies. 
Their algorithm deals with large numbers of polygons by utilising geometric properties to 
cull out a large number of potential self-collisions tha t could not possibly occur. This is
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achieved by examining the shape of the object in the areas of folds.
Hughes et al. [51] present an algorithm for performing collision detection between 

parametric surfaces undergoing quadratic deformations. They use hierarchical sweep and 
prune to narrow in on sub-patches of the surface that are potentially in contact. They 
also deal with self-intersections involving individual patches of the surface.

Lin and Manocha [66] perform collision detection between models constructed using B- 
splines. Intersections between the splines are determined by finding the algebraic solutions 
to a set of equations.

Abdel-Malek et al. [2] present an algorithm for performing collision detection between 
complex objects, constructed with CSG techniques, by enclosing them in a number of para­
metric surfaces. Collision detection is performed by tracing out the curve of intersection 
between these surfaces.

Lombardo et al. [71] present an interesting algorithm for performing collision detection 
in a key-hole surgery simulator. As the surgical tools enter the body through a small 
opening, the movement is limited to motion around that fulcrum. Also, as the tool is 
cylindrical in nature, they implement collision detection as a query for which areas of the 
deformable body parts would be visible if looking along the cylinder tha t represents the 
tool. This is achieved using the OpenGL selection mechanism, which allows the collision 
detection to be performed in hardware. They also address the fixed-timestep problem by 
sweeping out the volume covered by the tool as it moves.

Ganovelli et al. [26] use the Bucket-Tree data structure for collision detection between 
deformable objects. This is a structure similar to the AABB-tree where the model elements 
are moved between the leaf nodes (called Buckets) as the object deforms.

2.7 Sphere-Tree Traversal

As discussed in Section 2.3, the narrow phase of the collision detection algorithm zones 
in on potential areas of contact by traversing a hierarchical representation of the objects. 
When using an interruptible algorithm it is important tha t each level of this hierarchy 
provides the necessary information for collision response. Although many geometric prim­
itives have been used for non-interruptible collision detection the sphere-tree, described in 
Section 2.3.1, is still favourable when allowing interruption to occur. Attractive properties 
include :

•  Rotational Invariance : A sphere is invariant to the rotation of the objects and 
therefore its update cost is very small. No m atter what type of motion the bodies 
are going through the spheres can be updated by simply translating their centers.

•  Efficient : The cost of performing an overlap between two spheres is extremely low, 
requiring only a few floating point multiplications and additions.
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• Suitability for Response : While providing graceful degradation of the object ap­
proximation, each level of spheres in the hierarchy provides an approximation of the 
contact information necessary for collision response [18].

Many researchers have utilised sphere-trees for performing spatial localisation in col­
lision detection. The stair-case traversal algorithm uses the sphere-tree data structure to 
narrow in on the regions of objects that are in contact. This section details the stair-case 
traversal algorithm and its use as part of an interruptible collision handling system.

2.7.1 The Traversal Algorithm

Having determined that a pair of objects is potentially colliding, using a broad phase 
algorithm such as Cohen’s sweep and prune [17], the narrow phase algorithm determines 
the areas of the objects that are in contact. This is achieved by traversing the pair 
of sphere-trees associated with the objects. The traversal starts with the roots of both 
sphere-trees. If these two spheres overlap then it is necessary to test the next level, however 
if they do not overlap then the objects are not colliding. There are two approaches to the 
next stage of the traversal; to move down to the next level of both the trees and test pairs 
of children or; to move down to the next level in one of the trees. The second option, 
proposed by Palmer and Grimsdale [82], reduces the amount of comparisons that result 
from a positive overlap test. For hierarchies with n children per node a pair of overlapping 
spheres results in 0(n) further comparisons as compared with O(n^) if we move down a 
level in each tree. Figure 2.6 shows this algorithm in 2D, using circles (spheres) arranged 
on a quadtree (octree) for neatness. The traversal proceeds as follows : (1) the root nodes 
of the two trees have been found to be overlapping; (2) the B.l nodes (tree B, level 1) are 
tested against the root node of tree A, the B.l nodes that do not test positive are discarded 
(unshaded); (3) the remaining B.l spheres are tested against the A.l spheres, the ones 
that test negative are again discarded. This process results in a pair of level 1 spheres 
that are in contact, in a real scenario there may be many such pairs. A sub-traversal is 
then performed for each such pair (4 & 5).

O’Sullivan adapted this staircase traversal for interruptible collision detection. Having 
determined the colliding pairs, in the broad phase, all the sphere-trees pairs are traversed 
simultaneously in a breadth-first manner. The traversal is conducted in a time-critical 
manner, terminating when the allotted time period has expired. The algorithm maintains 
a queue of sphere pairs^. The queue is initialised with pairs of root nodes for the potentially 
colliding objects. As each pair is taken from the queue, the children of one of the spheres 
are tested against the other sphere, and new pairs are created for those that overlap. If 
both the spheres involved in the collision are leaf nodes they are entered into a list of 
resolved collisions otherwise the new pair is entered into the queue. When the algorithm

^O’Sullivan actually used a more complicated data-structure that allows objects to be scheduled cic- 
cording to the perceptual importcince of the collisions.
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Figure 2.6: Staircase traversal of a pair of sphere-trees.
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has to be interrupted - the current approximation of the collisions is used for all pairs of 
objects. Instead of taking the first pair of spheres in the queue, O’Sullivan [81] categorises 
the pairs of spheres as being high or low priority based on a model of human perception. 
The high priority pairs are checked for collisions in a round-robin fashion. When all the 
high priority collisions have been resolved, and the processing has not yet been interrupted, 
the low priority collisions are processed, again in a round-robin fashion.

2.8 Conclusion

This chapter has reviewed much of the research to date in collision detection and related 
fields. Many researchers have focused their work on this im portant topic. Table 2.1 
summarises some of the “mile-stone” algorithms in rigid body collision detection.

Many of the classical algorithms express collision detection as a closest point problem. 
A number of the reviewed algorithms track the closest points between the objects in 
order to determine when collisions have occurred. These algorithms often require that 
the objects be convex and, therefore, non-convex bodies need to be decomposed into 
hierarchies of convex polytopes.

Many other researchers have adopted a hybrid collision detection algorithm to tackle 
the problem in stages. The top-level process aims to quickly discard pairs of objects 
that cannot possibly be interacting. The next phase aims to localise in on regions of the 
objects that are in contact so that only small areas need to be considered when conducting 
exact surface intersection tests. This phase uses hierarchical representations to cull away 
the uninteresting areas. Many different geometric primitives have been used for these 
hierarchies. There is usually a trade-off between the number of primitives required to 
represent the objects and the cost of working with a given type of primitive. Table 2.2 
summarises many of these primitives.

Hubbard’s interruptible collision detection algorithm takes a level-of-detail approach 
to collision detection. Hierarchical representations of the objects are traversed using a 
time-critical algorithm, which systematically refines the collision approximations. This 
allows the amount of time spent on collision detection to be carefully controlled, thus al­
lowing more consistent frame-rates to be achieved. For an interruptible algorithm, spheres 
have distinct advantages over other bounding volumes. However, as they are used to ap­
proximate the surface of the object, the spheres need to fit the object very closely.

Recently, researchers have become increasingly more interested in performing collision 
detection with deformable objects. Some research in this area has also been reviewed in 
this chapter.
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Table 2.1: Summary of Rigid Body Collision Detection Algorithms
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A lgorithm C haracteristics P ros C ons

Moore & 
Wilhelms 
(see [76])

Test if any vertex 
from A is inside B 
and vice-versa.
Test for edges of B 
that cut through 
the faces of A. 
Based on 
Cyrus-Beck line 
clipping algorithm.

• Simple to 
implement.
•  Can supply contact 
points.

•  Objects must be 
convex.
• Does not exploit 
inter-frame coherence.
• Every object face 
needs to be 
considered for 
intersection.

Lin-Canny  
(see [65, 67J)

The first feature 
based iterative 
closest point 
algorithm.

• Exploits inter-frame 
coherence.

• Objects must be 
convex.
• Doesn’t handle 
inter-penetration®.

Palmer & 
Grimsdale 
(see [82])

Hybrid collision 
detection 
algorithm. 
Hierarchies of 
spheres used to 
localise collisions 
prior to
triangle-triangle
tests.

•  Objects are only 
considered when they 
are in close proximity.
• Efficient localisation 
of interacting regions.
• Can handle 
non-convex and 
articulated objects.

• Octree method used 
to make sphere-trees 
can produce poor 
approximations.
• Faces may be 
checked multiple 
times a.s they can be 
contained in multiple 
leaves of the 
sphere-tree.

Interruptible 
Collision 
Detection 
(see [47, 49])

Level-of-Detail 
collision detection 
algorithm. 
Bounding volume 
hierarchy made up 
of spheres 
approximate the 
objects.

• Provides consistent 
frame-rates.
• Accuracy of the 
collision information 
degrades gracefully.
• Collisions can be 
prioritised to resolve 
the im portant ones 
more accurately.

• Bounding volume 
hierarchies need to be 
tight fitting as they 
approximate the 
contact points.
• Tight fitting 
sphere-trees do not 
lend themselves to 
deformable objects^

continued on next page...

“Ponamgi introduced pseudo internal Voronoi regions to detect penetration.
*’Sphere-trees based on an octree can be computed on the fly but provide poorer fitting hiercirchies.



CH APTER 2. STATE OF THE A R T 28

...  continued from previous page
A l g o r it h m C h a r a c t e r i s t ic s P r o s C o n s

Enhanced
GJK
(see [13, 30])

Simplex based 
iterative closest 
point algorithm.

• Exploits inter-frame 
coherence.
• Can handle 
inter-penetration.
• No pre-processing 
required.

• Objects must be 
convex.
• Slower than V-Clip.

V-Clip 
(see [73])

Feature based 
iterative closest 
point algorithm. 
Uses Voronoi 
regions.

• Exploits inter-frame 
coherence.
• Can handle 
inter-penetration.
• Fastest published 
“exact” algorithm.

• Objects must be 
convex.
• Voronoi regions 
need to be 
pre-computed.
• Relatively high 
memory requirement 
(compared with 
Enhanced GJK).



CHAPTER 2. STATE OF THE A R T  29

Table 2.2: Summary of Bounding Volume Primitives for Collision Detection

P rimitive Update P rocedure Overlap T est P ros and C ons

Sphere
Apply transform to 
center of spheres.

Check if distance 
between centers is 
less than sum of 
radii.

t  Low update and 
overlap costs, 
t  Can approximate 
contact points.
1 Large number of 
spheres often needed.

Axis
Aligned
Bounding
Box
(AABB)

Apply transform to 
bounding box and 
fit new AABB that 
encloses original".

3 overlap tests, i.e. 
bounding boxes 
projected onto X, Y 
& Z axes.

t  Efficient intersection 
test.
4, Large number of 
AABBs required.
4, Refitting decreases fit 
further.

Apply transform to 
bounding box and 
construct OBB**.

As for OBB. ■f No refitting required. 
i  OBB intersection test 
is expensive.
4- Large number of 
AABBs still required.

Oriented 
Bounding 
Box (OBB)

Transform the basis 
vectors and one of 
the vertices to 
reconstruct OBB.

Separating Axis 
Test (15 interval 
projections).

t  Much tighter fitting 
than spheres or AABBs, 
fewer primitives required. 
4- Expensive overlap test.

Discrete
Orientation
Polytopes
(k-DOP)

Apply transform to 
the k-DOP and refit 
so that each face is 
aligned with one of 
k allowed 
orientations.

1 interval overlap 
tests. All must 
overlap for k-DOPs 
to be intersecting.

t  Controllable number of 
discrete orientations - 
controls cost and fit.
4, Refitting decreases the 
tightness of fit.

continued on next page...

“It may be worth transforming one of the AABBs into the others local co-ordinate freime so that only 
one of the AABBs needs to be refitted.

*’To apply a transformation to a bounding box requires the transformation of one of the vertices and 
the three vectors that define the edges.
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. .. continued from previous page
P rimitive Update P rocedure Overlap T est P ros and C ons

Quantised 
Orientation 
Slabs with 
Primary 
Orienta­
tions
(QuOSPO)

Transform OBB of 
object B into 
co-ordinate frame of 
object A. Choose 
orientations to 
make new OBBs for 
A & B.

2 sets of 3 interval 
overlap tests®.

t  Relatively inexpensive 
overlap test.
■f Provides similar fit to 
OBBs.
4- High memory 
requirement for large 
numbers of slabs 
(discrete orientations).

Spherical
Shells

Transform sphere 
center and the 
vector around 
which the shell is 
formed.

Four overlap tests 
between a shell 
restricted to one of 
its extreme radii 
and the other with 
variable radii. This 
requires finding the 
sign of quartic 
polynomials but not 
their roots.

t  Inexpensive to update. 
4- Expensive overlap test 
(2-3 times that of OBB). 
t  Fast convergence to 
smooth surfaces with low 
curvature, fewer 
primitives required.

Sphere
Swept
Volume
(SSV)

PSS: As for Sphere. 
LSS: Transform 
both end points. 
RSS: Transform 
one vertex and the 
two vectors defining 
the rectangle.

Collision detection 
is expressed as 
closest point test. 
Determine if closest 
points are on the 
edges of core shape 
(using Voronoi 
regions).
Otherwise, use 
rectangle-rectangle 
algorithm for 
closest points 
(point-line etc. are 
sub-routines within 
this).

t  Allows different 
primitives to be used in 
different areas of object, 
t  Update and overlap 
test depend on primitive. 
4- Many different cases for 
update and overlap tests. 
4, Large memory 
requirement if primitive 
types are to be chosen at 
runtime.

“If the first test indicates an overlap, objects A and B need to swap roles and another update and 
overlap test performed.



Chapter 3

Octree Method

The Octree m ethod for sphere-tree construction has been widely used by researchers. It 
is by far the simplest algorithm  for constructing sphere-tree and  has been adopted by 
Palm er and Grimsdale [82], Hubbard, [48, 49] and O ’Sullivan and Dingliana [18, 79]. 
This chapter presents the octree based algorithm  for the construction of sphere-trees. An 
improved algorithm  is then developed. This produces tighter sets of spheres by allowing 
more freedom in how they are arranged.

3.1 Constructing Sphere-Trees from Octrees

The octree is a  da ta  structure  tha t provides a recursive subdivision of 3D space [94]. Each 
node of the octree is an isothetic cube, i.e. a cube whose faces are axis aligned. This is 
essentially a simplification of the AABBs described in Section 2.3.2.

The algorithm  for the construction of an octree is recursive in natu re  and sta rts  with 
the construction of a cube th a t contains the entire object. T his root node is then sub­
divided into eight child nodes, i.e. divided in half in each dimension, w ith each child 
node covering one eighth of its paren t’s volume. The child nodes th a t overlap the surface 
of the object are added to  the octree. Those child nodes th a t do not contain any part 
of the surface are considered dead and are elim inated from the tree, this includes nodes 
completely contained inside the object. The algorithm  then perform s the same sub-division 
on each of the rem aining child nodes. This recursion can continue to  any required depth, 
each level approxim ating the object to a  finer degree. Figure 3.1 illustrates this using a 
quadtree, the 2D equivalent of the octree.

This algorithm  requires tha t we can determ ine w hether an isothetic cube overlaps the 
surface of the object. If the object is polyhedral in na tu re  this is a  question of determ ining 
if the cube contains any part of one or more of the polygons th a t make up the surface 
mesh. This is simplified because the cubes are isothetic ra ther th an  arb itrarily  oriented 
[34].

Once we have constructed an octree for the given object, it is a simple m atter to

31
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Figure 3.1: Quadtree sub-division of an object (2D equivalent of an octree).

Figure 3.2: Each cube within the octree defines a sphere which surrounds it.

construct the sphere-tree. This is achieved by placing a sphere around each of the nodes. 
As the nodes are isothetic cubes, the sphere is placed around the center of the cube and the 
radius of the sphere is equal to the distance from the center to the corners, see Figure 3.2. 
The spheres fitted around the children of an octree node are children of the sphere fitted 
around that node. The set of child spheres covers the area of the object covered by the 
parent octree node, as illustrated in Figure 3.3. Hubbard suggests fitting a tighter sphere 
at the root level using R itter’s algorithm, which aims to fit a tightly bounding sphere 
around a set of points [89], the set of points being the vertices in the polyhedral mesh.

3.1.1 Pros and Cons

Each level of the octree contains cubes that are half the size of the parent cube. During 
the construction of the sphere-tree, spheres are created around these cubes. These spheres 
are half the radius of their parent sphere. Thus each level of the sphere-tree provides a 
successively tighter approximation of the object with each sphere covering a sub-volume of 
its parent. However, the rigid placement of the spheres does limit the achievable tightness 
of fit. This is undoubtedly a very simple algorithm for the construction of sphere-trees, 
but more sophisticated schemes can yield a closer approximation.

The octree algorithm only ever covers the surface of the object and thus the interior 
of the approximation does not contain any spheres. As the spheres in the lower levels of 
the octree become very small this can result in a collision being missed and one object 
tunnelling inside another, where it may become trapped. This makes a collision detection
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(a) First Level

(b) Second Level

(c) Third Level

Figure 3.3; Sphere levels constructed using quadtree (2D equivalent of an octree).
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Figure 3.4: Octree nodes that are entirely inside the object create larger terminal nodes.

algorithm that uses sphere-trees constructed with this method more susceptible to the 
fixed time-step weakness (discussed in Section 2.1). The next section details a solution to 
this problem by extending the octree to cover the interior of the object.

3.1.2 M aking Solid Octrees

In order to construct an octree that fills the interior of the object it is necessary to amend 
the above algorithm. The algorithm creates nodes from the child cubes that contain part 
of the surface, i.e. surface polygons. If we wish to have a sphere-tree that also contains 
spheres in the interior we must include those octree nodes tha t lie inside the object. 
If we were to treat these nodes in the same way as those tha t overlap the surface we 
would sub-divide the node into a set of children, thus introducing a significant number of 
extra spheres. This would add a significant overhead to the collision detection algorithm. 
However, the set of nodes that are inside the object and do not overlap the surface can be 
treated as a special case. If we were to sub-divide such a node we would find tha t ALL  
its children would also be internal to the object. Thus it is not necessary to sub-divide 
the node, and we can simply keep this node cis a leaf node, as illustrated in Figure 3.4. 
A similar approach was used in [97] for compacting octree representations of volumetric 
objects that are in motion.

Such nodes can be determined by the following criteria : If the sphere placed around 
an octree node does not overlap the surface of the object but its center point is contained 
within the object then the node can be created as a terminal node. In order to determine 
if a node is to be treated with this special case it is necessary tha t we be able to determine 
if a point, i.e. the center of the sphere, is inside the object. Appendix A describes an 
algorithm for determining if a point is contained within a closed polyhedron.
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(a) Model (b) Sphere-Tree (4‘  ̂ Level)

Figure 3.5: An example of a model that is well suited to the octree based algorithm.

3.2 Limitations of the Octree M ethod

When constructing a sphere-tree with the Octree Method, the configuration of the sphere- 
tree is dependent solely on the bounding box of the object and the object’s shape is not 
explicitly used. Thus each level of the sphere-tree contains spheres that are identical in 
size and are positioned in a grid like arrangement. While this does ensure that the sphere- 
tree will have the necessary sub-division properties, it does not lead to very tight fitting 
approximations. Some shapes are, however, ideally suited to the octree method. A shape 
such as that in Figure 3.5 can be well approximated by an octree and the approximation has 
nice properties for contact modelling and collision response [18]. Also, the regular nature 
of the octree allows it to be quickly updated if the objects are undergoing deformations. 
This section details the improvements that have been made to the basic octree algorithm 
and derives a new algorithm that creates tighter fitting sphere-trees while maintaining 
good spatial sub-division.

3.2.1 Orientation and Position

When constructing the sphere-tree from an octree, the spheres are placed around the nodes 
of the octree. These nodes are isothetic (axis aligned) cubes. Thus, the orientation of the 
model within its local co-ordinate frame is a large factor in the goodness of fit. Figure 3.6 
shows the first level of the octrees associated with an object in two difi'erent orientations. 
It is clearly visible that rotating the model by 45° prior to the construction of the octree 
reduces the size of the nodes. However, the number of nodes covering the object has 
increased and the lower right node has a lot of empty space. These problems arise from 
the lack of knowledge the octree algorithm has about the object it is approximating. If 
the algorithm were allowed to re-orient the set of spheres produced, it might be able to
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(a) 0-degrees

Figure 3.6: Changes in the orientation of an object affects the structure of the octree.

improve the quaUty of the approximation.
This can be generalised to allow each set of child nodes to have their own orientation 

and position. Allowing a node’s children to be oriented at a different angle to the parent 
node would allow more freedom to approximate the object closely. This obviously destroys 
the nice properties of having isothetic nodes in the octree. However, this is not an issue 
when using the octree to construct a sphere-tree as each of the nodes will be replaced with 
its bounding sphere, which is rotationally invariant.

Figure 3.7 shows an example, in 2D, of an object that would benefit from allowing each 
node’s children to be arbitrarily oriented. At the top level. Figure 3.7(a) the nodes are axis 
aligned. For the second level, the top left node produces a very poor approximation using 
axis aligned child nodes (Figure 3.7(b)). This configuration will also require three children 
to cover the object. The alternative configuration, Figure 3.7(c) would only require two 
children and would approximate that section of the object more closely. Thus, by allowing 
each set of nodes to be constructed within their own co-ordinate frame it is not only 
possible to improve the approximation but to also reduce computational overhead.

3.2.2 Size

The octree algorithm is also very limited in the way it chooses the radius of each sphere. 
When sub-dividing an octree node, the children are always half their parent’s size. Thus 
all the spheres in a given level are exactly the same size, i.e. the radius is half that 
of the previous level. Figure 3.7(d) shows another approximation of the object. This 
approximation is even tighter than the last (Figure 3.7(c)) as the size of the nodes has 
been reduced.

Allowing the algorithm flexibility in the size of the nodes it uses gives it another 
degree of freedom to approximate the object. Thus allowing greater scope for achieving
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1

(a) Level

/

(c) 2"“̂ Level (rotated) (d) 2"“̂ Level (scaled)

Figure 3.7: Each set of nodes (siblings) can benefit from using a different local co-ordinate 
frame and independently sized sets of spheres.
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(a) 1"“ Level (b) 2" ‘‘ Level

Figure 3.8: Allowing the dimensions of the grid of spheres to change can improve the 
approximation.

tight fitting bounding volumes. As the algorithm is much more flexible in the way it 
arranges the spheres, each level of the hierarchy is likely to contain a variety of different 
sized spheres. This means that the collision response algorithm will not be able to make 
some of the assumptions that the octree algorithm may have allowed.

3.2.3 Grid D im ension

The octree algorithm only ever creates a 2 * 2 * 2 grid of children. This clearly guarantees 
the children nodes will collectively cover the region of space covered by their parent. In 
order to approximate the object it is not necessary to cover the entire volume of the parent 
node. It will suffice to cover the area of the object that was contained in the parent node. 
This can be exploited to allow the grid of spheres to be of arbitrary dimension as well as 
orientation and scale.

Take for example a long thin object, such as that shown in 2D in Figure 3.8. Using a 
2*2 grid, this object is bound by two squares, as featured in Figure 3.8(a). However this 
approximation is quite loose, i.e. there is quite a lot of empty space within the nodes, and 
only half the number of allocated nodes are being used. Using a different set of dimensions 
for the grid can allow a much tighter fit to be achieved, as seen in Figure 3.8(b). Although 
the second configuration uses more nodes to cover the object, it also provides better sub­
division. There is a trade-off between the number of nodes used to cover the object and 
the culling power of the sub-division structure. Using more nodes will break up the object 
into more pieces, each of which can be culled. However, it is also necessary to test each of 
these nodes to decide if the sub-trees can be culled.
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Figure 3.9: The algorithm may produce a grid of any dimension, provided it contains an 
allowable number of occupied nodes.

A more flexible scheme would be to dynamically determine the dimensions of the grid, 
upon which the spheres are placed. Any dimensions can be chosen, providing the number 
of nodes created is less than a specified maximum. For example, the grid may be 1*5*4, 
which has 20 nodes, but this would be acceptable if the object overlaps a sub-set of the 
nodes, e.g. 8, as shown in Figure 3.9. The octree algorithm can generate at most eight 
children per sphere. However, as the new algorithm is allowed to vary the size of the 
spheres, this is no longer the case.

3.3 The Grid Algorithm

The previous section identified a number of ways in which the basic octree method can 
be improved. By loosening the way in which the spheres are placed, tighter fitting sets 
of spheres can be generated. This section outlines an algorithm tha t uses this looser 
definition to approximate a section of the object by using an arbitrarily oriented grid of 
spheres.

The algorithm can be formulated as an optimisation problem, this is shown in Algo­
rithms 1 &: 2. The objective of the algorithm is to find, for a given size of sphere, the 
grid that requires the fewest spheres to approximate the object. The rationale behind this 
is that arranging the spheres so as to use only the smallest number required will remove 
the need for the spheres that contribute little to the approximation, enabling the algo­
rithm  to reduce the number of spheres required. Using the number of spheres required 
to cover the object as an objective function will not give the optimisation algorithm suffi­
cient information to find a good solution. A better alternative is to formulate a function 
that characterises how well filled each sphere is. Thus, the optimiser will aim to increase 
the amount of the surface covered by some of the spheres allowing other spheres to be 
discarded. A similar function was used in [10], to group points from 3D clouds into 2D 
curves.

In order to encourage the optimisation function to reduce the number of spheres re-
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quired to cover the surface, each iteration should aim to update the current arrangement 
so that the high ranking spheres, which already cover a large amount of the surface, will 
cover even more and reduce the dependence on the remaining spheres (which cover less 
of the surface). If we consider the surface to be represented by a densely sampled set of 
points then this equates to moving the grid so as to decrease the dependence on the lower 
ranked spheres in the set, hoping that they will eventually be discarded. We can compute 
the number of points requiring a given sphere by counting the points contained within the 
sphere that are not already covered by a higher ranking sphere. Thus the optimisation 
function, presented as Algorithm 2, can be expressed as ;

M  =  f{Count{Si)) (3.1)
V5<

is one of the spheres,
is the number of points that require S to be kept, 
is a function that has greater than linear growth so as 
to favour dense groupings of points within each sphere, 
typically f {x)  =  x^.

Thus, to find the minimum number of spheres to cover the object it is necessary to 
find the orientation (and position) of the grid that maximises M.  Any general purpose 
optimisation algorithm can be used to find these parameters. The optimisation algorithm 
requires an initial guess from which to start. The simplest way to generate an initial 
configuration would be to use the spheres generated by the octree method, i.e. 8 axis 
aligned cubes covering the area of their parent. A better solution is to use spheres placed 
within the Oriented Bounding Box (OBB)  of the required area.

Gottschalk et al. use Principal Component Analysis {PCA)  to generate OBBs [33]. 
They determine the eigen-vectors of the covariance matrix created from the region’s convex 
hull. This finds the smallest ellipsoid that encloses the set of points. However, for regions 
that are roughly cubic (or square in cross-section) the resulting bounding box is often 
quite poor [110]. Garcia used the inertial tensor instead of the covariance matrix, which 
seems to be less susceptible to these problems [27]. Barequet presents an algorithm for 
getting tighter approximations of the bounding box [5].

We have found that allowing the optimisation algorithm to vary both the orientation 
of the grid and the size of the spheres makes it difficult to find a good solution. Therefore, 
a simple linear search is used to vary the size. Starting with the minimum size required 
to cover the object with a single sphere, the size is reduced by a small amount, say 10%, 
until too many spheres are required to cover the object. The set of spheres with the least 
error is chosen to represent that area of the object.

where :
Si
Count{S)
f{x)
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The optimisation function aims to minimise the number of spheres required to approx­
imate an area of the object. This in turn allows the algorithm to use smaller spheres. A 
second optimisation function can be used to refine the grid’s orientation etc. to minimise 
the error in the approximation. However, a more versatile solution is to allow each sphere 
to move independently. This can be achieved using our generic optimisation algorithm, 
which will be developed in Section 6.2, to minimise the spheres’ volume.

3.4 Conclusions

The rigid manner in which the octree method arranges the spheres and its lack of use of the 
object’s geometry seem to be the main factors that contribute to its poor approximation 
of an object. As spheres, which are rotationally invariant, are to be placed around the 
nodes of the octree there is no requirement for them to be axis aligned. There is also no 
requirement to cover the entire volume of the parent node. It is sufficient to cover the 
parts of the object that lie within the parent node. Therefore, it is desirable to allow the 
algorithm to change the size of the spheres and to allow the grid, upon which they are 
placed, to be of arbitrary dimension.

Loosening the rigid scheme used by the octree method will allow much more freedom in 
how the spheres are arranged. This will allow the algorithm to find better arrangements of 
spheres by taking the object’s geometry into account, increasing the algorithm’s potential 
to achieve close approximations.
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A lg o rith m  1 GRID algorithm for generating spheres.
In p u t : Set of surface points defining region to be approximated, P.

Majcimum number of spheres, N.
O u tp u t : Set of spheres, S.

G r id (̂ 5, P, N)
B  <— OBB for points P  
s •<— length of longest edge of B

S  <- set of spheres covering P, arranged on grid 
of size s aligned with B

F its  ^  0 
repeat

s i— s * 0.90

Bopt ^  optimise the orientation of B  to
minimise the value of the CoverMetric 
for spheres of size s

T  f -  set of spheres covering P, arranged on grid 
of size s aligned with Bopt

F i tr  <— evaluation of how well set T  approximates object 
if ||T|| < N  and F i tr  > F its  then  

Si
F its  ^  F i t f  

end if  
until ||T|| > N

{get an initial grid}

{make initial spheres}

{reduce grid size by 10%}

{optimise grid} 

{make new spheres}

{new best set}
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A lgorithm  2 Evaluate metric in Equation 3.1 for a given grid. 
Input : Set of surface points, P. Grid orientation, O.

Grid origin, v. Grid size, s.
O utput : Set of spheres S. Evaluated metric, metric.

C o m p u t e M e t r ic ( '5 ,  P, 0,  v, s)
T  <— set of spheres covering P, arranged on grid defined

by size s, orientation B  and origin v {make new spheres]

for all € G do {count points in spheres}
Count[g] <r- number of points from P  inside g 

end for

5 ^ { }  
m etric  0 
for i =  1 to ||G|| do 

hestG ^  N IL  
bestCount 0 
for all g G G, 3  ̂ 5  do

if  Count[G] > bestCount then  
bestG <r- g
bestCount <— Count[G] 

end if  
end for

m etric m etric  +  bestCount^ {accumulate term}

if  bestCount > 0 then  
S  <— S  [J {bestG}

for all p € P, p inside bestG, p not already covered by S  do 
for all g E G, g containing p do

Count[g] <- Count[g] — 1 {point is now covered}
end for 

end for 
end if  

end for

{add to sphere set}

{evaluate metric}

{sphere covering most points}



Chapter 4

M edial Axis M ethod

In his thesis Hubbard explored two ways of improving upon the use of Octrees for con­
structing sphere-trees. He used simulated annealing and the object’s medial axis for the 
construction of Sphere-Trees [49]. This chapter describes the latter method, which essen­
tially contains three phases; The approximation of the medial axis of the model using a 
Voronoi diagram; creating a base set of spheres using the interior vertices of the Voronoi 
diagram; and the construction of a Sphere- Tree from this set of spheres.

4.1 Constructing the Medial Axis

The medial axis surface of an object represents its skeleton. The usefulness of the medial 
axis for the generation of sphere-trees comes from the symmetric nature of the object 
around the skeleton [49]. Blum and Nagel defined the medial axis as the centers of a set 
of maximally sized spheres that fill a figure [7], naturally leading to the conclusion that 
the medial axis would be a good place to center the spheres to approximate the object.

However, finding the medial axis of an object is a very computationally expensive 
problem. As the medial axis is to be used only as a guide for the placement of the spheres 
it is not im portant to construct the exact medial axis, so an approximation will therefore 
suffice. The medial axis of an object can be approximated by the 3D Voronoi diagram of 
a set of points distributed over the object’s surface, a 2D example of a Voronoi diagram is 
shown in Figure 4.1. For each sample point on the object, the Voronoi diagram represents 
the region of space that is closer to that point than any other point in the set. These 
regions, the Voronoi cells, are convex polyhedra whose vertices form the vertices of the 
diagram. The faces of the Voronoi diagram separate each point from its neighbouring 
points. As the Voronoi cell represents the region closest to a given point each face will be 
equidistant from the two points that it lies between. For a pair of points lying on opposite 
surfaces of the object this face will lie close to the middle of the object and so will be 
part of the approximate medial axis for that object. The vertices of the Voronoi diagram 
that are inside the object, and the faces whose vertices are all internal, can be used to

44
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Figure 4.1: An example of a Voronoi diagram in 2D.

approximate the medial axis of the object. The larger the number of samples, the more 
accurate the approximation. Thus it is necessary that we are able to generate a set of 
sample points across the surface of the object.

4.1.1 Sam pling a Triangulated Polyhedron

Hubbard uses a two phase process for the generation of the set of surface samples. First 
he tries to uniformly distribute a set of samples across the surface. After constructing 
the Voronoi diagram for this set of points, additional points are added to correct problem 
areas of the diagram. Such problems result from the choice of surface points and take 
the form of breaks in the medial axis and sections of the medial axis joining areas of the 
object that should remain separate.

To generate the initial set of points, Hubbard first distributes points across the surface 
of the polyhedron, using a method derived from Turk’s algorithm [103]. A relaxation 
technique is next used to even out their distribution. In order to get this initial distribution 
of points, each triangle has a probability of receiving a point tha t is proportional to its 
area. To assign a point to a triangle, a random number between 0 and 1 is generated. 
This number is used to determine which triangle will receive the point. This is achieved 
by ordering the triangles according to area and using the number as a fraction of the 
cumulative sum of the areas. The chosen face now receives a point randomly located 
within it using barycentric co-ordinates [1].

Turk’s algorithm next applies an iterative relaxation technique that pushes the points 
around under the influence of their neighbours. The forces between points on different 
triangles can result in points being pushed off the surface. To overcome these problems.
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Hubbard groups neighbouring triangles into planar clusters. When performing relaxation 
each cluster is treated as an individual unit. This ensures the points will not leave the 
surface. To try to maintain the uniformity of the distribution between clusters, each edge 
of the cluster exerts a force on the points that mimics a set of evenly distributed points on 
the opposite side of the edge. This, however, drives points away from the edges - requiring 
an extra set of samples to be distributed along them.

In Section 5.1 an alternative samphng algorithm is presented. This scheme distributes 
points on a regular grid within each triangle/cluster and then adaptively adds more points 
to guarantee the fit of the spheres generated and to guarantee that all areas of the object 
are covered. This method also handles the cases covered by the additional samples added 
in Hubbard’s method without needing any numerical tolerances or special sampling along 
the edges.

4.1.2 C onstructing the Voronoi Diagram

In order to construct the Voronoi diagram it is necessary that we be aware of its structure. 
Each point in the diagram will be surrounded by a Voronoi cell, i.e. the region closer to 
it than any other point. Each Voronoi vertex is the circumcenter of four sample points, 
i.e. a sphere centered at the vertex will touch the surface of the object at four points. 
These points are referred to as the vertex’s forming points. Each Voronoi vertex lies on 
exactly four cells and adjoins four edges. This gives each vertex exactly four neighbours 
[72]. It can often look as if a vertex adjoins more than four cells but this is not the case. 
An edge of the Voronoi diagram is allowed to have zero length, thus a vertex with more 
than four neighbours is simply a pair of vertices with a very short edge between them. 
Hubbard suggests that sets of such vertices should be combined after the construction of 
the diagram to prevent complications in the later stages.

The algorithm used to construct the Voronoi diagram is an iterative one, based on 
Bowyer’s algorithm [9], which allows additional points to be added later on to correct 
any errors in the medial axis. As the algorithm assumes that all points being added 
to the diagram are inside the region already covered by it, an initial diagram must be 
constructed. The initial diagram is constructed using a tetrahedron that bounds the 
object. The corners of the tetrahedron are used as the set of initial forming points. For 
each of these points there is a cell, which surrounds it. These cells meet at a vertex in the 
center of the tetrahedron. Four additional vertices are constructed outside the tetrahedron 
by projecting the center point through the tetrahedron’s faces. As each Voronoi vertex 
needs four neighbours, each one is connected to the rest. Figure 4.2 illustrates this in 2D, 
using a triangle instead of a tetrahedron and three forming points (and dummy vertices) 
instead of four.

The algorithm proceeds to build the Voronoi diagram by adding each surface point in 
turn. Each new point extends the diagram to contain a new cell, representing the region



CHAPTER 4. MEDIAL AXIS  METHOD  47

Forming Point

Central Vertex

Bounding Triangle

 Dummy Vertex

Figure 4.2: Initial Voronoi diagram in 2D. Vertices are in green, and forming points in 
red. Solid black lines join the neighbouring vertices.

closer to tha t point than any other forming point, see Figure 4.3. The addition of this new 
cell causes the surrounding cells to shrink. This is achieved by deleting a number of the 
vertices and replacing them with new vertices. The algorithm deletes every vertex that is 
closer to the new point than its forming points. The replacement vertices are then created 
so that the faces of the Voronoi cells are once again equidistant from the forming points 
of the two cells sharing the face.

When a vertex is already equidistant from its forming points and the new point numer­
ical imprecision becomes an issue. It is difficult to decide if the vertex should be deleted 
or not. Hubbard uses an algorithm, described next, which chooses the deletable vertices 
so as to make the diagram both accurate and robust, i.e. the structure of the diagram will 
not be compromised. Also the algorithm cannot tolerate coincident forming points and 
therefore these must be removed.

4.1.3 Selecting the Vertices to  D elete

When selecting the vertices to be deleted from the Voronoi diagram, while adding a new 
surface point, it is important to maintain the topological structure of the diagram. Inagaki 
et al. state five criteria for preserving this structure [53] :

• the set of deletable vertices is non-empty,

• all the deletable vertices form a connected sub-graph,

• at least one vertex from each cell is N O T  deletable,

• the deletable vertices on each cell form a connected sub-graph.
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New Point

(a) Four Points

(b) Five Points

Figure 4.3: Adding a new point to the Voronoi diagram creates a new cell representing 
the region for which it is the closest forming point.
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• the non-deletable vertices on a cell form a connected sub-graph.

A greedy algorithm is used to construct the deletable set. The algorithm starts with 
the vertex closest to the point being added, which is guaranteed to be deletable. The 
neighbouring vertices are next considered and those that satisfy the above criteria are 
added to the deletable set. The search then moves onto the neighbours of those ver­
tices. The algorithm does not however consider the consequences of adding a vertex to 
the deletable set, i.e. choosing to delete a vertex may prevent the algorithm from later 
including a vertex that needs to be deleted.

Hubbard improves on this search algorithm by considering the vertices in order of 
suitability. Vertices that are much closer to the new point than their forming points are 
clearly deletable. Thus the measure of deletability, for a vertex, is the distance to its 
forming points minus the distance to the new point. The search for the set of deletable 
vertices starts at the vertex with the highest value and maintains a priority queue of the 
possibly deletable vertices, which is initialised with the positively valued neighbours of 
the starting vertex. The priority queue allows the algorithm to consider the vertices in 
order of value. If a vertex cannot be added to the deletable set it is held back for later 
consideration. When a deletable vertex is found, its positively valued neighbours are added 
to the priority queue, and the vertices that were being held back are returned to the queue 
as they may now be valid deletable vertices.

This algorithm does not find the globally optimum set of deletable vertices, but it does 
find a set to which no more vertices can be added and which maintains the topological 
structure of the Voronoi diagram. In [49], Hubbard presents results tha t indicate that this 
algorithm produces a more accurate Voronoi diagram than using Inagaki’s criteria alone.

An alternative criterion for the selection of a valid set of deletable vertices would be 
to only allow vertices that maintain the topological structure of the Voronoi diagram. As 
the set of deletable vertices is built up the necessary conditions must be maintained :

• the set of forming points to be used to create a new vertex cannot be co-planar,

• each new vertex will have four neighbours, three of these being the other new vertices 
with which it shares three forming points. When constructing the deletable set there 
will be at most three such neighbours for each new vertex.

These also aim to maintain the topological structures of the Voronoi diagram, and 
ensures tha t each new vertex will be created from a set of non-coplanar points. This test 
is more straightforward to implement and has been more efficient during the construction 
of Voronoi diagrams used in this thesis.

4.1.4 U pdating the Voronoi diagram

In order to create the Voronoi cell surrounding the new point, the algorithm has to replace 
the deletable vertices with new ones. Bowyer’s algorithm creates a new vertex for each pair
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of neighbouring vertices Vd and Vu-, where is a deletable vertex and is an undeletable 
vertex. These vertices will share three forming points, which together with the new point 
will create the new vertex. The circumcenter of the tetrahedron formed by these four 
points gives the vertex’s location, as shown in Figure 4.4(a). As with all Voronoi vertices, 
the new vertex Vn has four neighbours, Vu and three other new vertices. These other 
neighbours can be found from the set of new vertices by doing a brute force search for the 
the ones tha t share three forming points with see Figure 4.4(b).

If the set of deletable vertices is not entirely correct, it is possible tha t the set of 
forming points for a new vertex are all coplanar. Thus it would be impossible to create 
the circumsphere, and hence give the vertex a location. Inagaki et al. note that the 
position of the new vertex should lie on the edge connecting Vd and Vu and that the 
circumcenter of the tetrahedron would be infinitely far away. Thus the position of the 
vertex can be approximated with V"„, which is preferable to using Vd as it is not closer to 
the new point than its forming points [49].

4.2 Fixing the Medial Axis

Approximating the medial axis by constructing a Voronoi diagram requires tha t the surface 
be sampled in an even, consistent manner. For a general polyhedral object this is a 
difficult problem. There are essentially two types of error tha t can occur, as illustrated 
in Figure 4.5. The first results in a break in the medial axis, where it leaves the object 
through its surface. The second is where the medial axis re-enters the surface to form a 
bridge.

Hubbard suggests a scheme for correcting errors in the medial axis tha t result from 
sampling problems. He introduces the notion of gap crossing cells as a way of detecting 
these errors [49]. The Voronoi cells that lead to the medial axis approximation containing 
breaks, or joining two separate parts of the object (by crossing the gap between them), are 
called gap crossing cells. A cell, around point p, is considered gap crossing if it intersects 
a side of the object on which p does not lie. This situation results in the faces of the cell 
leaving the object to form a break in the medial axis or a bridge if it re-enters the object 
a t some other point. His specific definition is :

“The two cells around Pj and Pk are gap crossing if the shared face intersects
a cluster that does not contain both Pj and Pjt.”

New points are introduced to the Voronoi diagram at strategic locations to correct 
these errors. Obviously the new cells, created as a result of the addition of the new points, 
will then need to be checked for gap-crossing. The new point is created by projecting 
the point(s) that does not lie on the cluster onto the plane of cluster. If neither of the 
projected points lies inside one of the cluster’s triangles, then one of the points is snapped
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Vu

New Verte:

Forming Points

New Point

(a) New Vertex

New Vertex

Shared
Forming
Points

New Edge

New Vertex

(b) New Edge

Figure 4.4: Creating a new vertex for a pair of vertices Vu Vd and a new edge from 
two of the new vertices.
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Break

(a) Broken Medial Axis

Bridge

(b) Joined Medial Axis

Figure 4.5: Examples of how sampling can cause errors in the medial axis.
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Figure 4.6: Examples of spheres placed around the Voronoi vertices tha t are inside the 
object.

to its closest point on any of the triangles within the cluster that the face intersected. 
If the projected point has to be repositioned in this way, it is not guaranteed to fix the 
problem and many new gap-crossing cells may result.

4.3 Constructing the Sphere-Tree

The construction of the sphere-tree starts with the creation of a set of spheres, from the 
medial axis approximation, which represents the object. Each internal Voronoi vertex 
gives the center of a sphere and the distance to its forming points determines its radius. 
As the medial axis of the object can be defined as the set of maximally sized spheres 
that fill its interior, the vertices that are inside the object represent good locations around 
which to place spheres. Each vertex is equidistant from its forming points, therefore using 
this distance as the radius of the sphere ensures tha t it will touch the surface in at least 
four locations. Figure 4.6 shows this in 2D with each circle touching the surface in three 
places. Hubbard uses a point in object test that categorises points according to whether 
they are behind the closest part of the surface. Although this algorithm does categorise 
some internal points as being outside the object it suffices for this purpose, see Appendix A 
for a description of this and some alternatives.

Obviously the set of spheres generated from the medial axis is not much good for 
performing collision detection. There will be a lot of spheres in the set and they are not 
arranged in a hierarchical manner, which is essential for performing the spatial localisation 
required for the narrow phase of the collision detection algorithm. Therefore it is necessary
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to further process the set of spheres to  form a hierarchical structure.
The construction of the sphere-tree proceeds in a top down fashion. The root of the 

tree, which contains only a single sphere is created using R itte r’s algorithm  [89]. This 
algorithm  approxim ates the smallest sphere th a t contains a  set of points, i.e. the set of 
surface samples or the forming points. Each non-term inal node of the tree is required to 
have a pre-specified num ber of children (iVg). Thus for the first level of the  tree, the set of 
medial spheres must be reduced down to contain only Nc spheres, all of which are children 
of the root node. This is achieved using a successive merge algorithm  in which pairs of 
spheres are combined until the required num ber of spheres is reached.

Successive levels of the tree are constructed using a sub-set of the  medial spheres. 
This set contains only the spheres, from the original medial axis approxim ation, th a t were 
merged to create the parent node. These are once again successively merged until the 
specified num ber of spheres has been reached. This cannot continue to an arb itra ry  depth 
as the medial axis approxim ation has a  lim ited num ber of spheres. The num ber of medial 
spheres is determ ined by the number and position of the surface samples and so there may 
be insufficient spheres in the medial set to create a tree of the required depth.

Sphere M erging

W hen merging a pair of spheres, S\  and S 2 , a new sphere is created to cover the parts of 
the object th a t these spheres covered. The object is represented by a  set of surface points, 
as it is very expensive to use the polyhedral surface itself. If the set of forming points 
is used for this purpose, each sphere initially contains its four forming points. W hen the 
merge occurs, the two sets of points are combined and R itte r’s algorithm  determ ines the 
new bounding sphere 5i2-

Each iteration  of the algorithm  reduces the set of spheres by combining two spheres 
into one. If each sphere was allowed to  merge with any other sphere it would be very 
expensive to  decide which pair of spheres to merge. H ubbard reduces the com putational 
complexity of this process by only considering certain pairs of spheres. As each sphere in 
the initial set corresponds to a vertex in the Voronoi diagram , the  sphere can be considered 
to be adjacent to  a sub-set of the other spheres, i.e. its neighbours. W hen two spheres Si  
and S 2 merge, any spheres adjacent to either of the spheres become adjacent to the new 
sphere 5i2

The algorithm  uses a  heuristic to determ ine which pair of spheres to combine. Each 
tim e the algorithm  merges a pair of spheres it picks the pair th a t will introduce the 
least am ount of error into the approxim ation. For each of the candidate pairs, the new

^Any sphere that has no neighbouring spheres will be unable to merge with others and therefore will 
be contained in the reduced set. This will reduce the quality of the approximation. In the implementation 
used for this thesis, when a sphere is found to have no neighbours a set is computed to contain all the 
spheres that it overlaps. This avoids the situation of having spheres that have no neighbours with which 
to merge.
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(a) C in front (b) C behind

Figure 4.7: Computing the distance from a point P  to the surface of the sphere, for the 
two cases of C  being in front of or behind the plane on which P  lies.

bounding sphere is computed and its error evaluated. When a merge takes place, the new 
candidate pairs, which are formed during the merge, will also need to be evaluated. When 
computing the fit of the spheres, Hubbard computes the distance from each forming point 
to the sphere. This is not as accurate as measuring the distance from the sphere to the 
surface but is more efficient. To compute the distance from a surface point to the surface 
of the sphere, the center of the sphere is projected along the point’s normal onto the plane 
defined by the point. The distance can then be computed as :

if the center of the sphere, C, lies in front of the plane, as in Figure 4.7(a) and :

if it lies behind it, as in Figure 4.7(b).

4.4 Pros and Cons

Using the medial axis for constructing sphere-trees certainly has major advantages over 
the octree method, reviewed in Chapter 3. Although the algorithm is much more com­
plicated, the sphere-trees constructed with it approximate the object in a tighter way. 
This improvement in accuracy can be attributed to the freedom tha t the algorithm has 
in where it can place spheres. In the octree method, the position of the spheres is almost 
totally independent of the object’s geometry. In contrast, the medial axis method explic­
itly uses the object’s geometry, in the form of its skeleton, for the creation of the initial 
set of spheres. The medial axis method is far more computationally intensive than the 
octree method, however this is not an issue when the sphere-trees are constructed as a 
pre-processing step. The octree method has advantages when working with deformable

(4.1)

(4.2)
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objects as it can be updated dynamically while the object is deforming.
However, there are a number of areas in which the medial axis technique can be 

improved. When generating a set of sample points, it is impossible to know how to 
choose a good set of points for the construction of the medial axis, i.e. how many sample 
points will give you the desired results. The sampling scheme presented uses a number of 
numerical parameters that are also difficult to determine analytically. Having constructed 
the Voronoi diagram and used it to create a set of initial spheres, there is no guarantee 
of the quality of this set, i.e. the set of spheres cannot approximate the object to a 
specific tolerance. Additionally, there is no guarantee that the set of spheres fitted to the 
medial axis will cover the entire object. The sphere-tree construction algorithm does aim 
to minimise the error in the approximation, but it is limited in how it reduces the set of 
spheres i.e. it is unable to adjust the other spheres in the set. Thus it does not distribute 
the error among the remaining spheres, which would reduce the overall error. Chapter 5 
presents a number of improvements to this algorithm.



Chapter 5

Improved Medial Axis M ethod

In Chapter 4 the medial axis method for the construction of sphere-trees was introduced. 
The method constructs a Voronoi diagram from a set of sample points distributed across 
the surface of the object. The Voronoi vertices that are inside the object are subsequently 
used to construct a base set of spheres, approximating the object, from which a hierarchy 
is constructed. This chapter discusses a number of improvements tha t can be made to 
this algorithm.

5.1 Adaptive Sampling

The first phase of the medial axis method aims to generate a set of sample points that can 
be used to construct the medial axis approximation. In order to generate the correct medial 
axis, these points need to be distributed evenly across the surface of the object. While 
this is very simple for some shapes, it is quite complex for general polyhedral meshes [49]. 
Hubbard first assigns each triangle in the mesh a number of points based on its area. A 
relaxation algorithm then tries to redistribute these points more evenly across the surface. 
Hubbard employs a heuristic to simplify this process. He groups the triangles into planar 
groups called clusters and applies a separate relaxation to each.

While this does eliminate the problem of points leaving the surface, there are a number 
of difficulties associated with this process. For highly curved objects, such as those mod­
elled with NURBS (Non-Uniform Rational B-Splines), it is rare to find planar areas. Thus 
the clusters usually consist of only one triangle. This greatly reduces the effectiveness of 
the relaxation technique. There are also a number of numerical tolerances required to 
perform the relaxation, which can be hard to determine.

A simpler method, which does not require any numerical tolerances, is to sample the 
cluster/triangle in a grid-like fashion, as shown in Figure 5.1. This scheme will always 
yield an even arrangement of points within an individual triangle/cluster. However, it may 
use more points than were assigned to the triangle, which will increase the computational 
costs, but will not make the medial axis any less correct.

57
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Figure 5.1: Distributing points within a cluster by sampling the clusters bounding box in 
a raster fashion.

As it is extremely difficult to determine how many samples should be used for a given 
surface, Hubbard uses a post-processing step to add extra samples to correct problems 
with the medial axis. The process, described in Section 4.2, looks for gap crossing cells, 
which are cells whose faces intersect areas of the surface that do not contain the points 
used to create them. Extra points are added to correct these errors. While this does 
correct problems with the medial axis, it does not make any guajantees about how well 
the set of spheres will approximate the surface or even tha t the set of spheres will cover 
the entire surface. Thus it may not be possible to approximate the object to the desired 
accuracy. Another problem with this strategy is in the way it determines when new points 
are required. Figure 5.2 shows an example of where the algorithm will choose to add extra 
points when it is not really necessary as there is no error in the medial axis. In the situation 
shown in Figure 5.2(a), the Voronoi edge E  intersects cluster C  but is not considered gap 
crossing as Pj and Pk are on clusters A  and B, which are neighbours of C. Thus no extra 
points will be inserted into the Voronoi diagram. However, in the second situation (shown 
in Figure 5.2(b)) there is a small face between A  and C  and another between B  and C. 
This means that E  is now considered gap crossing (as it intersects a cluster that is not 
a neighbour of A or B). This will cause the algorithm to add extra points to correct the 
medial axis. However, it is questionable as to whether there is indeed a problem with 
the medial axis at this point. While the medial axis will be affected by the change in the 
surface, this change will not significantly affect the resulting set of spheres. Therefore the 
addition of the extra point will cause an unnecessary overhead. For complicated meshes, 
which contain areas with many small polygons, this situation will occur quite frequently.

There are a number of alternative algorithms, for the computation of Voronoi diagrams, 
that could be used for the construction of the medial axis [23, 24, 25, 59, 72]. However, 
none of these algorithms solve the problem of knowing where to place the sample points. 
Thus an incremental algorithm remains preferable as it allows iterative improvement of 
the approximation. Generating a good set of spheres is more im portant than accurately 
approximating the medial axis. Thus an adaptive sampling technique, which iteratively 
improves the set of spheres, is employed. Each medial vertex will be used to construct a
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E

C

B—

(a) E not gap-crossing (b) E is gap-grossing

Figure 5.2: Small clusters can cause faces that do not represent a problem to be considered 
gap-crossing.

sphere whose radius will be the distance from the vertex to sample points used to create 
it. A new point, which will cause v to be replaced, is inserted into the Voronoi diagram,
as illustrated in Figure 5.3. For a convex body, if q is the point on the surface that is
closest to the center of the sphere (v) then a measure of how far the sphere goes outside 
the surface is given by:

e = r — \\q — u|| (5.1)

where :
e is the distance the sphere protrudes past the surface, 
r is the radius of the sphere,
V is the vertex at the center of the sphere,
q is the closest point on the surface.

Inserting a new sample point at q will guarantee a reduction of e. The insertion of 
the new point results in the vertex v being removed and replaced by new vertices to form 
a Voronoi cell around q. The new vertices that lie inside the object will then create new 
spheres. This is illustrated in Figure 5.3(b).

Section 4.2 presented two problems tha t Hubbard’s algorithm aims to fix: (1) where 
there is a break in the medial surface; and (2) where the medial axis leaves one part of 
the object and re-enters another part. The adaptive sampling scheme will fix the latter 
problem, if it results in a large sphere joining two parts of the object, as this sphere 
will be divided if e is large enough (Figure 5.4). Figure 5.5 shows a comparison between 
the adaptive sampling algorithm, shown as Algorithm 3, and the regular algorithm. The 
adaptive algorithm, which started with a set of circa 500 spheres produced from the 
non-adaptive algorithm, clearly produces a closer approximation of the object, with the 
non-adaptive algorithm producing a very uneven and bumpy result.
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(a) Before (b) After

Figure 5.3: Addition of a new point to reduce the error of the approximation. The point 
(q) is positioned to improve a specific part of the approximation.

Figure 5.4: Where the medial axis crosses from one part of the object to another, large 
resulting spheres will be divided by the adaptive sampling algorithm if e is larger than the 
desired accuracy.
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(a) Model

(b) Non-Adaptive

(c) Adaptive

Figure 5.5: Comparison between non-adaptive and adaptive sampling, both using circa 
1000 spheres.
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A lgorithm  3 Adaptive construction of Voronoi Diagram 
In p u t : Voronoi diagram, V. Surface, S.

Maximum allowable error, maxErr.
O u tp u t : Updated Voronoi diagram, V.

A DA P T ivE V o r o n o i  (^5, V, maxErr)
M  •(— set of medial vertices in V 
V i— vertex from M  with worst fitting sphere 
while Error{v) > maxErr  do 

p •<— point on S  closest to v 
insert p into Voronoi diagram, V 
M  ^  updated medial vertices (excluding v)
V <r- vertex from M  with worst fitting sphere 

end  while

5.2 Complete Coverage

When constructing spheres using the medial axis it is difficult to ensure that the entire 
object is covered with spheres. Figure 5.6 shows an example of a problem that can occur. 
The thin nature of the shape means that there is a very small area in which the Voronoi 
vertices must lie in order for them to produce spheres. Figure 5.6(a) shows two medial 
vertices, labelled A and B,  which are just outside the object. These vertices are not used 
to construct spheres and therefore the tip of the spike is left uncovered.

Hubbard’s notion of gap-crossing cells may be employed to try to fix this problem. Ac­
cording to the strict definition both these vertices are caused by gap-crossing cells. There­
fore additional sample points could be generated to handle the problem. Figure 5.6(b) 
shows the Voronoi diagram resulting from the addition of one extra sample point, F  (cre­
ated by projecting G onto the opposite surface). As the object narrows sharply, this has 
resulted in the medial axis being pushed out through the opposite surface of the object. 
Once again the tip of the spike is left uncovered. While this algorithm may eventually 
add enough sample points to fix the problem it may take many iterations. An extension 
to the adaptive sampling algorithm allows us to deal with this situation quite easily by 
using one of the external vertices to construct a sphere. Figure 5.6(c).

As before, it is useful for us to concentrate on what we are trying to achieve when 
using the medial axis method. The aim is to produce a set of spheres that approximate 
the object to a high degree of accuracy. Strictly speaking, the medial axis is not allowed 
to contain any vertices that are outside the object. However, the use of some such vertices 
allows us to guarantee that the entire surface will be covered. Rather than considering the 
polyhedral model of the object, it is more efficient to consider a set of points distributed 
across the surface. This set could be the samples used to construct the medial axis but a
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(a) A (b) B (c) C

Figure 5.6: An example of a situation where it is very difRcult to produce spheres to cover 
the object’s entire volume.

more densely packed set of points would be preferable as it will cover the surface better.
In order to guarantee that all the points on the surface are covered, it is necessary to 

add extra spheres that will cover those not already covered by the medial spheres. For 
any such point there will be a number of vertices tha t can produce a sphere capable of 
covering it. If we are using the forming points of the Voronoi diagram, it would make sense 
to limit ourselves to choosing a sphere centered around one of the vertices surrounding 
that forming point. This would limit the computational complexity and confine the search 
to vertices that are in the region close to the object and therefore close to the medial axis. 
As it is more economic to use a sparse sampling for the construction of the medial axis, the 
coverage points may not be forming points. However, as the Voronoi cell around a forming 
point will have a number of vertices, which will make spheres tha t touch the forming point, 
there will be at least one sphere which can cover each point within the Voronoi cell, as 
shown in Figure 5.7.

Thus to cover a previously uncovered point, only the vertices of the surrounding 
Voronoi cell need to be considered. As the Voronoi cell represents the region of space 
that is closer to its forming point than any other, a point will be contained in the cell of 
its closest forming point. There will be a number of vertices associated with the cell, each 
of which may be capable of covering the uncovered sample. There are a number of criteria 
by which the sphere can be chosen, such as using the smallest sphere, the sphere that is 
closest to being inside the object or the sphere that covers most of the uncovered samples.

As the surrogate vertex (i.e. the one chosen to improve coverage) will not be contained 
inside the object, it is desirable that we minimise the inaccuracies that may be introduced.
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Figure 5.7: Every point P  within a cell will be covered by at least one of the spheres 
created from the vertices of that cell as all such spheres will pass through the forming 
points of the cell.

The adaptive sampling algorithm holds the key to choosing which vertex should be used 
for this purpose. To avoid introducing any artifacts, due to the selection of these vertices, 
we should choose a vertex that will be removed during later iterations of the adaptive 
sampling algorithm. Thus it seems like a good choice to use the vertices tha t will be most 
easily removed during the next iteration of the adaptive sampling algorithm. Such vertices 
can be easily chosen using the measure of deletability discussed in Section 4.1.3, which 
ranks the deletability of a vertex as distance to its forming points minus the distance to the 
new point. The sphere produced by using this metric may be large, as seen in Figure 5.8, 
but this simply means that it will be removed as the algorithm proceeds. As the adaptive 
sampling algorithm attem pts to improve only those spheres tha t poorly approximate the 
surface of the object, it will stop trying to improve the extra spheres once they become 
small. Therefore, the number of extra samples needed to ensure coverage should be much 
lower than using the notion of gap-crossing cells. This is because the algorithm allows the 
medial axis to leave the object provided it generates a set of spheres to approximate the 
object fully. Figure 5.9 shows a section of a model tha t contains a number of very thin 
areas. The figure also shows the set of spheres generated using the adaptive algorithm 
with the coverage check, presented as Algorithm 4, and the non-adaptive algorithm. It 
is clearly visible that using the adaptive algorithm with extra “coverage” spheres, gives a 
more complete representation of the object. There are still a few small areas that are not 
completely covered as the algorithm only guarantees the sample points. However, these 
should not cause significant problems as they are small and a more dense sample set could 
be used if desired.
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U nco v ered  
'  R eg ion

Figure 5.8: When surrogate spheres are selected it is often desirable to replace them as 
soon as possible to reduce the impact they have on the sphere set.

A lg o rith m  4 Pseudo-medial sphere selection algorithm
In p u t : Voronoi diagram, V. Surface, S. Surface points, P. 
O u tp u t : Set of pseudo-medial spheres, M.

C o v e r a g e S p h e r e s ('M, V, P)
M ^ { ] {empty set}

for all vertex u 6 F  do
if  V is inside surface S  th e n  

M  M  U {u }  
en d  if 

en d  for

{pure medial vertices}

for all p € P  do
if  p not covered by M  th e n

{cover uncovered points}

t N I L
C  •«— cell from V  containing p 
for all vertex v £ C do  

s <— sphere around v
if  s contains p a n d  s is more deletable than t th e n

t  i— S
end  if 

end  for

{best sphere to cover point}

M  ^  M u { t }  
en d  if 

en d  for

{add to medial set}



CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 66

(a) Model

(b) Non Adaptive

(c) Adaptive (with coverage spheres)

Figure 5.9: An example of how the use of vertices from outside the object can help to 
ensure that the object is more completely covered with spheres.
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5.3 Sphere Reduction

When constructing the set of spheres to create a section of a sphere-tree, it is necessary 
to reduce the set of medial spheres so that it contains the number of spheres required for 
the sphere-tree. Section 4.3 described an algorithm that achieved this by using a merging 
strategy. This was a greedy algorithm that iteratively merged pairs of spheres until the 
desired number of spheres were left. At each iteration, the pair whose combined sphere 
had the lowest error was chosen. This does not necessarily lead to the lowest error at the 
end of the process as no account is taken of the effect the merge will have on the final 
result. Also, when spheres Si and Sj are merged to create the combined sphere Sij, none 
of the other spheres are affected. This can lead to sets of spheres that do not distribute 
the error between them. Figure 5.10 illustrates this in 2D, where the sphere that resulted 
from the merge has a much higher error than any of the other spheres. There are a number 
of alternatives to this scheme that may yield better results.

5.3.1 Improved Merge

A number of minor improvements can be made to the merging strategy used by Hubbard. 
When combining a pair of spheres, Hubbard used Ritter’s approximate bounding sphere 
algorithm to construct the new sphere [89]. We favour a more accurate method and thus 
use White’s minimum enclosing ball algorithm [109]. Also, we ensure that every sphere is 
capable of taking part in at least one merge. Any spheres that end up with no neighbouring 
spheres are given an artificial set of neighbours, consisting of any spheres it overlaps. In the 
event that this results in an empty set of neighbours, the sphere is made a neighbour of all 
the remaining spheres in the set. Also, when the number of spheres reaches a sufficiently 
low number every pair of spheres is considered to be mergeable. This is typically done 
when the number reaches 2 or 3 times the target number of spheres.

Finally, special consideration is given to merges that actually reduce the error in the 
approximation, i.e. “beneficial merges”. As an approximation is only as good as it’s worst 
error, we favour merges that improve the worst spheres in the approximation. We do not 
treat other beneficial merges as a special case as we have found that this can adversely 
effect the final results.

5.3.2 Sphere Bursting

Another way to improve upon the sphere merging is to allow the reduction of the sphere 
set to have a much more global effect on the remaining spheres. Merging two spheres will 
produce one larger sphere, as illustrated in Figure 5.10. The effect of reducing the number 
of spheres is localised to the combined sphere. Removing (or bursting) one of the spheres 
and allowing some of the other spheres to collectively cover the newly uncovered region will 
better distribute the error introduced by decreasing the number of spheres. Figure 5.11(b)
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Combined SphereSpheres to merge

(a) Before (b) After

Figure 5.10: Merging two spheres together leaves the other spheres unchanged and there­
fore can result in a poor approximation.

Refitted Spheres

(b) After

Sphere to remove

Figure 5.11: Removing a sphere and allowing the surrounding spheres to cover the newly 
uncovered area.

shows the result of removing one of the spheres from the set shown in Figure 5.10(a). In 
this case, two of the spheres absorb the increase in error yielding a better final result.

When removing a sphere, conservative coverage of the surface must be maintained. 
As with the merge algorithm, using a set of surface points is more efficient than working 
with the actual polygons. The removal of a sphere will leave a number of the sample 
points uncovered. These points must be covered by the remaining spheres in the set. 
The algorithm for achieving this, presented as Algorithm 5, must distribute the uncovered 
points between the remaining spheres so as to limit the error introduced. Each newly 
uncovered point must be assigned to one of the remaining spheres. As there can be a large 
number of spheres left in the set, determining the optimal sphere to reassign each point 
to is very computationally expensive. A simpler approach is used. To try to minimise 
the increase in size of the remaining spheres, each point is assigned to the sphere that is 
closest to covering it. Finding the sphere to which the point is closest involves measuring 
the distance from the point to the shell of the sphere :

L»(5,P) =  | | 5 , - P | | - 5 , (5.2)
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where :
D{S,F)  is the distance from sphere S  to point P,
Sc is the center of sphere S,
Sr is the radius of sphere S.

The value of D{S, P) will become negative if the point P  is already contained within 
the sphere S, which indicates that the point should definitely be assigned to that sphere. 
Of course, the point may already by assigned to that sphere in which case no further work 
needs to be done. Finally, each sphere that is assigned new points must be updated so 
that it covers the new set of points.

The burst algorithm can thus be used to reduce the set of spheres, created from the 
medial axis, down to a specified number of spheres. This algorithm operates in a similar 
fashion to the merge algorithm, removing the sphere that will introduce the least error 
at each iteration. The effects of removing each of the spheres can be pre-computed and 
updated whenever a sphere receives new points. Again special consideration is given 
to sphere removals that actually improve the fit of the spheres involved. Choosing the 
sphere that gives the biggest decrease in error before those that introduce error allows 
the algorithm to provide tighter fitting sets of spheres. Figure 5.12(a) shows a typical 
arrangement of 9 spheres approximating a cube. To further reduce the set, if required, the 
merge algorithm would combine two of these sphere together, producing something like 
Figure 5.12(b). However, the burst algorithm will produce a much nicer arrangement of 
spheres, as featured in Figure 5.12(c).

Hubbard used Ritter’s approximate bounding sphere algorithm [89], to fit a sphere 
around each set of points. This algorithm can often yield rather poor fitting spheres. 
In order to maintain tight fitting approximations, a minimum volume bounding sphere 
algorithm, such as those presented in [29, 108, 109], can be used. However, as illustrated 
in Figure 5.13, the smallest sphere that bounds a set of points may not always represent 
the one with the best fit to the surface. This happens particularly when the points all 
lie on the same side of the object. It is very computationally ineflScient to try to fit the 
minimum error sphere every time a new bounding sphere is required, i.e. when evaluating 
the effects of removing a sphere. A more efficient method is to use either the minimum 
volume bounding sphere or the original sphere enlarged to cover all the points, whichever 
is tightest fitting. This keeps the sphere near the medial axis unless it is beneficial to move 
it.

5.3.3 Expand & Select

The burst algorithm for sphere reduction was designed to allow the error introduced by 
the removal of a sphere to be distributed amongst some of the remaining spheres. While 
there are a number of situations where this will improve on the merge algorithm, it allows
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A lgorithm  5 Removal of a sphere
In p u t ; Set of spheres, S. Surface points covered by each sphere. Points.

Sphere to be removed, remSph.
O u tp u t ; Updated set of sphere and points assigned to them.

RemoveSphere('5, Points, remSph)
S <— S — {remSph} {remove sphere from set}

Update •<— {}
for all p € Points[remSph] do {reassign points}

bestD oo 
bests <— N IL  
for all s € 5  do 

if D(p, s) < bestD th en
bests ^  s 
bestD <— D(p, s) 

end if  
end for

{closer sphere}

if  p ^ Points[bestS] then  
Points[bestS] <— Points[bestS] U {p} 
Update ■«— Update U {6esf5} 

end if  
end for

{assign point to sphere} 
{flag for update}

for all s G Update do
5[s] <r- BouNDlNGSPHERE(Points[s]) 

end for

{update spheres}
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(a) Initial

(b) Merge

(c) Burst

Figure 5.12: Comparison of merging and bursting a cube approximated by 9 spheres (2D 
equivalent shown on left).
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(a) Minimum Volume

Figure 5.13: The minimum volume sphere may not always represent the sphere with the 
minimum error.

only the neighbouring spheres to absorb the increase in error. The greedy nature of the 
algorithm means that it can result in sets of spheres with a large worst error, i.e. the 
worst sphere in the approximation may be much worse than the others. A much better 
strategy is to select a set of spheres, containing the required number, which distribute the 
error evenly between them.

If the error within the reduced set of spheres is perfectly distributed across the object, 
each sphere will have the same error associated with it. By ensuring tha t all the spheres
have the same error, the algorithm will have a better chance of achieving a tight fit.
Equation 5.1 gave us a metric to measure the distance from a sphere to the surface of a 
convex object. This equation can be rearranged to allow us to compute the radius, for a 
given sphere, so that it will hang out over the surface by at most e :

r = e - \ \ q - c \ \  (5.3)

where :
r is the radius of the sphere,
e is the distance the sphere protrudes past the surface, 
c is the center of the sphere, 
q is the point on the surface.

This equation allows us to expand the spheres in the medial set so tha t they all hang 
over the surface by the same amount, as shown in Figure 5.14. Constructing the reduced 
set of spheres that all have the same stand-off distance (e) will potentially give a more 
consistent approximation. This has the potential to reduce the error of the worst spheres 
in the approximation. To achieve this, the medial spheres can be expanded to the desired 
standoff distance, using Equation 5.3, and a sub-set of the spheres selected. When the 
object is not convex, the stand-off distance represents an over-approximation of the error 
present in the approximation.

(b) Low Error
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Expanded Sphere 
,  Original Sphere

[  Standoff Distance

Figure 5.14; Expanding a sphere to have a given stand-off distance.

It is not possible to pre-determine the value for e that will result in the required 
number of spheres being selected. In order to construct a set of spheres containing a 
certain number of spheres, we must search for the correct value of e. A simple search 
algorithm, derived from the Binary Search, can be used to achieve this. For each value 
of e, the spheres are expanded to have the required stand-off distance and the redundant 
spheres are eliminated. The algorithm looks for the lowest value of e that results in a 
set containing an allowable number of spheres. Figure 5.15 shows an example where the 
algorithm is looking for the lowest value of e that requires 9 spheres to approximate an 
’S’-shaped object. When the value of e is too low, Figure 5.15(b), the algorithm needs 
more then the desired number of spheres to cover the object and so increases e. When the 
value of e is large. Figure 5.15(b), the entire object is enclosed and the value of e can be 
reduced. The search algorithm maintains upper and lower bounds for e and generates a 
set of spheres using a value for e tha t is the mid-point of this interval. Depending on the 
number of spheres required to cover the object, the algorithm adjusts either the upper or 
lower bound to narrow the interval. After each iteration the size of the interval has been 
halved and so the minimum value of e can be found quickly.

Selecting T he Set o f Expanded Spheres

The job of selecting the minimum number of expanded spheres that cover an object is a 
complicated one. As the set of spheres from which the reduced set is drawn is potentially 
quite large, it would be very expensive to try every combination of spheres. Instead of 
looking for this global optimum we can try to find a good minimal set of spheres. A 
minimal set will be a set from which none of the spheres can be removed without exposing 
part of the surface.

A greedy algorithm allows us to choose the set of spheres without having to evaluate 
a large number of combinations. In this algorithm the set of currently selected spheres is 
maintained. Successive spheres are chosen from the remaining spheres until the desired 
region of the object is completely covered. In order to decide which sphere to add, each
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(a) Model

(b) e too small

(d) e just right

Figure 5.15: Varying the stand-ofF distance to create an approximation with a given num­
ber of spheres (expanded medial spheres are in blue, selected spheres overlayed in red).
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(a) First Two Spheres

(b) Third Sphere (Good Choice)

(c) Third Sphere (Bad Choice)

Figure 5.16: When selecting a set of spheres to cover the object, a bad choice of spheres 
may result in gaps being formed, which will require extra spheres to fill them.

sphere must be ranked according to its potential to keep the set of spheres small. The 
first obvious choice would be to rank each candidate by the area of previously uncovered 
surface contained within it. This will allow the algorithm to cover the largest amount of 
the object at each iteration. As with all greedy algorithms, this aims to make the biggest 
gain at each stage but does not guarantee to find the global optimum.

However, this heuristic suffers from one major drawback. Consider how the algo­
rithm will choose spheres to approximate a cylinder with rounded ends. As shown in 
Figure 5.16(a), the first two spheres will be chosen to cover the ends. The problem arises 
when choosing the third sphere. There exists a large number of candidate spheres, along 
the remaining section of the surface, that all have the same ranking. Thus, it is possible 
to choose a sphere next to one of the first two spheres or one tha t is towards the middle. 
The first option, illustrated in Figure 5.16(b), will require one additional sphere to cover 
the object. However, the second option, shown in Figure 5.16(c), will require two more 
spheres.

The aim is to select as few spheres as possible and to cover the entire object using 
the specified stand-off distance. Another way of approaching this is to rank the spheres 
by the number of other spheres it makes redundant. Ranking the spheres in this way will 
tend to select spheres that cover complicated areas of the object first, especially when the
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set of spheres has been constructed using adaptive sampUng. It will also tend to choose 
spheres that cover areas near previously selected spheres. The previously selected spheres 
will partly overlap a number of remaining spheres, which will be made redundant. These 
spheres will increase the rank of the spheres that overlap them. This will in turn favour 
the configuration featured in Figure 5.16(b).

The “Expand” algorithm, presented as Algorithm 6, is a greedy algorithm in all senses 
of the word. It aims to cover as much of the object as possible at each stage. Both 
the heuristics presented tend to produce large spheres initially and smaller ones later on. 
For a cube, this type of scheme will result in a large sphere in the middle with smaller 
ones at the corners. This is similar to the “Merge” algorithm. As the stand-off distance is 
increased, the center sphere grows until it reaches a point where the corner spheres become 
redundant, see Figure 5.17. The corner spheres also grow and they eventually make the 
center sphere redundant. If the algorithm chooses the largest sphere at each state, the 
center sphere will be chosen before the corners. So instead of choosing the corner spheres, 
which are sufficient to cover the object, the large central one will be chosen first and the 
corner spheres will still be required to complete the representation. When the stand-off 
distance is increased to the point where the corner spheres are no longer required, the 
algorithm will only choose the one large central sphere. This will prevent the algorithm 
from progressing as it will continue to produce a single sphere and the approximation will 
never improve. A simple way to combat this problem is to repeat the selection without 
allowing it to choose the highest ranked sphere previously chosen. This will allow the 
algorithm to choose the larger set of spheres, which will divide the object into more 
regions for further refinement.

5.4 Eliminating the M edial Axis

The “Expand” algorithm, for reducing the set of medial spheres into a set suitable for use 
in a sphere-tree, aimed to reduce the error in the approximation by distributing the error 
evenly between all the spheres. The idea of stand-off distances can be used to generate 
similar approximations without the construction of the medial axis approximation.

Generating such a sphere can be expressed as a constrained optimisation problem. 
Starting with one of the spheres already generated, a new sphere can be created using an 
optimisation algorithm to choose the position of the sphere that maices it cover as much 
of the uncovered surface as possible for the desired stand-off distance. Algorithm 7 details 
the SPAWN algorithm^ which grows a new sphere from each of the existing spheres and 
chooses to keep the one that covers the most points. When no new sphere can be created 
a sphere is constructed in the region of one of the uncovered points. The algorithm uses 
an optimisation step to maximise the amount of the surface covered by each new sphere.

'The algorithm has been named SPAWN as each sphere grows from its predecessor.
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A lg o rith m  6 Select spheres using Expand. 
In p u t : Medial spheres, S. Points to cover, P.

Majcimum allowable error, m axE rr. 
O u tp u t  : Selected spheres, T.

E xpand  ("T, S, P, maxErr) 
for all s G 5  do {expand spheres}

c <— center of sphere s
p point on the surface which is closest to c 
Sr <r- m axE rr — l|p — c|| 

en d  for

for all s G 5  do
Points[s] <— {} {list points in sphere]
for all p € P  do  

if  s contains p th en
Points[s] <- Poinis[s] U {p} 

end  if  
en d  for 

en d  for

w h ile  some of P  is not covered do {select spheres}
bests <r- N IL  
bestCount 0 
for s G 5, s ^ T  do  

count <r- IlFomfsfsJII 
if  count > bestCount th en

bests i -  s {higher ranked sphere}
bestCount <— count

en d  if  
en d  for

T ^  T U {bests} {add bests to the set}

for all p G Points[bestS] do  
for all s G 5  do

if  p G Points[s] th en
Points[s] •<— Points[s] -  {p} 

end  if  
end  for 

en d  for 
end  w h ile

{update points lists}
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Figure 5.17: As the stand-off distance increases, the center sphere eventually makes corner 
spheres redundant. However they also grow and make the center sphere redundant.
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As the optimiser manipulates the center of the sphere, the objective function computes 
the radius of the sphere and evaluates how much of the surface it covers. As with the 
“Expand” algorithm, this constructs a set of spheres that all have a desired stand-off 
distance and hence a search is needed if a specific number of spheres is required.

5.5 Conclusions

This chapter has focused on improving the medial axis method for generating sets of 
spheres to approximate rigid objects. This method used the medial axis as a basis for the 
construction of a base set of spheres from which the sphere-tree can be constructed. The 
biggest difficulty with this method is the generation of a reasonable set of surface points for 
constructing the Voronoi diagram that approximates the medial axis. The emphasis was 
shifted from constructing an accurate medial axis to forming a set of spheres that tightly 
approximate the object. An adaptive sampling technique was presented, this ensures that 
the set of spheres approximates the object to a given level of error by improving the worst 
areas of the approximation first. While this does not necessarily give a good medial axis, 
it provides a good set of spheres from which to construct the sphere-tree. The adaptive 
sampling algorithm also uses extra spheres, which lie on non-medial vertices of the Voronoi 
diagram, to ensure that the surface of the object is entirely covered. Thus the adaptive 
algorithm does not require any initial samples to be generated as the object will be fully 
contained within the initial Voronoi diagram. This will provide enough coverage for the 
adaptive sampling algorithm to operate.

We also examined methods for reducing the number of spheres required to cover the 
object. This is necessary for constructing successively tighter sets of spheres in the sphere- 
tree. Hubbard’s algorithm used a merging strategy that was unable to distribute the in­
troduced error among the remaining spheres. Thus the resulting spheres could potentially 
contain poorly fitting spheres. A number of alternative schemes were presented. These 
aimed to improve the set of spheres generated from the set of medial spheres by allowing 
the error to be distributed more evenly across the object. The Expand algorithm produces 
sets of spheres that all have the same stand-off distance. This results in spheres that have 
the same error if the body is convex and have very similar errors otherwise. This is a de­
sirable property for collision response as lumpy approximations may lead to odd looking 
collisions. This algorithm uses a heuristic to choose a set of spheres to cover the object, 
with the aim of minimising the number of spheres required. If a specific number of spheres 
is required, a search algorithm is needed to find the stand-off distance that results in the 
specified number. Finally this idea was used to develop an optimisation based alternative 
to using the medial axis. This algorithm operates much the same as the Expand algorithm 
but doesn’t require an approximation of the medial axis to be constructed.



CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 80

A lgorithm  7 SPAWN sphere generation
In p u t : Set of points to cover, P. Maximum allowable error, maxErr. 
O u tp u t : Set of spheres, S.

S pa w n ('5', P, maxErr) 
while there are points in P  do 

p i— any point from P
s <- sphere that covers most points in P, with stand-off 

distance maxErr, using p as an initial guess 
5  <- 5  U {s}

{make initial sphere} 

{make sphere}

rep eat
bests <— N IL  {spawn new spheres} 
bestCount ^  0 
for all s G 5  do 

Si sphere that covers most points in P, with stand-off 
distance maxErr, using Sc as an initial guess

count i— number of points from P  that are within si 
if count > bestCount th en  

bests Si 
bestCount count 

end if 
end for

{new best sphere}

if bestCount > 1 th en  
5 < - 5 u { s }
for all p € P, p inside s do

P ^ P - { p }
end for 

end if 
un til bestCount = =  0 

end while

{add sphere to set} 

{point is now covered}

In p u t : Center of the sphere to evaluate, c. Spheres generated so far, S.
Points to cover, P. Maximum allowable error, maxErr.

O u tp u t : Measure of how much new surface the sphere covers, count.

S p a w n O b j e c t i v E ( ' c ,  S, P, maxErr) 
p <r- closest surface point to c
Sc ^  c {make sphere}
Sr maxErr — ||p — c||

count ^  number of points from P  inside s {evaluate metric}
re tu rn  count



Chapter 6

Improved Sphere-Tree 
Construction

Chapters 3 -5  critically analysed the Octree and Medial Axis methods for the construction 
of sphere-trees. A number of improved algorithms were presented, each one identifying 
weaknesses in the existing algorithms and aiming to make various levels of improvement. 
The resulting algorithms are summarised as follows :

• G rid  : this method of sphere generation is based on the generalisation of the octree 
method, detailed in Section 3.1. The algorithm places spheres in a grid-like arrange­
ment but is allowed to choose the orientation, position, size and dimensions of the 
grid to best suit the object’s geometry, see Section 3.3.

• M erge : similarly to Hubbard’s original algorithm, the set of spheres from the 
medial axis approximation is reduced down to the specified number by successively 
merging pairs of spheres. A number of improvements have been made. Instead of 
using Ritter’s approximate bounding sphere algorithm a more accurate algorithm is 
used. Also, special attention is given to merges that actually reduce the error in the 
approximation and to ensuring that each sphere always has neighbours with which 
to merge, see Section 5.3.1.

• B u rs t : the set of spheres produced from the medial axis is reduced, to contain the 
specified number of spheres, by successively removing (bursting) spheres. When a 
sphere is removed, the surrounding spheres must expand to cover the areas that have 
been left uncovered. This allows neighbouring spheres to collectively absorb the error 
introduced during the reduction. As with the merge algorithm, special attention is 
paid to sphere removals that actually reduce the error in the approximation, see 
Section 5.3.2.

• E xpand : the medial spheres are expanded so that they all have the same stand-off 
distance from the surface. The set of spheres is then reduced to eliminate spheres

81
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that are no longer required to maintain coverage of the object. This allows ALL 
the remaining spheres to collectively absorb the error in the approximation, see 
Section 5.3.3.

• S paw n : this is similar to the expand method except tha t the spheres are generated 
using an optimisation algorithm, which aims to cover as much of the object as it can 
with each sphere (for a given stand-off distance). This allows the algorithm more 
freedom in choosing spheres than the expand algorithm and does away with the need 
to construct the medial axis approximation, see Section 5.4.

Each of these algorithms were discussed in the context of approximating the object 
(or an area of it represented by a set of sample points) using a single set of spheres. The 
algorithms do not deal directly with the construction of a hierarchical representation of 
the object.

The job of constructing a hierarchy of spheres to represent the object can be expressed 
as an independent generic algorithm that relies on the presented algorithms to approxi­
mate the required areas of the object. The controlling sphere-tree generation algorithm 
dictates how the sphere-tree is constructed and how the object is divided at each level. 
The overall process can thus be broken up into a number of phases; the sphere-tree con­
struction algorithm; the sphere generation algorithms (which are used by the sphere-tree 
construction algorithm) and; the sphere-set optimisation algorithms, which can be used to 
improve the fit of a set of spheres (generated by the sphere generation algorithms) prior 
to their inclusion in the hierarchy. This chapter deals with the higher level algorithms 
and presents generic sphere-tree construction and optimisation algorithms. A method for 
determining the appropriate number of children to assign each node is also presented.

6.1 Generic Sphere-Tree Construction

This algorithm represents a generic way of constructing sphere-trees using any of the pre­
viously presented algorithms, which fit a set of spheres to a section of the given object. 
The root of the hierarchy is always the smallest sphere that can enclose the object, which 
can be approximated using R itter’s algorithm [89] or computed more exactly using algo­
rithms by Gartner [29], Weltz [108] or White [109]. For successive levels, the algorithm 
controls the generation of a hierarchical representation of the object by partitioning it into 
a number of sections, each of which is covered by one of the spheres in the generated set. 
Each of these partitioned sections of the object will then be recursively approximated by 
a smaller sphere-tree, which will become one of the branches of the main tree. The first 
set of spheres must cover the entire object while the rest must cover sub-sections of the 
object. The individual sphere generation algorithm dictates how this is achieved.

For algorithms relying on the medial axis, the adaptive algorithm can be used to 
update the medial axis approximation so that it can provide a tight fitting set of spheres.
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These sphere generation algorithms maintain a Voronoi diagram, which approximates the 
medial axis of the object. When the sphere generator is asked to approximate a region 
of the object, the Voronoi diagram is updated so that it contains a set of spheres that 
approximates the region to a desired level. This allows the medial axis to be updated 
so that the set of spheres, which will form the basis of the approximation, is of sufficient 
quality to allow a tight approximation. For this we require tha t the set of spheres contains 
some multiple of the target number of spheres and that the worst sphere in the set has an 
error that is a fraction (typically ^ to | )  of the parent sphere’s error.

As the sets of spheres can be generated with a number of algorithms, we need to be 
able to determine the regions of the object covered by each sphere in an arbitrary set of 
spheres. The simplest method to achieve this would be to simply use any part of the object 
(or its surface) that is contained within the parent sphere. However, the spheres generated 
by the sphere generation algorithms could contain large areas of overlap inside the object. 
This is particularly true when trying to achieve tight fitting sets of spheres. Thus there 
will be large areas of the object that are shared between sets of children spheres. This 
would be very wasteful as the same area will be covered many times, which would further 
contribute to the overlap.

A more desirable situation is to divide the object into sub-regions with as little overlap 
as possible. This is achieved by dividing any overlapping regions between the spheres. In 
a region covered by a number of spheres, each part of the object need only be covered 
by one set of children spheres. It is not crucial to produce approximations with solid 
interiors, therefore we require that only the surface of the object be completely covered. 
It is advantageous to have the interior of the object filled with spheres as this reduces the 
chances of tunnelling but it is not essential. Some algorithms, particularly those based on 
the medial axis, usually fill the interior of the object quite well.

The surface of the object is represented by an arbitrarily large set of sample points. 
Thus to segment the object into regions we simple choose the sub-set of points that 
represents the surface within that area. For surface points covered by a single sphere the 
situation is simple. Each point must be covered by at least one of the children spheres. 
When a pair of spheres overlap, the intersection of the spheres is divided in two using a 
plane. The points inside the overlap are assigned to one of the spheres based on which 
side of the dividing plane they lie. An initial division plane can be computed as the plane 
of intersection of the two spheres. The following equation represents this plane for two 
spheres 5 i and Sq located at (x i , y i , z i )  and (x2,2/25 22) with radii r i  and T2 respectively :

2x(x2 - xi) + 2y(y2-yi) + 2z(z2 -  zi) +
[r | -  (x^ + yl  + zl)] -  [rf -  {xj + yl  + zf)] = 0
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Figure 6.1 shows how a triangular object is divided into four regions. The dividing 
planes, shown in Figure 6.1(a), are constructed so that the plane passes through the points 
of intersection of the circles (spheres in 3D). As the sets of spheres can be generated by 
one of a number of different algorithms, they are essentially of arbitrary configuration. 
Each set of spheres can be made up of spheres of varying size, both small and big. As 
illustrated, the region associated with the large central sphere is much bigger than the 
regions associated with the other spheres. Thus, the children of this sphere will potentially 
give a looser fit than the other sets of children. As the two top spheres are quite loose 
fitting it is possible to move their dividing planes closer to the center of the larger sphere 
as shown in Figure 6.1(b). It is very desirable that the regions divide the object as evenly 
as possible without affecting the fit of the spheres. The dividing plane between a pair 
of spheres is moved so as to get more of the shared points to be assigned to the smaller 
spheres.

Once the object has been divided up into a number of regions, a new set of spheres 
can be created. These new spheres are now only required to cover the paxts of the surface 
that axe not covered by any other spheres. A minimum error sphere can be fitted around 
each set of points to produce a tighter approximation, as shown in Figures 6.1(c). This 
process can then be repeated to further reduce the area to be covered by the large sphere, 
see Figure 6.1(d). Algorithm 8 presents the generic sphere-tree construction algorithm in 
its recursive form.

6.2 Sphere Set Optimisation

The generic sphere-tree construction algorithm, described above, sub-divided the object 
in a recursive fashion, approximating each area of the object with a set of spheres. The 
algorithm can utilise any of the sphere generation algorithms presented in Chapters 3 - 5 for 
this approximation. Each of the algorithms aimed to create a set of spheres to approximate 
the required region of the object as accurately as possible. As there is potentially a large 
number of combinations to be considered, the algorithms use heuristics to reduce the 
computational costs. While these heuristics generally do lead to good solutions they can 
often lead to sphere sets that still contain some residual error. The tightness of fit varies 
between algorithms and results from the way in which the spheres are generated.

For example, Hubbard’s successive merging algorithm (Section 4.3) uses a greedy al­
gorithm to choose which pair of spheres to combine. This algorithm does not consider 
the consequences of its operation on the final result - it is only concerned with choosing 
the best pair of spheres to combine for any given iteration. The expand method grows 
all the spheres to a given stand-off distance and then selects a minimal set of spheres i.e. 
one in which there are no redundant spheres. As the algorithm progresses, new spheres 
are selected so as to try to cover the most previously uncovered surface. However, this 
does not guarantee to produce the globally optimal set of spheres. Also, as many of the
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Division Plane

(a) Initial Divisions

Original Plane /  
\  Improved Plane

(b) Improved Divisions

Refitted Sphere Further Refined Plane

(c) Resulting Regions (d) Further Refinement

Figure 6.1: Dividing the object into distinct regions using dividing planes.
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A lgorith m  8 Generic Sphere Tree Construction.
In p u t ; Set of points representing object, P.

Tree depth, d. Branching factor, b. 
O u tp u t : Sphere-tree covering the object, T.

ConstructT r e e ('7’, P, d, b)
T r o o t BOUNDINGSpHERE(P) {minimum bounding sphere}

MAKECHILDREN(Troot, -P, d, b, 1) {make sub-trees}

In p u t : Sphere-tree node for which to create children, N .  
Region of the object to cover, P.  Tree depth, d. 
Branching Factor, b. Current level of recursion. 

O u tp u t : Sub-tree which has node N  as its root

MAKECHlLDREN('Af, P, d, b, level)
S  Set of spheres with at most b spheres, covering the surface 

defined by the set points P  (using the chosen sphere set 
generation algorithm)

O p t IMISESp h e RES(S, P) {optimise if you like}

for a ll s e  5  d o
H^{}
for a lH  € 5, f s d o  

i f  t overlaps s th e n
p < r- plane between s t {dividing planes}
H ^  H u { p }  

en d  if  
en d  for

Q <— {} {sub set of points}
for a ll p G P  d o

if  s contains p  and p  is in the region defined by H  th e n  
Q ^ Q u { p }  

en d  i f  
en d  for

s' <r- minimum error sphere around Q
^children ^  ^children U {«'} {add sphere to tree}

i f  level < d th e n
m a k eC h il d r e n (s, Q, d, b, level+1) {recursively make sub-tree}

en d  if  
en d  for
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algorithms are based on the original medial axis method, they rely on the set of spheres 
constructed from the medial axis approximation. Thus their final accuracy is dictated by 
the accuracy of the medial axis and the number of vertices within it. The adaptive medial 
axis algorithm allows larger sets of spheres to be constructed as desired but some residual 
error can still be present.

As a final stage of improving the tightness of fit, a general purpose optimisation algo­
rithm can be used. Such an algorithm would be free to manipulate every sphere in any 
way it can so as to achieve a better fitting set of spheres. Figure 6.2(a) shows a pair 
of spheres that approximate a section of an object. Sphere A  obviously fits the surface 
tighter than B. As the larger sphere has a worse fit than the smaller one it is desirable 
to make sphere A slightly looser so that the accuracy of sphere B  can be improved, as 
illustrated in Figure 6.2(b) & Figure 6.2(c).

It is desirable that the maximum error be minimised within any set of spheres, but if we 
cannot decrease this error we would like to decrease any other errors, thus the optimisation 
function should consider both the worst error and the RMS  error. This is achieved with 
the following metric :

E  =  MAX^QError{Si) + weight * 

where :

^  Err  or [Si)
^  N   (̂ -1)
1=0

E  is the error associated with the set of spheres.
Si is sphere i from the set of spheres S,
Error{x) is a measure of how well x fits the surface,
N  is the number of spheres in the set,
weight is the relative weighting between the maximum error and

the RMS error.

There are many different functions for evaluating the fit of a sphere. Section 4.3 
details a method that measures the maximum distance from a set of points, on the surface 
of the object, to a sphere. This is of course an approximation, as the real error should 
be the maximum distance from the sphere to the surface. Section 5.1 uses a metric that 
accurately computes the fit of a sphere to the surface of a convex object. It can also serve as 
an over-approximation of the error for non-convex surfaces. When computing his results, 
Hubbard uses a more computationally intensive method that finds the point on the object 
that is closest to each of a number of sample points. These are points that are distributed 
across the section of the sphere that lies outside the object [49]. Hubbard generates his 
sample points using a dodecahedron, which produces 12 sample points. A more general 
sampling scheme could use an isohedron\ which will have |  -H 2 vertices, where n is the 

'An Isohedron is a convex polytope in which each face is an equilateral triangle of unit area.
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A B

(a) Sub-Optimal

New CoverNew Sphere

A B

(b) Adjusted Sphere

New Sphere

A B

(c) Improved Neighbour

Figure 6.2: Adjusting one of the spheres covering the object can allow the other spheres to 
cover a different area of the object and thus decrease the worst error of the approximation.
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number of faces. The isohedron can be generated by recursively sub-dividing the faces of 
an equilateral octahedron (or any shape with equilateral faces). This allows larger sets of 
evenly spaced points to be generated on the surface of the sphere.

If the optimisation algorithm were allowed to manipulate all the spheres simultane­
ously, there would be a large number of variables to consider (4 variables per sphere). This 
would make it difficult for the algorithm to find a good solution so a more structured ap­
proach is necessary. The approach used is an iterative one. Each iteration of the algorithm 
takes each sphere in turn and tries to adjust its position and radius so as to improve the 
overall error in the approximation. The spheres can be considered in round-robin order 
or in order of increasing/decreasing error. We consider the spheres in order of decreasing 
error as we are most interested in improving the worst spheres first. Algorithm 9 presents 
the top level algorithm, which manipulates the spheres in order of decreasing error. The 
objective function used to update and evaluate the sphere set is given as Algorithm 10.

A lgorithm  9 Sphere Optimisation.
Input : Set of spheres, S. Points to be covered, P.
O utput : Updated set of spheres, S.

O p t i m is e S p h e r e s ("5, P) 
w hile the sphere set is still improving do 

done •f- {} 
for n = l to ||5|| do 

worstErr ^  0 
w ors ts  <— N IL  
for all 5 € 5, s  ̂ done do

error error associated with sphere s 
if  error > worst Err  then  

w ors ts  <— s 
worstErr <- error 

end if  
end for

done <r- done U {■u;orsf5}

S <r- optimise spheres in set S  by manipulating
w ors ts  to minimise OptFunc {optimise spheres}

end for 
end w hile

{flag as already done}

{sphere with highest error}
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A lgorithm  10 Optimisation Objective Function.
Input : Set of spheres, S. Points to be covered, P.

Sphere to manipulate, manSph.
New sphere, repSph.
Weighting factor between MAX and RMS errors, weight

O utput : returns error metric for new configuration.

O p t F u n c (̂iS, manSph, repSph, P, weight)
for all s € 5  do {points in spheres}

Points[s] <— set of points, from P,  inside s
end for

for all p G Points[TnanSph], p not inside repSph  do {ensure coverage}
closestS  •«— closest sphere to p
Points[closestS] Points[closestS] +  {p}

end for

for all p E P, p  inside repSph  do {free covered points]
for all s G 5  do

Points[s] <r- Points[s] — {p}
end for

end for

T  <— S  -  {manSph}

worstErr Error(repSph)
sum SqE rr  ■<— worstErr"^ {evaluate metric}
for all s G r  do

newS  f -  FlTSPHERE(Points[s])
e ERROR(newS)
sum SqE rr  sum SqE rr  + {accumulate term}
if  e > worstErr  then

w orstErr e
end if

end for

return worstErr  * weight + ^
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6.3 Balancing Work vs. Error

The generic sphere-tree construction algorithm, presented in Section 6.1, is capable of 
using a number of different algorithms to construct the sphere sets for the sphere-tree. The 
algorithm for constructing these hierarchies uses the chosen sphere generation algorithm 
to approximate a region of the object with a specified number of spheres. This number, 
Nc, is the maximum branching factor of the hierarchy. Thus each non-terminal node in 
the tree will have up to Nc child nodes. As the value of Nc increases, so does the number 
of spheres that will need to be tested if their parent is involved in an overlap.

The value of Nc is given as a parameter to the sphere-tree construction algorithm, 
and is entirely a matter of choice. None of the algorithms presented try to determine a 
suitable value for Nc- The number of spheres required to approximate a region of the object 
will largely depend its geometry. Take for example the 2D shape featured in Figure 6.3, 
which has been approximated with 5 and 8 circles. While using more (i.e. 8) circles 
to approximate the object does reduce the error in some parts, it actually increases the 
worst error and thus makes the approximation worse. There is also much greater overlap 
between the spheres which means there is a higher likelihood that the sphere-tree traversal 
algorithm will have to traverse multiple sub-trees. Thus, using a larger number of spheres 
does not necessarily give a better approximation and it certainly does increase the work 
load for the collision detection algorithm.

It is questionable whether we wish to always use the maximum allowable number of 
spheres to approximate the object. If there is only a small increase in the tightness of the 
set of spheres then it is not worth increasing the computational demands on the collision 
handling system as there will only be a small gain in accuracy (if any at all). Therefore, 
having generated the maximum number of spheres it may often be desirable to further 
reduce the number of spheres used if it only introduces a small amount of error.

It is therefore necessary to be able to determine if the error introduced by the removal 
of some of the spheres is acceptable. It is easy to compute the reduction in computation 
required for the collision handling system. For example, if there is one less sphere, then 
the computation required for that set of siblings will have decreased by where N„ is 
the original number of spheres. This generalises to ^  when m  spheres are removed. The 
allowable increase in error can either be a function of the work saved ( )  or a constant 
(say 5%). If the allowable increase in error is a function of the amount of work saved, it is 
desirable that it become more difficult to remove each successive sphere so as to prevent 
the algorithm throwing away too many spheres. Thus, a penalty is associated with each 
sphere removed. The following equation captures this generally as :

Allow{N) = Error{No) * (1 -I- ^ ^  * v^° ^   ̂ B) (6 .2)
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(a) 5 spheres

(b) 8 spheres

Figure 6.3: Illustration of a shape that does not require the full number of spheres to 
achieve a good approximation.
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where :
Allow(AT) is the maximum allowable error for N  spheres, 
No is the original number of spheres,
Ervor{No) is the error present with Ng spheres,
V h  B  are scalars in the range {0..1},
A is a positive scalar.

The value of v dictates how difficult it is to remove successive spheres from the set. If 
we choose a value such that 0 < ?; < 1 then it will become increasingly more difficult to 
remove each successive sphere. For example using a value of u =  0.95 and No = S then one 
sphere can be removed provided the resulting error is less than 1 + 1 *0.95 =  1.11875 times 
the error when using all 8 spheres. When removing a second sphere this number becomes 
1 +  I * 0.95^ = 1.225625, which is less than twice the increase in the allowable error. The 
lower the value of v the harder it becomes to remove each successive sphere. The choice 
of these parameters is up to the developers who are using the sphere-trees^. Algorithm 11 
shows an algorithm that can be used, by the generic sphere-tree construction algorithm, 
to discard unnecessary spheres from the set prior to its inclusion in the sphere-tree.

6.4 Conclusions

In previous chapters, a number of improvements to the existing methods of creating sphere- 
trees were discussed. These improvements led to a number of new algorithms for approx­
imating an object (or a section of an object) using a limited number of spheres. This 
chapter looked at a generic way of using these algorithms to construct sphere-trees. At­
tention was paid to the amount of overlap that could exist in these sets of spheres and the 
object was sub-divided in such a way as to minimise the redundancy introduced into the 
sphere-tree and to make the divided regions similarly sized. As many of the algorithms 
still have potential for generating sphere sets that contain some residual error, a generic 
sphere set optimisation algorithm was presented. This manipulated the sets of spheres 
with the aim of further improving the fit, and can be applied to each sets of spheres to 
minimise their error prior to incorporating them into the sphere-tree. Finally, a more com­
plicated optimiser was presented. This algorithm not only aims to minimise the amount 
of error in a set of spheres but also tries to eliminate unnecessary spheres so as to reduce 
the computational demands of the narrow phase traversal.

^When constructing sphere-trees for this thesis, the following values were generally used : A =  b,v =  
0.75, B =  0.0. This allows an increase of about 2.5% when removing one sphere from a set of 8 and 4.375% 
for the second sphere. Another commonly used set of parameters is >1 =  inf, v =  l , B  =  0.05, which allows 
spheres to be removed as long there is less than a 5% increase in error, i.e. 105% of the original error.
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A lgorith m  11 Remove spheres that contribute little to the approximation.
In p u t : Set of spheres, S. Points to be covered, P.

Parameters for Equation 6.2, A , B  k, v. 
O u tp u t : Updated set of spheres, s.

B a l a n c e S p h e r e s ('5, P, A, B, v)
S  <r- O p t im is e S p h e r e s (5 , P)
S ta r tE rr  =  maximum error associated with spheres in S 
No =  ||5||

{initial optimise} 

{initial size}

for N  =  {No — 1) to 1 do
allowedErr <— S ta r tE rr  + (1 +  * yNo-N-i  _j_

T  ^  S  reduced, with burst algorithm, to have N  spheres 
E r r  <r- maximum error associated with spheres in T

i f  E rr  >  allowedErr  th e n  ^try to get error below allowedErr} 
T  ■<- O p t im is e S p h e r e s (T, P)
E r r  maximum error associated with spheres in T  

en d  if

i f  E r r  >  al lowedErr  th en  
break  

e lse  
5 - h T  

en d  if  
en d  for

{done removing spheres} 

{update sphere set}

i f  ||5|| < No th en  
S  •(- O p t im is e S p h e r e s (5 , P)  

end  if
{final optimise}



Chapter 7 

Evaluation

Chapters 3 and 4 presented two existing algorithms for the construction of sphere-trees. 
These methods were examined and a number of improvements were proposed. These devel­
opments aimed to improve the tightness and consistency of the approximations generated. 
Chapter 6 presented a generic sphere-tree construction algorithm that used these methods 
to approximate areas of the object when constructing the hierarchies. Also presented was 
a generic optimisation algorithm for further improving the tightness of the spheres created.

Sphere-tree construction algorithms can be thought of as falling into two broad cate­
gories. The first category consists of algorithms, such as the octree based algorithms, that 
are primarily concerned with the spatial localisation properties of the sphere-trees, i.e. 
their ability to narrow in on the areas of contact between two objects. The second class 
are the object approximation algorithms, which aim to approximate the object geometry 
closely so as to reduce the number of false positives, and hence the amount of wasted 
computation in the sphere-tree traversal. For interruptible collision detection, close ap­
proximation of geometry is particularly important as the spheres are used to approximate 
the points of contact and to compute the response.

This chapter compares the various algorithms for both object approximation and 
sphere-tree construction. The algorithms are compared using a number of simple geo­
metric shapes including a cube, an ellipsoid, a cylinder, a torus, a cone, an “S” shaped 
object created using NURBS surfaces and a block with square cross sections. A number of 
commonly used complex models have also been used, including the B unny\ the Cow and 
the Dragon^. These meshes have been simplified, to contain about 1500 triangles, using 
Garland’s QSlim software and can be seen in Figure 7.1.

The initial analysis is concerned with the geometric properties of the sphere-trees 
resulting from the various algorithms. Later analysis considers the use of the hierarchies 
in an interruptible collision handling system.

^Data from http://graphics.stanford.edu/data/3Dscanrep/
^Data from http://graphics.cs.uiuc.edu/~garland/research/quadrics.html

95
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(b) A Block

(c) Bunny

(e) Dragon

Figure 7.1: Some of the models used for testing the algorithms.
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7.1 Geometric Approximations

Chapter 5 considered a number of improvements that can be made to the medial axis 
method for sphere-tree construction, originally presented in Chapter 4. A sub-problem 
within the sphere-tree construction algorithm is to approximate a region of an object with 
a number of spheres. The algorithm uses an approximation of the medial axis as a guide 
to where spheres should be placed. Having constructed the medial axis, a large number of 
spheres were constructed so they were centered on the medial axis and touched the surface 
at a number of points. An iterative merging algorithm was utilised to reduce this set of 
medial spheres down to the number required for the sphere-tree.

This section first considers the adaptive medial axis construction algorithm, presented 
in Section 5.1, comparing it to a regular sampling algorithm based on Hubbard’s. The 
second stage of the algorithm, the sphere reduction/selection stage, is next considered and 
finally the sphere-trees produced by the algorithms are compared in terms of geometric 
quality of fit.

7.1.1 S trategy

There are a number of factors that must be considered when approximating an object with 
spheres. As stated in Section 2.3, the spheres should approximate the object’s surface to 
a high degree of accuracy and should cover the entire object. The tightness of fit can be 
measured in terms of the distance from the surface of the spheres to the actual surface 
of the object or in terms of the volume within the spheres that is not occupied by the 
object, see Figure 7.2. For the purposes of approximating objects closely, the maximum 
distance from the surfaces of the spheres to the object is the most important factor as this 
represents the largest gap that can be present in the approximated collision. The amount 
of the object not covered by the approximation can be either the volume of the object 
that is not contained within a sphere or the amount of surface area that is not covered by 
spheres, see Figure 7.3. It is critical that the surface of the object is completely covered 
so as not to miss any collisions. Although filling the interior of the object is not critical 
it can be beneficial as it reduces the chances of missing collisions between time-steps, as 
discussed in Section 2.1.

Measuring The W asted and Uncovered Volumes

Measuring the volume of the spheres that is outside the object and the volume of the object 
not covered by spheres are both essentially integration problems. These regions can be 
expressed as the boolean difference between the sphere set and the model. The region of 
wastage can be expressed as S  — 0  and the uncovered region as O — 5, where O is the object 
being approximated and S  is the union of the spheres. Monte Carlo integration techniques 
allow us to determine these volumes when they cannot be determined analytically. The
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Wastage

(a) Maximum Distance

Figure 7.2: The error in an approximation can be measured as the maximum distance 
from the surface of the spheres to the object or as the volume of the wasted portions of 
the spheres.

Uncovered Surface Uncovered Volume

(a) Surface Area (b) Uncovered Volume

Figure 7.3: The amount of the object not covered by spheres can be measured using either 
volume or surface area
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Hit or Miss integration algorithm expresses the solution in terms of a number of random
points sampled from a bounding region, the domain of integration, see Figure 7.4(a). The
wasted volume, Vw and the uncovered volume Vu can be determined as follows :

=  (7.1)

K  =  ^  H  (7.2)

where :
is the volume of the sphere wastage,

v ; is the volume of the uncovered regions of the object.
is the number of samples that fall in a sphere but not in
the object.

Nu is the number of samples that fall in the object but not
in a sphere.

Nt is the total number of samples tested,
is the volume of the boundary region.

An alternative to the hit or miss method is the Mean Sample method, illustrated
in Figure 7.4(b). In this method we distribute samples across two dimensions of the
integration domain, say the X Y  plane, and project rays along the third dimension. The 
height associated with each sample is the length of the ray tha t intersects the region we 
are interested in. By averaging a large number of these samples we compute the height 
of the cuboid that represents a volume equal to tha t which we are trying to determine. 
Thus the volume can be calculated as :

V = La* Ad (7.3)

where :
V  is the volume to be integrated.
La is the length of the ray associated with the mean sample,
Ad is the area of the domain of integration i.e. the X Y  face

of the bounding box.

As with any Monte Carlo integration, both these methods are subject to a statistical 
error. The mean sample method is more statistically sound than hit or miss as it converges 
to the correct answer quicker and hence requires fewer samples. In order to improve the 
convergence of the results, we use the Miser integration algorithm which first distributes 
samples randomly and then focuses its effort in regions of high variance [85].
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(b) Mean Sample

Figure 7.4: Integrating the wasted and uncovered volumes using Monte Carlo techniques. 

7.1.2 M edial Axis C onstruction

Section 5.1 detailed a number of problems associated with approximating the medial ajcis. 
The algorithm constructs the Voronoi diagram for a set of points distributed across the 
surface of the object. The internal vertices of the Voronoi diagram were then used to 
approximate the medial axis, upon which spheres were to be centered. The question of 
how many samples should be used, and where they should be placed, is an important 
one. The problem of choosing surface samples sometimes leads to the medial axis being 
poorly approximated. Hubbard used the notion of gap crossing cells to address some of 
the problems that can be experienced. However, this scheme does not ensure that the 
spheres generated from the medial axis will fit the surface to a desired level or will even 
cover the entire object.

Thus, an adaptive sampling scheme was developed. This allows extra samples to be 
added to the surface so as to generate spheres whose error is bounded to a desired value. 
In order to ensure that the entire object is covered, the algorithm adds extra spheres using 
Voronoi vertices that do not lie on the medial axis. The addition of these extra spheres, 
which ensure coverage of the surface, is very necessary in order to generate a faithful 
approximation. As discussed in Section 5.2, the adaptive sampling algorithm allows for 
this quite nicely. New spheres can be chosen so as to minimise the error introduced into 
the approximation or so that they will be quickly replaced by the adaptive algorithm. 
In the experiments conducted for this thesis the latter performed marginally better and 
therefore has been chosen for the purposes of evaluation.

Figures 7.5 - 7.8 compare the adaptive sampling scheme with H ubbard’s relaxation 
based algorithm. The first graph (a) shows the amount of the object that is covered by 
the set of medial spheres, results are shown in terms of surface area and object volume. 
The graphs only show results for Hubbard’s algorithm as the adaptive algorithm covers the
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Figure 7.5: Comparison of Regular vs. Adaptive sampling for the construction of the 
medial set of the Bunny.
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Figure 7.6: Comparison of Regular vs. Adaptive sampling for the construction of the 
medial set of the Cow.
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Figure 7.7: Comparison of Regular vs. Adaptive sampling for the construction of the 
medial set of the Dragon.
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Figure 7.8: Comparison of Regular vs. Adaptive sampling for the construction of the 
medial set of the cube.
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entire object. For the more complex models, the regular sampling scheme often provided 
rather poor coverage of the object. As the number of samples increases the coverage 
generally improves, but while the volume of the uncovered regions is reduced to nearly 
zero there is still a large amount of the surface left uncovered, as seen in Figures 7.5(a) - 
7.8(a). This is very undesirable as it can lead to collisions being missed and the objects 
inter-penetrating. The adaptive algorithm ensures tha t the surface, represented by an 
arbitrarily large set of points, is completely covered. Thus gaps can be avoided as long 
as the set of sample points is sufficiently dense. The second graph (b) of each set shows 
the number of medial spheres generated for a given number of samples. It is interesting 
to note that for both algorithms this relationship is pretty much linear.

The third and fourth graphs (c & d) in each set compare the algorithms in terms of 
the distance from the surface of the spheres to the surface of the object. This basically 
measures how far the spheres protrude past the surface. The adaptive algorithm generally 
exhibits a lower worst error than using regular sampling, although for some models it 
starts out higher, as seen in Figures 7.5(c) & 7.7(c). However, as the adaptive sampling 
algorithm aims to improve the worst fitting sphere at each iteration the approximation 
improves quite quickly. The adaptive algorithm also often exhibits a lower variance in the 
distances from the spheres to the surface, graph (e). This is due to the algorithm choosing 
to improve the worst fitting sphere at each iteration. Thus spheres with large error are 
replaced while those with lower values are left alone. The sixth graph (f) shows the volume 
of the sphere set that does not cover part of the object. This was measured using the mean 
sample integration technique described in Section 7.1.1. Again, for the more complicated 
models the adaptive algorithm performs much the same as regular sampling. However for 
simpler models the adaptive algorithm has much less wastage.

7.1.3 Sphere Selection

In Section 5.3.3, a novel algorithm for sphere set reduction was presented. The algorithm 
first expanded all the spheres so tha t they protruded past the surface of the object by a 
given amount. The algorithm then selected a sub-set of the spheres, which covered the 
surface. Two heuristics were presented for the selection of the spheres; the first was to 
select the sphere that covered the most previously uncovered surface area (we’ll call this 
“Max Cover”); the second was to choose the sphere that eliminated the largest number of 
the remaining spheres (we’ll call this “Max Elim”).

Figures 7.9 - 7.14 compare these two heuristics for a number of geometric models. The 
first graph (a) of each set shows the number of spheres chosen to approximate the object 
with a given stand-off distance. The second (b) shows the minimum stand-off distance, 
found using an adaptive search algorithm, required to select a certain number of spheres. 
Table 7.1 shows the results of an “analysis of variance” (ANOVA) comparison to test the 
hypothesis that the mean number of spheres selected with each algorithm is the same.
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Figure 7.9: Comparison of sphere selection heuristics for the Bunny.
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Figure 7.10: Comparison of sphere selection heuristics for the Cow.
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Figure 7.11: Comparison of sphere selection heuristics for the Dragon.
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Figure 7.12: Comparison of sphere selection heuristics for the cube.
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Model F P-value F crit
Bunny 0.2519 0.6165 3.9151
Cone 0.0120 0.9129 4.0098
Cow 0.6091 0.4367 3.9258
Cube 0.0102 0.9196 3.9306
Cyl 0.6950 0.4075 3.9909
Dragon 0.5972 0.4410 3.9151
Ellipsoid 1.6255 0.2054 3.9412
Block 0.0446 0.8330 3.9333
S-Shape 1.3958 0.2396 3.9151
Torus 3.3848 0.0681 3.9151

Table 7.1: ANOVA comparison of sphere selection heuristics.

Prom the graphs it can be seen that the Max Elim heuristic often performs marginally 
better than Majc Cover. However in the ANOVA tests the P-Values are quite high for most 
models. This indicates that, with a  — 0.05 (95% confidence), the average performance of 
the two heuristics is very similar. The exception is the torus, where there is a significant 
difference. As evident from Figure 7.14, the Max Elim heuristic performs significantly 
better in this situation.

Generally the Max Elim heuristic yields slightly better results than the Max Cover 
heuristic, requiring fewer spheres to cover the object and a lower stand-off distance to 
achieve the required number of spheres. The cube. Figure 7.12, is quite a difficult shape 
to represent using this algorithm, with neither heuristic being noticeably better than the 
other.

7.1.4 Sphere Reduction

Having constructed a large set of spheres, which approximate the geometry of the object, 
the sphere-tree construction algorithm needs to reduce the number of spheres down to 
the number required for the sphere-tree. H ubbard’s algorithm successively merged pairs 
of spheres together to achieve this. When merging two spheres, Hubbard used R itter’s 
algorithm to form a new bounding sphere. R itter’s algorithm does not provide the mini­
mum volume bounding sphere and can often produce quite loose spheres. Hubbard also 
measured the error of the spheres in terms of the distance from the surface to the spheres.

A number of improvements were detailed in Section 7.1.4. These were the use of 
W hite’s minimum volume bounding sphere algorithm [109], the measurement of fit as 
distance from the sphere to the surface, and the special consideration of merges tha t reduce 
the worst error in the approximation. This improved algorithm is presented as “Merge”. 
To further improve the sphere reduction process, the merging strategy was replaced with 
one, presented as “Burst” , that removes a sphere and fills in the hole using the surrounding 
spheres. A novel algorithm, which expands the medial spheres and eliminates the ones
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that are redundant, was also presented as “Expand”.
Figures 7.15 - 7.18 compare these reduction algorithms using both the distance based 

metric and the wasted volume. Each algorithm generates the required number of spheres 
from a set of 500 medial spheres generated using the adaptive sampling algorithm.

As would be expected, the use of a minimum bounding sphere algorithm and a more 
accurate sphere fit metric allows the new merge algorithm to provide a reasonable improve­
ment over Hubbard’s merging strategy. This algorithm certainly reduces the worst error 
for all the models. The RMS error and the variance in the approximation is also reduced. 
The expand algorithm, using the “Max Elim” heuristic, generates sets of spheres with very 
low error variance. For convex shapes this will be zero, however for non-convex objects 
some variation is experienced. This is a result of the equation used for computing the 
sphere’s radius. Equation 5.3, which over-estimates the error (and hence under-estimates 
the sphere’s radius) for non-convex bodies. The expand algorithm generally exhibits a 
lower worst error than either Hubbard’s or the merge algorithm. This is due to the way 
the algorithm tries to distribute the error evenly between all the spheres in the resulting 
set. The burst algorithm further improves the fit of the reduced sets of spheres. Although 
the “expand” algorithm tries to distribute the error as evenly as possible it can have diffi­
culty for non-convex regions of the objects as it never tries to reposition the spheres. Also, 
the expand algorithm has difficulty producing larger sets of spheres. In this situation it 
will produce the largest set of spheres it can, but these cases are omitted from the graphs 
as the number of spheres in the set does not match the numbers on the horizontal axis.

7.1.5 Sphere-Tree C onstruction

The top level sphere-tree construction algorithm, described in Section 6.1, controls the 
decomposition of the object into sub-regions. Each of these regions is approximated using 
a set of spheres. The controlling algorithm aims to divide the object into distinct regions 
so as to minimise duplication within the hierarchy.

Figures 7.19 - 7.25 and Tables 7.2 - 7.5 compare the geometric fit achieved using the 
various sphere reduction algorithms. Also shown are results for the “GRID” algorithm 
and those obtained using the optimiser detailed in Section 6.2. Two additional algorithms 
are also presented. The first, labelled “Hybrid”, is a post-processing algorithm that pro­
duces a new sphere-tree from the one generated using the grid algorithm. Each node of 
the sphere-tree contains the minimum volume bounding sphere, as produced by the grid 
algorithm, and a minimum error sphere covering the same region. The algorithm labelled 
“Combined” is simply a sphere reduction algorithm that tries both the “Merge” and “Ex­
pand” algorithms and chooses the one with the lowest error. This allows the algorithm to 
fit tight sets of spheres where the expand algorithm is able to operate more effectively or 
revert to the merge algorithm, which is more generic in nature.

All tests were conducted with a tree branching factor of 8. This number was used as
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Figure 7.15: Comparison of sphere reduction techniques for the Bunny.
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Figure 7.16: Comparison of sphere reduction techniques for the Cow.
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Figure 7.17: Comparison of sphere reduction techniques for the Dragon.
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Figure 7.18: Comparison of sphere reduction techniques for the cone.



CHAPTER 7. EVALUATION 114

it provides a reasonable level of sub-division without incurring too much computational 
cost within the traversal algorithm. It also represents the largest number of children that 
the Octree method can generate for each node. All the algorithms used a set of 5000 
points to represent the surface of the object. Hubbard’s algorithm used a medial axis 
approximation containing circa 2500 spheres. For the adaptive medial axis algorithms the 
initial medial axis contained 500 spheres and the approximation was dynamically refined 
so that each region had  ̂ the error of the parent sphere and at least 100 spheres, i.e. 
the merge/burst/expand algorithms started with 100 spheres from which the 8 were to be 
produced. The grid, hybrid and optimiser algorithms all used Nelder and Mead’s Downhill 
Simplex Method [84] to find local optima within their objective functions.

The first graph, in each set, compares the number of spheres generated with the various 
algorithms^. It is clear from the graphs that the algorithms do not always produce a 
complete sphere-tree, i.e. a sphere-tree that has the maximum allowable nodes for the 
given branching factor. The octree method always creates 8 spheres and discards the 
empty ones. While the grid, expand and spawn algorithms do aim to use as many spheres 
as allowed at each stage, they often do not achieve this - extra spheres will only ever be 
used if it provides a gain in fit. The sphere optimiser throws away spheres as long as 
an acceptable degree of fit remains. In these tests the algorithm was allowed to discard 
spheres provided the resulting worst error was less than a certain percentage of the initial 
worst error. The results for 100% and 105% are presented.

There is quite a subtle reason for merge/burst algorithms not generating the maximum 
allowable number of spheres. The sphere sets are generated by performing an iterative 
reduction of the set of medial spheres. The adaptive medial axis algorithm is used to 
ensure that each region of the object is approximated by about 10 times the desired 
number of spheres. However, the sets of spheres created using these algorithms often 
contain redundant spheres. These spheres contribute nothing to the approximation as the 
areas of the surface they cover are also covered by other spheres. Thus these spheres are 
discarded and their descendents are not computed. If this is an undesirable situation the 
algorithm can be modified so as to check for redundant spheres at each iteration and stop 
when the number of remaining (non-redundant) spheres reaches the required number.

The grid and hybrid algorithms consistently provide significant improvements over 
the octree algorithm, from which they were derived. Both the worst and RMS errors 
have been reduced. For complex model such as the Bunny (Figure 7.20) and the Dragon 
(Figure 7.22) the grid algorithm exhibits errors as low as that of the octree, while the 
minimum error spheres fitted over the same regions have as little as the worst error. 
It is also clearly visible that the grid based algorithms use more of the allowable number 
of spheres, which gives them the freedom to achieve a much tighter fit.

The medial axis algorithms approximate the object to a higher degree than the octree 
^Different levels of the sphere-trees are presented separately for clarity.
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Figure 7.19: Comparison of sphere-trees for the Bunny. (Level 2)
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Figure 7.20: Comparison of sphere-trees for the Bunny. (Level 3)

Level 1 Level 2 Level 3
Max RMS Max RMS Majc RMS

Hubbard
M erge 1.56 1.32 1.30 1.36 2.47 3.44

Hubbard
Expand 1.61 1.25 1.59 1.46 3.44 4.03
Hubbard

Combined 1.60 1.24 1.72 1.49 4.48 4.24
Octree 1.80 2.44 2.85 2.75 3.23 3.60
Octree
Hybrid 2.98 4.33 4.89 6.40 7.58 14.00

Table 7.2: Improvements in fit of sphere-trees constructed for the Bunny.
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Figure 7.21: Comparison of sphere-trees for the Dragon. (Level 2)
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Figure 7.22: Comparison of sphere-trees for the Dragon. (Level 3)

Level 1 Level 2 Level 3
Max RMS Max RMS Max RMS

Hubbard
M erqe 1.59 1.35 1.75 1.34 2.30 2.58

Hubbard
E xp a n d 1.50 1.21 1.70 1.22 2.40 2.38
Hubbard  

C om bined 1.58 1.35 2.08 1.30 2.49 2.60
O ctree
G rid 3.31 3.86 3.40 5.20 4.18 6.43

O ctree
H ybrid 3.97 4.44 4.75 7.16 6.18 13.43

Table 7.3: Improvements in fit of sphere-trees constructed for the Dragon.
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Figure 7.23: Comparison of sphere-trees for the S-shape. (Level 2)
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Figure 7.24: Comparison of sphere-trees for the S-shape. (Level 3)

Level 1 Level 2 Level 3
Max RMS Max RMS Max RMS

Hubbard
M erge 1.35 1.34 1.11 1.53 3.43 4.30

Hubbard
E xp a n d 1.73 1.42 1.56 1.59 5.74 3.99
Hubbard

Comhine.d 1.58 1.39 1.60 1.86 6.86 6.07
O ctree 6.84 7.01 6.02 7.50 5.23 6.57
O ctree
H ybrid 8.57 7.95 11.96 14.63 10.23 27.80

Table 7.4: Improvements in fit of sphere-trees constructed for the S-Shape.
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Figure 7.25: Comparison of sphere-trees for the Elhpsoid. (Level 2)
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Figure 7.26: Comparison of sphere-trees for the Ellipsoid. (Level 3)

Level 1 Level 2 Level 3
Max RMS Max RMS Max RMS

Hubbard
M erge 1.21 1.19 2.59 1.83 10.31 5.18

Hubbard  
E xv a n d 1.64 1.40 2.93 1.94 11.76 4.98
Hubbard

Cnmbine.d 1.54 1.35 2.65 1.94 11.65 5.16
O ctree

G rid 3.84 4.96 4.21 4.33 5.12 5.26
O ctree
H ybrid 4.83 5.63 12.30 13.43 6.88 31.87

Table 7.5: Improvements in fit of sphere-trees constructed for the Ellipsoid.
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based algorithm. This can be attributed to the explicit use that is made of the object 
geometry and the flexibility in the placement and size of the spheres produced. The new 
merge algorithm shows significant improvements over the previous algorithm. For both 
the bunny and the dragon, the new merge has a worst error that is less than ^ that of 
Hubbard’s algorithm. In fact, for both the bunny and dragon, the worst case for the new 
algorithm’s level 2 spheres (Figures 7.19(b) & 7.21(b)) is the about the same as the level 
3 spheres made with the old merge algorithm (Figures 7.20(b) Sz 7.22(b)). Thus the new 
algorithm produces the same tightness of fit using around the number of spheres {circa 
64 and 512 spheres respectively). The burst and expand algorithms produce similar results 
to the new merge algorithm. The burst algorithm produces its best results for the top 
levels of the spheres trees. This can be attributed to the way the sphere-tree construction 
algorithm divides the object. At the lower levels, the regions to be approximated tend to 
be largely to one side of the object which prevents the burst algorithm from producing 
spheres which span the object. This results in the spheres being very much towards the 
surface of the object and having a higher level of error. For the Bunny and the S-shape 
the expand algorithm provides further improvement over the new merge algorithm. There 
are however regions in which the expand algorithm can behave quite poorly, thus allowing 
the combined algorithm to choose between “merge” and “expand” for each node allows it 
to achieve the tightest fit. The worst case error for the combined algorithm being as low 
as ^ that of the new merge algorithm (Table 7.4).

Sphere selection based techniques, such as expand and spawn, aimed to distribute 
the error evenly between the spheres in a given set. This allows for approximations that 
exhibited a low variance, in terms of error. However, for sphere-tree construction, each set 
of spheres is produced independently which means that the variance across a level of the 
sphere-tree will not be kept small. For the lowest level of both the Bunny (Figure 7.20) and 
the Dragon (Figure 7.22) the spawn algorithm achieves a similar error to the Hubbard’s 
algorithm using as few as half the number of spheres. As the spawn algorithm does not 
explicitly use the medial axis approximation, it is unable to achieve the same level of fit 
as the medial axis based algorithms.

The sphere set optimisation algorithm was also tested. This algorithm aims to improve 
the arrangement of the spheres so as to decrease the error in the approximation. When the 
algorithm was allowed to throw away as many spheres as it could without increasing the 
worst error by more than 5%, the approximations contain pretty much the same amount 
of error as the unoptimised ones, while throwing away as much as |  of the spheres, see 
Figures 7.20 & 7.24.

7.2 Simulation

In order to evaluate the sphere-trees generated with the algorithms presented in Chap­
ters 3 and 5, a number of simulations were built. During these simulations, the objects
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were positioned and oriented randomly about a sphere and were given a random veloc­
ity towards its center. Each sphere-tree approximation of the object is evaluated during 
the simulation. At each time-step the colliding pairs are created by testing the bound­
ing spheres of the objects. The sphere-trees for the potentially colliding objects are then 
traversed using the algorithm presented in Section 2.7.1. Separate traversals are con­
ducted using the sphere-trees constructed using the Octree method, Hubbard’s medial 
axis method etc. The motions of the objects and their response to collisions has been 
computed using Havok’s dynamics system‘s. This uses an exact collision detection algo­
rithm, and a dynamics model that includes complex friction. Using an exact collision 
detection algorithm avoids bias towards or against a particular sphere-tree algorithm and 
represents a situation where the sphere-trees are traversed to a very deep level before 
interruption.

The sphere-tree traversals are interrupted at regular intervals and the accuracy of 
the approximated collisions is measured. The error associated with each pair of colliding 
spheres is computed as the sum of the spheres’ errors. As the error associated with a sphere 
is the largest distance from the surface of the sphere to the surface of the object (Hausdorff 
distance) this provides an upper-bound for the true separation between the objects. At 
each interruption the worst, best and RMS errors, in the approximated collisions, are 
computed. Each of the new algorithms are compared to a reference sphere-tree, i.e. the 
medial axis based algorithms are compared to the sphere-tree constructed with Hubbard’s 
algorithm and the octree-like sphere-trees are compared to those constructed using the 
octree method. For each interruption time, the average improvements is computed. This 
is expressed as a fraction of the reference tree’s error. For example, for each frame (at a 
given interruption interval), the merge sphere-tree is evaluated by computing ■
These values are then averaged over all the frames of the simulation. In order to provide a 
sufficiently large set of frames, the simulation is run a number of times with a new random 
position (and orientation) for each object.

Figure 7.27 - 7.34 present results for simulations containing 20 objects. Sphere-trees 
constructed with the Merge and Expand algorithms and using the optimiser are compared 
to those constructed using Hubbard’s algorithm. The GRID and hybrid sphere-trees are 
compared to the sphere-trees constructed with the Octree method. To allow these algo­
rithms to be compared to Hubbard’s algorithm, the sphere-trees made with Hubbard’s 
algorithm are also evaluated relative to the Octree. The horizontal axis of each of the 
graphs shows the interruption interval. This is expressed in terms of the number of prim­
itive operations performed, i.e. sphere updates and overlap tests. Amount of work done 
before interruption is computed using Equation 2.1, with Cu =  2 and Cy — These val­
ues are used as they represent the relative number of floating point operations performed 
in updating a sphere’s position (21 floating point operations) and in testing two spheres 

‘'An evaluation version of Havok’s softweire is available from http://www.havok.com .
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for overlap (10 floating point operations). The first three graphs (a), (b) &: (c) in each set 
show the fraction of error present in the approximations. The fourth graph (d) shows the 
relative number of colliding pairs produced by the different algorithms. The fifth graph 
(e) shows the relative number of frames that still had unresolved collisions at the various 
interruption points, i.e. as compared to the reference sphere-tree.

Each of the medial axis based algorithms show a definite reduction in the worst error. 
For the Bunny and the Dragon (Figures 7.27(a) & 7.28(a)) the combined algorithm quickly 
falls to as little as 50% of the worst error present in the reference sphere-tree. For the 
simpler shapes, this value is as low as 20%. For the unoptimised sphere-trees the amount 
of error continues to decrease, to as low as 30% for the complicated models and 10% for 
the simpler ones. The sphere-trees that have been optimised show their greatest gain 
when interrupted early on. When the optimisation algorithm chooses to discard some of 
the spheres it makes the sphere-trees more efficient to traverse in the early stages but 
ultimately affects the final accuracy of the approximations. In terms of best error, the 
new medial axis based sphere-trees show a slight increase. The algorithms treat the worst 
case scenario as being more important than the average/best case and so are designed to 
minimise the worst error in the approximation.

The algorithms also show significant reductions in the numbers of pairs of colliding 
spheres that result from the traversal. This provides a reduction in the amount of work 
that will need to be done by the later stages of the collision handling system, i.e. contact 
modelling and collision response. For both the Bunny (Figure 7.27(d)) and the Dragon 
(Figure 7.28(d)) the number of colliding spheres is as low as 20%.

The fifth graph (e) shows the relative number of frames that still had unresolved 
collisions at the various interruption intervals. All the improved medial axis methods 
show a reduction in the numbers operations required to resolve the frames to the lowest 
level of the sphere-tree (which are all 3 levels deep with circa 512 leaves). For all the 
models, when interrupted after 15000 operations, the optimised sphere-trees have less 
than 5 the number partly resolved frames as those created with the reference algorithm. 
The Bunny seems particularly good in this respect with as few as the number of 
frames requiring 15,000 or more operations to resolve the collisions (Figure 7.27(e)).

The GRID and Hybrid algorithms also show vast improvements over the Octree based 
algorithm. For all the models, the worst error quickly drops down to 10% of the error 
present in the Octree based approximation. For the Hybrid sphere-tree it is possible 
to traverse the set of minimum volume spheres (labelled MV) or the minimum error 
spheres (labelled ME). The minimum error spheres are always used to approximate the 
final set of contacts and there does not seem to be a significant difference between the 
two sets of spheres. Again graph (e) shows the number of frames that still had unresolved 
collisions at the point of interruption. Even though the grid and hybrid algorithms tend 
to produce sphere-trees containing a lot more spheres than the octree, the number of 
partially resolved frames, at each interruption time, is still reduced. For both the Bunny
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Figure 7.27: Comparison of medial axis based sphere-trees at various interruption times 
for The Bunny (20 objects).
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Figure 7.28: Comparison of medial axis based sphere-trees at various interruption times 
for The Dragon (20 objects).
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Figure 7.29: Comparison of medial axis based sphere-trees at various interruption times 
for the S-shape (20 objects).
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Figure 7.30: Comparison of medial axis based sphere-trees at various interruption times 
for the ellipsoid (20 objects).
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and Dragon (Figures 7.31(e) and 7.32(e)) the number of frames that still have unresolved 
collisions after 15,000 operations has been reduced to about

7.3 Conclusion

This chapter has taken a critical look at the work contained within this thesis. Both 
existing and new algorithms were compared. This analysis first looked at the algorithms 
for constructing the medial axis approximation, looking at both the regular and adaptive 
sampling algorithms. The results indicate that the adaptive algorithm often starts out with 
a poorer approximation but quickly improves. A hybrid algorithm could be adopted, with 
the initial approximation being constructed using regular sampling and then improved 
using the adaptive algorithm, which would also fill in uncovered areas.

The sphere-tree generation algorithm is composed of a number of sub-problems, each 
of which aims to approximate a given region of the object with a small number of spheres. 
The sphere reduction algorithms, which perform this task, were compared. The improve­
ments to Hubbard’s merging strategy show an improvement in the tightness of the approx­
imations generated. The expand algorithm often shows a further reduction in the worst 
error and produces approximations that exhibit very small variances in tightness. For 
constructing sphere approximations, the burst algorithm shows significant improvements 
in tightness of fit over all the other algorithms.

The algorithms were next used to construct sphere-trees for various models. Signifi­
cant improvements were demonstrated for both the octree based and medial axis based 
algorithms. For the more complicated models, such as the Bunny, the worst error in the 
second level (64 spheres) is about the same as the third level (512 spheres) constructed with 
Hubbard’s algorithm. The use of the optimisation algorithms, presented in Section 6.2, 
allows the construction of sphere-trees with about the same level of error using l^ss 
spheres. The GRID and Hybrid algorithms also showed significant improvements over the 
Octree method.

These sphere-trees were also evaluated for use in an interruptible collision detection 
system. The sphere-trees generated with the improved medial axis algorithms result in 
collisions with as little as 20% of the error present in those constructed with Hubbard’s 
algorithm. Thus, they provide more accurate collisions and, as they fit the object tighter, 
result in less false positives. This produces much fewer pairs of spheres to be processed 
for collision response. For complicated models, such as the Bunny and the Dragon, as 
little as 20% the number of sphere pairs were produced. Also, the number partly resolved 
frames present after any given interruption interval has been significantly reduced. This 
results from the frames being resolved more quickly due to a decrease in the number of 
false positives experienced during the traversal.

Similar results were presented for the Octree based algorithms. The Hybrid algorithm, 
which contains both minimum volume sphere and minimum error spheres, was introduced.
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Figure 7.31: Comparison of octree based sphere-trees at various interruption times for 
The Bunny (20 objects).
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Figure 7.32: Comparison of octree based sphere-trees at various interruption times for 
The Dragon (20 objects).
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Figure 7.33: Comparison of octree based sphere-trees at various interruption times for the 
S-shape (20 objects).
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Figure 7.34: Comparison of octree based sphere-trees at various interruption times for the 
ellipsoid (20 objects).
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The octree based algorithms showed significant improvements over the original octree 
algorithm. For complicated models, such as the Dragon, the hybrid sphere-trees had as 
little as 10% of the error of those constructed with the original algorithm. The number of 
resulting colliding pairs was also reduced to as low as 10% the number resulting from the 
octree algorithm.



Chapter 8

Conclusions and Future Work

This chapter will bring together the material covered in this thesis. Conclusions will be 
presented on the work done in evaluating sphere-tree construction algorithms and their 
use in collision detection. The contributions of this thesis will be highlighted and a number 
of topics for further research will be presented.

8.1 Assessm ent

Collision detection is a major bottleneck for interactive systems. While some tasks re­
quire highly accurate collision detection others can use approximate techniques. Many 
researchers have utilised Bounding Volume Hierarchies, reviewed in Section 2.3, for accel­
erating collision queries.

Spheres offer distinct advantages for interruptible collision detection algorithms, de­
scribed in Section 2.4, which trade accuracy for efficiency to provide consistent interactive 
frame-rates. As spheres are rotationally invariant they can be updated very efficiently 
during simulation. They also lead to very efficient overlap tests. As the interruptible 
collision detection algorithm may never fully resolve the collisions, the spheres themselves 
are often used to approximate the collision response.

Sphere-tree construction has been viewed from two different perspectives: Spatial sub­
division techniques, such as the Octree method, and object approximation techniques, 
such as the Medial Axis method.

The work conducted can be summarised as follows :

• Chapter 3 took a critical look at the octree based method for sphere-tree construc­
tion. This is by far the simplest algorithm considered. A number of improvements 
were developed, which allow more freedom in how spheres are placed. The resulting 
algorithm was named the GRID algorithm.

•  Chapters 4 and 5 analysed the second class of algorithms, the object approxima­
tion algorithms. An adaptive medial axis approximation method, which allows a

132
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consistent and complete set of spheres to be constructed, was presented. This al­
gorithm also allows the approximation to be constructed on demand so that it can 
be updated to provide a sufficiently tight set of spheres from which to construct 
each section of the sphere-tree. A number of alternative sphere set reduction tech­
niques were presented. These techniques allow for the construction of the different 
approximations that make up a sphere-tree. The Expand algorithm was specifically 
designed for generating approximations that have a high level of consistency. An op­
timisation based approximation algorithm was also presented. This produces similar 
types of approximations as the Expand algorithm without requiring that a medial 
axis approximation be constructed.

• Chapter 6 presented a number of high level algorithms used in the sphere-tree con­
struction process. A generic high level sphere-tree construction algorithm uses the 
various approximation algorithms to construct the sphere-trees. This algorithm con­
trols how the object is partitioned so as to minimise the amount of redundancy in 
the hierarchy. A sphere-tree optimisation algorithm was also presented. This two 
phase algorithm optimises the sets of spheres and determines whether each sphere 
contributes anything to the approximation. Spheres that contribute little to the 
approximation are removed so as to reduce the cost of traversing the hierarchy.

• Chapter 7 details a series of experiments. These tests evaluated each stage of the 
approximation process. The two classes of algorithm are compared by using the 
resulting sphere-trees in a collision detection system. The conclusions drawn from 
these tests are as follows:

1. The use of the adaptive medial sixis approximation algorithm provides notice­
able improvements. This algorithm allows a medial axis approximation to be 
constructed which guarantees to cover the surface. While the initial approxima­
tion is sometimes not as tight fitting as previous algorithms, the approximation 
quickly improves. The resulting sets of spheres produce tighter fitting approxi­
mations and more evenly distribute the error between them. See Section 7.1.2.

2. The use of more accurate bounding sphere algorithms and sphere fit metrics 
provides benefits when reducing the number of spheres in an approximation. 
This allows the initial approximation to be reduced into various smaller ap­
proximations, while still maintaining a high degree of accuracy. Also, the ap­
proximations often exhibit a higher level of consistency. The Expand algorithm 
produces approximations with near zero variance across the entire region being 
approximated. See Section 7.1.4.

3. Using the improved approximation techniques for the construction of sphere- 
trees produces considerable benefit for non-trivial objects. Even for complicated 
models, the second level of the sphere-trees has a similar error to the third level
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of the trees constructed using existing techniques, i.e. the same tightness of 
fit with almost an order of magnitude less spheres. Further gain is achieved 
by using the optimisation algorithm, presented in Section 6.2. By allowing the 
algorithm to tolerate a small increase in error, the number of spheres in the 
approximation can be significantly reduced. See Section 7.1.5.

4. The sphere-trees, generated with the new algorithms, do show significant ben­
efits to the process of collision detection. Having interrupted the sphere-tree 
traversal after a specified number of overlap tests, sphere-trees generated with 
the GRID algorithm show as low as 20% the error observed for the Octree based 
trees. The sphere-trees generated with the optimised medial axis method show 
as little as 20% the error of Hubbard’s algorithm when interruption occurs. 
Combining both classes of sphere-tree construction algorithms, to produce a 
hybrid sphere-tree, produced further improvements over the GRID algorithm. 
The sphere-trees produced with the improved algorithms also reduce the num­
ber of colliding pairs that result from sphere-tree traversal. This shows a vast 
decrease in the number of false positives reported and will reduce the cost 
associated with computing the collision response. Dynamically choosing the 
branching factor of the hierarchy shows most improvement when interruption 
occurs early on. This is due to the object being segmented into fewer regions, 
which ultimately affects the accuracy of the resulting spheres-tree. See Sec­
tion 7.2.

8.2 Contributions

A number of contributions have been made in this thesis:

• An adaptive medial approximation technique that allows the medial axis to be con­
structed on demand and focuses on improving the approximation in areas where the 
spheres created from the medial axis ill-fit the object.

• Improved sphere reduction techniques that reduce the spheres generated from the 
medial axis into a manageable set while maintaining a high degree of fit and consis­
tency.

• A generic sphere-tree construction algorithm that decomposes the problem into 
smaller object approximation problems, which can then be solved using the algo­
rithms presented. When dividing the object into sub-regions, the algorithm min­
imises the amount of overlap between neighbouring regions so as to eliminate redun­
dancy within the sphere-trees.

• A sphere-tree optimisation algorithm that further improves the degree of fit in the 
approximations.
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• Additional approximation algorithms based on generalising the octree sub-division 
to produce tighter approximations, by allowing more freedom in the way spheres are 
placed, while maintaining its good sub-division characteristics.

• A purely optimisation based approximation algorithm that yields similar results to 
those obtained using the medial axis but does not require the overhead of construct­
ing the medial axis approximation.

• The introduction of a hybrid sphere-tree structure tha t contains both minimum 
error and minimum volume spheres at each node. These sphere-trees provide for 
both spatial localisation and object approximation.

8.3 Future Work

There are a number of interesting areas of research tha t can build upon this work. A num­
ber of the algorithms presented may be applicable to areas other than collision detection. 
The adaptive sampling algorithm, combined with the Expand algorithm, can provide a 
method for approximating rigid objects with very low variances. It is often very desirable 
to be able to approximate objects with a high level of consistency. Also this work has 
uncovered a number of related topics that merit investigation.

8.3.1 Ensuring Object Coverage

Throughout this thesis, objects have been represented as a set of surface points. This was 
done as it is much more efficient to check that all the surface points are covered than it 
is to work directly with the underlying polygons. This can however cause small areas of 
the object to be left uncovered. As these areas will be between the sample points, using 
more sample points will result in the smaller (and less frequent) gaps. One interesting 
alternative would be to use groups of points which are treated as atomic units. These 
points would represent triangles (or polygons) covering the entire surface. In order for a 
group to be considered “covered”, all its points much be contained within the same sphere.

8.3.2 Combining Different Collision D etection  Strategies

Buildings often contain large flat areas and are not in motion, therefore spheres are not 
very attractive for approximation purposes. Thus, it would be interesting to model these 
parts of the simulation with structures that are suitable for performing collision detection 
but are also more in line with their shape. One example of this is where we have used a 
grid of AABBs to model a height field, see Figure 8.1. This provides very efficient collision 
detection as the spheres are simply projected onto the ground plane to determine which 
AABBs to test.
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Figure 8.1: Examples of a terrain modelled by various sized AABBs for efficient collision 
detection.



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 137

8.3.3 Unified LOD Rendering and Collision H andling

In [92, 93], Rusinkiewicz and Levoy present a point based visualisation system called 
Q-Splat. In this system, sphere-trees are used to perform level-of-detail rendering and 
visibility culling. The sphere-tree is traversed in a depth-first manner. When the projected 
size of a sphere becomes significantly small, it is rendered using a splatting technique. In 
order to maintain interactivity this process can be interrupted when the user tries to rotate 
the object. Interactive frame rates are maintained by increasing the “splatting threshold”, 
i.e. the size at which the spheres are considered small enough to splat. A very interesting 
area of research would be to use the same sphere-trees for collision and rendering. These 
sphere-trees would have to provide good spatial sub-division characteristics for visibility 
culling and closely approximate the object’s geometry for collision detection.

8.3.4 A utom atic Skinning of M odels

Many of the algorithms in this thesis rely on being able to determine whether a point 
is inside the model being approximated. When approximating the medial axis, the ver­
tices of the Voronoi diagram that are inside the object are used to create spheres. Also, 
when evaluating a sphere’s fit to the surface, the sample points on the sphere need to be 
categorised as being inside or outside the object. Our inside/outside tests, discussed in 
Appendix A, assume that the surface of the object is closed. Each triangle must have ex­
actly three neighbours and each edge must be shared by two triangles. Often, objects are 
modelled to produce a desired result when rendered. Modellers often construct their ob­
ject using a number of meshes. For example when modelling an aeroplane, the wings and 
fuselage might be modelled with Bezier surfaces, while the finer trimmings are constructed 
by hand. Having multiple meshes is not a problem as the inside/outside test can check 
to see if the point is inside one of the meshes. However, meshes that are not closed, or 
have self-intersections result in incorrectly categorised points. This often causes problems 
when constructing sphere-trees for these objects. In order to approximate these objects, 
a closed surface needs to be constructed. The meshes used for the tests in this thesis were 
carefully checked before use. Further research into the construction of an outer skin for 
the models would make it much simpler to use generic models for collision detection.

8.3.5 Sphere-Trees for Deform able and B rittle  O bjects

The sphere-tree construction techniques presented in this thesis are primarily intended for 
use with rigid and articulated objects. The octree method is simple enough to be used 
to approximate deformable objects, i.e. the octree structure can be quickly updated as 
the objects deform. The GRID algorithm, presented in Section 3.3 may also be used for 
this purpose. Conceivably, this structure could be incrementally adjusted if the objects 
are deforming slowly. It would be interesting to investigate how this would perform in
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a real-time system. This approach may also prove useful for brittle objects. When a 
fracture appears in the object, one of the branches of the sphere-tree could be broken off 
to produce an approximation of the fragment. It is unlikely that the medial axis based 
methods would be able to provide reasonable performance for these tasks as problems may 
be experienced due to the large spheres that are placed in the interior of the object. As 
these spheres often cross large portions of the model they may pose problems when the 
objects deform or shatter.

8.3.6 Hybrid Bounding Volume Hierarchies

Many researchers have used bounding volume hierarchies as a means of performing effi­
cient collision detection. The bounding volumes used range in complexity. Swept sphere 
volumes, used by Larsen et al. [62], provide a number of different types of bounding vol­
umes. The construction algorithm chooses which of the primitives to use for each region of 
the object. However, all the primitives available are based on spheres. Using a wider range 
of bounding volumes, such as those discussed in Section 2.3, could prove very interesting. 
Such a scheme would be able to choose the best primitive to use for each region. Although 
a potentially large number of intersection tests would be needed, the improved fit may 
compensate for this in certain situations.

8.3.7 W hen Spheres Are Bad Approxim ators

Finally, there are many types of geometry that are quite badly represented by spheres. 
At some point in the bounding volume hierarchy, many of the spheres will become small 
enough that they will only cover a single triangle/polygon in the original model. At this 
stage it would be more beneficial to test the actual polygon instead of a number of spheres. 
Once the sphere-tree traversal algorithm has reached this level of the approximation a 
simple change over can be made. This is subtly different from the exact phase algorithms, 
presented in Section 2.5, as only simple triangle-sphere and triangle-triangle tests would 
be required.



Appendix A

Surface Testing

There are a number of sections of this thesis that have reUed on being able to determine 
whether a given point is inside the model being approximated. This appendix gives some 
information on how this can be achieved.

In his thesis, Hubbard presents an inside-outside test based on determining whether the 
given point is behind the closest part of the surface [49]. However, this test is conservative 
when identifying points as being internal. That is to say tha t it will only categorise the 
point as internal if it is definitely inside the object. There are, however, situations when 
points inside the object are labelled as external.

Using this test for determining the internal vertices of the medial axis does not pose a 
serious problem. It does, however, affect the measurement of fit mentioned in Section 6.2. 
This method operates on a number of points distributed across a sphere. For each of these 
points the error is measured as the distance to the surface. The actual error of a sphere 
is the maximum of the distances for the sample points tha t are outside the object. Thus, 
the mis-categorisation of points will affect this measure and invalidate the test results.

An overview of this algorithm and an alternative based on the crossings-test are given 
below. Both these tests require that the surface be represented by a polyhedral mesh 
and tha t the mesh be closed (2-manifold). Also, there is a requirement that the surface 
polygons do not cut through each other and enter the surface - for example a cup with a 
separate mesh for a handle can cause problems around where they join.

A .l Closest Point Test

H ubbard’s algorithm for categorising points as being inside or outside of the object pro­
ceeds as following. The closest point on the surface mesh is first determined. Using this 
point q the status of point p depends on whether the closest point lies on a face, an edge 
or a vertex. If the closest surface point q lies on a face then the point p can only be inside 
the object if the point p lies behind that face, i.e if the vector dot product between ||p — g|| 
and the face normal, n, is negative. If q lies on an edge e then there are two cases that
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(a) Inside

Figure A.l: Cases for when p projects into a triangle and for when p' projects onto an 
edge.

must be considered. If the two faces, which share e, form a concave fold then p must lie 
behind one of the faces to be inside, whereas if the two faces are convex then p must be 
behind both faces. If q is a vertex then p must lie behind all faces that share that vertex.

To find the point g on a triangulated polyhedron that is closest to a given point p the 
algorithm iterates through the triangles finding the closest point on each triangle. There 
are three cases that must be considered when trying to find this. The minimum distance 
between a plane and a point p is the perpendicular projection, p', of p onto the plane. If 
this projected point is inside the triangle then there exists no closer point on the triangle 
(see Figure A.1(a)). If p' lies outside an edge e of the triangle then the closest point 
between p and the edge e is the perpendicular projection, p", of p' onto e. If p lies within 
the line segment then there can be no closer point on the triangle (see Figure A .l(b))^. If 
neither of the previous two cases are met then the closest point will be one of the vertices.

A SEADS grid (Spatially Enumerated Auxiliary D ata Structure) is used to speed up 
the search for the closest triangle. The voxels of the SEADS grid contain lists of the 
triangles with which they intersect. Before checking the triangles within each voxel a 
quick distance check is performed. This eliminates the voxel if it does not contain any 
points closer than the minimum distance encountered so far. The voxels are considered in 
order of their distance from p so as to maximise the number of voxels that can be culled. 
Hubbard creates a list of voxels and sorts them according to their distance from p so as 
to terminate the search as quickly as possible. However, when performing inside/outside

^Hubbard incorrectly states that there can only be one edge onto which p ' can perpendicularly project. 
T he correct situation is that the only edge capable of producing the closest point is the one that makes p' 
lie outside the triangle.
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Figure A.2: Voxel traversal for finding the closest point on an object.

tests for this thesis, the sorting of the voxels accounted for a large amount of the work 
done. For a 15 * 15 * 15 grid, the sorting (using quick sort) accounted for 80% of the total 
time for inside/outside tests.

An alternative strategy is to use a more complicated algorithm to consider the voxels 
in order. Instead of sorting a list of voxels, the algorithm implicitly considers the closest 
ones first and leaves the further ones until later. The search starts with the voxel that 
contains p. If p is not contained within a voxel then the test can return immediately as 
the voxels cover the entire object and therefore p  has to be classified as being outside the 
object. The voxels are next considered to be a set of concentric rings, centered around 
the starting voxel as illustrated in Figure A.2. Each ring of voxels is considered in turn, 
starting with the one closest to p and moving outwards. This process continues until 
there are no more rings or the closest point on the ring is further away from p than the 
current estimate for its closest point. This doesn’t necessarily consider the voxels in the 
same order as if they had been sorted by their distance from p. However, this scheme 
does allow a much finer SEADS grid to be used and does not incur the penalty of the 
sorting algorithm. Consequently, using this traversal algorithm has provided a significant 
speed-up (a factor of about 50) in the implementation used for this thesis.

A .2 Crossings Test

In the crossings test, based on the Jordan Curve Theorem, a ray is shot out from the 
query point in an arbitrary direction. The number of triangles that this ray intersects 
are counted. This number will be odd if and only if the point is inside the surface. The 
intersection test can be performed using any technique, such as that presented in [75]

There are a number of special cases that need to be considered. For instance, if the 
ray strikes an edge or a vertex then the number of triangles intersected may be incorrectly 
counted. This results from rounding errors in the arithmetic operations used to test the 
intersection. Thus, in order to ensure that the point be categorised correctly these cases
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need to be considered. These cases are, of course, quite rare and for applications such as 
ray-tracing leaving out the special cases will occasionally result in an incorrectly coloured 
pixel (or part of a pixel). For testing sphere fit these small errors cause anomalies in the 
results. Therefore, the implementation used in this thesis fires a pair of rays and compares 
the answers. If the rays disagree another pair of rays are fired, which vote for the correct 
result.

Not all of the triangles need to be considered when counting the crossings. Any trian­
gles that do not lie on the path of the ray can be ignored. This can be efficiently achieved 
by again using a SEADS grid. The voxels along the path of the ray are stepped through 
using a variation of the DDA algorithm [3]. Thus only the triangles that occupy these 
voxels need to be considered.

A .3 Speedup

Whichever technique is being used to determine if a point is within an object, the test 
need not be used for every query. There are large areas of space that will be inside the 
object and others that will be outside. Again, a SEADS grid can be used to accelerate the 
process. Each of the voxels is categorised as being inside, outside or undetermined. The 
undetermined voxels axe those that contain a section of the object’s surface and, therefore, 
are only partly inside the object. If a voxel’s state is not undetermined then it can be 
categorised with a single in-out test, i.e. testing the center point of the voxel.

Thus, when testing whether the point p is inside the object, a simple lookup is usually 
all that is required. If the point falls into a voxel that is categorised as in or out then no 
further work is needed. Only points that fall into voxels with the undetermined state need 
to be checked further, using the desired algorithm.
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Examples

This appendix shows some examples of the sphere generation algorithms. The first set of 
pictures show the bunny, cow and dragon approximated using a single set of spheres. The 
second set show some sphere-trees generated for these models. Each of the sphere-trees has 
a branching factor of 8 and is generated using the adaptive medial axis methods discussed 
in this thesis.
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(a) 10 spheres (b) 50 spheres

(c) 100 spheres (d) 500 spheres

Figure B.l: Examples of the Bunny approximated with the Merge algorithm.
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(a) 10 spheres (b) 50 spheres

(c) 100 spheres (d) 500 spheres

Figure B.2: Examples of the Bunny approximated with the Expand & Select algorithm.



APPENDIX B. EXAMPLES

(a) 10 spheres (b) 50 spheres

(c) 100 spheres (d) 500 spheres

Figure B.3: Examples of the Cow approximated with the Merge algorithm.



APPENDIX B. EXAMPLES  147

(a) 10 spheres (b) 50 spheres

(c) 100 spheres (d) 500 spheres

Figure B.4: Examples of the Cow approximated with the Expand & Select algorithm.
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(a) 10 spheres (b) 50 spheres

(c) 100 spheres (d) 500 spheres

Figure B.5: Examples of the Dragon approximated with the Merge algorithm.
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(a) 10 spheres (b) 50 spheres

(c) 100 spheres (d) 500 spheres

Figure B.6: Examples of the Bunny approximated with the Expand & Select algorithm.
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(a) Merge - Level 2 (b) Merge - Level 3

(c) Combined - Level 2 (d) Com bined - Level 3

Figure B.7: Sphere-trees constructed for the Bunny.
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(a) Merge - Level 2

(c) Combined - Level 2 (d) Combined - Level 3

Figure B.8: Sphere-trees constructed for the Cow.
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(a) Merge - Level 2 (b) Merge - Level 3

(c) Combined - Level 2 (d) Combined - Level 3

Figure B.9: Sphere-trees constructed for the Dragon.



Bibliography

[1] Frequently asked questions for comp.graphics.algorithms (usenet).
http: /  /  www.faqs.org/faqs /  graphics /  algorithms-faq/.

[2] K. Abdel-Malek, H.J Yeh, and N. Maropis. Determining interference between pairs 
of solids defined constructively in computer animations. Computers in Enqineerinq, 
14(l):48-58, 1998.

[3] John Amanatides and Andrew Woo. A fast voxel traversal algorithm for ray tracing. 
In Eurographics ’87, pages 3-10. Elsevier Science Publishers, Amsterdam, North- 
Holland, 1987.

[4] G. Barequet, B. Chazelle, L.J. Guibas, J.S.B. Mitchel, and A. Tal. BOXTREE: A 
hierarchical representation for surfaces in 3D. Computer Graphics Forum, 15(3):387- 
396, September 1996.

[5] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume 
bounding box of a point set in three dimensions. Algorithms, 38:91-109, 2001.

[6] R. Barzel, J.F. Hughes, and D.N. Wood. Plausible motion simulation for computer 
graphics animation. In Computer Animation and Simulation’96, pages 183-197. 
Springer-Wien, 1996.

[7] H. Blum and R.N. Nagel. Shape description using weighted symmetric axis features. 
Pattern Recognition, 10:167-180, 1978.

[8] U. Borgolte, H. Hoyer, and F. Wrosch. Online collision avoidance for two robots in 
3d-space. In Proc. of the 1993 lE EE/RSJ International Conference on Intelligent 
Robots and Systems, Yokohama, Japan, pages 1919-1926, 1993.

[9] A. Bowyer. Computing Dirichlet tessellations. The Computer Journal, 24(2):162- 
166, 1981.

[10] Gareth Bradshaw and Carol O’Sullivan. Extracting cross-sectional profiles from 
unorganized point clouds. In M.H. Hamza, editor. Proceedings of Computer Graphics 
and Imaging (CGIM 2000), pages 175-180, November 2000.

[11] Z.L. Cai and J. Dill S. Payandeh. Haptic rendering: Practical modeling and colli­
sion detection. In Proceedings of the ASME Virtual Environment and Teleoperator 
System Symposium, pages 81-86, November 1999.

[12] S.A. Cameron. Collision detection by four-dimensional intersection testing. IEEE 
Transactions on Robotics and Automation, 6(3):291-302, 1990.

153



BIBLIO G RAPH Y 154

[13] S.A. Cameron. Enhancing GJK: Computing minimum penetration distances be­
tween convex polyhedra. In Proceedings of the Int. Conf. On Robotics and Automa­
tion, pages 3112-3117, 1997.

[14] Stephen Cameron. Efficient intersection tests for objects defined constructively. 
International Journal of Robotics Research, 8(l):3-25, 1989.

[15] K. Chung and W. Wang. Quick elimination of non-interference polytopes in virtual 
environments. In Proceedings of 3’”'̂  European Workshop on Virtual Environments, 
February 1996. Also appeared in the book Virtual Environments’96, Springer-Verlag 
Wien New York, 1996.

[16] K. Chung and W. Wang. Quick collision detection of polytopes in virtual environ­
ments. In Proceedings of ACM  Symposium on Virtual Reality Software and Tech­
nology 1996, July 96.

[17] J.D. Cohen, M.C. Lin, D. Manocha, and M.K. Ponamgi. I-COLLIDE: An interactive 
and exact collision detection system for large-scaled environments. In Proceedings 
of ACM  Int.SD Graphics Conference, pages 189-196, 1995.

[18] John Dingliana and Carol O’Sullivan. Graceful degradation of collision handling in 
physically based animation. Computer Graphics Forum, (Proceedings, Eurographics
2000), 19(3):239-247, 2000.

[19] David Eberly. Dynamic collision detection using oriented bounding boxes. Magic 
Software; www.magic-software.com.

[20] David Eberly. Intersection of objects with linear and angular velocities using oriented 
bounding boxes. Magic Software: www.magic-software.com.

[21] S. Ehmann and M. Lin. Accurate and fast proximity queries between polyhedra 
using surface decomposition. Computer Graphics Forum, (Proceedings, Eurographics
2001), 20(3):500-511, 2001.

[22] Carl Erikson and Dinesh Manocha. GAPS: General and automatic polygonal sim­
plification. In Proceedings of 1999 Symposium on Interactive 3D Graphics, pages 
79-88, 1999.

[23] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, pages 
153-174, 1987.

[24] S. J. Fortune. Voronoi diagrams and Delaunay triangulations. Euclidean Geometry 
and Computers, pages 193-233, 1992. World Scientific Publishing Co., D.A. Du, 
F.K. Hwang, eds.

[25] S.J. Fortune. Voronoi Diagrams and Delaunay Triangulations. CRC Handbook of 
Discrete and Computational Geometry, pages 377-388, 1997.

[26] F. Ganovelli, J. Dingliana, and C. O’Sulhvan. BucketTree: Improving collision de­
tection between deformable objects. In SCCG2000 Spring Conference on Computer 
Graphics, pages 156-163, April 2000.



BIBLIO G RAPH Y 155

[27] M.A. Garcia. A hierarchical world model represenation supporting heterogeneous 
multisensory integration. In International Conference on Advanced Robotics, pages 
461-471, September 1995.

[28] A. Garci'a-Alonso, N. Serrano, and J. Flaquer. Solving the collision detection prob­
lem. IEEE Computer Graphics and Applications, 14:36-43, 1994.

[29] Bernd Gartner. Fast and robust smallest enclosing balls. In Proceedings of 
7*̂  Annual European Symposium on Algorithms (ESA), Lecture Notes in Com­
puter Science 164S, pages 325-338. Springer-Verlag, 1999. Available from 
http://w w w.inf.ethz.ch/personal/gaertner/m iniball.htm l.

[30] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A fast procedure for computing the 
distance between complex objects in three-dimensional space. IEEE Transactions 
on Robotics and Automation, 4(2): 193-203, 1988.

[31] Mark Gill and Albert Zomaya. On the collision detection problems for robot ma­
nipulators. Cybernetics and Systems, An International Journal, 26:165-188, 1995.

[32] S. Gottschalk. Collision Queries using Oriented Bounding Boxes. PhD thesis, Dept, 
of Computer Science, University of North Carolina, 2000.

[33] S. Gottschalk, M.C. Lin, and D. Manocha. OBB-Tree: A hierarchical structure for 
rapid interference detection. In Proceedings of ACM  SIG G RAPH  ’96, pages 171-180, 
1996.

[34] D. Green and D. Hatch. Fast polygon-cube intersection testing. In Alan W. Paeth, 
editor, Graphics Gems V, pages 375-379. Morgan Kaufmann, 1994.

[35] A. Gregory, S. Ehmann, and M.C. Lin. inTouch: Interactive multiresolution model­
ing and 3D painting with a haptic interrface. In Proceedings of IEEE Virtual Reality 
2000, pages 45-52, 2000.

[36] A. Gregory, M. Lin, S. Gottschalk, and R. Taylor. H-COLLIDE: A framework for 
fast and accurate collision detection for haptic interaction. In IEEE Virtual Reality 
Conference, pages 38-45, 1999.

[37] A. Gregory, M.C. Lin, S. Gottschalk, and R. Taylor. Fast and accurate collision de­
tection for haptic interaction using a three degree-of-freedom force-feedback device. 
CGTA: Computational Geometry: Theory and Applications, 15:69-89, 2000.

[38] M. Hariyama, T. Hanyu, and M. Kameyama. A collision detection multiprocessor 
for intelligent vehicles using a high-density CAM. In Proc. of the Intelligent Vehicles 
’94 Symp, pages 143-148, 1994.

[39] T. He. Fast collision detection using QuOSPO trees. In Proceedings of the 1999 
Symposium on Interactive 3D graphics, pages 55-62, April 1999.

[40] T. He and A. Kaufman. Collision detection for volumetric objects. In Proceedings 
of the 8*̂  IEEE Visualization ’97 Conference, volume 1, pages 27-35, 1997.

[41] Paul S. Heckbert and Micheal Garland. Optimal triangulation and quadric-based 
surface simplification. Journal of Computational Geometry: Theory and Applica­
tions, pages 49-65, November 1999.



BIBLIO G RAPH Y 156

[42] M. Held, J.T . Klosowski, and J.S.B Mitchell. Evaluation of collision detection meth­
ods for virtual reality fly-throughs. In Proceedings of 7̂  ̂ Canadian Conference on 
Computational Geometry, pages 205-210, 1995.

[43] L.J. Hettinger and G.E. Riccio. Visually induced motion sickness in virtual environ­
ments. Presence, 1(3):306-310, 1992.

[44] H. Hoppe. Progressive meshes. In Proceedings of ACM  SIG G RAPH  ’96, pages 
99-108, 1996.

[45] H. Hoppe. View-dependent refinement of progressive meshes. In Proceedings of ACM  
SIGGRAPH ’97, pages 189-198, 1997.

[46] H. Hoppe. Smooth view-dependent level-of-detail control and its application to 
terrain rendering. In Proceedings of IEEE Visualization ’98, pages 35-42, 1998.

[47] P.M. Hubbard. Collision detection for interactive graphics applications. IEEE Trans­
actions on Visualization and Computer Graphics, l(3):218-230, 1995.

[48] P.M. Hubbard. Approximating polyhedra with spheres for time-critical collision 
detection. ACM  Transactions on Graphics, 15(3):179-210, 1996.

[49] P.M. Hubbard. Collision Detection for Interactive Graphics Applications. PhD 
thesis. Dept, of Computer Science, Brown University, April 1995.

[50] T. Hudson, M.C. Lin, J. Cohen, S. Gottschalk, and D. Manocha. V-COLLIDE: 
Accelerated collision detection for VMRL. In Proceedings of VRML 1997, pages 
117-124, 1997.

[51] M. Hughes, C. DiMattia, M.Lin, and D. Manocha. Efficient and accurate interference 
detection for polynomial deformation and soft object animation. In Proceesings of 
Computer Animation ’96, pages 155-166, 1996.

[52] Wolf-D Ihlenfeldt. Virtual reality in chemistry. Journal of Molecular Modeling, 
3:386-402, September 1997.

[53] H. Inagaki, K. Sugihara, and N.Sugie. Numerically robust incremental algorithm for 
constructing 3D Voronoi diagrams. In Proceedings of the 4*  ̂ Canadian Conference 
on Computational Geometry, pages 334-339, 1992.

[54] D.R. Jefferson. Virtual time. AC M  Transactions on Programming Languages and 
Systems, 7(3):404-425, 1985.

[55] P. Jimenez, F. Thomas, and C. Torras. 3D collision detection: A survey. Computers 
and Graphics, 25(2):269-285, 2000.

[56] Y. Kitamura, H. Takemura, N. Ahuja, and F. Kishino. Efficient collision detection 
among objects in arbitrary motion using multiple shape representations. In Pro­
ceedings 12^  ̂ lA P R  Int. Conf. On Pattern Recognition, volume 1, pages 390-396, 
1994.

[57] J.T . Klosowski. Efficient Collision Detection for Interactive 3D Graphics and Virtual 
Environments. PhD thesis, State University of New York at Stony Brook, May 1998.



B IBLIO G RAPH Y 157

[58] J.T . Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan. Efficient colli­
sion detection using bounding volume hierarchies of k-DOPs. IEEE transactions on 
Visualization and Computer Graphics, 4(l):21-36, 1998.

[59] Y. Kono, M. Seto, K. Nishimatsu, H. Fukumori, and Y. Muraoka. Parallel mesh 
generation for FEM - parallel construction of Voronoi diagram. IP SJ SIGNotes - 
High Performance Computing, 60, 1995.

[60] S. Krishnan, M. Gopi, M. Lin, D. Manocha, and A. Pattekar. Rapid and accurate 
contact determination between spline models using ShellTrees. In Proceedings of 
Eurographics ’98, volume 17(3), pages 315-326, 1998.

[61] S. Krishnan, A. Pattekar, M. Lin, and D. Manocha. Spherical shells: A higher order 
bounding volume for fast proximity queries. In Proceedings of the 1998 Workshop 
on the Algorithmic Foundations of Robotics, pages 122-136, March 1998.

[62] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast proximity queries with 
swept sphere volumes. Technical Report TR99-018, Dept, of Computer Science, 
University of North Carolina, 1999.

[63] E. Larsen, S. Gottschalk, M.C. Lin, and D. Manocha. Fast distance queries using 
rectangular swept sphere volumes. In Proceedings of IEEE International Conference 
on Robotics and Automation 2000, 2000.

[64] E. Levey, C. Peters, and C. O’Sullivan. New metrics for evaluation of collision 
detection techniques. In Proceedings of The 8̂ * International Conference in Central 
Europe on Computer Graphics, Visualization and Interactive Digital Media’2000., 
2000.

[65] M. Lin. Efficient Collision Detection for Animation and Robotics. PhD thesis. 
University of California, Berkeley, 1993.

[66] M. Lin and D. Manocha. Efficient contact determination between geometric mod­
els. Internation Journal of Computational Geometry and Applications, 7(1):123-151, 
1997.

[67] M.C. Lin and J.F. Canny. Efficient algorithms for incremental distance computation. 
In Proc. IEEE Conference on Robotics and Automation, pages 1008-1014, 1991.

[68] M.C. Lin and S. Gottschalk. Collision detection between geometric models: A survey. 
In Proceedings of IMA Conference on Mathematics of Surfaces, pages 33-52, 1998.

[69] M.C. Lin, A. Gregory, S. Ehmann, S. Gottschalk, and R. Taylor. Contact deter­
mination for real-time haptic interaction in 3D modeling, editing and painting. In 
Proceedings of 1999 Workshop for PH ANTO M  User Group, pages 58-61, 1999.

[70] M.C. Lin, D. Manocha, J. Cohen, and S. Gottschalk. Collision Detection: Algorithms 
and Applications. In Jean-Paul Laumond, M. Overmars, and A.K. Peters (eds.), 
editors. Algorithms for Robotics Motion and Manipulation, pages 129-142. 1997.

[71] Jean-Christophe Lombardo, Marie-Paule Cani, and Fabrice Neyret. Real-time colli­
sion detection for virtual surgery. In Computer Animation’99, May 1999.



BIBLIO G RAPH Y 158

[72] V. Milenkovic. Robust construction of the Voronoi diagram of a polyhedron. In 
A. Lubiw and J.Urrutia, editors, Proceedings of the 5*̂  Canadian Conference on 
Computational Geometry, pages 473-478, August 1993.

[73] B. Mirtich. V-Clip: Fast and robust polyhedral collision detection. ACM  Transac­
tions on Graphics, 17(3):177-208, 1998.

[74] Brian Mirtich. Timewarp rigid body simulation. In Proceedings of AC M  SIGGRAPH  
2000, July 2000.

[75] Tomas Moller and Eric Haines. Ray/triangle intersection. In Real-time Rendering, 
pages 303-305. A.K. Peters, 1999.

[76] M. Moore and J. Wilhelms. Collision detection and response for computer animation. 
Computer Graphics, 22(4):289-298, 1988.

[77] Allison M. Okamura. Literature survey of haptic rendering, collision detection and 
object modelling. Technical report, Johns Hopkins University, Department of Engi­
neering, Baltimore, August 1998.

[78] C. O’Sullivan. Perceptually-Adaptive Collision Detection for Real-time Animation. 
PhD thesis. Trinity College Dublin, Ireland, June 1999.

[79] C. O’Sullivan and J. Dingliana. Realtime collision detection and response using 
sphere-trees. In Proceedings of the Spring Conference on Computer Graphics, pages 
83-92, 1999.

[80] C. O’Sullivan and J. Dingliana. Collisions and perception. ACM  Transactions on 
Graphics, 20(3);151-168, 2001.

[81] C. O ’Sullivan, R. Radach, and S. Collins. A model of collision perception for real­
time animation. In N. Magnenat-Thalmann and D. Thalmann, editors. Computer 
Animation and Simulation’99, pages 67-76. Springer-Wien, 1999.

[82] I. J. Palmer and R.L. Grimsdale. Collision detection for animation using sphere-trees. 
Computer Graphics Forum, 14(2):105-116, 1995.

[83] M.K. Ponamgi, D. Manocha, and M.C. Lin. Incremental algorithms for collision 
detection between polygonal models. IEEE Transactions on Visualization and Com­
puter Graphics, 2(l):51-64, 1997.

[84] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes 
in C: The Art of Scientific Computing, Downhill Simplex Method in Multidimen­
sions, chapter 10.4, pages 408-412. Cambridge University Press, second edition, 
1992.

[85] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes 
in C: The Art of Scientific Computing, Recursive Stratified Sampling, chapter 7.8, 
pages 323-327. Cambridge University Press, second edition, 1992.

[86] S. Quinlan. Efficient distance computation between non-convex objects. In Pro­
ceedings International Conference on Robotics and Automation, pages 3324-3329, 
1994.



BIBLIO G RAPH Y 159

[87] R. Rabbitz. Fast collision detection of moving convex polyhedra. In P.S. Heckbert, 
editor, Graphics Gems IV, pages 83-109. Academic Press, Cambridge, MA, 1994.

[88] M artin Reddy. A survey of level of detail support in current virtual reality solutions. 
Virtual Reality Research, Development and Application, l(2):85-88, 1995.

[89] J. Ritter. An efficient bounding sphere. In Andrew S. Glassner, editor, Graphics 
Gems, pages 301-303. Academic Press, 1990.

[90] David F. Rogers. Procedural Elements for Computer Graphics, pages 196-207. 
McGraw-Hill Book Company, New York, 1985.

[91] J. Rolhf and J. Helman. IRIS Performer: A high performance multiprocessing toolkit 
for real-time 3D graphics. In Proceedings of AC M  SIG GRAPH  '94, pages 381-393, 
1994.

[92] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering system 
for large meshes. In Kurt Akeley, editor. Proceedings of AC M  SIG GRAPH  2000, 
pages 343-352. ACM Press /  ACM SIGGRAPH /  Addison Wesley Longman, 2000.

[93] S. Rusinkiewicz and M. Levoy. Streaming QSplat: A viewer for networked visual­
ization of large, dense models. 2001 Symposium on Interactive 3D Graphics, 2001.

[94] H. Sammet and R. Webber. Hierarchical data structures and algorithms for computer 
graphics. IEEE Comp. Graphics and Applications, 8(3):48-68, 1988.

[95] C.A. Shaffer and G.M. Herb. A real-time robot arm collision avoidance system. 
IEEE Transactions on Robotics and Automation, 8(2): 149-160, 1992.

[96] I.P.W. Sillitoe, A. Batersby, and J. Edwards. A parallel architecture for efficient 
clash detection. Progress in Transputer and Occam Research, pages 32-39, 1994.

[97] A. Smith, Y. Kitamura, and F. Kishino. Efficient algorithms for octree motion. In 
lA P R  Workshop on Machine Vision Applications, pages 172-177, 1994.

[98] A. Smith, Y. Kitamura, H. Takemura, and F. Kishino. A simple and efficient method 
for accurate collision among deformable polyhedral objects in arbitrary motion. In 
Proceedings of the Virtual Reality Annual International Symposium, pages 136-145. 
IEEE, March 1995.

[99] J.M. Snyder. Interval analysis for computer graphics. In Proceedings of ACM  SIG- 
G RAPH ’93, pages 121-129, 1992.

[100] J.M. Snyder, A.R. Woodbury, K. Fleischer, B. Currin, and A. Barr. Interval methods 
for multi-point collisions between time-dependent curved surfaces. In Proceedings of 
SIG G R APH ’93, pages 321-334, 1993.

[101] C. Tseng and C. Wu. Collision detection for multiple robot manipulators by using 
orthogonal neural networks. Journal of Robotic Systems, 12:479-490, 1995.

[102] G. Turk. Interactive collision detection for molecular graphics. Master’s thesis. Dept, 
of Computer Science, The University of North Carolina, 1989.



BIBLIO G RAPH Y 160

[103] G. Turk. Generating random points in triangles. In Andrew S. Glassner, editor, 
Graphics Gems, pages 24-28. Academic Press, 1990.

[104] G. van den Bergen. Efficient collision detection of complex deformable models using 
A ABB trees. Journal of Graphics Tools, 2(4): 1-13, 1997.

[105] G. van den Bergen. A fast and robust GJK implementation for collision detection 
between convex objects. Journal of Graphics Tools, 4(2):7-25, 1999.

[106] P. Volino and M. Thalmann. Efficient self-collision detection on smoothly discretized 
surface animations using geometrical shape regularity. In Eurographics ’94, Computer 
Graphics Forum, volume 13, pages 155-166, 1994.

[107] B. Von-Herzen, A.H. Barr, and H.R. Zatz. Geometric collisions for time-dependent 
parametric surfaces. In Proceedings of SIG G RAPH ’99, pages 39-48, 1990.

[108] Emo Weltz. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor. 
New Results and New Trends in Computer Science, pages 359-370. 1991.

[109] Dave White. Smallest Enclosing Ball of Points/Balls.
http ://v ision.ucsd.edu/ dwhite/ball.html.

[110] Andrew J. Willmott. Hierarchical Radiosity with Multiresolution Meshes. PhD 
thesis. School of Computer Science, Carnegie Mellon University, 2000.

[111] A. Wilson, E. Larsen, D.Manocha, and M.C. Lin. IMMPACT: A system for inter­
active proximity queries on massive models. Technical Report TR98-031, Dept, of 
Computer Science, University of North Carolina, 1998.

[112] Julie C. Xia, Jihad El-Sana, and Amitabh Varshney. Adaptive real-time level-of- 
detail based rendering of polygon meshes. IEEE Transactions on Visualisation and 
Computer Graphics, 3(2):171-183, June 1997.

[113] J. Xiao and L. Zhang. Towards obtaining all possible contacts - growing a polyhe­
dron by its location uncertainty. In Proceedings 1994 lE E E /R S J /G I International 
Conference on Intelligent Robots and Systems, pages 1788-1795, September 1994.

[114] J.H. Youn and K. Wohn. Realtime collision detection for virtual reality applications. 
In Proceedings IEEE Virtual Reality Annual Int. Sym., pages 18-22, 1993.

[115] M. Zeiller. Collision detection for objects modeled by CSG. Visualization and 
Intelligent Design in Engineering and Architecture, pages 165-180, 1993.

[116] M. Zeiller. Collision Detection for Complex Objects in Computer Animation. PhD 
thesis, Vienna University of Technology, 1994.

[117] M. Zeiller, W. Purgathofer, and M. Gervautz. Efficient collision detection for gen­
eral CSG objects. In Proceedings of EUROGRAPHICS 6*̂  Workshop on Computer 
Animation and Simulation, 1995.

[118] D. Zhang and M.M.F Yuen. Collision detection for clothed human animation. In 
Proceedings of the 8*̂  Pacific Conference on Computer Graphics and Applications, 
pages 228-237, 2000.


