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Abstract

Collision Handling has long been a major bottleneck in physically based ani­

mation. As scene complexity increases the problem becomes critical enough to 

prohibit real-time performance in the animation system. Previous approaches 

have attempted to achieve interactive rates by culling large parts of the scene or 

making drastic simplifications to the scene.

We present here an adaptive level of detail approach to the collision-handling 

problem for interactive applications, which guarantees real-time rates irrespective 

of the complexity of the scene provided that the underlying hardware is able to 

cope with the lowest level of detail. This is achieved by using interruptible meth­

ods for the three problems of Collision Detection, Contact modelling and Collision 

Response. A multi-resolution bounding volume hierarchy is used to provide dis­

crete levels of resolution in the data structures used for collision detection. We 

present a perceptually based collision prioritisation approach which makes grace­

ful degradation of collision detail possible across a complex virtual environment. 

We present strategies for facilitating trade-offs between accuracy and speed in 

Collision Handling in the attempt to enhance the immersive nature of the virtual 

environment and optimise the quality of the dynamic scene.

We investigate the use of different classes of bounding volume hierarchies in an 

interruptible collision handUng scheme as well as various strategies for scheduling 

the traversal of the bounding volume trees in order to better optimise the speed- 

accuracy trade-off. We also present an approach for stochastic contact modelling 

and collision response based on density values of bounding volume nodes. An 

evaluation of the effectiveness of different approaches in terms of efficiency and 

plausibility is presented.
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Chapter 1

Introduction

1.1 M otivation

The science of computer graphics has always captured the imagination of re­

searchers and, as a result, has evolved at a pace that has pushed the limits of 

available hardware. As new capabilities axe so quickly exploited in software solu­

tions, there has never been a meaningful gap between what hardware is capable 

of producing and what has been produced as output. More significant perhaps, 

is that in recent years the gap between interactively generated output and what 

we perceive in non-computer related media (or indeed in real life) has been ap­

preciably reduced. The goal of realism has until recently been reserved for off-line 

approaches, but, with advancement in graphics capabilities, interest is increas­

ingly being directed towards interactive graphics where solutions of close to the 

same quality are now required at real-time rates.

One such area is the physically based motion synthesis of objects in a vir­

tual environment and the interactions of such objects when they collide. This 

is a historically difficult problem necessitating simplifications in order to manage 

computational complexity. It has become a sub-goal in such systems to adap­

tively apply simplifications to different parts of the scene, trading off complexity
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for processing speed wherever required. To optimise this trade-off, it is desirable 

that any loss or increase in detail is introduced seamlessly into the system and 

some approaches, such as the one described in this thesis, achieve this by taking 

into account the user’s perception of the scene.

1.1.1 Physically Based Anim ation

Physically based animation concerns itself with simulating, in the virtual world, 

the same properties and behaviours of objects th a t we see in the real world. As 

opposed to traditional ad hoc or artistic animation techniques, simulation entails 

enforcing known rules and constraints tha t will govern the motion of objects in 

the ajiimated scene. To illustrate this distinction, we might take the example of 

an animation of a rubber ball being thrown on to the floor. Both approaches 

to ajiimation should of course end up with consecutive graphical frames, where 

we see the ball at different positions in the scene, possibly falling first and then 

bouncing up off the ground. In the non-physicaJly based approach, the animator 

is left to decide how fast the ball should move at each frame, when it should start 

moving back up and how far it should bounce. In contrast, the physically based 

approach requires the animator to specify the starting size, speed and position of 

the ball, some physical properties of the colliding object e.g. mass and coefficients 

of restitution, and possibly global properties of the scene such as gravity and 

other forces that might act on the ball. Once these variables have been input, the 

animation system is solely responsible for generating the animation frames where 

the ball behaves in expected ways, such as colliding, falling and bouncing.

In essence, physically based animation is an extension of procedural animation^ 

with the additional prerequisite of using laws of physics to drive key procedures 

that generate the animation sequence. Although some level of control can be lost 

by the animator in such procedural systems, physically based animation offers

^Procedural animation systems use programmable sets of rules that can be repeated or re­

played as required to generate animation.
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several advantages. Firstly, being based on physical laws, the generated motions 

are often much more realistic than can be generated by procedural animation or 

by a human animation artist. Provided tha t realism is our primary goal and pro­

vided that the quality of our physically based procedures and input variables are 

adequate, this is an important factor in choosing a physically based animation 

system. Secondly, there is the benefit of reusability and automation in the anima­

tion system as, once the system has been set-up to enforce the necessary physical 

laws, then different sets of input variables can be used to generate multitudes of 

different simulations with minimum effort. Furthermore, this kind of reusabihty 

is essential in interactive environments, where the users’ actions may be used as 

input variables for the animation. Physically based animation makes it possible to 

generate realistic real-time animations on the fly, where the user is able to interact 

with the environment and manipulate the animation.

Unfortunately, the simulation process involves many complex and computa­

tionally expensive operations. As a result there is a  big divide between the com­

plexity of off-line simulations, with no significant time constraints for generating 

animations, and real-time simulations, which are required to generate and deliver 

animation frames at least twenty times a second or more often. Despite this fact, 

physically based real-time animation has become a hugely popular area in past 

years. As the processing power of the average home computer increases, we are 

seeing the potential to deliver, in standard interactive applications, a complex­

ity of physical simulation tha t a few years ago was reserved only for the off-line 

animation industry and for commercial installations using high specification and 

high cost hardware. However, as all simulation concerns itself with modelling a 

continuous and infinitely complex world, we must accept tha t for many years to 

come we will have to be content with a simplified discretisation of our theoretical 

ideals.
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1.1.2 Adaptive Simplification

Fully accurate and highly complex simulation would seem to be an unattainable 

goal and early approaches have simply dealt with this fact by simplifying the 

subjects that they model, restricting themselves to a world tha t will only ever get 

as complex as they think they can handle in the worst case scenarios. However, 

such pre-emptive simplification suffers from a few obvious flaws. Firstly, due to 

the nature of the dynamics system, which by very definition is ever-changing, it is 

difficult if not impossible to predict how complex any specific scenario is going to 

become. Computational complexity in such systems arises not from the number 

of objects or features but from possible future states of objects in the system. For 

instance, whether or not there will be many simultaneously occurring collisions 

during the simulation will affect how much processing power will be required. 

While it may sometimes be possible to predict from initial conditions what future 

states will arise, the introduction of an external random variable, such as human 

user input will usually prevent this.

Even if we were able to predict all future scenarios and restrict the complexity 

of the system, we often find that the worst case scenarios occur relatively infre­

quently and furthermore that the computational workload for these situations can 

be grossly higher than the average case. This means that programming for the 

worst case invariably results in simulations being over-simplified and processing 

power wasted for the sake of a few snapshots of high complexity.

Pre-emptive simplification, although simple enough to implement, is therefore 

not the ideal approach to take for long-running simulations of potentially high 

complexity. It would be ideal if we could instead adaptively simplify the complex­

ity of the ongoing computations at run time as the simulation takes place, thus 

reducing complexity only when necessary and where it is most needed.

The process of simplifying a simulation might be achieved by simply switching 

on or off the processes that drive the simulation for objects th a t are flagged as
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being less important in the system. Alternatively, we could use different processes 

of varying complexity and accuracy to drive different parts of the simulation. For 

instance, Carlson and Hodgins [13] used different simulation algorithms to animate 

homogeneous objects in different parts of the scene, using the most complex and 

realistic model for dynamics in the most important part of the scene. Although 

such an approach might be termed “adaptive”, because the simulation detail is 

modulated for different regions, it still lacks some flexibility as the boundaries 

of each level of detail region are predetermined. Although the overall simulation 

will tend to be more optimised, particularly if the regions are chosen well, the 

problem of worst case scenarios causing bottlenecks still remain. For instance, 

should all simulated objects for some reason crowd around the regions of highest 

importance we can end up with the same problems as an approach with no such 

levels of detail.

Time-critical approaches go one step further by taking into account a set time- 

schedule for delivering animation frames. The scene might be split up into similar 

regions of importance as in the previously described approach, with processing 

beginning by simulating all objects at the lowest level of detail. Then, as long as 

there is time available, a more accurate simulation model is applied to the more 

important objects. This stage is then repeated until either the highest level of 

simulation is reached or allocated time for processing runs out. The advajitage 

is that if time should run out, there is the lower level of detail to fall back on. 

Provided there is time at least to simulate all objects at the lowest level of detail, 

it becomes possible to guarantee any given frame-rate requirement.

A further step to optimizing the trade-off between speed and accuracy is to use 

perceptual prioritisation to choose different levels of detail for the scene. In other 

words, objects or parts of the scene that were considered to be perceptually impor­

tant would be given high priority and would be the first to be resolved at higher 

levels of detail. Perceptually adaptive compression has been used effectively in 

industrial applications such as JPEG compression and Mpeg-4 where Perceptual
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Noise Substitution is used to compress audio. Perceptually based graphics is a 

fast-growing area as perceptual science is not only an effective basis for a strat­

egy for simplification but also for evaluating existing non-adaptive techniques for 

rendering.

1.1.3 Collision Handling

Accurate modelling of collisions between objects in the scene is a vital feature 

of a physically based animation system. It is mainly through coUisions tha t the 

state of one object can influence another object in the scene and it is through 

collisions that a user of a physically based virtual environment is able to interact 

with and affect the elements of the scene. Unfortunately, collision processing is 

an inherently expensive procedure as it introduces computational workload, not 

just in calculating correct physical responses, but also in detecting when these 

collisions occur in the virtual world in the first place.

As scene complexity increases, collision handling quickly becomes a major bot­

tleneck in the simulation process. Thus, a trade-off between speed and accuracy in 

collision handling is particularly useful in order to achieve interactive frame-rates. 

Our goal is to optimise this trade-off by making simplifications as imperceptible 

as possible to the viewer in the animation of rigid bodies and articulated figures 

composed of rigid subparts.

1.2 Overview of this Thesis 

1.2.1 Objectives

The goal of this thesis is to present a fully time-critical and perceptually adaptive 

approach to the collision handling problem in physically based real-time einima- 

tion. Specifically, we wish to extend previously proposed interruptible collision 

detection systems to incorporate time-critical contact modelling and collision re-
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sponse. Established approaches optimise the collision detection process between 

potentially colliding objects by using bounding volume hierarchies to localise po­

tential contact queries. However this type of approach has not hitherto been used 

for delivering physically based collision response. In this thesis, we propose an 

approaich to using bounding volume intersection tests themselves to generate ai>- 

proximate contact data which can be used directly by a physics-based collision 

response system.

We will introduce the notion of approximate contacts, which can be progres­

sively refined to deliver varying degrees of accuracy in collision response given 

increasing amounts of processing time, thus facilitating a system which is capa­

ble of delivering adaptive levels of detail in collision handling. All level of detail 

approaches bring about trade-off between speed and accuracy in the system and 

out of this arises the need and potential for optimisation. Thus, a discussion of 

adaptive collision handling will not be complete without a detailed study in op­

timising any required trade-offs in terms of computationally efficiency as well as 

the degree of plausibility of the simplified solutions. We will present details of 

some such optimisation techniques and provide evaluations of their effectiveness.

1.2.2 Scope

This thesis deals with the problem of collision handling of rigid bodies and ar­

ticulated hierarchies of rigid bodies for use in interactive applications with strict 

frame-rate requirements. The overall accuracy of the system is sacrificed in order 

to achieve frame-rate requirements but this tradeoff is carefully controlled in or­

der to optimise the viewers immersive experience of the scene. The approaches 

discussed here provide approximate solutions to the mathematical equations gov­

erning the motions of objects and are not intended for use in critical applications 

where it is important that the resultant final states of the objects needs to be 

calculated to the highest possible degree of accuracy. Instead, the solutions pre-
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sented, attempt to maintain the instantaneous validity of the results and provide 

a real-time interactive user experience to the highest degree possible for any given 

scene. The solutions provided cater for scenes where objects axe modelled as 

bounding volume hierarchies of a range of different types.

1.2.3 Contributions

We offer the following points as the specific contributions of the work that is 

presented in this thesis:

• We provide a thorough literature review of physically based modelling and 

the problems of collision handling in particular. We also provide detailed 

discussions of areas not traditionally associated with these areas. These are 

namely, level of detail modelling techniques, perceptual issues and plausibil­

ity.

• We present a general design philosophy for addressing the development of 

a system for real-time physically based animation by exploiting adaptive 

level of detail techniques in collision handling. We model pairwise 

collisions between simple nodes which are used as atomic components in 

a much larger system for constructing rich, high fidelity interactive virtual 

environments.

• We document the use of various bounding volum e hierarchies (BVH) 

for th e  specific purpose of level of detail collision detection. Some 

new BVH schemes are discussed, namely the VoxelTree and the heteroge­

neous bounding volume trees.

• We also present an approach to tim e-critical contact m odelling and 

response. Traditionally, approaches employing bounding volume hierar­

chies do so only for early culling, relying on accurate collision detection to 

provide contact manifolds and proper response. Our approach generates an
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approximate conteict model and collision response which is progressively re- 

finable and time-critical. Node intersection data in the collision detection 

stage is used to pre-schedule time for the generally non-refinable response 

calculations thus ensuring a time-critical solution as a whole.

• We implement and discuss an efficient and useful extension of the bounding 

volume approaches to enable collision and self-collision detection  for 

a rticu la ted  objects.

• We present results of various percep tual experim ents to  te s t th e  plau­

sibility of offered approxim ate solutions. We offer s tra teg ies for 

optim izing th e  speed-plausibility trade-off by highlighting the key ar­

eas that we have found subjects to be most sensitive to when approximate 

solutions are used in generating an intereictive physically based animation.

1.2.4 Summary of Chapters

This chapter discussed the motivations to this thesis. The remaining chapters are

organized as follows:

C hap ter 2 provides a detailed review of the related areas of research. We discuss 

previous solutions to the problem of collision handling and highlight some 

of the open problems that remain.

C hap ter 3 is a discussion of the adaptive time-critical approach for collision han­

dling, which extends a previous approach to sphere-tree collision detection 

by providing an approximate contact model for bounding volume collision 

detection. Information is then passed between the three processes of colli­

sion detection, contact modelling and collision response, all of which function 

under a single cohesive time scheduler.

C hap ter 4 discusses additional details for the optimisation of approximate con­

tact modelling, presenting approaches for efficiently reducing computational



workload for collision response whilst preserving as much of the high fidelity 

data returned by the processes of collision detection and contact modelling. 

We also extend the framework of Chapter 3 to encompass different kinds of 

bounding volume hierajchies included VoxelTrees, SSV-trees and heteroge­

neous hierarchies.

C hap ter 5 discusses the perceptual optimisation of the adaptive level of detail 

system for collision handling using different scheduling strategies and pro­

vides a study of perceptual plausibility issues. We also discuss problems and 

solutions unique to adaptive Level of Detail Simulation.

C hap ter 6 presents final results from an interruptible collision handling system 

and discusses some perceptual experiments to evaluate certain aspects of the 

work presented in this thesis. We begin by presenting different resolutions 

of output from our system and then evaluate how important it is to have 

adaptive level of detail in order preserve the over-all perceptual impact of 

a simulation. We then compare various scheduling strategies described in 

chapter 5 and present results of experiments to evaluate the quality of a 

gaae-driven scheduler.

C hap ter 7 summarises the topics discussed in the thesis and describes on-going 

extensions and future research directions.
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Chapter 2

Related Work

This chapter provides a detailed review of related areas of research and delivers 

a background understanding of the concepts that will be built on in the rest of 

the thesis. We will outline the application areas where adaptive collision detection 

techniques are required and present an overview of existing solutions and problems 

that remain. We first discuss the area of physically based animation to understand 

the requirements of the problem domain and the variables that we need to deal 

with. We then discuss the problem of collision handling in particular, as this is 

the topic we will be dealing with through most of this thesis. Lastly, we discuss 

adaptive level of detail techniques, which have always been prevalent in interactive 

animation but not widely used until recently in dynamics simulation and collision 

handling.

2.1 Physically Based Anim ation

Physical accuracy of some form has always been the goal in realistic animation. 

Whether the animation frames are drawn by humans artists or by a computer, 

when the goal is to represent reality then the laws of physics must be taken into 

account, even if only informally. Even cartoon animation, with its own unique 

system of physical behaviour, obeys laws such as gravity, friction and collisions,

11



which are loosely derived from physics.

Computer generated physically based animation evolved from early procedural 

animation systems and can be defined as the process of generating frames of 

animation using numerical solutions to the motions of objects based on laws of 

physics.

In fact, what we are principally concerned with is the kinematics and the dy­

namics of objects in the virtual world. Kinematics is the study of the motion of 

objects, including their positions, orientations, velocities and accelerations. Dy­

namics, on the other hand, deals with the forces and impulses th a t cause object 

motions. Many authors use the term Dynamic Simulation to describe a procedural 

animation based on the laws of dynamics.

Physics based animation has been a topic of interest for some years, when gen­

erating increasingly complex systems with realistic motions. Amongst the many 

application areas, popular early areas of research were in rigid body simulation 

[5, 38, 69], physically based modelling of articulated characters [1, 95] and anima­

tion of cloth [93] and flexible bodies [39, 87]. Many of these systems, though highly 

realistic, dealt only with pre-generated off-line animations and only recently, with 

the evolution of optimisation techniques and developments in computational ca­

pabilities of machines, has physically based animation been of general interest in 

real-time animations.

We will provide a background to the full process of dynamic simulation, high­

lighting the key processes in Section 2.1.1 and discussing the stages th a t lead into 

collision handUng. We then discuss the issue of modelling objects for simulation 

in 2.1.2. Most of the methods used in this thesis are based on well estabUshed 

laws, obtained from theoretical derivations or empirical models well-documented 

elsewhere [25, 29, 35, 36, 50, 86]. This thesis aims to discuss not the derivations 

and bax;kgrounds to these laws themselves but how they are used ajid optimised 

for real-time animation. We do, however, need a good knowledge of the variables 

required for dynamic simulation, in particular those involved in collisions of rigid
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bodies and this is discussed in Section 2.1.3. In section 2.1.4 the actual process of 

applying these variables in order to compute realistic motion is discussed.

2.1.1 The Simulation Pipeline

The process of dynamic simulation concerns itself with the synthesis of motion 

based on physical laws. The system for dynamic simulation can be seen as a 

sequence of processes in a pipeline. We will discuss each of these stages here to 

establish some common terminology and a basic framework for further discussions 

later on in this thesis. In practice, a strict pipeline is not always adequate as the 

optimised solutions are often obtained when the processes are interleaved and less 

independent.

The stages in a theoretical physically based animation system are as follows 

(also see Figure 2.1):

M odelling  : similar to the modelling phase in rendering, this concerns the rep>- 

resentation of the object in a data structure tha t is useful for the rest of the 

simulation pipeline. Objects’ physical properties such as spatial occupancy, 

mass and density distribution axe determined and stored.

S im ulation  : this involves changing the states of the objects over time or from 

one simulation frame to the next. This is based on the state of objects and 

any external forces acting on them. For instance, an object’s position needs 

to be updated based on its velocity.

Collision D e tec tio n  ; an object’s free motion due to constant forces alone is 

not enough in a world of solid bodies. We need to check if objects in the 

scene are interpenetrating due to the simulation state changes.

C o n ta c t M odelling  : once we have found colliding objects, we will usually re­

quire some more detail on the nature of the contact, e.g. which parts of the 

objects are interpenetrating or colliding. A collision manifold is the spatial
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representation of the contact region between two objects, which needs to 

determined before the next phase.

Collision R esponse  : we need to enforce solidity by eliminating interpenetra­

tions as well as applying new forces or impulses to objects based on how they 

have collided. Sometimes it may be required tha t we step back in simulation 

time to do this properly.

R en d erin g  : once a valid and stable set of states for all dynamic objects is 

achieved, we may display the current scene.

DYNAMIC SIMULATION i

gm ulatjMB I I
|~  — .....  # |rENDERING IMODELLING!

Collision Contact Collision
Detection Modelling Response!

Figure 2.1: Simulation Pipeline 

2.1.2 M odelling Objects for Simulation

The modelling of objects for simulation is in some aspects related to modelling 

for rendering. Similar data structures such as polygonal meshes and voxel arrays 

are sometimes used for representing the boundary surfaces and spatial occupancy 

of an object. However, the two modelling processes have quite different goals. 

Physical integrity of meshes, for instance, is usually more crucial in modelling for 

simulation while high detail is not as crucial. A polygonal mesh with small holes 

might be adequate for rendering but would likely cause unacceptable problems for 

the simulator. Conversely, a highly tesselated mesh might be important for a good 

rendering but may not be as useful for simulation. In fact, many approa<;hes m«ike 

use of the concept of a proxy object, which is a coarser representation than the
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display object used in rendering. As a simple example, in the modelling of a golf 

ball, we might use a detailed description of the surface complete with indented 

grooves for display, but replace the object with the proxy object of a sphere as 

far as the simulator is concerned (see Figure 2.2).

Generally, two often conflicting goals govern the choice of proxy object. On 

one hand it is important to choose an object representation for the proxy object 

so tha t dynamics computations can be performed as quickly as possible. On the 

other hand, an overly coarse approximation can cause visible inconsistencies when 

it comes to simulating the object during the animation process. Furthermore, we 

must take care that inconsistencies arising due to approximation do not cause 

errors tha t will threaten the robustness of the simulator. It is often good practice 

to take a conservative overestimate when generating the proxy model for aji object, 

such as a convex hull or a bounding volume for the object.

As the physical properties of an object axe more important, volume based 

methods are often more prevalent in simulation literature than in rendering. This 

is because boundary representation alone may not provide sufficient information 

for the simulator to generate accurate physical behaviours for objects. It is how­

ever possible to get accurate results with such models if we can assume that the 

object is a uniform density solid and if the boundary representation is closed. 

Using this assumption, many popular rigid body simulation applications such as 

Havok  ̂ achieve very good results by simply using parametric or implicit sur­

faces or a valid wire-frame mesh of adequate resolution as the proxy models for 

simulation. Many other systems use approaches tha t can be best described as spa­

tial occupancy representations either exclusively or in conjunction with polygonal 

models [46, 47, 45, 43, 48, 74, 76].

'̂ For further information see http://www.havok.com
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2.1.3 Dynamics Variables

Apart from the volumetric description of an object, we also require certain com­

mon dynamics variables used in physics calculations. As we stated in Chapter 1, 

we deal primarily with rigid bodies or hinged hierarchies of rigid sub-objects in 

this thesis. However, many of the same variables are also required for soft object 
simulations:

The basic dynamic state of a rigid body can be represented in terms of:

• centre of mass

• position and orientation

• linear and angular velocity

• force and torque

• mass

• inertial tensor

Some of these, such as mass, are constants for the object while others are 

evaluated based on other properties of the object and the environment. Baraff 

[96] concisely represents all the variable parts of the dynamic data structure in a 

rigid body simulation state Y, based on position x(t), orientation R{t), and the 

total linear and angular momenta, L{t) and P{t) respectively:

!  x(t)

Y(() = (2.1)
fl(()

P(t)

V i(t) /

Thus, a full description of a rigid body, including its temporally variable state, 

consists of its spatial properties as well as its dynamic variables. We will also 

generalise by assuming that a proxy object separate from the rendering model is
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Dynamics Object
Vector centre_of_mass 
Vector position 
Matrix orientation 
Vector linear_velocity 
Vector angular_velocity 
Scalar mass 
Vector force 
Vector torque 
Matrix inertial tensor

Figure 2.2: Dynamics Object Model

always used so that a full object representation can be stored as shown in Figure 

2 .2 .

2.1.4 Simulation

Given a rigid body description and state as defined in the previous section, the 

process of simulation involves determining the change in the state variables over 

time. Primarily this involves integrating the equations of motion and, based on 

the object’s properties and the forces acting upon it in one simulation frame, to 

calculate the change in state of the object from one frame to the next , i.e. by 

integrating ^Y{ t) .

Although this represents the core of what is involved in physically based anima­

tion, there is still a considerable amount of processing required, beyond straight­

forward integration. Collisions between objects due to their own motions and to 

user interactions with the world cause simulation discontinuities, which require 

less predictable state changes that need to be handled before the straightforward 

process of simulation by integrating object states can be resumed.

A significant part of the problem stems from the fact that time and space in the 

simulation world need to be discretised in order to be handled by digital machines. 

Simplification due to discretisation is a problem in all areas of computer graphics

volvime model

display_model

17



but, in the case of simulation, means that instead of taking into account all the 

positions of dynamic objects as they move about the simulated world, we only 

consider their positions at specific time-steps. This can cause problems unique 

to simulation when relevant events occur in the time segments in between these 

chosen time-steps. For instance, if we take successive positions of a sphere fired 

towards a plane, it is possible and quite likely that we will miss the exact time of 

collision (see Figure 2.3).

x ( l o +  A/ )

X  ( t o + 2  A t )

Figure 2.3: Interpenetrations instead of collisions due to discrete time-steps

In order to resolve interpenetrations, Mirtich describes three classes of strate­

gies, implemented at the motion synthesis phase of the simulation pipeline [66]. 

One approach is to step back in simulation time to the time of first contact, re­

spond to the collision by resolving interpenetrations and changing the objects’ 

states and then continue the simulation from that point in time. This is referred 

to by Mirtich as Retroactive Detection and can be expensive since determining 

the point of first contact is not a trivial operation. Furthermore, the solution 

traditionally involves stepping back the entire simulation {i.e. all objects) to the 

time of first contact, which becomes infeasible for large numbers of objects.

An alternative method is Conservative Advancement, which involves finding 

a lower bound on the time between the previous frame and the time of first 

collision. If a collision is foreseen, a smaller simulation time-step is taken to find 

the intermediate position before contact. This is done iteratively until a contact
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time is found to some target degree of accuracy so that the simulation effectively 

“creeps up” to the time of first collision, as described by Mirtich. This approach 

suffers from excessive computational expense in calculating the lower bound time 

to first coUision but reduces the computational wastage due to back-tracking. 

Once again due to the discretisation of simulation time, it is often impossible to 

reach the exact time of contact, so most approaches try to determine this within 

a certain tolerance level, e.

A specific discretised solution presented by Baraff uses time-step bisection to 

iteratively step backwards and forwards, halving the time-step each time, until a 

solution under the specified error threshold is arriv'ed at [96].

Mirtich provides his own solution, referred to as Timewarp, which performs 

back-stepping on independent groups of simulation bodies. The approach works 

by identifying dependency groups and back-stepping each group (rather than the 

whole scene) to the point of first collision for each group and continuing the sim­

ulation of each group from that point in time. This means that eax:h independent 

group is resolved in its own separate discretised time-line. The different time-lines 

are then reintegrated at intervals of Global Virtual Time before global events are 

processed, such as rendering the full scene.

2.2 Collision Handling

Collisions between objects in a virtual world are an important feature in physi­

cally based animation. It is through collisions that interaction is made possible 

between the user and the scene and even between different objects within the 

scene. Collisions bring about discontinuities in the simulation process and are 

thus inherently problematic. Furthermore the three processes of collision han­

dling, namely coUision detection, contact modelling and collision response, are 

computationally expensive problems to solve accurately.
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2.2.1 Collision D etection

Collision Detection has been a topic of interest for some years and obviously some 

form of collision detection is necessary even for the most basic two dimensional 

application. Pixel or sprite-based collision detection has been used since the very 

first interactive graphics appUcations were developed [22] and interestingly, very 

recent work has dealt with hardware assisted image-space techniques which bring 

the problem back to some degree into the 2D domain [51].

In the 3D stage, much early research relates to path planning and robotics 

applications [10, 12, 80].

Currently the popular approaches to accurate ColUsion Detection fall into two 

broad classes, namely feature-based and simplex-based methods. Feature-based 

techniques are generally concerned with the interrelations between specific features 

on potentially colliding objects [21, 59, 60, 65, 77]. Features include vertices, edges 

and faxies of polygons on a polygonaJly represented object. Simplex-based methods 

treat a polytope as the convex hull of a set of points and perform tests on subsets 

of these points which are themselves simplices [11, 24, 33].

Also widely used are what we will refer to in this thesis as approximate al­

gorithms, which involve associating with each simulation object an inexact and 

in most cases over-estimated representation of its volume. A substitution of a 

virtual object by a simpler one for contact and dynamics in haptics research is 

referred to as a  proxy object [83]. We borrow from this terminology as our asso­

ciated simulation object will similarly be of a form that will be easier and more 

efficient to process with regards to collision detection computation or dynamics 

calculations. Generally, the acceptable choice is to use a proxy that fully encloses 

the object being modelled, referred to as a bounding volume. This is to ensure 

robustness, as visual and simulation errors caused by under-approximations are 

often more harmful than cases where the size of an object has been over-estimated. 

Furthermore, bounding volumes are often used as a coarse first stage of collision
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detection to eliminate trivial non-colliding cases before the more expensive accu­

rate approaches are called upon.

Hybrid collision detection approaches involve a broad phase that implements 

fast time-saving trivial elimination techniques followed by a more expensive nar­

row phase, possibly involving one of the accurate collision detection techniques 

described previously [47, 53, 59, 75]. Sweep-and-Prune [21] is a broad phase col­

lision detection approach that tests for overlaps of the 1-dimensional intervals 

created by projecting the objects’ bounding volumes onto the x, y and z axes. 

Sometimes an intermediate phase, referred to as the progressive refinement phase, 

is called upon after the broad phase, where increasingly accurate versions of the 

proxy object are referred to for collision detection [72, 76]

Essentially collision detection involves determining if and when two (or more) 

animated objects, defined by their dynamics states, i.e. position, velocity, accel­

eration, collide within a certain interval in time. Mathematically this would be 

achieved by checking for intersections in the space-time occupancy curves of the 

potentially colliding objects. For complex objects with complex motions this is 

an inherently difficult problem to solve generically. Further complications arise in 

interactive applications as we are no longer dealing with single space-time graphs 

that can be determined based on the starting states of the objects. Due to the 

nature of computer animation and in particular real-time appUcations, we are 

required to look to the domain of discrete mathematics. Our interest therefore 

is in solving a similar problem for finite time frames and discretised space-time 

bounds, which is what most of the previously discussed approaches attempt to 

do in some form. Hubbard refers to this kind of problem as Interactive Collision 

Detection [46] and discusses three key wealcnesses that can arise:

F ixed tim e-step  weeikness : As discussed in 2.1.4, discrete time is a cause of 

major inconsistencies in the behaviour of dynamic objects. This problem 

can be alleviated somewhat at the expense of computational efficiency by 

choosing a smaller time-step At, but the problem persists regardless if ob-
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ject motion between timesteps is not considered. A partial solution to this 

problem is the use of Conservative Advancement, Retroactive Detection or 

Timewarp, as discussed in Section 2.1.4, to attem pt to reach a solution 

within a pre-specified error tolerance. More precise results can be obtained 

through the use of space-time bounds as discussed in Section 2.2.1.

A ll-pairs  weeikness : A naive solution to detecting collisions in the scene is to 

check for intersection between every possible pair of objects. This is an 

O(iV^) problem where N is the number of objects in the scene. For the 

type of scenes that are in demand today, N  can be problematically large. 

Broad phase approaches, such as sweep and prune or space-time bounds, 

allow alleviation of this problem.

P a ir-p ro cessin g  weeikness : For pairs of objects that have a high possibility of 

colliding, the collision/intersection computations between two objects is not 

a trivial task. Added to this is the requirement in physically based systems 

of determining the exact properties of the collision e.g. contact points or 

surfaces. If the pairwise detection algorithm is not robust and efficient this 

causes problems of accuracy of output as well as over all stability in the 

system.

In this thesis, we offer no improvements to alleviate the all-pairs weakness, 

instead assuming tha t this will be taken care of in the broad phase by sweep and 

prune or an alternate broad phase technique, which we ensure is compatible with 

our collision detection approach. We will discuss space-time bounds for alleviating 

the fixed-timestep weakness, but our primary focus will be on an approach which 

targets the pair-processing weakness by using a progressive refinement method for 

collision detection as well as the ensuing next stage of contact modelling.
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Space-time Bounds

Speice-time bounds represent the occupancy in 4D space (time as the fourth di­

mension) of a dynamic object and are used as part of broad phase colhsion de­

tection to speed up the finding of the earliest collision time. Intersection between 

the space time bounds of two objects over a certain time interval At indicates 

that the two objects may possibly collide during that time interval. Hubbard 

presents an approach which uses Parabolic Horns ajid Hypertrapezoids to model 

the space-time bounds of object to determine potentially colliding objects in or­

der to address the fixed-timestep weakness by adapting the time-step as required 

[44, 47, 45]. Cameron generates space-time bounds by four dimensional extrusions 

based on the dynamic states of objects [9]. Simple space-time bound intersection 

data is also used for generating dynamic contact groups which aje use for adaptive 

simulation in Timewarp [66].

Bounding Volume Hierarchies

A bounding volume for an object is a geometrical entity whose volume complete 

bounds the actual object’s volume. Bounding volumes are useful as conservative 

over-approximations of objects’ spatial occupancies in calculating intersection of 

the objects for visibility or collisions. Bounding volumes usually teike the form 

of primitives such as spheres and cuboids that are geometrically simpler than the 

objects they bound and thus are computationally easier to deal with in intersection 

calculations. Common practice is to first test an object’s bounding volume and 

only perform the more expensive test with the underlying physical object if the 

bounding volume test has returned a positive result. Otherwise a negative result 

is returned, as a non-interpenetration with the larger bounding volume signifies 

with certainty that there is no penetration with the underlying object.

The converse however is not true and should the bounding test return positive, 

there is still a likelihood that the physical object test will return negative. In this
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Figure 2.4: Bounding box and two levels of a bounding hierarchy.

case, there is wasted computation in performing the bounding volume test. It 

would therefore be prudent if we could increase the likelihood tha t the bounding 

volume result will be the same as the physical object test. This is automatically 

achieved by making sure that the bounding volume is as close a representation 

of the physical object as possible. This is sometimes not possible with a single 

geometrical primitive, so one approach is to use a collection of primitive bounding 

volumes to represent a single object.

A bounding volume hierarchy is a data structure that is highly optimised for 

intersection testing and consists of collections of bounding primitives approximat­

ing the physical object at various different levels of detail. Not only does each 

lower level of detail {i.e. looser approximation of the object) fully bound the next 

higher and thus more computationally expensive level of detail, but eeich individ­

ual bounding primitive encloses a subset of the primitives in the higher level. This 

means that in Figure 2.4 the nodes a, are all children of A, and that A  completely 

bounds all parts of the objects bounded by its children. Common bounding vol­

ume hierarchies are sphere-trees [7, 47, 76], axis aligned bounding boxes (AABB) 

[23], oriented bounding box (OBB)[37] trees, and Octrees [40].

Typically, such data structures are stored in a hierarchical tree structure, with 

each level of detail stored as a single level of depth in the tree and each node in 

the tree bounding its children nodes. Intersection testing begins at the coarsest 
level, the root of the hierarchy, which is usually a single bounding volume. If 

the intersection test fails then no more work needs to be done. If, however, an
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intersection is found with this level, all the children nodes must be checked for 

intersection. This procedure recurses until the leaf nodes of the hierarchy are 

checked revealing for certain if a test with the physical object is required. In some 

approaches the leaf nodes are actually primitives tha t define the real object, e.g. 

polygons on the mesh of the physical object or voxels composing a solid model.

This optimises computation by localising the parts of the object that are tested 

to a high degree of accuracy, thus, effectively addressing the pair-processing weak­

ness discussed earlier.

The hierarchical data structure also forms the basis for performing what is 

termed graceful degradation of collision handling [26, 47]. As the different depths 

in the tree can be used to model the object at different levels of detail, it is 

possible to perform collision detection and contact modelling calculations at dif­

ferent degrees of accuracy. Each successive level offers more accuracy a t the cost 

of a higher computational workload, thus enabling an im portant speed-accuracy 

trade-off. Initially calculating collision data at the lowest (and cheapest) level it 

is possible to progressively improve the accuracy by inspecting the next level of 

resolution and repeating as long as too much time has not been spent in this pro­

cess to prohibit the achievement of a certain frame-rate. Time-critical approaches 

carefully monitor the amount of time spent during this process and interrupt the 

iterative refinement process when some set limit is reached. If the system happens 

to be in the middle of calculating the next higher level of accuracy at this time, 

then it is possible to simply fall back one level of accuracy and still deliver the 

final result in the target frame time.

Many different schemes exist for modelUng objects using bounding volume 

hierarchies, the goal always being to balance a trade-off between speed of com­

putation in performing intersection tests and tight boundedness of the bounding 

hierarchy. In choosing a bounding volume scheme for practical applications, we 

must also consider the difficulties in generating BVH approximations of objects. 

Important factors to consider include:
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b ran ch in g  fac to r o f  b o u n d in g  tre e  : BSP-trees, quadtrees and octrees use 

constant maximal branching factors throughout the tree making it easier 

to manage storage of data. However, this is not the case for all bounding 

hierarchies. Having a large branching factor or a variable branching factor 

can not only increase storage and computational complexity for collision 

detection but also causes extra complications in the automatic generation 

of the bounding volume tree.

a to m ic  node ty p e  : Geometrically simple node types provide advantages in 

ease of storage as well as in updating node positions and performing collision 

detection. The trade-off here is mainly between ease of collision detection 

tests involving the node and the tight-boundedness of the node. Essentially, 

tight-boundedness determines how close the collision detection data due 

to the approximation matches what would happen with the actual object. 

Ultimately, this has consequences in how useful the data  th a t is returned by 

the system will be, no matter how quick or slow the computation process.

u n ifo rm ity  o f  nodes : Traditional bounding volume hierarchies use homoge­

neous nodes throughout the tree. Octree, Octree-based sphere-trees[40, 76] 

and Vox-trees impose homogeneity restrictions on the dimensions of the 

nodes in each level of the tree. Others, such as AABB-trees[23], OBB- 

trees[37] and medial-axis based sphere-trees [8, 48], allow for some vari­

ance in the size and shape of primitive nodes, while yet others allow for 

characteristically different types of nodes {e.g. SSV-trees [55, 56], kDOP 

hierarchies [54] and C-trees [97]). It is however feasible and sometimes ad­

vantageous to use wholly heterogeneous trees for modelling objects for col­

lision detection, although the automated generation of the tree becomes 

increasingly difficult.
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2.2.2 Contact M odelling

Determining whether or not two object are coUiding is, in itself, a useful process 

for many applications such as path planning or user interaction. Therefore many 

approaches are satisfied with the results of contact determination, which simply 

returns a result of “colliding”/ “not colliding” . Alternatively, some approaches 

perform proximity queries to determine the smallest separation distance between 

two objects [28, 42].

Other approaches have robustness in mind and return a measure of penetration 

depth [52]. Usually this is so that the intersecting objects can be moved back to a 

safe (non-intersecting) state, sometimes referred to as the m in im n m  translational 

distance required to ax:hieve non-interpenetration.

In order for a physically based animation system to deliver correctly simulated 

behaviours, often what is required is a clear description of the points or surfaxies 

in contact. Contact modelling is the process of defining, in terms and variables 

useful to the dynamics system, the various properties of a collision that might 

have a bearing on the manner in which it behaves in response to a collision. The 

exact nature of the required output is naturally dependent on the system used for 

collision response but typically involves some description of the collision manifold, 

which is a representation of the common contact area between two objects.

Previous approaches have delivered highly accurate results, mostly by solving 

the problem at polygon level for colliding primitives. As most of these already 

perform highly detailed collision detection tests, it is a logical next step to return 

equally precise contact manifold information for collision response by inspecting 

contacts occurring at the polygon level [59, 65].

Generally, bounding volume approaches are utilised in collision detection for 

optimising the intermediate phases and to reduce processing for the eiccurate final 

stages involving polygon level colUsion detection and contact modelling. How­

ever, in an interruptible collision handling approach, collision detection needs to
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cease immediately when the time quota runs out and contact modelling needs to 

take place. Hubbard takes this approach with a time-critical sphere-tree collision 

detection system but only modelled very basic collision response, simply choos­

ing to reverse the velocities of colliding objects [47]. No real contact modelUng 

was performed as the approach did not attempt to generate a physically accurate 

response. To do so involves returning reasonably precise data on the points of 

contact and directions to apply forces.

In BVH collision detection, returning this precise data is fax from trivial, be­

cause the bounding volumes over-estimate the object and in many cases a bound­

ing volume collision does not even signify an actual contact. How then are we to 

generate contact points and directions needed for collision response, or should we 

be performing response at all? Unfortunately, in an interruptible system, we must 

treat any potentially colliding objects as if they had actually collided in order to 

maintain the robustness of the system. The problem of how to model approximate 

contact is dealt with in detail in chapters 3 and 4.

2.2.3 Collision Response

While collision detection and contact modeUing are essentially problems of kine­

matics, collision response has more to do with the dynamics of objects in a simu­

lation and involves computing the change in the state of an object resulting due 

to collisions [38, 69]. Ideally, the general solution involves correctly computing the 

forces resulting from the compression and decompression of objects due to contact 

with each other. Naturally, this is a prohibitively difficult problem for real-time 

interactive animation, which is why most real-time applications deal only with 

relatively elastic collisions between objects that are modelled as rigid. ReaJ-time 

non-rigid body collision detection and response techniques do exist for very spe­

cific cases [63], but more general solutions are presently only suitable for off-line 

animation or for very much simplified scenes. In this thesis we will primarily be
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dealing with rigid and hinged body collision handling though many of the results 

are applicable to collision detection and simulation in general.

Rigid body collision response is based on the assumption that, for perfectly 

rigid bodies, the collision time (i.e. the time between compression and decompres­

sion due to colliding contact) is infinitesimal. In other words, the forces acting 

on the two colliding objects are almost instantaneous and the net effect of the 

collision can be approximated quite accurately as an instantaneous impulse. The 

dynamic body states of two colliding rigid objects change instantaneously based 

on an impulse vector, jh ,  where h  is the direction of the impulse and j  is the 

impulse scalar calculated based on the original states of the colliding bodies.

Once two objects have been found to be colliding, the contact modelling phase 

must provide the directions in which to apply the forces and the points where 

these forces are to be applied. Based on this information and the states of the 

objects, a reasonable collision response is determined by calculating the scalar j  

and applying an impulse to the two colliding rigid bodies resulting in a dynamic 

change of state. This is discussed in more detail in Chapter 3.

2.3 Simulation Levels of D etail

Despite the levels of computational power available, fully accurate physically based 

animation remains a challenge due to the fact tha t the physical world we are 

attempting to model is infinitely complex. Thus, no m atter how precise our 

model, it will only be an approximation of the real world. This is not always 

disastrous as many simplifications in animation go unnoticed by the human viewer 

and traditionally the approaxih talcen in computer graphics research is to  attem pt 

as much complexity as is visibly detectable. This visual uncertainty could in 

fact be exploited to simplify less obvious parts of the scene in order to  reduce 

computational complexity. Baxzel et al recommend striving for plausible rather 

than accurate simulation in animation [6]. In interactive rendering, Funkhouser
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and Sequin describe a method to achieve the ” best” possible frames using adaptive 

methods, whilst preserving a fixed frame-rate [30] whilst Reddj^ suggests that in 

3D graphics, we tend to generate far more detail than users can perceive [82], 

Adaptive level of detail approaches to simulation problems trade accuracy 

for speed, simplifying where necessary, to meet the demands of real-time rates 

throughout the simulation. The problem of adaptive simplification is not a new 

one, nor is it limited to the domain of physically based animation. A broad 

range of approaches in computer graphics, use models or procedures of varying 

levels of accuracy to model a single object or phenomenon in order to optimise 

rendering time, storage space or transmission time. They achieve this by offering 

a lower resolution of output when resources are being taxed and/or when a lower 

resolution model might suffice to deliver the output expected by the user of the 

system. With regards to the modelling of objects, multi-resolution representations 

of the same object can be generated by using difi"erent numbers of basic primitives 

to model the same individual object e.g. triangles in a triangular mesh, or by 

using a different number of iterations when polygonizing a mathematically defined 

surface (see Figure 2.5).

Figure 2.5: A torus defined at different levels of detail

Processing optimisation is even more important in interactive animation due 

to real-time frame-rate requirements, so Level of Detail techniques are required 

not only in modelling and rendering of objects but in synthesizing their motions 

and behaviours. Simulation Levels of Detail (SLOD) involves using processes and 

models of varying computational complexity in order to optimise speed-accuracy 

trade-offs in an attem pt to achieve target frame-rates [70] .
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Maxiy physically based animation systems achieve real-time rates by billing 

computations for parts of the scene based on visibility. For instance, Chenney 

[14, 15, 19] reduces computational workload by culling dynamics computations 

from areas of the scene that are not visible but stress the importance in dynamics 

of paying heed to interdependencies between states of objects within and outside 

the visible scene. They highlight three factors that must be considered before 

culling dynamics, namely:

consistency : the state of an object when it returns into view needs to be con­

sistent with its last known state.

com pleteness : Everything that should occur in the visible scene should still 

happen even when it is dependent on non-visible regions.

causality  : events in the visible scene can affect non-visible regions. Even though 

we can not see them in the current scene, if these regions come into view 

later there should be evidence of these effects having occurred.

Thus, we must take care, in simulation, not to neglect even the non-visible 

parts of the scene, for as the simulation evolves or the view changes, dependencies 

often arise between the objects in the visible and non-visible parts of the scene. 

Furthermore, cuUing is not an option in cases such as when the visible part of 

the scene alone is still too computationally complex. SimpUfication within the 

visible area itself is required and a scheduling mechanism, which employs percep>- 

tual heuristics, may be used to determine which objects or events in the visible 

scene deserve more processing time. Most of these approaches axe tailored to a 

certain type of scene or are intended to optimise a specific type of process used 

in the simulation. For example Carlson and Hodgins [13], and O’Sullivan et al 

[74, 75] discuss strategies for prioritising the scene for diflferent types of dynamic 

simulation. Whilst, in the rendering level of detail literature, Funkhouser and 

Sequin [30] try to optimise interactive rendering for complex walkthrough scenes.
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Reddy [81] discusses the problem in a more general sense, but the use of percep­

tion in interactive real-time graphics is still new and no known approach exists to 

date tha t attem pts to address perceptual prioritisation in a scene in a completely 

generic level o f detail resolver.

Once the scene has been partitioned into areas of varying priority, there are 

various ways in which we can decide where to make trade-offs between accu­

racy and speed. One approach is to use completely different simulation models, 

of varying levels of complexity, to evolve different parts of the scene as Carlson 

and Hodgins do for simulating the motions of one-legged animate creatures in a 

dynamics scene. Based on the importance of an individual simulated creature, 

different simulation processes were used, ranging from dynamics-based simulation 

to pre-calculated kinematics to point-mass behaviours for synthesising the crea­

tures’ motions. Chenney [19,16, 17,18] uses a discrete event simulator to generate 

coarse approximations of events that occur outside the higher priority region of 

the scene. Some approaches implement less distinct levels of detail to generate 

simulation levels of detail in animation by reusing single mechanisms with dif­

ferent resolutions of input data. These range from using adaptive time-steps for 

simulation or modulating the complexity of the proxy model used in simulation.

2.3.1 Perception of Dynamics

In the case of an interactive graphical simulation the quality of output th a t we 

achieve after any required simplifications and refinements can only be judged by 

its impact on the user. It can be said that the only reason we seek to simplify the 

scene by removing complexity in certain areas, is so that we can guarantee real­

time frame-rates. In many cases, reductions in frame-rate caji be more harmful to 

the user’s experience of the virtual environment than any dynamic or geometrical 

reduction in accuracy, so the measure of how successful we have been in achieving 

the proper trade-offs in the system should really be dependent on the perceptual
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effect on the user. This suggests that perceptual impact is the measure that we 

should be striving to optimise as we allocate priorities to different parts of the 

scene.

Unfortunately, there are no established methods of objectively evaluating the 

perceptual quality of a dynamic scene. Therefore, it is difficult to obtain a measure 

of quality for a simulation without explicitly asking the user for his impressions 

after the simulation has been run. Not only is this very subjective but, since we 

deal with dynamic animations, meaning that it is likely that specific events will 

never be repeated quite the same way twice, we can not trust that the evaluation 

of one simulation run will have direct relevance to another, even if it has been 

executed with identical simplification techniques.

However, if we could better understand what lower level aspects of dynamic 

systems users are particularly sensitive to, this might lead us to better strategies, 

both in terms of prioritising a scene as well as in evaluating the effectiveness of a 

simplified scene. For this, we turn to previous literature on perception of dynamics 

to identify some key factors relevant to computer simulated dynamic scenes.

Causality

Causality refers to the ability to detect whether one event causes another. For 

example, a collision of a moving object with a stationary one will cause the second 

object to move, whereas if the stationary object only staxts to move off by itself 

after a certain time period has elapsed since coming into contact with the moving 

object, it is perceived to be autonomous. The human brain appears to have 

very low-level processes that allow people to distinguish between animate and 

inanimate objects. Michotte showed that, even with such abstract objects, the 

impression that participants had of one event causing another or not was extremely 

strong [64]. In a related study, Leslie and Keeble [57] illustrated that six-month- 

old children could distinguish between causal and non-causal scenaxios, showing 

that this ability is established very early on in life.
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This is a factor that is highly relevant to a physically based animation system 

because it would suggest that the prompt processing of collisions is therefore 

necessary in order to maintain the perception of causality for collision events.

Separation

As we will see in following chapters, one of the possible consequences of reducing 

the accuracy of collision detection will be objects that bounce off each other at 

a distance. The extent to which this separation, or gap, between two colliding 

objects is perceivable will be an important factor in determining the ability of 

humans to detect an anomalous collision. This is because there is a topology- 

preserving mapping from the cells in the retina to the cells in the primary visual 

cortex, called a retinotopic mapping, that is quite precise and enables spatial 

location information to be efficiently processed [88].

Eccentricity

The fact has long been established in vision literature that many visual process­

ing tasks deteriorate at increasing eccentricities from the fixation point [2, 94]. 

This eccentricity effect can be exploited in a real-time application by tracking the 

user’s fixation position. Gaze-directed adaptive rendering has been investigated 

[62, 71, 91] and similar strategies can also be applied to simulation. When the 

viewer is looking directly at a colhsion, it would be given a higher priority than a 

collision occurring at a slight eccentricity, which itself would receive a higher pri­

ority than other collisions presented more peripherally. However, it may be that 

an eccentricity metric alone is not sufficient to guide adaptive processing in all 

cases and sometimes it is important to consider a combination of factors at once 

[2, 85]. Reddy discusses how a combination of velocity and eccentricity taken in 

combination can have a much greater impact on user perception of graphical ele­

ments in an animated virtual environment [81]. Although Reddy deals with visual 

perception objects, it is likely that similar results should apply to the perception
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of synthesized motions.

Multi-dimensionality

There is evidence to show that the human perceptual system relies heavily on 

representations of dynamic properties of the world. In a  study of physics stu­

dents taking a university course, Clement [20] reported th a t most had intuitive 

preconceptions concerning mechanical events that, although incorrect according 

to Newtonian mechanics, were highly stable and widespread. Proffitt and Gilden 

[78] showed that people use only one dimension of information when making dy­

namical judgements. Therefore, when a dynamic event involves more than one 

dimension of information such as velocity and rotation, i.e. an extended body 

motion as opposed to a particle that has only one dimension of information, hu­

mans are less able to correctly identify anomalous physical behaviour. It would 

be highly desirable if we could exploit this imprecision of the human brain by 

simplifying the scene in areas of high dimensionality.

Distractors

The presence of distractors is also likely to affect the ability to accurately detect 

collision or non-collision, as is the type of distractor. These issues arise in the area 

of Visual Search and have been investigated by researchers such as Saarinen [84] 

and Treisman [89]. It was found that if the distractors are perceptually similar to 

target objects tha t are being inspected, e.g have similar colours or common move­

ments, then they automatically become placed in the same perceptual grouping 

and it becomes difficult to separate individual characteristics of the target objects 

from the distractors. This is however not the case when the distractors are signifi­

cantly different, in which case the number of the distractors present has very little 

effect on users’ abilities to distinguish their behaviours. O ’Sullivan investigated 

the effect of distractors on users’ abilities to detect anomalies in the specific case 

of collision detection in a dynamic scene [75].
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User perception is discussed further in Chapter 5 in the context of developing 

good scheduling strategies for an interactive scheduler which prioritises collision 

events in the scene. In Chapter 6 we also discuss perceptual factors used as a 

metric for evaluating the plausibility of simulated dynamic events and also present 

results of some user tests to evaluate the effectiveness of a collision scheduling 

strategy driven by perceptual factors.

2.4 Summary

This chapter provided a detailed survey of the related areas of research, discussing 

some of the background to the problems faced and solutions that have been of­

fered. We have outlined the need for optimisation in interactive simulation and 

the key sub-problem of collision handling, which we will be addressing in this 

thesis. We have described some previous strategies that have been undertaken in 

simplification for simulation, some of which will be directly relevant to our specific 

goals of collision handling and we have discussed some background to studies in 

perception that we intend to use for the purposes of evaluating dynamic simula­

tions, as well as for strategies in scheduling colhsion handling in an adaptive level 

of detail system.
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Chapter 3

Refinable Collision H andling

Collision handling is a particular area of physically based animation where there 

is great potential to save on computation time by optimising the speed-axicuracy 

trade-off. Collision detection has long been a major bottleneck in physically based 

animation and it would be highly desirable to have a system capable of managing 

this difficult problem at different levels of detail. An interruptible collision detec­

tion mechanism adapts processing workload to fit a given time budget. However, 

such a system is not complete unless the data returned by it can immediately 

be of use to a collision response mechanism, which evolves the state of colliding 

objects based on how they have collided. This chapter describes a system that 

incorporates time-critical techniques into a full collision handler. The collision 

detection system here is primarily based on a previous approaches by Hubbard 

[43], which implemented time-critical collision detection but did not support any 

physically based collision response, which requires more than a simple contact 

determination query between two objects.

To ensure a  completely time-critical system, we require that all processes of 

indeterminate complexity be packaged into the interruptible part of the system. 

Any calculations that have to be performed after that must take a constant or 

predictable time to complete. Alternatively, we can have several different mecha-
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nisms handling separate parts of the problem, each packaged in their own inter- 

ruptible processes. Our time-critical approach to the collision handling problem 

uses interruption in the progressively refinable narrow phase to obtain approxi­

mate contact data. This must be interpreted by the contact modelling process 

before the collision can be resolved.

Up to now, contact modelling has been problematic, due to the inexact nature 

of even the most accurate of techniques available [65]. In interruptible systems, the 

problem is further exacerbated due to the reduced accuracy of results. A system 

that reduces computational complexity is ineffective if the resulting response is 

unbelievable. In an approach based on graceful degradation our first requirement 

is that the system delivers acceptably consistent results even with reduced input 

data from collision detection. Using perceptually based sorting it is possible to 

strategically simplify the scene and work towards the goal of plausible simulation, 

as discussed in following chapters, to exploit uncertainty and deliver real-time 

animation.

We describe contact modelling extensions to our own Hubbard-based system 

as well as a full framework to encompass the full process of collision handling 

under a single time-critical scheduler. The optimisations to contact modelling, in 

Chapter 4, and perceptually based scheduling, described in Chapter 5, are only 

made possible given that we have the interruptible system for collision levels of 

detail described in this chapter.

3.1 Collision D etection

The collision detection mechanism used in the system is based primarily on the 

approach described by Hubbard, which checks for intersections between the nodes 

of a sphere-tree data structure [48]. The key feature we wish to inherit from this 

approach is the hierarchical layout of the volume representation, which provides us 

with the basis for graceful degradation. We exploit the nature of the sphere-node.
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which provides us with a quick means of obtaining useful data for the collision 

response mechanism described later. Other useful advantages of this approach 

include an in-built method of handling collisions between concave objects, which 

other methods approach by using unions of convex objects; the sphere-tree by its 

very nature is already a union of spheres. We extend Hubbard’s general approach 

with our own mechanisms for scheduling, contact modelling and collision response 

and we also generalise the approach, originally designed for sphere-trees, for use 

with different types of node-hierarchies (see Chapter 4). This is discussed in later 

sections but in this chapter we use the original sphere-tree implementation to 

illustrate the general principles behind the design of the framework.

3.1.1 The Sphere-tree

Figure 3.1: Sphere-tree Levels of Detail

Each object in the world is associated with its own sphere-tree, which is a 

spatial occupancy representation of the object’s volume based on sphere primitives 

(see Figure 3.1). This is the proxy volume model that will be used for simulation. 

A sphere-tree is a standard bounding volume hierarchy (see Section 2.2.1) made 

up of sphere nodes. The sphere primitives are useful because collision detection 

between nodes effectively amounts to a distance test between the centres of the 

relevajit spheres. A sphere-tree hierarchy is shown in Figure 3.2. Note, in the 

figure, the spheres highlighted in red which show the way that the hierarchy is 

structured with each parent node completely bounding the underlying volume 

that is then refined by its children.

39



L * v « IO  L t v a i l  L * y * l2  . . .L « v « IN

Figure 3.2: Sphere-tree hierarchy

The difficult part of such an approach, as with all hierarchical representations, 

is updating the hierarchy to reflect its change of state, which involves roughly 

one modelling matrix multiplication for every BVH node that is to be tested. We 

must update the position of each node to reflect the object’s orientation before 

any intersection tests can be done. This can become computationally taxing as 

we go deeper down the hierarchy, but the workload is greatly reduced by updating 

only the relevant sub-trees i.e. the nodes for which the parent has been found to 

be intersecting. Some implementation details for sphere-tree collision detection 

are provided in Appendix B.

3.1.2 Sphere-tree Collision D etection

The collision detection mechanism is outlined in Figure 3.3. The process involves 

performing intersection tests for increasingly finer levels of sphere-tree detail. A 

possible collision is flagged when an intersection is found between sphere nodes 

on two different objects. Nodes requiring further processing are marked in bold 

in Figure 3.3 (a), (b) and (c). If the intersecting nodes are not leaves on the 

sphere-tree, then all of their children must in turn be checked for intersection. 

For this we follow a staircase traversal strategy as used by Palmer and Grimsdale 

[76]. Only when we reach the leaf nodes can we return a conclusive result as to 

whether the objects are colliding (in which case, we have an instance of a  true
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collision) or if, in fact, the objects are not colliding at all (Figure 3.3(d)). Each true 

collision must definitely be resolved by the response mechanism. A time-critical 

approach to sphere-tree collision detection consists of a scheduling mechanism, 

which interrupts the detection process when it exhausts the time allocated to it. 

When the process is interrupted at some stage in the traversal of the sphere-tree, 

all possible collisions must then be processed by the resolution mechanism as if 

they were true collisions.

Some approaches, such as the one by Palmer and Grimsdale, use the pro­

gressive traversal of the sphere-tree as a middle phase and follow it up with a 

more detailed narrow phase consisting of polygonal intersection tests. Sphere-tree 

traversal in such an approach is used to localise the region to be checked later for 

polygon intersection. This requires further pre-processing time and data storage 

in determining the polygonal surface regions encompassed by eax;h sphere, ajid 

also increases the time spent by collision detection in the more intensive polygon 

intersection tests. As in all polygonal collision detection approaches, there is the 

added the burden of collision response having to deal with several special cases of 

contact, depending on whether the contact involves combinations of faces, edges 

or vertices.

Our coarser intersection test will only yield a generic type of interference, 

that between two spheres. As we traverse deeper down our sphere-tree hierarchy, 

this approximation becomes increasingly more accurate. The radii of the sphere- 

tree nodes become smaller and their volumes more closely approximate the true 

surface. Progressive refinement is introduced into our system at the sphere-tree 

traversal stage. Thus, it constitutes the main part of the narrow phase in our 

system. We can compensate for the lack of polygonal detail by having deeper 

trees in our representation of the object than would be required of applications 

that depended wholly on najrrow phase polygon testing (see Figure 3.4). This 

is in itself a significant trade-oflf, for if we could substitute the traversal of an 

added branch of the BVH tree by a single polygon test, there would be scenarios
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Figure 3.3: Sphere-tree Collision Detection: bold circles indicate colliding nodes 

which will be refined

where polygonal intersection could potentially return a quicker result. But, in 

our preference for having a fully generic system that propagates higher resolution 

tests of the same type, we will choose instead to deal with BVH trees that have 

been generated to resolutions comparable to the polygonal representation

Figure 3.4 shows leaf node spheres of two typical sphere-trees. In approaches 

where BVH is used as a culling strategy for polygon level computations, it is 

common practice to have the finest level in the BVH hierarchy bound the polygons

^Several different optimisations exist for the polygonal intersection test. With most of these, 

processing time varies for different input variables due to the use of conditions for the quick 

rejection of certain trivial cases. As a result a thorough comparison of how spherical collision 

tests compaxe with polygon intersection tests is not provided here. In practice, however, it was 

found on average that, when only collision detection time was considered, approximately nine 

sphere-sphere collisions could be done in the same time it took for each polygon-polygon collision 

test. This easily supports the argument for having deeper sphere trees in favor of polygonal leaf 

nodes.
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directly as in Figure 3.4(a). For instance, the standard approach to OBB-tree 

generation is to calculate a bounding cuboid for each polygon and build up the 

BVH hierarchy in a bottom up manner from these [37]. For a similar approach 

using sphere-trees, we can see that the polygon representation of the object is 

considerably more accurate than the spherical bounding volumes. Figure 3.4(b) 

shows a BVH tree that tries to approximate the model to one level of resolution 

higher. If we recurse further and reduce the size of the BVH nodes used to fit the 

object (and conversely increase the number of these), it is possible to get a close 

enough fit of the object so that the coUision detection data converges to that for 

polygonal exact collision detection algorithms. Of course, the stage is eventually 

reached where it is computationally more efficient to perform polygon intersection 

tests instead of traversing a further branch of the tree but unless we have a means 

of dynamically proving such a case, the full BVH representation provides a much 

more generic implementation.

(a) (b)

Figure 3.4: BVH nodes approximating polygons

It must be remembered that our detection process is often interrupted at some 

stage during the traversal of the sphere-tree. To force the system to do further 

polygonal intersection tests, after the collision detection has exceeded the time 

allocated to it, defeats the purpose of the entire time-critical approach, as we 

cannot predict how long these will take. It is feasible to do polygon tests as the 

finest level of detail after the leaf nodes in the tree have been found to be inter-
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secting. However, we must allow for the possibility that collision detection will 

be interrupted before our system has had the opportunity to do accurate polygon 

testing and that we will be required to compute a response based on whatever 

data we have gathered in the coarser intersection tests of the intermediate phase. 

Many others have dealt with polygon level collision detection [65, 11] and we of­

fer nothing new in this regard. The principle concern in our system will be the 

handling of collisions at coarser levels of detail.

One side effect of having only the generic sphere-node collision is that cer­

tain edge and face collisions are sometimes detected as multiple sphere collisions, 

increasing the number of contacts that collision response has to deal with. The 

trade-off here is of multiple instances of a much simpler problem for fewer in­

stances of a more difficult one {i.e. sphere collision detection as opposed to poly­

gon collision detection), which is necessary in order for us to generically use the 

interruptible sphere-tree collision detection approach chosen in our implementa­

tion. We discuss this trade-off in more detail in Chapter 4 and present strategies 

for reducing the number of contacts that the response module (see below) has to 

deal with.

3.2 Contact M odelling and Collision R esponse

The primary goal of collision response is to deal with objects that the detection 

mechanism has identified as colliding. The response may be something as simple 

as changing the colours of the colliding objects, destroying one or all of them, or 

moving them apart so they aie no longer colliding after the collision event. More 

is required in physically based animation, as the collision response mechanism has 

to calculate a change of state for the colliding objects based on laws of dynamics 

[691.

Solving the collision response problem can become a computationally inten­

sive task if we taJce into account all the variables, such as elasticity, friction and
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energy, which contribute to the behaviour of coUiding objects in a scene. There 

are countless mathematical laws in dynamics, which might be apphcable to the 

problem of collision resolution. However, there is no general solution encompass­

ing all these details that would be of use to real-time animation. So it is common 

practice to make some simplifying assumptions in order to provide a generically 

applicable system. Once again, we must sacrifice accuracy for speed and make the 

assumption of rigidity in order to provide a universally more applicable solution 

for interactive animation.

As explained in the previous section, our collision response mechanism has 

the added burden of deaUng with approximated data, which must be selectively 

processed before it can be passed over to the part of the system that is responsible 

for the dynamics. We are chiefly concerned with the problem of using the refinable 

approximations returned by our collision detection system to obtain useful results 

for a real-time system. We will focus on a simple dynamics solver which deals with 

the problem of collision handling for rigid bodies. We model all of our colliding 

entities as perfectly rigid. Deformation during collision is infinitesimal and change 

of state is calculated based on instantaneous impulses as described by Giang [32], 

BaraflF [4, 96] and Mirtich [67, 68]. We concentrate on the problem of contact 

forces, acting in directions normal to the surfaces of colliding objects, and do not 

handle the problem of friction forces during collisions. Mirtich showed how an 

impulse model can be applied to cases of resting and sliding contact as well as 

colliding contact.

3.2.1 The Dynam ics Model

Working with an impulse model allows us to deal with the instantaneous values 

of the colliding objects’ state variables. As we are dealing with approximations 

that change in their degree of accuracy from frame to frame, it is desirable that 

we are able to deal with the instantaneous values of the relevant pajameters.
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For rigid body collisions, a scalar j representing the magnitude of the impulse 

along the collision normal n is calculated using equation 3.1, which is based on 

[96]:

3 =
-(1  +  e)vc (3.1)

i  • ((Ia^(ra X n)) X r„) +  n • ((I  ̂ x n)) x rj)

The variables are

• e: the coefficient of restitution, calculated from material properties of the 

two colliding objects

• mi', mass of body i

• Ij: the inertial tensor matrix of body i

• Tf. a. vector representing the displacement of the collision point p from the 

respective centres of mass Xj of the colliding objects as follows:

• vc: the collision velocity, which represents the relative velocities of the 

points of collision along the collision normal. This is calculated from the 

linear velocity Vj, rotational velocity Wi and collision point displeicement r, 

of the colliding objects a and b as follows:

M ultiple C ontact Points

When more than one contact point exists between two or more objects simulta­

neously in contact or penetrating, then the problem becomes one of calculating 

the net impulse acting on each dependent object based on Equation 3.1 for each 

object and three basic non-interpenetration constraints, namely:

(3.2)

Vc =  n -  ( (V a  +  W a) X F a ) )  -  (Vfe +  (Wfo X Ffr))) (3.3)
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(3.4)

(3.5)

(3.6)

where and are the relative final velocities of two colliding objects.

The derivations of Equations 3.4, 3.5 and 3.6 are well detailed elsewhere as is 

the process of solving the Linear Complementaxity Problem to resolve the indi­

vidual net impulse magnitudes for all colliding objects [3, 4, 32]. We offer nothing 

new in this regard and merely state them here for completeness and to illustrate 

the workload that collision response has to deal with for each extra contact.

3.2.2 Approximate Contact M odelling

We discussed previously how the narrow phase of our collision detection system 

selectively traverses the sphere-tree to localise the region of interference between 

two objects. In the previous section, we identified the variables that we would 

require even in a minimal impulse based solution. Apart from the state variables of 

the individual objects, which should be directly available through their associated 

data structures, we need to know for each collision, a collision point, p and a 

vector representing the direction in which the required impulse is to be applied, 

n. Further processing is thus required before we have data of a form with which 

the dynamics solver is able to deal.

Exploiting once again the simple nature of our sphere-tree nodes, a quick 

approximation of the collision vector is the common normal to the two spheres 

which have been flagged as colliding. We can obtain this from the line that runs 

between their two centres xaondx;, according to Equation 3.7

-  _  X b  -  X q

“  “  |X6 -  Xol
(3.7)
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Figure 3.5: Determining collision point and normal for spherical node intersections

An approximation of a collision point is where this line crosses the plane of 

intersection between the two spheres (see Figure 3.5). It should be noted here that 

the sphere’s in this diagram generically represent the nodes of the BVH hierarchy 

and thus this contact model applies to all progressive refinement levels of detail. 

The plane of intersection subdivides the line segment between the two centres 

into lengths proportional to their respective radii, and the point of intersection 

is determined by a simple proportionality calculation. For two colliding nodes a 

and b a common point of collision is required so Xa +  Tq =  x;, +  =  p, and:

(3.8)
I p  -  Xfcl Rb

This result can easily be calculated, even in the case where we are resolving 

intersections between spheres of different levels in the respective hierarchies of the 

two objects. Now that we have decided on a collision point and a vector along 

which to apply the collision impulse (Figure 3.6), we can apply the equations of 

Section 3.2.1 to generate the appropriate response.
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Figure 3.6: Collision Levels of Detail

3.3 Framework for BVH  Collision H andling

A summary of the system design is shown in Figure 3.7. A W orld class encap­

sulates all the simulation concerns of the application, including collision handling 

and state propagation when there are no objects coUiding. User interaction and 

all other interfaces are maintained by the A pplication class, which contains the 

world.

The key data structures in the application are the O bject class, which stores 

the state of each body in our system; the SphereTree class; and a dynami­

cally generated Collision list, through which the collision detection and response 

mechanisms communicate data.

The Object class needs to contain at least the state variables and constants 

shown in Figure 3.8.

A sphere-tree associated with each object is laid out in a hierajchical manner as 

already discussed in Section 2.2.1. Two instances of a sphere-tree are stored; the 

first (bodys) holds the untransformed body-space coordinates of the sphere nodes
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Figure 3.7: General Framework

and is constant throughout the simulation, while the second (worlds) represents 

the object in world coordinates after it has been updated with respect to the 

orientation and position of the body. Only the relevant nodes, i.e. the ones being 

processed by collision detection, are updated with the world transformation in 

order to save wasted computation time.

The dynamically generated collision list stores collision data in the form of 

collision entries, which are pair-wise descriptions of object collisions in the scene. 

Each collision stores more detailed data in the form of a list of Sphere collision 

data structures (Figure 3.9). The sphere collisions represent the specific inter­

sections between nodes on the pair of colliding objects. This is the data that is 

required by the collision response mechanism. The world class carries out colli­

sion detection after every update of the simulation scene, generating the collision 

list of intersections at various levels of detail. Potential candidates for collision, 

in other words those objects not eliminated by the broad phase, are placed in 

a list of collisions for further processing. Starting at the root nodes we traverse 

the sphere-trees of the objects checking for intersection. When an intersection is
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Object_________________________

Scalar mass 
Vector position, 

linearvelocity, 
rotationalvelocity 

Matrix orientation,
bodyspacelnertialtensor, 
worldspacelnertialtensor; 

Sphere Tree world S, 
bodyS;

Figure 3.8: Object Data structure

found, the contact variables are calculated and an entry is stored in the sphere 

collision list of the respective collision object. Whenever we finish processing a 

complete level of a sphere-tree, we have the required data to refine the resulting 

response by one level of accuracy.

Collision Sphere_coUision

integer Vector
object lind ex . Nonnal
object2_index Position

spherecollision_list

Figure 3.9: Collision Data Structures

3.3.1 Processing Collision Data

The final phase in collision handling is to call the dynamics solver mechanism 

which applies and resolves all the impulses to generate a mathematically consis­

tent change of state in all colliding objects in the scene. At this stage, the contact 

modelling mechanism has provided us with all the variables we require, so com­

puting and applying the required impulses for each instance of a collision is a 

fairly straightforward process of applying the equations of Section 3.2.1 to these

51



variables.

All tha t is required now is to go through the dynamically generated collision 

table and to retrieve the relevant data. Several options present themselves as to 

how collision processing is to be organised. One option is to store collision data 

in a hierarchical tree structure similar to, but separate from, the way we have 

organised our volume data. A time-critical response resolution mechanism does 

a  prioritised traversal of the collision tree, applying impulses at increasing levels 

of detail. In such an approach, we have the option of performing the contact 

modelling within the schedule of either the response or the detection mechanism. 

This approach conforms to the requirements we laid out for a fully time-critical 

system, with all processes of indeterminate complexity packaged in their own 

interruptible mechanisms (Figure 3.10).

CONTACT DATA

Contact
Modelling

Collision
Response RendererSimulation

Scheduler

Figure 3.10: Scheduling of a  full time-critical simulation system

However, it is often the case that data used in the collision detection phase 

is immediately of use to the response calculations. The two processes have many 

common requirements, such as the distance calculations and the data  they return. 

Furthermore, in a system that schedules collision handling based on the visibility 

of the different parts of the scene, it is likely that we will wish to  follow the same
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prioritisation scheme for both processes of coUision handhng. It would therefore be 

advantageous to have a single interleaved collision handhng mechanism, with both 

the processes of detection and response working together and sharing data within 

the same schedule. Unfortunately the time taken by these two process as a whole 

is based on different sets of variables and thus it is not possible to predict how 

long each will take to complete. We can not assume that the two process will be of 

comparable efficiency, thus it is likely that having two separate schedules for two 

processes with such inter-dependency will lead to wasted scheduling. For instance, 

we may easily allocate too much time to the collision detection process and not be 

able to handle all the detailed data forwarded to the response mechanism before 

it is interrupted. The system remains time-critical but there is a lot of extra 

processing done by collision detection that is never used by response. Conversely, 

if too much time is granted in favour of response and it has dealt with all of the 

data returned by collision detection, we are wasting processing cycles that may 

have been spent on further collision detection. Thus it is more desirable to have 

a single schedule for the full three processes of collision handling.

If we consider that response calculations are of constant and predictable time, 

whether the problem involves a number of single contact collisions or the more 

complicated LCP resolution of multiple conteicts, and that the time taken for col­

lision detection is a direct function of the number of intersecting contacts that 

need to be resolved, we can see that it is possible to obtain a good estimate of 

the computation time involved with each extra contact point dehvered. We can 

incorporate this into the time-critical scheduler by pre-allocating time for colli­

sion response based on the number of contact primitives that are being found by 

collision detection/contact modelling. In other words, not only is the scheduler’s 

clock running down based on the time spent on current computations but we are 

also reducing the time-quota by pre-allocating it to collision response. This alone 

is enough to ensure fully time-critical collision handling, bundling all three phases 

into a single scheduler, guaranteeing any specified target frame-rate independent
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of the capabilities of the processor, provided th a t the system is capable of at least 

resolving all objects at the very lowest level of detail.

So, instead of having separate scheduling mechanisms for collision detection 

and response, a better alternative that fulfils the requirements of a time-critical 

system is as follows:

•  The time-critical scheduler for the full application monitors the time spent 

in generating each frame of the animation. Taking into account the time 

required for other processes, such as rendering, it needs to decide how much 

time will be made available for the combined processes of collision detection, 

contact modelling and collision response.

•  The scheduler initially allocates a time quota T f r a m e  at each frame for all 

collision handhng processes and decides on the order of collision processing. 

At each stage in the collision handling/contact modelling phase it not only 

checks if the quota has been exceeded by time already spent on collision 

detection and modelling t ,  but also reserves the time th a t will later be spent 

on the response computations R e s p o n s e  as shown in Equation 3.9.

tiTTlGVCTTldiTliTlQ — fra m e  ^respcnse)

• When it has determined that the detection process has exhausted its al­

located time quota, it interrupts the coUision detection process and passes 

control to the collision response mechanism. The response mechanism in 

turn updates the scene based on the most accurate level of detail available 

(in other words the most recently completed sphere collision lists for each 

collision).

This is illustrated in the revised collision handling pipeline in Figure 3.11 

where we see tha t the collision response only reads from the contact da ta  which
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stores only the highest level of resolution that can be achieved within the collision 

detection/contact modelling time schedule.

CONTACT DATA

Collision i 
Detection

1

Scheduler

Figure 3.11: Scheduling of contact modelling and detection

3.4 Summary

This chapter has introduced a full framework for an interruptible collision handling 

system. Such a system makes it possible to achieve real-time interactive frame- 

rates regardless of the complexity of the scene, provided of course that the entire 

simulation can at least be handled in real-time if all objects are at the very lowest 

level of detail. The system is based on one previously presented by Hubbard, 

who did not, however, include the facility for realistic collision response within 

his framework. We have extended the system for full collision handling, including 

a scheduling process which takes computation time for physically based collision 

response into account. We will build on this in Chapter 4 by optimising the contact 

modelling phase in terms of performance and providing extensions in order that 

the framework will be equally effective when dealing with other classes of bounding
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volume hierarchies. We also optimise the trade-offs within the scene by using 

perceptually adaptive scheduling strategies for collision handling as described in 

Chapter 5.
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Chapter 4 

Optimising Contact M odelling

It is only due to the kinematic information returned by collision detection that 

interaction is made possible between the user and the virtual environment or 

between the objects within the virtual environment themselves. We discussed in 

Chapter 3 how an approximate contact model can deliver results that converge to 

a realistic collision response as more time is given to the system for processing the 

collision. Although the individual node contact is inexpensive to compute, BVH 

collision detection sometimes returns more contact points than exact methods. 

As a result, further processing may be required in order to reduce the workload 

for collision response. However, if by reducing the number of contact points 

the computed contact modelling data is not comparable with the proper contact 

details, then the ensuing behaviours will appear unrealistic to the viewer. This 

chapter discusses strategies for optimising the contact modelling phase, in terms of 

increasing the realism of the resultant output, as well as reducing computational 

load. We also discuss alternatives to the sphere-node contact model used as an 

example in Chapter 3.
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4.1 Generic BVH Trees

In Chapter 3 we saw how sphere-tree data structures are used to deUver time- 

critical collision handling. Although the spherical nodes of a sphere-tree are useful 

due to their rotational invariance, there are many cases where they are not the 

most efficient choice for bounding volumes in terms of how tightly they fit an 

underlying object. For instance, in Figure 4.1(a), we see how bad spheres are 

at approximating flat shapes. Although the fit gets tighter with the next level 

of the sphere-tree (Figure 4.1(b)), a single box or rectangle swept sphere (see 

Section 4.1.3) gives a much tighter bound (Figure 4.1(c)). As we discussed earlier, 

tightness is important in approximate collision detection because tighter BVH 

nodes invariably produce results closer to exact collision detection methods. In 

this chapter we discuss a few alternatives to using spheres for the BVH tree.

(c)

Figure 4.1: Bounding volume fitting for a flat rectangular shape

In order to fit any BVH scheme into our collision handling system, all we 

require is that the following be defined for the atomic nodes of the tree:

intersection model : procedures for collision detection, which should return 

whether two nodes are in contact.

contact model ; procedures for contact modelling. This should return results 

compatible with our collision response system, which in our case consists of 

a contact position, an impulse direction and possibly a degree of interpene­

tration (discussed later).
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4.1.1 Box based BVH Trees

We will define a Box as a six-sided volume where adjacent faces are orthogonal 

to each other and opposite faces are parallel. Next to spheres (or perhaps in 

certain cases in preference to them) boxes are the next most likely candidate to 

use as a nodal type for bounding volumes in contact determination. Although 

they are not rotationally invariant Uke spheres, they are a popular choice because 

of the efficiency and ease of intersection testing as well as the relative ease of 

generating the bounding volumes for objects. A simple 3D mapping from world- 

space to cuboid space reduces intersection testing to a simple matter of three 

one-dimensional overlap tests along the three Cartesian axes.

In fact, approaches such as Axis Aligned Bounding Boxes (AABB-Tree) [23] 

and Bucket-Tree [31] choose to impose the constraint that the bounding volumes 

must be always aligned with the world-axes, thus reducing intersection computa­

tions even further. Of course, this entails that the bounding volumes be calculated 

per-frame at run-time rather than at the pre-computation phase, as is the case 

with most BVH trees. Due to the relative ease with which this is possible (once 

again this involves simple one-dimensional comparisions to find minimum and 

maximum extents of an object along the three axes) and by exploiting frame-to- 

frame coherence, such approaches have been used to deliver good results and are 

particularly useful when there is a likelihood that pre-computed BVH descriptions 

will be invalidated, such as for deformable objects.

Axis Aligned Boxes aside, standard cuboidal trees are not only very efficient 

in terms of intersection tests but in terms of tightness of fit and storage efficiency. 

VoxTrees described in Section 4.1.2 and Octrees are efficient because of the regular 

arrangement and the homogeneity of the bounding volume nodes, meaning that 

positions (and orientations) of individual nodes need not be stored. This informa­

tion is implicit in the description of the tree and can be calculated for individual 

nodes simply by examining their offset distances from (and orientations of) their
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siblings. In terms of tight-boundedness, perhaps one of the best bounding volume 

implementations is that of the Oriented Bounding Box Tree (OBB-tree) [37] which 

uses bounding cubes of heterogeneous orientation and dimensions to bound the 

object. Storage and intersection testing is marginally more expensive, with the 

added requirement of storing and applying the added inverse world transformation 

for each bounding volume node, as is tree-generation which is a fairly involved 

process. However, the variance in orientations and dimensions of the bounding 

nodes allows for much tighter bounds for a large range of different objects and as 

a result this approach is quite a popular one amongst the BVH Trees.

4.1.2 Vox Trees

A simple but useful type of box-based BVH Tree is a homogeneous cube based 

tree which we will refer to generically as a Voxel TYee or VoxTree. In this case, 

the term homogeneous will be taken to imply that the tree is made up of similarly 

oriented, similarly proportioned atomic nodes (regular cubes in this case) and 

we will also impose the constraint that all sibling nodes in the tree are of the 

same dimensions (Figure 4.2). A well known example of such a tree is the Octree 

which is an adaptive resolution tree of cubes with a typical branching factor of 

eight. However the following applies generically to Voxel based trees with arbitrary 

branching factors.

Figure 4.2: Three levels of a VoxTree
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A

Figure 4.3; Mapping to cube-space

Intersection Test

Cubic collision detection is fairly straightforward. A number of approaches can 

be taken. We will use the method of mapping an object onto the cubes local 

coordinates and simply performing one-dimensional overlap tests with the object 

(see Figure 4.3).

Contact Model

Recall that the discrete collision response mechanism requires, for each contact in­

stance, a point of contact, p and a normal, n  for the impulse direction. For a quick 

approximate contact model we borrow from the spherical contact model effectively 

by circumscribing a sphere over the voxel (see Figure 4.4). This might seem like a 

drastic over-approximation at first since the cube is already an over-approximate 

bound for the underlying object. However, if we examine the spherical contact 

model we see that what we are primarily concerned with are the centres of the 

intersecting spheres and the ratios of their radii rather than the actual dimensions 

themselves. It should be noted that the circumscribing sphere is not used for col­

lision detection as we have already achieved that in Algorithm ?? with the actual 

cubic dimensions of the voxel.
In most respects this is both an adequate and efficient contact model when the 

cube size is small in comparision to the actual object. Inaccuracies become more
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Figure 4.4: Contact Modelling for a Regular Cube

Figure 4.5: VoxTree Contact Modelling

evident should the system force contact resolution at the bounding cube level. In 

such a case the result is not ideal but is still comparable to the sphere model and 

overall the result converges to the accurate result with increasing processing time 

(see Figure 4.5).

4.1.3 SSV Trees

Sphere swept volumes (SSVs) are generated by taking the Minkowski sums of 

a sphere and a core primitive that can be either a point, a line segment or a 

rectangle to obtain respectively a Point Swept Sphere (PSS), Line Swept Sphere 

(LSS) or a Rectangle Swept Sphere (RSS) [55, 56] as shown in Figure 4.6. The 

Minkowski sum is the sum of point sets A  and B  in a vector space, equal to 

{a  +  6 : a  €  A, 6 €  B }. Effectively the above objects are simply obtained by 

taking the respective core primitives and extruding them by a certain radius as 

shown in figure 4.6.
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The family of SSVs is useful for coUision detection purposes due to the rela­

tively simple intersection tests.

(a)Rectangle (b)Line (c)Point

Figure 4.6: Sphere Swept Volumes (SSVs)

Intersection Test

Intersection tests basically involve a distance computation between the SSV’s core 

primitive and the object being tested, e.g. for a point v.s. LSS intersection check, 

we test if the distance from the point to the LSS’s axis is less than the radius of 

the LSS.

Contact Model

Slightly more complicated than the symmetrical cube and spherical contact model, 

the relevant pairwise contact models are shown in Table 4.1.

Usage

A hierarchy of Sphere Swept Volumes is ideal for hierarchically modelled vir­

tual humans, as the volume nodes are a good fit for most of the nodes in the 

transformation hierarchies (see Figure 4.7). For characters modelled as a disjoint 

collection of rigid body parts animated based on hierarchical transforms, these 

transforms can easily be used to update the positions of nodes in the collision
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PSS to PSS as with sphere, collision normal n  = and collision point is obtained 

= #*■
PSS to LSS t£ike collision direction through the line of least distance and apply =  

^  to find where along this line the centre of collision lies.

LSS to LSS take collision direction through the line of least distance and apply j P - =  

^  to find where along this line the centre of collision lies. If axes are parallel 

find the extent of overlap eind take a line through the midpoint of this region 
as the collision direction.

PSS to RSS as above

LSS to RSS as above

nss to RSS as above

Table 4.1: SSV collisions

detection hierarchy as well. Thus, even though the macroscopic object is not 

rigid, we can still use our collision detection system because the individual nodes 

themselves are rigid and we can associate rigid bounding volumes with individual 

segments a t the pre-processing stage when the object is modelled. A few small 

changes axe required in the original system to support this functionality. Firstly, 

we must allow certain nodes in the tree to transform in relation to one another, 

unlike in the rigid hierarchy where a single transform is applied to all nodes. We 

should make a distinction here between the transformation hierarchy, which exists 

to enable animation using hierarchical transformations and the collision detection 

hierarchy, which exists to provide increasingly detailed collision modelling. Sec­

ondly, the top level bounding objects need to be more conservative than usual as 

they must bound their children nodes even after a deformation. For instance, in 

Figure 4.7 the movement of the arm and legs about the node centre should not be 

able to move any part of the body outside the topmost bounding volume. Unless 

we take this worst case approximation, it will be required that we recompute the 

dimensions of the parent node every time a child is updated.

For a node at the bottom of the transform hierarchy, i.e. a node with no 

children th a t moves in relation to its own position, it is possible to provide deeper 

levels of collision detection detail e.g. the head of the character might be modelled 

as a rigid object but it might still have children nodes to better model the features
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Figure 4.7: Line Swept Spheres (LSS) can be used to efficiently detect collisions 

with virtual humans.

of the head.

Within the transformation hierarchy, it is even possible to detect self collisions 

between individual nodes if we treat the individual segments as a soup of freely 

moving rigid objects. We make an exception between neighbouring nodes as these 

are usually made to overlap by design at the modelling phase. For these we can 

either choose to ignore all potential collisions or employ a technique based on 

deformable object modelling techniques [90, 79], which look at the normals of 

adjacent polygons to determine the possibility of intersection. In our case we look 

at the core axes of the adjacent LSS nodes and flag a collision if the angle between 

them falls below a certain forbidden threshold value 0 ^  shown in Figure 4.8.

The adaptive approach still switches between different levels of resolution of 

the character’s volume hierarchy as required, thus facilitating the necessary level 

of collision detail. Rapid elimination of nodes from the collision detection phase 

is still made possible when their parent nodes are found not to be colliding. It 

is also possible to incorporate procedures for quickly detecting collisions between 

the LSS nodes and more general volume representations such as spheres, cubes 

or polygons, which can be used to model the rest of the environment. Thus, it 

is possible to model not only collisions and self-collisions between characters but
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Figure 4.8: Self collisions between adjacent LSS nodes 

also between the characters and a more generic virtual environment.

4.2 Compressing Contact D ata

Approximate contact models deliver increasing numbers of contact primitives^ 

which, when input into the collision response mechanism, result in a richer collision 

response model. An important part of contact modelling is returning data that the 

response model can handle in terms of processing time. In hierarchical collision 

detection, contact primitives tend to be more numerous at the finer levels of detail 

than in accurate collision detection. For instance, if we take the example of two 

planes in contact, this may be dealt with as a single contact primitive by an 

accurate collision detection algorithm, i.e. a face-face collision (see Figure 4.9). 

This is not terribly disturbing as it is certain that at some coarser levels of detail, 

refinable collision detection would also treat this as a single collision pair (two 

single bounding spheres).

It should be noted that BVH contact primitives are generally computed faster 

and therein lies the trade-off between BVH collision detection and exact collision 

detection methods. However, when the branching factor is significant it becomes 

^We will define a contact primitive as the collision direction and collision point pair that we 

have already been using for response.
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Figure 4.9: A single face-face collision may sometimes be detected as multiple 

BVH node collisions

prohibitive to calculate response on the large numbers of primitives tha t are out­

put by the contact modeller. In such cases the bottleneck is in the response 

module, i.e. the contact modeller can cheaply compute larger numbers of conta<;t 

primitives within the limits set by the scheduler but collision response is not quite 

able to handle as many. Thus, we need to reduce the contact primitives passed to 

the collision response module.

The simple solution would be to interrupt the contact modelling phase when 

we know we have gathered as much data as the collision response module will be 

able to handle. However, as the bottleneck is in the response model and contact 

modelling can in practice deliver much more than collision response can handle it 

would be desirable if we could somehow exploit the extra contact modelling data. 

Rather than limiting the number of contact primitives that contact modelling is 

allowed to compute, perhaps we could use the extra data and reduce it to deliver 

a smaller number of more axicurate contact primitives to collision response.

Essentially what is required is the reduction of a larger set of contact primitives 

to a smaller one that is easier to handle but preserves the richness of the data that



is represented by the larger set. Collision response attempts to solve the net force 

or impulse on objects by solving for simultaneous contacts. Normal reduction 

attempts to generate a reduced number of normals that when passed to collision 

response will achieve the same net result. Heuristic contact modelling methods can 

be used to perform this reduction and enable a more optimised collision response 

output.

4.2.1 First Point of Contact

In some cases where a BVH collision detection system detects multiple node 

penetrations, it is possible that some of these occurred only due to the over­

approximate nature of the bounding volumes combined with the discrete nature 

of the time steps. For instance, Figure 4.10 shows an object moving in a straight 

line downwards with no rotational velocity. Although many nodes are interpene­

trating at the instant where the snapshot has been taken (Figure 4.10), response 

should really have been applied at an earlier time. If we can assume that this is 

usually the case then a good strategy to contact point reduction is to seek out the 

earliest contact nodes in a multi-node collision event. A reasonable approximation 

as to which node collided first can be obtained by inspecting the interpenetration 

depths of each colliding node.

First Contact

Figure 4.10: Two colliding nodes, deeper interpenetration is taken as first contact
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In our new scheme, we require one added detail in the contact primitives, 

namely the interpenetration measure, K. The theoretical value of K should be 

obtained be calculating the volume of the interpenetration region (we will call 

this the volume of intersection) between the two volume nodes and comparing 

this with the volumes of the nodes themselves. As shown in Equation 4.1, we take 

K to be the ratio of the volume of intersection to the volumes of the smaller of 

the two nodes (Vq and 14 in Equation 4.1). This is made clear in Figure 4.11.

k — VanVb 
min(Va, H) (4.1)

k = 0.0

k = 1.0

Figure 4.11: Interpenetration ratio

However, calculating the volume of intersection is an expensive process so ide­

ally we would like a measure that relates more to a distance. If we can assume that 

most BVH nodes will be regular soHds, whose volumes are roughly proportional to 

the cube of their radii, and extend this assumption also to the volume of intersec­

tion, which will have an effective radius dK (the ’’diameter” of interpenetration) 

then we have:

k (X

where (see Figure 4.12):

d,K =

{min{Ra, Rb)T

Ra-^r Rb~ d

(4.2)

In practice we can remove the cubic powers in Equation 4.2 without any serious 

consequences, since all that we require is a scalar value that will reasonably allow
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us to quantitatively compare two different levels of interpenetration, and that 

converges correctly to the limits of 0 and 1 for ”no interpenetration” and ’’full 

interpenetration” respectively. We then get a measure for interpenetration k , 

tha t is considerably quicker to compute;

4.2.2 Simple Averaged Normals

For non-concave pairs of objects where many adjacent nodes of similar orientation 

are colliding {e.g. the nodes of two almost-parallel colliding faces), an effective 

solution is to average the normals returned by contact modelling as shown in 

Equations 4.4 and 4.5. Figure 4.13(a) shows two colliding BVH trees for which 

the N contact primitives have been calculated and averaged (Figures 4.13(b) and 

4.13(c) respectively) according to the following simple equations:

2{min{Ra, Rb))
(4.3)

Figure 4.12: Calculation of diameter dk

(4.4)
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(a)BVH Trees (b)Multiple Contact Normals (c)Averaged Normals

Figure 4.13: Reducing collision data by simple averaging

ft'ave — I ^  I (4-5)

Simple averaging is adequate when the surfaces are non-concave and the mul­

tiple points of contact are close together, such as when they are derived from 

collisions involving adjacent volume nodes on the same object. In the example of 

the two faces, this is in fact a very accurate solution as the diflFerence between the 

different normals is negligible and this will deliver a normal tha t is similar to the 

normal of the two (in this case close-to-parallel) object faces.

When the contact manifold is concave or if there are disjoint groups of collid­

ing nodes, this approach has a high probabihty of return erroneous results. We 

therefore need to ensure that if normals are to be reduced in this manner that we 

identify the cases where it is safe to do so.

4.2.3 Pre-processed Grouping

An effective solution is to pre-group BVH nodes in the tree at the pre-processing 

stage. When the tree is initially generated, we store information in the node 

data-structures about which polygonal primitive they should be associated with. 

When we find, in the collision detection phase, that the collision involves nodes 

of the same group, we know immediately that it is safe to average them.

BVH generation is a  topic worthy of study in its own right so we do not 

provide a detailed description here, but simply refer to previous work in the area:



Figure 4.14: Assigning groupings based on a  reduced mesh

[7, 8, 47, 48]. It is enough to point out that, as the BVH trees are generated 

from the original definition of the object, which in most cases will be a polygonal 

representation, it is simple to assign to each BVH node an index to the polygon 

that it bounds and use this for grouping volume nodes that lie on a plane as 

described in the previous section. Where the original model is not polygonal, e.g. 

an implicit/parametric surface or even a volumetric description, then groupings 

can still be obtained in the pre-processing stage by first generating a polygonised 

representation of the object and proceeding as before.

For high resolution meshes, it is more efficient to apply mesh reduction before 

grouping, as the approeich described in Section 4.2.2 is feasible for almost-planar 

contact manifolds. Figure 4.14(a) shows grouping of surface nodes for a bounding 

hierarchy. Groupings are colour coded by group. Figure 4.14(b) shows groupings 

for a reduced mesh and 4.14(c) shows the reduced grouping mapped back on to 

the high-resolution mesh.

4.2.4 Calculating Normals from Density Gradients

Further optimisation is made possible when we consider the fact tha t volume 

nodes are inexact representations of the underlying object. Not only do the nodes 

approximate the underlying object but they do so inconsistently. In other words, 

we should consider a value called the occupancy (or density) of a volume node
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Figure 4.15: Bounding node occupancy

Pi, which is the percentage of the node volume that is actually occupied by the 

physical object that it is approximating. We will find that there can be significant 

variance in the values of pi, p2> Ps; ••• even though they might be sibling nodes in a 

homogeneous tree (see Figure 4.15). He and Kaufmann use a similar metric which 

they refer to as the surface crossing probability [40].

This highlights the concept that when an intersection is detected between 

volume nodes, this only signifies a possible collision  between those two nodes. 

The probability that a volume intersection actually signifies a collision between the 

bounded objects is proportional to the occupancies of the two intersecting volume 

nodes [pa and pb respectively) and to the degree of interpenetration between the 

two nodes, k .

^colliding — ^  Pa ^  Pb ( '̂®)

With the added detail of the interpenetration measure, this is in fact simply 

a generalisation of the bounding volume contact modelling described in Chapter 

3, which always assumed p =  1 and k =  1. Basically this means we have been 

assuming a 100% chance of intersection when any of the bounding volume nodes 

is found to intersect. We will see precisely how the probability value Pcoinding is

used in section 4.2.5.

In volume graphics, it is a common approach to derive normals from voxels 

by calculating the density gradient for different voxel samples [58], This normal 

is then used in a manner similar to the surface normal for rendering purposes.
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The normal at any point is calculated according to Equation 4.7 by inspecting the 

change of gradient over a small set of Voxels.

(4.7)

Using this in a descretised volumetric data structure, we have;

Vp{xi,yi,Zk) «  ^{p(xi,yj^i,Zk) -  Zk))

2(p(xi, yj, Zk+i) yj, Zk~i))

(4.8)

(4.9)

A similar approach can be taken for volumetric collisions. The occupancy metric 

for each volumetric node is equivalent to the density of the volume node and a 

similar approach to that used in volumetric rendering can be used to calculate an 

approximate normal h{x ,y , z )  at any point based on the occupancy gradient.

Although this approach can yield meaningful results for the normals, it is 

somewhat inconsistent with the requirements we stated in Section 3.2. Our colli­

sion response assumption was that the collision normals should be parallel for the 

two colliding objects (in opposite directions along the same directional vector). 

Calculating the normals using the density gradients unfortunately results in col­

lision normals for each object being calculated independently of the object that 

it is in contact with. Such a problem does not arise in Volume Graphics because 

only a single object is considered at a time and basically it is a static normal that 

is required.

However, the concept of using a density metric in normal calculations is a  sound 

one. We simply need to take into account that, for collisions, it is im portant not 

to consider just the individual objects but also the objects tha t they are colliding 

with. Also it is important that we consider the spatial properties of both of
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the individual colliding objects a t the time of collision {i.e. their positions and 

orientations).

One possibility is to take the normal for each pair of colliding nodes to be the 

average of the two pre-computed density gradient normals of the two nodes;

f ih  — n„
riA =  (4.10)

where is the collision normal between nodes a and 6; fia and are the 

normals at a and h precalculated from density gradients. Note th a t these will be 

pointing in opposite directions for two colliding objects which is why ha has a 

negative sign.

This is relatively quick over the single pair of colliding nodes, but for multiple 

collisions we still need to take the extra step of averaging over all the pairwise- 

averaged normals. The approach provides reasonably quick results with plausible 

normals tha t are adequate for non-interpenetration constraints when the evaluated 

BVH groups are simple and regular, as in voxel arrays similar to those used in 

volume rendering. Certain classes of sphere-trees e.g. regular Octree-based sphere- 

trees are also suitable. However, many classes of generic BVH trees do not impose 

constraints of uniformity on sibling spheres in the hierarchy [7, 47, 48, 37, 23]. Not 

only is this a problem because the volume elements are no longer discretised in 

such a way that we can easily step through a one-dimensional list of neighbouring 

nodes, but it would seem suspect to calculate a gradient from what is effectively 

an inconsistent step-size through this list of nodes.

4.2.5 W eighting by Interpenetration and D ensity

Another logical step is to use not just the node occupancy but the collision prob­

ability in Equation 4.6 as the factor for perturbing the collision normals obtained 

from direct normal approximation. We take into account how much individual 

nodes have interpenetrated as well as the node occupancy and use the probability
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of collision (see Equation 4.6) to get a weighted average of a set of pre-grouped 

normals:

(4.11)

_ E P i j P i -  P ave)  

^  E P i \P i -  Pave\
(4.12)

4.3 Heterogeneous Contact M odelling

Now that we have the necessary procedures in place for contact reduction and for 

different kinds of contact, it is possible to set up a generic collision handler for 

the various different types of contact primitive famihes.

The higher level system remains the same, where coUidable objects during 

a  simulation are passed through broad-phase collision detection and a certain 

number of these are queued on a hst of potential collision pairs.

We set up a table of intersection procedures and contact modelling procedures 

for each possible node pair that we wish to support, e.g. voxel-voxel, voxel-sphere 

or sphere-sphere.

The collision list is prioritised or bucket sorted into discrete priority parti­

tions and refinable collision detection then proceeds to perform collision detection 

in scheduled order by inspecting each collision pair, retrieving the relevant colli­

sion/contact model and either eUminating the node from the list or refining it to 

a higher level of accuracy (see Figure 4.16).

4.4 Summary

In this chapter we discussed several aspects of the contact modelling problem, 

extending the framework described in Chapter 3 to efficiently handle more general 

cases of contact primitives. The key points are highlighted below;
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Figure 4.16: Framework for heterogeneous BVH collision detection

S tra teg ie s  for con tac t p rim itive  red u c tio n  : although the increased number 

of contaxjt primitives sometimes returned by BVH collision detection is not 

harmful to the system in terms of deriving an accurate collision response, 

resolving multiple simultaneous contacts is an expensive task. We have 

provided heuristic optimisation strategies to reduce extra workload from 

collision response.

A lte rn a te  B V H  schem es ; we extend the capabilities of the BVH Collision 

Handling system in Chapter 3, which was originally based on a sphere-tree 

approach, to include BVH’s of Sphere Swept Volumes and Voxels.

C o n tac t m odelling  for a rticu la ted  figures : using an SSV-tree together with 

an articulated transform hierarchy, it is possible to extend our system, orig­

inally designed to deal with rigid bodies, to detect and model collisions and 

self-collisions involving articulated figures.
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H eterogeneous BV H  collision detection  and contact modelling : based 

on atomic definitions of collision detection and contact modelling we intro­

duce a framework that works efficiently with trees built from a heterogeneous 

collection of BVH nodes.
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Chapter 5 

Collision Scheduling

Previous chapters discussed how target frame-rates can be guaxanteed by nsing  

time-critical mechanisms for computationally expensive parts of the simulation 

process. Incremental mechanisms are used to generate results of increasing accu­

racy as more time is spent on processing. Although such systems may guarantee 

target frame-rates, they do not, on their own, ensure that the trade-off between 

accuracy and processing time is optimised. For this we must incorporate some 

form of prioritization within the process. Certain events, or specific parts of the 

scene, are categorised as being more important and given more processing time as 

a result. Prioritisation of the scene is based upon factors related to visibility and 

perceptibility of the approximations made to different parts of the scene. Only 

then is the speed-accuracy trade-off optimised by an interactive scheduler, which 

distributes the computational effort to different processes, ensuring that the most 

important parts of the scene are dealt with at the highest level of accuracy.

This chapter discusses how the perceptual priority of scene elements can be 

measured as well as techniques to use this information to optimise perceptual 

trade-off within an animated scene. We also discuss some problems associated 

with adaptive level of detail and strategies for minimizing simulation artifacts.
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5.1 Collisions and Perception

Mirtich found that it took 97 seconds on average to compute each frame of an 

avalanche simulation of 250 convex objects on an SGI Onyx (200 MHz RlOK CPU) 

[66], not because of any shortcomings in his simulation algorithm, but because of 

the high number and complexity of contact groups formed. His implementation 

favoured robustness over efficiency and for some applications this may be neces­

sary. However, for real-time animations such a sacrifice is not an option and it 

is obvious that a trade-off between detection accuracy and speed is necessary to 

achieve a high and constant frame-rate. We now ask: what effect will this have 

on the viewer’s perception of the resulting physics?

For scenes as complex as Mirtich’s avalanche simulation, a great deal of simpli­

fication is required in order to even come close to achieving real-time frame-rates. 

Wherever trade-offs are required, it is desirable to achieve them in the most op­

timal way possible. In the Physically Based Animation domain our goals are as 

follows:

i. we need to guarantee target frame-rates for real-time performance regardless 

of scene complexity

ii. we must handle as much complexity as allowable within any given processing 

time limit e .g .  a target frame-rate

iii. where simplifications become necessary, we should aim to get the best return 

in processing cycles for any details that are sacrificed

iv. we must minimise the overhead costs for the part of the system that manages 

the trade-offs between complexity and speed

80



5.1.1 Perceptual Optimisation

The first requirement for a system that will trade-oflF accuracy and speed is a 

mechanism that can handle processing at different resolutions and return consis­

tent results. Such a system, as discussed in Chapter 3, is now available to us and 

allows us modulate the degree of accuracy in a dynamic scene but we have yet to 

define where these simplifications should take place within the scene.

The time-critical mechanism for collision detection, for instance, will allow 

us to guarantee a given target frame-rate by interrupting the refinable process of 

contact modelling when the time-quota has been expended, but we should consider 

two different ways in which this could happen:

Firstly, if we were to simply consider collisions in random order and process 

colliding trees in a depth first manner (Figure 5.1, then when the time-critical 

process is interrupted we would find that a few collisions are processed at very 

high levels while many more are processed at a very basic level or not at all due 

to the fact that so much time was spent on processing the first few collisions. 

Alternatively, a fairer approach would be to process colliding nodes in a breadth 

first manner, so that all collisions receive fairly equal treatment until the scheduler 

again halts the process.

(a) Breadth-first (b) Depth-first

Figure 5.1: Traversal Strategies

However, in large-scale simulations this is often not the most fruitful approach.
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Consider, for example, a scene where many objects are squeezed into a small 

space leading to large numbers of collisions. In such a case, it is Ukely that if 

processing time were distributed equally among all collisions then, because of the 

large number of events that need to be considered, they would all most likely be 

dealt with at a  very coarse level of detail. Although this might seem like the logical 

approach to take from a general viewpoint, this is not the optimal solution when 

we consider the perceptual significance of the simphfications we make. When we 

know that simplification can not be avoided, then our primary goal shifts from 

trying to achieve full mathematical accuracy to delivering the perceptually most 

plausible output that is possible in the given time constraints.

In a complex scene with many different interacting objects, it is often the 

case that certain objects or certain regions within the scene can prove to be more 

important than other regions and ideally should be given more detail a t the cost of 

conversely less important objects or regions, which we can handle at lower levels of 

detail in order to save processing cycles. The solution we advocate is to prioritise 

events across the scene and distribute processing time based on this prioritisation.

5.1.2 Prioritisation Metrics

When there is adaptive trade-off within a system, the level of optimisation depends 

a great deal on the ability of the system to quantify the good or harmful effects 

resulting from any chosen trade-off. In other words, what we require are accurate 

models of how certain factors influence user perceptions of the scene or objects in 

the scene. Pe.vctptual metrics are often used to evaluate the quality of perceived 

output such as from a computer graphics rendering or animation and are often 

used as bases for comparing outputs {e.g. renderings or animations) resulting 

from different approaches. W ith reference to adaptive levels of detail, reliable 

metrics can also be useful in deciding which parts of the scene are perceptually 

less significant and thus better candidates for simplification.
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In interactive animation, meaningful results have already been achieved by 

using simple well known metrics such as object velocities, projected screen dis­

tances and distance from the user’s fixation point (determined with the use of 

an interactive eye-tracker) [30]. More extensive studies need to be performed, 

however, to identify the most important factors which affect user perception of 

simulated dynamical events and to determine how several different factors can 

together influence the perceptual quality across a simulation scene.

There is some literature on the subject of perceptual analysis of graphical 

scenes but, to date, the majority of published work deals with the perception 

of static rendered images. In animation there have been studies tha t deal with 

levels of detail associated with the real-time rendering of the scene or elements 

within the scene [30] [81] rather than the perception of motions synthesised by 

a dynamics system. There have, however, been several studies of how people 

perceive dynamical events in a more general context and some of the results should 

apply to perception of dynamics in a virtual world. As discussed in Section 2.3.1, 

there is evidence to show that humans from very early on in hfe incorporate 

dynamics into their perceptual model of the world [57] but also that humans are 

generally incapable of accurately detecting anomalous physical behaviour when 

there is more than one dimension of information involved [34].

Much of this literature deals with general dynamics perception but there is 

some previous work which deals specifically with the perception of dynamics in 

a virtual world. Barzel et al. [6] suggest exploiting uncertainty in order to save 

processing cycles in a physically based animation system. Reddy discusses certain 

areas where trade-offs are made possible in general animation [81] while Kaiser 

[49] and O’Sullivan [74, 75] specifically discuss dynamic scenes. O’Sullivan [74] 

describes a study of how effective users are at detecting gap distances in planar 

collisions between two objects at different speeds, angles of eccentricity and in 

the presence of different numbers of distractors in the scene. In [75] this model 

of collision perception is used in an animation system which trades-off collision
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accuracy with speed. However, these initial studies dealt with objects moving 

in a 2D plane orthogonal to the viewport and responding to collisions using a 

very much simplifed model of physics. As a result, they did not incorporate the 

effect of perturbations due to simplification in the actual physical behaviours of 

the colliding objects.

Similar studies would be useful, in a 3D dynamic virtual environment, where 

it becomes necessary to trade-off accuracy in the simulation processes that take 

place in the system. In Section 6.2 and the related paper [73] we discuss a set of 

experiments to understand user sensitivity to anomalies in dynamic simulations 

and provide useful data in order to evaluate the effectiveness of the trade-off on 

the believability of the scene. In order to decide in which parts of the environment 

we should apply trade-offs, it is important that we have fast metrics tha t quan­

tify how a specific improvement or simplification affects the perceptual quality of 

the simulation. For example, O ’SuUivan [75] found tha t erroneous collisions in 

the periphery of a viewer’s point of fixation are less likely to be detected, while 

collision anomalies that occur in the presence of increasing numbers of visually 

homogeneous distractors are also less noticeable.

5.2 M etrics for Adaptive Simulation LOD

A good study of some common factors that can influence user perception of indi­

vidual scene elements in an interactive animation is provided by Reddy [81]:

D istance  : the object space distance between the viewer and a  scene element is 

easily computed and is a useful measure of relative perceptual importance. 

This is a widely used metric for adaptive simplification e.g. in choosing 

terrain triangulation in outdoor simulations

Size : viewer to object distance alone is sometimes inappropriate for prioritising 

scene elements when they are not of comparable dimensions. A more suitable
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metric is the projected size of the scene element.

Eccentricity  : this is described by Reddy as “the degree to which an object 

exists in the visual periphery”. If the assumption can be made that the 

viewer will most likely be looking at the centre of the screen then this is 

simply the projected distance of the scene element from the centre. The use 

of eyetracking equipment or gaze-prediction algorithms makes it possible to 

more exactly define the user’s fixation point and better measure eccentricity.

Velocity : in animation scenes the speed of motions can affect the viewer’s ability 

to notice certain simplifications. Once again, a more meaningful measure is 

projected velocity.

If we can give each collision some measure of importance, the next logical 

step would be to sort all colhsions and apply increasing levels of refinement to 

each in order. However, it is usually the case that the overhead of a full sorting 

process is computationally very expensive, thus reducing the gains made from 

not using traditional exact collision detection techniques [75, 74]. A more fruitful 

approach is to partition the set of collisions into discrete subsets based on the 

prioritisation criteria. A similar approach was taken by Duchaineau [27], who 

maintained priority queues to select which regions of a mesh to simplify while 

rendering terrain in real-time. In our system, collision processing is first applied 

at a low attainable level to all collisions and then collisions in the higher priority 

subsets are refined to whatever level is possible in the allocated time remaining. 

In our implementation, this was achieved by storing collision data in two separate 

priority lists. All collision events are represented as collision data structures in 

either one of the two lists based on some importance criteria. Collisions in the 

high-priority list are allocated more processing time so that the contact model 

and resulting response is more believable.
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5.2.1 Application of LOD metrics to  Collision Handling

This section discusses the appUcation of these factors to Adaptive CoUision Han- 

dhng. As we are dealing with collisions, we should note that what is being sorted 

in perceptually adaptive collision handling is actually collision pairs rather than 

the objects themselves. So the value returned by the prioritiser needs to be a 

function of both objects in the collision pair.

Given any prioritisation strategy, we would ideally wish to sort all objects in 

the scene based on their priority and apply simulation refinement to objects in 

order of their priority values. However, in practice the computational cost of per­

forming a complete sort can become unjustifiably prohibitive so a more practical 

approach is to use a small number of priority groups into which colliding objects 

axe bin sorted with respect to certain threshold values. Each priority group is 

then allocated its share of processing time by the scheduler, with more processing 

being expended on higher priority groups. This method, whilst still preserving 

some level of prioritisation, bears considerably less overhead expense than a full 

continuous sort and in practice delivers improvements even with only two priority 

groups. We should beware of using too many variables, as the calculation of the 

priorities becomes a more expensive task, thus leaving even less time available for 

collision processing, as shown in [74]. We now discuss several candidate metrics 

and we will compare their effectiveness in Chapter 6.

Distance

Distance is perhaps one of the most commonly used metrics in LOD and also the 

most straightforward to implement. The Euclidian distance between the viewer 

and the object is simply taken as a measure of priority. For a fully sorted priori­

tisation scheme this is very easy to implement. However, with discrete priority 

regions we must answer the question of how to split our scene into the different 

regions so that the trade-off is best organised. Unfortunately, this is a very sub-
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jective issue and an ideal partitioning is dependent on various different factors 

such as the number of partitions, the viewing parameters, visibility in the scene 

and the number and properties of objects in the scene. As a result, it is fairly 

common to choose partitioning in an ad hoc manner or by statistical trial and 

error.

Distance as a metric has advantages in tha t the scene ends up being partitioned 

into spatial regions in object space. Therefore, objects in close proximity to each 

other tend to have the same allocated priority which can be useful in reducing 

some popping errors in the simulation. For a more detailed description of popping 

see Section 5.3.1.

The distance metric returns a value based on the Euclidian distance between 

the viewer and the centre of collision between two objects. The centre of collision 

is a term introduced by O’Sullivan [75] which, in our system, can be used inter­

changeably with the point of collision. For a collision pair, this is taken as the 

point of collision in the bounding sphere collision check.

Size

Size prioritisation is based on the projected screen size of the objects and therefore 

incorporates distance if we are dealing with perspective projection. Calculating 

a proper projected screen size of objects can be slightly more expensive than 

the simple Euclidian distance metric, but it is usually sufficient to preassign a 

one dimensional width in object space to an object and simply inspect how this 

projects on to the screen. A good value to take in our system is the radius of 

the coarsest bounding volume in the BVH tree. Unless objects in the scene are 

all of the similar object space dimensions, this invariably leads to priority regions 

not being spatially separated i.e. a large object further away might have a  much 

higher priority than a small object up close while two objects close together might 

be assigned altogether different priorities if they are of different sizes. This makes 

the approach marginally more prone to popping but size as a  metric is generally
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a better representation of the object’s perceptual importance than distance.

Size as a metric for collision handling can be used by taking an average of the 

projected radii of the two objects in a collision pair. For colUsions however, it is 

more meaningful to take the projected maximum gap size between the two objects 

as an alternative to traditional size-based LOD. As with the distance metric, a 

convenient method is to measure maximum gap size only for the top level of 

the bounding hierarchy. This is considerably less accurate than calculating the 

maximum distance between each potentially colhding node but saves on a critically 

large number of wasted distance calculations and, as the collision list is only sorted 

once before the refinable collision detection phase begins, the top level maximal 

gap size is the meaningful measure to take. As an alternative, in a fully sorted 

breadth-first approach, we could re-sort the collision list after each iteration of 

refinement, however we do not presently support this more expensive procedure.

Velocity

Velocity based prioritisation is also fairly easy to compute as our dynamics objects 

already have a velocity state variable that we can query. However, as with size, 

it is important to consider not the object-space velocity but the projected image- 

space velocity of objects. This requires taking into account the projection of 

the velocity vector of an object as well as any movements of the camera due to 

panning or rotating. Even more so than with the size-priorities, this leads to 

different object priorities being scattered randomly throughout the scene. The 

velocity metric returns a value based on the screen velocity of an object which is 

computed according as follows;

Vimg = viewing and projection applied to  v

Vutew =  Vimfl +  Vcom +  {<^cam X f'cam )

where:

• v; velocity vector of object in world space
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• 'Vimgi projected screen velocity of object in static frame

® ^cam ̂ panning speed of camera

• ^view projected screen velocity of object

• <̂ cam- rotational velocity of camera (about view direction)

•  T̂ cam- displacement of object from view centre

Since this is an image space measure of velocity, it is marginally more feasible to 

seek less subjective threshold values for partitioning scenes into different priority 

groups. However, there are still a number of variables th a t factor into the effect of 

velocity on perception such as the object’s size, visibility and eccentricity. Reddy 

presents some studies on threshold velocity values for user perception of simple 2D 

stimuli of constant and spatial frequency moving down the screen. Future work is 

planned on determining a model for velocity based partitioning of a 3D dynamic 

scene. This would be required for the ideal perceptually-optimised system. For 

now we choose, once more, a subjective (ad hoc) partitioning of the scene in order 

to evaluate the computational competence of the system to deal with velocity 

based partitioning.

Once again, for collisions we are interested in a function of the two colliding 

objects under inspection so we take the relative speeds of the colliding objects and 

apply Equation 5.1 to get the camera dependent relative velocity of the collision 

pair.

Velocity is also implicitly a factor in determining the level of refinement of scene 

objects through the recursion capping mechanism discussed later in Section 5.3.2, 

which is required to preserve the robustness of the system. Recursion capping 

prevents the collision handling system from using fine detail nodes which might 

return erroneous results due to an object’s high velocity, thus causing excessive 

interpenetrations. At high velocities, therefore, it is not only perceptually better to 

simplify the detail level of the scene elements but it is also required for robustness.
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Figure 5.2; Collisions inside the region of interest receive more processing time. 

E ccen tric ity

Eccentricity refers to the degree to which an object exists in the user’s periphery. 

In a gaze-contingent prioritisation scheme, we can use an eye-tracker to determine 

the user’s gaze location at any instant during the simulation. Eccentricity can then 

be used as the primary measure of importance, or combined with other factors as 

part of a more complete perceptual model.

Figure 5.2 shows an implementation of a system tha t uses eccentricity as the 

scheduling function. One high-priority list stores coUisions that project inside a  re­

gion of interest on the screen centered around the users fixation point (determined 

with an interactive eye-tracker), while less important collisions are relegated to a 

low priority list. The size of this region of interest may be adapted according to 

the number of visually homogeneous distractors present, i.e. the more distractors, 

the smaller the region. Alternatively, if eye-tracking is not feasible it is possible 

to use gaze-predicting algorithms to approximate the user’s point of fixation or to 

take the centre of the screen as the focus point.
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5.3 Simulation LOD Issues

This section describes a few common problems associated with adaptive simulation 

and BVH collision detection algorithms and discusses some possible solutions to 
the problems.

5.3.1 Level of Detail Popping

Level of detail in motion synthesis has many parallels with similar well-established 

techniques in multi-resolution and adaptive rendering. Unfortunately, some of 

the problems from traditional LODs are also issues in animation LOD. One of 

these is the problem of popping. Popping is the term in adaptive LOD rendering 

for the temporal artifact that occurs when a sudden change occurs between one 

level of detail and the other. Although both levels of detail might be acceptable 

representations of the object, they may contain slight differences and it is the 

change between the two models that often attracts the user’s attention rather 

than the level of simplification itself. Popping is particularly noticeable when an 

object straddles the threshold between two regions of varying priority.

In animation level of detail and specifically in collision detection an example 

would be as follows:

• Two objects treated at resolution R move in parallel directions and almost 

touch.

•  Due to a change in the scene their levels of detail both drop to i? -  1 and a 

coarser representation of the object’s bounding volumes are taken.

• Objects are now found to be colliding because the coarse bounding volumes 

are intersecting and the objects repulse each other even though no change 

has occurred in their states relative to each other.

Different techniques lead to different degrees of popping. This is true in motion 

synthesis as well as in interactive rendering, so it is useful to have an idea of
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how suitable a certain technique is in relation to another for simplification or for 

prioritisation of scene elements. Common techniques to alleviate popping in Level 

of Detail include morphing or temporal blending or simply using levels of detail 

that axe closer together and less distinguishable.

In interruptible simulation, although it is feasible to choose larger numbers of 

discretisations at different detail levels, it is not implicitly guaranteed that the 

chosen LOD for any scene element will not drop several levels of detail between 

one frame and the next. Temporal blending of a form is feasible, for instance, 

by using frame to frame coherency to preserve a object’s priority level between 

frames where it straddles priority threshold boundaries.

Fortunately, BVH collision detection has some advantages, in this respect, over 

traditional LOD in that popping most frequently occurs when level of detail drops 

for an object. This is because an increase in detail, in most cases, leads to a more 

plausible and less noticeable result. This is a useful asymmetry because drops in 

LOD usually relate to objects leaving a region or a state where they are more likely 

to be noticed by the user. Furthermore, popping in collision LOD only becomes an 

issue for objects of they happen to be colliding at the instant that an LOD shift 

occurs and the user is observing the event. Thus the problem, in interruptible 

collision detection, is self-solving to degree but nevertheless, noticeable popping 

does occur and we should be mindful of simplification strategies that are more 

prone to it and take necessary measures to guard against it, such as frame-to- 

frame persistence of LOD until it is safe to allow a drop in resolution.

5.3.2 Tunnelling

Tunnelling is a term given to a common simulation error that occurs due to the 

fixed time-step weakness. Due to discrete solutions of the motions of objects, we 

may find that at high velocities object interpenetrations can occur to a degree that 

leads to lack of robustness in the simulation. Indeed, objects may sometimes pass
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through each other completely without the simulator ever picking it up. Figure 

5.3 shows an example of tunnelling in a sphere-plane collision, the lowermost node 

of the sphere-tree has tunnelled through and approximate contact modelling has 

returned a  normal for collision response that would drive the object further into 

the plane.

The problem can sometimes be avoided by ensuring th a t simulation time steps 

are small enough so that the degree of interpenetration is small and as a result 

we will detect it before it becomes critically detrimental to the robustness of the 

system. But the right time-step to choose depends on both the dimensions of the 

moving object and its velocity. For a generic system, however, we do not desire 

to have to place limits on either velocity or size. As for the time-step, this cannot 

unfortunately be made arbitrarily small. Furthermore, the problem is exacerbated 

by having BVH trees where the nodes of the tree, as a rule, become progressively 

smaller and therefore more prone to tunnelling.

Figure 5.3: Tunneling of BVH nodes; calculated normal vector is in the wrong 

direction
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Back-tracking

In some sense back-tracking in simulation time (retroactive detection) will solve 

the robustness problem to a degree. However, the tunnelling effect can still cause 

unexpected extra processing in some cases. For instance, if we were to back-track 

in simulation time due to object interpenetrations, there may be cases where this 

might reveal extra collisions/interpenetrations th a t were initially undetected due 

to tunnelling, thus requiring further back-tracking. Unfortunately, retroactive 

detection is difficult to incorporate into a refinable collision detection scheme. 

The reason for this is that back-tracking in simulation time basically involves 

discarding (when an interpenetration is found) all collision and contact data and 

restarting the collision process at a previous time frame where it is believed that 

the first contact has occurred. Furthermore, computing a good guess for the 

time of first contact is difficult with the approximate model of contacts and with 

adaptive levels of detail. Stepping back based on approximate collision data is 

also illogical because bounding volume interpenetrations sometimes do not imply 

an actual collision with the underlying objects as illustrated in Figure 5.4.

Figure 5.4: Inappropriate Back-tracking

Conservative Advancement

Mirtich [66] gives the name Conservative Advancement (CA) to a class of simu­

lation techniques which, in some form, attempt to implement adaptive time-steps 

in order to reduce errors resulting from discretised simulation time. The strat-
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egy behind this is to predict the hkelihood of simulation discontinuities (such as 

object collisions) occurring in upcoming simulation frames due the current state 

of objects in the scene. If the system perceives no such imminent discontinuities 

then it continues constantly with perhaps a relatively large time-step. When a 

possible event is expected, the system then attem pts to adapt the time step to a 

safe level, e.g. halve the time-step, so that around the instant where the discon­

tinuity occurs, simulation is performed at a much higher level. The system might 

progressively shorten the time-step {e.g. repeatedly halve the time-step duration) 

thus “creeping up” to the discontinuity as described by Mirtich. The goal behind 

ail of this, from a collision detection perspective, is to try  to get below the thresh­

old of acceptance e the very first time the collision is detected without requiring 

complicated back-tracking.

The predictive part of this is usually achieved, if not by analytical methods, 

by using intersection tests between coarse space-time bounds of the simulation 

objects. Space-time bounds are discussed later in this section.

Conservative Advancement and Interruptible Collision Detection

Referring back to the time-critical system, although it is conceivable to have time- 

critical conservative advancement (CA) {i.e. cease the process of time-step refine­

ment when the scheduler decides, it still implies multiple passes of the collision 

detection system, which is not entirely compatible with refinable approximate 

collision detection.

We can, however, use a method that borrows from this type of technique in 

order to reduce BVH node tunnelling. This is done by putting a cap on the 

recursion through a BVH tree based on the Ukelihood of tunnelling occurring due 

to a number of factors, including the current time-step, the object s linear 'Vnode 

and angular velocity u>, the position of the node fnode relation to the centre of 

mass of the object it is bounding and the size of bounding volume nodes a t the 

current level of refinement Rnode (see Algorithm 5.3.1). Although this is different
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from normal CA approaches, it takes into account the same problems that CA 

hopes to avoid and effectively incorporates adaptability in collision detail in order 

to address the problem. This is illustrated in Figure 5.5.

Algorithm 5 .3 .1 :  C A P R e c u r s io n (n o r fe )

^ n ode  =  V  -j- (u> X 

i f  {R n o d e  < Itimestep X W node\) 

then stop refining for this object

I BVHpCevenI I A

BVHjLevelZ

Figure 5.5: Recursion capping is required when an object’s velocity is large in 

relation to the node radius (level 2 spheres)

Space Time Bounds

Perhaps the only sure way to completely eliminate tunnelling is to solve the prob­

lem in a non-discrete manner. This could be done by analytical collision detection, 

i.e. mathematically solving for points of contact and collisions using the mathe­

matical descriptions of an object’s temporal spatial occupancy. This is, of course, 

an expensive process and not presently workable in real-time for any significant 

number of objects. An alternative to this is to use coarse space-time bounds to
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detect when objects may have intersected. Space time bounds were discussed 

briefly in Section 2.2.1 we discuss them further here.

Space-time bounds are representations of the spatial occupancy of an object 

over time. Similar to bounding volumes, they are usually over-approximations of 

all possible spatial regions that an object might occupy in a given time interval. 

If, given an upper bound on acceleration, two objects are going to collide within a 

certain time interval, it is guaranteed that their space time bounds must intersect 

within this interval. Thus, if it is possible to perform quick intersection tests 

between space-time bounds of objects, it becomes possible to cull much processing 

on collision detection between objects those two objects if their space-time bounds 

are not intersecting. Although the concept is four dimensional and not trivial to 

solve, it is possible to optimise the process sufficiently in order to use it as an 

intersection process for the broad phase of collision detection. Hubbard discusses 

the use of intersection tests between parabolic horns and hypertrapezoids used as 

space time bounds in order to deliver speed-ups in collision detection [44, 47].

Some approaches take 3D volumes swept by the motion of the object as a 

coarser representation of the space time bounds of an object [66]. The space-time 

bound intersection test becomes easier to conceptualise and we can use known 

3D intersection tests. This usually involves much coarser over-approximations of 

the object’s positions as a 3D volume with cheap intersection tests, e.g. spheres 

and cubes, but is sufficiently useful for culling collision detection computation and 

detecting possible cases of tunnelling.

A coarse space-time bound is generated by taking a sphere with its centre 

at the object’s current position and its radius us the upper bound on all possible 

changes in position due to the object’s state and volume. The radius of a bounding 

sphere for the object calculated. This is centered at the object s centre

of gravity and bounds the object in all possible orientations. Then, an upper 

bound on the possible displacements of the object in a single simulation timestep 

is calculated based on the object velocity and forces currently acting upon it,
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syiA t). The radius of the spherical space time bound Rg is then obtained based 

on the dynamic state of the object y  as in the following Equation 5.2.

= \Y.acceleration\ +  \Y.velodty\
(5 .2)

Rs{At) = sy(A t)  +

Although this is an excessively coarse representation, it useful for detecting 

cases of complete tunnelling, i. e. an object at very high velocity completely pass­

ing through an object and not being detected for collisions even when it has 

emerged on the other side.

5.4 Summary

In this chapter we discussed strategies for scheduling adaptive collision handling 

in order to get an optimised trade-off between speed and accuracy. This is done 

by taking into account perceptual factors that influence a user’s experience of 

the scene. This is a logical approach to take, because it is the output from the 

system and, more importantly, the user’s experience of it with which we axe most 

concerned. Thus, using even a coarse understanding of the factors that influence 

user perception as input into the scheduler leads us closer to optimising the speed- 

accuracy trade-off. We have explored four basic factors that affect perception of an 

animated scene and offered approaches to using them as input for the interactive 

scheduler. Although these have been previously been discussed as metrics for 

scheduling interactive rendering, we use them in the specific context of adaptive 

collision handling. In Chapter 6 we present some comparisons and evaluations 

relating to these.
We also discussed some problems unique to adaptive collision handling and 

solutions, which are often relevant to the scheduling strategy used in modulating 

adaptive levels of detail.
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Chapter 6

Results

This section reviews the issues that we have discussed in previous chapters, pre­

senting some practical output and evaluations of the approaches undertaken. Eval­

uating the quality of graphical output is difficult to do objectively. Unless we 

have established methods of quantifying visual correctness it is nearly impossible 

to convey in figures how successful an approach has been. This is even more so in 

the case of computer animation, where the temporal features rather than static 

details are what we seek to model. Thus, it is important to have a perceptual 

basis for measuring plausibility in dynamic simulations.

In Section 6.1 we first illustrate how our system achieves different levels of 

detail based on the approaches outlined in Chapters 3 and 4. Section 6.2 details 

results of some experiments to measure perception of collision handling. Section 

6.3 is a study of the scheduhng strategies described in Chapter 5 and we also 

present experimental results from an evaluation of an eccentricity based scheduler 

which uses an eye-tracker to determine user fixation. Finally in Section 6.4 we 

show output from typical scenes with which exact collision detection methods 

generally have difficulty.
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Level 1 Level 2 Level 3

Figure 6.1: Contact Refinement in Sphere-tree

6.1 Levels of Detail

This section examines output from a refinable collision detection system and shows 

how accuracy of the coUision handling data is gracefully degraded for a real-time 

system. We look at output from the contact modelling approaches discussed in 

Chapter 4.

6.1.1 Sphere-tree Levels of Detail

Figure 6.1 shows how increasingly fine resolutions of sphere-tree level of detail used 

in collision detection lead to a more accurate contact vector (shown in yellow). As 

a finer representation of the colliding objects is used for collision queries, we obtain 

a better approximation of the contact position and the direction of forces. The 

accuracy in modelling the contact vector directly affects the accuracy of collision 

response.
Figures 6.2(a)-(c) show sequences of frames from an animation of a single 

collision interrupted at three levels of sphere-tree detail. We look at the two 

dimensional projection of a very simple collision case for ease of visualization. 

The first two frames in each strip show, respectively, the starting positions of 

the two objects and the instant at which an intersection between sphere nodes



is detected. After the collision has been processed, the three different animation 

levels of detail show increasing accuracy as can be seen from the trajectories and 

the rotational velocities of the two objects.

6.1.2 VoxTree Levels of D etail

Figure 6.3 shows contact normals resulting from the equations discussed in Section 

4.2. In each figure, the red lines show the multiple contact primitive groups, while 

the yellow line is the single reduced impulse vector generated. In each case, the 

voxels have been given a density value based on the underlying mesh (outlined in 

white). Thus the larger flatter voxel block represents a prism shaped object. The 

cubic object is given a 100% density for all its voxels.

Figure 6.3(a) shows reduction by simple averaging over the voxel group. Note 

that for clarity we chose to show only the normals going from the prism shaped 

object outwards. Simple averaging does not in fact take the density of the prism 

Voxels into account and the contact primitives are simply averaged out to get 

a quick approximation of the reduced contact normal. Figure 6.3(b) shows the 

normals generated by the gradient averaging technique. Normals are first pre­

computed for all the objects based on density gradient. For each two nodes that 

are found to collide, an average of the two normals is taken. These must then 

be averaged out to get the single reduced normal. In Figure 6.3(c), a weighted 

average is calculated based on the original (red) colUsion primitives to get the 

yellow reduced normal. Weighting is based on both the density of the colliding 

nodes as well as their interpenetration values and is represented in the image by 

the length of the red lines.

6.2 Psychophysical Experiments

Previous chapters advocated a system that trades off accuracy for speed in collision 

handling. The precise area of trade-off is in three main areas namely;
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start: Fram e 1 Start: Fram e 1 Start: Frame ll

(a) Sphere Level 1 (b) Sphere Level 2 (c) Sphere Level 3

Figure 6.2: Animation strips: Shown above are a selected frames from simulations 

at three different levels of sphere-tree detail. Note the varying gap at collision 

time” and the differences in the calculated final linear and rotational velocities.
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Figure 6.3: Contact Models with Vox Trees



• collision detection accuracy

• contact modelling/collision response accuracy

• framerate or more importantly frame-rate consistency

But is this trade-off worthwhile in the context of the full dynamics system? In 

other words, can we live with a reduction in collision detail and is it really very 

significant to try to preserve constant frame-rates? In order to determine this, 

we must investigate the perceptual impact of these individual factors on the user. 

This section discusses psychophysical experiments to investigate the relevance of 

these factors to a dynamic simulation and makes a case for perceptual adaptivity 

in physically based animation.

In computer graphics research, it is often necessary to design and execute 

psychophysical experiments in order to investigate some of the specific problems 

raised: [41, 92]. We carried out several sets of experiments to determine the ex­

tent to which the effects reported in the literature are applicable to the particular 

collision handling scenarios being considered. Previous research dealt with factors 

such as eccentricity, separation, presence and number of similar and dissimilar dis- 

tractors [74]. We describe, in the following sections, additional studies designed 

to examine the effects of causality, kinematics and dynamics on participants’ per­

ception of collisions.

6.2.1 Causality

Sudden drops in frame-rate during collision events can have serious effects on the 

perception of an animation. As Michotte [64] demonstrated in his experiments, 

objects moving apart after a certain delay are no longer perceived to be doing so 

as a result of the collision. Unfortunately, for non-interruptible collision handling 

systems, delays are one of the more likely side effects when there is a sudden in­

crease in computational workload, such as when a large number of objects happen
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to collide simultaneously.

To evaluate the effect of such delays, an experiment was set up to extend 

Michotte’s studies for animated 3D scenes. Twenty participants were recruited 

ranging from 19 to 35 years in age. These were chosen from staff and students 

of Trinity College and each had some knowledge of computer graphics but little 

to no qualified background in dynamics or kinematics. Participants were shown 

animations of collisions involving very simple objects: two spheres of equal volume 

and mass colliding and moving apart (see Figure 6.4). The collisions all occurred 

in the centre of the screen. In each simulation run the relative initial and final 

velocities of the objects were equal and opposite but delays of 0 msec, 100 msec 

and 300 msec were artificially introduced at the instant the objects collided. For 

each delay time the simulations were run for 3 different initial velocities and from 

3 different viewpoints, with 3 replications of each condition. Hence a 3x3x3 exper­

iment replicated three times involving a relatively simple rating task. Participants 

were asked to rate each collision on a simple integer scale of 1-3, where 1 was very 

believable and 3 was very unbelievable. They were subsequently questioned about 

their strategy.

Figure 6.4: Causality Experiment in 3D
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R esults

We found that the eflFect of delay upon the rating given to coUisions was highly 

significant: >  99%, as can be seen in Figure 6.5. Please note that low scores are 

better. We examined the data collapsed over viewpoint and velocity and found 

no significant effect. The delay effect was also significant when examined for each 

velocity separately. In addition, almost all participants complained about the 

collisions that seemed to “stick together” or were “less bouncy” .

Analysis

These result are consistent with Michotte’s, in that the addition of a delay reduced 

the perception of causality, thus impacting negatively upon collision realism. We 

might therefore conclude that the longer a real-time system spends processing 

collisions and the longer the delay that is thus generated, the less believable the 

resulting collisions will be.

3 .0-1

1 .0  4------------------------------- ----------------1—  --------------------------------------   '
0 100 300

Tune delay (msec)

Figure 6.5: Effect of an induced delay on the rating of collisions (low scores are 

better)
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6.2.2 Dynamics and Kinematics

Directly following the causality experiments, two experiments were performed 

with the same 20 participants to test their sensitivity to variations in the levels 

of collision detail. The first experiment tested the impact of varying levels of the 

volume model used for collision detection. As described in Section 6.1, lower levels 

of sphere-tree detail result in larger gap sizes in collisions. Participants were shown 

collisions involving three-dimensional L-shapes (see Figure 6.6). These simple 

concave extended bodies were chosen as they are useful for testing the features of 

the collision detection system. The starting velocities and orientations were set so 

tha t the resulting collision at the centre of the screen caused both objects to be 

repelled back in directions directly opposite to their initial velocities. Users were 

again asked to rate the colhsions on a simple scale of 1 to 3 and were questioned 

on their strategy afterwards. The simulations were run at varying levels of sphere- 

tree detail from 3 different points of view and with the objects’ velocities being 

scaled by factors of 50%, 100% and 150%, with 3 replications of each condition; 

once again a 3x3x3 experiment with 3 replications.

4

Figure 6.6: L-shaped bodies used for dynamics/kinematics experiments

The second experiment tested participants’ responses to the model for collision 

response used in the system. As we stated in Section 6.1, varying the levels of 

collision detection detail has a direct effect on the objects’ final velocities after 

collision. Participants were shown collisions involving the same L-shaped bodies 

used in the previous experiment. This time however the objects started off with 

different initial conditions with the resulting collision causing both a change in
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trajectory and angular momentum. The main goal of this test was to evaluate 

how adversely the collision levels of detail affected the perceived collision response. 

The lowest level of collision detail involves approximating the objects as spheres. 

As a consequence of this, the calculated collision impulses tend not to impart 

changes to the angular velocity of the objects. Because such response looks so 

unbelievable, as one expects rotations in collisions involving such non-symmetric 

objects to result in spin (an observation later verified by user feedback), a random 

change was added to the objects’ angular velocities at the lowest collision level. 

This change was uniformly distributed between two limits th a t were chosen by 

inspecting the values generated for a series of accurate collisions.

One hypothesis we tested was whether the viewpoint affected the perception of 

the collision anomalies. There were three cases, the first being the 0° case, where 

objects approached each other parallel to the viewing plane. The other cases 

involved angles of 45° and just less than 90° respectively. In the latter condition, 

although the viewers could not see the actual points of impact, they could see 

the object as it approached and bounced off, thus providing them with enough 

information to choose a rating.

Results

In the simple response case, the results were not significant: > 75%, with a more 

significant effect in the second experiment with more complex physics: > 99% 

(see Figure 6.7a). In particular we were interested if the obscured viewpoints 

reduced the number of gaps perceived. We found that the main effect was with 

the largest gap size only, i.e. lowest level collision handling, where the effect 

was highly significant for both experiments but particularly strong for the more 

complex physics (see Figure 6.7b).

We also predicted that velocity would reduce a viewer’s ability to detect 

anomalous collisions. We looked at the overall effect for both experiments and dis­

covered that there was only a weak effect in the simple case, where perception was
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Figure 6.7: Effect of viewpoint on rating of collisions

worst for the slower collisions, but there was an opposite and more significant ef­

fect in the complex physics case, where faster collisions were actually rated worse.

detail separately. We found that at the slowest velocity, the effect of collision res­

olution was most significant in both cases, with the effect being most significant 

in the experiment with simple physics. In this case, performance was more as 

expected (see Figure 6.8(a)), with low resolution collisions being less detectable 

with increasing velocity.

The results in the experiment with complex physics were more surprising (see 

Figure 6.8(b). When velocity was slow, the low-resolution collisions were more 

obvious and hence the worse rating. However, as velocity increased, participants 

actually rated the more accurate collisions worse than the medium level and those 

with randomised low-level responses.

Figure 6.9 shows the effect of the different collision resolutions for both exper­

iments. In the simple physics case, the effect of low resolution detection is highly 

significant: > 99%, whereas in the complex case, the effect is less significant: 90% 

and we might conclude that we have quite effectively masked the negative impact 

of reduced physics in the lowest resolution case by introducing a completely ran-

These unexpected results led us to examine the effect of velocity at each level of
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Figure 6.8: Effect of velocity on rating of collisions

dom rotation after contact. This was confirmed by the comments of almost all 

participants who reported that the most realistic collisions were those that spun 

a lot after colliding.

Simple physics 

 Complex physics

Medium High

Level of collision accuracy

Figure 6.9; Overall effect of collision detection accuracy
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6.3 Scheduling Strategies

This section examines different prioritization strategies and compares their ef­

fectiveness in a time-critical colhsion handling scheduler. Reddy [81] provided 

a detailed study of the prioritisation metrics for optimising animation levels of 

detail. Our study centres around the same metrics that Reddy uses but we ex­

amine them in the context of LOD in dynamic simulation. We also examine the 

effectiveness of using an eye-tracker in order to optimise LOD trade-offs in a 3D 

dynamics scene.

A simple study was done to compare the different strategies discussed in 5.2.1 

for prioritising a dynamic scene for collision processing. As we mentioned pre­

viously, assigning thresholds for discrete partitioning of the scene into priority 

groups is still a very subjective issue. Many factors can affect what the ideal 

thresholds would be for partitioning the scene and as explained in Section 5.2.1, 

the optimum threshold is very specific to each scene and in most applications such 

thresholds are chosen after some sampling of the scene to statistically determine 

an ideal value. Thus we do not offer the following results as a conclusive com­

parison of the effectiveness of a partitioning scheme but as an illustration of the 

different characteristics of the different schemes we have implemented.

In each case, a simple scene was taken with 80 uniformly sized objects moving 

within an enclosed scene, starting at random positions and with randomised start­

ing velocities (see Figure 6.10). A perspective projection was used and objects 

were reflected back into view at the window boundaries (i.e. they were enclosed 

in the viewing frustum) in order to preserve the density of objects in the scene. 

The thresholds for partitioning were chosen ad hoc with the proviso that close to 

the same ratio of high priority and low priority collisions should be preserved in 

each test run.
A series of scheduling functions were used to partition the collision list into 

a High Priority List (HPL) and Low Priority List (LPL). The simulations were
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run for 10 minutes each and the total collision instances entered into the HPL 

and LPL were counted. To illustrate the distribution of priorities across the scene 

due to each scheduling function, we plot (for each run of the experiment using a 

particular scheduler) the distribution of High and Low priority collisions according 

to z-axis distance, velocity distribution and eccentricity distribution. The reason 

we choose these three distributions is because they are representative of traditional 

partitioning schemes. For an ideally prioritised scene we would wish to see high 

values at all the lower ranges of z-position, velocity and eccentricity, fading as 

each of these increases for the viewer. We also plot the percentage distribution of 

HPL and LPL colUsions for each of these functions.

Projected Size Scheduler

Figure 6.11 shows results from partitioning the scene based on objects’ sizes. 

Since we are prioritising collisions, it is important that we consider the size of 

both objects in a collision pair, so we take the average projected size of the two 

objects as input into the scheduler. The blue curve shows the number of collision 

objects entered into the LPL. Of more interest is the red curve which shows the 

number of collisions in the HPL.

As we should expect, the z-axis distribution graph shows a clear cut off at a 

certain z-axis distance. This is because the projected sizes of the objects are di­

rectly proportional to their z-depths since the objects were of uniform size. Thus 

we are effectively using the z-axis to partition the scene. We might expect the 

speed and eccentricity graphs to be largely random, however the percentage HPL 

distribution increases with speed due to larger objects (placed in the HPL by the 

size scheduling) having larger projected velocities due to perspective projection. 

The total number of collisions (for both high priority and low priority lists) in­

creases with eccentricity for similar reasons, simply because increasing numbers 

of distant objects fit on the screen due to the perspective projection.
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Speed Scheduler

Figure 6.12 shows the results of a scheduler that uses projected speed as the 

prioritisation function. Once again we take the average speed of the two colliding 

objects. Higher velocity object pairs are given a low priority since it will be 

harder to detect anomalous collisions at high speed. This is based on our studies 

in Section 6.2 and the results of Reddy’s model of fall-off in perceptual significance 

with velocity [81]. It should be noted that Reddy reported that if velocity is the 

only factor the velocities needed to be considerably high before the perceptual 

impact of objects begins to fall. However, in tandem with other factors such 

as eccentricity, the effect occurs at much lower velocities. The HPL distribution 

along the z-axis increases with z-distance because the projected speed naturally 

decreases with distance due to the perspective projection. This is the inverse of 

what we stated for velocity in the size scheduler and is somewhat undesirable as 

we really want collision priority to decrease with distance. As expected we see the 

cut off at the threshold value in the speed distribution graph. For eccentricity, we 

see increases in the general number of collisions with distance due to perspective 

as before, so the percentage graph is a more meaningful measure in this case and 

we see from this that eccentricity distribution in the HPL is relatively unaffected 

by the velocity metric.

Eccentricity Scheduler

Figure 6.13 shows the results of partitioning based on eccentricity. We take the 

image space distance between the centre of the screen and the projected centre 

of collision as input into the scheduler. HPL entries are fairly constant in both 

the z-distance and velocity graphs. The percentage graph shows that velocity 

distribution is fairly random due to the fact that eccentricity scheduling does not 

affect HPL distribution sorted by “velocity. The fact that the camera used in this 

experiment was stationary is an important point to note. Had we used a moving

114



camera, the full set of variables in Equation 5.1 would apply and we should expect 

the eccentricity and velocity metrics to have some interdependency.

Gap Scheduler

Figure 6.14 shows distributions due to scheduling according to the gap size  ̂ be­

tween the two colliding objects. Z-axis distribution is random as this is an object 

space scheduling strategy. We might expect some correlation with velocity as high 

velocities tend to cause deeper interpenetrations (and hence smaller gap sizes) but 

this is not evident from the results. As expected this has no bearing on the ec­

centricity distribution which is largely an image-space metric.

Projected Gap Scheduler

Figure 6.15 shows distributions due to projected gap size scheduling. Projected 

gap is simply the separation distance used in the gap size scheduler projected on 

to the image plane. We can see a fall off in HPL collisions along the z-axis which 

is both useful and expected due to the perspective projection reducing projected 

gap sizes. In the speed graphs we see increasing numbers of HPL entries at high 

speeds. This is due to high velocity causing deeper interpenetrations (and as a 

result smaller gap size). The effect is now clearer because we are using image 

space measures for both speed and gap. There is a small rise in the eccentricity 

distribution.
The increase in HPL entries with speed is not desirable if our hypothesis (sup­

ported by our results in Section 6.2) is that high velocities collision hide anomahes 

and thus should be placed at a lower priority The small rise in eccentricity distri­

bution is unexpected as this suggests that projected gap size increases statistically 

with eccentricity. This may be a consequence of the enclosed scene or of the na­

ture of the nature of perspective projection which we have not investigated yet 

coarse approximation for potential gap size taken here is the Euclidian distance between 

the centers of the two colliding bounding volumes
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but since the since the increase is small it is not on its own significant enough to 

invalidate the usefulness of the projected gap scheduler. In fact, projected gap 

would seem to be the best metric so far, as it incorporates z-distance prioritisation 

and possible occlusion as well as the collision gap size which is important on its 

own.

Collision Speed

Projected speed is taken as the projection of the relative velocity vector between 

the two colliding objects. Lower projected velocities are given a higher priority 

and this is graphed in Figure 6.16. In all three cases we see no significant effect 

although there is a small increasing trend with z-distance as relative velocities of 

distant colliding objects are mapped onto smaller projected speeds. Conversely 

there is a small decrease with projected speed as the two factors are inter-related.

Discussion

This study evaluated some characteristic properties of different scheduling strate­

gies. We find that not only do we find that several metrics work independently of 

others but that some of them actually return results that may contradict another 

sorting scheme e.g. the velocity scheduler increases HPL entries with distance 

from the viewer.

In terms of immediate use, we favour metrics that take collision variables 

into account whilst preserving the behaviour of the more generic prioritisation 

techniques of distance, velocity and eccentricity. We also recommend spatially 

coherent sorting as it is easier to safeguard against popping. For instance, a dis­

tance scheduler will show a clear boundary between where HPL and LPL collisions 

occur, making it easier to predict which objects are likely to exhibit popping ef­

fects, namely the ones that are about to leave the high priority region. This is 

unfortunately not so for factors such as scheduling based on collision velocity, as
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the HPL entries axe scattered throughout the screen and are not dependent on 

the state of a single object but possible combinations of collision pairs.

Although simple efficiently evaluated metrics are desirable, there is a strong 

indication that a single measure is not completely adequate for a time-critical 

scheduler. However, as O’Sullivan showed [74], we must take care not to overbur­

den the scheduler with too many complex calculations lest it become a hindrance 

to real-time performance on its own. The correct balance of input factors and 

LOD resolution time can only be determined by extensive further study. This is 

a question that needs to be answered in the context of perceptual science and a 

thorough investigation unfortunately is beyond the scope of this thesis. Current 

and future work is planned however in this respect and we discuss this in Chapter 

7. We also provide a specific case study of a gaze dependent scheduler in the next 

section.

6.3.1 Perceptual Optimization

To further evaluate the effectiveness of a gaze-dependent prioritisation scheme for 

interactive simulation, an experiment was performed. Ten participants (computer 

science staff and students) were presented with 36 short simulations of rigid bodies 

colliding and bouncing off each other inside a closed cube. The simulation was run 

on a desktop PC with graphics acceleration, with a 22-inch screen. Participants 

were instructed to react to the quality of the simulations in two different ways. The 

first task was to respond, by clicking the mouse button, whenever they perceived 

the occurrence of a frame containing one or more ’’bad” collisions during the 

course of the simulation. A bad collision here refers to one resulting from a coarse 

level approximation of a collision as described in the previous section. In an initial 

training phase, they were shown examples of what both good and bad collisions 

should look like. The second task was to rate the overall quality on a scale of 

one to five, at the end of each simulation. During the training phase, examples
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of the best and worst quaUty simulations were shown, and they were told that 

the two extremes should receive a rating of five and one respectively. They were 

also told that simulations with quality ranging between both of these limits were 

also possible. They then practised on a further number of simulations and were 

observed to ensure that they had understood the instructions.

Four distinct types of simulations were presented to the participants in random 

order. The first type of simulation (denoted as all good) resolved all collisions at 

the highest resolution of the volume model. It was possible to deal with objects 

at this high a resolution in the experiment as the maximum number of objects 

dealt with was relatively small. A second type of simulation {all bad) dealt with 

all collisions at the very lowest level of resolution i.e. object collisions were dealt 

with at the bounding sphere level, resulting in objects repulsing each other at a 

distance in almost all cases. It should be noted that this distant repulsion is not 

always obvious to viewers as inter-object occlusion sometimes prevents the gap 

from being visible in the projected display.

Two further types of collisions had combinations of good and bad collisions 

occurring in the scene at the same time throughout the simulation. In both of 

these, a  high-priority region was chosen in the scene where collisions were dealt 

with at the all-good level while outside of this region all objects were dealt with at 

the coarse level. In one of these, the tracked simulations, the users gaze position 

was tracked and used as the centre of the high-priority region. In the other case, 

the random simulations, a random position was chosen every 5 frames to serve as 

the centre of the high priority region. Having a randomly located priority region 

of the same size in the scene ensures that roughly the same proportion of good 

and bad collisions is maintained as in the tracked case.

Each simulation type was shown with 5, 10 and 15 objects and three repetitions 

each were shown for these twelve cases, see Figure 6.17. Hence the overall exper­

iment had a 5x3x2 factorial layout with three repetitions of each case. A time of 

ten seconds was chosen as the duration for each simulation to give the participants
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Figure 6.17; Screenshots of the experiment with 5, 10 and 15 objects contained 

in proportionately-sized boxes.

(o.) Five objects (b) Ten objects (c) Fifteen objects

Figure 6.18: Results from rating task

a representative sample of collisions. In varying the number of simulated objects, 

the size of the cube, within which the objects were contained, was correspondingly 

resized to maintain a constant density of objects at all times within the container. 

This was in order to ensure consistency in the number of collisions occurring in 

the simulation. The size of the boxes displayed were not scaled to fill the screen, 

as then the size of the objects would vary between conditions. Necessarily, this 

reduced the active field of view for the smaller number of objects.

After a short training phase, in which participants were shown isolated cases 

of good and bad collisions, participants eye-movements were recorded a t all times 

with an SMI EyeLink eye-tracker and the 36 simulation runs were shown in random
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Figure 6.19: Results from clicks task

Results

Figure 6.18 shows the participants’ ratings for the different sets of simulations 

organised by number of objects in the simulation. Of most interest here, in the 

context of a gaze-contingent system, is the comparison of the tracked and random 

graphs. The results clearly show an overall improvement in the perception of 

the tracked simulation. A single-factor ANOVA showed a significance of > 70%, 

> 55% and > 80% respectively for the 5, 10 and 15 object results.

An examination of the number of clicks for each of the simulations shows 

similar results. There is an overall improvement in the number of clicks in each 

of the simulation cases with statistical significance of > 60%, > 75% and > 80% 

respectively for the 5, 10 and 15 cases. The graphs of the total clicks during the 

simulations, shown in Figure 6.19, show a consistent reduction in the number of 

clicks for the 15 object simulations. It is reasonable to assume that this is due to 

an increase in the number of occluded objects as well as in the number of similar 

distractors as discussed in Section 2.3.1.

Discussion

It was surprising to find that the results showed little or no statistical signifi­

cance. We believe that the reason that there isn t a stronger significance has to
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do with the difficulty in setting up fair experimental simulations. The complex­

ity and multi-dimensionality of the simulation process make it difficult to design 

an experimental task that is both unambiguous and fairly representative of the 

variables being evaluated. This appears to be particularly relevant in the case 

of gaze-contingent simulation where a random variable {i.e. the gaze position) is 

an active factor that affects the outcome of the simulation that is given to the 

participants for evaluation. Modulating simulation detail levels a t random or gaze- 

dependent locations in the scene introduces a significant level of non-determinism 

into the simulation making it close to impossible to show all the participants an 

identical set of simulations. Future work is planned on investigating alternative 

experimental strategies.

Some participants reported that they used peripheral vision in certain cases to 

decide on their rating for the simulation. The experiment used a simple, two-level 

scheme for prioritisation [i.e. fine resolution within the high-priority region and 

coarse resolution everywhere else). While there are some studies that examine 

the ideal size of high-resolution regions for scene viewing, as in [61], there is no 

documented study that suggests an ideal radius for a high priority region for 

simulation purposes and it is expected also that this would be a subjective value 

for each scene.

6.4 Sample Output Screenshots

Sample screenshots from a typical application are shown in Figures 6.20, 6.21 

and 6.22. The objects we have chosen to simulate are polygon meshes with large 

concave features and high polygonal detail. It should be noted that the number 

of polygons has no direct bearing at run-time on our collision handling system. 

While most exact methods would use the mesh polygons, or a simplified version of 

the mesh to perform collision tests, our system would use the mesh for generating 

the volume model at a pre-computation phase [7, 8]. The scene shown here is one
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with increasingly large numbers of detailed concave objects moving in an enclosed 

space (a cube) which forces many simultaneous collisions to occur.

An eccentricity based scheduler was used and the high priority collisions have 

been flagged in red; low priority collisions are in blue. Even with the huge amount 

of simultaneous contacts, the system was able to continue in real-time with a 

frame-rate of 20 per second. In fact, as we increase the number of objects we find 

that the system begins to slow down sooner due to rendering. It should be noted 

that many collisions would be dealt with at a very coarse level and theoretically 

we should be able to handle as many objects as it is possible to do bounding 

sphere collision tests for. However, due to the crowdedness of the scene, these 

anomalies become less apparent as the complexity increases.

6.5 Summary

This chapter discussed the results of the work described in earlier chapters. We 

have presented output from our adaptive collision detection system and shown 

how collision data is refined with increasing processing time. Unfortunately, due 

to the unique approach we have taken, it is difficult to compare the technique with 

existing collision handling systems which are based on highly different goals of 

accuracy and exactness. A meaningful measure of the effectiveness of an adaptive 

system, such as the one we have developed, is only achieved through perceptual 

evaluation. However, the science of perceptually evaluating graphical animated 

scenes is itself in its infancy and no established approaches exist to quantitatively 

evaluate physically based animation systems. Thus, we have presented results 

from our own qualitative evaluations performed through user tests based on the 

perception literature. Prom these we outUned some key factors that affect the

perceptual plausibility of simulation.
We have also presented, in this chapter, a comparative evaluation of different 

scheduling strategies discussed in Chapter 5 and further user experiments to judge
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Figure 6.20: 50 Dragon Simulation

Figure 6.21: 100 Dragon Simulation 

126



Figure 6.22: 250 Dragon Simulation
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the effectiveness of a gaze-directed scheduUng system. Lastly, we presented output 

screenshots from sample scenarios that traditional collision handling systems have 

difficulty dealing with and that our system is specifically optimised to handle.
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Chapter 7

Conclusions and Future Work

This section reviews, in brief, the findings presented in this thesis and the solutions 

that have been offered. We also discuss new questions that have been raised due 

to the work presented here and some potential areas of future work.

7.1 Summary of Contributions

The main goal in this thesis has been to provide a time-critical framework encom­

passing all three stages of collision handling. We have presented such a framework, 

in Chapter 3, which performs time-critical collision detection based on the sphere- 

tree approach by Hubbard. We add our own mechanisms for sphere-tree contact 

modelling and for scheduling the full process of collision handling. In Chapter 4 

we provide further optimisation to the contact modelhng phase by using heuristic 

contact primitive reduction techniques in order to reduce the workload of collision 

response without excessively sacrificing the detail that collision detection and con­

tact modelling are able to achieve. We also describe additional bounding volume 

hierarchies that can be used under the sphere-tree based framework in Chapter 

3, including an SSV based hierarchy used for collision handling of articulated fig­

ures, and present a framework for collision detection and contact modelling with 

heterogeneous BVH trees. Chapter 5 describes optimisations to the scheduling

129



process in Level of Detail collision handling. We discuss existing strategies for 

prioritising animated scenes and adapt these for the specific case of collision han­

dling in dynamic simulations. We also discuss problems unique to level of detail 

in simulation and solutions to these. Chapter 6 details some of the results of our 

work, including the Level of Detail output from the contact modeUing mechanism 

as well as psychophysical tests to explore user sensitivity to collision anomaUes 

in a virtual scene. We also compared different scheduling strategies presented in 

the early chapters and performed user tests to validate a gaze-driven approach to 

scheduhng collision handling.

7.2 Assessment

Although an actual implementation was developed during the course of this re­

search, the primary goal has always been to cultivate a general philosophy of 

time-critical dynamic simulation and prove the feasibility of using approximate 

and refinable methods in an area that has traditionally dealt with exact solutions. 

We have presented, in this thesis, an in-depth study of the time-critical approach 

to collision handling, inspecting all of the key required components for such a 

system to be fully realised. We have highlighted some problems that such systems 

may face and developed and documented some solutions to these.

As we present a distinctly different type of solution to what previous ap­

proaches have attempted, the difficulty lies in evaluating the relative effectiveness 

of such a solution. Very few agreed-upon criteria exist for comparing even exist­

ing exact collision detection methods apart from computational speed, accuracy 

in detection and the limits in scene complexity. The system we describe, by its 

very time-critical nature, makes timing comparisons with other exact approaches 

inappropriate. We are able to deliver multi-resolution scenes of adaptive complex­

ity and with regards to accuracy we maintain that in the interactive applications, 

for which this approach is designed, it is more relevant to measure the plausibility
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and perceptual impact of the output.

Thus, we propose that such systems be evaluated on the basis of perceptual 

criteria and present some background on how this might be reliably achieved u sin g  

models of human perception. Unfortunately, the science of perceptually evaluat­

ing computer graphics is still relatively in its infancy. Few established approaches 

exist which generically and reliably are able to return a qualitative evaluation of 

a graphical scene. Fewer still exist for evaluating interactive animations and to 

our knowledge no documented approach exists to date for measuring the percep­

tual impact of simphfications in generic complex dynamic simulation, although 

O’Sullivan [74] investigates collision anomalies and Reddy provides a low level 

study of perceptual factors to do with virtual scenes [81]. Based on previous stud­

ies in perceptual science, on determining human response to dynamical events, 

we present results from our own user-based experiments to evaluate the percep­

tual impact simplifications have on simulated dynamics. We demonstrate that 

the factors which we have sought to optimise using our approach for adaptive 

collision handling, are indeed important in the effect they have on plausibihty of 

dynamic simulations. The issues of causality, separation and dynamic accuracy 

are shown to have significant impact on user response to the system and thus it is 

relevant to address the problem of simphfication with these factors in mind. This 

is consistent with the framework that we have presented in this thesis.

7.3 Future Work

The use of perceptually adaptive techniques in computer graphics is relatively 

new. It is only with the recent advance in computational power that graphical 

output from interactive real-time applications has begun to approach the quality 

that we know is possible through traditionally off-line approaches. Yet, it is likely 

that it will take a few more stages of evolution in computer graphics hardware 

before it becomes possible to deliver perceptually identical output in off-line and
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real-time graphics. Until then it seems likely that adaptive techniques will be used 

in various aspects of real-time graphics systems and indeed there appears to be an 

increasing emphasis on research in level of detail, time-critical and perceptually 

adaptive techniques not only in image synthesis but in animation and simulation.

However, the introduction of these new adaptive techniques and more gener- 

ically the philosophy of perceptual adaptiveness in real-time applications opens 

up a Pandora’s box of possible problems and opportunities for future optimisa­

tion. We can draw many analogies between level-of-detail in physically based 

motion synthesis and its more-estabhshed use in real-time rendering. Among the 

problems that have only recently been addressed in rendering and need still to 

be tackled in motion synthesis are the points discussed in the remainder of this 

section.

Effects of Popping in Simulation

As level of detail in simulation becomes more evolved, we see many problems 

that are common to LOD in rendering. One of these is the popping problem 

which has been discussed in this thesis in the context of Collision HandUng. More 

study needs to be done in assessing the full impact of popping in the general 

context of simulation and in devising useful reusable solutions such as have been 

implemented for rendering levels of detail.

Generic Metrics for Dynamic LOD

Some well established methods exist for qualitative assessment of rendered images. 

The study of metrics for animation has also been investigated by a number of 

researchers [30, 74, 81] but in some of these cases the results are very specific to 

the problem that the approaches were addressing. Research to date has been more 

to do with exploring trends and relationships rather than establishing unbiased 

thresholds and models that practitioners can use in their real-time systems. There 

is an added difficulty in evaluating the perception of animations due to the high
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number of variables involved and due to the intangible nature of what is being 

perceived by the users. Thus it is a challenging task simply to understand and 

interpret with certainty why users have responded favourably or negatively to 

any particular dynamic scene, let alone to derive meaningful metrics from user 

tests. Our approach so far has been to try to extract basic low level variables 

and evaluate user response based on small perturbations to these. Many more 

low level variables remain yet unexplored, which range from visual factors such as 

colour, luminance, and contrast, to attributes of the dynamic system itself such as 

orientation, mass and density. Work is currently underway to measure the impact 

of some of these factors, which we believe are of primary concern in a dynamic 

simulation. With further examinations and study, it is hoped that we will be able 

to build, from these low level models, more encompassing metrics for a highly 

complex dynamic scene. Ensuring that these are generically applicable will be a 

challenging task but more research in the area is essential in order to meike full 

use of adaptive level of detail techniques.

Generic LOD Resolver

Assuming we have reliable measures to evaluate perceptual quality, these should 

logically be incorporated into level of detail schedulers in adaptive systems. This 

may not be feasible in some cases where evaluation of the metric is expensive and 

prohibitive to the real-time performance of the animation system, but quicker 

methods, that take into account low level perceptual factors, would be useful for 

managing level-of-detail modulation in virtual scenes.

With the complexity of current and upcoming virtual environments, animation 

systems are increasingly implementing LOD techniques for various aspects of the 

animation systems, including the systems for rendering, behavioural simulation 

and interaction. Where adaptive LOD is being used it may be feasible to suggest 

that all of these process should be managed by a single scheduler which allocates 

computational resources to the different systems. We discussed in the context
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of dynamics simulation how even the simple question of threshold values can be 

extremely subjective. Thus in order to be applicable generically to animation 

systems, a Level of Detail Resolver needs to be both efficient as well as flexible 

and reconfigurable for different problem specifications.

Generating Bounding Volume Hierarchies

Approaches exist for certain specific bounding volume hierarchies for Rigid Ob­

jects. These can also be used in generating the bounding volumes for the nodes 

of articulated Rigid Body trees. Most existing approaches however, deal with ho­

mogeneous bounding volume trees, although there are useful studies on building 

a tree with different classes of SSVs [55] and C-trees[97]. It would be worthwhile 

to further investigate techniques for generating efficient bounding volume trees 

made up of fully heterogeneous nodes.

Furthermore, many of the existing bounding volumes generation techniques 

approach the problem with the intention of using the generated BVH trees as a 

broad phase culling technique, or for simple ”yes/no” contact determination. As 

a result they tend to focus on reducing workload incurred in traversal of the trees 

i.e. reducing branching factors even at the expense of tightness of fit. Although 

the required result is not hugely different for a refinable contact modeller, it may 

be sometimes worthwhile to consider the specific needs of contact modelling when 

generating the hierarchies. For instance, an increase in the regularity of nodes 

and reduction in overlap between sibling nodes can be useful improvements for 

the approximate contact modeller, as can a pre-computed occupancy value for 

bounding volume nodes.
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Appendix B 

Implementation Details

Some key data structures and functions are provided here to illustrate some of 

the concepts discussed in chapter 3.

B .l  Selected Data Structures 

B.1.1 Sphere Tree

struct Stree {

Stree **_children;
Stree *_parent;

double _radius;
Vector .position; 
int _numChildren;

};

B .l .2 Sphere Hit

struct sphereHit

137



{
Vector colDir;
Vector colPos;

Stree* treel;
Stree* tree2;

RigidBody* thingl; //owner of treel 
RigidBody* thing2; //owner of tree2

bool isLeafCollision;
sphereHit* nextNode; //may need this

};

B.1.3 Collision

struct Collision 
{

List<sphereHit> verHits; //verified processed 
Collision *nextNode;

};

B.2 Selected Pseudocode 

B.2.1 Sphere-tree collision detection

The following pseudocode example illustrates how collision detection queries be­

tween two sphere tree data structures are performed recursively.

fxmction collisionDetectCsphereTreel, sphereTree2)

{
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apply worldcoordinate transform to sphereTreel._position 
and to sphereTree2..position

if collidingCsphereTreel, sphereTree2)

if (sphereTreel.isLeafNode0  && sphereTree2.isLeafNode()) 
return true;

else

if (time remains for further collision queries)

{
coll = false;
for all children of sphereTreel

■C
coll = coll I 1 collisionDetect(sphereTree2,

sphereTreel->child)

}
if coll //at least one leaf node collision 

return true 
else

return false

}
else //no time left to check further

return true //so assume they are colliding

}

}
else

return false;
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}

B.2.2 Progressive refinement phase

In practice, a recursive function is not used, instead all possible collisions are 

stored in a collision list. Each collision is refined one at a time if time remains for 

further processing as in the following function.

function refineCollision(currentCollision) 

for all sphereHits in currentCollision 

{
get currentSphereHit 
get treel; 
get tree2;

for all children of treel 

{
get treel->child

if colliding(treel->_child, tree2)

insert sphereHit (tree2, treel~>child) 
into sphereHit List 

sphereCollisions+=l;

}
}

}
if (sphereCollisions == 0)
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delete currentCollision from collision list

}
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