
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Bounding Volume Hierarchies for
Level-of-Detail Collision Handling

9l .

Submitted to Trinlty^ollege Dublin
for the Degree of Doctor of Philosophy

Gareth Bradshaw

May 2002

Declaration

I declare that the work contained within this thesis has not been submitted for a degree
at any other university and that the work is entirely my own.

Signature

Gareth Bradshaw

Permission to lend and/or copy

I agree tha t the library in Trinity College may lend or copy this thesis upon request.

Signature

Gareth Bradshaw

© 2002 Gareth Bradshaw, Trinity College Dublin

Acknowledgements
Firstly, I would like to thank my family and friends for their constant support throughout
the course of this work. I would especially like to thank my parents, Brian and Rhoda,
who gave me the freedom to choose my own path in life and supported me at every step.

Secondly, thanks to my supervisor. Dr. Carol O’Sullivan, for her encouragement,
inspiration and extensive use of red pen.

I must also thank everyone who gave their input on this Thesis and its contents. Special
thanks go to those who had the endurance to read it in its entirety, Carol, Robert, Helen,
Sinead and Brian, and to Clodagh for her help preparing the final copy.

Abstract
Enforcing solidity of objects within simulations is a major computational overhead. De­
tecting interactions between bodies is a large part of this overhead. Many researchers have
used hybrid collision detection algorithms to address this issue. Such algorithms use mul­
tiple phases, first to eliminate object pairs that cannot be interacting and then to narrow
in on the regions of the objects that are in contact.

The second phase of these algorithms, the narrow phase, typically uses a hierarchical
representation of the objects. A tree traversal algorithm narrows in on the regions of
contact. While many different geometric primitives have been used for these hierarchies,
spheres have some distinct advantages, especially for interruptible collision detection sys­
tems. However, large numbers of spheres are often required to approximate the objects’
geometries.

Octrees and medial axis techniques have been utilised for the construction of hierar­
chies of spheres, known as sphere-trees. This thesis presents a number of improvements
to both these techniques. Existing methods have been critically analysed to determine
their strengths and weaknesses and new algorithms, which build upon them, have been
developed. As the sphere-trees are intended for use in an interruptible collision detection
system, which uses the spheres to approximate the collisions as accurately as it can within
an allowable time-slice, the main focus is on the close approximation of the object and
fast traversal of the hierarchies.

The main contributions of this thesis include the development of an adaptive medial
axis approximation algorithm that allows areas of the medial axis to be constructed as
required. This allows a finer approximation of the medial axis in detailed areas and al­
lows more detail to be added to the approximation when there is insufficient information
to closely approximate the object. A sphere-tree optimisation algorithm, which further
improves the tightness of the representation, is also presented. An optimiser based al­
gorithm, which constructs sphere-trees similar to those generated from the medial axis
without requiring its approximation, is detailed. Finally sphere-trees generated with the
various algorithms are compared in an interruptible collision detection system.

Contents

1 Introduction 1
1.1 R equirem ents.. 3
1.2 Focus of this Thesis ... 4

2 State Of The Art 8
2.1 Basic ColUsion Detection A lg o r i th m .. 8
2.2 Broad Phase A lgorithm s... 10

2.2.1 Sweep and P ru n e ... 10
2.2.2 Overlap T ab le .. 10
2.2.3 4‘* Dimension.. 11

2.3 Narrow Phase A lg o rith m s.. 11
2.3.1 S p h ere -T rees .. 12
2.3.2 AABB-Trees and O B B -T rees .. 13
2.3.3 Discrete Oriented P o ly topes.. 15
2.3.4 QuOSPO T re e s .. 16
2.3.5 Spherical S hells .. 17
2.3.6 Swept Sphere V olum es... 17
2.3.7 C -T re e s ... 17
2.3.8 S -B o u n d s .. 18
2.3.9 Voxel S p a c e ... 18

2.4 Interruptible Collision D e te c t io n .. 19
2.5 Exact A lgorithm s..20
2.6 Deformable and Parametric O b je c t s .. 22
2.7 Sphere-Tree T ra v e rs a l .. 23

2.7.1 The Traversal A lgorithm .. 24
2.8 Conclusion ..26

3 Octree M ethod 31
3.1 Constructing Sphere-Trees from O c tre e s ..31

3.1.1 Pros and C o n s .. 32
3.1.2 Making Solid Octrees ..34

3.2 Limitations of the Octree M ethod ...35
3.2.1 Orientation and Position.. 35
3.2.2 S i z e ...36
3.2.3 Grid Dimension.. 38

3.3 The Grid A lg o rith m ... 39
3.4 C onclusions..41

v

CONTENTS vi

4 M edial Axis M ethod 44
4.1 Constructing the Medial A x is .. 44

4.1.1 Sampling a Triangulated Polyhedron..45
4.1.2 Constructing the Voronoi D iag ram ...46
4.1.3 Selecting the Vertices to D e le te ...47
4.1.4 Updating the Voronoi d ia g ra m ...49

4.2 Fixing the Medial A xis... 50
4.3 Constructing the Sphere-Tree.. 53
4.4 Pros and Cons ... 55

5 Im proved M edial Axis M ethod 57
5.1 Adaptive Sam pling... 57
5.2 Complete Coverage... 62
5.3 Sphere Reduction.. 67

5.3.1 Improved M e rg e .. 67
5.3.2 Sphere Bursting .. 67
5.3.3 Expand & S e le c t.. 69

5.4 Ehminating the Medial A xis... 76
5.5 Conclusions... 79

6 Im proved Sphere-Tree C onstruction 81
6.1 Generic Sphere-Tree Construction ... 82
6.2 Sphere Set O ptim isation.. 84
6.3 Balancing Work vs. E r r o r ... 91
6.4 Conclusions... 93

7 Evaluation 95
7.1 Geometric Approximations ... 97

7.1.1 S trategy ... 97
7.1.2 Medial Axis C onstruction...100
7.1.3 Sphere S e lec tion ..105
7.1.4 Sphere Reduction..108
7.1.5 Sphere-Tree C onstruction...109

7.2 Simulation.. 119
7.3 Conclusion ... 126

8 Conclusions and F u tu re W ork 132
8.1 A ssessm ent... 132
8.2 Contributions.. 134
8.3 Future Work .. 135

8.3.1 Ensuring Object Coverage.. 135
8.3.2 Combining Different Collision Detection S trateg ies............................... 135
8.3.3 Unified LOD Rendering and CoUision Handling.......................................137
8.3.4 Automatic Skinning of M o d e ls ... 137
8.3.5 Sphere-Trees for Deformable and Brittle O b je c ts 137
8.3.6 Hybrid Bounding Volume Hierarchies ... 138
8.3.7 When Spheres Are Bad Approximators ..138

CONTENTS vii

A Surface T esting 139
A .l Closest Point Test ... 139
A.2 Crossings Test .. 141
A.3 Speedup... 142

B E xam ples 143

List of Figures

1.1 Exam ple of a dragon approxim ated w ith 3 levels of spheres................................ 5
1.2 The two cases resulting from prem ature term ination (interruption) of the

collision detection algorithm .. 6

2.1 U pdate and intersection for a sphere (shown in 2D)... 13
2.2 2D Axis Aligned Bounding Box (AABB) and 2D Oriented Bounding Box

(OBB) surrounding an entire ob ject.. 14
2.3 Using 8-DOPs to approxim ate the boundary of a car...16
2.4 Testing for overlap between the prim ary orientation slabs of an object and

the OBB of another.. 16
2.5 As the object moves in voxel space multiple voxels may be occupied when

part of the object overlaps the voxel boundaries... 19
2.6 Staircase traversal of a pair of sphere-trees.. 25

3.1 Q uadtree sub-division of an object (2D equivalent of an octree)........................ 32
3.2 Each cube w ithin the octree defines a sphere which surrounds i t32
3.3 Sphere levels constructed using quadtree (2D equivalent of an octree). . . . 33
3.4 Octree nodes th a t are entirely inside the object create larger term inal nodes. 34
3.5 An example of a model th a t is well suited to the octree based algorithm . . . 35
3.6 Changes in the orientation of an object affects the structure of the octree. . 36
3.7 Each set of nodes (siblings) can benefit from using a different local co­

ordinate frame and independently sized sets of spheres.. 37
3.8 Allowing the dimensions of the grid of spheres to change can improve the

approxim ation...38
3.9 The algorithm may produce a grid of any dimension, provided it contains

an allowable number of occupied nodes.. 39

4.1 An example of a Voronoi diagram in 2D...45
4.2 Initial Voronoi diagram in 2D. Vertices are in green, and forming points in

red. Solid black lines join the neighbouring vertices.. 47
4.3 Adding a new point to the Voronoi diagram creates a new cell representing

the region for which it is the closest forming po in t...48
4.4 Creating a new vertex for a pair of vertices Vu and and a new edge from

two of the new vertices...51
4.5 Examples of how sampling can cause errors in the medial axis............................... 52
4.6 Examples of spheres placed around the Voronoi vertices th a t are inside the

object...53
4.7 Com puting the distance from a point P to the surface of the sphere, for the

two cases of C being in front of or behind the plane on which P lies.................. 55

viii

LIST OF FIGURES ix

5.1 Distributing points within a cluster by sampling the clusters bounding box
in a raster fashion.. 58

5.2 Small clusters can cause faces that do not represent a problem to be con­
sidered gap-crossing.. 59

5.3 Addition of a new point to reduce the error of the approximation. The
point (q) is positioned to improve a specific part of the approximation. . . . 60

5.4 Where the medial axis crosses from one part of the object to another, large
resulting spheres will be divided by the adaptive sampling algorithm if e is
larger than the desired accu racy .. 60

5.5 Comparison between non-adaptive and adaptive sampling, both using circa
1000 spheres... 61

5.6 An example of a situation where it is very difficult to produce spheres to
cover the object’s entire volume..63

5.7 Every point P within a cell will be covered by at least one of the spheres
created from the vertices of that cell as all such spheres will pass through
the forming points of the cell... 64

5.8 When surrogate spheres are selected it is often desirable to replace them as
soon as possible to reduce the impact they have on the sphere set.....................65

5.9 An example of how the use of vertices from outside the object can help to
ensure that the object is more completely covered with spheres...................... 66

5.10 Merging two spheres together leaves the other spheres unchanged and there­
fore can result in a poor approximation...68

5.11 Removing a sphere and allowing the surrounding spheres to cover the newly
uncovered area... 68

5.12 Comparison of merging and bursting a cube approximated by 9 spheres (2D
equivalent shown on left)..71

5.13 The minimum volume sphere may not always represent the sphere with the
minimum error... 72

5.14 Expanding a sphere to have a given stand-off distance.. 73
5.15 Varying the stand-off distance to create an approximation with a given

number of spheres (expanded medial spheres are in blue, selected spheres
overlayed in red)..74

5.16 When selecting a set of spheres to cover the object, a bad choice of spheres
may result in gaps being formed, which will require extra spheres to fill
them.. 75

5.17 As the stand-off distance increases, the center sphere eventually makes cor­
ner spheres redundant. However they also grow and make the center sphere
redundant... 78

6.1 Dividing the object into distinct regions using dividing planes.............................85
6.2 Adjusting one of the spheres covering the object can allow the other spheres

to cover a different area of the object and thus decrease the worst error of
the approximation...88

6.3 Illustration of a shape that does not require the full number of spheres to
achieve a good approximation... 92

7.1 Some of the models used for testing the algorithms 96

LIST OF FIGURES X

7.2 The error in an approximation can be measured as the maximum distance
from the surface of the spheres to the object or as the volume of the wasted
portions of the spheres..98

7.3 The amount of the object not covered by spheres can be measured using
either volume or surface a r e a .. 98

7.4 Integrating the wasted and uncovered volumes using Monte Carlo techniques. 100
7.5 Comparison of Regular vs. Adaptive sampling for the construction of the

medial set of the Bunny.. 101
7.6 Comparison of Regular vs. Adaptive sampling for the construction of the

medial set of the Cow... 102
7.7 Comparison of Regular vs. Adaptive sampling for the construction of the

medial set of the Dragon.. 103
7.8 Comparison of Regular vs. Adaptive sampling for the construction of the

medial set of the cube... 104
7.9 Comparison of sphere selection heuristics for the Bunny............. 106
7.10 Compcirison of sphere selection heuristics for the Cow.................106
7.11 Comparison of sphere selection heuristics for the Dragon............106
7.12 Comparison of sphere selection heuristics for the cube................ 107
7.13 Comparison of sphere selection heuristics for the ellipsoid.......... 107
7.14 Comparison of sphere selection heuristics for the torus................107
7.15 Comparison of sphere reduction techniques for the Bunny.......................... 110
7.16 Comparison of sphere reduction techniques for the Cow.............................. I l l
7.17 Comparison of sphere reduction techniques for the Dragon.........................112
7.18 Comparison of sphere reduction techniques for the cone..............................113
7.19 Comparison of sphere-trees for the Bunny. (Level 2) ...115
7.20 Comparison of sphere-trees for the Bunny. (Level 3) .. 115
7.21 Comparison of sphere-trees for the Dragon. (Level 2) .. 116
7.22 Comparison of sphere-trees for the Dragon. (Level 3) .. 116
7.23 Comparison of sphere-trees for the S-shape. (Level 2) 117
7.24 Comparison of sphere-trees for the S-shape. (Level 3) 117
7.25 Comparison of sphere-trees for the Ellipsoid. (Level 2) 118
7.26 Comparison of sphere-trees for the Ellipsoid. (Level 3) 118
7.27 Comparison of medial axis based sphere-trees at various interruption times

for The Bunny (20 objects)..122
7.28 Comparison of medial axis based sphere-trees at various interruption times

for The Dragon (20 objects)...123
7.29 Comparison of medial axis based sphere-trees at various interruption times

for the S-shape (20 objects)... 124
7.30 Comparison of medial axis based sphere-trees at various interruption times

for the ellipsoid (20 objects).. 125
7.31 Comparison of octree based sphere-trees at various interruption times for

The Bunny (20 objects)..127
7.32 Comparison of octree based sphere-trees at various interruption times for

The Dragon (20 objects)...128
7.33 Comparison of octree based sphere-trees at various interruption times for

the S-shape (20 objects)... 129
7.34 Comparison of octree based sphere-trees at various interruption times for

the ellipsoid (20 objects)...130

L IST OF FIGURES xi

8.1 Examples of a terrain modelled by various sized AABBs for efficient collision
detection.. 136

A.l Cases for when p projects into a triangle and for when p' projects onto an
edge...140

A.2 Voxel traversal for finding the closest point on an object..................................... 141

B.l Examples of the Bunny approximated with the Merge algorithm...................... 144
B.2 Examples of the Bunny approximated with the Expand & Select algorithm. 145
B.3 Examples of the Cow approximated with the Merge algorithm.......................... 146
B.4 Examples of the Cow approximated with the Expand & Select algorithm. . 147
B.5 Examples of the Dragon approximated with the Merge algorithm.....................148
B.6 Examples of the Bunny approximated with the Expand & Select algorithm. 149
B.7 Sphere-trees constructed for the B u n n y . .. 150
B.8 Sphere-trees constructed for the Cow...151
B.9 Sphere-trees constructed for the Dragon... 152

List of Tables

2.1 Summary of Rigid Body Collision Detection A lg o rith m s......................................27
2.2 Summary of Bounding Volume Primitives for Collision D e te c tio n 29

7.1 ANOVA comparison of sphere selection heuristics...108
7.2 Improvements in fit of sphere-trees constructed for the Bunny............................115
7.3 Improvements in fit of sphere-trees constructed for the Dragon..........................116
7.4 Improvements in fit of sphere-trees constructed for the S-Shape.........................117
7.5 Improvements in fit of sphere-trees constructed for the Ellipsoid....................... 118

List of Algorithm s

1 GRID algorithm for generating spheres.. 42
2 Evaluate metric in Equation 3.1 for a given grid..43
3 Adaptive construction of Voronoi D iagram .. 62
4 Pseudo-medial sphere selection algorithm .. 65
5 Removal of a s p h e r e ... 70
6 Select spheres using Expand.. 77
7 SPAWN sphere generation .. 80
8 Generic Sphere Tree Construction..86
9 Sphere Optimisation.. 89
10 Optimisation Objective Function.. 90
11 Remove spheres that contribute little to the approximation................................... 94

xiii

Chapter 1

Introduction

Solid objects collide, they do not ghost through each other. No m atter how hard one tries,
it is not possible to push one solid object through another, unless of course, one of the
objects pierces the surface of the other^. Thus it can be said tha t if the objects interfere
with each other, this interference is in the form of a collision. Determining when and
where these interactions occur is called Collision Detection and the effect caused by the
interaction is called a Collision Response. Collision detection is a problem of kinematics,
i.e. relating the motions and positions of objects within an environment, whereas collision
response is a problem of dynamics, i.e. applying the “laws of physics” to simulate the
resulting changes in the motions of the objects [76].

The problems of collision detection and response are fundamental to computer graphics
and simulation of physical situations. A typical example would be a computer animation
that features an avalanche or a rock fall. While traditional animation relies largely on
human animators to enforce the solidness of objects, this is impractical for large interactive
systems. Also the dynamic nature of the environment, and hence the collisions tha t occur
within it, mean that the collisions are not predetermined. Thus a Collision Handling
system is necessary to manage the large numbers of collisions.

Collision detection and response are not only fundamental to graphics and simulations,
but also to other areas. Some of these areas include :

• V ir tu a l P ro to ty p in g . Having used a CAD/CAM system to design a complicated
mechanical system, a simulation can be used to detect design problems tha t would
result in components hitting off each other or not interacting correctly. This reduces
manufacturing costs by reducing the amount of effort tha t needs to be put into the
construction and testing of physical prototypes. Having evaluated the performance
of the computer model it is then possible to manufacture the system knowing exactly

‘There is a scientific theory that states that if a pair of quantum particles collide often enough, the
probability of tunnelling occurring becomes statisticedly significant. However there is no evidence that this
could happen for objects with pairameters outside of quantum distances.

1

CHAPTER 1. INTRODUCTION 2

how the parts will interact. Held et al. explore techniques for working with massive
models such as industrial plants [42].

• Collision Avoidance and P a th P lann ing . Collision avoidance systems often
contain a collision detection phase. In this phase the path of the robot (or robotic
manipulator) will be extrapolated into the future. Having detected an imminent
collision the system can then plan avoidance manoeuvres or warn the operator
[8, 31, 38, 95, 96, 101].

• H ap tic R endering. In order to provide force feedback during simulated interac­
tion, such as virtual surgery and painting, it is necessary to be able to determine
the interaction between the virtual environment and the probe/manipulator, which
is under the control of the user. In order to provide quality feedback to the user,
high processing speeds are necessary [11, 35, 36, 37, 69, 71, 77].

• V irtu a l C rash Testing. Transport vehicles are usually required to undergo thor­
ough crash test procedures. This is an expensive operation. The use of computer
simulations can greatly reduce the number of real tests that need to be conducted
in the early phases of testing^. The information gathered during these simulations
can then help designers to improve safety. Many of the large vehicle manufacturers
have started using virtual crash testing as part of their design process^.

• M olecular M odelling. Modelling and visualisation of complex chemical structures
and their interactions allow chemists to investigate their molecular structure and
actions in a virtual environment. Collision detection plays a vital role in determining
how chemical compounds combine and in providing force feedback to the operator
[52, 102].

Thus, there are many different areas where collision handling systems are necessary.
For areas such as Virtual Prototyping and Crash Testing the emphasis is on precise de­
tection and response. As these do not require real-time performance the computation can
be performed to provide precision down to the level of the computer model. While a lot
of work aims to increase performance, for these areas it is acceptable to spend the order
of minutes (or even hours) performing the simulations. However, for real-time animations
and virtual surgery (haptic rendering) it is necessary for the collision handling system

^An example of such a system is PAM-Crash/Safe from Pennsylvania Transportation Institute, The
Pennsylvania State University (www.vss.psu.edu).

^Some of the companies using virtual crash testing include : DaimlerChrysler, Mercedes-Benz and
Renault.

CHAPTER 1. INTRODUCTION 3

to operate interactively. The next section discusses requirements for interactive collision
detection and introduces the idea of interruptible collision detection, which trades speed
for accuracy in order to maintain interactivity.

1.1 Requirements

There are many techniques available for increasing the speed at which a scene can be
rendered. Graphics workstations and PC-3D accelerators provide fast rendering of scenes
constructed from triangles. Also, dynamic level-of-detail techniques, such as progressive
meshes [44, 45, 46], quadric surface simplification [41] and even run-time simplification
[112] allow the complexity of the scenes to be reduced, see [22, 88] for a comparison of
various LOD packages. However, none of this aids the provision of real-time collision
handling. As the number of objects in the simulation increases, any additional processing
power, such as that available by adding additional CPUs, will soon be used up.

Achieving interactive frame rates is critical in a computer animation and interactive
simulation. In order for the animation to be reasonably believable we would require at
least 10 frames per second (fps)^. It is also a requirement that the frames be generated at
fixed regular intervals, i.e. there needs to be a low variance in the time taken to produce
each frame. Failure to produce consistent frame rates is thought to cause of a kind of
motion sickness called simulator sickness [43]. Another requirement of a collision handling
system is the ability to handle the arbitrary motions that result from user guidance, such
as manoeuvring a jet, and the complex interactions involving many objects.

Throughout the lifetime of an animation the amount of work required in both rendering
and collision handling will vary. Take for example an animation of a rock fall where
thousands of fragments are involved. As the pieces of rock start to break away from the
rock face there are relatively few collisions involved. However as the rock face continues
to deteriorate the rocks begin to pile up at the bottom of the ravine. As this pile of
rubble grows, so does the number of collisions that occur. This increases the amount of
work required to resolve the collisions, which in turn reduces the achievable frame-rate.
If we wish to produce a real-time animation of this scenario we have to provide enough
computing power to handle the worst case.

Interruptible^ collision detection, introduced in [47] and [49], aims to achieve these
goals in spite of potentially complex scenarios. The interruptible algorithm takes a level-
of-detail approach to collision detection and resolves the collisions as accurately as it can
within a given time-slice. Thus, it aims to trade accuracy for computational cost. As
the computational requirements of the collision handling increases, the accuracy of the
resulting collisions decreases in order to maintain a consistent frame-rate. To achieve this,

■'By today’s standards this value is very low, most would expect 60fps or higher.
®The term interruptible is used as the algorithm does as much processing as it can before it runs out

of time, i.e. before the collision detection process is interrupted.

CHAPTER 1. INTRODUCTION 4

objects are represented by a hierarchy of successively finer approximations, such as those
shown in Figure 1.1®. These hierarchies are traversed in a breadth-first manner, which
incrementally improves the approximation of the collision information.

As the number and complexity of the objects increases, the accuracy at which the
collisions can be approximated, before interruption occurs, is reduced. This allows the
simulation to degrade gracefully, while giving it a good chance of maintaining its desired
frame-rate. With a traditional (non time-critical) algorithm the increase in scene com­
plexity would result in higher processing times. Hence the animation would start to slow
down and become jerky. The inaccuracies resulting from the interruption of the algorithm
are often preferred to slow jerky animations.

There are two effects that can result from prematurely interrupting the collision de­
tection algorithm. If the system ignores unresolved collisions the objects can float into
each other, this is known as inter-penetration, see Figure 1.2(a). However, if the system
chooses to treat such collisions as definite collisions then the objects can be seen to repulse
each other, see Figure 1.2(b). Often repulsion is a more favourable artifact than inter­
penetration [81], especially when using the collision detection for planning and avoidance
in robotic environments [113]. Repulsion also maintains separation between the objects,
whereas allowing them to interpenetrate could result in objects entering each other and
then not being able to leave due to a change in the level of approximation being used for
collision detection (popping).

1.2 Focus of this Thesis

This thesis aims to examine the requirements of the interruptible collision detection algo­
rithm. Specifically, it addresses the construction of tight fitting sphere-trees to provide a
higher quality of approximation and examines the requirements of using these approxima­
tions for collision response. The main contributions are as follows :

• An adaptive medial approximation technique that allows the medial axis to be con­
structed on demand and focuses on improving the approximation in areas where the
spheres created from the medial axis ill-fit the object.

• Improved sphere reduction techniques that reduce the spheres generated from the
medial axis into a manageable set while maintaining a high degree of fit and consis­
tency.

• A generic sphere-tree construction algorithm that decomposes the problem into
smaller object approximation problems, which can then be solved using the algo­
rithms presented. When dividing the object into sub-regions, the algorithm min-

®Data from http://graphics.cs.uiuc.edu/~gaxland/research/quadrics.html

CHAPTER 1. INTRODUCTION

(a) Model (b) Level 1

(c) Level 2 (d) Level 3

Figure 1.1: Example of a dragon approximated with 3 levels of spheres.

CHAPTER 1. INTRODUCTION 6

\

(a) Penetration

\

\
(b) Repulsion

Figure 1.2: The two cases resulting from premature term ination (interruption) of the
collision detection algorithm.

CH APTER 1. INTRODUCTION 7

imises the amount of overlap between neighbouring regions so as to eliminate redun­
dancy within the sphere-trees.

• A sphere-tree optimisation algorithm that further improves the degree of fit in the
approximations.

• Additional approximation algorithms based on generalising the octree sub-division
to produce tighter approximations, by allowing more freedom in the way spheres are
placed, while maintaining its good sub-division characteristics.

• A purely optimisation based approximation algorithm that yields similar results to
those obtained using the medial axis but does not require the overhead of construct­
ing the medial axis approximation.

• The introduction of a hybrid sphere-tree structure that contains both minimum
error and minimum volume spheres at each node. These sphere-trees provide for
both spatial localisation and object approximation.

The remainder of this thesis is structured as follows: Chapter 2 reviews the current
state of the art in collision detection and presents a sphere-tree traversal algorithm; Chap­
ter 3 presents the simplest of the sphere-tree construction algorithms, the Octree Method.
This method is critically analysed and a new algorithm derived. The resulting algorithm
approximates the object more closely without reducing the spatial sub-division properties
of the hierarchy; Chapter 4 details a more sophisticated sphere-tree construction algo­
rithm, the Medial Axis Method; Chapter 5 analyses this method and presents a number of
improvements for the approximation of the medial axis and the generation of sphere sets
from that approximation; Chapter 6 details the generic sphere-tree construction algorithm
and the sphere-tree optimisation algorithms; Chapter 7 compares the different algorithms
in terms of object approximation and sphere-tree construction. The resulting sphere-trees
are then evaluated in an interruptible collision detection system; Chapter 8 presents the
conclusions and comments on further areas of research that could result from this thesis.

Chapter 2

State Of The Art

CoUision handhng is an area of computer graphics that has been receiving much attention
from researchers. Collision handling consists of several areas, including collision detection,
contact modelling and collision response. These in turn can be further divided into sub-
areas. This chapter reviews some of the work undertaken in the area of collision detection,
and visits some of the related areas such as collision response and distance computation.
While many of the algorithms assume rigid (or articulated) objects, usually represented
by a polyhedral model, some are applicable to higher order models, such as those for
deformable objects and time dependent parametric surfaces. Lin and Gottschalk present
a taxonomy for 3D model representations, including polygon meshes, composite solid
geometry (CSG), implicit and parametric surfaces. They also present many ideas for
performing collision tests between these different representations [68].

2.1 Basic Collision Detection Algorithm

Collision handling systems are often used within simulations. W ithin these simulations
a number of objects are undergoing motion. The progress through the simulation is
represented by an abstract time, known as simulator time. As the simulation advances
the simulation time increases. As time goes by two main activities are taking place; frames
are rendered every Sr time units and the motions of the objects are updated every 6s time
units. Thus the basic simulation can be considered to be made up of a number of steps :

1. Update each object’s position and orientation for the current time-step,

2. Update each object’s velocity (angular and linear) according to its acceleration,

3. Compute the collisions between the objects in their new position,

4. Determine the changes to object velocities resulting from the collisions.

5. Render the frame.

CH APTER 2. STATE OF THE A R T 9

There are, however, a number of problems associated with trying to achieve the high
consistent frame rates required for performing interactive simulations and animations.
These are as follows [47] :

• Fixed- Timestep Weakness. This weakness arises from the discrete intervals at which
simulations sample time. The system maintains a simulation time, which it steps
through. As the animation progresses, a frame is rendered every 6r units in simu­
lator time, and the simulation is updated every 6g units. A larger Sg increases the
efficiency of simulating the collisions, but increases the chance of missing a collision,
especially when objects are travelling at high speeds. The inability of an algorithm
to dynamically adjust its simulation time-step is called the fixed-timestep weakness.

• All-Pairs Weakness. When an algorithm is performing collision tests on a scene
containing N objects, there are potentially 0{N^) pairs of objects that could be in
contact. Therefore the potential number of colliding pairs increases quadratically
with the number of objects in the scene. If an algorithm needs to perform a collision
test for each pair of objects it is said to suffer from the all-pairs weakness.

• Pair-Processing Weakness. Some algorithms have difficulty dealing with trouble­
some circumstances. For example, the Lin-Canny algorithm exhibits cycling be­
haviour when one body is actually penetrating another, thus requiring one to limit
the number of iterations it is allowed to perform. An algorithm’s shortcomings, in
terms of robustness and efficiency, when resolving a collision between two objects,
are collectively referred to as the pair-processing weakness.

Some algorithms address the fixed-timestep weakness through the use of 4D geometry
[12], space-time bounds [47, 49] and time-bounds for parametric surfaces [107]. Mirtich
[74] adapted Jefferson’s timewarp [54] algorithm, for performing optimistic synchronisation
in multi-processor systems, to the arena of collision handling. In his system each object
maintains its own simulation time, which is only stepped back when a collision is found to
invalidate the object’s state. This differs from retroactive detection in which all objects
are stepped back when a collision occurs and conservative advancement which advances all
objects up to the first discontinuity (i.e. collision), which is conservatively approximated.
Such algorithms are beyond the scope of this thesis and more information can be found
in the cited papers.

Many researchers have tackled both the all-pairs and pair-processing weaknesses by
utilising a multi-phase (hybrid) algorithm for collision detection. The algorithm can be
considered to have two or three phases. The broad phase efficiently reduces the number of
the potentially colliding pairs by eliminating objects tha t are obviously too far away from

CH APTER 2. STATE OF THE A R T 10

each other to be in contact. When two objects are found to be potential colliders a narrow
phase algorithm is triggered. Narrow phase algorithms, of which there are many, often use
spatial localisation techniques, such as Bounding Volume Hierarchies {BVH), to reduce
the areas of the objects that need to be considered. The final phase, the exact phase, uses
the results of the narrow phase algorithm to perform accurate collision detection between
the objects^. The specific nature of each of these phases, and how they fit together,
depend on the representations used for the model. The following sections review many of
the strategies adopted for each of these phases.

2.2 Broad Phase Algorithms

The first phase of the hybrid collision detection algorithm is the broad phase. This aims
to quickly eliminate pairs of objects that cannot possibly be in contact, thus combating
the all-pairs weakness. This is very im portant as the number of potential pairs of objects
increases quadratically as the number of objects in the scene increases. A number of
strategies have been adopted, which are outlined below.

2.2.1 Sweep and Prune

Cohen et al. [17] and Lin et al. [70] present a system called I-COLLIDE, which uses a sort-
based pruning algorithm for its broad phase processing. This relies on the observation that
if two axis aligned bounding boxes intersect, there is an overlap between their projections
onto the basis axes, i.e. the X, Y and Z axes. Inter-frame coherence is exploited to achieve
near linear performance by maintaining the projections in ordered lists. As objects move
a limited distance between frames, the interval lists remain almost sorted. This allows
them to be updated in near linear time using Insertion Sort.

The system performs exact interactive collision detection for large numbers of objects.
The exact phase of the algorithm uses Voronoi regions, to perform polytope intersections.
These Voronoi regions represent the areas around the polytope that are closest to each
face, edge and vertex. In [83], Ponamgi et al. present a hierarchical version of the “sweep
and prune” algorithm, where each level represents a tighter fitting set of bounding boxes,
not unlike the AABB-trees to be described in Section 2.3.2.

2.2.2 Overlap Table

Wilson et al. [Ill] consider the storage implications of using massive models, i.e. the
memory overhead required for large CAD models. The scene is composed of objects and a
pre-computed overlap graph, which represents the proximity of these objects. The collision

*Many researchers consider the narrow phase sind the exa^t phase to be a combined phase. In this
thesis they Eire treated as two separate phases as this allows interruptible collision detection to be easily
distinguished from exact collision detection.

C H APTER 2. STATE OF THE A R T 11

detection is performed while traversing the graph. This requires only a few sub-sections
of the scene to be loaded into memory at any one time.

Palmer and Grimsdale [82] use a similar scheme. Their broad phase algorithm localises
objects that might collide, using a global bounding volume table where each object is
represented by a bounding sphere. When objects are updated they are tested for collisions
using sphere-trees and exact polygon intersection tests.

2.2.3 4^̂ D im ension

Similarly to Hubbard’s space-time bounds [49], Cameron approaches collision detection as
a 4D problem, with the dimension being time [12]. As the simulation progresses, the
objects move through space creating a 4D shape, i.e. the object is swept through some
period of simulator time. The coUisions are then detected by looking for intersections
between these 4D representations. However, object rotations and non-linear motions are
problematic cases for the algorithm because of the complicated shapes created by rotating
bodies in 4D.

2.3 Narrow Phase Algorithms

Researchers have explored many different structures for narrowing in on the areas of con­
tact, i.e. spatial localisation, during the narrow phase of the collision detection algorithm.
Researchers have used a variety of different hierarchical structures, known as Bounding
Volume Hierarchies (BVHs) to achieve the required spatial sub-division. Some im portant
requirements for a good BVH include :

• the hierarchy conservatively approximates the volume of the object, each level rep­
resenting a tighter fit than its parent,

• for any node in the hierarchy, its children should cover the parts of the object covered
by the parent node,

• the hierarchy should be created in a predictable automatic manner, not requiring
user interaction,

• the bounding volumes within the hierarchy should fit the original model as tightly
as possible, representing the original model to a high degree of accuracy.

Each BVH can be evaluated using a number of criteria. For interactive simulations the
emphasis is on achieving high and consistent frame-rates. Therefore a major concern is how
well the hierarchy facilitates this goal. For an interruptible collision detection algorithm the
narrow phase algorithm may not fully resolve the collision. Thus the approximate collision
information, available from the BVH, needs to approximate the points (and types) of

CHAPTER 2. STATE OF THE AR T 12

contact (contact modelling) and the resulting response at every level of the approximation

[18].
In order to perform a theoretical comparison of the various representations it is nec­

essary to be able to evaluate their performance within the collision detection system.
The following equation has been used in [33, 57, 58, 61, 104] to evaluate various types of
bounding volume hierarchies :

T = Nu X Cu + N y X Cy (2.1)

where :
T is the total cost function for detecting interference be­

tween a pair of objects represented by bounding volume
hierarchies,

Nfi is the number of primitives, i.e. bounding volumes, that
are updated during the traversal of the hierarchies,

Cu is the cost of updating a primitive due to an object’s
motion,

Ny is the number of overlap tests tha t are performed,
Cy is the cost of performing an overlap test between a pair

of primitives/nodes from the hierarchies.

There is often a trade-off between the complexity of performing updates (or overlap
tests) and the number of primitives required to approximate the object’s geometry. As
the complexity of the primitives in the BVH increases so do the values of Cu and Cy.
However, such primitives usually have a higher number of degrees-of-freedom and are
more flexible when trying to form an approximation. This generally reduces the number
of nodes required to achieve a given level of fit. Hence for more complicated primitives the
values of iV„ and Ny are lower. There is also a relationship between these values. Each
primitive is updated at most once per time-step (obviously we only update the nodes that
are tested for overlap) whereas they are involved in multiple overlap tests. Thus an upper
bound for iV„ is Ny, i.e. N^ < Ny.

2.3.1 Sphere-Trees

The simplest of all bounding volume primitives is the sphere. Many researchers have used
Sphere-Trees as their BVH including Hubbard [47, 48, 49], O’Sullivan and Dingliana [79],
Quinlan [86] and Palmer and Grimsdale [82]. As a sphere is rotationally invariant, the
update step involves a simple transformation of the spheres’ center points, Figure 2.1(a)
illustrates this in 2D. In 3D, this requires 12 multiplications and 9 additions (floating
point). A pair of spheres overlap (see Figure 2.1(b)) if and only if :

CHAPTER 2. STATE OF THE ART 13

Transformed Sphere

Transformation

Original Sphere

(a) Update (b) Intersection

Figure 2.1: Update and intersection for a sphere (shown in 2D).

+ B^ + Dl < R i + R2 (2 .2)

where D is the vector between their centers. Obviously, the most expensive part of this
overlap test is the square root. However this can easily be removed by squaring both sides
of the inequality, to give :

which is much more computationally efficient, requiring only 4 multiplications, 3 additions
and 3 subtractions (to evaluate D).

The ease with which a sphere-tree can be updated and tested leads to very low values
of Cu and in Equation 2.1. However, complex objects often require a large number of
spheres to approximate their geometry, which increases Nu and N^. The actual arrange­
ment of the spheres is also an important factor in determining the number required for
approximation.

The simplest sphere-tree construction algorithm uses an octree, described in [94], to
arrange a regular grid of spheres into a hierarchy. O’Sullivan and Dingliana use this
scheme for constructing sphere-trees for interruptible collision detection. Hubbard looked
at using octrees, simulated annealing and medial axis techniques for constructing sphere-
trees. The most promising of these approaches uses the object’s medial axis as a guide
for initial sphere placement. This allows spheres to be placed along the skeleton of the
object, obtaining a tighter fitting set of spheres.

Dl + Dl + Dl < [Ri R2? (2.3)

2.3.2 AABB-Trees and OBB-Trees

Van den Bergen [104] and many other researchers have used Axis Aligned Bounding Boxes
[AABBs] for their bounding volumes. Van den Bergen used the AABB-trees not only for
rigid objects but also for deformable ones. The nodes of the hierarchy are boxes whose

CHAPTER 2. STATE OF THE A R T 14

X -A xis

(a) AABB

X -A xis

(b) OBB

Figure 2.2: 2D Axis Aligned Bounding Box (AABB) and 2D Oriented Bounding Box
(OBB) surrounding an entire object.

orientations are fixed to align with the ajces of the enclosed object’s co-ordinate frame.
Others such cis Gottschalk et al. [32, 33] and Krishnan et al. [60] allow the bounding boxes
to take on any orientation thus becoming Oriented Bounding Boxes {OBBs). Figure 2.2
shows 2D representations of both types of primitive.

As is evident from the illustration, OBBs are less restricted in the way they can be
arranged and therefore can provide a closer fit around each section of the model than
AABBs. The OBB-tree provides quicker convergence to the underlying geometry of the
object than the AABB-tree [61]. Thus the AABB-tree generally requires more primitives to
achieve the same degree of fit as an OBB-tree, which has the effect of increasing the terms
Nu and Ny in Equation 2.1. When objects represented by AABB-trees are undergoing
rotation, there is a relative orientation between their local co-ordinate frames. Thus the
bounding boxes are no longer axis aligned and need to be treated as if they were OBB’s,
although some simplifications are possible [104].

A simpler test for overlap between two AABBs is to construct new AABBs enclosing
the rotated versions of the original ones. This then requires only 3 interval overlap tests,
one on each axis, to test for contact and so results in a vast reduction in Cy at the expense
of Cu and the tightness of fit.

The simplest algorithm for performing an intersection test between a pair of OBBs is
to test if any of the edges from one OBB intersect a face on the other (or if one OBB is
entirely within the other). As there are 12 edges and 6 faces on each OBB, this requires
2*12*6 = 144 edge-face combinations to be tested for intersection. This would naturally
be quite expensive (in terms of Cy). In the RAPID collision detection system, the theory
of Separating Axes is used to provide a faster test (SAT) [33, 70]. This states that :

“A line L is a separating axis if and only if the perpendicular projections,
of two convex polytopes, onto L are disjoint i.e. the intervals formed by the
projections do not overlap. If L is a separating ajcis then there exists a plane.

CHAPTER 2. STATE OF THE ART 15

orthogonal to it, which is a separating plane. If no separating axis exists, then
no separating plane exists, which implies that the polytopes are touching.”

Prom this theory they prove that there is a set of only 15 axes that need to be tested
to determine if “two arbitrarily positioned and oriented rectangular boxes in 3-space are
in contact” . This provides for an efficient collision test, requiring at most 200 arithmetic
operations for a pair of OBBs. Although this is expensive when compared to Cy = 10 for
the sphere, in practice algorithms based on OBB’s generally perform better than those
using spheres or AABBs [70]. Van den Bergen’s empirical results suggest that a simplified
SAT can be used if a small (6%) chance of missing a collision can be tolerated. Chung
and Wang [15, 16] also use the SAT for convex polytopes.

The H-COLLIDE collision detection system utilises OBB-trees for performing collision
detection. H-COLLIDE is specifically designed for use in force-feedback systems, which
require thousands of updates per second [36] and has been used for interactive modelling
and painting [35]. Hudson et al. [50] propose the use of OBB-trees (with sweep and prune)
to add object-object collision detection to VRML (V-COLLIDE).

Eberly [19, 20] presents a closed-form algorithm for computing a pending intersection
between two OBBs under motion. This allows the intersection to be computed over an
interval rather than relying on discrete static samples taken at regular time intervals.

Barequet et al. [4] present a comparison of BVHs constructed using a number of
different box-like primitives, referred to as BOXTREEs. They construct hierarchies of
axis aligned boxes, arbitrarily oriented boxes and arbitrarily oriented pie slices (wedges).
Their tests show that pie slices, oriented along the shortest principle component of each
region, are best at eliminating unnecessary regions of the objects.

2.3.3 D iscrete Oriented Polytopes

Discrete Oriented Polytopes (DOP), as described by Klosowski et al. [57, 58], aim to
provide a low value of while providing tight fitting bounding volumes, i.e. low iV„.
Similarly to an AABB, the faces of the bounding polyhedra are aligned with certain axes.
They use pairs of orientations that point in the opposite directions to each other. This
means that a k-DOP has faces that are normal to | axes. Thus the contact test simply
consists of I interval overlap tests. In fact, an AABB is a 6-DOP as the orientations of
the faces are restricted to the orientations of the 3 primary ax;es {X, Y and Z) in both the
positive and negative directions. In order to ensure that the orientation of each bounding
plane is limited to the k discrete directions, the boundary must be recomputed as the
object rotates. It would obviously be very expensive to compute the k-DOPs during the
animation. Klosowksi et al. pre-compute their k-DOPs and create new ones around them
when the object rotates. The resulting k-DOPs are guaranteed to bound the original ones
- but with a looser fit (see Figure 2.3).

CH APTER 2. STATE OF THE A R T 16

Bounding K -D O P
Original K - DOP

(a) Original 8-DOP (b) Updated 8-DOP

Figure 2.3: Using 8-DOPs to approximate the boundary of a car.

Object A Object B

OBB

Primary Orientation Slabs
Bounding Planes,

Figure 2.4: Testing for overlap between the primary orientation slabs of an object and the
OBB of another.

2.3.4 QuOSPO Trees

He’s Quantised Orientation Slabs with Primary Orientations [39] combine OBBs with
k-DOPS. Each node is represented by an OBB and a large number of planes whose orien­
tations are limited to k discrete orientations, as for k-DOPs but with much larger values
for k. When performing overlap tests the bounding box of one object is transformed into
the quantisation space of the other object, i.e. the orientation of each plane is hmited
to the set of allowable orientations. The set of planes that match the OBB’s faces most
closely are chosen as the principle orientations. Interval overlap tests are then performed
between the OBB faces (which have been re-mapped) and the planes for the principle ori­
entations. If the objects are still considered to be in contact, the process is repeated with
the roles of the objects reversed. This allows for the tightness of OBBs while potentially
reducing the number of axis overlap tests that are needed. This is due to the formation
of a pair of bounding boxes that are oriented within a common co-ordinate frame (see
Figure 2.4).

CH APTER 2. STATE OF THE A R T 17

2.3.5 Spherical Shells

A spherical-shell is the section of a sphere enclosed between two radii and within a solid
angle of an orientation vector [61]. While this bounding volume does not share the sphere’s
rotation invariance, C„ is still quite small. The update requires tha t the center of the
spheres be re-positioned, and the vector be re-oriented (the total being less than twice
the value of C„ for a sphere). The cost of performing an overlap test, Cy, is stated to be
between 2 and 3 times that of an OBB. However the bounding volumes produced using
spherical shells theoretically provide a tighter fit than OBBs. The spherical-shells are
reported to exhibit local cubic convergence^ to the underlying geometry provided it is
smooth and of low curvature. OBB exhibit quadratic convergence and AABBs/spheres
have only linear convergence. Thus, to approximate a surface to a given degree of accuracy
theoretically requires fewer spherical shells than OBBs, AABBs or spheres. This reduces
the terms Ny and Nu, Ny being the more im portant as Cy dominates. In [60] Krishnan
combines spherical shells with OBBs to construct Shell-Trees when performing collision
detection between models constructed using Bezier patches.

2.3.6 Swept Sphere Volumes

A Swept Sphere Volume {SSV) is the convolution of a sphere with some underlying ge­
ometrical shape, i.e. the sphere is swept out across a core primitive. When performing
proximity queries, Larsen et al. [62] use points, lines and rectangles as the core primitives,
each one providing a higher convergence to the underlying model. The nodes in the hi­
erarchy can therefore be a sphere, a cylinder with rounded ends (sphere swept along an
arbitrarily oriented line) or a rectangle with rounded edges/corners (a sphere swept across
an arbitrarily oriented rectangle).

A rectangle swept sphere provides similar fitting power to that of the OBB, i.e.
quadratic convergence to the underlying geometry. A line swept sphere’s convergence
rate is somewhere between this and the linear convergence achieved with spheres. Obvi­
ously, the cost of performing an overlap test depends on the core primitives involved. For
long thin areas, line swept spheres provide a good fit, with a moderate Cy, whereas rect­
angle swept spheres are suited to flat areas and have quite a high Cy. Rectangular swept
sphere volumes are used for distance queries within the PQ P proximity query package

[63].

2.3.7 C-Trees

Youn and Wohn [114] introduced a collision detection hierarchy called a C-Tree. They use
this structure to provide a boundary representation for objects tha t contain a conventional
kinematic hierarchy, i.e. articulated objects where movement of one part of the body also

^Cubic convergence means that the approximation to the surface would be accurate to the second order
if the surface can be expressed as a Taylor series [61].

CH APTER 2. STATE OF THE A R T 18

affects the sub-parts. In order to detect colhsions between individual articulated sections
of an object, the collision algorithm uses a duplicate C-tree treating a single object as
two distinct ones. The elements of the tree can be a mixture of spheres and convex
polyhedra. However they do not present an algorithm for the automatic construction of
such hierarchies. The manual construction of the bounding volume hierarchies makes it
difficult to accurately approximate the objects, especially for complicated geometries. The
IRIS performer toolkit uses a similar strategy for performing collision handling [91].

2.3.8 S-Bounds

Cameron [12, 14] presents an algorithm for performing collision detection between models
constructed using “Composite Solid Geometry” (CSG). This modelling technique uses
boolean expressions to construct objects using simple primitive shapes e.g. to create a
hole in an object requires a simple boolean difference between the object and a cylinder.
He uses bounding functions called S-bounds (super-bounds) to express a collision as a
non-null region in AC\B (boolean intersection), where A and B are objects represented by
CSG trees. As the use of S-Bounds can return an answer of “don’t know” , a more definite
method needs to be employed when the S-Bounds algorithm does not give a definite answer.
He uses spatial sub-division techniques, to further prune away areas of the CSG tree that
do not need to be considered, prior to employing a more exhaustive method that uses the
geometry resulting from the CSG tree to catch the remaining unanswered queries. Zeiller
et al. [115, 116, 117] also use S-bounds for performing collision detection between CSG
trees.

2.3.9 Voxel Space

Kitamura et al. [56] and Smith et al [98] propose voxel based collision detection algo­
rithms that can be used for both rigid and deformable objects. When objects are found to
overlap, the required areas of their polyhedral meshes are inserted into a voxel grid using
an octree sub-division of the environment’s bounding cube. When triangles from different
objects are found to occupy the same voxel, an accurate triangle-triangle intersection test
is performed. Of course, a triangle may occupy many voxels as illustrated in Figure 2.5.
Smith et al. [97] present an efficient algorithm for using octrees to update voxelisations
of moving objects. Their algorithm uses a compact octree representation to utilise large
voxels in areas where sub-division is unnecessary.

Zhang et al. [118] utilise voxelisation within their algorithm, in which triangles from
one object are checked against edges of the other that share the same voxel. This was used
to perform efficient interference detection between clothes and a human figure (including
self-intersection of the cloth).

Garcia-Alonso et al. [28] compute the overlapping regions between the bounding boxes
of a pair of potentially colliding objects. Active voxels from the overlapping regions are

C H APTER 2. STATE OF THE A R T 19

Original Position

• New Position

Figure 2.5: As the object moves in voxel space multiple voxels may be occupied when part
of the object overlaps the voxel boundaries.

transformed into a common voxel space and accurate tests are performed between the
areas of the objects’ geometries that occupy the same voxels.

He and Kaufmann [40] also discuss collision detection between volumetric objects. To
combat the problems of working in voxel space they use a more traditional bounding
volume approach. Each voxel can be represented as an OBB or a sphere. The best case
scenario for using a sphere is where it approximates a cubic cluster of voxels, which uses
only 37% of the sphere’s volume. They present a modified OBB test tha t exploits the
uniform orientation between the boxes and thus is only 2-3 times the cost of a sphere
overlap test.

2.4 Interruptible Collision D etection

As mentioned in Section 1.1, consistent high frame-rates are extremely im portant for
real-time simulations. Hubbard’s interruptible collision detection algorithm achieves this
consistency by utilising a time-critical algorithm that approximates the contact points as
well as it can in the allowed time [47, 49]. Thus as the number of collisions increases,
the accuracy of the algorithm degrades in order to maintain the frame-rate. He uses
space-time approximation to provide a conservative estimate of where the object will be
in the future. This allows the processing to concentrate on impending collisions and
guarantees that collisions will not be missed between frames. He also uses a sphere-tree
as a hierarchical geometric approximation to perform efficient collision testing. A list of
potentially colliding nodes is maintained throughout the traversal. Initially this list will
contain the pairs of root nodes for objects that are potentially colliding. As the node pairs
are tested, those that test positive generate new pairs (from their children), which are then
added to the list for checking. This process is done in a time-critical fashion and terminates
when the allotted time slice has expired. As each successive level of the hierarchy forms
a tighter approximations of the object, the accuracy of the collision information improves

CHAPTER 2. STATE OF THE ART 20

as the traversal progresses.
O’Sullivan and Dingliana [78, 79, 81] have adapted Hubbard’s work to include Cohen’s

sweep and prune algorithm [17] for the broad phase. This exploits inter-frame coher­
ence to provide efficient broad phase processing for highly populated scenes. They also
replace Hubbard’s round-robin breadth-first traversal of the sphere-trees with prioritised
scheduling algorithms. This allows important collisions to be resolved to a higher degree
of accuracy, making better use of the available run-time. O’Sullivan [78] discusses a model
for human perception and introduces a metric for evaluating the importance of a collision.
This essentially allows the narrow phase processing to be scheduled in such a way as to
improve the visual plausibility of the animation. Dingliana and O’Sullivan [18] address the
problem of collision response in an interruptible system. As the collisions are rarely fully
resolved, only approximate information is available to the response system. The contact
modelling, and thus the response, can therefore only be applied using the approximate
data. A relatively simple Dynamics Model is applied to this data to produce plausible
motion, which often looks less sterile than physically correct motion [6]. The perceptual
impact of the resulting response is discussed in [80].

2.5 Exact Algorithms

Much research has concentrated on performing exact collision detection between polyhe­
dral models. Almost any surface can be represented as a set of polygons, provided the
number is sufficiently high to represent any curved areas that may exist. Exact collision
detection algorithms provide interference tests that are mathematically accurate to the
level of the underlying mesh. A survey of such algorithms can be found in [55]. Higher
order representations such cis parametric patches and implicit functions are usually more
suitable than polyhedral models for curved geometries. However, few algorithms explicitly
use these representations for collision detection.

Many researchers have used bounding volume hierarchies to narrow in on the regions
of contact between two models. The leaf nodes of these hierarchies contain lists of the
triangles that are contained within them. When two bounding volumes are found to be
overlapping, the triangles within them are tested using a simple triangle-triangle test.

Moore and Wilhelms [76] use an extended version of the Cyrus-Beck line clipping
algorithm [90] to test for edge-face intersections between convex polyhedra. They deal
with the collision detection and response for both rigid bodies and those articulated with
a variety of joint types.

Other researchers have used closest point algorithms for collision detection. Most of
these algorithms rely on the objects being convex in shape. It is often claimed that these
can be easily extended to handle non-convex objects by decomposing them into hierarchies
of convex polytopes, using an algorithm such as that presented by Ehmann et al. [21].
However, as the amount of non-convexity increases so does the number of convex elements

CHAPTER 2. STATE OF THE ART 21

required to represent the object. Thus the amount of work tha t needs to be done by the
collision detection algorithm increases with the complexity (non-convexity) of the object.
Therefore, these algorithms can handle some non-convexity within the objects, but become
more computationally expensive as the objects become more non-convex.

Closest point algorithms for convex polytopes usually fall into two categories: Feature
based and Simplex based. Feature based algorithms are so-called because they consider
objects to be composed of a set of features, i.e. faces, edges and vertices. They express
the collision detection problem in terms of a relationship between these features. Lin et al.
[65, 67] described the first such algorithm, which uses incremental distance computation
for determining collisions between convex polyhedra. This algorithm, known as Lin-Canny,
forms the core of the I-COLLIDE collision detection system. The algorithm tracks the
closest features between a pair of objects. It exploits inter-frame coherence by using
“feature-stepping”, which allows the closest features to be quickly updated by examining
those adjacent to the previously used ones. This enables the algorithm to maintain near
constant performance between time-steps, for a fixed number of objects. However, it
does not handle the case where objects inter-penetrate. When this situation occurs the
algorithm enters a cycle, requiring a limit to be placed on the number of iterations allowed.
This deteriorates the algorithm’s performance unless the objects are moving slowly relative
to the time-step. Ponamgi et al. [83] later introduced the notion of pseudo internal Voronoi
regions to detect when the polytopes are penetrating. An overview of using Lin-Canny
for non-convex objects, by constructing a hierarchy of convex polytopes, can be found in
[66].

Mirtich’s V-Clip algorithm addresses the chief drawbacks of the Lin-Canny algorithm
[73]. This algorithm uses Voronoi planes to search for the closest points between the fea­
tures of the polyhedra. Unlike the Lin-Canny, algorithm V-Clip does not enter a cycle
when the polyhedra penetrate and does not require any numerical tolerances to be spec­
ified. The V-Clip algorithm is more straightforward to implement as it contains fewer
special cases and is considered to be the fastest published algorithm for rigid convex ob­
jects.

The second family of “exact” algorithms are the Simplex-based algorithms. These
approaches define a polyhedron as a set of Simplices, which are a generalisation of the tri­
angle into any dimension, and perform operations on these simplices to track the closest
points between two objects. Gilbert et al. [30] presented the first such algorithm, com­
monly known as GJK. Unlike the Lin-Canny algorithm, GJK can handle inter-penetrating
objects and returns a measure of this inter-penetration. Rabbitz [87] improved this al­
gorithm to exploit coherence between frames, while Cameron [13] developed it further to
produce Enhanced GJK. Van den Bergen [105] presents solutions to the term ination prob­
lems that can result from arithmetic round-ofF errors and provides methods for generating
simplices on geometric primitives such as boxes, spheres, cones and cylinders. The en­
hanced GJK algorithm has a lower memory requirement than V-Clip and does not require

C H APTER 2. STATE OF THE A R T 22

any preprocessing, which makes it more suitable for deformable and fracturable objects

[64].
Quinlan [86] also considers distance computation as a method of achieving collision

detection. Non-convex objects are represented using hierarchies of convex shapes, namely
spheres. A search routine is used to reduce the time complexity of performing distance
calculations in robot guidance. By allowing a small relative error in the result, Quinlan
improves the efficiency of the algorithm. If 100% error is allowed, the returned distance
is meaningless - however the result is zero if and only if a collision has occurred, thus
allowing non-interruptible collision detection. However this work only considers a single
object, i.e. the robot, moving in the scene.

2.6 Deformable and Parametric O bjects

Much of the work on collision detection is concerned with rigid or articulated bodies,
usually represented by a polyhedral mesh. However, some researchers have considered
deformable objects and objects that are represented by higher order surfaces. This section
summarises some of the work in these areas.

Moore and Wilhelms [76] deal with collision response in the context of flexible objects
modelled using polygonal surfaces. As the vertices are in motion, each one defines a
line between its pervious and current positions. These edges need to be tested against
the triangles of another object to detect the collisions. This can be quite an expensive
algorithm if there are large numbers of polygons.

Von Herzen et al. [107] detail a collision detection algorithm for objects that are com­
posed of time-dependent continuous parametric surfaces. The algorithm finds the earliest
collision or near-miss between objects, thus avoiding the problems caused by fixed time-
step simulations, i.e. missing collisions that occur between time-steps. When performing
collision detection between different types of surfaces, analysis is needed only once per
surface type, as opposed to O(n^) combinations.

Snyder [99] performs interference detection between two parametric surfaces. However,
the result only indicates if the two objects have collided, not where they touched. This
data is im portant for the contact modelling phase of collision response, but is unnecessary
for detecting impending collision when controlling robotic systems. In later work the
determination of the contact points is addressed [100]. This work also tackles the situation
where two objects come in contact over a large area by representing the contact area as
a set of regularly sampled points. This not only applies to static parametric surfaces but
also to time-dependent surfaces, which change shape as a function of time.

Volino and Thalmann [106] present an algorithm for performing efficient self-collision
detection on flexible objects such as clothes and between the fabric and other bodies.
Their algorithm deals with large numbers of polygons by utilising geometric properties to
cull out a large number of potential self-collisions tha t could not possibly occur. This is

C H APTER 2. STATE OF THE A R T 23

achieved by examining the shape of the object in the areas of folds.
Hughes et al. [51] present an algorithm for performing collision detection between

parametric surfaces undergoing quadratic deformations. They use hierarchical sweep and
prune to narrow in on sub-patches of the surface that are potentially in contact. They
also deal with self-intersections involving individual patches of the surface.

Lin and Manocha [66] perform collision detection between models constructed using B-
splines. Intersections between the splines are determined by finding the algebraic solutions
to a set of equations.

Abdel-Malek et al. [2] present an algorithm for performing collision detection between
complex objects, constructed with CSG techniques, by enclosing them in a number of para­
metric surfaces. Collision detection is performed by tracing out the curve of intersection
between these surfaces.

Lombardo et al. [71] present an interesting algorithm for performing collision detection
in a key-hole surgery simulator. As the surgical tools enter the body through a small
opening, the movement is limited to motion around that fulcrum. Also, as the tool is
cylindrical in nature, they implement collision detection as a query for which areas of the
deformable body parts would be visible if looking along the cylinder tha t represents the
tool. This is achieved using the OpenGL selection mechanism, which allows the collision
detection to be performed in hardware. They also address the fixed-timestep problem by
sweeping out the volume covered by the tool as it moves.

Ganovelli et al. [26] use the Bucket-Tree data structure for collision detection between
deformable objects. This is a structure similar to the AABB-tree where the model elements
are moved between the leaf nodes (called Buckets) as the object deforms.

2.7 Sphere-Tree Traversal

As discussed in Section 2.3, the narrow phase of the collision detection algorithm zones
in on potential areas of contact by traversing a hierarchical representation of the objects.
When using an interruptible algorithm it is important tha t each level of this hierarchy
provides the necessary information for collision response. Although many geometric prim­
itives have been used for non-interruptible collision detection the sphere-tree, described in
Section 2.3.1, is still favourable when allowing interruption to occur. Attractive properties
include :

• Rotational Invariance : A sphere is invariant to the rotation of the objects and
therefore its update cost is very small. No m atter what type of motion the bodies
are going through the spheres can be updated by simply translating their centers.

• Efficient : The cost of performing an overlap between two spheres is extremely low,
requiring only a few floating point multiplications and additions.

CHAPTER 2. STATE OF THE ART 24

• Suitability for Response : While providing graceful degradation of the object ap­
proximation, each level of spheres in the hierarchy provides an approximation of the
contact information necessary for collision response [18].

Many researchers have utilised sphere-trees for performing spatial localisation in col­
lision detection. The stair-case traversal algorithm uses the sphere-tree data structure to
narrow in on the regions of objects that are in contact. This section details the stair-case
traversal algorithm and its use as part of an interruptible collision handling system.

2.7.1 The Traversal Algorithm

Having determined that a pair of objects is potentially colliding, using a broad phase
algorithm such as Cohen’s sweep and prune [17], the narrow phase algorithm determines
the areas of the objects that are in contact. This is achieved by traversing the pair
of sphere-trees associated with the objects. The traversal starts with the roots of both
sphere-trees. If these two spheres overlap then it is necessary to test the next level, however
if they do not overlap then the objects are not colliding. There are two approaches to the
next stage of the traversal; to move down to the next level of both the trees and test pairs
of children or; to move down to the next level in one of the trees. The second option,
proposed by Palmer and Grimsdale [82], reduces the amount of comparisons that result
from a positive overlap test. For hierarchies with n children per node a pair of overlapping
spheres results in 0(n) further comparisons as compared with O(n^) if we move down a
level in each tree. Figure 2.6 shows this algorithm in 2D, using circles (spheres) arranged
on a quadtree (octree) for neatness. The traversal proceeds as follows : (1) the root nodes
of the two trees have been found to be overlapping; (2) the B.l nodes (tree B, level 1) are
tested against the root node of tree A, the B.l nodes that do not test positive are discarded
(unshaded); (3) the remaining B.l spheres are tested against the A.l spheres, the ones
that test negative are again discarded. This process results in a pair of level 1 spheres
that are in contact, in a real scenario there may be many such pairs. A sub-traversal is
then performed for each such pair (4 & 5).

O’Sullivan adapted this staircase traversal for interruptible collision detection. Having
determined the colliding pairs, in the broad phase, all the sphere-trees pairs are traversed
simultaneously in a breadth-first manner. The traversal is conducted in a time-critical
manner, terminating when the allotted time period has expired. The algorithm maintains
a queue of sphere pairs^. The queue is initialised with pairs of root nodes for the potentially
colliding objects. As each pair is taken from the queue, the children of one of the spheres
are tested against the other sphere, and new pairs are created for those that overlap. If
both the spheres involved in the collision are leaf nodes they are entered into a list of
resolved collisions otherwise the new pair is entered into the queue. When the algorithm

^O’Sullivan actually used a more complicated data-structure that allows objects to be scheduled cic-
cording to the perceptual importcince of the collisions.

CH APTER 2. STATE OF THE A R T 25

Actual Objects

Root

Level 1

B

Level 2

Final Collisions

Figure 2.6: Staircase traversal of a pair of sphere-trees.

CHAPTER 2. STATE OF THE ART 26

has to be interrupted - the current approximation of the collisions is used for all pairs of
objects. Instead of taking the first pair of spheres in the queue, O’Sullivan [81] categorises
the pairs of spheres as being high or low priority based on a model of human perception.
The high priority pairs are checked for collisions in a round-robin fashion. When all the
high priority collisions have been resolved, and the processing has not yet been interrupted,
the low priority collisions are processed, again in a round-robin fashion.

2.8 Conclusion

This chapter has reviewed much of the research to date in collision detection and related
fields. Many researchers have focused their work on this im portant topic. Table 2.1
summarises some of the “mile-stone” algorithms in rigid body collision detection.

Many of the classical algorithms express collision detection as a closest point problem.
A number of the reviewed algorithms track the closest points between the objects in
order to determine when collisions have occurred. These algorithms often require that
the objects be convex and, therefore, non-convex bodies need to be decomposed into
hierarchies of convex polytopes.

Many other researchers have adopted a hybrid collision detection algorithm to tackle
the problem in stages. The top-level process aims to quickly discard pairs of objects
that cannot possibly be interacting. The next phase aims to localise in on regions of the
objects that are in contact so that only small areas need to be considered when conducting
exact surface intersection tests. This phase uses hierarchical representations to cull away
the uninteresting areas. Many different geometric primitives have been used for these
hierarchies. There is usually a trade-off between the number of primitives required to
represent the objects and the cost of working with a given type of primitive. Table 2.2
summarises many of these primitives.

Hubbard’s interruptible collision detection algorithm takes a level-of-detail approach
to collision detection. Hierarchical representations of the objects are traversed using a
time-critical algorithm, which systematically refines the collision approximations. This
allows the amount of time spent on collision detection to be carefully controlled, thus al­
lowing more consistent frame-rates to be achieved. For an interruptible algorithm, spheres
have distinct advantages over other bounding volumes. However, as they are used to ap­
proximate the surface of the object, the spheres need to fit the object very closely.

Recently, researchers have become increasingly more interested in performing collision
detection with deformable objects. Some research in this area has also been reviewed in
this chapter.

C H A P T E R 2. ST A T E OF TH E A R T

Table 2.1: Summary of Rigid Body Collision Detection Algorithms

27

A lgorithm C haracteristics P ros C ons

Moore &
Wilhelms
(see [76])

Test if any vertex
from A is inside B
and vice-versa.
Test for edges of B
that cut through
the faces of A.
Based on
Cyrus-Beck line
clipping algorithm.

• Simple to
implement.
• Can supply contact
points.

• Objects must be
convex.
• Does not exploit
inter-frame coherence.
• Every object face
needs to be
considered for
intersection.

Lin-Canny
(see [65, 67J)

The first feature
based iterative
closest point
algorithm.

• Exploits inter-frame
coherence.

• Objects must be
convex.
• Doesn’t handle
inter-penetration®.

Palmer &
Grimsdale
(see [82])

Hybrid collision
detection
algorithm.
Hierarchies of
spheres used to
localise collisions
prior to
triangle-triangle
tests.

• Objects are only
considered when they
are in close proximity.
• Efficient localisation
of interacting regions.
• Can handle
non-convex and
articulated objects.

• Octree method used
to make sphere-trees
can produce poor
approximations.
• Faces may be
checked multiple
times a.s they can be
contained in multiple
leaves of the
sphere-tree.

Interruptible
Collision
Detection
(see [47, 49])

Level-of-Detail
collision detection
algorithm.
Bounding volume
hierarchy made up
of spheres
approximate the
objects.

• Provides consistent
frame-rates.
• Accuracy of the
collision information
degrades gracefully.
• Collisions can be
prioritised to resolve
the im portant ones
more accurately.

• Bounding volume
hierarchies need to be
tight fitting as they
approximate the
contact points.
• Tight fitting
sphere-trees do not
lend themselves to
deformable objects^

continued on next page...

“Ponamgi introduced pseudo internal Voronoi regions to detect penetration.
*’Sphere-trees based on an octree can be computed on the fly but provide poorer fitting hiercirchies.

CH APTER 2. STATE OF THE A R T 28

... continued from previous page
A l g o r it h m C h a r a c t e r i s t ic s P r o s C o n s

Enhanced
GJK
(see [13, 30])

Simplex based
iterative closest
point algorithm.

• Exploits inter-frame
coherence.
• Can handle
inter-penetration.
• No pre-processing
required.

• Objects must be
convex.
• Slower than V-Clip.

V-Clip
(see [73])

Feature based
iterative closest
point algorithm.
Uses Voronoi
regions.

• Exploits inter-frame
coherence.
• Can handle
inter-penetration.
• Fastest published
“exact” algorithm.

• Objects must be
convex.
• Voronoi regions
need to be
pre-computed.
• Relatively high
memory requirement
(compared with
Enhanced GJK).

CHAPTER 2. STATE OF THE A R T 29

Table 2.2: Summary of Bounding Volume Primitives for Collision Detection

P rimitive Update P rocedure Overlap T est P ros and C ons

Sphere
Apply transform to
center of spheres.

Check if distance
between centers is
less than sum of
radii.

t Low update and
overlap costs,
t Can approximate
contact points.
1 Large number of
spheres often needed.

Axis
Aligned
Bounding
Box
(AABB)

Apply transform to
bounding box and
fit new AABB that
encloses original".

3 overlap tests, i.e.
bounding boxes
projected onto X, Y
& Z axes.

t Efficient intersection
test.
4, Large number of
AABBs required.
4, Refitting decreases fit
further.

Apply transform to
bounding box and
construct OBB**.

As for OBB. ■f No refitting required.
i OBB intersection test
is expensive.
4- Large number of
AABBs still required.

Oriented
Bounding
Box (OBB)

Transform the basis
vectors and one of
the vertices to
reconstruct OBB.

Separating Axis
Test (15 interval
projections).

t Much tighter fitting
than spheres or AABBs,
fewer primitives required.
4- Expensive overlap test.

Discrete
Orientation
Polytopes
(k-DOP)

Apply transform to
the k-DOP and refit
so that each face is
aligned with one of
k allowed
orientations.

1 interval overlap
tests. All must
overlap for k-DOPs
to be intersecting.

t Controllable number of
discrete orientations -
controls cost and fit.
4, Refitting decreases the
tightness of fit.

continued on next page...

“It may be worth transforming one of the AABBs into the others local co-ordinate freime so that only
one of the AABBs needs to be refitted.

*’To apply a transformation to a bounding box requires the transformation of one of the vertices and
the three vectors that define the edges.

CH APTER 2. STATE OF THE ART 30

. .. continued from previous page
P rimitive Update P rocedure Overlap T est P ros and C ons

Quantised
Orientation
Slabs with
Primary
Orienta­
tions
(QuOSPO)

Transform OBB of
object B into
co-ordinate frame of
object A. Choose
orientations to
make new OBBs for
A & B.

2 sets of 3 interval
overlap tests®.

t Relatively inexpensive
overlap test.
■f Provides similar fit to
OBBs.
4- High memory
requirement for large
numbers of slabs
(discrete orientations).

Spherical
Shells

Transform sphere
center and the
vector around
which the shell is
formed.

Four overlap tests
between a shell
restricted to one of
its extreme radii
and the other with
variable radii. This
requires finding the
sign of quartic
polynomials but not
their roots.

t Inexpensive to update.
4- Expensive overlap test
(2-3 times that of OBB).
t Fast convergence to
smooth surfaces with low
curvature, fewer
primitives required.

Sphere
Swept
Volume
(SSV)

PSS: As for Sphere.
LSS: Transform
both end points.
RSS: Transform
one vertex and the
two vectors defining
the rectangle.

Collision detection
is expressed as
closest point test.
Determine if closest
points are on the
edges of core shape
(using Voronoi
regions).
Otherwise, use
rectangle-rectangle
algorithm for
closest points
(point-line etc. are
sub-routines within
this).

t Allows different
primitives to be used in
different areas of object,
t Update and overlap
test depend on primitive.
4- Many different cases for
update and overlap tests.
4, Large memory
requirement if primitive
types are to be chosen at
runtime.

“If the first test indicates an overlap, objects A and B need to swap roles and another update and
overlap test performed.

Chapter 3

Octree Method

The Octree m ethod for sphere-tree construction has been widely used by researchers. It
is by far the simplest algorithm for constructing sphere-tree and has been adopted by
Palm er and Grimsdale [82], Hubbard, [48, 49] and O ’Sullivan and Dingliana [18, 79].
This chapter presents the octree based algorithm for the construction of sphere-trees. An
improved algorithm is then developed. This produces tighter sets of spheres by allowing
more freedom in how they are arranged.

3.1 Constructing Sphere-Trees from Octrees

The octree is a da ta structure tha t provides a recursive subdivision of 3D space [94]. Each
node of the octree is an isothetic cube, i.e. a cube whose faces are axis aligned. This is
essentially a simplification of the AABBs described in Section 2.3.2.

The algorithm for the construction of an octree is recursive in natu re and sta rts with
the construction of a cube th a t contains the entire object. T his root node is then sub­
divided into eight child nodes, i.e. divided in half in each dimension, w ith each child
node covering one eighth of its paren t’s volume. The child nodes th a t overlap the surface
of the object are added to the octree. Those child nodes th a t do not contain any part
of the surface are considered dead and are elim inated from the tree, this includes nodes
completely contained inside the object. The algorithm then perform s the same sub-division
on each of the rem aining child nodes. This recursion can continue to any required depth,
each level approxim ating the object to a finer degree. Figure 3.1 illustrates this using a
quadtree, the 2D equivalent of the octree.

This algorithm requires tha t we can determ ine w hether an isothetic cube overlaps the
surface of the object. If the object is polyhedral in na tu re this is a question of determ ining
if the cube contains any part of one or more of the polygons th a t make up the surface
mesh. This is simplified because the cubes are isothetic ra ther th an arb itrarily oriented
[34].

Once we have constructed an octree for the given object, it is a simple m atter to

31

CHAPTER 3. OCTREE METHOD 32

/ \
//' 9

/
/

/ /
/ /)
\ /

/ \
X

(
/

/

c Z)

(a) First Level (b) Second Level (c) Third Level

Figure 3.1: Quadtree sub-division of an object (2D equivalent of an octree).

Figure 3.2: Each cube within the octree defines a sphere which surrounds it.

construct the sphere-tree. This is achieved by placing a sphere around each of the nodes.
As the nodes are isothetic cubes, the sphere is placed around the center of the cube and the
radius of the sphere is equal to the distance from the center to the corners, see Figure 3.2.
The spheres fitted around the children of an octree node are children of the sphere fitted
around that node. The set of child spheres covers the area of the object covered by the
parent octree node, as illustrated in Figure 3.3. Hubbard suggests fitting a tighter sphere
at the root level using R itter’s algorithm, which aims to fit a tightly bounding sphere
around a set of points [89], the set of points being the vertices in the polyhedral mesh.

3.1.1 Pros and Cons

Each level of the octree contains cubes that are half the size of the parent cube. During
the construction of the sphere-tree, spheres are created around these cubes. These spheres
are half the radius of their parent sphere. Thus each level of the sphere-tree provides a
successively tighter approximation of the object with each sphere covering a sub-volume of
its parent. However, the rigid placement of the spheres does limit the achievable tightness
of fit. This is undoubtedly a very simple algorithm for the construction of sphere-trees,
but more sophisticated schemes can yield a closer approximation.

The octree algorithm only ever covers the surface of the object and thus the interior
of the approximation does not contain any spheres. As the spheres in the lower levels of
the octree become very small this can result in a collision being missed and one object
tunnelling inside another, where it may become trapped. This makes a collision detection

CHAPTER 3. OCTREE METHOD 33

(a) First Level

(b) Second Level

(c) Third Level

Figure 3.3; Sphere levels constructed using quadtree (2D equivalent of an octree).

CHAPTER 3. OCTREE METHOD 34

Figure 3.4: Octree nodes that are entirely inside the object create larger terminal nodes.

algorithm that uses sphere-trees constructed with this method more susceptible to the
fixed time-step weakness (discussed in Section 2.1). The next section details a solution to
this problem by extending the octree to cover the interior of the object.

3.1.2 M aking Solid Octrees

In order to construct an octree that fills the interior of the object it is necessary to amend
the above algorithm. The algorithm creates nodes from the child cubes that contain part
of the surface, i.e. surface polygons. If we wish to have a sphere-tree that also contains
spheres in the interior we must include those octree nodes tha t lie inside the object.
If we were to treat these nodes in the same way as those tha t overlap the surface we
would sub-divide the node into a set of children, thus introducing a significant number of
extra spheres. This would add a significant overhead to the collision detection algorithm.
However, the set of nodes that are inside the object and do not overlap the surface can be
treated as a special case. If we were to sub-divide such a node we would find tha t ALL
its children would also be internal to the object. Thus it is not necessary to sub-divide
the node, and we can simply keep this node cis a leaf node, as illustrated in Figure 3.4.
A similar approach was used in [97] for compacting octree representations of volumetric
objects that are in motion.

Such nodes can be determined by the following criteria : If the sphere placed around
an octree node does not overlap the surface of the object but its center point is contained
within the object then the node can be created as a terminal node. In order to determine
if a node is to be treated with this special case it is necessary tha t we be able to determine
if a point, i.e. the center of the sphere, is inside the object. Appendix A describes an
algorithm for determining if a point is contained within a closed polyhedron.

CHAPTERS. OCTREE METHOD 35

(a) Model (b) Sphere-Tree (4‘ ̂ Level)

Figure 3.5: An example of a model that is well suited to the octree based algorithm.

3.2 Limitations of the Octree M ethod

When constructing a sphere-tree with the Octree Method, the configuration of the sphere-
tree is dependent solely on the bounding box of the object and the object’s shape is not
explicitly used. Thus each level of the sphere-tree contains spheres that are identical in
size and are positioned in a grid like arrangement. While this does ensure that the sphere-
tree will have the necessary sub-division properties, it does not lead to very tight fitting
approximations. Some shapes are, however, ideally suited to the octree method. A shape
such as that in Figure 3.5 can be well approximated by an octree and the approximation has
nice properties for contact modelling and collision response [18]. Also, the regular nature
of the octree allows it to be quickly updated if the objects are undergoing deformations.
This section details the improvements that have been made to the basic octree algorithm
and derives a new algorithm that creates tighter fitting sphere-trees while maintaining
good spatial sub-division.

3.2.1 Orientation and Position

When constructing the sphere-tree from an octree, the spheres are placed around the nodes
of the octree. These nodes are isothetic (axis aligned) cubes. Thus, the orientation of the
model within its local co-ordinate frame is a large factor in the goodness of fit. Figure 3.6
shows the first level of the octrees associated with an object in two difi'erent orientations.
It is clearly visible that rotating the model by 45° prior to the construction of the octree
reduces the size of the nodes. However, the number of nodes covering the object has
increased and the lower right node has a lot of empty space. These problems arise from
the lack of knowledge the octree algorithm has about the object it is approximating. If
the algorithm were allowed to re-orient the set of spheres produced, it might be able to

C H A P T E R S. OCTREE METHOD 36

(a) 0-degrees

Figure 3.6: Changes in the orientation of an object affects the structure of the octree.

improve the quaUty of the approximation.
This can be generalised to allow each set of child nodes to have their own orientation

and position. Allowing a node’s children to be oriented at a different angle to the parent
node would allow more freedom to approximate the object closely. This obviously destroys
the nice properties of having isothetic nodes in the octree. However, this is not an issue
when using the octree to construct a sphere-tree as each of the nodes will be replaced with
its bounding sphere, which is rotationally invariant.

Figure 3.7 shows an example, in 2D, of an object that would benefit from allowing each
node’s children to be arbitrarily oriented. At the top level. Figure 3.7(a) the nodes are axis
aligned. For the second level, the top left node produces a very poor approximation using
axis aligned child nodes (Figure 3.7(b)). This configuration will also require three children
to cover the object. The alternative configuration, Figure 3.7(c) would only require two
children and would approximate that section of the object more closely. Thus, by allowing
each set of nodes to be constructed within their own co-ordinate frame it is not only
possible to improve the approximation but to also reduce computational overhead.

3.2.2 Size

The octree algorithm is also very limited in the way it chooses the radius of each sphere.
When sub-dividing an octree node, the children are always half their parent’s size. Thus
all the spheres in a given level are exactly the same size, i.e. the radius is half that
of the previous level. Figure 3.7(d) shows another approximation of the object. This
approximation is even tighter than the last (Figure 3.7(c)) as the size of the nodes has
been reduced.

Allowing the algorithm flexibility in the size of the nodes it uses gives it another
degree of freedom to approximate the object. Thus allowing greater scope for achieving

CHAPTERS. OCTREE METHOD 37

1

(a) Level

/

(c) 2"“̂ Level (rotated) (d) 2"“̂ Level (scaled)

Figure 3.7: Each set of nodes (siblings) can benefit from using a different local co-ordinate
frame and independently sized sets of spheres.

CHAPTERS. OCTREE METHOD 38

(a) 1"“ Level (b) 2" ‘‘ Level

Figure 3.8: Allowing the dimensions of the grid of spheres to change can improve the
approximation.

tight fitting bounding volumes. As the algorithm is much more flexible in the way it
arranges the spheres, each level of the hierarchy is likely to contain a variety of different
sized spheres. This means that the collision response algorithm will not be able to make
some of the assumptions that the octree algorithm may have allowed.

3.2.3 Grid D im ension

The octree algorithm only ever creates a 2 * 2 * 2 grid of children. This clearly guarantees
the children nodes will collectively cover the region of space covered by their parent. In
order to approximate the object it is not necessary to cover the entire volume of the parent
node. It will suffice to cover the area of the object that was contained in the parent node.
This can be exploited to allow the grid of spheres to be of arbitrary dimension as well as
orientation and scale.

Take for example a long thin object, such as that shown in 2D in Figure 3.8. Using a
2*2 grid, this object is bound by two squares, as featured in Figure 3.8(a). However this
approximation is quite loose, i.e. there is quite a lot of empty space within the nodes, and
only half the number of allocated nodes are being used. Using a different set of dimensions
for the grid can allow a much tighter fit to be achieved, as seen in Figure 3.8(b). Although
the second configuration uses more nodes to cover the object, it also provides better sub­
division. There is a trade-off between the number of nodes used to cover the object and
the culling power of the sub-division structure. Using more nodes will break up the object
into more pieces, each of which can be culled. However, it is also necessary to test each of
these nodes to decide if the sub-trees can be culled.

CHAPTERS. OCTREE METHOD 39

Figure 3.9: The algorithm may produce a grid of any dimension, provided it contains an
allowable number of occupied nodes.

A more flexible scheme would be to dynamically determine the dimensions of the grid,
upon which the spheres are placed. Any dimensions can be chosen, providing the number
of nodes created is less than a specified maximum. For example, the grid may be 1*5*4,
which has 20 nodes, but this would be acceptable if the object overlaps a sub-set of the
nodes, e.g. 8, as shown in Figure 3.9. The octree algorithm can generate at most eight
children per sphere. However, as the new algorithm is allowed to vary the size of the
spheres, this is no longer the case.

3.3 The Grid Algorithm

The previous section identified a number of ways in which the basic octree method can
be improved. By loosening the way in which the spheres are placed, tighter fitting sets
of spheres can be generated. This section outlines an algorithm tha t uses this looser
definition to approximate a section of the object by using an arbitrarily oriented grid of
spheres.

The algorithm can be formulated as an optimisation problem, this is shown in Algo­
rithms 1 &: 2. The objective of the algorithm is to find, for a given size of sphere, the
grid that requires the fewest spheres to approximate the object. The rationale behind this
is that arranging the spheres so as to use only the smallest number required will remove
the need for the spheres that contribute little to the approximation, enabling the algo­
rithm to reduce the number of spheres required. Using the number of spheres required
to cover the object as an objective function will not give the optimisation algorithm suffi­
cient information to find a good solution. A better alternative is to formulate a function
that characterises how well filled each sphere is. Thus, the optimiser will aim to increase
the amount of the surface covered by some of the spheres allowing other spheres to be
discarded. A similar function was used in [10], to group points from 3D clouds into 2D
curves.

In order to encourage the optimisation function to reduce the number of spheres re-

CHAPTERS. OCTREE METHOD 40

quired to cover the surface, each iteration should aim to update the current arrangement
so that the high ranking spheres, which already cover a large amount of the surface, will
cover even more and reduce the dependence on the remaining spheres (which cover less
of the surface). If we consider the surface to be represented by a densely sampled set of
points then this equates to moving the grid so as to decrease the dependence on the lower
ranked spheres in the set, hoping that they will eventually be discarded. We can compute
the number of points requiring a given sphere by counting the points contained within the
sphere that are not already covered by a higher ranking sphere. Thus the optimisation
function, presented as Algorithm 2, can be expressed as ;

M = f{Count{Si)) (3.1)
V5<

is one of the spheres,
is the number of points that require S to be kept,
is a function that has greater than linear growth so as
to favour dense groupings of points within each sphere,
typically f {x) = x^.

Thus, to find the minimum number of spheres to cover the object it is necessary to
find the orientation (and position) of the grid that maximises M. Any general purpose
optimisation algorithm can be used to find these parameters. The optimisation algorithm
requires an initial guess from which to start. The simplest way to generate an initial
configuration would be to use the spheres generated by the octree method, i.e. 8 axis
aligned cubes covering the area of their parent. A better solution is to use spheres placed
within the Oriented Bounding Box (OBB) of the required area.

Gottschalk et al. use Principal Component Analysis {PCA) to generate OBBs [33].
They determine the eigen-vectors of the covariance matrix created from the region’s convex
hull. This finds the smallest ellipsoid that encloses the set of points. However, for regions
that are roughly cubic (or square in cross-section) the resulting bounding box is often
quite poor [110]. Garcia used the inertial tensor instead of the covariance matrix, which
seems to be less susceptible to these problems [27]. Barequet presents an algorithm for
getting tighter approximations of the bounding box [5].

We have found that allowing the optimisation algorithm to vary both the orientation
of the grid and the size of the spheres makes it difficult to find a good solution. Therefore,
a simple linear search is used to vary the size. Starting with the minimum size required
to cover the object with a single sphere, the size is reduced by a small amount, say 10%,
until too many spheres are required to cover the object. The set of spheres with the least
error is chosen to represent that area of the object.

where :
Si
Count{S)
f{x)

CHAPTERS. OCTREE METHOD 41

The optimisation function aims to minimise the number of spheres required to approx­
imate an area of the object. This in turn allows the algorithm to use smaller spheres. A
second optimisation function can be used to refine the grid’s orientation etc. to minimise
the error in the approximation. However, a more versatile solution is to allow each sphere
to move independently. This can be achieved using our generic optimisation algorithm,
which will be developed in Section 6.2, to minimise the spheres’ volume.

3.4 Conclusions

The rigid manner in which the octree method arranges the spheres and its lack of use of the
object’s geometry seem to be the main factors that contribute to its poor approximation
of an object. As spheres, which are rotationally invariant, are to be placed around the
nodes of the octree there is no requirement for them to be axis aligned. There is also no
requirement to cover the entire volume of the parent node. It is sufficient to cover the
parts of the object that lie within the parent node. Therefore, it is desirable to allow the
algorithm to change the size of the spheres and to allow the grid, upon which they are
placed, to be of arbitrary dimension.

Loosening the rigid scheme used by the octree method will allow much more freedom in
how the spheres are arranged. This will allow the algorithm to find better arrangements of
spheres by taking the object’s geometry into account, increasing the algorithm’s potential
to achieve close approximations.

CHAPTERS. OCTREE METHOD 42

A lg o rith m 1 GRID algorithm for generating spheres.
In p u t : Set of surface points defining region to be approximated, P.

Majcimum number of spheres, N.
O u tp u t : Set of spheres, S.

G r id (̂ 5, P, N)
B <— OBB for points P
s •<— length of longest edge of B

S <- set of spheres covering P, arranged on grid
of size s aligned with B

F its ^ 0
repeat

s i— s * 0.90

Bopt ^ optimise the orientation of B to
minimise the value of the CoverMetric
for spheres of size s

T f - set of spheres covering P, arranged on grid
of size s aligned with Bopt

F i tr <— evaluation of how well set T approximates object
if ||T|| < N and F i tr > F its then

Si
F its ^ F i t f

end if
until ||T|| > N

{get an initial grid}

{make initial spheres}

{reduce grid size by 10%}

{optimise grid}

{make new spheres}

{new best set}

C H A P TE R S. O CTREE METHOD 43

A lgorithm 2 Evaluate metric in Equation 3.1 for a given grid.
Input : Set of surface points, P. Grid orientation, O.

Grid origin, v. Grid size, s.
O utput : Set of spheres S. Evaluated metric, metric.

C o m p u t e M e t r ic ('5 , P, 0, v, s)
T <— set of spheres covering P, arranged on grid defined

by size s, orientation B and origin v {make new spheres]

for all € G do {count points in spheres}
Count[g] <r- number of points from P inside g

end for

5 ^ { }
m etric 0
for i = 1 to ||G|| do

hestG ^ N IL
bestCount 0
for all g G G, 3 ̂ 5 do

if Count[G] > bestCount then
bestG <r- g
bestCount <— Count[G]

end if
end for

m etric m etric + bestCount^ {accumulate term}

if bestCount > 0 then
S <— S [J {bestG}

for all p € P, p inside bestG, p not already covered by S do
for all g E G, g containing p do

Count[g] <- Count[g] — 1 {point is now covered}
end for

end for
end if

end for

{add to sphere set}

{evaluate metric}

{sphere covering most points}

Chapter 4

M edial Axis M ethod

In his thesis Hubbard explored two ways of improving upon the use of Octrees for con­
structing sphere-trees. He used simulated annealing and the object’s medial axis for the
construction of Sphere-Trees [49]. This chapter describes the latter method, which essen­
tially contains three phases; The approximation of the medial axis of the model using a
Voronoi diagram; creating a base set of spheres using the interior vertices of the Voronoi
diagram; and the construction of a Sphere- Tree from this set of spheres.

4.1 Constructing the Medial Axis

The medial axis surface of an object represents its skeleton. The usefulness of the medial
axis for the generation of sphere-trees comes from the symmetric nature of the object
around the skeleton [49]. Blum and Nagel defined the medial axis as the centers of a set
of maximally sized spheres that fill a figure [7], naturally leading to the conclusion that
the medial axis would be a good place to center the spheres to approximate the object.

However, finding the medial axis of an object is a very computationally expensive
problem. As the medial axis is to be used only as a guide for the placement of the spheres
it is not im portant to construct the exact medial axis, so an approximation will therefore
suffice. The medial axis of an object can be approximated by the 3D Voronoi diagram of
a set of points distributed over the object’s surface, a 2D example of a Voronoi diagram is
shown in Figure 4.1. For each sample point on the object, the Voronoi diagram represents
the region of space that is closer to that point than any other point in the set. These
regions, the Voronoi cells, are convex polyhedra whose vertices form the vertices of the
diagram. The faces of the Voronoi diagram separate each point from its neighbouring
points. As the Voronoi cell represents the region closest to a given point each face will be
equidistant from the two points that it lies between. For a pair of points lying on opposite
surfaces of the object this face will lie close to the middle of the object and so will be
part of the approximate medial axis for that object. The vertices of the Voronoi diagram
that are inside the object, and the faces whose vertices are all internal, can be used to

44

CHAPTER 4. MEDIAL AXIS METHOD 45

Figure 4.1: An example of a Voronoi diagram in 2D.

approximate the medial axis of the object. The larger the number of samples, the more
accurate the approximation. Thus it is necessary that we are able to generate a set of
sample points across the surface of the object.

4.1.1 Sam pling a Triangulated Polyhedron

Hubbard uses a two phase process for the generation of the set of surface samples. First
he tries to uniformly distribute a set of samples across the surface. After constructing
the Voronoi diagram for this set of points, additional points are added to correct problem
areas of the diagram. Such problems result from the choice of surface points and take
the form of breaks in the medial axis and sections of the medial axis joining areas of the
object that should remain separate.

To generate the initial set of points, Hubbard first distributes points across the surface
of the polyhedron, using a method derived from Turk’s algorithm [103]. A relaxation
technique is next used to even out their distribution. In order to get this initial distribution
of points, each triangle has a probability of receiving a point tha t is proportional to its
area. To assign a point to a triangle, a random number between 0 and 1 is generated.
This number is used to determine which triangle will receive the point. This is achieved
by ordering the triangles according to area and using the number as a fraction of the
cumulative sum of the areas. The chosen face now receives a point randomly located
within it using barycentric co-ordinates [1].

Turk’s algorithm next applies an iterative relaxation technique that pushes the points
around under the influence of their neighbours. The forces between points on different
triangles can result in points being pushed off the surface. To overcome these problems.

CHAPTER 4. MEDIAL AXIS METHOD 46

Hubbard groups neighbouring triangles into planar clusters. When performing relaxation
each cluster is treated as an individual unit. This ensures the points will not leave the
surface. To try to maintain the uniformity of the distribution between clusters, each edge
of the cluster exerts a force on the points that mimics a set of evenly distributed points on
the opposite side of the edge. This, however, drives points away from the edges - requiring
an extra set of samples to be distributed along them.

In Section 5.1 an alternative samphng algorithm is presented. This scheme distributes
points on a regular grid within each triangle/cluster and then adaptively adds more points
to guarantee the fit of the spheres generated and to guarantee that all areas of the object
are covered. This method also handles the cases covered by the additional samples added
in Hubbard’s method without needing any numerical tolerances or special sampling along
the edges.

4.1.2 C onstructing the Voronoi Diagram

In order to construct the Voronoi diagram it is necessary that we be aware of its structure.
Each point in the diagram will be surrounded by a Voronoi cell, i.e. the region closer to
it than any other point. Each Voronoi vertex is the circumcenter of four sample points,
i.e. a sphere centered at the vertex will touch the surface of the object at four points.
These points are referred to as the vertex’s forming points. Each Voronoi vertex lies on
exactly four cells and adjoins four edges. This gives each vertex exactly four neighbours
[72]. It can often look as if a vertex adjoins more than four cells but this is not the case.
An edge of the Voronoi diagram is allowed to have zero length, thus a vertex with more
than four neighbours is simply a pair of vertices with a very short edge between them.
Hubbard suggests that sets of such vertices should be combined after the construction of
the diagram to prevent complications in the later stages.

The algorithm used to construct the Voronoi diagram is an iterative one, based on
Bowyer’s algorithm [9], which allows additional points to be added later on to correct
any errors in the medial axis. As the algorithm assumes that all points being added
to the diagram are inside the region already covered by it, an initial diagram must be
constructed. The initial diagram is constructed using a tetrahedron that bounds the
object. The corners of the tetrahedron are used as the set of initial forming points. For
each of these points there is a cell, which surrounds it. These cells meet at a vertex in the
center of the tetrahedron. Four additional vertices are constructed outside the tetrahedron
by projecting the center point through the tetrahedron’s faces. As each Voronoi vertex
needs four neighbours, each one is connected to the rest. Figure 4.2 illustrates this in 2D,
using a triangle instead of a tetrahedron and three forming points (and dummy vertices)
instead of four.

The algorithm proceeds to build the Voronoi diagram by adding each surface point in
turn. Each new point extends the diagram to contain a new cell, representing the region

CHAPTER 4. MEDIAL AXIS METHOD 47

Forming Point

Central Vertex

Bounding Triangle

 Dummy Vertex

Figure 4.2: Initial Voronoi diagram in 2D. Vertices are in green, and forming points in
red. Solid black lines join the neighbouring vertices.

closer to tha t point than any other forming point, see Figure 4.3. The addition of this new
cell causes the surrounding cells to shrink. This is achieved by deleting a number of the
vertices and replacing them with new vertices. The algorithm deletes every vertex that is
closer to the new point than its forming points. The replacement vertices are then created
so that the faces of the Voronoi cells are once again equidistant from the forming points
of the two cells sharing the face.

When a vertex is already equidistant from its forming points and the new point numer­
ical imprecision becomes an issue. It is difficult to decide if the vertex should be deleted
or not. Hubbard uses an algorithm, described next, which chooses the deletable vertices
so as to make the diagram both accurate and robust, i.e. the structure of the diagram will
not be compromised. Also the algorithm cannot tolerate coincident forming points and
therefore these must be removed.

4.1.3 Selecting the Vertices to D elete

When selecting the vertices to be deleted from the Voronoi diagram, while adding a new
surface point, it is important to maintain the topological structure of the diagram. Inagaki
et al. state five criteria for preserving this structure [53] :

• the set of deletable vertices is non-empty,

• all the deletable vertices form a connected sub-graph,

• at least one vertex from each cell is N O T deletable,

• the deletable vertices on each cell form a connected sub-graph.

CHAPTER 4. MEDIAL AXIS METHOD 48

New Point

(a) Four Points

(b) Five Points

Figure 4.3: Adding a new point to the Voronoi diagram creates a new cell representing
the region for which it is the closest forming point.

CHAPTER 4. MEDIAL AXIS METHOD 49

• the non-deletable vertices on a cell form a connected sub-graph.

A greedy algorithm is used to construct the deletable set. The algorithm starts with
the vertex closest to the point being added, which is guaranteed to be deletable. The
neighbouring vertices are next considered and those that satisfy the above criteria are
added to the deletable set. The search then moves onto the neighbours of those ver­
tices. The algorithm does not however consider the consequences of adding a vertex to
the deletable set, i.e. choosing to delete a vertex may prevent the algorithm from later
including a vertex that needs to be deleted.

Hubbard improves on this search algorithm by considering the vertices in order of
suitability. Vertices that are much closer to the new point than their forming points are
clearly deletable. Thus the measure of deletability, for a vertex, is the distance to its
forming points minus the distance to the new point. The search for the set of deletable
vertices starts at the vertex with the highest value and maintains a priority queue of the
possibly deletable vertices, which is initialised with the positively valued neighbours of
the starting vertex. The priority queue allows the algorithm to consider the vertices in
order of value. If a vertex cannot be added to the deletable set it is held back for later
consideration. When a deletable vertex is found, its positively valued neighbours are added
to the priority queue, and the vertices that were being held back are returned to the queue
as they may now be valid deletable vertices.

This algorithm does not find the globally optimum set of deletable vertices, but it does
find a set to which no more vertices can be added and which maintains the topological
structure of the Voronoi diagram. In [49], Hubbard presents results tha t indicate that this
algorithm produces a more accurate Voronoi diagram than using Inagaki’s criteria alone.

An alternative criterion for the selection of a valid set of deletable vertices would be
to only allow vertices that maintain the topological structure of the Voronoi diagram. As
the set of deletable vertices is built up the necessary conditions must be maintained :

• the set of forming points to be used to create a new vertex cannot be co-planar,

• each new vertex will have four neighbours, three of these being the other new vertices
with which it shares three forming points. When constructing the deletable set there
will be at most three such neighbours for each new vertex.

These also aim to maintain the topological structures of the Voronoi diagram, and
ensures tha t each new vertex will be created from a set of non-coplanar points. This test
is more straightforward to implement and has been more efficient during the construction
of Voronoi diagrams used in this thesis.

4.1.4 U pdating the Voronoi diagram

In order to create the Voronoi cell surrounding the new point, the algorithm has to replace
the deletable vertices with new ones. Bowyer’s algorithm creates a new vertex for each pair

CHAPTER 4. MEDIAL AXIS METHOD 50

of neighbouring vertices Vd and Vu-, where is a deletable vertex and is an undeletable
vertex. These vertices will share three forming points, which together with the new point
will create the new vertex. The circumcenter of the tetrahedron formed by these four
points gives the vertex’s location, as shown in Figure 4.4(a). As with all Voronoi vertices,
the new vertex Vn has four neighbours, Vu and three other new vertices. These other
neighbours can be found from the set of new vertices by doing a brute force search for the
the ones tha t share three forming points with see Figure 4.4(b).

If the set of deletable vertices is not entirely correct, it is possible tha t the set of
forming points for a new vertex are all coplanar. Thus it would be impossible to create
the circumsphere, and hence give the vertex a location. Inagaki et al. note that the
position of the new vertex should lie on the edge connecting Vd and Vu and that the
circumcenter of the tetrahedron would be infinitely far away. Thus the position of the
vertex can be approximated with V"„, which is preferable to using Vd as it is not closer to
the new point than its forming points [49].

4.2 Fixing the Medial Axis

Approximating the medial axis by constructing a Voronoi diagram requires tha t the surface
be sampled in an even, consistent manner. For a general polyhedral object this is a
difficult problem. There are essentially two types of error tha t can occur, as illustrated
in Figure 4.5. The first results in a break in the medial axis, where it leaves the object
through its surface. The second is where the medial axis re-enters the surface to form a
bridge.

Hubbard suggests a scheme for correcting errors in the medial axis tha t result from
sampling problems. He introduces the notion of gap crossing cells as a way of detecting
these errors [49]. The Voronoi cells that lead to the medial axis approximation containing
breaks, or joining two separate parts of the object (by crossing the gap between them), are
called gap crossing cells. A cell, around point p, is considered gap crossing if it intersects
a side of the object on which p does not lie. This situation results in the faces of the cell
leaving the object to form a break in the medial axis or a bridge if it re-enters the object
a t some other point. His specific definition is :

“The two cells around Pj and Pk are gap crossing if the shared face intersects
a cluster that does not contain both Pj and Pjt.”

New points are introduced to the Voronoi diagram at strategic locations to correct
these errors. Obviously the new cells, created as a result of the addition of the new points,
will then need to be checked for gap-crossing. The new point is created by projecting
the point(s) that does not lie on the cluster onto the plane of cluster. If neither of the
projected points lies inside one of the cluster’s triangles, then one of the points is snapped

CHAPTER 4. MEDIAL AX IS METHOD 51

Vu

New Verte:

Forming Points

New Point

(a) New Vertex

New Vertex

Shared
Forming
Points

New Edge

New Vertex

(b) New Edge

Figure 4.4: Creating a new vertex for a pair of vertices Vu Vd and a new edge from
two of the new vertices.

CHAPTER 4. MEDIAL AXIS METHOD 52

Break

(a) Broken Medial Axis

Bridge

(b) Joined Medial Axis

Figure 4.5: Examples of how sampling can cause errors in the medial axis.

CH APTER 4. MEDIAL AX IS METHOD 53

Figure 4.6: Examples of spheres placed around the Voronoi vertices tha t are inside the
object.

to its closest point on any of the triangles within the cluster that the face intersected.
If the projected point has to be repositioned in this way, it is not guaranteed to fix the
problem and many new gap-crossing cells may result.

4.3 Constructing the Sphere-Tree

The construction of the sphere-tree starts with the creation of a set of spheres, from the
medial axis approximation, which represents the object. Each internal Voronoi vertex
gives the center of a sphere and the distance to its forming points determines its radius.
As the medial axis of the object can be defined as the set of maximally sized spheres
that fill its interior, the vertices that are inside the object represent good locations around
which to place spheres. Each vertex is equidistant from its forming points, therefore using
this distance as the radius of the sphere ensures tha t it will touch the surface in at least
four locations. Figure 4.6 shows this in 2D with each circle touching the surface in three
places. Hubbard uses a point in object test that categorises points according to whether
they are behind the closest part of the surface. Although this algorithm does categorise
some internal points as being outside the object it suffices for this purpose, see Appendix A
for a description of this and some alternatives.

Obviously the set of spheres generated from the medial axis is not much good for
performing collision detection. There will be a lot of spheres in the set and they are not
arranged in a hierarchical manner, which is essential for performing the spatial localisation
required for the narrow phase of the collision detection algorithm. Therefore it is necessary

C H A P T E R 4. M ED IAL A X IS M ETH O D 54

to further process the set of spheres to form a hierarchical structure.
The construction of the sphere-tree proceeds in a top down fashion. The root of the

tree, which contains only a single sphere is created using R itte r’s algorithm [89]. This
algorithm approxim ates the smallest sphere th a t contains a set of points, i.e. the set of
surface samples or the forming points. Each non-term inal node of the tree is required to
have a pre-specified num ber of children (iVg). Thus for the first level of the tree, the set of
medial spheres must be reduced down to contain only Nc spheres, all of which are children
of the root node. This is achieved using a successive merge algorithm in which pairs of
spheres are combined until the required num ber of spheres is reached.

Successive levels of the tree are constructed using a sub-set of the medial spheres.
This set contains only the spheres, from the original medial axis approxim ation, th a t were
merged to create the parent node. These are once again successively merged until the
specified num ber of spheres has been reached. This cannot continue to an arb itra ry depth
as the medial axis approxim ation has a lim ited num ber of spheres. The num ber of medial
spheres is determ ined by the number and position of the surface samples and so there may
be insufficient spheres in the medial set to create a tree of the required depth.

Sphere M erging

W hen merging a pair of spheres, S\ and S 2 , a new sphere is created to cover the parts of
the object th a t these spheres covered. The object is represented by a set of surface points,
as it is very expensive to use the polyhedral surface itself. If the set of forming points
is used for this purpose, each sphere initially contains its four forming points. W hen the
merge occurs, the two sets of points are combined and R itte r’s algorithm determ ines the
new bounding sphere 5i2-

Each iteration of the algorithm reduces the set of spheres by combining two spheres
into one. If each sphere was allowed to merge with any other sphere it would be very
expensive to decide which pair of spheres to merge. H ubbard reduces the com putational
complexity of this process by only considering certain pairs of spheres. As each sphere in
the initial set corresponds to a vertex in the Voronoi diagram , the sphere can be considered
to be adjacent to a sub-set of the other spheres, i.e. its neighbours. W hen two spheres Si
and S 2 merge, any spheres adjacent to either of the spheres become adjacent to the new
sphere 5i2

The algorithm uses a heuristic to determ ine which pair of spheres to combine. Each
tim e the algorithm merges a pair of spheres it picks the pair th a t will introduce the
least am ount of error into the approxim ation. For each of the candidate pairs, the new

^Any sphere that has no neighbouring spheres will be unable to merge with others and therefore will
be contained in the reduced set. This will reduce the quality of the approximation. In the implementation
used for this thesis, when a sphere is found to have no neighbours a set is computed to contain all the
spheres that it overlaps. This avoids the situation of having spheres that have no neighbours with which
to merge.

CHAPTER 4. MEDIAL AXIS METHOD 55

(a) C in front (b) C behind

Figure 4.7: Computing the distance from a point P to the surface of the sphere, for the
two cases of C being in front of or behind the plane on which P lies.

bounding sphere is computed and its error evaluated. When a merge takes place, the new
candidate pairs, which are formed during the merge, will also need to be evaluated. When
computing the fit of the spheres, Hubbard computes the distance from each forming point
to the sphere. This is not as accurate as measuring the distance from the sphere to the
surface but is more efficient. To compute the distance from a surface point to the surface
of the sphere, the center of the sphere is projected along the point’s normal onto the plane
defined by the point. The distance can then be computed as :

if the center of the sphere, C, lies in front of the plane, as in Figure 4.7(a) and :

if it lies behind it, as in Figure 4.7(b).

4.4 Pros and Cons

Using the medial axis for constructing sphere-trees certainly has major advantages over
the octree method, reviewed in Chapter 3. Although the algorithm is much more com­
plicated, the sphere-trees constructed with it approximate the object in a tighter way.
This improvement in accuracy can be attributed to the freedom tha t the algorithm has
in where it can place spheres. In the octree method, the position of the spheres is almost
totally independent of the object’s geometry. In contrast, the medial axis method explic­
itly uses the object’s geometry, in the form of its skeleton, for the creation of the initial
set of spheres. The medial axis method is far more computationally intensive than the
octree method, however this is not an issue when the sphere-trees are constructed as a
pre-processing step. The octree method has advantages when working with deformable

(4.1)

(4.2)

CHAPTER 4. MEDIAL AXIS METHOD 56

objects as it can be updated dynamically while the object is deforming.
However, there are a number of areas in which the medial axis technique can be

improved. When generating a set of sample points, it is impossible to know how to
choose a good set of points for the construction of the medial axis, i.e. how many sample
points will give you the desired results. The sampling scheme presented uses a number of
numerical parameters that are also difficult to determine analytically. Having constructed
the Voronoi diagram and used it to create a set of initial spheres, there is no guarantee
of the quality of this set, i.e. the set of spheres cannot approximate the object to a
specific tolerance. Additionally, there is no guarantee that the set of spheres fitted to the
medial axis will cover the entire object. The sphere-tree construction algorithm does aim
to minimise the error in the approximation, but it is limited in how it reduces the set of
spheres i.e. it is unable to adjust the other spheres in the set. Thus it does not distribute
the error among the remaining spheres, which would reduce the overall error. Chapter 5
presents a number of improvements to this algorithm.

Chapter 5

Improved Medial Axis M ethod

In Chapter 4 the medial axis method for the construction of sphere-trees was introduced.
The method constructs a Voronoi diagram from a set of sample points distributed across
the surface of the object. The Voronoi vertices that are inside the object are subsequently
used to construct a base set of spheres, approximating the object, from which a hierarchy
is constructed. This chapter discusses a number of improvements tha t can be made to
this algorithm.

5.1 Adaptive Sampling

The first phase of the medial axis method aims to generate a set of sample points that can
be used to construct the medial axis approximation. In order to generate the correct medial
axis, these points need to be distributed evenly across the surface of the object. While
this is very simple for some shapes, it is quite complex for general polyhedral meshes [49].
Hubbard first assigns each triangle in the mesh a number of points based on its area. A
relaxation algorithm then tries to redistribute these points more evenly across the surface.
Hubbard employs a heuristic to simplify this process. He groups the triangles into planar
groups called clusters and applies a separate relaxation to each.

While this does eliminate the problem of points leaving the surface, there are a number
of difficulties associated with this process. For highly curved objects, such as those mod­
elled with NURBS (Non-Uniform Rational B-Splines), it is rare to find planar areas. Thus
the clusters usually consist of only one triangle. This greatly reduces the effectiveness of
the relaxation technique. There are also a number of numerical tolerances required to
perform the relaxation, which can be hard to determine.

A simpler method, which does not require any numerical tolerances, is to sample the
cluster/triangle in a grid-like fashion, as shown in Figure 5.1. This scheme will always
yield an even arrangement of points within an individual triangle/cluster. However, it may
use more points than were assigned to the triangle, which will increase the computational
costs, but will not make the medial axis any less correct.

57

CHAPTER 5. IMPROVED MEDIAL AX IS METHOD 58

OO O O O O o o o o o o o o o o o o
oo o o o o o o o o o o o
OO o o oorm • •V » •V-»~QO o o o o o
oo o • • • •V * • • o o
oo (

I o
I o o

i o o o
I o o o

I o
I s

oo o ^ • • • • • • • • ! • • * 9 ^
oo o (* • • • • • • • » * ¥ 0 o
oo o o \m ^ 9 ^ • • • • • • • • 9 9 ^ o o
oo o o (TD'a ^ o o o

Figure 5.1: Distributing points within a cluster by sampling the clusters bounding box in
a raster fashion.

As it is extremely difficult to determine how many samples should be used for a given
surface, Hubbard uses a post-processing step to add extra samples to correct problems
with the medial axis. The process, described in Section 4.2, looks for gap crossing cells,
which are cells whose faces intersect areas of the surface that do not contain the points
used to create them. Extra points are added to correct these errors. While this does
correct problems with the medial axis, it does not make any guajantees about how well
the set of spheres will approximate the surface or even tha t the set of spheres will cover
the entire surface. Thus it may not be possible to approximate the object to the desired
accuracy. Another problem with this strategy is in the way it determines when new points
are required. Figure 5.2 shows an example of where the algorithm will choose to add extra
points when it is not really necessary as there is no error in the medial axis. In the situation
shown in Figure 5.2(a), the Voronoi edge E intersects cluster C but is not considered gap
crossing as Pj and Pk are on clusters A and B, which are neighbours of C. Thus no extra
points will be inserted into the Voronoi diagram. However, in the second situation (shown
in Figure 5.2(b)) there is a small face between A and C and another between B and C.
This means that E is now considered gap crossing (as it intersects a cluster that is not
a neighbour of A or B). This will cause the algorithm to add extra points to correct the
medial axis. However, it is questionable as to whether there is indeed a problem with
the medial axis at this point. While the medial axis will be affected by the change in the
surface, this change will not significantly affect the resulting set of spheres. Therefore the
addition of the extra point will cause an unnecessary overhead. For complicated meshes,
which contain areas with many small polygons, this situation will occur quite frequently.

There are a number of alternative algorithms, for the computation of Voronoi diagrams,
that could be used for the construction of the medial axis [23, 24, 25, 59, 72]. However,
none of these algorithms solve the problem of knowing where to place the sample points.
Thus an incremental algorithm remains preferable as it allows iterative improvement of
the approximation. Generating a good set of spheres is more im portant than accurately
approximating the medial axis. Thus an adaptive sampling technique, which iteratively
improves the set of spheres, is employed. Each medial vertex will be used to construct a

CHAPTER 5. IMPROVED MEDIAL A X IS METHOD 59

E

C

B—

(a) E not gap-crossing (b) E is gap-grossing

Figure 5.2: Small clusters can cause faces that do not represent a problem to be considered
gap-crossing.

sphere whose radius will be the distance from the vertex to sample points used to create
it. A new point, which will cause v to be replaced, is inserted into the Voronoi diagram,
as illustrated in Figure 5.3. For a convex body, if q is the point on the surface that is
closest to the center of the sphere (v) then a measure of how far the sphere goes outside
the surface is given by:

e = r — \\q — u|| (5.1)

where :
e is the distance the sphere protrudes past the surface,
r is the radius of the sphere,
V is the vertex at the center of the sphere,
q is the closest point on the surface.

Inserting a new sample point at q will guarantee a reduction of e. The insertion of
the new point results in the vertex v being removed and replaced by new vertices to form
a Voronoi cell around q. The new vertices that lie inside the object will then create new
spheres. This is illustrated in Figure 5.3(b).

Section 4.2 presented two problems tha t Hubbard’s algorithm aims to fix: (1) where
there is a break in the medial surface; and (2) where the medial axis leaves one part of
the object and re-enters another part. The adaptive sampling scheme will fix the latter
problem, if it results in a large sphere joining two parts of the object, as this sphere
will be divided if e is large enough (Figure 5.4). Figure 5.5 shows a comparison between
the adaptive sampling algorithm, shown as Algorithm 3, and the regular algorithm. The
adaptive algorithm, which started with a set of circa 500 spheres produced from the
non-adaptive algorithm, clearly produces a closer approximation of the object, with the
non-adaptive algorithm producing a very uneven and bumpy result.

CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 60

(a) Before (b) After

Figure 5.3: Addition of a new point to reduce the error of the approximation. The point
(q) is positioned to improve a specific part of the approximation.

Figure 5.4: Where the medial axis crosses from one part of the object to another, large
resulting spheres will be divided by the adaptive sampling algorithm if e is larger than the
desired accuracy.

CH APTER 5. IMPROVED MEDIAL A X IS METHOD 61

(a) Model

(b) Non-Adaptive

(c) Adaptive

Figure 5.5: Comparison between non-adaptive and adaptive sampling, both using circa
1000 spheres.

CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 62

A lgorithm 3 Adaptive construction of Voronoi Diagram
In p u t : Voronoi diagram, V. Surface, S.

Maximum allowable error, maxErr.
O u tp u t : Updated Voronoi diagram, V.

A DA P T ivE V o r o n o i (^5, V, maxErr)
M •(— set of medial vertices in V
V i— vertex from M with worst fitting sphere
while Error{v) > maxErr do

p •<— point on S closest to v
insert p into Voronoi diagram, V
M ^ updated medial vertices (excluding v)
V <r- vertex from M with worst fitting sphere

end while

5.2 Complete Coverage

When constructing spheres using the medial axis it is difficult to ensure that the entire
object is covered with spheres. Figure 5.6 shows an example of a problem that can occur.
The thin nature of the shape means that there is a very small area in which the Voronoi
vertices must lie in order for them to produce spheres. Figure 5.6(a) shows two medial
vertices, labelled A and B, which are just outside the object. These vertices are not used
to construct spheres and therefore the tip of the spike is left uncovered.

Hubbard’s notion of gap-crossing cells may be employed to try to fix this problem. Ac­
cording to the strict definition both these vertices are caused by gap-crossing cells. There­
fore additional sample points could be generated to handle the problem. Figure 5.6(b)
shows the Voronoi diagram resulting from the addition of one extra sample point, F (cre­
ated by projecting G onto the opposite surface). As the object narrows sharply, this has
resulted in the medial axis being pushed out through the opposite surface of the object.
Once again the tip of the spike is left uncovered. While this algorithm may eventually
add enough sample points to fix the problem it may take many iterations. An extension
to the adaptive sampling algorithm allows us to deal with this situation quite easily by
using one of the external vertices to construct a sphere. Figure 5.6(c).

As before, it is useful for us to concentrate on what we are trying to achieve when
using the medial axis method. The aim is to produce a set of spheres that approximate
the object to a high degree of accuracy. Strictly speaking, the medial axis is not allowed
to contain any vertices that are outside the object. However, the use of some such vertices
allows us to guarantee that the entire surface will be covered. Rather than considering the
polyhedral model of the object, it is more efficient to consider a set of points distributed
across the surface. This set could be the samples used to construct the medial axis but a

CH APTER 5. IMPROVED MEDIAL AXIS METHOD 63

(a) A (b) B (c) C

Figure 5.6: An example of a situation where it is very difRcult to produce spheres to cover
the object’s entire volume.

more densely packed set of points would be preferable as it will cover the surface better.
In order to guarantee that all the points on the surface are covered, it is necessary to

add extra spheres that will cover those not already covered by the medial spheres. For
any such point there will be a number of vertices tha t can produce a sphere capable of
covering it. If we are using the forming points of the Voronoi diagram, it would make sense
to limit ourselves to choosing a sphere centered around one of the vertices surrounding
that forming point. This would limit the computational complexity and confine the search
to vertices that are in the region close to the object and therefore close to the medial axis.
As it is more economic to use a sparse sampling for the construction of the medial axis, the
coverage points may not be forming points. However, as the Voronoi cell around a forming
point will have a number of vertices, which will make spheres tha t touch the forming point,
there will be at least one sphere which can cover each point within the Voronoi cell, as
shown in Figure 5.7.

Thus to cover a previously uncovered point, only the vertices of the surrounding
Voronoi cell need to be considered. As the Voronoi cell represents the region of space
that is closer to its forming point than any other, a point will be contained in the cell of
its closest forming point. There will be a number of vertices associated with the cell, each
of which may be capable of covering the uncovered sample. There are a number of criteria
by which the sphere can be chosen, such as using the smallest sphere, the sphere that is
closest to being inside the object or the sphere that covers most of the uncovered samples.

As the surrogate vertex (i.e. the one chosen to improve coverage) will not be contained
inside the object, it is desirable that we minimise the inaccuracies that may be introduced.

CH APTER 5. IMPROVED MEDIAL A X IS METHOD 64

Figure 5.7: Every point P within a cell will be covered by at least one of the spheres
created from the vertices of that cell as all such spheres will pass through the forming
points of the cell.

The adaptive sampling algorithm holds the key to choosing which vertex should be used
for this purpose. To avoid introducing any artifacts, due to the selection of these vertices,
we should choose a vertex that will be removed during later iterations of the adaptive
sampling algorithm. Thus it seems like a good choice to use the vertices tha t will be most
easily removed during the next iteration of the adaptive sampling algorithm. Such vertices
can be easily chosen using the measure of deletability discussed in Section 4.1.3, which
ranks the deletability of a vertex as distance to its forming points minus the distance to the
new point. The sphere produced by using this metric may be large, as seen in Figure 5.8,
but this simply means that it will be removed as the algorithm proceeds. As the adaptive
sampling algorithm attem pts to improve only those spheres tha t poorly approximate the
surface of the object, it will stop trying to improve the extra spheres once they become
small. Therefore, the number of extra samples needed to ensure coverage should be much
lower than using the notion of gap-crossing cells. This is because the algorithm allows the
medial axis to leave the object provided it generates a set of spheres to approximate the
object fully. Figure 5.9 shows a section of a model tha t contains a number of very thin
areas. The figure also shows the set of spheres generated using the adaptive algorithm
with the coverage check, presented as Algorithm 4, and the non-adaptive algorithm. It
is clearly visible that using the adaptive algorithm with extra “coverage” spheres, gives a
more complete representation of the object. There are still a few small areas that are not
completely covered as the algorithm only guarantees the sample points. However, these
should not cause significant problems as they are small and a more dense sample set could
be used if desired.

CH APTER 5. IMPROVED MEDIAL AX IS METHOD 65

U nco v ered
' R eg ion

Figure 5.8: When surrogate spheres are selected it is often desirable to replace them as
soon as possible to reduce the impact they have on the sphere set.

A lg o rith m 4 Pseudo-medial sphere selection algorithm
In p u t : Voronoi diagram, V. Surface, S. Surface points, P.
O u tp u t : Set of pseudo-medial spheres, M.

C o v e r a g e S p h e r e s ('M, V, P)
M ^ {] {empty set}

for all vertex u 6 F do
if V is inside surface S th e n

M M U {u }
en d if

en d for

{pure medial vertices}

for all p € P do
if p not covered by M th e n

{cover uncovered points}

t N I L
C •«— cell from V containing p
for all vertex v £ C do

s <— sphere around v
if s contains p a n d s is more deletable than t th e n

t i— S
end if

end for

{best sphere to cover point}

M ^ M u { t }
en d if

en d for

{add to medial set}

CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 66

(a) Model

(b) Non Adaptive

(c) Adaptive (with coverage spheres)

Figure 5.9: An example of how the use of vertices from outside the object can help to
ensure that the object is more completely covered with spheres.

CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 67

5.3 Sphere Reduction

When constructing the set of spheres to create a section of a sphere-tree, it is necessary
to reduce the set of medial spheres so that it contains the number of spheres required for
the sphere-tree. Section 4.3 described an algorithm that achieved this by using a merging
strategy. This was a greedy algorithm that iteratively merged pairs of spheres until the
desired number of spheres were left. At each iteration, the pair whose combined sphere
had the lowest error was chosen. This does not necessarily lead to the lowest error at the
end of the process as no account is taken of the effect the merge will have on the final
result. Also, when spheres Si and Sj are merged to create the combined sphere Sij, none
of the other spheres are affected. This can lead to sets of spheres that do not distribute
the error between them. Figure 5.10 illustrates this in 2D, where the sphere that resulted
from the merge has a much higher error than any of the other spheres. There are a number
of alternatives to this scheme that may yield better results.

5.3.1 Improved Merge

A number of minor improvements can be made to the merging strategy used by Hubbard.
When combining a pair of spheres, Hubbard used Ritter’s approximate bounding sphere
algorithm to construct the new sphere [89]. We favour a more accurate method and thus
use White’s minimum enclosing ball algorithm [109]. Also, we ensure that every sphere is
capable of taking part in at least one merge. Any spheres that end up with no neighbouring
spheres are given an artificial set of neighbours, consisting of any spheres it overlaps. In the
event that this results in an empty set of neighbours, the sphere is made a neighbour of all
the remaining spheres in the set. Also, when the number of spheres reaches a sufficiently
low number every pair of spheres is considered to be mergeable. This is typically done
when the number reaches 2 or 3 times the target number of spheres.

Finally, special consideration is given to merges that actually reduce the error in the
approximation, i.e. “beneficial merges”. As an approximation is only as good as it’s worst
error, we favour merges that improve the worst spheres in the approximation. We do not
treat other beneficial merges as a special case as we have found that this can adversely
effect the final results.

5.3.2 Sphere Bursting

Another way to improve upon the sphere merging is to allow the reduction of the sphere
set to have a much more global effect on the remaining spheres. Merging two spheres will
produce one larger sphere, as illustrated in Figure 5.10. The effect of reducing the number
of spheres is localised to the combined sphere. Removing (or bursting) one of the spheres
and allowing some of the other spheres to collectively cover the newly uncovered region will
better distribute the error introduced by decreasing the number of spheres. Figure 5.11(b)

CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 68

Combined SphereSpheres to merge

(a) Before (b) After

Figure 5.10: Merging two spheres together leaves the other spheres unchanged and there­
fore can result in a poor approximation.

Refitted Spheres

(b) After

Sphere to remove

Figure 5.11: Removing a sphere and allowing the surrounding spheres to cover the newly
uncovered area.

shows the result of removing one of the spheres from the set shown in Figure 5.10(a). In
this case, two of the spheres absorb the increase in error yielding a better final result.

When removing a sphere, conservative coverage of the surface must be maintained.
As with the merge algorithm, using a set of surface points is more efficient than working
with the actual polygons. The removal of a sphere will leave a number of the sample
points uncovered. These points must be covered by the remaining spheres in the set.
The algorithm for achieving this, presented as Algorithm 5, must distribute the uncovered
points between the remaining spheres so as to limit the error introduced. Each newly
uncovered point must be assigned to one of the remaining spheres. As there can be a large
number of spheres left in the set, determining the optimal sphere to reassign each point
to is very computationally expensive. A simpler approach is used. To try to minimise
the increase in size of the remaining spheres, each point is assigned to the sphere that is
closest to covering it. Finding the sphere to which the point is closest involves measuring
the distance from the point to the shell of the sphere :

L»(5,P) = | | 5 , - P | | - 5 , (5.2)

CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 69

where :
D{S,F) is the distance from sphere S to point P,
Sc is the center of sphere S,
Sr is the radius of sphere S.

The value of D{S, P) will become negative if the point P is already contained within
the sphere S, which indicates that the point should definitely be assigned to that sphere.
Of course, the point may already by assigned to that sphere in which case no further work
needs to be done. Finally, each sphere that is assigned new points must be updated so
that it covers the new set of points.

The burst algorithm can thus be used to reduce the set of spheres, created from the
medial axis, down to a specified number of spheres. This algorithm operates in a similar
fashion to the merge algorithm, removing the sphere that will introduce the least error
at each iteration. The effects of removing each of the spheres can be pre-computed and
updated whenever a sphere receives new points. Again special consideration is given
to sphere removals that actually improve the fit of the spheres involved. Choosing the
sphere that gives the biggest decrease in error before those that introduce error allows
the algorithm to provide tighter fitting sets of spheres. Figure 5.12(a) shows a typical
arrangement of 9 spheres approximating a cube. To further reduce the set, if required, the
merge algorithm would combine two of these sphere together, producing something like
Figure 5.12(b). However, the burst algorithm will produce a much nicer arrangement of
spheres, as featured in Figure 5.12(c).

Hubbard used Ritter’s approximate bounding sphere algorithm [89], to fit a sphere
around each set of points. This algorithm can often yield rather poor fitting spheres.
In order to maintain tight fitting approximations, a minimum volume bounding sphere
algorithm, such as those presented in [29, 108, 109], can be used. However, as illustrated
in Figure 5.13, the smallest sphere that bounds a set of points may not always represent
the one with the best fit to the surface. This happens particularly when the points all
lie on the same side of the object. It is very computationally ineflScient to try to fit the
minimum error sphere every time a new bounding sphere is required, i.e. when evaluating
the effects of removing a sphere. A more efficient method is to use either the minimum
volume bounding sphere or the original sphere enlarged to cover all the points, whichever
is tightest fitting. This keeps the sphere near the medial axis unless it is beneficial to move
it.

5.3.3 Expand & Select

The burst algorithm for sphere reduction was designed to allow the error introduced by
the removal of a sphere to be distributed amongst some of the remaining spheres. While
there are a number of situations where this will improve on the merge algorithm, it allows

CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 70

A lgorithm 5 Removal of a sphere
In p u t ; Set of spheres, S. Surface points covered by each sphere. Points.

Sphere to be removed, remSph.
O u tp u t ; Updated set of sphere and points assigned to them.

RemoveSphere('5, Points, remSph)
S <— S — {remSph} {remove sphere from set}

Update •<— {}
for all p € Points[remSph] do {reassign points}

bestD oo
bests <— N IL
for all s € 5 do

if D(p, s) < bestD th en
bests ^ s
bestD <— D(p, s)

end if
end for

{closer sphere}

if p ^ Points[bestS] then
Points[bestS] <— Points[bestS] U {p}
Update ■«— Update U {6esf5}

end if
end for

{assign point to sphere}
{flag for update}

for all s G Update do
5[s] <r- BouNDlNGSPHERE(Points[s])

end for

{update spheres}

CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 71

(a) Initial

(b) Merge

(c) Burst

Figure 5.12: Comparison of merging and bursting a cube approximated by 9 spheres (2D
equivalent shown on left).

CHAPTER 5. IMPROVED MEDIAL A X IS METHOD 72

(a) Minimum Volume

Figure 5.13: The minimum volume sphere may not always represent the sphere with the
minimum error.

only the neighbouring spheres to absorb the increase in error. The greedy nature of the
algorithm means that it can result in sets of spheres with a large worst error, i.e. the
worst sphere in the approximation may be much worse than the others. A much better
strategy is to select a set of spheres, containing the required number, which distribute the
error evenly between them.

If the error within the reduced set of spheres is perfectly distributed across the object,
each sphere will have the same error associated with it. By ensuring tha t all the spheres
have the same error, the algorithm will have a better chance of achieving a tight fit.
Equation 5.1 gave us a metric to measure the distance from a sphere to the surface of a
convex object. This equation can be rearranged to allow us to compute the radius, for a
given sphere, so that it will hang out over the surface by at most e :

r = e - \ \ q - c \ \ (5.3)

where :
r is the radius of the sphere,
e is the distance the sphere protrudes past the surface,
c is the center of the sphere,
q is the point on the surface.

This equation allows us to expand the spheres in the medial set so tha t they all hang
over the surface by the same amount, as shown in Figure 5.14. Constructing the reduced
set of spheres that all have the same stand-off distance (e) will potentially give a more
consistent approximation. This has the potential to reduce the error of the worst spheres
in the approximation. To achieve this, the medial spheres can be expanded to the desired
standoff distance, using Equation 5.3, and a sub-set of the spheres selected. When the
object is not convex, the stand-off distance represents an over-approximation of the error
present in the approximation.

(b) Low Error

CHAPTER 5. IMPROVED MEDIAL AX IS METHOD 73

Expanded Sphere
, Original Sphere

[Standoff Distance

Figure 5.14; Expanding a sphere to have a given stand-off distance.

It is not possible to pre-determine the value for e that will result in the required
number of spheres being selected. In order to construct a set of spheres containing a
certain number of spheres, we must search for the correct value of e. A simple search
algorithm, derived from the Binary Search, can be used to achieve this. For each value
of e, the spheres are expanded to have the required stand-off distance and the redundant
spheres are eliminated. The algorithm looks for the lowest value of e that results in a
set containing an allowable number of spheres. Figure 5.15 shows an example where the
algorithm is looking for the lowest value of e that requires 9 spheres to approximate an
’S’-shaped object. When the value of e is too low, Figure 5.15(b), the algorithm needs
more then the desired number of spheres to cover the object and so increases e. When the
value of e is large. Figure 5.15(b), the entire object is enclosed and the value of e can be
reduced. The search algorithm maintains upper and lower bounds for e and generates a
set of spheres using a value for e tha t is the mid-point of this interval. Depending on the
number of spheres required to cover the object, the algorithm adjusts either the upper or
lower bound to narrow the interval. After each iteration the size of the interval has been
halved and so the minimum value of e can be found quickly.

Selecting T he Set o f Expanded Spheres

The job of selecting the minimum number of expanded spheres that cover an object is a
complicated one. As the set of spheres from which the reduced set is drawn is potentially
quite large, it would be very expensive to try every combination of spheres. Instead of
looking for this global optimum we can try to find a good minimal set of spheres. A
minimal set will be a set from which none of the spheres can be removed without exposing
part of the surface.

A greedy algorithm allows us to choose the set of spheres without having to evaluate
a large number of combinations. In this algorithm the set of currently selected spheres is
maintained. Successive spheres are chosen from the remaining spheres until the desired
region of the object is completely covered. In order to decide which sphere to add, each

CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 74

(a) Model

(b) e too small

(d) e just right

Figure 5.15: Varying the stand-ofF distance to create an approximation with a given num­
ber of spheres (expanded medial spheres are in blue, selected spheres overlayed in red).

CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 75

(a) First Two Spheres

(b) Third Sphere (Good Choice)

(c) Third Sphere (Bad Choice)

Figure 5.16: When selecting a set of spheres to cover the object, a bad choice of spheres
may result in gaps being formed, which will require extra spheres to fill them.

sphere must be ranked according to its potential to keep the set of spheres small. The
first obvious choice would be to rank each candidate by the area of previously uncovered
surface contained within it. This will allow the algorithm to cover the largest amount of
the object at each iteration. As with all greedy algorithms, this aims to make the biggest
gain at each stage but does not guarantee to find the global optimum.

However, this heuristic suffers from one major drawback. Consider how the algo­
rithm will choose spheres to approximate a cylinder with rounded ends. As shown in
Figure 5.16(a), the first two spheres will be chosen to cover the ends. The problem arises
when choosing the third sphere. There exists a large number of candidate spheres, along
the remaining section of the surface, that all have the same ranking. Thus, it is possible
to choose a sphere next to one of the first two spheres or one tha t is towards the middle.
The first option, illustrated in Figure 5.16(b), will require one additional sphere to cover
the object. However, the second option, shown in Figure 5.16(c), will require two more
spheres.

The aim is to select as few spheres as possible and to cover the entire object using
the specified stand-off distance. Another way of approaching this is to rank the spheres
by the number of other spheres it makes redundant. Ranking the spheres in this way will
tend to select spheres that cover complicated areas of the object first, especially when the

CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 76

set of spheres has been constructed using adaptive sampUng. It will also tend to choose
spheres that cover areas near previously selected spheres. The previously selected spheres
will partly overlap a number of remaining spheres, which will be made redundant. These
spheres will increase the rank of the spheres that overlap them. This will in turn favour
the configuration featured in Figure 5.16(b).

The “Expand” algorithm, presented as Algorithm 6, is a greedy algorithm in all senses
of the word. It aims to cover as much of the object as possible at each stage. Both
the heuristics presented tend to produce large spheres initially and smaller ones later on.
For a cube, this type of scheme will result in a large sphere in the middle with smaller
ones at the corners. This is similar to the “Merge” algorithm. As the stand-off distance is
increased, the center sphere grows until it reaches a point where the corner spheres become
redundant, see Figure 5.17. The corner spheres also grow and they eventually make the
center sphere redundant. If the algorithm chooses the largest sphere at each state, the
center sphere will be chosen before the corners. So instead of choosing the corner spheres,
which are sufficient to cover the object, the large central one will be chosen first and the
corner spheres will still be required to complete the representation. When the stand-off
distance is increased to the point where the corner spheres are no longer required, the
algorithm will only choose the one large central sphere. This will prevent the algorithm
from progressing as it will continue to produce a single sphere and the approximation will
never improve. A simple way to combat this problem is to repeat the selection without
allowing it to choose the highest ranked sphere previously chosen. This will allow the
algorithm to choose the larger set of spheres, which will divide the object into more
regions for further refinement.

5.4 Eliminating the M edial Axis

The “Expand” algorithm, for reducing the set of medial spheres into a set suitable for use
in a sphere-tree, aimed to reduce the error in the approximation by distributing the error
evenly between all the spheres. The idea of stand-off distances can be used to generate
similar approximations without the construction of the medial axis approximation.

Generating such a sphere can be expressed as a constrained optimisation problem.
Starting with one of the spheres already generated, a new sphere can be created using an
optimisation algorithm to choose the position of the sphere that maices it cover as much
of the uncovered surface as possible for the desired stand-off distance. Algorithm 7 details
the SPAWN algorithm^ which grows a new sphere from each of the existing spheres and
chooses to keep the one that covers the most points. When no new sphere can be created
a sphere is constructed in the region of one of the uncovered points. The algorithm uses
an optimisation step to maximise the amount of the surface covered by each new sphere.

'The algorithm has been named SPAWN as each sphere grows from its predecessor.

CH APTER 5. IMPROVED MEDIAL A X IS METHOD 77

A lg o rith m 6 Select spheres using Expand.
In p u t : Medial spheres, S. Points to cover, P.

Majcimum allowable error, m axE rr.
O u tp u t : Selected spheres, T.

E xpand ("T, S, P, maxErr)
for all s G 5 do {expand spheres}

c <— center of sphere s
p point on the surface which is closest to c
Sr <r- m axE rr — l|p — c||

en d for

for all s G 5 do
Points[s] <— {} {list points in sphere]
for all p € P do

if s contains p th en
Points[s] <- Poinis[s] U {p}

end if
en d for

en d for

w h ile some of P is not covered do {select spheres}
bests <r- N IL
bestCount 0
for s G 5, s ^ T do

count <r- IlFomfsfsJII
if count > bestCount th en

bests i - s {higher ranked sphere}
bestCount <— count

en d if
en d for

T ^ T U {bests} {add bests to the set}

for all p G Points[bestS] do
for all s G 5 do

if p G Points[s] th en
Points[s] •<— Points[s] - {p}

end if
end for

en d for
end w h ile

{update points lists}

CHAPTER 5. IMPROVED MEDIAL AX IS METHOD 78

Figure 5.17: As the stand-off distance increases, the center sphere eventually makes corner
spheres redundant. However they also grow and make the center sphere redundant.

CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 79

As the optimiser manipulates the center of the sphere, the objective function computes
the radius of the sphere and evaluates how much of the surface it covers. As with the
“Expand” algorithm, this constructs a set of spheres that all have a desired stand-off
distance and hence a search is needed if a specific number of spheres is required.

5.5 Conclusions

This chapter has focused on improving the medial axis method for generating sets of
spheres to approximate rigid objects. This method used the medial axis as a basis for the
construction of a base set of spheres from which the sphere-tree can be constructed. The
biggest difficulty with this method is the generation of a reasonable set of surface points for
constructing the Voronoi diagram that approximates the medial axis. The emphasis was
shifted from constructing an accurate medial axis to forming a set of spheres that tightly
approximate the object. An adaptive sampling technique was presented, this ensures that
the set of spheres approximates the object to a given level of error by improving the worst
areas of the approximation first. While this does not necessarily give a good medial axis,
it provides a good set of spheres from which to construct the sphere-tree. The adaptive
sampling algorithm also uses extra spheres, which lie on non-medial vertices of the Voronoi
diagram, to ensure that the surface of the object is entirely covered. Thus the adaptive
algorithm does not require any initial samples to be generated as the object will be fully
contained within the initial Voronoi diagram. This will provide enough coverage for the
adaptive sampling algorithm to operate.

We also examined methods for reducing the number of spheres required to cover the
object. This is necessary for constructing successively tighter sets of spheres in the sphere-
tree. Hubbard’s algorithm used a merging strategy that was unable to distribute the in­
troduced error among the remaining spheres. Thus the resulting spheres could potentially
contain poorly fitting spheres. A number of alternative schemes were presented. These
aimed to improve the set of spheres generated from the set of medial spheres by allowing
the error to be distributed more evenly across the object. The Expand algorithm produces
sets of spheres that all have the same stand-off distance. This results in spheres that have
the same error if the body is convex and have very similar errors otherwise. This is a de­
sirable property for collision response as lumpy approximations may lead to odd looking
collisions. This algorithm uses a heuristic to choose a set of spheres to cover the object,
with the aim of minimising the number of spheres required. If a specific number of spheres
is required, a search algorithm is needed to find the stand-off distance that results in the
specified number. Finally this idea was used to develop an optimisation based alternative
to using the medial axis. This algorithm operates much the same as the Expand algorithm
but doesn’t require an approximation of the medial axis to be constructed.

CHAPTER 5. IMPROVED MEDIAL AXIS METHOD 80

A lgorithm 7 SPAWN sphere generation
In p u t : Set of points to cover, P. Maximum allowable error, maxErr.
O u tp u t : Set of spheres, S.

S pa w n ('5', P, maxErr)
while there are points in P do

p i— any point from P
s <- sphere that covers most points in P, with stand-off

distance maxErr, using p as an initial guess
5 <- 5 U {s}

{make initial sphere}

{make sphere}

rep eat
bests <— N IL {spawn new spheres}
bestCount ^ 0
for all s G 5 do

Si sphere that covers most points in P, with stand-off
distance maxErr, using Sc as an initial guess

count i— number of points from P that are within si
if count > bestCount th en

bests Si
bestCount count

end if
end for

{new best sphere}

if bestCount > 1 th en
5 < - 5 u { s }
for all p € P, p inside s do

P ^ P - { p }
end for

end if
un til bestCount = = 0

end while

{add sphere to set}

{point is now covered}

In p u t : Center of the sphere to evaluate, c. Spheres generated so far, S.
Points to cover, P. Maximum allowable error, maxErr.

O u tp u t : Measure of how much new surface the sphere covers, count.

S p a w n O b j e c t i v E (' c , S, P, maxErr)
p <r- closest surface point to c
Sc ^ c {make sphere}
Sr maxErr — ||p — c||

count ^ number of points from P inside s {evaluate metric}
re tu rn count

Chapter 6

Improved Sphere-Tree
Construction

Chapters 3 -5 critically analysed the Octree and Medial Axis methods for the construction
of sphere-trees. A number of improved algorithms were presented, each one identifying
weaknesses in the existing algorithms and aiming to make various levels of improvement.
The resulting algorithms are summarised as follows :

• G rid : this method of sphere generation is based on the generalisation of the octree
method, detailed in Section 3.1. The algorithm places spheres in a grid-like arrange­
ment but is allowed to choose the orientation, position, size and dimensions of the
grid to best suit the object’s geometry, see Section 3.3.

• M erge : similarly to Hubbard’s original algorithm, the set of spheres from the
medial axis approximation is reduced down to the specified number by successively
merging pairs of spheres. A number of improvements have been made. Instead of
using Ritter’s approximate bounding sphere algorithm a more accurate algorithm is
used. Also, special attention is given to merges that actually reduce the error in the
approximation and to ensuring that each sphere always has neighbours with which
to merge, see Section 5.3.1.

• B u rs t : the set of spheres produced from the medial axis is reduced, to contain the
specified number of spheres, by successively removing (bursting) spheres. When a
sphere is removed, the surrounding spheres must expand to cover the areas that have
been left uncovered. This allows neighbouring spheres to collectively absorb the error
introduced during the reduction. As with the merge algorithm, special attention is
paid to sphere removals that actually reduce the error in the approximation, see
Section 5.3.2.

• E xpand : the medial spheres are expanded so that they all have the same stand-off
distance from the surface. The set of spheres is then reduced to eliminate spheres

81

CHAPTER 6. IMPROVED SPHERE-TREE CONSTRUCTION 82

that are no longer required to maintain coverage of the object. This allows ALL
the remaining spheres to collectively absorb the error in the approximation, see
Section 5.3.3.

• S paw n : this is similar to the expand method except tha t the spheres are generated
using an optimisation algorithm, which aims to cover as much of the object as it can
with each sphere (for a given stand-off distance). This allows the algorithm more
freedom in choosing spheres than the expand algorithm and does away with the need
to construct the medial axis approximation, see Section 5.4.

Each of these algorithms were discussed in the context of approximating the object
(or an area of it represented by a set of sample points) using a single set of spheres. The
algorithms do not deal directly with the construction of a hierarchical representation of
the object.

The job of constructing a hierarchy of spheres to represent the object can be expressed
as an independent generic algorithm that relies on the presented algorithms to approxi­
mate the required areas of the object. The controlling sphere-tree generation algorithm
dictates how the sphere-tree is constructed and how the object is divided at each level.
The overall process can thus be broken up into a number of phases; the sphere-tree con­
struction algorithm; the sphere generation algorithms (which are used by the sphere-tree
construction algorithm) and; the sphere-set optimisation algorithms, which can be used to
improve the fit of a set of spheres (generated by the sphere generation algorithms) prior
to their inclusion in the hierarchy. This chapter deals with the higher level algorithms
and presents generic sphere-tree construction and optimisation algorithms. A method for
determining the appropriate number of children to assign each node is also presented.

6.1 Generic Sphere-Tree Construction

This algorithm represents a generic way of constructing sphere-trees using any of the pre­
viously presented algorithms, which fit a set of spheres to a section of the given object.
The root of the hierarchy is always the smallest sphere that can enclose the object, which
can be approximated using R itter’s algorithm [89] or computed more exactly using algo­
rithms by Gartner [29], Weltz [108] or White [109]. For successive levels, the algorithm
controls the generation of a hierarchical representation of the object by partitioning it into
a number of sections, each of which is covered by one of the spheres in the generated set.
Each of these partitioned sections of the object will then be recursively approximated by
a smaller sphere-tree, which will become one of the branches of the main tree. The first
set of spheres must cover the entire object while the rest must cover sub-sections of the
object. The individual sphere generation algorithm dictates how this is achieved.

For algorithms relying on the medial axis, the adaptive algorithm can be used to
update the medial axis approximation so that it can provide a tight fitting set of spheres.

CHAPTER 6. IMPROVED SPHERE-TREE CONSTRUCTION 83

These sphere generation algorithms maintain a Voronoi diagram, which approximates the
medial axis of the object. When the sphere generator is asked to approximate a region
of the object, the Voronoi diagram is updated so that it contains a set of spheres that
approximates the region to a desired level. This allows the medial axis to be updated
so that the set of spheres, which will form the basis of the approximation, is of sufficient
quality to allow a tight approximation. For this we require tha t the set of spheres contains
some multiple of the target number of spheres and that the worst sphere in the set has an
error that is a fraction (typically ^ to |) of the parent sphere’s error.

As the sets of spheres can be generated with a number of algorithms, we need to be
able to determine the regions of the object covered by each sphere in an arbitrary set of
spheres. The simplest method to achieve this would be to simply use any part of the object
(or its surface) that is contained within the parent sphere. However, the spheres generated
by the sphere generation algorithms could contain large areas of overlap inside the object.
This is particularly true when trying to achieve tight fitting sets of spheres. Thus there
will be large areas of the object that are shared between sets of children spheres. This
would be very wasteful as the same area will be covered many times, which would further
contribute to the overlap.

A more desirable situation is to divide the object into sub-regions with as little overlap
as possible. This is achieved by dividing any overlapping regions between the spheres. In
a region covered by a number of spheres, each part of the object need only be covered
by one set of children spheres. It is not crucial to produce approximations with solid
interiors, therefore we require that only the surface of the object be completely covered.
It is advantageous to have the interior of the object filled with spheres as this reduces the
chances of tunnelling but it is not essential. Some algorithms, particularly those based on
the medial axis, usually fill the interior of the object quite well.

The surface of the object is represented by an arbitrarily large set of sample points.
Thus to segment the object into regions we simple choose the sub-set of points that
represents the surface within that area. For surface points covered by a single sphere the
situation is simple. Each point must be covered by at least one of the children spheres.
When a pair of spheres overlap, the intersection of the spheres is divided in two using a
plane. The points inside the overlap are assigned to one of the spheres based on which
side of the dividing plane they lie. An initial division plane can be computed as the plane
of intersection of the two spheres. The following equation represents this plane for two
spheres 5 i and Sq located at (x i , y i , z i) and (x2,2/25 22) with radii r i and T2 respectively :

2x(x2 - xi) + 2y(y2-yi) + 2z(z2 - zi) +
[r | - (x^ + yl + zl)] - [rf - {xj + yl + zf)] = 0

CHAPTER 6. IMPROVED SPHERE-TREE CONSTRUCTION 84

Figure 6.1 shows how a triangular object is divided into four regions. The dividing
planes, shown in Figure 6.1(a), are constructed so that the plane passes through the points
of intersection of the circles (spheres in 3D). As the sets of spheres can be generated by
one of a number of different algorithms, they are essentially of arbitrary configuration.
Each set of spheres can be made up of spheres of varying size, both small and big. As
illustrated, the region associated with the large central sphere is much bigger than the
regions associated with the other spheres. Thus, the children of this sphere will potentially
give a looser fit than the other sets of children. As the two top spheres are quite loose
fitting it is possible to move their dividing planes closer to the center of the larger sphere
as shown in Figure 6.1(b). It is very desirable that the regions divide the object as evenly
as possible without affecting the fit of the spheres. The dividing plane between a pair
of spheres is moved so as to get more of the shared points to be assigned to the smaller
spheres.

Once the object has been divided up into a number of regions, a new set of spheres
can be created. These new spheres are now only required to cover the paxts of the surface
that axe not covered by any other spheres. A minimum error sphere can be fitted around
each set of points to produce a tighter approximation, as shown in Figures 6.1(c). This
process can then be repeated to further reduce the area to be covered by the large sphere,
see Figure 6.1(d). Algorithm 8 presents the generic sphere-tree construction algorithm in
its recursive form.

6.2 Sphere Set Optimisation

The generic sphere-tree construction algorithm, described above, sub-divided the object
in a recursive fashion, approximating each area of the object with a set of spheres. The
algorithm can utilise any of the sphere generation algorithms presented in Chapters 3 - 5 for
this approximation. Each of the algorithms aimed to create a set of spheres to approximate
the required region of the object as accurately as possible. As there is potentially a large
number of combinations to be considered, the algorithms use heuristics to reduce the
computational costs. While these heuristics generally do lead to good solutions they can
often lead to sphere sets that still contain some residual error. The tightness of fit varies
between algorithms and results from the way in which the spheres are generated.

For example, Hubbard’s successive merging algorithm (Section 4.3) uses a greedy al­
gorithm to choose which pair of spheres to combine. This algorithm does not consider
the consequences of its operation on the final result - it is only concerned with choosing
the best pair of spheres to combine for any given iteration. The expand method grows
all the spheres to a given stand-off distance and then selects a minimal set of spheres i.e.
one in which there are no redundant spheres. As the algorithm progresses, new spheres
are selected so as to try to cover the most previously uncovered surface. However, this
does not guarantee to produce the globally optimal set of spheres. Also, as many of the

CHAPTER 6. IMPROVED SPHERE-TREE CONSTRUCTION

Division Plane

(a) Initial Divisions

Original Plane /
\ Improved Plane

(b) Improved Divisions

Refitted Sphere Further Refined Plane

(c) Resulting Regions (d) Further Refinement

Figure 6.1: Dividing the object into distinct regions using dividing planes.

CHAPTER 6. IMPROVED SPHERE-TREE CONSTRUCTION 86

A lgorith m 8 Generic Sphere Tree Construction.
In p u t ; Set of points representing object, P.

Tree depth, d. Branching factor, b.
O u tp u t : Sphere-tree covering the object, T.

ConstructT r e e ('7’, P, d, b)
T r o o t BOUNDINGSpHERE(P) {minimum bounding sphere}

MAKECHILDREN(Troot, -P, d, b, 1) {make sub-trees}

In p u t : Sphere-tree node for which to create children, N .
Region of the object to cover, P. Tree depth, d.
Branching Factor, b. Current level of recursion.

O u tp u t : Sub-tree which has node N as its root

MAKECHlLDREN('Af, P, d, b, level)
S Set of spheres with at most b spheres, covering the surface

defined by the set points P (using the chosen sphere set
generation algorithm)

O p t IMISESp h e RES(S, P) {optimise if you like}

for a ll s e 5 d o
H^{}
for a lH € 5, f s d o

i f t overlaps s th e n
p < r- plane between s t {dividing planes}
H ^ H u { p }

en d if
en d for

Q <— {} {sub set of points}
for a ll p G P d o

if s contains p and p is in the region defined by H th e n
Q ^ Q u { p }

en d i f
en d for

s' <r- minimum error sphere around Q
^children ^ ^children U {«'} {add sphere to tree}

i f level < d th e n
m a k eC h il d r e n (s, Q, d, b, level+1) {recursively make sub-tree}

en d if
en d for

CHAPTER 6. IMPROVED SPHERE-TREE CONSTRUCTION 87

algorithms are based on the original medial axis method, they rely on the set of spheres
constructed from the medial axis approximation. Thus their final accuracy is dictated by
the accuracy of the medial axis and the number of vertices within it. The adaptive medial
axis algorithm allows larger sets of spheres to be constructed as desired but some residual
error can still be present.

As a final stage of improving the tightness of fit, a general purpose optimisation algo­
rithm can be used. Such an algorithm would be free to manipulate every sphere in any
way it can so as to achieve a better fitting set of spheres. Figure 6.2(a) shows a pair
of spheres that approximate a section of an object. Sphere A obviously fits the surface
tighter than B. As the larger sphere has a worse fit than the smaller one it is desirable
to make sphere A slightly looser so that the accuracy of sphere B can be improved, as
illustrated in Figure 6.2(b) & Figure 6.2(c).

It is desirable that the maximum error be minimised within any set of spheres, but if we
cannot decrease this error we would like to decrease any other errors, thus the optimisation
function should consider both the worst error and the RMS error. This is achieved with
the following metric :

E = MAX^QError{Si) + weight *

where :

^ Err or [Si)
^ N (̂ -1)
1=0

E is the error associated with the set of spheres.
Si is sphere i from the set of spheres S,
Error{x) is a measure of how well x fits the surface,
N is the number of spheres in the set,
weight is the relative weighting between the maximum error and

the RMS error.

There are many different functions for evaluating the fit of a sphere. Section 4.3
details a method that measures the maximum distance from a set of points, on the surface
of the object, to a sphere. This is of course an approximation, as the real error should
be the maximum distance from the sphere to the surface. Section 5.1 uses a metric that
accurately computes the fit of a sphere to the surface of a convex object. It can also serve as
an over-approximation of the error for non-convex surfaces. When computing his results,
Hubbard uses a more computationally intensive method that finds the point on the object
that is closest to each of a number of sample points. These are points that are distributed
across the section of the sphere that lies outside the object [49]. Hubbard generates his
sample points using a dodecahedron, which produces 12 sample points. A more general
sampling scheme could use an isohedron\ which will have | -H 2 vertices, where n is the

'An Isohedron is a convex polytope in which each face is an equilateral triangle of unit area.

CHAPTER 6. IMPROVED SPHERE-TREE CONSTRUCTION 88

A B

(a) Sub-Optimal

New CoverNew Sphere

A B

(b) Adjusted Sphere

New Sphere

A B

(c) Improved Neighbour

Figure 6.2: Adjusting one of the spheres covering the object can allow the other spheres to
cover a different area of the object and thus decrease the worst error of the approximation.

CHAPTER 6. IMPROVED SPHERE-TREE CONSTRUCTION 89

number of faces. The isohedron can be generated by recursively sub-dividing the faces of
an equilateral octahedron (or any shape with equilateral faces). This allows larger sets of
evenly spaced points to be generated on the surface of the sphere.

If the optimisation algorithm were allowed to manipulate all the spheres simultane­
ously, there would be a large number of variables to consider (4 variables per sphere). This
would make it difficult for the algorithm to find a good solution so a more structured ap­
proach is necessary. The approach used is an iterative one. Each iteration of the algorithm
takes each sphere in turn and tries to adjust its position and radius so as to improve the
overall error in the approximation. The spheres can be considered in round-robin order
or in order of increasing/decreasing error. We consider the spheres in order of decreasing
error as we are most interested in improving the worst spheres first. Algorithm 9 presents
the top level algorithm, which manipulates the spheres in order of decreasing error. The
objective function used to update and evaluate the sphere set is given as Algorithm 10.

A lgorithm 9 Sphere Optimisation.
Input : Set of spheres, S. Points to be covered, P.
O utput : Updated set of spheres, S.

O p t i m is e S p h e r e s ("5, P)
w hile the sphere set is still improving do

done •f- {}
for n = l to ||5|| do

worstErr ^ 0
w ors ts <— N IL
for all 5 € 5, s ̂ done do

error error associated with sphere s
if error > worst Err then

w ors ts <— s
worstErr <- error

end if
end for

done <r- done U {■u;orsf5}

S <r- optimise spheres in set S by manipulating
w ors ts to minimise OptFunc {optimise spheres}

end for
end w hile

{flag as already done}

{sphere with highest error}

CH APTER 6. IMPROVED SPHERE-TREE CONSTRUCTION 90

A lgorithm 10 Optimisation Objective Function.
Input : Set of spheres, S. Points to be covered, P.

Sphere to manipulate, manSph.
New sphere, repSph.
Weighting factor between MAX and RMS errors, weight

O utput : returns error metric for new configuration.

O p t F u n c (̂iS, manSph, repSph, P, weight)
for all s € 5 do {points in spheres}

Points[s] <— set of points, from P, inside s
end for

for all p G Points[TnanSph], p not inside repSph do {ensure coverage}
closestS •«— closest sphere to p
Points[closestS] Points[closestS] + {p}

end for

for all p E P, p inside repSph do {free covered points]
for all s G 5 do

Points[s] <r- Points[s] — {p}
end for

end for

T <— S - {manSph}

worstErr Error(repSph)
sum SqE rr ■<— worstErr"^ {evaluate metric}
for all s G r do

newS f - FlTSPHERE(Points[s])
e ERROR(newS)
sum SqE rr sum SqE rr + {accumulate term}
if e > worstErr then

w orstErr e
end if

end for

return worstErr * weight + ^

CHAPTER 6. IMPROVED SPHERE-TREE CONSTRUCTION 91

6.3 Balancing Work vs. Error

The generic sphere-tree construction algorithm, presented in Section 6.1, is capable of
using a number of different algorithms to construct the sphere sets for the sphere-tree. The
algorithm for constructing these hierarchies uses the chosen sphere generation algorithm
to approximate a region of the object with a specified number of spheres. This number,
Nc, is the maximum branching factor of the hierarchy. Thus each non-terminal node in
the tree will have up to Nc child nodes. As the value of Nc increases, so does the number
of spheres that will need to be tested if their parent is involved in an overlap.

The value of Nc is given as a parameter to the sphere-tree construction algorithm,
and is entirely a matter of choice. None of the algorithms presented try to determine a
suitable value for Nc- The number of spheres required to approximate a region of the object
will largely depend its geometry. Take for example the 2D shape featured in Figure 6.3,
which has been approximated with 5 and 8 circles. While using more (i.e. 8) circles
to approximate the object does reduce the error in some parts, it actually increases the
worst error and thus makes the approximation worse. There is also much greater overlap
between the spheres which means there is a higher likelihood that the sphere-tree traversal
algorithm will have to traverse multiple sub-trees. Thus, using a larger number of spheres
does not necessarily give a better approximation and it certainly does increase the work
load for the collision detection algorithm.

It is questionable whether we wish to always use the maximum allowable number of
spheres to approximate the object. If there is only a small increase in the tightness of the
set of spheres then it is not worth increasing the computational demands on the collision
handling system as there will only be a small gain in accuracy (if any at all). Therefore,
having generated the maximum number of spheres it may often be desirable to further
reduce the number of spheres used if it only introduces a small amount of error.

It is therefore necessary to be able to determine if the error introduced by the removal
of some of the spheres is acceptable. It is easy to compute the reduction in computation
required for the collision handling system. For example, if there is one less sphere, then
the computation required for that set of siblings will have decreased by where N„ is
the original number of spheres. This generalises to ^ when m spheres are removed. The
allowable increase in error can either be a function of the work saved () or a constant
(say 5%). If the allowable increase in error is a function of the amount of work saved, it is
desirable that it become more difficult to remove each successive sphere so as to prevent
the algorithm throwing away too many spheres. Thus, a penalty is associated with each
sphere removed. The following equation captures this generally as :

Allow{N) = Error{No) * (1 -I- ^ ^ * v^° ^ ̂ B) (6 .2)

CHAPTER 6. IMPROVED SPHERE-TREE CONSTRUCTION 92

(a) 5 spheres

(b) 8 spheres

Figure 6.3: Illustration of a shape that does not require the full number of spheres to
achieve a good approximation.

CHAPTER 6. IMPROVED SPHERE-TREE CONSTRUCTION 93

where :
Allow(AT) is the maximum allowable error for N spheres,
No is the original number of spheres,
Ervor{No) is the error present with Ng spheres,
V h B are scalars in the range {0..1},
A is a positive scalar.

The value of v dictates how difficult it is to remove successive spheres from the set. If
we choose a value such that 0 < ?; < 1 then it will become increasingly more difficult to
remove each successive sphere. For example using a value of u = 0.95 and No = S then one
sphere can be removed provided the resulting error is less than 1 + 1 *0.95 = 1.11875 times
the error when using all 8 spheres. When removing a second sphere this number becomes
1 + I * 0.95^ = 1.225625, which is less than twice the increase in the allowable error. The
lower the value of v the harder it becomes to remove each successive sphere. The choice
of these parameters is up to the developers who are using the sphere-trees^. Algorithm 11
shows an algorithm that can be used, by the generic sphere-tree construction algorithm,
to discard unnecessary spheres from the set prior to its inclusion in the sphere-tree.

6.4 Conclusions

In previous chapters, a number of improvements to the existing methods of creating sphere-
trees were discussed. These improvements led to a number of new algorithms for approx­
imating an object (or a section of an object) using a limited number of spheres. This
chapter looked at a generic way of using these algorithms to construct sphere-trees. At­
tention was paid to the amount of overlap that could exist in these sets of spheres and the
object was sub-divided in such a way as to minimise the redundancy introduced into the
sphere-tree and to make the divided regions similarly sized. As many of the algorithms
still have potential for generating sphere sets that contain some residual error, a generic
sphere set optimisation algorithm was presented. This manipulated the sets of spheres
with the aim of further improving the fit, and can be applied to each sets of spheres to
minimise their error prior to incorporating them into the sphere-tree. Finally, a more com­
plicated optimiser was presented. This algorithm not only aims to minimise the amount
of error in a set of spheres but also tries to eliminate unnecessary spheres so as to reduce
the computational demands of the narrow phase traversal.

^When constructing sphere-trees for this thesis, the following values were generally used : A = b,v =
0.75, B = 0.0. This allows an increase of about 2.5% when removing one sphere from a set of 8 and 4.375%
for the second sphere. Another commonly used set of parameters is >1 = inf, v = l , B = 0.05, which allows
spheres to be removed as long there is less than a 5% increase in error, i.e. 105% of the original error.

CHAPTER 6. IMPROVED SPHERE-TREE CONSTRUCTION 94

A lgorith m 11 Remove spheres that contribute little to the approximation.
In p u t : Set of spheres, S. Points to be covered, P.

Parameters for Equation 6.2, A , B k, v.
O u tp u t : Updated set of spheres, s.

B a l a n c e S p h e r e s ('5, P, A, B, v)
S <r- O p t im is e S p h e r e s (5 , P)
S ta r tE rr = maximum error associated with spheres in S
No = ||5||

{initial optimise}

{initial size}

for N = {No — 1) to 1 do
allowedErr <— S ta r tE rr + (1 + * yNo-N-i _j_

T ^ S reduced, with burst algorithm, to have N spheres
E r r <r- maximum error associated with spheres in T

i f E rr > allowedErr th e n ^try to get error below allowedErr}
T ■<- O p t im is e S p h e r e s (T, P)
E r r maximum error associated with spheres in T

en d if

i f E r r > al lowedErr th en
break

e lse
5 - h T

en d if
en d for

{done removing spheres}

{update sphere set}

i f ||5|| < No th en
S •(- O p t im is e S p h e r e s (5 , P)

end if
{final optimise}

Chapter 7

Evaluation

Chapters 3 and 4 presented two existing algorithms for the construction of sphere-trees.
These methods were examined and a number of improvements were proposed. These devel­
opments aimed to improve the tightness and consistency of the approximations generated.
Chapter 6 presented a generic sphere-tree construction algorithm that used these methods
to approximate areas of the object when constructing the hierarchies. Also presented was
a generic optimisation algorithm for further improving the tightness of the spheres created.

Sphere-tree construction algorithms can be thought of as falling into two broad cate­
gories. The first category consists of algorithms, such as the octree based algorithms, that
are primarily concerned with the spatial localisation properties of the sphere-trees, i.e.
their ability to narrow in on the areas of contact between two objects. The second class
are the object approximation algorithms, which aim to approximate the object geometry
closely so as to reduce the number of false positives, and hence the amount of wasted
computation in the sphere-tree traversal. For interruptible collision detection, close ap­
proximation of geometry is particularly important as the spheres are used to approximate
the points of contact and to compute the response.

This chapter compares the various algorithms for both object approximation and
sphere-tree construction. The algorithms are compared using a number of simple geo­
metric shapes including a cube, an ellipsoid, a cylinder, a torus, a cone, an “S” shaped
object created using NURBS surfaces and a block with square cross sections. A number of
commonly used complex models have also been used, including the B unny\ the Cow and
the Dragon^. These meshes have been simplified, to contain about 1500 triangles, using
Garland’s QSlim software and can be seen in Figure 7.1.

The initial analysis is concerned with the geometric properties of the sphere-trees
resulting from the various algorithms. Later analysis considers the use of the hierarchies
in an interruptible collision handling system.

^Data from http://graphics.stanford.edu/data/3Dscanrep/
^Data from http://graphics.cs.uiuc.edu/~garland/research/quadrics.html

95

CHAPTER 7. EVALUATION 96

(b) A Block

(c) Bunny

(e) Dragon

Figure 7.1: Some of the models used for testing the algorithms.

CHAPTER 7. EVALUATION 97

7.1 Geometric Approximations

Chapter 5 considered a number of improvements that can be made to the medial axis
method for sphere-tree construction, originally presented in Chapter 4. A sub-problem
within the sphere-tree construction algorithm is to approximate a region of an object with
a number of spheres. The algorithm uses an approximation of the medial axis as a guide
to where spheres should be placed. Having constructed the medial axis, a large number of
spheres were constructed so they were centered on the medial axis and touched the surface
at a number of points. An iterative merging algorithm was utilised to reduce this set of
medial spheres down to the number required for the sphere-tree.

This section first considers the adaptive medial axis construction algorithm, presented
in Section 5.1, comparing it to a regular sampling algorithm based on Hubbard’s. The
second stage of the algorithm, the sphere reduction/selection stage, is next considered and
finally the sphere-trees produced by the algorithms are compared in terms of geometric
quality of fit.

7.1.1 S trategy

There are a number of factors that must be considered when approximating an object with
spheres. As stated in Section 2.3, the spheres should approximate the object’s surface to
a high degree of accuracy and should cover the entire object. The tightness of fit can be
measured in terms of the distance from the surface of the spheres to the actual surface
of the object or in terms of the volume within the spheres that is not occupied by the
object, see Figure 7.2. For the purposes of approximating objects closely, the maximum
distance from the surfaces of the spheres to the object is the most important factor as this
represents the largest gap that can be present in the approximated collision. The amount
of the object not covered by the approximation can be either the volume of the object
that is not contained within a sphere or the amount of surface area that is not covered by
spheres, see Figure 7.3. It is critical that the surface of the object is completely covered
so as not to miss any collisions. Although filling the interior of the object is not critical
it can be beneficial as it reduces the chances of missing collisions between time-steps, as
discussed in Section 2.1.

Measuring The W asted and Uncovered Volumes

Measuring the volume of the spheres that is outside the object and the volume of the object
not covered by spheres are both essentially integration problems. These regions can be
expressed as the boolean difference between the sphere set and the model. The region of
wastage can be expressed as S — 0 and the uncovered region as O — 5, where O is the object
being approximated and S is the union of the spheres. Monte Carlo integration techniques
allow us to determine these volumes when they cannot be determined analytically. The

CHAPTER 7. EVALUATION 98

Wastage

(a) Maximum Distance

Figure 7.2: The error in an approximation can be measured as the maximum distance
from the surface of the spheres to the object or as the volume of the wasted portions of
the spheres.

Uncovered Surface Uncovered Volume

(a) Surface Area (b) Uncovered Volume

Figure 7.3: The amount of the object not covered by spheres can be measured using either
volume or surface area

C H APTER 7. EVALUATION 99

Hit or Miss integration algorithm expresses the solution in terms of a number of random
points sampled from a bounding region, the domain of integration, see Figure 7.4(a). The
wasted volume, Vw and the uncovered volume Vu can be determined as follows :

= (7.1)

K = ^ H (7.2)

where :
is the volume of the sphere wastage,

v ; is the volume of the uncovered regions of the object.
is the number of samples that fall in a sphere but not in
the object.

Nu is the number of samples that fall in the object but not
in a sphere.

Nt is the total number of samples tested,
is the volume of the boundary region.

An alternative to the hit or miss method is the Mean Sample method, illustrated
in Figure 7.4(b). In this method we distribute samples across two dimensions of the
integration domain, say the X Y plane, and project rays along the third dimension. The
height associated with each sample is the length of the ray tha t intersects the region we
are interested in. By averaging a large number of these samples we compute the height
of the cuboid that represents a volume equal to tha t which we are trying to determine.
Thus the volume can be calculated as :

V = La* Ad (7.3)

where :
V is the volume to be integrated.
La is the length of the ray associated with the mean sample,
Ad is the area of the domain of integration i.e. the X Y face

of the bounding box.

As with any Monte Carlo integration, both these methods are subject to a statistical
error. The mean sample method is more statistically sound than hit or miss as it converges
to the correct answer quicker and hence requires fewer samples. In order to improve the
convergence of the results, we use the Miser integration algorithm which first distributes
samples randomly and then focuses its effort in regions of high variance [85].

CHAPTER 7. EVALUATION 100

(b) Mean Sample

Figure 7.4: Integrating the wasted and uncovered volumes using Monte Carlo techniques.

7.1.2 M edial Axis C onstruction

Section 5.1 detailed a number of problems associated with approximating the medial ajcis.
The algorithm constructs the Voronoi diagram for a set of points distributed across the
surface of the object. The internal vertices of the Voronoi diagram were then used to
approximate the medial axis, upon which spheres were to be centered. The question of
how many samples should be used, and where they should be placed, is an important
one. The problem of choosing surface samples sometimes leads to the medial axis being
poorly approximated. Hubbard used the notion of gap crossing cells to address some of
the problems that can be experienced. However, this scheme does not ensure that the
spheres generated from the medial axis will fit the surface to a desired level or will even
cover the entire object.

Thus, an adaptive sampling scheme was developed. This allows extra samples to be
added to the surface so as to generate spheres whose error is bounded to a desired value.
In order to ensure that the entire object is covered, the algorithm adds extra spheres using
Voronoi vertices that do not lie on the medial axis. The addition of these extra spheres,
which ensure coverage of the surface, is very necessary in order to generate a faithful
approximation. As discussed in Section 5.2, the adaptive sampling algorithm allows for
this quite nicely. New spheres can be chosen so as to minimise the error introduced into
the approximation or so that they will be quickly replaced by the adaptive algorithm.
In the experiments conducted for this thesis the latter performed marginally better and
therefore has been chosen for the purposes of evaluation.

Figures 7.5 - 7.8 compare the adaptive sampling scheme with H ubbard’s relaxation
based algorithm. The first graph (a) shows the amount of the object that is covered by
the set of medial spheres, results are shown in terms of surface area and object volume.
The graphs only show results for Hubbard’s algorithm as the adaptive algorithm covers the

CHAPTER 7. EVALUATION 101

25

20

15

10

5

0
0 200 400 600 800 1000

Sam ples

Surface Area ---------------- V o lu m e --

(a) Coverage (Regular Sampling)

0.7

0.6

0.5

0.2

500 1000 1500 2000 2500
S p h eres

Adaptive — R egular

(c) Max Distance

3000

2500

2000

1500

1000

500

0
0 200 400 600 800 1000

S am ples

Adaptive R egular

(b) Spheres per Sample

0.25

0.2

0.15

0.1

0.05

0
500 1000 1500 2000 2500

S p h eres

A d a p t iv e R egular

(d) RMS Distance

0.16

0.14

0.12

o 0.08

0.06

0.04 ■■■......

0.02

500 1000 1500 2000 2500

Adaptive

S p h eres

R egular

200
180
160
140

<i>
S’ 120
S 100 ̂ 80

40

500 1000 1500 2000 2500

(e) Variance

S p h eres

A d a p t iv e R egular

(f) Wasted Volume

Figure 7.5: Comparison of Regular vs. Adaptive sampling for the construction of the
medial set of the Bunny.

Er
ro

r
Er

ro
r

%
U

nc
ov

er
ed

CHAPTER 7. EVALUATION 102

35

30

25

20

15

10

5

I -

200
0

400 600 10000 800
Sam ples

Surface A rea ----------------- Volume -

(a) Coverage (Regular Sampling)

3000

2500

2000

1500

1000

500

0
200 400 600 800 10000

S am p les

Adaptive --------- R egular

(b) Spheres per Sample

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
500 1000 1500 2000 2500

S p h eres

Adaptive --------- R egular - —

(c) Max Distance

0.18

0.16
0.14
0.12

0.1

0.08
0.06
0.04
0.02

0
500 1000 1500 2000 2500

S p h e res

A d a p t iv e R egular

(d) RMS Distance

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0
1000 1500 2000 2500500

S p h eres

Adaptive — Regular

(e) Vciriance

300

250

200

150

100

50

0
500 1000 1500 2000 2500

S p h eres

A d a p t iv e R egular -

(f) Wasted Volume

Figure 7.6: Comparison of Regular vs. Adaptive sampling for the construction of the
medial set of the Cow.

Er
ro

r
Er

ro
r

%
U

nc
ov

er
ed

CHAPTER 7. EVALUATION 103

60

50

40

30

20

10

0
0 200 400 600 800 1000

Samples

Surface Area ---------------- V o lu m e--

(a) Coverage (Regular Sampling)

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
500 1000 1500 2000 2500

Spheres

Adaptive Regular

(c) Max Distance

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
500 1000 1500 2000 2500

Spheres

Adaptive Regular

(e) Variance

2500

2000

S 1500

1000

500

0 200 400 600 800 1000
Samples

Adaptive --------- Regular -

(b) Spheres per Sample

0.18
0.16
0.14
0.12

UJ 0.08

0.06
0.04
0.02

500 1000 1500 2000 2500
Spheres

Adaptive - Regular

(d) RMS Distance

450
400
350
300
250

200
150

100

50
0

500 1000 1500 2000 2500
Spheres

A d a p tiv e Regular

(f) Wasted Volume

Figure 7.7: Comparison of Regular vs. Adaptive sampling for the construction of the
medial set of the Dragon.

CHAPTER 7. EVALUATION 104

30

25

20

15

10

5

0
200 400 6000 800 1000

Sam ples

Surface Area ----------------- Volume —

(a) Coverage (Regular Sampling)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
500 1000 1500 2000 2500

S p h eres

A d a p t iv e Regular

(c) Max Distance

3000

2500

2000

1500

1000

500

0
0 200 400 600 800 1000

S am ples

Adaptive R egular —

(b) Spheres per Sample

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
500 1000 1500 2000 2500

S p h eres

A d a p t iv e R egular

(d) RMS Distance

0.16

0.14

0.12

o
ill

0.08

0.06

0.04

0.02

500 1000 1500 2000 2500

Adaptive

S p h eres

R egular

(e) Variance

120

100

500 1000 1500 2000 2500
S p h eres

A d a p t iv e R egular

(f) Wasted Volume

Figure 7.8: Comparison of Regular vs. Adaptive sampling for the construction of the
medial set of the cube.

CHAPTER 7. EVALUATION 105

entire object. For the more complex models, the regular sampling scheme often provided
rather poor coverage of the object. As the number of samples increases the coverage
generally improves, but while the volume of the uncovered regions is reduced to nearly
zero there is still a large amount of the surface left uncovered, as seen in Figures 7.5(a) -
7.8(a). This is very undesirable as it can lead to collisions being missed and the objects
inter-penetrating. The adaptive algorithm ensures tha t the surface, represented by an
arbitrarily large set of points, is completely covered. Thus gaps can be avoided as long
as the set of sample points is sufficiently dense. The second graph (b) of each set shows
the number of medial spheres generated for a given number of samples. It is interesting
to note that for both algorithms this relationship is pretty much linear.

The third and fourth graphs (c & d) in each set compare the algorithms in terms of
the distance from the surface of the spheres to the surface of the object. This basically
measures how far the spheres protrude past the surface. The adaptive algorithm generally
exhibits a lower worst error than using regular sampling, although for some models it
starts out higher, as seen in Figures 7.5(c) & 7.7(c). However, as the adaptive sampling
algorithm aims to improve the worst fitting sphere at each iteration the approximation
improves quite quickly. The adaptive algorithm also often exhibits a lower variance in the
distances from the spheres to the surface, graph (e). This is due to the algorithm choosing
to improve the worst fitting sphere at each iteration. Thus spheres with large error are
replaced while those with lower values are left alone. The sixth graph (f) shows the volume
of the sphere set that does not cover part of the object. This was measured using the mean
sample integration technique described in Section 7.1.1. Again, for the more complicated
models the adaptive algorithm performs much the same as regular sampling. However for
simpler models the adaptive algorithm has much less wastage.

7.1.3 Sphere Selection

In Section 5.3.3, a novel algorithm for sphere set reduction was presented. The algorithm
first expanded all the spheres so tha t they protruded past the surface of the object by a
given amount. The algorithm then selected a sub-set of the spheres, which covered the
surface. Two heuristics were presented for the selection of the spheres; the first was to
select the sphere that covered the most previously uncovered surface area (we’ll call this
“Max Cover”); the second was to choose the sphere that eliminated the largest number of
the remaining spheres (we’ll call this “Max Elim”).

Figures 7.9 - 7.14 compare these two heuristics for a number of geometric models. The
first graph (a) of each set shows the number of spheres chosen to approximate the object
with a given stand-off distance. The second (b) shows the minimum stand-off distance,
found using an adaptive search algorithm, required to select a certain number of spheres.
Table 7.1 shows the results of an “analysis of variance” (ANOVA) comparison to test the
hypothesis that the mean number of spheres selected with each algorithm is the same.

M
in

.
N

um
.

Sp
he

re
s

M
in

.
N

um
.

Sp
he

re
s

M
in

.
N

um
.

S
ph

er
es

CHAPTER 7. EVALUATION

50
45
40
35
30
25
20
15
10
5
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Required Standoff D istance

Max C over --------- Max Elim -----

(a) Required Stand-off Distance

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0 5 10 15 20 25 30 35 40 45
R equired N um ber of S p h e re s

Max C over --------- Max Elim —

(b) Required Number of Spheres

Figure 7.9: Comparison of sphere selection heuristics for the Bunny.

50
45
40
35
30
25
20
15
10
5
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Required Standoff D istance

Max C o v e r Max Elim

(a) Required Stand-off Distance

0.8

0.7

0.6

0.4

0.2

0.1

0
2 4 6 8 10 12 14 16 18 20 22

R equired N um ber of S p h e re s

Max C over Max Elim

(b) Required Number of Spheres

Figure 7.10: Comparison of sphere selection heuristics for the Cow.

45
40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Required Standoff D istance

Max C over --------- Max Elim

(a) Required Stand-off Distance

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0 5 10 15 20 25 30 35 40 45 50
R equired N um ber of S p h e re s

Max C o v e r Max Elim —

(b) Required Number of Spheres

Figure 7.11: Comparison of sphere selection heuristics for the Dragon.

M
in

.
N

um
.

Sp
he

re
s

M
in

.
N

um
.

Sp
he

re
s

M
in

.
N

um
.

S
ph

er
es

CHAPTER 7. EVALUATION

45
40

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
R equired Standoff D istance

Max C over --------- Max Elim -

0.7
V
g 0.6

0.5

0.4

0.3

0.2

5 10 15 20 25 30 35 40 45 50
R equired N um ber of S p h e re s

Max C over --------- Max Ellm —

(a) Required Stcind-ofF Distance (b) Required Number of Spheres

Figure 7.12: Comparison of sphere selection heuristics for the cube.

50
45
40
35
30
25
20
15
10
5
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Required Standoff D istance

Max C o v e r Max Elim

(a) Required Stand-off Distance

Figure 7.13: Comparison of sphere

0.8

0.7
0>

c 0.6 m
I 0.5

0.40
■o

1
•S 0 .2
s

0 5 10 15 20 25 30 35 40 45 50
R equired N um ber of S p h e re s

Max C over - - Max Ellm

(b) Required Number of Spheres

ion heuristics for the ellipsoid.

50
45
40
35
30
25
20
15
10
5
0

0 0.1 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
R equired Standoff D istance

Max C over --------- Max Elim

(a) Required Stand-off Distance

a> '0

1 “
O 0.6

0.4

0.2

0 5 10 15 20 25 30
R equired N um ber of S p h e re s

Max C over --------- Max Elim -

(b) Required Number of Spheres

Figure 7.14: Comparison of sphere selection heuristics for the torus.

CH APTER 7. EVALUATIO N 108

Model F P-value F crit
Bunny 0.2519 0.6165 3.9151
Cone 0.0120 0.9129 4.0098
Cow 0.6091 0.4367 3.9258
Cube 0.0102 0.9196 3.9306
Cyl 0.6950 0.4075 3.9909
Dragon 0.5972 0.4410 3.9151
Ellipsoid 1.6255 0.2054 3.9412
Block 0.0446 0.8330 3.9333
S-Shape 1.3958 0.2396 3.9151
Torus 3.3848 0.0681 3.9151

Table 7.1: ANOVA comparison of sphere selection heuristics.

Prom the graphs it can be seen that the Max Elim heuristic often performs marginally
better than Majc Cover. However in the ANOVA tests the P-Values are quite high for most
models. This indicates that, with a — 0.05 (95% confidence), the average performance of
the two heuristics is very similar. The exception is the torus, where there is a significant
difference. As evident from Figure 7.14, the Max Elim heuristic performs significantly
better in this situation.

Generally the Max Elim heuristic yields slightly better results than the Max Cover
heuristic, requiring fewer spheres to cover the object and a lower stand-off distance to
achieve the required number of spheres. The cube. Figure 7.12, is quite a difficult shape
to represent using this algorithm, with neither heuristic being noticeably better than the
other.

7.1.4 Sphere Reduction

Having constructed a large set of spheres, which approximate the geometry of the object,
the sphere-tree construction algorithm needs to reduce the number of spheres down to
the number required for the sphere-tree. H ubbard’s algorithm successively merged pairs
of spheres together to achieve this. When merging two spheres, Hubbard used R itter’s
algorithm to form a new bounding sphere. R itter’s algorithm does not provide the mini­
mum volume bounding sphere and can often produce quite loose spheres. Hubbard also
measured the error of the spheres in terms of the distance from the surface to the spheres.

A number of improvements were detailed in Section 7.1.4. These were the use of
W hite’s minimum volume bounding sphere algorithm [109], the measurement of fit as
distance from the sphere to the surface, and the special consideration of merges tha t reduce
the worst error in the approximation. This improved algorithm is presented as “Merge”.
To further improve the sphere reduction process, the merging strategy was replaced with
one, presented as “Burst” , that removes a sphere and fills in the hole using the surrounding
spheres. A novel algorithm, which expands the medial spheres and eliminates the ones

CHAPTER 7. EVALUATION 109

that are redundant, was also presented as “Expand”.
Figures 7.15 - 7.18 compare these reduction algorithms using both the distance based

metric and the wasted volume. Each algorithm generates the required number of spheres
from a set of 500 medial spheres generated using the adaptive sampling algorithm.

As would be expected, the use of a minimum bounding sphere algorithm and a more
accurate sphere fit metric allows the new merge algorithm to provide a reasonable improve­
ment over Hubbard’s merging strategy. This algorithm certainly reduces the worst error
for all the models. The RMS error and the variance in the approximation is also reduced.
The expand algorithm, using the “Max Elim” heuristic, generates sets of spheres with very
low error variance. For convex shapes this will be zero, however for non-convex objects
some variation is experienced. This is a result of the equation used for computing the
sphere’s radius. Equation 5.3, which over-estimates the error (and hence under-estimates
the sphere’s radius) for non-convex bodies. The expand algorithm generally exhibits a
lower worst error than either Hubbard’s or the merge algorithm. This is due to the way
the algorithm tries to distribute the error evenly between all the spheres in the resulting
set. The burst algorithm further improves the fit of the reduced sets of spheres. Although
the “expand” algorithm tries to distribute the error as evenly as possible it can have diffi­
culty for non-convex regions of the objects as it never tries to reposition the spheres. Also,
the expand algorithm has difficulty producing larger sets of spheres. In this situation it
will produce the largest set of spheres it can, but these cases are omitted from the graphs
as the number of spheres in the set does not match the numbers on the horizontal axis.

7.1.5 Sphere-Tree C onstruction

The top level sphere-tree construction algorithm, described in Section 6.1, controls the
decomposition of the object into sub-regions. Each of these regions is approximated using
a set of spheres. The controlling algorithm aims to divide the object into distinct regions
so as to minimise duplication within the hierarchy.

Figures 7.19 - 7.25 and Tables 7.2 - 7.5 compare the geometric fit achieved using the
various sphere reduction algorithms. Also shown are results for the “GRID” algorithm
and those obtained using the optimiser detailed in Section 6.2. Two additional algorithms
are also presented. The first, labelled “Hybrid”, is a post-processing algorithm that pro­
duces a new sphere-tree from the one generated using the grid algorithm. Each node of
the sphere-tree contains the minimum volume bounding sphere, as produced by the grid
algorithm, and a minimum error sphere covering the same region. The algorithm labelled
“Combined” is simply a sphere reduction algorithm that tries both the “Merge” and “Ex­
pand” algorithms and chooses the one with the lowest error. This allows the algorithm to
fit tight sets of spheres where the expand algorithm is able to operate more effectively or
revert to the merge algorithm, which is more generic in nature.

All tests were conducted with a tree branching factor of 8. This number was used as

Er
ro

r
V

ar
ia

nc
e

CHAPTER 7. EVALUATION

0.8

0.7

0.6

0.5

I
0.3

0.2

5 10 15 20 25 30 35 40 45 50
Spheres

Hubbard
Merge

Expand(ME)
Burst

(a) Max Distance

0.4

0.35

0.3

0.25
o 0.2

UJ
0.15

0.05

5 10 15 20 25 30 35 40 45 50

Hubbard
Merge

Spheres

ExpandjME)
Burst

(b) RMS Distsmce

0.3

0.25

0.2

0.15

0.1

0.05

0
5 10 15 20 25 30 35 40 45 50

Hubbard
Merge

Spheres

ExpandfME)
Burst

350

300

250

iS 200

100

5 10 15 20 25 30 35 40 45 50
Spheres

Hubbard
Merge

Expand(ME)
Burst

(c) Variance (d) Wasted Volume

Figure 7.15: Comparison of sphere reduction techniques for the Bunny.

Er
ro

r
V

ar
ia

nc
e

E
rr

or
CHAPTER 7. EVALUATION

0.8

0.7

0.6

0.5

0.4

0.3

0.2

5 10 15 20 25 30 35 40 45 50

Hubbard
M erge

S p h eres

Expancl(ME)
Burst

0.4

0.35

0.3

0.25
o 0.2

0.15

0.05

5 10 15 20 25 30 35 40 45 50

H ubbard
M erge

S p h e res

ExpandfM E)
Burst

(a) Max Distance (b) RMS Distance

0.3

0.25

0.2

0.15

0.1

0.05

0
5 10 15 20 25 30 35 40 45 50

Hubbard
M erge

S pheres

Expand(ME)
Burst

1200

1000

(D 800
O)ro
S 600 5
S® 400

200

5 10 15 20 25 30 35 40 45 50

H ubbard
M erge

S p h e res

Expand{ME)
Burst

(c) Variance (d) Wasted Volume

Figure 7.16: Comparison of sphere reduction techniques for the Cow.

Er
ro

r
Va

ria
nc

e
E

rr
or

CHAPTER 7. EVALUATION

0.8

0.6

0.4

0.2

5 10 15 20 25 30 35 40 45 50

Hubbard
Merge

Spheres

Expand(ME)
Burst

0.7

0.6

0.5

0.4g
111 0.3

0.2

5 10 15 20 25 30 35 40 45 50

Hubbard
Merge

Spheres

Expand(ME)
Burst

(a) Max Distance (b) RMS Distance

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
5 10 15 20 25 30 35 40 45 50

Hubbard
Merge

Spheres

Expand{ME) -----
B u rs t-----

3000

2500

<D 2000

S 1500

1000

500

5 10 15 20 25 30 35 40 45 50

Hubbard
Merge

Spheres

Expand(ME)
Burst

(c) Variance (d) Wasted Volume

Figure 7.17: Comparison of sphere reduction techniques for the Dragon.

Er
ro

r
V

ar
ia

nc
e

E
rr

or
CHAPTER 7. EVALUATION

0.5
0.45

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.05

0
5 10 15 20 25 30 35 40 45 50

H ubbard
Merge

S p h eres

ExpandfME)
Burst

0.4

0.35

0.3

0.25
p 0.2m

0.15

0.1

0.05

5 10 15 20 25 30 35 40 45 50

H ubbard
M erge

S p h eres

ExpandfM E)
Burst

(a) Max Distance (b) RMS Distance

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0
5 10 15 20 25 30 35 40 45 50

Hubbard
M erge

S p h eres

ExpandfME)
Burst

o>ra

300

250

200

150

100

50

0
5 10 15 20 25 30 35 40 45 50

S p h eres

H ubbard
M erge

Expand(M E)
Burst

(c) Variance (d) Wasted Volume

Figure 7.18: Comparison of sphere reduction techniques for the cone.

CHAPTER 7. EVALUATION 114

it provides a reasonable level of sub-division without incurring too much computational
cost within the traversal algorithm. It also represents the largest number of children that
the Octree method can generate for each node. All the algorithms used a set of 5000
points to represent the surface of the object. Hubbard’s algorithm used a medial axis
approximation containing circa 2500 spheres. For the adaptive medial axis algorithms the
initial medial axis contained 500 spheres and the approximation was dynamically refined
so that each region had ̂ the error of the parent sphere and at least 100 spheres, i.e.
the merge/burst/expand algorithms started with 100 spheres from which the 8 were to be
produced. The grid, hybrid and optimiser algorithms all used Nelder and Mead’s Downhill
Simplex Method [84] to find local optima within their objective functions.

The first graph, in each set, compares the number of spheres generated with the various
algorithms^. It is clear from the graphs that the algorithms do not always produce a
complete sphere-tree, i.e. a sphere-tree that has the maximum allowable nodes for the
given branching factor. The octree method always creates 8 spheres and discards the
empty ones. While the grid, expand and spawn algorithms do aim to use as many spheres
as allowed at each stage, they often do not achieve this - extra spheres will only ever be
used if it provides a gain in fit. The sphere optimiser throws away spheres as long as
an acceptable degree of fit remains. In these tests the algorithm was allowed to discard
spheres provided the resulting worst error was less than a certain percentage of the initial
worst error. The results for 100% and 105% are presented.

There is quite a subtle reason for merge/burst algorithms not generating the maximum
allowable number of spheres. The sphere sets are generated by performing an iterative
reduction of the set of medial spheres. The adaptive medial axis algorithm is used to
ensure that each region of the object is approximated by about 10 times the desired
number of spheres. However, the sets of spheres created using these algorithms often
contain redundant spheres. These spheres contribute nothing to the approximation as the
areas of the surface they cover are also covered by other spheres. Thus these spheres are
discarded and their descendents are not computed. If this is an undesirable situation the
algorithm can be modified so as to check for redundant spheres at each iteration and stop
when the number of remaining (non-redundant) spheres reaches the required number.

The grid and hybrid algorithms consistently provide significant improvements over
the octree algorithm, from which they were derived. Both the worst and RMS errors
have been reduced. For complex model such as the Bunny (Figure 7.20) and the Dragon
(Figure 7.22) the grid algorithm exhibits errors as low as that of the octree, while the
minimum error spheres fitted over the same regions have as little as the worst error.
It is also clearly visible that the grid based algorithms use more of the allowable number
of spheres, which gives them the freedom to achieve a much tighter fit.

The medial axis algorithms approximate the object to a higher degree than the octree
^Different levels of the sphere-trees are presented separately for clarity.

Sp

he
re

s

Sp
he

re
s

CHAPTER 7. EVALUATION 115

70

60

50

40

30

20

10

0

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Algorithm

Burst
Expand

Combined
Optimised

Dpt. 0%
Opt. 5%

0.8
0.7

0.6
0.5

0.4

0.3

0.2
0.1

0

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Algorithm

■ Burst
™ Expand
■ Combined
■ Optimised
“ t)p t. 0%
=> Opt. 5%

0.6

0.5

0.4

O
bu

0.3

0.2

Algorithm

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Burst
Expand

Combined
Optimised

D pt. 0%
Opt. 5%

(a) # Spheres (b) Worst (c) RMS

Figure 7.19: Comparison of sphere-trees for the Bunny. (Level 2)

500
450
400
350
300
250
200
150
100

Algorithm

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Burst
Expand

Combined
Optimised

Opt. 0%
Opt. 5%

0.45
0.4

0.35
0.3

0.25
0.2

0.15

k-

g
UJ

0.05

Algorithm

Octree
Grid

Hybrid

Hul
Spawn
ubbard
Merge

Burst
Expand

Combined
Optimised

Dpt. 0%
Opt. 5%

0.3

0.25

0.2

0.15

0.1

0.05

I_L

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Algorithm

■ Burst
■ Expand
■ Combined
■ Optimised
■ D pt. 0%
=1 Opt. 5%

(a) # Spheres (b) Worst (c) RMS

Figure 7.20: Comparison of sphere-trees for the Bunny. (Level 3)

Level 1 Level 2 Level 3
Max RMS Max RMS Majc RMS

Hubbard
M erge 1.56 1.32 1.30 1.36 2.47 3.44

Hubbard
Expand 1.61 1.25 1.59 1.46 3.44 4.03
Hubbard

Combined 1.60 1.24 1.72 1.49 4.48 4.24
Octree 1.80 2.44 2.85 2.75 3.23 3.60
Octree
Hybrid 2.98 4.33 4.89 6.40 7.58 14.00

Table 7.2: Improvements in fit of sphere-trees constructed for the Bunny.

Sp

he
re

s

Sp
he

re
s

CHAPTER 7. EVALUATION 116

70

60

50

40

30

20

,0

0

Octree
Grid

Hybrid
Spawn

Huobard
Merge

Algorithm

" Burst
" Expand
■■ Combined
™ Optimised
™ D pt. 0%
= 1 Opt. 5%

0.8
0.7

0.6
0.5

0.4

0.3

0.2
0.1

0

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Algorithm

“ Burst
■ Expand
■ Combined
■■ Optimised
■ Dpt. 0%
=1 Opt. 5%

0.6

0.5

0.4

g 0.3
u

0.2

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Algorithm

Burst
™ Expand
■ Combined
■ Optimised
■ Dpt. 0%
=> Dpt. 5%

(a) # Spheres (b) Worst (c) RMS

Figure 7.21: Comparison of sphere-trees for the Dragon. (Level 2)

600

500

400

300

200

100

Algorithm

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Burst
Expand

Combined
Optimised

Dpt. 0%
Opt. 5%

0.4

0.35

0.3

0.25

0.2
0.15

0.1

0.05

0

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Algorithm

■ Burst
■ Expand
■ Combined
■ Optimised
■ Dpt. 0%
=1 Dpt. 5%

0.3

0.25

0.2
k-

0.15

0.05

Algorithm

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Burst
Expand

Combined
Optimised

D pt. 0%
Opt. 5%

(a) # Spheres (b) Worst (c) RMS

Figure 7.22: Comparison of sphere-trees for the Dragon. (Level 3)

Level 1 Level 2 Level 3
Max RMS Max RMS Max RMS

Hubbard
M erqe 1.59 1.35 1.75 1.34 2.30 2.58

Hubbard
E xp a n d 1.50 1.21 1.70 1.22 2.40 2.38
Hubbard

C om bined 1.58 1.35 2.08 1.30 2.49 2.60
O ctree
G rid 3.31 3.86 3.40 5.20 4.18 6.43

O ctree
H ybrid 3.97 4.44 4.75 7.16 6.18 13.43

Table 7.3: Improvements in fit of sphere-trees constructed for the Dragon.

Sp

he
re

s

Sp
he

re
s

CH APTER 7. EVALUATION 117

70

60

50

40

30

20

,0

0

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Algorithm

Burst
Expand

Combined
Optimised

Dpt. 0%
Opt. 5%

0.7

0.6
0.5
0.4

0.3

0.2

Algorithm

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Burst
Expand

Combined
Optimised

Dpt. 0%
Opt. 5%

ttu

0.6

0.5

0.4

0.3

0.2

0.1

0
Algorithm

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Burst
Expand

Combined
Optimised

Dpt. 0%
Opt. 5%

(a) # Spheres (b) Worst (c) RMS

Figure 7.23: Comparison of sphere-trees for the S-shape. (Level 2)

500
450
400
350
300
250
200
150
100

Algorithm

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Burst
Expand

Combined
Optimised

Dpt. 0%
Dpt. 5%

0.4

0.35

0.3
0.25

g
0.15

0.05

Algorithm

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Burst
Expand

Combined
Optimised

Dpt. 0%
Opt. 5%

0.25

0.2

0.15

0.05

Algorithm

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Burst
Expand

Combined
Optimised

Dpt. 0%
Opt. 5%

(a) # Spheres (b) Worst (c) RMS

Figure 7.24: Comparison of sphere-trees for the S-shape. (Level 3)

Level 1 Level 2 Level 3
Max RMS Max RMS Max RMS

Hubbard
M erge 1.35 1.34 1.11 1.53 3.43 4.30

Hubbard
E xp a n d 1.73 1.42 1.56 1.59 5.74 3.99
Hubbard

Comhine.d 1.58 1.39 1.60 1.86 6.86 6.07
O ctree 6.84 7.01 6.02 7.50 5.23 6.57
O ctree
H ybrid 8.57 7.95 11.96 14.63 10.23 27.80

Table 7.4: Improvements in fit of sphere-trees constructed for the S-Shape.

Sp

he
re

s

Sp
he

re
s

CHAPTER 7. EVALUATION 118

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Algorithm

Burst
Expand

Combined
Optimised

Dpt. 0%
Opt. 5%

70

60

50

40

30

20

10

0

0.7

0.6
0.5
0.4

0.3

0.2

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Algorithm

Burst
Expand

Combined
Optimised

bp t. 0%
Opt. 5%

0.6 [

0.5

0.4

0.3

0.2

0.1

0

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Algorithm

™ Burst
■ Expand ‘
■ Combined
■ Optimised
■ Dpt. 0%
^ Opt. 5%

(a) # Spheres (b) Worst (c) RMS

Figure 7.25: Comparison of sphere-trees for the Elhpsoid. (Level 2)

500
450
400
350
300
250
200
150
100
50
0

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Algorithm

" Burst
■ Expand
■ Combined
■ Optimised
■ Dpt. 0%
=1 Opt. 5%

0.4

0.35
0.3

0.25

0.2
0.15

0.05

Algorithm

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Burst
Expand

Combined
Optimised

Dpt. 0%
Opt. 5%

0.3

0.25

0.2

§u 0.15

0.05

Octree
Grid

Hybrid
Spawn

Hubbard
Merge

Algorithm

■ Burst
■ Expand
■ Combined
■ Optimised
■ Dpt. 0%
=J Opt. 5%

(a) # Spheres (b) Worst (c) RMS

Figure 7.26: Comparison of sphere-trees for the Ellipsoid. (Level 3)

Level 1 Level 2 Level 3
Max RMS Max RMS Max RMS

Hubbard
M erge 1.21 1.19 2.59 1.83 10.31 5.18

Hubbard
E xv a n d 1.64 1.40 2.93 1.94 11.76 4.98
Hubbard

Cnmbine.d 1.54 1.35 2.65 1.94 11.65 5.16
O ctree

G rid 3.84 4.96 4.21 4.33 5.12 5.26
O ctree
H ybrid 4.83 5.63 12.30 13.43 6.88 31.87

Table 7.5: Improvements in fit of sphere-trees constructed for the Ellipsoid.

CHAPTER 7. EVALUATION 119

based algorithm. This can be attributed to the explicit use that is made of the object
geometry and the flexibility in the placement and size of the spheres produced. The new
merge algorithm shows significant improvements over the previous algorithm. For both
the bunny and the dragon, the new merge has a worst error that is less than ^ that of
Hubbard’s algorithm. In fact, for both the bunny and dragon, the worst case for the new
algorithm’s level 2 spheres (Figures 7.19(b) & 7.21(b)) is the about the same as the level
3 spheres made with the old merge algorithm (Figures 7.20(b) Sz 7.22(b)). Thus the new
algorithm produces the same tightness of fit using around the number of spheres {circa
64 and 512 spheres respectively). The burst and expand algorithms produce similar results
to the new merge algorithm. The burst algorithm produces its best results for the top
levels of the spheres trees. This can be attributed to the way the sphere-tree construction
algorithm divides the object. At the lower levels, the regions to be approximated tend to
be largely to one side of the object which prevents the burst algorithm from producing
spheres which span the object. This results in the spheres being very much towards the
surface of the object and having a higher level of error. For the Bunny and the S-shape
the expand algorithm provides further improvement over the new merge algorithm. There
are however regions in which the expand algorithm can behave quite poorly, thus allowing
the combined algorithm to choose between “merge” and “expand” for each node allows it
to achieve the tightest fit. The worst case error for the combined algorithm being as low
as ^ that of the new merge algorithm (Table 7.4).

Sphere selection based techniques, such as expand and spawn, aimed to distribute
the error evenly between the spheres in a given set. This allows for approximations that
exhibited a low variance, in terms of error. However, for sphere-tree construction, each set
of spheres is produced independently which means that the variance across a level of the
sphere-tree will not be kept small. For the lowest level of both the Bunny (Figure 7.20) and
the Dragon (Figure 7.22) the spawn algorithm achieves a similar error to the Hubbard’s
algorithm using as few as half the number of spheres. As the spawn algorithm does not
explicitly use the medial axis approximation, it is unable to achieve the same level of fit
as the medial axis based algorithms.

The sphere set optimisation algorithm was also tested. This algorithm aims to improve
the arrangement of the spheres so as to decrease the error in the approximation. When the
algorithm was allowed to throw away as many spheres as it could without increasing the
worst error by more than 5%, the approximations contain pretty much the same amount
of error as the unoptimised ones, while throwing away as much as | of the spheres, see
Figures 7.20 & 7.24.

7.2 Simulation

In order to evaluate the sphere-trees generated with the algorithms presented in Chap­
ters 3 and 5, a number of simulations were built. During these simulations, the objects

CHAPTER 7. EVALUATION 120

were positioned and oriented randomly about a sphere and were given a random veloc­
ity towards its center. Each sphere-tree approximation of the object is evaluated during
the simulation. At each time-step the colliding pairs are created by testing the bound­
ing spheres of the objects. The sphere-trees for the potentially colliding objects are then
traversed using the algorithm presented in Section 2.7.1. Separate traversals are con­
ducted using the sphere-trees constructed using the Octree method, Hubbard’s medial
axis method etc. The motions of the objects and their response to collisions has been
computed using Havok’s dynamics system‘s. This uses an exact collision detection algo­
rithm, and a dynamics model that includes complex friction. Using an exact collision
detection algorithm avoids bias towards or against a particular sphere-tree algorithm and
represents a situation where the sphere-trees are traversed to a very deep level before
interruption.

The sphere-tree traversals are interrupted at regular intervals and the accuracy of
the approximated collisions is measured. The error associated with each pair of colliding
spheres is computed as the sum of the spheres’ errors. As the error associated with a sphere
is the largest distance from the surface of the sphere to the surface of the object (Hausdorff
distance) this provides an upper-bound for the true separation between the objects. At
each interruption the worst, best and RMS errors, in the approximated collisions, are
computed. Each of the new algorithms are compared to a reference sphere-tree, i.e. the
medial axis based algorithms are compared to the sphere-tree constructed with Hubbard’s
algorithm and the octree-like sphere-trees are compared to those constructed using the
octree method. For each interruption time, the average improvements is computed. This
is expressed as a fraction of the reference tree’s error. For example, for each frame (at a
given interruption interval), the merge sphere-tree is evaluated by computing ■
These values are then averaged over all the frames of the simulation. In order to provide a
sufficiently large set of frames, the simulation is run a number of times with a new random
position (and orientation) for each object.

Figure 7.27 - 7.34 present results for simulations containing 20 objects. Sphere-trees
constructed with the Merge and Expand algorithms and using the optimiser are compared
to those constructed using Hubbard’s algorithm. The GRID and hybrid sphere-trees are
compared to the sphere-trees constructed with the Octree method. To allow these algo­
rithms to be compared to Hubbard’s algorithm, the sphere-trees made with Hubbard’s
algorithm are also evaluated relative to the Octree. The horizontal axis of each of the
graphs shows the interruption interval. This is expressed in terms of the number of prim­
itive operations performed, i.e. sphere updates and overlap tests. Amount of work done
before interruption is computed using Equation 2.1, with Cu = 2 and Cy — These val­
ues are used as they represent the relative number of floating point operations performed
in updating a sphere’s position (21 floating point operations) and in testing two spheres

‘'An evaluation version of Havok’s softweire is available from http://www.havok.com .

CHAPTER 7. EVALUATION 121

for overlap (10 floating point operations). The first three graphs (a), (b) &: (c) in each set
show the fraction of error present in the approximations. The fourth graph (d) shows the
relative number of colliding pairs produced by the different algorithms. The fifth graph
(e) shows the relative number of frames that still had unresolved collisions at the various
interruption points, i.e. as compared to the reference sphere-tree.

Each of the medial axis based algorithms show a definite reduction in the worst error.
For the Bunny and the Dragon (Figures 7.27(a) & 7.28(a)) the combined algorithm quickly
falls to as little as 50% of the worst error present in the reference sphere-tree. For the
simpler shapes, this value is as low as 20%. For the unoptimised sphere-trees the amount
of error continues to decrease, to as low as 30% for the complicated models and 10% for
the simpler ones. The sphere-trees that have been optimised show their greatest gain
when interrupted early on. When the optimisation algorithm chooses to discard some of
the spheres it makes the sphere-trees more efficient to traverse in the early stages but
ultimately affects the final accuracy of the approximations. In terms of best error, the
new medial axis based sphere-trees show a slight increase. The algorithms treat the worst
case scenario as being more important than the average/best case and so are designed to
minimise the worst error in the approximation.

The algorithms also show significant reductions in the numbers of pairs of colliding
spheres that result from the traversal. This provides a reduction in the amount of work
that will need to be done by the later stages of the collision handling system, i.e. contact
modelling and collision response. For both the Bunny (Figure 7.27(d)) and the Dragon
(Figure 7.28(d)) the number of colliding spheres is as low as 20%.

The fifth graph (e) shows the relative number of frames that still had unresolved
collisions at the various interruption intervals. All the improved medial axis methods
show a reduction in the numbers operations required to resolve the frames to the lowest
level of the sphere-tree (which are all 3 levels deep with circa 512 leaves). For all the
models, when interrupted after 15000 operations, the optimised sphere-trees have less
than 5 the number partly resolved frames as those created with the reference algorithm.
The Bunny seems particularly good in this respect with as few as the number of
frames requiring 15,000 or more operations to resolve the collisions (Figure 7.27(e)).

The GRID and Hybrid algorithms also show vast improvements over the Octree based
algorithm. For all the models, the worst error quickly drops down to 10% of the error
present in the Octree based approximation. For the Hybrid sphere-tree it is possible
to traverse the set of minimum volume spheres (labelled MV) or the minimum error
spheres (labelled ME). The minimum error spheres are always used to approximate the
final set of contacts and there does not seem to be a significant difference between the
two sets of spheres. Again graph (e) shows the number of frames that still had unresolved
collisions at the point of interruption. Even though the grid and hybrid algorithms tend
to produce sphere-trees containing a lot more spheres than the octree, the number of
partially resolved frames, at each interruption time, is still reduced. For both the Bunny

CHAPTER 7. EVALUATION 122

1.2

1.1

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Optimised 5% -------- Expand
Combined -------- Merge

(a) Worst Error

1.2

1.1

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Optimised 5% — Expand --------
Combined Merge---------

(b) RMS Error

t 1
U J

° 0.8
o

2 0.6
u.

0.4

0.2
0 5000 10000 15000 20000 25000 30000

Optimised 5%
Combined

Interruption Interval

Exp,
Me

Expand
erge

O
o
co

1.1

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

5000 10000 15000 20000 25000 30000
Interruption Interval

Optimised 5%
Combined

Expand
Merge

(c) Best Error (d) Resulting Contacts

tn
01
Era
1̂

0.9
0.8
0.7

- 0.6

0.5
E 0.4
° 0.3I 0.2o
<0 0.1
u.

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Optimised 5% -------------- Expand -------------
Combined Merge --------

(e) Frames Evaluated

Figure 7.27: Comparison of medial axis based sphere-trees at various interruption times
for The Bunny (20 objects).

CHAPTER 7. EVALUATION 123

0.9

0.8

0.6

0.5

0.4

0.3
0 5000 10000 15000 20000 25000 30000

Interruption Interval

Optimised 5%
Combined

Expand
Merge

0.9

w 0.8

m 0.7

c 0.6

0.5

^ 0.4

0.3

0.2
0 5000 10000 15000 20000 25000 30000

Optimised 5%
Combined

Interruption Interval

Exp;
Me

Expand
lerge

(a) Worst Error (b) R M S Error

o I • I
£ 1
■5 0.9
§ 0.8

0-7
u: 0.6

0.5
0.4
0.3

0 5000 10000 15000 20000 25000 30000

Optimised 5%
Combined

Interruption Interval

Exp,
Me

Expand
erge

(c) Best Error

« 0.9
•S 0 .8
o 0.7 ̂ 0.6
§ 0.5
o
2u.

0.2

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Optimised 5%
Combined

Expand
Merge

(d) Resulting Contacts

0.8

0.6

•5 0.4

0.2
u.

0 5000 10000 15000 20000 25000 30000

Optimised 5%
Combined

Interruption Interval

Expand;xp;
Merge

(e) Frames Evaluated

Figure 7.28: Comparison of medial axis based sphere-trees at various interruption times
for The Dragon (20 objects).

Fr
ac

tio
n

of
Er

ro
r

Fr
ac

tio
n

of
E

rr
or

CHAPTER 7. EVALUATION 124

0.9
0.8
0.7

0.5
0.4
0.3
0.2

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Optimised 5%
Combined

Expand
Merge

(a) Worst Error

0.9

I 0.8
■5 0.7

.9 0.6
0.5

0.4

0.3

0.2
0 5000 10000 15000 20000 25000 30000

Interruption Interval

Optimised 5%
Combined

Expand —
Merge - -

(b) R M S Error

0.9
0.8
0.7
0.6
0.5
0.4
0,3
0.2

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Optimised 5%
Combined

Expand
Merge

(c) Best Error

o
O
o
c
o

1.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

5000

Optimised 5%
Combined

10000 15000 20000 25000 30000
Interruption Interval

Expand
Merge

(d) Resulting Contcicts

,2

0.8

0.6

0.4

0.2

0
0 5000 10000 15000 20000 25000 30000

Optimised 5%
Combined

Interruption Interval

Expand;Xp,
tvlerge

(e) Frames Evaluated

Figure 7.29: Comparison of medial axis based sphere-trees at various interruption times
for the S-shape (20 objects).

CHAPTER 7. EVALUATION 125

1.1
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 5000 10000 15000 20000 25000 30000

Interruption Interval

Optimised 5% - Expand
Combined Merge

(a) Worst Error

0.9
S 0.8

0.7
o 0.6
o 0.5
o 0.4
lC 0.3

0.2

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Optimised 5 % ------ Expand
Combined Merge

(b) RMS Error

o 0.8ill

° 0.6
o

2 0.4
LL

0.2

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Optimised 5%
Combined

Expand
Merge

CO u.y
.9 0.8
- 0.7

0.6
0.5
0.4

- 0.3
0.2

o
O
o
co

2
L i.

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Optimised 5%
Combined

Expand
Merge

(c) Best Error (d) Resulting Contacts

1 0.8
ow „ „2 0.6
c
D
•5 0.4
co
S 0.2 ra
LL

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Optimised 5%
Combined

Expand
Merge

(e) Frames Evaluated

Figure 7.30: Comparison of medial axis based sphere-trees at various interruption times
for the ellipsoid (20 objects).

CHAPTER 7. EVALUATION 126

and Dragon (Figures 7.31(e) and 7.32(e)) the number of frames that still have unresolved
collisions after 15,000 operations has been reduced to about

7.3 Conclusion

This chapter has taken a critical look at the work contained within this thesis. Both
existing and new algorithms were compared. This analysis first looked at the algorithms
for constructing the medial axis approximation, looking at both the regular and adaptive
sampling algorithms. The results indicate that the adaptive algorithm often starts out with
a poorer approximation but quickly improves. A hybrid algorithm could be adopted, with
the initial approximation being constructed using regular sampling and then improved
using the adaptive algorithm, which would also fill in uncovered areas.

The sphere-tree generation algorithm is composed of a number of sub-problems, each
of which aims to approximate a given region of the object with a small number of spheres.
The sphere reduction algorithms, which perform this task, were compared. The improve­
ments to Hubbard’s merging strategy show an improvement in the tightness of the approx­
imations generated. The expand algorithm often shows a further reduction in the worst
error and produces approximations that exhibit very small variances in tightness. For
constructing sphere approximations, the burst algorithm shows significant improvements
in tightness of fit over all the other algorithms.

The algorithms were next used to construct sphere-trees for various models. Signifi­
cant improvements were demonstrated for both the octree based and medial axis based
algorithms. For the more complicated models, such as the Bunny, the worst error in the
second level (64 spheres) is about the same as the third level (512 spheres) constructed with
Hubbard’s algorithm. The use of the optimisation algorithms, presented in Section 6.2,
allows the construction of sphere-trees with about the same level of error using l^ss
spheres. The GRID and Hybrid algorithms also showed significant improvements over the
Octree method.

These sphere-trees were also evaluated for use in an interruptible collision detection
system. The sphere-trees generated with the improved medial axis algorithms result in
collisions with as little as 20% of the error present in those constructed with Hubbard’s
algorithm. Thus, they provide more accurate collisions and, as they fit the object tighter,
result in less false positives. This produces much fewer pairs of spheres to be processed
for collision response. For complicated models, such as the Bunny and the Dragon, as
little as 20% the number of sphere pairs were produced. Also, the number partly resolved
frames present after any given interruption interval has been significantly reduced. This
results from the frames being resolved more quickly due to a decrease in the number of
false positives experienced during the traversal.

Similar results were presented for the Octree based algorithms. The Hybrid algorithm,
which contains both minimum volume sphere and minimum error spheres, was introduced.

Fr
ac

tio
n

of
Er

ro
r

Fr
ac

tio
n

of
E

rr
or

CHAPTER 7. EVALUATION 127

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Grid — Hybrid (ME)
Hybrid (MV) --------- Hubbard

(a) Worst Error

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 5000 10000 15000 20000 25000 30000

Interruption Interval

G r id Hybrid (ME)
Hybrid (MV) — Hubbard

(b) R M S Error

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Grid Hybrid (ME) ---------
Hybrid (MV) H ubbard -----------

(c) Best Error

1.2
1.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Grid Hybrid (ME)
Hybrid (MV) Hubbard

(d) Resulting Contacts

£5 0.9
7 0-8
> 0.7

§
c 0.5

B
C 0.3

•■§ 0.2

....

u.

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Grid Hybrid (ME)
Hybrid (MV) ----- Hubbard

(e) Frames Evaluated

Figure 7.31: Comparison of octree based sphere-trees at various interruption times for
The Bunny (20 objects).

Fr
ac

tio
n

of
Er

ro
r

Fr
ac

tio
n

of
E

rr
or

CHAPTER 7. EVALUATION 128

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Grid Hybrid (ME)
Hybrid (MV) Hubbard

(a) Worst Error

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

■f -■

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Grid Hybrid (ME)
Hybrid (MV) Hubbard

(b) RMS Error

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Grid Hybrid (ME)
Hybrid (MV) - Hubbard

(c) Best Error

.2

1

0.8

0.6

0.4

0.2

0
0 5000 10000 15000 20000 25000 30000

Interruption Interval

Grid - Hybrid (ME)
Hybrid (MV) ̂ Hubbard

(d) Resulting Contacts

0.8

0.6

B 0.4

0.2
u.

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Grid - Hybrid (ME)
Hybrid (MV) — Hubbard

(e) Frames Evaluated

Figure 7.32: Comparison of octree based sphere-trees at various interruption times for
The Dragon (20 objects).

CHAPTER 7. EVALUATION 129

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 5000 10000 15000 20000 25000 30000

Interruption Interval

Grid Hybrid (ME)
Hybrid (MV) Hubbard

(a) Worst Error

0.9
0.8

I 0.7
0.6

° 0.5
I 0.4

S. 0-3
0.2

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Grid Hybrid (ME) -
Hybrid (MV) -------- Hubbard —

(b) RMS Error

0.9
0.8
0.7
0.6

LU
B 0.5
§ 0.4

0.3

0.2

B
S

LL

0 5000 10000 15000 20000 25000 30000

Grid
Hybrid (MV)

Interruption Interval

Hybrid (ME)
Hubbard

o
O
o
co
on)

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 5000 10000 15000 20000 25000 30000

Grid -
Hybrid (MV) -

Interruption Interval

Hybrid (ME)
Hubbard

(c) Best Error (d) Resulting Contacts

i t 0.9
■g 0.8
B 0.7
2 0.6
:§ 0.5
1 0.4
■I 0.3
2 0.2 u.

0.1
0 5000 10000 15000 20000 25000 30000

Interruption Interval

Grid - Hybrid (ME) ---------
Hybrid (MV) — Hubbard ---------

(e) Frames Evaluated

Figure 7.33: Comparison of octree based sphere-trees at various interruption times for the
S-shape (20 objects).

CHAPTER 7. EVALUATION 130

0.9
0.8

I 0.7
0.6

° 0.5
- 0.4

0.3
0.2

o
2
u.

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Grid — Hybrid (ME)
Hybrid (MV) -------- Hubbard

(a) Worst Error

0.9
0.8

o

li! 0.6
O

- 0.4
0.3
0.2

0.5

oto
u.

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Grid - Hybrid (ME)
Hybrid (M V) Hubbard

(b) RMS Error

0.9
0.8
0.7

° 0.6

o 0.5
.9 0.4

0.3
0.2

HI

ora
lil

0 5000 10000 15000 20000 25000 30000
Interruption Interval

Grid Hybrid (ME)
Hybrid (MV) Hubbard

(c) Best Error

1.6

1.4

1.2

0.8

0,6

0.4

0.2
0 5000 10000 15000 20000 25000 30000

Interruption Interval

Grid - Hybrid (ME)
Hybrid (MV) Hubbard

(d) Resulting Contacts

0.9
Li.

0.8

0.7

0.6
o 0.5

0.4
u.

0.3
0 5000 10000 15000 20000 25000 30000

Interruption Interval

Grid Hybrid (ME) ---------
Hybrid (MV) - Hubbard ---------

(e) Frames Evaluated

Figure 7.34: Comparison of octree based sphere-trees at various interruption times for the
ellipsoid (20 objects).

CHAPTER 7. EVALUATION 131

The octree based algorithms showed significant improvements over the original octree
algorithm. For complicated models, such as the Dragon, the hybrid sphere-trees had as
little as 10% of the error of those constructed with the original algorithm. The number of
resulting colliding pairs was also reduced to as low as 10% the number resulting from the
octree algorithm.

Chapter 8

Conclusions and Future Work

This chapter will bring together the material covered in this thesis. Conclusions will be
presented on the work done in evaluating sphere-tree construction algorithms and their
use in collision detection. The contributions of this thesis will be highlighted and a number
of topics for further research will be presented.

8.1 Assessm ent

Collision detection is a major bottleneck for interactive systems. While some tasks re­
quire highly accurate collision detection others can use approximate techniques. Many
researchers have utilised Bounding Volume Hierarchies, reviewed in Section 2.3, for accel­
erating collision queries.

Spheres offer distinct advantages for interruptible collision detection algorithms, de­
scribed in Section 2.4, which trade accuracy for efficiency to provide consistent interactive
frame-rates. As spheres are rotationally invariant they can be updated very efficiently
during simulation. They also lead to very efficient overlap tests. As the interruptible
collision detection algorithm may never fully resolve the collisions, the spheres themselves
are often used to approximate the collision response.

Sphere-tree construction has been viewed from two different perspectives: Spatial sub­
division techniques, such as the Octree method, and object approximation techniques,
such as the Medial Axis method.

The work conducted can be summarised as follows :

• Chapter 3 took a critical look at the octree based method for sphere-tree construc­
tion. This is by far the simplest algorithm considered. A number of improvements
were developed, which allow more freedom in how spheres are placed. The resulting
algorithm was named the GRID algorithm.

• Chapters 4 and 5 analysed the second class of algorithms, the object approxima­
tion algorithms. An adaptive medial axis approximation method, which allows a

132

CH APTER 8. CONCLUSIONS AND FUTURE W O R K 133

consistent and complete set of spheres to be constructed, was presented. This al­
gorithm also allows the approximation to be constructed on demand so that it can
be updated to provide a sufficiently tight set of spheres from which to construct
each section of the sphere-tree. A number of alternative sphere set reduction tech­
niques were presented. These techniques allow for the construction of the different
approximations that make up a sphere-tree. The Expand algorithm was specifically
designed for generating approximations that have a high level of consistency. An op­
timisation based approximation algorithm was also presented. This produces similar
types of approximations as the Expand algorithm without requiring that a medial
axis approximation be constructed.

• Chapter 6 presented a number of high level algorithms used in the sphere-tree con­
struction process. A generic high level sphere-tree construction algorithm uses the
various approximation algorithms to construct the sphere-trees. This algorithm con­
trols how the object is partitioned so as to minimise the amount of redundancy in
the hierarchy. A sphere-tree optimisation algorithm was also presented. This two
phase algorithm optimises the sets of spheres and determines whether each sphere
contributes anything to the approximation. Spheres that contribute little to the
approximation are removed so as to reduce the cost of traversing the hierarchy.

• Chapter 7 details a series of experiments. These tests evaluated each stage of the
approximation process. The two classes of algorithm are compared by using the
resulting sphere-trees in a collision detection system. The conclusions drawn from
these tests are as follows:

1. The use of the adaptive medial sixis approximation algorithm provides notice­
able improvements. This algorithm allows a medial axis approximation to be
constructed which guarantees to cover the surface. While the initial approxima­
tion is sometimes not as tight fitting as previous algorithms, the approximation
quickly improves. The resulting sets of spheres produce tighter fitting approxi­
mations and more evenly distribute the error between them. See Section 7.1.2.

2. The use of more accurate bounding sphere algorithms and sphere fit metrics
provides benefits when reducing the number of spheres in an approximation.
This allows the initial approximation to be reduced into various smaller ap­
proximations, while still maintaining a high degree of accuracy. Also, the ap­
proximations often exhibit a higher level of consistency. The Expand algorithm
produces approximations with near zero variance across the entire region being
approximated. See Section 7.1.4.

3. Using the improved approximation techniques for the construction of sphere-
trees produces considerable benefit for non-trivial objects. Even for complicated
models, the second level of the sphere-trees has a similar error to the third level

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 134

of the trees constructed using existing techniques, i.e. the same tightness of
fit with almost an order of magnitude less spheres. Further gain is achieved
by using the optimisation algorithm, presented in Section 6.2. By allowing the
algorithm to tolerate a small increase in error, the number of spheres in the
approximation can be significantly reduced. See Section 7.1.5.

4. The sphere-trees, generated with the new algorithms, do show significant ben­
efits to the process of collision detection. Having interrupted the sphere-tree
traversal after a specified number of overlap tests, sphere-trees generated with
the GRID algorithm show as low as 20% the error observed for the Octree based
trees. The sphere-trees generated with the optimised medial axis method show
as little as 20% the error of Hubbard’s algorithm when interruption occurs.
Combining both classes of sphere-tree construction algorithms, to produce a
hybrid sphere-tree, produced further improvements over the GRID algorithm.
The sphere-trees produced with the improved algorithms also reduce the num­
ber of colliding pairs that result from sphere-tree traversal. This shows a vast
decrease in the number of false positives reported and will reduce the cost
associated with computing the collision response. Dynamically choosing the
branching factor of the hierarchy shows most improvement when interruption
occurs early on. This is due to the object being segmented into fewer regions,
which ultimately affects the accuracy of the resulting spheres-tree. See Sec­
tion 7.2.

8.2 Contributions

A number of contributions have been made in this thesis:

• An adaptive medial approximation technique that allows the medial axis to be con­
structed on demand and focuses on improving the approximation in areas where the
spheres created from the medial axis ill-fit the object.

• Improved sphere reduction techniques that reduce the spheres generated from the
medial axis into a manageable set while maintaining a high degree of fit and consis­
tency.

• A generic sphere-tree construction algorithm that decomposes the problem into
smaller object approximation problems, which can then be solved using the algo­
rithms presented. When dividing the object into sub-regions, the algorithm min­
imises the amount of overlap between neighbouring regions so as to eliminate redun­
dancy within the sphere-trees.

• A sphere-tree optimisation algorithm that further improves the degree of fit in the
approximations.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 135

• Additional approximation algorithms based on generalising the octree sub-division
to produce tighter approximations, by allowing more freedom in the way spheres are
placed, while maintaining its good sub-division characteristics.

• A purely optimisation based approximation algorithm that yields similar results to
those obtained using the medial axis but does not require the overhead of construct­
ing the medial axis approximation.

• The introduction of a hybrid sphere-tree structure tha t contains both minimum
error and minimum volume spheres at each node. These sphere-trees provide for
both spatial localisation and object approximation.

8.3 Future Work

There are a number of interesting areas of research tha t can build upon this work. A num­
ber of the algorithms presented may be applicable to areas other than collision detection.
The adaptive sampling algorithm, combined with the Expand algorithm, can provide a
method for approximating rigid objects with very low variances. It is often very desirable
to be able to approximate objects with a high level of consistency. Also this work has
uncovered a number of related topics that merit investigation.

8.3.1 Ensuring Object Coverage

Throughout this thesis, objects have been represented as a set of surface points. This was
done as it is much more efficient to check that all the surface points are covered than it
is to work directly with the underlying polygons. This can however cause small areas of
the object to be left uncovered. As these areas will be between the sample points, using
more sample points will result in the smaller (and less frequent) gaps. One interesting
alternative would be to use groups of points which are treated as atomic units. These
points would represent triangles (or polygons) covering the entire surface. In order for a
group to be considered “covered”, all its points much be contained within the same sphere.

8.3.2 Combining Different Collision D etection Strategies

Buildings often contain large flat areas and are not in motion, therefore spheres are not
very attractive for approximation purposes. Thus, it would be interesting to model these
parts of the simulation with structures that are suitable for performing collision detection
but are also more in line with their shape. One example of this is where we have used a
grid of AABBs to model a height field, see Figure 8.1. This provides very efficient collision
detection as the spheres are simply projected onto the ground plane to determine which
AABBs to test.

C H APTER 8. CONCLUSIONS AND FUTURE W O RK 136

Figure 8.1: Examples of a terrain modelled by various sized AABBs for efficient collision
detection.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 137

8.3.3 Unified LOD Rendering and Collision H andling

In [92, 93], Rusinkiewicz and Levoy present a point based visualisation system called
Q-Splat. In this system, sphere-trees are used to perform level-of-detail rendering and
visibility culling. The sphere-tree is traversed in a depth-first manner. When the projected
size of a sphere becomes significantly small, it is rendered using a splatting technique. In
order to maintain interactivity this process can be interrupted when the user tries to rotate
the object. Interactive frame rates are maintained by increasing the “splatting threshold”,
i.e. the size at which the spheres are considered small enough to splat. A very interesting
area of research would be to use the same sphere-trees for collision and rendering. These
sphere-trees would have to provide good spatial sub-division characteristics for visibility
culling and closely approximate the object’s geometry for collision detection.

8.3.4 A utom atic Skinning of M odels

Many of the algorithms in this thesis rely on being able to determine whether a point
is inside the model being approximated. When approximating the medial axis, the ver­
tices of the Voronoi diagram that are inside the object are used to create spheres. Also,
when evaluating a sphere’s fit to the surface, the sample points on the sphere need to be
categorised as being inside or outside the object. Our inside/outside tests, discussed in
Appendix A, assume that the surface of the object is closed. Each triangle must have ex­
actly three neighbours and each edge must be shared by two triangles. Often, objects are
modelled to produce a desired result when rendered. Modellers often construct their ob­
ject using a number of meshes. For example when modelling an aeroplane, the wings and
fuselage might be modelled with Bezier surfaces, while the finer trimmings are constructed
by hand. Having multiple meshes is not a problem as the inside/outside test can check
to see if the point is inside one of the meshes. However, meshes that are not closed, or
have self-intersections result in incorrectly categorised points. This often causes problems
when constructing sphere-trees for these objects. In order to approximate these objects,
a closed surface needs to be constructed. The meshes used for the tests in this thesis were
carefully checked before use. Further research into the construction of an outer skin for
the models would make it much simpler to use generic models for collision detection.

8.3.5 Sphere-Trees for Deform able and B rittle O bjects

The sphere-tree construction techniques presented in this thesis are primarily intended for
use with rigid and articulated objects. The octree method is simple enough to be used
to approximate deformable objects, i.e. the octree structure can be quickly updated as
the objects deform. The GRID algorithm, presented in Section 3.3 may also be used for
this purpose. Conceivably, this structure could be incrementally adjusted if the objects
are deforming slowly. It would be interesting to investigate how this would perform in

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 138

a real-time system. This approach may also prove useful for brittle objects. When a
fracture appears in the object, one of the branches of the sphere-tree could be broken off
to produce an approximation of the fragment. It is unlikely that the medial axis based
methods would be able to provide reasonable performance for these tasks as problems may
be experienced due to the large spheres that are placed in the interior of the object. As
these spheres often cross large portions of the model they may pose problems when the
objects deform or shatter.

8.3.6 Hybrid Bounding Volume Hierarchies

Many researchers have used bounding volume hierarchies as a means of performing effi­
cient collision detection. The bounding volumes used range in complexity. Swept sphere
volumes, used by Larsen et al. [62], provide a number of different types of bounding vol­
umes. The construction algorithm chooses which of the primitives to use for each region of
the object. However, all the primitives available are based on spheres. Using a wider range
of bounding volumes, such as those discussed in Section 2.3, could prove very interesting.
Such a scheme would be able to choose the best primitive to use for each region. Although
a potentially large number of intersection tests would be needed, the improved fit may
compensate for this in certain situations.

8.3.7 W hen Spheres Are Bad Approxim ators

Finally, there are many types of geometry that are quite badly represented by spheres.
At some point in the bounding volume hierarchy, many of the spheres will become small
enough that they will only cover a single triangle/polygon in the original model. At this
stage it would be more beneficial to test the actual polygon instead of a number of spheres.
Once the sphere-tree traversal algorithm has reached this level of the approximation a
simple change over can be made. This is subtly different from the exact phase algorithms,
presented in Section 2.5, as only simple triangle-sphere and triangle-triangle tests would
be required.

Appendix A

Surface Testing

There are a number of sections of this thesis that have reUed on being able to determine
whether a given point is inside the model being approximated. This appendix gives some
information on how this can be achieved.

In his thesis, Hubbard presents an inside-outside test based on determining whether the
given point is behind the closest part of the surface [49]. However, this test is conservative
when identifying points as being internal. That is to say tha t it will only categorise the
point as internal if it is definitely inside the object. There are, however, situations when
points inside the object are labelled as external.

Using this test for determining the internal vertices of the medial axis does not pose a
serious problem. It does, however, affect the measurement of fit mentioned in Section 6.2.
This method operates on a number of points distributed across a sphere. For each of these
points the error is measured as the distance to the surface. The actual error of a sphere
is the maximum of the distances for the sample points tha t are outside the object. Thus,
the mis-categorisation of points will affect this measure and invalidate the test results.

An overview of this algorithm and an alternative based on the crossings-test are given
below. Both these tests require that the surface be represented by a polyhedral mesh
and tha t the mesh be closed (2-manifold). Also, there is a requirement that the surface
polygons do not cut through each other and enter the surface - for example a cup with a
separate mesh for a handle can cause problems around where they join.

A .l Closest Point Test

H ubbard’s algorithm for categorising points as being inside or outside of the object pro­
ceeds as following. The closest point on the surface mesh is first determined. Using this
point q the status of point p depends on whether the closest point lies on a face, an edge
or a vertex. If the closest surface point q lies on a face then the point p can only be inside
the object if the point p lies behind that face, i.e if the vector dot product between ||p — g||
and the face normal, n, is negative. If q lies on an edge e then there are two cases that

139

APPENDIX A. SURFACE TESTING 140

(a) Inside

Figure A.l: Cases for when p projects into a triangle and for when p' projects onto an
edge.

must be considered. If the two faces, which share e, form a concave fold then p must lie
behind one of the faces to be inside, whereas if the two faces are convex then p must be
behind both faces. If q is a vertex then p must lie behind all faces that share that vertex.

To find the point g on a triangulated polyhedron that is closest to a given point p the
algorithm iterates through the triangles finding the closest point on each triangle. There
are three cases that must be considered when trying to find this. The minimum distance
between a plane and a point p is the perpendicular projection, p', of p onto the plane. If
this projected point is inside the triangle then there exists no closer point on the triangle
(see Figure A.1(a)). If p' lies outside an edge e of the triangle then the closest point
between p and the edge e is the perpendicular projection, p", of p' onto e. If p lies within
the line segment then there can be no closer point on the triangle (see Figure A .l(b))^. If
neither of the previous two cases are met then the closest point will be one of the vertices.

A SEADS grid (Spatially Enumerated Auxiliary D ata Structure) is used to speed up
the search for the closest triangle. The voxels of the SEADS grid contain lists of the
triangles with which they intersect. Before checking the triangles within each voxel a
quick distance check is performed. This eliminates the voxel if it does not contain any
points closer than the minimum distance encountered so far. The voxels are considered in
order of their distance from p so as to maximise the number of voxels that can be culled.
Hubbard creates a list of voxels and sorts them according to their distance from p so as
to terminate the search as quickly as possible. However, when performing inside/outside

^Hubbard incorrectly states that there can only be one edge onto which p ' can perpendicularly project.
T he correct situation is that the only edge capable of producing the closest point is the one that makes p'
lie outside the triangle.

APPENDIX A. SURFACE TESTING 141

7
/ \ 6

/
4 /

3
{ ~~ 2 /

1
\ •F V

\ I
\

,/

y

Figure A.2: Voxel traversal for finding the closest point on an object.

tests for this thesis, the sorting of the voxels accounted for a large amount of the work
done. For a 15 * 15 * 15 grid, the sorting (using quick sort) accounted for 80% of the total
time for inside/outside tests.

An alternative strategy is to use a more complicated algorithm to consider the voxels
in order. Instead of sorting a list of voxels, the algorithm implicitly considers the closest
ones first and leaves the further ones until later. The search starts with the voxel that
contains p. If p is not contained within a voxel then the test can return immediately as
the voxels cover the entire object and therefore p has to be classified as being outside the
object. The voxels are next considered to be a set of concentric rings, centered around
the starting voxel as illustrated in Figure A.2. Each ring of voxels is considered in turn,
starting with the one closest to p and moving outwards. This process continues until
there are no more rings or the closest point on the ring is further away from p than the
current estimate for its closest point. This doesn’t necessarily consider the voxels in the
same order as if they had been sorted by their distance from p. However, this scheme
does allow a much finer SEADS grid to be used and does not incur the penalty of the
sorting algorithm. Consequently, using this traversal algorithm has provided a significant
speed-up (a factor of about 50) in the implementation used for this thesis.

A .2 Crossings Test

In the crossings test, based on the Jordan Curve Theorem, a ray is shot out from the
query point in an arbitrary direction. The number of triangles that this ray intersects
are counted. This number will be odd if and only if the point is inside the surface. The
intersection test can be performed using any technique, such as that presented in [75]

There are a number of special cases that need to be considered. For instance, if the
ray strikes an edge or a vertex then the number of triangles intersected may be incorrectly
counted. This results from rounding errors in the arithmetic operations used to test the
intersection. Thus, in order to ensure that the point be categorised correctly these cases

APPENDIX A. SURFACE TESTING 142

need to be considered. These cases are, of course, quite rare and for applications such as
ray-tracing leaving out the special cases will occasionally result in an incorrectly coloured
pixel (or part of a pixel). For testing sphere fit these small errors cause anomalies in the
results. Therefore, the implementation used in this thesis fires a pair of rays and compares
the answers. If the rays disagree another pair of rays are fired, which vote for the correct
result.

Not all of the triangles need to be considered when counting the crossings. Any trian­
gles that do not lie on the path of the ray can be ignored. This can be efficiently achieved
by again using a SEADS grid. The voxels along the path of the ray are stepped through
using a variation of the DDA algorithm [3]. Thus only the triangles that occupy these
voxels need to be considered.

A .3 Speedup

Whichever technique is being used to determine if a point is within an object, the test
need not be used for every query. There are large areas of space that will be inside the
object and others that will be outside. Again, a SEADS grid can be used to accelerate the
process. Each of the voxels is categorised as being inside, outside or undetermined. The
undetermined voxels axe those that contain a section of the object’s surface and, therefore,
are only partly inside the object. If a voxel’s state is not undetermined then it can be
categorised with a single in-out test, i.e. testing the center point of the voxel.

Thus, when testing whether the point p is inside the object, a simple lookup is usually
all that is required. If the point falls into a voxel that is categorised as in or out then no
further work is needed. Only points that fall into voxels with the undetermined state need
to be checked further, using the desired algorithm.

A ppendix B

Examples

This appendix shows some examples of the sphere generation algorithms. The first set of
pictures show the bunny, cow and dragon approximated using a single set of spheres. The
second set show some sphere-trees generated for these models. Each of the sphere-trees has
a branching factor of 8 and is generated using the adaptive medial axis methods discussed
in this thesis.

143

APPENDIX B. EXAMPLES

(a) 10 spheres (b) 50 spheres

(c) 100 spheres (d) 500 spheres

Figure B.l: Examples of the Bunny approximated with the Merge algorithm.

APPENDIX B. EXAMPLES 145

(a) 10 spheres (b) 50 spheres

(c) 100 spheres (d) 500 spheres

Figure B.2: Examples of the Bunny approximated with the Expand & Select algorithm.

APPENDIX B. EXAMPLES

(a) 10 spheres (b) 50 spheres

(c) 100 spheres (d) 500 spheres

Figure B.3: Examples of the Cow approximated with the Merge algorithm.

APPENDIX B. EXAMPLES 147

(a) 10 spheres (b) 50 spheres

(c) 100 spheres (d) 500 spheres

Figure B.4: Examples of the Cow approximated with the Expand & Select algorithm.

APPENDIX B. EXAMPLES

(a) 10 spheres (b) 50 spheres

(c) 100 spheres (d) 500 spheres

Figure B.5: Examples of the Dragon approximated with the Merge algorithm.

APPENDIX B. EXAMPLES 149

(a) 10 spheres (b) 50 spheres

(c) 100 spheres (d) 500 spheres

Figure B.6: Examples of the Bunny approximated with the Expand & Select algorithm.

APPENDIX B. EXAMPLES 150

(a) Merge - Level 2 (b) Merge - Level 3

(c) Combined - Level 2 (d) Com bined - Level 3

Figure B.7: Sphere-trees constructed for the Bunny.

APPENDIX B. EXAMPLES 151

(a) Merge - Level 2

(c) Combined - Level 2 (d) Combined - Level 3

Figure B.8: Sphere-trees constructed for the Cow.

APPENDIX B. EXAMPLES 152

(a) Merge - Level 2 (b) Merge - Level 3

(c) Combined - Level 2 (d) Combined - Level 3

Figure B.9: Sphere-trees constructed for the Dragon.

Bibliography

[1] Frequently asked questions for comp.graphics.algorithms (usenet).
http: / / www.faqs.org/faqs / graphics / algorithms-faq/.

[2] K. Abdel-Malek, H.J Yeh, and N. Maropis. Determining interference between pairs
of solids defined constructively in computer animations. Computers in Enqineerinq,
14(l):48-58, 1998.

[3] John Amanatides and Andrew Woo. A fast voxel traversal algorithm for ray tracing.
In Eurographics ’87, pages 3-10. Elsevier Science Publishers, Amsterdam, North-
Holland, 1987.

[4] G. Barequet, B. Chazelle, L.J. Guibas, J.S.B. Mitchel, and A. Tal. BOXTREE: A
hierarchical representation for surfaces in 3D. Computer Graphics Forum, 15(3):387-
396, September 1996.

[5] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. Algorithms, 38:91-109, 2001.

[6] R. Barzel, J.F. Hughes, and D.N. Wood. Plausible motion simulation for computer
graphics animation. In Computer Animation and Simulation’96, pages 183-197.
Springer-Wien, 1996.

[7] H. Blum and R.N. Nagel. Shape description using weighted symmetric axis features.
Pattern Recognition, 10:167-180, 1978.

[8] U. Borgolte, H. Hoyer, and F. Wrosch. Online collision avoidance for two robots in
3d-space. In Proc. of the 1993 lE EE/RSJ International Conference on Intelligent
Robots and Systems, Yokohama, Japan, pages 1919-1926, 1993.

[9] A. Bowyer. Computing Dirichlet tessellations. The Computer Journal, 24(2):162-
166, 1981.

[10] Gareth Bradshaw and Carol O’Sullivan. Extracting cross-sectional profiles from
unorganized point clouds. In M.H. Hamza, editor. Proceedings of Computer Graphics
and Imaging (CGIM 2000), pages 175-180, November 2000.

[11] Z.L. Cai and J. Dill S. Payandeh. Haptic rendering: Practical modeling and colli­
sion detection. In Proceedings of the ASME Virtual Environment and Teleoperator
System Symposium, pages 81-86, November 1999.

[12] S.A. Cameron. Collision detection by four-dimensional intersection testing. IEEE
Transactions on Robotics and Automation, 6(3):291-302, 1990.

153

BIBLIO G RAPH Y 154

[13] S.A. Cameron. Enhancing GJK: Computing minimum penetration distances be­
tween convex polyhedra. In Proceedings of the Int. Conf. On Robotics and Automa­
tion, pages 3112-3117, 1997.

[14] Stephen Cameron. Efficient intersection tests for objects defined constructively.
International Journal of Robotics Research, 8(l):3-25, 1989.

[15] K. Chung and W. Wang. Quick elimination of non-interference polytopes in virtual
environments. In Proceedings of 3’”'̂ European Workshop on Virtual Environments,
February 1996. Also appeared in the book Virtual Environments’96, Springer-Verlag
Wien New York, 1996.

[16] K. Chung and W. Wang. Quick collision detection of polytopes in virtual environ­
ments. In Proceedings of ACM Symposium on Virtual Reality Software and Tech­
nology 1996, July 96.

[17] J.D. Cohen, M.C. Lin, D. Manocha, and M.K. Ponamgi. I-COLLIDE: An interactive
and exact collision detection system for large-scaled environments. In Proceedings
of ACM Int.SD Graphics Conference, pages 189-196, 1995.

[18] John Dingliana and Carol O’Sullivan. Graceful degradation of collision handling in
physically based animation. Computer Graphics Forum, (Proceedings, Eurographics
2000), 19(3):239-247, 2000.

[19] David Eberly. Dynamic collision detection using oriented bounding boxes. Magic
Software; www.magic-software.com.

[20] David Eberly. Intersection of objects with linear and angular velocities using oriented
bounding boxes. Magic Software: www.magic-software.com.

[21] S. Ehmann and M. Lin. Accurate and fast proximity queries between polyhedra
using surface decomposition. Computer Graphics Forum, (Proceedings, Eurographics
2001), 20(3):500-511, 2001.

[22] Carl Erikson and Dinesh Manocha. GAPS: General and automatic polygonal sim­
plification. In Proceedings of 1999 Symposium on Interactive 3D Graphics, pages
79-88, 1999.

[23] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, pages
153-174, 1987.

[24] S. J. Fortune. Voronoi diagrams and Delaunay triangulations. Euclidean Geometry
and Computers, pages 193-233, 1992. World Scientific Publishing Co., D.A. Du,
F.K. Hwang, eds.

[25] S.J. Fortune. Voronoi Diagrams and Delaunay Triangulations. CRC Handbook of
Discrete and Computational Geometry, pages 377-388, 1997.

[26] F. Ganovelli, J. Dingliana, and C. O’Sulhvan. BucketTree: Improving collision de­
tection between deformable objects. In SCCG2000 Spring Conference on Computer
Graphics, pages 156-163, April 2000.

BIBLIO G RAPH Y 155

[27] M.A. Garcia. A hierarchical world model represenation supporting heterogeneous
multisensory integration. In International Conference on Advanced Robotics, pages
461-471, September 1995.

[28] A. Garci'a-Alonso, N. Serrano, and J. Flaquer. Solving the collision detection prob­
lem. IEEE Computer Graphics and Applications, 14:36-43, 1994.

[29] Bernd Gartner. Fast and robust smallest enclosing balls. In Proceedings of
7*̂ Annual European Symposium on Algorithms (ESA), Lecture Notes in Com­
puter Science 164S, pages 325-338. Springer-Verlag, 1999. Available from
http://w w w.inf.ethz.ch/personal/gaertner/m iniball.htm l.

[30] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A fast procedure for computing the
distance between complex objects in three-dimensional space. IEEE Transactions
on Robotics and Automation, 4(2): 193-203, 1988.

[31] Mark Gill and Albert Zomaya. On the collision detection problems for robot ma­
nipulators. Cybernetics and Systems, An International Journal, 26:165-188, 1995.

[32] S. Gottschalk. Collision Queries using Oriented Bounding Boxes. PhD thesis, Dept,
of Computer Science, University of North Carolina, 2000.

[33] S. Gottschalk, M.C. Lin, and D. Manocha. OBB-Tree: A hierarchical structure for
rapid interference detection. In Proceedings of ACM SIG G RAPH ’96, pages 171-180,
1996.

[34] D. Green and D. Hatch. Fast polygon-cube intersection testing. In Alan W. Paeth,
editor, Graphics Gems V, pages 375-379. Morgan Kaufmann, 1994.

[35] A. Gregory, S. Ehmann, and M.C. Lin. inTouch: Interactive multiresolution model­
ing and 3D painting with a haptic interrface. In Proceedings of IEEE Virtual Reality
2000, pages 45-52, 2000.

[36] A. Gregory, M. Lin, S. Gottschalk, and R. Taylor. H-COLLIDE: A framework for
fast and accurate collision detection for haptic interaction. In IEEE Virtual Reality
Conference, pages 38-45, 1999.

[37] A. Gregory, M.C. Lin, S. Gottschalk, and R. Taylor. Fast and accurate collision de­
tection for haptic interaction using a three degree-of-freedom force-feedback device.
CGTA: Computational Geometry: Theory and Applications, 15:69-89, 2000.

[38] M. Hariyama, T. Hanyu, and M. Kameyama. A collision detection multiprocessor
for intelligent vehicles using a high-density CAM. In Proc. of the Intelligent Vehicles
’94 Symp, pages 143-148, 1994.

[39] T. He. Fast collision detection using QuOSPO trees. In Proceedings of the 1999
Symposium on Interactive 3D graphics, pages 55-62, April 1999.

[40] T. He and A. Kaufman. Collision detection for volumetric objects. In Proceedings
of the 8*̂ IEEE Visualization ’97 Conference, volume 1, pages 27-35, 1997.

[41] Paul S. Heckbert and Micheal Garland. Optimal triangulation and quadric-based
surface simplification. Journal of Computational Geometry: Theory and Applica­
tions, pages 49-65, November 1999.

BIBLIO G RAPH Y 156

[42] M. Held, J.T . Klosowski, and J.S.B Mitchell. Evaluation of collision detection meth­
ods for virtual reality fly-throughs. In Proceedings of 7̂ ̂ Canadian Conference on
Computational Geometry, pages 205-210, 1995.

[43] L.J. Hettinger and G.E. Riccio. Visually induced motion sickness in virtual environ­
ments. Presence, 1(3):306-310, 1992.

[44] H. Hoppe. Progressive meshes. In Proceedings of ACM SIG G RAPH ’96, pages
99-108, 1996.

[45] H. Hoppe. View-dependent refinement of progressive meshes. In Proceedings of ACM
SIGGRAPH ’97, pages 189-198, 1997.

[46] H. Hoppe. Smooth view-dependent level-of-detail control and its application to
terrain rendering. In Proceedings of IEEE Visualization ’98, pages 35-42, 1998.

[47] P.M. Hubbard. Collision detection for interactive graphics applications. IEEE Trans­
actions on Visualization and Computer Graphics, l(3):218-230, 1995.

[48] P.M. Hubbard. Approximating polyhedra with spheres for time-critical collision
detection. ACM Transactions on Graphics, 15(3):179-210, 1996.

[49] P.M. Hubbard. Collision Detection for Interactive Graphics Applications. PhD
thesis. Dept, of Computer Science, Brown University, April 1995.

[50] T. Hudson, M.C. Lin, J. Cohen, S. Gottschalk, and D. Manocha. V-COLLIDE:
Accelerated collision detection for VMRL. In Proceedings of VRML 1997, pages
117-124, 1997.

[51] M. Hughes, C. DiMattia, M.Lin, and D. Manocha. Efficient and accurate interference
detection for polynomial deformation and soft object animation. In Proceesings of
Computer Animation ’96, pages 155-166, 1996.

[52] Wolf-D Ihlenfeldt. Virtual reality in chemistry. Journal of Molecular Modeling,
3:386-402, September 1997.

[53] H. Inagaki, K. Sugihara, and N.Sugie. Numerically robust incremental algorithm for
constructing 3D Voronoi diagrams. In Proceedings of the 4* ̂ Canadian Conference
on Computational Geometry, pages 334-339, 1992.

[54] D.R. Jefferson. Virtual time. AC M Transactions on Programming Languages and
Systems, 7(3):404-425, 1985.

[55] P. Jimenez, F. Thomas, and C. Torras. 3D collision detection: A survey. Computers
and Graphics, 25(2):269-285, 2000.

[56] Y. Kitamura, H. Takemura, N. Ahuja, and F. Kishino. Efficient collision detection
among objects in arbitrary motion using multiple shape representations. In Pro­
ceedings 12^ ̂ lA P R Int. Conf. On Pattern Recognition, volume 1, pages 390-396,
1994.

[57] J.T . Klosowski. Efficient Collision Detection for Interactive 3D Graphics and Virtual
Environments. PhD thesis, State University of New York at Stony Brook, May 1998.

B IBLIO G RAPH Y 157

[58] J.T . Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan. Efficient colli­
sion detection using bounding volume hierarchies of k-DOPs. IEEE transactions on
Visualization and Computer Graphics, 4(l):21-36, 1998.

[59] Y. Kono, M. Seto, K. Nishimatsu, H. Fukumori, and Y. Muraoka. Parallel mesh
generation for FEM - parallel construction of Voronoi diagram. IP SJ SIGNotes -
High Performance Computing, 60, 1995.

[60] S. Krishnan, M. Gopi, M. Lin, D. Manocha, and A. Pattekar. Rapid and accurate
contact determination between spline models using ShellTrees. In Proceedings of
Eurographics ’98, volume 17(3), pages 315-326, 1998.

[61] S. Krishnan, A. Pattekar, M. Lin, and D. Manocha. Spherical shells: A higher order
bounding volume for fast proximity queries. In Proceedings of the 1998 Workshop
on the Algorithmic Foundations of Robotics, pages 122-136, March 1998.

[62] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast proximity queries with
swept sphere volumes. Technical Report TR99-018, Dept, of Computer Science,
University of North Carolina, 1999.

[63] E. Larsen, S. Gottschalk, M.C. Lin, and D. Manocha. Fast distance queries using
rectangular swept sphere volumes. In Proceedings of IEEE International Conference
on Robotics and Automation 2000, 2000.

[64] E. Levey, C. Peters, and C. O’Sullivan. New metrics for evaluation of collision
detection techniques. In Proceedings of The 8̂ * International Conference in Central
Europe on Computer Graphics, Visualization and Interactive Digital Media’2000.,
2000.

[65] M. Lin. Efficient Collision Detection for Animation and Robotics. PhD thesis.
University of California, Berkeley, 1993.

[66] M. Lin and D. Manocha. Efficient contact determination between geometric mod­
els. Internation Journal of Computational Geometry and Applications, 7(1):123-151,
1997.

[67] M.C. Lin and J.F. Canny. Efficient algorithms for incremental distance computation.
In Proc. IEEE Conference on Robotics and Automation, pages 1008-1014, 1991.

[68] M.C. Lin and S. Gottschalk. Collision detection between geometric models: A survey.
In Proceedings of IMA Conference on Mathematics of Surfaces, pages 33-52, 1998.

[69] M.C. Lin, A. Gregory, S. Ehmann, S. Gottschalk, and R. Taylor. Contact deter­
mination for real-time haptic interaction in 3D modeling, editing and painting. In
Proceedings of 1999 Workshop for PH ANTO M User Group, pages 58-61, 1999.

[70] M.C. Lin, D. Manocha, J. Cohen, and S. Gottschalk. Collision Detection: Algorithms
and Applications. In Jean-Paul Laumond, M. Overmars, and A.K. Peters (eds.),
editors. Algorithms for Robotics Motion and Manipulation, pages 129-142. 1997.

[71] Jean-Christophe Lombardo, Marie-Paule Cani, and Fabrice Neyret. Real-time colli­
sion detection for virtual surgery. In Computer Animation’99, May 1999.

BIBLIO G RAPH Y 158

[72] V. Milenkovic. Robust construction of the Voronoi diagram of a polyhedron. In
A. Lubiw and J.Urrutia, editors, Proceedings of the 5*̂ Canadian Conference on
Computational Geometry, pages 473-478, August 1993.

[73] B. Mirtich. V-Clip: Fast and robust polyhedral collision detection. ACM Transac­
tions on Graphics, 17(3):177-208, 1998.

[74] Brian Mirtich. Timewarp rigid body simulation. In Proceedings of AC M SIGGRAPH
2000, July 2000.

[75] Tomas Moller and Eric Haines. Ray/triangle intersection. In Real-time Rendering,
pages 303-305. A.K. Peters, 1999.

[76] M. Moore and J. Wilhelms. Collision detection and response for computer animation.
Computer Graphics, 22(4):289-298, 1988.

[77] Allison M. Okamura. Literature survey of haptic rendering, collision detection and
object modelling. Technical report, Johns Hopkins University, Department of Engi­
neering, Baltimore, August 1998.

[78] C. O’Sullivan. Perceptually-Adaptive Collision Detection for Real-time Animation.
PhD thesis. Trinity College Dublin, Ireland, June 1999.

[79] C. O’Sullivan and J. Dingliana. Realtime collision detection and response using
sphere-trees. In Proceedings of the Spring Conference on Computer Graphics, pages
83-92, 1999.

[80] C. O’Sullivan and J. Dingliana. Collisions and perception. ACM Transactions on
Graphics, 20(3);151-168, 2001.

[81] C. O ’Sullivan, R. Radach, and S. Collins. A model of collision perception for real­
time animation. In N. Magnenat-Thalmann and D. Thalmann, editors. Computer
Animation and Simulation’99, pages 67-76. Springer-Wien, 1999.

[82] I. J. Palmer and R.L. Grimsdale. Collision detection for animation using sphere-trees.
Computer Graphics Forum, 14(2):105-116, 1995.

[83] M.K. Ponamgi, D. Manocha, and M.C. Lin. Incremental algorithms for collision
detection between polygonal models. IEEE Transactions on Visualization and Com­
puter Graphics, 2(l):51-64, 1997.

[84] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes
in C: The Art of Scientific Computing, Downhill Simplex Method in Multidimen­
sions, chapter 10.4, pages 408-412. Cambridge University Press, second edition,
1992.

[85] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes
in C: The Art of Scientific Computing, Recursive Stratified Sampling, chapter 7.8,
pages 323-327. Cambridge University Press, second edition, 1992.

[86] S. Quinlan. Efficient distance computation between non-convex objects. In Pro­
ceedings International Conference on Robotics and Automation, pages 3324-3329,
1994.

BIBLIO G RAPH Y 159

[87] R. Rabbitz. Fast collision detection of moving convex polyhedra. In P.S. Heckbert,
editor, Graphics Gems IV, pages 83-109. Academic Press, Cambridge, MA, 1994.

[88] M artin Reddy. A survey of level of detail support in current virtual reality solutions.
Virtual Reality Research, Development and Application, l(2):85-88, 1995.

[89] J. Ritter. An efficient bounding sphere. In Andrew S. Glassner, editor, Graphics
Gems, pages 301-303. Academic Press, 1990.

[90] David F. Rogers. Procedural Elements for Computer Graphics, pages 196-207.
McGraw-Hill Book Company, New York, 1985.

[91] J. Rolhf and J. Helman. IRIS Performer: A high performance multiprocessing toolkit
for real-time 3D graphics. In Proceedings of AC M SIG GRAPH '94, pages 381-393,
1994.

[92] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering system
for large meshes. In Kurt Akeley, editor. Proceedings of AC M SIG GRAPH 2000,
pages 343-352. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

[93] S. Rusinkiewicz and M. Levoy. Streaming QSplat: A viewer for networked visual­
ization of large, dense models. 2001 Symposium on Interactive 3D Graphics, 2001.

[94] H. Sammet and R. Webber. Hierarchical data structures and algorithms for computer
graphics. IEEE Comp. Graphics and Applications, 8(3):48-68, 1988.

[95] C.A. Shaffer and G.M. Herb. A real-time robot arm collision avoidance system.
IEEE Transactions on Robotics and Automation, 8(2): 149-160, 1992.

[96] I.P.W. Sillitoe, A. Batersby, and J. Edwards. A parallel architecture for efficient
clash detection. Progress in Transputer and Occam Research, pages 32-39, 1994.

[97] A. Smith, Y. Kitamura, and F. Kishino. Efficient algorithms for octree motion. In
lA P R Workshop on Machine Vision Applications, pages 172-177, 1994.

[98] A. Smith, Y. Kitamura, H. Takemura, and F. Kishino. A simple and efficient method
for accurate collision among deformable polyhedral objects in arbitrary motion. In
Proceedings of the Virtual Reality Annual International Symposium, pages 136-145.
IEEE, March 1995.

[99] J.M. Snyder. Interval analysis for computer graphics. In Proceedings of ACM SIG-
G RAPH ’93, pages 121-129, 1992.

[100] J.M. Snyder, A.R. Woodbury, K. Fleischer, B. Currin, and A. Barr. Interval methods
for multi-point collisions between time-dependent curved surfaces. In Proceedings of
SIG G R APH ’93, pages 321-334, 1993.

[101] C. Tseng and C. Wu. Collision detection for multiple robot manipulators by using
orthogonal neural networks. Journal of Robotic Systems, 12:479-490, 1995.

[102] G. Turk. Interactive collision detection for molecular graphics. Master’s thesis. Dept,
of Computer Science, The University of North Carolina, 1989.

BIBLIO G RAPH Y 160

[103] G. Turk. Generating random points in triangles. In Andrew S. Glassner, editor,
Graphics Gems, pages 24-28. Academic Press, 1990.

[104] G. van den Bergen. Efficient collision detection of complex deformable models using
A ABB trees. Journal of Graphics Tools, 2(4): 1-13, 1997.

[105] G. van den Bergen. A fast and robust GJK implementation for collision detection
between convex objects. Journal of Graphics Tools, 4(2):7-25, 1999.

[106] P. Volino and M. Thalmann. Efficient self-collision detection on smoothly discretized
surface animations using geometrical shape regularity. In Eurographics ’94, Computer
Graphics Forum, volume 13, pages 155-166, 1994.

[107] B. Von-Herzen, A.H. Barr, and H.R. Zatz. Geometric collisions for time-dependent
parametric surfaces. In Proceedings of SIG G RAPH ’99, pages 39-48, 1990.

[108] Emo Weltz. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor.
New Results and New Trends in Computer Science, pages 359-370. 1991.

[109] Dave White. Smallest Enclosing Ball of Points/Balls.
http ://v ision.ucsd.edu/ dwhite/ball.html.

[110] Andrew J. Willmott. Hierarchical Radiosity with Multiresolution Meshes. PhD
thesis. School of Computer Science, Carnegie Mellon University, 2000.

[111] A. Wilson, E. Larsen, D.Manocha, and M.C. Lin. IMMPACT: A system for inter­
active proximity queries on massive models. Technical Report TR98-031, Dept, of
Computer Science, University of North Carolina, 1998.

[112] Julie C. Xia, Jihad El-Sana, and Amitabh Varshney. Adaptive real-time level-of-
detail based rendering of polygon meshes. IEEE Transactions on Visualisation and
Computer Graphics, 3(2):171-183, June 1997.

[113] J. Xiao and L. Zhang. Towards obtaining all possible contacts - growing a polyhe­
dron by its location uncertainty. In Proceedings 1994 lE E E /R S J /G I International
Conference on Intelligent Robots and Systems, pages 1788-1795, September 1994.

[114] J.H. Youn and K. Wohn. Realtime collision detection for virtual reality applications.
In Proceedings IEEE Virtual Reality Annual Int. Sym., pages 18-22, 1993.

[115] M. Zeiller. Collision detection for objects modeled by CSG. Visualization and
Intelligent Design in Engineering and Architecture, pages 165-180, 1993.

[116] M. Zeiller. Collision Detection for Complex Objects in Computer Animation. PhD
thesis, Vienna University of Technology, 1994.

[117] M. Zeiller, W. Purgathofer, and M. Gervautz. Efficient collision detection for gen­
eral CSG objects. In Proceedings of EUROGRAPHICS 6*̂ Workshop on Computer
Animation and Simulation, 1995.

[118] D. Zhang and M.M.F Yuen. Collision detection for clothed human animation. In
Proceedings of the 8*̂ Pacific Conference on Computer Graphics and Applications,
pages 228-237, 2000.

